
ED 211 067

TITLE

INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

EDFS PRICE
DESCRIPTORS

DOCUMENT RESUME

IR C09 E87

Annual Report. July 1, 1980-June 30, 19E1. Lepartment
of Computer and Information Science, Ite Ohio State
University. .

Ohio State Univ., Columbus. Dept. of Ccuputer and
Information Science.
30 Jun 8
81p.; For a related document, see EL 196 451.
Computer and Information Science Research Center,
Ohio State University, 2036 Neil Avenue Mall,
Columbus, OH 43210 icomplimenta0 copies available as
long as the supply lasts).

MF01/PC04 Plus Postage.
Annual Reports; College Faculty: *Ccaputer Science
Education: Doctoral Degrees: Higher Education:
*Information Science: *Research Projects

ABSTRACT
. This annual report provides information' on

instructional programs at both the undergraduate and graduate levels
_and the computing facilities of the Department of Computer and
Information Science, and briefly describes the interactions of the
department within the university and within the professional
community. A list of students awarded doctoral degrees in 1580-81
includes the diAertation title and advisor's naufe: abstracts of the
dissertations are presented in a separate section. Four research
papers -summarize selected on-going research by various faculty
members in the department, and a summary of grants and contracts
awarded for the 1980-81 year is given. Appendices include statistical
data on the current status and histcry of the department, a list of
courses offered with number and title, information on department
faculty and staff members, a list of seminars conducted during the
year, and lists of publications, recent technical reports, and
activities cf faculty aid staff. (LIS)

t

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

*****###******************443**********4*#####****###***441t#4**M3014#44

lit r U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE 01 EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

N.
)4 This document has been reproduced as

received' trOm the person or organization

°...0

originating it
Millar changes have been made to improve

areproduction quality

r"4
Points of view or opinions stated In this docu

Ment do not necessarily represent official NIE

r-I Position or policy

cv
cm ANNUAL REPORT

La
JULY 1, 1980 JUNE 30, 1981

..,

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

THE OHIO STATE UNIVERSITY
"PERMISSION TO REPRODUCE THIS

COLUMBUS, OHIO 43210 MATERIAL HAS BEEN GRANTED BY

C, Taylor

2
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

FOREWORD

This publication contains the annual report of the Department of

Computer and Information Science and a summary of the research which has

been carried on during the 1980-81 academic year. This research has been

supported in part by grants from governmental agencies and industry, as

well as by The Ohio State.University. Also included in this report is a

list (Appendix I) of those students who are in the final stages of research

leading to the Ph.D. degree.

The Department of Computer and Information Science is a separate

academic unit located administratively in the College of Engineering,

operating in part as an interdisciplinary program with the cooperation-of

many other departments and colleges throughout the University. Under the

Jepartment is the Computer and Information Science Research Center which is

the publishing outlet for a technical report series. Research of the faculty

and graduate students in the Department of Comiluter and Information Science

is reported periodically in this series. A bibliography of recent technical

reports published by the Center is included in this publication as Appendix

F. Copies of some of these reports are still available on a complimentary

basis from the Computer and Information Science Research Center, The Ohio

State University, 2036 Neil Avenue Mall, Columbus, Ohio 43210. Titles with

PB or AD numbers may be obtaingd from the National Technical Information

Service, Tile U. S. Department of Commerce, 5285 Port Royal Road, Springfield,

Virginia, 22161, in paper copy, magnetic tape, or in microfiche. Titles

with ED numbers may be obtained from the ERIC Document Reproduction Service,

P. 0. Box 190, Arlington, Virginia, 22210. There is a nominal charge for

their service.
Lee J. White, Chairman
Department of Computer &
Information Science

ii September 1981

3

TABLE OF CONTENTS

FOREWORD

I. THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

ii

INSTRUCTIONAL PROGRAMS
1

Undergraduate Programs
1

Graduate Programs
2

Course Offerings
5

Faculty
5

COMPUTING FACILITIES
5

INTERACTION WITHIN THE UNIVERSITY 7

INTERACTION WITHIN THE COMPUTER AND INFORMATION 7

SCIENCE COMMUNITY
DOCTOR OF PHILOSOPHY DEGREE

8

II. RESEARCH IN COMPUTER AND INFORMATION SCIENCE '9

SELECTED RESEARCH PAPERS
9

DESPERANTO: A Distributed Processing System 9

Development of a High Level Specification Language

to Enforce Resource Sharing

15

Customizable Workstation Environment 22

Current Research in Computer Graphics 28

ABSTRACTS OF PH.D. DISSERTATIONS 1980-81 38

RESEARCH AND DEVELOPMENT AWARDS 44

Equipment Grant
44

Graduate Training Grant
44

Research Grants
45

III. APPENDICES

A CURRENT STATUS AND CAPSULE HISTORY OF DEPARTMENT 49

OF COMPUTER AND INFORMATION SCIENCE

B COMPUTER AND INFORMATION SCIENCE COURSE LISTING 50

BY NUMBER AND TITLE

C COMPUTER AND INFORMATION SCIENCE FACULTY 53

D COMPUTER AND INFORMATION SCIENCE SEMINAR SERIES 59

E PUBLICATIONS OF THE DEPARTMENT OF COMPUTER 62

AND INFORMATION SCIENCE STAFF

F RECENT TECHNICAL REPORTS
65

G ACTIVITIES OF THE DEPARTMENT OF COMPUTER AND 67

INFORMATION SCIENCE STAFF

H DOCTORATES AWARDED
71

I STUDENTS IN THE FINAL STAGES OF RESEARCH 76

LEADING TO THE PH.D. DEGREE

iii

4

v."

'v

I. THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

The Department of Computer and Information Science is a separate
academic unit located administratively in the College of Engineering. In

addition, the Department works closely with a number of other departments

and colleges throughout the'University. Degrees may be obtained in the

Colleges of Mathematical and Physical Sciences and in the College of Admin-

istrative Science in addition to the College of Engineering. The Department

has an enrollment 9f about 200 graduate students and 800 undergraduate.

majors.

The program at The Ohio State University emphasizes education, research,

and the professional practice and application of computer and information

science. The Department offers undergraduate and graduate degrees through

the Ph.D. 'The research activities are a central part of the program, and

are supported by many sponsoring agencies, including the Army Research

Office, the Air Force Office,of Scientific Research, the Office of Naval

Research, and the National Science Foundation. These research activities

will be described in this report.

INSTRUCTIONAL PROGRAMS

The program of the Department of Computer and Information Science A

broad and extensive. The number of students enrolled in all courses wa."

10,659. A total of 125 students received baccalaureate degrees, 80

students received the M. S. degrees and 6 students received the Ph.D.

degree. The number of applications for graduate study during this period

was 525. Seventy graduate students received support from the department.

There was a total of 23 full-time faculty and 7 part-time faculty. For

additional statistics, see Appendix A.

Undergraduate Programs

A Bachelor of Science in Computer and Information Science (B.S.C.I.S.)

is offered through the College of Engineering. This program offers the

student a general education in engineering, physical sciences, and mathe-

matics, along with intensive study in computer and information science.

Substantial revisions to the program have been made this year. Courses in

computer architecture and operating systems have been added to the core

curriculum of programming, file design, and numerical methods. In addi-

tion, the major areas of specialization have been refined into a series of

options which replaces the previous technical elective plan. Four well-

defined options are now available: Software Systems, design and implemen-
tation of software with an emphasis on the problems of software engineering;
Hardware-Software Systems, interaction between hardware and software,
especially in embedded systems; Information Systems, design and implementa-

5

2

tion of information systems; Biomedical Computing (pre. Med in Engineering),

applications of computers in biomedical computing. As an alternative to

these options, a student and his faculty adviser may tailor a program to

suit his special interests and submit it for approval under the Individual-

ized Option Plan. Both a Bachelor of Science (B.S.) and a Bachelor of Arts

,(B.A.) with a major in computer and information science are offered through

the College of Mathematical and Physical Sciences, which is one of the coali-

tion of colleges which compose the Colleges of the Arts and Sciences, These

programs combine a broad liberal arts background with specialized ct..!dy in

computer and information science. The B.S. program has a more scientific and

technical orientation; the E.A. program permits the student to combine the

study of computer science with work in a related field of potential computer

application

A Bachelor of Science in Business Administration (B.S.B.A:) with a

major in computer science is offered through thc, College of Administrative

Science. This program is designed to educate students in the technical

aspects of computer and information science so that they can effectively

use the information processing and problem solving capabilities of computers

in business organization and management. These students follow a special

seouence of introductory courses which emphasize languages and techniques

commonly employed in commercial computing.
a

Graduate Pro elms_

The Department offers programs leading to both master's and Ph.D.

degrees.

General Requirements

students should be able to complete a master's degree in one

year of full time istudy (four 4,1arters). A student will normally

take a total of four years to complete a Ph.D. program.

Each student is expected to take a course of study corres-

ponding to one of the following nine options.

OPTION I for t,he student desiring a theoretical founda-

tion in computer and information science.

OPTION II for the student specializing in information

sxrstems.

OPTION III for the student specializing in computer

systems.

OPTION IV for the student specializing in numerical

analysis.

OPTION V for the student specializing in operations

research.

6

3

OPTION VI for the student specializing inbiomedical

information processing.

OPTION VII for the student specializing in administra-

tive science.

OPTION VIII for the student specializing in mathematics.

OPTION IX for students specializing in computer hard-

ware and software who have appropriate

undergraduate background.

Each of these options provides a background in several

aspects of computer and information science, as well as addi-

tional mathematical sophistication appropriate to the student's

interest. Each of the options may lead to the doctoral program

in computer and information science or to the master's degree.

Tha Master of Science degree may be considered to be

either a' terminal degree leading to the professional practice

applicationof one phase or another of computer and informa-

tion science or it may be considered as the first step towards

the Ph.D. degree.

The Core Program

All courses of -study require the completion of a core pro-

gram in computer and information science which consists of the

following.

Course
Credit

CIS 707 - Mathematical Foundations of Computer 3

and Information Science II

`CIS 755 - Programming Languages 3

CIS 760 - Operating Systems 3

CIS 775 - Computer Architecture 3

CIS 780 - Analysis of Algorithmi 3

CIS 885 - Seminar on Research Topics in 1

Computer and Information Science

CIS 889 - Advanced Seminar in Computer and 2

Information Science

TOTAL CREDIT hOURS IN CORE (Changed 1981) 18

Master of Science Program

Suggested courses of study, which complete each of the

options, consist of additional electives in computer and infor-

mation science, mathematics and cognate areas. The minimum

number of credit hours required for the master's degree is 48

credits for Plan A (with thesis) or 53 credits for Plan B(without

4

thesis). Certain options of the M.S. program may require more than

this minimum of credit hours. Every candidate on Plan A re-

quired to write an M.S. thesis andisuccessfully defend tha

thesis in a fatal examination while those onPlan B must demon-

strate their mastery of the fundamentals of computer and infor-

mation science by passing the M.S. Comprehensive Examination.

However, a student who has passed the Ph.D. General Examination

is eligible to receive the master's degree withouI_having to

satisfy either of the above requirements,' and students planning

to study for the Ph.D. are encouraged to obtain the M.S. degree

%, in this manner. In the Comprehensive Examination, the student
will be examined on the content of the core courses and one of

the nine M.S. options.

Joint Master of Science Program with Mathematics

A special program is available so that a student may receive

two master's degrees, one in mathematics and one in computer and

information science, after completing 76 quarter hours of course

work. Further information about the joint program may be obtain-

ed by request.

Doctoral Program

The award of the Ph.D. degree implies that the recipient

achieved a mastery of a subject which allows him to work in a

particular field in a creative capacity and to stimulate others

working in this area. The Qualifying, General, and Final Exami-

nations, taken by the student at various stages of his doctoral

studies enable the faculty to ensure that only students of out-

standing scholastic ability continue on to receive the doctoral

degree.

The doctoral program emphasizes research and the Department
encourages prospective Ph.D. candidates to involve themselves in

research under the supervision of a faculty member at the earli-

est possible opportunity.

A major area is generally chosen from the active areas of

faculty research. It will normally be the area in which the stu-

dent expects to perform dissertation research. In fact, the.Gen-

eral Examination is designed, among other things, to ensure the

student's readiness to undertake dissertation research.

A cognate area may be elected for the minor areas of speci-

alization. A cognate field is defined as a field supprsrting or

closely related to the Departmental fields and is ordinarily

specified by an integrated program of study in other departments

of the University. Note, however, that the Ph.D. program can be

very flexible and suited to the interests of each individual

student.

The General Examination is usually taken in about the 9th quar-

ter of residence and consists of appropriate written and oral por-

tions. The second stage is completed and the student admitted

to candidacy when he has received credit for a total of at least

5

90 quarter hours of graduate work and passed the General

Examination.-

The third stage, after admission to candidacy, is devoted

primarily to research and seminars, the preparation of the

dissertation, and the Final Examination. The Final Examination

is oral and deals intensively with the candidate's field of

specialization.

The Department does not have a foreign language require-

ment for the M.S. or Ph.D. degree.

Course Offerings

Currently there are about 90 courses (each one quarter in- length)

offered by the Department, 30 of which are largely undergraduate with the

remainder being primarily graduate 'courses. In addition to these courses

there are over t.woJ hundred courses offered by a variety of'departments of

the University which are of interest to our graduate students who are

encouraged to take these courses. See Appendix B for a listing of courses

by number and title.

Faculty

The Department of Computer and L.,:ormation Science has a full time

faculty with a wide range of backgrounds and experience. The faculty is

supplemented by staff who have joint appointments with other departments;

by staff from other departments or by visiting faculty who teach courses

primarily for Computer and Information Science students; by adjunct staff

people who are employed inoff-campus organizations who teach in the Depart-

ment of Computer and Information Science (See Appendix C).

COMPUTER FACILITIES

Computer Centers

There are three computer centers at The Ohio State University. They

are: Instruction and Research Computer Center (IRCC), the Hospital Computer

Center, and the University Systems Computer Center.

The priMary computing facilities used by CIS students and faculty are

those operated and supported by IRCC. These include an Amdahl 470 V/,6

computer, which supports both batch and tine-sharing systems in a Multiple

Virtual Storage Environment (MVS).' Computer facilities include nearly 200

terminals dedicated to a job entry, submittal, and retrieval system called

WIDJET, which is used for most introductory programming courses and is a

product of the University of Waterloo. More advanced students have access

to time-sharing systems using the IBM Time-Sharing Option (TSO) and WYLBUR.

A new IBM 4341 computer system using VM/CMS will offer another interactive

computing alternative. These systems are tied together with a network

switch, allowing a user to select the system most appropriate to his/her

needs.

IRCC/CIS Computing Laboratory

The principal research resource of the Department of Computer and Infor-

mation Science is the IRCC/CIS Computing Laboratory. The laboratory was

9

6

specifically designed to serve the specialized needs of probldm oriented
research and ,instructionmpacting on the computer and information sciences.

Consequently, it is maintained as a state-of-the-art facility for research
and instructional programs in which the computing process is an 'object of

study or is directly and actively involved as an integral element of problem

formulation and solution.

The IRCC/CIS Computing Laboratory is administered and operated by the

Instruction and Research Computer Center separately from the Center's.miin

service installation. The Laboratory, thus, is maintained primarily for the

Department of Computerand Information Science. This arrangement, unique

among major universities, permits.the Laboratory to be dedieated tO research

and instruction in the computer and information sciences.

pr!mcipal computer of the Laboratory is a DECsystem 20/20 time-

sharing system, produced and maintained by the Digital Equipment Corporation,

with the following features:

- TOPS-20 operating system
- 256K words of virtual.addreJs space for each user

- Two disk drives with a total on-line capacity of 55 million

words of storage
Tape drive capable of processing standard 1/2 inch magnetic
tape at 800 or 1600 bpi densities
A of CRT and hardcopy terminals and printerg
Dir ct-wired high-speed lines and remote dial-up lines
High-speed paper tape reader/punch unit
Several graphics'peripherals, including several TEKTRONIX
display devices and a remotely coupled AG-60 Plasma

Graphics Panel.

DEC-supported compilers for the DECsystem 20/20 include FORTRAN, BASIC-PLUS,

and ALGOL. DEC also provides a variety of software packages for program
development and debugging, and for test editing and production. Locally-

supported languages include PASCAL, LISP, SNOBOL, and BLISS.

Distributed Systems Computing Laboratory

A seven-node fault-tolerant, double-loop network is presently under

construction by the CIS Department and constitutes an important research

facility for faculty and graduate students. The network configuration in-

cludes a host computer node consisting of the DECsystem 20/20; each of the

other six nodes will consist of a DEC 11/23 microcomputer; since each 11/23

unit will Le complemented by I28K of MOS memory, a UNIX operating system, a

CRT terminal, and a dual floppy disk, it can be operated stand-alone as well

as a network resource to be shared. Each node of this network will be

equipped with a loop-interface unit, presently under design and development

by the Department.

Research in networking techniques, distributed processing hardware and

software configurations, parallel processing algorithm development, and dis-

tributed data bases can be conducted on a network system available for ex-

perimental studies. ReSearch into a number of issues of software engineer-

ing, including reliability of distributed software, computer program test-

ing, and distributed system language development can be conducted using a

10

7

realistic and flexible computer network setting.

'Database Systems Research Laboratory

-The Database Systems Research Laboratory was established in 1980 in
order to investigate experimentally a number of database research issues.
These issues include",

1) information, systems requirements of the 1990's;.

2) the design and analysis of databav computers to meet
those requirements;

3) the use of'both current and emerging technology for
prototyping the design of databases and database
computers which will meet these needs;

4) research into VLSI techniques for. implementation of
the prototyped Components and database techniques.

The laboratory facilities presently include a VAX 780 anetWro 11/44 minicom-

puters, allowingifor an experimental investigation of various database parti-

tioning algorithms as retrieval tasks are assigned to these two minicomputers
by the VAX processor. This equipment and laboratory are being jointly
funded by Digital Equipment. (DEC), the Office of Naval Research (ONR), and

The Ohio State University.

INTERACTION WITHIN THE UNIVERSITY

The Department of Computer and InformationAScience interacts with other
departments and research programs wi,thirr the University because of the
multidisciplinary nature of the activities encompassed in this field. A
number of the academic faculty have joint appointments in other departments.
Staff members of the Department of Computer and Information Science have
appointments in the following departments and organizations:

a. Accounting
b. Allied Medicine
c. Art
d. Electrical Engineering
e. Engineering
f. Instruction and Research

Computer Center

g. Mathematics
h. Psychology
i. University Libraries
J. University Systems Computer

Center

INTERACTION WITHIN THE COMPUTER AND INFORMATION SCIENCE COMMUNITY

Columbus, Ohio, is one of the major centers for information science and
for the transfer of information in the United States. A number of organiza-

tions are involved with the activities of computer and information science.
Tfiis affords an opportunity for students and faculty to interact with
appropriate personnel in these organizations. Some of these are:

. 11

8

a. Chemical Abstracts
b. Battelle Memorial Institute
c. Bell Laboratories
d. Bank One
e. Columbus and Southern Ohio

Electric Company
f. Western Electric Corporation

g. Rockwell International Corp.

h. AccuRay
i. State of Ohio Department

of Finance; Department
of Highways

j. Columbus Board of
Educaticn

k. Ohio College Library
Center

There are a large number of scientists who come to Columbus in order to

visit the Department and who usually present a seminar. The lectures and

seminars for the period of this report are listed in Appendix D.

Research efforts of the, stuff are disseminated to the professi.:nal
community through several publication channels. A list of current publica-

tions of the Department staff is included as Appendix E. In .addition, the

Research Center issues a technical report series (see Appendix F for reports

issued from 1979 to date). Our faculty attends most of the major technical

meetings in this country as participants giving papers, assisting un panels,
as attendees, and as officials. A list of these activities can be found in

Appendix G.

DOCTOR OF PHILOSOPHY DEGREE

The Doctor of Philosophy degree was Awarded to the following students

during 1980-81. Abstracts of these dissertations are included on pages 38-43.

See Appendix H for a complete list of doctorates awarded.

Name Dissertation Advisor

Chou, Chuen-Pu

Li, Chung-Ming

Mittal, Sanjay

Tsay, Duen-Ping

Wang, Pong-Sheng

Wu, Shyue Bin

System Design of the Distributed Loop Database Liu

System (DLDBS)

Communicating Distributed Processes: A Program- Liu

ming Language Concept for Distributed Systems

Design of a Distributed Medical Diagnosis and
Data Base System

MIKE: A Network Operating System for the -*Liu

Distributed Double-Loop Computer Network

Computer ArchiteCture for Parallel Execution Liu

of High-Level Language Programs

Interconnection Design and Resource Assignment Liu

for Large Multih-MicrocoMputer Systems

a

Chandra -

sekaran

Students who have passed the Ph.D.,General Examination and are in the

final stages of research leading to the Ph.D. degree are listen in Appendix I.

'12

9

II. RESEARCH IN.COMPUTER AND INFORMATION SCIENCE

Research Pro rams

The following four papers summarize selected on-going research-by vari-
ous faculty members in the Department. These papers are followed by abstracts
of Ph.D. dissertations from 1980-81, and by a summary of grants and contracts
awarded for the 1980-81 academic year. These selected papers, abstracts, and
research awards give an overview of the primary research projects in the
Department.

SELECTED RESEARCH PAPERS

1. DESPERANTO: A DISTRIBUTED PROCESSING SYSTEM

Faculty: S. A. Mamrak, T. S. Berk, D. W. Leinbaugh

Introduction

Many distributed computer systems are being formed by linking together
already fully functioning, heterogeneous, single computer sites. These

single-site computers often offer a full range of services which have been
coded to run under local operating systems. There is a recognized need for
a distributed software support system to allow sharing of such already
existing services and to allow the development of new, distributed services.

Desperanto, an Esperanto for Distributed systems, ip a comprehensive
software system designed to support the sharing of resources in a local-
area network consisting oL heterogeneous computer sites (Ref. [7]). The

Desperanto system consists of both programming environment and run time
environment components that are in various stages of design. This report
presents the motivq::ion for Desperanto's design and a brief overview of
the various components which comprise the Desperanto system.

The Motivation for Desperanto

Building a distributed processing support system for already func-
tioning heterogeneous computer sites requires designing software that has
to interface both with already existing applications and with already
existing applications and with already existing operating systems. In

most cases, both the application and the operating systems represent thou-
sands of lines of working code and thousands of hours of human effort. A

primary design goal of a well-designed distributed. support system, there- ,

fore, lld be to provide for installation of the system with as little
change FO existing resources as possible. Desperanto's design already

allows us to achieve this goal for existing applications. We are currently
investigating how the goal might be achieved fortexisting operating systems.

Distributed processing systems of various kinds have been designed and
in some cases implemented [2, 3, 4, 5, 8, 9, 10, 11]. These efforts can

be characterized as having taken a "bottom-up" view of a distributed
support system. That is, they take the traditional operating system view

"

10

i.

that the distributed support should consist of a unifOrm layer of software
that provides a set of standard services to all applications above it.
This uniform layer is typically implemented in a site-dependent manner,
either in cooperation with a local site operating system or in place of it.

A key concept in Desperanto's design, and the one that sets it apart
from other similar efforts, is that the software support has been concep-
tualized from the top-down rather than from the bottom-up. Desperanto

views the software support needed for distributed shariAg as it relates to
individual applications or resources rather than as it relates to individ-

ual sites. This point of view has provided Desperanto with the flexibility
to support a diverse range of services, without change to the services
themselves, that are not possible to support when a site-oriented view is
taken.

A second key concept in Desperanto's design is that it is to be imple-
mented as a "guest" layer, on top of local operating systems, and not as a

base or native operating system. 1".. believe this design decision is impor-

tant when sites participating in the distributed environment are, for the
most part, functionally and administratively autonomous, although we have

not yet solved the` roblem of installing Desperanto without change to local

operating systems.

Module-Dependent Support

Because of its top-down design, Desperanto is able to support the in-
stallation of all types of already existing modules, without change to the
module, while site-oriented systems can install only certain kinds of

modules without change. Also, Desperanto provides a richer set of primi-

tives for the creation of new distributed modules than is possible with
site-oriented designs.

0
A careful argument is presented in [6] demonstrating that site-depend-

ent designs are not adequate if a system goal is to incorporate already

existing modules into the distributed environment without change.
Basically, a problem arises while retrofitting modules because some of
them generate and save their own objects for subsequent use. In order for

such a module to be installed properly, the distributed software has to
have knowledge of these module-dependent objects. Therefore, module-

dependent information must be available for an invocation of the module

by a distributed user. Distributed software designs that are strictly

site-dependent cannot accommodate such modules without change.

In addition to offering gteater flexibility in installing existing
modules, Desperanto also offers more powerful primitives for installing
new distributed modules. As an example of these, consider a module that

acts as a "filter" in that it accepts a standard input and produces a

standard output. In UNIX, the "piping" of filters is supported as an

operating system primitive. Basically, a pipe is a temporary unnamed file

to which one filter writes and from which another filter reads. Thus,

the user can name one input file, a string of filters and only one output
file and is relieved of naming temporary files and invoking each filter

14.

E.

11

separately. UNIX is able to offer the piping facility only because it

rigidly enforces the uniform format of the standard input and output of all

filters.

Now in a distributed environment where a Much larger variety of

filters may be available and where enforcing a uniform format for input and

output may be difficult, if not impossible, such a piping facility could

not be supported by the distributed software unless module-dependent infor-

mation were available to suitably convert one filter's output to another's

input.

Thus, the need for module-dependent information is clearly established.

For efficiency reasons it is important to recognize that some modLles may

not need any distributed support other than that which is site-dependent

(see [6]for an example of these) and some modules may fall into certain

classes that can be supported by a single module interface. But the

capability for supporting individual modules rather than individual sites

in a distributed environment cannot be abandoned without loss of flexibil-

ity and power.

Reliance on Local Operating System Services

Because of its reliance on traditional local operating system services

as a "guest", Desperanto is able to provide a distributed environment to

modules on a selective basis. The alternative to this approach is to

design a distributed operating system from scratch, managing all resources

on each heterogeneous site such as files, CPU's, memory and so on, as a

"native" to replace the local operating system. We believe our design

offers two significant advantages when participating sites arelfunction-

ally and administratively autonomous.

The first advantage comes because Desperanto only has access to

modules which have been installed in the distributed environment. Modules

which have not been installed are never known or used by Desperanto. Since

we envision autonomous sites, this flexibility to selectively participate

in the distributed environment is highly desirable from a management point

of view.

The second advantage is a performance one. Since we view most sites

which install modules in our distributed environment to be already operat-

ing in a local environment, with well established performance chaiacter-

istics, it is highly desirable not to degrade the performance of executing

local system and application software. A native distributed operating

system can never guarantee equal (or better) performance characteristics

on all heterogeneous sites on;which it is installed. Our approach affects

the performance of non-participating local modules only insofar as the

Desperanto monitor is an added system module, vying for system resources

with all other modules. Thus, all other local operations can perform

virtually the same as they did before Desperanto is introduced.

15

12

The Des erantc System Model

Desperanto is viewed as consisting of a set of distributed, sharable

modules (see Figure 1) which may have already been developed by owner

programmers. These modules may be said to have been "programmed-in-the-

small" in the sense of DeRemer [1]. A module is a set of data objects

(possibly empty) and a non-empty set of associated operations. Further,

it may have other components associated with it, like descriptive text.

A module may provide operations on objects to other modules and/or require

operations from other modules. These operations (e.g., READ, UPDATE,

SEARCH) may be thought of as `Services. A module interface (MI) specifies

each service that the module provides and requires. This specification

is given by the programmer who is responsible for programming-in-the-large.

Desperanto can be viewed as effecting a virtual procedure call for

modules that already exist and as an asynchronous message passing facility

for newly created distributed modules. The vast majority of modules that

have been coded to run on a single site will provide and require operations

by way of procedure calls. If a given local operation deals with,remote

Module

1 I 41 Module Interface

Local OS

Desperanto Monitorv-1-6"-r*

Local OS

Communication
Subnetwork

Figure 1, Detperanto Distributed Computer System Model

16

13

objects, then Desperanto intervenes to effect the virtual call. New

modules may likely be written to take advantage of the distributed environ-

ment and to provide and require operations asynchronously. In this case

Desperanto supports message passing.

Research and Development Issues

Many research and development issues are being addressed in the design

and eventual implementation of a prototype Desperanto. These are briefly

outlined here to indicate the scope of the project.

Runtime Components
The runtime components required to support these distributed functions of

Desperanto are the monitor, the module interface and the server. Spanning

these components are design issues common to all of Desperanto. These

include naming, reliability, protection, measurement, testing, and

debugging.

.1.esoeranto's Interface to the Outside World
Desperanto's interface components include a virtual local operating

system interface, a virtual communications subnetwork interface and a pro-

grammer-in-the-large programming and development environment.

The Specification of Desperanto Itself
Because Desperanto is a very large software development project, we felt

it would be highly advantageous to use a formalized system development

methodology for Desperanto itself. In addition to the fact that the system

is fairly complex, the research project is staffed with a constantly

changing group of people with diverse backgrounds. So, there is a need

for good coordination and effective communication.

Discussion and Conclusions

The Desperanto research project is addressing the design and eventual

implementation of software-support for distributed processing. Two

important design decisions set this work apart from other research efforts.

Our module-oriented view gives Desperanto more power and flexibility than

site-oriented designs, and our presence as a guest layer on local operating

systems is more suitable for autonomous sites than native or base distrib-

uted support. The primary long-term goal of this research project is to

investigate the feasibility and practicality of installing a distributed

support system without change to currently existing resources.

Acknowledgments

Many graduate students have contributed to Desperanto's design in

various degrees. We would like to acknowledge the contributions of J.

Alegria, W. Ayen, A. El-Magarmid, F. Gherfal, J. Kuo, P. Maurath, Y.

Mohammad-Makki, D. Soni, D. Umbaugh, and M. Watkins.

I

9

14

References

[1] F. DeRemer and H. H. Kron, "Programming-in-the Large Versus Program-

ming-in-the-Small," IEEE Transactions on Software Engineering,

Vol. SE-3, No. 2, June 1976, pp. 80-86.

[2] J. A. Feldman, "High Level Programming for Distributed Computing",

Communications of the ACM, Vol. 22, No. 6, June 1979, pp. 353-368.

[3] H. C. Forsdick et al, "Operating Systems for Computer Networks",

Computer, January 1978, pp. 48-57.

S. R. Kimbleton and R. L. Mandell, "A Perspective on Network

Operating Systems", AFIPS National Computer Conference Proc (dings,

Vol. 45, New York, 1976, pp. 551-559.

B. Liskov, "Programming Methodology", Laboratory for Computer Science

Progress Report, MIT, July 1979-June 1980, pp. 175-215.

S. Mamrak, "Installing Existing Tools in a Distributed Processing

Environment", submitted to Workshop on Foundations of Software Tech-
nology, Indian Institute of Science, Bangalore, India, December

1981.

S. A. Mamrak and T. S. Berk, "The Desperanto Research Project",

OSU-CIS Research Center Technical Report (OSU-CISRC-TR-81-2),

February 1981.

D. L. Mills, "An Overview of the Distributed Computer Network",

AFIPS National Computer Conference Proceedings, Vol. 45, New York,

1976, pp. 523-531.

R. H. Thomas, "A Resource Sharing Executive for the ARPANET",

AFIPS National Computer Conference Proceedings, Vol. 42, 1973,

pp. 155-164.

[10] R. W. Watson and J. G. Fletcher, "An Architecture for Support of

Network Operating System Services", Computer Networks, Vol. 4,

No. 1, February 1980, pp. 33-49.

[11] J. E. White, "A High-Level Framework for Network-Based Resource

Sharing", AFIPS National Computer Conference Proceedings, Vol. 45,

New York, 1976, pp. 561-570.

1 V

15

2. DEVELOPMENT OF A HIGH LEVEL SPECIFICATION LANGUAGE TO ENFORCE RESOURCE

SHARING

Faculty D. W. Leinbaugh

Introduction

An important activity in any multiple user system is resource sharing.

This is true whether the users are different peoples' jobs, different

processes in the same job, or the processes that make up a system.

Many schemes have been proposed and developed to aid in resource

sharing. Monitors [1], object managers [2], and serializers [3] were
designed primarily to enforce cooperation among users sharing resources.
These schemes provide primitives and language structures which make it
relatively easy to write code to enforce the necessary rules and desired

policies upon resource sharing. However, these schemes require the

writing of programs to provide the necessary synchronization.

This author [4] has designed a prototype high level specification
language and system to specify the resource sharing rules needed and

policies wanted. He has also described how to automatically coLstrucr the

code to enforce the specifications. The advantages of this approach are

clear. Since the rules and policies are specified directly, it is known

exactly what they are and that they are enforced. Ramamritham and Keller

[5] concurrently with and independent of this work, attacked the same

problem. The specification language they describe is not as concise and

conseq%ently is not as easy to read or use. Also, state variables are

handle(entirely differently.

The specification of resource sharing is given in three independent

components. First, resource constraint rules that are used to determine

if an additional request can be accepted by the resource and still main-
tain resource consistency and correct servicing of requests. Second,

request ordering policy to determine which of several acceptable requests

will be next serviced. Third, modifications to the ordering policy to

avoid endless waits by some requests and hence avoid starvation of the
processes waiting on the completion of these requests.

The ability to specify resource sharing in three independent compo-

nents has great advantages. It reduces the problem of resource sharing
into simpler components, making it easier to correctly specify each.
These are natural divisions in the sharing problem and allow a person to
more clearly deal with each separately.

Examples

Figure 1 shows the overall scheduling strategy to enforce high level
specification of resource sharing. Some examples will make clear the

potential of this approach. These examples illustrate the concise

is

16 SCHEDULING MODULE

new request arrivals

postpone 'conditions

false

. ,..

IF NO ordered requests,
no expedited requests,
and resource constraints

POSTPONED
REQUESTS

At,

ORDERED
REQUESTS

Ordering rules;
resource constraints,
and no expedited requests

PROTECTED
RESOURCE
NODULE

Postpone conditions false .

Expedite conditions

EXPEDITED
REQUESTS

resource constraints /

increase the uncertainty'
in state zariables

'decrease the uncertainty
'in state variables

response to
completed request

Figure 1. Overall Scheduling Strategy

20

17'

and straightforward manner in which resource sharing can be specified and

enforced.

Figure 2 is a specification of the classical producer/consumer problem.

The resource can hold up to 10 items.. An insert request message to the

insert routine adds another item into the resource and a remove request

message removes an item from it.

The constraints upon the resource are specified by RESOURCE CON-

STRAINTS. At most one insert request and one remove request can be ser-

viced at the same time. The maximum number of items that can be placed in

the resource is,10 and the minimum number is 0. To use the constraints,

the preconditions for each type of request are derived. For the case of

an insert request, the preconditions are that there are less than 10 items

already saved and no other insert request is receiving service. The

number of items is kept track of in the scheduling module through the use

of the local state variable iiitems. The PROCESSING clause indicates that

during service of an insert request, the number of items is increased by

1 and during service of a remove request, the number of items decreases by

1. There is, however, uncertainty as to exactly when these changes occur.

iatems is kept as a range of possible values. For example, if there were

9 items and both a remove and insert request were receiving service,

DLCLARE STATE VARIABLES

REQUEST DECLARATIONS
REQUEST FIELDS

insertitem HAS
removeitem HAS

#items INITIALLY 0

type
item

type mg 'I'

type ix /R/

PROCESSING
insertitem PROCESSED BI insertroutine

UPON SERVICE #items #items + 1

removeitem PROCESSED BY removeroutine
UPON SERVICE #items #items -. 1

CHARACTER(1)
CHARACTER(99)

RESOURCE CONSTRAINTS
insertitem.ACTIVE < 1 AND removeitem.ACTIVE < 1

AND 0 < #items AND #items < 10

ORDERING
insertitem BEFORE removeitem

Figure 2: Producer/Consumer Problem with Producer Priority
and Capability to Save 10 Produced Items.

21

18

ilitems is kept as the range [8, 10]. If the remove request completes` first

the range becomes [8, 9] and when the insert request subsequently completes

the range becomes [9, 9].

Ordering indicates that insert requests are to have priority over re-

move requests. The implementation of this problem results in two first-in-

first-out queues, one for inserts and one f : removes. The oldest insert

request is examined to determine if it can be granted service. If there

are no insert requests or they cannot be granted service, then the oldest

remove request is examined to determine if it can be granted service.

The reader/writer problem of Figure 3 illustrates other features of

the specification language.

The resource constraints allow just one writer or any number of read-

ers. The read requests are given priority for efficiency reasons assuming

that read requests performed con(arrently can be done more efficiently than

read requests done one at a time..
REQUEST DECLARATIONS

REQUEST FIELDS type CHARACTER(1)

directions CHARACTER(63)

readrequest HAS type = 'Re

writerequest HAS type = 1W'

RESOURCE CONSTRAINTS

writerequest.ACTIVE < 1 AND readrequest.ACTIVE = 0

OR

writerequest.ACTIVE = 0 AND readrequest, ACTIVE < 00

ORDERING readrequest BEFORE writerequest

EXPEDITE writerequest IF writerequest.EXPEDITED = 0

AND writerequest.ACTIVE = 0

AND readrequest.WAITINg =0

Figure 3, Reader/Writer Problem:* Readerjriority,

22

19

An expedite condition is needed to prevent starvation of write re-
quests if there is a steady stream of read requests. The EXPEDITE condi-
tion specifies to choose a writerequest to be next serviced if no write re-
quest is in service (ACTIVE) or is in lire to receive'service (EXPEDITED)
and if all read requests that have arrived have already entered service.

The moving head disk scheduler of Figure 4 illustrates more complex
request ordering and another featre to avoid extremely poor service to
some requests.

The ordering is based upon values in the requests themselves (the disk
address) and is according to a predefined ordering techniqUe (elevator
algorithm). A secondary ordering criteria is also given. The requests
are therefore organized into pairs of sets of requests. Each pair is for
a different aderess with one set of the pair containing read requests for
that address and the other set containing the write requests.

This ordering can still result in no service for a request if newly
arrived requests to the same address continue to receive service. POSTPONE

removes newly arrived requests from consideration for service as long as
the address requested is the address currently being serviced.

41.

REQUEST DECLARATIONS

REQUEST FIELDS type CHARACTER(1)

address CHARACTER(6)

data CHARACTER(505)

readrequest HAS type = 'R'

writerequest HAS type = 'W'

RESOURCE CONSTRAINTS

readrequest.ACTIVE + writerequest.ACTIVE < 1

ORDERING PRIMARY BY ELEVATOR ON address

SECONDARY writerequest BEFORE readrequest

POSTPONE readrequest IF THISREQUEST.address = ACTIVE.address

,wriierequest IF THISREQUEST.address = ACTIVE.address

Figure 4. Moving Head Disk Scheduler

23

20

Proposed Work

Much pork remains to be done to make this a viable tool:

An important4capability is to allow for coordination of requests to
several resources rather than to a single resource. This includes multiple

copies of the identical resource as well as resources of differing types

or characteristics. An example is requests for workspace on any of sev-

eral disks. The resource scheduler should be able to express the usage on
each disk and allocate space in a manner that loads the disks equally or
according to some other predetermined policy.

Another needed capability is to permit a single request to require
service on several resources or equivalently need to perform several opera-

tions. This may be several sequential operations that must be performed.
Coordination may be required so two operations that can be performed in
parallel are completed before a third operation is done. It may even be

that one request must result in operations being carried out on different

resources simultaneously.

Within this wider context of additional capabilities and even for the
prototype system completed, much work needs to be done to make the features

truly useful.

It must be determined what kinds of state variables and changes to

those variables are needed. the prototype system allows for simple

changes for each request serviced. This makes it possible to determine
the degree of uncertainty in a state 'variable and also that the resource

might actually be in any of those states. If such changes to the state

variables are not adequite to keep track of the resource state, then other

mechanisms will have to be analyzed.

It must be determirod what kinds of ordering are needed. In the ab-

sence of any ordering specification, requests which fit the resource'con-

straints are accepted .in a first-come-first-served order. The prototype

system allows for priority between resource types. Request ordering can

also be specified according to a standard algorithm based upon a value in

the request. The standard algorithms built into the prototype system are

simple priority and elevator priority. Other standard algorithms may be

needed. An additional possibility is to allow the user to specify their

own algorithm. This, however, may introduce problems in verifying the
correct:nos of a set of specifications unless the'algorithm itself was
given as a set of specifications.

Perhaps the most 'unusual feature of this system and one that has the

potential for making it the most useful is the specification of a fairness
policy independent of ordering policy and independent of the resource con-

straints. Of course, they are related in that if the ordering policy or

resource constraints are changed, then a diffdrent class of requests may

be treated unfairly and consequently a different fairness policy is needed

to help those requests.4

24

21

The prototype system provides two separate mechanisms. POSTPONE is
used to hold back requests which are responsible for other requests being
ignored. EXPEDITE is used to identify requests that are being treated un-
fairly and schedule them for service next. If there is no better policy
for a given problem, the prototype system efficiently provides a count of
how many times a request has been bypassed and a request passed'over too
many times can then be expedited. EXPEDITE, however, makes no allowances
to let requests ahead of an expedited request. This could be aAlpw.:d if
in so doing it will not further delay the expedited request.

Implementation efficiency can spell success or failure of the system
as a useful tool. The prototype system was, designed with efficiency in
mind. Sets of requests indistinguishable by the ordering policy are fur-
ther partitioned into sets indistinguishable by the resource constraints.
Therefore, only one request representing an entire set of requests need be
examined for each distinguishable set. A similar attention to efficiency
must be paid in working the pi posed system into a useful tool. Further
improvements can be made, by only checking those conditions for which some
of the terms have changed. The set of specifications supplied may be re-
ducible into simpler conditions.

Bloom [6] has developed general evaluation criteria of modularity,
priority, exclusion, expressive power, and ease of use far synchronization
systems. The insight needed to design useful features will, however, be
gained by compiling an extensive set of synchronization problems and re-
source constraints.

Many classical synchronization problems can be found in the literature.
Other problems can be found or developed from studying operating systems'
resource.requirements. Combinations of these problems will help in de-
veloping features to coordinate requests to several resources and to permit
a single request to require more than one resource.

Different features can then be developed and evaluated to express the
resource constraints and policies to achieve resource or requestor effi-
ciency and fairness for these synchronization problems.

References

[1] C. A. R. Hoare, "Monitors: An Operkting System Structuring Concept",
CALM, 17, 549-557, 1974.

[2] R. Bayer, R. M. Graham, and G. Seegmuller (eds.), Operating Systems:
An Advanced Course, Lecture Notes in Computer Science, Vol. 60, 262-
263, Springer-Verlag, 1978.

[3] C. E. Hewitt and R. R. Atkinson, "Specification and Proof Techniques
for Serializers", IEEg Transactions on Software Engineering, SE-5, 1,
10-23, 1979.

[4] D. Leinbaugh, "High Le' el Specification and Implementation of Resource
Sharing", 08U-CIS Research Center Technical Report (OSU-C1SRC-TR-81-3),
1981.

a

22

rs] K. RamamrithAm and R. M. Keller, "Specification and Synthesis of Syn-

'chronizers", Proc. 1980 International Conference on Parallel Process-

la,. 311-321, August 1980.

(6) T. Bloom, "Evaluating Synchronization Mechanisms", Prcc. of the Seventh

Symposium on Operating Systems) 24 -32s December 1979.

3. CUSTOMIZABLE WORKSTATION ENVIRONMENT

Faculty) J. Ramanathan

Students H. J. Kuo C. H. Li, C. J. Shubra, D. Soni

Introduction

We believe that customizable environments are particularly useful in

adjusting to the unique and demanding needs of a user community and thereby

providing friendly and effective support for the software engineering proc-

ess.' Some examples of customizable tools/environments that have Seen nota-
bly successful are UNIX, SCRIBE, and EMACS. To what extent can' experience

in developing and maintaining software products be used to customize an

environment for profitably supporting the development and maintenance of

subsequent software systems? This question fundamentally motivates the

TRIAD project described here. The TRIAD environmeit is 'extremely'

customizable thus permitting a project manager to :ustomize the environ-

ment and reflect experience culled from other similar projects.

Experience in the development and maintenance of software leads to

the design of methodologies for dif2erent ph4sea ot. the software engineer-

ing process. Such methodologies attempt to usefdlly s-port the Program..

mer's thought process for re-creating only good patterns of programming

without limiting creativity. Therefore, to address the above'questiOn

effe,ctively we propose to design and implement generic tools customizable

by a methodology suitable for a given project. Furthermdre,.the methodol-

ogies can be customized to exploit a user group's project oriented exper-

ience. For example, a customized methodology may guide the synthesis of .

a software system using existing 'components'. The significance of our

research effort in the design and implementation of tool-box environments

customizable by methodologies for the eoftware engineering process is -

summarized below.

Major issues that must be addressed are:

- A precise notation for describing methodologies must be developed.

- The generic tools must be able to interpret a methodology descrip-

tion and provide support accordingly. That is, the tools must be
customizable by the methodology description written'using the pre-

. cise notation.
- methodology should be customizable by altering its description.

- The environment must interface with the user in a frierdly and

teffective way.

26

104

23

- How should the tools interact with each other to provide an integrat-
ed tool box environment?
The, methodologies must be designed and customized considering the
human user.

- How should a methodology be customized for a problem domain?'

The extent to which the issues have been addressed by the TRIAD project are
evident from the characttgizationof the system given below.

- It has been designed as an integrated collection of tools.
It 'enforcetNmethOdologies in a friendly manner by requiring the
programmer to fill in pertinent 'blank forms' ',displayed on the,

screen and later analyzing the blank forms. Help forms explaining'

how to fill up the blank forms may also be displayed on the screen.
- The genera-: tools in the tool-box environment are customizable by
any of the methodologies in the environment's database. That is,
the programmer selects the methodology most suited or a particular
project. The methodology then drives the generic tools which dis-
play, analyze, and guide the use ofthe forms enforcing the method-
ology. Thus, our environment can provide friendly and application
oriented support to the programmey.

- The attributed grandar,form model/underlying our environment is an
extension of the grammar form model which has been used by Ginsburg
[2] to model families'of grammars. The.,mode], provides a precise

way for encoding.methodologies. The gen is tools, which interpret
methodology encodings,'afe analogous to t se customizable generic
parser. The gener# parser can be'customized, by the grammar based
encoding of a language, in, order to enforce the syntax of the lang-
uage. Similarly, the generic tools can be cuStomized, by the gram-
mar form based encoding of a methodology, in order to provide appli-
cation oriented support prescribed by the methodology. A Imethodol-

ogy encoding may describe languages, but'more interestingly, it may
describe-methodologies for programming-in-the-large .such as DREAM,,
INTERCOL, SADT, etc.), for programming-in-the-small (such as JACKSON,
WELLMADE, etc.), and others oriented towards specific problem
domains.

- It provides systematic ways fbr customizing methodologies. That is,
the encoding'for a customized methodology can, be derived, eystwnati-
cally from the encoding of the'original methodology. The power of
the customization functions depends on the notation used for speci-
fying the customization'and the model on which the notation is based.

What is a Methodology and How is it Enforced?

gr.

Most methodologies which support the software engineering process are
based on the dual notions of refinement and abstraction. Thus the result
of applying a methodology can be naturally represented as a tree that we
call a refinement tree. In addition, methodologies generally have some of
the aspects listed below. We follow each aspect by the user's view of the
aspect when our generic tool-box environment is customized by the Jackson
methodology. We choose to illustrate the applicability of the model using
the Jackson design technique onzly because it explicitly identifies all the
aspects given below.

27

24

- Conceptual models which must be used.by the programmer to organize
the problem at hand in order to achieve the overall program archi-

tecture prescribed by the methodology.

The blank forms shown in Figure 1 have underlying concepts which

are a part of Jackson methodology. The first concept requires

the programmer to specify the structure of the input and output,

and the program driver. By requiring the programmer to fill in

the blank forms such as those illustrated in Figure 1, the pro-

grammer is encouraged by our-environment to organize the probldm

according to the concepts of the methodology. Forms can be re-

fined using other forms, thus creating a reinement tree.

- Notation prescribed by the methodology which the programmer uses to

record the use of concepts both during the development process as

well as during maintenance. For convenience, the notation may be

designed to reflect the concepts.

In our environment the notation is used to fill in or interpret

a blank form and create an instance of the concept. The Jackson

methodology notation uses alternate/sequence/iteration symbols

as well as_a pseudo code. Note that the alternate/sequence/

iteration symbols also reflect the concepts as illustrated in

Figure 1.

- Techniques which include management and sequencing functions that

thd programmer may apply (perhaps using tools) to the documents thus

far developed and then determine the next step to take for develop-

ment or maintenance. These techniques, based on past experience,

attempt to reduce the number of possible solutions to thevproblem at

hand.

In our environment, the techniques suggest the proper forms to

be completed by the programmer. A technique suggested by Jack

son is to complete the forms which refine the input and output

structures before refining the program body.

- Analysis activities based on a global view of the product developed

thus far. Analysis is used to answer questions about the methodolog-

ical aspects or the structure of the product itself. This activity

is most likely to be supported by analysis tools Of some sort. The

resultssof an analysis may determine what techniques can be applied.

In our tool-box environment various tools analyze the filled

forms to aid the programmer in error and anomaly detection and

other verification activities.

A model for encoding methodologies must be able to represent all the

aspects discussed above. Attribute grammar forms provide a powerful nota-

tion for describing a variety of methodologies for various phases of the

software life cycle.

23
re

0

25

Program Name: Generate A Sales Report

Input Structures: Sales File : Structure:
Sales File

Program Driver: Generate A Sa : Structure: attributes

CUstomer4

Output Structures: Sales Reps :
Key Customer #

"WV

Figure 1. A Hierarchy of two Forms with Interpretations

The blank forms are interpreted (filled) by the

user. The interpretations are shown in italics.

Program Developer. Tool of the Triad Tool-Box

To illustrate the nature of,tools within the tool-box, we briefly de-

scribe a specific tool used to develop documents. The tool is called the

TRIAD DEVELOPER. A prototype of TRIAD DEV has been implemented in LISP

under the DEC TOPS 20 monitor [4]. Other tools, such as the analyzer for

analyzing forms, have been degigned [1] but not yet implemented. The'de--

sign of the TRIAD DEV is organized based upon the grammar form model. The

productions of the grammar form are displayed to the programmer as blank

forms. Thus the programmer does not have to be aware of the details of

the formal model underlying the environment. For example, the production

underlying the form in Figure 1 is

<program name> --> <input structures>
<program driver>
<output structures>

Productions such as this one underlie forms filled by the programmer in

order to obtain the following design document.

The design document given in Figure 2 is the result of filling the

blank forms fqr the Transaction*Processing Methodology. The symbols in the

blank forms guide the programmer's thought process. The interpretations

used by the programmer for filling the blank forms are given in italics.'

TRIAD DEV is unique in that it provides editing functions oriented towards

high level concepts. For example the program maintainer can type replace

match to change the WHILE loop under match. Since maintenance will gen-

erallyi,e required either on the match code or the no match code, editing

functions for retrieving and manipulating these text segments are very

useful.

There are many instahces of the transaction processing problem --- the

update of a Master Product File using Product Update Transactions, or the

update of Customer records using Customer Payment transactions etcetera.

Since the productions unddrlying the forms enforce a customized version of

Jackson methodology as applied to the transaction processing problem domain,

23

26

Transaction Program Name: Product Master File Update

Input Structures

Name of Transaction File: Product Update File (PUF)
Tkey: Product Number
Key Ordering: Ascending

Name of Master File: Product File (PF)
Mkey: Product Number
Key Ordering: Ascending

Program Driver

Initial Part: Open PUF, PF; Initialize all variables;
WHILE '1,eof in transaction file:

DO form unit and process it

IF tkey>mkey

THEN flush master
process master records
that "are not needed: Write PF
read new master: Read PF

ELSE process transaction

IF "tkeykmkey

THEN no match
WHILE same transaction key
DO no match process: Print invalid transaction

read next transaction: Read PUF
OD

ELSE match
WHILE same transaction key
DO validation process

validation stepl: Check if transaction file is valid

validation step2: Check ifroduct description in
PUF record matches PF record

OD

OD
final part:

Output Structure
END

Explanation: This document is the result of filling the blank forms in
the proper order. Programmer's responses to the blank forms
are given in italics.

Figure 2. Interpretation of the Transaction Processing Methodology.
Forms for Product Master File Update.

3,

27

all transaction processing programs developed using the forms have the same

underlying 'good' pattern prescribed by Jackson.

The use of encoded concepts daring program development can ensure that

there is less variation in the programs developed for a given problem. This

is supported by our analysis of programs for a given instance of the trans-

action processing problem. These programs were turned in by students

taking the file management course taught at Ohio State University. The

students were already versed in structured programming. By examining four-

teen different programs turned in for the master file update problem, we

found that the fourteen programssha4 a significant variety of control
structures [3]1 This is despite the fact that all the students attempted
to use Jackson methodology. The use of the transaction processing method-
ology, supported by a semi-automatic program development system ensures
that only one control structure is actually generated and thus there is
less variation,,,in the transaction processing programs developed. In other

words the consistent application of a methodology results in a more main-
tainable final product.

Concluding Remarks

Methodologies for the software engineering process constantly evolve

suituit the needs of a user community. Furthermore, methodologies are

generally imprecisely defined. Thus there is a great deal of variation in

programs resulting from the manual application of a methodology and pro-

grams often remain unreliable and difficult to maintain. This suggests

the need fox well- tailored methodologies which guide the programmer's
thought process for recreating only 'good', standard patterns or tech-

niques of programming. In other words environments should support well-
tailored methodologies which encode qur collective programming experience,
and the degree of effectiveness of these methodologies in improving soft-
ware quality should be demonstrated.

The TRIAD tool-box environment will be customizable by methodologies
and will be instrumented to,gather data. In addition to addressing re-

search issues in the design and implementation of customizable environments,
the TRIAD project will gather data to study the use of methodologies by
programmers and the impact of different methodologies on software quality.

References

[1] J. Arthur and J. Ramanathan, "Selective Program Analyzers", IEEE
Transactions on Software Engineering, January 1981.

[2] S. Ginsburg, "A Survey of Grammar Forms - 1977", Sixth International
Symposium on Math. Foundations of Computer Science, TatranskaLomnica,
Czechoslovakia, 5-9, 1977.

[3] J. Ramanathan and C. J. Shubra, "The Modeling of Problem Domains for
Driving Program Development Systems", Eight Annual Symposium on the
Principles of Programming Languages, January 1981.

31

ed

28

[4] J. Ramanathan and H. J. Kuo, "Concept Based Tool for Standardized

Program Development ", COMPSAC, 1981.

4. CURRENT RESEARCH IN COMPUTER GRAPHICS

Faculty F. Crow

Students M. Howard
Win Bo

Abstract

Sponsored research in computer graphics currently encompasses projects

to (1) provide more flexible algorithms for image generation, and 2) improve

techniques for removing the side effects of digital image generation (known

as "aliasing").

(1) To generate images more flexibly, a supervisory process is used

to distribute picture-generation tasks to heterogeneous subprocesses. Sig-

nificant advantages accrue by tailoring the subprocesses to their tasks.

In particular, scan conversion algorithms tailored to different surface

types may be used'in the same image:

(2) Sufficient reduction of aliasing effects under all possible con-

ditions remains difficult except by expensive (brute-force, high-resolu-

tion) techniques. Some experiences in trying to discover what level of

effort is necessary to achieve
"acceptable" images have led us to the ques-

tion of when overlapping and abutting surfaces need to be distinguished

within a pixel. Four paradigms for rendering order are addressed in this

context..

A More Flexible Image Generation Environment

Introduction -

Current software display systems are either too restrictive, e.g.

allowing display only of surfaces defined as polygons, or demand too much

of the operator, e.g. determining priority. The most heavily used display

algorithms have been monolithic software systems based on a single type of

object description. In order to make very complicated images with such

systems, enormous computing resources have been necessary to sort all sur-

face elements to scan-order or priority order. Where such systems have

been expanded to include additional surface types, the cost of integrating

the new code has been inconvenient at best.

32

29

An alternative approach based on small, single-purpose display pro-

grams has been used at some sites. This approach cuta the cost of inte-

grating new display techniques to a minimum. However, in order to make a

complex image.a complex command sequence is necessary, forcing the user of

the display programs to have most of the skills of an experienced program-

mer. Furthermore, the user must be unnecessarily intimately involved in

the task of image generation, a task which proceeds automatically in the

monolithic systems.

In the interests of providing an environment with maximum flexibility

for production -of the widest possible range of imagery and easy introduc-

tion of experimental display algorithms, I am currently exploring a middle

ground'in which a supervisory process serves the integrating function of

the user in the second scenario. This involves implementing a system

which tries to separate the process of image generation into two distinct

phases: scene analysis and object rendering.

During scene analysis interobject interactions are determined solely

on the basis of crude estimations of the size and position of objects

making up the scene. Information from the scene analysis is then used to

determine how to generate the image. Object priority, used to define the

order in which objects are rendered may be found. Object interaction such

as intersection, cast shadows, and proximity for color interaction may all

be determined by the scene analysis.

Object rendering may be done by a number of independent processes in

the case of non-interacting objects. The independent processes may be

prioritized by execution sequence on a single-processor system or by inter-

process signals on a multiprocessor system. Object interactions may be

resolved by several methods including combining each interacting set of

objects into a single rendering process.

A Multitasking Execution Environment

To even consider building the kind of software described here a flex-

ible operating system which allows a user process to spawn and control

daughter processes is imperative. While more and more such systems are

available, commercial operating systems frequently do not anticipate such

use. We are using the UNIX operating system with VAX extensions from

Berkeley to support this work. While the existing software provides a

reasonable environment, planned extensions promise to make this system

even better suited to the task.

The primary task of the supervisory process is to determine which ob-

jects overlap in the image and then determine the depth order within a

group of overlapping objects. Any of a number of extant priority algo-

rithms would suffice for this purpose. However, the elements to be com-

pared here are objects (or clusters of related objects). The intention is

that there should never be so many objects compared in one process that

the order of complexity of the comparison process or the amount of availa-

ble memory forms an important restriction.

The supervisory probess reads a description of a scene, giving posi-

33

30

tions and orientations of objects, light source specifications, and view

parameters. Succeeding scenes may then be described incrementally, pro-

viding only the changes from the previous scene. This form of description,

while bulkier than some form of key-frame description, provides a well-
defined description of frame-to-frame changes while freeing the supervisory
program from the tasks of interpolation between key frames. Interpolation

is another aspect of animation subject to experimentation and is thus better

done elsewhere. The supervisory image generation process is being kept as

simple as possible.

The incremental frame-to-frame description allows the use of whatever

coherence exists between frames to be put to good use. For example, if the

view parameters are unchanged then only moving objects change the image.

In such cases, only those parts of the picture overlapping the changing ob-

jects need to be updated. The supervisory process may reset clipping param-

eters to limit the computation to dynamic areas of the image.

The scene description allows some information on object interactions

to be specified. For example, calculations can be much improved if it is

known that one object is supported by another or, more generally, that two

objects are in contact but not interpenetrating. Furthermore, intentionally

intersecting objects may be specified. This allows the process to precal-

culate static intersections and to warn the user of perhaps unintended ones.

Shape changes may also be specified as an interpolation factor to be

applied to two topologically equivalent objects.

Slave Processes

Independent slave processes can do the actual work of image generation

including all operations on individual surface elements clipping,

shading, scan conversion). As long as individual objects do not interact,

the slave processes can be specialized for efficiency in rendering one par-

ticular kind of surface. The most obvious example would be the sphere.

There have been a few published algorithms for rendering images con-

sisting solely of spheres. These algorithms were significantly superior

to polygon algorithms for the purpose and have proven useful in.several

areas. However, sphere-specialized algorithms have been of limited gen-

eral-purpose use since other types of surfaces cannot be included in the

images they produce.

In general, an image may be made somewhat more efficiently by algo-

rithms tailored to individual surfaces. The big advantage, however, lies

in the much greater simplicity of tailored algorithms. This simplicity

allows us to consider implementing the algorithms in other ways (e.g. micro-

code or hardware) which would be impxactical for more complex algorithms.

For example, an efficient display algorithm for polygons usually has
to make priority decisions based either on local comparisons or a very

complicated sort scheme with order n-squared complexity. Hardware shaders

or tilers can speed up execution of such algorithms by factors of two or

three. But the complexity of the algorithms prevents serious considera-
tion of further hardware translation except in the largest of undertakings.

34.

31

The bulk of polygonally-described objects may be sorted by much simpler
means, A simple ordering by average depth, for example, is frequently suffi-
cient. A slave process tailored to such objects could do the bulk of the
work in most polygon images. Virtually all computation in such an algorit
involves transformations (matrix multiplies), clipping, shading (dot prod-
ucts) and scan conversion (tiler). The sort may be handled by a sufficiently

high-resolution bucket sort. In short, no polygon need be considered more
than once by any stage of the algorithms, satisfying the conditions fcr im-
plementation by a pipeline of very simple processes.

Preliminary investigations indicate that removing the need to worry
about intersections can similarly simplify algorithms for other types of
surfaces. The question-then becomes what to do when an object intersects
itself or t4lo or more objects cannot be separated by the supervisory process.
Obviously, we can retrench and use a last-resort algorithm which handles
such surfaces at a loss in efficiency. However, if we can recover detailed
intersection information from the last-resort process, then subsequent
images may be made more efficiently.

For example, tests by the supervisory process may show that two nearby
objects intersect. The last-resort process will find those intersections if
they exist or indicatehat there'are no such intersections. In either case
if the objects don't move relative to one another, the information can remove
the need to use the last-resort process in succeeding images. The objects
may be declared non-intersecting or may be modified to resolve the intersec-
tions.

Some question exists as to the form of the last-resort algorithm. _Since
surfaces of many different formulations may coexist, there can be great diff-
iculty in trying to resolve intersections. Initially, the last-resort algo-
rithm is an existing polygon algorithm. All data types used will have an
associated algorithm for expansion of the surface description to polygons
for use with the last-resort process.

Experience in Anti-Aliasing

Introduction

The-term "aliasing" has been used for some time to refer to the deleter-
ious effects of improperly representing an image as a regular array of dis-
crete dots. These effects are seen as jaggedness along edges, inconsistent
size and shape in small objects, and randomly disappearing details. The term
:" aliasing" derives frofn the effect caused by looking at a signal at an inade-
quate number of regular intervals. A 12 cycle signal looked at ("sampled")
at 10 regular intervalp appears identical to a 2 cycle signal over the same
space and sampled at tie same intervals. Thus the 2 cycle signal is an
"al_ .s" of the 12 cycle signal.

An inadequate sampling interval when synthesizing digital ir.ages causes
misrepresentation of the local positions of the edges which characterize the
image. Unfortunately, technological limits and standardized equipment pre-
vent most of us from choosing our sampling interval. Therefore we are left

trying to make the best of what we have. If a display is viewed from an
adequate distance, details the size of a pixel cannot, be resolved. Therefore,

32

variation in intens!ty over a few pixels can be usedto "suggest" the posi-

tion of an edge. By such means it is technically feasible to make an image

which is indistinguishable from one of much greater resolution.

The trick is to achieve the same level of intensity at each pixel as

would be seen over the equivalent small area in a higher-resolution image.

This can be done by properly considering all the details which contribute to

each such small area.

In theory, aliasing -,'annot be entirely eliminated in a finite image.

However, it can bedilainished to the point where it is undetectable. The

means for diminishing aliasing involve increasing the amount of information,

upon which the image is based. The mosaic of dots making up an image repre-

sent samples from a conceptual. scene defined by the input data. The informa-

tion content of the image can be improved by increasing the number of samples

or by taking more information into account when taking each sample.

The issues to be decided, then, are how many samples are adeqJate or how

much informatioa should be considered in taking each sample. Unfor,.unately,

different features in an image require differing amounts of care to Ltde

aliasing. Broad areas in which the shade changes slowly obviously can be

reproduced with very little information. On the ether hand, areas with sharp

detail carry a much .greater density of information and must be treated more

carefully. Of course, areas with extremely fine detail may not be reprodu-

cible, given.the.display resolution. In such cases, the proper representa-

tion is a smudge of the correct intensity.

Currently, practical images have large regions of sparse detail. It is

therefore inefficient to use brute force techniques, computing the entire

image at a much higher resolution then averaging many samples into one dis-

played pixel. However, this may not be true for future images of much great-

er complexity. For the moment, algorithms which treat detailed areas with

special care remain important enough for study.

Generally, the pixels which need special care are those which contain

part of a surface edge. The color of such pixels must be calculated as an

average of the local color t of the surfaces on either side of.the edge. If

the pixel is considered to represent a very small image from the scene being

generated, then the color of each surface visible within that image Must con-

tribute to the color c..f the pixel. The pixel color is determined by summing

all the contributing surface colors, each weighted by the-area it subtends

within the pixel. Thus, where an edge passes through a pixel, the surface

colors on either side of the edge are blended by a weighted average.

The advent of the inexpensive frame buffer has made viable. a number of

hidden-surface algorithms which calculate the image in an order dictated by

the features of the image rather than the structure of the display (as scan-

order algorithms do). A characteristic of such algorithms is that each sur-

face element (polygon, patch, etc.) is scan-converted independently. Pixel-

by-pixel comparisons between surface elements are limited to comparisons of

intensity, (sometimes) depth, and whatever other information one can afford

to store for every pixel. The following sections will show how surface color

blending can be done in the context of frame buffer algorithms.

36

33

Renderin& Order

Nearly all scene generation algoritbis fall into one of four categories
based on the order in which surfaces are written to the display. (1) Sur-

faces written in depth-order rearmost first (the "painter's algorithm")

(2) Surfaces written in depth-order frontmost first. (3) Surfaces written

in scan order. (4) Surfaces written in any order (depth buffer). Exceptions
to this-classification are the Warnock algorithm and an algorithm invented
by I. E. Sutherland. Both these algorithms write in a lateral order (across

the screen) determined by scene features. However, for the present purpose,
they May be classified with the depth-ordered frontmost-first algorithms.

Algorithms in the first two categories first order surface elements by

priority then write each surface element to the display independently. Com-

plete information is available only for the surface element being rendered.
Where two surfaces partially cover the same pixel, there is,no way to deter-
mine whether the surfaces overlap or not. Obviously, the proper intensity

often different for the two cases. The scan-order algorithms, on the
otner hand, determine surface priority for each scan segment in turn. Thus,

all surfaces affecting a given pixel must be known to the algorithm at the
time the pixel intensity is computed. In this case, it is possible to re-

solve distinctions between overlapping and non-overlapping surfaces. The

depth-buffer algorithms offer the so-, ,rtblems as the priority algorithms

and offer some additional difficulties of their own.

Frequently, it makes no visual difference whether the intensity has been
computed absolutely correctly where surface. edges come together in a pixel.
However, the intensity must be computed in a consistent manner to avoid

jagged edges. In the following, methods f^r anti-aliasing in the face of in-
adequate information are presented, with results where they are available.

Rear-to-Front Order

Where surfaces are rendered in depth order, rearmost first, the edges of

surfaces must be blended with previously written pixel intensities. Where

surface elements are meant to blend together to form a continuous surface,
arbitrary blending is insufficient. The first surface of an abutting pair

will be blended with the background. The other surface will in turn be

blended with the first blend. The effect is to reveal the "seams" of the

surface. What is desired is a blend of the colors of the two surfaces in-

volved.

In the case where the surface elements are to join smoothly, aliasing

poses no problems. Such edges may be ignored. The problem with this lies

in determining which edges need special anti-aliasing treatment and which
don't. For smoothly shaded polygonal surfaces the solution is relatively

simple. The edges joining two front-facing polygons need no special treat-

ment. The edges joining a back-facing polygon with a front-facing one and

the edges belonging to only one polygon need anti-aliasing. Algorithms for

rendering higher order surfaces often incorporate some technique for deter-
mining silhouette points, where the surface curves back on itself. Anti-

aliasing can be limited to the silhouette.

Where adjoining surface elements are to join at a crease in the surface,

3"

34

anti-aliasing is necessary if there is significant contrast across the edge.

In these cases, it is sometimes possible just to let 'the background show

through the seam. This will just enhance the edge. However, if there are

high-contrast features in the background behind the crease, thottg features

will be seen, especially in animation. Therefore, yet another technique is

called for.

For joining surfaces at a crease, let the first surface written entire-

ly'cover pixels along the effected-edge. The algorithm must ensure that ad-

jacent surfaces will overlap by one pixel everywhere. The Second surface

may then be blended along the abutting edge. Since the.blended pixels will

have been set to the color of the first surface, the proper blend.df just

the colots of the two abutting surfaces will result.

This latter technique retiu.Lres an expanded description for surfaces

which are to be treated this way. It must be passible to conveniently find

all the neighbors of a given surface element. With this additional infor-

mation, each neighboring surface edge may be tagged when a given surface

element is written to the display. When an edge is written, it is blended

where the adjoining surface element has been written and not blended where

the adjoining surface has not yet been written:

It remains to determine what to do' with edges which affect the same

pixel.but which do nr belong to the same surface. In these cases, I con-

sider it impractical try to recover the data describing the earlier edge

in order to properly blend it with the latter. In practice, edges ofsep-

arated surfaces rarely adjoin in such a way as to cause a problem. Each

surface edge may be blended with whatever came before it. Problems will

occur where two surfaces are intended to abut, hiding.any features behind

the abutting edge. Lesser problems will occur where overlapping surface

edges affect the same pixel. The color of such pixels will be distorted in

the direction of the hidden surface. However, this is an effect which

should bother virtually nobody.

Various suggestions have been made for encoding information in extra

bits of the frame buffer memory to indicate what part of the area included

by a pigel has been covered. I don't believe that the extra work involved

would provide any significant benefit. However, such methods can be useful

for a different rendering order.

Front-to-Rear

There are advantages to rendering gloser surfaces first. For example,

when the cost of shading each pixel is large, the computations can be avoid-

ed where it can be determined that the pixel is already covered. It is also

possible to avoid the problems caused by abutting surface's in the previous

section without referencing more than one surface at a time.

Front tc rear algorithms must use some means for determining what pix-

els have been covered by previous surfaces. One approach is to divide the

screen along surface edges and clip succeeding surface elements by previous-

ly rendered edges. This approach has disadvantages, however. It works

fine for polygonal surfaces but does not extend to direct rendering of high-

38

35

er-order surfaces. It has an unacceptable order n-squared complexity since

each surface element must be compared with a large portion of all previously

rendered edgoo. It requires storing a description of all rendered edges

which must cie frequently referenced (bad for very complex pictures). An

alternative method eliminates these disadvantages at the cost of using some

extra frame buffer bits*

The alternative is to use frame buffer bits for what I call an "occlu-

sion buffer's. The occlusion buffer stores the percentage of each pixel area

which has already been covered by.a surface. This concept was used by Catmull

althoughhe didn't use the same term to describe it.

Using an occlusion buffer, surfaces are rendered front to rear. As each

surface is rendered the occlusion buffer is loaded with Lumbers indicating

how much pixel area is covered. In a simple picture, most entries will in

dicate complete coverage. Edges, however, will only partially cover. When a

second surface'is written to a partially- covered pixel, it is assumed that

the surfaces abut. Therefore, the existing coverage is used to weight an

average of the colors of the two surfaces at that pixel and is then summed

witn,tfie coverage of the new surface and restored to the occlusion buffer.

When an occlusion buffer value overflows, it must be set to indicate

full coverage. Fully covered pixels are then ignored in further computations.

As the last step, the background color (or background scene) must be blended

with the computed scene using the occlusion buffer to indicate how to use

. the background.

This scheme works very well in most situations where reasonably isolated

objects are-depicted. In such situations, surface elements sharing the same

pixel are nearly always abutting. Only where different objects or concavities

exist are overlapping surfaces within a pixel likely. Furthermore, only

where these overlapping surface6 are aligned so that they appear to be a

single edge is there a noticeable effect. That tends to be unusual. However,

there are situations where such arrangements appear.

. Depth Buffer

-In the case of the depth buffer it is necessary to handle the case of

surfaces b ng added either in front of ,or behind existing surfaces. The

major draw ack to the depth buffer is that there really is no way to handle

the Case of a surface which lies intermediate, in depth, between two previous-

ly,written surfaces. The surface must be treated as though it lies behind

all surfaces written so far or in front of all such surfaces. This problem

,.bas forced escapes into more complicated algorithms when rendering trans-

parent surfaces."

,By using the occlusion buffer, most'depth- buffer images can be made

without severe defects. However, where a surface must be adAld between two

earlier surrices, the occlusion buffer 'fails. If a clobie surface is written

first then a more distant surface behind it, the occlusion buffer will show

-as completely covered any pixels along edges of the close surface which lie

over portions'of the distant surface. Thus, it will be impossible to proper-

,
ly.blend an intermediate surface behind such edges.

36

Since it is rAre to have three long edges share the same pixel in any
reasonable image, perhaps the occlusion buffer can be extended to handle the

case described in the preceding paragraph. If one bit of the occlusion
buffer is used to indicate complete coverage, the remaining bits could be
used to indicate the coverage of the closest surface. This would preserve
the necessary information needed to insert a surface behind the fronimost

one. The hitch ia'this lies in the fact that the whole philosophy of the

depth buffer algorithm must be broken to make this work. There is no infor-

mation associated with the pixels in question which can signal the process
that the new surface fits between the two surfaces previously stored.

If the depth of the more distant surface is stored with the pixel then

the algorithm must overwrite. If the depth of the closer surface is stored
then there is no way to know whether the new surface lies in front of the
surface lying behind the visible edge. Therefore, to make an expanded occlu-

sion buffer scheme work, some more globakinformation is necessary. Global

information could be used in the following way. Wherever a surface changes

state from visible to hidden during scanout, blending must occur. If no

blending occured in any such transition then information on the depth of
neighboring pixels can Ise used to resolve the ambiguity of the above situa-
tion. It is assumed that true surface intersections are not allowed.

Unfortunately, any such scheme violates the most attractiveleature of
the depth buffer algorithm, its simplicity. The above scheme would only be

worthwhile if it could be implemented.to cause minimal additional computation
exczpt in those cases where it is needed. A check for visibility change
would have to be made at every pixel. That could too much when you con-
sider that very minimal surface sorting steps could, be used to remove such

cases at the outset.

Scan-Order

Initially, scan-order algorithms were necessary since nobody had frame

buffers. However, only those who wish to make images of extravagantly high
resolution really need use scan-order algorithms today. On the other hand,

in many environments the scan-order algorithms offer a performance advantage
since they require no pixel-levelqcomparisons to determine visibility. Where
scan segments are, on the average, more than a few pixels in length, the
scan-o:der algorithms can make much better use of local coherence than any

of the other approaches. The drawbacks of these algorithms are the horren-
dous complxity of the code required to make them work and the heavy demands
for adcress space when making complicated images.

The big advantage of scan-order algorithms here is that all necessary
information is available to determine the interrelationships of an arbitrary
number of edges sharing the same pixel. This information can be-used to do
a mini-hidden-surface algorithm at the pixel, to calculate the pixel at a
higher resolution, or to determine whether one of the first two techniques
is really necessary. For simple images, the complicated situations which

.require the blending of more than two surfaces occur only rarely. rnmore
complicated images involving a lot of small details in which several sur-
faces share a pixel, I'm not convinced that scan-order algorithms are
really practical.

40

ti

p .37

Sampling Window

In calculating areas within a pixel, it has been debated whether it is
sufficient to model the image as a mosaic of abutting square pixels. Signal
processing wisdom and the experience a-f- television engineers tell us to model
thi pixels with overlapping areas. The areas should overlap by one-half so
that an infinitesimal point in the scene being depicted would appear in four
pixel areas. The extent of overlap ia.based on the size of the central lobe
of.the ideal low-pass filter for the sampling interval represented by the
image-structure.

'There is no question that the overlapping pixels produce better results
in the most difficult cases than do the abutting pfxels. However, in less
demanding situations the difre7ences are negligible at best. To make com-
parisionsthe same scene was computed at very high resolution using a scan-
order algorithm, then averaged6to a lower resolution usingiboth pixel models.
For the one image, 64 samples were averaged to get the pinel colors, approx-
imating the effect, of convolution with a Fourier window. In the other image,
225 samples were averaged. The samples were weighted more heavily in the
middle, approximating the effect of convolution with a Bartlett window.

There was no discernable difference between the two images except in
the highlights on the clbsely spaced columns that appeared in the two pic-
tures. The high contrast of the highlights with the columns and the repeti-
tive nature of that part of the image make h difficult.case for anti-aliasing.
There is a "braided rope" effect when the abutting pixels are used which is
considerably attenuated when overlapping pixels are used.

It remains for the individual application to determine whether-'the abut-
ting pixel mo 1 is sufficient. My experience has been that the overlapping
model is neces ary only where long, thin, and very bright features are includ-
ed. Dull imag s don't need much care.

1

, These highlights in the example represent yet another difficulty in anti-
0 aliasing techniques: they are image details not associated with a sirface

edge. All selective anti - aliasing schemes are based on providing special
attention to those areas where edges pass through a pixel. Another heuristic.
is needed for determining where there is a small highlight which nelas
special care.

Conclusions
ti

I have tried to explain some of the conclusions I have reached in exper-
imenting with anti-aliasing schemes over the past several years. My, work

in this area is still continuing and future developments may leave me with
much different conclusions in coming years. It seems likely that foi the
next decade or so, there will be a great empha'sis on algorithms which can be
stated simply enough to be conveniently compiled into microcode or hardware.
Future work along these lines will be addressing the issue of simplicity
more heavily.

41

38

ABSTRACTS OF PH.D.. DISSERTATIONS 1980-81

CHOU, CHUEN-PU. System Design of the Distributed Loop Database System
(DLDBS) The Ohio State University, Spring Quarter 1981;

The Distributed Double-Loop Computer Network (DDLCN) is designed as a
fault-tolerant distributed processing system that interconnects midi, mini,

and micro computers using a double-loop structure. It serves as a means of

investigating fundamental problems in distributed processing and local net-

working'. One of the major distributed services provided by DDLCN is a

distributed database system.

In the distributed database system, the user has logically integrated
access to a collection of data which is managed on a network of geograph-

ically dispersed computers. Users' requests to the database can be satis-

fied independently of the physical location of the database, database def-
initions, and the database management system (DBMS). In this dissertation,

we present a way to design such a distributed database system for distri-

buted processing systems in general and for DDLCN in particular. We call

such a distributed database system the Distributed Loop Database System
(DLDBS).

To design a distributed database system is a complex task. A designer

has to face many technical problems and design decisions. A centralized .

single-node database system typically consists of three components: the

DBMS, the database directory/dictionary, and the database. In the dis-
tributed database system, however, we must be concerned with the design
of the distributed DBMC, the management of the database directory, the
database distribution, and the distributed database architecture by taking
such database distribution into consideration.

The design of the distributed -DBMS involves designing three distrib-
uted processing algorithms (DPAs): distributed concurrency control, dis-
tributed query processing, and reliability. In this dissertation a system

organization of the distributed DBMS is first described. Its software

components and the inter-relationship among these components are then

identified. Two new concurrency control mechanisms, one for fully and one

for partially duplicated DLDBS, are presented-next. The mechanisms use

distributed control and'are deadlock free, simple to implement, and robust
with respect to failures of communication links and hosts. They do not

use global-locking, do not reject transactions, and exploit potential con-
currency among transactions. Arguments for the correctness of the algo-

rithms are also given. Then a reliability mechanism is presented to en-
sure the continuing and correct operation of the DLDBS under abnormal

conditions. Finally, data definition and manipulation languages for DLDBS
are described, and an approach to distributed query processing is also

suggested.

In the design of DLDBS we take into consideration special character-
istics of DDLCN, which is a local network with broadcast channels. DDLCN

has a high bandwidth and low error rate, and most importantly, it supports
multi-destination protocols to facilitate efficient implementation of dis-

42

39

tributed processing algorithms. The design of DLDBS is intended to be so

generalWlat new concepts developed for it can be applied. to other dis-

tributed database systems. In_,this dissertation we also demonstrate that

it is feasible to integrate database management, computer networking, and

distributed processing technologies into a unified system.

LI, CHUNG-MING. Communicating' Distributed Processes: A Programming Lang-

uage Concept for Distributed Systems, The Ohio State University,

Winter Quarter 1981.

This dissertation is concerned with the development of a distributed
programming language/system, ta be called DISLANG, for use in distributed
compUting systems and computer networks. The purposes of developing

DISLANG are 1) to provide the system programmer with a tool for use in
implementing,distributed system software, and 2) to provide the user with

a high-level languagE for use in writing distributed application programs.

We assume a more "realistic" model, meaning that the distributed systems
under consideration do not have perfect communication or processing sub-

systems. We seek a language that can abstract very nicely such inherent
characteristics of distributed systems as variable message delays, commun-
ication link failures, processing subsystem crashes, data distribution,

etc. A new-language concept, called Communicating Distributed Processes
(CDP), has been proposed to provide language constructs for handling the
aforementioned characteristics of distributed systems.

CDP introduces a new language concept called communication/distribu-

tion abstraction. All necessary information for process communication,
data distribution, and execution parallelism is collected together as a

separate component of CDP, called Communicator. Features of process

communication, data distribution, -and execution parallelism are specified
abstractly by using this information, so as to achieve a'high level of

modularity and a high degree of abstraction.

Operation types are used in CDP to specify the properties of opera-

tions at remote nodes in an abstract way so as to achieve communication/

distribution abstraction. Operations at remote nodes are handled in the

following way: 1) the programmer describes different types of usages for

the operations by specifying operation types and 2) the system dynamically

handles remote operations by processing the operation types properly..

The design of Communicating Distributed Processes provides a complete-
ly new language concept which encapsulates the characteristics. of distrib-
uted systems, such as distribution of resources, distribution of control,
communication delay, and communication failure. In addition, it is con-

sistent with the current trends in programming language design, such as

modularity, abstraction, etc.

A high degree of modularity is achieved by using the Communicating
Distributed Processes and Communicators, and a high level of abstraction

is provided by using operation types. Moreover, the concept of communica-

tion/distribution abstraction used in.the Communicating Distributed Proc-

4 `,

40

esses not only provides a great deal of expressive power for distributed
programming but also has the advantages of simpler programming, easier
understanding, more flexible modifiability, etc.

MITTAL, SANJAY. Design of a Distributed Medi,:al Diagnosis and Data Base

System. The Ohio State University, Summer Quarter 1980.

A methodology is developed for organizing potentially large and
diverse bodies of knowledge in a computer system. The methodology is

illustrated by the design and implementation of a knowledge-based consul-
tation system called MDX. In the MDX system, different kinds of medical
knowledge - diagnostic, anatomical, physiological and clinical - needed
for diagnosing diseases in the Cholestasis syndrome are organized in a
distributed framework. MDX is organized into three subsystems: A diagnos-
tic system; a patient data base assistant, called PATREC; and a radiology
consultant, called RADEX.

The diagnostic knowledge is organized in a Conceptual Hierarchy. Each
node in the hierarchy corresponds to a diagnostic state. Associated with
each node is a specialist, which. contains knowledge for establishing and

refining the node. The problem solving strategy of Establish and Refine
is implemented as a collection of specialists, communicating via well-
defined principles. Same criteria are also developed for determining the
distribution of different kinds of knowledge among these specialists. The

performance of the system is analyzed by discussing some medical cases in

detail.

An important aspect of the methodology described in this work is the
emphasis on the organization of auxiliary knowledge, which is not directly
involved in the problem solving task, into separate consultants. In parti-

cular, the knowledge about medical data entities required for answering
questions about the patient data and the anatomical or physiological know-
ledge required for interpreting radiological information are organized into

separate consultants - PATREC and RADEX. The communication between the
diagnostic system and the auxiliary consultants is via a query language.
Each of, the nsultants has a cbnceptual model of the relevant data

entities - la ts,- signs, symptoms, organs, deformities, etc. - which

enables them to make default assumptions and infer information not explicit-
ly stored in the data base. Some criteria and-algorithms are developed for
making such inferences and assumptions, and for combining information from
multiple sources into a composite model. The actual patient data is organ-
ized into temporal episodes - clustered around key episodes. Some issues

in organizing temporal patient data are also explored.

44

41

TSAY, DUEN-PING. MIKE: A Network Operating System for the Distributed
Double-Loop Computer Network, The Ohio State University, Spring Quarter

1981.

The proliferation of cost-effective small computers has spurred in-

terests in areas such as distributed processing. This discipline down-

grades the importance of processor utilization and emphasizes other goals
such as system resource sharing, reliability, and extensibility.

This dissertation proposes the-framework and model of a network oper-
ating system (NOS) called MIKE and its supporting architecture for use in
distributed.systems in general and for use in the Distributed Double-Loop

Computer Network (DDLCN) in particular. MIKE, which stands for Multicom-
puter Integrator KErnel, provides system-transparent operation for users
and maintains cooperative autonomy among local hosts. Its Underlying arch-
itecture provides additional hardware /f irmware mechanisms to support the

logical structure of MIKE.

MIKE incorporates modern operating system design principles to cope

with its complexity and vulnerability. These principles include data ab-

straction, capability-based addressing, and domain-based protection. The

use of these concepts can contribute to several characteristics whose

presence is essential iiva distributed environment. ,Among these character-

istics are extensibility/configurability, reliability/robustness, system
transparency, and local autonomy.

Ah.integrated approach is taken to design the NOS model and protocol

structure. MIKE is based on the object model and a hovel "task" concept,
using message passing as an underlying semantic structure. A layered pro-

tocol is provided for the distributed system kernel to support the NOS

services. This approach provides a versatile network architecture in
which system-transparent resource sharing and distributed computing can

evolve in a modular fashion.

The architecture of the Loop Interface Unit (LIU) in which MIKE is
housed is designed with the explicit purpose of facilitating the imple-
mentation and maintenance of a robust NOS for the DDLCN. It is designed in

such a way as to narrow the gap between the abstractions called for by the
NOS model and the features directly realized by conventional hardware.

The organization of LIU is configured according to the data and con-
trol message flow of the MIKE hierarchical framework. Furthermore, to re-

duce the heavy overhead associated' with imposing the lo:&cal structure of
MIKE onto conventional hardware, LIU is based on a software-directed arch-
itecture. Adequate hardware and firmware mechanisms are provided so that
modern operating system design principles can be supported at the archi-

tectural interface. This integrated hardware and software design approach
is required if MIKE is to be implemented efficiently.

In summary, the network operating system adopts modern operating sys-
tem concepts into its design and has extensive architectural support. The

framework of MIKE includes the NOS model and supporting protocol structure.

ILI

42

The Loop Interface Unit (LIU), where MIKE is running, comprises a number
of processing units which are configured to optimize the internal message

traffic flow. Hardware/firmware mechanisms are augmented to provide a
software-directed architecture for MIKE in LIU.

WANG, PONG-SHENG, Computer Architecture for Parallel Execution of High-
Level Language Programs, The Ohio State University, Summer Quarter 1980.

A new approach, called Parallel Execution String.(PES), is proposed to
recognize parallelism in ordinary programs and to represent them in multi-
processor systems for parallel processing. The PES scheme decomposes ex-

pressions in such a way that it can eliminate the unnecessary wait before
an operation can be started, has minimal intermediate store and fetch of
partial results, can minimize the intervention of central control to indiv-
idual professors, and uses no stacks. The PES approach is then used to

recognize the parallelism among a block-of statements. A machine organi-
zation for executing, the programs compiled with the PES approach is pro-

posed. Code generation and optimization techniques are also presented.

The concept of try-ahead processing of IF, REPEAT, WHILE, and,LOOP

statements is proposed. The representation of these statements for try-

ahead processing is presented. With this approach, the delay caused by

the evaluation of the boolean'expressions in these 'Statements can be

greatly reduced.

The architecture of a parallel execution high-level language computer

is proposed. In the proposed architecture, the PES approach to parallel

processing and the try-ahead processing approach are used. The pipeline

effect, parallel processing, and try-ahead processing will result in a
system whose performance is much better than that of its individual proc-

essors.

The design of a multi - microprocessor' system using Am2900 based bit-

slice microprocessors is presented. The system is designed to implement

the PES approach. This design suggests .that the PES approach can also be
implemented effectively and efficiently with moderate effort in a low-cost

system.-

Finally, simulation is done to compare the average performance of
several PES scheduling algorithms. It is.found that the "Longest Process-

ing Time scheduling has the best average performance among the algorithms
being tested. Compared to a schedule without any reordering, the longest
processing time schedule results in an average improvement of about 10% in

completion time.

4u

43

4

WU, SOU BIN. Interconnection Design and Resource Assignment for Large
Multi- Microcomputer Systems, The Ohio State University, Autumn Quarter ,

1980.

Computer systems constructed by interconnecting a large number of
microcomputers can offer substantial gains in performance, modularity, and
robustness over conventional centralized systems. This dissertation-
addresses two issues in the design of large multi-microcomputer systems:
how to design an interconnection structure in order to support interproc-
essor communication, and how to assign system resources in -order to-make a
large number of microcomputers function together as a single integrated
system.

A cluster_ structure is proposed as a conceptual scheme for interconnec-
ting a large number of microcomputers. It is characterized by a set of
structure parameters and a set of interconnection functions. Therefore,
by specifying values for structure parameters and interconnection functions,
one can specify a desired interconnection structure.

Performance analysis has been a key process in interconnection design.
This dissertation proposes an analytical model to analyze message delay
and traffic congestion problems. Different from others, this analysis con-
siders the detailed interaction among system nodes. It shows the effect of

structural topology on bus load and message delay.

Through the use of the cluster structure and the analytical model,
this dissertation demonstrates how one can find an optimal structural topol-
ogy so that more microcomputers can be interconnected and/or more message
traffic can be supported without suffering serious system degradation.
Case, studies are presented to show how topological optimization can be done,
subject to design constraints arising from system applications.

Minimum cost assignment of system resources is motivated by the desire
to minimize system overhead, and is a key to the success for system inte-
gration. This dissertation describes how an efficient solution to the re-
source assignment problem can be obtained from using network flow algo-
rithms. It describes how one can first partition a given module graph,
representing software resources, and then map subsets of software resources
to subsets of system nodes. 'Performance studies are also presented to show
that, if a given graph is tree-like, our partition algorithm yields an op-
timal solution; otherwise, our partition algorithm yields a solution with
near minimum cost.

This dissertation also discusses the effect of the resource assignment
solution on system interconnection and system integration. It outlines an
approach to applying the resow.ce assignment solution to enhance system in-
tegration such as in control and scheduling problems.

4"

44

RESEARCH AND' DEVELOPMENT AWARDS

Equipment Grant

Title: Equipment for the Laboratory for Database Systems Research

Prindipal
Investigator: David K. Hsiao

Investigator
and Director: Douglas S. Kerr

Sponsor: External Research Program, Digital Equipment Corporation

Duration: 1980-82

Amount: $222,155

Abstract: A 50% discount of the market value of a multi-mini
computer system consisting of one VAX 11/780 and two
PDP-11/44s interconnected with parallel transfer buses
has been granted to the Laboratory for Database Systems
Research. The VAX 11/780 is configured with two 67-mbyte
disks, one tape, four terminals, one console, one line
printer and 1.5-mbyte primary memory. One PDP-11/44 has
two 67-mbyte disks, one tape, two terminals and 256-kbyte
primary memory, while the other PDP-11/44 has one
67-mbyte disk and 256-kbyte primary memory.

With matching funds from the Office of Naval Re-
search, the following items have been installed in the
Laboratory for the 1980-81 period. They are the two
PDP-11/44s with 256-kbyte primary memory each, the line
printer, the tape station, five CRT terminals, two PCLs,
and three 67-mbyte disk drives. Plans are made to install

the remaining equipment in the 1981-82 period.

Graduate Training Grant

Title: Graduate Training Program in Biomedical Computing and

Information Processing

Program
Directors: A. E. Petrarca, Associate Professor, Department of

Computer and Information Science
Gregory L. Trzebiatowski, Associate Dean, College of

Medicine

Sponsor: National Library of Medicine (NIH Grant LM 07023)

Duration: 7/1/80-6/30/82

Amount: $148,249 (1980-81) $79,872 (1981-82)

V
Abstract: In order to meet the needs for specialists in bio-

medical computing, an interdisciplinary Graduate Training
Program in Biomedical Computing and Information Process-

43

7 Research Grants

Title:

Principal
Investigator:

Sponsor:

Duration:

Amount:

Abstract:

Title:

Principal

Investigators:

Sponsor:

Duration:

Amount:

Abstract:

45

ing was established through a joint effort of the School
of Allied Medical Professions of the College of Medicine

and the Department of Computer and Information Science.
Students who are interested in the study and application
of computer and information science to health care, med-
ical education, and biomedical research may pursue, through
one of the participating departments, the graduate degrees
of Master of Science (via Allied Medical Professions of
Computer and Information Science) and Doctor of Philos-
ophy (via Computer and Information Science or appropriate
Ph.D. granting departments in the College of Medicine).

Analyzing Program Methodologies Using Software Science

Stuart H. Zweben

U.S. Army Research Office (DAAG29-80-K-0061)

8/1/80-7/31/83

$146,579

The area of applicability of various Software Science
metrics to COBOL will be extended by conducting controlled
experiments and by developing appropriate software tools
to automate the analysis of data. The extent to which
the metrics might be appropriate in evaluating the quality
of computer software will also be investigated.

An Approach tc Program Testing Based on Modularity

Stuart H. Zweben
Lee J. White

National Science Foundation (MCS-8018769)

1/15/81-1/31/83

$120,120

This project will investigate the extent to which
testing of large computer programs can be facilitated by
modularity in their development. Assuming that subunits
(modules) of the total program are developed and tested
independently, the idea is to make use of the information
obtained irk these unit tests when performing the valida-
tion of the large program. This would result in a signif-
icant reduction, over conventional methods, in the total
amount of testing that would be required.

43

46

Title: Computer Communication Protocols for Advanced Communication
Systems

Principal
Investigator: Ming T. Liu

Sponsor: U.S. Army Communications - Electronics Command

Fort Monmouth (DAAK80-81-K-0104)

Duration: 6/1/81-12/31/81

Amount: $25,000

Abstract: This project is concerned with the design of computer
communication protocols for use in advancedcommunication
systems. A formal model and software engineering tech-
niques are applied to specify, verify,.ar implement

multi-destination protocols for use in ac inced computer-

communication networks.

Title: Extension and Application of a Theory of Information Flow
and Analysis: The Use of Information in a Decision-Making

Environment

Principal
Investigator: Clinton R. Foulk

Sponsor: national Science Foundation (IST-7908327 A01)

Duration: 8/1/79-1/31/82

Amount: $121,513

Abstract: This research program builds on previous research
which 1.1s been underway at Ohio State University for the

last few years. We now plan to extend our research in
three different but complimentary directions by:
1) extending the basic theoretical work; 2) gathering

additional data with the use of a flexible, sophisticated
simulation model in order to establish new relationships
and important parameters; and 3) developing, designing
and carrying out experiments involving human subjects
in order to obtain real data about use of information by
decision-makers.

Title: Knowledge Organization and Problem Solving for Diagnostic

Tasks

Principal
Investigator: B. Chandrasekaran

Sponsor: National Science Foundation (MCS-8103480)

Duration. 5/1/81-4/30/82

Amount: $62,517

50

Abstract:

47

An approach to knowledge organization and problem
solving for expert systems which specialize in a certain
class of tasks, viz, diagnosis, will be investigated.

We prupose that knowledge be decomposed into a collection
of subspecialists who interact in specified ways to

solve a diagnostic problem. We propose research on how
the specialists should be coordinated and a high-level
language that can be used to specify knowledge to the
computer in different domains.

Title: Research is Database Computers and Systems

Principal
Investigator: David K. Hsiao
Investigator: Douglas S. Kerr

Sponsor: Office of Naval Research (N00014-67-A-0232; N00014-75-C-
0573)

Duration'. 3/1/73-9/30/81

Amount: $856,495

Abstract: Present research focuses on the design and analysis
of a multi-backend database system for high percormance
and great capacity. This system utilizes multiple and
parallel mini-computer systems with identical software.

Of $217,790 funded for the 1980-81 period, the amount
of $103,817 has been applied to the equipment purchase
which is matched with an equal amount by an equipment
grant from DEC. Consequently, mini-computers valued at
$207,634 have been installed for the Database Computers
and Systems Research.

Title: Statistical Methods for Algorithm Design and Analysis

Principal
Investigator: Bruce W. Weide

Sponsor: National Science Foundation (MCS- 7912688)

Duration: 10/1/79-9/30/81

Amount: $33,842

Abstract: Application of statistical methods at design time
can lead to significant improvements in expected behavior
of algorithms for discrete problems. For some problems,
the use of sampling and density estimation, for example,
leads to fast expected-time algorithms. Other problems,
which cannot be solved exactly by any fast algorithms,
are susceptible to probabilistic approximation algorithms
which can also be designed and analyzed with the help
of statistical methods.

J

48'

Title: Theoretical Foundations of Software Technology

Principal

Investigators: B. Chandrasekaran
Lee J. White
H. William Buttelmann

Sponsor: U.S. Air Force Office of Scientific Research (F49620-79-C-0152)

Duration: 7/1/79-6/30/82

Amount: $381,212

Abstract: This result will develop basic theoretical models
and results in the areas of software and programming
language structure and design, with the purpose of pro-
ducing knowledge that will enable development Of more
reliable and transportable software. The current focus

is on three areas: semi-automatic program testing, auto-
matic program synthesis and computability.

Title:

Principal
Investigator:

Sponsor:

Duration:

Amount:

Abstract:

Toward More Complicated Computer Imagery

Franklin C. Crow

National Science Foundation (MCS-7920977)

1/15/80-6/30/81

$79,342

Initial efforts will focus on the design of data
structures to support efficient rendition of the same
object at many different levels of detail. Subsequent

work will focus on algorithms for the display of such
objects and designed fordistributed execution. Finally,

the algorithms will be implemented and image sequences
produced on a multicomputer facility.

5 ')

49

.APPENDIX A

CURRENT STATUS AND CAPSULE HISTORY OF
DEPARTMENTOF COMPUTER AND INFORMATION SCIENCE

SkPT 'SEPT SEPT SEPT SEPT SEPT SEPT SEPT

'74 '75 !76 '77 '78 '79 '80 '81

A. Staff

1. Full Time 20 21 22 20 21 27 24 28

2. Fart Time 12 12 12 13 12 14 12 14

B. Graduate 198 201 182 197 198 200 200 200

Students (est)

C. Undergraduate 475 450 470 440 440 550 680 750

Students (est)

D. Course Enroll-
ment (Autumn

19::5 2098 2290 2308 2568 2928 3100 3800
(est)

Quarter)

'74-
75

'75-
76

'76-

'77

'77-
78

'78-

79

'79-

"80

'80-
81

Students Taught 6876 7241 7615 7528 8447 9420 10,659

Baccalaure.:te 109 103 118 125 126 124 125

Degrees Awarded

M.S. Degrees 58 64 70 54 59 56 80

Awarded
,

Ph.D. Degrees
Awarded

7 13 5 8
.

7 10 6

Ph.D. Degrees 23 36 41 49 56 66 72

Awarded - Total
.

Applications for 355 325 333 335 479 509 525

Graduate Study

Number of Graduate 81 77 81 92 72 70 70

Students Supported

5;;

50

APPENDIX B

COMPUTER AND INFORMATION SCIENCE COURSE LISTING
BY NUMBER AND TITLE

100 Computers in Society

201 Elementary Digital Computer
Programming

211 Computer Programming for
Problem Solving

212 Computer Data Processing

221 Programming and Algorithms I

222 Programming and Algorithms II

294 Group Studies

313 Introduction to File Design

321 Introduction to File Processing

380 File Design and Analysis

411 Design of On-Line Systems

489 Professional Practice in
Industry

493 Individual Studies

505 Fundamental Concepts of Computer

and Information Science

511, Computer Systems and Program-
ming for Administrative Sciences

541 Survey of Numerical Methods

542 Introduction to Computing in
the Humanities

543 Intermediate Digital Computer
Programming

548 Computer Science for High
School Teachers

551 Elements of Database Systems

555 Survey of Programming Languages

557 Minicomputer Programming Systems

560 Elements of Computer Systems
Programing (Approved Spring
1981)

594 Group Studies

607 Mathematical Foundations of
Computer and Information Science I

610 Principles of Man-Machine
Interaction

640 Numerical Analysis

641 Computer Sytems Programming :
(Withdrawn Autumn 1980)

642 Numerical Linear Algebra

643 Linear Optimization Techniques
in Inf,..-mation Processing

660 Introduction to Operating Systems

675 Introduction to Computer Archi-
tecture

676 Minicomputer and Microcomputer
Systems

677 Computer Networks

680 Data Structures

693 Individual Studies (

694 Group Studies

694L Biomedical Information)Processing

6940 Introduction t..) Operating Systems
(Number became 660, Autumn 1980)

54

694U Elements of Computer Systems
Programming (Number became .

560 Spring 1981)

707 Mathematical Foundations of
Computer and Information
Science II

712 Man-Machine Interface

720 Introduction to Linguistic
Analysis

726 Theory of Finite Automata
(Becomes Introduction to
Automata and Language Theory,
Spring 1982)

727 Turing Machines and Computa-
bility (Becomes Introduction
to the Theory of Algorithms,
Winter 1982)

728 Topics in Theory of Computing

730 Basic Concepts in Artificial
Intelligence

735 Statistical Methods in
Pattern Recognition

741 Comparative Operating Systems

745 Numerical Solution of Ordi-
nary Differential Equations

746 Advanced Numerical Analysis

750 Modern-14ethods of Information
Storage and Retrieval

751 Fundamentals of Document-
Handling Information Systems

752 Techniques for Simulation of
Information System6

753 Theory of Indexing

755 Programming Languages

756 Compiler Design and Imple-
mentation

757 Software Engineering

760 Operating Systems

761 Introduction to Operating Systems:
Laboratory 0

765 Management Information. Systems

770 Database Systems (Effective
Winter 1982)

775 Computer Architecture

780 File Structures (Becomes Analysis
of Algorithms, Autumn 1981)

781 Aspects of Computer Graphics
Systems

788 Intermediate Studies in Computer
and Information Science

788.01 ,Theory of Information

788.02 Information Storage & Retrieval
(Becomes Information Systems and
Database Systems, Autumn 1981)

788.03 Theory of Automata

788.04 Artificial Intelligence

788.04A Topics in Artificial Intelligence

788.05 Pattern Recognition_

788.06 Computer Systems Programming

788.06A Cc -uter Center Organization
an Management

788.06C Selected Topics in the Design
& Implementation of Distribut-
ed Operating Systems

788.06D Data Models &.Database Systems

788:07 Programming Languages

788.07e Selected Topics Related to the
Design of Programming Environ-
ments

788.08 Computer Organization

788.09 Numerical Analysis

788.10 Man-Machine Interaction

788.10A Advanced Computer Graphics

5,

POW

52

788.11 Formal Languages

788.12 Management Information Systems

788.13 Biological' Information Proc-

essing (Becomes Biomedical
Information Systems, Autumn

1901)

788.14 Socio-Psychological Aspects of
Information Processing
(Becomes Computer Graphics,
Autumn 1981)

793 Individual Studies

794 Group Studies

797 Interdepartmental Seminar

805 Information Theory in Physical

Science

806 Cellular Automata and Models
of Complex Systems

812 Computer and Information
Science Research Methods

820 Computational Linguistics

835 Special Topics in Pattern

Recognition

845 Numerical Solution of Partial
Differential Equations

850 Theory of Informatibn
Retrieval I

.852 Design and Analysis of Infor-
mation Systemg Simulations

855 AdVnced Topics in Program-
ming Languages

875 Advanced Computer Architecture

880 Advanced Theory of Computa-

bility

885 Seminar on Research Topics in
Computer and Information
Science

888 Advanced Studies in Computer and
Information Science

888. 01 Theory of Information

888. 02 Information Storage & Retrie-
val (Becomes InforMation Sys-
teMs and Database Systems,
Autumn 1981)

888. 03 Theory of Automata

888.03C Information & Coding for
Efficiency, Reliability,
and Security

888.04 Artificial Intelligence

888.04A Computational Linguistics

888.05 Pattern Recognition

888.06 Computer Systems Programming

888.06B Database Machines and
Distributed Databases

888.07 Programming Languages

888.08 Computer Organization

888.09 Numerical Analysis

888.10 Man-Machine Interaction

888.11 Formal Languages

888.12 Management Information Systems

888.13 Biological Information Proc-
essing (Becomes Biomedical
Information Systems, Autumn

1981)

888.14 Socio-Psychological Aspects
of Information Processing
(Becomes Computer Graphics,
Autumn 1981)

889 Advanced Seminar in Computer and
Information Science

F99 Interdepartmental Seminar

999 Research

Ve.

53

APPENDIX C

COMPUTER AND INFORMATION SCIENCE FACULTY

Professors

Lee J. White, Ph.D., (University of Michigan); Chairperson of the Department
of Computer and Information Science; algorithm analysis and complexity,
data structures, software engineering, program testing; joint appoint-
ment with Electrical' Engineering.

Kenneth J. Breeding, Ph.D., (University of Illi9is);.computer organization
and switching theory; joint appointment with Electrical Engineering.

Balakrishnan Chandrasekaran, Ph.D., (University of, Pennsylvania.); artificial
intelligence, expert systems, knowledge-directed data bases, pattern
recognition, computer program testing, interactive graphics.

Cilarled A. Csuri, M.A., (The Ohio State University); advancement of computer
graphics technology in software and hardware (animation languages,
data generation-and real-time systems), use of computer technology in
telecommunications; joint appointment with Art Education.

Tse-yun Feng, Ph.D., (University of Michigan); computer architecture, asso-
ciative, parallel and concurrent processors/processing, processor /mem-
ory interconnection networks and communication processors.

Richard I. Hang, M.S., (The Ohio State University); computer graphics,
engineering applfcation of computers; joint appointment with Engineer-
ing Graphics.

David K. Hsiao, Ph.D., (University of Pennsylvania); systems programming,
computer architecture, database management systems, access control and
privacy Protection of data, and database computers.

Clyde H. Kearns, M.S., (The Ohio State University); Professor Emeritus,
Departments of Compute, and Information Science and Engineering
Graphics; computer graphics, engineering application of computers.

Robert D. LaRue, P.E., M.S., (University of Idaho); computer graphics, en-
gineering application of computers; joint appointment with Engineering
Graphics.

Ming-Tsan Liu, Ph.D., (University of Pennsylvania); computer architecture
and organization, computer communications and networking; parallel and
distributed processing; mini/micro computer systems, fault-tolerant
computing systems.

Robert B. McGhee, Ph.D., (University of Southern California); robotics,
switching theory, logical design; joint appointment with Electrical
Engineering.

57

54

Roy F. Reeves, Ph.D., (Iowa State University); Professor Emeritus, Depart-

ments of Computer and Information Science,and Mathematics; numerical

analysis, programming, and computer center management.

Jerome Rothstein, A.M., (Columbia University); information and entropy,

foundations of physics, methodology, biocybernetics, automata theory,

formal languages, cellular automata, parallel processing; joint

appointment with Biophysics.

Charles Seltzer, Ph.D., (Brown University); coding theory, numerical analy-

sis, automata theory; joint appointment with Mathematics.

Associate Professors

H. William Buttelmann, Ph.D., (University of North Carolina); microcompu-

ters, small office systems, "friendly" syitems, formal language

theory, computational lingdistics, language processing.

Ronald L. Ernst, Ph.D., (University of Wisconsin); man-computer interaction,

decision systems, and general theory of human performance; joint

-appointment faith Psychology.

Clinton-1 -Foulk, Ph.D., (University of Illinois); parallel processing,

program analysis.

Douglas S. Kerr, Ph.D., (Purdue University); database systems, database

machines, computer security and software engineering.

James C. Kinard, Ph.D., (Stanford University); accounting, management

information systems, managerial decision making; joint appointment

with Accounting.

Sandra A. Mamrak, Ph.D., (University of Illinois); distributed processing,

operating systems, performance evaluation.

William F. Ogden, Ph.D., (Stanford University); software engineering,
program verification, mathematical foundations of computing.

Anthony E. Petrarca, Ph.D., (University of New Hampshire); knowledge repre-

sentation for information storage and retrieval, automatic indexing

and classification, user interface, bio-medical information processing.

Stuart H. Zweben, Ph.D.. (Purdue University); software engineering, program-

ming methodology, analysis of algorithms, data structures.

Adjunct Associate Professors

James B. Randels, Ph.D., (The Ohio State University); Senior Programmer/

Analyst, Instruction and Research Computer Center; computer operating

systems and utilities, telecommunications applications, subroutine

libraries, programming languages.

55

Lawrence L. Rose, Ph. Do;(Pennsylvania State University); Manager,

Systems Simulation, Battelle Columbus Laboratories;
discrete event simulation, software development, database systems.

James E. Rush, Ph.D., (University of Missouri); President of James E. Rush
Associates, Inc., and President of Library Automation, Inc.; indexing
thedry, automated language processing, organization of information,
parallel processing, structured programming, program testing, program-
ming management, library automation and networking, documentation and

'tandards.

Assistant Professors

Venkataraman Ashok, Ph.D., (Pennsylvania State University); analysis of
algorithms and computational complexity; appointment Autumn 1981.

Bruce W. Ballard, Ph.D., (Duke University); programming languages, natural
languages, and program synthesis.

Ramamoorthi Bhaskar, Ph.D., (Carnegie-Mellon University); accounting, artifi-

cial intelligence, cognitive psychology, managerial decision-making;

joint appointment with Accounting.

Franklin C. Crow, Ph.D., (University of Utah); computer graphics, computer-
aided design, multiprocessor and special purpose computer architecture.

John S. Gourlay, Ph.D., (University of Michigan); semantics of programming
languages, analysis of parallelism, and the theory of testing;
appointment Autumn 1981.

Dennis W. Leinbaugh, Ph.D., (University of Iowa); operating systems, hard-
real-time, process synchronization, distributed operating systems,

systems programming, computer architecture.

Timothy J. Long, Ph.D., (Purdue University); complexity theory, theory of

computation, and algorithm analysis.

Sanjay Nitta', Ph,D., (The Ohio State University); artificial intelligence,
knowledge -based systems, and data base modeling.

Kamesh Ramakrishna, Ph.D., (Carnegie-Mellon University); user-computer
interaction, computational complexity, cognitive models of learning

and instruction in complex task domains.

Jayashree Ramanathan, Ph.D., (Rice University); programming languages,
computer systems, and software engineering.

Karstan Schwans, Ph.D., (Carnegie-Mellon University); distributed systems,
programming languages, databases, systems modeling; appointment

Autumn 1981.

56

RichArd R. Underwood, Ph.D., (Stanford University); numerical linear algebra,
solution of large sparse systems of equations, eigenvalue analysis,
linear least squares problems, numerical solution of partial differenL
till equations.

Bruce W. Weide, Ph.D., (Carnegie-Mellon University); analysis of algorithms,
computational complexity, data structures, combinatorics, computer
architecture, parallel and distributed computing, real-time programming.

Adjunct Assistant Professors

Bruce E.,Flinchbaugh, Ph.D., (The Ohio State University); computational
theory of vision, visual interpretation of motion and color, artificial
intelligence; appointment Autumn 1981.

Lynn R. Ziegler, Ph.D., (University of Michigan); approximation theory,
theoretical computer science, undergraduate curriculum; appointment
Autumn 1981.

Instructor

Mary Beth Lohse, M.S., (University of Michigan); file processing, software
engineering, and programming methodology; appointment Autumn 1981.

Visiting Faculty

Edna E. Cruz, M.E., (University of the Philippines); file processing, soft-
ware engineering, and programming methodology; appointment Autumn 1981.

Neelamegam Soundararajan, Ph.D., (Bombay University); theory of computation,
semantics of programming languages, semantics of parallel processing;
appointment Autumn 1981.

Administrative and Professional Staff

Ernest Staveley, B.S., (U.S. Naval Post-Graduate School); Administrative
Associate, and Assistant Director of CIS Research Center.

Celianna Taylor, B.S.L.S., (Graduate School of Library Science, Case-
Western Reserve University); Senior Research Associate and Associate
Professor of Library Administration; database design and development -
home systems, public systems, and university dystems; library systems
and management.

60

57

Faculty Appointments, leaves of absence, and resignations

Venkataraman Ashok was appointed Assistant Professor of Computer and

Information Science and comes from Pennsylvania State University where he

recently received his Ph.D. in computer science. His areas of interest

are analysis of algorithms and computational complexity.

Bruce W. Ballard resigned effective June 30, 1981. He will be an Assistant

Professor in the Department of Computer Science, Duke University.

Edna E. Cruz was appointed Visiting Instructor of Computer and Information

Science Autumn^1980. She received the Master of Engineering in Computer

Science from the University of Philippines, April 1980. Her interests are

file processing, software engineering, and programming methodology.

Ronald L. Ernst was granted an extension to his leave of absence. He

will continue as Visiting Associate Professor in the Department of Computer

Science, North Carolina State University for 1981-82.

BruceL_Iliallttilish was appointed Adjunct Assistant Professor. He received

his Ph.D. degree from the Ohio State University in 1980. His areas of

interest are computational theory of vision, visual interpretation of

motion and color, and artificial intelligence, Appointment Autumn 1981,

John S. Gourlay was appointed Assistant Professor of Computer and Informa-

tion Science and comes from the University of Michigan where he recently

received the Ph.D. in computer and communication sciences. His research

interests are semantics of programming languages, parallelism, and the

theory of testing. Appointment Autumn 1981.

Clyde H. Kearns retired June 1981 and is now Professor Emeritus, Departments

of Computer and Information Science, and Engineering Graphics.

Mary Beth Lohse was appointed Instructor beginning Autumn Quarter 1981.

She received the M.S. degree from the University of Michigan. Her areas

interest are file processing, software engineering, and programming

methodology.

Roy F. Reeves retired at the end of Summer quarter 1981. He was appointed

Professor Emeritus, Departments of Computer and Information Science, and

Mathematics.

Karstan Schwans was appointed Assistant Professor of Computer and Informa-

tion Science and comes from Carnegie-Mellon University where he recently

received his Ph.D. in computer science. His interests include semantics

of programming languages, analysis of parallelism, and the theory of testing.

Appointment, Autumn 1981.

61

58

Neelamegam Soundararajan returns to the department Autumn 1981 as Visiting
Assistant Professor of Computer and Information Science. He comes from the

Institute for Informatics, University of Oslo where he has completed a

fellowship appointment. His Ph.D. was awarded from Bombay University,

India. Research interests are theory of computation, semantics of pro-
gramming languages, semantics of parallel processing.

Richard R. Underwood resigned at the end of Winter quarter 1981. He accepted

a position with McDonnell Douglas Aircraft Company in St. Louis, Missouri.

62

1

59

APPENDIX D

COMPUTER AND INFORMATION SCIENCE SEMINAR SERIES

July 17, 1980 "Processing Inputs - Issues in Accessibility", Dr. Michael

A. McAnulty, NTS Research Corporation.

July 28, 1980 "Interconnection Networks and Their Applications", Dr. Chuan-

lin Wu, Assistant Professor, Computer Science, Wright State Univer-

sity.

October 2, 1980 "Computer Animation", Charles A. Csuri, Professor, Art

Education and Computer and Information Science, The Ohio State

University.

October 9, 1980 "Byte Wars -- The Computer Strikes Back ", Franklin C. Crow,

Assistant Professor, Department of Computer & Information Science,

2 The Ohio State University.

October 16, 1980 "Real-Time Data-Flow Graphs: Programming and Implementa-

tion", Bruce W. Weide, Assistant Professor, Department of Computer
& Information Science, The Ohio State University.

October 23, 1980 "Database Design and Conversion for Heterogeneous Data-
bases", Dr. Randy H. Katz, Computer Corporation of America.

October 30, 1980 "INSYPS System: INtegrated SYstem for Process Studies",

R. S. Ahluwalia, Assistant Professor, Industrial & System Engineer-

ing, The Ohio State University.

November 6, 1980 "Computer Go", David J. H. Brown, Visiting Assistant
Professor, Department of Computer & Information Science, The Ohio

State University.

November 13, 1980 "The Relative Nlighborhood Graph, with an Application

to Minimum Spanning Trees", Kenneth J. Supowit, Department of

Computer Science, University of Illinois at Urbana- Champaign.

November 20, 1980 "An Examination of CODASYL Systems -- Status and Pros-

pects", Eric K. Clemons, Assistant Professor, Department of Decision

Sciences: The Wharton School, University of Pennsylvania.

November 25, 1980 "A General Theory of Automatic Program Synthesis ", Carl

H. Smith, Assistant Professor, Department of Computer Sciences,

Purdue University.

December 1, 1980 "Fault-Tolerant Broadcast Problems", Arthur Liestman,

Ph.D. Candidate, Computer Science Dept., University of Illinois.

January 8, 1981 "Analysis of a Class of Hybrid Page Replacement. Policies",

Ozalp Babaoglu, Ph.D. Candidate, Computer Science Department,
Unimaxsity of California, Berkeley.

63

,60

January 15, 1981 "Programming Languages for Bit-Serial Array Machines",

3 Dennis M. Mancl, Ph. D. Candidate, Department of Computer Science,
Univor6ity of Illinois.

January 22, 1981 "Entity-Relationship Approach to Systems Analysis and Data-
base Design", Dr. Peter P. Chen, Acting Associate Professor, UCLA
Graduate School of Management.

January 29, 1981 "Specification and Synthesis of Synchronizers", Krithivasan
Ramamritham, Ph.D. Candidate, Department of Computer Science, Univer-
sity of Utah.

January 29, 1981 "Interface Control for Centralized and Distributed Systems",
Walter F. Tichy, Assistant Professor, Department of Computer Sciences,
Purdue University.

February 5, 1981 "A Special Purpose Function Architecture for Some Relational
Algebra Operations", Aral Ege, Ph. D. Candidate, Department of Indus-
trial Engineering & Operations Research, Syracuse University.

February 12, 1981 "Artificial Intelligence in Medicine -- Accomplishments,
Problems, and Prospects", Professor Saul Amarel, Chairman, Department
of Computer Science, Rutgers University.

ri)

February 12, 1981. "Representing and Manipulating Inexact Information", Billy
P. Buckles, Ph.D. Candidate, University of Alabama,

February 17, 1981 Methodology for High-Level Information System Design,
Alexander T. Borgida, Assistant Professor, Department of Computer
Science, University of Toronto.

February 18, 1981 "The Beta Spline: A Local Representation Based on Shape
Parameters and Fundamental Geometric Measures". Brian A. Barsky, Ph.D.
Candidates Department of Computer Science, University of Utan.

February 19, 1981 "Software for Multiple Processor Systems", Karsten Schwans,
Ph.D. Candidate, Department of Computer Science, Carnegie-Mellon Univ-
ersity.

February 26, 1981 "A. Numerical Algorithm - An Extension of the ComMon Conju-
gate Gradient Method for the Solution of Sets of Linear Equations",
Richard R. Underwood, AssistantoProfessor, Department of Computer
and Information Science, The Ohio State University.

March 5, 1981 "File Allocation on Multiple Disk Systems", David H-C Du, Ph.
D. Candidate, Computer Science Department, University of Washington.

C

March 10, 1981 "Algorithms for SIMD (Single-Instruction-Stream-Multiple-
Data-Stream) Machines", Eliezer Dekel, Ph.D. Candidate, Department
of Computer Science,University of Minnesota.

March 12, 1981 "An Incremental Family of Office Workstations", Robert Hudyma,
Computer Systems Research Group, University of Toront,.

64

61

April 2, 1981 "Program Testing Baseiton Specifications", John S. Gourlay,

Ph.D. Candidate, Computer an Communication Sciences, University of

Michigan.

April 2, 1981 "Temporal Event Recognition: An Application to Left Ventricu-
lar Performance", John K. Tsotsos, Assistant Professor, Department'
of Computer Science, University of Toronto, and Canadian Heart Foun-

dation Research Fellow.

April 9, 1981 "Computer Program Complexity Measures and Software Testing
Methods", Sukhsmay Kundu, Bell Laboratories,, Murray Hill.

April 16, 1981 "Mechanisms for Process Management in Operating System Lan-
guages", Martin S. McKendry, Ph.D. Candidate, University.of Illinois.

April 23, 1981 "Error Recovery in Concurrent Processes", Krishna Kant,
University of Texas at Austin .^

April 23, 1981 "Knowledge-Based Decision Support Systems in Medicine",

James Reggia, MD, Assistant Professor, Department of Neurology,
Doctoral Candidate, Department of Computer Science, University of

Maryland.

April 28, 1981 "Design of a Multi-Language Editor", Mark R. Horton, Ph.D.

Candidate, Computer Science Division, University of California,
Berkeley.

April 29, 1981 "The Use of Requirements in Rigorous System Design", Deborah
Baker, Ph.D. Candidate, Computer Science Department, University of
Southern California.

May 14, 1981 "Performance Analysis of Broadcast Mode Communications with
Acknowledgements Considerations", M. Y. "Medy" Elsanadidi, Ph.D.

Candidate, Computer Science Department, UCLA.

May 21, 1981 "Possible Futures: A New Model of Concurrent Programs", William
C. Rounds, Associate Professor, Computer and Communication Science,
University of Michigan.

May 28, 1981 " 3puting with Equation Schemata", Paul Chew, Ph.D. Candidate,

Department of Computer Sciences, Purdue University.

rM.

62

APPENDIX E

PUBLICATIONS OF THE DEPARTMENT OF
COMPUTER AND INFORMATION SCIENCE STAFF

AMER, P. D.; MAMRAK, S. A. Statistical Procedures for Interactive Computer
Computer Service Selection. In: Proceedings of the Fifth International
Conference on Computer Communication, October 27-30, 1980, Atlanta,
Georgia, pp. 695-702.

r

AVER, P. D.; MAMRAK, S. A. "Experimental Design for Comparing Interective
Computer Services. Computer Performance, Vol. 1, No. 3, December
1980, pp. 125-132.

CHANDRASEKARAN, B. Natural and Social System Metaphors for Distributed
Problem Solving: Introduction to the Issue. In: IEEE Trans. Syst.,
Man & Cyber., January 1981.

CROW, F. C. "Three-Dimensional Computer Graphics." Byte Magazine, Part I,
March 1981, Part II, April 1981. (Solicited)

FENG, T. Y.; WU, C. A Software Technique for Enhancing Performance of a
Distributed Computer System. In: Proceedings COMPSAC '80, Chicago,
October 29-31, 1980, pp. 274-280.

GOMEZ, F.; CHANDRASEKARAN, B. Knowledge Organizationaand Distribution for
Medical Diagnosis. IEEE Trans. on Syst., Man & Cyber., 'January 1981.

HSIAO, D. K. Database Computers. In: Advances in Computers, Academic Press,
1980, Vol. 19.

HSIAO, D. K. Systems Programming'- Concepts of Operating and Data Base
Systems, Nippon Computer Kyokai, Tokyo, Japan, 1980, (in Japanese:
a translation version of the same book is published by Addison=Wesley,
U.S.A.).

HSIAO, D. K.; MENON J. The Impact of Auxiliary Information and Update
Operations on Database Computer Architecture. In: Proceedings of
International Congress on Applied Systems Research and Cybernetics,
Pergamon Press, December 1980.

HSIAO, D. K. TODS - The First Three Years (1976-1978). In: ACM Transactions
on Database Systems, 5, 4, December 1980, pp. 385-403.

LIU, M. T.; WU, S. B. A Partition Algorithm for Parallel and Distributed
. Proceising. In: Proceedings of the 1980 International Conference on
Parallel Processing, August 1980, pp. 254-255. t

LIU, M. T.; WU, S. B. Assignment of Tasks and Resources for Distributed
Processing. In: Proceedings of COMPCON Fall '80: Distributed
Processing, September 1980, pp. 655-662.

LIU, M. T.; TSAY, D. P. Design of a Reconfigurable Front-end Processor for
Computer Networks. In: Proceedings of the 10th International Sympo-
sium on Fault - Tolerant Computirig, October 1-3, 1980, Kyoto,,Japan,
pp. 369-371.

63

LIU, M. T.; MAMRAK, S. A.; RAMANATHAN, J. The Distributed Double-Loop

Computer Network (DDLCN). In: Proceedings of the 1980 ACM Annual

Conference, October 27-29, 1980, Nashville, Tennessee, pp. 164-178.

LIU, M. T.; LI, C. M. Communicating Distributed Processes: A Language Con-

cept for Distributed Programming in Distributed Database Systems. In:

Proceedings of the Distributed Data Acquisition, Computing, and Control

SymposiuM, December 3-5, 1980, Miami Beach, Florida, pp. 47-60.
*IN

LIU, M. T.; TSAY, D. P. Design of a Robust Network Front-end for the Dis-

tributed Double-Loop Computer Network (DDLCN). In: Proceedings of the

Distributed Data Acquiition, Computing, and Control Symposium,

December 3-5, 1980, Miami Beach, Florida, pp. 141-155.

LIU, M. T.; CHOU, C. P. A concurrency -Control Mechanism for a Partially

Duplicated Distributed Database System. In: Proceedings of the 1980

Computer Networking Symposium, December 10, 1980, Gaithersburg,

Maryland, pp. 26-34.

LIU, M. T.; LI, C. M. Minimum-Delay Process Communication: A:"Language Con-

,c,spt for Highly-Parallel Distributed Programming. In: Proceedings of

the IEEE/CS COMPCON Spring '81, February 23-26, 1981, San Francisco,

6. 225-228.

LIU,. M. T.; WU, S. B. A Cluster Structure as an Interconnection Network

for Large Multimicrocomputer Systems. In: IEEE Transactions on

Computers, April 1981, Vol. C-30, No. 4, pp. 254-264.

LIU, M. T.; LI, C. M. DISLANG: A Distributed Programming Language/System.

In: Proceedings of the Second International Conference on Distributed

Processing, April 8-10, 1981, Paris, France, pp. 162-172.

LIU, M. T.; TSAY, D. P.; CHOU, C. P. ; LI, C. M. "Design of the Distributed

Double-Loop Computer Network (DDLCN)." Journal of Digital Systems,

Voltme.5, Nos. 1/2, Spring/Summer 1981, pp. 3-37.

LIU, M. T.; UMBAUGH, L. D. AdaptAve Multi-Destination Protocols for Packet

Radio Networks. In: Proceedings of the 1981 International Conference

on Communications, June 1981, pp. 73.2.1-6.

RAMANATHAN, J.; ARTHUR, J. "Design of Analyzers for Selective Program

Analysis." CCMSAC, November 1980.

RAMANATHAN, J.; ARTHUR, J. Selective Analyzers for PrOgrammiag Environments.

In: IEEE Transactions on Software Engineering, January 1981.

RAMANATHAN, J.; SHUBRA, C. J. The Modeling of Problem Domains for Driving

Program Development Systems. In: Proceedings of the Eight' Annual

Symposium on the Principles of Programming Languages, January 1981.

ck.

64

-71
RAMANATHAN, J.; KUO, J. "ConceRt Based Toollor Standardized Program Develop-

ment." COMPRAC 1981.

ROTHSTEIN, J. Review of tue Book, Electronic Imaging, edited by T. P. McLean
and P. Schagen, Academic Press, London, 1979, apnearing in Applied
Optics, Vol. 19, No. 22, November 13; 1980, pp. 3774, 3781.

WEIDE, B. W. "Random Graphs and Graph Optimization Problems." SIAM Journal
on Computing, August 1980, pp. 552-557.

WU, C.; FENG T. Y. On A Class of Multistage Interconnection Networks.
In: IEEE Transactions on Computers, Vol. C-29, No. 8; August 1980,
pp. 694-702.

WU, C. L.; FENG, T. Y. On a Distributed-Processor Communication Architec-
ture. In: Proceedings of the COMPCON '80 Fall Conference, September
24-26, 1980, Washington, D. C., pp. 599-605.

WU, C.; FENG T. Y. The Reverse-Exchange Network. In: IEEE Transactions on
CompUters, Vol. C-29, No. 9, September 1980, pp. 801-811.

WU, C.; FENG, T. Y. Parallel Processing with a Modified Shuffle-Exchange
Network. In: Proceedings of the ICCC '80 Conference, October 1-3,
1980,'New York, pp. 390-392, 428.

ZEIL, S. J.; WHITE, L. J. Sufficient Test Sets for Path Analysis Testing
Strategies. In: Proceedings of the 5th International Conference on
Software Engineering, March 9-12, 1981, San Diego, California.

ZWEBEN, S. H.; BAKER, A. L. A Comparison of Measures on Control Flow Com-
plexity. In: IEEE Transactions of Software Engineering, Vol. SE-6,
No. 6, November 1980, pp. 506-512.

Con

1

/
65

APPENDIX F

RECENT TECHNICAL REPORTS

1979

BANERJEE, J.; HSIAO, D. K. Parallel bitonic record sort- an effeCtive algo-

rithm for the realization gioa post processor. March 1979. 22 pp.

(OSU-CISRC-TR-79-1) (AD-A058 661/8CA).

BANERJEE, J.; ESIAO, D. K.; MENON, J. The clustering and security mechanisms

of a database computer (DBC). April 1979. 112 pp. (OSU-CISRC-TR-79-2)

(AD-A068 815 /OGA)

DELUTIS, T. G.; CHANDLER,, J. S. The Information Processing System Simulator

(IPSS). "Language syntax semantics for the IPSS execution facility -

Version 1" Volume I. 309 pp. (OSU-CISRC-TR-79-3).

DELUTIS, T. G.;. CHANDLER, J. S.; BROWNSMITH, J.,D.; WONG, P.; JOHNSTON, K.

The Information Processing System Simulator (IPSS) "Language syntax and

semantics'for the IPSS Modeling Facility" Volume II. 1979. 325 pp.

(USU-CISRC-TR-79-4).

ROSE,, L. L.; O'CONNOR, T. IDAS: Interactive design and analysis for simula-

tion. 1979. 82 pp. (OSU-CISRC-TR-79-5).

HSIAO, D. K.; MENON, J. The post processing functions of a database computer.

July 1979, 34 pp. (OSU-CISRC-TR-79-6).

CHANDLER, J. S. A multiple goal program model for the analysis of SSA dis-

trict office service processing. August 1979. 33 pp. (OSU-CISRC-TR-79-7).

DELUTIS, T. G.; BROWNSMITH, J. D.; CHANDLER, J. S.; WONG, P.M.K. Methodolo-

gies for the performance evaluation of information processing systems.

September 1979. 20.1 pp. (OSU-CISRC-TR-79-8).

1980

BLATTNER, M.; RAMANATHAN, J. TRIAD: A New Approach to Programming Methodol-

ogy. January 1930, 48 pp. (OSU-CISRC-TR-80-1).

MAMRAK, S. A.; RAMANATHAN, J. A Programming/Operating System for a Distrib-

uted Computer System. February 1980. 28 pp. (OSU-CISRC-TR-80-2).

HSIAO, D. K.; MENON, J. Design and Analysis of Update Mechanism= of a Data-

base Computer (DBC). June 1980. 127 pp. (OSU=CISRC-TR-80-3).

YOVITS, M. C.; FOULK, C. R.; ROSE, L. L. Information Flow(and Analysis:

Theory, Simulation, and Experiments. December 1979. 83 pp. (OSU-CISRC-

TR-80-4) .(PB80-180995).

FLINCHBAUGH, B. E.; CHANDRASEKAYAN, B. A Theory of Spatio-Temporal Aggrega-

tion for Vision. April 1980. 43 pp. (OSU-CISRC-TR-80-5).

ZEIL, S. J.; WHITE, L. J.
Strategies. July 1980,

HSIAO, D. K.; MENON, M. J.
Realization. July 1980,

66

Sufficient Test Sets for Path Analysis Testing

29 pp. (OSU-CISRC-TR-80-6).

Parallel Record-Sorting Methods for Hardware

42 pp. (OSU-CISRC-TR-80-7) (AD/A 090 192).

HSIAO, D. K.; MENON, M. J. Design and Analysis of Relational Join Operations

of a Database Computer (DBC). September 19b0, 92 pp. (OSU-CISRC-TR-80-8).

1981

HSIAO, D. K.; OZSU, T. M. A Survey of Concurrency Control Mechanisms for

Centralized and Distributed Databases. February 1981, 82 pp. (OSU-CISRC-

TR-81-1),

MAMRAK, S. A.; BERK, T. S. The DESPERANTO Research Project. February 1981,

47 pp. (OSU-CISRC-TR-81-2).

LEINBAUGH, D. S. High Level Specification and Implementation of Resource

Sharing. February 1981. 25 pp. (OSU-CISRC-TR-81-3).

BALLARD, B. W. A Methodology for Evaluating Near-Prototype Natural Language

Processors. May 1981, 43 pp. (OSU-CISRC-TR-81-4).

HALEY, A.; ZWEBEN, S. An Approach to Reliable Integration Testing. May 1981,

41 pp. (OSU-CISRC-TR-81-5).

AGUILAR, L. Economic Btoadcast Acknowledgement for Store-and-Forward Packet

Switching. June 1981, 43 pp. (OSU-CISRC-TR-81-6).

HSIAO, D. K.; MENON, M. J. Design and Analysis of a Multi-Backend Database

System for Performance Improvement, Functionality Expansion and Capacity

Growth (Part I). July 1981, 186 pp. (OSU-CISRC-TR-81-7).

HSIAO, D. K.; MENON, M. J. Design and Analysis of a Multi-Backend Database

System for Performance Improvement, Functionality Expansion and Capacity

Growth (Part II). August 1981, 117 pp. (OSU-CISRC-TR-81-8).

67

APPENDIX G

ACTIVITIES OF THE DEPARTMENT
OF COMPUTER AND INFORMATION SCIENCE STAFF

M. E. Brown presented "Preliminary Design of a Highly Parallel Architecture

for Real-Time Applications" at the 18th Annual Allerton Conference on

Communication, Control, and Computing, Monticello, Illinois, October

8, 1980. Co-author was B. W. Weide.

B. Chandrasekaran presented an invited paper entitled "From Percept to Concept

and Back Again" at the American Association for Advancement of Science's

Symposium on 'Mechanical Intelligence and Perception: Premises & Pros-

pects?", Toronto, Ontario, Canada, January 4, 1981. Co-author was B. E.

Flinchbaugh.

B. Chandrasekaran presented an invited talk on "Knowledge Organization and

Distribution for Diagnostic Tasks" at the Artificial Intelligence
Seminar Series of the Department of Computer Science, University of

Toronto, Toronto, Ontario, Canada, January 5, 1981.

T. Feng organized the 1980 International Conference on Parallel Processing,

August 26-29, 1980, Harbor Springs, Michigan. The Conference was

jointly sponsored by the IEEE Computer Society and The Department of

Computer and Information Science, The Ohio State University.

T. Feng led the IEEE Study Group on Computers on a visit toThe People's

Republic of China at the invitation of the Chinese Institute of Elec-

tronics, September 17 - October 4, 1980. He is presently the President

of the IEEE Computer Society.

T. Feng presented "A Software Technique for Enhancing Performance of a Dis-

tributed Computer System" at COMPSAC '80, Chicago, October 29-31, 1980.

The paper was also published in the conference proceedings, pp. 274-

280. Co-author was C.L. Wu.

T. Feng cut the ribbon marking the Grand Opening of the IEEE Computer

Society's new West Coast Office in Los Alamitos, California, on

February 26, 1981. The building was purchased and remodeled while

Dr. Feng was president of the Society. At the ceremony, Dr. Feng was

presented with a Special Award for his "distinguished service as

President of IEEE Computer Society during the years 1979-1980".

B. E. Flinchbaugh presented an invited talk on "A Computational Theory of

Spatio-Temporal Aggregation for Vision" to the Computer Science
Department, University of Toronto, Toronto, Ontario, Canada, January

26, 1981.

D. J. Hogan presented "External Sorting Revisited: Application of Distribu-

tive Methods" at the 38th Annual Allerton Conference on Communication,

Control, and Computing, Monticello, Illinois, October 8, 1980.

Co-author was B. W. Weide.

71

)

68

D. K. Hsiao served as an External Examiner for the National Bureau of Stan-
dards on Data Model Processor Research review, Sept. 11-12, 1980.

D. K. Hsiao was elected by the members of the Association for Computing Mach-

inery (ACM) as the Member-at-Large for the ACM Council, effective

October 1980 - September 1984.

D. K. Hsia, gave the opening speech with Dr. William Armstrong (of the

University of Montreal) at the 1980 International Conference or eery
Large Databases, Montreal, Canada, October 1, 1980.

D. K. Hsiao gave presentations on Database Computers to the following:

Bell Laboratories, Holmdel, NJ, September 15-16, 1980.

INFOTECH Seminar on Database, London, England, October 15, 1980.

National Security Agency, Baltimore, MD, October 22, 1980.

D. K. Hsiao gave a presentation on Data Base Education at COMPCON, Washing-

ton, DC, September 26, 1980.

D. K. Hsiao, as a speaker for the IEEE Computer Society's Distinguished
Speakers Series, uresented talks on "Database Computers" to

IEEE Computer Society's student chapters at the University of South
Florida (Tampa) on November 25, 1980.

Texas A&M University (..:ollege Station) on December 3, 1980.

IEEE Computer Society's local chapters in College Station, Texas on

December 3, and in Houston, Texas on December 4, 1980.

D. K. Hsiao gave a three-day seminar on "Computer Security" in Quito,

Ecuador, November 27-29, 1980 and a one-day seminar on the same topic

in Bogota, Colombia on December 1, 1980.

D. K. Hsiao presented the OSU database computer work at the International
Congress on Applied Systems Research and Cybernetics in Acapulco,

aXiCO, on December 15, 1980. Co-author was J. Menon.

D. K. Hsiao presented an invited talk on "Database Computers" to the IBM

Scientific Center's Colloquium in Mexico City, December 11, 1980.

D. K. Hsiao served as a reviewer on a Review Panel for the National Science
Foundation's Computer Equipr Funds, Washington, D. C., January 12

13, 1981.

M. T. Liu presented "Design of a Reconfigurable Front-end Processor for

Computer Networks" at the 10th International Symposium on Fault-

Tolerant Computing, October 1-3, 1980, Kyoto, Japan. The paper

appeared in the Conference Proceedings, pp. 369-71. Co-author was D. P.

Tsay.

72

69

M. T. Liu presented "The Distributed Double-Loop Computer Network (DDLCN)"

at the 1980 ACM Annual Conference, October 27-29, 1980, Nashville,

Tennessee. The paper appeared in the Conference Proceedings, pp.

164-178. Co-authors were S. A. Mamrak and J. Ramanathan.

M. Liu presented "Communicating Distributed Processes: A Language Concept

for Distributed Programming in Distributed Database Systems" and

"Design of a Robust Network Front-End for the Distributed Double-

Loop Computer Network (DDLCN)" at the Distributed Data Acquisition,

Computing, and Control Symposium, Miami Beach, Florida, December 3-5,

1980. Co-authors were C. M. Li and D. P. Tsay, respectively. The

papers appeared in the Conference Proceedings, pp. 47-60 and pp. 141-

155, respectively.

M. T. Liu presented "A Concurrency Control Mechanism for a Partially Dupli-

cated Distributed Database System" at the 1980 Computer Networking

Symposium, Gaithersburg, Maryland, December 10, 1980. Co-author was

C. P. Chou. The paper appeared in the Conference Proceedings, pp. 26-

34.

M. T. Liu presented "Minimum-Delay Process Communication: A Language Concept

for Highly-Parallel Distributed Programming" at IEEE/CS COMPCON Spring

'81, February 23-26, 1981, San Francisco. The paper was published in

the Conference Proceedings, pp. 225-228. Co-author was C. M. Li.

M. T. Liu presented "On Local Networking and Distributed Processing" at

Wright State University, Dayton, Ohio, April 2, 1981.

M. T. Liu presented "On Distributed Processing and Local' Networking" at

North Carolina State University, Raleigh, NC, May 7, 1981.

M. T. Liu and J, Rothstein have been invited to be Distinguished Visitors of

the IEEE Computer Society for 1981-82; they have been appointed Guest

Editors of a special issue of the IEEE Transations on Computers for

parallel and distributed processing, scheduled for publication in

December 1982; and they are serving as program co-chairmen for the

1981 International Conference on Parallel Processing, Bellaire,

Michigan, August 25-28, 1981.

J. Rothstein presented "The Physics of Selective Systems: Computers and

Biology" in a Biophysics Seminar, The Ohio State University, May 11,

1981.

L. J. White participated in a panel discussion entitled "Computer Science:

Problems for Mathematics Departments at Small Colleges and Universi-

ties" at a meeting of the Ohio Section or the Mathematical Association

of America held at John Carroll University, Cleveland, Ohio, on

October 1, 1980.

70

L. J. White served on a review team consisting of six academic and industrial
researchers to evaluate the Ph.D. programs in computer science in the
Texas system of Colleges and Universities, February 2-5, 1981. Propo-
sals for new Ph.D. programs in computer science were evaluated at the
University of Houston and a joint program at North Texas State Univer-
sity, East Texas State University, and Texas Woman's University.
Existing Ph.D. programs at Texas A & M, University of Texas at. Dallas,
University of Texas at Arlington, University of Texas Health Science
Center at Dallas, and University of Texas at Austin were reviewed and
evaluated.

L. J. White presented an invited talk titled "An Oveview of Research Activi-
ties in Software Engineering at Ohio State Unil7ersity" to the TRW
Corporation, Redondo Beach, CA, March 20, 1981.

C. L. Wu presented "On a Distributed-Processor Communication Architecture" at
COMPCON '80 Fall, Washington, D.'C., Sept. 24-26, 1980 . The paper was
also published in the conference proceedings, pp. 599-605. Co-author
was T. Y. Feng .

C. L. Wu presented "Parallel Processing with a Modified Shuffle-Exchange Net-
work" at ICCC '80, New York, October 1-3, 1980 . The paper was also pub-
lished in the conference proceedings, pp. 390-392 and p. 428. Co-author

was T. Y. Feng.

S. J. Zeil and L. J. White presented a paper entitled "Sufficient Test Sets
for Path Analysis Testing Strategies" at the 5th International Confer-
ence on Software Engineering, San Diego, CA, March 9-12, 1981.

S. H. Zweben presented "An Approach to Computer Program Testing" to the Baylor
University ACM Chapter, Waco, Texas, December 9, 1980 and to the Dallas
Chapter of the ACM, Dallas, Texas, December 10, 1981.

S. H. Zweben presented "A Tutorial on Software Science" to the Association
for Computing Machinery's (ACM) Niagara Frontier Chapter, Buffalo, NY,
March 17, 1981, and to ACM's Rochester Chapter, Rochester, NY, March
18, 1981.

S. H. Zweben presented "An Approach to Computer Program Testing" to the ACM's
Alberta Chapter, Calgary and Edmonton, Alberta, March 23, 1981, and to
ACM's Madison Chapter, Madison, WI, March 25, 1981 .

7

4

I

71

APPENDIX H

DOCTORATES AWARDED.

1971-72

CAMERON, JAMES S. Automatic Document Pseudoclassification and Retrival by
Word Frequency Techniques

EKONG, VICTOR J. Rate of Convergence of Hermite Interpolation Based on the
Roots of Certain Jacobi Polynomials

GORDON, ROBERT The Organization and Control of a Slave Memory Hierarchy

LANDRY, B. CLOVIS A Theory of Indexing: Indexing Theory as a Model for
Information Storage and Retrieval

1972-73

DEFANTI, THOMAS A. The Graphics Symbiosis System - an Interactive Mini-

Computer Animation Graphics Language Designed for Habitability and
Extensibility

GELPERIN, DAVID H. Clause Deletion in Resolution Theorem Proving

HARRIS, DAVID R., GOLDA: A Graphical On-Line System for Data Analysis

LAY, W. MICHAEL The Double-KWIC Coordinate Indexing Technique: Theory,
Design, and Implementation

MATHIS, BETTY ANN Techniques for the Evaluation and Improvement of Com-
puter-Produced Abstracts'

WEIMAN,CARL F. R. Pattern Recognition by Retina-Like Devices

WHITTEMORE, BRUCE J. A Generalized Decision Model for the Analysis of In-
formation

YOUNG, CAROL E. Development of Language Analysis Procedures with Applica-

tion to Automatic Indexing

1973-74

CHAN, PAUL SDI-YUEN An Investigation of Symmetric Radix
Arithmetic

GILLENSON, MARK L. The Interactive Generation of Facial
Using a Heuristic Strategy

HEPLER, STEPHEN PHILIP Use of Probabilistic Automata as
Performance

for Computer

Images on a CRT

Models of Human

72

WANG, PAUL TIING RENN Bandwidth Minimization, Reducibility Decomposition, and
Triangulation of Sparse Matrices

1974-75

BELIG, JAMES L. Human Extrapolation of Strings Generated by Ordered Cyclic
Finite State Grammars

DOHERTY, MICHAEL E. A Heuristic for Minimum Set Covers Using Plausability
Ordered Searches

FOURNIER, SERGE The Architecture of a Grammar-Programmable High-Level
Language Machine

LONGE, OLUWUMI An Index of Smoothness for Computer Program Flowgraphs

MCCAULEY, EDWIN JOHN A Model for Data Secure Systems

PETRY, FREDERICK E. Program Inference from Example Computations Represent-
ed by Memory Snapshot Traces

SU, HUI-YANG Pagination of Programs for Virtual Memory Systems

1975-76

BAUM, RICHARD I. The Architectural Design of a Secure Data Base Management
System

DASARATHY, BALAKRISHNAN Some Maximum, Location and Pattern Separation
Problems: Theory and Algorithms

HARTSON, H. REX Languages for Specifying Protection Requirements in Data
Base Systems - A Semantic Model

JUELICH, OTTO C. Compilation of Sequential Programs for Parallel
Execution

KALMEY, DONALD L. Comparative Studies Towards the Perfcrmance Evaluation
of Software for Solving Systems for Nonlinear EquatiJns

KAR, GAUTAM A Distance Measure for Automatic Sequential Document Classi-
fication System

MOSHELL, JACK MICHAEL Parallel Recognitf.on cf Formal Languages by Cellular
Automata

MUFTIC, SEAD Design and Operations of a Secure Computer System

PYSTER, ARTHUR B. Formal Translation of Phrase-Structured Languages

REAMES, CECIL C. System Design of the Distributed Loop Computer Network

76

a v II

73

RUSSO, PHILLIP M. Cellular Networks and Algorithms for Parallel Process-

ing of Non-Numeric Data Encountered in Information Storage and Retrieval

Applications

SANTHANAM, VISWANATHAN Prefix Encoding with Arbitrary Cost Code Symbols

SRIHARI, SARGUR N. Comparative Evaluation of Stored-Pattern Classifiers

for Radar Aircraft Identification

1976-77

CHENG, TU-TING Design Consideration for Distributed Data Bases in Compu-

ter Networks

GUDES, EHUD in Application of Cryptography to Data Base Security

ISAACS, DOV Computer Operating System Facilities for the Automatic Con-

trol and Activity Scheduling of Computer-Based Management Systems

KRISHNASWAMY, RAMACHANDRAN Methodology and Generation of Language Trans-

lators

LEGGETI, ERNEST W., JR. Tools and Techniques for Classifying NP-Hard

Problems

1977-78

BABIC, GOJKO Performance Analysis of the Distributed Loop Computer Network

CHANDLER, JOHN S. A Multi-Stage Multi-Criteria Approach to Information

System Design

COHEN, DAVID Design of Event Driven Protection Mechanisms

COHEN, EDWARD I. A Finite Domain-Testing Strategy for Computer Program

Testing

?AMNON, KRISHNAMURTHI The Design and Performance of a Database Computer

LAKSHMANAN, K. B. Decision Making with Finite Memory Devices

MARIK, DZLORES A. Grammatical Inference of Regular and Context- Free

Language

PARENT, RICHARD E. Computer, Graphics Sculptors' Studio - An Approach to

Three-Dimensional Data Generation

1978-79 00,

AMER, PAUL D. Experimental Design for Computer Comparison and Selection

BANERJEE, JAYANTA Performance Analysis and Design Methodology for Imple-

menting Database Systems on New Database Machines

'7

74

'I

BROWNSMITH, JOSEPH D. A Methodology for the Performance Evaluation of

Database Systems

DICKEY, FREDERICK J. Translations Between Programming Languages

LEE, MARY JANE An Analysis and Evaluation of Structure Decision Systems

NATARAJAN, K. S. A Graph-Theoretic Approach to Optimal File Allocation

in Distributed Computer Networks

WANG, JIN-TUU Design of a Mixed Voice/Data Transmission System for Compu-

ter Communication

1979 -80

BAKER, ALBERT L. Software Science and Program Complexity Measures

FLINCHBAUGH, BRUCE E. A Computational Theory of Spatio-Temporal Aggrega-

tion for Visual Analysis of Objects in Dynamic Environments

JAPPINEN, HARRY A Perception-Based Developmental Skill Acquisition System

KO, KER-I Computational Complexity of Real Functions and Polynomial Time

Approximation

KWASNY, STAN C. Treatment,.of Ungrammatical and Extra-Grammatical Phenom-

ena in Natural Language Understanding Systems

MELLBY, JOhN ROLF The Recognition of Straight Line Patterns by Bus Autom-

atons Using Parallel Processing

PARDO, RDBERTO Interprocess Communication and Synchronization for Distribu-

ted Systems

TENG, ALBERT Y. Protocol Constructions for Communication Networks

WOLF, JACOB J., III. Design and Analysis of the Distributed Double-Loop

Computer Network (DDLCN)

WONG, PATRICK M. K. A Methodology for the Definition of Data Base Work-

loads: An Extension to the IPSS MethodOlogy

1980-81

CHOU, CHUEN-PU System Design of the Distributed Loop Database System

(DLDBS)

LI, CHUNG-MING Communicating Distributed Processes: A Programming Lang-

uage Concept for Distributed Syst,mas

MITTAL, SANJAY Design of a Distributed Medical Diagnosis and Data Base

System

76

.
75

TSAY, DUEN-PING MIKE: A Network Operating System for the Distributed

Double-Loop Computer Network

WANG, PONG-SHENG Computer Architecture ror Parallel Execution of High-

Level Language Programs

WU, SHYUE BIN Interconnection Design and Re,ource Assignment for Large

Multi-Microcomputer Systems

79

Name

76

ATTENDI.% I

STUDENTS IN THE FINAL STAGES OF RESEARCH
LEADING TO THE PH.D. DEGREE

Dissertation Topic/Title Advisor

Aguilar, Lorenzo Multi-cast Computer Communication Sprvices Weide, B.

Aitken, Jan A. A Methodology for the Evaluation of Lan-
guages for the Development cf Computer-
eased Information System Performance Models
(Ph.D. awarded Summer 1981)

Kerr, D.

Ayen, William E. Computer systems Programming/Performance Mamrak, S.
Evaluation

Brinkman, The Development and Evaluation of Inter-
Barry J. active Aids for Search Profile Construction

in Document Retrieval Systems

Carlson,

Wayne E.

Champion,
David M.

Computer Graphics Research

Problems in Associative Memory Systems

Davis, L. Anne Recognition of Conics by Bus Automata

Fried, John B.

Petrarca, A.

Crow, F.

Rothstein, J.

Rothstein, J.

Development and Evaluation of the Keyword Petrarca, A.
Decision Tree (KDT) Classification

Gomez, On General and Expert Knowledge-Based
Fernando J. Methods in Problem Solving (Ph.D.

awarded Summer 19F1)

Chandraseka,:an, B.

Gunji, Takao Toward a Computational Theory of Pragmatics Buttelmann, H.W.
-- Extensions of Montagu Grammar

Haley, Allen W. Reliable Module Integration Testing Zweben, S.

Hall, William E. Programming Systema Buttelmam, H.W.

Hochstettler,
William H.

Juell, Paul L.

A Methodology for the Specification of
Information Systems to Support Macro
Estimating.and Project Management

Improvements in the Style of Computer
Generated Natural Language Text (Ph.D.
awarded Summer 1981)

Kuo, Hong-Chih Customizable Editor
Jeremy

SO

S'

Ernst, R.

Buttelmann, H.W.

Rananathan, J.

Ar&.)
<< al

77

Name Dissertation To ic/Title

Lin,,Jy-Jine Computer Architecture for Very Large Online
Distributed Database Systems

Menon, Design and Analycia of A Multi-Rmr.k.-11,1

Jaishankar M. Database System for Performance Improvement
and Capacity Growth

Ozsu, Tamer N. Research in Database Machines

Perry, Doyt L. Computability and Complexity Issues in .

Translator Generation

Shubra, Charles Modeling of the File Processing Domain

Soni, Dilip A. A Model for a Customizable Worksttion
E "ironment

Stalcup,

William S.
Techniques for the Evaluation and Improve-
ment of Automatic Vocabulary Control in
Printed Indexes

Advisor

Liu, M.

Hsiao D.

Hsiao, D.

Buttelmann, H.W.

Ramanathan, J.

Ramanathan, J.

Petrarca,A.

Zeil, Steven J. Selecting Suffibient,Sets of Test Paths for White, L.
Program Testing (Ph.D. awarded Summer 1981)

Si

