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MATHEMATICS EDUCATION REPORTS

. Mathematics Education Reports are developed to dissem=

inate information concerning mathematics education Jdocuments
analyzed at the ERIC Clearinghouse for Science, Mathematics,

and Environmental Education. Thece reports fall into three

broad categories. Research r?views summarize and ana'yze (
recent research in specific areas ot mathematics education.

Resource guides identify and analyze materiais and references

for use by mathematics teachers at all levels. secial
hibliographies announce the availability of documents and

rev e litg{ature in selected interest areas of

math 1cs education. Reports in cach of these cateqgories

may also be targeted for specific subpopulations of the

mathematics education community. Friorities for development
of ‘future Mathematics Education Reports are established by the
Advisory Board of the Center, in cooperation with the Hational

Council of Teachers of Ma.hematics, the Special Interest Group

for Researc: in Mathematics Education, the Conference Board of
: ¥

=

the Mathematical Sciences, and btheg professional groups in
mathematics education, Individual comments on past reports
and suggestions for future reports arc always welcomed by the:

- -
Assocliate Director.

contract no. 400-78-0004, The opinions expressed 1in this
report do not necessarily rcflect the positions or policles of
NIE or U.S. Department of Education. .

n“ This publication was prepared with funding from the National
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FOREWORD

The papers presented in this monograph represent varied
efforts which stemmed from and are related to the work of the
Number and Measure and Rational Numbers working groups which
developed at a meeting of the Georgia Center for the Study of
the Learning and Teaching of Mathematics held in the spring of
1975. Many of 'the discussions at that meeting (see Number and
Measure, R. Lesh (ed.), ERIC/SMEAC, 1976) sought te Dbring
constructs from developmantal psychology and mathematics to
bear in understanding a child's ideas of number and measure.
The studies presented here represent explorations in” these
dimensions as well.

As is naturally the case, when one considers a phenomenon
from several perspectives, a new perspective is generated
whicn differs from the original. Thus the deliberations of
members of the above working groups have generated concerns
which go beyond those of developmental psychology and
mathematics as these two relate to mathematical education.
Several of the papers here (e.g., Lamb, Owens, Steffe, and
Hirstein) attempt to relate developmental and instructional
variables. Yet the.r concern is not for developmental theory
but for ways in which one can describe the mathématical
thinking of children and the individual child in particular.

This concern for personal mathematical knowledge has led
authors of this monograph to bring various philosophical views
into play as well. A central assumption, if not underlying
the papers, then certainly useful for a reader reading them,
is that persons can build up or construct mathematics for
themselves. What these constructions look like, as well as
their extensibility and their relatedness to other
mathematical ideas, is dependent on several things. One
component might be characterized as "readiness," the history a
person brings to a particular experience. A second aspect is
the nature and extent of the experiences of tne person. Like
any other ideas, mathematical ideas should be "about"
something to have validity. Informal mathematical language
must be about certain experiences; formal symbolic, expressions
may be about less formal symbolic ex—ressions; mathematical
structural ideas reflect both inform.l experierce and forrmal

- symbolic_experience. These concerns are treated theoretically
and empirically in the papers of this monograph.

These papers reflect a stage in a sequence of work being
done by these authors and others. They are presented here as
a bridge between some of the ideas developed at the 1975
conference in Georgia and on=going work in this area today.
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Beyond the authors there are a number of persons who have
worked on this publication. 211 papers received several
reviews and *#e final form of the papers attempts to reflect
reviewer concerns. Without the generous, continuing, and:
ingenious efforts of Les Steffe this monograph would not
exist. He has worked hard in the original stimulation, the
organization of critical reviews, and the editing of aspects
of the document, as well as sharing some of his own work.
Marilyn Suydam has taken the final responsibility to ensgre
the quality of the publication througn ERIC/SMEAC at Ohio
State. To all th2se persons and to the authocrs who have
waited patiently ior this publication I give my heartiest
thanks.

Thomas E. Kieren

Edmonton
February 1980
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An Explication of Three Theoretical Constructs from Vygotsky
Karen C. Fuson

Northwestern University

Three theoretical constructs discussed by Vygotsxy -and
expanded upon by other Soviet researchers and theoreticians
seem to be potentially useful for the field of mathematics, -
learning, and mathematics teaching. These constructs are .
.the movement from the inter-psychological plane to the intra-
psychological plane, the distinction between spontaneous ard
scientific concepts, and the zone of proximal development.
Each of these constructs will be described along with our
further analyses and extensions of *he constructs. Vygotsky
was a seminal thinker and with broad strokes draws a stimu-
lating and thought—provoxlng picture of the develooment of
human thinking that is recapitulated within each child.
However, due o his early death from tuberculdsis, most of his
ideas were not thoroughly worked out, and he left little
published detailed evidence concerning them. Such evidence
would have helped to define as well as to support some of the
ideas, so its omission is detrimental to comprehension as well
as to evaluation of Vygotsky's theoreticai points. In addi-
tion, the English translations of Vyaotsky s work have omitted
much of the original, due to translators' attempts to elimi-
nate long digressive passages and to make tiie work more
succinct and pointed. This has resulted in reading which
appears at times to be somewhat disjointed, and it has
exacerbated the tendency of ¥ygotsky to concentrate 2n )
different aspects of the same concept at different places in
his writing. 1In the original, such shifts might have been 50
pages apart and connected b material which made the transi-
tion comprehensible. 1In tt- translation, such shiits may be
only a few pages apart anc contain no such meaningful
transitions. For example, the chapter on scientifaic concepts i
in the original Russian vercion is 107 large, fine-printed |
pages long. 1In the English translation, this chapter is only
37 small, large-printed pages long. These problems complicate
still, further the original lack of specificity. N

For these Treasons, the first step to be taken with
respect to increasing the potential utilization of Vyjotsky's
iceas is to arrive at clarifications and extensions of those

A 3

»

*Special thanks to Richard Lesh, Nancy Stein, walter Secada,
and James Wertsch and to two anonymous reviewers for
comments on earlier drafts of this paper. Mcmbers of the
Number and Measurement Working Group also gave me helpful
feedback on an earlier draft.
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ideas. Thus, this paper is primarily an explication and an
extension rather than a critical evaluation of Vygotsky's
work'. Examples from tne area of early mathematics learning
are also prov1ded in some sections. Many of the examples will
be quite familiar ones to mathematics educators, but the
Vygotskijan frame-work within which they are set may provide a
slightly new perspective for them.

Before beginning, it is useful to ccatrast the different
emphases which Vygotsky and Piaget have. For Vygotsky, the
» Paradigmatic learning situation 1s that ot a child.interacting
w1th an adult. For Piaget, 1t is a child alone 1nteracting
with objects or a child interacting with peers. Vygotsky was
more interested in the cultural learning of culturally
important concepts while Plaget focused more upon the natxral
learnina of cgncepts important’regardless of culture (objects .
important in/the natural world). The important learning
mechanism for Vygotsky was direct instruction from an older
member  of the culture. ‘For Piaget, it was the accommodation
of one's own views to conflicting 1deas of one's peers. These
emphases are actually complementary rather than contradictory.
First, neither writer would deny the existence ~f the factors
which the other considers. Second, together these two emphacses
cover most of the important sources of learning in a child's
world. This contrast in emphases indicates that one of the
important ways in which Vygotsky's ideas can pe extended are
by tonsideration of che influences of peers and of the. object
world., -

Movement from the Inter-Psychological Plane
to the Intra-Psychological Plane

Vygotsky focuses upon the child as developing within a
particular social and cultural context. Development is viewed
as a process that -is constantly directed by that social and
cultural context. The child does not just "develon"
spantaneously and unconstrained; the child is also "developed
by" her social and cultural context and especially by the : -
older members of that culturalfcontext. This view is .
specifically relaced by Vygotsky (1978) to intellectual
functioning:

An interpersonal process is transformed into
an intra-personal one. Every function in
the child's cultural development appears
twice: first, on the social level, and *
later, on the individual level; first; -
between people (interpsychological); and
then inside the child (intrapsychological).
This applies equally to voluntary attention,
to logical memory, and to the formation »f
concepts. All the nigher funciions oriqgi=
nate as actual telations between human

indiv duals. (p. 57)
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This transformation fis a gradual onc and is the result of the
interaction between a long series of developmental events and
cultural learning exper:iences.

Vygotsky does not clearly define inter-psychological
processes, 1ntra-psychological pr cesses, or how tne movement
from one to another occurs. I believe that he is talking
about at least three different things when he discusses the
inter- to intra-process. He is referring to:

!

a. the directive function of the adult witFk
respect to the child's attention, actions,
and psychological functioning

b. verbal information about concepts or action
sequences which the adult may possess and
which she or he may pass on to a child

c. cultural and intellectual tools (e.g.
language) which the adult helps the child
to learn and use
-

All three of these meanings are evident in an example of
a child learning to count. In the many learning trials which
a child will experience in learning to count, .the adult (or
older child) will exercise many directive functions, functions
which gradually fade away to come under the control of the
child. The adult initially will set the goal of counting,
will define the set of countables, will do the whol. counting
process initially, will have the child practice and imitate,
etc. The adult will keep the child's attention on the task,
will point out errors, and will help the child to overcoms
them. Through such efforts over a period of time, the child
comes to possess the important cultural tool of counting,
i.e., the actual process of counting has passed from occurring
for that child only in an interpersonal context and now can
occur within that child alone. This type of inter- to
intra-movement is'the third type above. The secomd type of
inter- to intra-movement is exemplified by possible adult
answers to the question, "What 1s counting?" Heré verbal
knowledge about counting possessed by the adult 1s provided to
the child. The child, of course, may have limited
understanding of the verbal sknowledge which is provided, and
the semantié representation which the child actually forms and
stores may be quite unalike that intended by the adult. Such
verbal infcrmation given by the adult might be "counting is
for finding out how many there are" or "only big girls can
count" or "counting is saying your numbers."

The directive function of adults is an extremely
important one. This function can be made a bit more ‘specific
by censidering hehavior ‘to consist of sequences of
goal-directed activity. Fig..e 1 presents a very simple
sketch of goal-directed acvivity which is done jointly by a
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Figure 1. Goal-Directed Activity in the Classroom

(from Fuson,
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"learnec" and a "teacher."* Figure 2 presents a much more
complex outline of goal-directed activity, wnich checks at
Yatious points, etc. A given execution of a goal-directed
sequence 1is on the 1nter~psychological plane 1f it is a
cooperative (co-operative) activity. The directive function
of the adult then is to execute with the child (or for the
child) any step in the activity sequence which the child
cgnnot do alone, to monitor the progress of the ch:ild through
the activity sequence, to serve as the external menory for the
next step, and to direct the cgi1ld to it if necessary. The
teacher may provide verbal  renresentations of what the child
is doing either as directives before the child does them or as
descriptions wnile the child does them (e.g., 'Now you re
putting all of the green ones together in a line.") or atter
the child does them (interperscnal function b). These verhal
representatioas may serve both to direct the child's behavior
in some way and also may alter his or her cognitions about the
concepts referred to in the verbal representations. Thus such
representations may carry both directive ana semantic force.

. .

In such a co-operative teaching/learning pro.ess, the
teacher gradually "fades" from each ster and each connection
over time, and the activity sequence, as well as skills and
concepts within this gequence, formerly possessed only by tne
teacher ynow become possessed by the learner. Other aspects of
this type of model of the teaching-learning process are
descr bed with respect to mathematics learning in Fuson
(1979).

! .

Although many Soviet psychologists discuss or at least
allude to this passage from the inter-psychological plane to
the intra-psyghological plane, the details of this
transformatioh with rgspect to mnathematical ideas have been
almost as little studied there as here. Gal'perin (1957), in
one of the few such works, postul'ates a series of five levels
in the internalizaticn process. As with Vygotsky, these
levels are assumed to be operating in a social learning
situation with another person (a teacher) present. Gal'perin
here introduces the world of oojects’, though this world is
still set within a social interactive situation. The five
Gal'perin levels are:

. <Creating a preliminary conception of the task
mastering the action using objects

mastering the action on the plane of audible
speech

W N

. e

*We will use adult (and teacher) to mean any member of the
culture who is exercising a directinqg, teachiny functicon with
a cnild. This freguently will be an older siblino or friend
and, more occasionally, « peer.

11




The cycle may stop
at any time either
by 1) the intrusien
of another event

2) a decision to
abandon the goal.
Many of the steps
become automatized
as the activity
becomes a familiar
one, Some of the
evaluation steps
may be omitted,
especially by
youngev children.

—

An external or internal

-event 1s attended to.

which 1is attended to or

Does
the event No

require over
behavior?

L

Set a Goal ]

P2

Evolve a (new) plan
for reaching the goal

Will
the plan
reach
the goal?

No

Yes

d

Execute the next step
of the plan )

No

carry out
the plan
correctly?”

1 abandon Yes

the goal?

Figure 2,

Goal-Directed Activity

Goatl rected
occurs as part of the
continuing stream of
behavior, so this
flow-chart contains
no start or ston.

activity




4, transferring the action to the mental plane
5. c¢onnsolidating the mental action

The first level refers to some attempt to ensure that the
chi1ld understands at least to some minimal extent the nature
and the function of the task to be accomplished. The second
level 1s feirly specific with respect to mathematical ideas
--it asserts that the fir_t representation which children must
build is a concrete one and is built from observations of and
actions on objects. With respect to other (nonmathematical)
concept domains, this step might be generalized to mean any
concrete representatioh, such as one arising from doing a
series of actions for oneself or having certain experliences
oneself rather than being told about such actions or
experiences, L2vel 3 may mean several things, and 1t 1s not
clear which of these %al'perin meant. This step will b2
discussed 1n detail later. Level 4 concerns the 1internali-
zation of the concrete representation used in Level 2: that
is, here an i1nte-nal representation of any actioun is
substituted for any previous external.,action and internal
images of objects are substituted for .real objects. Level 5
refers to effects of practicing which 1 1 to aa.omnatization
of the mental actions involved in the process.

American research am curriculum efforts 1n mathematics
learning sometimes pay conscious attention to Level 2 and
ften contain some unconscious efforts at Levels 1, 4, and 5.
However, focus on Level 3 is omitted entirely, and somatimes
this process is even consciously pnstponed becausec of the fear
of producing premature and/or empty verbalisms in children.

Failure to achieve adequately Level l--creatina A
preliminary conception of the task--probably results 1n mucn
more difficulty in both research end instruction than 1s
generally realized. Verbal instructions either 1n a research
task situation or in the classroom often fail to convey a
message which is meaningful enougn for a young chitd to act
upon it accurately. Alternatives which can be helpful here
are modeling the type of activity required (this of course
cannot be done in some research situations as 1t would
predispose the child to a certain type of response), using
objects which by their characteristics will help to create the
desired type of response, and using a simpler varsion f the
required task and ensuring that subjects know that the more
difficult task should be done in the way that the simpler ocne
was done. A study by Bullock and Gelman (1977) 1indicates both
how little one should assume about a child's preliminary
conception of a task and how little one chculd assume that
they spontaneously generalize. Children aged two, three, an.
four years were reinforced for choosing the smaller (or
larger) of one- and two-item arrays. They were then presented
arrays of three and four 1tems and asked to "pick the winner."
Forty-twn percent of the two-year-olds, 75 percent of the
three-year-olds, and 87 percent of the four-year-olds

5
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responded in a manner consistent with their first condition.
This seems to indicate that two-year-olds cannot generalize
"more" or "less" relations even for such small numbers as
three and four. But ian a follow-up study in which the one-
and two-item arrays were present (either covered or uncovered)
during the testing on the larger arrays, eleven of the twelve
children aged 2-1/2 to 3 years responded with the same
relationship that had been reinforced for the smaller array.
The fact that whether the i1aitial array was uncovered or not
was irrelevaht to the performance indicates that these young
children did not need the information from the small arrays
(i.e., their failure was not a result of a lack of memory
about which was the "winner" or even what the task had been
about); they simply did not realize that the second task was
supposed to be related to the first one. For them, the second
task was initially not the same task as the first one was. ~

Gal'perin reported the results of comparing two different
methods of becoming familiar with a task. After the teacher's
initial explanations, tne child either i1nteracted with the
materials himself under the direction of the teacher or
directed interactions of the teacher with the materials by
telling the ¥eacher the next operation to do (but did not
interact with the materials himself). The second method
proved 'rather more productive" (Gal'perin reported no task or
testing details). He hypothesizeqd that not having to pzrform
the action physically freed the child's orienting activity and
enabled a fuller and more correct conception of the task. This
approach might be evamined further. Such effects might also
be operating when groups of children worx together with
objects and watch and dira2ct each other's actions.

More explicit attention needs to be paid Ly educators
towards ways to help a child categorize the learning
vperiences she iz having. 3eparate mathematics lessons are
:ad over years of schooling; a child needs help 1n organ-
.-ing these lessons so that she can efficiently store new
learning .nd retrieve relevant old learning in order to relate
it to new learning. Codes on workbook and text pages might be
one such aid. Another one that may be effective is the use of
story settings for learning mathematical ideas. This approach
was used for some units by Lesh and Nibbelink (1978) in a
kindergarten workbook. A given story setting (e.g., stick
bugs) is used for a group of five consecutive lessons ©on
measuring. The story situation is motivating to children, the
teacher feels natural dealing with a story cituation (rathér
than with just mathematics), ind the children related the
separate lessons to each other. Re-use of the same setting
later in the yecar would thus seem to function as a strong cue
for children Developing and evaluating the effectiveness of
this and otr . ways to help children sort out and code the
various math:matical learning tasks confronting them woula
seem to be an important research goal for mathematics
educators.

14




Level 2 is regarded by Gal'perin as requiring heavy
involvement from an adult (i.e., 1t has a large
inter; sychological component), but 1ts primary focus is that
the child's interactions with objects is essential for the
formation of mental images of the processes:

-

This material action 1s, of course, built up
in continuing verbal intercourse with the
teacher, under the gurding influence of his
instruction, explanations and corrections.
But, at this stage, the role of speech, 1n
the case of both teacher and pupil, 1s
limited to indicating objective features

of the goal, the objects available and the
methods of dealing with them. These
instructions, however 1mportant, do not

take the place of action; the action can bre
completed only on the level of things, being
based on them and determined by them, and
remaining essentially an external, material
action. ...The kernel of the matter 1s that
this material form of ¢ction s not only the
inevitable initial form of a child's inde-
pendent activity, but also the origin of the
content and structure of the mental action
subsequently elaborated. (Gal'perin, 1959, p.218)

Levels 1, 2, 4, and 5 are not particularly original.
Levels 2 and 4 can together be regarded as reflecting the
process of the internalization from actions on physical
objects in the real world to mental images of actions. Piaget
and many others have postulated and researched such a process.
The Soviet emphasis here 1s upon social interactions concern=
ing socially defined objects, but the need for objects in
learn:1g is still apparent. Level 3 1s Gal'perin's major new
contribution to the 1dea of internalization of mathematicai
processes. By this I believe he means something rather
special to some mathematical processes. This "somethina
special™ is neither of the first two interpersonal
functions--neither the directive nor the verbal infnrmation
functions. Rather, Gal'perin here is talking about a problem
solution that can be represented verbally--i.e., he 1is
referring to speech which is the actual problem solution.

This view, I believe, is that this speech originally
accompanies and refers to the actions on cbjects. Eventuallv
the speech cones to represent the action sequence on sympols,
rather than that on objects, and the verbalization actually
becomes the solution process. Most computational processes are
an example of Gal'perin's Levels 2, 3, and 4. For a child
solving 27 + 45 by saying, "Hmmm, seven plus five is ten,
eleven, twelve. Put down the two and carry the 1. One and two
is three and four is 7. Put down the seven. Seventy-two.",
the verbalization is the problem solution process. Such a

15




verbal representaticn of a cognitive process may be relatively
rare. Such representatjons would seem to be useful for
processes involving a serial list of actions that must be
performed in a certain order. The vegbal representation then
serves as a memory aid for each step. According to
Gal'perin's scheme, this verbalization eventually becomes N
internal (Level 4) and finally almost automatic (Level 5).

Tie directive function of verbalization is also important
in the internalization process. Gal'perin sometimes also
seems to mean this function when discussing Level 3. However,
when the directive function of, verbalizatiou is considered, 1t
seems that instead of being a separate level that intrudes
into the process of the 1nternalization from objects to mental
i1 ges, Lewvel 3 might better be conceptualized as a continuum
of internalization from "verbal instructions from another" to
"verbal instructions to self." This continuum is ©.*%hogonal
to that representing tne 1internalization from objects to
images. If one pictures these two types of internalization as
representing perpendicular axes, then various points on the.
plane suggest research or instructional tasks. A high
concrete and high self-verbalization example is an adult
macthematics student learning group structures through some
- physical embodiment of the Xlein four-group. A 'ow concrete
and high other-verbalization is instruction from a teacher
about doing a problem such as 23 + 5 by counting-on using the
internalized string of number words (and some acoustic and
probably also visual image of this string). Examples in the
other ctwo quadrants are obvious.

A recent review of research in the develupment of
self-requlating speech (Fuson, 1980) 'indicates that training
children in the use of self-regulating speech does seem to be
effective in some kinds of cognitive tasks. .Training studies
on self-regulating speech .tudies in mathematics, particularly
in algorithmic processes, would secm to be a valuable contri-
bution to our knowledge about how mathematics 1s learned.

Verbalization in mathematics learning thus has at least
two important functions--a directive one and a reprasenting
one. Of course, these functions are not entirely
disjoint--any directive involves a representation of what 1s
to be decne and any representation carries some implicit
. directive force. But this distinction is probably a useful
one. The directive function of verbalization is used in all
subject matter areas while the representing function may not
he. bBoth of these functions deserve the<attention of
researchers in mathematics education. ’
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Spontaneous Concepts and Scientific Concepts

. The second theoretical idea to be discussed is Vygotsky's
distinction between spontaneous and scientific concepts.* The
main source available in English concerning this distinction
is a 37-page chapter on scientific concepts in Thought and
Language (1962). Thic chapter is an edited version of the

‘original Russian l07-page version. As with other Vygotskiian

concepts, spontaneous and scientific concepts are fairly broad
concepts, and different aspects of them are discussed at
different points in Vygotsky's writings. There seem to be at
least five separable aspects of these concepts that
differentiate them. Describing and discussing these aspects
will help to give some specificity to these concepts, but it
should be kept in mind that all of these aspects are gquite
interrelated. Some, in fact, might be taken to be basic and
then the others might be argued to ke derivable from these
basic ones. These aspects also should be viewed as each
forming a continuum, with scientific concepts being relatively
high on this continuum and spontaneous concepts being
relatively low, rather than a more simplistic view of these
types of concepts possessing all or none of these
characteristics. These five differentiating characteristics
are:

1. the level of consciouiness at which the
concept is understood

2. the predence of a hierarchical (super-
ordinate) system within whdch the concept
is embedded

3. the amount of cultural-historic input
into the construction of the concept
(as opposed to the cordinary existence
of the concept in the natural world)

4. the amount of "mediated" experience (i.e.,
experience only through verbal definition
and discussion) in the learning context as
opposed to direct perceptual or other
sensory experience

¥yygotsky certainly does not mean to r~strict scientific
concepts to those concepts used in the natural sciences,
for many of his examples come from the social sciences.
It is not even clear that he wo 1ld restrict such concepts
to -hose occurring in the natural and in the social
sciences. It is to avoid this ambiguity ot common usage
that I later suggest the use of the term nonspontaneous
concepts instead of the term scientific concepts.
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5. the amount of direct and systematic verbal
instruction necessary for the learning of
the concept

4
Scientific concepts are relatively high on these characteris-

tics; spontaneous concepts are low. Spontaneous concepts are
concepts formed by children through their everyday inter-
actions with their sensory world. These concepts are not
organized into a hierarchical system, but are formed and exist
in the mind of the child without conscious effort or knowledge
and without much (if any) direct instruction by another.
Vygotsky specifically mentions the early work of Piaget--on
the development of the meaning of concepts like "brother,"
"because,” and "flower/rose"--as providing examples of
spontaneous concepts. Spontaneous concepts aris€ from a rich
real-worid context and-are ?saturated with experience.”

Scientific concepts are formed consciously by the child
from the very beginning. Vygoilsky uses consciousness at
various times to mean such things as the ability to define a
concept in words and to operate with itgjt will. Also, he
asserts that generalization results in consciousness.

Vygotsky takes generalization to mean the formation of a
superordinate concept that includes the given  concept as a
particular case. What he really means by this, in terms of
the above five aspects, is that if a concept exists within a
hierarchical system as one of several exemplars of a
subordinate category, then the superordinate category enables
a type of meaninc t> be given to that concept (a certain kind
of consciousness) that it cannot get in other ways. We will
give examples of this type of consciousness in mathematics a
bit later. According to Vygotsky, scientific concepts are not
constructed from direct sensory experience but are mediated by
other verbal concepts from the very beginning. Children learn
about scientific concepts by talking about them or by being
talked to about them. In addition, scientific concepts are
unlikely to be constructed spontaneously by the child; they
result from contributions by past members of the culture and
have been maintained as part of the culture's heritage because
of their importance or usefulness: to that culture. The
mediated and abstract nature of scientific concepts would seem
clearly to require direct instruction from an older member of
the culture. But the manner of this instruction may also,
according to Vygotsky, contribute to the consciousness of
these kinds of concepts (i.e., 4 and 5 lead to 1l). The
teacher, working with the pupil, may explain, supply
information, question, correct, make the pupil explain, and
otherwise have the pupil think about and talk about the
concept. In this way scientific concepts may be raised to a
level of consciousness not possessed by the unexamined,
undiscussed spontaneous concepts. In addition, though not
mentioned by Vygotsky, scientific concepts also would seem to
possess heightened consciousness in the mind of a child
because the child (due to the direction of a teacher) forms a
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deliberate intent to learn such concepts, i.e., understanding
such concepts is set as a goal. Spontaneous concepts seem
gore likely to be learned by a child within the flow of
everyday activity and without the formation of a deliberate,
conscious goal to do so.

By all. of these means, scientific concepts become what we
might call the objects of thought while spontaneous concepts
do not; i.e., scientific concepts, because of characteristics
1 through 5, become the objects of conscious reflection.
vygotsky argues that spon.aneous concepts originally are not
the objects of such conscious reflection, but through the
influence of scientific concepts, spontanenus concepts
gradually come to rise to the level of consciousness of
scientific concepts. That is, .

The formal discipline of scientific concepts

gradually transforms the st ucture of the

child's spontaneous concepts and helps

organize them into a system; this furthers °

the child's ascent to higher developmental

levels. (1962, p., 1l16)

%

Spontaneous concepts alsn affect scientific concepts. The
richness of the context within which spontaneous concepts are
embedded is hypothesized by Vygotsky gradually to affect
scientific concepts; that is, some of the richness of. the.
meanings associated with spontaneous concepts eventually
becomes attached to scientific concepts. Thus, these two
types of concepts are said to interact: "... the development
of the child's spontaneous concepts proceeds usward, and the
development of his scientific concepts downward, ..." (1962,
p. 08).

The way in which these two types of concepts interact
seems very ill-defined. Are the same hierarchical systems
constructed through scientific concepts used to understand
spontaneops concepts or does the "hierarchicalness" itself
somehow generalize and become applicable for spontaneous
concepts? Piaget has an alternative mechanism for the way in
which spontaneous concepts come to be objects of conscious
reflection. This mechanism is through the conflict and
contradiction arising from peer expressions-of a differing
view on the same concept; the child must accommodate his or
her view to that of the contradictory information contained in
the peer's viewpoint. Piagetian theory clso has an
alternative explanation for the increasingly hierarchical
nature of spontaneous concepts--the advent of concrete
operations which permit class inclusion types of superordinate
relations. This does seem to be one of the relacively few
places whzre Piagetian and Vygotskiian theory are directly
contradictory.

A further question with respect to the relationcship
between spontaneous and scientific concepts is whether
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spontaneous concepts continue to be learned after scient.ific
concepts have created a certain minimal level of mental
Lierarchicalness. That is, are spontaneous concepts only
learned by preschool children? This point is not really clear
in Vygotsky's translated writings. If it is true, tnen the
distinction between spontaneous and scientific concepts
becomes much less interesting, for it occurs only early in
development.

However, there do seem to be some contributions which
this spontaneous/scientific distinction can make. Two changes
in terminology will facilitate this usefulne~s. The first
change is to replace the term "scientific" concept with the
term Vygotsky used when initially discussing such concepts.

He first used the words spontaneous and nonspontaneous
concepts. These words seem to include the necessary
distinccions without adding possible confusions caused by the.
use of the word "scientific" with its many other meanings. 1In
addition, it is helpfu) to differentiate attributes of the
concepts tpemselves from the ways in which those concepts are
learned. ghus a nonspontaneous concept is one which is high
with respect to characteristics 1, 2, and 3 (from the list of
five characteristics of scientific/spontaneaus concepts), and
a spontaneous concept is one low with respect to the same
items. Items 4 and 5 then present important ways in which
concept learninrg can vary. Item 4 can now more clearly be
seen to be the same as the second process I discussed with
respect to the inter- to intra-movement: b) verbal
information about concepts or action sequencee whicn the adult
may possess and which she or he may pass on to a child. This
indirect verbal means of gaining information about.a concept
is contrasted with direct perceptual means of operating on
objects in the real world. ' To continue the above iifminology,
learning from verbal descriptions and definitions i% thus non-
spontaneous learning and learning through the object world is
spontaneous learning. F will return to this distinction as
soon as Item 5 has been discussed. Item 5 concerns the amount
of direct and systematic verbal instruction that is necessary
for the learning of the concept. This item is thus the same
as the {irst type of process identified with respect to the
inter- to intra-movement: a) the directive function of the
adult with respect to the child's attention, actions, and
psychological functioning.

Vygotsky's and Gal'perin's examples of this directive
funct.~r were all of the direct immediate personal kind: the
adult interacted in person with the child. 3Juch immediate
direction is very typical of learning in ‘and out of schools.
But another way in which the directive function is
accomplished is also very typical of school learning--removed
direction arising from materials used within the classroom.
Textbooksy worxkbnoks, ditto sheets, games, and objects all
exercise ditection over a child's activities. Thus, there are
two types of directive function: immediate and removed. Note




that a single adult can reeach many more children by a removed
directive medium (e.g., a textbook), but that only i1mmediate
directive interactions can have a feedback loop that will
adapt the directives to the needs of a particular learner.

Now that these distinctions concerning spontaneous and
nonspontaneous concepts and spontanecus and nconspontaneouc
learning have been made, it is possible to discuss certain
types of learning no: considered by Vygotsky. One can now
consider spontaneous ‘and nonspontaneous concepts learned
spontaneously or nonspontanegusly. In addition, the
differentiations made above with respect to Items 4 and 5
permit even more specific types of learhing to be discussed.
By crossing the verbal ipformation/objgct information (Item 4)
with the directive {(immediate ‘or -cemoved)/nondirective
(Item 5) (see Figure 3), one obtains Vygotsky's old
spontaneously learned category (object information learned
with nondirection--the yparadigmatic Piagetian learning_
situation) and the old nonspontaneously learned category
(verbal information learned directively--the paradigmatic
Vygotskiian learning situation). However, the ability of the
directive function to be accomplished in an immediate or a
removed fashion actually results-in two parallel
ncnspontaneously learned'pategories-fbot of which involve
verbal information learne8 under the direction c¢f an adult,
but this direction may be immediate (in person) or reroved (or
even involve immediate direction about a remo':d direction,
e.g., a clarification of a ditto-sheet instructicn).

A new category even more important for mathematics
learning results from this crossing of Items 4 and 5. This is
the category of object information learned under the direction
of the adult. This direction may come in person (i.e., the
adult may observe a child interacting with objects and make
suggestions, summarize what is happening, etc.), or the
directive function of the adult may result from the adult
structuring the objects in such a way as to direct what the
child will learn from those objects. This latter category
thus ir."ludes all activities of children with structured
objects, i.e., with objects which possess in some aspect of
their physical form the properties and relations of the
mathematical ideas which it is desired that children learn.
For example, multibase blocks, Cuisenaire rods, multiplication
pieces, and chip computers all enable children to abstract
characteristics of our base ten system of numeration and
operations that can be performed within it. This new type of
learning thus returns to the two orthogonal axes proposed 1in
the discussicn of Gal'perin's lovels of internalization-
external objects/internal representations of objects and
verbal directives from anothetr/verbal direc«ives from self.

The vestrigtion of the meaning of nonsponta.eous concepts

to the first tAree characteristics enables us to see more
clearly another point--that the "new math" thrust of the late
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fifties and early sixties was an attempt to make the mathe-
matical concepts learned early in school by children non-
spontaneous rather than spontaneous concepts. Sets of okjects
were not just to be made and then used to aid calculation.
Such sets were to be placéd within a more general verspective
of sets in general, i.e., the sets of objects which have nften
been used in elementary classrooms were to be viewed by
children as specific examples of the more general concept of
set. Likewise, nonbase ten systems of numeration were studied
in order to give additional meaning to the base ten system.
That is, in Vygotsky's terms, wia these curriculum modifica-
tions children would learn with a greater consciousness the
concepts of set and of the base ten system. Whether the fact
that these curricular innovations fell short of their expected
results was due to the manner in +hich they were taught or
because the goal of such hierarchical generalization was
unrealistic is not at present kxnown. Certainly the learning of
nonbase ten systems suffered by being approached mainly via
translations from the different system into base ten and back
again, rather than by working within that system to begin to
get a sense of its properties--which could then be generalized
to the base ten system. Teaching nonbase ten operations helps
adults understand the analogous base ten operations better
(e.g., Fuson, 1975). Dienes (1963) also suggests that this 1s
true for children. With structured materials, we now are in a
better pcocsition to assess Vygotsky's hypotheses about the
effects of a superordinate category (base systems 1n general)
upon the consciousness of particulir mathematics concepts
(base ten operations).

As a final example of a mathematical nonspontaneous
concept, let us consider numbers. A cardinal number is the
measure of a discrete set of objects. This measure is often
arrived at directly by counting, although it may be derived
exact.y or approximately 1in other ways. The notion that a
card.nal number can be derived by counting (i.e., that the
last counting number said when counting a set nf objects 1is
the cardinal number for that set), must be constructed by
children. Children can be found who count a set and who
cannot then answer the guestion "How many?" about that set
(Schaeffcr, Eggleston, ind Scott, 1974). However, this idesa
has already been constructed by many three-year-olds and most
four-year-olds; *' ., most children begin school with some
notion of a cardinal number. Such notions of a cardinal
number derived from counting might thus be considereda to be
spontaneous concepts.* The usual school curriculum is based

*Because counting is high on Iter 3 (1t requires heavy
artificial cultural learning), it might be considered t¢ bhe a
nonspontaneous concept even though it is low on Item 2
(presence within a hierarchy). This examgle thus illustrates
another difficulty 'ith the notion of non-spontaneous
concepts: a given concept may shift categories depending upon
which criterion is used.
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on the set of natural numbers (or sometimes the set of whole
numbers), and it treats all of ti- operations (+, -, x, = ) as
operations on natural or on whole numbers. Davydov (1979,

Note 1) and Gal'perin and Georgiev (1969) propose an alterna-
tive approach to number at the beginning of school (age 7 in
Soviet schools). This apprcach assumes that the concept of
number derives from the more general process of measurement of
a continuous quantity, i.e., a number results when one
determines the multiple relationship of some quantity to a
part of that quantity used as a measure or a unit of
measurement. A very active introductory curriculum is used in
which children measure various quantities using various sorts
of units. The measure of a quantity is thus always with
respect to a particular unit. The counting of discrete sets
of objects is a special type of m2asurement, a type where the
unit of measure is the unity (and discreteness) of any single
object. Thus from the beginning the natural numbers are
viewed as arising from a special sort of measuring process.

In addition to this difference, natural numbers are also an
example of a relatively rare and "nice" sort of measure--one
that comes out even. If one takes any quantity and any
measurer, the chances are low that the resulting number (the
measure) will be a whole number. Thus, in this approach a
natural number is from t..e beginning a nonspontaneous
concept--it is viewed from the perspective of a number as
derived from a more general act of measuring.

As with any curricular innovation, we need to obtain
information about the immediate arnd long-term advantages of
the inclusion of nonsm~»ntaneous concepts in the curriculum,
Obtaining such information will be difficult and slow, for the
long-term effects may be subtle and far-reaching. But in
general, it seems that whenever nonspontaneous concepts rather
than tne roughly corresponcing spontaneous concepts can be
learned by children, it would be beneficial to teach the
nonspontaneous concepts. The real question then becomes
whether and/or when concepts can be taught as nonspontaneous
ones.

The Zone of Proximal Development

Vygotsky was interested in the relationships between
learning and development. He rejected the view that all
development is the result of learning, 1.e., that little bits
of learning increment are responsible for any intellectual
growth of a child. He also rejected the view that development
is relatively independent of learning, that developmental
processes unfold without regard to and not dependent upon
learning that has occurred, and that learning merely uses the
achievements of development as these achievements occur.
Instead Vygotsky postulates another relationship between
learning and development, one that is dependent upon his view
of intellectual func¥iohing as moving from the.
inter-psychological t® th® intra-psychological plds -,
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Vygotsky's position results from the observation that with the
support of an adult or of more capable peers, children are
able to solve problems and accomplish var »us tasks that they
are unable to do alone. Vygotsky focuses attention upon this
by giving it a name: a zone of proximal development. This
zone of a child is

the distance between his actual developmental
level as deterrined by indeperdent problem-
solving and his level of potential development
as determined through problem-solving under
adult guidance or in collaboration with more
capable peers. (1978, p. 86)

Thus, learning is seen to lead development by creating zones
of proximal development in the child:

that is, learning awakens a variety of internal
developmental processes that are able to
operate only when the child is interacting

with people in his environment and in coopera-
tion with his peers. (1978, p. 90)

The zone of proximal development is where inter=-psycholocical
processes first occur. When such processes later become
internalized as intra-psychological processes, they become
part of the child's developmental achievament and are no
longer in the child's zone «f proximal development. Thus the
relationship betwseen development and learning is a dynanmic
one, with development providing constraints upon the tvpe of
learning that is possible but with learning through the
support and guidance of others furthering and contribu.ing to
developmental progress.

The notion of the zone of proxima! development involves
a starting point (actual developmental level, measured by
independent problem solving) and an end=-point (potential
developmental level, measured by cooperative problem solving).
This notion thus necessarily involves a learning path, a path
from the actual developmental level to the potential level.
To me, such a path seems to be constructed in at least three
different ways. The first learning path is defined by a tasx
analysis of the subject matter to be learned. Such an
analysis specifies a hierarchical set of skills and subskills
and marches the child through this hierarchy. Such a learning
path in the early number area might move from counting, to
symbol recognition, to addition with very small numrers, to
addition with larger single-digit numbers, tn addition of .
double-digit number and a single-digit number without
carrying, to such problems with carrying, to the addition of
two double-digit numbers without carrying, etc.

A second learning path derives from attempts to trace the

spontaneots development of concepts in the mind of the child.
This spontaneous developmental path is then used to define the
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path of instruction for other children. An exampfe of this
approach is to attempt to trace a developmental sequence: of
the counting solution strategies children use in solv: g
addition problems (e.g., Fuson, 1979, Note 2). Here the
problem hierarchy is greatly simplified (i.e., the same
strategies are used for all of the above types of addition
problems), but a solution hierarchy is imposed arising from
development within the chiid. Each of these two approaches
determines a different learning path, i.e., the tasks
presented for cooperative learning would differ for these two
paths.

The Soviet view of the derivation of the learning path is
yet another one. This path is not determined just by the
nature of the subject matter to be learned nor by the
spontaneous sequence of development of a child. The direction
of this third path is affected by learning which occurs along
it. That is, learning is not assumed merely to help
development along in its inevitable path; some learning (in
particular some school learning) is hypothesized to change the
path of development. Certain concepts are-so powerful and
general that they become tools of thought, tools that change
the course of development. An example of this type of
learning pathi in early mathematics learning might be the
concept of ten a. a unit. Before this concept is learned,
children consider a number such as 37 to be composed only of
37 single units. They would make a set of 37 by taking 37
sticks {(rather than three groups of 10 sticks and 7 single
sticks), and they would add 37 to another number by
counting-on to 37 from the other number either mentally, on a
number line, on a hundreds board, on a Chisenbop finger
sequence, or on a set of objects, or possibly they mignt add
by a counting-all process using one of these methods. ©Once
the concept of 10 as a unit has been learned, the couanting
process in all of these cir-umstances can be changed:
counting-on can proceed with jumps of 10 (e.g., 48 + 37 = 48,
58, 68, 78, 79, 80, 81, 82, 83, 84, 85), vertical +10
movements can be made on a hundreds bcard as well as
horizontal +1 movements, tens fingers can be added as well as
ones fingers in Chisenbop, and groups of tens can be made and
counted by ten. All of these procedures can then lead to the
addition algorithm--the adding of like-sized units (ones,
tens, hundreds, etc.).

This example indicates that the actual path of learning
is actually a composite of all the three single kinds of paths
proposed: the subject matter at least partially determines the
real learning path (i.e., ten as unit notion is fundamental to
the understanding of the addition algorithm); the new idea
is not just learned, it is absorbed into the child's own
developmentally determined procedure; and the new 1idea does
in fact change the direction of development. 1In undertaking
research on children's learning, it may be necessary to focus
upon these three different derivations of learning paths and
even to pursue one of them temporarily as though the others
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did not exist, but ultimately they must te put together. The
Lirst two derivations are common in American thinking. The
zone of proximal developn nt may help to focus us uporf the
equally important third type of derivation.

Vygotsky does not further analyze the zone of proximal
development., Without additional analysis and specificity, the
construct does little more than restate the hypothesized
movement from the inter-psychological plane to the 1intra-
psychological plane. This restatement does serve to f .us
upon the relationship between learning and development and it
does enable one to concentrate directly upon that which is of
primary ‘mportance in education--the effects of instruction
upon children's learning and uion their consequent
development. However, if this construct can be analyzed
further, it may become quite useful. A small first step
towards such an analysis 1s given below.*

Several attributes of the zone seem important. First,
the zone is clearly conceptualized by Vygotsky as a distance,
in particular as the distance between a starting-point that is
the child's present ievel of achievement and an end-point
which is where he or she is able to go with lLielp.

Past achievement

Present developmental. D(istance) . Achievement
level : S(tart) E(nd) level with
State of readiness support

Now D might be considered to be dependent upon at least the
following:

D(istance) = individual learning Rate
X individual learning Power
X Time spent in cooperative learning
x Level of support necessary for
learning to orcur ’

D=RxPxTx L

A o
Vygotskv dealt explicitly with only one of the factors
in this equation--power. His one example concerning the zone
of proximal development was of two children who both had
tested mental ages of eight year:, but one of whom could solve
tasks with the aid of the experimenter up to the level of a

¥After this manuscript was completed, another such analysis
came to the attention of this author. This analysis :s 1n:
Brown, A. L. and French, L. A. The zore of potential
development: Implications for inteclligence t2sting in the
year 2000. Technical Report No. 128. Champaign, Illinoils:
Ce.ter for the Study of Reading, Universiiy of Iilinois, May
1979. ERIC: ED 170 737.
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twelve-year-old and the other who céuld onlv solve problems
with help up to the level of a nine-year-old.

None of the factors in the distance equation are new
ones, but work 1n this coun*ry concerning the factors has
tended to come from separate areas of research and remailn
unconnected. Psychological and psychometric research has
examir :d learning rate (e.g., number of trials to criterion)
and power (e.g., total score), though these constructs are
often conZounded (as with timed tests). Our language contains
both of t.ese ideas: we talk about "fast" (Rate) kids and
"bright" (Power) learners, but often do not distinguish very
carefully between these¢ groups. Educational research, on the
other hand, has examined the relationships between time and
distance. Traditional schooling has tended to hold time
constant (i.e , giving children of varying rates and power the
same amount of time on a given subject matter), with the
result that distance varies. Approaches like individualized
learning and ~aistery learning have instead held distance
constant (i.e., defined certain learning tasks as required for
all children}, while varying time.

Having all of these constructs in one equation is useful,
for this perhaps can facilitate the relating of these too
often unrelated concepts. However, 1n order to utilize the
relationships in the eguation most effectively, adeguate.
measures of the factors in the equation are needed. TQ is the
usual measure of both individual power and of rate. Starting
points and ending points are measured by achievement tests and
by teacher-made tests, but the former of these especially are
usually not at a very detailed level. T‘me is measured by
class periods (or occasionally by time-on-task), and level of
support is rarely measured at all. Thus we do not have at
present very adequate measures of any of these factors.
Adequate measures are necessary if the rglations in the
equation are to become any more specific.

The dicstance eguation does serve to point out an
additional aspect of the learning situation. The starting
point, the rate, and the power are all attributes of
individual children. These factors are not able to be
controlled by the teacher or by the school. However, the end
points (and thus the distance), the time, and the level of
support are factors which are under the control of the school
and tQe teacher. Explicit realization of the relations among
these types of factors may serve to permit sensible
adjustments to be smade in the factors which are under the
control of the texcher.

’

Little re<- -rch has examined the level of support
conceptualized as sucn. Even though Vygotsky did not
explicitly discuss this factor with respect to the zone of
proximal development, 1t 1s the most distinctly Soviet factor
in the equation. This aspect also may be tr- largest
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contribution the idea of the zone of proximal development has
to make. The basic notion of the zone of proximal development
is that children giving the same response on a given 1item may
have different amounts of remairing untested knowledge. Thus,
if provide@ with a bit of additional knowledge, one such child
may be able to continue to respond while another may not. The
level of support can be considered either with respect to a
given learning process or with respect to a given response
measure. Techniques like recognition (rather than’'recall)
tasks, cued recall, and other probed memory tasxs are examples
of response measures that provide a higher level of support.
The level of support may not only provide additional
information; it may also involve organizational or meta-level
understanding of a task. That is, the adult may possess an
understanding of the task as a whole which produces helpfu]
.directives that the cnhild is unable to provide for herself or
himself. Thus, .the level of support might be thought of as the
number of steps in a‘“given sequence of goal-directed activity
(see Figure 1 or 2) that an adult has to accomplish or as the
number of increasingly specific hints a teacher might have to
give before a given problem is accessible to solution.

Certain modes of teachin3j mi:ght pe related to a continuum
of such levels of support. Discovery learninc might b2
characterized as that which is accomplished with the minimal
level of support possible, while didactic teaching uses the
maximal level of support--the child is explicitly told the
whole process, definition, relationship, etc. Sometimes
discovery learning and didactic teaching are posed as the nnly
alternatives, while the whole range of decreasingly direct
hints, observations, etc., that a teacher may make are
ignored. The use of a considerable range of such supports
would seem to be particularly important in research which
tries to find out what a child can do or can understand.

Thus, finding interactions between different levels of support
and the distance a child can go in a set of tasks would seem
tc be quite impc ant as a research goal.

In summary, if we are "ble to define aspects of the zone
of proximal development more analytically, it may come to
serve as a useful theoretical construct. 1Its main purpose in
its presently fairly undefined state is nevertheless
important--it suggests that we might profitably turn our
research activities toward ascertaining what children can do,
especially with adult or with peev help, rather than continue
to focus only upoa what children in fact do do. Furthermore,
Vygotsky's fairly complex notion of the relationship between
development and learning ought to help us to steer clear of
two naive alternatives: an overemphasis only on 1) the level
of a child's development (for example, as in the interpreta-
tion of Fiaget's theory as dictating that one simply waits for
the child to become concrete-~operational) or 2) only on what
we want children to learn without regard for wnat the child's
developmental level says about such learning.
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QUANTI'TATIVE COMPARISONS AS A READINESS VARIABLE FOR
ARITHMETICAL CONTENT INVOLVING RATIONAL COUNTING*

Leslie P. Steffe
The University of Georgia

Counting has not been considered explicitly in studies of
early learning of mathematics to the extent it deserves. One
reason counting has not been given a central pgsition is that
the mathematics curricula in the United States are, in the
main, based on cardinal number for the early years. In
Freudenthal's (1973) opinion,

In the genesis of the number concept, the
counting number plays the first and most
pregnant role. This should be recognized
rather than ignored by developmental
psychology and pedagogics." (p. 191)

Freudenthal goes on to claim, ﬁo doubt the stress in
psychology on the numerosity aspect is due to Piagec”

(p. 192). In the face of Freudenthal s claim, Piaget has
claimed that number for the yound child is both cardinal and
ordinal. r

There seems to be a contradiction between the claims of
Freudenthal and Piaget. But, in actuality, there is little
conflict. Piaget has never studied the development of counting
in the same way that he studled the development of the objects
one might call number in the' chi1ld. But Freudenthal's
criticism is based in the main, on the countinyg number,
"mathematically called the ordinal number" (Freudenthal, 1973,
p. 171). Essentially, then, Freudenthal's criticism of Piaget
is a reflection of the fact that Piaget may not have gone far
enough in his studies of the development of the child's
conception of number.

One should not claim that the emphasis on cardinal number
in the mathematics curricula of the United States is due to
Piaget. The emphasis is based on the theory of cardinal
.number in mathematics. Freudenchal's criticism of the
pedagogs should be interpreted in light of the mathematics
-involved, even though he does allude to the use of Piagetian
theory Ly pedagogs. To clarify the issues, an overview of
number in Piagetian theory and aspects of ordinal number for
counting are .discussef.

*This paper 1s based on the following report: Steffe, L. P.,
Hirstein, J. J., and Spikes, W. C, OQuantitative comparisons
and class inclusions as readiness varlables for learning
first-grade arithmetical content. Technical Report HNo. 9.
Tallahassee, Florida: Project for Mathematical Development cf
Children, 1976. ERIC: ED 144 808.
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Interpretaticns of Number

Number in Piagetian Theory

In his classic work, The Child's Conception of Number
(1952), Piaget attempted to show that cardinal ang ordlnal
number are developmental, arising in the child as a synthesis
of Grouping I, Primary Addition of Classes, and Grouping Vv,
Addition of Connected, Asymmetrical Relations. While the data
presented in this book are "old," the basic theory of the
t of number in the child has
not changed substantially over the last three decades (Piaget,
1970; Beth and Piaget, 1966; Sinclair, 1971). Number, for
Piaget (1952), "is at the same time a class and an asymmetri-
cal relation" (p, 184), Two essential conditions for the
"transformations" of classes into numbers exist (Piaget, 1952,
pp. 183-184). Given a class, all of the elements must somehow
be regarded as equivalent, but at the same, time distinct. To
illustrate these two conditions, imagine some hierarchical
system @ CcA) € Aj;cay € ,,, ¢ Al of classes where
n single elements.

the following classes contai

[ 8]

>
[

¥

X Ay .
= Ay - A ’& A2

w

>
28]

¥

’A3-A2 Ay

4. A3' = a4 - a3

For example, A] could be a bead, Ay' a cube, Ay'

a4 bean,
etc.

The first condition given is that all elements must be
r=garded as equivalent (all qualities of the individual
elements are eliminated). But, if condition one holds, then,
for example, A2 would not be a class of two elements, but

- instead only one, for A; U Al' = Aj--which is to say
that the quality of the elements is eliminated. If the
differences of A] and Al' are taken into account, then
they are no longer equivalent to one another e. _ept with
respect to A. This brings the second essential condition
into focus. 1In effect, the equivalent terms must remain
somehow distinct, but that distinction no longer has recourse
to qualitative differences. Given an object (the bead), then
any other object :ig distinguished from that object by
introducing order--by being placed next to, selected after,
etc., "These two conditions are necessary and sufficient to
give rise to number. Numoer is at the same time a class and
an asymmetrical relation.,." (Piaget, 1952, P. 184). Thus,
according to Piaget (1952, P. 184), in qualitative logic,
objects cannot be, at one and the same time, classified and
seriated, since addition of classes is commutative whereas
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seriation is not commutative. However, if the qualities of
the elements are abstracted, then the two groupings (I and V)
no longer function independently, but necessarily merge into a
single system.

.

In Piaget's system, then, number is not to be reduced to
one or ancther of the groupings, but instead is a new
construction--a synthesis of Groupings I and V. Elements are
ejither considered in terms of their partial equivzliences and
are classified. or are considered in terms of their
differences and are seriated. It is not possible to do both
at once unless the qualities are abstracted (or eliminated);
then it is necessary to do both simultaneously.

The only way, then, to distinguish Ay, A;', Aj',
A3', ...is to seriate them: A->A->A-—>, ..., where >
denotes the successor relation and A represents Aj' -here
all the qualities of the element of A;' have been
eliminated. Clearly, Plaget considers each A to be a
unit-element, at once equivalent to but distinct from all the
others, where the equivalence arises through the elimination
of qualities and the distinctiveness arises through the order
of succession.

The notion of a unit is central in Piaget's system and is
not deducible from the Grouping Structures, but rather is the
result of the synthesis already alluded to. Once reversibility
is achieved in seriation and classification, "groupings of
operations become p0°s1ble, and define the field of the
child's qualitative logic" (Piaget, 1952, p. 155). Here

operatiogal seriation has as a necessary condition,

" reversibility, at the first level of reciprocity.
A cardinal number is a class whose elements
are conceived as 'units' that are equivalent,
and yet distinct in that they can be

. seriated, and therefore ordered. Conversely,
each crdinal number is a series whose terms,
though following one another according to the
relations of order that determine their
respective positions, are also units that
are equivalent and can therefore be grouped
in a class. Finite numbers are therefore
necessarily at the same time cardinal and -
ordinal... (Piaget, 1952, p. 157).

The development of classes and relations does not, as it may
seem from the above quotations, precede the development of
number in Piaget's theory: those developments are
simultaneous, Without knowledge of the quantifiers "a,"
"none," "some," and “all," which implicitly involve cardinal
number, the child is not capable of cognition of hierarchical
classifications. A genetic circularity consequently exists in
the developmental theory of classes, relations, and numbers.
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Given that Piaget so unequivocally states that number for

the young child is both cardinal and ordinal, 1is |
Freudenthal's criticism justified? Before attempting to |
answer, aspects of ordinal number theory are discussed.

Ordinal Number

Just as set equivalence is a basic notion tor cardinal
number, set similarity is a basic concept for ordinal number.
For clarity, the order relations 3discussed Lelow are
asymmetric and transitive as well as being ccnnected. Two
ordered sets are called similar if there exists a one-to-one
correspondence between their elements that preserves the order
in the two sets. 1In symbols, "A is similar to B" is denoted
by "A = B." Hausdorff (1962, p. 51) assigns order types to
ordered sets in such a way that similar sets, and only similar
sets, have the same order type assigned. In symbols, r = s
means R= S. If a set is well-ordered, then its order type is
called an ordinal number. If A is a well ordered set, then A
has a first element, say ag; A - fag} has a first element,
say aj; A - {ag, a)} has a first element, say a,;
etc., so that A = fag, a), ap, a3, ...}. The notion
used here is that the index of every element is the ordinal
number of the set of elements preceeding it. For a3, "3" is.
the ordinal number of {ag, aj, ap} which is called a
segment of A determined by "a3." In more general terms,
each element a of A determines some segment S where S = {x€
x <a}. If Q = {x€A: x f S}, then A.= S + Q. MNote that a
because < is irreflexive, so a is the first element of Q. |

As indicated above, the elements of a set & which is well
ordered can be indexed by successive ordinal nunbers. If A is
a finite set, then A = {ag, ay» an, ..., apn-1}% and n |
is the ordinality of A where é is the ordinality of the empty
set. Because any ordering of a finite set is a well-ordering,
it is impossible to distinguish the orderings with reference
to the ordinal number of the set; i.e., all orderinrgs give the
same ordinal number. Thereby, the ordinal and c¢ardinal |
numbers of finite sets correspond, and ‘t is prossible to find
the cardinal number of a set by a process of counting, that
is, by indexing the elements of the set A ny the ordinal
numbers 10,1,2,..., n-1} by virtue of successive selectinn of

-single elements. (Select some agp, then some aj;, etc.,
until the last one ap.) is selected.) Then n 1is called the
cardinal number of the set. This process is often refecred to

.as counting.

Concretely, if A is a finite set to be counted, then by

successive selection of elements, successfve segments of set A

are determined. "One" in the selection of the first elerent

has both cardinal and ordinal characteristics in that "one".

tells how many elements have been seclected and also that the
' first one has been selected. A subset of the collection A of
one element has also been determined. "Two" in the selection
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o{ the next element also has both cardinal and ordinal
characteristics in that "two" tells how many elements have
been selected and also that the second one has been selectcd.
The segment corresponding to "two" 1s an ordered set, is a
subset of the coilection A, and contains the set consisting of
the first element. It is ordered by the relation "precedes,"
which is transitive and asymmetrical. 1If this counting
process is continued until A is exhausted, then

A =4{a), a3, +.., ap} has been well-ordered by the

relation "precedes." A chain of sets has been

established in that if A} = fajd, Ay = {a), as},

etc., then Aj€ Ay ¢ ,,.€ A, . In this sense, one can

say that one 1is included in two, two is included in three,
etc. If A is counted in a different way, A = {aj*, ar*,

az*; ..., ap*!. It must be noted that while aj* may not

be the same element as aj, nevertheless aj* is the ith
element and also i is the cardinal number of A;* = ial*,

a*, ..., aj*} where i < n. While Aj and A;* are

similar (and therefore equivalent), they are not necessarily
equal ordered sets.

Addition and subtraction of ordinal numbers. If A and B
are disjolnt ordered sets, then the set theoretic sum of A and
B/(A + B) is a new ord.red.set such that the order of the
elements of A is retained, the order of the elements of B is
retained, and every a £ A precedes every b £ B, If a is the
order type of A, b the order type of B, then a + b 1s the
order type of A + B. An example of ordinal number additicn
follows. If a = 5 and b = 3, then 5 + 3 is the ordinal number
of the set {al, ay, a3y, a4, as, by, by, b3}.

To rename 5 + 3, the child could count "one," "two," "three,"
"fOUf," "five," "Six," "SeVen," Height’" OI.‘ could COUﬂt "Six,"
"seven," "eight," which represents a counting-on of B to A.

In both cases, 5 + 3 is renamed as 8.

Subtraction of ordina: numbers is possible in special
cases. If @ and B are ordinal numbers and & <8, & and B
determine a unigue ordinal number E satisfying the equation

a+§ =B (Hausdorff, 1962, p. 74). & is of type W (£) - W (4)
where W (P) = {ordinal number < B} . Clearly, if a€<B ,

W (d) € W (B). An example is if 4 is 7 and A is 9 then

Wi(d) = £0,1,2,3,4,5,6¢; W () =30,1,2,3,4,5,6,7.8% and

W (B) - W («) = §7,8%. ¢ is a remainder in the f  owing
sense., if a is an element of a well-ordered set P, 5 = {x € A:

x < a}and Q = {y € A: y 2> a}, then P = S + Q and S is the
segment and Q 1s the remainder determined by a. Essentially,
then, £ is the ordinal number associated with thc remainder of

W (B) determined by d. The solution {, of € + § = B is denoted
by 8 - &« for finite d and §# .

In the case of the equation n + & = B yhere & ¢ B, the
solution is also represented by B - & for finite &« and B .
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However, the solution is arrived at by the following process:
n+ (ad- 1) is the predecessor of B; n + (o= 2) is the .
predecessor of n + («~ 1); and so forth, until n is reached.
Concretely, if x + 5 = 11 is the equation, one counts back
from 1l to reach & (the snlution) in the following way:
“ten," "nine," "eight," "seven," "six"; so since six 1s the
predecessor of x + 1, x must be six.

In the case of the equation 5 + x = 11, the solution is
found by counting the remainder, starting with the first
element of the remainder and proceeding to the last. It should
be clear that one could also start with the last element of
the remainder and count backward to the first. In either
case, a double counting process is necescary: ten is one;
nine is two; eight is three; seven is four; six is five; so
the answer is six. Or, six is one; seven is two; eight is
three; nine is four; ten is five; eleven is six; so the answer
is six. In the case of counting-back, rather than counting
predecessors of elements in the reminder one can count the
eleme themselves: eleven is one; ten is two; nine is
three, 1ghc is four; seven is five; so the answer is six.

Comments on Piagetian Theory of Number

From the discussion in the preceding two sections, it can
be seen readily that Piagetian theory of number does not
include a theory of counting. Counting, however, is an
integral part of the theory 'of ordinal number (and thus
cardinal number in the case of finite sets). But neither
Grouping I nor Grouping V includes a theory of counting (or of
arithmetical operations). However, in Piaget's analysis, a
synthesis of Grouping I and V gives rise to number. So,
having the Groupings not include counting or operations would
not be a shortcoming if Piaget provided a detailed
developmental structural analysis of number in a way analogous
to that provided for Groupings. But the fact is that no such
theory or data exists in Piagetian theory concerring the
cognitive development of number beyond the objects called
number. Piaget's theory and research concerning number stop
with the objects he calls number. He did not go on to
investigate, developmentally, counting or operations, although
"additive" and "multiplicative" composition of number are ‘
discussed. Freudenthal's criticism that Piaget studied only
the "numerosity" number is not fully justified in the context
of Piaget's studies, as Piaget studied set similarity and re-
lations™ips between cardinal and ordinal number. But L
Freudentnal's observation that Piaget did not study coun™.ng
1s certainly valid. Further, as noted, Piaget did not study
addition and subtraction of ordinal numbers per se.

Piaget's Experiments on Cardinal and Ordinal Number

Piaget (1952) did use counting to study development of
cardinal and ordinal number. In his study, two problems were
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of concern. First, a child had to determine a cardinal number
given an ordinal number, and second, the child had to
determine an ordinal number given a cardinal number., Three
éxperimental situations were employed, one involving seriation
of sticks, one seriation of cards, and one seriation of
hurdles and mats. In the seriation of sticks experiment, the
child was asked to seriate ten sticks from shortest to longest
and then was given nine more sticks and was asked to 1nsert
these into the series already formed (the material was
constructed in such a way that no two sticks were of the same
length). He or she was then asked to count the sticks of the
series, after which sticks not counted (or sticks the child
had trouble counting) were removed, apparently aiong with one
or two he or she did not have trouble counting. The
experimenter then pointed to some stick remaining and asked
how many steps a doll would climb when it reaches that point,
how many steps would be behind the doll, and how many the doll
would have to climb in order to reach the *top of the stairs
formed by the sticks. The series was then disarranged and the
same questions as before were put to the child, who would have
to reconstruct the series in order to answer the questions.

There is no question that aspects of ordinal number and
cardinal number were involved in the above experiment. Any
conclusion drawn with regard to number, however, oy necessity
is a function ¢f a capability to construct a series of sticks
based on the connected asymmetrical relation "longer than,"
having little to do with ordinal number. To demonstrate the
point more concretely, an eight-year-old child was asked which
of a collection of books on a table would be the third one.

He answered, "What do you mean, any one could be third."
Piaget's experiment with the staircase, then, was more an
experiment concerning similarity between a set of n sticks
ordered by "shorter than" and the standard counting set
l11,2,...,n] than it was an experiment concerning ordination
and cardination. A similar analysis holds for the seriation
of the _ards experiment. While no analysis of the h rdles and
mats experiment is given, suffice it to say that it too
involves specific relations. In the mathematical development,
it is the relation "precedes" which is impcrtant, not
"shorter than" for sticks, etc. While particular order
relations determine order of precedence, precedence is only
incidental and not primary in the ordering.

In the three experiments discussed in this section,
counting is only incidental. No analysis of counting 1is
provided nor is it at all clear how counting fits into the
developmental theory of cardinal and ordinal number. It would
seem that counting would be based on ordinal number. But to
use it to study developmental relations of cardinal and
ordinal number introduces circularity of cwunting and cardinal
and ordinal number in development--a circularity which may not
be warranted. Counting typologies exist which may be
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important for the study of the development of number in the
child. These typologies offer a framework for the study of
ghe role of counting in development.

Counting Typologies

Study of tne development of children's counting is sorely
needed, along with elucidation of its rels* -nship to addition

and subtraction.

Three types of counting » easily identi-

fiable--rote counting, point counting, and tional counting.

The basis in mathematics for rote count’ , the set of
ordinal numbers {1,2,...,n}. Behavior .+ rote counting is
the recitation of the symbol chain "one," "two," "three," ...

The basis in mathematics for point counting is the similarity
between a collection of n elements and the set of ordinal
numbers {1, 2, 3, ..., n} represented by indexing elements:

A = {aj, a3, ..., apn¥. Rehaviorally, sucessive elements
of A are selected until they are exhausted. The basis in

mathematics for
counting-back.
counting=-on and

rational counting is counting=-on :ndg
But it must be understood that, behaviorally,
counting=back must be associated with mental

representations of collections. Behavioral aspects of rational
counting are of four identifiable types. The first is
rational count-on without a tally. Here, a child must be able
to find the number of elements in a given collection P when s
elements of P are screened from view and g elements are
visible. The task is diagrammed in Figure 1,

S 1items
screened

P items

Figure 1. Rational Counting-on Without Tally

The child is told the number of elements in S (.ay seven) and
asked to find the number of elements in all (in P). The
eiements of 5 are not subject to a point count. The child may
start at one and count to seven, but the more efficient
behavior is to start at seven and count "eight," "nine,"
"ten," "eleven," "twelve."- There are twelve in all. 1In this
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procedure, the child was not required to tally the five
visible items by the task demands. Rational counting-on with a
tally is demonstrated by Figure 1 if the child is told the
number of items in all (12) and asked to count-on to find the
number of items under the cover (the number in S).

Rational counting-back without a tally is demonstrated by
Figure 1 if the child is told .(he number of items in all (12)
and is asked to count back to find the nurper of items under
the cover. Rational counting-back with a tally is
demonstrated by Figure 1 if the visible elements are covered
from view and the child is told the number of items in all
(12) and the number of items under one of the covers ({say
five), and is asked to count back to fird the number of items
under the other cover.

Counting Typologies and Ordinal Number Addition and
Subtraction

In a previous example of ordinal number addition
(5 + 3), the elements of 3aj, az, a3, a4, as, by, b2, b3
should be thought of as being similar to the ordinal numbers
fl, 2, 3, 4, 5, 6, 7, 8§ where b) corresponds to 6, by tQ
7, and b3 to 8. Rational counting without a tally is close
to the similarity, but the association of sisible objects with
numbers does not require the mental association of b with 6,
etc. In that the task for rational counting-cn without tally
does not demand-the association to be mental, the task for
rational coumtind-on with a tally is the better task to test
the child's capability to form a correspondence of the
remainder (b, by, b3 in the example) of a set with the
ordinal numbers corresponding to that remainder.

The following *‘ ask would seem to be an even more precise
test of ordinal number addition. The child is faced with both
the segment and reniinder in a covered state. He or she is
given the number in each and told to find the number in all.
This task would represent a distinct improvement over those of
the previous paragraph providing that tl.e child did not use
fingers to represent one or both collections, but kept a
running tally when he or she counted the remainder. In view
of this task, a task for rational counting-on with a tally may
be too conservative a task for ordinal number addition. But
it 1s better than rational counting without a tally. As there
is no way to insure that child will not use fingers as a
tally, it is also better than the task just described.

Ordinal number subtraction is represented nicely by the task
requirements for counting-back with a tally.

Task demands represented by counting-on with a tally are
exemplification of conceptual requirements associated with the
solution of the equation 5 + x = 11, Task demands represented
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L counting-back with a tally are exemplification of
conceptual requirements associated with the equation

¥ + 5 =11, each discussed earlier. Counting-on with a tally,
then, makes demands different from strictly ordiral number
addition. In the former, the child knows the point to which he
or she has to count, and ccastructs the remainder. In ordinal
numb2r addition, he or she constructs the contalning set.

Research Hypotheses

Piaget's notion of number is quite close to the concept
of a well-ordered finite set. But because counting 1s not
fully descrihed by a well=-ordered set, the following
hypothesis is expected to hold:

Research Hypothesis 1. Children who are
operational with number (in a Piagetian
sense) are not necessarily able to rational
count-on or rational count-back with or
without a tally. But children who are not
orerational with number (in a ‘iagetian
sense) are not expected to be able co
rational count-on or rational count-back
with or without tally.

There is little rationasle in theory for a relationship
to exist becween rote ccunting and number as described by
Piaget. Children can learn to rote count through exposure to
events on a day-to-day basis--from other childre-.
television, adults, etc.=--in a way analogous to .anguage
learning. E v learning to recite the number nam¢s 1n proper
sequence pears little conceptual relationship wi h being
operational regarding number. The second research hypothesis
is then:

research Hypothesis 2. Numerical skills
predicated on rote counting are i1ndependent
of a child's being operational with numbec ¢
(in a Piagetian sense).

Children's acquisition of rational counting-on and =-back
would seem to be highly related to whether the children w~ere
operational with number (in a Piacetian sense). Children whoc
are operational ut canno* ratiorai count=-on or =-back would,
theoretically, possess the objects called ordinal number, but
would not have integrated counting into that conception. Such
integration would seem to be accelerated easily by experiences
with counting. But children who are nct operational (in a
Piage*ian sense) with number would not yet have developed the
objects called ordinal number (modeled by a well-ordered
finite set) and would thereby be greatly limited 1n
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acquisittion of rational counting-on or =-back. The third
research hypothesis 13 then:
Research Hypothesis 3. J_gjuisition of the
ability to rational count-cn or -back 1s
highly related to a child's being operaticnal
with number (in a Piagetiar sense).

2 child's ability to obtain cardinal information from
ordinal information, and vice versa, hLas been stucied by
Piaget (as reviewed earlier). Piaget's studies were
criticized on the basis that re’ations having little to d-»
with number were involved. With tasks designed to reduce the
severity of that criticism, it shoull be the case that the
ability to obtai~ carcinal information from ordinal
information (and vic: versa) is not a necessary part of a
child's being operational with number (1n a Piagetian sense).
This statement is based on the role of counting 1n such an
ability. The fourth research hypothesis is then:

Research Hypothesis 4. Children who are
operational with number (1n a Piagetian

sense) are not necessarily able to obtain
cardinal information from ordinal information.
But children who are not operational with
number are not expected to be able to obtain
cardinal information from ordinal information.

Because tasx.demands represented by counting-on with a
tally are exemplification of conceptual requirements
associated with solution of the equation a + x = b where a
and b are ordinal numbers and a < b, children who are
operational with number (in a Piagetian sense) would not
necessarily be able to solve ptoblems which are modeled by the
equation a + x = b, but should be able to acquire such
facility. Children who are not operational with number in a
Piagetian sense should experience qreat difficulty 1in
acquiring the ability to =olve such problems. The fifth
research hypothesis is then:

Research Hypothesis 5. Acquisition of the
abllity to solve proplems modeled by a + x =
b (a < b and orginal numbers) is highly
related to a child's being operational with
number (in a Piagetian sense). Moreover,
children who are c¢perational with number are
not necessarily able to solve problems
modeled by the equation form a + x = b.
Children who are rnot operational with number
are not expected to be able to solve problems
modeled by the equation form a + X = b,

-




Design of the Study

gample

The first-grade children in Oglethorpe Avenue Elementary
School and Whitehead Road Elementary School, Athens, Georqgie,
were used as an 1nitial pool of children. All of these
children were administered the SMSG Scale 204, Counting
Members of a Given Set, and SMSG Scale 205, Equivalent Sets in
September 1974. Only childre. for whom evidence was present
that they could point-count to at least seven were considered
as a population.

A test of quantitative comparisons (see Appendix l) was
then administered to all of the children in the population.
Children were judged to be either extensive quantitative
comparers or gross quantitative comparers. If such a judgment
could not be made, that child was not considered for the
sample. The relationship between extensive guantity and gross
quantity and number in Piagetian theory has kteen explicated
elsewhere (Steffe, 1966). An assumption made in this study
was that children who were classified as extensive
quantitative comparers were operational with numpber 1n a
Piagetian sense. Children who were classified as gross
quantitative comparers were not considered to be operational
with number in a Pragetian sense. :

Evidence was considered strong for a child to be |
considered as an extensive quantitative comparer 1f a child |
responded correctly in at least five of the eight items on the |
test of quantity with justification. Ev:dence was crnsidered |
strong for a child to be classified as a gross guantitative }
comparer if a ch:ld responded on the basis of perceptual cues |
and a majority of answers were not correct.

The children were randomly ordered with each group of
extensive and gross quantitative comparers witnin each school.
The first 12 children in ez.h quantitative compariscn group
within each school were ccnsidered as thz sample--24 extensive
quantitative comparers and 24 gross quantitative comparers.

A test of class inclusion was also administered to the
population, but 88 of the children scored zero and seven
scored one. These 95 children contained the 48 cniliren of
the sample. Only nine children showed any evidence (at least
two of six 1tems correct) of solvinyg the class 1nclusion
problem and were discarded from the study. This additional
characteristic of the sample is mentioned only for
informational purposes and is not considered rfurther 1in the
discussion.

Treatment

In order to test Hypotheses 3 and 5, a treatment was
included in the study incorporating counting stratejies. The

-
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treatment was administered by Leslie P, Steffe and W. Curtis
Spikes. It began October 1, 1974 and ended January 17, 1975.
The children in the experimental group were met four days a
week for 50 minutes. The remaining day was spent in their
reguler classroom.

The instruction in the experimental group was highly
individuvalized for each chiid, in that very few sessions were
held where group interaction or group demonstration was used.
Because the instruction was individualized the children were
pooled for data analysis.

The first instructional week was spent on classification
where t'ie terminology "and," "or," "not," "some," and "all"
was in’roduced. The content of the classifications were dog,
squirr , ant bird cutouts and balloons, toy soldiers, toy
horses, and toy cowboys. The second instructional week was
spent on partitioning collections of objects. Three basic
activities were designed. The first was designed using two
subcollections with counting; the second, three subcollections
with co2unting; and the third, more than three without
counting. The third instructional week was spent on loop
inclusions agd intersections.

The first three instructional weeks were spent on
classification activities for two reasons. First, it was felt
that such activities may enhance children's acquisition of
rational counting-on. Sc.cond, an attempt was made in the
s*udy to improve classificational activities of children.

“hic atctempt is not discussed here.

The remairing instructional time was spent on addition
ar® subtraction and counting activities. The instruction was
sequenced according to learning-instructional phases for
additior and cubtraction. As the instruction was highly
individualized, it is difficult to describe anv one uniform
instructional sequence. However, the learning-iastructional
phases for addition and subtraction are presented, after which
activi ies are elaborated.

In the exploratory phase for the children with
rote-counting abilities, addition and subtraction problems
were not attempted until they acquired point-counting

-abilities. This means that children who were rote-counters
w2re given many concrete examples -of point-counting to bring
their level of counting up to the level of point-counting.
This was done in the context of counting all str-tegies for
addition and subtraction exercises at the exploratory phase.
The children at this phase were given the problem of
determining how many elements there were in two sets, S and Q,
when aZl the elements of both were put together. The elements
of S were counted out; the elemenhts of O were counted out and
placed with the elements of S. The children then counted out
all of the elements of SV Q = P. The students continued

-
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these types of activities with objects and with their fingers,
and worked spontaneously from both verbal and written
instructions for basic addition facts. This means Lhat being
told: "Solve this problem: How much Jis six and four?" and
being given the symbolized statement--"€¢ + 4 = ," elicited
the same problem-solving behavier. In the case of using their
fingers, the students counted out six fingers, counted out
four fingers, and then counted each finger and determined that
the answer was "ten." Concrete objects were abandoned by all
of the children after about two weeks of instruction on
addition aQd subtraction. Finger dexterity increased if the
si'nis were ten or less.

All of the children in the treatment groups were
introduced tc the exploratory phase of addition and
subtraction. The reason for this was that an attempt was made
to let the children differentiate themselves through
instruction to the abstraction-representation phase for
addition and subtraction. It was expected that the children
who were extensive quantitative comparers would enter the
abstraction-representation phase more quickly than would the
gross quantitative comparers. The abstraction and
representation phase is described below.

In the abstraction-representation learnirg phase for
addition, the children used a counting-on strategy to solve
the problem s + @ =(J. Rational counting-on without a tally
was most often used, since the children considered either one
of the numbers as a starting point and the other number to
represent a set of units to be counted. For example, to solve
9 + 3 =0 , the children selected nine as a starting point and
counted-on three units more in the chain: "ten," "eleven,"
"twelve." There was no need to count to the number nine from
cne since the children extracted, mentally, the cardinal
property of "nineness." The children did not need to count
each unit in the problem but did need to point-count a tally
of three units. But the tally was constructed before
counting.

Missing-addend problems were solved using rational
counting-on with a tally. When given the missing addend
problem, the missing addend was perceived as part of the
total. Fonr example, given the problem 3 +0 = 11, the

.children solved it by counting-on from three to eleven and
symbolizing th~ units of the missing addend with a running
tally. In finalizing the solution, the children point-counted
the tally either simultaneously while counting-on or after.

Subtraction problems were solved usinrg counting-back
without a tally. The children solved a problem iike 9 - 5 =0
by starting at nine to count the units in the backward-ordinal
sequence. They counted back five units to the number five,
mentally extracted the next number in the backwari-ordinal
sequence, and named it as the solution to the problem. In
this problem situation, the child is asked to solve the
problem - counting back.




Instructions on counting-on and counting=-back activities
were given to each child. The counting-on activities were as
follows. A card with three rings on it '@™© was used.
Objects were counted out while being placed into one of the
rings. These objects were screened from view. Objects were
counted out while being placed into the other ring. The
children were then asked to find how many were in the big
ring. Counting-all strategies could be used to solve the
problem as well as counting-on. The goal of such activities
was to have the children abstract, through counting activi-
ties, that the objects covered did not have to be recounted,
but one could start with the number of objects covered and
count-on, as described above in the abstraction-representation
phase.

The missing-addend problem was fi._st presented us...g a
variation of counting-on without a tal.y, transforming it to
counting-on with a tally. Instead of counting each collection
and covering one, the children were told there were a certain
number under one cover, a zertain number under another, so how
many all together? Counting-on with a tally then was modeled
by the teachers and by able children for those not able to
display it.

Because some of the children had a great deal of
difficulty with counting-on, the solution to the missing-
addend problem (5 +0 = 7) was modeled using counting-all as a
base. In the case of the example, seven objects were counted
out, five of the seven were counted-out, and then the remain-
ing two were counted.to go into the bnx. A child vith
counting-all strategies could execute the solution presented
in that way. Efforts were then made to take the able children
to solution by counting-on with a tally.

Counting=back activities were also presented, first point
counting-back .and then rational counting-back without a tally.
The counting-back activities were incorporated into subtrac-
tion exercises such as 5 = 3 =0 . Structured materials were
used 'due to the great difficulty the child experienced in
rational counting-back. The children were given a counting-
back board as follows. They were shown that to process 5 - 3
on the board, they would start at five and count off three, to
find the answer "two." An attempt was made to emphasize that

. when "6," for instance, appeared under a particular tile, it

told how many tiles were up to and including that tile.

OO ooOoo0o oooag o O
1 2 3 4 5 6 7 8 9 10

OO oOooDoOooaoao@o o
. 11 12 13 14 15 16 17 18 19 20
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All of the children were presented with counting=-on and
counting-back strategies associated with the three equations
a+b=D; a+0=>b; and b -'a =, The third learning-
instructional phase was also dealt with in instruction. This
learning-instructional phase is called the formalization-
interpretation phase.

The formalization-interpretation learning phase for
addition and subtraction is characterized by the
interrelationships of addition and subtraction. The child in
this final learning-instructional phase for addition and
subtraction can relate problems of the type 9 - 5 = [JJ and
9 =[J)+ 5. 1In relating the two equations, the student must
realize that both involve four and five as parts of nine. To
move fror the former to the latter equation, it was
hypothesized that a counting-back with tally would be
employed. The student ccunts-back five units from nine with a
mental tally. He or she preserves this tally, five, along
with the solution, four, as separate parts of nine. .

So the child realizes (by reconstructing the 5 units
counted back) that 5 units counted back on to 4 units results
in the original 9 units. In this way, addition and
subtraction are interrelated. So when a child finds the sum
of 4 and 5, he or she also Knows the difference of 9 and 5.

The opportunity was given each child in the treatment to
enter this learning-instructional phase throuyh written work.
Families of equations were presented to the children for
solution, such as 4 + 5 =00 ; 4 +0 =9; O+ 5 = 9;

9 - 4=0; and 9 - 5 =J . The children were never told the
interrelationships but were left to make the observations.
The written work for each child was retained as children
differed greatly in the amount of written work they could do.

Addition, subtraction, and missing addend problems were
given to the children to solve during instruction on addition
and subtraction. The pronlems were presented in written
format. Children who could read the problems were encouraged
to work independently. They were encouraged also to write a
mathematical sentence for each problem they solved. The
problems werc read to the children who could not read. These
children were also encouraged to write mathematical sentences
for the problems they solved.

The children were allowed to use a hand-held -alculator
during the last four weeks of instruction. The role of the
calculator was to chlieck sums or differences. )

Interviews

The interviews of interest in this report were part of a
larger set of interviews, but only those interviews of
interest are discussed., Two missirg-addend probl~ms with
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objects available during solution (see Appendix I1) were
presented individually to the children in the sample during
the first two weeks in October 1976, prior to the admini-
stration of the treatment. All of these individual interviews
wer2? hand-recorded.

During February 1975, each child was interviewed in three
different sittings of not more than 30 minutes per sitting.
All missing-adcend problems (see Appendix II), the cardinality
and ordinality tasks (see Appendix III), the counting-on and
counting-back tasks (see Appendix IV), and the just-before and
just-after tasks (see Appendix V) were individuagly
administered and audio-taped as well as hand-recorded. The
interviews followed the formats given in the appendices.

While somewhat structured, the formats were altered whenever
necessary to insure that communication was established between
the child and interviewer. The just-before and just-after
tasks were designed to entail at most rote-counting, and
therefore were used in testing Research Hypothesis 3.

Data Sources and Variables

Each videotape was viewed and all data extracted and
coded on record sheets. The variables Number in S, Number in
P, and Number in S + Number in P were defined using tne tasks
in Appendix III: Cardinal Information from Ordinal
Information. The Number in S variable was scored from
response (correct or incorrect) to Questicn 3 in Task B. The
range of scores was {0, 1, 2}. The Number in P variable was
scored from either response (correct or incorrect) to Question
3b in Task A or response (correct or incorrect) to Question 3c
in Task A; and response (correct or incorrect) to Question 2
in Task B. The range of scores was {0, 1, 2}. The Number in
S + Number in P variable was not just the sum of the two
variables in Number in S and Number in P. he sum variable
included responses of children given cues. he sum variables
was scored from responses to Questions 3, 3b, 34, 3f, 3g, 3h
of Task A and Questions 2, 2b, 24, 2e, 3, 3c, 34 -~f Task B.

It should be clear that a given child would not answer all of
those questions. The range of the sum variable was

{fo, 1, 2, 3, 4} but, again, was not simply the sum of Number
in S and Number in P.

The missing-addend problems were scored on a rightewrong
basis. Two scores were obtained, one for each of the two
problems in Appendix II. The counting-on and counting-back
items (Appendix IV) wr.e also scored on a right-wrong basis.
Four scores were obtained: (1) counting-on without a tally,
(2) counting-back without a tally, (3) ordinal addition, and
(4) ordinal subtraction. On the tasks designed to test
just-before and just-after, one point was given if the child
could find either the number bofore (after) 14 or before
(after) 11, Zero was awairded otherwise.
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The variables were, in summary, Number in S, Number in P,
Number in S + Number in P, Missing Addend with Objects,
Missing Addend without Objects, Rational Counting-on without a
Tally, Rational Counting--back without a Tally, Ordinal
Addition, Ordinal Subtraction, Just Before, and Just After.

Research Design and Statistics

The first six children of each of the two quantitative
comparison groups (one per school) were assigned to the
experimental group and the second six to t..> control group, as
in Figure 1. The children in the Control Group participated
in their regular mathematics program, Elementary School
Mathematics for Kindergarten through Grade 6 (Eicholz and
Martin, 1971). The children in the experimental group
participated in mathematics classes conducted by Leslie P.
Steffe and W. Curtis Spikes. The 12 experimental children in
Oglethorpe School were taught -from 10:00 AM to 11:00 AM
Monday, Tuesday, Thursday, and Friday; the 12 experimental
children at Whitehead Road School were taught from 12:00 PM

L:;\ifhgg} . Oglethorpe Whitehead
_Treatment i I
Quanity™ - Experimental { Control , Experimental Control
Extensive 6 6 6 6
Gross ' 6 6 6 6

Figure 1. Diagram of the Subject Classification

to 1:00 PM on Monday, Tuesday, Wednesday, and Friday. A
diagram of the design is given in Figure 2.

January 17, 1975

September, 1974 September, 1974 October 1, 1974~ |February, 1975

Sample Missing Addend Treatment «Jmin- Post-experi-
selected Problems; with istered to experi-jmental inter-
Objects admin- mentals views
istered prior Participation in
to the treat- classroom by
ment contrcis

Figure 2. Diagram of the Events in the Experiment
in Time Sequence

-
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An item an:lysis was conducted for each test whenever
appropriate. Program ANLITH, an item=-analysis cumputer
"program made available by the Educational Research Laboratory
of the University of Georgia, was used to conduct the item
analysis. The program was initiated for use at the
Educational Research Lahoratory by Yi-Ming Hsu and was g
developed by Thomas Groneck and Thomas A. Tyler. )

Item difficulty (p-values) are reported for each item. A
p-value is a ratio of the number of correct responses to the
total number of responses for an item. Test means, standard
deviations, ana Cronbach's Alpha reliability coefficient are
reported foy each test, as well as total score distributions.

Quanti&z was used as a classification variable (Extensive
vs. Gross) ard Treatment as an independent variable in all
analyses of variance., A univariate analysis of variance is
reported for each dependent variable isolated.

Results

Item Analyses

Quantitative comparisons. The test of quantitative
comparisons (Appendix 1) was administered to 107 children as a
pretest, Table 1 contains the difficulty indices for each
item, and item characteristics. Items 1, 2, 3, and 6 were of
comparable difficulty. These items either had a configuration
conducive to solution by visual inspection (triangular or
rectangular), had two collections of six objects with a random
arrangement fItem 3), or contained a collection which
apparently had more than the other (Item 6). These items
could be solved by gross quantitative comparisons. The
remaining items all demanded an extensive quantitative
comparison for correct solution due to difficult geometrical
configurations or eight objects in each collection to be
compared. They were critical items to separate the extensive
quantitative comparers from the gross quantitative comparers.

Table 1

Difficulty Indices and Item Characteristics
for Quaniitative Comparisons Pretest

Item Difficulty Item Characteristic

1 .70 Triangular arrangement; 6 red, 6 green
2 .74 Rectangular arrangement; 6 red, 8 green
3 .73 Random arrangement; 6 red, 6 green

4 .57 Linear arrangement; 6 red, 6 green

5 .49 Linear arrangement; 8 red, 8 green

6 .12 Random arrangement; 8 green, 6 red

7 .59 Circular arrangement; 8 red, 8 green

8 .54 Random arrangement; 8 red, 8 green

| s
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The test mean was 5.01, standard deviation 2.58, and
internal consistency reliability .84. The reliability of .84
supports the classification into extensive and gross
categories. Further justification of the validity of the two
quantitative categories is that, if a child scored at least 5
out of 8 correctly with justification for answers, evidence
was strong the child would have made an extensive quantitative
comparison. (Evidence was strong because at least one of
Items 4, 5, 7, or 8 would by necessity have to be answered
correctly with justification.)

The distribution of total scores for the eight-item test
was as follows: eleven children scored .2ro, five scored one,
five scored two, seven scored three, eight scored four, ten
scored five, twenty-one scored six, twenty-one scored seven,
and nineteen scored eight. The rather large frequencies for
the scores five, six, seven, and eight can be attributed tc
Items 1, 2, 3, and 6. In retrospect, those items did not
necessarily measure extensive ar-ntity.

Number in S and Number in P. Table 2 contains the
difficulty 1indices for the tests of the Number in S and Number
in P variable- (Appendix III). The first item on Number in S
test was more difficult than the second. The first is probably
more :ndicative of the difficulty of the Number in S items due
to the fact that the second item was from *he second
ordinality task and the child had processed a considerable
amount of information about the task before asked to find the
number in S.

Table 2

Difficulty Indices for Number in S
and Number in P Tests

Test
Item Number in S Number in P
1 .31 .46
2 .54 .44

The frequency distributions, means, standard deviations,
and reliabilities for Number in S and Number in P tests are
given in Table 3. None of the distributions appear to
represent normally distributed variaples. The reliabilities
are extremely low and are a reflection of the rather large
number of children scoring one out of two items correctly.
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The items were not homogenous. This heterogeneity may be a
result of the items being on different tasks and in different
sequences in each task.

Table 3

Frequency Distributions, Means, Standard Deviations
and Reliabilities of the Number in S
and Number in P Tests

Frequency
Distribution

Total Score

Mean Standard
0 1 2 (Percent) Deviation Reliability

23 9 .85 (42) .71 .15
17 19 12 .90 (45) 77 .33

While the low reliabilities may be attributed to the fact
that the tests contained only two items, the tests were
administered individually by competent testers. Such
individual administration should minimize errors of
measurement. This argument strengthens the necessity for
better task design for tests of Number in S and P variables.

In the event differences for main effects are detected 1in
the analyses of variance for Number in S or P variables, they
can be interpreted. The reason such interpretation is
possible is that, given significant differences (say, for
quantity), a preponderance of the children scoring zero would
have to be in one category and a prepénderance of the children
scoring 1 or 2 would have to be in another category. For
children scoring either zero or two, it is reasonable to
conclude that they did not or did have the abiiity to obtain
cardinal information from ordinal information, respectively.
For children scoring one, however, difficulties of
-interpretation are present.

In the event differences are not detected in the analyses
of variance for Number " S or P variables, no interpretation
should be made.

Missing Addend problems. Table 4 contains the difficulty
indices for the missing-addend problem-solving test with and
without objects (Appendix I1I). The missing-addend problems
are more difficult on the pretest than on the posttest, as
expected.




Table 4

Difficulty Indices for Miscing Addend Problem Solving Test

Item Difficulty Item Type

1 .19 With Objects: Pretest
2 .15 With Objects: Pretest
3 .58 With Objects: Posttest
4 .50 With Objects: Posttest
5 .54 Without Objects

6 .42 Without Objects

Table 5 contains the Irequency distributions, means,
ctandard deviations, and reliability information. None of the
distributions appear to represent normaliy distributed
variables. The internal consistency reliabilities are quite
substantial, especially for the posttests. Inspection of the
frequency distributions for the missing-addend problems show
almost an all-or-nothing phenomenon.

Table 5

Frequency Distributions, Means, Standard Deviations, and
Reliabilities of the Missing Addend Tests

Frequency
Distributions

Total Score

Mean Standard Relia-
Test 0 1 2 (Percent) Deviation bility
With Objects
Pretest 36 8 4 .33 (16) .62 .58
With Objects
Posttest 17 10 21 1.08 (54) .89 .74
Without Objects 22 6 20 .96 (48) .93 .87

Counting-on and counting-back tests. Table 6 contains
the difficulty indices for the counting-on and counting-back
tests (Appendix IV). Counting-on items without a tally were
each fairly easy items. The counting-on with a tally or
ordinai number items were also surprisingly easy. However,
the counting-back without a tally items were difficult, as
were the counting-back with a tally items (ordinal number
subtraction). Item difficulty is sumewhat a function of the
particular numbers involved.




]

Table 6

rifficulty Indices for Counting-on and Counting-back Tests

Type Item Number Difficulty
Counting-on 1 W77
without a tally 2 .73
Counting=-on 1 .71
with a tally 2 .56
Counting=-back 1 .54
without a tally 2 .56
Counting=-back 1 .31
with a tally 2 .19

Table 7 contains the frequency distributions, means,
deviations and reliabiliti~s for the total tests. The
reliabilities associated with two tests, counting-on without a
tally and counting-back with a tally, are rather low. The
former is easy and the latter difficult, each of which
contributes to low reliabilities, The analysis of variance for
these two tests can be ‘efinitely interpreted, but with some
caution if no differences are detected in the analyses.

’

Table 7

Frequency Distributions, Means, Standard Deviations, and
Reliabilities for Counting-on and Counting-back Tests

Frequency ) J
Distribution ‘

Test Tccal Score

Mean Deviation Reliability
0 1 2 (percent)

Counting=-on 6 12 30 1.50 (75) .71 .50
without a tally

Counting-on 14 7 27 1.27 (64) .88 .84
with a tally

Counting-back 20 15 13 .85 (42) .82 .61
without a tally

Counting-back 20 20 8 .75 (33) .72 .47
with a tally




nalyses of Variance

The analyses of variance for all variables are summarized
in Table 8. Missing-addend problems with objects,
administered as a pretest, ari the four rational counting
tests constitute possible tests to be used in a test of
reseaxch hypothesis 1:

Childrer who are operational with number (in
a Piagetian sense) are not necessarily ab.e
to rational count-on or rational count-back
with or without a tally. But children who
are not operational with number (in a
Piagetian sense) are not expected +~ be able
to rational count-on or rational count-'acsa
with or without a tally.

The missing-addend problems administered as a pretest are
included because they were administered close in time to the
test of quantitative comparisons. They only constitute a test
of the hypothesis in the ~ase of counting-on w . a tally.
Quant .ty was highly significant for the missir. -addend )
problems orn the pratest. The extensive guantitative comparers
had a mean score ~f 41 percent, while the ~roscs quantitative
comparers had a mean score of 2.5 percent. The fact that
Quantity was significant and the gross qu. .tative comparers
had a mean score of only 2.5 percent supp. .- the sec nd
statement in hypothesis l--children %Yo a' : noi operaticnal
with number are not expected to be able t» rational count-on
nr -back with or without tally. Table 6 indicates tnat the
counting-back items are at least as difficult as tue
counting-on items, which makes it feasible to conjecture that
the second statement in hypothesis 1 is supported by
counting-back scores in September.

The first statement of hypothesis 1 is also supported by
the significance of Quantity and thz mean score of 41 percent
for the extensive quantitative comparers. Most of the 12
chi)ldren who scored 1 or 2 (see Table 5) had to be extensive
guantitative comparers due to the 2.5 percent mean of the
gross quantitative comparers. Consequently, at least 12 of
the 24 extensive quantitative comparers scored 0 on the
missing-addend problems with obje - s and at most 12 scored 1
or 2. TRese data clearly support the contention that children
who are operati~nal (in a Piagetian sense) with number may or
may not possess rational counting-on skills.

Even thouah the tests of counting-on and counting-back
were given in ebruary, they do constitute a test of
lypothesis 1 in those cases where Treatment either 1s not
significant or does not interact with CQuantity. In the case
of the two counting-back tests, the mean score ror
counting-back with no tally was approximately 67 pcrcent for
the extensive quantitative comparers and approximately 23
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percent for the gross guantitative comparers. Wwhile these
data are not as clearly supportive as the data for the
missing-addend problems on the pretest, they do not contradict
hypothesis 1 due to the fact the children were in a
mathematics instructional program for a period of five months
ang Quantity was sig:i ficant. The mean score for the
counting-back with a tally test was approximately 60 percent
for the extensive quantitative comparers and approxlmately 18
percent'for the gross quantitative comparers. These data are
stronger in support of hypothesis 1 than the data for the
counting-back test without a tally, but still contain a
schooling effect.

The patterns of the mean scores for the two counting~on
tests were similar. The means are contained in Table 9.
These two tests were not used to test hypothesis 1 because of
the possibility of a treatment effect.

Table 9

Mean Scores for Counting-on Tests by
Quantity (Percents)

Counting-0On | Counting=-On |
Test Without Tally With A Tally:
i
_ : ]
Extensive 87 i 88 71 77 |
| Gross 71 | 50 71 32

The two tests for just before and just after constitute
possible tests to be used in a test of hypothesis 2:

Numerical skills predicated on rote-counting a-e
independent of a child's being operational with
number (in a Piagetian sense).

Since Treatment was not significant and did not interact with
Quantity for just-before and just-after scores, the evidence
is strong that these two variables are not related to
Quantity. Conseguently, there 1s no evidens . against
hypothesis 2 supplied by just-before or just-after tests.

The two tests of missing-addend problems and the four
tests of counting represent possible tests tu be used in a
test of research hypothesis 3:

Acquisition of the ability to rational count-on
or -back is highly related to a child's being
operational with number (in a Piagetian sense).
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The interaction of JYuantity and Treatment was marginally
significant for counting-on wlth a tally. The mean scores are
presented in Table 9. The experimental gross quantitataive
comparers had a mean score of 71 percent, whereas the control
gross quantitative comparers had a mean score of only 32
percent--an effect directly attributable to the treatment.
The control gross quantitative comparers fared better with
counting-on without a tally than they did with a tally, but
still were 21 percent below the experimental gross
quantitative comparers. These data, taken alone, would not
support hypothesis 3. However, Quantity and Treatment did not
interact for either missing-addend test, but Quantity was
highly significant. The mean scores are presented in Table
10.

Table 10

Mean Scores for Missing Addend Problems: Quantity
by Treatment

e ———

Missing Addend Missing Addend

|

! Test With Objects Without Objects
. (Posttest) 1
[ T i }
Q Exp. Con. Exp. Con.:
Extensive 79 88 75 69 |
Gross ‘ 17 27 25 14 1‘

"

Because of the significanc Quantity by Treatment
interaction for count-on with a tally, one would expect at
least the same pattern for mean scores for the two tests in
Table 10 as in Table 9. In the absence of any such pattern,
there is abcolutely no basis to the claim that the experi-
mental gross quantitative comparers .'ad obtained a counting
scheme in the same way as the extensive quantitative
comparers. The extensive quantitative comparers apparently
applied their ccunting schemes to the missing-addend problems
whereas the experimental gross quantitative comparers did
not. This lack of transfer on the part of the experimental
gross quantitative comparers lessens the importance of high
mean sccores for the experimental gross guantitative comparers
+n the two counting<-on te~sts. Thev apparently had learned to
execute a solution algorithm in the case of stiiuli very close
to the experimental counting-on treatrent. While problems
were presented to the children i1n the treatment which were
missing-addend problems, very few of the aross quantitative
comparers could be led to solve them.

The fact that the experimental and control extensive
quantitative comparers improved their capability to solve




missing-addend problems from the pretest to the posttest*

(from a mean of 41 percent to a mean of 78 percent for all

problems) and the mean for the gross quantitative comparers

was quite low for the missing-addend problems (21 percent for

all problems), hypothesis 3 is supported for counting-on, The
observation that the experimental gross dquantitative comparers
evidently did learn to execute counting-on strategies in |
restricted situations should not be taken lightly and is

discussed further in the section on discussion of the results.

The results for the two counting-back tests clearly do
not contradict hypothesis 3. Because counting-back activities
were given in the experimental ~roup but not the control group
and no interaction of Quantity and Treatment existed, one
cannot attrihute causality to the counting-back activities in
the treatment for the relatively high mean scores of the
extensive quantitative comparers. As the mean scores 1in Table
11 indicate, the mathematical experiences of the experimental
and control group children together with the fact that they
were extensive quantitative comparers led to relatively high
mean scores for the extensive quantitative comparers. But it
is important t~ -hserve that the test of counting-bacx with a
tally was exceptionally difficult tfor the gross quantitative

Table 11

Mean Scores for Counting-back Tests: Quantity
by Treatment (Percents)

Test Counﬁing—back Counting-back {

With a Tally Without a Tally !

Q ’ 0 Exp. Con., Exp. Con.
Extensive 63 58 59 75
Gross ' 27 . 9 23 23

comparers. If a pretest had been administered to the children
on counting-back, it would undoubtedly have been very
difficult for all the children because only one cnild in the
Treatment group was observed to be able to count-back with a

*While no missing-addend problems without objects to aid
‘' solution were admindstered on the nretest, there 1s absolutely
no reason to believe that they would be easier {or tne
children to solve than those given, especlally in view of the
data in Table 10.




tally at the start of the treatment. While this claim is only
conjectual, the observation cited does lend credibility to the
claim that the results for the two counting-back tests do not

contradict nypothesis 3. 1In fact, the observatior leads to
the stronger claim that the data support the hypothesis.

The three tests for the variables Number in S, Number in
P, and Number in 5 + Number in P represent possible tests to
be used in a test of —research hypothesis 4:

Children who are operational with number

(in a Piagetian sense) are not necessaril-
able to obtain cardinal information from
ordinal information. But children who are
not operational with number are not expected
to be able to obtain cardinal information
from ordinal information.

In that Quantity and Treatment did not interact for any
of the three variables, each can be used to test hypothesis ¢.
The means are contained 1n Table 12. The results for the
NMumber in S varieble are v:ewed as inconclusive due tc the
lack of a significant F-ratio associated with Quantity and the
low internal-consistency reliability. A t<3t of nypothesis 4
for Number in S awaits better and more reliable task design.

Iin case of the Number in P variable, the extensive
quantitative comparers outperformed the gross quantitative
comparers, especially in the experimental group. An
interaction between quantity and treatment 1s suggested by the
means in Table 12, but was not significant statistically. Oreo
can say that children who are extensive quantitative comparers
can obtain cardinal information from ordinal information
better than gross quantitative comparers as long as that
information can be obtained from counting forward rather than
backward. The effect of Quantity was not as strorg for Number
in P as it should have been (theoretically). But it must be
remembered that the reliability for Number 1n P variable was
low.

Table 12

Means for Tests of Cardinal Information from Ordinail
Information: Quantity by Treatment (Percents)

77?Number in 5 +
Test _ Numbeﬁ in S Number in P Number in P
0] § LXp. Con. EXp. Con. ExXp. Con;
Extensive 53 42 63 50 81 67
LEEOSS 33 41 25 41 43 ___48J
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Due to the low reliabilities associated with the tasks, a
fair test of hypothesis 4 could not be made. Gross quantita-
tive comparers seemed able to obtain cardinal informatson to
some extent. But an explanation exists for this seemingly
good performance. Because the children were told the position
of the tenth element in Task A and the fifth element in Task B
(see Appendix III) it would be possible for the children to
employ point-counting behavior to find the number in P,
Moreover, as all of the children could point-count to at least
seven (and beyond seven at the time the tasks were administer-
ed), the possibility that children used point-counting is very
strong. It has also been observed that children who cannot
rational count-®&n or rational count-back can, given a
particular number name, orally count-on or count-back from
that numker. The basis for this observation is the measures
for counting-on and counting-back in the preliminary items
(see Appendix IV). The child, told that a particular object
was tenth or fifth, certainly could have elicited rote count-
ting-back or rote counting-on. That some gross quantitative
comparers correctly found the Number in S could be a result of
knowing three comes before four and seven comes before eight
on a rote-counting basis. Conflict must be introduced into
the task design in such & way to separate the faise gositives
(children who scored the item correc:cly but who could not
rational count-~back) from the true positives. One way would
be to add cbjects to S and require the children to (1) find
the new number of S and (2) find the position of some r of Q.
Since the same argument can be applied to the extensive
quantitative comparers as was applied above to the gross
quantitative comparers, a test of hypothesis 4 awaits better
task design.

The missing-addend problems provide tests to be used in a
test for research hypothesis 5, stated below:

Acquisition of the ability to solve problems modeled
by a + x = b (a < b and ordinal numbers) is highly
related to a child's being operational with number
(in a Piagetian sense). Moreover, children who are
operational with number are not necessarily

able to solve problems modeled by the equa-

tion form a + x = b. Children who are not
operational with number are not expected to

be able to solve problems modeled by the

equation form a + x = b,

Quantity did not interact with treatment nor was treatment
significant for any of the missing-addend problems. Quantity
was highly significant. These facts, coupled with the data 1in
Table 10 and the nican scores for missing addend problems with
objects on the pretest (41 vs. 2.5 percent for extensive and
gross quantitative comparers, respectively), supply strong
support for each part of hypothesis 5.
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“\ Discussion of the Results

\\_~_
:\

Theoretipgl Observations

Piaget (Beth and Piaget, 196 has distinguished
mathematical and genetic structures. In this study, counting
was viewed eoriginally as being part of ordinal number theory
in mathematics. A fundamental problem investigated was
whether counting can be considered as part of genetic
structures in the sense of grouping structures. The data
strongly suggest the hypothesis that countlng 15 not
deVelopmental, but rather that the emergence of the grouping
structures in development allows children's culturally induced
rote- and point-counting capabilities to be transformed tc
rational counting-on and =-back, a transformation not possible
prior to the emergence of the grouping structures. This
hypothesis is advanced for several reasons, which follow.

On the pretest of missing-addend problems with objects,
the gross quantitative comparers scored essentially zeroc, but
approximately one-half of the extensive quantitative comparers
showed evidence of beirc anle to solve the problems. On the .
posttest of missing-addend problems, the average score of
extensive quantitati:.> comparers was approximately 78 percent,
whereas the average score of gross quantitative comparers was
approximately 21 percent. The latter figure is inflated due
to obvious mlsclass1f1cat10n of two childre:r. as gross
guantitative comparers. These two childrsn were two of the
best ctudents in the experimental group. The mean Sscores
presented for the tests of counting-back with a tally were
approximately 61 and 18 percent for the extensive and gross
quantitative comparers, respectively. Again, the mean score
for the gross quantitative comparers is somewhat inflated. 1In
any case, children who are gross quantitative comparers did
not acquire, to any great extent, the capability of applying
rational counting-on with a tally or rational count-back with
a tally. Through erithmetical instruction, most of the
children who were extensive guantitative comparers were able
to learn to count-on with a tally but experienced difficulty
learning to count-back with tally. Moreover, counting-back
with a tally was tested in a restricted situation so that
generality of the ability was not in evidence. The rather
favorable mean score for the extensive quantitative comparers
may be an overestimate of their ability. Instruction did seem
to- be necessary to solidify counting-on in a deep manner for
the extencive quantitative comparers. Al! of the above facts
and observations led to the hypothesis stated.

The observation that Piaget did not go far enough in his
study of nuuper seems justified by the results of this study.
Based on Piaget's cardinal and ordinal number experiments, one
wculd be led to believe that set similarity, the crder on a
set, the segment of a set, the remainder of a set, and




counting-on and -back would be integrated into an operational
system at the level of concrete operations. The data present-
ed here do not support-such a belief. Counting-on and
counting-back do not emerge together nor do they emerge
concurrently with extensive quantity. Counting-back with a
tally seems to be a later and more difficult acquisition than
counting-on with a tally and both a later acquisition than
extensive quantity.

Freudenthal (1973, p. 173) strongly advocates basing
addition and subtraction on counting-on and counting-back,
respectively. This study shows that basing addition and
missing-addend problems on counting-on without and with a
tally, respectively, should be advocated for extensive
quantitat}ve comparers who are able to count-on prior to
instructyon. Others should be given insfruction on counting=-
on prigr to introduction of addition or missing-addend
problems throujzh counting-on. It i5 now axiomatic that a
great al of instruction on counting-back must precede
introducion of subtraction through counting-back. There 1s no
guarante¢, however, that, even though children are able to
count-ow with a tally and count-back with tally, they have the
two processes integrated. It is strongly hypothesized that the |
integration of counting-on and counting-back with a tally is
the mechanism through which transfer can take place from
knowledge in addition to knowledge in subtraction. The child
who "solwves” 12 - 4 through counting-on and who also can
count-back is well on the way to integrating addition and
-subtraction. It should be the case that if the latter
hypothesis is true, a great deal of ‘:astruction will have to
take place on counting skills and their integration prior to
having children who are capable of extensive quantitative
comparisons able to transfer knowledge in addition to
knowledge in subtraction. It may be a waste of time to
present children who are not capable of integrating counting-
on and -back with "families" of number sentences. Knowing how
to solve the missing-addend problem "y counting-on does not
gu~vantee that children can relate the sentence 5 + 0 = 9 to
9 - 5 =0on an intellectuai basis.

This study shows that basing addition and subtractiorn on
counting-on or counting-back for gross quantitative comparers
is not possible prior to a great deal of i1nstruction on

. counting strategies. Even then, the behavior produced 1is
algerithmic and not operational, as evidenced by the failur~
of the experimental gross quantitat comparers to solve
missing-addend problems. Instruct¢§?f§¥r such children on
addition and subtraction should prbceed using point-counting
until more sophisticated count:ng Y{echniques are developed.
One of the most fundamental problems facing research with
young children's acquisition of addition and subtraction 1s to
determine the influence «f countint instruction on the abil. &
of gross guantitative comparers to rational count-on.
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Observations from the Treatment

. As the instruction was individualized for each child in
the treatment groupP, no one 1instructional sequence may be
described. It was the case, however, that each child was
presented counting activities which progressed through
rote-counting, point-counting, and rational counting. The
instruction for addition and subtraction progressed through
the learning instructicnal phases of exploration, abstraction-
representation, and formalization-interpretation. The
children were programmed through the learning-instructional
phases at different rates and did different amounts of work.
With few 2xceptions, the extensive Jguantitative comparers
progressed through the abstraction-representation phase and
associated counting activities more rapidly than did the ¢ross
quantitative comparers. Even though each child was given the
opportunity to progress tiarough the formalization-interpreta-
tion phase, only eight of the 48 children in the total sample
actually did. It is important to note that tests were given
for the formalization-interpretation phase even though they
are not reported here.

At the culmination of tlie learning activities, all
children were using rational counting=-on to process exercises
such as 4 + 5 =0 . It is interesting to note what seemed to
be critical insfruction for children who were at most point
counters to progress to that level. The instructional
procedure used was to direct the children to make marks on
their paper to represent the two addends and then gradually
lead them into a realization that only marks for one of the
two addends would be necessary if one would start counting
from the other addend. An analogous procedure was used with
finger calculation. Here, cnhildren were directed to "put one
addend in their head." The children were then encouraged not
to mark or use fingers, but to count the smaller addend on the
larger mentally (in the case of unequal addends). After the
children had mastered the pro =dure, they seemed very
impressed-with its powerfulness in calculating sums; they
could find sums such as 15 + 4, 25 + 3, etc. Such sums were
found even though the children did not know numeration.

Initially, each child was given experience in rote- and
point~counting activities. All of the children learned to
point-count and write the numerals to at least 50. Point-
counting-back activities were also given, first starting 1
10 and progressing through 20 or greater, depending on ti
child. The children, some with great difficulty, learned
point-count-back from 20. Addition and subtraction activ:. ies
were inteqrated with the counting activities where children
used the counting=-all procedurgs with objects to process sums
and differences of the basic fact variety (a + b ¢ 10). The
childr»n who were extensive quantitative comparers soon tired
of using objects and wanted to use finger calculation.
Thereafter, it socn became apparent that all of the children




wanted to abandon the physical materials in favor oi finger
calculation. They were allowed to do so. The extensive
quantitative comparers (with the exception of one child)
easily learned to process sums such as 4 + 3 by counting-on
three to four--"five," "six," "seven"--either through using
finger calculation or mental calculation.

The gross quantitative ccmparers (. ith the exception of
two children, one of whom was one of the best students) used
counting=-all procedures with finger calculation and did not
internalize the counting process until direct instruc*ion was
given. It is important to note that tr.als (orn an individual
basis) during instruction were provided for these children to
give them the opportunity to change counting strategies frcm
counting-all to counting=-on while processing sums such as
4 + 3. The trials were used as checks to insure that children
were not held to counting-all procedures when in fact they
could use more ei.icient counting strategies.

Several other points are important regarding the gross
quantitative ccmparers. It was not until the last week of
instruction th=t the gross guintitative comparers (with the
two exceptions noted) were able to progress to counting=-on
activities (after approximately six weeks of instruction using
counting-all strategies with physical objects and finger
calculation). But six weeks should not be zonsidered as a
reqiired time. For example, work with the hand-held
calculator and proolem solving were interspersed during the
same six weeks. However, the six-week period does 1indicate
the extreme difficulty children have of acquiring counting=-on
without tallying if it is not within their coanitive compe-
tence. The above procedures of instruction--integrating
rational counting with finding sums--may only lead to what on:
may call algorithms for finding sums for the gross quantita-
tive compayers. The induced counting behavior may not have
been counting schemes. In fact, the evidence is strong that
gross quantitative comparers did not genera’ize the counting-
on without tallying procedures taught across tasks. But it is
important to note that even though instructional procedures on
counting-on in addition were effective over a rather narrow
range of problems, they gave the gross quantitative comparers
a sense of intellectual competence (as observed in instruc-
ticn) in performing arithmetical ea rcises.

The effects of instruction on counting-on with tallying
and the missing=-addend problems were also interesting. The
instruction was synthesized so the children were not aware
that two different goals were being accomplished with the same
activities--the capability to count-on with tallying and the
capability to solve tlie missing~addend problems. The missing-
addend problem was initially presented using a counting-all
strategy. For example, to snlve 4 + O = 7, the children were
instructed to take seven objects and count cut four; the ones
remaining would be the answer. Invariably, children who did
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not possess counting-or with tallying confused the procedure
with previously learned counting all procedures for processing
gums. That is, to process sums such as represented by the
sentence 3 + 8 =0, the children would count out eight
objects, count three and the five remaining represented the
result of the algorithm. It was necessary to explicitly point
out the different appearance of the two types of sentences for
these children. Through successive examples, the gross
quantitative comparers did discriminate between the two
sentence types and apply the correct algorithm. The same
learning problem, however, did not occur for the cnildren who
were able to count-on with tally. They conceptualized the
sentence 4 + 0 = 7 as "four and how many is seven--five, six,
seven--so it is three." Conseguently, no proplems in
discriminating solution procedures existed for these cnildren
for the sentence types represented by the sentences 3 + 5 = U
and 3 + 0 =9,

The counting=-all procedure for solving the sentence type
3 +0 = 8 seemed to interfere with the more natural counting-
on strategy available to some of the children. After being
shown the counting-all procedure, such children seemed to view
it as the preferred solution process and were very reluctant
to employ counting-on with tallying. It should be recognized
that counting=-on with tallying requires more mental effort
than does the counting=all procedure which may be the cause
for some crildren's great reluctance to use the more
sophisticated counting strategy. But 1t also should pe
recognized that adults presented the counting-all procedure,
which may nave given it a status of beiny the preferred adult
solution.

The counting—all procedure for solving missing-addend
sentences was used initially, of course, so that the gross
quantitative comparers would have a procedure for solving the
problems which (it was hoped) could be transformed into a .
counting-on procedure. In the transformation, an analysis of
the counting-all procedure was attempted in the following
manner. After a child had solved, say, 3 +0 = 7, by counting
out seven, taking three, and then counting the remaining ones
to obtain four, he or she was instructed to refocus attention
on the three, then count--n the four obtaining seven. This
analysis move was not effective for some children who could
not count-on without tallying, which was a minimal reguirement
to conceptualize what was being analyzed. Direct instruction
was also given to tie the wissing-addend sentence to rational
counting-on with tallying. Problems were presented where some
of a collection of objects were screened from a child's view.
The child was then asked to find how many were screened. He
or she had counted all of the objects to find the numbar 1in
the total collection before some of them were screened. The
unsuccessful children were allowed to "peek" behind the screen
and count the objects there. These procedures were associated
with missing-addend sentences, e.g., 4 + 0 = 7, in the obvious




ways after the physical problem was solved. Encoding of the
physical and mental actions seemed extremely difficult for
¢hildren who were not able to count-on with tally. These
children seemed "lost" in instruction.

The posttest data on the missing-addend problems and the
ordinal aadition problems showed that the gross quantitative
comparers in'the experimental group were quite capable of
solving ordinal addition problems {mean, 71 percent), but were
particularly inept at solving missing-addend problems with
objects (mean, 17 percent) and without objects (mean, 25
percent). It was, in fact, surprising that the experimental
gross quantitative comparcrs performed so well on the ordinal
addition problems, because during the treatment they. seemed
particularly inept at doing so. They apparently used trained
procedures within a problem context familiar to them. It was
particularly pleasing to note that the extensive quantitative
comparers in the experimental group performed comparably to
these in the control group on the missing-addend procblems and
ordinal addition problems. The experimental extensive
quantitative comparers, when forced to do so, did utilize
counting=-on with tallying in problem contexts nct solvable by
counting-all procedures.

Based on experience 1in instruction with children not
capable of counting-on with tally or without taliy, it is
recommended that teachers not present missing—addend problems
to these children until counting-on schemes are acquired
either through dsvelopment or instruction. While such children
can learn to solve such missing-addend problems through
counting-all procedures, the solution process is algorithmic
and conceptualization of the problem is lacking. In the case
of children capable of counting-on with tally, the missing-
addend problem should be presented with the solution process
that of counting-on. These children, in their own time, should
produce more efficient solution procedures. 1lt is strongly
urged that the child's counting capabilities be the determiner
of whether the missing-addend problem is presented or not.

Children who are capable of counting-on, even if it 1is
only without tallying, should be presented with addition
through counting-on procedures rather than counting-all
procedures. The counting-on procedures should lead tc
knowledge of basic facts more quickly. Moreover, the children
can be exposed to more sophisticated sums (such as 43 + 4 or
56 + 5) and theroby gain a sense of competence not possible
th. 1gh countir. 1ll procedures. Essentially, the exploratory
phases of addition and subtraction can be done very minimally
with these children. While counting-all procedures should not
be forbidden (especially for differences with minuend less
than or equal to ten), they should not be emphasized.

Conceptually, counting-back is to differences as
counting-on is to sums. While differences may be found by
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¢sunting-on with tallying, oresently no data arec available !
which show that a cnild 1s capable of conceptualizing
differences in terms of counting-on 1f counting-back and
cdounting-on are not synthesized (formalization-interpretation
phase), one being associate” with differences sn? one wilth
sums. In the instructional activities, counting-oack with and
without tall;ing seemed especially difficult for most or the
children. Preseptation of the activities seemed to cause
dissonance, with children refusing to partiecipate mentally.
While the extensive quantitative comparers fared much opetter
than the gross quantitative comparers, the instruction on
counting-back seemed to be not well-received by the cnildren,
But hecause of its importance to differences, instructional
procedures need to be created and tested bhefore definitive
recommendations are mad2 concerning the 1atroduction of
ccunting-back with and without tallying.
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Appendix T. Quantitative Comparisons

ftem W-l. TELL ME IF THERE ARE MORE RED ONES, OF MORE
GREEN ONES, OR IF THEY ARE THE SANE. WHY?
_
0 O
0g aag
GRTTn RED T
Item W-2. TELL ME IF THERE ARE MORE RED ONES, OR MOKE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?
| 0 OO0
|
| A 0O
RED GREEN
Item 1. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GKEEN ONES, OR IF THEY ARE THE SAME. WHY?
| |
] RN
]
apns
4 O O
RED GREEN
Item 2. TELL ME IF THERE ARE MORE RED ONES, OR MORE

GREEN ONES, OR IF THEY ARE THE SAME. WHY?

0o 0o O

aa 0 0

0o O ]

GREEN RED
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Item 3.

tem 4.

Item 5.

Item 6.

TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

O
O
U DD
O 0 (3[] 0
(3 B O
RED GREEN

TELL ME IF THERE ark MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

p

GREEN

Oooooon
O 0 O o o U RED

TELL ME IF THERE ARE MORE 2RED ONES, OR MCRE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

GREEN

oogog aoog
OpO0O 0 oOou RED

|
|
|
|
L

TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

ﬁ o
On 0
DBD o 0
Ba
0
GREEN
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. Item 7. TELL ME IF THERE ARE MORE RED ONES, OR MCRE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

o806 Y
O O ] d
QDO 7 <>El O

RED GREEN

Item 8, TELL ME IF THERE ARE MORZ RED ONES, OR MCRE
GREEN ONES, OR IF THEY ARE THE SAM:., WHY?

U o Q0
E) E] [3 (1[ié§j
W [:;D

O ] X

GREEN RED
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Appendix II. Missing Addend Problems

Missing Addend Problems with Objects Present

1., MIKE HAS 5 BLOCKS. HE FOUND SOME MORE. NOW HE HAS 8

BLOCKS. HOW MANY DID HE FIND? (10 BLOCKS PRESENT)

2. LORI HAS 3 JACKS IN HER HAND, SHE PICKED UP SOME
MORE AND NOW HAS 7 IN HER HAND. HOW MANY DID SHE

PICK UP? (10 JACKS PRECSENT)

Missing Addend Problems without Objects Pres - nt

1., MIKE HAS 3 CATS, HIS MOTHER GAVE HIM SOME MORE.

+

HE NOW HAS 7. HOW MANY DID HIS MUTHER GIVE HIM?

2, TOM HAS 5 COMIC BOOKS. HE GOT SOME MORE FOR HIS
BIRTHDAY. NOW HE HAS 8 COMIC BOOKS, HOW MANY MORE

DID HE GET FOR HIS BIRTHDAY?
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Appendix III: Cardinal Information from

. Ordinal Informaticn
Task A. (12 counters in a row)
1st 2nd 9th

l |
1 !
FDDDDDDDDDDDD

HERE ARE SOME COUNTERS IN A ROW. IF WE START COUNTING
FROM THIS END THIS ONE IS FIRST (point), THIS ONE iS5

SECOND (point), THIS ONE IS THIRD (point).

1. THIS ONE IS NINTH (point). WHICH ONE IS THIS?
(point to tenth)
a. [ ] caqrrect immediate (go vo #2)
b. | }V correct but counts from the beginning
c. [ ] 1incorrect
THIS ONE IS NINTH (point), THIS ONE IS
TENTH (point), WHICH ONE IS THIS? (point
to eleventh)
[ ] correct immediately
[ ] correct but counts from the beginning

[ ] incorrect
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2. THIS ONE IS NINTH (point). WHICH ONE IS THIS?
. vpoint to seventh)
a. | 1 correct immediately
[ 1 correct but counts from the beginning

[ 1 incorrect

10th

O oooo|

3. (cover seven with cloth) THIS ONE I3 TENTH (point).
HOW MANY ARE COVERED?
a. [ ] correct - HOW DO YOU KNOW THAT? (go to b)
b. [ ] HOW MANY ARE THERE IN ALL? (stop)
c. [ ] incorrect - THIS ONE IS TENTH (point), HOW
MANY ARE THERE IN ALL?

d. [ ] correct - RIGHT, AND HOW MANY ARE COVERED?
e. [ ] incorrect (five) - FEEL THE FIRST ONE. WHICH
IS NEXT? (feel second)

f. [ ] correct - HOW MANY ARE COVERED?
[ ] correct

[ ] incorrect (stop)

ERIC "
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g. [ ] incorrect (not five) = THIS IS TENTH (point),
. THIS IS ELEVEN (point), THIS IS TWELF?H
(point). HOW MANY ARE THERE IN ALL?
h. [ ] correct - HOW MANY ARE COVERLD?

&

[ ] correct

{ ]} incorrect (stop)

HERE ARE SOME COUNTERS IN A ROW. SOME OF THEM ARE COVERED.

FEEL THE FIRST ONE HERE.

1., THIS ONE IS FIFTH (point). WHICH ONE IS THIS? {point
to sixth)
a. [ ] correct - got to #2 A ;
b. [ ] incorrect - THIS ONE IS FIFTH (poiixt), THIS
ONE IS SIXTH (point). WHICH ONE IS TuIS?
(point to seventh)
[ ] correct

[ } incorrect
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2. THIS ONE IS FIFTH (point). HOW MANY ARE THERE IN ALL?
a. [ ] correct - .HOW DO YOU DO THAT?

b. [ ] incorrect (five) - REMFMBER, THERE ARE SOME

UNDER THE COVER. FEEL THE FIRST ONE. THIS

ONE IS FIFTH (point). HOW MANY ARE THERE 1IN

ALL?

[ ] corre.t
[ ] incorrect
¢- [ ] incorrect (not five) - THIS ONE IS FIFTH
(point), THIS ONE IS SIXTH (point), THIS ONE
IS SEVENTH (point). WHICH ONE IS THIS?
(point to eighth)
d. [ ] correct - HOW MANY ARE THERE IN ALL?
{ ] correct
[ ] incorrect
e. [ ] incorrect - FIFTH (point), SIXTH (point),
SEVENTH (point), EIGHTH (point). HOW MANY
ARE THERE IN ALL?
[ ] correct
{ ] incorrect
3. THIS I¢ THE FIFTH ONE (point). HOW MANY ARE COVERED?
a. [ } correct - done
b. [ } incorrect - THIS ONE IS FIFTH (point). WHICH
ONE IS THIS? (point to fourth)
c. | ] correct - HOW MANY ARE ZOVERED?
[ ] correct immediate
{ ] correct, trial and error

[ ] incorrect
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d. [ ] incorrect - FIFTH (point), FOURTH (point).
. HOW MANY ARE COVERED?
[ ] correct

[ 1 incorrect
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Counting-on and Counting-back Tasks

Counting-on
Warm—-up Tasks
1. START AT FOUR AND COUNT ON THREE MORE NUMBERS FROM
FOUR (If unsuccessful, demonstrate).
2. START AT SEVEN AND COUNT ON FOUR MORE NUMBERS FROM
SEVEN (If unsuccessful, demonstrate),
3. START AT TWELVE AND COUNT ON THREE :iCRE NUMBERS FROM

TWELVE (If unsuccessful,” demonstrate).
Counting-on without a Tally

l. Three checkers covered with a cloth presented to the
child. Four visible checkers arranged randomly are

also presented to the child.

E. THERE ARE ™tk THECKERS UNDER THE CLOTH. .COUNT

1

ON TO {fIND HOW MANY CHECKFRS ..,ERE ARE ON THE CARD.

O O
O O

= - 3 under
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2. The same és_(l) except seven checkers were under the

R cloth and five checkers were visible.

—

7 under

Counting=-on with a Tally

1. Three checkers covered with a cloth are presented to
the child. Five visible checkers arranged randomly

are also presented to the cihild.

E. HERE ARE FIVE CHECKERS. THERE ARE SOME MORE UNDER
THE CLOTH. THERE ARE EIGHT CHECKERS IN ALL ON THE
CARD. COu. i ON TO FIND HOW MANY CHECKERS ARE

UNDER THE CLOTH,.

T

. 3 under
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2, The same as (1), except there are 12 checkers in all,

8 visible.

O
O O O
© OO0

4 under




<

Counting~back

Warm-up Tasks

START AT FOUR AND COUNT BACK THREE NUMBERS. (If
unsucce. ful, demonstrate.)

START AT SEVEN AND COUNT BACK THREE NUMBERS. {If
unsuccessful, demcnstrate.)

START AT TWELVE AND COUNT BACK FOUR NUMBERC. (If

unsuccessful, demorstrate.)

Counting=-back w~ithout a Tally

four checkers covered with ~ cloth are presented to
the child. Trhree visible checkers arranged randomly

are alsc presented to the child.

E. THCRE ARE soM' HECKERS UNDER THE CLOTH. I
COUNTED THEM ALL ON [E C RD AND THERE ARE SEVEN.
COUNT BACK, STARTING AT SEVEN, TO FIND OUT HOW

MANY ARE UNDER THe CLOTH,

00 O |
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2. The same as (]), except there are seven checkers

covered and five visible,

g\

7 under

Counting-back with a Tally

1., Seven checkers, tour under one cloth and three under
anocher cloth, are presentedito the child.

E.‘ THERE ARE SEVEN CHECKERS ON THE CAKD UNDER THISE

CLOTHS. THERE ARE FOUR CHECKrRS UNDER THIS CLOTH

(point). COUNT BACK, STARTING AT SEVEN, TO FIND

OUT HOW MANY ARE UNDER TH1S& OTHER CLOTH (point).

]
I
T

J N

4 under 2 under
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The same as (1), except there are four chec.ers
covered under one cloth and eight unde. the other. |
The child is asked to count back from 12 to find

how many are under the cloth with four covered.

L

4 under 8 under




LANGUAGE AND OBSERVATION CF MOVEMENT AS PROBLEM
SOLVING TRANSFORMATION FACILITATORS AMONG
KINDERGARTEN AND FIKST-GRADE CHILDRWVN

Jay Shores
University of Houston

Robert Underhill
Kansas State University

The purpose of this study was to ascertain whether the
use of overt mcdeling a. i/or verbal modeling assists young
children to solve four types of mathematical problems.

Theoretical Background

A child's ability accurately to solve basic mathematical
problems is krown *o be affected by both his or her level of
cognitive development and the effects of initial school
experiences (Underhill and Shores, 1975). In kindergarten and
firsc-grade children ag-31 5 to 7 years, the ability to
conserve numerousness € .,olves as the children are beilng
exposed to basic mathematical concepts of varying conceptual
complexity (Piaget and Inhelder, 1969).

The conservation of numerousness construct was introduced
to the mathematins education community from the translated
writings of Piaget (1965), the text by Flavell (1963), and the
research of Elkind (1961), Dodwell (1960), and Wohlwill ™~
(1962). Studies by Van Engen and Steffe (1966), LeB.lanc
(1968), Steffe and Johnson (1970), and Johnson (1971), among
others, have established significant differences between
conse vers' and nonconservers' problem-solving acnievement.

In addition, it was found tha* »nroblems which involved
transformation were significantly more difficult thar those
which did not 1nvolve a transformation. Transformationeal
tasks are those which imply movement or actiom 1n the context
of stated problems {(Undernill and Shores. 1976).

o

The concept of transformation 1s an important construct
in Pragetian re: arch. A transtormatien is an act or process
. of alterating, or the ~hanging of one thing into another. A
transformation can exist at several differont levels.
Transformations not only refer to alterations in the physical
world, but also to the compensations made by the i1ndividual in
his or her mental structures. If an object or state 15 known
by an individual, then a transformation 1n the physical state
is accompanied by a trancformation 1n the cognitive structure.
In another sens2, a transfcuimatlon occurs when a learner
states that 3 + 1 = 7, Piraget and Inhelder (1969) describe
operatio: s as rever.ibie tra.sformations, and tney use
additior of two numbei's i, a specific example.
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The population of interest in the present study was
kindergarten and first grade chilc .en, so the concept of
transformation was .cfined within .ne context of pre-
operational thoucut. Piaget (1972) and Sinclair (1971)
characterize concrete operational thought as being limited to
thinking about object experience through object-invokinjy

~mental processing. While concrete operational thought is not
limited to thinking-while-manipulating, such thought is
characterized by thinking about real present objects and
actions. Thus, a meaningful comprehension of 3 + 4 = 7
suggests that learners may, for exarple, conjure mental images
of sets of real objects with number propertiec of "threeness®
and "foucness." Then if learners comprehend the operation of
addition, they conceptualize a transformaticn in wnich the two
sets with nuiber properties of "threeness" and "fourness" are
joined in set union to form a new superoidinate set with a
number property of»"sevenness."

Steffe (1967, 1968) and LeBlanc (1¢68) defined
transformational and non-transformational addition and
subtraction story problems as those which do or do not provide
movement cues which indicate joinirg or semarating of sets and
subsets. Herc are addition samples:

Transformation: Two dogs are in the kennel. Three
more dogs are placed in the kennel. Now how many
dogs are in the kennel all together?

No Transformation: Bill has three frogs. John has
four frogs. How many frogs do Bill and John have
all together? /

Witk 'n the context of earlier statements made by Piaget, one
could say that the operation of additicn is involved in both
tyres of problems, so both involve transformations. Thus, if
the learner is asked to solve t..e problems, he or she is asked
co romplete a transformatin:. The Steffe and LeBlanc tasks
mig:t be morc appropriately labeled as facilitating and
norfacilitating addition =1 subtraction types relative to the
transformation task to be completed.

It was hypothesized that the modeling of the
transformation would assist children who are begirnning to
conserve numerousness in c£olving the mathematical oroblems.
The degree of facilitation should fluctuate accordiny to the
degree to w ich the modeling itself varies from fully
demonstrated and explained, to fully explained, to simp'y the
implicit movement within the problem statement itself. It was
anticipated that a child who observes a transformati.n will be
able to use spatial referents as cues to assist 1in recalling
the untranstormed set. Thus, such a child should have less
difficulty in solving problems than a comparable cnild whe
does not receive a simllar modeling experience,




Among the transformational mathematical operations to
w.ich young children are introduced were the fcllowing. These
are of varying conceptual complexity: counting-on, story
problems, quantitative comparisons, and ordination.
Counting-on reqguires t e formation of one set and the serial
addition of elements to 1t. It is the continuation of a
simple counting sequence. Addition story problems consti“ute
a slightly more complex task, namely the establishment of two
sets of similar elements and the union of them. Quantitative
comparison involves the formation of two sets, the
establishment of correspondences between the sets' elements,
and a judgment based on equivalence. Ordination, the mocst
complex of the tasks in this study, posits the existence of
two sets and relationships of two abstract constructs to them.
Both a cardinal and ordinal (spatial position) reslationship
must “e maintained after a spatial transformation.

The Experimental Tasks

Counting-on Tasks. E placed a strip ot cardboard
containing a row of at least seven chips in front of S. The
first n chips were covered withi another piece of carapocard.
was told how many chips were covered and was requestied tc tal
how many chips were on the cardboard in all.

= U

Adéition Tasks. E placed a cardboard piece with pictures
of children and two appropriate sets of chips. E tcld an
addition story problew. S was requested to give the answer.

Quantitative Comparisons Tasks. E placed 2 rcws of chips
before S. S was askea 1f there were the same number of chips
in =2ach row.

Order Tasks. E placed a strip ~f cardboard containing
four chips of four different colors and a second piece of
cardboard containing two chips of two different colcrs at 135
rotation from the first piece. E gave S a thi:d a2nd a fourth
chip to place on the second piece of cardboard.

Procedure

The subjects were presented with two items of each
problem type: counting-on, story problems, guariitative
comparison, and ordination. Each set of eight proplems was
presented by three researcher~ ~—nder three modelirg conditionrs
in the following order: ({.: impis "% moueling, in which the
subject was presented witn a transfor.ed mydel and simply
asked to solve the problem; (2) implied moamling, 1n wnich the
subject was presented with a transliormed model, a-wid the
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procedure for the restoring transformation was verbally
described; (3) overt modelinyg, in which the experimenter
transformed the model as the question was asked and verbally
commented on the transformation as it was carried out. A
random order of items within each set of eight tasks was used
for each subject. .

#igare 1 summarizes the three modeling conditions with
the four problem types. From a theoret:cal point of view, the
subject must attend to a transformation inieach of the twelve
tasks. Clearly, the tasks involvirg audito¥y and visual cues
are much more explicit in th=ir overt manifestations of the
necessary transformations. The three cases of each class of
concept tasks could be said to depend on 1) attending to, and
comprehending, auditorially and v:sually presented
transformation cues, 2) atteriing to, aﬁd comprehending,
audltorlally cresented trans.ormation cues, and 3) spontaneous
Creation Of tiarsformutions unaided by eXxperrmentally visual
or euditory cues.

Ki "wledge of youngsters' performances on the twelve tasks
shoul? clarify researchers' understanding of the roles of
language and observed movement 1in transformational thinking.
If chese patterns are pervasive, the practitioner is previded
with an empirsically verified rationale for utilizing modeling
procedure: during instruction.

Sampling

To obtain z represencative sample of kindergarten
{ng = 20) and first- gradP {ny = 20) children, a large
suburban school system's lists of kindergarten and first-grade
punils were obtsined. A random sample of 20 children were
drawn fror each list to serve as suByjects for the study.
During tecting one ¢hiid was removed from the sample as
deviating from exzperimental procedures (lifting the cards to
count chipc). He was replaced by another child drawn at
rai..T from *tiL.c fchool'’s roster. Each subject responded to the
24 tas¥s witnin a time interval of approximately 30 minutes.
All tasks were individuaily administered.

Analysis

In the % x 3 x 2 (®roblem Type by Modeling Type by Crade
Tzvel) design, the subiects were used as their own contrnls
ar~ogs problem tyve and modeling type. An inicial factor
analysis of the 24 iter 5 was conducted ir which the items were
found to l1oad by oproblem type. This confirmed the existence
cf conceptual distinctieness amony the problem types. A
subseyaent MANOVA was used to determine the effects of prowlem
type, moaeling type, and grade level for each of the four

‘problem types.
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Aruitoxt provided by Eic:

Prob.em Types

Counting
Oon Tasks

Order Tasks

Story
Probiem
Tasks

Quantitative
Compar:isons
Tasks

Figare 1.

Modeling Conditions

Overt

(Auditory and visual
movement cues)

The cardboard strip
was placed before 3
with all of the
chips showing. A
second pirece of
cardboard was used
to cover the first
n chips, while E
explained what he
was doing.

A

",

The cardboard strigs
were placed init:ially
in parallel porsitions.
As one was rot.ted
through 135°, .
described -~ha*
doing.

he was

A transfnraation
problem (Steffe) was
stated as chips were
used t~ deronstrate
the action.

Two rows of chips in
one--o~-one corre-
spondence »ere pre-
sented. One row was
linearly d:ispersed.
The action was de-
scribed.

Implied

(Auditory move-~
ment cues only)

The cardboard was
placed nefore 3
with the first n
chips covered. £
explained that tne
tirst n ch.ps had
been covered up.

The cardboard
strips weve placed
inttially in 135°
positicns. Z ex-
plained now tney
would matcna 1f one
were turned.

A transformat:on
provlem was stated.
Chlps were stat.-
call, placed :in a
post-transforma-
tional pos:tion.

Two rows of chips
were presentea
statically, cne
bel1ng more linear-
ly dispersed. The
dispersion prLocRsS
was explained.

Implicit

{No auditory or
v1sual cues)

The cardboard
Strip was
placed before
S with the
first n cnips
covered. N
explanation of
the coverings
was given be-
yond the state-
ment of tne
problem.

Same as 1mplied
wlth no ex-
planation.

A norn-transfocr-
matica proclien
3tated. Chigs
~ere stavwically
placed in <wo
disjoint sets.

Same as :inzliea
with no ex-
nlanation.

Modeling Conditicons and Problem Types




Results

. rable 1 presents a summary of the multivariate anaiysis.
For the counting on ar® story problem items, there was no
significant difference acrcss the modeling types. However,
for quantitative comparison and ordinal items there vas a
significant difference (p < .05) across the modeling types.

Tables 2 and 3 present a summary of univariate contrasts
between grade levels by problem type and modeling condition.
In the quantitative comparison type, the significant
differences among the kindergarten subjects' responses were
found between each of the model types (Overt > Implied >
Implicit). The first-grade subjects had a different pattern
in their responses, with overt responses being significantly
greater than both the implied and impiicit responses (Overt >
Implied = Implicit).

Table 2

Summary of Univariate Contrasts Between Grade Levels
Problem Type and Modeling Condition

e~ —— - -

MODELING CONDITIOUN

Overt Implieqa Implicit TOTALS

P Counting-  X,= 1.0l 1.05 0.90 3.05
R on X, = 1.75 1.65 1.50 4.90
O  Problems F = 9.15% 7,02* 5.52% 9.65*
B
L Ordination Xy = 0.70 0.00 0.35 1.5
E X,= 1.10 0.80 .60 2.50
M  Problems F = 2,17 0.76 1.55 2.06
T Quantitative X,= 1.10 0.70 0.35 2.15
Y Comparison X, = 1.30 1.00 0.95 3.25
P  Problems F = 0.42 1.12 4.97 2.23
E
Story Xv =  1.45 1.25 1.50 4,20
Problems X, = 1.95 1.9 1,90 5.75
F o= 9.80* 13,90* 5.53% 16.03*
Xe=  4.35 3.60 3.10
‘COTALS ¥, = 6,10 5.35 4.95
F= 7.17%* 9,92* 10.43*
*p ¢ .05
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Table 1

Summary of Multivariate Analysis of the Effects of
Modeling
Type and Grade Level for Each Problem Type

-— _ -

Problem Type: Counting-on

Source of Variation ss df MS F

Main Effects 12.85 3 4.28 7.90**
Treatment .82 2 .41 .75 .
Grade Level 12.03 1 12.03 22.,20%*

Interaction .02 2 .01 .02

Error 61.80 114 i

.54

Problem Type: Ordinal

§9259§_9f Variation s aft MS F
Main Effects 6.03 3 2.01 3.61*
Treatment 3.62 2 1.81 3,25%
Grade Level 2.41 1 2.41 4,33*
Interaction W22 2 .11 .20
Error 63.35 114 .56
q
Problem Typre: Qu.atitative Comparison
Source of Variation sS df MS E
‘ r
Main Effects 10.39 3 3.46 4,27**
Treatment 6.72 2 3.36 4.14%*
Grade Level 3.68 1 3.68 1,53%
Interaction .65 2 .33 .40
Error - “mﬁwmm"_?g.SS ~£l4 .81
Problem Type: Story Problem
Source of Variation 55 daf MS F
Main Effects /+53 3 2.57 8.00**
Treatment .52 2 .26 .82
Grade Level 7.01 1 7.01 22,35%**
Interaction .32 2 .16 .51
Error 35,75 114 .31 -
* p < .05
** b ¢ .01
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Table 3

Summary of Univariate Contrasts Among Modeling
Conditions by Problem Type

MODZLING CONDITION

Overt Implied Implicit
Counting-on X=  1.38 1.35 1.20
Implied .03
Implicit 18" .15
Ordination X= .90 .70 .48
Implied .20%
Implicit .42% .22
PROBLEY _
Quantitative X= 1.20 .85 .65
TYPE Comparisons
Impliead .35*
Implicit .55 .20*
Story X=  1.70 1.58 1.70
Problems
Implied .12
Implicit .00 .12
*p < 05

In the ordinal type. significant differences among the
kindergarten subjects' responses were found, with 1molicit
responses beingy s gnificantly lower than the other two
modeling types (Overt = Implied > Implicit). With respect to
first graders' performancesign the ordinal tasks, there were
no significant differences.,

For the overt items there was a significant difference:
\ children's performance with counting on items and responses to

story problem items were significantly higher than their
performance on guantitative comparison and ordinal 1tems
(CO= 5P > OR = QC). For the implied items, the nature and
order of significance was the same as for the overt items.
For the implicit items the counting=-on, quantitative
comparison, and story oroblem responses were significantly
greater than those of the ordinal type (Cu = QC = SP > OR).
First graders were significantly better than hindergarteners
in counting-on and story problem responses over ail types of
models.

Significance of the Findings

This study 1indicates that modeling has an effect upon the
subject's ability to solve the twn more Jifficult types o
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>
transformation prob}ems, quantitative comparison and
ordination. Further, overt and implied modeling significantly
affected the subjects' ability to solve counting-on and story
broblems. The effects were greater for kindergarten than for
first-grade children.

These findings support the hypothesis that duringy the
child's transition from nonconserver to conserver, the use of
modeling might significantly assist the teacher in
facilitation of conservation-related subject matter.
Researchers and practitioners need tc conduct further
investigation to determine the pervasiveness of the
differences found in this study. If the significant
differences are widespread, then considerable pedagogical
change might be warranted.
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ASPECTS OF CHILDREN'S MEASUREMENT THINKING

Charles Lamb
- University of Texas

Quantity

Human beings normally make decisions (or judgments) during
their daily activities. Some of these judgments are
quantitative 1n nature while others are qualitative 1n nature.
For example,gone might say that a particular drink is
"swee€ter" than another. If "sweetci:" 1s determined by a
taster, the judgments are of a qualitative nature and it would
be difficult for the person to define strictly what was meant
by the term "sweeter." But, through taste alone, two or more
drinks can be ordered on the basis of "sweeter." This order
relation however, 4does not say how much swceter one drink is
than another. The differences, while they exist, rely on
number for their elucidation. If, through chemical analysis,
the amount of c<vgar per unit volume is determined, the
differences in the "sweetness" of the two drinks may be
determined. Moreover, the drinks can be ordered using the,
relation "sweeter" through the natural order of the
numbers--in which case, the drinks would not have to be
tasted.

A quantity is determined by a set of objects and criteria
for comparison of those cbjects--two drinks ordered on the
basis of "sweeter" is a quantity. The objects themselves,
however, are referred to as quantities. In such references, it
will be "assumed that a criteria f»r comparison has been
established. Quanticies to be "measured" may be categorized
into two collections based on whether or not their attributes
are additive. Intensive quantities are objects which are
compared on the basis of attributes which are nonadditive--for
example, temperature. Consider a pail of water with
temperature 100°F and a similar size pail of 50°F water. These
twoc nonoverlapping quantities when joined together do not give
a quantity of water with temperature of 150°F. Other
quantities which are 1intensive are hardness, softness,
density, and intelligence. Extensive quantities are objects
which are compared on the basis of attributes wnich are
additive. For example, 1f the comparison between sticks is
length, one could take a stick of length 1lj, a stick of
length 13, and join them end-to-end with no overlap. The
join would be of length F¥; + 1ls. Some other guantities
whirh are "extensive" atre area, volume, weight, and number.

The primary difference between the two categories of
objects is the way in which numbers may be assigned. Intensive
quantities are quantities which are "mecasuranle" 1n the sense
that they may be arranged in a series showing difterences in
degrees of the quantity under counsideration. Extensive




*">", and "<" symboliz

quantities are "measurable" in the sense of intensive
quantities but also in the sense that the attributes for
comparison are of an additive nature.

The differences in intensive and extensive quantity may
be formalized by properties necessary for the measurement
process to have meaning. The first cwo properties represent
minimum conditions 1n order for numbers to be empioyed to
establish differences.

"l. Using a set of objects (say n of them), 0}, Oj,
eesy Ops 1t must be possible to arrange them 1n a series
witﬂ respect to a certain,quality. The series requires
that the law of trichotomy holds. That is, for any two
bodies Oj and 0;, exactly one of the following is true:
(a) O0f > O3 (b; 0j < Os; or ) 0 = 04, "=",

e %ho relatlons by “which the objects
are ordered. Note that ">" and "<" are asymmetrical.

2. If 0 > Oj, and O4 > Ok, then Oj > Ox.
This statement 1is the transitive property of the relation " ."
The two properties are sufficient for a collection of objects
to be described as intensive quantity and thus be measured.
The two properties are not sufficient for quantities to be
measured in the extensive case. Four additional properties
must hold. all of which concern the physical process of
addition of quantities.

3. If O + Oj = Ok, then Oj + 0 = Og.

4. If 0 =0j', then O + 05 > O;"'.
— .1 .= 1 . -
5. If 0j = 0i' and 0§ = Oy', then Oj + 0y

6. (0fj + O0q) + Og =05 + (Oj + Ok ).

Measurement in the strictest sense is only possible when all
six properties hold (Cohen and Nagel, 1934).

Some important examples of gquantities are:

1. The positive integers using the natural order
relation "greater than."

2. The positive raticnal numbers using the natural
order relation "greater than.”

3. Objects (such as sticks or Strinqs)Acompared
operationally by use of the length relation
"longer than.”

Each of these quantities i1s extensive,
- o4
J
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Measurement

As developed in the preceding section, there 15 a
dlstlnctlon to be made between measurement .and .juantity.,
Quanffly (erther 1ntensive or extensive) 13 concerned with 2
set of objects and a criteria of comparison (note that both
the objects and tue relations determined by the criter 1a of
comparison are necessary). Quantity 1s a necessary condition
for measurement (in the numerical sense) to take place. If
objects are orderable according to some attribute, 1t becomes
possible to assign numbers to the objects of the Juantity, or
to measure the objects according to that attribute. TIne
assignment of numbers in these situations is called
measurement. Quantities, such as the positive 1ntegsrs oOr
positive rationals, are abstract--they are not physical
bodies. It is here that guantity and measurement are most
easily distinguished. One can celect some arbitrary number as
a unit and assign numbers to numbers., If unity 1s selected,
the identity mapping is defined. But the domain of the
mapping is a set of numbe-s jusct as 1s the range for any

selection of a unit nurmoer. FHowever, one does not have to
measure an object rtor ars to .be present, since the objects
are numbers. 4 In the ¢ f guantlities where the obiects are
physical bodies--phys 1antities~=~0 .e can also ar 1gn
numbers to the objects b>ugh selecticn of some unit body.

But “he objects to be n .. ured are n»ot numbers. In the cas2 of
extensive uantities, :he physical bodies can be ordered and
combtned. Measurement allows one to work in the abstract with
physical ¢nantit:i:es through working with the numbers assigned
to the objects. 1In measurement of both abstract ind physica
guantity, tne following are present:

1. A set A of objects to be measured (the structural
properties of this set are determined by the type
of quantity, intensive or extensive);

2. A set B of "measurements" (usually a supset of
the positive real numbers); ahd
3
3. A process for associating with each elemént of A
an element or B.

This situation can be described through "'the concept of
function. There is a related function for every measurement
situation. The domain is the set of objects to be reasured,
while the range consists of the measurements (usually positive
real numbers) to be associated with members of the domain by
the particular mapping under consideration.

The mapping must preserve the structure of the domain
and range. That is, the quantity under cons 1deration, with its
order relation, is mirrored in the range of the functinn, In
fact, the range is a quantity in its+own right. The corres-
pondenbe between domain and range may be used to establish
common units of measurement by arbitrarily selecting an object
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in terms of the arbitrary object's functional value. By ~
selecting different ynits it is possibie to define several
functions on the same domain (Blakers, 1967).

Two different types of physical quantities with their
associateq, measur~ront functions are considered 1in this
study--collections of physical objects ordered by matching
relactions and linear physical objects ordered by length
relations. In the case of collections of physical objects,
singular physical objects are taken as the unit.: So, given a
collection of physical objects, the function assigns the count
of the collection to the collection. In the case of linear
physical objects, an arbitrary unit is selected so” that each
physical object in the domair of the function is an integral
number of units long. This was d.ne so that, given a :
collection of units associated with a particular physical
object, the count of the collection of units is the length of
the physical object.

Reasoning Concerning Measurement

Reasoning in the Domain of the Measurement Function

Two types of comparisons can be made in the domain of the
measurement function described immediately above--direct and
indirect comparisons. Direct comparisons essentially involve
no reasoning because the physical objects are proximai.
However, indircct comparisons require transitive or
substitutive reasoning because two collections of physical
objects are compared by using a third such cellection. For
example, a child might compare sticks A and B and determine
that A is longer than B. Upon; comparing B with C, he may
determine that B is longer th C. Then, using the transitive
property of the relation, it is possible for the child to
conclude that stick A is longer than stick C (without overt
comparison).

Reasoning in the Domain and Range of the Measurement Function

It is possible for children to compare directly obijects
in the domain of tie measurement functicn through comp: “isons
of their measurements. For example, suppose some stick A is
measared ang found to be seven units in length. Then stick B
is measured and found to he seven units in length. Using this
information, it is possible to conclude that if A and B were
to be compared physically, they would be of the same lenqgth.
It is possible to make indirect comparisons in the following
way. Imagine A and B are physically compared and A is found
to be longer than B. '"™hen B and C are measured and each 15
found to be seven units long. Then, because A is lonager than
B, it is also longer than C. This 1indirect comparison
involved the substitutive property, even though B and C were
compared through comparisons of their measurements.
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Premise forms. Situations consisting of two instances of
a relation or one 1nstance of a relation and another instance
Qf another lation are called »remise forms. A transitive
premise form is a premise form consisting of two 1nstances of
a transitive relation where an implication 1s possible. A
substitutive premise form 15 a prenise form where the
substitutive property allows for an implication to be made.
An incompatible premise form 1s a premise form from which no
implication 1s possible on a logical basis. For examplg, if A
is longer than B, and B is shorter than C, no implication can
be made about A and C from the information given.

Reasoning concerning the measurement function has been
studied in various contexts. Transitivity has been considered
for its own sake as well as in ccmparison to other forms of
reasoning such as substitution (Bailey, 1973), conservation
(Carey and Steffe, 1968), classification (Johnson, 1971) and
seriation (Murray and Youniss, 1968). These studies have
inclu relationships of comparison such as length. Other
studies, such as Owens (1972), have included the matching
relations as well. The Owens study involved the transitive
property across both matching and length relations. Studies
such as Bailey (1973), Murray and Youniss (1968), Youniss and
Murray (1970), Youniss and Dennison (1971), and Keller and
Hunter (1973) provide information of comparative performane€
on tasks of a transitive and substitutive nature. The present
study is concerned with replication inasmuch as further
information will be gathered concerning the transitive and
subsiitutive properties acruss the relations of matching .and
length.

Previous considerations oi measurement topics (Gal'perin
and Georgiev, 1975; Wagman, 1975; Carpenter, 1972) have peen,
primarily concerned with the conception of the unit of
measurement. Gal'perin and Georgiev considered the unit as it
relates to other elementary mathematical notions. Wagman
investigated the child's notion of a unit of area. Carpenter
considered the unit of measurement and its relationship to
conservation of liquid quantity. These studies failed to
capitalize on the child's knowledge of the "measurements" of
objects (the numbers, in terms of units, in the range of the
measurement function). The present study is dlfferent from
the previous studies in that it involves the child's use of
.numerical infotrmation from the range of the measurement
function across the transitive and substitutlve properties.
Little information exists on this aspect of measurement.

Piaget (Flavell, 1963) has given evidence that -
development is crucial in the acquisition of measurement
concepts. Studies such as those above confirm this claim.
One purpose of the present study is to investigate the age
characteristics of the measurement concepts of matching and
length across the transitiver and substitutive pre@ise forms

(3
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(using comparisons in the domain and range of the measurement
function).

In particular, the purposes of the present investigation
are: (a) to determine the young child's ability to perform
logical reasoning tasks involving the mcasurement tunctions :
associated with collections of objects and linear physical
objects; (b) to -study the young child's ability to reason with
the transitive and substitutive properties of relations; (c)
to investigate the child's ability to operate in the range as
well as the domain of the measurement function; (d) to study ,
the effect of age on the child's performance of logical
reasoning tasks; and (e) to discover 1nterrelationsnips among
the variables of interest.

In the past, logical reasoning in middle childhood has
been extensively studied by psychologists. These studies are
important for mathematics education in that they are at least
relevant to children's measurement behavior. It is true,
however, that close investigation of the constructs studied by
the psychologists must be made in order to astertain their
applicability in mathematics edacation. 'Smedslund's ( 63a)
study 'is no exception. He has argued that in order to ussess
concrete reasoning, one must make a clear distinction between
percept, goal object, and inference pattern. Percept deals
with the set of properties inherent in the stimulus situation
as presented to the child. Goal object is that which the
child is told to obtain, for example, number or length. An
inference patterr 1s formed by a set of*premises and a
conclusion.

v . - . .

" Transitivity, although considered to be an inference "
pattern by Smedslund, 1is not thought of as such in formal
logic (except for hypothetical syllcgism). The 1nference
scheme in formal logic closest to transitivity, in the sense
that Smedslund talks about it, is Modus Ponens. This scheme,
when it involves transiti...,, is as follows:

1. If aRb and bRc, then aRc.

2. aRb &nd bPc.

oio aRc

L]
One of the premises is a statement of transitivity of the
relation "R", and the other :s a coniupctive statement of *wo
instances of the relation. What is usually assessed in tasks

t e

of transitive reasoning is +he€ capability of a child to make

the conclusion based on a knowledge o° the second premise.
Knowledge of the first premise 15 not lirectly assessed, but
inferred upon evidence of a correct conclusion. In the work
cf Piaget (1952), it 1s not assumed that the child is
consciously aware of statement forms. Rather, the statdment
forms are models for the child's thouagnt. Conseguently, 1t is
t>0 strong to say that in tasks of transitive reasoning an
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inference pattern is being assessed. More correctly, the
behavior being observed is that of the child being able to
make an implication or a conclusion. Therefore, in this

study, implications involving the transitive property and

substitdtive property are dealt with rather than a transitive
or substitutive inference.

The two implications mentioned above are logically
fundamental to operational krowledge of matching and length
relations by children. Only by being .atle to work =
successfully with these implications will children possess
operational knowledge of the relations. Moreover, xnowledge
of these reldtions and their propertles is essential due to
their close relationship with measurement. The 1mportance of
including measurements of objects in the logical reasoning
tasks has been pointed out' by Osborne (1975). He sugogested
the need to examine how children tie relatiqns and operations
ih the range space of- the measurement function to operational
definitions of relations and operations 1in the domain of the
function., -

Framework and Hypotheses

Muxrray and Youniss (1968) conducted a study of thHe
child's achievement of transitive reasoning and 1ts relation
to seriation behavior. The relational category used was that
of length. The sample consisted of kindergarten, first-qrade
and second-grade children. As part of the study, variations
on the classical transitivity paradigm were included. The
purpose of inclusion of premise forms A=B and B > C, and A > B
and B=C, along with the standard form A > B and B > C, was to
help control for non-transitive solutions: As exp2cted from a
logical point of view, seriation behavior was found to be a
prereguisite for transitive reasoning. Wwhen t.e three .premise
forms were compared, it was found that they w:re ordered in
difficulty from least to most difficult, A > B and
B >C, A>B and B=C, and A=B and B > C. These differences in
difficulty suggest a hierarchical development of relational
reasoning with transitivity appearing prior to substitytion.
Apparently, tasks using two different relations are moge
difficult for young children tharn tasks using only one \\\
relation. Of‘*course, difficulty levels cannot be used to~
determine hierarchical development, but the results are \\\
suggestive, .

Youniss and Murray (1970) conducted andther study to
investigate the effects of efforts to centrol! non-transitive
solutions for transitive reasoning tasks. An attempt was made
to force use of a middle term for measurement purposes. The
premise forms A > B and B > C, and A > B and B=C, were used
again. Children questioned were kindecrgarteners, first
graders, and third graders. Performance was age-rclated and,
again, a differenc in difficulties for premise forms was
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found. Premise forms which required the use of two relations
were -more difficult tnan premise forms which require the use
of one'relation.

Youniss and Dennison (1971), in a later study, tested
kindergarten, first-, and third-grade children using the same
three premise forms. As 1n the earlier studies, results again.
showed different difficulcies for premise forms. However, the %
order from least to most difficult was A > B and B=C, A > B
and B > C, and A=B and B > C. A study by Keller and Hunter
(1973) was designed to test task wvariations on conscrvation
and transitivity items. The tasks with premise forms A > B and
B > C, and A=B and B » C, were of particular interest. -
First-grade children were used as subjects. %o significant
difference was found between the two types of tasks.

Studies” reported in the preceding paragraph were
concerned with "task variations" of transitivity proolems,
From - a mathematical pdint of view, these tasks involved use of
the transitive property and the substitutive property. )
Logically speaking, it should be thg case that transitive
reasoning precedes substitutive reasoning 1n development.
Several of the studies reported indicate empirical
confirmation of ‘this hypothesis. However, the studies by
Keller and Hunter (1973) and Youniss and Dennison (1971) do
not show different performance for these twg premise forms.
Based upon the mixed available evidence, thece 1s no reason to
advance one particular hypothesis cover another, usina similar
type tasks. However, none of the studies included tasks where ~
the children were asked t- reason on the basis of transitivity
or substitution after they had physically compared physical
bodies A and B, measured physical bodies B and C, compared
them on the basis of the measvrements, and ‘then were required
to compare A and C through -reasoning., Because of the added
dimension of measurement in the tasks, and the fact that some
studies have shown transitive reasoning to appear pefore
substitutive reasoning, it is hypothesized that there will be
a sequential development for the premise forms in the case of
measurements of B and C, where transitivity precedes . -
substitution. . , ‘ .

Piaget (1952) has studied the development of number and
measurement. In Piaget's theory, number is derived by a
synthesis of operations dealing with classes and those dealing
with relations. For example, if one considers a finite
collectipn of objects in light of their number, it is
necessary (according to Piaget) to eliminate ailegualities of
objécts so that they become identical and interchangeable.
However, it is-still possible to arrange objects 1nto ‘classes
so that the classes are included in one another (serially
inclusive). Although all gualities have bheen eliminated, the |
elements must somehow he kept separate or some objects mignt
be counted twice. Using both class i1nclusion and serial
order, *) is contained in (**), (**) is cortiined in (***),
and so on.
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Piaget's (1952) research shows that very young children
experience difficulty with both the class and serial aspects
Qf number. When considering the class notion of number, one
might present a child with two collections of cubes (12 red
cubes and 5 blue cubes). A one-to-one correspondence 1s than
set ur between the blue cubes and a subset of red c. es. The
child may observe this action, but stil} refuse to :elieve
that the one~-to-one correspondence has produced egual amounts
of reds and blues. In particylar, the chiid might comnent
"the reds are more, they came from a bigger pile."” This
"faulty" reasoning is due to the child's misconceptions
concerning classes and subclasses. Misconceptions concerning
serial order might take the following form: when constructing
a set of objects with nine members (by adding one object at a
time), the child may fail to recoynize that at some point 1t
is necessary to forn a set of eight objects.

Piaget (Sinclair, 1971) suggests.that the development of
spatial concepts parallels that of classes, relations, and
numbers. The difference is that the spatial concepts (length,
etc.) involve continuous objects. In length measurement,
there are several steps to be considered. First, a unit must
be partitioned off and then displaced witnout gaps or
overlaps. This corresponds to a seriation. Second, the
continuous units form inclusions--one piece included in two,
and so on. Therefore, measurement is constructed from a
synthesis of displacement and partitioning of an additive
nature. This parallels the seriation and inclusion which
constitutes the rumber concept. Research results indicate that
measurement lags behind number in development. Although the
construction of ideas is parallel, the introduction of
_contindous objects makes the topic of linear measurement more
difficult.

Even though the results of a study by Lamb (1975) do not
show transitive or substitutive reasoning developing for
matching relations prior to length relations, the, introduction
uf numerical information into the tasks may affecCt transitive
and substitutive reasoning. It should be the case that
transitive and substitutive reasoning develop for matching
relations prior to that of length relations when numerical
information is present.

2 .

Carpenter (1972} conducted & study in which he C .
investigated the effects of numerical cues on liquid guantity
conservation. The study 1involved first and second graders.
The results showed that children did attend to numerical cues.
However, numerical distractors (incorrect numerical cues)
produced approximately the same nymber of errors as did
perceptual distractors. The resudts do indicate that correct
numerical i1nformation may aid the youny child's reasoning
using transitive and substitutive premise forms, as it was the
case that well over 90 percent of the subjects ~.coyrized




that, in measurement, the greater number of ur.its measured the
greater amount of that quantity. ’

The latter results also suggest that children six years
of age may be capable of performing logical reasoning tasks
which involve use of numerical information. However, Piaget's
(1952) work suggests misconceptions could hinder the
acquisition of the capability to perform tasks using the
numerical information from the range of the measuremant
function. Therefore, it is hypothesized that numerical cues
(numbers in the range of the measurement fuaction) will aid
reasoning for children who are at a level where meaning is
established for number (around seven or eight years of age).
For other children, the cues will either hinder or offer no
aid in" reascning.

The following are the hypotheses used in this study:

1. There is a hierarchy for the development of
premise forms where transitivity precedes
substitution. The evidence presented does not
support this hypothesis for the comparisons
involving only the domain of the measurement
function. However, introduction of tasks
involving use of thé "measurements" for objects
makes this hypothe91s reasonable.

2. Evidence does not support the hypothesis of
hierarchical development of matching and. length
relations [using only the domain of the
measurement function) across the transitive and
substitutivesproperties. However, it tis
hypothesized that introduction of numerical
information (from the range of the measurement
function) ¢ill affect performance. It will be
the case that reasoning will appear for matching
relations prior to that for length relations.

3. It is hypothesized that the introduction of

’ numerical information (from the range of the
measurement function) will aid the reasoning
of children with a well-developed conception of
number (around seven or eight years of age).
For other, children, the cues will either hinder
reasoning or offer no aid.

Proc dures

Different explanations have been offered for incorrect
answers given by children in tasks of transitive reasoning.
In particular, Smedslund (1963b) analyzed classical
_transitivity tasks and gave three reasons why children who are
able to reason transitively might fail to give correct
responses. They are: (a) the child misunderstands the
question; (b) the child fails to make the initial comparisons
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correctly; or (c) the child foraets the initial compari¥ons.
Smedslund also considered three pocsibilitics for incorrectly
1nferr1ng the precence of transitive reasoning 1n supjects:
(a) guess1ing; (b) perceptual cues; and (c; the chiid
constructs nontrarnsitive hypotheses on his or her own

(t.e., A > B so A > C without regard tfor comparison of B

to C).

4 The role of memory in transitive reasoning has been
studied extensively. Owens gnd Steffe (1972) were of the
opinion that memory 1s nat a cruc:ial.factor 1f children are
allowed to make the 1nitial comparisons themselves. towever, a
study by Roodin and Gruen (1970) was designed to measure the
effect of presence of a memory aid on children's ability to
make judgments of a transitive nature. This procedure
involved the use of ar additional comparison stick (as an aid)
in tasks concerned with the transitive property of length
relations. Half the children tested were allowed to use the
memory aid while the other half were not. At each level
(five, six, or. seven years), the children using the memory aid
made significantly more correct responses. These children’
were #lso able to make more correct verbal explanations of the
tran51t1ve process.

Another important procedural question 1s that of the type

of stimulus situations presented to the cnild. Divers (1970)
presented children with “hree perceptual stimulus arrays: (a)
neutral, where the arrangement of objects produces no apprarent
bias; (b) screened, where the objec¢ts arg removed from direct
sight at the time of responsc; and (c¢) contlictive, wnere the
objects are arranged to give bias to the responses wh:ich are
incorrect. Tue results of Diver's study show that children
were more sﬂccessfuL with the neutral stimulus display. Owens

and Steffe/ '(1972) used similar stimulus conditions and once
again found the neutral conditions the most productive, but
not significantly so over the other stimulus situations.

The final methodological variable to be discussed 1s that
of requiring a rational, verbal explanation in acccmpaniment
with correct response to determine presence of a cognitive
structure. Brainerd (1973) presented a summary concerning
this methodological dispute. He concluded that: (a) the Gse
of explanations as sole determiner of presence or absence of

.cognitive structure is appropriate; and (b) the use of
judgment as sole criterion seems to be most appropriate
Brainerd does suggest that the explanation could be used to
advantage as an anplifier of the structures present 1n a
child's thought. This combinction of judgment and explaration
criteria received support from Roodin and Gruen's (1970)
study. They found that virtually all children who could give
verbal justification for the transitive process also® made
correct responses. The converse was not true,

In the tasks constructed for the presert study, children
were required to make the initial comparisons, and were
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allowed to reccmpare objects when forgetting apparently toor

place. In regard to stimulus « .ndltion, thnere were no
intende.. conflicting stimuli. However, a form of screeninsd
was used to help eliminate the possipnility of Judgment pased
solely on perceptual cues. Tasxs 1n the presont stady regulred
a verbal justification as well as judgmental response tromn the
child.

Each chi1ld received 28 tasks, 14 matchinj tasks and 14
length tasks. Seven of the matching tasxs containci ro
numerical cue and seven 1nvolved a numrlca1 cu2,. A s1milar
split was present for the lengtn items. The 1ltems 1n each of
the categories were designed using tne tollowiny pxeml%e
forms.

l. A =B and B = (;

2. A < B and B < C;

3. A > B and B » C;

4, A =B and B < (;

5 A =B and B > ;

6. A < B and B = ;. and

7. A > B and R = C,

The chi.. was allowed to corpare the five red and five
blue discs by means of one-to-one corresvondence. LUpon
completion, the cnild was asxed t> describe wrat had n-uvoened.
The red discs were then screened from the child's view using a
large orange sheet of cardooard. The child then compared the
five blue discs with five areen ones. aga:n the zhild was
asked to judge the outcome. At any time, 1f the child
established a wrong relationship, the interviewer rholped to
correct it. The fi1ve green J1scs were also screened fron the
child's view. The child was then asked to predict the outcome

T of a comparison between the red and green collections of

opjects. Foilowing the subject's response, a ,ustlflcatlon
was requested. If the child obviously had forgotte
information, or acted in a confused manner, the task was
repeated by re-establishing relablonsnlpc and then continulng
as bc »nre. The remalning six 1tems in thi1s Section werec
constructed along similar lines.

Matching with cue tasks (using both the domailn and range

of the measurement function) were similar 1n ma<eup o those

. of matching without cue 1n that the child compar< sets A and
B by way of one-to-one correspondence. However, 1nstead of
physically comparing sets B and C, tre cnild counted them.
After counting C, the objects of C were screened from the
child's view. Other aspects of the tasks were 1dentical to
those of matching without cue.

Conduction of tasks for the length categories was
analogous to that of the matching tasks. However, 1n the ;e
tasks the comparisons were made in terms of the lenjtn of
. sticks. For physical comparisons, sticks were laid ,

i
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side-by-side. For the analwgue of counting activities, tue
child used a ruler made up of distinguishaktle units; the child
had to count the appropriate number units. Before proleeding
to the matching and length tasks, each child was asked a
series of preliminary questions. These questions.were asked
to determine <uitability for including the child in the study.
In order to eliminate color discrimination problems from the
study, «.:ch child was given a test of color recognition. o1X
square pieces of construction paper (red, blue, yellow, green,
black, and white) were placed before the child. The child was
then asked to identify the colors of the squares., The order
of questioning was random for each child. If there was
confusion concerning the cclcrs, there was dialogue bhetween
the subject and interviewer. For example, 1f the child
responded "purple" for a dark blue square, the experimenter
and child discussed coler to see it the ~hild would agree that
the square could also be called blue. If the child still
refused to ~all the square blue, arother object of that color
was tried. A cnild unable to respo~rd to the color guestions,
even after coaxinn, was excluded from the study.

The second portion of the preliminary interview consi-t..d
of determining whether the child could count a collection <.
objects (up to at least ten toy animals and was asked to count
the objects. The anima.; were arranged i{n an approximately
straight line. No attempt was made to confuse the cnild.” A
child having trouble was allowed to try the task again. A
child still unsuccessful was excluded from the study.

Training tasks were then presented for cthe relational
categories o{ matching .nd length. For the matching -
relations, a collection of six red blocstwas:prgsented .o the
chi1ld. The interviewer had a collection of six blue blocks.
The interviewer and cnild then made pairs of blocks
(one-to-one correspondence). Upon completion of the pairing,
the child was guestioned concerning the relation that existed
between the collections of blocks. The child was asked 1if one
perscn had more or if they both had the same. Incorrect
responses were corrected. The child was then giveu si1x blocks
and the experimenter took four. Again, after pairing, the
child was asked for a judgment of the outcome. Appropriate
corrective procedures were used 1f necessary. These
experiences were used to insure familiarity with the relations
of "as many as," "more than," and "fewer than." If the c¢nild
was unable to make correct judgments after the training
experience, the child was excluded from the study.

In length relations, the child was first presented with
two sticks that were the same length. The child was then
asked to compare the sticks physically and what relation
existed. Corrective dialoque was used with the child if
necessaryv. The child was en asked to corpare twe sticks of
different leng.hs. These expericnces were d-ed to 1nsure
familiarity with the length relations., Failure 1n these tasks
was grounds ftor exclusion from the study.

195

109




As well as receiving the aforementioned preliminary
"1sks, the child had experience with a unit ruler. The child
Rlaced a stick next to the ruler and counted the number of
units necessary to determine the length of the stick.

The main 28 tasks were given in two sessions. During the
first cession, the child receiving all 14 tasks for length or
matching. The decision as to which relational category was to
be used first was made randomly for each child. 1In the second
interview period, the child received the remaining 14 items in
a similar manner. Within each of the four separate
categories, the child was questioned randomly on the seven
items. The entire interview, including preliminary tasks, was
audio-taped to allow f)>r checks on the scoring procedure.
Checksheets were used to keep score.

Scores of 0, 1, or 2 were assigned for each task in the
study. If the child could not respond correctly to the tasks,
a score of zero was assigned. A correct response but failure
to give a rational justification earned a score of one. Two
was the score for both a correct judgment and a rational
justificaticn.

The study was conceived with the idea of spanning the
years when children are at some stage of concrete operations.
Children were selected from kindergarten, second, ar- fourth
grades. Age restrictions were alsc placed on the selection of
students. Kindergarten pupils were chosen so that, at the
time of testing, their age was between 5.5 and 6.0 years.
Second graders were selected so that the age at test time was
from 7.5 to 8.0 years, while fourth graders wvere between 9.5
and 10.0 years. Tv nty children were randoml/ selected from
these availeble at each grade level, constituting a sample of
60 subiects for c*tudy.

Kindergertene rre chosen from three private day
schools. From the ..ree schools used, there were 63 children
engaged in the prcgram. Of hese, 30 met the age reguirvment;
20 students were randomly selected. The sample consisted ot
an all-white selection of stuagents. Sex distribution was 13
girls and 1 boys.

Second-grade students were selected from the primary
school of a small county school system. Of 266 availanle
second graders, 97 met the age criterion; 20 students were
randomly selected for the sample. Of tnhe 20, 13 were girls and
7 were boys; 9 were black and 11 were white.

Fourth graders were selected from the elementary school
in the, same county. Of 286 fou th graders, 76 met the age
criterion; 20 students were rar .uly selected. Of the 20, 10
were poys and 10 were girls; 16 were white and 4 were black.
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Analysis

Initially a score of 0, 1, or 2 was assigned to each of
the 28 tasks used in the study for each child. The scores 0,
l, and 2 represent a relatively arbitrary classification
scheme. A categorical scaling technique (Kundert and
Bargmapn, 1972) was used to replace 0, 1, and 2 with scaled
scores which approximate an interval scale. The assigned “
scaled scores were detarmined in such a way that djfferences
between age bands were maximized. This was essentially a
problem in discriminant analysis--what scaled scores should be
assigned to columns (raw scores) so that a linear combination
of these scaled- scores would best differentiate between rows
(age bandsj?

These scaled scores were determined so as to have mean
zero and varlance one. Since the raw scores 0, 1, and 2 were
ordinal in character, the scaled scores (i.e., the scores used
in place of the C's, l's and 2's) should exhibit the same
order. In cases where the data did not bear out this
assumption (for example, 1f -scaled scores for 0 and 1 were
reversed), the reversed numbers were given the same scaled
score. Kundert and Bargmann (1972) suggest the equating of
inverted scaled scores, because an inconsistent result should
be replaced by the nearest consistent one. Similarily, if
particular cells were essentially empty, adjacent categories
were combined. Wherever irreqularities occurred, the scaling
procedure was conducted again. The newly determined scaled
scores were used in the remainder of the analysis.

The three major hypotheses proposed are repeated below:
l. There is a hierarchy for the development of
premise forms where transitivity precedes
substitution, 7 -.e evidence presented does not
support this hypothesis for the comparisons
involving only the domain of the measurement
function. However, introduction of tasks
involving use of the "measurements" for objects
makes this hypothesis reasonable.

2. . Evidence does not support the hypothesis of
hierarchical development of matching and length
© relations (using only the domain of the measure-
ment function) across the transitive and
substitutive properties. However, it is
hypothesized that introduction of numerical
information (from the range of the measurement
function) will affect performance and it will be
the case that reasoning will appear for matching
relations prior to that fc- length relations.
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3. It is hypothesized that the introduction of
numerical information {from the range of the
measurement function) will aid the reasoning »f
children with a well-developed conception of
number (around seven or eight years of age).
for cther children, the cues will either hinder
reasoning or offer no aid in reasoning.

In order to test hypothesis one, sccres for the following
variables were formed (by combining individual scaled scores):

1. Matching no cue = 'Transitivity (MNCT)--scores
from the three matching transitivity jtems with
no measur~ments involved. ‘

2. Matching no c.e = Substitution (MNCS)--scores
from the four matching substitution items with
no meagurements involved.

3. Matching with cue - Transitivity (MCT)--scores
from the three matching transitivity 1tems with
measurements 1nvolved.

4. Matching with cue - Substitution (MCS)--scores
from the four matching substitution 1tems with
no measurements involved.

5. Length no cue = Transitivity (LNCT)=--the length
transitivity items with no measurements 1nvolved.

6. Length no cue - Substitution (LNCS)--the length
substitution itemns with no measurements involved.

7. Length with cue - Transitivity (LCT)--the length
transitivity items with measurements involved.

8. Length with cue = Substitution (LCS)=--the length
substitution items with measurements involved.

These composite scores were used in an analysis of variance
across grade levels (age bands). Inspection of the means from
the analysis of variance (for differences and sedquence) was
conducted. The transitivity means (MNCT, MCT, LNCT, and LCT)
were inspected for amount of increase (or decrease)- from grade
to grade. The substitution means (MNCS, MCS, LNCS, and LCS)
were inspected in a2 similar manner. If the data were to
support the hypothesis o: earlier development for transitivity
over substitution, the mcans for the transitivity items should
show a lesser increase, trom grade to grade, than the
substitution items, espericlly for items involving numerical
cues.

Hypothnsis number two, comparison of matching and length
relations, was tested 1n a similar manner. The means for
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matching (MNCT, MNCS, MCT, and MCS) were compared with the
means fc¢o¢ length (LNCT, LNCS, LCT, and LCs). If the
hypothesis of earlier development for matching relations over
length relations were borne out by the data, the increase in
meaas, from grade to grade, should be less for the matching
items than for length 1tems, especially for the i1tems
involving numerical cues.

In order to test hypothesis number three, the means of
items involving no numerical cues were compared with the means
of items involving numerical cues. If the data wers to
support the hypothesis, the means for the 1tems 1nvolving
numerical cues (MCT, MCS, LCT, and LCS) should show a sharper
increase, from grade to grade, than the means for the items
invclving no numerical cues (MNCT, MNCS, LNCT, and LNCS).

Critical F-values for the ANOVA's were computed in the
traditional manner at the .05 level of significance. As part
of the scaling procedure, an analysis of variance (across
grades) was run for each individual task variable. This
information helped to determine which variables best
discriminate between grades, The critical F-values for the
ANOVA's were computed in relation to the maximum
characteristic root distribution as suggested by Kundert and
Bargmann (1972). Heck charts were used as an aid in this
computation (Morrison, 19{7), Significance was determ ned at
the .05 level. \

=

kesults

Table 1 contains the scaled scores for all of the tasks
except LC7. LC7 was dropped because irspection of Table 2
revealed nodifferences between grades. The scaled scores are
presented in order to give a listing of the scores to be used
in further analysis of the data. The contingency tabtles (Table
2) give the distribution of raw scores for each variable for
each of the 28 tasks across grades:

1., Transitivity
2. Substitution
3. Matching

4., Lennth
5. No cue
6. Cue

The raw scores were used in determination of scaled scores.

Inspection of the scaled scores reveals that in nine of
27 cases, it was necessary to collapse the categories for the
raw scores of 0 and 1. The necessity of collapsing categories
for 0 and 1 suggests the importance of justification in
assessing -performance in logical reasoning tasks. This fact
is further supported by inspection of the contingency tables.
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TABLE 1

Scaled- Scores

item Raw Score 0 1 2
MNC 1 (A =B and B = C) -1.53 -1.53 .65
MNC 2 (A < B and B < C) -1.11 -1.11 .90
MNC 3 (A >B and B > C) -1,22 -1.22 .62
NNC 4 (A =B and B < C) -1.74 -1,12 .78
MNC 5 (A =B and B > C) -1.77 -1.05 .80
MNC 6 (A < B and B = C) -1.03 -1.03 .97
MNC 7 (A >B and B = C) -1.53 -1,00 .78
MC 1 (A =B andB = C) ~1.31 -1,31 .76
MC 2 (A < B and B < C) -3.70 .07 .40
MC 3 (A > B and B > C) -2.73 - .20 .68
MC 4 (A =B and B < C) =-1.70 -1.00 .72
MC 5 (A = B and B > C) -2.46 -1.26 .69
MC 6 (A <B and B = C) - -1.3% -1.23 .79
MC 7 (A >B and B = () -1.41 -1.41 .71
LNC 1 (A =B and B = C) -2.,28 - .80 .70
LNC 2 (A <B and B < (C) -1,72 - .81 .93
LNC 3 (A > B and B > C) -1.35 - .90 .96
LNC 4 (A =B and B < C -1.14 -1.14 .87
LNC 5 (A = B and B » C) - .94 - .94 1.07
LNC_ 6 (A < B and B = C) -1.93 .07 .71
LNC 7 (A > B and B = C) -1.5¢ - .80 .85
LC 1 (A =B and B = () -1.14 -1.14 .87
c 2 (A < B and B < C) -1.30 - .53 1.27
Lc .3 (A >B and B > C) - .82 - .82 1.22
ILC 4 (A =B and B < C) -1.60 - .82 1,01
LC 5 (A =B and B > () -1.,34 -1,09 .90
LC 6 (A <B and B = C) -1.12 - .66 1.17
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Contingency Tables

Grade

K
2
4

* Totals

Grade
K
2
4

Totals

Grade
X
% 2
4

Totals

Grade
X
2
4

Totals

3 Q ‘
ERIC

..

! MNC 1

(A =B and B = ¢)

Q 1 2 Totals

2 S 13 20

2 6 12 20

0 3 17 20.

4 14 42 60
MNC 4

(A «Band B < C)

0 1 2 Totals

k} 8 9 20

2 8 10 20

0 2 18 20

S 14 37 7 60
MNC 7

(A >B and B = C)

0 1 2 Tota. .
4 6 10 20
7 5 8 20
0 1 19 20
11 12 37 60

MC 3

(A >B and B > C)

0 1 2 Totals
5 8 7 20
1 9 10 20
1] § 14. 20
6 23 31 60

¥NC

2

(A < B and 8 < ()

0 1 2
0 13 7
0 12 8
0 2 18
0 27 Rk]

MNC 5

Totals

3

20
20
290

60

(A * B and 8 > C)

0 1
4 7
1 10
0 2
5 19

MC

2
9
S
18
36

1

Totals
20
20
20

60

(A =B and B = C)

0 1
3 7
3 7
i 1
7 15
mMC

2
10
10
18
38

4

Totals
20
20
20

60

(A *B and B < C)

0 1
8 ‘
2 ?
0 0

10 11
111

2
8
11
20

39

Totals
20
20
20

60

[= NN N]

N

SO e

QaOwN

o

MNC

3

{A > B and 8 > C)

i ?2 Totals
8 10 20
12 ] 20
2 ' 18 20
22 36 60
MNC §
(A< B and B = ()
1 2 Totals
6 8. 20
10 7 20
2 16 20
18 31 60
MC 2
¥
(A < Band B < C)
1 2 Totals
7 9 20
11 9 20
s 15 20
21 33 60
¥ 5
(A= Band B > )
1 2 Totals
9 9 20
8 12 20
1 1 20
18 40 60
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[ 4 4 9

2 2 8

4 0 0

Totals 6 17

2
7
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20
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LNC 2

Totals
20
20
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(A < B and B < C)

Grade 0 1
K 3 11
2 3 7
4 0 5

Totals 6 23

2
6
10
15

31
LNC 5

Totals
20
20
20

60

(A =B and B > C)

Grade 0 1

X 4 9

-7 2 6 8
4 2 3

Totals 12 20

2
7
6
15
28

1

Totals
20
20
20

60

¢ (A =B and B = ()

Grade 0 1

) K 6 8
2 3 6

4 2 1

Totals 11 15

ERIC -
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6
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o

—

Ll NV, ]
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112

MC

7
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1
H
5
1
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-
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1
9
9
3
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2

6
9
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i1
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1

7
S
5 -
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2
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7
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1

P
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28
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2
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o
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"
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1
7
6
3
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2
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1

@ ~3

2
9
8
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34

LNC 7

Totals
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20
20

60
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1 2 Totals

S 9 20
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3 16 20
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4 24 60
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Table 2 continued
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(A =B and B ¢ C) (A »B and B > C) (A <Band B = <!
B .
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K 2 8 4 20 i
2 6 7 7 20 \
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Totals 21 19 20 60
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Only a small percentage of the responses were given a raw
score of 0 in the original scoring. An overwhelming number of
§tudents were able to respond correctly. Without
justification, it would have been difficult to discriminate
between groups in the study. :

Brainerd (1973) made a strong case for using both
respense and justification as opposed to requiring only a
response when d5sessing the chiid's performance on logical
reasoning tasks. This pogition is supported by the present
data. The requirement of a rational justification made 1t
possible to gain more insight into children's reasoning
processes. If it had not been usad, much valuable information
might have been lost.

Consideration of Tables 1 and 2 suggests certain trends

in the data. A comparison of transitivity raw scores

(Table 1) with substitution raw scores (Table 2) indicates
that the percentage of children receiving 0's was greater on
the substitution items than on the transitivity items, and the
percentage of children receiving 1's was less for the
substitution category than for the transitivity category.
This result gives some indicatiop that, on the whole,
transitivity items are slightly fess difficult for children
than are the substitution items A similar comparison of
matching and length items indicltes that children have less
difficulty with the matching items. Comparison of the tables
for cue items vs. no cue items indicates that, on the whole,
there is approximately the same level of rerformance.

The fact that, on the whole, transitivity items appear to
be less difficult for children is attributable to the fact
that in a transitive item the chiid is required to reason with
only one relation at a time. However, in substitutive tasks,
two relations are being considered simultaneously. This
indicated trend in the data 1s consistent with the results of
Murray and Youniss (1968) and Youniss and Murray (1970), but
inconsistent with the.data of Youniss and Dennison (1971) and
Keller and Hunter (1973).

Matching relations items appear easier for children (on
the whole) than length relations items. This result is
consistent with the discrete objects vs. continuous objects
(length items) discussion presented earlier. Use of continuous
objects makes the logical reasonirg tasks more di“ficult for
children than is the case for discrete objects (matching
items). :

Similar performance for no cue vs. cue items is
attributable to the fact that the advantage obtained by older
children (who could use the cue etfectively) may have been
negated by the children who were confused by the numerical
cue. For the children who had an incomplete conception of
number, the introduction of numerical cues may have nindered
their performuance. The selected age bands may have affected
this result as well.
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The combined scores MNCT (Matching no cue transitivity),
MNCS (Matching no cue substitution), LNCT (Length no cue
transitivity), LNCS (Length no cue substitution), LCT (Length
cue transitivity), and LCS (Length cue substitution) were used
in an analysis of variance design across grade levels (age
bands). F-values are presented in Table 3. The critical value
for F at .05 is 3.16.

Table 3

ANOVA {Combined Variables)
b

Variables F
MNCT 7.62%
MNCS 11.02*
MCT 9.36*
MCS ' 14.22*%
LNCT 6.61%*
LNCS 7.50%
LCT 9,89*%
LCS 12.18*

*(P < .,05) :

The results of the analysis of variance clearly show that
performance on logical reasoning tasks 1is age related.
The means (by grade level) are presented in Table 4. It !
should be noted that, in some cases, the means do not
present an ordered sedquence from least to greatest for
grades K to 2 to 4. The three cases where this occurs
are involved with no cue variables. The cue items do
present an ordered seguence for grades K to 2 to 4.
Apparently, the introZuction of numerical cues aided the
second-graders. This point will be discussed further in
consideration of the three major hypotheses of the study.

Table 4

Means (ANQVA--Combined Var®ables)

K 2 4
MNCT - .72 - .93 l.04
MNCS -1.17 -1.29 2.47
MCT ~-1.34 .06 1.29
MCs -2.00 - .59 2.60
LNCT -1.00 - .53 1.54
LNCS - .68 -1.36 2.0:2
LcT - -1.52 - .09 1.60
LCS ~-1,25 - .67 1.92
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Hypothesis 1

. It was hypothesized that transitive reasoning :culd

develop earlier than .substitutive reasoning. If this

hypothesis were to be borne ocut by the data, the :increase in

means from dgrade to grade (especially from K to 2) would be

smaller for transitivity than for substitution. The transitive

and substitutive means are presented in Tables 5 and 6. |

Table 5

Transitivity Means (Combined Variables)

. Grades
Variables K 2 4
MNCT - .72 - .93 1.64
MCT -1.34 .06 1.29
LNCT -1.00 - .53 1.54
LCT -1.52 - .09 1.60

Table 6

Substitution Means (Combined Variables)

Grades
Variables K 2 4
MNCS -1.17 -1.29 2.47
MCS -2.00 - .59 2.60
LNCS - - .68 -1.36 2.03
LCS -1.25 - .67 1.92

For the matching no cue categories, both transitivity
and substitution show reversals in means from grades X to 2.
In the matching cue categories, the increases are
approximately the same. On the length of no cue items,
transitivity means increased while substitution means showed
reversal of order. On length cue items, the transitivity
increase was larger than the substitution increase. The
results do not clearly support the hypothesis as stated.
There is insufficient evidence to conclude that transitivity
develops ear.‘er than supbstitution. The data are at odds with
that of Bailey (1973). This apparent discrepancy in results
may be due to the differences in task design. (Bailey used
polygonal paths, constructed of several sticks for
comparison.)




Hypothesis 2

It was hypothesized that performance for matching
relations would develop earlier than performance for length
relations. If the data wereto bear out this hypothesis, the
increases in means from grade to grade (especially from K to
2) would be smaller for matching than for length. The
matching and length means are presented in Tables 7 ang 8.

Table 7

Matching Means (Combined Variables)

Variables K . 2 4
MNCT - .72 - .93 1.64
MNCS -1.17 -1.29 2.47
MCT -1.34 .06 1.29
MCS -2.00 .59 2.60

Table 8

Length Means (Ccmbined Variables)

Variables K 2 4
LNCT -1.00 - .53 1.54
LNCS - .68 -1.36 2.03
LCT -1.52 - .09 1.60
LCS -1.25 - .67 1.92

As in hypothesis 1, there is no clear trend for earlier
development of one category over another. For the transitive
variables, matching no cue shows a reversal in means, whereas
the length no cue variable shows an increase of .47. For no
cue substitution, both matching and length variables show a
reversal in means. With the cue transitivitv variables the
gains are similar, while for cue substitution the mratching
gain is larger than the length gain. When reversals occur, it
is difficult to determine differences. As Kundert and
Bargmann (1972) suggest, the reasonakle approach is to
replace an inconsistent result with the nearest consistent one
(equate the means 1n this case; producing no gain). There i3
insufficient evidence to confirm the hypothesis of earlier
development for matching relations over length relations.

Hypothesis 3

It was hypothésized that the introduction of numerical
cues would aid the reasoning of children who have a
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well-organized conception of number (around second grade) and
would possibly hinder or not aid the younger children.. If the
hypothesis were to be borne out by the data, the means for the
cue items (MCT, MC3, LCT, and LC3) would show a sharper
increase from grade to grade then the no cue means (MNCT,
MNCS, LNCT, and LNCS). The no cue and <cue means are
presented in Tables 9 and 10. ‘

Table 9

No Cue Means' (Combined Variables)

Variables K 2 4
MNCT - .72 - .93 1.64
MNCS -1.17 -1.29 2.47
LNCT -1.00 - .53 1.54
LNCS - .68 -~1.36 2.03

Table 10

Cue Means (Combined Variables)

Variables K 2 4
MCT -1.34 .06 1.29
MCS -2.00 - .59 2.60
LCS -1.25 - .67 1.92

In this case, the trend is clearly established. The cue
variables show sharper increase, in all cases, than the no cue
variables. This is consistent with the hypothesis as stated.
The introduction of numerical cues (numbers from the range of
the measurement function) apparently aids the child of
approximately second-grade level (between 7.5 and 8.0 years of
age). The sharpness of the increases in means from grades K
to 2 indicates the possibility that cue informatior hinders
young children whose number concepts are not cliearly
established.

Discussion

Previous studies such as Bailey (1973), Murray and
Youniss (1968), and Youniss and Murray (1970) had indicated
that a hierarchical development for premise forms should
exist. These studies were at odds with the results of Youniss
and Dennison (1971) and Keller and Hunter (1973). Due to the
introduction of numerical cues into logical reasoning tasks,
it was hypothesized that reasoning in case of the transitive
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premise form would develop earlier than reasoning for the
substitutive premiz~ form. The hypothesis was not supported
by the data of this study which indicate no r-ecedence in the
development of premise forms. As discussed earlier, possible
explanation for conflicfing results 1s difference in task
design.

It was hypothesized that the introduction of numerical
cues would enable the child to reason logically with matching
relations before length relations. The hypothesis was not
confirmed by the data from the study. The result »f no
precedence for one relational category over another 1s now
generalizable to tasks involving measurements as well as those
involving no measurements,

Carpenter's results (1972) suggested that children could
use rumerical information in measurement situations. On that
basis, it was hypothesized here that introduction of numerical
cues weuld aid the ioaical reasoning of children around seven
or elght years of age. This hypothesis was firmly supported by
the data. Children of seven or eight years of age or older
are capable of thinking in terms of bott. the domain and range
of the measurement function in that tney are able to use ‘ue
function and its properties in order to perform logical .
reasoning tasks of a transitive and substitutive nature. The
prescnce of numerical information significantly aids children
in 1. ;ical reasoning tasks if the children are at an age where
they most likely have a true understanding of number. FResults
indicated that ve.,/ young children might be hindered by ‘uch
numerical information.

Suggestions and Recommendations

As with most other research studies, a portion of this
report gives direction for further investigation into the
topics of logical reasoning and measuremént.

1. Studies should be designed to investigate the
child's ability to operate with logical premise forms ‘n the
domain and range of the measurement function. This should be
done using the functions for number (counting) and length. A
study of this type would serve to replicate the present study.
Following this, it would be advisable to conduct stv .ies using
different measurement functions such as area, volume, and
weight. Investigation of measurement functions such as area,
volume, and weight would help to provide important insights
into the under -tanding of the child's acquisition of
measurement 1%eas.
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2, Lamb (1975) used an incompatible premise form in his
study of the functions for number {(counting) and length.
Studies should be done whickh use this logical reasoning form
across measuyement functions such as area, volume, and weight.
The Lamb study was done using only relations from the domain
of the given measurement functions. Introduction of numerical
cues would provide new and interesting information.

3. Replication stu.ies could be conducted with the data
being subjected to a factor #nalysis. These results would
show important interrelatio ships among the variables of
interest.

+

4. The effects of item design (task construction) as a
variable in this and related studies should be studied mor=
specifically.

, Based upon the evidence from the present study, the
following classroom recommendations are in order:

1. Teachers sliculd expe: t similar development of the
matching and length relation as age increases. Likewise,
similar developmental characteristics for the transitive and
substitutive properties exist. As teachers spend time with
children who are acquiring relational properties, it is
appropriate to give experiences of a varied nature .across the
relations of matching-and length as well as across the premise
forms of transitivity and substitution.

2. As children gain experience and competence with the
various aspects of number, the introduction of numerical cues
intu the measurement process will ennance the child's apility
to reason lcagically. This is true for at least the transitive
and substitutive properties of matching and length relations.
The younger children did not benefit frgm ir.troduction of
numerical information. In fact, numeric l cues may have
hindered the younger children on the tasks. This latter point
indicates teachers should be on the alert if tney use
measurement as the basis for number acquisition, as” they may
impede progress fn number development. In particular, aids
such as the number line and other length models for number
(sticks, rods, etc.) should not be used t@o early in the
elementary school mathematics curviculum.

Based on 1 and 2 above& one might suggest that
chllsren should gain experience "in making comparisons,
ordering, subdividing, and interating. \That is, development
of a unit may be, essential before a child can make good use of
numerical informétdon in measurement situations. Note that
all of these behaviors relate either direccly or indirectly to
the tasks used in this study.
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THE RATIONAL NUMBER CONSTRUCT--ITS ELEMENTS AND MECHANISMS

Thomas E. Kieren
University of Alberta

I. Constructs and Mechanismg

The term mathematical concept is used ip many ways. It
can refer to an object or a class of mathema{ical objects.
Most frequently in mathematics a concept is associated with a
formal defining statement. Thus, a rational number is "any
number X which satisfies ax = b where a and b are integers

(b # 0)."

Yet such a definition does not tell as much about the
notion of rational numbers particularly as it exists as
personal knowledge. "Knowing" rational numbers can mean a
large number of things. 1In fact, Wagner (1976) suggests that
for the person rational numbe§s should be a mega-concept ’
involving many interwoven strdnds.

Margenau (1961), the eminent philosopher of science, has
analyzed the cognitive component of such complex knowing. He
sees knowledge as a continuum between two extreme ’
types--facts, which apparently exist independently of our
control, and abstract concepts, which owe their exlstence
purely to human invention. To avoid certain logical and
psychological pitfalls, Margenau sees all knowledge as
attributable to human construction, but sees these constructs
as bounded’ by and rooted in the realm of facts which, he
suggests, function as protocols against which our ideas or
constructs are functionally tested. Hence Margenau would
picture knowledge (in our case rational number knowledge) in
the following way:
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Several things are obvious from Figure 1, Some
constructs are very close to the P=plane; these act directly
Qn the plane but have little or no explanatory power. For
example, knowledge of the algorithm for adding fractions acts
on a subset of the P-plane, but may be a disconnected piece of .
knowledge with little explanatory power.

Other constructs are more distant from the P=nlane,

These constructs generally have more explanatory power and ure
connected in a wide sense. These connections are of great
importance, for they allow for empirical verification in
scientific terminology or application and problem solving in
the nomenclature of mathematics instruction. A problem, ‘the
purchase of 3.5 metres of cloth at $4.75/m, arises in the
P-plane. The solution 1s arrived at through traversing a path
among constructs (ratios, multiplying decimals, relating
decimals and money) and arriving at a dollar figure back in
the P-plane. . .

Van Engen (1953) has described this phenomenon from a
mathematical-psychological perspective using the notions of
"meaning" and "understanding." In terms of Figure 1 above,
"meaning" applies to the process of building up or developing
the elements in the C field. "Understanding" applies to the
development and maintenance of the interconnections and more
particularly the use of the paths which allow the application
of ideas back into the P-plane. Two criteria for constructs
which optimize applications are inter-connectedness and
extensibility. That is, the constructs are poth connected to
many other constructs and apply to a large cegment of the
F-plane.

In light of this rather complicated picture of knocwledge
developed above, what does it mean to "know" rational numbers?
Put plainly, what 1s it that a person must functionally know
about rational numbers to be numerate? 1In the plane of
protocols, rational numbers are involved in representing and
controlling part-whole situations and relationships. Rational
numbers are fundamental to measuring continuous quantities,

If quantities, particularly those continuous, are divided,
rational numbers are involved. Finally, rational noctions are
involved in any quantitatiye comparisons of two qualities
(ratios). Thus one's gereral rational number construct should
allow a person to control such P-plane events.

At a construct level, knowing rational numbers entails
control over two-dimensional symbols in variocus forms
(fractions, decimals). Operations on rationals, wnile at a
low level involve knowledge of conventional algorithms, more
generally entail control of primitive forms of vector addition
and function composition. Knowledge of rationals also requires
functional capability with equivalence classes and quotient
fields. Such constructs also entail connections with those of
earlier natural number notions and a more general construct of
number which also includes the real numbers. . .

-
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Given the above description of rational numcer knowledge,
the questicn of its acquisition arises. With natural or
counting number knowledge, this is at least partly a natural
induction process. A child, before and outside of school, has
a large number of contacts with situations to which natural
number applies. Thus, school mathematics can buiid upon the
natural knowledge, both in terms of constructs and protorcols
(quantifying discrete situations: more than, less than,
sorting, counting). This requires elaborating and
generalizing the ccunting mechanisms and thence moving to
primitive algebraic (e.g., ordering) and numeration constructs
to help a child develiop a more exten51ve control over discrete
quantitative situations.

The 'experience base of school children with respect to
rational number ideas is much more limited. This is true both
in terms of contact with the quantification of continuous
phenomenon and the language of rational numbers. (There is
very little contact with fraction words beyond "half,"
"third," "quarter," and "percent" even for children of age 11l
or 12). Thus the process of developing mechanisms for
building rvational number concepts presents the school with a
more complets task to accomplish. In addition, the Jeneral
rational number construct is a more inclusive one than that of
natural numbers. Hence school must provide children with
experience with mechanisms (such as partitioning to be
explored more fully below) in a variety of construct contexts
(e.g., rational numbers as measures, to be elaborated velow),
as well as provicding elementary language experience with words
relating to fractional phenomenon.

The remainder of this essay discusses the attempts of
instruction over the past century and a half to provide
rational number experlences. After analyzing these attempts
(both of "old" and "new" mathematics), a picture of a more
complete rational number construct is developed and
elaborated. The essay concludes with a discussion of the
implications of *his construct of rational numbers, that is,
that which a person knows when he or she can -function maturely
with rational numbers.

1. The "0ld" Mathematics Constructs

De Morgan (1943), writing in 1831 for the Society for the
Dissemination of Useful Knowledye, stated that even then
fractions were a topic immensely difficult to learn. To
alleviate this difficulty, De Morgan showed a method by which
fraction knowl dge could be developed as an extension of whole
number knowledge. His vision of the fraction construct was a
set of computational algorithms and his development focused on
these, particularly addition. (Actually De ™Morgan's
development of addition was quite "modern"),
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For the 120 to 130 years following De Morgan's writing,
mathematics instruction addressed itself to building up the
same construct as De Morgan saw for fractions--the task of
domputation with fractions and decimals. As schooling became
universal and occurred for a longer period of a perxson's life,’
fractions came to occupy a substantial position in the
mathematics curriculum of what we now know as the middle
school. Research (Kieren, 1976) focused on a detailed analysis
of computation tasks. As pictured below, rational number work
(fractions) was seen to derive from whole number computation
and base 10 numeration.

Common
l Lecimals Fractions
Numeration Whole Numbers

Figure 2

The detailed analysis of computational tasks into atomistic
sub-tasks as well as the everyday observation of the
"fraction" curriculum in action indicated that this
instructional approach focused on what we might term a
"behavioral surface" of the rational number construct. For
exemple, the "unlike denominators" di ision task was seen as
very difficult. One of the bases for this difficulty was a
need for the learner to usd equivalent fractions. Yet there
was no stress in the "old Math" on the general construct of
equivalence, nor,was there an attempt to corsider rational
numbers in their algebraic framework.

Margenau (1961l) discusses a similar problem in the areu
of science when he suggests:

The errors we are endeavoring to expose
originate in a disregard of theory, in a
belief that facts have feet on which they
can stand. Actually, they are supported 1n
a fluid medium called theory, or theoretical
interpretation, a medium which prevents them
(facts) from c~llapsing into insignificance.
(p. 29)

Applying this thinking to the problem of a developing rational
number construct, the picture below emerges.

128

131




{

Behavioral Surface

Empty *

*Little or no knowledge of the objects or st

development.

Figure 3

One effect of this "empty" construct--that is, one devoid or
lacking in higher level support constructs--is a collapse in a

ructure of
rational numbers; also limited experience with language

person's functional ability with fractions and rational

numbers. The behavioral surface breaks down oOr

cited earlier, this has been an age-old problem.

at least

exhibits severe cracks in the form of poor performance or
rational number tasks. As suggested by De Morgan's comments

.

' Figure 4

2. The New Mathematics Constructs

The "modern" mathematics movement sought to alleviate

this problem by giving some depth to the rational number
the curricular

114 up their

constructs of children and adolescents. One of
mechanisms was to have children intecract and bu
own ideas of the mathematical structure (i.e.,
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underlying the rational numbeérs. The movement also addressed
itself (in a way) to the language aspect by clarifying (or
attempting to clarify) the distinction between numbers and
their names. Thus, a rational number. 2/3, could havec many
names--4/6, .6, 18/27, 66 2/3 percent. It was hoped *hat this
careful development of structure and the related language
would provide a sound basis for the rational number concept.

The structure manifest 1n the "new" mathematics curriculum was
that of the quotient field. Explicit instruction was given to
the construct "equivalence" and attention given to the
solution of equations of the form ax + b = ¢. The rational

number construct of "new mathematics"™ might be pictured as in
Figure 5:

{ Equations
Decimal
Computation rraction Computation
Field
Numeration Whole Numbers Structure
Equivalence

Figure %

In comparing textbooks of 1975 with those of a century
earlier, Kieren (1976) saw 10 escsential differences. In light
of the above dliscussion, this observation is shown to be a
half-truth. It is certainly not true that the construct of
rational numbers addressed by 1975 textbooks is identical to
that of 1875 textbooks. What is true is that emphasis in many
current curriculums is a reduction of Figure 5 tc one of the
following configurations (see Figures 6 and 7).




Behavioral surface
Number
Vs,
Numeral
Equivalence Field
Axioms
Figure 6
Fraction Field
Decimals Computation Axioms Equations
Figure 7 )

Figure 6 represents a situation in which basic constructs
are developed (and taught) in isolation from one another, from
the behavioral surface of computaticn and rvom the functional
reality of mathematics as it is applied. Thus, the
theoretical constructs devcloped are destined to become unused
relics in the mind of the learner. A situation such as
depicted in Figure 6 has often led to a curriculum having as
its view a rational number construct as pictured in Figure 7.
This is an extended behavioral surface, with more or less
factual knowledge of axioms and equations appended to the "old
math" surface. (Indeed some critics-would say that elements

-of the fractional and decimal components have been replaced.) -

Thus, particularly in some recent curriculum objectives lists,
the intent of a complete rational number construct in reality

‘i{s a "surface" of new facts with little more support than the

"01ld" mathematics construct.

The weakness of such a behavioral surface construct has
been predicted above and should manifest itself in relatively
poor performance by adolescents and adults on rational number
tasks and settings. The reality of such poor performance has
been documented for a long time. The recent NAEP data suggest
that, while adolescents are functional with whole numbers,
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their performance on fractions tasks 1s at a much lower level
(Carpenter et al., 1975). Even adolescent students 1n good
programs considered to pe "modern," at least by design, do not
perform well on rational number tasks. This fact is documented
by Ginther, Ng, and Begle (1976) 1in the findings of their
survey of 95 eighth-grade mathematics classes. Althouah the
above research was not done in such a way as to divectly
provide proof, the data are 1indicative that even 1nstruction
toward an "extended behavioral surface" construct of rational
numbers does not 1ndicate mature functioning cn the part of
the older adolescent.*

h ]

3. Alternatives

One reaction to the prolonged history of poor results in
rational number instruction is that the rational number
construct as developed above is accCe.sible only to more mature
students. Thus, one plausible alternative is the postponement
of rational number instruction until the secondary school.

Put more generally this hypothesis might read as follows:

Instruction in rational ‘numbers should be
postponed until the student has reached tne
stage of formal operations.

This hypothesis and its curriculum implications are not new.
Washburne (1930) suggested delaying the teaching of the
meaning of fractions where groups had to be considered as
units until the age of 11 years 7 months. The intent of this
suggestion was to sequence instruction so as to allow for the
mastery of the tasks involved. From a very different point of
view, Freudenthal (1973) argues for the postponement of the
teaching of the addition algorithm for rationals until it can
be developed as a consequence of algebraic idesas from which it
arises (see Kieccen, 1976, pp. 118=~120).

The first of the suggestions above appears to suggest
that older students will be able to induce the broader
construct of rational numbers even from a curriculum based on
a "behavioral surface" view of the construct. The second

*It should be noted that most curriculums in mathematics
and fractions and rational numbers were not developed
using an analysis of how children or adolescents "thougnt"
about the subjects at hand or how they could go about
building up systematic mechanisms for developing desired
skills, concepts, or abilities.
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suggests that rational numbers, in opevation at least, derive
their meaning from algebraic structure and hence instruction
should be based on providing students the opportunity to
deduce rational number constructs from more general ones using
the mechanisms of logic.

II. A More "Complete" Rational Number Picture

An important assumpticn in the above calls for
"postponement" is that older adolescents will be able to
develop functional rational number constructs even from a
limited instructional basis. Yet from Margenaa's point of
view, it is questionable whether a construct, developed from a
narrow instructional base, will be logically potent or
extensive enough to be practical and viable.

Given the history of rational number instruction over the
past 150 years, or over the past 20 years for that matter, are
there alternatives to the "postponement" hypothesis stated
above? Generally, one might say that better instruction for
younger children might be an alternative. But what is the
basis of such instruction? How can it be directed toward the
development of a functional construct, potent and extensive?
To do so, the basis for improved fractional and rational
number instruction needs to take into account Wagner's (1976,
view of the rational numbers as a meja-concept. That is,
instruction needs to address itself implicitly to the many
components or strands which comprise the rational number
construct. In addition, such instruction needs to consider
the interrelationships among the major components or strands.

In an analysis of rational numbers, Kieren {(1976)
suggested seven interpretations for fractional and rational
numbers:

- fractions

- decimals

- ordered pairs (equivalence classes)
~ measures

- quotients

- operators

- ratios

This analysis further suggested that these interpretations
were or should be isomorphic. From the point of view of
mathematical structure, this trivial representation theorem is
true (with the exception of certain ratio 1nterpretations).

It is this representation theorem which has providad the basis
for the portponement argument. At least implicitly, this
theorem is responsible for the most current developments (and
also forms a basis for the "go decimal now that metrics are
here" rationale). It follows the dictum of economy of thought
to select one or two interpretations at most and provide
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explicit rational number instruction under these. From this
instructional base, i1t is hoped that a cognitive counterpart
to the above representation theorem will provide for transfer
needed for a fully finctional rational number construct.

Yet this paper and other sources (e.g., Wagner, 1976)
have suggestéd that this bold leap from tie mathematical
mechanism of a represe~tation to a parallel cognitive
mechaniism is not yet proven. Thus, the basis for the
rationals needs to involve more than one or two of the above
interpretations.

1. The Major Components

A mathematical analysis of rational numbers ("What kind
of mathematical c¢h>jects are these?") leads to numercus
interpretations logically simplified by a representative
theorem. These interpretacions form a conceptual pool for the
building of related cognitive and instructional structures.
From this pool, five ideas of fractional numbers emerge as a
basis for a rational number construct, as pictured in Figure
8.

] 1 . 1 o ]
Part- ,Quotients :Measures | Ratios :Opchutors
Whole | | | !
] 1 i '
Figur~ 8

These five--part-whole relationships, ratios, quotients,
neasures, and operators--are nnt mathematically independent
and, indicated by the dotted ‘ines, are not psychologically
independent either. Yet thay represent five separate
fractional or rational number thinking patterns.

a. Part/Whole, Ratio

The first twc of these patterns, part-whole and ratio
relationships, are closely related. These have formed the
traditiunal and modern bases for de -2loping fraction .ieaning.
In the first, some whole is broken up into "equal" parts.
Fractional ideas are used to quantify the relationship between
the whole and a designated rumber of parts. It is important
to note that this representation is bi-partite both in words
and symbols (zeven-eighths, 7/8). While three hundred and
three hundredths have parallel designatory and literal
structures (three of something), the numerical interpretations
(3/100 or~.03) of three hundredths show the part-whole
relationship to be related to the ordered pair not.on, while
300 does not. More importantly, part-whole and set-set
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relationships generalize and hence psychologically highlight
the notion of equivalence (2/3_24/6). Some of the current
curricular models of this phenomenon have been set-subset,
dissected and shaded regions, and number line relaticouships.
Yet most of these models have been but brief stepplng stones
to the formal symbolic computation which formed the 1implicit
construct of rationals.

The ordered pair notation takes on new significance with
respect to ratio relationships--the quantitative comparisons
of two analities. Three-tenths (3/10) of a floor surface has
a very different meaning than 3/10 which compares the number
of girls and boys on a soccer team. This distinction has been
blurred (7 deaths per 1000, 450 automobiles per 1000) bv the
concept of equivalence. While we represer® 3 hits in 4 oats
(3/4) and 30 hits in 40 bats (30/40) with the decimal .750,
they are clearly very differentgghenomena. However, 75/100
[75 centimetres and 750/1000 of a metre (750 millimetres)] are
the same measure.

Another reason for this blurred distinction 1is the
problem of class inclusion. Piaget (1952) has discussed this
ability at length with respect to whole number development.
Yet the ability to handle class inclusion may be more
important for fractional and rational number development.

It might be said that the part-whole number relationships
are a special case of ratio relationships. While formal
notion of equivalence is the same for both, the psychological
one is different. Further, the notion of additivity in the two
settings is different. Thus, while the two relationships
share many characteristics and fall under the rubric of the
rational number construct, for the learner they represent
different if related subconstructs and lead to ditferent
concepts and functioning.

b, Quotient

The sub-construct "rational number as a quotient" 1is
closely related to part-whole relationships. Yet for the
learner it arises from and is5 applied in a different context.
It allows for quantification of the result of dividing a
quantity into a given number of parts and is related
ultimately to the algebra of iinear equations. While dividing
a unit into fourths and designating 3 (3/4) leads to the same
quantity as dividing 3 units 1nto 4 parts (3/4) it is clear
that these are different‘problems for the learner. In fact,
it is @ genuine instructional task in the mathematical

jucation of 10~ to l4-year-olds to develop a rational number
vonstruct and accompanying language which can relate these two
sub-constructs.
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c. Measure

. The sub-construct "rational numbers as measures" 1s again
closely related to the part-whole relationship. However, the
mgasurement tasks means the assignment of a number to a region
(taken here in the general sense of this word; may be 1-, 2-,
or 3-dimensional or have some other characteristic). This 1is
usually Jdone through an iteration of the process of counting
the number of whole units usable in "covering" the region,
then egqually subdividing a unit to provide the &_.propriate
fit. The focus here is on the arbitrary unit and 1its
subdivision rather than on part-whole relationships. It has
been seen in the research of Washburne (1930), Novillis
(1976), and Babcock (1978) that the identification of the
whole (unit) in part-=whole situations is difficult because the
"whole" is implicit as opposed to the explicit unit of the
measurement sub-construct.

Rational number as measures is a natural setting for two
important aspects of the rational number construct. Tne
joining of two measures to find a "sum" measure exhibits the
vectcr additions* aspect of rational numbers. Using tn. metre
as a unit provides a natural entre to decimal notation, with
decimetres, centimetres, and millimetres serving as physical
models tor tenths, hundredths, and thousandths (.1, .01,
.001). :

d. Operators

The operator sub-construct portrays rational numbers as
mechanisms which map a set (or region) multiplicatively onto
another set. Thus a "2 for 3" operator maps a domaln eivment
12 to a range element 8 and a "2/3" operator maps a region
onto a similar region of reduced size. That this sub-
construct provides a viable approach to rational numbers 1is
well illustrated in numerous German school texts and
particularly in the work of Griesel (1974) and Dienes (1
This sub-construct focuses attention on the r: _ionals as
elements in the algebra of functions. Composition of
operators provides a very simple foundation for multiplication
of rational numbers.

2. Reality and the Five Sub-Constructs

In the first section of this paper, several tasks were
presented as representling mature functioning with rational
numbers. These tasks, the control over part-whole
relationships, measuring, and gQuantitative comparisons,
represent a reasonable core of what a person should expect to

master as a result of instruction 1n the rational number
}

*This should not be confused with the normal ordered pair
addition algorithm for vectors.
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construct. In Margenau's (1961) terms these tasks and their
doing represent the use of an interconnected net of potent
sub-constructs which form a viable rational number construct.
It is reasonable to ask if the five sub-constructs identified
ahove provide a sufficient basis for mature functioning. In
the final analysis, this is an empirical question in which the
construct is validated in terms of the performance of persons
who have been identified as possessing these sub-constructs.
However, a face validation of these constructs is provided in
Figure 9.

:

Sub-Constructs Tasks

Part-Whole
Part-Whole

Ratio
Dividing Continuous Quantities

Quotient -

Meésure"::r// - ~—
“—__'_____—__“,,ﬂ-_sﬁMulti-set comparisons
Operator

Measuring Continuous Phenomenon

Figure 9

The defense ot the iiterrelationships pictired ir Figure 9 1is
taken directly or “y direct implication fiom the discussion of
each of the five sub-constructs above. From this picture it
would appear that the part-whole sub-construct is of central
importance 2. a bacis for mature functioning. Again this
hierarchical theorem is empirically testable. However,
because of thiz potaency of the sub-constructs and their
connecticn to other 1jeas discussed below, the hierarchy issus
probably is not of critical importance. The important
conclusion to e drawn from the relationships pictured in
Figure 9 is that the sub-constructs form a sufficient basis
for mature functioning vhile each individually does not.

3. Mechanisms for Construct Development

The previ us s:ctions have been devoted to the
development and defense of five basic sub-constructs of the
ratiopal number construct. Whatever the outcome of empirical
studies, it will be true that at least scme elements of the
construct will prove valid. Given these, a significant.
problem is: How do these sub-constructs develop in a person
or how does a person build them up? How does a child or
adolescent move from the experiences of Margenau's P-plane to
constructs which support mature functioning?

The mechanisms “or this movement probably fall into two
categories, developmental and constructive. The former,
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although influenced by social interaction, are also quite
dependent upon maturation. Further, they take the form of
schema usually identifiable only by performance on classic
development mechanisms, including a well~-developed schema of
reversibility, the ability to handle class inclusion, the
ability simultaneously to manipulate and cross-compare two
sets of data, and proportionality. The former two of these
are generally developed in children late in Piaget's stage of
concrete operations (ages 9-11) while the latter are
indicators of the stage of formal operations {ages 11-14).
All four of the above can ke thought of as internalized
schemes which sponsor actions as opposed to conscious
mechanisms.,

The connection between reversibility and the rational
number construct with its two types of inverses is obvious.
The rotion of "reciprocal" is important both in general
development and in the development of all of the
sub-constructs noted above. The discussion of part-whole and
ratio constructs indicated the importance of the class
inclusion notion. Ability to apply this mechanism is likely
central to the ability to 1dentify the unit, a key to the
part-whole, quotient, and measurement sub-constructs. The
cross-comparison of two sets comes into play in recognizing
rational numbers in particular settings, in developing
equivalence classes, and particularly in the composition of
operators. The proportionality scheme is central to a
generalized notion of ratio and equivalence.

The constructive mechanisms are to a larger extent
products of experience. They are deliberate procedures used
by the learner in coping with rational number settings and
hence in building up the rational number sub-constructs. They
have parallels with respect to the development of whole number
constructs, the most prominent of which are the various forms
of counting. Two such deliberate constructive mechanisms are
ordered pair language and partitioning.

The use of ordered pair language 1is central to
development of rational number subconstructs at many levels of
sophistication. The whole issue of attaching bi-partite
number names to fractional settings is one of the keys to the
development of meaning of the various sub-constructs. This
_has been discussed by the Gundersons 1in 1957 and more recently
carefulliy considered by various recsearchers at the University
of Michigan in their development of the Initial Fraction
sequence (Payne, 1976).

Although this is mainly speculative at this stage, 1t may
be that the second mechanism, partitioning, may play the same
role in the development of rational number constructs that
counting does vis-a-vis the natural nu: bers. Partitioning is
seen here as any general strategy for dividing a given
g.antity into a given number of "equal" parts. Thus, it can
be seen as important in developing all of the five sub-
constructs. In fact, it may act as a primitive substitute for
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the proportionality schema in such tasks as finding fractions
equivalent to a given fraction. It is also usetul in the
iterative division of a unit in the measure sub-construct.

Two other mechanisms which play roles in the early and
more formal rational construct development, respectively, are
the identificaticr of the unit and the application of
mathematical str' -ural properties and the accompanying formal
logic, :

Aside from - .c work of the Piagetian school on
proportionality aud region subdivision, little is known about
the mechanisms used in rational number construct development.
The eight mentioned above are only some of the possible
candidates and the relationships between these and rational
number task performance remains to be empirically verified.

A recent exploratory study by the author lends some
support to the existence of and hypothesized relationship
between the mechanisms and rational construct development. In
this study, random samples of five students in Grade 4 and ten
students in Grades 5, 6, 7, and 8 were drawn from the
population of a small county school system. In a clinical
setting, using the mechar‘sm of a simulated packing machine,
each subject was asked to react to instances of the orcrator
sub-construct. These included the operators 1 for 2, 1 for 3,
2 for 3, 3 for 4, the composition of 1 for 2 and 1 for 3, and
the composition of 1 for 2 and 3 for 4 as well as their
inverses. For each operator, the subject received up to six
trials with feedback and “hen was asked to write down his or
her predictions of machine performance in 10 cases (5 direct
and 5 inverse). The experimenter then asked for an
explanation of how the machine worked and probed for the most
elaborate answer. To summarize the results briefly, there
appeared to be categories of subject performance and thinking:

1. Reacted correctly to less than 10 percent of
the items and hence considered nonfunctional
on the tasks.

2. Could handle 1 for 2 aﬁd its inverse but no
other settings. Appeared as though their
fractional recognition in these settings was
"l/2".

3. Could handle unit fractions and inverses.

4. Could@ handle non-unit and unit fractions.

5. Could handle simple and composed unit fractions.

6. Used a fractioning approach to handle simple
and composed non-unit fractions.

7. Functioned using operators as proportions.
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The categorized results across grade levels are shown in
Figure 10.

. *

CGrade Level

4 5 6 7 8
7 X
6 XXX XX
a 2 XX XX XXXX
[+3] N
.
o 4
o X
[+
s
[}
O 3 XXX XXXX . X XX
2 XXX XXXXX XXXXX XX X
1 XX XX
Figure 10

Several thinus in this analysis bear on the issue of
mechanisms. With respect to the developmental mechanisms, it
can be noted that the inverse notion did not prove to be a
major difficulty in this task set. 1In nearly all cases,
including 70 percsnt of the Grade 4 responses, whenever a
subject could produce the direct operator, he or she could
also produce .the inverse. Levels 4 and above required the
simultaneous or at least related comparison of two sets of
data. While 70 pocvcent of the Grade 7 and 8 subjects fell in
categories 4 and .bove, only 1 student in 25 at the lower
grades did so. Ouly one student, in Grade 8, used the

_operator as direct proportions: "Oh, yes, they're all like

3/4."

The constructive mechanisms were also discernible.
Subjects categorired in Category 2 tended to see only 1/2 as
a _fractional mechanism. It was almost as if a sub-conSEruct
"1/2" formed a ptimitive fractional number construct. Many
other subjects would also resort to saying "half" or .
“doubling” when they were confused by a situation, even when
they would verbali:e that the situation was not like the "1
for 2" situation. This phenomenon was prominent prior to
Grade 7 and occurred even with a few Grade 7 and 8 students.
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Subjects in Categories 4 and 5 made extensive use of
partitioning to find results in the packaging process. For

example, one Grade 8 subject in looking at a given 3-for-4
example (12/9) reacted, "2 sixes in 12, but 2 in 9 doesn't
work, 3 fours in 12, 3 threes in 9--oh, I see." She then
proceeded to test her hypothesis using partitioning in another
situation. 1In general, students in Category 5 used
partitioning as a substitute mechanism for proportionality to
complete most of the tasks required. Subjects 1in Categoriles 3
and 4 did not seem explicitly to exhibit partitioning behavior
and seemed to "see" the tasks in subtractive terms.

In summary, the mechanisms discussed in this section of
the essay are seen to serve two purposes. They are used or
are a cognitive basis for the building up of rational number
constructs. Because they are general in application, they
also may serve to unify the basic sub-constructs into the

general rational number construct.

4. The "Complete" Rational Number Construct

The previous sections of -this essay have presented some
broad goals, some constructs, and some mechanisms related to
rational number learning. It will be the purpose of this \
section to present a representation of the object of rationkl
number knowing. As suggested earlier, Wagner (1976) has
pictured the rational number "mega-concept" as a bundle of
strands each representing a sub-concept. The representation
in Figure 11 takes a different approach to 1llustrate the
supportive role of the sub-constructs and the interactive role
of the mechanisms discussed in detail above.

The complexity of the diagram in Figure 11 is only in
part due to the author's inability neatly to represent meantal
constructs in two dimensions. The rational number constiruct
of a maturely functioning person is complex. It subsumes the
control functions outlined at the beginning of this paper and
again in Figure 9. It also forms a basis for more abstract
functioning in the areas of algebra and analysis as indicated
to t'.e right of the broken line in the top level of the
diagram. There are numerous skills such as computation,
setting up proportions, determining equivalence, solving
equations, and measuring which are implied by the structure.
Many of these rest on the notion of equivalence and the
implicit operations of vector additiorn and function .
composition. The mature competencies, as shown in Figure 9,
and a generalized idea of equivalence ar~ uependent upon the
underlying development of the five conscructs which nave a
genesis in primitive fraction notions such as 1/2, division of
regions, and subdivision. The boxes labeled "m" as well as the
large word "PARTITIONING" show the pervasiveness of these

{

141

144




mechanisms, particularly those of inverse and partitioning,
Thus, the construct of rational numbers represented here 1s an

integrated complex whole and not a behavioral surface without
support.

5. On Connectability with Other Mathematical Ideas

The potency of the rational number construct in
generating mature functioning has been discussed at length 1in
the previous sections of this paper and it is clear that the
construct does not stand independently of its important
applications. But as Margenau (1961) suggests, the rational

number construct must also be extensive and connectatle, that'

is, related to other constructs and generative of some.
Clearly, whatever its form, the construct or scheme of
rational numbers does not stand alone or isolated in a
person's mind. The general construct pictured above might be
thought of as a part of a net of interconnected mathematical
constructs., In particular, the operator sub-construct can be
connected to those of transformation and the more general
function construct. It can also be connected t. the group
construct. The measure sub-construct is connectable to
general measurement construct as well as to the formal
mathematical construct of measure through the real number
construct; the useful related instructional structure here is
various number-line forms. The quotient sub-construct is by
definition related to linear equation solving and hence
represents a point of connection to the algebra of equations
as well as to the field structure. The ratio sub-construct is
connected to the many forms of proportional constructs and in
particular to probability and descriptive and inferential
statistics. The part-whole sub-construct is internally
connected in that it serves as a source of language and
symbolism in the other constructs.

This brief analysis shows the rational number construct
developed above to be potentially robust in terms of ite
relationship to other mathematical constructs. This very -
feature leads to questions of instructional sequcncing.  For
example, should instruction in the operator sub-construct
precede or come after the study of other transformations--for
example, geometric transformations. In the latter case, the
rational operator becomes an abstraction from the similarity
or size transformation. Another question is, "how does the
measure sub-construct fit into general measurement
instruction; to what extent does one make use of the other?"
That thfse are important qguestions is seen in the fact that
curdiculums based on inducing a rational number construct
through its connection to natural numbers or integers, while
axiomatically valid, have not been successful when measured
against the goal of mature functipning.
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6. A Digression on Decimals

. The purpose of this section is to test the above model of
the rational numbers construct against the supposition that
rational numbers be developed using the decimal notation,
without using or at least substantially deferring use of
ordered pair notation. What is the effect of this approach on
the development of the five basic suu-constructs and the
mechanisms discussed above? As has been suggested above and in
an earlier paper (Kieren, 1976), the use of the metre as a
unit provides a natural mechanism by which the measure
sub-construct could be developed using decimal notation. This
would require attention to a standardized partitioning
mechanism (into 10 parts). The actual algorithm paralleling
the addition of measures would of course be the trivial
extension of the whole number algorithm. Likewise the
computational mechanism in the guotient sub-construct could be
considered the obvious extension of a whole number algorithm,
However, the interpretation of dividing 3 objects into 4 equal
parts benefits from a fractional understanding .. rationals
which a 10's partitioning would at best cloud. Decimal
notation does not highlight the reciprocal notion of
multiplicative inverse so useful in and indeed a highlighting
contribution of the quotient sub-construct.

Similarly, the development of the part-whole and ratio
sub-constructs are clumsy under decimal notetion. Of course,
one might argue that common fractional notions such as halves,
fourths, and thirds could be taught as special mathematics.
But this hardly helps develop a construct which allows a
person to control part-whole and particularly set-set
multiplicative comparisons. Thus, the ratio sub-construc’
would particularly be under-developed. One might also jue
that later notions of rational expressions would suffer from a
decimal notation development. HOwever, necessary ordered=-pair
rational notions could be introduced as a prerequisite to this
study as they could prior to or with any quotient field study.
However, a general decimal approach would hinder an important
application of the ratio sub-construct--probability.

To the extent that a rational op:rator can be
conceptualized in the parame.cic sense--e.g., 2y = .25X% for
the "1 for 4™ operator--a decimal approach is not inimicable
to the operator construct. One can easily see that this
representation, and even functional conception of the operator
approach, is at a sophisticated level. It does not well allow
for the use of the partitioning mechanism. Hence the
contribution of this sub-construct, multiplication as function
composition, would have to be delayed until late in the
curriculum or lost entirely.

Figure 12 summarizes the hypothesized effects on the

development of ‘the five sub-constructs and selected mechanisms
of a solely decimal approach to rational numbers.
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Code:

Fart-Whole --- E E+ : somewhat stronger development
Ratio =====-=- W E : equal development
Quotient =-=--E E- : somewhat weaker development
Measure ==-=-==- E+ W : substantially weaker development
Operator ==---- E-
Partitioning - W
Inverse ===-=- E-
Unit ======--- E
Proportions =- E- (because more abstract)

Figure iz

As can be seen, it is hypothesized that a solely decimal
approach will profit the additive construct of measure,
slightly weaken the constructs involving the notion of
inverse, and substantially weaken the multiplicative and
propcrtional aspects of sub-constructs. Further, the
mechanism of partitioning would have a much more limited
effect on the rational number construct development of the
individual.

1t has been suggested that, with the onset of the metric

system, fraction instruction could be eliminated and that
indeed student learning in the area of decimal fractions would
be greatly enhanced. This hypothesis is rather cbviously true
if one's construct of the rational numbers consists of the
behavioral surface of computation with rational numbers.
However, if one's instructional aim is to allow students to
build up a construct that allows for control over a wide
sariety of rational number problem settings, as well as

. gaining some basis for further algebraic and analytic work,
then the analysis‘above suggests that there are hypothesized
costs as well as benefits to a decimal approach. It should be
emphasized that the effect of a "decimal c-ly" or "decimal
mainly" instructional experience has not recally been
empirically tested. 3Such a treatment has not gained currency
in Europe, which has been metric a long time (see European
texts or Friesel, 1971). Thus, the conclusion of this
digression awaits empirical data.

~

13 148

T




1II. Implications of the Above Theory for Research

. Even a casual reading of the above discus<ion shows a
large number of hypotheses demanding further exploration and
testing. Central to the above development are the five basic
sub-constructs. Each of these constructs is in need of
several kinds of explication. While each has been described
in some detail here and in other places, relatively little is
known about these constructs as they exist for or are
developed by children and adolescents. This is particularly
true for the quotient, measure, and operator sub-constructs.
Thus, research is needed, delimited on sub-construct lines,
which gives a clear picture of the shape and developmental
pattern of th-se constructs in young persons.

The five basic sub-constructs alsc require other forms of
validation beyond the content and, to a certain extent,
construct validation suggested above. One such task is to
relate construct capability and rational number achievement.
As suggested in Figure 9, the sub-constructs appear to be
logically related to various rational number task settings.

It would be important to define achievement in terms of these
tasks as well as in more conventional ways.

As suggested early in the above discussion, the rational
number constructs are the products of deliberately arranged
experiences for the individual. This suggests that the above
constructs are in need of curricular validation. That is, it
must be shown that they each form the basis for deliberate
instructional activities. Further, it must be shown that
these activities allow the large majority of the population
to develop the particular sub-construct. To a certain extent,
this has been implicictly carried out in various curriculums:to
date for the part-whole and operator sub-constructs. However,
even these efforts obviously have not been directed towards
the sub~constructs as developed in this paper.

Figure 9 is also suggestive of yet another form of
construct validation. This would involve a study of the
interrelationship of the sub-constructs and would have as 1its
goal a parsimonious description of the rational number
construct: Are all of the sub-constructs necessary? DO some
subsume others?

This interrelationship study could also lead to an
expanded list of sub-constructs. This might come about in two
possible ways. First it might be shown that the net ot
sub-constructs does not account for some important rational
number task. Thus, some elaboration of the given constructs
or extension to new constructs would be necessary. Further,
new mathematical ideas might suggest the development ol a new
mechanism @r sub-construct useful to persons in handling
rational number tasks. The development in this paper and
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others (Dienes, 1271; Griesel, 1971; Wagner, 1976) show that
the mathematical topics of fields, analysis, and operators
provided bases for the personal constructs of guotients,
measure, and operator. Thus, such extension of the rational
number construct through use of newer mathematical thinking is
obviously possible.

The mechanisms persons use in building up a rational
number construct present many other avenues of research. While
there has been considerable work in mathematics and science
education as well as develcpmental psychology on the .
proportionality scheme, there has been almost no deliberate
study of partitioning and its related notion, use of units.
The same is true for the study of inversing, particularly as
it relates to rational cr fractional settings. In line with
the construct theory above, research is needed showing the
role of various mechanisms in each of the constructs above.
Again a focus of the search will be for & more precise
explication of the rational number construct. Thus it may be
that tie mechanisms, or some of them, will _.rove to be more
important than the basic sub-constructs. Under any
circumstance, it will be important to define curricular
conditions for tae development of these mechanisms.
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SEVENTH-GRADE STUDENTS' ABILITY TO ASSOCIATE
PFPER FRACTIONS WITH POINTS ON THE NUMBER LINE,

Carol Novillis Larson
University of Arizona

Geometric regions, sets, and the number line are the most
commonly used semi-concrete models for fractions in elementary
school textbooks. Novillis (197¢) analyzed the fraction
concept into 16 less complex related subconcepts where each
one was assoc.ated with one of these three semi-concrete
models. She reported that associating a proper fraction with
a point on a number line was more difficult - for intermediate
grade studerts than associating a proper fraction with a
part-whole model where the unit was a geometric reyion and
with a part-group model where the unit was a set. Payne
{ 976) also reported that elementary students had more
drfficulty with the number 17 ie model than with the area model
({part-whole) model.

An obvious question raised by these studies is: Wny was
the number line model so much more difficult for students than
the other two types of models? In the Novillis 1976 study,
the number line test items utilized numper lines of length
one, two, and three. It could be that the length of the
number line might be a relevant variable. It was observed
that when the number line is of length greater than one, some
stugents disregard the scaling and treat ‘he number line that
is depicted as a unit regardless of its length. Muangnapoe
(1975) reported third and fourth graders exhibiting this
behavior. An important difference between a part-whole model
and a number line model 1is that in the number line model the
students need also to attend to the scaling. Hence a number
line model implies a length greater than one. Whenever a
number line of length one is used, then the number line model
is not being completely tested. In this casz, the number line
is really just another part-whole model where the unit is not
in guestion, being the "whole."

Novillis (1976} alsc tested intermediate grade students'
ability to assoc.ate proper fractions with part-whole,
part-group, and number line models where the number of
equivalent parts in the unit was a multiple of the
denominator. The mean for 279 intermediate grade students on
the 20-item subtest that measured students' recognition of
equivalence with these three models was 1.85. The mean score
on the four-item Number Line, Equivalence Subtest was 0.29.

Portions of this article have been previously published:
Larson, C.N., Locating fractions on number lines: Effect of
length and equivalence, School Science and Mathematics, 1980,
80, 423-428. T
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Payne (1976), summarizing a series of studies done at the
University ot Michigan from 1968 to 1975, reported that in all
¢f the studies equivalent fractiosns was troublesome for most
students, especially reducing tc lowest terms. These results
seem to suggest that further investig. ion is needed in this
area. '

Purpores

The purposes of this study were to investigate:
1) seventh-grade students’ ability to associate a proper
fraction with a point on a number line when the number line is
of length one and of length two; 2) seventh~-grade students’
ability to asscciate a proper fraction whose denominator is b
w.th a point on a number line, when the number of line
segywents into which each unit segment has been separated
equals b and 2b; and 3) the hierarchical dependencies amoug
the four types of number line subconcepts that occur when both
length of number line (one or two) and number of line segments
in each unit line segment (b or 2b) are considered.

Definitions

This study deals with four subconcepts of the fraction
concept. All four subconcepts involve the number line model.
The behavior that is related to each subconcept is described
below: , X

Subconcept L1: HNumber 1line, Length 1.

The student associates together the proper fraction a/b
and a point on a nymber line of length one, where Lhe unit
seégment has been separated into b equivalent line segments and
the ath point to the right of zero is marked.

!
E.ample: i’ } } |
RS .
The point on the number line marked by X

can be named by the fraction 1/3.

Subconcept L2: HNumber Line, Length 2.

The student associates together the proper fraction a/b
and a point on a number line of length two, where each unit
segment has been separated into b equivalent line segments and
the ath point to the right of zero is marked.

o} l 2
Example: | , n L 4 I |

r _XT T T T T —‘
The point on the number line marked by X
can be named by the fraction 1/3.
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Subconcept ELl: Number line, Equivale~ce, Length 1.

. 1he student associates” together the proper fraction a/b
and a pcint on a number line of length one, where the unit
segment has been separated into 2b equivalent line segments
and the 2ath point to the right of zero is marked.
o . |
Example: | 1 By 1 ! 1 i
r T X g Ll T Il
The point on the number line marked by X
can be named by the fraction 1/3.

Subconcept EL2: Number line, Equivalence, Length 2.

The student associates together the proper fraction a/b
and a point on the number line of length two, where each unit
segment has been separated into 2b equivalent line segments
and the 2ath point to the right of zero is marked.

|
Example: ©O , 2
% } % L + ; % } l 1 H ) _{

A i ' t

X
The point on the number line marked by X
can be named by the fraction 1/3. °

Method
Instrument

A sixteen-item multiple choice test--Locating Fractions
on the Number Line--was constructed by the investigator to
measure the behavior related to Subconcepts L1, L2, EL1l, and
EL2, The test contains four subtests of four items each; each
subtest corresponds to one subconcept. The 16 items were
randomly ordered in the test. The fractions 1/3, 1/5, 2/5,
and 3/8 were used in each subtest. These same four fractions
w2re previously nsed by Steffe and Parr (1968) and Novillis
(1976 ). Each subtest contained two test items of each cf the
following types: a) given a fraction, the student chooses the
correctiy marked number line; b) given a nrmber line with a
point marked, the student chooses the correct fraction.

The reliability of the subtests, as determined by the

. Hoyt procedure, was r = .86 for subtest L1, v = .76 for
subtest L2, r = .85 for subtest EL1, and r = .80 for subtest
ELZ. 1

Sample

Seventh-grade stuidents in the fall of ti2 year were
selected as the populatiun 1in order to evaluate students at




the end of the elementary school years. The sample consisted
of 382 seventh-grade students, approximately half of the
seventh-grade students in a predominantly middle class junior
high school in Miami, Florida. The students were assigned to
three different tracks for mathematics instruction. The only
class at the highest level, Pure Math, and half of the class
sections at the other two levels, Structures and Whole
Numbers, were tested. A total of 13 class sections was
tested, the one highest level class, Pure Math (n = 31), five
sections of the second level, Structures (n = 156), and seven
sections at the third level, Whole Numbers (n = 195). The test
was administered by the investigator from October 22-28, 1975.

Procedure for Establishing Hierarchical Dependencies

Given the nature of the four subconcepts that werec being
investigated, 1t seemed reasonable that a hierarchical
relationship might exist. In the past, learning hierarchies
have been hypothesized, instruction given based on the
hypothesized hierarchy. and then a test administered to assess
each cell in the hierarcny (Gagnd et aX., 1962; Eisenberc ard
Walbesser, 1971). Gagné et al. (1962) and Walbesser (1968)
have developed numerical procedures for testing the validity
of hypothesized dependencies in learning hierarchies.
Novillis .(1976) adapted the ratios used by Gagné et al.,
(1962) and Walbesser (1968). Her study differed from
traditional hierarchical studies in that no instruction was
given and the research hypothesis predicted a relationship in
only one direction. In using ratios to validate hierarchies,
a transitivity inference is usually made that if A is
established to be subordinate to B and B 1s established to be
subordinate tc C, then A is accepted as being subordinate to
C.

In the présent study a hierarchy was not hypothesized;
instead, two methods of analysis were selected to test for all
possible dependencies among the four subconcepts in order to
construct a feasible hierarchy. In Method 1, the two ratios
adapted by Novillis (1976) were used to test all pairs of the
four subconcepts for possible dependencies.

A criterion level of 75 percent wasr established for each
subtest and the scores changed to a binary scale where 1
denotes reaching criterion on the subtest and by inference
acquisition of the related subconcept; similarly, 0 denotes
nonacquisition of the subconcept. Figure 1 illustrates the
four possible categories of students for a pair of
subconcepts.,

The (0, 0) category is not considered in the analysis of
the data as there 15 no way of knowing which suvconcept each
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2
Superordinate
Subconcept

&———— Indication cf Dependency
(1—>2)

1
Subordinate
Subconcept

Subordinate
Subconcept

Nonacquisition (0,0) (0,1)

Acquisition (1,0) (1,1)

Nonacquisition Acquisition

Superordinate Subconcept

Figure 1. Four Categories of Students Associated
+*ith Each Hierarchical Dependency.
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student will acquire first. In this study the hierarchical
analysis of the data is essentially concerned with deciding
when the number of students in category (0, 1) as compared to
the number of students in categories (1, 0) and (1, 1) is of a
magnitude that does not contradict the hypothesis of a
hierarchical dependency.

Following are the two ratios used by Novillis (1976) with
minimum levels of supporting a hierarchical dependency: .

Ratio 1 = n{(l, 0) > .75
Ratio 2 = n(l,l) + . 71,0) > .90

Ratio 2 is a test of the dependency only when Ratio 1 is at
the .75 level. .The rationale for the ratios and the levels of
acceptance is described in Novillis (1976).

A hierarchy was then constructed based 2n the results of
this analysis and the transitivity inference. Method 2 was to.
test the transitivity inference of the hierarchy that
results from use of Method 1. Method 2 consisted of
generalizing the two ratios used in Method 1 in order to deal
with all four subconcepts at once rather than with pairs of
subconcepts.

When considering the four subconcepts simultaneously
there are 16 categories that result for the quadruple of
subconcepts. These 16 categories have been partitioned into
three classes: the Null Class--(0,0,0,0); the Mastery
Class-=-(1,1,1,1); and the Intermediate Class, which contains
all categories where students reach criterion on from one to
three of the subtests. Ratio 1', an extension of Ratio 1,
deals solely with the 14 categories in the I..termediate Class.
The numerator is the number of students in the categories of
the Intermediate Class supporting the hypothesized
hierarchy--Positive Categories (P). The denominator is the
number of all of the students in the Irtermediate Class (I).
The two new ratios are:

Ratio 1'

g

Ratio 2' = n{(P) + n(l,1,1,1)
n(r) 4+ n(1,1,1,1)




3
«
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Results

. One cf the main purposes of this study was to> compare
seventh graders' performance on various fraction/number line
tasks where length and equivalence were varied. To accomplish
this a 2 x 2 repeatcd measures ANOVA was performed r - the
students' scores on the four subtests. The mean and standard
deviation for eath subtest are summarized in Table 1; the 2 x
2 repeated measures ANOVA indicates: 1) that associating
proper fractions with points on number lines of length one was
significantly easier for the students tested than on number
lines of length two; and 2) that associating proper fractions

with points on number lines where the number of equivalent
line segments in each unit segment is the same as the
denominator was significantly easier for the students tested
than on number lines where the number of equivalent line

segments is twice the number in the denominator.

Even though

the interaction was significant, the means for each subtest

listed in Table 1 "show:

l) that the means for both levels of

length one (L1 and ELl) are higher than for both levels of

length two (L2 and EL2); and 2)

that the means for both levels

of the number of equivalent segments in a unit equaling the

denominactor (LI

and L2) are higher than for both levels of the

number o6f equivalent line segments in a unit being twice the
denominator (ELl1 and EL2).

Table 1

.

“ Means and Standard Dewviations on Four Fraction/Number Line Subtests

(n = 382)
Subtes; Mean Standard Deviation
Ll 2.67 1.59
L2 2.32 1.50
EL1 1.62 1.62
EL2 1.51 1,53
3
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fable 2

ANOVA for Length by Eguivalence

Source Ss af MS F
Length (L) 20.50 1 20.50 22.46*
Error 347.75 381 .91

Equivalence (E) 327.13 1 327.13 185,71*
Error 671.12 381 1.76

L XE 5.42 1 5.42 12.30*
Error 167.83 381 .44

P £ .001

The second type of analysis used in this study was the
testing for possible hierarchical dependencies using Methods 1
and 2, previously described. In order to test for dependen-
cies using Method 1, all possible pairs of subconcepts were
identified. The order of the subconcepts in each pair was
determined by the magnitude of the means for each related
subtest in the pair. The data listed in Table 3 were used to
compute Ratios 1 and 2; Table 4 displays the resualts of this
computation. Hierarchy 1 is illustrated in Figqure 2. It
consists of the dependencies that were supported and the level
of each subconcept relative to the others based on the subtest
that measuved the associated bhehavior.

Table 3

The Number of Studentes in Each of Four Categories for Each
Possible Pair of Subconcepts
(n = 382)

Categories

Dependei.cy n{0,0) n(0,1) n{(l,0) n{(l,1l)
;l'“9 L2 129 15 73 165
L1—> EL1 141 3 113 125
L.—> EL2 138 6 134 104
L2 EL1 183 19 71 109
L2 > EL2 198 4 74 106

EL1 —> EL2 242 12 30 98




Table 4

. * The Results of Computing Ratios 1 and 2
% in Dependency
Dependency (0,0) Ratio 1 Ratio 2 Supported
L1 — L2 33.77 .8295 .9407 Yes
L1 —» EL1 36.91 .9741 .9876 Yes
L1 -> EL2 36.13 .9571 .9754 Yes
L2 - EL1 47.91 .7889 .9045 Yes
L2-> EL2 51.R3 .9487 .9783 Yes
EL1-> EL2 63.37 «7143* .9143 No
EL2->EL1 63.37 .2857*% .7857%%* No
* Ratio I < .75
** 'Ratio 2 < .90
Means
(No. of Items = 4)
1.4
EL2
1.6
EL1
1.8
/
* 2-0 //
2.2
L2
2.4
2.6
L1
2.8
3.0
Subtests

Figure 2.

Hierarchy 1l: Hierarchical Dependencies
Supported with Subconcepts Ordered by Means.

Hierarchy 1 is not one that would have been hypothesized
based on a logical ordering of the four subconcepts. It was
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expected that ELl would be subordinate to EL2. Also, the
relationship between L2 and EL 1 is surprising.

Table 5 lists the number of students in each of the 16
categories that are required for testing a hierarchy using
Method 2, in which all dependencies among the four subconcepts
in the proposed hierarchy are tested at once. Each category is
indicated by an ordered quadruple of zeroes and ores in the
order L1, L2, ELi, EL2.

Table 6 lists the number and percentage of students
in each of the three Classes: Null, Intermediate, and
Mastery. Table 7 lists the categories in the Inter-
mediate Class that were classified as being positive
(i.e., supporting Hierarchy 1), and the results of computing
Ratio 1' and Ratio 2' using the data in Tables 6 and 7.

Table 5
Number cf Students in Each of Sixteen Categories
(n = 382} )
Category ’ Number of Students $ of Students in
(L1,L2,EL]1,EL2) in Each Category Each Category
(0,0,0,0) 125 ' 32.72
(0,1!0,0) 12 3.14
(1,0;0,0) 54 14.14
(1,1,0,0) 51 13.35
(0,0,1,0) 1 .26
(0,1,1,0) 0
(1,0,1,0) 18 4.71
(1,1,1,0) 11 2.88
(0,0,0,1) 3 .79
(0,1,0,1) 1 .26
(1,0,0,1) 1 .26
(1,1,0,1) 7 1.83
(0,0,1,1) 0
(0,1,1,1) 2 .52
(1,0,1,1) 0
(1,1,1,1) 96 25.13
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Table 6

Number and Percent of Students by Class of Categories

(n = 382)

Class of Number of Students $ of Students in
Categories in Each Class Each Class
Null 125 o 32.72
Intermediate (I) 161 42.15
Mastery 96 25.13

Table 7
Testing of Hierarchy 1: L1->L2->EL1 and L1->L2->EL2
(n = 382)
Positive Categories 1in Number of Students
Intermediate Class (P) in Each Category
(1,0,0,0) 54
(1,1,0,0) 51 ¢
(1,1,1,0) 11 }L
(1,1,0,1) 1 |
Total 123
Ratio 1' = 122 = .7640 > .75
Ratio 2' = 22 = .8521* < .90

*Hierarchy not supported.

Since Hierarchy 1 was not supported usirg Method 2, two
other probable hierarchies were tested using this method.
Hierarchy 2 (L1—> L2—> EL!l —> EL2) is a linear ordering of the
subconcepts based on the means of the four related subtests.
hHierarchy 3 (L1—> L2-> EL2, and L1 = EL1 -> EL2) is a logical
ordering of the subconcepts based on an analysis of the
characteristics of each subconcept.

Hierarchies 2 and 3 were not supported using the
established decision rules.
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B, Table 8
. Testing Hierarchy 2: Ll L2 EL1 EL2
(n = 382)
Positive Categories in Number of Students
Intermediate Class (P) in Each Category
(1,0,0,0) 54
(1,1,0,0) 51
(1,1,1,0) 11
Total 116 )
Ratio 1' = 116 = ,7205* < .75
161
, 212
Ratio 2' = 357 = .8249* < .90
*Hierarchy not supported
Table 9

Testing Hierarchy 3: Ll

L2 "EL2 and L1 EL1 EL2

Positive Categories in
Intermediate Class

Number of Students
in Each Category

(1,0,0,0) 54

(1,1,0,0) 51

(1,0,1,0) 18

1,1,1,0) 11
Total 134

) 134 .
Ratio 1' = g7 = .8323 > .75
Ratio 2' = %%g = ,8949* < .90

*Hierarchy not supported
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Discussion

It would seem that, by seventh grade, associating proper
fractions with points on number lines of length one and of
length tv» would be of equal ease for students. That 1t wasn't
taises the ques:cion: Are we using teaching strategies,
sequences, and activities that foster concept formation, or
isolated rule formation? If students had an understanaing of
number lines, a concept of proper fraction as naming a number
of equivalent parts of a defined unit, and a concept of
fractions as names for numbers, tney should be able to
associate 1/5 with a point on a number line regardless of its
length. A number line »f length cne is very similar to the
part-whole (area) model that is usually .he first and most
constant model used 'n developirg fractiorn concepts. The
students can disregard the scaling and respond correctly, as
long as tucy begin counting at the let --at zero. They can
still use the rule, count the number of ,-rts in all (in this
case equivalent segments) for the denomipavor, and count the
number of equivalent line segments from zero to the marked
point for the numerator. When the number li.e is of length
two, this rule doesn't work. The students need to know that
the line segment from 0 to 1 is one uni* (one whole), the line
segment from 1 to 2 is another unit. When they are dealing
with a proper fraction. they need to consider only the number
of equivalent line segments from 0 to 1, and they must realize
that the segments from 1 to 2 are not relevant.

Responses tc¢ individual test items indicate that some of
the students tested were confused with the scai ag or
disregarded it. Wanen responding to three test items where the
number line was of length two, 15 percent to 25 percent of the
sample chose fractions that indicated that they considered the
whole number line the unit and not just the segment from 0 to
l. For example, 25 percent of the students selected 2/12 as
the correct response when the nurber line was of length two
and each unit segment was separated into six equivalent line
segments.

The daiv , as well as the questions asked by students
auring data collection, suggest that many students do not
associate the name "1/3" with a point indicated by 2/6 on a
number line. Do these students have as part of their fraction

.concept that a fraction r:nresents a number that has many

names and that each of ti~<e2 names can be associated with the
same point on the number line regardless of the number of
segments in each unit? Do they have the flexibility in their
concept +to allow them to associate the fractiorn 2/6 with a
point on a number where each unit segment has been separated
into nine equivalent line segments? A question asked many
times concerning test items on Subtests EL1 and EL2 was, "ho
you mean to reduce?" or "Should I reduce?" Test items
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contained the questions: "Which fraction can name this
point?" and "On which number line can the polnt marked by X be
named by the fraction 1/32"

Fourth- and fifth-grade ctudents construct sets of
equivalent fractions and learn the rule that you can multiply
or divide each part of the fraction by the same number. DO
they intearate this as part of their fraction concept or have

.-e they, in the first case, memorized a rule for a pattern and,
in the se_ond case, a rule for an "algorithm?"

A question that needs answering is: What is the concept
of equivalent fracticns for students at the completion ot
elementary school? 1In discussing the results and implications
of the NAEP Mathematics Assessmen*, Carpenter et al. (1975)
state:

If, in the upper elementary grades, the
concept of equivalent fracticns has been
-deveioped w211, and it should have been, then
the data imply that pupils have not mastered
the application of equivalent fractions to tne
solution of problems. ne suspects that
13-year-old pupils see fractional parts,
equlivalent fractions, and computat.onal
algorithms as separate, unrelated topics.

(pp. 442-443) ’

The results of this study seem to 1ndicate that some
students do not have a very flexible concept of e.uivalent
fractions. Payne (1976) and Steffe and Pa.r (1968) report
evidence supporting this contention. Perhaps some students
have a group of isolated, inflexible, specific rules that are
not synthesized and which allow for very little transier.
Brownell and Hendrickxson (1950) claimed that, as concepts
develop, they move along various lir s of change. They become
more abstract, cleare:s, and more definite. They also change
in their implications, relationshins, and transferability.

The »rocess of learning concepts, then, 1s primarily ocne of
snythesis. How can we structure situations so that tne
students will feel tite need to synthesize and will attempt to
do so? Payne (1976) and his colleagues have been
experimenting with teaching sequences and strategies that will
~do this. So far they have met with limited success.

The atter~t was ma : to erctablish a hierarchy of the four
related subconcepts of the fraction concept with a number line
as a mode. One definite hierarchy was not clearly
established. What was indicated was that Subconcept L1 was
acquired first by 34 p-rcent of the students in the
Intermediate Class, in comparison to 7 percent, less than 1
percent, and 2 percent of the students in the Intcrmediate
Class who first acquired Suovconcepts Lz, WLl, and ELZ,
respectively. (The percentage of the total sample for eacn
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category is listed in Table 5.) The des-ending order of the
means for the fcur subtests in the order L1, L2, ELl, and EL2
[see Table 1) is identical to the descending order of the
subconcepts when the number of students who achieved criterion
on each related subtest is c¢cisidered (see Table 10).

vable 10

Number of Students Attaining Criterion on Each
) Subconcept
(n = 382) -

Number of Students
Attaining Criterion

Subconcept

L1
L2
EL1 128

EL2 119

It is of interest that 33 percent of the 382 students
te-ted did not attain criterion on any of the subtests, and
only 25 percent attained criterion cn all four subtests. Of
the 42 percaent in the Intermediate Class, 14 percent of the
students tested attained criterion only on Subtest L1. The
other 28 percent of the students attained criterion on other
subsets of the subtests.
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THE RELATIONSHIP OF AREA MEASUREMENT AND LEAKNING
INITIAL FRACTION CONCEPTS BY CHILDREN IM
GRADES THREE AND FOUR

Douglas Owens
University of British Columbia

There are several physical models which are used in
school mathematics to introduce fraction concepts. One of the
earliest models used is a region such as a rectangular or a
circular one which has been partitioned into n congruent
parts. The entire region is defined as one whole unit and
each of the parts is defined as 1/n of the region. Curriculum
materials often show one or more of the n parts beside the
region on the printed page. It apparently is assumed that the
child can measure the whole region or certain parts of it in
terms of these smaller parts with measure 1/n. On the other
hand, some children in grades three and four do not have
well-developed area concepts.

The purpose of this study was to determine the
relationships between the child's area concept and the ability
to learn fraction concepts using area models. If one's area
concept is helpful in learning fractions, it appears that
appropriate activities in area measurement should aid fraction
learning and should precede fraction activities. A second
purpose was to determine the effect of grade leve! on the
ability of the children to learn fraction concepts et the
third- and fourth-grade levels.

Procedures

Subjects

The 56 subjects were chosen from two third-grade and two
fourth-grade classes in Greater Vancouver, British Columbia.

Area Concept Test

The Area Concept Test was compased or six items. The test
. included two conservation of area items and two measurement of
area itews similar to those used by Piaget (1960). Both kinds
of items were included because it is not clear that ability to
perform one of these tasks is necessarily prerequisite to
performing the other kind of task (Taloumis, 1975). 1In the
other two items the child was asked to measute a region in
terms of a set of blue rectangular cards and a set of red
cards. In one item 1t took the same number of blue as red
cards and in the second item 1t took fewer blue than red
units. The child was then asked to measure a seccond region
using the red cards and predict if it would take the same
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number or more or fewer blue cards than red cards to cover the
second region. The Area Concept Test was given in a
one-to-one ipterview and audio recorded. In each item the
¢hiid was asked to justify his or her response.

Unit of Instruction

The unit was based on a revision of the material used by
Muangnapoe (1975). The instruction included identifying .
fractional parts of regions using oral names, written work
names, and fraction symbol names. Fraction notation was used
for unit fractions and for other numbers less than one, equal
to one, and greater than one. However, mixed forms were not
used for numbers greater than one. Order was included for some
cases where the fractions had the same derominator or same
numerator, and equivalnet fractions were not necessary.

\

The main instructional techniques were paper folding by
teacher demonstration and by each child. The children folded
paper rectangles which measured 28 cm by 5.5 cm ane papec
discs. Later the children completed worksheet exercises using
their material kits and, finally, completed worksheets without
the use of the materials. At first only oral language was
used during the folding activity. This was followed by use of
oral and written word names and finally fraction numerais were
used.

Posttests

The Fraction Concept Test of 51 items was similar in
nature to those on the worksheets completed by the pupils.
This included items on (a) identifying the larger of two
fractions by word name, (b) identifying figures which have
equal-sized parts, (c) translating from word names to fraction
numerals and conversely, (d) deciding whether two diagrams
show equal amounts shaded, (e) shading a previously drawn
diagram to show a given graction, (f) writing a fraction to
indicate the part shaded, and (g) identifying a diagram which
Shows a given fraction.

The Transfer Test was ccmposed of eight items sampling
extension to equivalence, mixed numerals, and the "part of a
set"” meaning of a fraction.

Procedure

The Area Concept Test was administered to 101 pupils 1in
grades three and four. Figures 1 and 2 show the frequency of
pupils scoring zero to six for grades three and four,
respectively. Pupils who scored two or less were classified
as low and pupils who scored four or more were classified as
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high. From these, the 56 subjects for further study were

chosen by random selection.

) Two instructional groups were formed by having children
f .m one third-grade class and one fourth-grade class
combined, without regard for level. Thus. each groug
contained a mixture of third-grade and fourth-grade pupils,
and high-—~level and low-level children. These groups were of
approximately equal size. The investigator, using the same
treatment, instructed all group$ for seven 46-minute periods.
Instruction took place for all groups between morning recess
and lunch time. The pOsttests were administered on the eighth
day in the pupils' regular class with no time limit.

Analysis

Item analyses were performed and Hoyt (1941) reliability
estimates obtained. The Fraction Concept Test and Transfer
Test data were analyzed using separate univariate analvses of
variance. The two factors, Area Cuncept and Grade, had two
levels eacn. Correlations wer= computed among the scores on
Area, Fraction Concept, and Age in months.

Results and Conclusions

Test Analysis

The item difficulties by grade level of the Area Concept
Test are shown in Table 1. The Hoyt reliability estimate of
the Area Concept Test was .75. Item difficulties of the
5l-item Fraction Concept Test ranged from .41 to .90 except
for three items (0, .83, .17). Item difficultiez for the
el1ght~item Transfer Test ranged from .16 to .52. The Hoyt
reliability estimates were .96 and .70 for the Fraction
Concept Test and Tr-asfer Test, respectively.

Table 1

Item Data: Concept Test

Item Number 1 2 3 4 5 6

Grade 3 Number correct . 35 29 24 17 34 19
(51 subjects) | P(Item difficulty)|.69 | .57 | .47 |[.33 | .67 |.37

Grade 4 Number correct 34 28 30 21 28 18
(50 subjects) | P(Item difficulty) .68 | .56 | .60 .42 | .56 |.36

Total Number correct 69 57 54 38 62 37
(N = 101) P(Item difficulty) (.69 |.56 | .53 {.38 61 .37
! AN B I
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Analysis of Variance

. A summary of the ANOVA's performed on the variables
Fraction Concept and Transfer are contained in Tables 2 and 3,
respectively. In both cases Area Concept was a significant
factor, but. in neither case was Grade significant.

The means on Fraction Concept and Transfer are given for
High and Low levels in Table 4. It will be observed that the
achievement test means of 69 percent for the Low level and 82
percent for the High level were reasonably high, whereas the
Transfer Test means were considerably lower.

The correlations of age with other variables are given in
Table 5. Only the correlation of .50 between Area Concept and
Fraction Concepts was significant (p < .0l1). This, of course,
is consistent with the results of the Analysis of Variance.

Table 2

Analysis of Variance for Fraction Concept

Source daf MS F
Area 1 743.14 13.24*
Grade 1 52.07 1.28
A XG 1’ 1.1 <1
Error 52 40.75
*p < .01
Table 3

Analysis of Variance for Transfer

Source af MS - F
Area 1 44.64 16.70*
Grade o - 1 4.57 1.71
A XG - 1 3.51 1.31
Error

*p < .01




o

Table 4

Group Means by Level for Fraction Concept and Transfer

Low High Number
Level Level Total of Items
Fraction Concept 35.0 42.3 38.6 51
Transfec 1.5 3.3 2.4 8
Table 5

Correlation Matrix

Age Fraction Concept
Area Concept .05 .50%
Age .07

* p < .01

It was a surprising result that grade or age had no

detectable relationship to either area measurement or fraction

learning. Perhaps one year's difference at tnis rarticular
age is not a great enough age span to expect differences in
performance. For tne children in the sample at least, it
appears that children in ~rades three and four are egually
capable of informal area 1easurement, Children 1n the third
grade alsd ¢popear to learn an initial fraction concept as well
as those in the fourth grade. Again, the sample was {rom one
school and it remains to be seen how general the results are.

It does appear that area concept level is related to
fraction task achievement, at least when the fraction work is
based on an area rodel. This 1s not to say that the cnildren
in the low area group cannot learn the fraction work. In the
present study the low group mean was at about 70 percent.

While there were significart differences 1n the high and
low area groups on the transfer measures, the means were
fairly low. 1t is possible that more evidence of transfer
could be shown by a different criteriun. Perhaps there is a
particular kind of transfer not detected by the test of a
general nature. Time to criterion on the new task might be a
measure of transfer worthy of consideration.
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