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Abstract

N
.

Academic psychology has long been composed of two disciplines, one

g ; roses. .

‘experimental and one correlational. These two disciplines each developed

‘ .
their own method of studying structure in data: multidimensional scaling .
~(MDS) and factor analysis. Both methods use similar kinds of input data, ..

. proximity measures on object pairs. Both represent the object structure .

in terms of sgatiii_:oordinates. When MDS and factor analysis are applied
to.the same test intercorrelationzmatrix how do the results compare? “In

- -3gn analysis of ability data and an "analysis of vocatipnal interest data, two

. ' d1mensional nonmetric MDS solutions were compared to three—factor, prin-

o cipal‘components soigtiogs& In both analyses, the components solution

. contained a general factor with no counterpart am%ng the scaling dimensions.

Loadiiis along the remaining two components closely resembled scale values

"'

along he two dimensions; Results suggest that 1if one compares a K-dimen-

.. sional MDS solution to a (Kﬂi 1) components analysis, the components

B analysis will often contain a general factor with no counterpart among the

:'scaling dimensions; after applying an approppiate rotation and multiplica-
ti&erconstant to the MDS scale values, some or all of the remaining

components will correspond tdb a dimension in the scaling selution,

4 v . N . )
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Multidimensional Scaling vs. Factor Analysis of Tests
Mark L. Davison '

Upiversity of Minnesgota

' \

Twenty-four.years ago, Lee Cronbach delivered his Presidential address to the
1

American ?sychological Association, an address entitled "The two disciplines of

scientific Rsychology." 'In that address, Cronbach pointed to a schism in
’ Ve

academic psychology between the experimental and correlational traditionms.

K

Cronbach describedtthe experimentalists as psycholdgists who employ the experi-

mental method to bring variables under tighf control. This control permits
: s
"rigorous tests of hypotheses and confident statements about causation." .

. \ 3
(Cronbach, 1967, p.23) In contrast to the experimentalists, the correlational
psychologists "study what man has not learmed to control or can never hope

.to control".

Not only did ,the twp disciplines develop‘tﬁeir own measurement methods, each

b

deve10peﬁ its own statistical technique for studying structire. Correlational

psychology developed factor analysis. Multidimensional scaling is largely a

©

o .

creature of experimental psychology.
Tgf'main purpose of my talk today is to compare factor analysis and mnlti—

dimengional scaling as statistlcal techniques for studylng the structure of

- : (]
v 4 »

psychological tests and test items. Specifically, I want to illustrate how a

Q -
3

factor analysis of test (or item) intercorrelations ofteh compares to a multi-.

dimensional scaling of the same intercorrelatiqns. Before makidg this compar- .

s . ’ .
ison, however, permit me a small’éiversion into a discussion of parallels

[ . N

- Y

between the two techniques. These paraliels have made factor analysis ,and
. ¢ . ‘»

multidimensional scaling rival alternatives for the stuﬁy of Structure #n*
1S i . pA ; .

* psychology. ' - ‘ " - v

s
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Parallels beqﬁéen Factor Analysis and Multidimensional Scaling

e

There are at least three kinds of parallels between'factof analysis.

and multidimensional scaling; parallels in their historical dévelbpments,

. « \ . - ‘D
parallels in the -way they represent structure, and parallels in the purposes |
) — .

L
which they have served. Let's consider each of these parallels in turn be-

7
ginning with the historical.

Neither factor anelysié\gor multidimensional scaling beégan asdifatis—

. tical techniques per se. Both methods grew put of attempts to estimate the

-
‘

.parameters in some psycholoéical theory. Only later did these parameter

estimation techniques manage to separate themselves from the psychological
. > R .
theories of their origins to become statistical, theories in their own right.
(S
Before factor analysis, there vere factor theories of human abilities, such

y —

as that of Spearman (1904), Vernon (1950), and Thurstone (1938). Factor
analysig began as a method for estimating'the parameters in these factor

throries. After awhile; it became a statistical technique applicable not just

to the study of human abilities, but to phenomena in all_thHe behav}oral, sdéial,

—_— - e
< s
* L

and natural sciences.

%
*y

. _ ¢

Similarly, before there was multidimensional scaling, Richardson’ (1938)
proposed a distance model for psychophysical judgments of similarity between
pairs of stimulf. Young and Householder (1938) developed a method to estimate -

the parameters in Richardson's psychophysical madel. Other people expanded

-

on their parameter estimation method until it developed info what we now

0

call multidimensional scaling. e {

-~
- )

The parallels‘between‘the two methods go beyond the historicai ones. ’

Both techniques use the same kind of input data, measures of proximity on
- F | “
pairs of objects. The correlation coefficient is the overwhelminglly favored

)

proximity measure for the factor analysts. Although multidimensionial scaling.

’
Y

b




advocates do not so consistently-favor one groximiéy measure, nevertheless,
they liké the factor analysts must use some measure of~proximity,or ass;—
ciation beg&egn bbject 5;irs as tﬁe input toytheir analysis.

Not only do_ the -methods usé comparableninput data, they yield parallel],

representations of structuée. That is, both techniques yield a representa-
: 1
tion of structure in terms of spatial coordinates. Factor analysts call

their coordinates 'factor loadings' and multidimensional scaling advécates

{

call their coordinatés 'scale values.'

L4

-

Given the above parallels, it is not surprising to find that ‘the two
methods have Been used to study many of the same issues in psychoiogy.
Social psychologists have used both factor analysis and multidimensional

scaling to study the social dimensions underlying person perception (Jone &

~

Young, 1972; Rosenberg & Jones, 1972; Taguiri, 1958). Industrial/organiza-

tional psychologiéts have used the two‘techniques to sfudy dimensions of

: joﬂ performance (Borman, Hough, & bﬁhnette, 1976; Smith & Siegel, 1967).

Educational psychologists have used the two to study the structure of human
. : ’ i .-
abilities (Schlessinger & Guttman, 1969). T e o

When factor. analysis and multidimensional scaling are used to study
the same issue, how d6 the results compare? Particulary, when the two

methods are used to study the intercorrelations of tests, how does the

factor structure compare to the multidimensional sca}ing?

s
}

Prior Comparisons of Multidimensional Scaling and Factor Anélysis

)

5 R »
bther people have compared multidimensional scaling and factor analysis

(MacCallum, 1974;. Schlessinger & Guttman, 1969; Shepard, 1972). One con-

clusion appears several ?1me§ in these, comparisons; muitidimensional scaling
solutions tend to be simpler than factor so}utions. That is, the number

of dimensiops in scaling.solutions tends td be less than the number of
. . . 7 @

,factors in factor solutions. * ‘ . F

v ~

. hl » - 6
' . %
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Shepard (1972) has concluded that mul{idimensional scaling soldfions

_ tend to be simpler in the manner descfzh_d. In his comﬁariso of the two
. * v .

~ techniques, he emphasizes that in nonmetric multidimemgional scaiing, a
. : K -
! small number of dimensions often suffices to represent the structure of the

4
3

data. Further, he notes that ten or more factors ‘are extracted in some
“ ~ -

factor analytic studies. "Such results- cannot, of course, be cast into a .

R .

readily. visualizable picture.  This matter of dimensionality and hence .
' > N . .
visualizability tends, in practice, to distinguish these relatively new

methods of multidimensional scaling from the related methods that have long

' —

been used in the socigl sciences under such names as 'factor analysis' and

- 'principal components analysis'." (Shepard, 1972, pp. ®,3) Schlessinger

.

and Guttman (1969) draw much the same conclusion.
- ) If multidimensional scaling solutions reélly are simpler than factbdr

-\ . : L}
solutions, then how is this simﬁiicitx,achieved? Do the scaling dimensions

somehow represent all of the important- structure in a set of tests? Or

’ -
)

do the scaling dimensions oveysimplifi_the structure of the tests (or test

/ .
s items) by omitting Important features of thefgtructure?. If the latter iso-
. ) -
N
ttue, then the more complex factor structure may better represent the rela-

h)

. . <
. ‘tionships between the tests than does the simpler, multidimensional scaling
. - 7~ .

1]

solutions. . ’ . " . K

)

The next two sections of thig paper present factor and multidimensiowal
v §caling analyses of the same data so that we can compare the two. In com-

paring them, we should keep in mind the broad question: what is the rela-+,
) N : 4 - .
) tionship between a multidimensional gcaling and factoring of the same test
“intercorrelations? .We should also keep—in mind a second question raised by

. Shepard's '(1972) work:




. ; 3 ‘ ' ! >
\\; If the multidimensional scaling is simpler, is that simplicity achieved, in

. - . . )
part, by omktting importamt features of the test structure which are contained,

LY

in the factor ioadings?

. Human Ability Tests -

. ’ . ]
Let's begin the empirical comparison of factor analysis and multidi- - .

mensional scaling by examining some data from the field in which factor anaj-’
ysis has its roots, the field of human abilities. For the Ybility dgta‘to-

el A .

be shown %elow, there is an interesting correspondence between the three-

. . ¢
dimensional, principal components solution and the two-dimensjonal, nonmetfic

z
multidimensional scaling solu#on. ' . ) ]
Table 1 shows thé intercotrelations of twelve subtests from the General

1Y

Aptitude Test Battery (United states Government Printiné Officé, 19705

.

>

+ published by the U.S. Department of Lébor., The subjects were 168 clients .’

in the Vocational Assistance Program of the Minnésota Department of Voca- ‘

4 i
R H

tional Rehabilitation.

\ -
Table 2 shows the first three unrotated components from a principal

” ’ K R -~ +
. components analysis of these data:s It also shows the scale values from a
. -\ .
‘ two-dimensional, nonmetric analysis of these same correlations (Kruskal, Young,

-

& Seery, 1973). ’ ‘

¥ X L - Z -

The first principal component is a genreal,fdbtor.aloﬁg which every sub- _
< ‘ _

-
N A -

test has a relativeiy high, positive loading. It has no counterpart among ,

r . .

the two scaling diqensions. Tﬁav is, tEFre is no'séaling dimension on which

.

all tests have high, positive sgale values. Both scaling dimensions are bi-
polar; some tests,have positive scale values'and some tests have negative ones.

Unlike the firép principal component, the second component ip thes%’data
L 4
does have a counterpart among the'§éaling dimensions. . If you compare each factor
™ loading-along Factor II to the corréspohding scale value along Dimension I; you

’ ’ . °




..  Table 1

Pearson Product-Moment Corgelation Coefficigpts*

.

for the General Aptitide Test Batte}y

( -
9 .10 1

—

NAMES 697 360,637 586 552 %96 661 338 349 390

ARTJH | 366" 580 471 411 501 297 247 319

37D /575(’;;4 249 276 279 358

-

VOCAB . 425 465 211 209 267"

TOOLS 444, 292 336 361
- ) ’ ' A/‘b 184

MATH . 407 300 234 208

SHAPES ' . 387 323 40 444

. . AN
. MARKING ’ ‘ 494 540 439

PLACE ' ‘ . © 773 468

TURN . . 476
. ) g

ASMBL
DISASMBL
»

*decimal points. deleted. I am indebted to Stephen Prestwood for bringing

-

these correlations to my attention., . ; =

¢
- . ' . .




. Table 2 p——*’——"-_‘~. o
- P . L ’

. ¢
Factor Loadings and Nonmetric Scale Values

" 7 o - for the General Aptitude Test Battéery - ‘
) . i « t , o,
Subtest Factor Dimension Factor Dimension FaCtéf
S I ” { _ I Im. =~ III
) y | - _
L) * .
i . . - ,
NAMES : .785 -.191 *© -.255 -7129 -.191
ARITHMETIC N R S -.381 ~277 . -.33
3-D 635 -.385 -.232 . _ 403 564
» " VOCABULARY = .700 . -.476 -.436" -.101 -.059 -
TOOLS * - .691 -.274 —ane 253+ - *.316. .
A , : - . .
- Twmamn .69 ~\435 —.422° . T -.284 __  =.257
.. SHAPES 712, 3 o9 0 -.032 S, 329 440
MARKING 723 SEETY I 150 -.264 R VY
PLACE .620 .566 - . 546 . -l281 172
, TR 633 Cs21 585 »  -.l61 -.085
© " ASSEMBLE . .646 415 437 © 280" .184
' . ’ . s,
' DISASSEMBLE 628 .535 ' ©.433 .233 . .006
‘ . . - . - v
P » . ;‘ ; l o
. . !
i "1 : *
_(
~ ~ ¥ . \
’ ’ N N
10 - . =
L - '\
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will see that .every one of those loadings is of the samé sign and approximately

N
P

the same magmitude as the corresponding scale value. * .

’ . N . . ., .

Similarly, the third principal component has .its counterpart among the

«

scaling dimensions. If you compare each loading along Fact&r LII to the
= . PR | . T . ' . ' . ‘
corresponding scale value along Dimension II; yoii will see that all of the load-

ings are of the same sign and of approximately the same magnitude as the cor-
responding‘scale value.
. S Lo
One can, compute a coefficient of congruence for the two dimensions and
. _ . , . . -
the corresponding two factors. In the present case, that-congruence coefficient

is simply the correlation thween the 24 scale values along Dimensions I and

II and the corresponding 24 Poadings along Factors II and IIL. The congruence

. »

7.

coefficient equals'u96 and indicates that there is a ‘high degree of correspon-
Id

L]
Ll

{ dence between the dimensions and the second and third princigal components.

L

v ~ Figure 1 graphically d}splays the relationship shown in Table 2 between

‘ . N . »
‘Dimensions I and II of the scaling- solution and Factors‘II and 'TII of the com-
ponents analysis: In this figure, squares reprefent subtest scalervalues. -For

’ °

each squaré, the coordinate along the horizontal axis represents the Dimension

D scale value of the corresponding subtest. The coordinate along the vertical

axis is the.Dimension II scale value., Circles in Figure'2 represemnf subtest

v
- -

" factor loadings. The coordinate along the horizontal axis is the'Factor JIX
loading for the corresponding ’subtest. The coordinate along the vertical gﬁis\T\f\
. ) N _ i

 + {ig the Factor ITI loading For each test, an arrow connects the square repre- .

\J

] senting its scale values to the corresponding circle representing its factor
4
m~ loadinge This graph shods that the Factor II and III loadings (the circle)

! place each subtest in approximately the same region of the dpace as do its

Dimension I and II scale values (the-square). ' T,
) , . : ) . . . : X
. hd * f.

u . h . , -
. - . * i .

».




& - . - .
. . . . ”
\ ~Factor III ; ' .s
. . Dimension II - . .
- e . , Y
h . * - . . .
\ ‘ 1 "
. ) ,
- : P . - T
AR } ¢ - ’\\‘ N N 2
< - . » »
v s‘ T> v 3...D . . -
’ - . . . -
1 .
v ;S . A

Assemble " .
S e

» 5

‘ , . /  Disassemble

-~
. Facfor II

Dimension I *

) j . ‘ V / - . : . Turn -
. . Vocabulary . ' ’ .
* . N » ) - . \ -

¢ > Names

v ’ . . A
7 ‘ ] : 7 Place \
b -
. Math Arithmetic PR T . .
e Marking = . . ‘
° X \ ‘ " ) M
. \ . ’ - . . ,’
: ’ - [ . ’ ¢ o °
- ' ¥ o

g T B SRS o S

) . . . . 5 .
. ’ @’ Denotes Scale Values ‘ -
. o Degotes Eactor Lgadings : a )
“‘ . . . - . . 1) 1
. s ’ . . ; v
Figure 1 Scale Values and Factor Loadings for the General Aptitude Test Battery.
-t A ] Y ’ ‘ =
. . 2
. v . - . o~ ° ~ e .L
O o - . . ‘ . -~
‘EMC - ’ ’ } . T - ) , . 1‘2 ’ - - i ' H -«
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Table 2 and Figure 1 illistrate what may be a common, but not univetsal,

’
, . ¢

rekationship between a multidimerisional scaling and factor.analysis of the
. , ’ [§ ‘l . P
same data. If one compares a (K + 1)-dimensional factor analysis to-a K-dimen-

+ gional multidimensional scaling solution, then with a proper rotation of the

, two solutions, one can find a-general factor which has no counterpart infthe

’

‘scaiing solution; beyond the general factor, however, each major factor will
" - ' “ . s L

have a counterpart among the scaling dimensions. _ & ¥ -

<

e Occupational Interest Tests

Outside of the area from which factor analysis emerged--the study of

human abilities—-the general factor has not always played sqch‘é theoretical-

’

ly prominent role. In theories of personality, attitudes, and interests;

» s »
.

.where the supporting data are heavily based on selﬁ—repBrt'questionnéires, H

the general factor has gometimes been dismissed a® a theoretically -uninterest~

¥

ihg, response level factor. In fact one can find factor studies in which:thé

\

a ?

general factor isn't.even reporteé. Consider this quotation from a'study of,

self~reported occupational intérests by Hanson, Prediger, and ‘Schussel. «(1977)¢

Not ghown... is'a general factor common to interest‘inventerigg using
tesponse: categories such as "like," .Mindifferent," and "dislike".

When such categories are used, the frequéncy with which a particular -
response is chosen tends to vary from person to person, regardless of
item content.- That is, some persons tend to choose "indifferent' more
often, retc. Hence, there is a general response-related factor affecting
tHe scores on each scale. The chief identifying feature of this factor,
to be called the "response level-factor," is that all interest scales °
have relatively ‘high loadings on it. (Hanson et al., 1977, p: 20,
1talics added) ’ -

1

[
- 4

As the first line of this qubtatiqp indicates, these author accorded so little
import, to the general factor that they decided to omit it from their tables of
< - 1

factor léadings. As we shall see below, -bt is precisely this general factor

‘
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B, Table 3 . 3
[ b S
-~ - IntercOrnelations of the Vocational Prefe ce R .
: ) .'Inventorz Scqles for a Sample- of 1234 men gv°
- ’ N N 4 , ‘ ‘ . O{f {
R - I A s E c
REALISTIC 1.00 .46 16 X .21 .30 .36
1{ INVESTIGATIVE .46 1.00 347 .30 .16 16
L] ' ’ - s
d . ARTISTIC .16 36 1,00/ 42 .35 11
V. T
N » i .
SOCIAL .21 .30 .- .42 71,00 .54 .38
LT ENTERPRISING .30 16 ¢ 7 .35 .54 1.00 .68
. ) ® . . -
' CONVENTIONAL .36 e. 016 .11 .38. .68 1.00
. B 3
. mj ¢ ] f : ‘
. ‘ aly
. ' ?- . .
° R . s
R [
v"‘f / _
] . . L

which is missing .in a multidimensional scaling solution based on data of the .,
kind analyzad by ﬁanson et al.
Tabli 3 shows the kind of data Hanson et al, analyzed in the report from

» %

which the above quote was taken. These are the intercoxre&ations_of six sub-

'

* &
‘: ) - tests’ from Holland's™ (1965) Vocatigmal Pfeference Inventory (VPI): Fhe
’ -} . Al‘ "’ - ) ’ ’ * ‘
;1 DN I Y - o ) o 8 ’
. g" ’ .
. : .l .
. r
. < :
A ’ - . '
A A , . .
- . / .
N ' -
? . ~
o 14°

’
.
.
.
Y
A | N
B
¢
-
oy
-
-
.
T e
4
’
P
.
.
.
.
L]
.
-
/ -
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. - . !

. VPI cortains six scales, each of which corresponds to a type of occupation

"

in Holland's (1973) theory of careers.. The six scales, which are named -
after the six occupational types, ate called the Realistic, lnvés%igative,

Artistic, .Social, Enterprising,-.and Conventional scales Table 3 shows R
- . ‘ LN
the intercorrelations of the six scales in a sample of 1234 men (Holland, Whit-

PR ney, Cole, & Richards, l969) This is one of five such correlation matrices

analyzed:in a study by Rounds, Dav'isb'nz and Dawis (1979).
.. g . . - -
' '.“Table 4-shows the'first three unrotated components from’a principal
o compohents ahalysis’hf éhese:daQa; It also showd the scale values from a tw;-
| gimensfgnal,'honmetric analysis of ;hese°sase corfelahions-(Kr;skal‘ Young,

] ~

L & Seery, 1973). .- S ;

The.first principal‘componenf_is the g eral factor to which the quotation

. above refers, and'it displays the His;iaeti e feature described in that quo-

’

tation--"all interest scales have relatively high loadings on it." (Hanson.et

" . A ~
[ - v

al., 1977, p., 20) This general factdr, which Hanson et al.’(1977) chose nqt-
to repoff, has no counterpart in the multidimensional scaling dimensions.

’ . That is, there is no scaling dimension on whith all tests have high, positive

~
° - -

. scale values. Both scaling dimensions are bipolar; some tests have positive

‘ -

.. scale values and some tests have negative ones.
1

Unlike the first.prineipal componeht,'the second componentvin these data’
ey ' . .

ioes have a hounterpart among the scaliqg dimensiogs. If you compare each
- loading along Factor II to the corresponding scale value along Dimensihn I,
you will see Ehat every one of those loadings is of the same sign and aPprqg-
‘imately the same ﬁagnitudekgghthe‘corresﬁbnding scale value. o
R * " Similarly, thé third principal coﬁphnent has dts counﬁerpart among the

scaling dimensions.* If you compare each loading along Factor;III to the

¥
’ 4 ot

'corresponding scale value along Dimension II ~you will see that all but one

LRN » R 3 . -

of. the loadings are of the same sign and approximately the same magnitude as
e 2

- ‘.

* . ’ ’ -
., . % .
i . - b . I
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. 1
. _ Factor Loadings and Nonmetric Scale Values

" for the Six Vocational Preference Inventory'

Vo

’. Scéles

s Faclor Dimension _ Factor Dimension <,_!f‘actor-’
A I I 1T - I ' I
SCALE '
REALISTIC ! 1595 , 369 324 491 - .598
INVEST IGATIVE . 555 ‘ 685 . . 685 . .06l 158
ARTISTIC £568 .133 ) .335 + -.696 ' —‘.607
« SOCIAL . .73 . -.236 080 . -294 =371
ENTERPRISING . 803 -.492 -.437 g 020 .=.055
*  CONVENTIONAL | i711 -.456 -.496 . -, .418 | .307

. . s




Factor III

’

Dimension II

" Factor II

Diménsion I

.

4

) 8 Denotes Scale Values
7 P .

" ® Denotes Factor Loadings

A3

Figure 2. Scale Values and Factdr Loadings for the Vacational Preference Inventory

. Scales ' .. ‘ o _ /

’




the corréspending scale value. ’ v .

As in the first example above, one can compute a congruence coefficient for

A

the two dimensions and the second and third‘principal}coﬁponents. - That coef-

ficient equals .97 and indicates that there is a high degree of correspondence

N

between the 12 scale values along Dimensions I and II and the-12 loadings along

'

Factors II- and III. . §
Figure 2 graphically displays the relationship shown in Table 4 between

Dimensions I and II of the scaling solution and Factors II and III of the

components analysis, As in the earlier figure, squares represent subtest

B

ssale values, and circles represent subtest factor loadings.‘ For each test,

@

L4
an arrow connegss the square representing its scale values to the correspond-

"+ ing circle reprgysenting its factor loadings. This graph shows that the Factor

II and III loadngs (circles) place each interest subtest in the same region
. ° \

of the space as do its Dimension I and II scale Values. Readers familiar with

Holland's (1973) theory will recognize that the six squares‘(and the six

circles) form the corners of a roughly hexagonal configuration and the ‘points

v .

fall along the hexagon in the order predicted by Holiand s theory., C
In Table 4 and Figure 2, we see the same kind of relationship between the

multi%imensional scaling,and factor analysis that we saw in the earlier analysis

(4

of hhnan wbility data. That is, the first principal component has ne counter-,

part in the scaling solution. Each component beyond the first, however,

does have a.counterpart among. the multidimensional sealing dimensions.
3 ] S

Discussion . X '
[ N (
At this point, I must explain how the MDS scale valu?s were obtained in the.

two examples. Two MDS dimensions were extracted tising Kruskal, Young, and o1

"Seery's (1973) nonmetric MDS program KYST. The program rotated the two dimen-

sions to what its authors cdll a principal components orientation. I then ®

reflected dimensions as necessary se that the signs of scale values would more

»
.

U N o

L]
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closely approximate those @f the corresponding ‘factor loadings. Finally,
;

I performed a uniform shrinking of the MDS dimensions. * That is, the scale T,

values were multiplied by a constant which was chosen so that the sum of

squared scale-values along Dimensions I and II would equal the sum of squared

- -

\factor loadings along the second and third principal .components. >
L4

b

This multiplication of the scale values by a constant is permissible .

4 . P

_ because the origin and unit’ of measurement in a MDS are arbitrary. In factor
analysis, on the other hand, the unit and origin for the loadings are fixed.
Becanse they are fixed, the squared loading for a test can be interpreted a: \ -
the proportion of:variance in the test which is accounted for by the fagtor.

\
No such proportion of variance interpretation can be made of the MDS scale °

! «

,values,.because the unit and origin of those scale valuee are rbitrarily set.
Returning to the earlier'examples, the GATB and" VPI anaI§Zes, those

analyses suggest the following two relationshipq between a MDS in K dimensions

and a principal components analysis in K+1 factors. First, the‘compohents . '

analysis will often contain a general factor with no counterpart among the . .

scaling dimensions. Second after applying an appropriate rotation and multi- ?X

- . -

plicative constant to the MDS scale values, some or all of the component,s be-

!

2

yond. the first will have a counterpart in the scaﬂng solution.
A

The above two relationships deserve several caveats., In the, interest Y

- .

of- time, however, I will present only two. First, the above gxamples are only P

’

1)

.

suggeetive. I do'not know how generally they hold. The generality of these

two relationships deserves further in#estigation. . T
Second, the relationships can'be expected to hold only when MDS and factor
analysis are used to analyze the same intercorrelabion matrix. Many of non-
O

[N .

metric MDS's advantages arise’ from the fact that it can be used to analyze-data
- .
N




-

7

for which conventional factor analysis is not considered appropriate. Re~

-
.

searchsrs using MDS have often employed very different experimental procedures
- ! - ¢

and have often analyzed very different data from those employed by factor andlysts

examining the same research queétioh. The above relatighships cannot be ex- .

pected to describe the correspondence between a MDS and a factor analysis which

are based on vastly different proximity data. - . , Lt .

Within the limits set by these caveats, héweyer, the above examples do

suggest a correspondence between MDS and principal components apalyses of “the
» t : o
£
same test or test item intercorrelatigns. .The factor solution is often more

1

'y N .
complex, in part because it contains a general factor with no counterpart among ~
3 . LS

the scaling dimensions: ig human ability data,; the general coﬁponéﬁt is some-
- Pl Vo

times called the general ability factor; ‘and it has played a central role in

i

sevetral theories of human abilitieé. In self-report data, the generallfactor

is sometimes called a response level comﬁonent, and it has sometimes been totally »

» ignored in repbrting factor .results. When the general factor is important,

l___MDS omits a central feature of the test struct&re, When it is inconsequential;
' RV IR ’

howdver, MDS may provide a simpler representation of the test sStructure which”

preserves_ all of its essential aspects. | : .

b
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