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MATHEMATICS EDUCATION REPORTS

Mathematics Education Reports are developed to dissern=

mate information concerning mathematics education documents

analyzed at the ERIC Clearinghouse for Science, Mathematics,

and Environmental Education. There reports fall into three

broad categories. Research reviews summarize and ana'yze

recent research in specific areas of mathematics education.

Resource guides identify and analyze materials and references

for use by mathematics teachers at all levels. pecial

bibliographies announce the availability of documents and

rev' e liteiature in selected interest areas of

matt its education. Reports in each of these categories

'may also be targeted for specific subpopulations of the

mathematics education community. Priorities for development

ofIfuture Mathematics Education Reports are established by the

Advisory Board of the Center, in cooperation with the National

Council of Teachers of Mathematics, the Special Interest Group

for Researc': in Mathematics Education, the Conference Board of

the Mathematital Sciences, and °their professional groups in

mathematics education. Individual comments on past reports

and suggestions for future reports ara always welcomed by the-
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Associate Director.
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FOREWORD

The papers presented in this monograph represent varied
efforts which stemmed from and are related to the work of the
dumber and Measure and Rational numbers working groups which
developed at a meeting of the Georgia Center for the Study of
the Learning and Teaching of Mathematics held in the spring of
1975. Many of'the discussions at that meeting (see Number and
Measure, R. Lesh (ed.), ERIC/SMEAC, 1976) sought to 3ring
constructs from developmental psychology and mathematics to
bear in understanding a child's ideas of number and measure.
The studies presented here represent explorations in these
dimensions as well.

As is naturally the case, when one considers a phenomenon
from several perspectives, a new perspective is generated
which differs from the original. Thus the deliberations of
members of the above working groups haVe generated concerns
which go beyond those of developMental psychology and
mathematics as these two relate to mathematical education.
Several of the papers here (e.g., Lamb, Owens, Steffe, and
Hirstein) attempt to relate developmental and instructional
variables. Yet their concern is not for developmental theory
but for ways in which one can describe the mathematical
thinking of children and the individual child in particular.

This concern for personal mathematical knowledge has led
authors of this monograph to bring various philosophical views
into play as well. A central assumption, if not underlying
the papers, then certainly useful for a reader reading them,
is that'persons can build up or construct mathematics for
themselves. What these constructions look like, as well as
their extensibility and their relatedness to other
mathematical ideas, is dependent on several things. One
component might be characterized as "readiness," the history a
person brings to a particular experience. A second aspect is
the nature and extent of the experiences of the person. Like
any other ideas, mathematical ideas should be "about"
something to have validity. Informal mathematical language
must be about certain experiences; formal symbolicexpressions
may be about less, formal symbolic excessions; mathematical
Structural ideas reflect both inform,1 experierce and formal
symbolic experience. These concerns are treated theoretically
and empirical,ly in the papers of this monograph.

These papers reflect a stage in a sequence of work being
done by these authors and others. They are presented here as
a bridge between some of the ideas developed at the 1975
conference in Georgia and on= going work in this area today.
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Beyond the authors there are a number of persons who have
worked on this publication. All papers received several
reviews and *Oe final form of the papers attempts to reflect
reviewer concerns. Without the generous, continuing, an.d.
ingenious efforts of Les Steffe this monograph would not
exist. He has worked hard in the original stimulation, the
organization of critical reviews, and the editing of aspects
of the document, as well as sharing some of his own work.
Marilyn Suydam has taken the final responsibility to ens,re
the quality of the publication through ERIC/SMEAC at Ohio
State. To all these persons and to the authors who have
waited patiently or this publication I give my heartiest
thanks.

Thomas E. Kieren
Edmonton
February 1980
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An Explication of Three Theoretical Constructs from Vygotsky

Karen C. Fuson

Northwestern University

Three theoretical constructs discusSed by Vygotskyand
expanded upon by other Soviet researchers and theoreticians
seem,to be potentially useful for the field of mathem.ics,
learning, and mathematics teaching. These constructs are
the movement from the inter-psychological plane to the intra-
psychological plane, the distinction between spontaneous and
scientific concepts, and the zone of proximal development.
Each of these constructs will be described along with our
further analyses and extensions of he constructs. Vygotsky
was a seminal thinker and with broad strokes qraws a stimu- ,

lating and thought-provoking picture of the development of
human thinking that is recapitulated within each child.
However, due to his early death from tuberculosis, most of his
ideas were not thoroughly worked out, and he left little
published detailed evidence concerning them. Such evidence
would have helped to define as well as to support some of the
ideas, so its omission is detrimental to comprehension as well
as to evaluation of Vygotsky's theoretical points. In addi-
tion, the English translations of Vyaotsky's work have omitted
much of the original, due to translators' attempts to elimi-
nate long digressive passages and to make the work more
succinct and pointed. This has resulted in reading which
appears at times to be somewhat disjointed, and it has
exacerbated the tendency of Vygotsky to concentrate on
different aspects of the same concept at different places in
his writing. In the original, such shifts might have been 50
pages apart and connected material which made the transi-
tion comprehensible. In tr translation, such shifts may be
only a few pages apart and contain no such meaningful
transitions. For expmple, the chapter on scientific concepts
in the original Russian version is 107 large, fine-printed
pages long. In the English translation, this chapter is only
37 small, large-printed pages long. These problems complicate
still,further the original lack of specificity.

For these Yeasons, the first step to be taken with
respect to increasing the potential utilization of Vygotsky's
ioeas is to arrive at clarifications and extensions of those

*Special thanks to Richard Lesh, Nancy Stein, Walter Secada,
and James Wertsch and to two anonymous reviewers for
comments on earlier drafts of this paper. Members of the
Number and Measurement Working Group also gave me helpful
feedback on an earlier draft.



ideas. Thus, this paper is primarily an explication and an
extension rather than a critical evaluation of Vygotsky's
work'. Examples from the area of early mathematics learning
are also provided in some sections. Many of the examples will
be quite familiar ones to mathematics educators, but the
Vygotskiian frame-work within which they are set may provide a
slightly new perspective for them.

Before beginning, it is useful to ccntrast the different
emphases which Vygotsky and Piaget have. For Vygotsky, the

,04paradigmatic learning situation is that or a child,interacting
with an adult. For Piaget, it is a child alone interacting
with objects or a child interacting with peers. Vygotsky was
more interested in the cultural learning of culturally
important concepts while Piaget focused more upon the nat.nral
learning of concepts important'regardless of culture (pbjects
important infehe natural world). The important learning
mechanism for Vygotsky was direct instruction from an older
member-of the culture. 'For Piaget, it was the accommodation
of one's own views to conflicting ideas of one's peers. These
emphases are actually complementary rather than contradictory.
First, neither writer would deny the existence -f the factors
which the other considers. Second, together these two emphases
cover most of the important sources of learning in a child's

,world. This contrast in emphases indicates that one of the
important ways in which Vygotsky's ideas can line extended are
by consideration of the influences of peers and of the_ object
world.

Movement from the Inter-Psychological Plane
to the Intra-Psychological Plane

Vygotsky focuses upon the child as developing within a
particular social and cultural context. Development is viewed
as a process that is constantly directed by that social and
cultural context. The child does not just "develop"
spontaneously and unconstrained; the child is also "developed
by" her social and cultural context and especially by the ,

older members of that cultural9context. This view is
specifically related by Vygotsky (1978) to intellectual
functioning:

An interpersonal process is transformed into
an intra-personal one. Every function in
the child's cultural development appears
twice: first, on the social level, and 4
later, on the individual level; firsts-
between people (interpsychological); and
then inside the child (intrapsychological).
This applies equally to voluntary attention,
to logical memory, and to the formation of
concepts. All the higher functions origi-
nate as actual ielations between human
indiv'luals. (p. 57)



This transformation pis a gradual one and is the result of the
interaction between a long series of developmental events and

cultural learning experiences.

Vygotsky does not clearly define inter-psychological
processes, antra- psychological pr cesses, or how tne movement
from one to another occurs. I betleve that he is talking
about at least three different things when he discusses the

inter- to intra-process. He is referring to:

a. the directive function of the adult witt-
respect to the child's attention, actions,
and psychological functioning

b. verbal information about concepts or action
sequences which the adult may possess and
which she or he may pass on to a child

c. cultural and intellectual tools (e.g.
language) which the adult helps the child
to learn and use

All three of these meanings are evident in an example of

a child learning to count. In the many learning trials which
a child will' experience in learning to count, .the adult (or
older child) will exercise many directive functions, functions
which gradually fade away to come under the control of the

child. The adult initially will set the goal of counting,
will define the set of countables, will do the whol_ counting
process initially,' will have the child practice and imitate,

etc. The adult will keep the child's attention on the task,

will point out errors, and will help the child to overcome
them. Through such efforts over a period of time, the child

comes to possess the important cultural tool of counting,
i.e., the actual process of counting has passed from occurring
for that child only in an interpersonal context and now can
occur within that child alone. This type of inter- to
intra-movement is'the third type above. The secorea type of
inter- to intra-movement is exemplified by possible adult
answers to the question, "What is counting?" He verbal
knowledge about counting possessed by the adult is provided to

the child. The child, of course, may have limited
understanding of the verbaloknowledge which is provided, and
the semantic representation which the child actually forms and
stores may be quite unalike that intended by the adult. Such
verbal information given by the adult might be "counting is
for finding out how many there are" or "only big girls can
count" or "counting is saying your numbers."

The directive function of adults is'an extremely
important one. This function can be made a bit more'specific
by considering behavior ,to consist of sequences of
goal-directed activity. Fic_,,e 1 presents a very simple
sketch of goal-directed activity which is done jointly by a
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Teacher Child

'Setting the Goal Setting the Goal

Thinking of a
Means to Reach 4- Means to Reach

the Goal
>

of a

the Goal
4

Carrying out Carrying out
the Means the Means

Means to the
Goal

Relating the
Accomplished

Relating the
Accomplished
Means to the

Goal

NA

Yes Yes

N Review

4

Store Store

*M: Mastery
A: Abbreviation

'G: Generalization
I: Internalization

Name of Step
and

Type of Change
Within the Step*

Goal Setting
M,A

Means-Selection
M,A,G

Means-Accomplishing
M,A,I

Means-Goal Relating
M,A

Assessing Goal
Attainment

M,A

Reviewing
M,A

Storing
M,A

Figure 1. Goal: Directed Activity in the Classroom
(from Fuson, 1979)



"learner" and a "teacher."* Figure 2 presents a much more
complex outline of goal-directed activity, wnich checks at
various points, etc. A given execution of a goal-directed
sequence is on the inter-psychological plane if it is a
cooperative (co-operative) activity. The directive function
of the adult then is to execute with the child (or fOr the
child) any step in the activity sequence which the child
9nnot do alone, to monitor the progress of the child through
the activity sequence, to serve as the external memory for the
next step, and to direct the gild to it if necessary. The
teacher may provide verbal,representations of what the child
is doing either as directives before the child does them or as
descriptions wnile the child does them (e.g., 'Now you-re
putting all of the green ones together in a line.") or after
the child does them (interpersonal function b). These verbal
representations may serve both to direct the child's behavior
in some way and also may alter his or her cognitions about the
concepts referred to in the verbal representations. Thus such
representations may carry both directive and semantic force.

In such a co-operative teaching/learning pro-ess, the
teachetitgradually "fades" fr.om each step and each connection
over time, and the activity sequence, as well as skills and
concepts within this sequence, formerly possessed only by tne
teachertnow become possessed by the learner. Other aspects of
this type of model of the teaching-learning process are
descr.bed with respect to mathematics learning in Fuson
(1979).

Although many Soviet psychologists discuss or at least
allude to this passage from the inter-psychological plane to
the intra-psychological Plane, the details of this
transformatiob with respect to mathematical ideas have been
almost as li,ktle studied there as here. Gal'perin (1957), in
one of the few such works, postulates a series of five levels
in the internalization process. As with Vygotsky, these
levels are assumed to be operating in a social learning
situation with another person (a teacher) present. Gal'perin
here introduces the world of objects, though this world is
still set within a social interactive situation. The five
Gal'perin levels are:

1. creating a preliminary conception of the task
2. mastering the action using objects
3. mastering the action on the plane of audible

speech

We will use adult (and teacher) to mean any member of the
culture who is exercising a directing, teaching function with
a child. This frequently will be an older sibling or friend
and, more occasionally, 0 peer.

5
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The cycle may stop
at any time either
by 1) the intrusion
of another event
which is attended to or
2) a decision to
abandon the goal.
Many of the steps
become automatized
as the activity
becomes a familiar
one. Some of the
evaluation steps
maybe omitted,
especially by
youngev children.

An external or internal
-event is attended to.

Does

the event
require over
behavior

No

Evolve a (new) plan
for reaching the goal

No

Will

the plan
reach

the goal?

Execute the next step
of the plan

Did

the plan
reach

the goal?

Did I

carry out
the plan

correctly ? /

No

Shal
I abandon
the goal?

Figure 2. Goal-Directed Activity

Goal rected activity
Occurs as part of the
continuing stream of
behavior, so this
flow-chart contains
no start or stop.



4. transferring the action to the mental plane
5. consolidating the mental action

The first level refers to some attempt to ensure that the
child understands at least to some minimal extent the nature
and the function of the task to be accomplished. The second
level is fz.irly specific with respect to mathematical ideas
--it asserts that the fir_t representation which childten must
build is a concrete one and is built from observations of and
actions on objects. With respect to other (nonma-thematical)
concept domains, this step might be generalized to mean any
concrete representation, such as one arising from doing a
ser1ies of actions for oneself or having certain experiences
oneself rather than being told about such actions or
experiences. Level 3 may mean several things, and it is not
clear which of these -,allperin meant. This step will be
discussed in detail later. Level 4 concerns the internali-
zation of the concrete representation used in Level 2: that
is, here an inte.:nal representation of any action is
substituted for any previous vfternal,action and internal
images of objects are substituted for,real objects. Level 5
refers to effects of practicing which 1 A to aar,omatization
of the mental actions involved in the process.

American research anti curriculum' efforts in mathematics
learning sometimes pay conscious attention to Level 2 and
cften contain some unconscious efforts at Levels 1, 4, and 5.
However, focus on Level 3 is omitted entirely, and sometimes
this process is even consciously postponed because of the fear
of producing premature and/or empty verbalisms in children.

Failure to achieve adequately Level 1-- creating
preliminary conception of the task=-probably results in much
more difficulty in both research end instruction than is
generally realized. Verbal instructions either in a research
task situation or in the classroom often fail to convey a
message which is meaningful enough for a young child to act
upon it accurately. Alternatives which can be helpful here
are modeling the type of activity required (this of course
cannot be done in some research situations as it would
predispose the child to a curtain type of response), using
objects which -by their characteristics will help to create the
desired type of response, and using a simpler version f the

required task and ensuring that subjects know that the more
difficult task should be done in the way that the simpler one
was done. A study by Bullock and Gelman (1977) indicates both
how little one should assume about a child's preliminary
conception of a task and how little one should assume that
they spontaneobsly generalize. Children aged two, three, an
four years were reinforced for choosing the smaller (or
larger) of one- and two-item arrays. They were then presented
arrays of three and four items and asked to "pick the winner."
Forty-two percent of the two-year-olds, 75 percent of the
three-year-olds, and 87 percent of the four-year-olds

7
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responded in a manner consistent with their first condition.
This seems to indicate that two-year-olds cannot generalize
"more"-or. "less" relations even for such small numbers as
three and four. But in a follow-up study in which the one-
and two-item arrays were present (either covered or uncovered)
during the testing on the larger arrays, eleven of the twelve
children, aged 2-1/2 to 3 years responded with the same
relationship that had been reinforced for the smaller array.
The fact that whether the initial array was uncovered or not
was irrelevaht to the performance indicates that these young
children did not need the information from the small arrays
(i.e., their failure was not a result of a lack of memory
about which was the "winner" or even what the task had been
about); they simply did not realize that the second task was
supposed to be related to the first one. For them, the second
task was initially not the sane task as the first one was.

Gal'perin reported the results of comparing two different
methods of becoming familiar with a task. After the teacher's
initial explanations, tne child either interacted with the
materials himself under the direction of the teacher or
directed interactions of the teacher with the materials by
telling the teacher the next operation to do (but did not
interact with the materials himself). The second method
proved 'rather more productive" (Gal'perin reported no task or
testing details). He hypothesizes, that not having to perform
the action physically freed the child's orienting activity and
enabled a fuller and more correct conception of the task. This
approach might be e':amined further. Such effects might also
be operating when groups of children work together with
objects and watch end direct each other's actions.

More explicit attention needs to be paid educators
towards ways to help a child categorize the learning
xperiences she is having. Separate mathematics lessons are

!ad over years of schooling; a child needs help in organ-
-mg these lessons so that she can efficiently store new
learning .nd retrieve relevant old learning in order to relate
it to new learning. Codes on workbook and text pages might be
one such aid. Another one that may be effective is the use of
story settings for learning mathematical ideas. This approach
was used for some units by Lesh and Nibbelink (1978) in a
kindergarten workbook. A given story setting (e.g., stick
bugs) is used for a group of five consecutive lessons on
measuring. The story situation is motivating to children, the
teacher feels natural dealing with a story situation (rathatt
than with just mathematics), and the children related the
separate lessons to each other. Re-use of the same setting
later in the year would thus seem to function as a strong cue
for children Developing and evaluating the effectiveness of
this and otr . ways to help children sort out and code the
various mathematical learning tasks confronting them would
seem to be an important research goal for mathematics
educators.

8
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Level 2 is regarded by Gal'perin as requiring heavy
involvement from an adult (i.e., it has a large
inter:_sychological component), but its primary focus is that
the child's interactions with objects is essential f(Jr the
formation of mental images of the processes:

This material action is, of course, built up
in continuing verbal intercourse with the
teacher, under the guiding influence of his
instruction, explanations and corrections.
But, at this stage, the role of speech, in
the case of both teacher and pupil, is
limited to indicating objective features
of the goal, the objects available and the
methods of dealing with them. These
instructions, however important, do not
take the place of action; the action can he
completed only on the level of things, being
based on them and determined by them, and
remaining essentially an external, material
action. ...The kernel of the matter is that
this material form of Ection is not only the
inevitable initial form of a child's inde-
pendent activity, but also the origin of the
content and structure of the mental action
subsequently elaborated. (Gal'perin, 1959, p.218)

Levels 1, 2, 4, and 5 are not particularly original.
Levels 2 and 4 can together be regarded as reflecting the
process of the internalization from actions on physical
objects in the real world to mental images of actions. Piaget
and many others have postulated and researched. such a process.
The Soviet emphasis here is upon social interactions concern-
ing socially defined objects, but the need for objects in
learnIlg is still apparent. Level 3 is Gal'perin's major new
contribution to the idea of internalization of mathematical
processes. By this I believe he means something rather
special to some mathematical processes. This "something
special" is neither of the first two interpersonal
functions--neither the directive nor the verbal inf'rmation
functions. Rather, Gal'perin here is talking about a problem
solution .that can be represented verbally--i.e., he is
referring to speech which is the actual problem solution.
This view, I believe, is that this speech originally
accompanies and refers to the actions on objects. Eventually
the speech comes to represent the action sequence on symbols,
rather than that on objects, and the verbalization actually
becomes the solution process. Most computational processes are
an example of Gal'perin's Levels 2, 3, and 4. For a Child
solving 27 + 45 by saying, "Hmmm, seven plus five is ten,
eleven, twelve. Put down the two and carry the 1. One and t4o
is three and four is 7. Put down the seven. Seventy-two.",
the verbalization is the problem solution process. Such a



Verbal representation of a cognitive process may be "relatively
rare. Such representatons would seem to be useful for
Rrocesses involving a serial list of actions that must be
performed in a certain order. The verbal representation then
serves as a memory aid for each step. According to
Gal'perin's scheme, this verbalization eventually becomes
internal (Level 4) and finally almost automatic (Level 5).

Tie directive function of verbalization is also important
in the internalization process. Gal'perin sometimes also
seems to mean this function when discussing Level 3. However,
when the directive function of verbalizatio:i is considered, it
seems that instead of being a separate level that intrudes
inso the process of the internalization from objects to mental

iges, Level 3 might better be conceptualized as a continuum
of internalization from "verbal instructions from another" to
"verbal instructions to self." This continuum is o,.thogonal
to that representing the internalization from objects to

pimages. If one pictures these two types of internalization as
representing perpendicular axes, then various points on the.
plane suggest research or instructional tasks. A high
concrete and high self-verbalization example is an adult
mathematics student learning group structures through some
physical embodiment of the Klein four-group. A 'ow concrete
and high other-verbalization is instruction from a teacher
about doing a problem such as 23 + 5 by counting-on using the
internalized string of number words (and some acoustic and
probably also visual image of this string). Examples in the
other two quadrants are obvious.

A recent review of research in the devel...)pment of

self-regulating speech (Fuson, 1980) 'indicates that training
children in the use of self-regulating speech does seem to be
effective in some kinds of cognitive tasks. ,Training studies
on self-regulating speech Audies in mathematics, particularly
in algorithmic processes, would seem to be a valuable contri-
bution to our knowledge about how mathematics is learned.

Verbalization in mathematics learning thus has at least
two important functions--a directive one and a representing
one. Of course, these functions are not entirely
disjoint--any directive involves a representation of what is
to be done and any representation carries some implicit
directive force. But this distinction is probably a useful
one. The directive function of verbalization is used in all
subject matter areas while the representing function may not
be. Both of these functions deserve the attention of
researchers in mathematics education.

10
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Spontaneous Concepts and Scientific Concepts

The second theoretical idea to be discussed is Vygotsky's
distinction between spontaneous and scientific concepts.* The
main source available in English concerning this distinction
is a 37-page chapter on scientific concepts in Thought and
Language (1962). This chapter is an edited version of the
original Russian 107-page version. As with other Vygotskiian
concepts, spontaneous and scientific concepts are fairly broad
concepts, and different aspects of them are discussed at
different points in Vygotsky's writings. There seem to be at
least five separable aspects of these concepts that
differentiate them. Describing and discussing these aspects
will help to give some specificity to these concepts, but it
should be kept in mind that all of these aspects are quite
interrelated. Some, in fact, might be taken to be basic and
then the others might be argued to be derivable from these
basic ones. These aspects also should be viewed as each
forming a continuum, with scientific concepts being relatively
high on this continuum and spontaneous concepts being
relatively low, rather than a more simplistic view of these
types of concepts possessing all or none of these
characteristics. These five differentiating characteristics
are:

1. the level of gonsciou;ness at which the
concept is understood

2. the preS'ence of a hierarchical (super-
ordinate) system within wh.ich the concept
is embedded

3. the amount of cultural-historic input
into the construction of the concept
(as opposed to the ordinary existence
of the concept in the natural world)

4. the amount of "mediated" experience (i.e.,
experience only through verbal definition
and discussion) in the learning context as
opposed to direct perceptual or other
sensory experience

TAT/17(T)Fky certainly does not mean to restrict scientific
concepts to those concepts used in the natural sciences,
for many of his examples come from the social sciences.
It is not even clear that he wo Id restrict such concepts
to :hose occurring in the natural and in the social
sciences. It is to avoid this ambiguity of common usage
that I later suggest the use of the term nonspontaneous
concepts instead of the term scientific concepts.
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5. the amount of direct and systematic verbal
instruction necessary for the learning of
the concept

4

Scientific concepts are relatively high on these characteris-
tics; spontaneous concepts are low. Spontaneous concepts are
concepts formed by children through their everyday inter-
actions with their sensory world. These concepts are not
organized into a hierarchical system, but are formed and exist
in the mind of the child without conscious effort or knowledge
and without much (if any) direct instruction by another.
Vygotsky specifically mentions the early work of Piaget--on
the development of the meaning of concepts like "brother,"
"because," and "flower /rose " - -as providing examples of
spontaneous concepts. Spontaneous concepts arise from a rich
real-world context and-are -Ysaturated with experience."

Scientific concepts are formed consciously by the child
from the very beginning. Vygotsky uses consciousness at
various times to mean such things as the ability to define,a
concept in words and to operate with it et will. Also, he
asserts that generalization results in consciousness.
Vygotsky takes generalization to mean the formation of a
superordinate concept that includes the givery concept as a
particular case. What he really means by this, in terms of
the above five aspects, is that if a concept exists within a
hierarchical system as one of several exemplars of a
subordinate category, then the superordinate category enables
a type of meaninr t-1 be given to that concept (a certain kind
of consciousness) that it cannot get in other ways. We will
give examples of this type of consciousness in mathematics a
bit later. According to Vygotsky, scientific concepts are not
constructed from direct sensory experience but are mediated by
other verbal concepts from the very beginning. Children learn
about scientific concepts by talking about them or by being
talked to about them. In addition, scientific concepts are
unlikely to be constructed spontaneously by the child; they
result from contributions by past members of the culture and
have been maintained as part of the culture's heritage because
of their importance or usefulness. to that culture. The
mediated and abstract nature of scientific concepts would seem
clearly to require direct instruction from an older member of
the culture. But the manner of this instruction may also,
according to Vygotsky, contr=ibute to the consciousness of
these kinds of concepts (i.e., 4 and 5 lead to 1). The
teacher, working with the pupil, may explain, supply
information, question, correct, make the pupil explain, and
otherwise have the pupil think about and talk about the
concept. In this way scientific concepts may be raised to a
'level of consciousness not possessed by the unexamined,
undiscussed spontaneous concepts. In addition, though not
mentioned by Vygotsky, scientific concepts also would seem to
possess heightened consciousness in the mind of a child
because the child (due to the direction of a teacher) forms a
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deliberate intent to learn such concepts, i.e., understanding
such concepts is set as a goal. Spontaneous concepts seem
Tore likely to be learned by a child within the flow of
everyday activity and without the formation of a deliberate,
conscious goal to do so.

By all, of these means, scientific concepts become what we
might call the objects of thought while spontaneous concepts
do not; i.e., scientific concepts, because of characteristics
1 thrOugh 5, become the objects of conscious reflection.
\iygotsky argues that sponLaneous concepts originally are not
the objeCts of such conscious reflection, but through the
influence of scientific concepts, spontaneous concepts
gradually come to rise to thL level of conscioutness of
scientific concepts. That is,

The formal discipline of scientific concepts
gradually transform's the st.-..ucture of the
child's spontaneous concepts and helps
organize them .into ,a system; this furthers
the child's ascent to higher developmental
levels. (1962, p. 116)

Spontaneous concepts also affect scientific concepts. The
richness of the context within which spontaneous concepts are
embedded is hypothesized by Vygotsky gradually to affect
scientific concepts; that is, some of the richness of. the.
meanings associated with spontaneous concepts eventually
becomes attached to scientific concepts. Thus, these two
types of concepts are said to interact: "... the development
of the child's spontaneous concepts proceeds u2ward, and the
development of his scientific concepts downward, ..." (1962,
p. 08).

The way in Which these two types of concepts interact
seems very ill-defined. Are the same hierarchical systems
constructed through scientific concepts used to understand
spontaneops concepts or does the "hierarchicalness" itself
somehow generalize and become applicable for spontaneous
concepts? Piaget has an alternative mechanism for the way in
which spontaneous concepts come to be objects of conscious
reflection. This mechanism is through the conflict and
contradiction arising from peer expressionsof a differing
view on the same concept; the child must accommodate his or
her view to that of the contradictory information contained in
the peer's viewpoint. Piagetian theory Lisa has an
alternative explanation for the increasingly hierarchical
nature of spontaneous concepts- -the advent of concrete
operations which permit class inclusion types of superordinate
relations. This does seem to be one of the relatively few
places where Piagetian and Vygotskii3n theory are directly
contradictory.

A further question with respect to the relationship
between spontaneous and scientific concepts is whether
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spontaneous concepts continue to be learned after scientific
concepts have created a certain minimal level of mental
hierarchicalness. That is, are spontaneous concepts only
learned by preschool children? This point is not really clear
in Vygotsky's translated writings. If it is true, tnen the
distinction between spontaneous and scientific concepts
becomes much less interesting, for it occurs only early in
development.

However, there do seem to be some contributions which
this spontaneous/scientific distinction can make. Two changes
in terminology will facilitate this usefulne "s. The first
change is to replace the'term "scientific" concept with the
term Vygotsky used when initially discussing such concepts.
He first used the words spontaneous and nonspontaneous
concepts. These words seem to include the necessary
distinctions without adding possible confusions caused by the.
use of the word "scientific" with its many other meanings. In

addition, it is helpful to differentiate attributes of the
concepts toemselves from the ways in which those concepts are
learned. thus a nonspontaneous concept is one which is high
with respect to characteristics 1, 2, and 3 (from the list of
five characteristics of scientific/spontaneous concepts), and
a spontaneous concept is one low with respect to the same
items. Items 4 and 5 then present important ways in which
concept learning can vary. Item 4 can now more clearly be
seen to be the same as the second process I discussed with
respect to the inter- to intra-movement: b) verbal
information about concepts or action sequences which the adult
may possess and which she or he may pass on to a child. This
indirect verbal means of gaining information about.a concept

kt

is contrasted with direct perceptual means of oper ting on
objects in the real world. To continue the above terminology,
learning from verbal descriptions and definitions i thus non-
spontaneous learning and learning through the object world is
spontaneous learning. r will return to this distinction as
soon as Item 5 has been discussed. Item 5 concerns the amount
of direct and systematic verbal instruction that is necessary
for the learning of the concept. This item is thus the same
as the first type of-process identified with respect to the
inter- to intra-movement: a) the directive function of the
adult with respect to the child's attention, actions, and
psychological functioning.

Vygotsky's and Gal'perin's examples of this directive
functi-n were all of the direct immediate personal kind: the
adult interacted in person with the child. such immediate
direction is very typical of learning in 'and out of schools.
But another way in which the directive function is
accomplished is also very typical of school learning -- removed
direction arising from materials used within the classroom.
Textbooks) worgbooks, ditto sheets, games, and objects all
exercise ditection over a child's activities. Thus, there are
two types of directive function: immediate and removed. Note
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that a single adult can reach many more children by a removed
directive medium (e.g., a textbook), but that only immediate
directive interactions can have a feedback loop that will
adapt the directives to the needs of a particular learner.

Now that these distinctions concerning spontaneous and
nonspontaneous concepts and spontanedus and nonspontaneou-
learning have been made, it is possible to discuss certain
types of learning not considered by Vygotsky. One can now
consider spontaneous and nonspontaneous concepts learned
spontaneously oc nonspontanepusly. In addition, the
differentiations made above with respect to Items 4 and 5
permit even more specific types of learning to be discussed.
By crossing the verbal ipformation/objQ.ct information (Item 4)
with the directive (immediate,or ,:emoved)/nondirective
(Item 5) (see Figure 3)4 one obtains Vygotsky's old
spontaneously learned category (object information learned
with nondirection--theyparadigmatic Piagetian learning,
situation) and the old nonspontaneously learned category
(verbal information learned directively--the paradigmatic
VygotSkiian learning situation). However, the ability of the
directive function to be accomplished in an immediate or a
removed fashion actually resultsin two parallel
nonspontaneously learnedlrategories--boti of which involve
verbal information learned under the direction of an adult,
but this direction may be immediate (in person) or removed (or
even involve immediate direction about a remo-?d direction,
e.g., a clarification of a ditto-sheet instructicn).

A new category even more important for mathematics
learning results from this crossing of Items 4 and 5. This is
the category of object information learned under the direction
of the adult. This direction may come in person (i.e., the
adult may observe a child interacting with objects and make
suggestions, summarize what is happening, etc.), or the
directive function of the adult may result from fhe adult
structuring the objects in such a way as to direct what the
child will learn from those objects. This lattet category
thus in'ludes all activities of children with structured
objects, i.e., with objects which possess in some aspect of
their physical form the properties and relations of the
mathematical ideas which it is desired that children learn.
For example, multibase blocks, Cuisenaire rods, Llultiplication
pieces, and chip computers all enable children to abstract
characteristics of our base ten system of numeration and
operations that can be performed within it. This new type of
learning thus returns to the two orthogonal axes proposed in
the discussion of Gal'perin's 1 "vels of internalization-
external objects/internal representations of objects and
verbal directives from another/verbal directives from self.

The :restriction of the meaning of nonsponta.,eous concepts
to the first tNree characteristics enables us to see more
clearly another point--that the "new math" thrust of the late
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fifties and early sixties was an attempt to make the mathe-
matical concepts learned early in school by children non-
spontaneous rather than spontaneous concepts. Sets of objects
were not just to be made and then used to aid calculation.
Such sets were to be placed within a more general Perspective
of sets in general, i.e., the sets of objects which have often
been used in elementary classrooms were to be viewed by
children as specific examples of the more general concept of
set. Likewise, nonbase ten systems of numeration were studied
in order to give additional meaning to the base ten system.
That is, in Vygotsky's terms, via these curriculum modifica-
tions children would learn with a greater consciousness the
concepts of set and of the base ten system. Whether the fact
that these curricular innovations fell short of their expected
results was due to the manner in which they were taught or
because the goal of such hierarchical generalization was
unrealistic is not at present known. Certainly the learning of
nonbase ten systems suffered by being approached mainly via
translations from the different system into base ten and back
again, rather than by working within that system to begin to
get a sense of its properties--which could then be generalized
to the base ten system. Teaching nonbase ten operations helps
adults understand the analogous base ten operations better
(e.g., Fuson, 1975). Dienes (1963) also suggests that this is
true for children. With structured materials, we now are in a
better position to assess Vygotsky's hypotheses abou* the
effects of a superordinate category (base systems in general)
upon the consciousness of particular mathematics concepts
(base ten operations).

As a final example of a mathematical nonspontaneous
concept, Jet us consider numbers. A cardinal number is the
measure of a discrete set of objects. This measure is often
arrived at directly by counting, although it may be derived
exact-1y or approximately in other ways. The notion that a
cardinal number can be derived by counting (i.e., that the
last counting number said when counting a set of objects is
the cardinal number for that set), must be constructed by
children. Children can be found who count a set and who
cannot then answer the question "How many?" about tnat set
(Schaeffer, Eggleston, And Scott, 1974). However, this idea
has already been constructed by many three-year-olds and most
four-year-olds; ",,s most children begin school with some
notion of a cardinal number. Such notions of a cardinal
number derived from counting might thus be considered to be
spontaneous concepts.* The usual school curriculum is based

*Because counting is high on Item 3 (it requires heavy
artificial cultural learning), it might be considered to he a
nonspontaneous concept even though it is low on Item 2
(presence within a hierarchy). This example thus illustrates
another difficulty -ith the notion of non-spontaneous
concepts: a given concept may shift categories depending upon
which criterion is used.
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on the set of natural numbers (or sometimes the set of whole
numbers), and it treats all of tl- operations ( +, x, = ) as

operations on natural or on whole numbers. Davydov (1979,
Note 1) and Gal'perin and Georgiev (1969) propose an alterna-
tive approach to number at the beginning of school (age 7 in

Soviet schools). This approach assumes that the concept of
number derives from the more general process of measurement of
a continuous quantity, i.e., a number results when one
determines the multiple relationship of some quantity to a
part of that quantify used as a measure or a unit of
measurement. A very active introductory curriculum is used in
which children measure various quantities using various sorts
of units. The measure of a quantity is thus always with
respect to a particular unit. The counting of discrete sets
of objects is a special type of measurement, a type where the
unit of measure is the unity (and discreteness) of any single
object. Thus from the beginning the natural numbers are
viewed as arising from a special sort of measuring process.
In addition to this difference, natural numbers are also an
example of a relatively rare and "nice" sort of measure--one
that comes out even. If one takes any quantity and any
measurer, thT chances are low that the resulting number (the
measure) will be a whole number. Thus, in this approach a
natural number is from t,le beginning a nonspontaneous
concept--it is viewed from the perspective of a number as
derived from a more general act of measuring.

As with any curricular innovation, we need to obtain
information about the immediate and long-term advantages of
the inclusion of nonsr'nntaneous concepts in the curriculum.
Obtaining such information will be difficult and slow, for the
long-term effects may be subtle and far-reaching. But in
general, it seems that whenever nonspontaneous concepts rather
than tne roughly corresponuIng spontaneous concepts can be

learned by children, it would be beneficial to teach the
nonspontaneous concepts. The real question then becomes
whether and/or when concepts can be taught as nonspontaneous
ones.

The Zone of Proximal Development

Vygotsky was interested in the relationships between
learning and development. He rejected the view that all
development is the result of learning, i.e., that little bits
of learning increment are responsible for any intellectual
growth of a child. He also rejected the view that development
is relatively independent of learning, that developmental
processes unfold without regard to and not dependent upon
learning that has occurred, and that learning merely uses the
achievements of development as these achievements occur.
Instead Vygotsky postulates another relationship between
learning and development, one that is dependent upon his view
of intellectual funAlOphing as moving from the
inter-psychological tit5,tht intra-psychological plat-.



Vygotsky's position results from the observation that with the
support of an adult or of more capable peers, children are
able to solve p?oblems and accomplish var -pus tasks that they
are unable to do alone. Vygotsky focuses attention upon this
by giving it a name: a zone of proximal development. This
zone of a child is

the distance between his actual developmental
level as deterrined by independent problem-
solving and his level of potential development
as determined through problem-solving under
adult guidance or in collaboration witn more
capable peers. (1978, p. 86)

Thus, learning is seen to lead development by creating zones
of proximal development in the child:

that is, learning awakens a variety of internal
developmental processes that are able to
operate only when the child is interacting
with people in his environment and in coopera-
tion with his peers. (1978, p. 90)

The zone of proximal development is where inter-psycholoclical
processes first occur. When such processes later become
internalized as intra-psychological processes, they become
part of the child's developmental achievement and are no
longer in the child's zone cf proximal development. Thus the
relationship between development and learning is a dynamic
one, with development providing constraints upon the type of
learning that is possible but with learning through the
support and guidance of others furthering and contribu,ing to
developmental progress.

The notion of the zone of proximal development involves
a starting point (actual developmental level, measured by
independent problem solving) and an end-point (potential
developmental level, measured by cooperative problem solving).
This notion thus necessarily involves a learning path, a path
from the actual developmental level to the potential level.
To me, such a path seems to be constructed in at least three
different ways. The first learning path is defined by a task
analysis of the subject matter to be learned. Such an
analysis specifies a hierarchical set of skills and subskills
and marches the child through this hierarchy. Such a learning
path in the early number area might move from counting, to
symbol recognition, to addition with very small numbers, to
addition with larger single-digit numbers, to addition of -
double-digit number and a single-digit number without
carrying, to such problems with carrying, to the addition of
two double-digit numbers without carrying, etc.

A second learning path derives from attempts to trace the
spontaneous development of concepts in the mind of the child.
This spontaneous developmental path is then used to define the
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path of instruction for other children. An example of this
approach is to attempt to trace a developmental sequenceof
the counting solution strategies children use in solv: .g
addition problems (e.g., Fuson, 1979, Note 2). Here the
problem hierarchy is greatly simplified (i.e., the same
strategies are used for all of the above types of addition
problems), but a solution hierarchy is imposed arising from
development within the child. Each of these two approaches
determines a different learning path, i.e., the tasks
presented for cooperative learning would differ for these two
paths.

The Soviet view of the derivation of the learning path is
yet another one. This path is not determined just by the
nature of the subject matter to be learned nor by the
spontaneous sequence of development of a child. The direction
of this third path is affected by learning which occurs along
it. That is, learning is not assumed merely to help
development along in its inevitable path; some learning (in
particular some school learning) is hypothesized to change the
path of development. Certain concepts are,so powerful and
general that they become tools of thought, tools that change
the course of development. An example of this type of
learning path in early mathematics learning might be the
concept of ten a., a unit. Becore this concept is learned,
children consider a number such as 37 to be composed only of
37 single units. They would make a set of 37 by taking 37
sticks (rather than three groups of JO sticks and 7 single
sticks), and they would add 37 to another number by
counting-on to 37 from the other number either mentally, on a
number line, on a hundreds board, on a Chisenbop finger
sequence, or on a set of objects, or possibly they mignt add
by a counting-all process using one of these methods. Once
the concept of 10 as a unit has been learned, the cowiting
process in all of these circumstances can be changed:
counting-on can proceed with jumps of 10 (e.g., 48 + 37 = 48,
58, 68, 78, 79, 80, 81, 82, 83, 84, 85), vertical +10
movements can be made on a hundreds board as well as
horizontal +1 movements, tens fingers can be added as well as
ones fingers in Chisenbop, and groups of tens can be made and
counted by ten. All of these procedures can then lead to the
addition algorithm--the adding of like-sized units (ones,
tens, hundreds, etc.).

This example indicates that the actual path of learning
is actually a composite of all the three single kinds of paths
proposed: the subject matter at least partially determines the
real learning path (i.e., ten as unit notion is fundamental to
the understanding of the addition algorithm); the new idea
is not just learned, it is_absorbed into the child's own
developmentally determined procedure; and the new idea does
in fact change the direction of development. In undertaking
research on children's learning, it may be necessary to focus
upon these three different derivations of learning paths and
even to pursue one of them temporarily as though the others
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did not exist, but ultimately they must he put together. The
first two derivations are common in American thinking. The
one of proximal developm nt may help to focus us upori, the

equally important third type of derivation.

Vygotsky does not further analyze the zone of proximal
development. Without additional analysis and specificity, the
construct does little more than restate the hypothesized
movement from the inter-psychological plane to the intra-
psychological plane. This restatement does serve to f ..us

upon the relationship between learning and development and it
does enable one to concentrate directly upon that which is of
primary :.mportance in education--the effects of instruction
upon children's learning and upon their consequent
development. However, if this construct can be analyzed
further, it may become quite useful. A small first step
towards such an analysis is given below.*

Several attributes of the zone seem important. First,
the 'one is clearly conceptualized by Vygotsky as a distanLe,
in particular as the distance between a starting-point that is
the child's present level of achievement and an end-point
which is where he or she is able to go with

Past achievement
Present developmental. D(istance) . Achievement

level S(tart) E(nd) level with
State of readiness support

Now D might be considered to be dependent upon at least the
following:

D(istance) = individual learning Rate
x individual learning Power
x Time spent in cooperative learning
x Level of support necessary for

learning to or'cur.

D=RxPxTxL
Vygotskv dealt explicitly with only one of the factors

in this equation--power. His one example concerning the zone
of proximal development was of two children who both had
tested mental ages of eight year:, but one of whom could solve
tasks with the aid of the' experimenter up to the level of a

*After this manuscript was completed, another such analysis
came to the attention of this author. This analysis 13 in:
Brown, A. L. and French, L. A. The zone of ILotential
development: Implications for intclli_rnce testing in the
year 2000. Technical Report No. 128. Champaign, Illinois:
Ce-,ter for the Study of Reading, University of Illinois, May
1979. ERIC: ED 170 737.
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twelve-year-old and the other who could onla, solve problems
with help up to the level of a nine-year-old.

None of the factors in the distance equation are new
ones, but work in this coun'-ry concerning the factors has
tended to come from separate areas of research and remain
unconnected. Psychological and psychometric research has
examir2d learning rate (e.g., number of trials to criterion)
and power (e.g., total score), though these constructs are
often conLounded (as with timed tests). Our language contains
both of t.iese ideas: we talk about "fast" (Rate) kids and
"bright" (Power) learners, but often do not distinguish very
carefully between these groups. Educational research, on the
other hand, has examined the relationships between time and
distance. Traditional schooling has tended to hold time
constant (i.e , giving children of varying rates and power the
same amount of time on a given subject matter), with the
result that distance varies. Approaches like individualized
learning and :7astery learning have instead held distance
constant (-i.e., defined certain learning tasks as required for
all children), while varying time.

Having all of these constructs in one equation is useful,
for this perhaps can facilitate the relating of these too
often unrelated concepts. However, in order to utilize the
relationships in the equation most effectively, adequate_
measures of the factors in the equation are needed. IQ is the
usual measure of both individual power and of rate. Starting
points and ending points are measured by achievement tests and
by teacher-made tests, but the former of these especially axe
usually not at a very detailed level. T'me is measured by
class periods (or occasionally by time-on-task), and level of
support is rarely measured at all. Thus we do not have at
resent very adequate measures of any of these factors.
dequate measures are necessary if the-relations in the
quation are to become any more specific.

p
A
e

The distance equation does serve to point out an
additional aspectdof the learning situation. The starting
point, the rate, and the power are all attributes of
individual children. These factors are not able co be
controlled by the teacher or by the school: However, the end
points (and thus the distance), the time, and the level of
support are factors which are under the control of the school
and tide teacher. Explicit reali;ation of the relations among
these types of factors may serve to permit sensible
adjustments to be made in the factors which are under the
control of the tes4aher.

Li
conceptu
explicit
proximal
in the eq

ttle rec.= -cch has examined the level of support
alized as such. Even though Vygotsky did not
ly discuss this factor with respect to the zone of
development, it is the most distinctly Soviet factor
uation. This aspect also may be try- largest
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contribution the idea of the zone of proximal development has
to make. The basic notion of the zone of proximal development
is that children giving the same response on a given item may
have different amounts of remaining untested knowledge. Thus,
if provided with a bit of additional knowledge, one such child
may be able to continue to respond while another may not. The
level of support can be considered either with respect to a
given learning process or with respect to a given response
measure. Techniques like recognition (rather than recall)
tasks, cued recall, and other probed memory tasks are examples
of response measures that provide a higher level of support.
The level of support may not only provide additional
information; it may also involve organizational or meta-level
understanding of a task. That is, the adult may possess an
understanding of the task as a whole which produces helpful
directives that the chil6 is unable to provide for herself or
himself. Thus, .the level of support might be thought of as the
number of steps in a'given sequence of goal-directed activity
(see Figure 1 or 2) that an adult has to accomplish or as the
number of increasingly specific hints a teacher might have to
give before a given problem is accessible to solution.

Certain modes of teaching might be related to a continuum
of such levels of support. Discovery learning might ba
characterized as that which is accomplished with the minimal
level of support possible, while didactic teaching uses the
maximal level of support--the child is explicitly told the
whole process, definition, relationship, etc. Sometimes
discovery learning and didactic teaching are posed as the only
alternatives, while the whole range of decreasingly direct
hints, observations, etc., that a teacher may make are
ignored. The use of a considerable range of such supports
would seem to be particularly important in research which
tries to find out what a child can do or can understand.
Thus, finding interactions between different levels of support
and the distance a child can go in a set of tasks would seem
to be quite impc ant as a research goal.

In summary, if we are 'ble to define aspects of the zone
of proximal development more analytically, it may come to
serve as a useful theoretical construct. Its main purpose in
its presently fairly undefined state is nevertheless
important--it suggests that we might profitably turn our
research activities toward ascertaining what children can do,
especially with adult or with peer help, rather than continue
to focus only upon what children in fact do do. Furthermore,
Vygotsky's fairly complex notion of the relationship between
development and learning ought to help us to steer clear of
two naive alternatives: an overemphasis only on 1) the level
of a child's development (for example, as in the interpreta-
tion of Fiaget's theory as dictating that one simply waits for
the child to become concrete-operational) or 2) only on what
we want children to learn without regard for wnat the child's
developmental level 'gays about such learning.

23
2



Reference Notes

.

1. Da'..ydov, V. V. The psychological characteristics of
the formation in children of elementary mathematical
op-2rations. Paper presented at the Wisconsin .

Conference on the Initial Learninr of Addition and
Subtraction Skills, Racine, Wisconsin, November 26-29,
1979.

2. :son, K. C. Counting solution prccedures in addition
and subtraction. Paper presented at the Wisconsin
Conference on the Initial Learn:nd of Addition and
Subtraction Skills, Racine, Wisconsin, November 26-29,
1979.



References

Bullock, M., & Gelman, R. Numerical reasoning in young
children: The ordering principle. Child Development,
1977, 48, 427-438.

Dienes, Z. P. An experimental study of mathematics
learning. London: Hutchinson, 1963.

Fuson, K. C. The effects on preservice elementary-
teachers of learning mathematics and means of
teaching mathematics through the active manipulation
of materials. Journal for Research in Mathematics
Education, 1975, 6(1), 51-63.

Fuson, K. C. Towards a model for the learning of matne-
matios as goal-directed activity. In K. Fuson &
W. Geeslin (Eds.), ExT5Torations in the modeling of
the learning of mathematics. Columbus, Ohio:
ERIC/5MEAC, 1979.

Fuson, K. C. The development of self-regulating aspects
of speech. In G. Zivin (Ed.), The development of
self-regulation through speech. New York: Wiley,
1980.

Gal'perin, P. Ya. An experimental study in the formation
of mental actions. In Psychology in the Soviet
Union. London: Routledge & Kegan Paul, 1957.

Gal'perin, P. Ya., & Georgiev, L. S. The formation of
elementary mathematical notions. In J. Kilpatrick
& I. Wirszup (Eds.), Soviet studies in the
psychology of learning and teaching mathematics
(Vol. 1)\ Chicago: University of Chicago, 1969.
(Reprinted from Reports of the Academy of
r...dagogical Sciences of the USSR, Vol. 1, 1960.)

Lesh, R. A., & Nibbelink, W. H. Mathematics around us,
kindergarten. Glenview, Illinois: Scott,
Foresman, 1978.

Sch'effer, B., Eggleston, V. & Scott, J. L. Number
development in young children. Cognitive Psychology,
1974, 6, 357-361.

Vygotsky, L. S. Thought and language. (E. Hanfmann & G.
Vakar, Eds. & Trans.) Cambridge, Massachusetts:
MIT Press, 1962.

Vygotsky, L. S. Mind in Society. (M. Cole, V. John-Steiner,
S. Scribner, & E. Souberman, Eds.) Cambridge,
Massachusetts: Harvard University Pre: s, 1978.

25/mg

31



QUANTITATIVE COMPARISONS AS A READINESS VARIABLE FOR
ARITHMETICAL CONTENT INVOLVING RATIONAL COUNTING*

Leslie P. Steffe
The University of Georgia

Counting has not been considered explicitly in studies of
early learning of mathematics to the extent it deserves. One
reason counting has not been given a central Opsition is that
the mathematics curricula in the United States are, in the
main, based on cardinal number for the early years. In

Freudenthal's (1973) opinion,

In the genesis of the number concept, the
counting number plays the first and most
pregnant role. This should be recognized
rather than ignored by developmental
psychology and pedagogics." (p. 191)

Fteudenthal goes on to claim, "!o doubt the stress in
psychology on the numerosity aspect is due to Piaget"
(p. 192). In the face of Freudenthal's claim, Piaget has
claimed that number for the young. child is both cardinal and
ordinal.

There seems to be a contradiction between the claims of
Freudenthal and Piaget. But, in actuality, there is little
conflict. Piaget has never studied the development of counting
in the same way that he studied the development of the objects
one might call number in the child. But Freudcnthal's
criticism is base& in the main, on the counting
"mathematically called the ordinal number" (Freudenthal, 1973,
p. 171). Essentially, then, Freudenthal's criticism of Piaget
is a reflection of the fact that Piaget may not have gone far
enough in his studies of the development of the child's
conception of number.

One should not claim that the emphasis on cardinal number
in the mathematics curricula of the United States is due to
Piaget. The emphasis is based on the theory of cardinal
number in mathematics. Freudenthal's criticism of the
pedagogs should be interpreted in light of the mathematics
-involved, even though he does allude to the use of Piagetian
theory by pedagogs. To clarify the issues, an overview of
number in Piagetian theory and aspects of ordinal number for
counting arediscussefi.

YTFMFPer is based on the following report: Steffe, L. P.,
Hirstein, J. J., and Spikes, W. C, Quantitative comparisons
and class inclusions as readiness variables for learning
first-grade arithmetical content. Technical Report No. 9.
Tallahassee, Florida: Project for Mathematical Development cf
Children, 1976. ERIC: ED 144 808.
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Interpretations of Number

Number in Piagetian Theory

In his classic work, The Child's Conception of Number(1952), Piaget attempted to show that Cardinal and ordinalnumber are developmental, arising in the child as a synthesisof Grouping I, Primary Addition of Classes, and Grouping V,Addition of Connected, Asymmetrical Relations. While the datapresented in this book are "old," the basic theory of theGenevans concerning the development of number in the child hasnot changed substantially over the last three decades (Piaget,1970; Beth and Piaget, 1966; Sinclair, 1971). Number, forPiaget (1952), "is at the same time a class and an asymmetri-cal relation" (p. 184). Two essential conditions for the"transformations" of classes into numbers exist (Piaget, 1952,pp. 183-184). Given a class, all of the elements must somehowbe regarded as equivalent, but at the same, time distinct. Toillustrate these two conditions, imagine some hierarchicalsystem 0 c Al c A2 C A3 c ... c Al of classes where
the following classes cintain single elements.

1. Al

2. Al' = A2 - Al

3. A2' = A3 - A2

4. A3' = A4 - A3

For example, Al could be a bead, Al' a cube, A2' a bean,etc.

The first condition given is that all elements must beregarded as equivalent (all qualities of the individualelements are eliminated). But, if condition one holds, then,for example, A2 would not be a class of two elements, butinstead only one, for Al U Al' = A1- -which is to saythat the quality of the elements is eliminated. If thedifferences of Al and Al' are taken into account, thenthey are no longer equivalent to one another e _ept withrespect to A2. This brings the second essential conditioninto focus. In effect, the equivalent terms must remainsomehow distinct, but that distinction no longer has recourseto qualitative differences. Given an object (the bead), thenany other object is distinguished from that object byintroducing order--by being placed next to, selected after,etc. "These two conditions are necessary and sufficient togive rise to number. Number is at the same time a class andan asymmetrical relation..." (Piaget, 1952, p. 184). Thus,according to Piaget (1952, p. 184), in qualitative logic,objects cannot be, at one and the same time, classified andseriated, since addition of classes is commutative whereas



seriation is not commutative. However, if the qualities of
the elements are abstracted, then the two groupings (I and V)

np longer function independently, but necessarily merge into a
single system.

In'Piaget's system, then, number is not to be reduced to
one or another of the groupings, but instead is a new
construction--a synthesis of Groupings I and V. Elements are
either considered in terms of their partial equiva]ences and
are classilied, or are considered in terms of their
differences and are seriated. It is not possible to do both
at once unless the qualities are abstracted (or eliminated);
then it is necessary to do both simultaneously.

The only way, then,' to distinguish A1, A11, A2',
A3', ...is to senate them: A-* A A -* , where-*
denotes the successor relation and A represents Ai' where
all the qualities of the element of Ai' have been
eliminated. Clearly, Piaget considers each A to be a
unitelement, at once equivalent to but distinct from all the
others, where the equivalence arises through the elimination
of qualities and the distinctiveness arises through the order
of succession.

The notion of a unit is central in Piaget's system and is
not deducible from the Grouping Structures, but rather is the
result of the synthesis already alluded to. Once reversibility
is achieved in seriation and classification, "groupings of
operations become possible, and define the field of the
child's qualitative logic" (Piaget, 1952, p. 155). Here
operatiogpl seriation has as a necessary condition,
reversibility, at the first level of reciprocity.

re,

A cardinal number is a class whose elements
are conceived as 'units' that are equivalent,
and yet distinct in that they can be
seriated, and therefore ordered. Conversely,
each ordinal number is a series whose terms,
though following one another according to the
relations of order that determine their
respective positions, are also units that
are equivalent and can therefore be grouped
in a class, Finite numbers are therefore
necessarily at the same time cardinal and
ordinal... (Piaget, 1952, p. 157).

The development of classes and relations does not, as it may

seem from the above quotations, precede the development of
number in Piaget's theory: those developments are
simultaneous. Without knowledge of the quantifiers "a,"
"none," "some," and "all," which implicitly involve cardinal
number, the child is not capable of cognition of hierarchical
classifications. A genetic circularity consequently exists in
the developmental theory of classes, relations, and numbers.



Given that Piaget so unequivocally states that number for
the young child is both cardinal and ordinal, is
F.reudenthal's criticism justified? Before attempting to
answer, aspects of ordinal number theory are discussed.

Ordinal Number

Just as set equivalence is a basic, notion for cardinal
number, set similarity is a basic concept for ordinal number.
For clarity, the order relations discussed below are
asymmetric and transitive as well as being connected. Two
ordered sets are called similar if there exists a one-to-one
correspondence between their elements that preserves t:,e order
in the two sets. In symbols, "A is similar to B" is denoted
by "A .-27--"` B." Hausdorff (1962, p. 51) assigns order types to
ordered sets in such a way that similar sets, and only similar
sets, have the same order type assigned. In symbols, r s

means R S. If a set is well-ordered, then its order type is
called an ordinal number. If A is a well ordered set, then A
has a first element, say a0; A - tea has a first element,
say al; A - [tap, all has a first element, say az;
etc., so that A = Sa0, al, a2, a3, ...1. The notion
used here is that the index of every element is the ordinal
number of the set of elements preceeding it. For a3, "3" is
the ordinal number of tao, al, a2} which is called a
segment of A determined by "as." In more general terms,
each element a of A determines some segment S where S = ExE A:
x < a). If Q = txe A: x S3, then A.= S + Q. Note that a S

because < is irreflexive, so a is the first element of Q.

As indicated above, the elements of a set A which is well
ordered can be indexed by successive ordinal numbers. If A is
a finite set, then A = (a0, ar, a2, an_11 and n
is the ordinality of A where 0 is the ordinality of the empty
set. Because any ordering of a finite set is a well-ordering,
it is impossible to distincuish the orderings with reference
to the ordinal number of the set; i.e., all orderings give the
same ordinal number. Thereby, the ordinal and cardinal
numbers of finite sets correspond, and 't is possible to find
the cardinal number of a set by a process of counting, that
is, by indexing the elements of the set A by tht ordinal
numbers t0,1,2,..., n-11 by virtue of successive selection of
single elements. (Select some a0, then some al, etc.,
until the last one an_i is seleCted.) Then n is called the
cardinal number of the set. This process is often referred to
as counting.

Concretely, if A is a finite set to be counted, then by
successive selection of elements, successive segments of set A
are determined. "One" in the selection of the first element
has both cardinal and ordinal characteristics in that "one"-
tells how many elements have been selected and also that the
first one has been selected. A subset of the collection A of

-

one element has also been determined. "Two" in the selection
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of the next element also ha$ both cardinal and ordinal
characteristics in that "two" tells how many elements have
been selected and also that the second one has been selected.
The segment corresponding to "two" is an ordered set, is a
subset of the collection A, and contains the set consisting of
the first element. It is ordered by the relation "precedes,"
which is transitive and asymmetrical. If this counting
process is continued until A is exhausted, then
A = tal, a2, an3 has been well-ordered by the
relation "precedes." A chain of sets has been
established in that if Al = [all, A2 = {al, a2 }.,
etc., then A1c A2 c ...c An . In this sense, one can
say that one is included in two, two is included in three,
etc. If A is counted in a different way, A = {al *, a2*,
a3*, an*i. It must be noted that while ai* may not
be the same element as ai, nevertheless ai* is the ith
element and also i is the cardinal number of Ai* =j. al*,

ai*1 where i < n. While Ai and Ai* are
similar (and theLefore equivalent), they are not necessarily
equal ordered sets.

Addition and subtraction of ordinal numbers. If A and B
are disjoint ordered sets, then the set theoretic sum of A and
Bi(A + B) is a new ord_red.set such that the order of the
elements of A is retained, the order of the elements of B is
retained, and every a E A precedes every b £ B. If a is the
order type of A, b the order type of B, then a + b is the
order type of A + B. An example of ordinal number addition
follows. If a = 5 and b = 3, then 5 + 3 is the ordinal number
of the set a2, a3, a4, a5, b1, h2, b3 }.
To rename 5 + 3, the child could count "one," "two," "three,"
"four," "five," "six," "seven," "eight," or could count "six,"
"seven," "eight," which represents a counting-on of B to A.
In both cases, 5 + 3 is renamed as 8.

Subtraction of ordinal numbers is possible in special
cases. If d and are ordinal numbers and a <0 , 4 and 0
determine a unique ordinal number E, satisfying the equation

+ = (Hausdorff, 1962, p. 74). is of type W (0) - W (a)
where W (0) = .ordinal number < Oi . Clearly, if d < 0 ,

W (d) c W (0). An exam le is if a is 7 and 0 is 9 then
W (d) = t 0,1,2,3,4,5,6 ; W (9) . £0,1,2,3,4,5,6,7.8 and
W (0) W (d) = i7,83. r is a remainder in the f owing
sense. if a is an element of a well-ordered set P, S = E A:
x < a3 and Q = [I/ e A: y then P = S + Q and S is the
segment and Q is the remainder determined by a. Essentially,
then, t, is the ordinal number associated with the remainder of
W (P) determined bye( . The solution of 4 + = p is denoted
by ,9 - a for finite d and fi.

In the case of the equation n + = $ where a < B, the
solution is also represented by 0 - c( for finite d and P.
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However, the solution is arrived at by the following process:
n + (0.- 1) is the predecessor of 13; n + (c(- 2) is the
predecessor of n + (a- 1); and so forth, until n is reached.
Concretely, if x + 5 = 11 is the equation, one counts back
from 11 to reach 6 (the solution) in the following way:
"ten," "nine," "eight," "seven," "six"; so since six is the
predecessor of x + 1, x must be six.

In the case of the equation 5 + x = 11, the solution is
found by counting the remainder, starting with the first
element of the remainder and proceeding to the last. It should
be clear that one could also start with the last element of
the remainder and count backward to the first. In either
case, a double counting process is necesbary: ten is one;
nine is two; eight is three; seven is four; six is five; so
the answer is six. Or, six is one; seven is two; eight is
three; nine is four; ten is five; eleven is six; so the answer
is six. In the case of counting-back, rather than counting
predecessors of elements in the reminder one can count the
eleme themselves: eleven is one; ten is two; nine is
three, ighc is four; seven is five; so the answer is six.

Comments on Piagetian Theory of Number

From the discussion in the preceding two sections, it can
be seen readily that Piagetian theory of number does not
include a theory of counting. Counting, however, is an
integral part of the theory of ordinal number (and thus
cardinal number in the case of finite sets). But neither
Grouping I nor Grouping V includes a theory of counting (or of
arithmetical operations). However, in Piaget's analysis, a
synthesis of Grouping I and V gives rise to number. So,
having the Groupings not include counting or operations would
not be a shortcoming if Piaget provided a detailed
developmental structural analysis of number in a way analogous
to that provided for Groupings. But the fact is that no such
theory or data exists in Piagetian theory concerning the
cognitive development of number beyond the objects called
number. Piaget's theory and research concerning number stop
with the objects he calls number. He did not go on to
investigate, developmentally, counting or operations, although
"additive" and "multiplicative" composition of number are
discussed. Freudenthal's criticism that Piaget studied only
the "numerosity" number is not fully justified in the context
of Piaget's studies, as Piaget studied set similarity and re-
lations'lips between cardinal and ordinal number. But

.,

Freudentnal's observation that PLaget did not study coun'.ng
is certainly valid. Further, as noted, Piaget did not study
addition and subtraction of ordinal numbers per se.

Piaget's Experiments on Cardinal and Ordinal Number

Piaget (1952) did use counting to study development of
cardinal and ordinal number. In his study, two problems were
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of concern. First, a child had to determine a cardinal number
given an ordinal number, and second, the child had to
determine an ordinal number given a cardinal number. Three
experimental situations were employed, one involving seriation
of sticks, one seriation of cards, and one seriation of
hurdles and mats. In the seriation of sticks experiment, the
child was asked to seriate ten sticks from shortest to ;longest
and then was given nine more sticks and was asked to insert
these into the series already formed (the material was
constructed in such a way that no two sticks were of the same
length). He or she was then asked to count the sticks of the
series, after which sticks not counted (or sticks the child
had trouble counting) were removed, apparently along with one
or two he or she did not have trouble counting. The
experimenter then pointed to some stick remaining and asked
how many steps a doll would climb when it reaches that point,
how many steps would be behind the doll, and how many the doll
would have to climb in order to reach the top of the stairs
formed by the sticks. The series was then disarranged and the
same questions as before were put to the child, who would have
to reconstruct the series in order to answer the questions.

There is no question that aspects of ordinal number and
cardinal number were involved in the above experiment. Any
conclusion drawn with regard to number, however, oy necessity
is a function of a capability to construct a series of sticks
based on the connected asymmetrical relation "longer than,"
having little to do with ordinal number. To demonstrate the
point more concretely, an eight-year-old child was asked which
of a collection of books on a table would be the third one.
He answered, "What do you mean, any one could be third."
Piaget's experiment with the staircase, then, was more an
experiment concerning similarity between a set of n sticks
ordered by "shorter than" and the standard counting set
11,2,...,n) than it was an experiment concetning ordination
and cardination. A similar analysis holds for the seriation
of the Wards experiment. While no analysis of the h rdles and
mats experiment is given, suffice it to say that it too
involves specific relations. In the mathematical development,
it is the relation "precedes" which is important, not
"shorter than" for sticks, etc. While particular order
relations determine order of precedence, precedence is only
incidental and not primary in the ordering.

In the three experiments discussed in this section,
counting is only incidental. No analysis of counting is
provided nor is it at all clear how counting fits into the
developmental theory of cardinal and ordinal number. It would
seem that counting would be based on ordinal numbet. But to
use it tp study developmental relations of cardinal and
ordinal number introduces circularity of c,,unting and cardinal
and ordinal number in development--a circularity which may not
be warranted. Counting typologies exist which may be
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important for the study of the development of number in the
child. These typologies offer a framework for the study of
the role of counting in development.

Counting Typologies

Study of the development of children's counting is sorely
needed, along with elucidation of its rely'-'-nship to addition
and subtraction. Three types of counting easily identi-
fiable--rote counting, point counting, and tional counting.
The basis in mathematics for rote count , the set of
ordinal numbers {1,2,-0}. Behavior rote counting is
the recitation Of the symbol chain "one," "two," "three," ...

The basis in mathematics for point counting is the similarity
between a collection of n elements and the set of ordinal
numbers [1, 2, 3, f n1 represented by indexing elements:
A = 1.31, a2, Behaviorally, sucessive elements
of A are selected until they are exhausted. The basis in
mathematics for rational counting is counting-on :Ind
counting-back. But it must be understood that, behaviorally,
counting-on and counting-back must be associated with mental
representations of collections. Behavioral aspects of rational
counting are of four identifiable types. The first is
rational count-on without a tally. Here, a child must be able
to find the number of elements in a given collection P when s
elements of P are screened from view and q elements are
visible. The task is diagrammed in Figure 1.

P items

0 0 0
0 0

Figure 1. Rational Counting-on Without Tally

The child is told the number of elements in S k,ay seven) and
asked to find the number of elements in all (in P). The
elements of S are not subject to a point count. The child may
start at one and count to seven, but the more efficient
behavior is to start at seven and count "eight," "nine,"
"ten," "eleven," "twelve.". There are twelve in all. In this
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procedure, the child was not required to tally the five
visible items by the task demands. Rational counting-on with a
tally is demonstrated by Figure 1 if the child is told the
number of items in all (12) and asked to count-on to find the
number of items under the cover (the number in S).

Rational counting-back without a tally is demonstrated by
Figure 1 if the child is told he number of items in all (12)
and is asked to count back to find the number of items under
the cover. Rational counting-back with a tally is
demonstrated by Figure 1 if the visible elements are covered
from view and the child is told the number of items in all
(12) and the number of items under one of the covers (say
five), and is asked to count back to find the number of items
under the other cover.

Counting Typologies and Ordinal Number Addition and
Subtraction

In a previous example of ordinal number addition
(5 + 3), the elements of a2, a3, a4, a5, bl, b2, b3
should be thought of as being similar to the ordinal numbers

2, 3, 4, 5, 6, 7, 83 where bl corresponds to 6, b2 to
7, and b3 to 8. Rational counting without a tally is close
to the similarity, but the association of ,risible objects with
numbers does not require the mental association of b with 6,
etc. In that the task for rational counting-on without tally
does not deman,,the association to be mental, the task for
rational countin4-on with a tally is the better task to test
the child's capability to form a correspondence of the
remainder (b1, b2, b3 in the example) of a set with the
ordinal numbers corresponding to that remainder.

The following 'ask would seem to be an even more precise
test of ordinal number addition. The child is faced with both
the segment and reminder in a covered state. He or she is
given the number in each and told to find the number in all.
This task would represent a distinct improvement over those of
the previous paragraph providing that the child did not use
fingers to represent one or both collections, but kept a
running tally when he or she counted the remainder. In view
of this task, a task for rational counting-on with a tally may
be too conservative a task for ordinal number addition. But
it is better than rational counting without a tally. As there
is no way to insure that child will not use fingers as a
tally, it is also better than the task just described.
Ordinal number subtraction is represented nicely by the task
requirements for counting-back with a tally.

Task demands represented by counting-on with a tally are
exemplification of conceptual requirements associated with the
solution of the equation 5 + x = 11. Task demands represented



b' counting-back with a tally are exemplification of
conceptual requirements associated with the equation
s + 5 = 11, each discussed earlier. Counting-on with a tally,
then, makes demands different from strictly ordinal number
addition. In the former, the child knows the point to which he
or she has to count, and constructs the remainder. In ordinal
number addition, he or she constructs the containing set.

Research Hypotheses

Piaget's notion of number is quite close to the concept
of a well-ordered finite set. But because counting is not
fully described by a well-ordered set, the following
hypothesis is expected to hold:

Research Hypothesis 1. Children who are
operational with number (in a Piagetian
sense) are not necessarily able to rational
count-on or rational count -back with or
without a tally. But children who are not
operational with number (in a 'iagetian
sense) are not expected to be able co
rational count-on or rational count-back
with or without tally.

There is little rationale in theory for a relationship
to exist beeween rote counting and number as described by
Piaget. Children can learn to rote count through exposure to
events on a day-to-day basis--from ocher childree,
telo\lision, adults, etc.--in a way analogous to Janguage
learning. F learning to recite the number names in proper
sequence bears little conceptual relationship wi h being
operational regarding number. The second research hypothesis
is then:

Aesearch Hypothesis 2. Numerical skills
Predicated on rote counting are independent
of a child's being operational with number
(in a Piagetian sense),

Children's acquisition of rational counting-on and -back
would seem to be highly related to whether the children here
operational with number (in a Piacetian sense). Children who
are operational ut cannot rational count-on or -back would,
theoretically, possess the objects called ordinal number, but
would not have integrated counting into that conception. Such
integration would seem to be accelerated easily by experiences
with counting. But children who are not operational (in a
Piagetian sense) with number would not yet have developed the
objects called ordinal number (modeled by a well-ordered
finite set) and would thereby be greatly limited in
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acquisition of rational counting-on or -back. Tne third
research hypothesis is then:

Research Hypothesis 3. :Auisition of the
ability to rational count-nn or -back is
highly related to a child's being operational
with number (in a Piagetian sense).

A child's ability to obtain cardinal information from
ordinal information, and vice versa, has been stueied by
Piaget ias reviewed earlier). Piaget's studies were
critici2ed on the basis that rCations hat=ing tn (9--)

with number were involved. With tasks designed to reduce the
severity of that criticism, it shoull be the case that the
ability to obtain carcinai information from ordinal
information (and vic: versa) is not a necessary part of a
child's being operational with number (in a Piagetian sense).
This statement is based on the role of counting in such an
ability. The fourth research hypothesis is then:

Research Hypothesis 4. Children who are
operational with number (in a Piagetiah
sense) are not necessarily able to obtain
cardinal information from ordinal information.
But children who are not operational with
number are not expected to be able to obtain
cardinal information from ordinal information.

Because tasK.demands represented by counting-on with a
tally are exemplification of conceptual requirements
associated with solution of the equation a + x = b where a

and b are ordinal numbers and a < b, children who are
operational with number (in a Y'lagetian sense) would not
necessarily be able to solve Problems which are modeled by the
equation a + x = b, but should be able to acquire such
facility. Children who are not operational with number in a
Piagetian sense should experience great difficulty in
acquiring the ability to solve such problems. The fifth
research hypothesis is then:

Research Hypothesis 5. Acquisition of t.4e

ability to solve problems modeled by a + x =
b (a < b and orginal numbers) is highly
related to a child's being operational with
number (in a Piagetian sense). Moreover,
children who are operational with number are
not necessarily able to solve problems
modeled by the equation form a + x = b.
Children who are hot operational with number
are not expected to be able to solve problems
modeled by the equation form a + x = b.
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Design of the Study

Sample

The first-grade children in Oglethorpe Avenue Elementary
School and Whitehead Road Elementary School, Athens, Georgia,
were used as an initial pool of children. All of these
children were administered the SMSG Scale 204, Counting
Members of a Given Set, and SMSG Scale 205, Equivalent Sets in
September 1974. Only childre, for whom evidence was present
that they could point-count to at least seven were considered
as a population.

A test of quantitative comparisons (see Appendix 1) was
then administered to all of the children in the population.
Children were judged to be either extensive quantitative
comparers or gross quantitative comparers. If such a judgment
could not be made, that child was not considered for the
sample., The relationship between extensive quantity and gross
quantity and number in Piagetian theory has been explicated
elsewhere (Steffe, 1966). An assumption made in this study
was that children who were classifieJ as extensive
quantitative comparers were operational, with number in a
Piagetian sense. Children who were classified as gross
quantitative comparers were not considered to be operational
with number in a Piagetian sense.

Evidence was considered strong for a child to be
considered as an extensive quantitative comparer if a child
responded correctly in at least five of the eight items on the
test of quantity with justification. Evidence was cr-nsidered
strong for a child to be classified as a gross quantitative
comparer if a child responded on the basis of perceptual cues
and a majority of answers were not correct.

The children were randomly ordered with each group of
extensive and gross quantitative comparers witnin each school.
The first 12 children in ea_h quantitative comparison group
within each school were considered as the sample--24 extensive
quantitative comparers and 24 gross quantitative comparers.

A test of class inclusion was also administered to the
population, but 88 of the children scored zero and seven
scored one. These 95 children contained the 48 children of
the sample. Only nine children showed any evidence at least
two of six items correct) of solving the class inclusion
problem and were discarded from the study. This additional
characteristic of the sample is mentioned only for
informational purposes and is not considered further in the
discussion.

Treatment

In order to test Hypotheses 3 and 5, a treatment was
included in the study incorporating counting stratelles. The
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treatment was administered by Leslie P. Steffe and W. Curtis
Spikes. It began October 1, 1974 and ended January 17, 1975.
The children in the experimental group were met four days a
week for 50 minutes. The remaining day was spent in their
regular classroom.

The instruction in the experimental group was highly
individualized for each child, in that very few sessions were
held where group interaction or group demonstration was used.
Because the instruction was individualized the children were
pooled for data analysis.

The first instructional week was spent on classification
where tile terminology "and," "or," "not," "some," and "all"
was in'roduced. The content of the classifications were dog,
squirr , arc l bird cutouts and balloons, toy soldiers, toy
horses, and toy cowboys. The second instructional week was
spent on partitioning collections of objects. Three basic
activities were designed. The first was designed using two
subcollections with counting; the second, three subcollections
with counting; and the third, more than three without
counting. The third instructional week was spent on loop
inclusions and intersections.

The first three instructional weeks were spent on
classification activities for two reasons. First, it was felt
th(nt such activities may enhance children's acquisition of
rational counting-on. S-cond, an attempt was made in the
r'-udy to improve classificational activities of children.
',.Pic attempt is not discussed here.

The remaining instructional time was spent on addition
an-' subtraction and counting activities. The instruction was
sequenced according to learning-instructional phases for
additiOr and subtraction. As the instruction was highly
individualized, it is difficult to describe env one uniform
instructional sequence. However, the learning-instructional
phases for addition and subtraction are presented, after which
activi ies are elaborated.

In the exploratory phase for the children with
rote-counting abilities, addition and subtraction problems
were not attempted until they acquired point-counting
-abilities. This means that children who were rote-counters
ware given many concrete examplesof point-counting to bring
their level of counting up to the level of point-counting.
This was done in the context of counting all str-teqies for
addition and subtraction exercises at the exploratory phase.
The children .F.-T17117s phase were given the problem of
determining how many elements there were in two sets, S and Q,
when all the elements of both were put together. The elements
of S were counted out; the elemehts of Q were counted out and
placed with the elements of S. The children then counted out
all of the elements of S U Q = P. The students continued
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these types of activities with objects and with their fingers,
and worked spontaneously from both verbal and written
instructions for basic addition facts. This means that being
told: "Solve this problem: How much is six and four?" and
being given the symbolized statement -"6 + 4 = ," elicited
the same problem-solving behavior. In the case-ZT-using their
fingers, the students counted out six fingers, counted out
four fingers, and then counted each finger and determined that
the answer was "ten." Concrete objects were abandoned by all
of the children after about two weeks of instruction on
addition aid subtraction. Finger dexterity increased if the
slims were ten or less.

All of the children in the treatment groups were
introduced to the exploratory phase of addition and
subtraction. The reason for this was that an attempt was made
to let the children differentiate themselves through
instruction to the abstraction-representation phase for
addition and subtraction. It was expected that the children
who were extensive quantitative comparers would enter the
abstraction-representation phase more quickly than would the
gross quantitatit,e comparers. The abstraction and
representation phase is described below.

In the abstraction-representation learning phase for
addition, the children used a counting-on strategy to solve
the problem s + q =C3. Rational counting-on without a tally
was most often used, since the children considered either one
of the numbers as a starting point and the other number to
represent a set of units to be counted. For example, to solve
9 3 =CD , the children selected nine as a starting point and
counted-on three units more in the chain: "ten," "eleven,"
"twelve." There was no need to count to the number nine from
one since the children extracted, mentally, the cardinal
property of "nineness." The children did not need to count
each unit in the problem but did need to point-count a tally
of three units. But the tally was constructed before
counting.

Missing-addend problems were solved using rational
counting-on with a tally. When given the missing addend
problem, the missing addend was perceived as part of the
total. For example, given the problem 3 -'-0 = 11, the
_children solved it by counting-on from three to eleven and
symbolizing units of the missing addend with a running
tally. In finalizing the solution, the children point-counted
the tally either simultaneously while counting-on or after.

Subtraction problems were solved using counting-back
without a tally. The children solved a problem like 9 5 =0
by starting at nine to count the units in the backward-ordinal
sequence. They counted back five units to the number five,
mentally extracted the next number in the backwarl-ordinal
sequence, and named it as the solution to the problem. In
this problem situation, the child is asked to solve the
problem b: counting back.
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Instructions on counting-on and counting -back activities
were given to each child. The counting-on activities were as
follows. A card with three rings on it <ILs.) was used.
Objects were counted out while being placed into one of the
rings. These objects were screened from view. Objects were
counted out while being placed into the other ring. The
children were then asked to find how many were in the big
ring. Counting-all strategies could be used to solve the
problem as well as counting-on. The goal of such activities
was to have the children abstract, through counting activi-
ties, that the objects covered did not have to be recounted,
but one could start with the number of objects covered and
count-on, as dczcribed above in the abstraction-representation
phase.

The missing-addend problem was fist presented us....g a
variation of counting-on without a taiiy, transforming it to
counting-on with a tally. Instead of counting each collection
and covering one, the children were told there were a certain
number under one cover, a certain number under another, so how
many all together? Counting-on with a tally then was modeled
by the teachers and by able children for those not able to
display it.

Because some of the children had a great deal of
difficulty with counting-on, the solution to the missing-
addend problem (5 +0 = 7) was modeled using counting-all as a
base. In the case of the example, seven objects were counted
out, five of the seven were counted-out, and then the remain-
ing two were counted.to go into the box. A child with
counting-all strategies could execute the solution presented
in that way. Efforts were then made to take the able children
to solution by counting-on with a tally.

Counting-back activities were also presented, first point
counting-back,and then rational counting-back without a tally.
The counting-back activities were incorporated into subtrac-
tion exercises such as 5 - 3 = Q . Structured materials were
used'due to the great difficulty the child experienced in
rational counting-back. The children were given a counting-
back board as follows. They were shown that to process 5 - 3
on the board, they would start at five and count off three, to
find the answer "two." An attempt was made to emphasize that
when "6," for instance, appeared under a particular tile, it
told how many tiles were up to and including that tile.

O 0
1 2 3 4 5 6 7 8 9 10

CD Li m
11 12 13 14 15 16 17 18 19 20



All of the children were presented with counting-on and
counting-back strategies associated with the three equations

+ b =CD; a + = b; and b -'a = CD The third learning-
instructional phase was also dealt with in instruction. This
learning-instructional phase is called the formalization-
interpretation phase.

The formalization-interpretation learning phase for
addition and subtraction is characterized by the
interrelationships of addition and subtraction. The child in
this final learning-instructional phase for addition and
subtraction can relate problems of the type 9 - 5 = CD and
9 = 0+ 5. In relating the two equations, the student must
realize that both involve four and five as parts of nine. To
move from the former to the latter equation, it was
hypothesized that a counting-back with tally would be
employed. The student counts-back five units from nine with a
mental tally. He or she preserves this tally, five, along
with the solution, four, as separate parts of nT

So the child realizes (by reconstructing the 5 units
counted back) that 5 units counted back on to 4 units results
in the original 9 units. In this way, addition and
subtraction are interrelated. So when a child finds the sum
of 4 and 5, he or she also knows the difference of 9 and 5.

The opportunity was given each child in the treatment to
enter this learning-instructional phase through written work.
Families of equations were presented to the children for
solution, such as 4 + 5 = C ; 4 + 0 = 9; + 5 = 9;
9 - 4 = ; and 9 - 5 =0 . The children were never told the
interrelationships but were left to make the observations.
The written work for each child was retained as children
differed greatly in the amount of written work they could do.

Addition, subtraction, and missing addend problems were
given to the children to solve during instruction on addition
and subtraction. The problems were presented in written
format. Children who could read the problems were encouraged
to work independently. They were encouraged also to write a
mathematical sentence for each problem they solved. The
problems werc read to the children who could not read. These
children were also encouraged to write mathematical sentences
for the problems they solved.

The children were allowed to use a hand-held calculator
during the last four weeks of instruction. The role of the
calculator was to crieck sums or differences.

Interviews

The interviews of interest in this report were part of a
larger set of interviews, but only those interviews of
interest are discussed. Two missing- addend probl',ms with
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objects available during solution (see Appendix II) were
presented individually to the children in the sample during
the first two weeks in October 1976, prior to the admini-
stration of the treatment. All of these individual interviews
were hand-recorded.

During February 1975, each child was interviewed in three
different sittings of not more than 30 minutes per sitting.
All missing-addend problems (see Appendix II), the cardinality
and ordinality tasks (see Appendix III), the counting-on and
counting-back tasks (see Appendix IV), and the just-before and
just-after tasks (see Appendix V) were individually
administered and audio-taped as well as hand-recorded. The
interviews followed the formats given in the appendices.
While somewhat structured, the formats were altered whenever
necessary to insure that communication was established between
the child and interviewer. The just-before and just-after
tasks were designed to entail at most rote-counting, and
therefore were used in testing Research Hypothesis 3,

Data Sources and Variables

Each videotape was viewed and all data extracted and
coded on record sheets. The variables Number in S, Number in
P, and Number in S + Number in P were defined using the tasks
in Appendix III: Cardinal Information from Ordinal
Information. The Number in S variable was scored from
response (correct or incorrect) to Question 3 in Task" B. The
range of scores was {0, 1, 21. The Number in P variable was
scored from either response (correct or incorrect) to Question
3b in Task A or response (correct or incorrect) to Question 3c
in Task A; and response (correct or incorrect) to Question 2
in Task B. The range of scores was {0, 1, 21. The Number in
S + Number in P variable was not just the sum of the two
variables in Number in S and Number in P. The sum variable
included responses of children given cues. the sum variables
was scored from responses to Questions 3, 3b, 3d, 3f, 3g, 3h
of Task A and Questions 2, 2b, 2d, 2e, 3, 3c, 3d -Df Task B.
It should be clear that a given child would not answer all of
those questions. The range of the sum variable was
{0, 1, 2, 3, 43 but, again, was not simply the sum of Number
in S and Number in P.

The missing-addend problems were scored on a right-wrong
basis. Two scores were obtained, one for each of the two
problems in Appendix II. The counting-on and counting-back
items (Appendix IV) wr._e also scored on a right-wrong basis.
Four scores were obtained: (1) counting-on without a tally,
(2) counting-back without a tally, (3) ordinal addition, and
(4) ordinal subtraction. On the tasks designed to test
lust- before and just-after, one point was given if the child
could find either the number before (after) 14 or before
(after) 11. Zero was awarded otherwise.



The variables were, in summary, Number in S, Number in P,
Number in S + Number in P, Missing Addend with Objects,
Missing Addend without Objects, Rational Counting-on without a
tally, Rational Counting back without a Tally, Ordinal
Addition, Ordinal Subtraction, Just Before, and Just After.

Research Design and Statistics

The first six children of each of the two quantitative
comparison groups (one per school) were assigned to the
experiMental group and the second six to t: control group, as
in Figure 1. The children in the Control Group participated
in their regular mathematics program, Elementary School
Mathematics for Kindergarten through Grade 6 (Eicholz and
Martin, 1971). The children in the experimental group
participated in mathematics classes conducted by Leslie P.
Steffe and W. Curtis Spikes. The 12 experimental children in
Oglethorpe School were taught -from 10:00 AM to 11:00 AM
Monday, Tuesday, Thursday, and Friday; the 12 experimental
children at Whitehead Road school were taught from 12:00 PM

School
Treatment

Quanity----__

Oglethorpe Whitehead

Experimental Control Experimental Control

Extensive 6 6 6 6

'Gross 6 6 6 6

Figure 1. Diagram of the Subject Classification

to 1:00 PM on Monday, Tuesday, Wednesday, and Friday. A
diagram of the design is given in Figure 2.

September, 1974 September, 1974 October 1, 1974- (February, 1975
January 17, 1975

Sample
selected

Missing Addend
Problems; with
Objects admin-
istered prior
to the treat-
ment

Treatment a]min-
istered to experi-
mentals
Participation in
classroom by
contrcls

Post-experi-
mental inter-
views

Figure 2. Diagram of the Events in the Experiment
in Time Sequence
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An item analysis was conducted for each test whenever
appropriate. Program ANLITH, an item-analysis cum,...)uter
program made available by the Educational Research Laboratory
of the Universi-y of Georgia, was used to conduct the item
analysis. The program was initiated for use at the
Educational Research Laboratory by Yi-Ming Hsu and was
developed by Thomas Groneck and Thomas A. Tyler.

Item difficulty (p-values) are reported for each item. A
p-value is a ratio of the number of correct responses to the
total number of responses for an item. Test means, standard
deviations, ana Cronbach's Alp:la reliability coefficient are
reported fdt each test, as well as total score distributions.

Quanti y was used as a classification variable (Extensive
vs. Gross) a,,d Treatment as an independent variable in all
analyses of variance. A univariate analysis of variance is
reported for each dependent variable isolated.

Results

Item Analyses

Quantitative comparisons. The test of quantitative
comparfsons (Appendix I) was administered to 107 children as a
pretest, Table 1 contains the difficulty indices for each
item, and item characteristics. Items 1, 2, 3, and 6 were of
comparable difficulty. These items either had a configuration
conducive to solution by visual inspection (triangular or
rectangular), had two collections of six objects with a random
arrangement (Item 3), or contained a collection which
apparently had more than the other (Item 6). These items
could be solved by gross quantitative comparisons. The
remaining items all demanded an extensive quantitative .

comparison for correct solution due to difficult geometrical
configurations or eight objects in each collection to be
compared. They were critical items to separate the extensive
quantitative comparers from the gross quantitative comparers.

Table 1

Difficulty Indices and Item Characteristics
for QuanLitative Comparisons Pretest

Item Difficulty Item Characteristic
1 .70 Triangular arrangement; 6 red, 6 green
2 .74 Rectangular arrangement; 6 red, 8 green
3 .73 Random arrangement; 6 red, 6 green
4 .57 Linear arrangement; 6 red, 6 green
5 .49 Linear arrangement; 8 red, 8 green
6 .72 Random arrangement; 8 green, 6 red
7 .59 Circular arrangement; 8 red, 8 green
8 .54 Random arrangement; 8 red, 8 green
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The test mean was 5.01, standard deviation 2.58, and
internal consistency reliability .84. The reliability of .84
supports the classification into extensive and gross
categories. Further justification of the validity of the two
quantitative categories is that, if a child scored at least 5
out of 8 correctly with justification for answers, evidence
was strong the child would have made An extensive cinantitativp
comparison. (Evidence was strong because at least one of
Items 4, 5, 7, or 8 would by necessity have to be answered
correctly with justification.)

The distribution of total scores for the eight-item test
was as follows: eleven children scored -erb, five scored one,
five scored two, seven scored three, eight scored four, ten
scored five, twenty-one scored six, twenty-one scored seven,
and nineteen scored eight. The rather large frequencies for
the scores five, six, seven, and eight can be attributed to
Items 1, 2, 3, and 6. In retrospect, those items did not
necessarily measure extensive 0,Intity.

Number in S and Number in P. Table 2 contains the
difficulty indices for the tests of the Number in S and Number
in P variab1P- (Appendix III). The first item on Number in S
test was more difficult than the second. The first is probably
more indicative of the difficulty of the Number in S items due
to thf.! fact that the second item was from "le second
ordinality task and the child had processed a considerable
amount of information about the task before asked to find the
number in S.

Table 2

Difficulty Indices for Number in S
and Number in P Tests

Test
Item Number in S Number in P

1

2

.31 .46

.54 .44

The frequency distributions, means,, standard deviations,
and reliabilities for Number in S and Number in P tests are
given in Table 3. None of the distributions appear to
represent normally distributed vaeta:ples. The reliabilities
are extremely low and are a reflection of the rather large
number of children scoring one out of two items correctly.



The items were not homogenous. This heterogeneity may be a
result of the items being on different tasks and in different
sequences in each task.

Table 3

Frequency Distributions, Means, Standard Deviations
and Reliabilities of the Number in S

and Number in P Tests

Frequency
Distribution

Total Score
Mean Standard

Test 0 1 2 (Percent) Deviation Reliabil ity

S 16 23 9 .85 (42) .71 5

P 17 19 12 .90 (45) .77 .33

While the low reliabilities may be attribu
that the tests contained only two items, the t
administered individually by competent testers
individual administration should minimize err
measurement. This argument strengthens the
better task design for tests of Number in S

In the event differences for main eff
the analyses of variance for Number in S
can be interpreted. The reason such inte
possible is that, given significant diff
quantity), a preponderance of the child
have to be in one category and a prep6n
scoring 1 or 2 would have to be in ano
children scoring either zero or two,
conclude that they did not or did hav
cardinal information from ordinal in
For children scoring one, however,
interpretation are present.

In the event differences are
of variance for Number .1 S or P
should be made.

Missing Addend problems.
indices for the missing-adden
without objects (Appendix II
are more difficult on the pr
expected.
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etest than on the posttest, as



Table 4

Difficulty Indices for MisLing Addend Problem Solving Test

Item Difficulty Item Type

1 .19 With Objects: Pretest
2 .15 With Objects: Pretest
3 .58 With Objects: Posttest
4 .50 With Objects: Posttest
5 .54 Without Objects
6 .42 Without Objects

Table 5 contains the frequency distributions, means,
standard deviations, and reliability information. None of the
distributions appear to represent normally distributed
variables. The internal consistency reliabilities are quite
substantial, especially for the posttests. Inspection of the
frequency distributions for the missing-addend problems show
almost an all -or- nothing phenomenon.

Table 5

Frequency Distributions, Means, Standard Deviations, and
Reliabilities of the Missing Addend Tests

Frequency
Distributions

Test

Total Score
Mean

(Percent)
Standard

Deviation
Relia-

bility0 1 2

With Objects
Pretest 36 8 4 .33 (16) .62 .58

With Objects
Posttest 17 10 21 1.08 (54) .89 .74

Without Objects 22 6 20 .96 (48) .93 .87

Counting-on and counting-back tests. Table 6 contains
the difficulty indices for the counting-on and counting-back
tests (Appendix IV). Counting-on items without a tally were
each fairly easy items. The counting-on with a tally or
ordinal number items were also surprisingly easy. However,
the counting-back without a tally items were difficult, as
were the countinq-back with a tally items (ordinal number
subtraction). Item difficulty is somewhat a function of the
particular numbers involved.
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fficulty Indices

Type

Counting-on
without a tally

Counting-on
with a tally

Counting-back
without a tally

Counting-back
with a tally

Table 6

for Counting-on and Counting-back Tests

Item Number Difficulty

1 .77
2 .73

1 .71
2 .56

1 .54
2 .56

1 .31
2 .19

Table 7 contains the frequency distributions, means,
deviations and reliabiJiti-s for the total tests. The
reliabilities associated with two tests, counting-on without a
tally and counting-back with a tally, are rather low. The
former is easy and the latter difficult, each of which
contributes to low reliabilities. The analysis of variance for
these two tests can be lefinitely interpreted, but with some
caution if no differences are detected in the analyses.

Table 7

Frequency Distributions, Means, Standard Deviations, and
Reliabilities for Counting-on and Counting-back Tests

Frequency
Distribution

Test Total Score

0

Counting-on
without a tally

Counting-on
with a tally

Counting-back
without a tally

Counting -back
with a tally

6

14

20

20

1 2

Mean
(percent)

Deviation Reliability

12 30 1.50 (75) .71 .50

7 27 1.27 (64) .88 .84

15 13 .85 (42) .82 .61

20 8 .75 (33) .72 .47
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Lalliatof Variance

The analyses of variance for all variables are summarized
1n Table 8. Missing-addend problems with objects,
administered as a pretest, and the four rational counting
tests constitute possible tests to be used in a test of
research hypothesis 1:

Children who are operational with number (in
a Piagetian sense) are not necessarily able
to rational count-on or rational count-back
with or without a tally. But children who
are not operational with number (in a
Piagetian sense) are not expected be able
to rational count-on or rational count-b.ack
with or without a tally.

The missing-addend problems administered as a pretest are
included because they were administered close in time to the
test of quantitative comparisons. They only constitute a test
of the hypothesis in the case of counting-on w a tally.
Quantity was highly significant for the missiL,-addend
problems on the pretest. The extensive quantitative comparers
had a mean score .')f 41 percent, while the -gross quantitative
comparers had a mean score of 2.5 percent, The fact that
Quantity was significant and the gross qu, itative comparers
had a mean score of only 2.5 percent supp( the sec nd
statement in hypothesis 1--children ho a' not_ operational
with number are not expected to be able to rational count-on
or -back with or without tally. fable 6 indicates tnat the
counting-back items are at least as difficult as tie
counting-on items, whicn makes it feasible to conjecture that
the second statement in hypothesis 1 is supported by
counting-back scores in September.

The first statement of hypothesis 1 is also supported by
the significance of Quantity and the mean score of 41 percent
for the extensive quantitative comparers. Most of the 12
children who scored 1 or 2 (see Table 5) had to be extensive
quantitative comparers due to the 2.5 percent mLan of the
gross quantitative comparers. Consequently, at least 12 of
the 24 extensive quantitative comparers scored 0 on the
missing-addend problems with obje,- s and at most 12 scored 1
or 2. Ttlese data clearly support the contention that children
who are operational (in a Piagetian sense) with number may or
may not possess rational counting-on skills.

Even thounh the tests of counting-on and counting-back
were given in _ebruary, they do constitute a test of
Hypothesis J. in those cases where Treatment either is not
significant or does not interact with quantity. In the case
of the two counting-back tests, the mean score for
counting-hack with no tally was approximately 67 percent for
the extensive quantitative comparers and approximatPly 23
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percent for the gross quantitative comparers. While these

data are not as clearly supportive as the data for the
missing-addend problems on the pretest, they do not contradict
hypothesis 1 due to the fact the children were in a
mathematics instruet'onal program for a period of five months
aria Quantity was sigi ficant. The mean score for the
counting-back with a tally test was approximately 60 percent
for the extensive quantitative comparers and approximately 18
percent for the gross quantitative comparers. These data are
stronger in support of hypothesis 1 than the data for the
counting-back test without a tally, but still contain a
schooling effect.

The patterns of the mean scores for the two counting-on
tests were similar. The means are contained in Table 9.
These two tests were not used to test hypothesis 1 because of
the possibility of a treatment effect.

Table 9

Mean Scores for Counting-on Tests by
Quantity (Percents)

Test
Counting-On
Without Tally

Counting-On
With A Tally

Exp. Con. Exp. Con.

Extensive

Gross

87 88

71 50

71

71 i

77

32

The
possible

two tests
tests to

for just before and just after
be used in a test of hypothesis

constitute
2:

Numerical skills predicated on rote-counting a:e
independent of a child's being operational with
number (in a Piagetian sense).

Since Treatment was not significanL and did not interact with
Quantity for just-before and just-after scores, the evidence
is strong that these two variables are not related to
Quantity. Consequently, there is no evidenr_ against
hypothesis 2 supplied by just-before or just-after tests.

The two tests of missing-addend problems and the four
tests of counting represent possible tests to be used in a

test of research hypothesis 3:

Acquisition of the ability to rational count-on
or -back is highly related to a child's being
operational with nuthber (in a Piagetian sense).



The interaction of tuantity and Treatment was marginally
significant for counting-on with a tally. The mean scores are
presented in Table 9. The experimental gross quantitative
comparers had a mean score of 71 percent, whereas the control
gross quantitative comparers had a mean score of only 32
percent--an effect directly attributable to the treatment.
The control gross quantitative comparers fared better with
counting-on without a tally than they did with a tally, but
still were 21 percent below the experimental gross
quantitative comparers. These data, taken alone, would not
support hypothesis 3. However, Quantity and Treatment did not
interact for either missing-addend test, but Quantity was
highly significant. The mean scores are presented in Table
10.

Table 10

Mean Scores for Missing Addend Problems: Quantity
by Treatment

Test
Missing Addend
With Objects

(Posttest)

Missing Addend
Without Objects

I`` T
4 Exp. Con. Exp. Con.

Extensive 79 88 75 69

Gross 17 27 25 14 1

Because of the significant Quantity by Treatment
interaction for count-on with a tally, one would expect at
least the same pattern for mean scores for the two tests in
Table 10 as in Table 9. In the absence of any such pattern,
there is absolutely no basis to the claim that the experi-
mental gross quantitative comparers 'ad obtained a counting
scheme in the same way as the extensive quantitative
comparers. The extensive quantitative comparers apparently
applied their counting schemes to the missing-addend problems
whereas the experimental gross quantitative comparers did
not. This lack of transfer on the part of the experimental
gross quantitative comparers lessens the importance of high
mean scores for the experimental gross quantitative comparers
n the two counting-on tests. They apparently had learned to
execute a solution algorithm in the case of stiluli very close
to th experimental counting-on treatment. While problems
were presented to the children in the treatment which were
missing-addend problems, very few of the gross quantitative
comparers could be led to solve them.

The fact that the experimental and control extensive
quantitative comparers improved their capability to solve
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missing-addend problems from the pretest to the posttest*
(from a mean of 41 percent to a mean of 78 percent for all
problems) and the mean for the gross quantitative comparers
was quite low for the missing-addend problems (21 percent for
all problems), hypothesis 3 is supported for counting-on. The
observation that the experimental gross quantitative comparers
evidently did learn to execute counting-on strategies in
restricted situations should not be taken lightly and is
discussed further in the section on discussion of the results.

The results for the two counting-back tests clearly do
not contradict hypothesis 3. Because counting-back activities
were given in the experimental cjroup but not the control group
and no interaction of Quantity ana Treatment existed, one
cannot attribute causality to the counting-back activities in
the treatment for the relatively high mean scores of the
extensive quantitative comparers. As the mean scores in Table
11 indicate, the mathematical experiences of the experimental
and control group'children together with the fact that they
were extensive quantitative comparers led to relatively high
mean scores for the extensive quantitative comparers. Bat it
is important t^ :"serve that the test of counting-back with a
tally was exceptionally difficult for the gross quantitative

Table 11

Mean Scores for Counting-back Tests: Quantity
by Treatment (Percents)

Test Counting-back Counting-back
With a Tally Without a Tally

-----1
.

!

----_______ T
Q ---I Exp.

Extensive 63

Gross 27

Con. Exp. Con.l

58

9

59

23

75

23

comparers. If a pretest had been administered to the children
on counting-back, it would undoubtedly have been very

, difficult for all the children because only one child in the
Treatment group was observed to be able to count-back with a

*While no missing-addend problems without objects to aid
solution were administered on the pretest, there is absolutely
no reason to believe that they would be easier for tne
children to solve than those given, especially in view of the
data in Table 10.
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tally at the start of the treatment. While this claim is only
conjectual, the observation cited does lend credibility to the
claim that the results for the two counting-back tests do not
contradict nypothesis 3. In fact, the observa lop leads to
the sttonaer claim that the data support the by °thesis.

The three tests for the variables Number in S, Number in
P, and Number in 6 + Number in P represent possible tests to
be used in a test of research hypothesis 4:

Children who are operational with number
(in a Piagetian sense) are not necessaril:-
able to obtain cardinal information from
ordinal information. But children who are
not operational with number are not expected
to be able to obtain cardinal information
from ordinal information.

In that Quantity and Treatment did not interact for any
of the three variables, each can be used to test hypothesis L.
The means are contained in Table 12. The results for the
Number in S variable are v.7.ewed as inconclusive due to the
lack of a significant F-ratio associated with Quantity and the
low-internal-consistency reliability. A tst of nypothesis 4
for Number in S awaits better and more reliable task design.

In case of the Number in P variable, the extensive
quantitative comparers outperformed the gross quantitative
comparers, especially in the experimental group. An
interaction between quantity and treatment is suggested by the
means in Table 12, but was not significant statistically. Or.

can say that children who are extensive quantitative comparers
can obtain' cardinal information from ordinal information
better than gross quantitative comparers as long as that
information can be obtained from counting forwaLd rather than
backward. The effect of Quantity was not as strong for Number
in P as it should have been (theoretically). But it must be
remembered that the reliability for Number in P variable was
low.

Table 12

Means for Tests of Cardinal Information from Ordinal
Information: Quantity by Treatment (Percents)

Test Number in S Number in P
Number in S +
Number in P

Q Exp. Con. Exp. Con. Exp. Con.

Extensive

Gross

53

33

42

41

63

25

50

41

81

48

67

48
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Due to the low reliabilities associated with the tasks, a
fair test of hypothesis 4 could not be made. Gross quantita-
tive comparers seemed able to obtain cardinal information to
some extent. But an explanation exists for this seemingly
good performance. Because the children were told the position
of the tenth element in Task A and the fifth element in Task B
(see Appendix III) it would be possible for the children to
employ point-counting behavior to find the number in P.
Moreover, as all of the children could point-count to at leat
seven (and beyond seven at the time the tasks were administer-
ed), the possibility that children used point-counting is very
strong. It has also been observed that children who cannot
rational count-en or rational count-back can, given 'a
particular number name, orally count-on or count-back from
that number. The basis for this observation is the measures
for counting-on and counting-back in the preliminary items
(see Appendix IV). The child, told that a particular object
was tenth or fifth, certainly could have elicited rote count-
ting-back or rote counting-on. That some gross quantitative
comparers correctly found the Number in S could be a result of
knowing three comes before four and seven comes before eight
on a rote-counting basis. Conflict must be introduced into
the task design in such a way to separate the false 7,ositi%,es
(children who scored the item correLdy but who could not
rational count-back) from the ,true positives. One way would
be to add objects to S and require the children to (1) find
the new number of S and (2) find the position of some r of Q.
Since the same argument can be applied to the extensive
quantitative comparers as was applied above to the gross
quantitative comparers, a test of hypothesis 4 awaits better
task design.

The missing-addend problems provide tests to be used in a
test for research hypothesis 5, stated below:

Acquisition of the ability to solve problems modeled
by a + x = b (a < b and ordinal numbers) is highly
related to a child's being operational with number
(in a Piagetian sense). Moreover, children who are
operational with number are not necessarily
able to solve problems modeled by the equa-
tion form a + x = b. Children who are not
operational with number are not expected to
be able to solve problems modeled by the
equation form a + x = b.

Quantity did not interact with treatment nor was treatment
significant for any of the missing-addend problems. Quantity
was highly significant. These facts, coupled with the data in
Table 10 and the Mean scores for missing addend problems with
objects on the pretest (41 vs. 2.5 percent for extensive and
gross quantitative comparers, respectively), supply strong
support for each part of hypothesis 5.
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Discussion of the Results

Theoretical Observations

Piaget (Beth and Piaget, 196 has distinguished
mathematical and genetic structutes. In this study, counting
was viewed originally as being part of ordinal number theory
in mathematics. A fundamental problem investigated was
whether counting can be considered as part of genetic
structures in the sense of grouping structures. The data
strongly suggest the hypothesis that counting is not
developmental, but rather that the emergende of the grouping
structures in development allows children's culturally induced
rote- and point-counting capabilities to be transformed to
rational counting-on and -back, a transformation not possible
prior to the emergence of the grouping structures. This
hypothesis is advanced for several reasons, which follow.

On the pretest of missing-addend problems with objects,
the gross quantitative comparers scored essentially zero, but
approximately one-half of the extensive quantitative comparers
showed evidence of beinc ale to solve the problems. On the
posttest of missing-addend problems, the average score of
extensive quantitati% comparers was approximately 78 percent,
whereas the average score of gross quantitative comparers was
approximately 21 percent. The latter figure is inflated due
to obvious misclassification of two childreL as gross
quantitative comparers. These two children were two Of the
best students in the experimental group. The mean scores
presented for the tests of counting-back with a tally were
approximately 61 and 18 percent for the extensive and gross
quantitative comparers, respectively. Again, the mean score
for the gross quantitative comparers is somewhat inflated. In

any case, children who are gross quantitative comparers did
not acquire, to any great extent, the capability of applying
rational counting-on with a tally or rational count-back with
a tally. Through arithmetical instruction, most of the
children who were extensive quantitative comparers were able
to learn to count-on with a tally but experienced difficulty
learning to count-back with tally. Moreover, counting-back
with a tally was tested in a restricted situation so that
generality of the ability was not in evidence. The rather
favorable mean score for the extensive quantitative comparers
may be an overestimate of their ability. Instruction did seem
to be necessary to solidify counting-on in a deep manner for
the extensive quantitative comparers. All of the above facts
and observations led to the hypothesis stated.

The observation that Piaget did not go far enough in his
study of numer seems justified by the results of this study.
Based on Piaget's cardinal and ordinal number experiments, one
would be led to believe that set similarity, the order on a
set, the segment of a set, the remainder of a set, and



counting-on and -back would be integrated into an operational
system at the level of concrete operations. The data present-
ed here do not support-such a belief. Counting-on and
counting-back do not emerge together nor do they emerge
concurrently with extensive quantity. Counting-back with a
tally seems to be a later and more difficult acquisition than
counting-on with a tally and both a later acquisition than
extensive quantity.

Freudenthal (1973, p. 173) strongly advocates basing
addition and subtraction on counting-on and counting-back,
respectively. This study shows that basing addition and
missing-addend problems on counting-on without and with a
tally, respectively, should be advocated for extensive
quantitatjve comparers who are able to count-on prior to
instruct' n. Others should be given instruction on counting-
on pri r to introduction of addition or missing-addent-3
proble s through counting-on. It is now axiomatic that a
great al of instruction on counting-back must precede
introduc ion of subtraction through counting-back. There is no
guarante however, that, even though children are able to
count-o with a tally and count-back with tally, they have the
two processes integrated. It is strongly hypothesized that the,
integration of counting-on and counting-back with a tally is
the mechanism through which transfer can take place from
knowledge in addition to knowledge in subtraction. The child
who "solves" 12 - 4 through counting-on and who also can
count-back is well on the way to integrating addition and
subtraction. It should be the case that if the latter
hypothesis is true, a great deal of Instruction will have to
take place on counting skills and their integration prior to
having children who are capable of extensive quantitative
comparisons able to transfer knowledge in addition to
knowledge in subtraction. It may be a waste of time to
present children who are not capable of integrating counting-
on and -back with "families" of number sentences. Knowing how
to solve the missing-addend problem counting-on does not
guPrantee that children can relate the sentence 5 + 0 = 9 to
9 - 5 =Don an intellectual basis.

This study shows that basing addition and subtraction on
counting-on or counti:-,g-back for gross quantitative comparers
is not possible prior to a great deal of instruction on

. counting strategies. Even then, the behavior produced is
algorithmic and not operational, as evidenced by the failure,
of the experimental gross quantitat comparers to solve
missing-addend problems. Instruct n t` ,r such children on
addition and subtraction should pr ceed using point-counting
until more sophisticated counting techniques are developed.
One of the most fundamental problercL's facing research with
young children's acquisition of addition and subtraction is to
determine the influence cif counting; instruction on the ability
of gross quantitative comparers to rational count-on.



Observations from the Treatment

As the instruction was individualized for each child in
the treatment group, no one instructional sequence may be
described. It was the case, however, that each child was
presented counting activities which progressed through
rote-counting, point-counting, and rational counting. The
instruction for addition and subtraction progressed through
the learning instructional phases of exploration, abstraction-
representation, and formalization-interpretation. The
children were programmed through the learning-instructional
phases at different rates and did different amounts of work.
With few exceptions, the extensive quantitative comparers
progressed through the abstraction-representation phase and
associated counting activities more rapidly than did the cross
quantitative comparers. Even though each child was given the
opportunity to progress through the formalization-interpreta-
tion phase, only eight of the 48 children in the total sample
actually did. It is important to note that tests were given
for the formalization-interpretation phase even though they
are not reported here.

At the culmination of the learning activities, all
children were using rational counting-on to process exercises
such as 4 + 5 = 0 . It is interesting to note what seemed to
be czitical instruction for children who were at most point
counters to progress to that level. The instructional
procedure used was to direct the children to make marks on
their Paper to represent the two addends and then gradually
lead them into a realization that only marks for one of the
two addends would be necessary if one would start counting
from the other addend. An analogous procedure was used with
finger calculation. Here, children were directed to "put one
adc'end in their head." The children -here then encouraged not
to mark or use fingers, but to count the smaller addend on the
larger mentally (in the case of unequal addends). After the
children had mastered the pro ?.dure, they seemed very
impressed-with its powerfulness in calculating sums; they
could find sums such as 15 + 4, 25 + 3, etc. Such sums were
found even though the children did not know numeration.

Initially, each child was given experience in rote- and
point-counting activities. All of the children learned to
point-count and write the numerals to at least 50. Point-
counting-back activities were also given, first starting
10 and progressing through 20 or greater, depending on tt
child. The children, some with great difficulty, learned
point-count-back from 20. Addition and subtraction activ Les

were integrated with the counting activities where children
used the counting-all procedurs with objects to process sums
and differences of the basic fact variety (a + b < 10). The
childr ?n who were extensive quantitatie comparers soon tired
of using objects and wanted to use finger calculation.
Thereafter, it soon became apparent that all of the children



wanted to abandon the physical materials in favor of finger
calculation. They were allowed to do so. The extensive
quantitative comparers (with the exception of one child)
easily learned to process sums such as 4 + 3 by counting-on
three to four--"five," "six," "seven"--either through using
finger calculation or mental calculation.

The gross quantitative comparers (with the exception of
two children, one of whom was one of the best students) used
counting-all procedures with finger calculation and did not
internalize the counting process until direct instruc*ion was
given. It is important to note that trials (or, an individual
basis) during instruction were provided for these children to
give them the opportunity to change counting strategies frcm
counting-all to counting-on while processing sums such as
4 + 3. The trials were used as checks to insure that children
were not held to r.ounting-all procedures when in fact they
could use more ei_icienE counting strategies.

Several other points am important regarding the gross
quantitative comparers. It was not until the last week of
instruction that the gross quantitative comparers (with the
two exceptions noted) were able to progress to counting-on
activities (after approximately six weeks of instruction using
counting-all strategies with physical objects and finger
calculation). But six weeks should not be considered as a
regaired time. For example, work with the hand-held
calculator and problem solving were interspersed during the
same six weeks. However, the six-week pe-liod does indicate
the extreme difficulty children have of acquiring counting-on
without tallying if it is not within their coanitive compe-
tence. The above procedures of instruction -- integrating
rational counting with finding sums--may only lead to what on.!
may call algorithms for finding sums for the gross quantita-
tive compaters. The induced counting behavior may not have
been counting schemes. In fact, the evidence is strong that
gross quantitative comparers did not genera:ize the counting-
on without tallying procedures taught across tasks. But it is
important to note that even though instructional procedures on
counting-on in addition were effective over a rather narrow
range of problems, they gave the gross quantitative comparers
a sense of intellectual competence (as observed in instruc-
ticn) in performing arithmetical en 1-cises.

The effects of instruction on counting-on with tallying
and the missing-addend problems were also interesting. The
instruction was synthesized so the children were not aware
that two different goals were being accomplished with the same
activities--the capability to count-on with tallying ond the
capability to solve Crie missing-addend problems. The missing -
addend problem was initially presented using a countiny -ail
strategy. For example, to solve 4 + p = 7, the children were
instructed to take seven objects and count out four; tne ones
remaining would be the answer. Invariably, children who did
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not possess counting-on with tallying confused the procedure
with previously learned counting all procedures for processing
sums. That is, to process sums such as represented by the
sentence 3 + 8 =0, the children would count out eight
objects, count three and the five remaining represented the
result of the algorithm. It was necessary to explicitly point
out the different appearance of the two types of sentences for
these children. Through successive examples, the gross
quantitative comparers did discriminate between the two
sentence types and apply the correct algorithm. The same
learning problem, however, did not occur for the children who
were able to count-on with tally. They conceptualized the
sentence 4 + CI = 7 as "four and how many is seven--five, six,
seven--so it is three." Consequently, no problems in
discriminating solution procedures existed for these children
for the sentence types represented by the sentences 3 + 5 = 0
and 3 + = 9.

The counting-all procedure for solving the sentence type
3 + = 8 seemed to interfere with the more natural counting-
on strategy available to some of the children. After being
shown the counting-all procedure, such children seemed to view
it as the preferred solution process and were very reluctant
to employ counting-on with tallying. It should be recognized
that counting-on with tallying requires more mental effort
than does the counting-all procedure which May be the cause
for some children's great reluctance to use the more
sophisticated counting strategy. But it also should be
recognized that adults presented the counting-all procedure,
which may nave given it a status of being the preferred adult
solution.

The counting-all procedure for solving missing-addend
sentences was used initially, of course, so that the gross
quantitative comparers would have a procedure for solving the
problems which (it was hoped) could be transformed into a
counting-on procedure. In the transformation, an analysis of
the counting-all procedure was attempted in the following
manner. After a child had solved, say, 3 + = 7, by counting
out seven, taking three, and then counting the remaining ones
to obtain four, he or she was instructed to refocus attention
on the three, then count-on the four obtaining seven. This
analysis move was not effective for some children who could
not count-on without tallying, which was a minimal requirement
to conceptualize what was being analyzed. Direct instruction
was also given to tie the :hissing- addend sentence to rational
counting-on with tallying. Problems were presented where some
of a collection of objects were screened from a child's view.
The child was then asKed to Lind how many were screened. He
or she had counted all of the objects to find the number in
the total collection before some of them were screened. The
unsuccessful children were allowed to "peek" behind the screen
and count the objects there. These procedures were asso'riated
with missing-addend sentences, e.g., 4 + = 7, in the obvious



ways after the physical problem was solved. Encoding of the
physical and mental actions seemed extremely difficult for
children who were not able to count-on with tally. These
children seemed "lost" in instruction.

The posttest data on the missing-addend problems and the
ordinal addition problems showed that the gross quantitative
comparers in'the experimental group were quite capable of
solving ordinal addition problems (mean, 71 percent), but were
particularly inept at solving missing-addend problems with
objects (mean, 17 percent) and without objects (mean, 25
percent). It was, in fact, surprising that the experimental
gross quantitative comparers performed so well on the ordinal
addition problems, because during the treatment they, seemed
particularly inept at doing so. They apparently used trained
procedures within a problem context familiar to them. It was
particularly pleasing to note that the extensive quantitative
comparers in the experimental group performed comparably to
these in the control group on the missing-addend problems and
ordinal addition problems. The experimental extensive
quantitative comparers, when forced to do so, did utilize
counting-on with tallying in problem contexts net solvable by
counting-all procedures.

Based on experience in instruction with children not
capable of counting-on with tally or without tally, it is
recommended that teachers not present missing-addend problems
to these children until counting-on schemes are acquired
either through development or instruction. While such children
can learn to solve such missing-addend problems through
counting-all procedures, the solution process is algorithmic
and conceptualization of the problem is lacking. In the case
of children capable oc counting-on with tally, the missing-
addend problem should be presented with the solution process
that of counting-on. These children, in their own time, should
produce more efficient solution procedures. It is strongly
urged that the child's counting capabilities be the determiner
of whether the missing-addend problem is presented or not.

Children who are capable of counting-on, even if it is
only without tallying, should be presented with addition
through counting-on procedures rather than counting-all
procedures. The counting-on procedures should lead to

_ knowledge of basic facts more quickly. Moreover, the children
can be exposed to more sophisticated sums (such as 43 + 4 or
56 + 5) and thereby gain a sense of competence not possible
the Igh countih all procedures. Essentially, the exploratory
phases of addition and subtraction can be done very minimally
with these children. While counting-all procedures should not
be forbidden (especially for differences with minuend less
than or equal to ten), they should not be emphasized.

Conceptually, counting -back is to differences as
counting-on is to sums. While differences may be found by



counting-on with tallying, presently no data are available
which show that a child is capable of conceptualizing
differences in terms of counting-on if counting-back and
Counting-on are not synthesized (formarization-interpretation
phase), one being associate' with differences an-.1 one with
sums. In the instructional activities, counting -back with and
without tallying seemed especially difficult for most of the
children. Presentation of the activities seemed to cause
dissonance, with children refusing to participate mentally.
While the extensive quantitative ;csmparers fared much oetter
than the gross quantitative comparers, the instruction on
counting-back seemed to be not well-received by the children.
But because of its importance to differences, instructional
procedures neeo to be created and tested before definitive
recommendations are made concerning the introduction of
counting-back with and without tallying.
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Appendix T. Quantitative Comparisons

Item W-1. TELL ME IF THERE ARE MORE RED ONES, OF MORE
GREEN ONES, OR IF THEY ARE THE SANE. WHY?

GREEN RED

Item W-2. TELL ME IF THERE ARE Y")RE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

D 0

0

RED GREEN

Item 1. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

0

RED GREEN

Item 2. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

D

GREEN

65

it

RED



Item 3. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

0

0
0

CI

0
o
00 0

RED GREEN

Item 4. TELL ME IF THERE tARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

1

0

o 0 El 0 0 0
0 E1 001:

GREEN

RED

Item 5. TELL ME IF THERE ARE MORE aED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

0 0 0
0000 0 0 0 0

I

GREEN

RED

Item 6. TELL ME IF THERE APE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

GREEN

0
0

ct

a
0

RED



Item 7. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAME. WHY?

0
0 Ell 0 0 CD

0 0 000
<> 0

RED GREEN

Item 8. TELL ME IF THERE ARE MORE RED ONES, OR MORE
GREEN ONES, OR IF THEY ARE THE SAY'. WHY?

0 0
00°o°0

GREEN RED

i.

,..

I
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Appendix II. Missing Addend Problems

Missing Addend Problems with Objects Present

1. MIKE HAS 5 BLOCKS. HE FOUND SOME MORE. NOW HE HAS 8

BLOCKS. HOW MANY DID HE FIND? (10 BLOCKS PRESENT)

2. LORI HAS 3 JACKS IN HER HAND. SHE PICKED UP SOME

MORE AND NOW HAS 7 IN HER HAND. HOW MANY DID SHE

PICK UP? '(10 JACKS PRESENT)

4'

Missing Addend Problems without Objects Present

1. MIKE HAS 3 CATS. HIS MOTHER GAVE HIM SOME MORE.

HE NOW HAS 7. HOW MANY DID HIS MuTHER GIVE HIM?

2. TOM HAS 5 COMIC BOOKS. HE GOT SOME MORE FOR HIS

BIRTHDAY. NOW HE HAS 8 COMIC BOOKS. HOW MANY MORE

DID HE GET FOR HIS BIRTHDAY?
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Appendix III: Cardinal Information from

Ordinal Information

Task A. (12 counters in a row)

1st 2nd 9th

1 1

DODEIOCIDDC1000

HERE ARE SOME COUNTERS IN A ROW. IF WE START COUNTING

FROM THIS END THIS ONE IS FIRST (point), THIS ONE IS

SECOND (point), THIS ONE IS THIRD (point).

1. THIS ONE IS NINTH (point). WHICH ONE IS THIS?

(point to tenth)

correct immediate (go to #2)

correct but counts from the beginning

incorrect

THIS ONE IS NINTH (point), THIS ONE IS

TENTH (point), WHICH ONE IS THIS? (point

to eleventh)

[ ] correct immediately

[ ] correct but counts from the beginning

[ ] incorrect

a. [ ]

b. [ ]

c. [ ]
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2. THIS ONE IS NINTH (point). WHICH ONE IS THIS?

;point to seventh)

a. [ ] correct immediately

[ ] correct but counts from the beginning

[ [ incorrect

Li

3. (cover seven with cloth) THIS ONE IS TENTH (point).

HOW MANY ARE COVERED?

a. [ ] correct - HOW DO YOU KNOW THAT? (go to b)

b. [ ] HOW MANY ARE THERE IN ALL? (stop)

c. [ ] incorrect - THIS ONE IS TENTH (point), HOW

MANY ARE THERE IN ALL?

d. [ ) correct - RIGHT, AND HOW MANY ARE COVERED?

e. [ ] incorrect (five) - FEEL THE FIRST ONE. WHICH

IS NEXT? (feel second)

f. [ ] correct - HOW MANY ARE COVERED?

I I correct

[ ] incorrect (stop)
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g. [ ) incorrect (not five) - THIS IS TENTH (point),

THIS IS ELEVEN (point), THIS IS TWELFTH

(point). HOW MANY ARE THERE IN ALL?

h. [ I correct - HOW MANY ARE COVEkLD?

[ I correct

( ) incorrect (stop)

5th

0 0 0 0 0

HERE ARE SOME COUNTERS IN A ROW. SOME OF THEM ARE COVERED.

FEEL THE FIRST ONE HERE.

1. THIS ONE IS FIFTH (point). WHICH ONE IS THIS? (point

to sixth)

a. [ ) correct - got to #2

b. [ J incorrect - THIS ONE IS FIFTH (point), THIS

ONE IS SIXTH (point). WHICH ONE IS TbIS?

(point to seventh)

71
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f incorrect
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2. THIS ONE IS FIFTH (point). HOW MANY ARE THERE IN ALL?

a. [ ] correct --HOW DO YOU DO THAT?

b. [ ] incorrect (five) - REMrMBER, THERE ARE SOME

UNDER THE COVER. FEEL THE FIRST ONE. THIS

ONE IS FIFTH (point). HOW MANY ARE THERE IN

ALL?

[ ] corre,_4_

[ ] incorrect

c, [ ] incorrect (not five) - THIS ONE IS FIFTH

(point), THIS ONE IS SIXTH (point), THIS ONE

IS SEVENTH (point). WHICH ONE IS THIS?

(point to eighth)

d. [ ] correct - HOW MANY ARE THERE IN ALL?

[ ] correct

[ ] incorrect

e. [ ] incorrect - FIFTH kpoint), SIXTH (point),

SEVENTH (point), EIGHTH (point). HOW MANY

ARE THERE IN ALL?

[ ] correct

[ ] incorrect

3. THIS IL, THE FIFTH ONE (point). HOW MANY ARE COVERED?

a. [ ] correct - done

b. [ ] incorrect - THIS ONE IS FIFTH (point). WHICH

ONE IS THIS? (point to fourth)

c. [ ] correct HOW MANY ARE COVERED?

[ ] correct immediate

[ ] correct, trial and error

[ ] incorrect
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d. f ) incorrect - FIFTH (point), FOURTH (point).

a HOW MANY ARE COVERED?

[ ] correct

[ ] incorrect
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Counting-on and Counting-back Tasks

Counting-on

Warm-up Tasks

1. START AT FOUR AND COUNT ON THREE MORE NUMBERS FROM

FOUR (If unsuccessful, demonstrate).

2. START AT SEVEN AND COUNT ON FOUR MORE NUMBERS FROM

SEVEN (If unsuccessful, demonstrate).

3. START AT TWELVE AND COUNT ON THREE :;,;,RE NUMBERS FROM

TWELVE (If unsuccessful,, demonstrate).

Counting-on without a Tally

1. Three checkers covered with a cloth presented to the

child. Four visible checkers arranged randomly are

also presented to the child.

E. THERE ARE MT-irt,h, "HECKERS UNDER THE CLOTH. ,COUNT

ON TO ''IND HOW MANY CHECKERS LliERE ARE ON THE CARD.

0 0
0 0
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2. The same as.(1) except seven checkers were under the

cloth and five checkers were visible.

0
o 0

0 0

7 under

Counting-on with a Tally

1. Three checkers covered with a cloth are presented to

the child. Five visible checkers arranged randomly

are also presented to the child.

E. HERE ARE FIVE CHECKERS. THERE ARE SOME MORE UNDER

THE CLOTH. THERE ARE EIGHT CHECKERS IN ALL ON THE

CARD. CO u,2 ON TO FIND HOW MANY CHECKERS ARE

UNDER THE CLOTH.

o 0
o 0
0
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2. The same as (1), except there are 12 checkers in all,

8 visible.

4 undernder

O 0
Q O 00 O 0
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Counting-back

Warm-up Tasks

1. START AT FOUR AND COUNT BACK THREE NUMBERS. (If

unsucce_-ful, demonstrate.)

2. START AT SEVEN AND COUNT BACK THREE NUMBERS. (If

unsuccessful, demonstrate.)

3. START AT TWELVE AND COUNT BACK FOUR NUMBER. (If

unsuccessful, demorstrate.)

Counting-back without a Tally

1. Four checkers covered with cloth are presented to

the child. Three visible checkers arranged randomly

are also presented to the child.

E. THERE ARE SUM' 2HECKERS UNDER THE CLOTH. I

COUNTED THEM ALL ON AE C RD AND THERE ARE SEVEN.

COUNT BACK, STARTING AT SEVEN, TO FIND OUT HOW

MANY ARE UNDER THE CLOTH.

0 0 0

77

63

t__ 4 under



2. The same as (1), except there are seven checkers

covered and five visible.

° 0

7 under

Counting-back with a Tally

1. Seven checkers, four under one cloth and three under

another cloth, are presented to the

E. THERE ARE SEVEN CHECKERS ON THE CARD UNDER THESE

CLOTHS. THERE ARE FOUR CHECKERS UNDER THIS CLOTH

(point). COUNT BACK, STARTING AT SEVEN, TO FIND

OUT HOW MANY ARE UNDER THIS OTHER CLOTH (point).

4 under
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2. The same as (1), except there are four chec,ers

covered under one cloth and eight uncle_ the other.

The child is asked to count back from 12 to find

how many are under the cloth with four covered.

4 under 8 under



LANGUAGE AND OBSERVATION OF MOVEMENT AS PROBLEM
SOLVING TRANSFORMATION FACILITATORS AMONG

KINDERGARTEN AND FIgST-GAADE CHILDR,,N

Jay Shores
University of Houston

Robert Underhill
Kansas State University

The purpose of this study was to ascertain whether the
use of overt modeling a,d/or verbal modeling assists young
children to solve four types of mathematical problems.

Theoretical Background

A child's ability accurately to solve basic mathematical
problems is krown `o be affected by both his or her level of
cognitive development and the effects of initial school
experiences (Underhill and Shores, 1975). In kindergarten and
first -grade children ag._j 5 to 7 years, the ability to
conserve numerousness eiolves as the children are being
exposed to basic mathematical concepts of varying conceptual
complexity (Piaget and Inhelder, 1969).

The conservation of numerousness construct was introduced
to the mathematics education community from the translated
writings of Piaget (1965), the text by Flavell (1963), and the
research of Elkind (1961), Dodwell (1960), and Wohlwill
(1962). Studies by Van Engen and Steffe (1966), LeBlanc
(1968), Steffe and Johnson (1970), and Johnson (1971), among
others, have established significant differences between
conse vers' and nonconservers' problem-solving achievement.
In addition, it was found than nroblems which involved
transformation were significantly more difficult thar those
which did not involve a transformation. Transformational
tasks are those which imply movement or action in the context
of stated problems (Underhill and Shores. 1976).

The concept of transformation is an important construct
in PIagetan reL arch. A transformation is an act or process

. of alterating, or the -hanging of one thing into another. A
transformation can exist at several different levels.
Transformations not only tefei to alterations in the physical
world, but also to the compensations made by the individual in
his or her mental structures. It an object or state is known
by an individual, then a transformation in the physical state
is accompanied by a transformation in the cognitive structure.
In another sense, a transik),:m,,tion occurs when a learnet:
states that 3 + f = 7. Piaget and Inhelder (1969) describe
operatiols as revex ibiie trd,formations, and tney use
additior of two numbers a specific example.
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The population of interest in the present study was
kindergarten and first grade chilc,en, so the concept of
transformation was ,efined within Lie context of pre-
.

operational thoue.lt. Piaget (1972) and Sinclair (1971)
characterize concrete operational thought as being limited to
thinking about object experience through object-invoking
mental processing. While concrete operational thought is not
limited to thinking-while-manipulating, such thought is
characterized by thinking about real present objects and
actions. Thus, a meaningful comprehension of 3 + 4 = 7

suggests that learners may, for example, conjure mental images
of sets of real objects with number properties of "threeness"
and "fouzness." Then if learners comprehend the operation of
addition, they conceptualize a transformation in which the two
sets with nuhber properties of "threeness" and "fourness" are
joined in set union to form a new superoi-dinate set with a
number property of,"sevenness."

Steffe (1967, 1968) and LeBlanc (1S'68) defined
transformational and non-transformational addition cald
subtraction story problems as those which do or do not provide
movement cues which indicate joining or separating of sets and
subsets. Here are addition samples:

Transformation: Two dogs are in the kennel. Three
more dogs are placed in the kennel. Now how many
dogs are in the kennel all together?

No Transformation: Bill has three frogs. John has
four frogs. How many frogs do Bill and John have
all together?

With'n the context of earlier statements made by Piaget, one
couJJ say that the operation of addition is involved in both
types of problems, so both involve transformations. Thus, if
tho learner is asked to solve t..e problems, he or she is asked
:o :omf)lete a transformatic,'. The Steffe and LeBlanc tasks
mig:t be more appropriatel,, labeled as facilitating and
nontacilitating addition -11c, subtraction types relative to the
transformation tasK to be completed.

It was hypothesized that the modeling of the
transformation would assist children who are begir.ning to
conserve numerousness in solving the mathematical Problems.
The degree of facilitation should fluctuate accordinN to the
degree to w ich the modeling itself varies from fully
demonstrated and explained, to fully explained, to simply the
implicit movement within the problem statement itself. It was
anticipated that a child who observes a transformatin will be
able to use spatial referents as cues to assist in recalling
the untranstormed set. Thus, such a child should have less
difficulty in solving problems than a comparable ^nild who
does not receive a similar modeling experience.

82

67



Among the transformational mathematical operations to
w:Jich young children are introduced were the following. These
are of varying conceptual complexity: counting-on, story
problems, quantitative comparisons, and ordination.
Counting-on requires t,e formation of one set and the serial
addition of elements to it. is the continuation of a
simple counting sequence. Addition story problems consti'ute
a slightly more complex task, namely the establishment of two
sets of similar elements and the union of them. Quantitative
comparison involves the formation of two sets, the
establishment of correspondences between the sets' elements,
and a judgment based on equivalence. Ordination, the most
complex of the tasks in this study, posits the existence of
two sets and relationships of two abstract constructs to them.
Both a cardinal and ordinal (spatial position) relationship
must be maintained after a spatial transformation.

The Experimental Tasks

Counting-on Tasks. E placed a strip of :ardboard
containing a row of at least seven chips in front of S. The
first n chips were covered with another piece of cardboard. S

was told how many chips were covered and was requested to tell
how many

/

chips were on the cardboard in all.

Addition Tasks. E placed a cardboard piece with pictures
of children and two appropriate sets of chips. E told an
addition story problem. S was requested to give the answer.

Quantitative Comparisons Tasks. E placed 2 rows of chips
before S. S was asked if there were the same number of chips
in each row.

Order Tasks. E placed a strip r)f cardboard containing
four chips of four different colors and a second piece'of
cardboard containing two chips of two different colors at 135
rotation from the first piece. E gave S a tniid ,?nd a fourth
chip to place on the second piece of cardboard.

Procedure

The- subjects were presented with two items of each
problem type: counting-on, story problems, quarLitative
comparison, and ordination. Each set of eight proolems was
presented by three researcher- ender thrPe modeling conditions
in the following order: (1; impil 't moueiing, in which tha
subject was presented witn a transfor:ed m.)del and simnly
asked to solve the problem; (2) implip3 floc;,?Iing, in wnicn the
subject was presented with a transforme0 modal, a -4d trie



procedure for the restoring transformation was verbally
described; (3) overt modeling, in which the experimenter
transformed the model as the question uas asked and verbally
commented on the transformation as it was carried out. A
random order of items within each set of eight tasks was used
for each subject.

Figure 1 summarizes the three modeling conditions with
the four problem types. From a theoretIcal point of view, the
subject must attend to a transformation ineach of the twelve
tasks. Clearly, the tasks involving auditory and visual cues
are much more explicit in their overt manifestations of the
necessary transformations. The three cases of each class of
concept tasks could be said to depend on 1) attending to, and
comprehending, auditorially and visually presented
transformation cues, 2) atterling to, and comprehending,
auditorially presented transformation cues, and 3) spontaneous
creation of tiarsformations unaided by expe,-lmentally visual
or auditory cues.

K1 ',wledge of youngsters' performances on the twelve tasks
should clarify researchers' understanding of the roles of
language and observed movement in transformational thinking.
If these patterns are pervasive, the practitioner is provided
with an empirically verified rationale for utilizing modeling
procedure-7 during instruction.

Salopli
_____LL_

To obtain a representative sample of kindergarten
(nk = 20) and first-grade (nl = 20) children, a large
suburban school system's lists of kindergarten and first -grade
pupils were obtained. A random sample of 20 children were
drawn fro:- each to serve as subjects for the study.
During tee -ting one child was removed from the sample as
deviating from experimental procedures (lifting the cards to
count chips). H was replaced by another child drawn, at
ra;',-r) from fLe school's roster. Each subject responded to the
24 tasks witnir, a time interval of approximately 30 minutes.
All tasks were indi,vidnaly administered.

Analysis

In the 1 x 3 x 2 Problem Type by Modeling Type by Grade
design, the subjects were used as their own controls

an-oss problem type and modeling type. An initial factor
analysis of the 24 itel 5 was conducted in which the items were
found to load by problem type. This confirmed the existence
of conceptual d1 -3tincti-eness among the problem types. A
subsequent MANOVA was used to determine the effects of problem
type, mo6eling type, and grade level for each of the four
problem types.
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Modeling Conditions

Overt

(Auditory and visual
Problem Types movement cues)

Counting
On Tasks

Order Tasks

Story
Problem
Tasks

Quantitative
Comparisons
Tasks

The cardboard strip
was placed before S
with all of the
chips showing. A
second piece of
cardboard was used
to cover the first
n chips, while E
explained what he
was doing.

The cardboard strips
were placed initially
in parallel positions.
As one was rotated
through 135°, I;

described wha' he was
doing.

A transformation
problem ($teffe) was
stated as chips were
used t-: demonstrate
the action.

Two rows of chips in
one-to-one corre-
spondence :ere pre-
sented. One row was
linearly dispersed.
The action was de-
scribed.

Implied

(Auditory move-
ment cues only)

The cardboard oas
placed before 3
with the first n
chips covered. E
explained that the
first n chips had
been covered up.

The cardboard
strips were placed
initially in 135°
positions. E ex-
plained now tney
would matcn if one
were turned.

A transformation
problem was stated.
Chips were stati-
call placed in a
post-transforma-
tional position.

Two rows of chips
were presentea
statically, one
being more linear-
ly dispersed. The
dispersion ptocess
was explained.

Implicit

(No auditory or
visual cues)

The cardboard
strip was
placed before
S with the
first n cnips
covered. No
explanation of
the coverings
was given be-
yond the state-
ment of the
problem.

Same as implied
with no ex-
planation.

A non-transfor-
maticn procie7
stated. C1-.ips

«ere statically
placed in two
disjoint sets.

Same as implieu
with no ex-
planation.

Figlre 1. Modeling C-mditions and Problem Types
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Results

Table 1 presents a summary of the multivariate analysis.
For the counting on ar' story problem items, there was no
significant differenci across the modeling types. However,
for quantitative comparison and ordinal items there as a
significant difference (p < .05) across the modeling types.

Tables 2 and 3 present a summary of univariate contrasts
between grade levels by problem type and modeling condition.
In the quantitative comparison type, the significant
differences among the kindergarten subjects' responses were
found between each of the model types (Overt > Implied >
Implicit). The first-grade subjects had a different pattern
in their responses, with overt responses being significanlv
greater than both the implied and implicit responses (Overt >
Implied 1:"Implicit).

Table 2

Summary of Univariate Contrasts Between Grade Levels
Problem Type and Modeling Condition

MODELING CONDITION

P Counting- X....K-
R on X1=
O Problems F =
B

L Ordination Xk=
E X, =

M Problems F =

T Quantitative R,=
Y Comparison X,=
P Problems F =
E _

Story X,=
Problems Ri=

F =

TOTALS

* p < .05

Xk =

=

F

Overt Implied Implicit TOTALS

1.01 1.05 0.90 3.05
1.75 1.65 1.50 4.90
9.15* 7.02* 5.52* 9.65*

0.70 0.60 0.35 1.5
1.10 0.80 0.60 2.50
2.17 0.76 1.55 2.06

1.10 0.70 0.35 2.15
1.30 1.00 0.95 3.25
0.42 1.12 4.97 2.23

1.45 1.25 1.50 4.20
1.95 1.90 1,90 5.75
9.60* 13.90* 5.33* 16.03*

4.35 3.60 3.10
6.10 5.35 4.95
7.17* 9.92* 10.43*
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Table 1

Summary of Multivariate Analysis of the Effects of
Modeling

Type and Grade Level for Each Problem Type

Problem Type: Counting-on

Source of Variation ss df MS

Main Effects
Treatment
Grade Level

Interaction
Error

12.85
.82

12.03
.02

61.80

3

2

1

2

114

4.28
.41

12.03
.01
.54

7.90**
.75

22.20**
.02

Problem Type: Ordinal

Source of Variation ss df MS

Main Effects 6.03 3 2.01 3.61*
Treatment 3.62 2 1.81 3.25*
Grade Level 2.41 1 2.41 4.33*

Interaction .22 2 .11 .20

Error 63.35 114 .56

Problem Type: Qu,ntitative Comparison

Source of Variation ss df MS

Main Effects 10.39 3 3.46 4.27**
Treatment 6.72 2 3.36 4.14*
Grade Level 3.68 1 3.68 -1.53*

Interaction .65 2 .33 .40

Error 92.55 114 .81

Probleffl Type: Story Problem

Source of Variation ss df MS

Main Effects /.53 3 2.57 8.00**
Treatment .52 -_, .26 .82

Grade Level 7.01 1 7.01 22.35**
Interaction .32 2 .16 .51

Error 35.75 114 .31

* p < .05
** p ; .01



Table 3

Summary of Univariate Contrasts Among Modeling
Conditions by Problem Type

MODELING CONDITION

Overt Implied Implicit

Counting -on X= 1.38 1.35 1.20
Implied .03
Implicit .18' .15

Ordination R. .90 .70 .48
Implied .20*
Implicit .42* .22*

PROBLEM
Quantitative X= 1.20 .85 .65

TYPE Comparisons
Implied .35*
Implicit .55 .20*

Story X= 1.70 1.58 1.70
Problems

Implied .12
Implicit .00 .12

*p < 05

In the ordinal type, significant differences among the
kindergarten subjects' responses were found, with im'olicit
responses being s gnificantly lower than the other two
modeling types (Overt Implied > Implicit). With respect to
first graders' performancesn the ordinal tasks, there were
no significant differences./

For the overt items there was a significant difference:
children's performance with counting on items and responses to
story problem items were significantly higher than their
performance on quantitative comparison and ordinal items
(CO SP > OR QC). For the implied items, the nature and
order of significance was the same as for the overt items.
For the implicit items the counting-on, quantitative
comparison, and story problem responses were significantly
greater than those of the ordinal type (Co QC = SP > OR).
First graders were significantly better than kindergarteners
in counting-on and story problem responses over all types of
models.

Significance of the Findings

This study indicates that modeling has an effect upon the
subject's ability to solve the two more Difficult types o
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transformation prob'ems, quantitative comparison and
ordination. Further, overt and implied modeling significantly
affected the subjects' ability to solve counting-on and story
problems. The effects were greater for kindergarten than for
first-grade children.

These findings support the hypothesis that during the
child's transition from nonconserver to conserver, the use of
modeling might significantly assist the teacher in
facilitation of conservation-related subject matter.
Researchers and practitioners need to conduct further
investigation to determine the pervasiveness of the
differences found in this study. If the significant
differences are widespread, then considerable pedagogical
change might be warranted.
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ASPECTS OF CHILDREN'S MEASUREMENT THINKING

Charles Lamb
University of Texas

Quantity

Human beings normally make decisions (or judgments) during
their daily activities. Some of these judgments are
quantitative in nature while others are qualitative in nature.
For example,00ne might say that a particular drink is
"sweater" than another. If "sweetcl" is determined by a
taster, the judgments are of a qualitative nature and it would
be difficult for the person to define strictly what was meant
by the term "sweeter." But, through taste alone, two or more
drinks can be ordered on the basis of "sweeter.". This order
relation however, does not say how much sweeter one drink is
than another. The differences, while they exist, rely on
number for their elucidation. If, through chemical analysis,
the amount of 7Igar per unit volume is determined, the
differences in the "sweetness" of the two drinks may be
determined. Moreover, the drinks can be ordered using the
relation "sweeter" through the natural order of the
numbers--in which case, the drinks would not have to be
tasted.

A quantity is determined by a set of objects and criteria
for comparison of those objects 7-two drinks ordered on the
basis of "sweeter" is a quantity. The objects themselves,
however, are referred to as quantities. In such references, it
will be-assumed that a criteria f-Ir comparison has been
established. Quantities to be "measured" may be categorized
into two collections based on whether or not their attributes
are additive. Intensive quantities are objects which are
compared on the basis of attributes which are nonadditive--for
example, temperature. Consider a pail of water with
temperature 100°F and a similar size pail of 50°F water. These
two nonoverlapping quantities when joined together do not give
a quantity of water with temperature of 150 °F. Other
quantities which are intensive are hardness, softness,
density, and intelligence. Extensive quantities are objects
which are compared on the basis of attributes which are
additive. For example, if the comparison between sticks is
length, one could take a stick of length 11, a stick of
length 12, and join them end-to-end with no overlap. The
join would be of length /1-1. + 12. Some other quantities
which are "extensive" -are area, volume, weight, and nember.

The primary difference between the two cateTories of
objects is tne way in which numbers may be assigned. Intensive
quantities are quantities which are "measurable" in the sense
that they may be arranged in a series showing 'difterence'; in
degrees of the quantity under consideration. Extensive
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quantities are "measurable" in the sense of intensive
quantities but also in the sense that the attributes for
comparison are of an additive nature.

The differences in intensive and extensive quantity may
be formalized by properties necessary for the measurement
process to have meaning. The first cwo properties represent
minimum conditions in order for numbers to be employed to
establish differences.

1. Using a set of objects (say n of them), 01, 02,
...I On, it must be possible to arrange them in a series
with respect to a certain,quality. The series requires
that the law of trichotomy holds. That is, for any two
bodies Oi and 0i, exactly one of the following is true:
(a)0i>.03 ;(bl Oi < 0-i; or (c) Oi = O. "=",
*">", and "K" symbolize the relations by which the objects
art ordered. Note that ">" and "<" are asymmetrical.

2. If Oi > 0i, and Oj > Ok, then Oi > Ok.
This statement is the transitive property of the relation " ."

The two properties are sufficient for a collection of objects
to be described as intensive quantity and thus be measured.
The two properties are not sufficient for quantities to be
measured in the extensive case. Four additional properties
must hold, all of which concern the physical process of
addition of quantities.

3. If Oi + Oj = Ok, then Oj + Oi = Ok.

4. If Oi = Oi', then Oi + Oj > Oi'.

5. If Oi = Oi' and Oj = 03', then Oi + Oj =
Oil + Oj'.

6. + 03) + Ok = Oi + (0j + Ok) .

Measurement in the strictest sense is only possible-when all
six properties hold (Cohen and Nagel, 1934).

Some impoktant examples of quantities are:

1. The positive integers using the natural order
relation "greater than."

2. The positive rational numbers using the natural
order relation "greater than."

3. Objects (such as sticks or strings) compared
operationally by use of the length relation
"longer than."

Each of these quantities is extensive.
4
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Measurement

As developed in the preceding section, tLere is a
distinction to be made between measurement and Auantity,
Quanerty (either intensive or extensive) Is concerned with 3
set of objects and a criteria of comparison (note that both
the objects and the relations determined by the criteria ot
comparison are necessary). Quantity is a necessary condition
for measurement (in the numerical sense) to take place. If

objects are orderable according to some attribute, it becomes
possible to assign numbers to the objects of the quentity, or
to measure the objects according to that attribute. rhe
assignment of numbers in these situations is called
measurement. Quantities, such as the positive integers or
positive rationale, are abstract--they are not physical
bodies. It is here that quantity and measurement are most
easily distinguished. One can select some arbitrary number as
a unit and assign numbers to numbers. If unity is selected,
the identity mapping is defined. But the domain of the
mapping is a set of numbers -just as is the range for _env
selection of a unit numoei. Eowe\,er, one does not have to
measure an object for ers to,be present, since the objects
are numbers.4iIn the c f quantities where the objects are
physical bodies--phys lantities--o .e can also ae iqn
numbers to the objects Jugh selection of some unit body.
But the objects to be n ,.,red are not numbers. In the case of
extensive quantities, :he physical bodies can be ordered and
combined. Measurement allows one to work in the abstract with
physical c'iantit :es through working with the numbers assigned
.o the objects. In measurement of both abstract and Physical
quantity, tne followimg are present:

1. A set A of objects to be measured (the structural
properties of this set are determined by the type
of quantity, intensive or extensive);

2. A set B of "measurements" (usually a subset of
the positive real numbers); Ad

3. A process for associating with each element of A
an element or B.

This situation can be described through'the concept of
function. There is a related function for every measurement
situation. The domain is the set of objects to be measured,
while the range consists of the measurements (usually 1,ositive
real numbers) to be associated with members of the domain by
the particular.mapping under consideration.

The mapping must preserve the structure of the domain
and range. That is, tne quantity under consideration, with its
order relation, is mirrored in the range of the functinn. In

tact, the range is a quantity in its 'own right. The corres-
pondence between domain and range may be used to establish
common units of measurement by arbitrarily selecting an object
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in terms of the arbitrary object's functional value. By
selecting different Units it is possible to define several
functions on the same domain (Blakers, 1967).

Two different types of physical' quantities with their
associated,measurr27r,nt functiorte are considered in this
study--collections of physical objects ordered by matching
relations and linear physical objects ordered by length
relations. In- the case of collections of physical objects,
singular physical objects are taken as the unit., Sao, given a
collection of physical objects, the function assigns the count
of the collection to the collection. In the case of linear
physical objects, an arbitrary unit is selected so-that each
physical object in the domain of the function is an integral
number of units long. This was dJne so that, given a
collection of units associated with a particular physical
object, the count of the collection of units is the length of
the physical object.

Reasoning Concerning, Measurement

Reasoning in the Domain of the *Measurement Function

Two types of comparisons can be made in the domain of the
measurement function described immediately above--direct and
indirect comparisons. Direct comparisons essentially involve
no reasoning because the physicar objects are proximal.
However, indirect comparisons require transitive or
substitutive reasoning because two collections of physical
objects are compared by using a third such collection. For
example, a child might compare sticks A and B and determine
that A is longer than D. Upon; B with C, he may
determine that B is longer thC. Then, using the transitive
property of the relation, it is possible for the child to
conclude that stick A is longer than stick C (without overt
comparison).

Reasoning in the Domain and Range of the Measurement Function

It is possible for children to compare directly objects
in the domain of tie measurement function through compz-isons
of their measurements. For example, suppose some stick h is
measured and found to be seven units in length. Then stick B
is measured and found to he seven units in length. Using this
information, it is possible to conclude that if A and B were
to be compared physically, they would be of the same length.
It is possible to *make indirect comparisons in the following
way. Imagine A and B are physically compared and A is found
to be longer than B. "Then B and C are measured and each is
found to be seven units long. Then, because A is longer than
B, it is also longer than C. This indirect comparison
involved the substitutive property, even though B and C were
compared through comparisons of their measurements.
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Premise forms. Situations consisting of two instances of
a relation oc one instance of a relation and another instance
of another tlElation are called nremise forms. A transitive
premise form is a premise form consisting of two instances of
a transitive relation where an implication is possible. A
substitutive premise form is a premise form where the
Substitutive property allows for an implication to be made.
An inconTatible premise form 'is a premise form from which no
implication is possible on a logical basis. For examp4, if A
is longer than B, and B is shorter than C, no implication can
be made about A and C from the information given.

Reasoning concerning the measurement function has been
studied in various contexts. Transitivity has been -considered
for its own sake as well as in comparison to other forms of
reasoning such as substitution (Bailey, 1973), conservation
(Carey and Steffe, 1968), classification (Johnson, 1971) and
seria,ion (Murray and Youniss, 1968). These studies have
incluaeld relationships of comparison such as length. Other,
studies, such as Owens (1972), have included the matching
relations as well. The Owens study involved the transitive
property across both matching and length relations. Studies
such as Bailey (1973), Murray and Youniss (1968), Youniss and
Murray (1970), Youniss and Dennison (1971), and Keller and
Hunter (1973) provide information of comparative performanet-
on tasks of a transitive and substitutive nature. The nresent
study is concerned with replication inasmuch as further
information will be gathered concerning the transitive and
substitutive properties across the relations of matching.and
length.

Previous considerations of measurement topics (Gal'perin
and Georgiev, 1975; Wagman, 1975; Carpenter, 1972) have been,
primarily concerned with the conception of the unit of
measurement. Gal'perin and Georgiev considered the unit as it
relates to other elementary mathematical notions. Wagman
investigated the child's notion of a unit of area. Carpenter
considered the unit of measurement and its relationship to
conservation of liquid quantity. These studies failed to
capitalize on the child's knowledge of the "measurements" of
objects (the numbers, in terms of units, in the range of the
measurement function). The present study is different, from

uthe previous studies in that it involves the child's use of
,numerical information from the range of the measurement
function across the transitive and substitutive properties.
Little information exists on this aspect of measurement.

Piaget (Flavell, 1963) has given evidence that
development is crucial in the acquisition of measurement
concepts. Studies such as those above confirm this claim.
One purpose of the present study is to investigate the age
characteristics of the measurement concepts of natchinq and
length across the transitive. and substitutive preMise forms

k
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(using comparisons in the domain and range of the measurement
function).

. .

In particular, the purposes of the present investigation
are: (a) to determine the young child's ability to perform
logical reasoning tasks involving the measurement functions
associated with collections of objects and linear physical
objects; (b) to -study the young child's ability to mason with
the transitive and substitutive properties of relations; (c)
to investigate the child's ability to operate in the range as'
well as the, domain of the measurement function; (d) to study ,

the effect of age on the child's performance of logical
reasoning tasks; and (e) to discover interrelationsnips among
the variables of interest.

In the past, logical reasoning in middle childhood has
been extensively studied by 'psychologists. These studies are
important for mathematics education in that they are at least
relevant to children's measurement behavior. It is true,
however, that close ,investigation of the constructs studied by
the psychologists must be made in order to ascertain their
applicability in mathematics education, 'Smedslund's i 63a)
study'is no exception. He has argued that in order to assess
concrete reasoning, one must make a clear distinction between
percept, goal object, and inference pattern. Percept deals
with the set of properties inherent in the stimulus situation
as presented to the child. Goal object is that which the
child is told to obtain, for example, number or length. An
inference pattern is formed by a set of-premises and a
conclusion.

k

'Transitivity, although considered to be an inference
pattern by Smedslund, is not thought of as such in formal
logic (except for hypothetical syllogism). The inference
scheme in formal logic closest to transitivity, in the sense
that Smedslund talks about it, is Modus Ponens. This scheme,
when it involves transitij, is as follows:

1. If aRb and bRc, then aRc.

2. aRb and bPc.
.S. aRc

One of the premises is a statement of transitivity of the
relation "R", and the other L'; a conjupctive statement of two
instances of the relation. What is usually assessed in tasks
of transitive reasoning is 4he capability of a child to make
the conclution based on a knowledge (:) the second premise.
Knowledge of the first premiz,e is not iirectly assessed, but
inferred upon evidence of a correct conclusion. In the work
of Piaget (1952), it is not assumed'th=lt the child is
consciously aware of statement forms. Rather, the statement
forms are models for the child's thoucit. Consequently, it is

t2o strong to say that in tasks of transitive reasoning an
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inference pattern is being assessed. More correctly, the
behavior being-observed is that of the child being able to
illake an implica'tion or a conclusion. Therefore, in this
study, implications involving the transitive property and
substitative property are dealt with rather than a transitive
or substitutive inference.

The two implications mentioned above are logically
fundamental to operational knowledge of matching and length
relations by children. Only by being.ableto work t
successfully with these implications will children possess
operational knowledge of the relations. Moreover, knowledge
of these relations and their properties is essential due to
their close relationship with measurement. The importance of
including measurements of objects in the logical reasoning
tasks has been pointed out'by Osborne (1975). He sugoested
the need to examine hol., children tie relations and operations
ih the range space of the measurement function to operational
definitions of relations and operations in the domain of the
function.

Framework and Hypotheses

Murray and Youniss (1968) conducted a study of the
child's achievement of transitive reasoning and its relation
to seriation behavior. The relational- category used was that
of length. The sample consisted of kindergarten, first-grade,
and second-grade children. As part of the study, variations
on the classical transitivity paradigm were included. The
purpose of inclusion of premise forms A=B and B > C, and A >*B
and B=C, along with the standard form A > B and B > C, was to
help control for non-transitive solutions; As expected from a
logical point of view, seriation behavior was found to be a
prerequisite for transitive reasoning. When t e three premise
forms were compared, it was found that they wire ordered in
difficulty from least to most difficult, A > B and
B > C, A > B and B=C, and A=B and B > C. These differences in
difficulty suggest a hierarchical development of relational
reasoning with transitivity appearing prior to substitytion.
Apparently, tasks using two different relations are mote
difficult for young children than tasks using only one \,..
relation. Of'course, difficulty levels cannot be used tON.,..
determine hierarchical development, but the results are
suggestive.

Youniss and Murray (1970) conducted another study to
investigate the effects of efforts to control non-transitive
solutions for transitive reasoning tasks. An attempt was made
to force use of a middle term for measurement purposes. The
premise forms A > B and B > C, and A > B and B=C, were used
again. Children questioned were kindergarteners, fir-it
graders, and third graders. Performance was age-related and,
again, a diiferenc- in difficulties for premise forms was
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found. Premise forms which required the use of two relations
weremore difficult tnan oremise forms which require the use
of onetrelation.-

Youniss and Dennison (1971), in a later study, tested
kindergarten, first-, and third-grade children using the same
three premise forms. As in the earlier studies, results again,
showed different difficulties for premise forms. However, the
order from least to most difficult was A > B and B=C, A > B
and B > C, and A=B and B > C. A study by Keller and Hunter
(1973) was designed to test task variations on conservation
and transitivity items. The tasks with premise forms A > B and
B > C, and A=B and B > C, were of particular interest.
First-grade children were used as subjects. 'o significant
difference was found between the two types of tasks.

Studies reported in the preceding paragraph were
concerned with "task variations" of transitivity problems.
Froma mathematical pbint of view, these tasks involved use of
the transitive propertyand the substitutive property.
Logically speaking, it should be the case that transitive
reasoning precedes substitutive reasoning in development.
Several of the studies reported indicate empirical
confirmation ofthis hypothesis. However, the studies by
Keller and Punter (1973) and Youniss and Dennison (1971) do
not show different performance for these twp, Premise forms.
Based upon the mixed available evidence, thece is no reason to
advance one particular hypothesis over another, usi"ng similar
type tasks. However, none of the studies included tasks where
the-Children were asked t reason on the basis of transitivity
or substitution after they had physically compared physical
bodies A and B, measured physical bodies B and C, compared
them on the basis of the measurements, and then were required
to compare A and C through-reasoning; Because of the added
dimension of measurement in the tasks, and the fact that some
studies have shown transitive reasoning to appear before
substitutive reasoning, it is hypothesized that there will be
a sequential development for the premise forms in the case of
measurements of B and C, where transitivity precedes
substitution.

Piaget (1952) has studied the development of number and
measurement. In Piaget's theory, number is derived by a
synthesis of operations dealing with classes and those dealing
with relations. For example, if one considers a finite
collection of objects in light of their number, it is

necessary (according to Piaget) to eliminate all4qualities of
objects so that they become identical and interchangeable.
However, it isstill possible to arrange objects into 'classes
so that the classes are included in one another (serially
inclusive). Although all qualities have been eliminated, the
elements must somehow he kept separate or some objects might
be counted tw)ce. Using both class inclusion and serial
order, k*) is contained in (**), (**) is cortlined in (***),

and so on.
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Piaget's (1952) research shows that very young children
experience difficulty with bath the class and serial aspects
Qf number. When considering the class notion of number, one
might present a child with two collections of cubes (12 red
cubes and 5 blue cubes). A one-to-one correspondence is then
set up between the blue cubes and a subset of red cu es. The
child may observe this action, but still refuse to Believe
that the one-to-one correspondence has produced equal amounts
of reds and blues. In particlar, the child might comnept
"the reds are more they came from a bigger pile." This
"faulty" reasoning is due to the child's* misconceptions
concerning classes and subclasses. Misconceptions concerning
serial order might take the following form: when constructing
a set of objects with nine members (by adding one object at a
time), the child may fail to recognize that at some point it
is necessary to for:;; a set of eight objects.

Piaget (Sinclair, 1971) suggests that the development of
spatial concepts parallels that of classes, relations, and
numbers. The difference is that the spatial concepts (length,
etc.) involve continuous objects. In length measurement,
there are several steps to be considered. First, a unit must
be partitioned off and then displaced witnout gaps or
overlaps. This corresponds to a seriation. Second, the
continuous units form inclusions--one piece included in two,
and so on. Therefore, measurement is constructed from a
synthesis of displacement and partitioning of an additive
nature. This parallels the seriation and inclusion which
constitutes the number concept. Research results indicate that
measurement lags behind number in development. Although the

, construction of ideas is parallel, the introduction of
.continuous objects makes the topic of linear measurement more
difficult.

Even though the results of a study by Lamb (1975) do not
show transitive or substitutive reasoning developing for
matching relations prior to length relations, the, introduction
of numerical information into the tasks may affect transitive
and substitutive reasoning. It should be the case that
transitive and substitutive reasoning develop for matching
relations prior to that of length relations when numerical
information is present.

Carpenter (1972) conducted a study in which he
investigated the effects of numerical cues on liquid quantity
conservation. The study involved first and second graders.
The results showed that children did attend to numerical cues.
However, numerical distractors (incorrect numerical cues)
produced approximately the same nymber of errors as did
perceptual d- istractors. The results do indicate that correct
numerical information may aid the young child's reasoning
using transitive and substitutive premise forms, as it was the
case that well over 90 percent of the subjects -_cogrized
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that, in measurement, the greater number of'urits measured the
greater amount of that quantity.

The latter results also suggest, that children six years
of age may be capable of performing logical reasoning tasks
which involve use of numerical information. However, PiaRet's
(1952) work suggests misconceptions could hinder the
acquisition of the capability to perform tasks using the
numerical information from the range of the measurement
function. Therefore, it is hypothesized that numerical cues
(numbers in the range of the measurement function) will aid
reasoning for children who are at a level where meaning is
established for number (around seven or eight years of age).
For other children, the cues will either hinder or offer no
aid in reasoning.

The following are the hypotheses used in this study:

1. There is a hierarchy for the development of
premise forms where transitivity precedes
substitution. The evidence presented does not
support this hypothesis for the comparisons
involving only the domain of the measurement
function. However, introduction of tasks
involving use of the "measurements" for objects
makes this hypothesis reasonable.

.

2. Evidence does not support the hypothesis of
hierarchical development of matching and. length
relations :using only the domain of the
measurement function) across the transitive and
substitutive properties. However, it is
hypothesized that introduction of numerical
information (from the range of the measurement
function) yin affect performance. It will be
the case that reasoning Will appear for matching
relations prior to that for length relations.

3. It is hypothesized that the introduction of
numerical information (from the range of the
measurement function) will aid the reasoning
of children with a well-developed conception of
number (around seven or eight years of age).
For other, children, the cues will either hinder
reasoning or offer no aid.

Prop dures

Different explanations have been offered for incorrect
answers given by children in tasks of transitive reasoning.
In particular, Smedslund (1963b) analyzed classidal
,transitivity tasks and gave three reasons why children who are
able to reason transitively might fail to give correct
responses. They are: (a) the child misunderstands the
question; (b) the child fails to make the initial comparisons
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correctly; or (c) the child forgets the initial c=parikons.
Smedslund also considered three possibilities for incorrectly
inferring the pie7ence of transitive reasoning in sub-,ects:
(a) guessing; (b) perceptual cues; and (c) the child
constructs nontrahsitive hypotheses on his or her _)wn

(i.e., A > B so A > C without regard for comparison of
to C).

The role of memory in transitive reasoning has been
studied extensively. Owens 4hd Steffe (1972) were of the
opinion that memory is nQ,t a crucial.factor if children are
allowed to make the initial comparisons themselves. However, a
study by Roodin and Gruen (1970) was designed to measure the
effect of presence of a memory aid on children's ability to
make judgments of a transitive nature. This procedure
involved the use of as- additional comparison stick (as an aid)
in tasks concerned with the transitive property of length
relations. Half the children tested'were allowed to use the
memory aid while the other half were not. At each level
(five, si,x, on seven years), the children using the memory aid
made significantly more correct responses. These children'
wereitlso able to make more correct verbal explanations of the
transitive process.

Another important procedural question is that of the type
,of stimulus situations presented to the cnild. Divers (1970)
presented children with three perceptual stimulus arrays: (a)
neutral, where the arrangement of objects produces no apparent
bias; (b) screened, where the objects arp removed from direct
sight at the time of response; and (c) conflictive, where the
objects are arranged to give bias to the responses which are
incorrect. ne results of Diver's study show that children
were more s0ccessfu4 with the neutral stimulus display. Owens
and Steffe/(1972) used similar stimulus conditions and once
again found the neutral conditions the most productive, but
not significantly so over the other stimulus situations.

The final methodological variable to be discussed is that
of requiring a rational, verbal explanation in ac;:c,mpaniment
with correct response to determine presence of a cognitive
structure. Brainerd (1973) presented a summary concerning
this methodological dispute. He concluded that: (a) the se
of explanations as sole determiner of presence or absence of
cognitive structure is appropriate; and (b) the use of
judgment as sole criterion Seems to be most appropriate.
Brainerd does suggest that the explanation could be used to
advantage as an an,plifier of the structures present in a
child's thought. This combination of judgment and explanation
criteria received support from Roodin and Gruen's (1970)
study. They found that virtually all children who could give
verbal justification for the transitive process alsemade
correct responses. The converse was not true.

In the tasks constructed for the present study, children
were requited to make the initial comparisons, and were
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allowed to recompare objects wen forgetting apbai-ently tnok
place. In regard to stimulus (-ndicion, there were no
intende- conflicting stimuli. However, a form of screeninl
v:as used to help eliminate the possibility of itiglment based
solely on perceptual cues. Tasks in the present Study required
a verbal justification as well as judgmental response troft the
child.

Each child received 28 tasks, 14 matchin3 tasks and 14
length tasks. Seven of the matcninq tasks containei no
numerical cue and seven involved a numerical cue. A similar
split was present for the length ite-s. The items in each of
the categories were designed using the following premise
forms.

1. A = B and B = C;
2. A < B and B < C;
3. A > B and B > C;
4 . A = B and B <,C;
5. A = B and B > C;
6. A < B and B = C;, and
7. A > B and B = C.

The chi.: was allowed to compare the five red and five
blue discs by means of one-to-one correspondence. Lpon
completion, the child was asked to describe wr,at had riopened.
The red discs were then screened from the child's view using a
large orange sheet of cardboard. The child then compared the
five blue eliscs with five green ones. Again the child was
asked to judge the outcome. At any time, if the child
established a wrong relationship, the interviewer helped to
correct it. The five green aiscs were also screened from the
child's view. The child was then asked to predic.t the outcome
of a comparison between the red and green collections of
oblects. Following the subject's response, a -Justification'
was requested. If the child obviously had forgotten
information, or acted in a confused manner, the task was
repeated by re-establishing relationships and then continuing
as be -Ire. The remaining six items in this section were
constiucted along similar lines.

Matching with cue tasks (using both the domain and range
of the measurement function) were similar in inakeup to those
of matching without cue in that the child compared sets A end
B by way of one-to-one correspondence. However, instead of
physically ,comparing sets B and C, t're child counted them.
After counting C, the objects of C were screened from the
child's view. Other aspects of the tasks were identical to
those of matching without cue.

Conduction of tasks for the length categories was
analogous to that of the matching tasks. However, in thc,;c-.

tasks the comparisons were made in terms of the lengtr. of
sticks. For physical comparisons, sticks were laid
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side-by-side. For the analogue of counting activities, the
child used a ruler made up of distinguishable units; the child
had to count the appropriate number units. Before proceeding
to the matching and length tasks, each child was asked a
series of preliminary questions. These questions.were asked
to determine suitability for including the child in the study.
In order to eliminate color discrimination problems from the
study, Lich child was given a test of color recognition. :ix
square pieces of construction paper (red, blue, yellow, green,
black, and white) were placed before the child. The child was
then asked to identify the colors of the squares. The order
of questioning was random for each child. If there was
confusion concerning the colcrs, there was dialogue between
the subject and interviewer. For example, if the child
responded "purple" for a dark blue square, the experimenter
and child discussed color to see it the -held would agree that
the square could also be called blue. If the child still
refused to call the square blue, arothpr object of that color
was tried. A child unable to respo,ld to the color questions,
even after coaxin', was excluded from the study.

The second portion of the preliminary interview consi-f-..!d
of determining whether the child could count a collection
objects (up to at least ten toy animals and was asked to count
the objects. The animal; were arranged in an approximately
straight line. No attempt was made to confuse the cnild.- A

child having trouble was allowed to try the task again. A
child still unsuccessful was excluded from the study.

Training tasks were then presented for the relational
categories of matching ,ind length. For the matching
relations, a collection of six red blocks,wasipresented -J the
child. The interviewer had a collection of six blue blocks.
The interviewer and cnild then made pairs of blocks
(one-to-one correspondence). Upon completion of the pairing,
the child was questioned concerning the relation that existed
between the collectidns of blocks. The child was asked if one
person had more or if they both had the same. Incorrect
responses were corrected. The child was then gives six blocks
and the experimenter took four. Again, after pairing, the
child was asked for a judgment of the outcome. Appropriate
corrective procedures were used if necessary. These
experiences were used to insure familiarity with the relations
of "as many as," "more than," and "fewer than." If the cnild
was unable to make correct judgments after the training
experience,' the child was excluded from the study.

In length relations, the child was first presented with
two sticks that were the same length. The child was then
asked to compare the sticks physically and what relation
existed. Corrective dialogue was used with the child if
necessary. The child was then asked to coFpace two sticks of
different leng.hs. These experiences were u:ed to insure
familiarity with the length relations. Failure in these tasks
was grounds for exclusion from the study.
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As well as receiving the aforementioned preliminary
'asks, the child had experience with a unit ruler. The child
21 aced a stick next to the ruler and counted the number of
units necessary to determine the length of the stick.

The main 28 tasks were given in two sessions. During the
first session, the child receiving all 14 tasks for length or
matching. The decision as to which relational dateyory was to
be used first was made randoTly for each- child. In the second
interview period, the child received the remaining 14 items in
a similar manner. Within each of the four separate
categories, the child was questioned randomly on the seven
items. The entire interview, including preliminary tasks, was
audio-taped to allow f)r checks on the scoring procedure.
Checksheets were used to keep score.

Scores of 0, 1, or 2 were assigned for each task in the
study. If the child could not respond correctly to the tasks,
a score of zero was assigned. A correct response but failure
to give a rational justification earned a score of one. Two
was the score for both a correct judgment and a rational
justification.

The study was conceived with the idea of spanning the
years when children are at some stage of concrete operations.
Children were selected from kindergarten, second, ar,-; fourth
grades. Age restrictions were also placed on the selection of
students. Kindergarten pupils were chosen so that, at the
time of testing, their age was between 5.5 and 6.0 years.
Second graders were selected so that the age at test time was
from 7.5 to 8.0 years, while iourth graders were between 9.5
and 10.0 years. Ty nty children were random', selected from
those a,ailable at each grade level, constituting a sample of
60 subjects for F*udy.

Kindergartent st-e chosen from three private day
schools. From the _sree schools used, there were 63 children
engaged in the program. Of hese, 30 met the age requirement;
20 students were randomly selected. The sample consisted of
an all-white selection of students. Sex distribution was 13
girls and ,7 boys.

Second-grade students were selected from the primary
school of a small county school system. Of 266 available
second graders, 97 met the age criterion; 20 students were
randomly selected for the sample. Of the 20, 13 were girls and
7 were boys; 9 were black and 11 were white.

Fourth graders were selected from the elementary school
in the.same county. Of 286 fourth graders, 76 met the age
criterion; 20 students were rar ,illy selected. Of the 20, 10

were boys and 10 were girls; 16 were white and 4 were black.
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Analysis

Initially a score of 0, 1, or 2 was assigned to each of
the 28 tasks used in the study for each child. The scores 0,
1, and 2 represent a relatively arbitrary classification
scheme. A categorical scaling technique (Kundert and
Bargmapn, 1972) was used to replace 0, 1, and 2 with scaled
scores which approximate an interval scale. The assigned
scaled scores were determined in such a way that differences
between age bands were maximized. This was essentially a

problem in discriminant analysis--what scaled scores should be
assigned to columns (raw scores) so that a linear combination
of these scaled scores would best differentiate between rows
(age bands)?

These scaled scores were determined so as to have mean
zero and variance one. Since the raw scores 0, 1, and 2 were
ordinal in character, the scaled scores (i.e., the scores used
in place of the O's, l's and 2's) should exhibit the same
order. In cases where the data did not bear out this
assumption (for example, if,acaled scores for 0 and 1 were
reversed), the reversed numbers were given the same scaled
score. Kundert and Bargmann (1972) suggest the equating of
inverted scaled scores, because an inconsistent result should
be replaced by the nearest consistent one. Similarily, if
particular cells were essentially empty, adjacent categories
were combined. Wherever irregularities occurred, the scaling
procedure was conducted again. The newly determined scaled
scores were used in the remainder of the analysis.

The three major hypotheses proposed are repeated below:
O

1. There is a hierarchy for the development of
premise forms where transitivity precedes
substitution. Te evidence presented does not
support this hypothesis for the comparisons
involving only the domain of the measurement
function. However, introduction of tasks
involving use of the "measurements" for objects
makes this hypothesis reasonable.

2. - Evidence does not support the hypothesis of
hierarchical development of matching and length
relations (using only the domain of the measure-
ment function) across the transitive and
substitutive properties. However, it is

hypothesized that introduction of numerical
information (from the range of the measurement
function) will affect performance and it will be
the case that reasoning will appear for matching
relations prior to that fr- length relations.
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3. It is hypothesized that the introduction of
numerical information (from the range of the
measurement function) will add the reasoning of
children with a well-deveoped conception of
number (around seven or eight years of age).
For other children, the cues will either hinder
reasoning or offer no aid in reasoning.

In order to test. hypothesis one, scores for the following
variables were formed (by combining indi'idual scaled scores):

1. Matching no cue -.Transitivity (MNCT)--scores
from the three matching transitivity items with
no measurements involved.

2. Matching no - Substitution (MNCS)--scores
from the four matching substitution items with
no measurements involved.

3. Matching with cue - Transitivity (MCT)--scores
from the three matching transitivity items with
measurements involved.

4. Matching with cue - Substitution (MCS)--scores
from the four matching substitution items with
no measurements involved.

5. Length no cue - Transitivity (LNCT)--the length
transitivity items with no measurements involved.

6. Length no cue - Substitution (LNCS)--the length
substitution items with no measurements involved.

7. Length with cue - Transitivity (LCT)--the length
transitivity items with measurements involved.

8. Length with cue - Substitution (LCS)--the length
substitution items with measurements involved.

These composite scores were used in an analysis of variance
across grade levels (age bands). Inspection of the means from
the analysis of variance (for differences and sequence) was
conducted. The transitivity means (MNCT, MCT, LNCT, and LCT)
were inspected for amount of increase (or decrease)- from grade
to grade. The substitution means (MNCS, MCS, LNCS, and LOS)
were inspected iq a similar manner. If the data were to
support the hypothesis oz earlier devel,oppent for transitivity
over substitution, the means for the transitivity items should
show a lesser increase, trom grade to grade, than the
substitution items, espeeielly for items involving numerical
cues.

Hypothesis number two, comparison of matching and length
relations, was tested in a similar manner. The means for
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matching (MNCT, MNCS, MCT, and MCS) were compared with the
means for length (LNCT, LNCS, LCT, and LCS) . If the
hypothesis of earlier development for matching relations over
length relations were borne out by the data, the increase in
means, from grade to grade, should be less for the matching
items than for length items, especially for the items
involving numerical cues.

In order to test hypothesis number three, the means of
items involving no numerical cues were compared with the means
of items involving numerical cues. If the data were to
support the hypothesis, the means for the items involving
numerical cues (MCT, MCS, LCT, and LCS) should show a sharper
increase, from grade to grade, than the means for the items
involving no numerical cues (MNCT, MNCS, LNCT, and LNCS).

Critical F-values for the ANOVA's were computed in the
traditional manner at the .05 level of significance. As part
of the scaling procedure, an analysis of variance (across
grades) was run for each individual task variable. This
information helped to determine which variables best
discriminate between grades, The critical F-values for the
ANOVA's were computed in relation to the maximum
characteristic root distribution as suggested by Kundert and
Bargmann (1972). Heck charts were used as an aid in this
computation (Morrison, 197), Significance was determned at
the .05 level.

Results

Table 1 contains the scaled scores for all of the tasks
except LC7. LC7 was dropped because inspection of Table 2
revealed nodifferences between grades. The scaled scores are
presented in order to give a listing of the scores to be used
in further analysis of the data. The contingency tables (Table
2) give the distribution of raw scores for each variable for
each of the 28 tasks across grades:

1. Transitivity
2. Substitution
3. Matching
4. Lennth
5. No cue
6. Cue

The raw scores were used in determination of scaled scores.

Inspection of the scaled scores reveals that in nine of
27 cases, it was necessary to collapse the categories for the
raw scores of 0 and 1. The necessity of collapsing categories
for 0 and 1 suggests tne importance of justification in
assessing,performance.in logical reasoning tasks. This fact
is further supported by inspection of the contingency tables.
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TABLE 1

Scaled-Scores

item Raw Score 0 1 2

MNC 1 (A = B and B = C) -1.53 ..-.53 .65

MNC 2 (A < B and B < C) -1.11 -1.11 .90

MNC 3 (A > B and B > C) -1.22 -1.22 .82
NNC 4 (A = B and B < C) -1.74 -1.12 .78
MNC 5 (A = B and B > C) -1.77 -1.05 .80
MNC 6 (A < B and B = C) -1.03 -1.03 .97

MNC 7 (A > B and B = C) -1.53 -1.00 .78

MC 1 (A = B and B = C) ,-1.31 -1.31 .76

MC 2 (A < B and B < C) -3.70 .07 .40

MC 3 (A > B and B > C) -2.73 - .20 .68
MC 4 (A = B and B < C) -1.70 -1.00 .72

MC 5 (A = B and B > C) -2.46 -1.26 .69

MC 6 (A < B and B = C) -1.3A -1.23 .79

MC 7 (A > B and B = C) -1.41 -1.41 .71

LNC 1 (A = B and B = C) -2.28 - .80 .70

LNC 2 (A <"B and B < C) -1.72 .81 .93

LNC 3 (A > B and B > C) -1.35 - .90 .96
LNC 4 (A = B and B < C) -1.14 -1.14 .87

LNC 5 (A = B and B > C) - .94 - .94 1.07
LNCE, (A < B and B = C) -1.93 .07 .71

LNC 7 (A > B and B = C) -1.5° - .80 .85

LC 1 (A = B and B = C) -1.14 -1.14 .87

LC T (A < B and B < C) -1.30 - .53 1.27
LC 3 (A > B and B > C) - .82 - .82 1.22
LC 4 (A = B and B < C) -1.60 - .82 1.01
LC 5 (A = B and B > C) -1.34 -1.09 .90

LC 6 (A < B and B = C) -1.12 - .66 1.17
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Table 2

Contingency Tables

(A

MNC 1

8 and B C) (A

MNC 2

< B and B < C) (A

MNC

> 8 and 8

3

> C)

Grade 0 1 2 Totals 0 1 2 Totals 0 1 2 Totals

K 2 S 13 20 0 13 7 20 2 8 10 20
2 2 6 12 20 0 12 8 20 0 12 8 20
4 0 3 17 20. 0 2 18 20 0 2 ' 18 20

Totals 4 14 42 60 0 27 33 60 2 :2 36 60

MNC 4 MNC 5 MNC 6

(A B and 8 < C) (A = B and B > C) (A < B and 8 Cl

Grade 0 1 2 Totals 0 1 2 Totals 0 I 2 Totals

K 3 8 9 20 4 7 9 .20 6 6 8, 20
2 2 8 10 20 1 10 9 20 3 10 7 20'
4 0 2 18 20 0 2 18 20 2 2 16 20

Totals S 18 37 60 5 19 36 60 11 18 31 60

MNC 7 MC 1 MC 2

(A > B and B C) (A B and 8 Cl (A < Band B < C)

Grade 0 1 2 Tota._ 0 1 2 Totals 0 1 2 Totals

K 4 6 10 20 3 7 10 20 4 7 1 20
2 7 5 8 20 3 7 10 20 0 11 9 20
4 0 1 19 20 i 1 18 20 0 5 15 20

Totals 11 12 37 60 7 15 38 60 4 23 33 60

MC 3 MC 4 MC 5

(A > B and B > C) (A B and B < C) (A B and B > C)

Grade 0 1 2 Totals 0 1 2 Totals 0 1 2 Totals

K 5 8 7 20 8 4 8 20 .2 9 9 20
2 1 9 10 20 2 7 11 20 0 8 12 20
4 0 6 14 20 0 0 20 20 0 1 IS 20

Totals 6 23 31 60 10 11 39 60 18 40 60



Table 2 cont_nued

Grade

K

2
4

Totals

0

4
2
0

6

(A

MC 6

< B and B C)

0

3
3

1

7

(A

MC 7

> B and B Cl

1 2

9 7
8 10
0 20

17 37

1,NC 2

Totals

20
20
20

60

1 2

1 10
5 12
1 18

13 40

LNC 3

Totals

20
20
20

60

(A < B and B < C) (A > B and B > C)

Grade 0 1 2 Totals 0 1 2 Totals
K 3 . 11. 6 20 5 9 6 20
2 3 7 10 20 2 9 9 20
4 0 5 15 20 1 3 16 20

Totals 6 23 31 60 8 21 31 60

4NC 5 LNi 6

(A B and B > Cl ,A < B and B C)

Grade 0 1 2 Totals 0 1 2 Totals
K 4 9 7 20 3 7 10 20
2 6 8 6 20 8 5 7 20
4 2 3 15 20 1 5- 14 20

Totals 12 20 28 60 '12 17 31 60

LC 1 LC 2

(A B and B * C) (A e B ani B < C)
Grade 0 1 2 Totals 0 1 2 Totals

K 6 8 6 20 6 13 1 20
2 3 6 11 20 4 9 7 20
4 2 1 17 20 0 6 14 20

Totals 11 15 34 60 10 28 22 60

LNC 1

0

2

4
0

6

(A B and B :1

1

7
6
3

16

2

11
10
17

38

LNC 4

Totals

20
20
20

60

(A B and 8 < C)

0 1 2 Totals
4 7 9 20
4 8 8 20
1 2 17 20

9 17 ,34 60

LNC 7

(A > B and B

1 2 Totals
6 5 9 20
3 8 9 20,
1 3 16 20

10 16 34 60

LC 3

(A , B and B > C)

0 1 2 Totals
2 13 5 20
0 12 8 20
0 9 11 20

2 34 24 60

,-,===.011,



Table 2 continued

LC 4

(A B and B < C) (A

LC 5

B and B > C) (A

LC 6

< B and B C°.

r

Grade 0 1 2 Totals 0 1 2 Totals 0 I 2 Totals
.

K 4 11 5 20 1 , 13 6 20 5 9 6 20

2 1 12 7 20 1 10 9 20 6 8 6 20

4 0 3 17 0 2 18 20 2 5 13 20

Totals 5 26 29 60 2 25 33 60 13 22 25 60

LC 7

(A > 9 and B a C)

Crade 0 I 2 Totals

K a a 4 20
2 6 7 7 20

4 7 4 9 20

Totals 21 19 20 60
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Only a small percentage of the responses were given a raw
score of 0 in the original scoring. An overwhelming number of
students were able to respond correctly. Without
justification, it would have been difficult to discriminate
between groups in the study.

Brainerd (1973) made a strong case for using both
response and justification as opposed to requiring only a
response when disessing the child's performance on logical
reasoning tasks. This poition is supported by the present
data. The requirement of a rational justification made it
possible to gain more insight into children's reasoning
processes. If it had not been used, much valuable information
might have been lost.

Consideration of Tables 1 and 2 suggests certain trends
in the data. A comparison of transitivity raw scores
(Table 1) with substitution raw scores (Table 2) indicates
that the percentage of children receiving 0's was greater on
the substitution items than on the transitivity items, and the
percentage of children receiving l's was less for the
substitution category than for the transitivity category.
This result gives some indicatio that, on the whole,
transitivity items are slightly Lss difficult for children
than are the substitution items A similar comparison of
matching and length items indic tes that children have less
difficulty with the matching items. Comparison of the tables
for cue items vs. no cue items indicates that, on the whole,
there is approximately the same level of performance.

The fact that, on the whole, transitivity items appear to
be less difficult for children is attributable to the fact
that in a transitive item the child is required to reason with
only one relation at a time. However, in substitutive tasks,
two relations are being considered simultaneously. This
indicated trend in the data is consistent with the results of
Murray and Youniss (1968) and Youniss and Murray (1970), but
inconsistent with the. data of Youniss and Dennison (1971) and
Keller and Hunter (1973).

Matching relations items appear easier for children (on
the whole) than length relations items. This result is
consistent with the discrete objects vs. continuous objects
(length items) discussion presented earlier. Use of continuous
objects makes the logical reasoning tasks more di'ficult for
children than is the case for discrete objects (matching
items).

Similar performance for no cue vs. cue items is
attributable to the fact that the advantage obtained by older
children (who could use the cue etfectively) may have been
negated by the children who were confused by the numerical
cue. For the children who had an incomplete conception of
number, the introduction of numerical cues may have hindered
their performance. The selected age bands may have affected
this result as well.

114 1 18



The combined scores MNCT (Matching no cue transitivity),
MNCS (Matching no cue substitution), LNCT (Length no rue
transitivity), LNCS (Length no cue substitution), ',CT (Length
cue transitivity), and LCS (Length cue substitution) were used
in an analysis of variance design across grade levels (age
bands). F-values are presented in Table 3. The critical value
for F at .05 is 3.16.

Table 3

ANOVA (Combined Variables)

Variables F

MNCT 7.62*
MNCS 11.02*
MCT 9.36*
MCS 14.22*
LNCT 6.61*
LNCS 7.50*
LCT 9.89*
LCS 12,18*

*(P < .05)

The results of the analysis of variance clearly show that
performance on logical reasoning tasks is age related.
The means (by grade level) are presented in Table 4. It

should be noted that, in some cases, the means do not
present an ordered sequence from least to greatest for
grades K to 2 to 4. The three cases where this occurs
are involved with no cue variables. The cue items do
present an ordered sequence for grades K to 2 to 4.
Apparently, the intro action of numerical cues aided the
second-graders. This point will be discussed further in
consideration of the three major hypotheses of the study.

Table 4

Means (ANOVA--Combined Variables)

K 2 4

MNCT - .72 - .93 1.64
MNCS -1.17 -1.29 2.47
MCT -1.34 .06 1.29

MCS -2.00 - .59 2.60
LNCT -1.00 - .53 1.54
LNCS - .68 -1.36 2.03
LCT -1.52 - .09 1.60
LCS -1.25 - .67 1.92
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Hypothesis 1

. It was hypothesized that transitive reasoning :ould
develop earlier than. substitutive reasoning. If this
hypothesis were to be borne out by the data, the increase in
means from grade to grade (especially from K to 2) would be
smaller for transitivity than for substitution. The transitive
and substitutive means are presented in Tables 5 and 6.

Table 5

Transitivity Means (Combined Variables)

Variables K

Grades
2 4

MNCT - .72 - .93 1.64
MCT -1.34 .06 1.29
LNCT -1.00 - .53 1.54
LCT -1.52 - .09 1.60

Table 6

Substitution Means (Combined Variables)

Variables K

Grades
2 4

MNCS -1.17 -1.29 2.47
MCS -2.00 - .59 2.60
LNCS - .68 -1.36 2.03
LCS -1.25 - .67 1.92

For the matching no cue categories, both transitivity
and substitution show reversals in means from grades K to 2.
In the matching cue categories, the increases are
approximately the same. On the length of no cue items,
transitivity means increased while substitution means showed
reversal of order. On length cue items, the transitivity
increase was larger than the substitution increase. The
results do not clearly support the hypothesis as stated.
There is insufficient evidence to conclude that transitivity
develops eari'er than substitution. The data are at odds with
that of Bailey (1973). This apparent discrepancy in results
may be due to the differences in task design. (Bailey used
polygonal paths, constructed of several sticks for
comparison.)
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Hypothesis 2

It was hypothesized that performance for matching
relations would develop earlier than performance for length
relations. If the data were-to bear out this hypothesis, the
increases in means from grade to grade (especially from K to
2) would be smaller for matching than for length. The
matching and length means are presented in Tables 7 and 8.

Table 7

Matching Means (Combined Variables)

Variables K 2 4

MNCT - .72 - .93 1.64
MNCS -1.17 -1.29 2.47
MCT -1.34 .06 1.29
MCS -2.00 .59 2.60

Table 8

Length Means (Combined Variables)

Variables K 2 4

LNCT -1.00 - .53 1.54
LNCS - .68 -1.36 2.03
LCT -1.52 - .09 1.60
LCS -1.25 - .67 1.92

As in hypothesis 1, there is no clear trend for earlier
development of one category over another. For the transitive
variables, matching no cue shows a reversal in means, whereas
the length no cue variable shows an increase of .47. For no
cue substitution, both matching and length variables show a
reversal in means. With the cue transitivity variables the
gains are similar, while for cue substitution the matching
gain is larger than the length gain. When reversals occur, it
is difficult to determine differences. As Kundert and
Hargmann (1972) suggest, the reasonable approach is to
replace an inconsistent result with the nearest consistent one
(equate the means in this case; producing no gain). There is
insufficient evidence to confirm the hypothesis of earlier
development for matching relations over length relations.

Hypothesis 3

It was hypothesized that the introduction of numerical
cues would aid the reasoning of children who have a
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well-organized conception of number (around second grade) and
would possibly hinder or not aid the younger children.. If the
hypothesis were to be borne out by the data, the means for the
cue items (MCT, MCS, LCT, and LCS) would show a sharper
increase from grade to grade then the no cue means (MNCT,
MNCS, LNCT, and LNCS). The no cue and cue means are
presented in Tables 9 and 10.

Table 9

No Cue Means (Combined Variables)

Variables K 2 4

MNCT - .72 - .93 1.64
MNCS -1.17 -1.29 2.47
LNCT -1.00 - .53 1.54
LNCS - .68 -1.36 2.03

Table 10

Cue Means (Combined Variables)

Variables K 2 4

MCT -1.34 .06 1.29
MCS -2.00 - .59 2.60
LCT -1.52 .09 1.60
LCS -1.25 - .67 1.92

In this case, the trend is clearly established. The cue
variables show sharper: increase, in all cases, than the no cue
variables. This is consistent with the hypothesis as stated.
The introduction of numerical cues (numbers from the range of
the measurement function) apparently aids the child of
approximately second-grade level (between 7.5 and 8.0 years of
age). The sharpness of the increases in means from grades K
to 2 indicates the possibility that cue information hinders
young children whose number concepts are not clearly
established.

Discussion

Previous studies such as Bailey (1973), Murray and
Youniss (1968), and Youniss and Murray (1970) had indicated
that a hierarchical development for premise forms should
exist. These studies were at odds with the results of Youniss
and Dennison (1971) and Keller and Hunter (1973). Due to the
introduction of numerical cues into logical reasoning tasks,
it was hypothesized that reasoning in case of the transitive
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premise form would develop earlier than reasoning for the
substitutive premi2.., form. The hypothesis was not supported
by the data of this study which indicate no :ecedence in the
development of premise forms. As discussed earlier, possible
explanation for conflicting results is difference in task
design.

It was hypothesized that the introduction of numerical
cues would enable the child to reason logically with matching
relations before length relations. The hypothesis was not
confirmed by the data from the study. The result of no
precedence for one relational category over another is now
generalizable to tasks involving measurements as well as those
involving no measurements.

Carpenter's results (1972) suggested that children could
use numerical information in measurement situations. On that
basis, it das hypothesized here that introduction of numerical
cues would aid the logical reasoning of children around Leven
or eight years of age. This hypothesis was firmly supported by
the data. Children of seven or eight years of age or older
are capable of thinking in terms of bott. the domain and range
of the measurement function in that tney are able to use the
function and its properties in order to perform logical
reasoning tasks of a transitive and substitutive nature. The
presence of numerical information significantly aids children
in lL1ical reasoning tasks if the children are at an age where
they most likely have a true understanding of number- Results
indicated that vet; young children might be hindered by uch
numerical information.

Suggestions and Recommendations

As with most other research studies, a portion of this
report gives direction for further investigation into the
topics of logical reasoning and measurenTent:

1. Studies should be designed to investigate the
child's ability to operate with logical premise forms 41-1 the
domain and range of the measurement function. This should be
done using the functions for number (counting) and length. A
study of this type would serve to replicate the present study.
Following this, it would be advisable to conduct stujes using
different measurement functions such as area, volume, and
weight. Investigation of measurement functions such as area,
volume, and weight would help to provide important insights
into the understanding of the chidd's acquisition of
measurement t*e.as.



2. Lamb (1975) used an incompatible premise foul in his
study of the functions for number (counting) and length.
studies should be done which use this logical reasoning form
across measurement functions such as area, volume, and weight.
The Lamb study was done using only relations from the domain
of the given measurement functions. Introduction of numerical
cues would provide new and interesting information.

3. Replication stu,..ies could be conducted with the data
being subjected to a factor ?nalysis. These results would
show important interrelatio Ships among the variables of
interest.

4

4. The effects of item design (task construction) as a
variable in this and related studies should be studied more
specifically.

,Based upon the evidence from the present study, the
following classroom recommendations are in order:

1. Teachers s:Iould expo- -t similar development of the
matching and length relation as age increases. Likewise,
similar developmental characteristics for the transitive and
substitutive properties exist. As teachers spend time with
children who are acquiring relational properties, it is
appropriate, to give experiences of a varied nature across the
relations of matching-and length as well as across the premise
forms of transitivity and substitution.

2. As children gain experience and competence with the
various aspects of number, the introduction of numerical cues
int,' the measurement process will enhance the child's ability
to reason logically. This is true for at least the transitive
and substitutive properties of matching and length relations.
The younger children did not benefit frpm ir.troduCtion of
numerical information. In fact, numericll cues may have
hindered the younger children on the tasks. This latter point
indicates teachers should be on the alert if tney use
measurement as the basis for number acquisition, as'they may
impede progress fn number development. In particular, aids
such as the number line and other length models for number
(sticks, rods, etc.) should not be used tc/o early in the
elementary school mathematics curriculum.

,3. Based on 1 and 2 above one might suggest that
children should gain experience"in making comparisons,
ordering, subdividing, and interating. \That is, development
of a unit may be essential before a child can make good use of
numerical informatsion in measurement situations. Note that
all of these behaviors relatd either iireccly or indirectly to
the tasks used in this study.
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THE RATIONAL NUMBER CONSTRUCT--ITS ELEMENTS AND MECHANISMS

Thoma§ E. Kieren
University of Alberta

I. Constructs and Mechanism

The term mathematical concept is used i many ways. It
can refer to an object or a class of mathematical objects.
Most frequently in mathematics a concept is associated with a
formal defining statement. Thus, a rational number is "any
number x which satisfies ax = b where a and b are integers
(b 0)."

Yet such a definition does not tell as much about the
notion of rational numbers particularly as it exists as
personal knowledge. "Knowing" rational numbers can mean a
large number of things. In fact, Wagner (1976) suggests that
for'the person rational numbe;s should be a megaconcept
involving many interwoven strdnds.

Margenau (1961), the eminent philosopher of science, has
analyzed the cognitive component of such complex knowing. He
sees knowledge as a continuum between two extreme
types--facts, which apparently exist independently of our
control, and abstract concepts, which owe their existence
purely to human invention. To avoid certain logical and
psychological pitfalls, Margenau sees all knowledge as
attributable to human construction, but sees these constructs
as boundecrby and rooted in the realm of facts which, he
suggests, function as protocols against which our ideas or
constructs are functionally tested. Hence Margenau would
picture knowledge (in our case rational number knowledge) in
the following way:

Figure 1
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Several things are obvious from Figure 1. Some
constructs are very close to the P-plane; these act directly
pn the plane but have little or no explanatory power. For
example, knowledge of the algorithm for adding fractions acts
on a subset of the P-plane, but may be a disconnected piece of
knowledge with little explanatory power.

Other constructs are more distant from the P-plane.
These constructs generally have more explanatory power and (...re
connected in a wide sense. These connections are of great
importance, for they allow for empirical verification in
scientific terminology or application and problem solving in
the nomenclature of mathematics instruction. A problem, the
purchase of 3.5 metres of cloth at $4.75/m, arises in the
P-plane. The solution is arrived at through traversing a path
among constructs (ratios, multiplying decimals, relating
decimals and money) and arriving at a dollar figure back in
the P-plane.

Van Engen (1953) has described this' phenomenon from a
mathematical-psychological perspective using the notions of
"meaning" and "understanding." In terms of Figure 1 above,
"meaning" applies to the process of building up or developing
the elements in the C field. "Understanding" applies to the
development and maintenance of the interconnections ar)d more
particularly the use of the paths which allow the application
of ideas back into the P-plane. Two criteria for constructs
which optimize applications are inter-connectedness and
extensibility. That is, the constructs arc both connected to
many other constructs and apply to a large c'gment of the
F-plane.

In light of this rather complicated picture of knowledge
developed above, what does it mean to "know" rational numbers?
Put plainly, what is it that a person must functionally kn9w
about rational numbers to be numerate? In the plane of
protocols, rational numbers are involved in representing and
controlling part-whole situations and relationships. Rational
numbers are fundamental to measuring continuous quantities.
If quantities, particularly those continuous, are divided,
rational numbers are involved. Finally, rational notions are
involved in any quantitative comparisons of two qualities
(ratios). Thus one's general rational number construct should
allow a person to control such P-plane events.

At a construct level, knowing rational numbers entails
control over two-dimensional symbols in various forms
(fractions, decimals). Operations on rationals, wnile at a
low level involve knowledge of conventional algorithms, more
generally entail control of primitive forms of vector addition
and function composition. Knowledge of rationals also requires
functional capability with equivalence classes and quotient
fields. Such constructs also entail connections with those of
earlier natural number notions and a more general construct of
number which also includes the real numbers.
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Given the above description of rational number knowledge,
the question of its acquisition arises. With natural or
counting number knowledge, this is at least partly a natural
induction process. A child, before and outside of school, has
a large number of contacts with situations to which natural
number applies. Thus, school mathematics can build upon the
natural knowledge, both in terms of constructs and protocols
(quantifying discrete situations: more than, less than,
sorting, counting). This requires elaborating and
generalizing the counting mechanisms and thence moving to
primitive algebraic (e.g., ordering) and numeration constructs
to help a child develop a more extensive control over discrete
quantitative situations.

The 'experience base of school children with respect to
rational number ideas is much more limited. This is true both
in terms of contact with the quantification of continuous
phenomenon and the language of rational numbers. (There is
very little contact with fraction words beyond "half,"
"third," "quarter," and "percent" even for children of age 11
or 12). Thus the process of developing mechanisms for
building rational number concepts presents the school with a
more completr task to accomplish. In addition, the general
rational number construct is a more inclusive one than that of
natural numbers. Hence school must provide children with
experience with mechanisms (such as partitioning to be
explored more fully below) in a variety of construct contexts
(e.g., rational numbers as measures, to be elaborated below),
as well as providing elementary language experience with words
relating to fractional phenomenon.

a
The remainder of this essay discusses the attempts of

instruction over the, past Century and a half to provide
rational number experiences. After analyzing these attempts
(both of "old" and "new" mathematics), a picture of a more
complete rational number construct is developed and
elaborated. The essay concludes with a discussion of the

_implications of this construct of rational numbers, that is,
that which a person knows when he or she can-function maturely
with rational numbers.

1. The "Old" Mathematics Constructs

De Morgan (1943), writing in 1831 for the Society for the
Dissemination of Useful Knowled(,e, stated that even then
fractions were a topic immensely difficult to learn. To
alleviate this difficulty, De Morgan'showed a method by which
fraction knowledge could be developed as an extension of whole
number knowledge. His vision of the fraction construct was a
set of computational algorithms and his development focused on
these, particularly addition. (Actually De Morgan's
development of addition was quite "modern").
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For the 120 to 130 years following De Morgan's writing,
mathematics instruction addressed itself to building up the
same construct as De Morgan saw for fractions--the task of
computation with fractions and decimals. As schooling became
universal and occurred for a longer period of a person's life,
fractions came to occupy a substantial position in the
mathematics curriculum of what we now know as the middle
school. Research (Kieren, 1976) focused on a detailed analysis
of computation tasks. As pictured below, rational number work
(fractions) was seen to derive from whole number computation
and base 10 numeration.

becimals
Common
Fractions

Numeration Whole Numbers

Figure 2

The detailed analysis of computational tasks into atomistic
sub-tasks as well as the everyday observation of the
"fraction" curriculum in action indicated that this
instructional approach focused on what we might term a
"behavioral surface" of the rational number construct. For
example, the "unlike denominators" di ision task was seen as
very difficult. One of the bases for this difficulty was a
need for the learner to usq equivalent fractions. Yet there
was no stress in the "old nath" on the general construct of
equivalence, nor,was there an attempt to consider rational
numbers in their algebraic framework.

Margenau (1961) discusses a similar problem in the area
of science when he suggests:

The errors we are endeavoring to expose
originate in a disregard of theory, in a
belief that facts have feet on which they
can stand. Actually, they are supported in
a fluid medium called theory, or theoretical
interpretation, a medium which prevents them
(facts) from clllapsing into insignificance.
(p. 29)

Applying this thinking to the problem of a developing rational
number construct, the picture below emerges.
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Behavioral Surface

Empty *

*Little or no knowledge of the objects or structure of
rational numbers; also limited experience with language
development.

Figure 3

One effect of this "empty" construct--that is, one devoid or
lacking in higher level support constructs--is a collapse in a
person's functional ability with fractions and rational
numbers. The behavioral surface breaks down or at least
exhibits severe cracks in the form of poor performance or
rational number tasks. As suggested by De Morgan's comments
cited earlier, this has been an age-old problem.

Figure 4

2. The New Mathematics Constructs

The "modern" mathematics movement sought to alleviate
this problem by giving some depth to the rational number
constructs of children and adolescents. One of the curricular
mechanisms was to have children interact and bui1,1 up their
own ideas of the mathematical structure (i.e., fields)
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Decimal
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Field

Numeration Whole Numbers Structure

Equivalenc e

Figure 5.

In comparing textbooks of 1975 with those of a century
earlier, Kieren (1976) saw lo essential differences. In light
of the above L:i.scussion, this observation is shown to be a
half-truth. It is certainly not true that the construct of
rational numbers addressed by 1975 textbooks is identical to
that of 1875 textbooks. What is true is that emphasis in many
current curriculums is a reduction of Figure 5 to one of the
following configurations (see Figures 6 and 7).
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Behavioral surface

Number
vs.

Numeral

Equivalence Field
Axioms

Figure 6

Fraction Field
Decimals Computation Axioms Equations

Figure 7

Figure 6 represents a situation in which basic constructs
are developed (and taught) in isolation from one another, from
the behavioral surface of computation and tcom the functional
reality of mathematics as it is applied. Thus, the
theoretical constructs de,,21oped are destined to become unused
relics in the mind of the learner. A situation such as
depicted in Figure 6 has often led to a curriculum having as
its view a rational number construct as pictured in Figure 7.
This is an extended behavioral surface, with more or less
factual knowledge of axioms and equations appended to the "old
math" surface. (Indeed some critics-would say that elements
-of the fractional and decimal components have been replaced.)
Thus, particularly in some recent curriculum objectives lists,
the intent of a complete rational number construct in reality
is a "surface" of new facts with little more support than the
"old" mathematics construct.

The weakness of such a behavioral surface construct has
been predicted above and should manifest itself in relatively
poor performance by adolescents and adults on rational number
tasks and settings. The reality of such poor performance has
been documented for a long time. The recent NAEP data suggest
that, while adolescents are functional with whole numbers,
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their performance on fractions tasks is at a much lower level
(Carpenter et al., 1975). Even adolescent students in good
Programs considered to be "modern," at least by design, do not
perform well on rational number tasks. This fact is documented
by Ginther, Ng, and Begle (1976) in the findings of their
survey of 95 eighth-grade mathematics classes. Although the
above research was not done in such a way as to directly
provide proof, the data are indicative that even instruction
toward an "extended behavioral surface" construct of rational
numbers does not indicate mature functioning cn the part of
the older adolescent.* ,

3. Alternatives

One reaction to the prolonged history of poor results in
rational number instruction is that the rational number
construct as developed above is accessible only to more mature
students. Thus, one plausible alternative is the postponement
of rational number instruction until the secondary school.
Put more generally this hypothesis might read as follows:

Instruction in rational-numbers should be
postponed until the student has reached tne
stage of formal operations.

This hypothesis and its curriculum implications are not new.
Washburne (1930) suggested delaying the teaching of the
meaning of fractions where groups had to be considered as
units until the age of 11 years 7 months. The intent of this
suggestion was to sequence instruction so as to allow for the
mastery of the tasks involved. From a very different point of
view, Freudenthal (1973) argues for the postponement of the
teaching of the addition algorithm for rationals until it can
be developed as a consequence of algebraic ideas from which it
arises (see KieLen, 1976, pp. 118-120).

The first of the suggestions above appears to suggest
that older students will be able to induce the broader
construct of rational numbers even from a curriculum based on
a "behavioral surface" view of the construct. The second

Yloih73lbeFcEedttTarrTost curriculums in mathematics
and fractions and rational numbers were not developed
using an analysis of how children or adolescents "thougnt"
about the subjects at hand or how they could go about
building up systematic mechanisms for developing desired
skills, concepts, or abilities.
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suggests that rational numbers, in operation at least, derive
their meaning from algebraic structure and hence instruction
should be based on providing students the opportunity to
deduce rational number constructs from more general ones using
the mechanisms of logic.

II. A More "Complete" Rational Number Picture

An important assumpticn in the above calls for
"postponement" is that older adolescents will be able to
develop functional rational number constructs even from a
limited instructional basis. Yet from Margenaa's point of
view, it is questionable whether a construct, developed from a
narrow instructional base, will be logically potent or
extensive enough to be practical and viable.

Given the history of rational number instruction over the
past 150 years, or over the past 20 years for that matter, are
there alternatives to the "postponement" hypothesis stated
above? Generally, one might say that better instruction for
younger children might be an alternative. But what is the
basis of such instruction? How can it be directed toward the
development of a functional construct, potent and extensive?
To do so, the basis for improved fractional and rational
number instruction needs to take into account Wagner's (1976/
view of the rational numbers as a mega-concept. That is,
instruction needs to address itself implicitly to the many
components or strands which comprise the rational number
construct. In addition, such instruction needs to consider
the interrelationships among the major components or strands.

In an analysis of rational numbers, Kieren (1976)
suggested seven interpretations for fractional and rational
numbers:

- fractions
- decimals
- ordered pairs (equivalence classes)
- measures
- quotients
- operators
- ratios

This analysis further suggested that these interpretations
were or should be isomorphic. From the point of view of
mathematical structure, this trivial representation theorem is
true (with the exception of certain ratio interpretations).
It is this representation theorem which has provided the basis
for the postponement argument. At least implicitly, this
theorem is responsible for the most current developments (and
also forms a basis for the "go decimal now that metrics are
here" rationale). It follows the dictum of economy of thought
to select one or two interpretations at most and provide
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explicit rational number instruction under these. From this
instructional base, It is hoped that a cognitive counterpart
to the above representation theorem will provide for transfer
needed for a fully finctional rational number construct.

Yet this paper and other sources (e g., Wagner, 1976)
have suggested that this bold leap from tie mathematical
mechanism of a representation to a parallel cognitive
mechanism is not yet proven. Thus, the basis for the
rationals needs to involve more than one or two of the above
interpretations.

1. The Major Components

A mathematical analysis of rational numbers ("What kind
of mathematical
interpretations
theorem.
building
From
basis
8.

These

Gjects are these?") leads to numerous
logically simplified by a representative

These interpretacions form a conceptual pool
of related cognitive and instructional structures.

this pool, five ideas of fractional numbers emerge
for a rational number construct, as pictured in Figurr

for the

as a

,

Part- ,Quotients
Whole 1

1

1

Measures Ratios 017,,....tors

Figures 8

five--part-whole relationships, ratios, quotients,
measures, and operators--are not mathematically .independent
and, indicated by the dotted lines, are not psychologically
independent either. Yet they represent five separate
fractional or rational number thinking patterns.

a. Part/Whole, Ratio

The first two of these patterns, part-whole and ratio
relationships, are closely related. These have formed the
traditional and modern bases for de eloping fraction _leaning.
In the first, some whole is broken up into "equal" parts.
Fractional ideas are used to quantify the relationship between
the whole and a designated number of parts. It is important
to note that this representation is bi-partite both in words
and symbols (seven-eighths, 7/8). While three hundred and
three hundredths have parallel designatory and literal
structures (three of something), the numerical interpretations
(3/100 or -.03) of three hundredths show the part-whole
relationship to be related to the ordered pair notion, while
300 does not. More importantly, part-whole and set-set
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relationships generalize and hence psychologically highlight
the notion of equivalence (2/3":::.. 4/6). Some of the current
curricular models of this phenomenon have been set-subset,
dissected and shaded regions, and number line relationships.
Yet most of these models have been but brief stepping stones
to the formal symbolic computation which formed the implicit
construct of rationais.

The ordered pair notation takes on new significance with
respect to ratio relationships--the quantitative comparisons
of two cp!3lities. Three-tenths (3/10) of a floor surface has
a very different meaning than 3/10 which compares the number
of girls and boys on a soccer team. This distinction has been
blurred (7 deaths per 1000, 450 automobiles per 1000) by the
concept of equivalence. While we represent 3 hits in 4 oats
(3/4) and 30 hits in 40 bats (30/40) with the decimal ,750,
they are clearly very different phenomena. However, 75/100
(75 centimetres and 750/1000 of a metre (750 millimetres)] are
the same measure.

Another reason for this blurred distinction is the
problem of class inclusion. Piaaet (1952) has discussed this
ability at length with respect to whole number development.
Yet the ability to handle class inclusion may be more
important for fractional and rational number development.

It might be said that the part-whole number relationships
are a special case of ratio relationships. While formal
notion of equivalence is the same for both, the psychological
one is different. Further, the notion of additivity in the two
settings is different. Thus, while the two relationships
share many characteristics and fall under the rubric of the
rational number construct, for the learner they represent
different if related subconstructs and lead to different
concepts and functioning.

b. Quotient

The sub-construct "rational number as a quotient" is
closely related to part-whole relationships. Yet for the
learner it arises from and is applied in a different context.
It allows for quantification of the result of diA'Ading a
quantity into a, given number of parts and is related
ultimately to the algebra of linear equations. While dividing
a unit into fourths and designating 3 (3/4) leads to the same
quantity as dividing 3 units into 4 parts (3/4) it is clear
that these are different problems for the learner. In fact,
it is e genuine instructional task in the mathematical
lucation of 10- to 14-year-olds to develop a rational number

Linstruct an(' accompanying language which can relate these two
sub-constructs.
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c. Measure

. The sub-construct "rational numbers as measures" is again
closely related to the part-whole relationship. However, the
measurement tasks means the assignment of a number to a region
(taken here in the general sense of this word; may be 1-, 2-,
or 3-dimensional or have some other characteristic). This is
usually ,lone through an iteration of the process of counting
the number of whole units usable in "covering" the region,
then equally subdividing a unit to provide the z...,propriate
fit. The focus here is on the arbitrary unit and its
subdivision rather than on part-whole relationships. It has
been seen in the research of Washburne (1930), Novillis
(1976), and Babcock (1978) that the identification of the
whole (unit) in part-whole situations is difficult because the
"whole" is implicit as opposed to the explicit unit of the
measurement sub-construct.

Rational number as measures is a natural setting for two
important aspects of the rational number construct. The
joining of two measures to find a "sum" measure exhibits the
vectcr additions* aspect of rational numbers. Using ti,L metre
as a unit provides a natural entre to decimal notation, with
decimetres, centimetres, and millimetres serving as physical
models for tenths, hundredths, and thousandths (.1, .01,
.001).

d. Operators

The operator sub-construct portrays rational numbers as
mechanisms which map a set (or region) multiplicatively onto
another set. Thus a "2 for 3" operator maps a domain eiement
12 to a range element 8 and a "2/3" operator maps a region
onto a similar region of reduced size. That this sub-
construct provides a viable approach to rational numbers is
well illustrated in numerous German school texts and
particularly in the work of Griesel (1974) and Dienes (1971).
This sub-construct focuses attention on the r:_ionals as
elements In the algebra of functions. Composition of
operators provides a very simple foundation for multiplication
of rational numbers.

2. Reality and the Five Sub-Constructs

In the first section of this paper, several tasks were
presented as representing mature functioning with rational
numbers. These tasks, the control over part-whole
relationships, measuring, and quantitative comparisons,
represent a reasonable core of what a person shoul3 expect to
master as a result of instruction in the rational number

.

*This should not be confused with the normal ordered pair
addition algorithm for vectors.
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construct. In Margenau's (1961) terms these tasks and their
doing represent the use of an interconnected net of potent
Sub-constructs which form a viable rational number construct.
It is reasonable to ask if the five sub-constructs Identified
above provide a sufficient basis for mature functioning. In

the final analysis, this is an empirical question in which the
construct is validateJ in terms of the performance of persons
who have been identified PS possessing these sub-constructs.
However, a face validation of these constructs is provided in
Figure 9.

Sub-Constructs

Part-Whole

Ratio

Quotient

Measure

Operator

Tasks

Part-Whole

Dividing Continuous Quantities

Measuring Continuous Phenomenon

fMulti -set Comparisons

Figure 9

The defense of the iterrelationships pictured in Figure 9 is
taken directly or '-y direct implication f.,:om the discussion of
each of the five s,:b-constructs above. From this picture it
would appear that the part-whole sub-construct is of central

importance a basis for mature functioning, Again this
hierarchical theorem is empirically testable. However,
because of this. potoncy of the sub-constructs and their
connection to other ideas discussed below, the hierarchy issue

probably is not of critical importance. The important
conclusion to 1-'e drawn from the relationships pictured in

Figure 9 is that the sub-constructs form a sufficient basis
for mature functioning ivhile each individually does not.

3. Mechanisms for Construct Development

The previ us ss!ctions have been devoted to the
development and defense of five basic sub-constructs of the'

rational number construct. Whatever the outcome of empirical
studies, it will be' true that at least some elements of the

construct will prove salid. Given these, a significant_
problem is: How do these sub-constructs develop in a person
or how does a person build them up? How does a child or
adolescent move from the experiences of Margenau's P-plane to
constructs which support mature functioning?

The mechanisms '_or this movement probably fall into two
categories, developmental and constructive. The former, .
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although influenced by social interaction, are also quite
dependent upon maturation. Further, they take the form of
schema usually identifiable only by performance on classic
development mechanisms, including a well-developed schema of
reversibility, the ability to handle class inclusion, the
ability simultaneously to manipulate and cross-compare two
sets of data, and proportionality. The former two of these
are generally developed in children late in Piaget's stage of
concrete operations (ages 9-11) while the latter are
indicators of the stage of formal operations (apes 11-14).
All four of the above can be thought of as internalized
schemes which sponsor actions as opposed to conscious
mechanisms.

The connection between reversibility and the rational
number construct with its two types of inverses is obvious.
The notion of "reciprocal" is important both in general
development and in the development of all of the
sub-constructs noted above. The discussion of part-whole and
ratio constructs indicated the importance of the class
inclusion notion. Ability to apply this mechanism is likely
central to the ability to identify the unit, a key to the
part-whole, quotient, and measureme,t sub-constructs. The
cross-comparison of two sets comes into play in recognizing
rational numbers in particular settings, in developing
equivalence classes, and particularly in the composition of
operators. The proportionality scheme is central to a
generalized notion of ratio and equivalence.

The constructive mechanisms are to a larger extent
products of experience. They are deliberate procedures used
by the learner in coping with rational number settings and
hence in buildinc, up the rational number sub-constructs. They
have parallels with respect to the development of whole number
constructs, the most prominent of which are the various forms
of counting. Two such deliberate constructive mechanisms are
ordered pair language and partitioning.

The use of ordered pair language is central to
development of rational number subconstructs at many levels of
sophistication. The whole issue of attaching bi-partite
number names to fractional settings is one of the keys to the
development of meaning of the various sub-constructs. This
has been discussed by the Gundersons in 1957 and more recently
carefully considered by variou.,, rf,searchers at the University
of Michigan in their development of the Initial Fraction
Sequence (Payne, 1976).

Although this is mainly speculative at this :cage, it may
be that the second mechanism, partitioning, may play the same
role in the development of rational number constructs that
counting does vis-a-vis the natural numbers. Partitioning is
seen here as any general strategy for dividing a given
cp,antity into a given number of "equal" parts. Thus, it can
be seen as important in developing all of the five sub-
constructs. In fact, it may act as a primitive substitute for
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the proportionality schema in such tasks as finding fractions
equivalent to a given fraction. It is also useful in the
iterative division of a unit in the measure sub-construct.

Two other mechanisms which play roles in the early and
more formal rational construct development, respectively, are
the identificaticr of the unit and the application of
mathematical str ...ural properties and the accompanying formal
logic.

Aside from .o work of the Piagetian school on
proportionality a:1d region subdivision, little is known about
the mechanisms used in rational number construct development.
The eight mentioned above are only some of the possible
candidates and the relationships between these and rational
number task performance remains to be empirically verified.

A recent exploratory study by the author lends some
support to the existence of and hypothesized relationship
between the mechanisms and rational construct development. In
this study, random samples of five students in Grade 4 and ten
students in Grades 5, 6, 7, and 8 were drawn from the
population of a small county school system. In a clinical
setting, using the mechan4qm of a simulated packing machine,
each subject was asked to react to instances of the or,rator
sub-construct. These included the operators 1 for 2, 1 for 3,
2 for 3, 3 for 4, the composition of 1 for 2 and 1 for 3, and
the composition of 1 for 2 and 3 for 4 as well as their
inverses. For each operator, the subject received up to six
trials with feedback and 'hen was asked to write down his or
her predictions of machine performance in 10 cases (5 direct
and 5 inverse). The experimenter then asked for an
explanation of how the machine worked and probed for the most
elaborate answer. To summarize the results briefly, there
appeared to be categories of subject performance and thinking:

1. Reacted correctly to less than 10 percent of
the items and hence considered nonfunctional
on the tasks.

2. Could handle 1 for 2 and its inverse but no
other settings. Appeared as though their
fractional recognition in these settings was
"1/2".

3. Could handle unit fractions and inverses.

4. Could handle non-unit and unit fractions.

5. Could handle simple and composed unit fractions.

6. Used a fractioning approach to handle simple
and composed non-unit fractions.

7. Functioned using operators as proportions.
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The categorized results across grade levels are shown in
Figure 10.
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Several thinos in this analysis bear on the issue of
mechanisms. With respect to thr developmental mechanisms, it
can be noted that the inverse notion did not prove to be a
major difficulty in this task set. In nearly all cases,
including 70 perc,nit of the Grade 4 responses, whenever a
subject could produce the direct operator, he or she could
also produce.the inverse. Levels 4 and above required the
simultaneous or sit least related comparison of two sets of
data. While 70 eucent of the Grade 7 and 8 subjects fell in
categories 4 and Above, only 1 student in 25 at the lower
grades did so. Only one student, in Grade 8, used the
.operator as direct proportions: "Oh, yes, they',:re all like
3/4."

The constructive mechanisms were also discernible.
Subjects categoried in Category 2 tended to see only 1/2 as
a fractional mechAnism. It was almost as if a sub-construct
"1/2" formed a fractional number construct. Many
other subjects would also resort to saying "half" or
"doubling" when they were confused by a situation, even when
they would verbalize that the situation ras not like the "1
for 2" situation. This phenomenon was prominent prior to
Grade 7 and occurred even with a few Grade 7 and 8 students.
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Subjects in Categories 4 and 5 made extensive use of
partitioning to find results in the packaging process. For
example, one Grade 8 subject in looking at a given 3-for-4
example (12/9) reacted, "2 sixes in 12, but 2 in 9 doesn't
work, 3 fours in 12, 3 threes in 9--oh, I see." She then
proceeded to test her hypothesis using partitioning in another
situation. In general, students in Category 5 used
partitioning as a substitute mechanism for proportionality to
complete most of the tasks requirEd. Subjects in Categories 3
and 4 did not seem explicitly to exhibit partitioning behavior
and seemed to "see" the tasks in subtractive terms.

In summary, the mechanisms discussed in this section of
the essay are seen to serve two purposes. They are used or
are a cognitive basis for the building up of rational number
constructs. Because they are general in application, they
also may serve to unify the basic sub-constructs into the
general rational number construct.

4. The "Complete" Rational Number Construct

The previous sections of this essay have presented some
broad goals, some constructs, and some mechanisms related to
rational number learning. It will be the purpose of this \

section to present a representation of the object of rational
number knowing. As suggested earlier, Wagner (1976) has
pictured the rational number "mega-concept" as a bundle of
strands each representing a sub-concept. The representation
in Figure 11 takes a different approach to illustrate the
supportive role of the sub-constructs and the interactive role
of the mechanisms discussed in detail above.

The complexity of the diagram in Figure 11 is only in
part due to the author's inability neatly to represent mental
constructs in two dimensions. The rational number construct
of a maturely functioning person is complex. It subsumes the
control functions outlined at the be;inning of this paper and
again in Figure 9. It also forms a basis for more abstract
functioning in the areas of algebra and analysis as indicated
to t'_e right of the broken line in the top level of the
diagram. There are numerous skills such as computation,
setting up proportions, determining equivalence, solving
equations, and measuring which are implied by the structure.
Many of these rest on the notion of equivalence and the
implicit operations of vector additior. and function
composition. The mature competencies, as shown in Figure 9,
and a generalized idea of equivalence an- dependent upon the
underlying development of the five constructs which nave a
genesis in primitive fraction notions such as 1/2, division of

regions, and subdivision. The boxes labeled "m" as well as the
large word "PARTITIONING" show the pervasiveness of these
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mechanisms, particularly those of inverse and partitioning.
Thus, the construct of rational numbers represented here is an
integrated complex whole and not a behavioral surface without
Support.

5. On Connectability with Other Mathematical Ideas

The potency of the rational number construct in
generating mature functioning has been discussed at length in
the previous sections of this paper and it is clear that the
construct does not stand independently of its important
applications. But as Margenau (1961) suggests, the rational
number construct must also be extensive and connectable, that
is, related to other constructs and generative of some.
Clearly, whatever its form, the construct or scheme of
rational numbers does not stand alone or isolated in a
person's mind. The generAl construct pictured above might be
thought of as a part of a net of interconnected mathematical
constructs. In particular, the operator sub-construct can be
connected to those of transformation and the more general
function construct. It can also be connected Ly the group
construct. The measure sub - construct is connectable to
general measurement construct as well as to the formal
mathematical construct of measure through the real number
construct; the useful related instructional structure here is
various number-line forms. The quotient sub-construct is by
definition related to linear equation solving and hence
represents a point of connection to the algebra of equations
as well as to the field structure. The ratio sub-construct is
connected to the many forms of proportional constructs and in
particular to probability and descriptive and inferential
statistics. The part-whole sub-construct is internally
connected in that it serves as a source of language and
symbolism in the other constricts.

This brief analysis shows the rational number construct
developed above to be potentially robust in terms of its
relationship to other mathematical constructs. This very
feature leads to questions of instructional sequencing. For
example, should instruction in the operator sub-construct
precede or come after the study of other transformations--for
example, geometric transformations. In the latter case, the
rational operator becomes an abstraction from the similarity
or size transformation. Another question is, "how does the
measure sub-construct fit into general measurement
instruction; to what extent does one make use of the other?"
That those are important questions is seen in the fact that
curiiculums based on inducing a rational number construct
through its connection to natural numbers or integers, while
axiomatically valid, have not been successful when measured
against the goal of mature functioning.
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6. A Digression o Decimals

The purpose of this section is to test the above model of
the rational numbers construct against the supposition that
rational numbers be developed using the decimal notation,
without using or at least substantially deferring use of
ordered pair notation. What is the effect of this approach on
the development of the five basic suo-constructs and the
mechanisms discussed above? As has been suggested above and in

an earlier paper (Kieren, 1976), the use of the metre as a
unit provides a natural mechanism by which the measure
sub-construct could be developed using decimal notation, This
would require attention to a standardized partitioning
mechanism (into 10 parts). The actual algorithm paralleling
the addition of me3sures would of course be the trivial
extension of the whole number algorithm. Likewise the
computational mechanism in the quotient sub-construct could be
considered the obvious extension of a whole number algorithm.
However, the interpretation of dividing 3 objects into 4 equal
parts benefits from a fractional understanding .1. rationals
which a 10's partitioning would at best cloud. Decimal
notation does not highlight the reciprocal notion of
multiplicative inverse so useful in and indeed a highlighting
contribution of the quotient sub-construct.

Similarly, the development of the part-whole and ratio
sub-constructs are clumsy under decimal notation. Of course,
one might argue that common fractional notions such as halves,
fourths, and thirds could be taught as special mathematics.
But this hardly helps deve)op a construct which allows a
person to control part-whole and particularly set-set
multiplicative comparisons. Thus, the ratio sub - construe'
would particularly be under-developed. One might also lue

that later notions of rational expressions would suffer from a
decimal notation development. However, necessary ordered-pair
rational notions could be introduced as a prerequisite to this
study as they could prior to or with any quotient field study.
However, a general decimal approach would hinder an important
application of the ratio sub-construct--probability.

To the extent that a rational op-rator can be
conceptualized in the parame:_cic sense--e.g., 2y = .25x for
the "1 for 4' operator--a decimal approach is not inimicable
to the operator construct. One can easily see that this
representation, and even functional conception of the operator
approach, is at a sophisticated level. It does not well allow
for the use of the partitioning mechanism. Hence the
contribution of this, sub-construct, multiplication as function
composition, would have to be delayed until late in the
curriculum or lost entirely.

Figure 12 summarizes the hypothesized effects on the
development of the five sub-constructs and selected mechanisms
of a solely decimal approach to rational numbers.
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Code:

Fart-Whole E E+ : somewhat stronger development

Ratio W E : equal development

Quotient E E- : somewhat weaker development

Measure E+ W : substantially weaker development

Operator

Partitioning - W

Inverse

Unit

E

E

Proportions -- E- (because more abstract)

Figure 12

As can be seen, it is hypothesized that a solely decimal
approach will profit the additive construct of measure,
slightly weaken the constructs involving the notion of
inverse, and substantially weaken the multiplicative and
proportional aspects of sub-constructs. Further, the
mechanism of partitioning would have a much more limited
effect on the rational number construct development of the
individual.

It has been suggested that, with the onset of the metric
system, fraction instruction could be eliminated and that
indeed student learning in the area of decimal fractions would
be greatly enhanced. This hypothesis is rather obviously true
if one's construct of the rational numbers consists of the
behavioral surface of computation with rational numbers.
However, if one's instructional aim is to allow students to
build up a construct that allows for control over a wide
lariety of rational number problem settings, as well as
gaining some basis for further algebraic and analytic work,
then the analysis'above suggests that there are hypothesized
costs as well as benefits to a decimal approach. It should be
emphasized that the effect of a "decimal c"-ly" or "decimal
mainly" instructional experience has not Leally been
empirically tested. Such a treatment has not gained currency
in Europe, which has been metric a long time (see European
texts or Friesel, 1971). Thus, the conclusion of this
digression awaits empirical data.
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III. Implications of the Above Theory for Research

Even a casual reading of the above discussion shows a
large number of hypotheses demanding further exploration and
testing. Central to the above development are the five basic
sub-constructs. Each of these constructs is in need of
several kinds of explication. While each has been described
in some detail here and in other places, relatively little is

known about these constructs as they exist for or are
developed by children and adolescents. This is particularly
true for the quotient, measure, and operator sub-constructs.
Thus, research is needed, delimited on sub-construct lines,
which gives a clear picture of the shape and developmental
pattern of these constructs in young persons.

The five basic sub - constructs also require other forms of
validation beyond the content and, to a certain extent,
construct validation suggested above. One such task is to
relate construct capability and rational number achievement.
As suggested in Figure 9, the sub-constructs appear to be
logically related to various rational number task settings.
It would be important to define achievement in terms of these
tasks as well as in more conventional ways.

As suggested early in the above discussion, the rational
number constructs are the products of deliberately arranged
experiences for the individual. This suggests that the above
constructs are in need of curricular validation. That is, it

must be shown that they each form the basis for deliberate
instructional activities. Further, it must be shown that
these activities allow the large majority of the population
to develop the particular sub-construct. To a certain extent,
this has been implicitly carried out Ti various curriculumsto
date for the part-whole and operatOr sub-constructs. However,
even these efforts obviously have not been directed towards
the sub-constructs as developed in this paper.

Figure 9 is also suggestive of yet another form of
construct validation. This would involve a study of the
interrelationship of the sub-constructs and would have as its

goal a parsimonious description of the rational number
construct: Are all of the sub-constructs necessary? Do some

subsume others?

This interrelationship study could also lead to an
expanded list of sub-constructs. This might come about in two
possible ways. First it might be shown that the net of
sub-constructs does not account for some important rational
number task. Thus, some elaboration of the given constructs
or extension to new constructs would be necessary. Further,
new mathematical ideas might suggest the development of a new
mechanism or sub-construct useful to persons in handling
rational number tasks. The development in this paper and
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others (Dienes, 1911; Griesel, 1971; Wagner, 1976) show that
the mathematical topics of fields, analysis, and operators
Provided bases for the personal constructs of quotients,
measure, and operator. Thus, such extension of the rational
number construct through use of newer mathematical thinking is
obviously possible.

The mechanisms persons use in building up a rational
number construct present many other avenues of research. While
there has been considerable work in mathematics and science
education as well as developmental psychology on the
proportionality scheme, there has been almost no deliberate
study of partitioning and its related notion, use of units.
The same is true for the study of inversing, particularly as
it relates to rational or fractional settings. In line with
the construct theory above, research is needed showing the
role of various mechanisms in each of the constructs above.
Again a focus of the search will be for a more precise
explication of the rattional number construct. Thus it may be
that tle mechanisms, or some of them, will _-rove to be more
important than the basic sub-constructs. Under any
circumstance, it will be important to define curricular
conditions for tae development of these mechanismS.
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SEVENTH-GRADE STUDENTS' ABILITY TO ASSOCIATE
PF`PER FRACTIONS WITH POINTS ON THE NUMBER LINE.

Carol Novillis Larson
University of Arizona

Geometric regions, sets, and the number line are the most
commonly used semi-concrete models for fractions in elementary
school textbooks. Novillis (1976) analyzed the fraction
concept into 16 less complex related subconcepts where each
one was associated with one of these three semi-concrete
models. She reported that associating a proper fraction with
a point on a number line was more difficult for intermediate
grade students than associating a proper fraction with a
part-whole model where the unit was a geometric region and
with a part-group model where the unit was a set. Payne
( 976) also reported that elementary students had more
difficulty with the number lire model than with the area model
(part-whole) model.

An obvious question raised by these studies is: Why was
the number line model so much more difficult for students than
the other two types of models? In the Novillis 1976 study,
the number line test items utilized number lines of length
one, two, and three. It could be that the length of the
number line might be a relevant variable. IL was observed
that when the number line is of length greater than one, some
stunts disregard the scaling and treat ..he number line that
is depicted as a unit regardless of its length. Muangnapoe
(1975) reported third and fourth graders exhibiting this
behavior. An important difference between a part-whole model
and a number line model is that in the number line model the
students need also to attend to the scaling. Hence a number
line model implies a length greatet than one. Whenever a
number line of length one is used, then the number line model
is not being completely tested. In this case, the number line
is really just another part-whole model where the unit is not
in question, being the "whole."

Novillis (1976) also tested intermediate grade students'
ability to associate proper fractions with part-whole,
part-group, and number line models where the number of
equivalent parts in the unit was a multiple of the
denominator. The mean for 279 intermediate grade students on
the 20-item subtest that measured students' recognition of
equivalence with these three models was 185. The mean score
on the four-item Number Line, Equivalence Subtest was 0.29.

Portions of this article have been previously publi3hed:
Larson, C.N., Locating fractions on number lines: Effect of
length and equivalence, School Science and Mathematics, 1980,
80, 423-428.
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Payne (1976), summarizing a series of studies done at the
University of Michigan from 1968 to 1975, reported that in all
cf the studies equivalent fractions was troublesome for most
students, especially reducing to lowest terms. These results
seem to suggest that further investig. ion is needed in this
area.

Purposes

Thc' purposes of this study were to investigate:
1) seventh-grade students' ability to associate a proper
fraction with a point on a number line when the number line is
of length one and of length two; 2) seventh-grade students'
ability to associate a proper fraction whose denominator is b
w.th a point on a number line, when the number of line
seyments into which each unit segment has been separated
equals b and 2b; and 3) the hierarchical dependencies among
the four types of number line subconcepts that occur when both
length of number line (one or two) and number of line segments
in each unit line segment (b or 2b) are considered.

Definitions

This study deals with four subconcepts of the fraction
concept. All four subconcepts involve the number line model.
The behavior that is related to each subconcept is described
below:

X

Subconcept Ll: Number line, Length 1.

The student associates together the proper fraction a/b
and a point on a number line of length one, where the unit
segment has been separated into b equivalent line segments and
the ath point to the right of zero is marked.

0
4

The point on the number line marked by X
can be named by the fraction 1/3.

E,ample:

Subconcept L2: Number Line, Length 2.

The student associates together the proper fraction a/b
and a point on a number line of length two, where each unit
segment has been separated into b equivalent line segments and
the ath point to the right of zero is marked.

0 2
Example:

The point on the number line marked by X
can be named by the fraction 1/3.
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Subconcept ELI.: Number line, Equivalence, Length 1.

The student associates-together the proper fraction a/b
and a pcint on a number line of length one, where the unit
segment has been separated into 2b equivalent line segments
and the 2ath point to the right of zero is marked.

0 I

Example:
1

4 i 1 I I

X
The point on the number line marked by X
can be named by the fraction 1/3.

Subconcept EL2: Number line, Equivalence, Length 2.

The student associates together the proper fraction a/b
and a point on the number line of length two, where each unit
segment has been separated into 2b equivalent line segments
and the 2ath point to the right of zero is marked.

Example: 0 2
1 1 i i i

i 1 1 I

-I

The point on the
x

number line marked by X
can be named by the fraction 1/3.

Method

Instrument

A sixteen -item multiple choice test--Locating Fractions
on the Number Line--was constructed by the investigator to
measure the behavior related to Subconcepts Ll, L2, EL1, and
EL2. The test contains four subtests of four items each; each
subtest corresponds to one subconcept. The 16 items were
randomly ordered in the test. The fractions 1/3, 1/5, 2/5,
and 3/8 were used in each subtest. These same four fractions
were previously used by Steffe and Parr (1968) and Novillis
(1976). Each subtest contained two test items of each cf the
following types: a) given a fraction, the student chooses the
correctly marked number line; b) given a number line with a
point marked, the student chooses the correct fraction.

The reliability of the subtests, as determined by the
Hoyt procedure, was r = .86 for subtest Ll, r = .76 for
subtest L2, r = .85 for subtest EL1, and r = .80 for subtest
EL2.

Sample

Seventh-grade students in the fall of t:-3 year were
selected as the populati-Jn in order to evaluate students at
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the end of the elementary school years. The sample consisted
of 382 seventh-grade students, approximately half of the
,seventh -grade students in a predominantly middle class junior
high school in Miami, Florida. The students were assigned to
three different tracks for mathematics instruction. The only
class at the highest level, Pure Math, and half of the class
sections at the other two levels, Structures and Whole
Numbers, were tested. A total of 13 class sections was
tested, the one highest level class, Pure Math (n = 31), five
sections of the second level, Structures (n = 156), and seven
sections at the third level, Whole Numbers (n = 195). The test
was administered by the investigator from October 22-28, 1975.

Procedure for Establishing Hierarchical Dependencies

Given the nature of the four subconcepts that were being
investigated, it seemed reasonable that a hierarchical
relationship might exist. In the past, learning hierarchies
have been hypothesized, instruction given based on the
hypothesized hierarchy; and then a test administered to assess
each cell in the hierarcny (Gagn' et al., 1962; Ei3enberc and
Walbesser, 1971). Gagne et al. (1962) and Walbesser (1968)
have developed numerical procedures for testing the validity
of hypothesized dependencies in learning hierarchies.
Novillis.(1976) adapted the ratios used by Gagne et al.,
(1962) and Walbesser (1968). Her study differed from
traditional hierarchical studies in that no instruction was
given and the research hypothesis predicted a relationship in
only one direction. In using ratios to validate hierarchies,
a transitivity inference is usually made that if A is
established to be subordinate to B and B is established to be
subordinate tc C, then A is accepted as being subordinate to
C.

In the present study a hierarchy was not hypothesized;
instead, two methods of analysis were selected to test for all
possible dependencies among the four subconcepts in order to
construct a feasible hierarchy. In Method 1, the two ratios
adapted by Novillis (1976) were used to test all pairs of the
four subconcepts for possible dependencies.

A criterion level of 75 percent wasp established for each
subtest and the scores changed to a binary scale where 1
denotes reaching criterion on the subtest and by inference
acquisition of the related subconcept; similarly, 0 denotes
nonacquisition of the subconcept. Figure 1 illustrates the
four possible categories of students for a pair of
subconcepts.

The (0, 0) category is not considered in the analysis of
the data as there is no way of knowing which subconcept each
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2

Superordinate
Subconcept

1

Subordinate
Subconcept

Indication of Dependency
(1 ---> 2)

Subordinate
Subconcept

Nonacquisition

Acquisition

(0,0) (0,1)

(1,0)

Nonacquisition Acquisition

Superordinate Subconcept

Figurt) 1. Four Categories of Students Associated
Each Hierarchical Dependency.
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student will acquire first. In this study the hierarchical
analysis of the data is essentially concerned with deciding
when the number of students in category (0, 1) as compared to
the number of students in categories (1, 0) and (1, 1) is of a
magnitude that does not contradict the hypothesis of a
hierarchical dependency.

Following are the two ratios used by Novillis (1976) with
minimum levels of supporting a hierarchical dependency:

Ratio 1 = n(1, 0)
n(1, 0) + n(0, 1)

Ratio 2 = n(1,1) + !1,0)
n(1,1) + n(1,0) + n(0,1)

> .75

> .90

Ratio 2 is a test of the dependency only when Ratio 1 is at
the .75 level. The rationale for the ratios and the levels of
acceptance is described in Novillis (1976).

A hierarchy was then constructed based on the results of
this analysis and the transitivity inference. Method 2 was to
test the transitivity inference of the hierarchy that
results from use of Method 1. Method 2 consisted of
generalizing the two ratios used in Method 1 in order to deal
with all four subconcepts at once rather than with pairs of
subconcepts.

When considering the four subconcepts simultaneously
there are 16 categories that result for the quadruple of
subconcepts. These 16 categories have been partitioned into
three classes: the Null Class7-(0,0,0,0); the Mastery
Class--(1,1,1,1); and the Intermediate Class, which contains
all categories where students reach criterion on from one to
three of the subtests. Ratio 11, an extension of Ratio 1,
deals solely with the 14 categories in the I.termediate Class.
The numerator is the number of students in the categories of
the Intermediate Class supporting the hypothesized
hierarchy -;- Positive Categories (P). The denominator is the
number of all of the students in the Intermediate Class (I).
The two new ratios are:

Ratio 11 = n(P)
n(I)

Ratio 2' = n(P) + n(1,1,1,1)
n(I) 4 n(1,1,1,1)
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Results

One of the main purposes of this study was tD compare
seventh graders' performance on various fraction/number line
tasks where length and equivalence were varied. To accomplish
this a 2 x 2 repeated measures ANOVA was performed r- the
students' scores on the four subtests. The mean and standard
deviation for each subtest are summarized in Table 1; the 2 x
2 repeated measures ANOVA indicates: 1) that associating
proper fractions with points on number lines of length one was
significantly easier for the students tested than on number
lines of length two; and 2) that associating proper fractions
with points on number lines' where the number of equivalent
line segments in each unit segment is the same as the
denominator was significantly easier for the students tested
than on number lines where the number of equivalent line
segments is twice the number in the denominator. Even though
the interaction was significant, the means for each subtest
listed in Table I show: 1) that the means for both levels of
length one (L1 and EL1) are higher than for both levels of
length two (L2 and EL2); and 2) that the means for both levels
of the number of equivalent segments in a unit equaling the
denominator (L) and L2) are higher than for both levels of the
number bf equivalent line segments in a unit being twice the
denominator (EL1 and EL2).

Table 1

" Means and Standard Deviations on Four Fraction/Number Line Subtests

(n = 382)

Subtest Mean Standard Deviation

Li

L2

EL1

EL2

2.67

2.32

1.62

1.51

1.59

1.50

1.62

1.53
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Table 2

ANOVA for Length by Equivalence

Sourde SS df MS

Length (L) 20.50 1 20.50
Error 347.75 281 .91

Equivalence (E) 327.13 1 327 13
Error 671.12 381 1.76

L X E 5.42 1 5.42
Error 167.83 381 .44

P Z. .001

22.46*

185.71*

12.30*

The second type of analysis used in this study was the
testing for possible hierarchical dependencies using Methods 1
and 2, previously described. In order to test for dependen-
cies using Method 1, all possible pairs of subconcepts were
identified. The order of the subconcepts in each pair was
determined by the magnitude of the means for each related
subtest in the pair. The data listed in Table 3 were used to
compute Ratios 1 and 2; Table 4 displays the results of this
computation. Hierarchy 1 is illustrated in Figure 2. It
consists of the dependencies that were supported and the level
of each subconcept relative to the others based on the subtest
that measured the associated behavior.

Table 3

The Number of Students in Each of Four Categories for Each
Possible Pair of Subconcepts

(n = 382)

Dependei,cy

Categories

n(0,0) n(0,1) n(1,0)

Ll L2 129 15 73

Ll EL1 141 3 113

> EL2 138 6 134

L2) ELI 183 19 71

L2 EL2 198 4 74

EL2 242 12 30

n(1,1)

165

125

104

109

106

98
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Table 4

The Results of Computing Ratios 1 and 2

% in Dependency
Ratio 2 Supported

.9407 Yes

Dependency (0,0) Ratio 1

33.77 .8295Ll L2

L1--*EL1 36.91 .9741

L1-4 EL2 36.13 .9571

L2-* EL1 47.91 .7889

L2-* EL2 51.83 .9487

EL1->EL2 63.37 .7143*

EL2-*EL1 63.37 .2857*

* Ratio 1 < .75
"'Ratio 2 < .90

.9876 Yes

.9754 Yes

.9045 Yes

.9783 Yes

.9143 No

.7857** No

Means
(No. of Items = 4)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

EL1

L2

Ll

EL2

Subtests

Figure 2. Hierarchy 1: Hierarchical Dependencies
Supported with Subconcepts Ordered by Means.

Hierarchy 1 is not one that would have been hypothesized
based on a logical ordering of the four subconcepts. It was
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expected that EL1 would be subordinate to EL2. Also, the
relationship between L2 and EL 1 is surprising.

Table 5 lists the number of students in each of the 16
categories that are required for testing a hierarchy using
Method 2, in which all dependencies among the four subconcepts
in the proposed hierarchy are tested at once. Each category is
indicated by an ordered quadruple of zeroes and ores in the
order Ll, L2, ELi, EL2.

Table 6 lists the number and percentage of students
in each of the three Classes: Null, Intermediate, and
Mastery. Table 7 lists the categories in the Inter-
mediate Class that were classified as being positive
(i.e., supporting Hierarchy 1), and the results of computing
Ratio 1' and Ratio 2' using the data in Tables 6 and 7.

Table 5

Number cf Students in Each of Sixteen Categories
(n = 3821

Category
(L1,L2,EL1,5L2)

Number of Students
in Each Category

% of Students in
Each Category

(0,0,0,0) 125 32.72

(0,1,0,0) 12 3.14

(1,0,0,0) 54 14.14

(1,1,0,0) 51 13.35

(0,0,1,0) 1 .26

(0,1,1,0) 0

(1,0,1,0) 18 4.71

(1,1,1,0) 11 2.88

(0,0,0,1) 3 .79

(0,1,0,1) 1 .26

(1,0,4,1) 1 .26

(1,1,0,1) 7 1.83

(0,0,1,1) 0

(0,1,1,1) 2 .52

(1,0,1,1) 0

(1,1,1,1) 96 25.13
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Table 6

.
Number and Percent of Students by Class of Categories

(n = 382)

Class of
Categories

Number of Students % of Students in
in Each Class Each Class

Null

Intermediate (I)

Mastery

125

161

96

32.72

42.15

25.13

Table 7

Testing of Hierarchy 1: L1--- L2-> EL1 and L1-> L2-). EL2
(n = 382)

Positive Categories in
Intermediate Class (P) in Each Category

Number of Students

(1,0,0,0) 54

(1,1,0,0) 51
/

(1,1,1,0) 11

(1,1,0,1) 7

Total 123

Ratio 1' =
123

= .7640 > .75
161

Ratio 2' =
219

= .8521* < .90
257

*Hierarchy not supported.

Since Hierarchy 1 was not supported usirg Method 2, two
other probable hierarchies were tested using this method.
Hierarchy 2 (L1-3 L2 4 ELL -> EL2) is a lin'ear ordering of the
subconcepts based on the means of the four related subtests.
Hierarchy 3 (L1-4 L2) EL2, and Ll -p EL1 -' EL2) is a logical
ordering of the subconcepts based on an analysis of the
characteristics of each subconcept.

Hierarchies 2 and 3 were not supported using the
established decision rules.
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Table 8

Testing Hierarchy 2: Ll L2 EL1 EL2 .

(n = 382)

Positive Categories in
Intermediate Class (P) in Each Category

Number of Students

(1,0,0,0) 54

(1,1,0,0) 51

(1,1,1,0) 11

Total 116

Ratio 1' = 116 =

161

212
Ratio 2' = 257

. 7205* < .75

. 8249* < .90

*Hierarchy not supported

Table 9

Testing Hierarchy 3: Ll L2 EL2 and Li EL1 EL2

Positive Categories in Number of Students
Intermediate Class in Each Category

(1,0,0,0) 54

(1,1,0,0) 51

(1,0,1,0) 18

(1,1,1,0) 11

Total 134

134
Ratio 1' = 161

230
Ratio 21 = 257 =

.8323 > .75

.8949* < .90

*Hierarchy not supported
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Discussion

It would seem that, by seventh grade, associating proper
fractions with points on number lines of length one and of
length to would be of equal ease for students. That it wasn't
raises the quescion: Are we using teaching strategies,
sequences, and activities that foster concept formation, or
isolated rule formation? If students had an understanding of
number lines, a concept of proper fraction as naming a number
of equivalent parts of a defined unit, and a concept of
fractions as names for numbers, they should be able to
associate 1/5 with a point on a number line regardless of its
length. A number line of length one is very similar to the
part-whole (area) model that is usually he first and most
constant model used 'n developir.g fraction concepts. The
students can disregard the scaling and respond correctly, as
long as thoy begin counting at the let.--at zero. They can
still use the rule, count the number of t-rts in all (in this
case equivalent segments) for the denominator, and count the
number of equivalent line segments from zero to the marked
point for the numerator. When the number liAe is of length
two, this rule doesn't work. The students need to know that
the line segment from 0 to 1 is one unit (one whole), the line
segment from 1 to 2 is another unit. When they are dealing
with a proper fraction; they need to consider only the number
of equivalent line segments from 0 to 1, and they must realize
that the segments from 1 to 2 are not relevant.

Responses to individual test items indicate that some of
the students tested were confused with the seal ig or
disregarded it. When responding to three test items where the
number line was of length two, 15 percent to 25 percent of the
sample chOse fractions that indicated that they considered the
whole number line the unit and not just the segment from 0 to
1. For example, 25 percent of the students selected 2/12 as
the correct response when the number line was of length two
and each unit segment was separated into six equivalent line
segments.

The dat , as well as the questions asked by students
auring data collection, suggest that many students do not
associate the name "1/3" with a point indicated by 2/6 on a
number line. Do these students have as part of their fraction
.concept that a fraction r::lresents a number that has many
flanks and that each of t:1--e names can be associated with the
same point on the number line regardless of the number of
segments in each unit? Do they have the flexibility in their
concept to allow them to associate the fraction 2/6 with a
point on a number where each unit segment has been separated
into nine equivalent line segments? A question asked many
times concerning test items on Subtests EL1 and EL2 was, "no
you mean, to reduce?" or "Should I reduce?" Test items
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contained the questions: "Which fraction can name this
point?" and "On which number line can the point marked by X be
named by the fraction 1/3?"

Fourth- and fifth-grade students construct sets of
equivalent fractions and learn the rule that you (.:11;, multiply
or divide each part of the fraction by the same number. Do

they intearate this_as part of their fraction concept or have
they, in the first case, memorized a rule for a pattern and,
in the seeond case, a rule for an "algorithm?"

A question that needs answering is: What is the concept
of equivalent fractions for students at the completion of
elementary school? In discussing the results and implications
of the NAEP Mathematics Assessment, Carpenter et al. (1975)

state:

If, in the upper elementary grades, the
concept of equivalent fractions has been
-developed well, and it should have been, then
the data imply that pupils have not mastered
the application of equivalent fractions to the
solution of problems. Dne suspects that
13-year-old pupils see fractional parts,
equivalent fractions, and computat.onal
algorithms as separate, unrelated topics.
(pp. 442-443)

The results of this study seem to indicate that some
students do not have a very flexible concept of equivalent
fractions. Payne (1976) and Steffe and Pa_r (1968) report
evidence supporting this contention. Perhaps some students
have a group of isolated, inflexible, specific rules that are
not synthesized and which allow for very little transfer.
Brownell and Hendrickson (1950) claimed that, as concepts
develop, they move along various fir s of change. They become
more abstract, clearer, and more definite. They also change
in their implications, relationships, and transferability.
The -)rocess of learning concepts, then, is -primarily one of
snythesis. How can we structure situations so that tne
students will feel the need to synthesize and will attempt to
do so? Payne (1976) and his colleagues have been
experimenting with teaching sequences and strategies that will
_do this, So far they have met with limited success.

The atterTt was to eetablish a hierarchy of the four
related subconcepts of the fraction concept with a number line

as a mode. One definite hierarchy was not clearly
established. What was indicated was that Suhconcept Ll was
acquired first by 34 1_-rcent of the students in the
Intermediate Class, in comparison to 7 percent, less than 1,
percent, and 2 percent of the students In the Intermediate
Class who first acquire] Suoconcepts L2, WLl, and EL2,
respectisiely. (The percentage of the total sample for each
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category is listed in Table 5.) The des-ending order of the
means for the four subtests in the order Ll, L2, EL1, and EL2
see Table 1) is identical to the descending order of the
subconcepts when the number of students who achieved criterion
on each related subtest is cclsidered (see Table 10).

.cable 10

Number of Students Attaining Criterion on Each
Subconcept
(n = 382)

Number of Students
Subconcept Attaining Criterion

Ll

L2

EL'

EL2

238

180

128

110

It is of interest that 33 percent of the 382 students
te.Dted did not attain criterion on any of the subtests, and
only 25 percent attained criterion cn all four subtest.s. Of
the 42 percent in the Intermediate Class, 14 percent of the
students tested attained criterion only on Subtest Ll. The
other 28 percent of the students attained criterion on other
subsets of the subtests.
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THE RELATIONSHIP OF AREA MEASUREMENT AND LEAKNING
INITIAL FRACTION CONCEPTS BY CHILDREN IN

GRADES THREE AND FOUR

Douglas Owens
University of British Columbia

There are several physical models which are used in
school mathematics to introduce fraction concepts. One of the
earliest models used is a region such as a rectangular or a
circular one which has been partitioned into n congruent
parts. The entire region is defined as one whole unit and
each of the parts is defined as 1/n of the region. Curriculum
materials often show one or more of the n parts beside the
region on the printed page. It apparently is assumed that the
child can measure the whole region or certain parts of it in
terms of these smaller parts with measure 1 /n. On the other
hand, some children in grades three and four do not have
well-developed area concepts.

The purpose of this study was to determine the
relationships between the child's area concept and the ability
to learn fraction concepts using area models. If one's area
concept is helpful in learning fractions, it appears that
appropriate activities in area measurement should aid fraction
learning and should precede fraction activities. A second
purpose was to determine the effect of grade level on the
ability of the children to learn fraction concepts at the
third- and fourth-grade levels.

Procedures

Subjects

The 56 subjects were chosen from two third-grade and two
fourth-grade classes in Greater Vancouver, British Columbia.

Area Concept Test

The Area Concept Test was composed of six items. The test
. included two conservation of area items and two measurement of
area items similar to those used by Piaget (1960). Both kinds
of items were included because it is not clear that ability to
perform one of these tasks is necessarily preLequisite to
performing the other kind of task (Taloumis, 1975). In the
other two items the child was asked to measure a region in
terms of a set of blue rectangular cards and a set of red
cards. In one item it took the same number of blue as red
cards and in the second item it took fewer blue than red
units. The child was then asked to measure a second region
using the red cards and predict if it would take the same
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number or more or fewer blue cards than red cards to cover the
second region. The Area Concept. Test was given in a
one-to-one interview and audio recorded. In each item the
6hild was asked to justify his or her response.

Unit of Instruction

The unit was based on a revision of the material used by
Muangnapoe (1975). The instruction included identifying
fractional parts of regions using oral names, written work
names, and fraction symbol names. Fraction notation was used
for unit fractions and for other numbers less than one, equal
to one, and greater than one. However, mixed forms were not
used for numbers greater than one. Order was included for some
cases where the fractions had the same denominator or same
numerator, and equivalnet fractions were not necessary.

'',..

The main instructional techniques were paper folding by
teacher demonstration and by each child. The children folded
paper rectangles which measured 28 cm by 5.5 cm any. paper
discs. Later the children completed worksheet exercises using
their material kits and, finally, completed worksheets without
the use of the materials. At first only oral language was
used during the folding activity. This was followed by use of
oral and written word names and finally fraction numerals were
used.

Posttests

The Fraction Concept Test of 51 items was similar in

nature to those on the worksheets completed by the pupils.
This included items on (a) identifying the larger of two
fractions by word name, (b) identifying figures which have
equal-sized parts, (c) translating from word names to fraction
numerals and conversely, (d) deciding whether two diagrams
show equal amounts shaded, (e) shading a previously drawn
diagram to show a given graction, (f) writing a fraction to
indicate the part shaded, and (g) identifying a diagram which
Shows a given fraction.

The Transfer Test was composed of eight items sampling
extension to equivalence, mixed numerals, and the "part of a
set" meaning of a fraction.

Procedure

The Area Concept Test was administered to 101 pupils in
grades three and four. Figures 1 and 2 show the frequency of
pupils scoring zero to six for grades three and four,
respectively. Pupils who scored two or less were classified
as low and pupils who scored four or more were classified as
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0 1 2 3 4 5 6

Score
N = 50

Figure 2
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Measurement Test: Grade 4
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high. From these, the 56 subjects for further study were
chosen by random selection.

Two instructional groups were formed by having children
t Jm one third-grade class and one fourth-grade class
combined, without regard for level. Thus. each group
contained a mixture of third-grade and fourth-grade pupils,
and high-level and low-level children. These groups were of
approximately equal size. The investigator, using the same
treatment, instructed all group'S for seven 46-minute periods.
Instruction took place for all groups between morning recess
and lunch time. The posttests were administered on the eighth
day in the pupils' regular class with no time limit.

Analysis

Item analyses were performed and Hoyt (1941) reliability
estimates obtained. The Fraction Concept Test and Transfer
Test data were analyzed using separate univariate analyses of
variance. The two factors, Area Concept and Grade, had two
levels eacn. Correlations were computed among the scores on
Area, Fraction Concept, and Age in months.

Results and Conclusions

Test Analysis

The item difficulties by grade level of the Area Concept
Test are shown in Table 1. The Hoyt reliability estimate of
the Area Concept Test was .75. Item difficulties of the
51-item Fraction Concept Test ranged from .41 to .90 except
for three items (0, .03, .17). Item difficulties for the
eight-item Transfer Test ranged from .16 to .52. The Hoyt
reliability estimates were .96 and .70 for the Fraction
Concept Test and Transfer Test, respectively.

Table 1

Item Data: Concept Test

Item Number 1 2 3 4 5 6

Grade 3 Number correct . 35 29 24 17 34 19

(51 subjects) P(Item difficulty) .69 .57 .47 .33 .67 .37

Grade 4 Number correct 34 28 30 21 28 18

(50 subjects) P(Item difficulty) .68 .56 .60 .42 .56 .36

Total Number correct 69 57 54 38 62 37

(N = 101) P(Item difficulty) .69 .56 .51 .38 61 .37
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Analysis of Variance

A summary of the ANOVA's performed on the variables
Fraction Concept and Transfer are contained in Tables 2 and 3,
respectively. In both cases Area Concept was a significant
factor, but, in neither case was Grade significant.

The means on Fraction Concept ana Transfer are given for
High and Low levels in Table 4. It will be observed that the
achievement test means of 69 percent for the Low level and 82
percent for the High level were reasonably high, whereas the
Transfer Test means were considerably lower.

The correlations of age with other variables are given in
Table 5. Only the correlation of .50 between Area Concept and
Fraction Concepts was significant (p < .01). This, of course,
is consistent with the results of the Analysis of Variance.

Table 2

Analysis of Variance for Fraction Concept

Source

Area

Grade

A X G

Error

df MS

1 743.14 13.24*

1 52.07 1.28

1' 1.1 < 1

52 40.75

* p < .01

Analysis

Source

Area

Grade

A X G

Error

* p < .01

Table 3

of Variance for Transfer

df MS

1 44.64 16.70*

1 4.57 1.71

1 3.51 1.31

52 2.f-
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Table 4

Group Means by-Level for Fraction Concept and Transfer

Low High
Level Level Total

Number
of Items

Fraction Concept 35.0 42.3 38.6 51

Transfec 1.5 3.3 2.4 8

Table 5

Correlation Matrix

Age Fraction Concept

Area Concept

Age

.05 .50*

.07

* p < .01

It was a surprising result that grade or age had no
detectable relationship to either area measurement or fraction

learning. Perhaps one year's difference at this particular
age is not a great enough age span to expect differences in

performance. For tne children in the sample at least, it

appears that children in oracles three and four are equally
capable of informal area ' easurement. Children in the third
grade als8 E?pear to learn an initial fraction concept as well

as those in the fourth grade. Again, the sample was from one
school and it remains to be seen how general the results are.

It does appear that area concept level is related to

fraction task achievement, at least when the fraction work is

based on an area model. This is riot to say that the children
in the low area group cannot learn the fraction work. In the
present study the low-group mean was at about 70 percent.

While there were significant differences in the high and
low area groups on the transfer measures, the means were

fairly low. It is possible that more evidence of transfer
could be shown by a different criterion. Perhaps there is a
particular kind of transfer not detected by the test of a

general nature. Time to criterion on the new tank might be a
measure of transfer worthy of consideration.
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