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SUMMARY

Objective

The objective was lo determine appropriate methods for linking parameters of test items under a
variety of testing conditions.

Background

Computerized adaptive testing (CAT) is a form of test administration that the Armed Services may
soon implement. It requires that large numbers of items be calibrated and stored in item banks from
which specific items are drawn adaptively by the computers for each testee. Because the number of items
to be calibrated is so large. 1t is not feasible 1o administer all of them 1o a single group. and <o the items
must be calibrated in separate sets and then linked together onto a common scale. Four different methods
of linking the item set- were devised and evaluated.

Approach

In an evaluation of the adequacy of various hoking methods. the true iter parameters must be
known. These were obtained through a cc.. puter simulation study with a desie based on a practical
lesting environment.

Specifics

Method. A stmulation study was designed in which simulated test 1tems were defined to be similar in
terms of their item parameters (o Armed Services test items. and populations of simulated examinees were
defined 10 be sinular in ability 1o those individuals likely to take Armed Services tests,

Four linking methods were evaluated. The equivalent-groups method linked items by assuming
examinee groups to be equivalent. The equivalent-tests method assumed tests to contain equivalent items.
The anchor-group method linked through a cowmon group of examinees. The anchor-test method linked
through a common set of items. These methods “vere compared 1o each other and 1o a condition in which
no explicit hnking was done.

Thiee finking conditions were cimulated One was the condition in which test booklets were
rando nly distribmed among the entire population. Another was the condition in which test book lets were
ditributed systematically among relatively few testing centers. The final condition was one in which a
popuilation of examinees selected on the basis of their scores was used.

‘Three categories of evaluative criteria were used. Fidelity -of-paranwlc-r-vslimalion criteria examined
the relations between true and estimated item parameters. .\symploli(--abilily-eslimalc- eritena examined
the relations between the true and asymptotic (i.e.. infinite-test-length) ability estimates. Efficiency-of-
ability-estimation criteria included average item information and relatve efficiency.

Findings and discussion. Despite its simplicity. the equitalent-groups method worked well under
most testing conditions. The anchor-group and anchor-test methods were slightly supenor when the
assumption of equivalent groups was violated. The equivalent-tests method was generally less effective
than the other three metheds. Modal-Bayesian scoring of lests generally produm-d better linking results
than did maxinmun-likelihood scoring.

Conclusions

Two procedures can be recommended for linking. Linking during development of the initial item
pool can os efficiently be accomplished using the equiralent-groups method. with examinees randomly
selected from the general ealibraucn population. ftems added 10 the pool at a later date should be linked
msing *he anchor-iest method.
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PREFACE

This effort was carried out under ILIR0018, Metnods for Linking
Item Parameters. It was basic research conducted in support of an on-
going program ir the area of Assessment of Personnel Qualification
which supports the general thrust area of Manpower and Force Manage-
ment., It was performed to gain knowledge in advanced psychometric
theory as applied to computer driven adaptive testing, item banking,
and Item Response Theory. This report is one in a series aimed at
advancing the state of the art in the measurement of human charac-
teristics

The authors wish to thank James B. Sympson for his suggestions
and insightful criticism of portions of an earlier draft of this
report.

¢1o




TABLE OF CONTENTS

Page

I. INTRODUCTION . . . ¢ ¢« o« &« o o & . . O )
Overview of Item Response Theory O I

Item Calibration. . . . P [
Estimation Techniques . . R [

Max imum-1ikelihcod estimation e e e e e e . 16
Minimum chi-square estimation . . . . . . . . 17
Criteria of Good Estimation. . . « « « « ¢ « o o o 17
Evaluation of Estimation Techniques. . . . . . . . 18
Ttem Linking. . . . . . 22
Predicting, Equating. and Linking--A Clarifi-
cation of Concepts . . . ¢ ¢ ¢ ¢« o o o o 0. e 22
Equating and predicting . . . . . . . « ¢ . - 23
Linking . . . . . - )
Paradigms of Linking and Equating e e e e e .. 24
Methods based on sampling . « « « « « « + + o 25
Methods based on anchoring. . . « « « « « « 26
Composite network methods . . . . « « « « . 27
Criteria of Linking Adequacy . . . + « « « « « « & 27
Evaluation of Linking Techniques . . . . . « « « & 28

Rasch model . . . e e e e .. 28

Three-parameter 1ogist1c model e e e o s« . 33

Conclusions . « « ¢« « v ¢« s s e s e e e e e e . . . . 38

II. BASIC RESEARCH DESIGN. . . . e e e e e e e e .. WO
Development of Simulation Models S 1
Specification of Items . . . . . . « « . =« e e .. M

Analyses of ASVAB item parameters .« o s 41

Specification of a representative item domain 46
Specification of Ability Distributions . . . . . . u9
Examinee data available . . . . . T L
Score data available. . « « o « « o o o o o+ 49
Raw score analysis. . . . « ¢« ¢« ¢« ¢ ¢ o o o 50

Differences among AFEES . . . . . . . -1
Modal Bayesian traiv estimates. . . . . 56
Specification of distributional parameters . 57
Basic Data Sets. . . . e e e e s e s . 58

Randomly 'sampled examinees . 1
Systematically sampled exsminees. . . . . . . 58

Selected examinees. . . . . . . . . . e o . 59

Composite sets of items . . . . . . - 1)
Calibration of items. . . . . . . . « e e e . 99
Evaluative Criteria . « « « ¢« ¢ ¢ ¢ ¢ « o ¢ o & . ... 60
Fidelity of Parameter Estimat*on ..... ... 61
Bias. . . . AR )

Absolute error O -1
Root-mean-square €rror. . .« « « s o o e ... 61

-3-

8




Correlations.

Characteristics of Asymptotic Ability Ebtimates
Mean and standard deviation . . .
Absolute and root-mean-square error .
Correlation . . . e« o e e e o

Efficiency of Ability Estimation e e e e e e
Infcrmation . . . .« o .

Relative efficiency .

IIT. EVALUATION OF THE BASIC DATA SETS.
Randomly Sampled Examinees. . .
Fidelity of Parameter Estimation .
Characteristics of Asymptotic Ability Estimates
Efficiency of Ability Estimation . .« o
Systematically Sampled Examinees. .
Fidelity of Parameter Estimation . .
Characteristics of Asymptotic Ability Esfimates
Efficiency of Ability Estimation . c e e
Selected Examinees. . .
Fidelity of Parameter Estimation . .
Characteristics of Asymptotic Ability Estimates
Efficiency of Ability Estimation . .
Conclusions . e e e e s e

IV. LINKING WHEN EXAMINEES ARE RANDOMLY SAMPLED.
Equivalence Methods . e 6 e s e e s s e
Procedure. . . . e e e e e e s 4 4
Equivalent groups .
Equivalent tests,
Results.
Fidelity of parameter estimation
Characteristics of asymptotic ability
estimates . . . .
Efficiency of ability estimation
Discussion . e e e e s e s e e s
Conclusions .

+

<

LINKING WHEN EXAMINEES ARE SYSTEMATICALLY SAMPLED. .
Equivalence Methods .
Procedure. . . . . .
Results. . . .
Fidelity of parametev estimation
Characteristics of asvmptotic ability
estimates . . . . .
Efficiency of ability estimation
Discussion . . . . . .. . . .. .
Anchor-Group Method ,
Procedure.

. 1




Results-~ilodal Bayesian 3cores . . .
Fidelity of parameter estimatio* .« . e
Characteristics of asymptotic ability

estimates . . .
Efficiency of abilitv estimation
Results--Robust-Maximum-Likelihood Scores.

=)

. 112
. 112

. 116

118

. 119

Fidelity of parameter estimation. . 119
Characteristics of asymptotic ability

estimates . . . .« s 121

Efficiency of ability nstimation . 122

Discussion . .« . e . e e e 123

Anchor-Test Method. e s e e e s .« o e .. . 124

Procedure. . . . e . e s . 128

Generation of the source item pool 124

Selection of anchor-test items. . 124

Determination of the linking transformations 126

Results--Modal Bayesian Scores . . . . . . . . . - 126

Fidelity of parameter estimation . 126
Characteristics of asymptotic ability

estimates . . . . . 132

Efficiency of ability estimation . 135

Results--Robust-Maximum-Likelihood Scores. . 137

Fidelity of parameter estimation. . e . 137
Characteristics of asymptotic ability

estimates ., . . . 136

Efficiency of ability estimation . .. 1

Discussion . . . « ¢ ¢ ¢ o o o e e L

Conclusions o v v ¢ v o v o o v oo = . 143

LINKING WHEN EXAMINEES ARE SELECTED. . . . 145

Equivalence Methods . . e . 145

Procedure. . « « o« « o o o o =« 145

Results. . . 145

Fidelity of parameter estimation . 145
Characteristics of asymptotic ability

estimates . . . . 146

Efficiency of ability estimation 147

Anchor-Group Method . e e e e e 148

Procedure. 148

Res.lts. . . . . e 148

Fidelity of parameter estimatian “ .. 148
Characteristics of asymptotic ability

estimates . . . . 150

Efficiency of ability estimation 151

Discussion . .. e e e e 151

Anchor-Test Method. . . . . . . . . 153

Procedure. . . + +« « « . . 153

RESULLES. « « « « « o o o o o o s o & s 153



Fidelity of parameter estimation.
Characteristics of asynptotic ability
estimates ., . . o .
Efficiency of ability estimation . .
Discussion ., ... c e e e . .
Conclusions . .

VII. PRACTICAL APPLICATIONS OF LINKING. .
Development of a Composite Approach ,

Linking the Initial Ttem Set--A Summary of

Findings .
Linking Across Time—-Further Analyses.
Method. « e . .
Resutts . ., ., ., . ..
Discussion.

De zn for a Specific Application .
Description of the Problem . .
A Proposed Linking Design.

VIII. SUMMARY AND CONCLUSIONS.
Summary .
Previous Literature
Linking Criteria .
Simulation Design.

Results, . e .
\\\ Application to a Practical Linking Problem .
. Conclusions . S e e e e e e e e e e e
REFERENCES.
APPENDICES

Appendix A: Supporting Tables
Appendix B: Revisions to Program OGIVIA

11

. 158

. 153

. 155
. 156

158

. 160
. 160

. 160
. 161
. 162
. 152
. 165
. 166
. 166
. 167

. 169
. 169
. 169
. 169
. 170
.M
. 172
. 172

. 175

. 181
. 185



Figure

LIST OF ILLUSTRATIONS

Item Characteristic Curves., . .
Sympson's Data Collection Plan. . . .
Raw Score Frequency Distribution--Word Knowledge. . .

Raw Score Frequency Distribution--Arithmetic Keasoning.

Raw Score Frequency Distribution--Mathematics Knowledge . .
Raw Score Frequency Distribution--Electronics Information .

Raw Score Frequency Distribution--Mechanical Comprehension.

Raw Score Frequency Distribution--General Science .

True Information Curves, Using True Item Parameters,
for Each of Three Anchor Tests. . .

F—‘

Page
15
38
51
52
52
53
53

54

. 125




o

LIST OF TABLES
Table Page
1 Number of It~ms in the Two Suts of Itcm Parameter Data. . . . U2

2 Ttem Parameter Summary Statistics from Fxperimental
Form 8 and New Forms 8, G, 10 . . . . . . . . . .+ . . .. U3

3 Numbers and Percentages of Items From the New Forms 8, 9,
10 With a Parameters Set Equal to the Maximum Value . . . . 45

4 Numbers and Percentages of Items From Experimental Form 8§
With a Parameters Eqmal to or Exceeding 2.40. . . . . . . . 46

5 Parameter Intarcorrelations for Experimental Form 8 and
New Forms 8, 9, 10. . . . . . ¢« v s v v v v v v v e s o . W7

) Overall Skew and Kurtosis--ASVAB-7 Number-Correct
Scores (N=32,84U) . . . . . i v v v 4 v v e o o o o v uwao. 50

7— Stancard-Score Summary Statistics Across AFEES for
ASVAB-7 Subtests. . . . . . . i ¢ i i i ittt e e e e .. b5

) Mean, Standard Deviation, Skew, and Xurtosis of ASVAB-8
Modal Bay ,ian Ability Estimates (N=500) . . . . . . . . . 56

9 Ttem Parameter Bias--Basiz Data Set--Randomly Sampled
Examinees. . . . . . . . . i it it e e e e e e e e ... 68

10 Parameter Correlations--Basic Data Set--Randomly
Sampled Examinees. . . . . . . . . ¢ 4 i 4 4 4 4 e e e . . 69

" Absolute Parameter Error--Basiz Data Set--Randomly
Sampled Examinees. . . . . . . . . . 4 4 4 4t 4 4 e e e .. TO

12 Root-Mean-Square Parameter Error--Basic Data Set--
Randomly Sampled Examinees . . . . . . . . . ¢« v v vvv o . T

13 Absolute Asymptotic Ability Error--Basic Data Set--
Randomly Sampled Examinees . . . . . . . . . . . ¢« ¢« v . . T2

14 Root-Mean-Square Asymptotic Ability Error--Basic
Data Set--Randomly Sampled Examinees . . . . . . .. ... T2

15 Mean Relative Efficiency~-Basic Data Set-1ﬁandom1y
Sampled Examinees. . . . . . . . . . . e e e s s .. 13

16 Item Parameter Bias--Basic Data Set--Systematicaily
Sampled Examinees. . . . . . . . . . . . . .. e 40 ... TH




Table Page

17 Paramet~r Correlations--Basic Data Set--
Systematically Sampled Examinees . . . . . . . . « . o . 75

18 Absolute Parameter Error--Basic Data Set--
Systematically Sampled Examinees . . . . . . . . ¢ o . . . 76

19 Root-Mean-Square Parameter Error--Basic Pata Set--
Systematically Sampled Examinees . . « « o o o o« o o o o o 17

20 Absolute Asymptotic Ability Error--Basic Data Set--
Systematically Sampled Examinees . . . . . « « « « ¢ o o - 78

21 Root-Mean-Square Asymptotic Ability Error--Basic
- Data Set--Systematically Sampled Examinees . . . . . . . . 78

22 Relative Efficiency--Basic Data Set--Systematically

Sampled Examinees. . . « « « ¢ ¢ ¢ o o o o o 79
23  Item Parameter Bias--Basic Data Set--Selected Examinees. . . 80
24 Parameter Correlations--Basic Data Set--Selected Examinees . 80

25 Absolute Parameter Error--Basic Data Set--Selected
EXamineesS. . « « o o o o s s o o o o o o s o s s o o o o 0 81

%26 Root-Mean-Square Parameter Error--Basic Data Set--
: Selected Examinees . . . o « ¢ ¢ o s o o o o o s e .o .o 82

27 As . %c Ability Error--Basic Data Set--Selected
/ EXe oafI@@S. « o o o o - o s s o o o o o o o s o o o o 0 o0 82

28 Relative Efficiency--Basic Data Set--Selected Examinees. . . 83

29 Item Parameter Error--tquivalence Methods-~Homogeneous
Condition Using Randomly Sampled Examinees . . . . . . . . 90

30 Item Parameter Error- -quivalence Methods--Heterogeneous
Condition Using Randomly Sampled Examinees . . . . . . . . 93

31 Asymptotic Ability Estimates--Equivalence Methods--
Homogeneous Condition Using Randomly Sampled Examinees . . 94

32 Asymptotic Ability Estimates--Equivalence Methods--
Heterogeneous Condition Using Randomly Sampled Examinees . 95

33 Efficiency Analysis--Equivalence Methods--Homogeneous
Condition Using Randomly Sampled E«aminees . . . . . . . . 96

~9-

14

T R R RRRRRRRRRRRBRRRRRRRRRRRRBRRRBRBmERImreeeeeeeeeee




Table Page

34 Efficiency Analysis--Equivalence Methods--Heterogeneous
Condition Using Randomly Sampled Examinees . . . . . . . . 98

35 Cellwise Efficiency Analysis--Bayesian Score--
Randomly Sampled Examinees . . . . . . . . .. .. .... 99

36 Cellwise Efficiency Analysis--Equivalent Tests-- " 4
Randomly Sampled Examinees . . . . . .. ... ...... 99 )
37 Item Parameter Error--Equivalence Method s--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 103
38 Item Parameter Error--Equivalence Methods--Heterogeneous

Condition Using Systematically Sampled Examinees . . . . . 105

39 Asymptotic Ability Estimates--Equivalence Methods--
Homogeneous Condition Using Systematically Sampled
Examinees. . . . . . . . . .. . ... s e e e e e ... 107

4o Asymptotic Ability Estimates--Equivalence Methods--
Heterogeneous Condition Using Systematically Sampled
Examinees. . . . . . . .. .. ... ... c e e e e . .. 108

41 Efficiency Analysis--Equivalence Methods--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 109

42 Efficiency Analysis--Equivalence Methods--Heterogeneous
Condition Using Systematically Sampled Examinces . . . . . 110

43 Cellwise Efficiency Analysis--Bayesian Score--
Systematically Sampled Examinees . . . . . . . . ... .. 110

uy Cellwise Efficiency Analysis--Equivalent Tests—-
Systematically Sampled Examinees . . . . . . . . . .. .. 111

45 Item Parameter Error--Anchor Groups--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 113

ug Item Parameter Error--Anchor Groups--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 115

u7 Asymptotic Ability Estimates--Anchor Groups--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 116

48 Asymptotic Ability Estimates--Anchor Groups--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 117




Table Page

uq Efficiency Analysis--Anchor Groups--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 118

50 Ef ficiency Analysis--Anchor Grioups--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 119

51 Item Pa~ameter Error--Anchor Groups--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 120

52 Asymptotic Ability Estimates--Anchor Groups--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 122

53 Efficiency Analysis--Anchor Groups--Homogeneous Condition
Using Systematically Sampled Examinees . . . . . . . . . . 122

54 Item Parameter Error--Anchor Tesis--Homogeneous Condition
Using Systematically Sampled Examinees . . . . . . . . . . 127

55 Item Parameter Error--Anchor Tests--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 130

56 Asymptotic Ability Estimates--Anchor Tests--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 133

51 Asymptotic Ability Estimates--Anchor Tests--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 134

58 Efficiency Analysis--Anchor Tests--Homogeneous Condition
Us‘ng Systematically Sampled Examinees . . . . . . . . . . 135

59 Efficiency Analysis--anznor Tests--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 136

60 Item Parameter Error--Anchor Tests--Homogeneous
Condition Using Systematically Sampled Examinees . . . . . 138

61 Asymptotic Ability Estimates--Anchor Tests--Heterogeneous
Condition Using Systematically Sampled Examinees . . . . . 140

£2 Efficiency Analysis--Anchor Tests--Homogeneous Condition
Using Systematically Sampled Examinees . . . . . . « . . 142

63 Item Parameter Error--Equivalence Methods--Homogeneous
Condition Using 3elected Examinees . . . . « . « ¢« « « « - 146

6l Asymptotic Ability Estimates--Equivalence Methods--
Homogeneous Condition Using Selected Examinees . . . . . . 17

16"




Table

65

66

67

68

69

70

71

72

73

74

75

Efficiency Analysis--Equivalence Method s--Homog eneous
Condition Using Selected Examinees . . . . . . . . .

Item Parameter Error--Anchor Groups--Homogeneous
Condition Using Selected Examinees . . . . . . .

Asymptotic Ability Estimates--Anchor Groups--qomogeneous
Condition Using Selected Examinees . . . . . . . . .

Efficiency Analysis--Anchor Groups--Homogeneous
Condition Using Selected Examinees .

Item Parameter Error--Anchor Tests--Homogeneous
Condition Using Selected Examinees . .

Asymptotic Ability Estimates--Anchor Tests-~Homogeneous
Condition Using Selected Examinees . « o s s

Efficiency Analysis--Anchor Test s--Homogeneous
Condition Using Selected Examinees .

Asymptotic Ability Metric of Cascaded Tests—-
Modal Bayesian Scoring . o o e e W

Asymptotic Ability Metric of Cascaded Tests—-
Maximum-Likelihood Scoring . . . o .

Linkage Efficliency of Cascaded Tests-—-
Modal Bayesian Scoring . . . e

Linkage Efficiency of Cascaded Tests—-
Maximum-Likelihood Scoring .

-12-

Page

148

. 149

. 151

. 152

154

. 156

. 157

. 163

. 164

. 165

. 165



I. INTRODUCTION

Dyring the past decade, an extensive investigation of adaptive
testing has been 2onducted. In its simplest form, adaptive testing
amounts to administering the subset of items, selected from a larger
pool, that provides the most information about the individual re-
garding the characteristic the test measures. A summary of the cur-
rent state of the art, extracted from the 1979 Computerized Adaptive
Testing Conference (Weiss, 1980), is that adaptive testing potentially
offers several advantages over conventional testing methods, but to
realize these advantages, characteristics of the items comprising the
pool must be accurately determined.

Most adaptive testing technology is built on the framework of
Item Response Theory (IRT), also called Latent Trait Theory or Item
Characteristic Curve (ICC) Theory. In IRT, test items are described
by a set of item parameters, It is these parameters that must be
accurately determined if adaptive testing is to be effecﬁive. This
determination is called item calibration. Because adapt{%e'testing
requires a large item pool, and because item calibration Pequires ad-
ministration to a large number uf examinees, calibration must often be
accomplished in parts such that different groups of individuals take
different sets of items,

The purposes of the project were to determine efficient methods
of partitioning the calibration examinee samples and item sets, and
to determine efficient methods of re-assembling or linking the parts
into a common whole once the individual calibrations are accomplished.
As background to the research, the first section of this report re-
views some of the concepts basic to calibration and linking. Pre-
vious research, its shortcomings and unanswered questions, will be
reviewed and discussed. In subsequent sections, a research design to
eliminate these shortcomings will be described and research conducted
according to that design will be reported.

Overview of Item Response Theory

Item Rusponse Theory has been called the psychometric eguiva-
lent of Einstein's Theory of Relativity (Warm, 1978). Stated simply,
IRT specifies a general mathematical relationship between an indi-
vidual's status on an underlying trait, characteriscics of a test
item, and the probabilities regarding how the individual will respond
to the item. The term IRT actually refers to a general class of
psychometric models. Included in the class are models for use when
the response is dichotomous (Lord & Novick, 1968; Birnbaum, 1968),
models for use when ‘the response is polychotomous (Samejima, 1969,
1972: Bock, 1972), and models for use when the response is continuous
(Samejima, 1974). These models have typically been developed for use
where a unidimensional trait is measured. Exteansion of each to
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multidimensional traits would double the number of available models.
Hambleton & Cook (1977) present an overview of most of the unidimen-
sional IRT models.

All the item domains considered by the current research con-
tained dichotomous ability items of a multiple-choice nature. Two IRT
models are appropriate for such items: the three-parameter normal and

- logistic ogive models. For reasons of mathematical tractability, the
logistic model is generally preferred over the normal model and will
be of primary focus throughout this report. A single-parameter degen-
erate case of the three-parameter logistic model, the Rasch model,
will be included in some parts of this review because of its similar-
ity to the three-parameter logistic model and because more research
has been done on calibration and linking using the Rasch model than
has been done using the three-parameter logistic model.

In the three-parameter logistic model, the item is characterized
by the three parameters a, b, and ¢. Ability is characterized by a
single parameter, theta. The a parameter is an index of the item's
power to discriminate among different levels of ability. It ranges,
theoretically, between negative and positive infinity but practically
between zero and about three when ability is expressed in a standard-
score metric. A negative a parameter would mean that a low-ability
examiree had a better chance of answering the item correctly than did
a high-ability examinee. An a parameter of zero would mean that the
item had no capacity to discriminate between different levels of
ability (and would therefore be useless as an item in a power test).
Ttems with high positive a parameters provide sharper discrimination
among levels of aolility and are generally more desirable than items
with low a parameters.

The b parameter indicates the difficulty level of an item. It
is scaled in the same metric as ability and indicates the value of
theta an examinee would need in order to have a 50-50 chance of know-
ing the correct answer to the item. This is not, however, the level
of theta at which the examinee has a 50-50 chance of selecting a cor-
+ reat answer If it 1s possible to answer the item correctly by guessing.

The ¢ parameter gives the probability with which a very low-
ability examinee would answer the item correctly. It is often called
the guessing parameter as it is roughly the probability of answering
the item correctly if the examinee does not know the answer and guess-
es at random. Intuitively, the : parameter of an item should be the
reciprocal of the number of alternatives in the item. Empirically,
it 1s typically somewhat lower than this.

All four parameters enter into the three-parameter logistic test
model to determine the probability of a correct response. The formal
mathematical relationship is given by Equatio. 1:
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P(u=1]8) = ¢ + (1-¢) ¥[1.7a(6-b)] (1]
where:
¥(x) = [leexp(-x)1"]
In Equation 1, u = 1 if the response to the item is correct and u = 0

if the response is incorrect. The relationship expressed in Equation 1
is shown graphically in Figure 1. The item characteristic curve

drawn with a solid line is for an item with a = 1.0, b = 0.0, and ¢ =
.2. The slope at any point is related to a. The lower asymptote
corresponds to a probability or ¢ of .2. The item characteristic
curve shown with a dashed line is for an item with a=2.0,b =10,
and ¢ = .2, The midpoint of the curve has shifted to 6 = 1.0. The
slope of the curve is steeper near 6 = b. The lower asymptote of the
curve remains, however, at .2.

Ultimately, theta is the only parameter that needs to be esti-
mated; the objective of testing is to estimate an individual's abil-
ity level. To accomplish this, however, it is necessary to first
¥now the item parameters. The items must therefore be calibrated.

Figure 1. Item Characteristic Curves
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Although Ree (1979) has shown that, under certain conditions, ability
estimation can proceed very well with quite poor estimates of item
parameters, in the general case, good estimation of ability requires
good estimation of item parameters,

Item Calibration

Estimation Techniques

Two methods of estimating item parameters have been primarily
employed in IRT applications: maximum-likelihood estimation and
minimum chi-square estimation. The former method identifies the
parameter values for which the probability of observing the observed
data (i.e,, the likelihood) is a maximum, The latter method identi-
fies the parameter values for which the discrepancy between the model
and the observed data is a minimum., Both methods are discussed in
detail below with general referance to three-parameter models,

Maximum-likelihood estimation. Conceptually, the application of
maximum-likelihood techniques to estimation of item parameters is
simple. The probability of observing a response vector is expressed
in terms of the unknown parameters, and the parameter values making
this probability a maximum are the maximum-likelihood parameter esti-
mates. In practical calibration applications, however, the number
of parameters to be estimated may exceed several thousand and the
numerical difficulties make the simple conceptual task practically
formidable.

Two approaches to maximum-likelihood item calibration are the

unconditional and the conditional approaches1 (Bock, 1972; Bock %
Lieberman, 1970). 1In the unconditional approach, a distribution

of theta is assumed and the theta parameter in each individual
response vector is integrated out. This results in a set of 1like-
lihood functions, one function for each examinee, that is independ-
ent, of theta. From these functions, the item parameters can be
estimated. There are two difficulties with use of the unconditional
approach. First, it requires an assumption as to the form of the
distribution of theta and, second, due tc the integration required,

1. The terms "unconditional" and "conditional" as used here should
not be confused with the identical terms used in th2 Rasch literature
(e.g., Anderson, 1971, 1977; Gustafsson, 1979; Reckase, 1977). "Un-
conditional™ in the Rasch literature refers to the "conditional" case
discussed here, "Conditional" in the Rasch literature refers to the
use of likelihood functions conditioned on the sufficient number cor-
rect statistic and is, in some ways, analogous to the "unconditional™"
approach discussed here.
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it is computationally too burdensome for use with more than a few
items.

The conditional approach assumes the theta values are unknown
but fixed parameters to be estimated in the same manner as the item
parameters. The computer program LOGIST (Wood, Wingersky, & Lord,
1976) is the major operationalization of the conditional approach
to calibration. Although, in theory, both theta parameters and item
parameters can be estimated simultaneously, LOGIST iterates between
estimation of theta and estimation of item parameters. Provisional
values of theta are obtained from each examinee's raw score and these
are used as true theta values while the item parameters are estimat-
ed. The estimated item parameters are then used to re-estimate the
theta parameters and the procedure iterates until stable item and
theta parameter estimates are found. Convergence can require a large
amount of computation.

Minimum chi-square estimation. Regardless of how the parameters
of the model are estimated, the adequacy with which the model fits
the observed data can be tested with a Pearson chi-square test.

This is accomplished by grouping subjects on the basis of ability (or
estimated ability), predicting for 2ach item the proportion of sub-
jects in each subgroup who should answer it correctly according to
the model, and ‘testing the significance of the discrepancy between
observed and predicted proportions using a chi-square test. The
minimum chi-square approach to estimation explicitly selects param-
eter values to minimize this chi-square value. Except for the

change in criterion, however, the approach is similar to the condi-
tional maximum-likelihood approach. ¢

A major proponent of this approach was Urry (1978), who sponsored
several computer programs to perform such estimation; the most fre-
quently used are OGIVIA and ANCILLES. 1In these programs, examinees
are scored based on provisional paramefter estimates. Several trial
values of the c parameters are chosen and a and b parameters are esti-
mated using equations given by Urry (1976). The combination of a, b,
and c that produces the minimum lack of fit with the IRT item charac-
teristic curve, as indicated by a chi-square statistic, is chosen as
the mini?um chi-square parameter estimate.

Criterid’ of Good Estimation

Texts in statistics (e.g., Lindgren, 1976) typically list four
desirable characteristics of an estimator of a parameter: an esti-
mator should be unbiased, efficient, sufficient, and consistent. An
unbiased estimator has an expected value equal to the parameter it
estimates. An efficient estimator has, in comparison to other esti-
mators, small mean squared-deviation from the parameter. If the
estimator is unbiased, its variance is an index of its efficiency.

A sufficient estimator contains all the information regarding the
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parameter that is available from the data on which it is calculated.
Information of an unbiased estimator is an estimate of the recipro-
cal of the squared error of estimate of the parameter (see Lindgren,
1976, for a discussion of information). An unbiased sufficient
estimator is efficient in an absolute sense as no other estimator can
be more efficient. Finally, a consistent estimator is one that con-
verges on the parameter values as the anata on which it is based in-
crease. Increased data, in psychometric applications, refers to both
increased subject sample size and increased item set size (i.e., mcre
items). Both must approach infinity for item and ability parameter
estimates to converge on their true values, but acceptable estimates
can be obtained from sample sizes that are obtainable in practice,

Evaluation of the quality of estimators in terms of these cri-
teria can be done analytically in simple applications. In evalua-
tion of item calibration techniques, analytic calculation of these
criteria is practically impossibla because of the complexity of the
calculations. Hence, they must be‘ngaluated through simulation
techniques. In such a simulation, responses to items with known
parameters are generated according to a statistical model (see Vale
& Weiss, 1975, or Ree, 1973, for a full description of a simulation).
Parameters are theq estimated from the item responses as if these
responses had been generated by real examinees, and the estimated
parameters are compared to the true values. In studies done com-
paring estimated with true item parameters, three indices of com-
parison have typically been calculated for individual item param-
eters. The average algebraic difference between true and estimated
parametetrs has been calculated as an index of bias. The mean-square
deviation of estimated parameters from the true parameters has been
calculated and can be considered an index of efficiency. The corre-
lation between true and estimated parameter values has been calculated
and, if the estimates are linear estimates of the parameters, this can
be thought of as an index of relative sufficiency when comparing two
methods on the same items and subjects. All these indices are typi-
cally calculated at several combinations of test length and sample
size and thus provide some evidence for consistency.

In addition to evaluation of the parameters Separately, some
researchers (e.g., Ree, 1978 have attempted to evaluate the param-
eters collectively by comparing the test scores produced by the est-
imated parameters with those produced by the true parameters. There
may be some tendency for errors in one parameter to cancel out or com-
pensate for errors in other parameters. Separate evaluation would not
show this effect; Jjoint evaluation would. As will be discussed in re-
gard to the study by Ree, this evaluation may be done in several ways.

Evaluation of Estimation Techniques

Lord (1975) evaluated the LOGIST procedure in a simulation study.
For this study, item parameters for 90 verbal items >f the Scholastic
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Aptitude Test were estimated by LOGIST using a sample of 2,995 exam-
inees. These parameters, after correction for errors of estimate,

were used as the basis for a Monte-Carlo simulation in which 2,995
hypothetical examinees (with abilities similar to those of real exam-
inees) "responded" to the items according to the logistic test model.
These responses were then used by LOGIST to re-estimate the item param-
eters. The parameters entering the simulation model were taken to be
true parameters, and the effectiveness of LOGIST was evaluated by how

" accurately these true parameters were estimated. Root-mean-square

errurs of estimation and the correlations between true and estimated
parameters were, respectively, .130 and .920 for the a parameters and
.196 and .988 for the b parameters. For the c parameters, the root-
mean-square error was .070; the correlation between the true and esti-
mated ¢ parameters was not reported.

Gugel, Schmidt, and Urry (1976) reported a similar simulation
study of the minimum chi-square procedure. Some major differences
between this study and that of Lord's (in addition to the different
estimation procedure) were that (a) the hypothetical subjects were
drawn from a standard normal ability distribution rather than matched
to subjects riving taken an existing test, (b) the hypothetical item
parameters were rectanguylarly distributed in ranges typical for such
par: eters rather than matched to those from an existing test, and
(c) subject sample sizes and item set sizes were systematically
varied. Of the conditions investigated a condition with 90 items and
2,000 subjects was most comparable to Lord's study of LOGIST. 1In this
condition, root-mean-square errors and correlations were, respective-
1y, .244 and .871 for the a parameter, .149 and .996 for the b param-
eter, and .069 and .568 for the c parameter. Direct comparisons with
Lord's study are not particularly meaningful, however, because the
distributions of all parameters were different and this can drastical-
ly affect the comparative indices. The study did note, however, that
the minimum chi-square procedure did not work well when the numbers of
subjects used fell as low as 500. “

Schmidt and Gugel (1976) again reported the preceding study, as
well as a second study in which the number of items used was 100 and
the sample sizes were 2,000 and 3,000. Root-mean-square errors for
the final estimates at sample sizes of 2,000 and 3,000, respect.vely,
were .242 and .228 for the a parameter, .T23 and .148 for the b param-
eter, and .056 in both samples for the ¢ parameter, Correlations
were .915 and .918 for the a parameter, .996 and .997 for the b param-
eter, and .764 and .760 for the c parameter. Little change was appar-
ent between sample sizes of 2,000 and 3,000. The results of these two
studies 1ed Schmidt and Gugel to conclude that, as a rule-of-thumb,
{tem sets should contain at least 100 items and should be administered
to at least 2,000 subjects to obtain an accurate calibration.

Two studies comparing different calibration techniques have been

done, to date. Ree (1978, 1979) compared four ralibration techniques
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in three different populations. The four calibration techniques
were: (a) ANCILLES, minimum chi-square escvimation with ancillary
correction for errors in estimation of ability, (b) :GIVIA, minimum
chi-square estifiation similar to that of ANCILLES, (c) LOGIST,the con-
ditional maxigwh likelihood approach, and (d) transformation of class-
ical parameters derived from IRT assuming a normai dis‘ribution of
ability (see Jénsema, 1976, for a description of the transforma-
tions). The three ability distributions were: (a) a rectangular dis-
tribution of ability bounded at 6 = *2.5, (b) a aormal (0,1) distribu-
tion of ability with elimination of the lower third on the basis of a
number correct score, and (c) a normal (0,1) distribution of ability.
The hypothetical items used in the simulation had parameters dis-
tributed normally in ranges typically found in real item sets. Among
the criteria 1nvestigated were: (a) correlations between true and
estimated item parameters, (b) correlations between ability estimates
computed using both tkue and estimated item parameters, (c) correla-
tions between true nuﬁper—correct scores generated using both true

and estimated item parameters, and (d) test information curves re-
sulting from the true and estimated item parameters. All analyses
were performed on samples of 2,000 examinees and tests 80 items in
length.

Evaluated on the criterion of correlation between estimated and
true item parameters, LOGIST generally produced the highest correla-
tions. The exception to this was in the normal ability distribution
in which OGIVIA produced slightly better estimates of a and b. The
best estimates of the item parameters were obtained using LOGIST and
a rectangular distribution of a3X11ty.

Correlations between true and estimated ability levels showed
LOGIST to be slightly better than ANCILLES and OGIVIA, and the trans-
formations to be slightly worse. Differences among correlations were
small, however, ranging from .955 to .974 in the rectangular distri-
bution, from .930 to .943 in the truncated normal distribution, and
from .961 to .965 in the normal distribution.

Correlations between true scores obtained using true and esti-
mated parameters showed very little difference among methods and
only a small deviation from unity. The largest difference observed
was in the rectangular distribution where the transformation yielded
a correlation of .9910 and LOGIST yieided one of .9950. All other
distributions produced correlations of .999, with variations in the
fourth decimal place. ,
When compared in terms of the information curves produced by the
item parameter estimates, all /methods except the transformations pro-
duced information curves similar to the true information curve in the
rectangular and normal ability distributions. In both of these dis- \
tributions, LOGIST produced {nformation curves somewhat closer to the
true curve than did AyCILLEgzor OGIVIA., 1In the selected distribution, \\\

/
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| all mgthods produced noticeable departures from the true information
eurve

Of\ the four criteria investigated, only the correlations among
item panameters and the information curves are independent of the
ability §istribution; thus, these criteria are the only ones that
can be cowmpared across ability distributions. (Equivalent estimation

\ accuracy would yield differences in the other criteria solely as a
function of the ability distribution.) On these two criteria, LOGIST
was nearly always superior to the other methods. The degree of
superiority was not overwhelming, however, and an analysis of cost
\sugggsted that other methods were to be favored. The second-best
procegure in\terms of psychometric criteria, was OGIVIA. OGIVIA
required less jhan one-tenth as much computer time to use as did
LOGIST.

As.a final ppint, the level of correlation between actual and
estimated ability levels and actual and estimated true scores is
noteWortgy Especiplly with the true scores, the level of corre-
lation way sc high as to suggest that one might do well enough with-
out bothering to estipate parameters at all. 1In fact, Ree (1979)
has shawn that the conrelation betwzen the ecstimated'and true values
of any pne the thre4 IRT parameters can be degraded to little
relation with its true Yalue and still yield correlations between
actual add esti{mated true scores of .98 and above. All these re-
sults, hoyever;\were obtained using conventional tests where all
examinees hnsweﬁ\the same\items. When administration is adaptive
and each eiaminee answers § different set of items, these correla-
tions could be exbected to Yrop substantially as a result of poor
item calibration. \Unforturnitely, no study has investigated this
effect directly. Schmidt any Gugel (1976), in the Study discussed
darlier, provided data that h\inted at the answer. When the size of
the calibration sam?& 1,000 examinees and the length of the
calibration item set 'fell to 6 there was a noticeable decrease in ',

e quality of tests administered using a Bayesian strategy when )
pared to similar tests given\using true item parameter values. :
Thps. although definitive data d§ not exist, those data which do exist
suggest that the extremély high correlations between estimates of true
score$ obtained using the different parameter es;imates may be due to
n averaging-out phenomemon peculijyr to conventionally administered
testisy

e sec&%d study comparing varidus calibration procedures was

done Swaminathan and Gifford (1980}, Noting that the Ree study

investigated only a single test length\ and sample size, they com-

pared ANCILLES and LOGIST in simulation at test lengths of 10, 15,

20, and 80 items and sample sizes of 50\ 200, and 1,000. TItems had

true a parameters distribuied rectangulgsty between .5 and 2.0, true

b paramet rs distributed rectangularly between -2.0 and 2.0, and true :
¢ parameters fixed at .26. Three distributions of ability were used; '

g
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one was normally distributed with a mean of zer> and variance of

one, the second was rectangularly distributed between -1.73 and 1.73,
and the third was a standardized negatively skewed beta distribution.
Criteria of calibration effectiveness included the differences between
means of true and estimated a, b, and c parameters, the correlations
between true and estimeted a and b parameters, the differences in -
means of ability estimates using true and estimsed parameters, and
the correlations between these values.

The b parameter estimates correlated highly with their true
value3 in all conditions using either of the calibration methods.
Medians for each of the distributions were all above .9. A trend
toward higher correlations with increased test length was observed,
and median correlations for LOGIST were slightly higher than those
for ANCILLES. No substantial differences were observed among dis-
tributions.

The a parameters were less well estimated. Median correlatiors
were near .4 for the normal and rectangular ability distributions,
but dropped to near .2 in the skewel distribution. Improvements in
estimation occurred both with increasing test length and sample
size, however. Median correlations using LGGIST were consistently
higher tran those of ANCILLES.

Correlations could no% be computed for the g'parameters since
the true values were fixed at .25.

Correlations between ability estimates and true abilities were
nearly equivalent for the two procedures. Increases were noted with
increasing calibration test length but increases in sample size made
trivial differences.

The mean-difference criteria suggested that both item param-
eters and ability estimates were biased somewhat. In general, AN-
CILLES produced more bias than LOGIST. Bias decreased with increas-
ing test lengtns and samnple size.

Suaminathan and Gifford ‘concluded that, although LOGIST .roduced
slightly better estimation than did ANCILLES, it cost considerably
more to run and the gain was probably not worth the cost. They fur-
ther concluded that a and ¢ parameters should not be estimated using
tests containing 15 or feuer items.

Item Linking
Predicting, Equating, and Linking--A Clarification of Concepts

Scores from one test are often used to infer scores on a second
test. Whether this inference is an act of predicting, equating, or
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linking will depend on the tests involved and the method used in
making the inference.

Equating and predicting. Methods for equating test scores among
different groups of people have long been available. Publishers of
entrance examinations f » educational institutions, faced with the
need to change the examinations each time they were adm.nistered and
aware that different types of people took the examinations in April
and October, developed the means of assuring that a person of fixed
ability would attain approximately the same score regardless of when
the examination was administered. Formally, equating methods are pro-
cedures for expressing scores from two different tests measuring the
same trait on a common Score metric. The crucial requirement is that
the tests measure the same trait.

Methods for predicting one test score from another have also
long been available. The reason for giving entrance examinations in
the first place was based on the empirical fact that scores on the
entrance examinations predicted, to some degree, scores on classroom
examinations. Thc difference between equating and prediction is that
two tests do not have to measure the same trait ‘o be candidates for
prediction.

Statistical methods for equating and predicting come in both
linear and non-linear forms. In the linear case, prediction is accom-
plished by linear regression. Equating is accomplished by a simil-r
procedure in which @ correlation of 1.0 between tests is assumed.
Prediction uses the ®mpirical data to estimate the relationship between
the two traits. Equating assumes, not unreasonably, that a trait
should correlate very highly (i.e., perfectly) with itself. The pre-
diction equation is not invertible; a regression equation used for .
predicting test A from test B cannot simply be reversed and re-applied
to predict test B from test A. The exception to this rule is when the
correlation between tests is perfect. The assumption of perfect cor-
relations made in equating allows the equating equation to be used for
the inverse transformation.

If equating procedures are used for a prediction problem, the re-
sult will be less-than-optimal predictions., If regression is used
for an equating problem, t.e result will be a lack cf correspondence
between test scores, which was the objective of equating in the first
place.

Linking. Linking is a term which describes the act of equating
at the item level. The objective in equating, as discussed above,
was to put total test scores onto a common metric. Linking is used
to describe the process of putting items “--m different tests on a
common metric. Linking was first invest - 4 as a means to an end
of test equating (Fan, 1957; Lwineford & t.., 1957) and did not gen-
erate a great deal of research interest. More recently, as a result
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of adaptive testing applications, linking has become a legitimate end
in itself. Adaptive testing item pools, because of their size, have
had to be constructed by linking smaller sets of items together on

a common parameter metric.

The objective of this project was to find efficient ways of link-
ing test items. Much of the research available to date has been on
equating rather than linking. There are close parallels between the
two, however, and the following review will include equating as well
as linking efforts. Prediction is a vast subject and will not be
covered except to point out instances in which it was used appropri-
ately as a linking or equating method.

Paradigms of ﬁinkiqgfand Equating

Linking and equating paradigms can be categorized on two basic
aspects: the design by which data are collected and the method by
which the linking transformation is determined. Angoff (1971), in a
classic survey of equating methodology, listed six major equating
designs. In terms of data collection, these six designs can be:
grouped into twn categories: designs assuming equivalent samples of
examinees to achieve equation (Designs I and II) and designs employ-
ing an anchor test to achieve equation (Designs III, IV, V, and VI).
Transformations, in Angoff's designs, are determined either through
linear or curvilinear means. Marco (1977), in a recent survey,
listed three data collection designs: (a) all items are given to a
single group of examinees, (b) the same set of items is administered
t. ‘'ifferent groups of people, and (c) an anchor sect of items is
common to all tests given to differeat groups of people.

There are, in fact, four basic aata collection designs of poten-
tial utility for linking: (a) the equivalent-groups method, (b) the
equivalent-tests method, (c) the anchor-group method, and (d) the
anchor-test method. Angoff's first two designs are contained in the
equivalent-grogps method, and his latter four are examples of the
anchor-test method. Marco's three designs are, respectively, a
special case of the equivalent-groups method, a special case of
the equivalent-tests method, and the anchor-test method.

In theory, IRT explicitly makes the relationship among item
parameters, across groups, linear. There is thus no need to discuss
the curvilinear transformation procedures. Reckase (1979) presented
the most exhaustive array of linear procedures yet encountered. As
will be discussed, however, only the one called the major axis proce-
dure is an appropriate linking transformation method. Transformation
methods thus do not offer much ground for research.

In theory, IRT item parameters are invariant, except for a lin-

ear transformation, across groups of individuals. The constants of
the linear transformation necessary to change one metric to another
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(assuming a unidimensional pool of items), are simple functions of
the means and standard deviations of the abilities of the groups
under consideration. When items are calibrated, tuere are four
values that are undetermined and must be arbitrarily imposed: the 2
and b parameter means and the ability mean and standard deviation.
Among this group of four values, there are two degrees of freedom
cerresponding to unit and origin of the metric to be chosen. The
unit can be specified by fixing either the mean a parameter or the
standard deviation of the zbility distribution. When one is fixed,
the other is determined. The origin can be specified by fixing
either the mean b parameter or the mean of the ability distribution.
Again, when one is fixed, the other is determined. Any one of the
values can be varied at will as long as the corresponding value is
also appropriately adjusted.

As an example, assume that a set of items had been calibrated on
a group of individuals and that the ability mean and standard devia-
tion were set at zero and one, respectively., If desirable, the
ability mean and standard deviation could be changed to 50 and 10.
To do this, each ability estimate would be multiplied by 10 and 50
would be added. Also, the a and b parameters would have to be ajust-
ed accordingly. In this case, the a parameters would have to be di-
vided by 10 and the b parameters transformed by multiplying them by

]

\ability level and is thus not affected by the transformation (i.e.,
any finite linear transformation leaves negative infinity untouched).
A linear transformation such as this could be used to set the mean

and standard deviation of the ability distribution or the mean a and b
values to any value without affecting the performance of the ICC model
as long as both parameters were adjusted in the two pairs.

Item linking in IRT models consists of finding two common values
(i.e., ability mean and standard deviation or item parameter means)
in different sets of items given to different groups of people and
then of determining a linear transformation that equates these values
as well as the remaining two values which are determined by them.

In the methods discussed in the next paragraphs, different sets of
assumptions necessary to match values will be presented, The differ-
er.ces between the methods are in the groups chosen as the reference
groups and in the parameters matched. The concept of the linear
transformation to equate item parameters is the same for all methods.

Méthods based on sampling. In the equivalent-groups method of
item linking, a sample of examinees available for item calibration.is
randomly split into two or more groups, and each group is given a
different set of items. It is assumed that the distributions of
abilities are equal in the various groups; ability mean and standard
deviation are the values matched across groups in this method. Param-
aters a, b, and ¢ are estimated Separately in each group, abilities are
estimated, and ability levels and item parameters are simultaneously
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transformed such that the ability means and standard deviations

of the groups are equal. The mean and standard deviation (i.e.,
origin and unit) of ability are arbitrary v’ en items are calibrated
and must be set to some values. Calibrat!_. grograms (e.g., LOGIST
or OGIVIA) typically set them to zero and one, respectively. In the
equivalent groups method of linking, which assumes equal ability
distributions, setting means and standard deviations equal, as is
done by the program, puts all parameters on a common metric,

The equivalent tests me’.10d allows an item pool to be divided
randomly into sets of items and these sets of items administered to
different groups of examinees, It is assumed that the item subpools
are equivalent, and thus the method derives from the concept of ran-
domly parallel tests. Item parameter means are the values matched
across groups, and no assumption is required about the distribution
of abilities in the samples of examinees. As in “ne equivalent
groups method, parameters a, b, and ¢, as well as abilities, are esti-
mated separately in each group. The difference is that the ability
estimates and the a and b parameters are simultaneously adjusted such
that the item parameter means, rather than the ability mean and stand-
ard deviation, are constant across groups (e.g., mean aof 1.0 and b
of 0.0), Theoretically, the ¢ parameter does not change across groups.

Methods based on anchoring. In the anchor-group method, a
common group (i.e., anchor group) of individuals takes all items in
the pool. Each subset of items is administered to a calibration
group cunsisting of the anchor group and an additional group of
examinees. The distribution of ability in the anchor group is taken
as a standard, and no assumption of randomly sampled examinees or
items is required. This method is conceptually very similar to the
equivalent-groups method. Items are calibrated independently in each
of the calibration groups as in the equivalent-groups method. The
difference lies in the group of examinees on which the origin and unit
of ability are established. In the equivalent-groups method, the
mean and standard deviation of a%ility are assumed constant across
calibration groups so the mean and standard deviation of ability in
each of the groups is set to the same value. In the anchor-groups
method, only ability .n the anchor group is constant across calibra-
tion groups so, within each calibration group, a linear transformation
of the item parameters is found which makes the ability estimate means
and standard deviations within the anchor groups constant across cali-
bration groups (e.g., 0.0 and 1.0).

The anchor-test method is based on a common set of items admin-
istered to all examinees. The anchor items are taken as the stand-
ard against which all other sets of items are calibrated. Parameters
of the anchor test items are first estimated on the entire sample
from the population of examinees. The mean and standard deviation of
ability in this sample can arbitrarily be set %o zero and one, res-
pectively. Then for each subset of non-anchor test items given to a
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subgroup of examinees from the available population, item parameters
and abilities are estimated. Each examinee in a subgroup will have
an ability estimate from the anchor test items and another ability
estimate from the non-anchor test items. Since the metric of the
anchor teat items is the standard, a transformation of item param-
eters of the non-anchor test items must be found which will make
ability estimate means and standard deviations equal for both anchor
and non-anchor test items, As was the case with the anchor-group
method, no assumptions regarding the distribution of item parameters
or abilities are required. .

Composite network methods. The term network linking will be
used to refer to any linking paradigm in which\one of the anchor
methods discussed above is used to simultaneously link items from
more than two tests. Included in this category are the cascading
schemes discussed by Angoff (1971) as well as the more complex net-
works described by Wright (1977) and Forster and Ingebo (1979). Con-
ceptually, network procedures accomplish the same thing as the simple
methods discussed above. They also provide advantages not available
in the simple methods, however. Cascading Schemes allow more effi-
cient use of subjects when abilities are spread over a wide range.
The more complex networks allow this and additionally allow inde-
pendent checks on the links and evaluation of linking adequacy.

Criteria of Linking Adequacy

Item linking and item calibration are two psychometric activi-
ties that are intimately interrelated in practice, They are con-
ceptually, however, two distinct operations, and it is important
to recognize this fact when evaluating criteria for the adequacy
with which each is done. Adequacy of calibration is evaluated by de-
termining the accuracy with which the parameters of the items are es-
timated. The essence of IRT linking, however, is embodied in the
linear transformation used to put items onto a common metric. This
transformation is specified by two parameters: unit and origin. It
{s thus the accuracy with which these two parameters are estimated
that determines the adequacy of the link. Estimates of the two
parameters are subject to the same estimation quality criteria dis-
cussed above in reference to the item parameters: unbiasedness,
efficiency, sufficiency, and consistency.

Few of the studies discussed below have given adequate thought
to the oriteria of linking effectiveness. In most cases, linking and
caslibration effects have been hopelessly confounded. In some studies
of linking, no criteria that adequately reflect linking adequacy have
been included. These deficiencies will be pointed out as the studies
are discussed. More appropriate oriteria will be presented later in
this report.
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Evaluation of Linking Techniques

Rasch Model. Of all the IRT models, the Rasch model is by far
the simplest. It is a special case of the three-parameter lngistic
model which specifies that items can differ only in terms of diffi-
culty. Graphically, this means that each ICC has the same slope but
a different position to the right or left on the theta continuum,
Although not a model of prime interest to the current research, be-
cause it fails to consider that guessing is possible in multiple-
choice tests, mcst of the recent studies of linking and equating have

been done using the Rasch procedure. A representative sample of these
studies is thus reviewed below.

As in other logistic models, the Rasch ability parameters and
item difficulty parameters (the only parameters in the Rasch model)
are expressed on a common scale., Lack of an item discrimination
parameter puts an additional restriction on the model in calibration:
all items must be equally discriminating. 1In typical formulations
of the model, the effective value of the common a parameters is 1/1.7
or about .59. If the actual value (in the logistic model frame of
reference) is .’9, the ability distribution will have a variance of
1.0. If the actual value is anything else, the variance will be
other than 1.0. Similarly, if the average person ability is equal
to the average item difficulty, or item easiness in Rasch termin-

ology, the mean of tnhe ability distribution (in the logistic frame
of reference) will be 0.0.

Lirking, as is commonly done with the Rasch model, consists of
deteruining an additive constant to adjust both item easiness and
ability values to a scale having a common origin. This is typically
done in one of two ways. The first method requires that a common
group of examinees respond to the ite . sets to be equated. Since
the ability of the sample of persons is the same in both item sets,
any differences in average ability computed from the different item
sets are due to differences between the item sets. The second method
requires that two groups of examinees respond to two item sets which
share a common subset of items. 1In this method, the model states
that because the common core of items should have the same average
item easiness in both sets, any observed difference is due to differ-
ences in ability levels of the two groups in which the two sets of
items are calibrated. An adjustment making the item easiness equal
in the core items can be applied to the non-core items to place them
onto the common scale,

In order for linking to be possible in this simple form, the
discriminating powers of the items must be constant not only within
tests but also across tests. Otherwise, only the means of the tests
would be equated and not the variances. Most of the studies in-
volving the Rasch model make the assumption of equal item discrimin-
ations across tests.
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Several recent studies have investigated the utility of the
Rasch model for the equating/linking of the National Board Medical
Examinations. Bell (1979) used an anchor test to equate a 225-item
Physician's Assistants Examination given in 1978 with a similar ver-
sion given in 1976 (referred to here as the reference test). The
2qchor test was a U6-item set that had been included in all Physi-
cian's Assistants Examinations given since the testing program was
begun. Bell evaluated two procedures in terms of their ability to
answer two questions:

1. Is the ability level of current examinees higher than the
- reference groudp on which the reference test was originally
calibrated?

Are the items on the current test more difficult than
those on the reference test?

The procedures Bell compared were the Rasch model and several
variants of linear raw score equating. For the Rasch procedure, each
examination was calibrated separately. This yielded easiness param-
eters for each item set and ability estimates for each examinee group.
Using a shift constant computed from the 46-item anchor test, ability
scores from the current test were shifted to the scale of the reference
test. The linear raw-score equating procedure began by estimating the
mean and variance for both tests from the performances of the current
group and the reference group on their respective tests and the com-
bined (current and reference) group on the common items. These esti-
mates were then used in a linear equation to yleld a raw-score conver-
_sion. This procedure was not specified in detail but reference was
made to Angoff's (1971) equating procedure for groups not widely dif-
ferent in ability. Bell concluded that although each procedure was
capable of answering the question about the ability level of the cur-
rent examinee group, only the Rasch model answered the question about
whether the difficulty of the current items had increased. No dis-
cusssion was given as to the fit of the data to the Rasch model so
judgment of the accuracy of the equating cannot be made. Due to the
brevity of the paper, no more detailed inferences can be drawn.

Kelly (197y) discussed a large Rasch linking study in which items
‘from two forms of a 1,000-item examination were linked together onto a
common scale. The tests ised, licensing examinations for medic¢al doc-
tors, were each composed of Seven subtests of apprcximately equal
length, assessing areas as diverse in content s biochemistry and be-
havioral science. Kelly made the assumption that these subtests all
measured knowledge of medical science and were unidimensional enough
in total to allow Rasch calibration. Statistical tests of this as-
sumption, not described in enough detail to evaluate, reportedly sur-

ported its tenability.
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Kelly described two studies. 1In the first, the seven subtests
of a reference form of the test were administered to approximately
8,500 second-year medical students. Items in this test were all put
onto a common scale by shifting subtest difficulty by an amount
necessary to make ability estimate means zero for each of the sub-
tests. The implicit assumption of equal item discrimination among
subtests was apparently not tested. A second form of the test, the
current form to be linked to the reference form, was given to ap-
proximately 3,000 second-year medical students. There :were an un-
specified number of common items between corresponding subtests in the
two test forms. The linkage between the forms was established by
first calibrating items of each subtest in the current form in the
current group and then setting mean difficulties of the common items
within subtests equal across the two forms. Uncommon items in the
current test were put onto the reference test metric by adjusting them
using the constant used to adjust the common items in the correspond-
ing subtest. This resulted, given the assumptions, in a pool of 2,C00
items all linked onto a common scale.

In the second study that Kelly described, both the reference test
and the current test were first calibrated separately as 1,000-item
homogeneous tests. Linking was accomplished by finding the constant
that adjusted the common -items to have equal mean difficulties in the
two examinee groups. This was done in the same manner used for the
subtests earlier. The difference here was that the entire test was
linked at one time. This study was primarily descriptive rather than
evaluative and, as such, provided no information on comparisons of
linking designs. It did, however, illustrate two different designs.
In the first study, linking was accomplished using a degenerate case
of the equivalent-groups method (in which the groups were identical)
and the anchor-test method. The second study used the anchor-test
method exclusively.

The major flaw in Kelly's study is that it was purely descriptive
rather than evaluative. It would have been informative, for example,
to have a comparison of the two equating procedures using the same
data. It seems reasonable to assume that both procedures would yield
nearly the same results, but an empirical validation would be more
convincing.

In the third study, sponsored by the Navional Board of Medical
Examiners, Hughes (197¢) used data from six tests given to different
groups ¢f examinees and placed the tests onto a common scale. Each
test was composed of either 10 or 11 sets of six multiple-choice ques-
tions for a spscific physician-patient interaction. The common-item
1iaks were thus composed of sets of questions, an arrangement that
probably violated the local independence assumption of IRT.

The procedure for linking the six tests consisted of o complex
network of common-item iinks. An iterative procedure computed

3
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estimates of each test's average difficulty on a common scale and ex-
pected values of the shift constant for tests having no common-item
link. Two indices were proposed to identify inconsistent triads and
links: a triad index and a link index. No information was provided
about the distribution of these indices. Thus, only relative state-
men*s about the quality of the linking networks could be made. Al-
though no conclusions were stated, use of the links and triad in-
dices as diagnostic tools in evaluating the quality of Rasch linking
was suggested.

Rentz and Bashaw (1975, 1977) applied item analysis and scaling
methods of the Rasch model to data from the equating phase of the
Anchor Test Study (Loret, Seder, Bianchini, & Vale, 1974) in the
development of the National Reference Scale (NRS) for reading. The
NRS was developed from seven widely used standardized reading tests
consisting of vocabulary and comprehension subtests. There were
two forms of each test, a primary and an alternate form. All 14
tests were chosen to be appropriate for grades 4, 5, and 6.

Seven pairs of tests were studied at each of the three grade
levels. Each examinee responded to two reading tests, Each pair

_of tests was administered, counterbalanced, to two separate samples

within each grade level yielding a total of 42 samples per grade
level. In addition, each teat was paired with its alternate form,
counterbalanced within each grade level, and administered to 14
additional samples.

All tests at a single grade level were placed onto a common
scale. Within each grade level, test pairs were calibrated as a2
single long test. The average item easiness was computed for each
single test and the differences in averages were then computed for
the test pair. These average differences were organized into
matrices such that the lower half of the matrix contained differences
from one order of testing and the upper half of the matrix, from the
second order of testing. Row and column means were averaged, rever-
sing the signs of the row means (due to reversed orders of admini-
stration), to obtain the equating constant averaged over order of
administration, Tests were then placed onto a common scale defined
by the Sequential Tests of Educational Progress--Series II (STEP-II)
which was administered to all/grade levels.

Comparisons of equated raw scores (i.e., number correct with .no
correction for guessing) from the Anchor Test Study and the Rascn
study were made across samples from each study that took the same
tests in the same order. For each comparison, the first test admin-
{stered was taken a3 the base test. Conditional mean-squared errors
were then computed for each base test score. For thé comparisons
reported, the differences between the equipercentile and the Rasch-
based equated scores ranged from O to 3 raw..score points and were
deemed inconsequential.
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Slinde and Linn (1978, 1979) presented a set of studies designed
to evaluate the adequacy of the Rasch model for vertical equating
(i.e., equating where tests differ widely in difficulty and examinees
differ widely in ability). 1In their first study (Slinde & Linn, .
1978) response data from 1,365 examinees on a 36-item mathematics
achievement test were used. Two tests of differing difficulty were
obtained by dividing the 36-item test into two 18-item tests on the
basis of the p-values of the items obtained in the group of 1,365 ex-
aminees. The average p-values of the tests were .665 for the easy
test and .362 for the difficult test. The examinees were then divid-
ed into lowe, middle-, and high-ability groups on the basis of their
scores on the easy tesc.

Rasch item parameters were calculated for the total set of 36
items in the low oup, the high group, and the total group (the
middle group was _served for later use). Ability estimates were
then calculated for each of these groups (low, high, and total) using
parameters obtained from each group in a crossed design. Mean dif-
ferences between ability estimates derived from the easy test and
the difficult test were then computed and compared.

When the total group ability estimates were calculated using
item parameters obtained from the total group, the difference be-
tween means obtained from the easy and difficult tests was trivial.
Similarly, when the high group mean was calculated using item param-
eters obtained from the high group and when the low group mean was cal-
culated using the item parameters obtained from the low group, the
differences were trivial. When items calibrated in the high group
were used to estimate abilities in the low group or the middle group
and when items calibrated in the low group were used to estimate
abilities in the high group or the middle group, substantial differ-
ences in ability estimate means were found. Slinde and Linn inter-
preted this to mean that Rasch parameters were not really invariant
and that Rasch equating procedures were not particularly useful for
the problem of vertical equating.

Gustafsson (1979) criticized this interpretation. He suspected
that the differences between means was due to regression artifacts
which were due to the fact that Slinde and Linn had estimated abil-
ities and subgrouped people on the basis of only 18 of their 36
items. Individuals would not be expected to pe-form, in a relative
sense, as extremely in either direction on the itire 36 items as
they did on the easy 18: therefore, a difference between means would
be expected. To support his hypothesis, Gustafsson performed a com-
puter simulation modeled closely after the Slinde and Linn study with
the notable exception that the assumed invariance properties of the
Rasch model were built in. His simulation shoyed that the parameter
estimates obtained in the different groups were different but that
this was due to a regression artifact and not to a lack nf invariance,
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He suggested that Slinde and Linn reanalyze their data, subgrouping
individuals on the basis of their total test scores.

Slinde and Linn (1979) improved upon this idea by obtaining data
from ‘1,638 examinees on two different tests including a 60-item read-
ing comprehension test. The first test was used to independently
subgroup examinees. The 60-item test was then split, on the basis
of item difficulty, into two 30-item tests and their original study
was essentially replicated. Their findings were that the mean
differences disappeared in comparisons of the mi&dle with the high
group. Whenever the low group was compared with another group, the
differences persisted. This finding was attributed to the effects
of guessing. No allowance is made by the Rasch model for the possi-
bility that correct responses can be obtaiped through guessing. When
multiple-choice items are used, as was the case here, guessing undoubt-
edly happens and probably tends to bias the results. Most likely this
was a more pronounced effect for the low ability group where subjects
knew the correct answer less often and had more "opportunity" to guess.

Together these studies suggest that linear equating works as
expected using the Rasch model but that problems may result if the
model is used in groups of sufficiently low ability that guessing
occurs with any frequency. Unfortunately, most items used in ob-
jective tests can be answered correctly by guessing and may often be
used in environments where guessing is likely to occur. The three-
parameter logistic model extends the Rasch model to account for guess-
ing and thus may be more generally useful.

Three-parameter logistic model. In the three-parameter logistic
model, as in the simple Rasch model, a linear equation is used to
link parameters on one test to those on another. The one difference
in the three-parameter case is the explicit addition of a scaling
parameter to adjust for changes in unit as well as origin.

Three studies of linking using the three-parameter logistic
model were of direct relevance to the present effort. One, a study
by Reckase (1979), was of interest for two reasons: first he pre-
sented four methods of determining the linking transformation, and
second, he attempted to determine acceptable numbers of items to be
included in ‘anchor tests for adequate linking to be possible. The
four techniques for item linking he presented were: {a) major axis,
(b) least squares, (c) least squares with outliers deleted, and (d)
maximum likelihood.

The major-axis technique got its name from the fact that the
parameter transformation equation was derived from the equation for
the major axis of the ellipse formed by the data points of a bi-
variate plot of parameters of items in the tests being linked. In
simpler terms, it amounted to a linear regression of the current pa-
rameters onto the reference parameters assuming the correlation to be

-
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perfect. Adjustment was made for unit and origin but no actual re-
gression was performed.

The least-squares procedure was a regression procedure where the
correlation was determined empirically rather than assumell to be per-
fect. ‘As discussed earlier, this is not a legitimate lioking method
but rather a method of prediction.

The least-squares-with-outliers-deleted procedure presented was
the same as the least-squares procedure, but items with parameters
further than two standard errors from the regression line were de-
leted. Like the other least-squares procedure, this was not a legi-
timate linking method.

The maximum-1likelihood protedure described by Reckase was really
a version of the major-axis method. The procedure, as described,
made use of the capability of the program LOGIST to treat ‘tems as
Mnot reached”" and ignore them in estimation of ability. What LOGIST
actually does can best be illustrated in the simple paradigm in which
two tests, with some of their items common, are given to two groups.
For examinees taking the first test, items unique to the =2cond are
coded "not reacned." For examinees taking the second test, items
unique to the first are treated as "not reached." LOGIST estimates
abilities for all examinees using all items "reached." This means
that each examinee is scored on those items contained in the test
taken. Using these ability estimates, item parameters are then esti-
mated. Before the estimation process, which is iterative, can proceed
to another stage, the ability estimates are scaled to a mean of zero
and a variance of one. To do this, all item parameters must be appro-
priately adjusted. The adjustment is a major-axis transformation de-
signed to make the parameters of the common items equal and the over-
all ability mean zero and variance one. Asymptotically, the same
result should be achieved by an ordinary major-axis transformation
following separate calibrations. For estimation, however, the maximum-
likelihood procedure has the advantage of using all available data on
the common items for each of the two separate calibrations.

Reckase used live-testing data obtained from administration of
the Iowa Test of Educational Development (ITED) given to 1,000 Iowa
school students from each of grades 9, 10, 11, and 12. The ITED
consisted of seven subtests with a total length of 357 items. A
principal-components analysis produced a sufficiently strong first
component to suggest unidimensionality. The data were calibrated
using each of three programs: (a) a Rasch model program written by
Wright and Panchapakesan (1969), (b) LOGIST, a three-parameter lo-
gistic maximum-likelihood program (Wood, Wingersky, & Lord, 1975),
and (c¢) ANCILLES, a three-parameter logistic minimum chi-square pro-
gram (Urry, 1978).
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This study was deslgned to evaluate the joint effects of linking
method, calibration prodedure, sample size, and anchor test size. As
was discussed earlier, the major-axis method of determining a trans-
formation was the only true equatihg method presented and discussion
will be limited to that method. Sample sizes were %00, 300, 500, .
1,000, and 2,000 obtained using a ngystematic sampl.ng procedure" from
a total of 4,000 cases. Three levels of item overlap were chosen: 5,
15, and 25 items. : '

Four ‘50-item tests were linked in each conditiofi. These tests
were cascaded in the sense that, except for the first and last test,
each test was linked to the previous test and the’ following test by
two different sets of anchor items. Overlap among items in the two
anchor sets in each test was permitted. Linking was performed se-
quentially: the second test was linked to the first, the third test
was linked to the first two, and the fourth test was linked to the
first three.

Each test was calibrated with each calibration program for each
sample size, and each set of four tests was linked for each sample
size and degree of overlap. Thus, ror each linking there were 15
combinations of sample size and common item overlap. The reference
against which linking adequacy was judged was a full calibration of
the entire 357-item test using the full sample.

The adequacy of éhe linking was evaluated in three ways: (a) cor-
relations between the Ninked parameter values and the total-test-cali-
bration parameter value (b) a sum-of-squared-deviations quality-of-
linking index (Wrizht, 19%7), and (c) scatterplots of linked parameter
values versus total-test-calibration parameter valyes.

Results of the correlational analysis for theRasch linking
shawed a predictable pattern of increasing correlations as sample
size and number of overlapping' items increased. No|statistically
significant changes in correlation occurred as the umber of tests
linked increased, but significance would have been difficult to judge
because all correlations were near 1.0. The sum-of-squared-deviations
quality-of-linking index was com uted and reported for the Rasch model ,
but because the chi-square values (a transformation f this index)
were significant, even when the correlations were of the order of .999,
Reckase concluded that this index \bore little relationship to the qual-
ity of linking. Therefore, this quality-of-linking index was not re-
ported for the three-parameter modz}s.

For the three-parameter calibration models, the correlations
tended to follow the same increasing\trend as sample size increased.
No data were available for the 5- or @5-item overlap combinations;
therefore, no conclusions could be drawn regarding trends with in-
creasing item over-lap, From the correlational data reported, there
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seemed to be evidénbe to indicate that ANCILLES performed substan-
tially better than LOGIST.

One problem is apparent in this study. Linking in an IRT model
is an attempt to make a linear transformation of parameters from one
metric to another. Correlations, the major criteria used in this
study, are insensitive to differences between linear’ transformations.
Although they provide information about the accuracy of calibration,
they say virtually nothing about the adequacy of linking. The one
criterion that is related to linking quality, squared error of esti-
mate, was eliminated from consideration because it showed a difference
where the correlations showed none.

As the data for the three-parameter model were not complete at
the time the report was written, the effects of .item-overlap could
not be evaluated. Furthermore, as only one linking paradigm was pre-
sented (i.e., an anchor test design) no comparisons among methods
were possible. Thus, the study served to clarify some issues ».-
garding methods of transformation but did not provide any hard em-
pirical data regarding linking design for the three-parameter model.

Ree and Jensen (1980), ‘n a simulation study, investigated the
Joint effects of varying calfbration group sample size and linking
group sample size on the qua.ity of the item parameter estimates.
Sim:lating two tests with common items, a pool of 140 hypothetical
items was specified. This pool was split into two tests of 80 items
each. Twenty of the items were common to the two tests. The first
test, T1, was taken as the reference test and the second test, T2,
as the current test. Although not stated in the report, the pro-
gram OGIVIA was used for,cayibration (Ree, 1980a).

Two groups of 2,000 hypothetical examinees each were generated
from a standard normal population and a response vector for each
examinee on one of the two tests was generated according to the three-
parameter logistic model. Four samples of size 250, 500, 1,000, and
2,000 were drawn with replacement from each group and were used to
calibrate the corresponding test. The major axis method of linking,
described earlier, was then used to link parameters o~ the current
test to the metric of the reference test,

Two criteria were considered in evaluating the quality of the
parameter estimates. They were the correlations between true and
estimated item parameters and the average absolute differences be-
tween true and estimated parameters. 7, .'ie portion of the study
explicitly disQussingclinking. only the ~.erage absolute differences
were presented 'as correlation3 were expected to be misleading.

Both criteria behaved as might be expected frém other research

when accuracy-of calibration was investigated segbrately in the two
tests. Correlations for the a and b parameters increased and average

AR Y |




absolute error decreased as sample size increased. No definite trend

was obvious for the c¢ parameter, however. It was estimated relatively
poorly at all sample sizes but some improvement was noticeable as the

sample size ro%é,to 2,000, ' -

Linking qdequacy was investigated at each of 16 combinations
of reference and current group sample size for the a and b param-
eters. The ¢ parameter, not in need of linking, was not considered.
The expected trend toward decreasing error in the current test with
increasing sample size was observed, for the most part, in the b pa-

_rameters. As the size of the current test calibration sample in-

creased, error in the b parameters decreased. There was a reversal
with respeét to the sample size used in calibrating the reference
test: errors of estimation for the current-test b parameters were
less for reference test calibration samples of 500 than for 1,000.

Errors in estimating a parameters did not follow such a reason-
able pattern. Errors, as a function of reference test calibration
group size, typically decreased with increasing size. Errors, as a
function of current group size, were highest at a sample size of 250,
lowest at a sample size of 500, and increasing from 500 to 2,000. It
1s this latter trend that was not expected.

An interesting comparison present in the data but not discussed
was the relative quality of linking available fréom assuming equiva-
lent groups of individuals when such an assumption is warranted (as
{t was in this study) compared to the quality of linking obtained
from use of an anchor test. Since the calibration program assumed
the ability metrics were the same for the two groups, the items were
automatically linked upon calibration. Errors incurred in this link-
ing were presented in the last column of Ree and Jensen's Table 5.
when these results are compared to those obtained using the anchor
test presented in their Table 6, it can be seen that the anchor test
method was superior in only three of 16 sample size combinations for
the a parameters and never superior for the b paraméters. Thus, it
appears, an explicit attempt to 1ink items is not always necessary
or desirable.

The third study of consequence to the present effort was a
unique application of the three-parameter latent trait model by
Sympson (1979). The procedure for placing items onto a common 3cale
was unique in that it required neither overlapping groups of exam-
inees nor ‘overlapping sets of items, The data collection plan is
schematically shown in Figure 2. Items were rank ordered in terms
of difficulty and subtests were formed ranging from easy to diffi-
cult. Each subtest was administered to examinees at the grade level
for which it was targeted and at the grade levels one level above
and one level below that. Subtests were calibrated using responses
of the three groups who took each subtest.

s
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Figure 2. Sympson‘s Data Collection Plan

Grade Level
Subset of items 1 2 3 4 5 6
A X X X
f
=77 1
B X | X X |
| |
: :
! l
f
c I X X | X
b e ]
D X X X

In order to place each subtest onto a common scale when there
are no ccmmon items or common person$, Sympson suggested that if
groups are randomly sampled from their respective populations, an
equivalent-groups condition exists. This is indicated by the dashed
box in Figure 2. The assumption of random sampling from a specified
population implies, for example, that the group formed by combining
individuals from levels 3 and 4 who took subset B was a random sample
from tne same "composite" population as the group formed by combining
individuals from levels 3 and 4 who took subset C. FEach pair of groups
sampled from a common composite population was assumed to have the
same mean and standard devfation on the underlying ability metric and
thus comprised equivalent groups.

The paper was simply descriptive of the method and presented no
data suggesting how well it worked. Reterence was made to an unpub-
lished simulation which apparently yielded favorable results. The
paper's primary contribution to the current research is in its sugges-
tion of a rather creative composite of simple procedures,

Conclusions

o

The research reviewed has been useful in suggesting potential
methods of performing the act of item linking. Several data
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collection designs were suggested. Several methods of establishing
the transformations were also suggested and served to clarify the

fact that, for IRT models, only the-major-axis procedure is appro-
priate. Finally, the studies reviewed suggested several criteria of
linking adequacy. They served primarily to suggest a distinction
between criteria of calibration and of 1linking adequacy and to suggest
some candidates for linking-quality criteria.

The studies to date have not, singly or collectively, adequately
dealt with the linking problem in general, however. Reckase (1979)
attempted to compare methods of linking but his comparisons were
primarily between transformation techniques not appropriate for 1link-
ing. Ree & Jensen (1980) praovided data relevant to the comparison of
two data collection designs but the study was too small in scope to
furnisn much information regarding the 1inking problem in general.
The remainder qf tne studies reviewed were primarily reports of how
linking or equ /ad been accomplished for an applied problem and
provided little ight into the general linking problem. The need
for a broad investigation 1.to the general linking problem seems
obvious if linking is to be done accurately and efficiently.

The preceding aiscussion on the need to evaluate calibration and
linking effectiveness separately was not intended to mean that cali-
bration an? linking are independent activit.es. The accuracy with
which items are calibrated will have a definite effect on the accur-
acy with which itewms are linked. If, due to poor calibration, the
ab’lity levels of tue groups are not accurately assessed, the trans-
formation linking two groups will be in error. Similarly, the accur-
acy with which items are calibrated is, to some extent, dependent on
the linking pa-adigm used.

It i< thus important in a study of linking effectiveness to eval- ;
uate not only the adequacy of the link but also the adequacy of i.em
calibrition vnder the various paradigms. Ultimately, it is the accu-
racy w.th which the common-metric item parameters are estimated that
wil. determine the quality of the tests rasulting from these items,
and this accuracy should be evaluated. Causes of inaccuracy in these
parameters must, however, be evaluated by partitioning them into the
effects dua to calibration and the effects due to 1inking.




II. BASIC RESEARCH DESIGN

There a“e three general approaches to evaluating competing stat-
istical or psychometric wethods such as those considered by this
project: a theoretical study, a real-data study, and a Monte-Carlo
computer simulation (*3iss % Betz, 1973). In a theoretical study,

a statistician or psychometrician, work.ng from a basic statistical
model, analytically derives the relevant characteristics of the
various methods and then compares them. An example of this method
was given by Lord (1971) in which he analytically derived several
psychometric characteristics of a testing strategy. The theoretical
me2thod provides exact answers to theoretical questions but is usually
limited to simple comparisons and comparisons made simple by restric-
tive assumptions.

Real-data studies answer different kinds of questions than do
theoretical studies. Rather than answering questions about psycho-
metric comparisons, they answer questions regarding characteristics
of people and interactions of people with testing methods. They, in
themselves, cannot answer questicns such as which method best recov-
ers true parameters because, in real data, the true parameters are
never known. They are, nevertheless, essential in determining char-
acteristics to use in theoretical or simulation studies and as a
verification of the results of such studies.

A computer simulation is a modified theoretical study in which
theory and data come together in a stochastic model simulating the
responses of human examinees. Examples of a simulation study com-
paring testing mcthods are provided by Vale and Weiss (1975, 1978).
Examples of simulation studies comparing calibration techniques are
provided by Ree (1978, 1979). The simulation method is often prefer-
red to real-data studies because true parameter values are known and
more information can be collected more quickly. It is often prefer-
red over a thecretical study because less restrictive assumptions
are required. The simulation method is only as good as the theory
underlying it and the reality of the parameters behind it, however.

To assure that the simulation results are meaningful, a simul-
ation model must do two things: first, it must demonstrate a direct
connection to the real-world problem that it simulates, and second,
it must provide explicit answers to the questions of interest regard-
ing the problem. The simulation models used in this project were
anchored to the real world in two areas. First, the test items sim-
ulated were defined to be similar (in terms of their item parameters)
to Armed Services aptitude items likely to be encountered in an
actual linking problem. Seeond, the populations of individuals taking
the tests were defined to be similar in ability to populations likely
to take Armed Services tests. These procedures are described in the
first of two sections below. ;
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To address the research questions of interest adequately, the
simulations and subsequent analyses must be properly designed and
executed. In the second major section below, the research questions
and the criteria used to evaluate the procedures are ‘ntegrated into
a concrete design for implementation of the study.

Development of Simulation Models

Specification of Items

Analyses of ASVAB item parameters. Two distinct sets of item
parameter data were availahle i)r evaluation in preparation for the
computer simulations. The [irst of these was an OGIVIA-produced IRT
parameter set ‘obtained from the 'subtests of an experimental version
of Armed Services Vocational Aptitude Battery (ASVAB) Form 9 adminis-
tered to Armed Forces Examining and Entrance Station (AFEES) exam-
inees; a sample of 500 examinees was used to obtain the IRT param-
eters. Experimental Form 8 was a form of the ASVAB developed to
parallel then-operational Form 7 (see Fruchter & Ree, 1977). The
second set of data included the classical item parameters (i.e., the
{tem-total score correlations and proportion correct) obtained from
new Forms 8, 9, and 10 of the ASVAB, administered, in a previous pro-
ject, to groups of high school juniors and seniors. Each forn was o
given to approximately 500 examinees.  These parameters were trans-
formed to IRT a and b parameters using Urry's method of simple ap-
proximation (Jensema, 1976). Because all items were four-alternative
multiple-choice items, the ¢ parameters were all set to .25

New ASVAB Forms 8, 9, and 10 differed from the old Forms 5, 6, and
7 (and, hence, from Experimental Form 8 discussed above) in that three
of the original 12 subtests were eliminated, two subtests were com-
bined, and two new subtests were added. Thus, there remained seven
subtests in common between the two sets of available data. One of
these subtests, Numerical Operations, was a speeded test and was there-
fore eliminated from consideration here because the logistic model is
inappropriate for speeded tests. The six remaining subtests were Word
Knowledge (WK), Arithmetic Reasoning (AR), Mathematics Knowledge (MK),
Electronics Information (EI), Mechanical Comprehension (MC), and General
Science (GS). 1In the new Forms 8 to 10, the lengths of five of these
subtests were increased by 5 or 10 ttems; only the electronics test was
shortened (by 10 items). See Table 1 for the numbers of items avail-
able, in each of these subtests. These six subtests formed the basis
for comparisons between Experimental Form 8 and the new Forms 9 to 10.

Table 2 presents summary statistics of items from the tests ~
analyzed. The first four .colimns present values obtained for the
first four central moments on the subtests of Experimental Form 8.
The remaining four columns show values of the four moments obtained
by pooling items from the new ASVAB Forms. 8, 9, and 10.
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Table 1. Number of Items in the Two Sets of Item Parameter Data

New Forms 8, 9, 10

Experimental Within Across All
Subset Form 8 One Form -Forms Available

Word

Knowledge (WK) 30 35 175
Arithmetic ) -

Reasoning (AR) 20 30 ' 180
Math

Knowledge (MX) 20 25 75
Electronics

Information (EI) 30 26 60
Mechanical

Comprehension (MC) 20 25 75
General

Science (GS) 20 25 75

y

Note: For WK and AR, a total of 6 different forms sxisted for each
subtest (e.g., Forms 8A, 8B, 9A, 9B, 10A, 10B): only the first five
forms for WK were available for analysis and comparison. Only three
distinct forms of each subtest existed for the last four subtests
listed. -

Mean proportions correct were higher on the new forms than on
the experimental form. Values for each of the subtests clustered re-
latively close to the median values, however. The standard devia-
tions were approximately equivalent across forms, again clustering
near their medians. Comparing median skews, the proportions correct
appeared to be nearly symmetric in both data sets. A relatively wide
range of individual values was observed, however. Kurtosis was quite

~~ constant both within and across data sets; all proportion-correct
distributions were quite platykurtic.

Biserial item-total correlations had relativelv consistent means
and standard deviations., There was some variation In skew within data
sets. In the experimental form, values of skew ranged from -.872 to
.012, In the new forms, the subtest skew ranged from -.432 to .089,
Both medians were negative and not very different from each other.
Kurtosis showed a wide range in the new forms, ranging from -1.009
to .390. It was less variable in the experimental form, ranging from
-.822 Lo .120, The medians for the two data sets were not substan-
tially| different, :

It was the IRT parameters, a, 3.*and ¢, that were most relevant

to thiis project, however, as they were to form the basis for the sim-
ulatidn models. Mean a parameters were consistent within and across
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Table 2. .tem Parameter Summary Statistics
from Expeririental Form 8 and New Forms 8, 9, 10

New Forms 8, 9, 10
Experimental Form 8 (Pooled)
Test Mean SD Skew Kurtosis Mean 3D : Skew Kurtosis

Prop. WK .602 .152 -.309 -.994 716 .150 -.338 -1.024
Corr. AR .555 .18S .369 -.568 656 .130 .121 -.T66
MK 518 .141 172 -.91) 619 ,126 .111  -.664
EI .598 .126 -.,455 -.750 .640 .160 -,230 -.955
MC .492 .165 .650 -.545 .625 .133 -.018 -.693
GS 511 132 .178 -.997 .660 .148 -.450 -1,004

Mdn .536 .146 ,175 -.830 .648 .140 -.124  -.860

Bis. WK 700 113 -.T7 .021 .670 .139 =-.362 -.U466
AR .667 .071 -.080 -.470 646 ,105 -.432 .390
MK .588 .124 -,T44 -.608 .666 .084 -.089 -.862
EI .694 .089 -.872 -.145 .508 .136 -.097 -1.009

MC .625 .081 .012 -.822 .518 .110 .089 -.325
G3 .629 .090 -.019 .120 .565 .112 -.044 -.891

wdn  .648 .090 -.398 -.308  .606 .111 -.093 -.664

a WK 1.769 .536 -.124 -.180 2.171 .996 -.214 -1.621
AR 1.816 .573 .789 L4100 1,999 .904 .212 -1,498
MK 1.602 .49 .706 .500 2,146 .8u8 .058 -1.581
EI  1.486 .409 .u44  -,190 1,183 .Tu8 1.356 1.040
MC  1.613 .388 -.129 -.713 1.116 .584 1 fay 4,075
GS 1.478 .627 1.019 1.433 1,439 .824 1.112 .012

b wK -.005 .686 .312 -.810 =-.333 .707 .309 -.375
AR .198 772 -.484 -.,572 -.126 .627 -.594 1.052
MK .510 .976 .525 =~.016 .019 545 -,226 -.063
EI -.014 .567 .098 -.886 .080 .908 .639 -.6T1
MC ..577. .859 =-.495 -.633 .070 .788 219 .128
GS .413 .650 .456 -.027 -.079 .764 .825 -.376

K Mdn .306 .729 .205 -.692 -.030 .T36 .304 -.219




Table 2 (Continued), Item Parameter Summary Statistics
from Experimental Form 8 and New Forms 8, 9, 10

New Forms 8, 9, 10
Experimental Form 8 (Pooled)
Test Mean SD Skew Kurtosis Mean SD Skew Kurtosis

c WK . .143 ,067 .482 -,518
AR 262 114,400 .635
MK .293 .098 754 -.um
ET 170 069  .626 -, 467
MC ° .287 .091 ,938 .265
GS .225 .13 -,368 -1.039

Mdn .224  ,004 544 -.439

Note: For the new Forms 8, 9, and 10, the c parameter was set to .25
for all items,

data sets; median values were 1.608 and 1.719, Standard deviations
were quite variable within each data set, and the medians were mark-
edly different (.492 vs. .836). The skews were typically oositive but

"again somewhat variable. There were wide differences in kurtosis

within and across data sets, as observed for _Lhe biserial correlation
coefficients.

Part of the variability in the item statistics for the new ASVAB
forms was undoubtedly due to difficulties with the item calibration
procedure which caused a values to cluster at the upper limit. This
clustering may be attributed to an artifact of the transformation
procedure performed on'the classical parameters from the new ASVAB
forms., The theoretical relat&onship between the item-total biserial
coefficients and the IRT a parameters is exponential, with high values
for the former leading to very high values for the latter. At the
upper end of the a distribution, then, the points are more spread out
thdn they are at either the low end of the a distribution or the upper
end of the distribution of bisérials, (In this transformation proce-
dure, the maximum a value was defined to be 3.20 and any transformed
a which originally exceeded that value was set to 3.20. %ee Table
3 for the numbers of items which reached this maximum value,) This
phenomeron would produce a distribution o a parameters vhich had a
larger :ean and s-andard deviation, was more positively skewed, and
was somewhai more platykurtic than might otherwise be found, This,
of course, is exastly what was observed foE:Fhe new ASVAB forms,

\

The item parameters for Experimental Fo 8, were produced by
the OGIVIA program which relies on the same thansformation for the
initial parameter estimates, There are two crgiial differences
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Table 3. Numbers and Percentages of Items From the New
Forms 8, 9, 10 With a Parameters Set Equal to the Maximum Value

N in N with Percentage with
Subtest Subtest Maximum a Maximum a
WK 175 72 41,14 ;
AR 180 50 27.78 ) i
MK 75 21 28.00
EI 60 y 6.67
MC 75 3 4.00
GS 75 9 12.00
Total 6540 159 24,84

between these parameters, however. The first is that the OGIVIA-pro-
duced a parameters from Experimental Form 8 were restricted so that
the maximum a during the first and second stages was 2.40. During
the ancillary corrections, however, there was no bound on the a param-
eters, and they were permitted to exceed 2.40 at this stage. The
difference between the two procedures lies in OGIVIA's refinements of
the item parameters based on values of the ¢ parameters. For Experi-
mental Form 8, as will tc discussed below, the c parameters were
quite variable. Although this was probably also the case with the
"true" c's in the new .ASVAB forms, all these c's were set to .25.,
The effects of these restriztions and of the c parameters on the
estimation of a is reflected in the observation that the OGIVIA-
produced a parameters diid not cluster at the upper end of the dis-
tribution, and none werte unreasonably large. Table 4 presents the
numbers of items whose a parameters were equal to or exceeded 2.10
after the ancillary corrections; these relatively small values should
be contrasted with the numbers of items with a parameters set to the
maximum (3.20) in Table 3. -For Experimental Form 8, only two items
had a parameters exceeéding 3.20.

The b-parameter Means (Table 2) were slightly variable among
subtests of the experimental form and quite constant in the new forms.
Overall, the b paramefers were slightly higher in the experimental
form, indicating that -either the items were more difficult or the
AFEES examinees were less able than “he high school students. Stan-
dard deviations were variable within data sets, but thelir overall
medians were essentfally equivalent. Skews ranged from -.495 to .525
in the experimental form and from -.594 to .825 in the new forms.
Corresponding medians were .205 and .304. Kurtosis ranged from
markedly flat to normal in %the experimental form and from markedly
flat to markedly peaked in the new forms; the kurtosis medians dif-=
fered somewhat.




Table 4.
Experimental Form 8 With a Parameters Equal to or Exceeding 2.40

Numbers and Percentages of Items From

N in N with Percentage
Subtest Subtest a > 2.0 with a > 2,40
WK 30 ] 13.33
AR 20 3 15.00
MK 20 1 5.00
EI 30 0 0.00
MC 20 1 5.00
GS 19 2 10.53
Total 139 1" 7.91

Note: One item from the original 20-item GS subtest was rejected by
OGIVIA. Hence, IRT parameters were available for only 19 GS items.

Moments of the ¢ parameters were calculated only for the experi-
mental form as all ¢ values were set to .25 in the new forms. Means
and standard deviations were relatively consistent about their
medians of .2U4 and .094, respectively.

with one exception.
to somewhat peaked.

Skew was typically positive,

Kurtosis was variable, ranging from quite flat

Table 5 presents intercorrelations among item parameters for
Experimental Form 8 and new Forms 8, 9, and 10. For the new ASVAB
forms where ¢ was not estimated but, rather, set to .25, only the
correlations between a and b could be calculated. The individual
correlations exhibited considerable variation in all columns. The
median of each column is presented at the bottom of Table 5. For
Experimenta’ Form 8, these medians were all essentially zero. For
the new forms, the median a-b correlation was -.438.

Specification of a representative item domain. 1t appeared

reasonable to assume that the item parameters summarized in Table 2
represented, with a few exceptions, a fair picture of the item do-
mains ‘'likely to be encountered in the world of military testing. To
form a basis for the simulations, a representative domain of items
As with most scientific problems, there was a
tradeoff between fidelity and practicality. The most faithful pro-
cedure would run all simulations on item sets representing each of
the six subtests evaluated in Table 2.
would limit the number of simulations that could be run on any one
The approach taken in this project began by evaluating the
item parameter data presented above to determine how far the six sets

had to be specified.

item set.

could ressonably be collapsed.
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Table 5. Parameter Intercorrelations for
Exper imental Form 8 and New Forms 3, 9, 10

\

Experimental Form 3 New Forms 8, 9, 10 __
Subtest a=b _ a-c be a-b
WK .Zsu 0311 0718 -0659
AR —0152 “0151‘ --607 -0173
MK 027 -.33%  .233 037
EI 0300 0027 0315 -.625
HC - —.526 0011 "‘.ugu “031‘9
GS -.321 .026 -.104 -.527

Note: The c parameter was set to .25 for all items in the New Forms
8, 9, 10. Therefore, only the correlation between the a and b para-
meters could be calculated.

The a parameters of the new forms were plagued by extreme esti-
mates in nearly one-fourth of the items (see Table 3). Comparison
of the first three tests with the last three tests hints at the extent
of this problem. The safest route appeared to be to disregard the a
parameters from the new forms and c<~ ‘ntrate on those from the ex-
perimentai form. A single domain with mean 2 of 1.6 and a standard
deviation of .49 seemed reasonable. Skew and kurtosis values ap-
peared to be nearly rectangularly distributed with few clusters. This
suggested s:ither one or six separate distributions. Six distributions
seemed to be an extreme number to simulate Jjust to-capture differences
in skewness and kurtosis. Median values were thus used. For the
computer simulations, then, 3 was specified as having a mean of 1.6n,
a 'standard deviation of .49, skew of .58, and kurtosis of .16.

Although the medians of most of the b parameter moments were
similar across the two forms, none of the distributions were appro-
priate for an adaptive testing item pool. Since adaptive testing
is one of the major reasons for interest in IRT, the difficulty dis-
tributions were extensively altered for simulation. An item pool
often considered ideal for adaptive testing has b parameters rec-
tangularly distributed between b=-3.0 and bz3.0. Such a distribution
has a mean of 3.0, a standard deviation of 1.73, a skew of 0.0, and
Kurtosis of -1.2. It is not unreasonable to expect item writers to be
able to produce items similarly distributed. To allow for the prac-
tical consideration that more weight will undoubtedly be given to the
center of the distribution, these specifications were relaxed somewhat.
Thus, the b distribution used for the simulation was specified to have
a mean of 0.0, a standard deviation of 1.5, a skew of 0.0, and a kur-
tosis of -1.0,
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For input into the computer simulations, the ¢ parameter distri-
bution was specified to be as it was for Experimental Form 8. The
parameters were: mean ,24, standard deviation .09, skew .54, and
kurtosis - 44, Because the median inter-parameter correlations were
essentially zero for Experimental Form 8, uncorrelated parameter dis-
tributions were used for the simulations,

. Item parameters were generated from the specified mean, variance,
skew, and kurtosis using the powey method described by Fleishman
(1978). Thia procedure allows random numbers to be generated with
the first four moments asymptotidally specified.

Item parameters specified as described above did mot always pro-
duce acceptable items. A few items were so extreme in difficulty
that either all simulated examinees responded ‘correctly or all res-
ponded incorrectly. When this happened, it was not possible to esti-
mate parameter values for the item and it had to be discarded at the
calibration phase. To prevent this from happening, ‘items were re-
Jected at an earlier phase when they were first generated if the ex-
pected proportion correct in a standard normal population was below
.03 or above .97. This expected proportion correct was obtained

from Equation 2 (From Owen, 1969, Eq. 6.2). \ -
P=zc+ .5 (1-¢) [1-erf(D)] , (2]
where D =b [2(a 211”172 .
X
and erf(x) = 2 (n)~1/2 ‘[l gxp(-tz) dt
0

Rejection of items in this minner was expected to affect the
distributions of the item parameters such that the moments would not
be exactly as specified in the preceding paragraph. Since moments of
the true parameters were needed for evaluation of some of the linking
methods, a simulation was run to estimate these moments. In this
simulation, 10,000 acceptable items were generated using the proce-
dure described above. The first four moments were .calculated for the
three item-parameter distributions. For the a parameters, the mean,
standard deviation, skew, and kurtosis, respectively, were 1.585,
.488, .602, and .220; for the b parameters they were .227, 1.337, °
.079, and -.995; for the ¢ parameters they were .240, .090, .527,
and -.849, The only noticeable changes resulting from this rejection
were in the b parameters; the mean rose slightly and the standard
deviation and skew dropped slightly.
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The objectives of the analysis of the AFEES ability distributions
were threefold. The first was to obtain parameters of ability dis- 1/
tributions for use in simulation models. Since one link between sim
ulation and the real world is the ability distribution which generat&i
the response vectors, the parameters describing this distribution .
should, 'as closely as possible, reflect the current AFEES examinee pop-
ulation.. The second objective was to determine whether the AFEES exam-
inees were sufficiently variable in mean ability to make item cali-
bration mare efficient by non-random assignment of experimental items.
The final objective was to determine if the AFEES examinees were
sufficiently similar that the equivalent-groups method could be effec-
tively appliad using the AFEES.3s the experimental sampling unit, even
though that hou}g violate a basic assumption of the meggod.

Examinee data available. The primary data available for analy-
sis consisted‘pf number-correct scores of 500 applicants from each of
the 65 Continental United States {CONUS) AFEES on 12 subtests of :
ASVAB-7 randomly selected from tedts administered during calendar year
1979. Six of the ASVAB-7 subtests were deleted from the analysis
aither because they were speeded tests or because they had been elim-
inated in the newer versions of the ASVAB., Fifty-six cases, in which
keypunch errors were encountered, were deleted from the 32,500 cases
available for analysis, leaving a total of 32,444 cases for further
analysis., Thqge deletion3 were essentially random and no single AFEES

lost more than three cases %o such errors.

Additionally, data from a sample of 500 applicants tested on an
experimental version of ASVAB-8 were available in summary form. These
data consisted of grouped frequency distributions of modal Bayesian
latent trait estimates from the item calibration program, OGIVIA.

« They were collected during calendar -year 1978. .
I

Score data available. ' Ideally, latent trait estimates of abili-
ty should be used to evaluatekthe distributional characteristics of
the underlying trait. The {ndividual item response vectors needed to
compute latent trait ability estima.es were not available for analy-

" sis, however, The raw number-correct scores that gomprised the pri-
mary data set were less than optimal for evaluation of ability dis-
tributions for several reasons, One major problem with using number-
correct scores is that different response patterns can result in the
same number-correct score. When test items differ in their charac-
teristic functions, differing response patterns to a set of items,
each containing the same number of correct repénses, can result in
differing ability estimates. The effect of this is that the shape
of the distribution of number-correct scores may differ from that of

the underlying ability.
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If IRT item parameters are available for a set of items, the
test characteristic curve can be computed. This curve relates abil-
_1ty levels to true scores and can be used to approximate ability
levels from number-correct scores. The item parameters were not
available for ASVAB-7, however, and this transformation was ‘not
possible. The ability distributions were thus developed by simply
standardizing the number-correct scores. The shape of the distri-
bution of standardized scores would be correct if the test charac-
teristic curve was linear. The degree to which this was true in the
available data was not readily assessable. ’

The limited set of data available from the experimental form of
ASVAB-8 did, however, proviuie an avenue for verification that the
distribution shapes were reasonable.” A£lthough these data were not
sufficient to draw agy conclusions regarding differences among AFEF-,
they were adequate for evaluating the representativeness of the th:rd
and fourth moments. ;

Raw-score analysis. The parameters of the ability distri .utinns
for each subtest were estimated from the first four central m,r en's
of the total AFFES sample. The means and variances were set ! =zaro
and one, respoctively, to facilitate subsequent analyses. 7z e 6
presents the skew and kurtosis for each ASVAB-7 subtest. Witn the
exception of Word Knowledge and Electronics Information scores, which
had slight negative skews, the remaining subtest scores had slight
positive skews. Almost all subtest scores exhibited marked platy-

kurtosis.
Tavle 6. Overall Skew and Kurtosis
ASVAB-7 Number-Correct Scores (N=32,4u44)
Subtest Skew - Kurtosis

WK -. 114 -.991
AR .162 -.850
MK ) -328 --717

ST EI . -.213 -.247

o~

Because of the extreme flatness of the observed-score distri-
butions, a check was made to ascertain whether this was due to out-
liers or whether it represented the true shape »f the distribution.
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The raw-score frequency distributions of a random sample of approxi-
mately 4% of the total AFEES sample for each ASVAB subtest are pre-
sented in Figures 3 to 8. it is apparent from the figures that the
observed flatness was not an artifact caused by a clustering of scores
at the endpoints. Thus the platykurtosis of the ability distributions -
is a realistic representation of the actual shape of the distribution.
An earlier study by Fruchter and Ree (1977) describing the.psychometric
characteristics of experimental ASVAB Forms 8, 9, and 10 compared tc
operational Form 7B presented descriptive statistics from a sample of
AFEES examinees similar to the present sample. Their results indicat-
ed the same trand toward platykurtosis as was found in this project.

" Differences among AFEES. Two of the objectives of the AFEES
evaluation centered cn the determination of the differences in abil-
ity distributions among AFEES. Raw Scores for all subtests were
standardized by a linear transformation to a mean of zero and a stand-
ard deviation of one, as discussed above, to approxjmate the metric of
a standard ability continuum. This standardization was done across
all 32,444 examinees. The first four moments of these standard scores
were then computed within each of the 65 AFEES groups.

Table 7 present summary statistics on the AFEES for each ASVAB
subtest. The columns are the four central moments computed across
AFEES (i.e., mean, standard deviation, skew, and kurtosis). The rows

Figure 3. Raw Score Frequency Distribution
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Figure 6. Raw Score Frequency Distribution
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Figure 8. Raw Score Frequency D.<tribution
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represent the ASVAB subtests and within each subtest, the mean,
standard deviation, minimum and maximum of the first four moments.
The mean of the means was zero in all cases since the computation was
done on standard scores. The mean of the standard deviations was
somewhat less than one. This is because part of the overall variance
is due po variance among subgroup means which is not included in this
calculation.

The standard deviations of the AFEES means.and standard devia-
tions.are of interest in that they provide information regarding
the error that will be introduced into the linked b and a parameters,
respectively, if differences among the AFEES are not controlled in
the linking process. If, for example, the equivalent-groups method
was used and sampling was done non-randomly by assigning different
bookle.s to each AFEES, these standard deviations are related to the
root-mean-square (RMS) pz-ameter error that would be introduced into
the item parameters (the square of these values would be added to the
mean-square error). The standard deviations of the AFEES means
ranged from .201 to .244 which indicated that the AFEES were rela-
tively homogeneous with respect to deviations aboLt their central
values. The mean-square error expected to be add:d to the linking
error on the b parameters when .ampling by AFEES was thus on the
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order of .080 to .060. Likewise, the rzuge of linking error expected
to be added to the a parameters was on the order of .001 to .003
(squared standard deviations of the AFEES standard deviations).

Table 7. Standard-Score Summary Statistics
Acrass AFEES for ASVAB-7 Subtests

AFEES Moments by Subtests

Subtest Mean SD Skew Kurtosis

WK Mean .000 .971 -.100 -.878

SD .235 .041 .2u5 .158

Min -.634 .876 -.512 -1.119
Max .385 1.090 .557 -. 408

AR Mean .000 .975 .162 -.739 -

sD .222 .037 .219 219 °

Min -.1465 .852 -.350 -1.026
Max 428 1,056 .725 .157

| MK Mean - .000 .978 .321 -.620

. SD .-~ .201 .0u9 .202 .306

Min -.340 .798 -.084 -1.078

Max .409 1.059 .718 212

. EI Mean .000 .972 -.188 -.193
: SD .230 .09 .152 .253
Min -.544 .831 -.607 -.598

Max .384 1.056 .818 1.198

MC Mean .000 .959 .384 -.307

SD .auy .050 .196 .365

Min -.518 .T794 -.073 -.832
Max .hys 1.094 .820 .911
’ GS Mean .000 .974 .268 -.1480
SD .225 .033 167 .au5
Min -. 443 .882 -.097 -.867

Max .382 1.031 .680 -, 469

Comparisons of the overall skew and kurtosis given in Table 6
for each subtest with the skew and kurtosis for AFEES by subtest in
Table 7 revealed virtually the same magnitudes and directions for the
respective subtests. This indicated that the distributions of scores
within AFEES were very similar in shape to the distributions over all
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AFEES. Thus tﬁe four central moments computed for each subtest
appeared’ to be ?easonable estimates of the unknown true population
values.

-

Modal Bayesian trait estimates. A parallel analysis was conduct-
ed on the available grouped frequency data provided by the IRT cal-
ibration program by computing the first four central moments for each
ASVAB subtest. The formulas used to compute the moments were cimply
generalized versions of the formulas for ungrouped data where each
element in the sum was the midpoint of its class interval weighted by
the frequency of its occurrence.

As with the number-correct scores, the grouped modal Bayesian
estimates exhibited consistent platykurtosis which ranged from -.607
for Arithmetic Reasoning to -.B860 for Word Knowledge (see Table %).
Similarlﬁ. a slight skew was observed. Comparison of Table 8, which
<hows the four central moments for the ASVAB-R modal Bayesjan esti-
mates, with Table 6 for the ASVAB-7 number-correct scores, indicates
- -that the skews observed for the modal Bayesia. estimates were similar -
to those of the ‘number=correct scores observed over all AFEES. Agree-
ment between data sets on observed kurtosis was also apparent, Both
data sets agreed in direction and magnitude of the observed kurtosis.

Table 8. Mean, Standard Deviation, Skew, and Kurtosis of
ASVAB-8 Modal Bayesian Ability Estimates (N=500)

Subtest Mean SD Skew Kurtosis
WK . .086 . 854 ‘ 77 -.860
AR 094  .805 . 164 -.607
MK .10 736 .195 -.643
, EI .078 .807 .026 -.623
MC .087 .785 ) . 145 -.782
GS 137 .729 .280 -.702

Overall, analysis of the modal Sayesian ability estimates tended
to confirm the results of the number-correct score data and support
the observation of flat ability distributions on ASVAB subtests. Al-
though restricted to a fairly small sample (Nz500) compared to the
number-correct data, the modal Bayesian estimates were the preferred
type of data. The results from these two rather disparate data sets




tended to reveal the same general trends; therefore, the actual shapes
of the underlying trait dimensions appeared to be adequately rep-
resented.

tions had to result in specification of a set of parameters to define
the simulation models. To accommodate the simulations to be perform-
ed, two sets of ability parameters were needed. The first set re-
quired ability parameters for the overall AFEES distribution and the
second seb’ ‘required ability parameters to-describe each individual

AFEES;

The data summarized consisted of six ASVAB subtests, representa-
tive of ability tests used by the Armed Services. To specify the
parameters for the simulations, the first question to be answered was
whether a single set of parameters could -epresent all of the tests
or whether several. sets would have to be included in the simulations.
To answer this question, the skews and kurtoses of the overall distri-
butions were of primary interest as the means and standard deviations
were to be set to zero and one. Tables 6 and 8 allow comparisons
between the skews and kurtoses of the ability distributions on the
six subtests. Although many of the differences between subtests were
statistically significant due to the large sample sizes, the absolute
magnitude of the differences was relatively small. A general state-
ment could be made that the ability distributions were, in most
cases, symmetric and flat. The decision was thus made that a single
subtest's ability distribution could be taken as representative of
Armed Services ability tests.

The question remaining was how to choose the most representative
test. Of two possible solutions, one was to use median values for
the distributional parameters across the six subtests, while the other
was to select a single test as representative and use its parameters
throughout. It is possible, under the first approach, to get im-
possible combinations of parameters. Also, across AFEES, the param-
aters thus defined would have less variability than a typical set of
parameters. A single test was thus chosen as representative of the
ASVAB subtests.

To choose that subtest, the subtests were rank ordered according
to their absolute deviations from the median of the overall skew and
kurtosis values shown in,Table 6., General Science and Arithmetic
Reasoning ranked closest to the median for skew. General Science and
Math Knowledge ranked closest to the median for kurtosis.

Across AFEES, it was essential that the test chosen as repre-
sentative have representative variability in mean and standard devia-
tion of the individual AFEES groups. The six subtests were thus
rank-ordered on the standard deviation of their means across AFEES
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and the standard deviation of their standard deviations across AFEES.
From the data in'Table 7, it was determined that the typical tests in
terms of variability of means werg Electranics Infermation and Gen-

eral Science. 1In terms of standard deviations, the most typical were

Math Knowledge and Word Knowledge.

Of- the four comparisons, General Science was one of the most
typical subtests in three out of four comparisons, the most cf any
3ubtest. Its parameters were thus selected for the simulation model.
‘The overall ability parameters were thus mean of zero, standard devi-
ation of one, skew of .259, and kurtosis of -.560. The four param-
eters from each of the 65 AFEES on the General Science test were used
for individual AFEES simulations. These are listed in Appendix Table
A-1.

Basic Data Sets

Four basic item linking paradigms were to be evaluated. It be-
came apparent from review of the Armed Services calibration environ-
ment that practical administration constraints might, in a predict-
able fashion, violate a basic assumption of at least one of the para-
digms. Specifically, the assignment of experimental test booklets to
AFEES examinees would possibly be done non-randomly. In the limiting
case, it is possible that each AFEES might receive a single form of a
test booklet and, further, might be the only group to receive that
booklet. Thus, two distribution schemes were simulated, the ideal
case reflecting random distribution of test booklets and the worst
case expected, that of non-random distribption.

The additional possibility existed that items might be calibrated
on a selected group of examinees, such as those already in the Armed
Services. A basic data set reflecting this situation was thus also
developed.

Randomly sampled examinees. For the random-distribution case, a
two-way grid composed of 12 combinations of test lengths of 20, 35,
50, and 65 items with examinee group sizes of 500, 1,000, and 2,000
formed the framework of the design. Within each cell, the specified
number of examinees was randomly drawn from a standard ability popu-
lation with a skew of .259 and a kurtosis of -.56G. A s2aple of items
was then drawn with parameters following the domain distcibution spec-
ified in an earlier section. This process was repeated five times
in each cell, with new random samples of examinees and items each
time.

Systematically sampled examinees. The non-random procedure was
similar to the random procedure except that for each replication, one
of the 65 AFEES was randomly selected (with replacement) and its dis-
tributional statistics on the General Science test were used to de-
scribe the population from which examinees were drawn. In a real
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calibration design, the non-randomness of the sampling procedure
would probably be less extreme. Each test booklet would probably be
distributed over several AFEES groups. The exact distribution plau
could not be predicted, however, and the limiting case was chosen to
provide a bound to the errors that could be expected.

Selected examinees. One row of the basic matrix corresponding
to 1,000 examinees was simulated at the standard test lengths of 20,
35, 50, and 65 items for the selected examinee condition. As with
the other conditions, five replications were done in each cell. 1In
this condition, however, 1,500 examinees were generated and sorted on
the basis of the number-correct score. One thousand individuals
with scores at or above the score of the individual ranked 1,000th
were selected; This procedure was done to simul ate examinees se-
lected on the basis of a cutting score and the cutting score was
chosen to be similar to that used by Ree (1979).

Composite sets of items. To evaluate the effects of linking
proceduﬁes, items from more than one calibration must be combined and
linked. To facilitate this evaluation, tiio types of composites were
assembled from the basic data sets. In the homogeneous condition,
the five sets in each cell of each 3xl4 or 1x4 matrix were linked to-
gether. In cells containing 20-item sets, 100 items were linked to-
gether; in cells containing 65-item sets, 325 items were linked to-
gether. Composite sets so assembled provided dat: regarding linking
adequacy when alli sets included were homogeneous with regard to test
length and size of calibration group.

The second type of composite, the heterogeneous conditionzlwas
formed by selectirg 20 items from »ne set of each of the 12 cells of
the 3x4 matrix to form a set of 240 items. Ttems beyond the first 20
in a set were ignored. This procedure resulted in five composites
from each matrix, one corresponding to each replication within the
cells. This type of composite ylelded data regarding linking ade-
quacy when sets included were heterbé%neous with respect to test
length and cal}brati)n group size.

Calibration of items. For each of tne 140 administrations enum-
erated above, item responses were generated using true atility levels
and true parameters according to “he following algorithm:

1. The probability of a correct response to an
item, given an individual's ability and the
true item parameters, was calculated using
Equation 1.

2. A random number from a rectangular distribu-~
tion on the range firom zero to one was drawn.
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3.

A response of "correct" was assigned if the
probability exceeded the random number.
Otherwise, a response of "incorrect" was
assigned. (See Ree, 1980b, for a more detailed
description of this type of procedure)

The item response data thus created were used as input to the item:
calibration program OGIVIA. This program provided item parameter
estimates and modal Bayesian ability estimates (using a standard nor—
mal prior ability distribution).

For each of the admiaistrations, the following statistics were
recorded:

1. The first four moments of the population ability
distribution.

2. The true parameters for eachvbf the items.
3. _The estimated parameters for each of the items.
4, The true ability level for each examinee.
5. The estimated ability level for each examinee.
6. The response of each examinee to each item.
These data formed the basic data sets used for analyses of the four

basic linking methods. How the same data were used for the four dif-
ferent linking methods is described below.

Evaluative Criteria

Three categories of evaluative criteria were used to evaluate
the adequacy of calibration and linking. The first category included
the usual fidelity-of-estimation criteria used in previous studies.
They were used in this study to provide simple indices of estimation
accuracy and to provide a means of comparing the results of this study
with those of previous studies. .

A study of calibration and linking must consider that, ultimately,
the interest will be in the effects of different technlques on the esti-
mation of ab.lity. Fidelity-of-estimation criteria do not afford any
direct infe ence regarding accuracy of ability estimates. To amelio-
rate this problem, the last two categories of criteria evaluate the
asvmptotic (i.e., infinite test length) characteristics of ability
estimates and the efficiencies with which various techniques approach
these characteristics.

&
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Fidelity of Parameter Estimation

Bias. Perhaps the most basic of the fidelity criteria is bias
{n the distributions of the item parameters. To assess the bias in
the distributions of the parameters, means and standard deviations of
the true and estimated parameters were calculated for all conditions
of interest. The biased formula for the standard deiation was used,
as it was throughout this research.

Absolute error. The mean absolute difference between true and
estimated parameters was calculated and is referred to throughout
this report as the absolute error. Algebralc error or bias may can-
cel out even though severe errors of estimation exist. Absolute
error is one method used to eliminate this cancelling effect.

Root-mean-square error. Root-mean-square error is an index
similar to absolute error except it is computed by taking the square
root of the mean of the squared differences between true and esti-
mated parameters. The primary difference in effect is that the root-
mean-square index weights the extreme deviations more heavily than
does the absolute index. Root-mean-square error was calculated for
all conditions of interest.

Correlations. Correlations between true and estimated item
parameters were calculated. The simple Pearson product-moment corre-
lation was used. This index can be thought of as a complement to
indices of algebraic bias. The bias indices are sensitive to changes
in the location of the distribution of parameters. The correlation is
sensitive to differences in relative position between corresponding
true and estimated parameters.

Characteristics of Asymptotic Ability Estimates

Most of the desired knowledge that pertains to the ability to
estimate a trait can be indexed by the bias and the precision with
which the trait is estimated. 1In an effort to evaluate the bias due
to calibration it is helpful to think of two trait metrics for the
given trait of interest. The theta (8) metric can be defined as the
absolute or critericn metric on which the true parameters are anchored
and along which the response probabilities are accurately described by
the model incorpoiating the theta level and the item parameters. A
second metric, gamma ('), can be described as a one-to-one trans-
formation of the theta metric produced by scoring item responses using
item parameters other than those true parameters of the theta mebric.
The. gamma level corresponding to a given theta level could be deter-
mined, conceptually, from administering a test scored using the errant
parameters an infinite number of times. Each theta value would thus
asymptotically converge on a single gamma value. The difference be-
tween gamma and theta at any value of theta could be defined as the
bias due to use of the errant parameters.

6166




Practically, it is impossible to administer infinite-length tests
or to repeat a finite-length test an infinite number of times. The
theta-gamma transformation can be determined by more practical means,
however. The maximum likelihood estimate of theta, which is asymp-
totically unbiased, can be obtained by finding the root in theta of
the following equation given by Birnbaum (1968, p. u59):
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where Pg = the observed proportion of correct responses to

item g in r repetitions.

If the number of repetitions were allowed to become infinite and the
three-parameter logistic model holds,
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Computing P8 as above, the'root of the likelihood eduation is found at
9 = 8., If, however, P8 is c?lculated using 6 and the errant 1tem pa-

rsieters Eg' §g' and gg. the root of Equation 7 is found at 8 = r, If

" the errors of calibration are zero or the estimated parameters are

consistent with the true parameters, the transformation of theta to
gamma will be linear. When this is not the case, as in almost all
real calibration situations, the transformation will be non-linear.

Thé function transforming theta to gamma completely describes
the asymptotic effect of item parameter error on ability estimation.
This empirical function has no simple descriptive parameters, how-
ever, and a method to condense many functions into table values was
needed for this research. To accomplish this, a standard normal den-
sity function was taken as a reference theta population and the de-
scriptive parameters of the corresponding gamma population were tabu-
lated. Methods of calculation are described below.

Mean and standard deviation. For each calculation of the mean

tween -4.6 and 4.6 were chosen. At each of these values the stand-
ard normal density, the gamma value, and the squared gamma value were
obtained. The gamma and squared gamma values were each numerically
integrated jointly with the density using Simpson's one-third rule of
quadrature to obtain the expected value of gamma and the expected
value of gamma squared. The mean was taken as the former. The stan-
dard deviation was obtained by using the formula for expected values.
To accommodate numerical limitations of the computer used, gamma was
bounded between -5.0 and 5.0.

Absolute and root-mean-square error. Mean absolute and root- i
mean-syuare errors were calculated in a ‘manner similar to the mean
and standard deviation. At each of -the 47 theta points, the abso-
lute and squared differences between theta and gamma were calculated.
The expected values of these quantities were obtained through Joint
numerical integration with the normal theta density function. The
expected absolute error was the mean absolute error. The root-mean-
square error was taken as the square root of the expected value of
the squared difference between gamma and theta.

Correlation. The correlation between theta and gamma was com-
puted as an index of linearity of the transformation. At each of the
47 theta values, the cross-product of theta and gamma was computed.
Since all of the joint theta-gamma density falls along the regression
function, this cross-product, jointly integrated with the normal
theta density, produces the expected cross-product. The correlation

netween theta and gamma was computed from this value and the known
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and previously computed means and standard deviations of the theta
and gamma distributions.

Efriziency of Ability Estimation

Although the transformation function provide~ » measure of the
hias incurred through use of errant parameters, 211s 1little about
the precision with which the parameters permit an - ,timate of the
trait levels. An index closely related to precision of estimation
is the statistical .r Fisherian information. Fo~ a given test scor-
ing function at a sp'cified'}evel of a trait, theta, this information
can generally be exr . -sed as-the ratio of the sguared derivative of
the expezted value of the scoring {unction to the variance of the
scoring function at the specitied level of theta:

= E(x]eﬂ ;

I1(6) = -5~ {91

Wwhen the score, x, is a linear combination of 0-1 item_ responses, the
+components of the information equation can -: written as:
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Birnbaum { 1968) discussed choosing the weights to be best or "lo-
cally" oest in the sense that they would make the information of the
linear combination maximal at a given value of theta. In cases where
guessing is not possible, these weights are simply:

w_ = Da [12]
g g

In cases where guessing is eifective, the weights change as a func-
tion of theta and are given by Equation 4 above. Weights obtained
t.r a given level of theta would, when used in linear combination,
provide maximum information for making discriminations between two
theta levels arbitrarily close to the theta level cf interest. When
true item parameters are used, information computed in this manner
is equal to the test information at the theta level of interest ob-
tained by summing the item information values at that point.

The information in any linear combination can be evaluated;
therefore, it makes sense to evaluate the information available at a
given level of theta from items with errant parameters by evaluating
the information in the linear combination obtained by using the lo-
cally best ‘weights ohtained through the errant parameters. This is
done for a given theta level by first finding the corresponding gamma
level. Weights are then determined using this gamma level in place
of theta in Equation 4 and substituting the errant parameters for
the true ones as in Equation 13:

A:'\"A”\-- - 8 1
QS(T) ??gu[Dag(r 88) (1n cg)] [13]

The intormation can then be determined by substituting Qg(?) for wg in

Equations 10 and 11, This information is interpretable on the sa& -
scale as the true information, and the relative information of tests
using t e and errant parameters can be obtained by taking their ratio.
The reciprocal of this ratio can be interpreted as the relative numbers
of items with true and errant parameter. necessary to achieve an equiv-
alent level of measuremen: prezision at the specified trait level.

Information. The infdrmation function produced by.the method
described above is ‘iearly as awkward to work with as the regression
functions described earlisr. The information function data were thus
condensed in a-similar manner. For each condition of interest, in-
formatic was calculated at the 47 theta points. Expected informa-
tion was then obtained by jointly integrating these information values
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with the standard normal density function. The resulting value repre-
sented the average amouat of information that would %e extracted by
the test for an examinee selected at random from a standard normal

[ rpulation. To provide a basis for comparability, information per
item is presented throughout this report.

Relative efficiency. When comparing information extracted by
different procedures, the -~omparison is often done in terms of a
ratio. The ratio of information from two tests is an index of rela-
tive efficiency., If the ratio of Test A information to Test B infor-
mation is .80, Test A is 80% as efficient as Test B. Test B would
achieve an efficiency equivalent to that of Test A with only 80% as
many items as it currently has.

Whether an index will indicate calibration or linking error is
dependent, in large part, on how it is applied. The indices pre-
sented thus far have all been discussed as indicators of calibration
error, The underlying concepts and the indices themselves may, how-
ever, be used to avaluate linking errors by applying them to the case
where multiple sets of items are calibrated separately and then link-
ed together.

The effects of calibration and linking errors are difficult to
separate using fidelity or asymptbotic ability indices. They can be P
readily separated using the efficiency indices, however. Loss in -
efficiency is caused only by relative errors of calibration, not by
constant errors. A linking error exists when the unit and origin of
the trait resulting from the item parameters differ from the true
unit and origin of the trait. Linking errors are constant within
an item set; thus, they result in no loss of efficiency and are not
usually considered a probiem when all items are calibrated as a single
set. If,) however, two or more sets of items are calibrated separately
and then combined into a single pool, errors-constant within each set
are now relative in the combined pool. The result will be a loss of
efficiency.

Loss of efficiency in a single item set is dai,to culibration
error, Loss of efficiency in a combined pool is due to both cali-
bration and linking errors. The index of efficiency usad in this
study was information, and information is additive. 1If information
contained in the combined pool is subtracted from the total inform-
ation contained ir the individual pools, the value remaining is the
information lost as a result of linking. The ratio of the informa-
tion available using the linked parameters to ‘he information avail-
able using the true parameters yields an efficiency index of the
linked items. The ratio of the information available from the linked
parameters to the information available from the estimated parameters
within sets yields an efficiency index of the linking procedure.
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1II. EVALUATION .OF THE BASIC DATA SETS

Three basic data sets comprised the data on which most of the
analyses reported here were based. Evaluation of these data served
two purposes., First, they provided baseline data free of linking
error tor comparison in later phases of the study. Second, the data
provided substantial information regarding the character.stics of the
calibration procedure used (i.e., OGIVIA). These data allowed a more
comprehensive analysis than was available from previous research be-
cause the evaluative criteria provided were both more extensive and
more closely related to a test's capacity to estimate ability.

As will be the case with all analyses presented, each data set
will be discussed separately. Within the discussion of each set, the
three categories of evaluative criteria presented in the previous
section will be discussed.

Randomly Sampled kxaminees

Fidelity of Parameter Estima*ion

Table 9 presents parameter ~ias statistics for each of the three
parameters, a, b, and ¢, for the randomly sampled calibration groups.
Bias, as used in this table, is the mean of the estimated parameters
minus the mean of the true parameters. Means of values obtained from
five calibrations are presented for each of the 12 cells in the cen-
ter of each section of the table and row and column simple averages
are presented in the margi~s.

As can be seen from the first section of the table, the a param-
eters exhibited substantial bias at short test lengths. At a length
of 20 items, the estimates were high by approximately .6 units. This
bias proc eded smoothly to zero by a test length of 65 items. No
consistent change was observed in the amount of bias as the number of
examinees in the calibration group increased from 500 to 2,000.

The b parameters exhihited relatively little bias in any of the
12 cells. The highest was .155 in the 20-item tests calibrated on
500 examinees. As shown by the marginal averages, bilas decreased
slightly with increasing test length and sample size. The decrease
was very slight, however, and as can be observed from the individual
cell entries, was by no means consistent. It may be observed that
the errors for the b parameters were smaller than those for the a
parameters. These comparisons are not readily interpretable, however,
because the a and b parameters are on different scales.

Bias in the c parameters was also quite small. No obvious trend
with respect to grour size was observed but bias did appear to

-
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Table 9. Item Parameter Bias
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average
a 500 .594 .292 .095 -.029 .238
1000 .623 .232 .094 .009 .239
2000 .581 .248 .079 .017 231
Average .599 .257 . 089 ~.001
b 500 .155 121 .098 . 102 . 119
1000 . 114 .123 . 129 .099 L1117
2000 . 154 .089 . 066 .071 .095 ‘
Average L1 L1111 .098 .091
! 500 .017 .024 .001 .006 .012
1000 014 .023 .01 -.003 .012
2000 .033 oM -.004 -.001 .010
Average .021 .020 . 003 .001

decrease with increasing test length. Although not as consistent as
with the a parameters, this decrease was fairly consistent with in-
creasing test length.

Table 10 presents correlations between true and estimated item
parame.ers for the randomly selected calibrition groups. Each cell
entry represents Fisher's r-to-z average of correlations obtained in-
dependently in each of five calibrations. The marginal values are,
likewise, r-to-z averages of the cell averages.

These correlations ranged from .435 to .ABU, Slight increases
in correlations between true and estimated a parameters with increas-
ing test length and calibration group size are apparent in the first
section of Table 10. The increases were not markedly consistent, how-
ever, as may be observed both in the marginal and the cell entries.

Similar observations can be made regarding trends in the b-param-
eter correlations. Slight but consistent increases were observed in
the marginal values. The individual rows and columns did n-t all
exhibit the same consistency, however. Although tha increases were
slight (from .985 to .99%), it should be noted that slight increases

73
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Table 10.

Basic Data Set--Randomly Sampled Examinees

Parameter Correlations

Sample Test Length
Parameter 3ize 20 35 50 55 Average
3 20 . 435 .508 .h32 . bu7 .561
1000 545 512 LB73 .560 .624
2000 . 460 .hu3 .684 .659 .618
Average .520 .590 .564 .Hh24
b 550 L8718 .984 .386 .288 . 384
200 339 387 . 289 .362 .=+39
109 286k 392 .92 .5390 .39
Lyerage 55 . 388 359 230
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Table 11. Absolute Paramuter Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

a 500 .839 .642 . 491 U455 .607
1000 L7175 <531 450 LU72 .557
2000 .841 .499 .uoy .419 .51

Average .818 .557 Luug .49
b 500 .314 .298 .285 .262 .290
1000 .239 .27 .275 2UT7 .258
2000 .316 .196 .209 .233 .238

Average .290 .255 .256 .2u7
c 500 .136 .128 .108 .110 .120
1000 .128 111 .095 .085 . 105
2000 . 146 .098 .092 .096 .108

Average .137 112 .098 .097

Intuitively, these errors appear quite large because an a vélue of .8
is considered adequate for adaptive testing, and an average error this
large was observed in the first column.

The second section of Table 11 shows slight and inconsistent de-
creases in absolute error of the b parameters with increasing test
length and calibration group size. The decreases were somewhat more
ronsistent with increasing calibration group size; with the exception
of the 20-item test length, absolute errors decreased with increased
sample size. '

Errors in the c parameters generally decreased with increasing
test length and group size. This trend appeared to be somewhat more
consistent relative to group size than to test length, Noting that
an average c parameter is approximately .2, the errors observed in
Table 10 typically exceeded half this amount and seemed quite large.

Table 12 presents root-mean-square errors of estimate for the
item parameters. Root-mean-square error can be interpreted in a
manner similar to absolute error. The marginal averages in Table
11 were computed as the square root of the mean of the squares in

ERIC R 5




Table 12. Root-Mean-Square Parameter Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 55 Average
a 500 .710 .522 .368 .359 .510
1000 .680 .430 , 3481 .34y U469
20090 .73% 422 .305 .295 LA74
Average .709 . 460 .339 .333
b 500 242 .239 212 . 195 .223
1000 . 195 .203 .202 .185 .196
2000 .261 . 155 .156 .163 .189
Average .234 . 202 .191 .182
e 500 .108 . 101 .083 .080 .094
1000 .103 .088 074 .066 .084
2000 .122 .074 .067 071 .087
Average 112 .089 .075 .072

the corresponding rows and columns. Essentially the same observa-
tions made regarding the absolute error can be made here regarding
the root-mean-square errors.

Characteristics of Asymptotic ..»ility Estimates

Table 13 presents the average absolute error of estimate of
ability that would be obtained if the calibrated items were admin-
istered an infinite number of times to an infinitely large standard
normal population of examinees and were scored using the estimated
parameters. Entries corresponding to the 12 cells are simple aver-
ages of this error obtained with five different sets of items. These
errors are unlike the absolute errors discussed in the previous sec-
tion in that they refer to asymptotic errors in the estimation of
ability and not to errors in the itum parameters themselves.

The absolute errors, presented in Table 13, consistently de-
creased as the test lengths increased and, except for one incon-
sistent cell, as calibration group size increased. The unit of these
errors is the same as the standard theta metric and some comparison
can be made with absolute errors in the b parameters presented in

1Y
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Table 13. Absolute Asymptotic Ability Error
Basic Data Set--Randomly Sampled Examinees

Sample Test Length .
Size 27 35 5. AS Average

5072 LT Y] 10U 107 130
1003 . 12% .102 L1t .093 . 105
20010 157 .033 L0845 .085 105
Average .15% 152 L0357 .095
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Table 15. Relative Efficiency
Basic Data Set--Randomly Sampled Examinees

Sample Test Length ~
Size 3 35 50 A5 Average
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Systematically Sampled Examinees

Fidelity of Parameter Estimation

Table 16 presents the parameter bias statistics for item param-—
eters calibrated on the systematically sampled examinees. The firut
section presents bias of the a parameters. As was observed with d&he
randomly sampled examinees, the bias dropped as test length increased
and exhibited no definite trend with calibration group size. All mar-
g8inal bias values were about .10 units less than those observed witl.
the randomly sampled examinees. This trend continued even as the bias
values dropped below zero and became negative.

Table 16. Item Parameter Bias
Basic Data Set--Systematically Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 65 Average

\ , a 500 .504 074 .008 -.105 . 120
A 1000 . 478 . 184 021 -1 . 143
2000 462 .223 017 -.084 . 155

Average Lu81 .160 .015 -.100
b 500 .090 .298 .207 . 151 . 187
1000 .186 .214 .045 141 . 147
2000 .ols .073 -.067 175 057

Average .107 . 195 .062 . 156
c 500 .olu2 -.001 .013 -.024 .007
1000 .029 .007 -.013 -.021 .001
2000 .026 .009 -.022 -.009 .001

Average ,032 .005 -.007 -.018

Bias in the b parameters exhibited no obvious trend with in-
creasing test length. This is different from the random-sampling case
which exhibited a slight decrease. The same slight decrease with re-
spect to calibration group size was again observed, however. The
range in bias of the b parameters was somewhat larger in these sam-
ples. Where the range was from .066 to, .155 in the random samples,
the range was from -.067 to .298 in these samples.

o ~Tl-
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Bias values of the c parameters also had a wider range in these
samples. Where the random samples had bias values ranging from -.004
to .033, these samples had value: ranging from -.022 to .042. The
slight trend toward less bias observed in the random samples had an
analos in the systematic samples; the trend could better be described
as a trend toward more negative bias, however. Again, no consistent
trend was observed with respect to calibration group size.

Table 17 presents the average correlations between true and
estimated parameters for the systematically sampled calibration
groups. As with the randomly sampled groups, a slight but inconsis-
tent increasing trend of the a-parameter correlations with respect
to test length was observed. No trend with respect to calitration
group size was obvious, however. The overall magnitude of the a-
parameter correlations in the systematically sampled groups was
slightly lower than those observed in the randomly sampled groups.

Table 17. Parameter Correlations
Basic Data §et--5ystematica11y Sampled Examinees

Sample Test Length
Parameter Size 20 35 50 55 Average
a 500 .560 .582 .562 . 463 543
1000 . 204 .509 .582 .579 .508
2000 .35>5 .601 .709 664 .596
Average .383 .597 .622 574
b 500 .972 .976 .987 .979 979

1000 .984 .987 .986 .985 .986
2000 .982 .985 .990 .989 .987

Average .980 .983 .988 .985

o) 500 . 437 .360 . 396 . 381 <394
1000 . 448 .438 LU16 .396 Ju2t
2000 .372 . 375 Ju21 .519 . 424

Average  .420 .39 A1 .434

The b-parameter correlations exhibited slight increasing trends
with respect to test length and calibration group size. As was ob-
served in the randomly sampled groups, these trends were inconsistent.

Su
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The magnitudes of the correlations were slightly lower in the system-
atically sampled groups.

No trends were apparent in the c-parameter correlations, lnlike
those of thg random samples, no notable increase was observed at a
test leagth of 35 or a sample size of 1000. The magnitudes of the c-
parameter correlations were somewhat lower here than those observed
in the rande. samples.

Average absolute errors of the item parameters for the system-
aticaily sampled groups are presented in Table 18. A decreasing trend
1n a-parameter errors with respect to test length was apparent but
was not particularly consistent. MNo trend was obvious in the a-
varameter errors wWwith respect to calioration group size. The ﬁagni—
tudes of “he errors observed here were about tne same as those ob-
servec in the randomly sampled groups.
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the randomly sampled groups where no trend was observed with respect
to test length but a slight trend was observed with respect to group
size. The magnitudes of the errors were greater here than in the
randomly sampled groups.

® . The c-parameter errors showed a relatively consistent decreasing
trend with respect to test length but no consistent trend with re-
spect to sample size. These findings are similar to those of the
randomly sampled groups except that a slight trend with respect to
zroup size was observed there. Magnitudes of the errors were slight-
ly higher 1n the systematically sampled groups.

Table 19 presents the root-mean-square errors of estimate for
“me three parameters. As was the case in analysis of the randomly
samp.ed groups, =2ssentially the same observations made regarding rthe
4580 :fe error can be made regarding the root-mean-square error.

“1ble 13. Hoot-Mean-Square Parameter Error
~321~ Data Set--Systematically Sampled Examinees

rd

Zample Test Length
Taramater lize 27 S B A5 Average

1 <00 .55% (18 L7773 298 477
NALS Tz 417 . 338 A , 206
c309 £37 <nl 792 =07 . 55

lverage 19 el 36 47
- <20 425 =33 .35 .H05 .2
200 211 4339 k! 330 37N
oA 335 77 ALY 37 S T4A

jerage L1232 .53 55 D&
- G R T “36 . )93 112
390 179 .7ag LT Lo a7
Y] N L2 10 .390 19

Jerage BN L) plad 17

e e e mum o e - m e m w e e s e e




4

Characteristics of Asymptotic Ability Estimates

Table 20 presents the absolute errors of as'mptotic ability esti-
mates for items calibrated using systematically sampled groups. Un-
ilke the corresponding table for the randomly sampled groups, no con-
sistent trends with respect to test length’or sample size were ob-
served. The magnitudes of the errors were 2onsistently larger, how-
ever. Ah3olute errors in the -randomly sampled groups ranged from

¢ .085 to .170; in the systematically sampled groups they ranged from
124 to .346.

Table 20. Absolute Asymptotic_Ability Error
Basic Data Set--Systematically Sampled Examinees

Sa%ple N Test Length
~_ Size 20 35 50 65 Average L
500 .329 .336 227 . 266 .287 S
1000 .346 3130 Jtew 215 L2u9
. 2000 .225 .263 . <137 *.293 .229
Average .297 . 304 .163 . 258

Similar observations can be made for the root-mean-square errors
F "sented in Table 21. No definite trends were apparent and the mag-
nitude of the errors was Tarper than in the randomly sampled groups.
Root-mean—équare errors ranged from .102 to .229 in the randomly dam-
pled groups, in the systematically §am01ed groups they ranged from

..158 to .46,

Table 21. Root-Mean-Square Asympt~tic Ability Error
Basic Data Set-—Systematically -Sampled Examinees -

Sampie Test Length N
_____Size 20 35 50 65 Average _
500 . 366 Lu34 . 303 . 230 . 362
1000 U456 . 349 .158 .2U49 . 327
2100 .288 . 305 .179 . 346 . 286
Average .381 . 367 .223 .31
=78~
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Efficiency of Ability Estimation

Table 22 presents the efficiencies of the items calibrated in
the systematically sampled groups. The general trends observed in
the randomly sampled groups were again observed here. In these groups,
tripling the test length increased the calibration efficiency by 9.8%,
and qQuadrupling the calibration sample size only increased the effi-
ciency by_3.2$. Although the differences were not as pronounced,
these results corroborated the earlier ones, suggesting that test-
length is more important than group size in improving calibration
efficiency.

Table 22. Relative Efficiency
Basic Data Set--Systematically Sampled Examinees

, I _
Sample : ____Test Length
Size 20 35 50 55 __Average ‘
500 851 .851 .904 .901 .877
1000 .797 .877 .910 .930 .879
2000 .870 .584 .939 .934 .905
Average  .839 .871 .915 .922

' The magnitudes of the efficiencies were approximatel- equal in
the two conditions Efficiencies of the randomly sampled g oups
ranged from .818 to .952. Efficiencies of the systematically sampled

" groups ranged from ,797 to .934. It is difficult to say whether the

slight superiority of the randomly sampled groups was duc to more
appropriate ability distributions, 2ll being standard normal, or sim-

ply to sampling error.
Selected Examinees (//

Fidelity of Pa, .meter Estimation \\\\j

Table 23 presents bias statistics for the parameters of items
cal.brated nn selected samples of examinees. All samples contained
1,000 examinees, so only “o>ur cells and their row average are present-
ed in the table. Bias i.. che a parameters ranged from -.283 tc -.U416.
A consistent decreasing trend with increasing test iength was obvious.
The blas progressed to a value more negative than observed in either
of the calibration groups discussed above.
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Basic Data Set--Selected Examinees

e3t Length
Parameter 20 . 33 50 6% Average

Table 23. Item Parameter’ Bias
i a 816 -,03%7 -.164 -_.285 -.015
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The b-parameter correlations exhibited no trend with respect oo
test length. Tneir average value of .975 was slightly lower the.
tnose of .939 and .93% observed for the randomly and systematical.:
selected groups, respectively.

No trend was apparent 1n tne Cc- parameter correlativns, eiiier.
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Table 26. Root-Mean-Square Parameter Error
Basic Data Set--Selected Examinees

Test Length

Parameter 20 35 50 65 Average _
a .658 .510 403 .11 .506
b .459 .578 .500  .568 .529
c 181 .158 .125 117 . 146

Characteristics of Asymptotic Ability Estimates

Table 27 presente absolute and root-mean-square asymptotic abil-
ity-estimation errors. Absolute errors showed no trend with respect
to test length. The average of the row, .580, was considerably larger
than the averages of .105 and .249 observed in corresponding earlier
tables.

Table 27. Asymntotic Ability .rror
Basic Data Set--Selected Examinees

Test Length

Error 20 35 50 65 Average _
Absolute .499  ,633 ,558 630 .580
Root~Mean-Square ,591 .44 ,642 .T54 .686

The root-mean-square errors showed an identical lack of trend
with respect to test length. Similarly, the row average of .686
was considerzhly larger than the row averages of .144 and .327 ob-
served earlier.

Efficiency of Ability Estimation

Calibration efficiencies obtained in the selected samples of ex-
aminees are presented in Table 28. The usual trend with respect to
test length, observed with other statistics, was again observed. The
average efficiency, .823, was somewhat lower than the corresponding




Table 28. Relative Efficiency
Basic Data Set--Selected Examinees

Test Length
20 35 50 65 Aver-ge

.719  .818 .865 .889 .823

efficiencies of .904 and .879 observed earlier. This lowered effi-
ciency cannot be attributed to any particular item parameter because
all three were less precisely estimated in this calibration sample
than in the two discussed previously. It was probably due to the com-
bined effects of poorly estimated c parameters, caused by a paucity of
low-ability examine2s, and fewer appropriate items for ability estima-
tion aL the higher ability levels encountered. This latter effect is
due to limitations of the item pool used but these limitations were
imposed to reflect reality, and thus the same effect in live-examinee
item calibrations would be expected.

Conclusions

Three general conclusions and an observation can be made from the
data presented in this section. First, the parameter correlation data
were, in general, supportive of other studies investigating the calibra-
tion effectiveness of OGIVIA. The b parameters were vary well esti-
mated and the a and ¢ parameters were less well estimated. The a
parameters were estimated somewhat better than the ¢ parameters, but
the difference was not overwhelming.

The second corclusion is that test length is relatively more im-
portant to calibration effectiveness than is sample size, at least at
the test lengths and sample sizes investigated here. This conclusion
is mildly supported by the fidelity of estimation data but its strong-
est support comes from the efficiency analyses. The efficiency anal-
yses suggested that increases in test length are at least three to
four times as aeffective in improving calibration efficiency as propor-
tionate increases in callbration sample sizes. Given tnat total test-
ing time required to calibrate a set of items is proportional to the
number. of items multiplieda by the number of examinees, this finding
suggests that, if sufficient items exist, larger numbers of items
should be calibrated on smaller samples if available total testing
time is short.

The third conclusion is that there appears to be little difference
in calibration efficiency as a function of random ve=sus systematic
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TV, LINKING WHEN EXAMINEES ARE RAHDOMLY SAMPLED

Linking sets of items administered to randomly sampled examinees
presented the simplest linking environment investigated in this re-
search. In this situation, the equivalent-groups, anchor-group, and
anchor-test methods were all reasonable choices. Given the added
assumption that items were randomly assigned to forms, usually an easy
assumption to satisfy, the equivalent-tests method was also an accep-
table method.

The basic data set containing randomly sampled examinees was
us2d for this portion of the research. Although all four linking
paradigms were conceptually reasonable to apply, only the equivalent-
groups and equivalent-tests methods were evaluated. The anchor-group
and anchor-test linking methods were not evaluated using this data
set where examinees were randomly sampled from a single population.
This delzticn was done purely for efficiency of analysis. Since these
methods do not assume randomly sampled examinees, it was reasonable
to excect that data from the systematic examinee samples would yield
sufficient data for ccmparison. Given the reasonableness of this
expectation and the extensive amount of computer time required to
analyze those methods, a decision was made not to perform this essen-
tially duplicate analysis.

Equivalence Methods

The equivalaent-groups and equivalent-tests methods are essen-
tially the sa~ in terms of the data required. The differences be-
tween them stem from the different assumptions invoked in obtaining
tne transformatijn parameters. The two methods have thus, for pur-
poses of this report, been combined into one section, Although they
are discussad as separate methods, they share common tables.

Procedure

Equivalent groups. Conceptually, equivalent-groups linking is
accomplished by finding transformation ccastants which, when applied
o the 2 and b parameteré, will make the mean and variance of ability
in each group esquivalent. Two transformation constants are required
to accomylish this. Given that the constants are to be applied in

the form:

a = dk 147
and
b = (e-m)/k r1s]
m~
JtJ
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whe. e a aad b are the parameters on the "equivalent" metric and d and
e are the parameters on the unlinked metric, one set of constants
that will result in a comm n -etric with a mean of zerc and variance
of one is:

kK = ¢, {161

and
m o= [17]

where 1 and ¢, are, respectively, the mean and standard deviation of

ability estimates in the unlinked groups. These values may be readi-
ly verified by noting that a satisfactory transformation must satisfy
the equation:

a(f-b) = d(7-e) [18]

n Equations 14 and 15 are substituted into Eguation
essed as 3 function of k, m, and theta:

-

= K2+ m (193

Given that theta is to be distributed with mean zero and variance

one, the constants k and m are obviously the standard deviation and
the mean of gamma. Thus. “the constants in the equivalent-groups meth-
24 are simply the mean and standard deviation of the abilities in the
unlinked groups,.

in practize, true abilities are not available, however, and they
must be estimated. 1If errors of measurement are equivalent in each
group or adequately compensated for, equivalent-groups linking may be
accomplished using ability =2stimates. There are, however, several such
estimates that may be used. Four methods of estimating ability were
investigated including two Bayesian and two maximum-likelihood methods.
In addition to simple means and standard deviations of these estimates,
~obust estimation procedures were applied to the maximum-likelihood
estimates. This resulted in six methods for determining the equiva-
l2nt-groups transformation constants,

The program OGIVIA uses a modal Bayesian estimate with a2 stand-
ard-normal prior ability assumption. The estimates provided by OGIVIA
ware base1 on an early stage of the program which did not use the final
item parameter estimates. Proceeding in the spirit of OQIVIA but using
better paramater ertimates, modal Bayesian ability estimates assuning a
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standard-normal prior were obtained by solving the following equation
for theta:

u -1
- . I T .
8 = 1.7:E:a8exp(xg) S rerp(x) (1.0 + ,xp(xg)) [20]
g 4
g
where u8 = 1 if the item is answered correctly
= 0 otherwise
and x = 1.7 a (8-b)
B g g

The Bayesian estimation procedure assuming a normal prior im-
plicitly regresses the estimates at finite test lengths. The prac-
tical effect of this on linking is to bias the linking constants.

The second estimation procedure incorporated an attempt to correct
for this regression by progressing the estimation by an amount equiv-
alent to the suspected regression. This ad justment was accomplished
by using the Bayesian posterior variance estimate obtained from Equa-
tion 21 and the Bayesian ability estimate obtained from Equation 20
as prescribed in Eguation 22,

-

¢
q% = (-1 4+ 2.89 :i:azexp(x ) g 5 [21]
g g (c_+exp(x ))~
g 8 g

) -1
- (1.0 + exp(xg)) -

-

A = q —n2
B eB (1 JB)
Pro

-1/2 [22]

Another procedure to ameliorate the Bayesian regression is to
use a maximum-likelihood estimation procedure instead of a Bayesian
one. The maximum-likelihood procedure attempts to> be unbiased and
does not regress the ability estimates. It has problems, however,
in that it tends to make some 2xtreme estimates when the test length
is finite. Individuals answering all items correctly or less than a
_mnanse number correctly receive infinite ability estimates. Such
astimates, in turn, cause some difficulty in calculation of means and
variances of the ability estimates. Maximum-likelihood estimation was
used as the third estimation procedure. 1In most cases, these esti-
mates were obtained by finding the root in theta of Equation 23:
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u
:E:agexp(xg) L————Ji——‘- - (1.0 + exp(xg))'1 =0 (231

¢ +expix )
g g g

In cases where the estimates were beyond plus or minus 3.5, the es-
timates were artificially bounded at those values.

The Bayesian procedure was corrected for regression. An attempt
was made to correct the maximum-likelihood procedure for erring toward
the extreme. This was accomplished by applying the squared standard
error of estimate obtained from Equation 24 to the ability estimate
obtained from Equation 23 by the method prescribed in Equation 25,

s}

32 = (2.89 :E:a exp(x ) g 5 [24]
g g (c_+exp(x )~
g g g
)
-1
- (1.0 + explx })-2
g
S = (G-8) 1) 45 [25]

Reg

Truncation of the ability estimates at plus and minus 3.5 was
one method of dealing with extreme ability estimates produced by the
maximum-likelihood procedure. This method was somewhat arbitrary and
still used a least-squares weighting scheme within the range. Gen-
eral procedures of robust estimation were available to deal with
protlems such as these. One of the most popular procedures was the
AMT sine-transformation procedure (Andrews, Biskel, Hampel, Huber,
Rogers, % Tukey, 1972; Wainer % Wright, 1980). 1In this procedure,
the equation

N fr-Ty/s] = 0 (261
-

is solved for T ani S where T is the robust estimate of location, S
is the median absolute deviation from T divided by the constant 1, 3“9
anAi

flx] = sin(x/2.1) if -6.597 < x < 6.597 (271

noo
o

and fix] otherwise.
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The procedure was iterated adjusting both T and S on each iteration
until T stabilized within 0,001,

This robust estimation procedure was applied to the maximum-
likelihood estimates and the regressed-maximum-likelihocd estimates
_obtained above to produce the fifth and sixth methods of estimating
the mean and standard deviation of ability. Unlike the first four
methods, the robust techniques were not methods of estimating ability
but rather methods nf obtaining "eans and standard deviations of es-
timates. The means and standard deviations were the only elements
used for linking, however, and these robust procedures thus produced
two more methods of equivalent-groups linking. It should be noted
that the robust techniques were applied to the truncated maximum-
1ikelihood estimates and not to estimates permitting infinite values.

Tquivalent tests. The equivalent-tests method assumes that the
item parameter distributions of th2 tests being linked are equivalent.
Linking, under this assumption, is accomplished by setting the a and b
parameters to common values in each of the tests. Practically, these
values can be any values desired. To aid in interpretation of tie
fidelity and asymptotic characteristic statistics, these common values
were 38t to the true means obtained in the simulation reported in the
design section of this report, 1.586 and 0.227 for a and b, respec-
tively. This was accomplished by computing transformation parameters
kK and m as follows:

£
"

1.586/ud (28]
m = (ue— 0.360)/ud [29]

where . and , Aare the means of the a and b parameter estimates in
a [ - -

each test prior to linking.

Resulgé

The magnitude of the amount of data generated by this project
made it unreasonable to present all analyses in the body of this re-
port. To meaningfully present the analyses done, individual tables
are presented in the Technical Appendix and summary tables are pre-

* sented here in the text. For the homogeneous 1inking evaluation in
which linking was done separately in each of the 12 cells, 12 indi-
viiual tables are presented for each of the three classes of analyses
in the Technical Appendix. One composite table is presented in the
body of the report for each class of analysis. For the heterogeneous
linking evaluation where flve replications pooling 20 items from each
cell were done, five individual tables for each class of analysis are

£

Q
a
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presented in the Technical Appendix, and one is presented in the body
of the report.

Fidelity of parameter estimation, Table 29 presents fidelity-of-
parameter-estimation statistics for eight linking methods in the homo-
geneous condition, The first six methods correspond to different meth-
ods of determining the linking constants within the equivalent-groups
method. The seventh is the equivalent-tests linking method. The
"no-linking" method is included as a baseline of comparison in which

Table 29. TItem Parameter Error--Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

———— .

True Bias in Absolute RMS

Method Mean SD Mean SD Error Error R
Bayesian

a 1.591 Ju482  -,020 .018 .3uu . 469 .581

b 221 1.329 .088 L3N .293 .u25 .987
Progressed Bayes

3 1.591 .ug2 .01 .036 .359 .u8u .581

b 221 1.329 .072 .250 .255 .37 .987
Max. Likelihood

a 1.591 .u82 .34y .125 .527 .693 .576

b .221 1.329 .023 .019 71 .234 .987
Regressed M.L.

3 1.591 . 482 .223 .088 .usy .605 .575

b L2217 1,329 .035 .105 .190 . 25U .987
Robust M.L.

3 1.591 Lu82 . 263 112 LA473 616 .578

b 227 1,329 .0u3 .N76 .185 271 .9856
Rob. Reg. M.L.

a 1.591 .ug2 .202 .093 Lu35 .572 .579

b 221 1.329 .Cug 121 .198 .295 .986
Equivalent ts

a 1.591 U822  -.006 .015 .337 .456 577

b .221 1,329 .00% .275 .358 .u87 .97Y4
No Linking

a 1.5 Lu82 .236 091 .U53 .596 .581

b .221 1,329 .110 .087 .198 .268 .987
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the parameters were taken directly from OGIVIA with no explicit trans-
formation. In fact, this procedure approximates an equivalent-groups
linking method because OGIVIA, in an early stage of calibration, sets
its best estimates of the mean and varience of ability to zero and one.

The first column presents the means ot the true a and b param-
eters for all cells in the data set. To compute the values in the
fi, st column, means of parameters for all items in a cell were com-
puted for that cell. This included all items in the five caribration
groups. The mean of these 12 cell means was then computed for thre
entry in Table 29. The means of the a and b parameters, 1. 591 ani
.221, were quite close to the means obtained in independent simulation
(discussed with the analysis of the basic data sets) of 1.586 and
.227.

The standard deviations presented in column two were computed as
the square rouot of the mean variance averaged in the sam< manner as
the means of column one. The averages of 0.482 and 1.329 were, again,
very close to those obtained in simulation, (;.488 and 1.338.

Biases presented in columns three and four were computed as the
linked vaiue minus the true value for both means and standard devia-
tions. Mean biases were computed for items in each cf the 12 cells.
Table 29 presents the means of these 12 cell means.

Absolute error was computed for each cell as the mean of the ab-
solute deviations of linked from true item parameters for all items
in a cell. Tatle-29 presents the simple average of these means over
all 12 cells.

Root-mean-square error was calculated for each cell in a manner
similar to that of absolute error. The squared deviaticns were aver-
aged (rather than the absolute deviations), and the square root of the
resultant mear was taken. The RMS error presented in 7Table 29 is the
square root of the mean of the squared individual cell values.

Correlations between true and estimated parameters were computéd
in each of the 12 cells. An r-to-z average of the cell values was
taen taken for each entry in Table 29.

Compared in terms of bias, the equivalent-tests method of link-
ing produced estimates closest in mean a and mean b. It also produced
estimates with the least bias in standard deviation of a. Several
methods had superior estimates in terms of standard deviations of the
b parameters, however.

The equivalent-tests method was again superior when absolute-
error in the a parameters of the various mq§b9d§”uasgconsidefed.

#gqgiyalen%-grSUps*ﬁéfﬁbGS“BEBea on elther of the Bayesian procedures

.~
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wer,: nearly as good. When b parameters were considered, the maximum-
1ikelihood procedures appeared to produce less absolute error than
Ahe other methods.

Root-mean~-square error comparisons produced the same findings:
the equivalent-tests method was superior in estimation of the a param-
eters with the Bayesian equivalent-groups methods close behind. The
maximum-1likelihood equivalent-groups methods produced the best esti-
mates of the b parameters.

Correlational analyses showed the Bayesian and no-linking pro-
cedures to produce the best-linked a parameters. The maximum-likeli-
hood procedures did nearly as well. The equivalent-tests method pro-
duced a-parameter correlations about as high as those of the maximum-
likelihood methods. The b-parameter correlations were nearly con-
stant at .986 to ,987 for all but the equivalent-tests method, which
produced a correlation of only .9TH.

Table 30 presents fidelity statistics for the heterngeneous link-
ing condition containing pooled results of five replications sampling
20 items from each cell. Again, all entries are summary statistics of
several individual tables contained in the Technical Appendix. In this
case each entry represents pooled results of five replications rather
than of 12 cells. The columns of the table all correspond to those of
Table 29, and the pooling, in e2ach case. was done in the same manner.

The means and standard deviations presented in the first two
columns were again close to the true values found in tne independent
simulation. That they were slightly different is due to the fact that
only the first 20 items in each calibration group were used for the
heterogeneous analysis. Thus, less than half of the items included in
the homogeneous analyzis were used in this analysis.

The bias data in columns three and four present.d essentially the
same plcturae as the bias data in Table 29. Similarly, identical obser-
vations could be made regarding the absolute and root-mean-square error
data of columns five and six. This similarity is more an artifact than
a discovery, however, as neither the biases nor the errors are affected
by composition of the item sets. The fact that they differ at all is
due to fluctuations caused by item sampling.

"The change in composition was expected to affect the correlations.
Different test lengths and calibration group sizes do produce different
biases in linking constants. The differcnt biases shift items of the
different cells differentially and this affects the correlations among
the parameters. Marked changes from Table ?9 occurred in Table 30,
Where Table 29 showed a-parameter correlations closely clustered in
value, the a-parameter correlations presented in Table 30 had a rela-
tively wide range of values. Furthermore, the equivalent-tests method,
which produced the lowest correlation in Table 29, produced the highest
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Table 30. 1Item Parameter Error--Equivalence Methods
Heterogeneous Condition Using Randomly Sampled Examinees

True Bias in Absolute RMS

Method Mean SD Mean SD Error Error R
Bayesian

a 1.588 L490 -.014 .038 . 348 LU70 .580

b 248 1.350 .090 .315 .295 431 .983
Progressed Bayes .

a 1.588 . 490 .0u7 .060 .363 . 487 577

b 248 1,350 .073 .253 .258 .375 .984
Max. Likelihood

a 1.588 . 490 .350 .202 .532 .698 .529

b 248 1,.35C .020 .018 75 .20 .985
Regressed M.L.

a 1.588 . 490 .229 .152 . 459 610 .535

b .248 1.350 .035 .107 . 194 271 .985
Robust M.L.

a 1.588 .4380 .270 . 157 478 .622 .548

b .248 1.350 .ou2 .078 .191 .279 .983
Rob. Reg. M.L.

3 1.588 . 490 .209 .130 L4l 577 .557

b ) 248 1,350 .0u7 .125 . 204 . 303 .983
Equifalent Tests )

a 1.588 . 490 .001 .032 . 340 . 459 .59%

b .2u8 1,350 .008 277 . 361 Lu91 .964
No Linking

a 1.588 . 490 ou2 .14y .us8 .600 .553

b 248 1.350 . 108 .08h .200 .273 .986

——

in Table 30. With the exception of this method, the a-parameter corre-
lations were lower in Table 30 than in Table 29. The b-parameter cor-
relations lost some of the uniformity they exhibited in Table 29 but
the same general conclusions could be drawn. The equivalent-tests
method was still inferior in terms of b-parameter correlations.

Characteristics of asymptotic ability estimates. Table 31 pre-
sents statistics descriptive of linking and calibration errors on
asymptotic estimates of ability in the homogeneous condition. The




Table 31. Asymptotic Ability Estimates--Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

Absolute RMS
Method Mean SD __Error Error R

Bayesian .oou  1.073 .064 .098 .999

Progressed Bayes .001 1.035 .043 .072 .999

Max. Likelihood -.002 .890 . 100 . 140 .998
Regressed M.L. -.005 .9us .066 .100 .999
Robust M.L. .002 .915 .079 1M .999
Rob. Reg. M.L. -.003 .94 .061 .088 .999

Equivalent Tests -.086 1.066 .151 .209 .99¢

No Linking 074 .934 .100 125 .999

values in the table were compiled from corresponding values in 72
cells. The means and absolute errors in Table 31 represent simple
averages of the cell values. The standard deviations and root-mean-
square errors were computed as the square root of the mean squared
values from the individual tables. The correlations were computed as
the r-to-z average of the individual correlations.

The means, presented in the first column, were all fairly close
to the true value of zero. The means produced by the six equivalent
groups methods were all somewhat closer than the means produced by
the equivalent-tests method or by no linking. The standard devia-
tions were near the true value of 1.0 but were, typically, not as
close as the means had been. The most deviant was the maximum-1like-
1ihood equivalent-groups procedure. The least deviant was the pro-
gressed-Bayesian equivalent-groups procedure.

Columns three and four present absolute and root-mean-square
errors of the asymptotic estimates. The eight linking procedures
ranked essentially the same in the two columns; the absolute errors
produced a tie and the root-mean-square errors did not. The pro-
gressed-Bayesian equivalent-groups procedure produced the least
error. The equivalent-tests procedure produced the most, more than
the no-linking condition. Except for the equivalent-tests method,

all methods (including no-linking) produced lower errors in asymptotic

estimates than were produced by the unlinked individual calibrations
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summarized in Tables 13 and 1”: Average values in those tables for
absolute and root-mean-square error, respectively, were .113 and .153.
The ob: rvation that error in the no-linking condition decreased was
apparently due to a better averaging of parameter crrors when all
five calibration groups within a cell were combined.

The correlations between true and asymptotie ability estimates
were so high as to be uninformative about linking adequacy of the
various methods. All were witain .002 of unity and, although the
maximum-1ikelihood equivalent-groups and the equivalent-tests methods
were slightly inferior, this difference may have been due to accentu-
ation of trivial differences incurred in rounding.

Table 32 presents asymptotic error statistics for the hetero-
geneous condition. Again, all values are summary values and were
prepared, in the same manner as Table 31, from five replications, each
of which sampled 29 items from each of the 12 cells. The first two
columns, those of the mean and standard deviation, were essentially
unchanged from Table 31. The only difference was a slight tendency
toward more extreme deviations of the standard deviations from 1.0.
The two Bayesian methods were exceptions to this, in that they were
slightly less deviant than in the homogeneous condition.

Table 32. Asymptotic Ability Estimates--Equivalence Methods
Haterogeneous Condition Using Randomly Sampled Examinees

Absolute RMS
Method Mean 3D Error Error R

Bayesian .006 1.064 .059 .084 .999

Progressed B: yes .003 1.025 .037 .059 .999

Max. Likelihood . 002 . 870 .108 .139 .999
Regressed M.L. -.001 .927 .064 .089 .999
Robust M.L. .004 .904 .081 .110 .999
Rob. Reg. M.L. -.000 .933 .059 . 085 .999

Fquivalent Tests -.087 1.075 .100 . 143 .998

No Linking .075 .919 . 100 .123 -999




The absolute and root-mean-square errors showed some ~hanges
from the preceding table. The ordering of methods by the two statis-
tics was not identical in Table 32. The Bayesian methods were still
superior to all other methods. The equivalent-groups method improved
to a point where it was nearly as good as no linking and, depending
on the type of error, slightly better or slightly worse than the
maximum-likelihood method.

The correlations presented ir the fifth column were, sgain, par-
ticularly uninformative. Only one, that corresponding to the equiva-
lent-tests method, showed any departure from the nearly perfect 399,

Efficiency of ability estimation. Table 33 presents efficiency
data for the homogeneous linking condition. The first column con-
tains the average item information produced in several ways. The
first entry indicates the information available in the average item
using true parameters, The second entry indicates information avail-
able using estimated parameters and (hypothetical) perfect linking.
The remaining entries in the first column indicate information avail-
able from items using parameters linked in various ways.

Table 33. Efficiency Analysis--Equivalence Methods
Homogeneous Condition Using Randomly Sampled Examinees

Sp—

Average Efficiency Relative to
Item True Estimated
Methnd Information _Parameters ParameterQ‘
True Parameters .319
Est. Paranmeters .287 .898
Bayesian .284 .833 .988
Progressed Bayes .294 .988 .933
Max. Likelihood .284 .889 .989
Regressed M. L. .284 .838 .989
Robust M.L. .284 .898 .989
Rob. Reg. M.L. .284 .888% .981%
Equivalent Tests .276 .854 .962
No Linking .28y .887 .988
96




Information from the true parameters was calculated separately
in each of the individual calibration groups in each of the 12 cells
using true parameters. The individual information values were then
averaged t» produce the value, .319, in Table 33. The information
from the estimated parameters (the second entry) was obtained in the
same way except that estimated parameters rather than true parameters
were used. Since the computations were done within individual cali-
bration groups, linking had no effect on the values.

The remaining values in the first column were obtained by pool-
ing all items in each cell after the linking transformations were
applied. The essential difference between these values and the in-
formation from the estimated parameters (i.e., the second entry) was
that these values were obtained from a pool of all items in each cell
rather than from each ralibration group individually. The entries
presented in Table 33 are simple averages of the corresponding en-
tries in the 12 individual cell tables.

Efficiency relative to true parameters shown in column two was
calculated directly from the values in column one of the table. Each
value presented in column two is the corresponding value in column
one divided by .319. Efficiency relative to estimated parameters
was calculated similarly except that column one values were divided
by .287. All columns in Table 33 present essentially the same data
from a different viewpoint.

The efficiencies relative to estimated parameters provide data
most directly relevant to comparisons of linking methods. These values
can be interpreted as an index of linking efficiency. The information
available from the estimated parameters calculated within individual
calibration groups represents efficiency of calibration free of linking
errors. Any degradation from that point, as items from several cali-~
bration groups are pooled, represents errors due to linking.

The =fficiencies relative to estimated parameters suggest that
there is very little difference among most linking methods in this
condition. The notable exception is the equivalent-tests method.
Where all other linking methods, including no-linking, had efficien-
cies of .988 or .989, the equivalent-tests method had a linking effi-
ciency of only .962.

Table 34 presents efficiency statistics for the heterogeneous
linking condition. All statistics were calculated in essentially
the same manner as before. The primary difference was that the en-
tries were computed as the average of five replication averages rather
than as the average of 12 cell averages.

The information values for the true and estimated parameters
changed very little from those ot Table 33. The slight changes were
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Table 34, Efficiaency Analysis--Equivalence Methods
Heterogeneous Coadition Using Randomly Sampled Examinees

Average Efficiency Relative to
Ttem True Estimated

Method Information Parameters Parameters
True Parameters .317
Est. Parameters .285 .901
Bayesian .278 875 .973
Progressed Bayes 277 .876 .972
Max. Likelihood .273 .861 .955
Regressed M.L. .273 .863 .958
Robust M.L. .276 .870 .965
Rob. Reg. M.L. 276 .872 .967
Equivalent Tests .269 .850 .quy
No Linking L2TH .865 . .960

due to the fact that only about half of the items on which Table 33
was based were used in computing the statistics of Table 34,

Marked changes in linking efficiency were noted, however. All
methods, without exception, were less efficient in the heterogeneous
condition., Differences among the methods wer'e also more obvious.

The two Bayesian methods were the most efficient. The robust maximum-
likelihood procedures were next, followed by the no-linking method

and the maximum-likelihood procedures. The equivalent-tests method
was again the least efficient of all.

Table 35 presents linking efficiencies of the Bayesian equiv-
alent-groups linking ~ethod for each of the 12 cells arranged by test
length and sample size. The Bayesian procedure was singled out for
this breakdown because it appeared, from data just presented, to be
one of the best equivalent-groups linking procedures. Linking effi-
ciency was chosen as the single statistic to be explored in this
fashion because it seemed to beat summarize the data to answer the
question of which linking method allowed the best ability estimation.
Individual cell entries in Table 35 were computed by takiag the ratin
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Table 35. Cellwise Efficiency Analysis
Bayesian Score--Randomly Sampled Examinees

Sample Item Set Size

Size 20 35 50 65 Average
500 .968 .99 .991 .959 977
1000 .984 .990 .993 .996 <IN
2000 972 .993 .992 .936 .988

Average .975 .991 .992 .984

of the information values of the linked parameters to the information
values of the estimated parameters calculated within individual cal-
ibrations. The marginal values presented are simple averages of the
corresponding row and column values. They are not pooled values as
were those in Tables 33 and 34 which were computed as ratios of aver-
aged information values rather than averages of efficiencies.

No obvious relationships between linking efficiency and either
test length or calibration sample size were observed. No trends were
apparent, even in the marginal values. No interactions were appar-
ent in the individual cell averages.

Table 36 presents a similar breakdown of the equivalent-tests
method efficiencies. The marginal averages exhibited a definite
increasing trend with increasing test length. This trend was not par-
ticularly consistent in the individual cell values, however. The

Table 36. Cellwise Efficiency Analysis
Equivalent Tests Randomly Sampled Examinees

Sample Test Length
Size 20 35 50 55 Average
500 916 .985 97h .966 . 960
1000 972 .930 973 .986 . 965
2000 .928 .961 .961 .982 .958

Average .939 .959 .969 .978
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trend was apparent at sample sizes of 2,000 but not at 500 or 1,000.
No relationship between efficiency and sample size was apparent in
Table 36.

Discusq{gﬁ

Three sets of analyses have been presented. The fidelity analy-
ses provided no conclusive evidence regarding which linking proced-
ure was most effective. Data relevant to this were weak and con-
flicting. Methods most effective in linking a parameters were not
the ones most effective in linking b parameters. There was no way to
determine in any practical way whether a or b errors were more del-
eterious in regard to ability estimation.

The asymptotic esiimation analysis was somewhat more helpful in
tha. the joint effect of parameter errors on ability estimation could
be observed, These data suggested that the two RBayesian linking pro-
cedures and the robust-regressed maximum-likelihood procedur:s were
somewhat more effective than the others and that the equivalent-tests
method was typically no better than the no-linking method.

Efficiency analyses suggested that whatever differences there
were among the methods, they were quite small. Efficiency loss due
to linking error was always less than loss due to calibration error,
considerably less in some cases. In the worst case of linking error,
information lost to linking was half as great as that lost to cali-
bration. For the best linking methods, information loss due to link-
ing was 10% to 20% as large as that due to calibration, depending on
the conditions,

Conclusions

Two general linking methods, the equivaient-groups and the equi-
valent tests methods, were evaluated and compared to eash other and
to a no-linking control method. These comparisons were done in both
a homogeneous linking condition, where the items linked were cali%-
rated in tests of the same length nsing examinee samples of equal
size, and in a heterogeneous condition of mixed test lengths and
sample sizes. Several conclusions can be drawn from these data.

First, the equivalent-groups methods were generally superior to
the equivalent-tests method. 1In some analyses, reported in the fi-
delity of estimation sezticn, the equivalent-tests method appeared to
be superior. 1In the more readily interpretable asymptotic-estimate
and efficiency analyses, the equivalent-tests method was consistently
one of the poorer linking procedures.
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Second, of the six equivalent-groups procedures evaluated, the
ones based on the Payesian scores appeared to be slightly superior to
the others. This superiority was apparent only in the heterogeneous
linking condition, however. In this condition a slight superiority
was observed in the asymptotic estimation and efficiency analyaes.
Little difference among equivalent-groups procedures was observed
in the homogeneous condition although the Bayesian methods had
slightly less error in the asymptotic estimates than did sowme of the
other procedures.

Third, it should be noted that the no-linking method worked
reasonably well in these analyses. Although the other procedures
produced slightly more efficient linking, relatively little effic-
iency would be lost, under the sampling characteristics present here,
if the parameters were used as produced by OGIVIA with no explicit
linking dons.

Finally, although definite relationships between calibration
efficiency and test length and sample size were shown in a previous
section, no such relationships were found with respect to linking
efficiency. This is counter-intuitive because all equivalence methods
are dependent on sampling error which is dependent on sample size.
Lack of any relationships may have been due to the fact that the range
of sample sizes was too small to produce them. To the extent that
this range covers the range of interest, however, the conclusion of no
differences can reasonably be applied.
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V. LINKING WHEN EXAMINEES ARE SYSTEMATICALLY SAMPLED

Linking with examinees systematically sampled represented an ex-
treme case of violation of the assumption of random sanpling essen-
tial to the equivalent-groups linking method. Only the equivalent-
tests and the anchor methods were theoretically appropriate for this
environment. Research reported in the previous section had shown the
equivalent-groups method to be superior tc the equivalent-tests method
when the random-sampling assumption was satisfied. Thus, although it
was not theoretically appropriate for this environment, the equivalent-

"groups method was evaluated to determine if it was practically accept-

able.

The basic data set containing systematically =ampled examinees
was used for this portion of the rescarch, For each calibration, an
AFEES group was selected at random from the 65 available, and exam-
inees were selected from that g.:.p. These data were then vsed in a
manner similar to the data of the randomly sampled examinees,

Equivalence Methods

Procedure

The data used in this portion of the research differed from those
reported in the previous section. The linking procedures used to im-
plement the equivalent-groups and equivalent-tests methods did not dif-
fer, however. All six methods used for determining linking constants
for the equivalent-groups method were again evaluated. The same 1link-
ing transformation equations were again applied to both the equivalent-
groups and the equivalent-tests methods.

Results

Fidelity of parameter estimation. Fidelity-of-estimation sta-
tistics for the homogeneous condition with systematically sampled ex-
aminees are presented in Table 37. True means and standard devia-
tions, shown in the first two columns, were close to the population
values. The mean of the b parameter, .262, was somewhat more deviant
from the population value of .227 than the value observed in the pre-
vious section. All four values appeared to be well within the limits
of sampling variation, however,

Bias in the estimated parameters is described in columns three
and four. The Bayesian equivalent-groups methods tended to under-
estimate the a parameters. The maximum-likelihood procedures and
the robust-maximum-1likelihood procedures tended to overestimate the
a parameters, although this was less the case with the non-robust
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Table 37. Item Parameter Error--Equivalence Methods
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute BRMS

Method Mean SD Mean SD Error Error R
Bayesian

a 1.588 ,601 -.159 -.012 . 374 .519 .533

b 262 1,344 173 .572 .568 .759 971
Progressed Bayes .

a 1.588 .501 =-.099 .008 . 376 .517 .533

b 262  1.344 . 147 . 495 .512 .682 971
Max, Likelihood

a 1.588 .501 .212 L1111 . 499 674 .531

b .262  1.344 L0ub . 188 +333 423 .979
Regressed M.L.

a 1.588 .501 .088 .073 . U439 .596 .530

b 262 1.344 077 . 295 . 388 . 493 .971
Robust M.L.

a 1.588 .501 .94 . 106 L4470 .623 .529

b .262  1.344 .054 . 191 .334 L431 .979
Rob. Reg. M.L.

a 1.588 .501 . 107 077 U425 .566 .531

b 262 1,344 .079 .269 . 375 . 489 971
Equivalent Tests -

a 1.588 .501 =.003 .034 371 .510 .526

b .262  1.344 -.035 . 340 L7 .587 971
No Linking 9

a PY 1.588 .501 . 139 . 084 . 450 .602 .533

b .262  1.344 .130 .237 .364 Lu6l 971

—_—

regressed procedure. The equivalent-tests procedure produced little
bias in the a parameters. No-linking resulted in overestimation of
a parameters. Slight bias in the b-parameter means was produced by
the two Bayesian procedures. The no-linking procedure produced a

similiar amount of bias. The other procedures all produced somewhat

less bias.
[ g
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In terms of bias in parameter standard deviations, the Bayesian
procedures produced the least bias for the a parameters. The maxi-
mum-1ikelihood procedures and the no-linking procedure produced the
most bias in the a-parameter standar¢ devi *ions. These observations
essentially reversed rthen the b-parameter y.as was ccnsidered; the
Bayesian procedures. produced the greatest bias, and the maximum-1like-
l1ihood and no-linking procedures produced the least.

) When the biases in columns three and four of Table 37 are com-
pared to corresponding values for the randomly sampled examinees
presented in Table 29, several things may be noted: The tendency of
the maximum-likelihood and no-linking procedures to overestimate the
a parameterz was observed in both tables: biases in b--parameter means
and a-parameter standard deviations were similiar in both tables; and
the biases in the b-parameter standard deviations were somewhat larg-

er in Table 37, ~.

Absolute and root-mean-square errors of parameter estimation are
presented in columns five and six of Table 37. The equivalent-tests
methou produced the least parameter error, evaluated by either sta-
tistie, for the a parameters. The two Bayesian mett 'ds wore nearly
as good, however. The maximum-likelihood and no-lir«ing prccedures
produced the greatest amount of a-parameter error. The least b-param-
eter er or was produced by the maximum-1likelihood methods: the most
was produced by the Bayesian methods.

Error in the a parameters observed in Table 37 was similar in
magnitude to that observed in Table 29. Absoluté errors of the a
parameters ranged from .337 to .327 in Table 29; in Table 37 the
comparable range was from .371 to .499. Error in the b parameters
w2s somewhat greater® in Table 37, however. Absolute errors of the b
parameters ranged from .171 to .358 in Table 29; in Table 37 they
ranged from .333 to ,568.

Correlations between true and estimated a parameters, shown in
column seven, were very similar for all linking methods. The Baye-
sian, the robust-regressed maximum-likelihood, and the no-1linking
Frocec ures were best, with correlations of .533. The equivalent-
tests method was worst, with a correlation of .526. Correlations
for the b parameters were almost uniformly .971. The exception w:zs
the maximum-likelihood procedure, with a correlation of .970, a
trivial difference. ’ ’

Compared to correlations in Table 29, these correlations were
somewhat lower. It is difficult to say whether this was due to cali-
bration or to linking errors. Both a- and b-parameter correlations
were lower in analysis of the current basic data set, however, so the
drop was prodably due to greater calibration error.
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Table 38 presents fidelity-of-calibration data for the hetero-~
genenous condition, Means and standard deviations of item parameters,
siiown in columns one and two, were essentially the same as for the
homogeneous condition, Differences were due to the fact that less than
half of the items used in the homogeneous condition were used here.

Parameter bias statistics, shown in columns three and four,
were essentially unchanged from the homogeneous condition. Changes
in biases of the a-parameter ineans were in the third decimal place,

Table 38. Item Parameter Error--Equivalence Methods
Heterogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS @

Method Mean SD Mean SD Error Error R
Bayesian

a 1.586 ,500 ~,156 ~,005 377 .521 511

b 281 1,374 .194 .593 .576 .766 .966
Progressed Bayes

a 1.586 .500 ~,100 .018 .379 .519 .507

b .281 1.37H4 . 156 .512 .519 .688 .967
Max. Likelihood

a 1.586 .500 .210 . 186 .505 .676 LU57

b 281 1.374 .062 197 .335 L0723 .970
Regressed M.L.

] .36 .500 .087 122 Luuy .598 L1469

b .281 1.374 .095 . 305 .392 . 496 971
Robust M.L.

a 1.586 .500 .192 .138 473 .622 U491

b .281 1.37H4 .068 . 198 .334 427 .970
Rob. Reg. M.L.

a 1.586 .500 .106 .095% . 428 .567 .505

b 281 1.374 .094 .280 .376 .u88 .968
Equivalent Tests

a 1.586 .500 =,005 .029 .370 .507 .526

b .281 1,374 -,016 .361 421 .589 .355
No Linking

a 1.586 .500 .138 . 127 . 455 . 604 L U84

b 281 1.374 . 146 L2Uu6 .38 LU€b 971
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Changes in the bilases of the b-parameter means were in the second
decimal place. Changes in the bias of the a- and b-parameter stan-
dard deviations were somewhat greater, but almost all were in the
second decimal place.

The ranges of parameter errors shown in columns five and six
were essentially unchanged from the homogeneous condition. Similar-
ly, the linking procedures producing the least error were unchanged;
the equivalent-tests method produced the least error in the a param-
eters and the maximum~1likelihood procedure produced the least error
in the b parameters.

The magnitude of the a-parameter error showed no apparent change
from that observed in the data set containing randomly sampled exam-
inees. The b-parameter error increased, however. These trends are
similar to those of the homogeneous condition,

Correlations between true and estimated parameters generally
showed a decrease from corresponding values in the homogeneous con-
dition. This decrease was most pronounced- for the a parameters. The
highest a-parameter correlation was produced by the equivalent tests
method. This was followed by the Bayesian methods. The maximum-
likelihood and no-linking methods produced the highest b-parameter
correlations; the equivalent-tests methods produced the lowest.

Where differences were trivial in the homogeneous condition, correl-
ations ranged from .956 to .971 in the heterogeneous condition.

Characteristics of asymptotic ability estimates. Table 39 pre-
sents asymptotic ability estimate statistics for the homogeneous case
of linking with systematically sampled examinees. The mean asymp-
totic ability was close to zero for most methods, but more different
from zero than was observed with the randomly sampled examinees. The
no-linking procedure produced estimates whose means were closest to
zero; the equivalent-tests method produced estimates whose mean was
farthest from zero. The regressed-maximum-likelihood procedure pro-
duced asymptotic estimates whose standard deviation was closest to
1.0; the Bayesian procedures produced estimates with the greatest
blias in the standard deviation.

Absolute and root-mean-square errors are presented in columns
three and four in Table 39. The smallest amount of error was produced
by the regressed and the robust-regressed maximum-likelihood proce-
dures; the largest error was produced by the equivalent-tests proce-
dure, The remaining maximum-1likelihood and the no-linking procedures
produced errors slightly greater than the regressed and robust-regressed
procedures. The Bayesian procedures produced error in an amount nearly
midway between the maximum-1likelihood procedures and the equivalent-
tests procedure, This ordering of procedures was somewhat different
from that observed in the set of randomly sampled examinees.




Table 39. Asymptntic Ability Estimate

Homogeneous Condition Using System

s--Equivalence Mcthods

atically Sampled Examinees

Absolute RMS

Method Mean SD Error  Error R -
Bayesian ~.0u4 1.152 167 .223 .996
Progressed Bayes -.049  1.108 .15 .192 .996
Max. Likelihood -.060 .44 .128 176 .996
Regressed M.L. -.054 1.003 21 .159 .996
Robust M.L. 4 ~.064 .936 127 AT .996
Rob. Reg. M.L. -.060 .978 127 .159 .996
Equivalent Tests -.200 1.022 .2uy .356 .996
No Linking .003 .970 .125 .162 .996

The correlations between true and
formly .99%. This was a slight decrease
were almost all .999.

asymptotic ability were uni-
from Table 31 where they

Asymptotic estimate statistics for the heterogeneous condition
are presented in Table 40. Slight changes from Table 39 appeared in
111 produced the least bias and
Slight changes also
cccurred in the standard deviations but none were of any consequence.

the means, but the no-linking method st
the equivalent-tests method produced th

e most.

In the heterogeneous condition, the no-linking procedure produc-
ed the least absolute and root-mean-square errors of the parameter

estimates. The maximum-likelihood procedures were
line but the Bayesian procedures closed the gap cons
equivalent-tests procedure still produced the most error.

typically next in
iderably. The

Root~-mean-

square error was {nvariably less for the heterogeneous condition than
on. Absolute error typically
exhibited the same behavior but a few lncreases were observed. This
ed in the data set containing

it had been for the homogeneous conditi

decrease was similiar to the one observ
randomly sampled examinees.

The correlations between true and asymptotic ability ranged from
value to make any meaningful

.995 to .996. These were too close in

contrast between methods. The decrease from the homogeneou

was extremely slight.
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Table 4Q. Asymptotic Ability Estimates--Equivalence Methods
Hetercgeneous Condition Using Systematically Sampled Examinees

Absolute BRMS
Method Mean SD Error Error R

Bayesian -.051 1.143 .1uy . 195 .996

Progressed Bayes .056 1.100 121 . 166 .996

Max. Likelihood

.075 .928 .130 . 157 .995

Regressed M.L. -.066 .992 .107 .136 .996
Robust M.L. -.076 .930 .132 .158 .995
Rob. Reg. M.L. -.071 .972 L1114 . 142 .995

Equivalent Tests .207 1,022 .216 231 .996

No Linking -.013 .962 .095% .127 .995

Efficiency of ability estimation. Table 41 presents calibration
and linking efficiencies for the homogeneous condition with system-
atically sampled examinees. The first entry in the first column in-
dicates that slightly less information was avallable from true param-
eters in this data set than for the randomly sampled examinees (.314
vs. .319 units per item). Efficiency of calibration, as indicated by
the first entry in the second column, was also slightly less (.887
vs. ,.898).

Linking efficiencies, presented in the third column (Table 41),
were somewhat lower than those obtained with randomly sampled examinees
(Table 33) and also somewhat more variable. 1In general, the equivalent-
tests method produced t! 2 highest relative efficiency, .971, This was
slightly higher than it produced in the random sampling environment,

The Bayesian methods were next, both with .964~ The maximum-1ikeli-
hood methods ranged from .956 to .961. The 2~linking procedure
resulted in an efficiency of ,957. By way of comparison, except for
the equivalent-tests method, ef 'iciencies in the random sampling
environment were ,988 to .989.

Table 42 presents relative efficiencies for the heterogeneous
condition., The calibration efficiency, .889, was essentially un-
changed (as it should have been since any change would be due solely
to sampling). Linking efficiencies were all lower in this condition,
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Table 41, Efficiency Analysis--Equivalence Methods
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Ttem True Estimated
Method Information Parameters Parameters

True Parameters .34
Est, Parameters .278
Bayesian .268
Progressed Bayes .268
Max. Likelihood .267
Regressed M.L.

Robust M,L.

Rob. Reg. M.L.

Equivalent Tests

No Linking

Wwith the maximum-1likelihood procedure being the lowest, .904. The
equivalent-tests procedure produced the highest efficiency, .949, but
the Bayesian procedure was close, .9u2.

All equivalent-groups and the no-linking procedures had lower
efficiuncies in the systematic sampling enviromnment than in the ran-
dom sampling environment. This was expected since a theoretically
crucial assumption was violated. The equivalent-tests method lost no
efficiency, as should also have been expected since no assumption
violations occurred.

Table 43 presents linking efficiency of the Bayesian equivalent-
groups method as a function of test length and sample size. Effi-
ciencies appeared to increase with increasing sample size, but this
trend was not smooth and was somewhat inconsistent when the 12 cell
entries were compared. No trend with test length was obvious. Again,
essentially no trends were observed in the randomly sampled data set.

Table 44 presents linking zfficiency of the equivalent-tests
method as a function of test length and sample size, No t‘rend with
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Table 42, E?ficiency Analysis--Equivalence Methods
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficlency Relative to
Item True Estimated
Method Information Parameters Parameters
True Parameters .305
Est. Parameters .2T1 .889
Bayesian .255 .837 .9u2
Progressed Bayes ' .255 .835 .9U0
Max. Likelihood .2u5 .804 .904
Regressed M.L. .249 .8156 .918
Robust M.L. .250 .819 .922
Rob. Reg. M.L. .252 .828 .932
Equivalent Tests .257 .8uy .949

No Linking .2u8 .814 .916 -

Table 43. Cellwise Efficlency Analysis
Bayesian Score--Systematically Sampled Examinees

—_— - e

Sample Ttem Set Size
Size 20 35 50 55 Average
509 .961 L9117 . .970 .951
1000 .969 .939 . .982 .970
2000 L9656 .971 . .950 .979

Average .965 .9u2 . .967




Table U4, Cellwise Efficiency Analysis
Equivalent Tests--Systematically Sampled Examinees

Sample Test Length

Size 20 35 50 65 Average
500 .969 .907 .985 .990 .963

1000 977 .990 .978 .992 .984 .
2000 .926 .957 .991 .986 .965

Average .957 .951 .985 .989

respect to sample size was obvious. Efficiency did appear to increase
with test length in the marginal entries, although this trend was in-
consistent in the individual rows. These findings regarding trends
are consistent with those for the randomly sampled data set.

Discussion

Many of the data presented in this section were conflicting and
1nconsistent. Depending on which analyses were done, the.different
methods varled from best to worst. Fidelity analyses suggested that
the equivalent-tests method was best and the maximum-likelihood pro-
cedure was second best. Evcluation of asymptotic abllity estimates
suggested that the equivalent-tests method produced the greatest asymp-
totic error of estimation. Efficlency analyses suggested that the
equivalent-tests method was most efficient and the Bayesian procedures
were almost as efficient.

The efficlency analysis probably produces the best answers to
questions of which procedure is best. It is the goal of linking,
after all, to produce a set of items that will function efficiently
together. The facts that the parameters are not "most true" or that
the ability scale is not at arbitarily targeted levels are secondary
to the goal of efficlency of measurement. Efficiency analyses are
probably most useful in selecting a procedure.

Accepting the previous argument, several observations can be
made. First, the equivalent-tests method is the moust pfficient when
examinees are systematically sampled, as they were herle. Second, the
Bayesian procedures are nearly as efficlent with systematic sampling
and, as was observed earlier, are more efficient when’examinees are
randomly sampled. At scme point between the extremes!in sampling in-
vestigated here, the Bayesian procedures could be expented to become
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superior. Of the two Bayesian procedures, neither was clearly superior,
but the simple (i.e., unprogressed) procedure was easier to compute
and therefore preferable.

Analysis of the two methods by test length and sample size sug-
gested that there was a slight increase in efficiency of the equiva-
lent-tests method as test length increased and a slight increase in
efficiency of the Bayesian equivalent-groups procedurs as sample size
increased. These increases were small and inconsistent, however, and
suggested that all of the test lengths and sample sizes investigated
were nearly equivalent in terms of resulting efficiency for both the
equivalent-tests and Bayesian methods.

Y

Anchor Group Method

Procedure

The anchor group linking method is, conceptually, very similar
to the equivalent-groups method. The major conceptual distinction is
that the anchor group method uses a single group of examinees for all
linking and thus does not need td assume the statistical equivalence
of several different groups.

In this research, eight different anchor groups were evaluated.
The eight groups comprised four examinee sample sizes (10, 30, 50,
and 100) and two distribution forms (rectangular and normal). The
rectangular samples consisted of abilities evenly spaced between -1.,7
and 1.7. The normal samples were created by selecting normal devi-
ates corresponding to evenly spaced percentiles from 2.0 to 98.0.
Values thius obtained for both normal and rectangular samples were
then standardized to 2ssure that the samples obtained had means of
exactly zero and variances of exactly one.

Linking by the anchor group method was done for all parameters
in the systematically samplea Jdata set. This was accomplished by ad-
ministering all 60 tests in the data set to each of the examinees in
each of the anchor groups. Item parameters were then adjusted using
the same equations used for the equivalent groups method, Equations
14 and 1. Two scoring procedures, the modal Bayesian procedure and
the robust-maximum-likelihood procedure were used for this linking.

Results--Modal Bayesian Scores

Fidelity of parameter estimation. Table 45 presents the item
parameter error statistics for the anchor group linking method for
each anchor group size and composition in the homogenecus linking
. condition using m>dal Bayesian estimates. The first two columns pre-
sent the means and standard deviations. of the true a and b parameters
averaged over cells in the Systematically sampled data set. These
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Table 45, Item Parameter Error--Anchor Grour:z
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS

Method Mean sD Mean SD Error Error R
Normal 10

a 1.588 .501 =~.080 .033 .393 .540 .519

b 262  1.344 .180 .U79 Luuo 671 977
Normal 30

a 1.588 .501 =.076 .017 .380 .521 .527

b 262 1.344 .168 . 443 . 409 614 .979
Normal 50

a 1.588 .501 -,086 .019 . 381 .525 .529

b 262 1.3u44 . 186 . 469 Lu24 .6ul .979
Normal 100

a 1.588 .501 -.101 .011 . 374 .516 ~ .530

b 262 1.3u4 .193 480 432 859 379
Uniform 10 o

a 1.588 .501 -.110 . 024 .395 .5U45 516

b 262 1.344 .198 .516 LU70 LT17 0 -.976
Uniform 30

a 1.588 .501 =.135 .006 .386 .529 .520

b .262 1,344 .192 .530 L1469 .706 977
Uniform 50

a 1.588 .501 -.137 .001 .378 .523 .529

b 262 1.344 .203 .530 LU70 712 .979
Uniform 100 ]

a 1.588 .501 -.115 .003 . 372 516 .531

b 262 1.3u44 .208 . 497 Luu8 .681 .980
No Linki%g

a 1.588 .501 .139 .084  .450 .602 .533

b 262 1.344 .130 .237 . 364 Lu64 971

s

values are the same as those presented in Table 37 and will not be
discussed again here.

Biases in the estimated item parameters are presented in columns
three and four. With the exception of the no-linking group, all
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groups tended to underestimate the a parameters. All groups tended

to overestimate the b parameters, with a trend for increasing bias
with increasing group size. The no-linking method revealed the least
b-parameter bias, while th2 normal group showed the least bias over-
all. In terms of bias in parameter standard deviations, the uniform
group showed least bias in the a parameters and the normal group show-
ed least bias in the b parameters. Again, the no-linking method show-
ed the least bias in the b parameters overall.

Absolute and root-mean-square errors of the parameter estimates
are presented in columns five and six. A slight trend toward decreas-
ing absolute error in the a parameters with increasing anchor group
size was apparent for both d‘stributiors, although it was more pro-
nounced with the uniform ainchor groups. No consistent differences
were apparent betwcen the group compositions with respect to a-param-
eter absolute error, but both produced less error than the no-link*ng
procedure. Absolute error of the b parameters suggested different
conclusions: There were no noticeable decreases with increasing anchor
group sizes for the normal group and there were slight decreases for
the uniform group. The no-linking procedure produced the least error,
and the uniform groups consistently produced the most error. The same
conclusions drawn from the absolute errors could also be drawn f{rom
the root-mean-square errors.

The correlations between true and estimated a and b parameters
are shown in the last column of Table #45. There was a slight in-
creasing trend in both the a- and b-parameter correlations with in-
creasing anchor group size for both shapes of ability distribution.
The no-linking procedure produced a-parameter correlations slightly
higher than those of other methods and b-parameter correlations that
were slightly lower. ‘

The fidelity-of-calibration data for the heterogeneous condition
are presented in Table 46. Since observations about the true item
parameters remain the same across linking methods, they will not be
repeated here.

The parameter biases presented in columns three and four were
essentially the same as those of the homogeneous case. The bias of
the a-parameter means tended to be somewhat smaller for the homogen-
eous case while the same trend was observed with respect to bias in
the a:parameter standard deviations. For the b parameters, however,
the bias in both the mean and standard deviation were greater in the
heterongeneous condition.

Parameter errors depicted in columns five and six were essen-
tially the same as those for the homogeneous case for the a param-
eters. The differences between the heterogeneous and homogeneous
conditions appeared in the third decimal place for the a parameters.
The b-parameter errors for the heterogeneous conaut tion showed a
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Table 46. Item Parameter Error--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

Bias in Absolute RMS
Method SD Mean SD  Error Error

Normal
a . .500 ~.082 .0u5 « 394 .538
b . .374 .203 .501 450 .680

Normal
a . .500 077 .027 .384 .522
b . .374 .189 LU68 419 .622

Normal
a . .500 .087 .029 .385 .526
b . . 374 .207 492 U435 .653

Normal 100
a . .500 . 102 .017 377 .517
b . .374 214 .504 Luu3 .667

Uniform
.500 111 .0u0 400 . 547
. 374 .219 .550 . 483 .730

.500 -,137 .0OM .389 .530
.374  .215 557  .u82 .718

Uniform
a . .500 .138 .006 .381 .524
b . .374 224 .557 .u82 .721

Uniform
a . .500 117 .008 .374 .516
b . .374 . 229 .525 . 459 .690

No Linking
a . .500 .138 . 127 LU55 .60y
b . . 374 . .2U6 .368 1466

slight increase over the homogeneous condition. Absolute errors of
the b parameters showed no noticeable trends with increasing anchor
group size for the normal groups but showed a slight decreasing trend
with increasing uniform anchor group size. Many of the same conclu-
sions could also be drawn from the root-mean-square errors.
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Whereas bias and errordstatistics were quite similar for the
homogeneous and heterogeneous conditions, the correlations between
true and estimated parameters showed a noticeable drop from their
corresponding values in the homogeneous condition. Differences in the
second decimal place were observed for the a parameters and in the
third decimal place for the b parameters. There was a slight tendency
for the correlations to increase with increasing anchor group size.
The no-linking procedure's correlation for the a parameters was, how-
ever, somewhat lower than most correlations produced by the anchor
group procedures.

Characteristics of asymptotic ability estimates. Table 47 pre-
sents descriptive statistics for the asymptotic ability estimates in
the homogeneous case. Mean asymptotic ability estimates were clese
to zero for all cases while the corresponding standard deviations
were close to one. For the most part, means were overestimated, as
were the standard deviations.

Table 47. Asymptotic Ability Estimates--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

- P

Absolute RMS

Method __Mean SD Error  Error R
Normal 10 . 005 1.070 .085 131 .996
Normal 30 -.009 1.066 . 031 .129 .996
Normal 50 .00 1.070 .081 .129 .996
Normal 100 .00 1,078 .081 134 .995
Uniform 10 .203  1.092 . 105 . 156 .996
Uniform 30 -.005 1,104 . 101 .151 .996

- Uniform 50 .005 1.108 .098% 157 .996
Uniform 100 1T 1,091 .085 . 142 .996
No Linking .003 979 .125 . 162 . 996

—— - iy o o - - -— e

Absolute error preseated in co’uan threc was lowest for the nor-
mal anchor group and greatest for the no-linking procedure. Absolute
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error appeared to decrease with increasing anchor group size for the
uniform anchor group. No trend was obvious fcr the normal group.

Root-mean~square error, presented in column four, showed the same
differences among linking methods. Trends within methods as a function
of anchor group size were not apparent.

Correlations between the true and asymptotic ability, shown in
column five, were uniformly .996.

Statistics for the asymptotic ability in the heterogeneous case
are presented in Table 48, Slight changes were observed from the
homogeneous condition, for the means and standard deviations. Whereas
the homogeneous condition tended to overestimate the means, the heter-
ogeneous ‘condition tended to underestimate them. Standard deviations
of the asymptotic estimates for the heterogeneous condition were !
smaller than for the homogeneous condition.

Table 48. Asymptotic Abllity Estimates--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

Absolute BRMS

Method Mean sSD %/Errnr Error R
Normal 10 .004 1,065 .085 .125 .996
Normal 30 -.012 1,061 .075 17 .995
Normal 50 -.001 1.066  .072 T .996
Normal 100 .000 1.075  .078 125,996
Uniform 10 -.000 1.082  .085  .130 .996
Uniform 30 -.Bby~v\3.1oo .096 .139  .996
Unifdrm 5 -.oom"’ﬁ.1o3 .095 . 140 .996
Uniform 100 .01y 1,088  .081 L131 .996
o

No Linking -.013 .962 .095 127 .995

Absolute and root-mean-square errors of the asymptotic estimates
were uniformly lower in the heterogeneous condition than in the homo-
geneous condition. Trends with respect to anchor group size were not
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apparent, however, and the no-linking method was not consistently in-
ferior,

Correlations between true and asymptotic abllity were identical
to the homogeneous condition (i.e., .996) for the anchor group pro-
cedures. The no-linking procedure produced a correlation slightly
lower in the heterogeneous condition.

Efficiency of ability estimation. Table 49 presents the efficien-
clies achieved by the homogeneous linking condition with systematically
sampled examinees, The average item information, presented in the
first column, was nearly identical for both the normal and uniform
groups and increased as sampie size increased. The no-linking group
showed the lowest average item information.

Table 49. Efficiency Analysis--A1chor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated
Method Information Paramepers Parameters
True Parameters .34
Est. Parameters .278
Normal 10 272
Normal 30 274
Normal 50 274
Normal 100 .275
Uniform 10 .21
Uniform 30 274
Uniform 50 .275 .876 .987
Uniform 100 (5 .87 988
No Linking .266 . 849 . 957

Linking efficiency, shown in the third column, showed a slight
rise as sample size went from 10 to 30 but negligible change from 30
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to 100. There were no consistent differences between the two anchor
group distributions. The no-linking case showed the lowest efficien-
cy, .957.

Relative efficiencies for the heterogeneous condition are pre-
sented in Table 50. The same trends were apparent here (except for
rounding error) as were shown for the homogeneous case. Inform:tion
values and relative efficiencies were markedly lower for the hetero-
geneous condition than for the homogeneous condition. As before, a
sharp rise was noted as sample size increased from 10 to 30, but
there were negligible increases thereafter.

Table 50, Efficiency Analysis--Anchor Groups
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated
Method Information Parameters Parameters
True Parameters .305
Est. Parameters 27 .889
Normal 10 .259 . 850 .956
Normal 30 261 857 961
Normal 50 .260 . 855 .962
Normal 100 .261 .858 .966
Uniform 10 .257 . 8U5 .951
Uniform 30 .261 856 .963
Uniform 50 .261 . 858 .966
Uniform 100 .26° . 860 .968
No Linking .248 .81 .916

Resul ts--Robust-Maximum-Likelihood Scores

Fidelity of parameter estimaticn. Table 51 ¢ - tondensed table
of the modal Bayesian and robust-maxinm m-likelihou tem parameter er-
ror statistics for the anchor group linking design in the homogeneous
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Table 51.

Item Parameter Error--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Bias in RMo Bias in RMS
Method Mean SD  Error R Mean SD Error R
Normal 10
~ a -.054 . 060 .562 . U89 .699 .391 1.168 .u38
b . 151 U422 .590 .978 -.035 -.118 .331 .973
Normal 30
a -.076 .037 .552 L1488 Lusy .256 .834  uuy
b . 164 LU29 .597 .981 -.004 .007 426 .968
Normal 50
a -.052 . 051 .562 . 1486 RILR . 2uy .857 467
b .166 LU19 .597 .979 =.016 .002 .320 .975
Normal 100 ) '
a -.107 .025 541 LU87 .u83 .253 .896 .u62
b .203 LU68 .653 .980 -.023 -.027 .307 .976
Uniform 10
a -.060 .066 .601 U463 ~,007 . 182 L706 .381
b .185 Luu7 .637 .975 . 160 .531 .505 .952
Uniform 3u
a -.127 .023 .549 U483 . 120 . 165 LU0 478
b .182 .5C0 671 .979 071 .300 .581 .971
Uniform 50
a -.117 .030 .555 . u8s5 175 L1748 L7170 U457
b .207 . 499 .684 .979 .079 .222 L426 .97
Uniform 100
a -.105 .028 .546 Lu87 . 169 . 160 .670 .u453
b .207 LU78 .673 .980 .072 .232 L497 973
No Linking
a . 143 112 .629 .501 . 143 112 .629 .501
D . 147 .228 Juuy .973 . 147 .228 Juuy o 973

|
case. The table values represent averages taken over fcir zells of
the data matrix (i{.e., 1000 examinees and 20, 35, 50, and 55 items),
rather than over the entire 3x4 matrix, as in the previous section.




Whereas the bias in the a-parameter means, using modal Bayesian
estimation, tended to be slightly negative for both the normal and
uniform groups {(indicating that the a parameters were underestimated),
the robust-maximum-likelihood procedure grossly overestimated the
means for the normal group and slightly overestimated the means for
the uniform group. The t-ends with respect to the b-parameter biases
were reversed from those noted for the a parameters. The robust-maxi-
mum-1ikelihood procedure produced a b-parameter mean that was much
closer to the true value of 0.0 than did the modal Bayesian estimate.
The normal group tended to produce siignt underestimates of the b-
parameter mean while the uniform group produced slight overestimates.
Both groups produced overestimates of the b mean when the modal
Bayesian scoring procedure was used.

The same general trends noted for the bilas in parameter means
held also for the hiases in the parameter standard deviations. The
robust-maximum-likelihood estimates tended to overestimate the a-
parameter standard deviations more than their counterparts in the
Bayesian case. As was the case for the b-parameter means, the ro-
bust-maximum-1ikelinood estimates of the standard deviations were
much closer to the true value of 1.0 than were the modal Bayesian:
estimates. The normal groups revealed a much smaller bias in b- el
parameter standard deviations than did the uniform groups using
robust maximum likelihood. The Bayesian modal estimates showed very
1ittle difference between the normal and uniform groups.

In terms of root-mean-square error in the a parameter, modal
Bayesian procedures showed the least error, regardless of distribu-
tion shape. On the other hand, robust-maximum-1ikelihood procedures
provided the smallest errors for the b parameters. " The normal group
produced less error than the uniform group, with a slight tendency
for increasing error with increasing anchor group size.

The correlations between true and estimated parameters were con-
sistently higher with modal Bayesian procedures than with robust-max-
{mum-likelihood procedures although in several instances the differ-
ences were in the third decimal place. There were no consistznt
differences among group compositions or sizes. As usual, correla-
tions for the b parameters were considerably higher than for the a
parameters.

Characteristics of asymptotic ability estimates. Table 52 pre-
sents summary statistics for the asymptotic ability estimates using
both modal Bayesian and robust-maximum-1likelihood procedures. The
robust-maximum-1ikelihood procedure resulted in slight underestimation
of the means for both the normal and uniform groups. Standard devia-
tions were also underestimated, compared to the modal Bayesian groups
which tended to overestimate the standard deviation. For the robust-
maximum-1ikelihood procedures, there was a noticeable difference be-
tween the normal group, which produced underestimated standard
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Table 52. Asymptotic Ability Estimates--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian taximum Likelihood
RMS RMS

Method Mean SD _Error R____ Mean SD _Error R

Normal 10 -.006 1.0u45 L1y .996 -.037 .T24 .305 .996
Normal 30 -.009 1.066 .125 .996 -.068 .776 .258 .995
Normal S0 -.004 1.044 .108 .996 -.0u48 T91 .236  .996
Normal 100 .010 1.080 L3 .996 -.044 179 24T 996
Uniform 10 .013 1.061 . 126 .997 -.048 .993 <136 .997
Uniform 30 -.009 1.098 LY .996 -.0u49 .932 .133  .997
Uniform 50 - .012 1.090 .13 .996 -.015 .920 .143 .996
Uniform 100 .016 1.078 .128 .996 -.033 911 .135  .996
No Linking .034 .962 . 133 .996 .034 .962 .133  .996

deviationc, and the uniform group, which produced overestimated
standard deviations.

In terms of root-mean-square error, there were again notable
differences between the normal and uniform groups using robust-maxi-
mum-1likelihood procedures. The normal group had bias values consii-
erably greater than its counterpart using modal Bayesian procedures
while the uniform group had error values quite comparable to their
Bavesian counterparts. The normal-group errors, using robust-maxi-
mu.~likelihood scoring, were by far the largest of any of the methods.

Correlations between true and estimated parameters using robust-
maximum-likelihood procedures were uniformly high {.996) and virtual-
ly identical to their Bayesian counterparts.

Cfficiency of ability estimation. Table 53 presents comparisons
of robust-maximum-likelihood with modal Bayesian procedures in terms
of relative efficiencies achieved by each method. The average amount
of information available per item tended to be higher for the modal
Bayesian procedures than for the robust-maximum-likelihood procedures.
This, of course, meant that the efficiencies relative to the true and
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Table 53. Efficiency Analysis--Anchor Groups
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Efficiencies Efficlencles
Relative to Relative to
Avg. Item True Est. Avg. Item True Est.
Method Info. Params. Params. Info. Params. Params.
True Params. . 306 .306
Est. Params. .270 .882 ,?70 .882
Normal 10 . 265 .866 .983 257 .840 .953
Normal 30 . 267 874 .991 .262 .857 .972
Normal 50 . 266 .870 .987 .265 .868 .984
Normal 100  .267 .873 .991 .264 862 .978
Uniform 10 . 263 .860 L9756 .252 .824 .935
Uniform 30 . 267 .872 .989 .262 .856 971
Uniform 50 . 267 .872 .990 .262 .858 .973
Uniform 100 .267 .873 .990 .264 .865 .981
No Linking . 260 .850 . 964 .260 .850 .964

estimated parameters were also higher for modal Bayesian than for ro-
bust-max imum-likelihood procedures. The magnitude of differences were,
with one exception, in the second decimal place.

The normal group showed no consistent trend with increasing group
size. The uniform group showed a tendency for increasing efficiency
with increasing group size. These trends appeared for both modal
Bayesian and robust-maximum-1ikelihood procedures.

Discussion

Most of the analyses thus far have presented rather conflicting
results. Different analyses have suggésted different procedures that
were "best." Using fidelity-of-parameter estimation as a criterion,
modal Bayesian procedures tended to produce more accurate estimates
of the a parameter while the robust-maximum-likelihood procedures
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tended to produce more accurate estimates of the b parameter. Within
the modal Bayesian procedures, there did not appeEr to be any clear-
cut advantage to either group composition. For thc robust-maximum-
likelihood procedures, there was a clear trend for the normal groups
to produce consistently better estimates for the b parameters than
those estimates produced from the uniform groups.

Using asymptotic ability estimates as the evaluative criterion,
modal Bayesian procedures with normally distributed anchor group abil-
ities appeared to be consistently best. Modal Bayesian procedures
with uniformly distributed abilities were second best. Robust-maximum-
likelihood scoring using uniform and normal anchor groups followed in
that order.

Modal Bayesian procedures showed efficiencies consistently high-
er than robust-maximum-likelihood procedures regardless of anchor
group composition or size. With the modal Bayesian procedures, the
normal groups tended to yileld slightly more efficiency than did the
uniform groups. Both groups were superior to the no-linking conditien.

Anchor Test Me:i%od

Procedure

Generation of the source item pool. The first step in the ap-
plication of the anchor test method was to construct a source item
pool from whicn the anchor tests could be selected. Ton obtain the
source item pocl, 200 a, b, and ¢ parameters were independently gener-
ated as discussed previously. The first four central moments of each
of these distributions matched those specifie. earlier as being repr:-
sentative of a "typical™ ASVAB item pool. These parameters represent-

ed the "true™ parameters of 200 hypothetical items.

Dichotomous i{tem responses for these 200 items were simulated
for 4000 examinees randomly selected from a distribution of abilities
with distributional moments representative of the total AFEES popula-
tion. All examinees responded according to the three-parameter logis-
tic IRT model, Item parameter estimates were obtained for these 200
items using program OGIVIA. The items were, due to computer program
limitations, calibrated in two sets of 100 items each.

Selection of anchor-test items. Three different 25-item anchor
tests were constructed by selecting items from the original set of 200
items. These anchor tests were constructed 30 that their test infor-
mation curves were approximately normal, rectangular, anc peaked.

The peaked test was constructed by selecting the 25 items which
provided the most information at theta equal to zero, according to
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their estimated item parameters; this is the vay items would typically
be selected for inclusion in a peaked test. In order to get an indi-
cation of the amount of information actually contained in this test,
t) a true information was computed, using the true item parameters, for
51 theta values at intervals of .10 from =3.00 to 3.00. These infor-
mation values were then averaged across 61 theta values; this average
was 8.320,

Items for the rectangular and normal tests were selected so that
their test information curves were shaped approximately rectangular
and normal, respectively, and so that the true test information,
computed using the true item parameters and averaged as before over 61
theta values from -3,00 to 3,00, approached the value obtained by the
peaked test. These averages were 8.410 and 8,232 for the rectangular
and normal tests, respectively. When the test information was comput-
ed on the basis of the estimated item parameters, these averages were
8.485, 9.294, and 9.121 for the peaked, rectangular, and normal tests,
respectively, Figure 9 presants the true information curves, bas2d on
the true item parameters, for the three 25-item anchor tests.

Figure 9. True Information Curves, Using True Item Parameters,
for Each of Three Anchor Tests
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Two additional embedded tegts for each of these three anchor
tests were obtained by selecting the first five items and the first
15 items from each. Thus, the nine anchor tests considered here com-
prised three groups of 5-, 15-, and 25-item tests, each of whose test
information curves for these tests were approximately normal, rec-
tangular, and peaked, respectively. The items included in these
anchor tests are presented in Appendix Table A-2.

Determination of the linking transformations. The nine anchor
tests e "administered"” to the 70,000 examinees comprising the
systematically sampled basic data set. This simulation was accom-

\vplisﬁed by generating response vectors using the true theta levels

of these examinees and then scoring the anchor tests. Once item re-
sponses were avallable for the items in each anchor test, a modal
Bayesian estimate of ability was computed for each examinee on each
anchor test, using a standard normal prior distribution of abilities
and scoring each response vector using the estimated item parameters.
For each of the 60 calibration groups, the mean and standard devia-
tion of estimated ability were computed on each of the nine anchor
tests. These values were then used for the transformation constants
for anchor-test linking. .

Linking under the anchor-test method 1s accomplished by trans- .
forming the non-anchor-test item parameters such that the mean and
standard deviation of ability of the groups under consideration, as
estimated from the non-anchor test, match the mean and standard devi-
ation of abllity estimated from the anchor test alone. When the
transformation constants k and m are applied in the form presented by
Equations 14 and 15, the constants k and m may be expressed as:

k = or./oe {30]

- ku [31]

d m =
an 8 ,

“r
where Hp and or are, respectively, the mean and standard deviation of
abllity estimates in the non-anchor test and Hg and o, are the cor-

G
responding statistics for the anchor test.

Results--Modal Bayesian Scores

Fidelity of parameter estimation. Fidelity-of-estimation sta-
tistics for the homogeneous condition, using the Bayesian scoring ‘
technique, are presented in Table 54. The true means and standard
deviations of the a and b parameters are presented in the first two
columns of this table. Columns three and four present the blas in
the means and standerd deviations of the item parameters. The largest
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Table 54. Item Parameter Error--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

True Bias in Absolute RMS

Method Mean SD Mean SD Error Error R
Normal 5 (

a 1.588 .501 .5TU .237 .718 .874 .532

b 262 1.344 .135 -.091 .258 .350 .979
Normal 15

a 1.588 .501 .095 .076 L4y .552 531

b 262 1,344 .226 . 266 .320 .509 .980
Normal 25

a 1.588 .501 .067 .067 L 405 .54 .530

b .262 1.344 .232 .293 .333 .529 .980
Rectangular 5

a 1.588 .501 LUC0 . 182 .589 .738 .530

b 262 1,344 . 168 .020 .253 .365 .980
Rectangular 15

a 1.588 .501 .095 077 U416 .554 .532

b .262  1.344 .227 . 267 .321 .506 .980

' Rectangular 25

a 1.588 .501 .ou2 .058 .396 .536 531

b .262  1.344 .233 .318 .34y L) .980
Peaked 5

a 1.588 .501 1,032 .418 1,169 1.359 .531

b 262 1.344 029 =.332 .3u2 L430 .98%0
Peaked 15

a 1.588 .501 617 . 255 .754 .914 .531

b 262 1.344 L1022 =115 .255 L 3uy .9%0
Peaked 25

a 1.588 .501 Lus7 . 201 .629 .780 .529

b .262 1.344 L1845 -,017 .2U8 .359 .979
No Linking .

a 1,588 .501 .139 .084 . 450 .602 .533

b 262 1.344 .130 .237 . 364 Lu6l L9

e
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biases in the mean of the a parameters were observed for the peaked
tests, and ranged from .457 for the 25-item anchor test to 1.092 for
the 5-item anchor test. The smallest biases in the means were ob-_
served for the rectangular tests, although the biases for the nor- ™.
mal tests were only slightly higher at the longer test lengths. The
smallest biases were observed for the 25-item normal and rectangular
tests, with values of .067 and .042, respectively. When no linking
was performed, the bias in the mean of the a parameters was .139;

this value was exceeded by all three peaked tests, but only by the
5-item normal and rectangular tests.

Biases in the standard deviations of the a parameters were larg-
est for the peaked tests, ranging from .201 to .u18. Again, there
was little difference observed between the biases in the standard de-
viations of the a paramete for the normal and the rectangular tests,
although they were slightly smaller for the rectangular tests, The
smallest biasce were observed for the 25-item normal and rectangular
tests. As before, biases for all three peaked tests exceeded the
value of .084 observed in the no-linking condition, whereas only the
5-item normal and rectangular tests exceeded this value. Biases in
both the means ang-.the standard deviations of the a parameters de-
creased with incpreased test length.

The smaflest biases in the mean of the b parameters were ob-
served for t eaked tests; these values-ranged from .029 to .145.
There were essentially no differences between the rectangular and nor-
mal tests in terms of bias in the mean b's; these values clustered
between .135 and .233. These bias figures increased with increased
test lengths for all three anchor test types. 1In the no-linking
condition, bias in the mean g's was .130, which was exceeded by all
tests except the 5- and 15-item peaked tests.

The standard deviations of the b parameters were underestimated
for the peaked tests, since all these bias values were negative, rang-
ing from -.017 to -.332. The differences between the normal and rec-
tangular tests were not consistent, though the normal test' was some-
what better at test lengths greater than five items. The bias in the
b-parameter standard deviation was .237 in the no-linking condition,
and this value was exceeded by all the tests except the shortest normal
and rectangular tests and the two longest peaked tests.

Mean absolute and root-mean-square errors in the pa: .meters are
presented in columns five and six of Table 54. The peaked anchor
tests performed most poorly according to both of threse indices of
error for the a parameters. The mean absolute error in estimating a
was .629 for the 25-item peaked test, and was as high as 1.169 for the
5-item peaked test. The rectangular tests were best overall, but for
15 and 25 items, the normal tests performed nearly as well. The least
error was observed for the 25-item rectangular and normal tests.

When no linking was performed at all, mean absolute error was .u450.
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A1l three peaked tests exceeded this value, but ‘only the 5-item ver-
sion of the normal and rectangular tests did.

The pattern was identical for the root-mean-square error in

the a parameters. That is, the peaked tests performed most poorly,
and all three peaked tests exceeded the root-mean-square error of

.602 which was observed in the no-linking condition. Again, the
rectangular tests were best overall, but for 15 and 25 items, the
normal tests performed nearly as well. The least error was observed
for the 25-item rectangular and"normal tests. For all three kinds
of anchor tests, both absolute and root-mean-square errors in the a
parameters decreased with increasing anchor test size.

The pattern of errors was somewhat different for the b param-
eters. Overall, there were essentially no differences among the an-
chor test types in mean absolute error; these values ranged from .2u8
to .344 across the nine tests, and all these values were below the
.364 observed in the no-linking condition. 'For the peaked tests,
mean absolute errors decreased with anchor test size as expected.

For the rectangular and normal tests, however, these errors increased
with test size, as was observed for the blas statisties.

The peaked tests were better, in general, than the other two
kinds of tests in terms of root-mean-square errors in the b param-
eters.’ These values ranged from .34l4 to .430 and, although there
was no trend observed with respect to anchor test size, all these
values were below the .464 observed in the no-linking condition. The
normal tests were slightly superior to the rectangular tests in terms
of root-mean-square error. In both cases, errors increased with in-
creasing anchor test length.

There were small differences observed across anchor tests in
terms of the correlations between the true and estimated item param-
eters. For the a parameters, these values clustered between .529
and .532 for all nine anchor tests: all these correlations were lower
than the .533 observed in the no-linking condition. There were no
systematic trends observed with anchor test size.

For the b parameters, these correlations were approximately .980
for all nine tests, and therefore, all of tham were higher than the
.971 observed in the no-linking condition.

Fidelity-of-estimation statistics for the heterogeneous condi-
tion are presented in Table 55. As was observed for the homogeneous
condition, bias in the mean a parameters was largest for the peaked
tests and smallest for the rectangular tests; bias for the normal
tests was only slightly larger than that for the rectangular tests.
In the no-linking condition, bias in the mean a parameter was .138,
which was exceeded by all the peaked tests and | by the 5-item normal
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Table 55, 1Item Parameter Error--Anchor Tests
Heterogeneous Condition Usting Systematically Sampled Examinees

True Bias in Absolute RMS

Method Mean SD Mean SD__Error Error R
Normal 5

a 1.586 .500 571 .2U6 LT14 .871 .513

b .281 1,374 . 143 .084 .261 .3u7 .975
Normal 15

a 1.586 .500 .093 .082 L7 .552 .515

b .281 1.374 2u2 .285 .328 514 .974
Normal 25

a 1.586 .500 .066 075 410 .ouY .513

b 281 1.374 .2U8 .313 . 341 .535 .97H
Rectangular 5

a 1.5856 .500 . 397 .193 .590 .738 .512

b 281 1,374 178 .029 .257 .363 .975
Rectangular 15

a 1.586 .500 .093 .N85 L4119 .554 .515

b .281 1.374 242 .284 .328 51 .975
Rectangular 25

a 1.586 .500 .04 .065 L U401 .53% 514

b .281 1,374 .250 .338 .352 .550 .975
Peaked 5

a 1.585 .500 1.088 L4311 1,161 1.355 .512

b .281 1.374 .032 .332 . 347 . 431 .J74
Peaked 15

a Vi 1.586 .500 .615 .266 .750 .913 .513

b 281 1,374 L1190 .107 .258 .38 .97

AN

Peaked 25

a ’ 1.586 .500 . 455 212 .628 .780 511

b .281 1,374 . 155 .005 .251 . 358 .973
No Linking

a - 1,585 .500 .138 127 .U455 .604 . U8y

b .281 1,374 . 146 246 .368 . Uk6 971
—~———
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and rectangular tests. These bias figures decreased with increased
test length for all three anchor test types.

Bias in the standard deviation of the a parameters was greatest
for the peaked tests, ranging from .212 to u31 There were only
small differences between the normal and rectangular tests, #ith the
slight advantage going to the rectangular test at the lorger test
lengths. The smallest hiases were observed for the 25-item normal
and rectangular tests. The bias in the no-linking condition, .127,
was exceeded by all the peaked tests and the 5-item normal and rec-
tangular tests. As before, all these bias figures decreased with in-
creased test lengths.

In terms of the bias in the mean b parameters, the peaked tests
performed best, with bias equal to .032 for the 5-item test and in-
creasing to .155 for the 25-item test. Bias in the mean b's was some-
what larger for the other two types of anchor tests, although there
were fewer differences between them. For the normal and rectsangular

N tests, the bias figures fell between ,143 and .250. All but one of
) these values were greater than the ,146 observed in the no-linking
condition. Only the 25-item peaked test exceeded this value.

The standard deviations of the b parameters were consistently
underestimated by the peaked tests; bias was as high as -.332 for the
S5-item test, but was only -.005 for the 25-item test. Bilas values
for the other two types of tests were essentially the same, with a
slight advantage going to the normal test at the longer test lengths.
In the no-linking condition, bias in the standard deviation of the b
parameters was .2U6, which was exceeded by all but the shortest normal
and rectangular tests and tne two longest peaked tests,

The patterns of mean absolute and root-mean-square errors in the
a and b parameters in the heterogeneous condition were identical to
What was observed in the homogeneous condition. In terms of mean abso-
lute error, the peaked anchor tests performed most poorly, with errors
ranging from .628 to 1.161 for the a parameter. Again, the rectangular,
tests were best overall, with the normal tests closely following. When
no linking was performed at all, mean absolute error for the a param-
eter was .U55. All three peaked test exceeded this value, but only
the 5-item normal and rectangular tests did. This pattern of the ab-
solute errors was repeated for the root-mean-square errors.

The pattern of errors in the b parameters for the heterogeneous
case paralleled that observed in the b parameters for the homogeneous
case. Overall, there were °ssentially no differences among the an-
chor test types in nean absolute error; all values were below the
.368 observed in the no-linking condition. For the peaked tests,
mean absolute errors decreased with anchor test size as expected.

For the rectangular and normal tests, however, these errors increased
with test size, as was observed for the bias statistics.
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The peaked tests were better, in general, than the other two
kinds of tests in terms of root-mean-square er:or for the b parameters.
These values ranged from .341 to .431 and, although there was no trend
observed with respect to anchor test size, all these values were below
the .U466 observed in the no-linking condition. The normal tests were
slightly superior to the rectangular tests in terms of root-mean-square
error. In both cases, errors incre>sed with increaséd test length.

Small differences vere observed across anchor tests in terms of
the correlations between the true and estimated item parameters. For
the a paramaters, these values clustered between .511 and .515, with
the lowest ccrrelations observed for the peaked tests. All these
correlations were higher than the .U484 observed in the no-linking
condition. There were no systematic trends observed with anchor test
size.

For the b parameters, these correlations were between .973 and
.975, with the lowest correlations again observed for the peaked tests.
All these correlations were higher than the .971 observed in the no-
linking condition.

Characteristics of asymptotic ability estimates. Table 5¢ pre-
sents the summary characteristics of wzsymptotic ability estimates for
the homogeneous case. Columns 1 and ° present the mean and standard
deviation of the asymptotic ability metric. T[he peaked tests came
closest to producing an ability metric with a mean of zero; this
value increased with {ncreased test lengths. There were essentially
nc differences observed between the normal and rectangular tests.

For the normal tests, the means also increased with increased test
lenitth; for the rectangular tests, the means decreased.

The peaked tests performed most poorly in producing ability esti-
mates with a standard deviation of 1.0. The rectangular tests produced
astimates with a standard deviation closest to 1.0. For all three
types of anchor tests, the standard deviation increased with increased
teat length.

The no-linking condition produced estimates whose mean, .003,
was closer to zero than were the means from any of the tine an:hor
tests. The standard deviation for the ro-linking condition, 970,
was exceeded oniy by the 25-item normal and rectangular tests.

Although the estimates from the peaked tests had means closer to
zero than"did the other anchor tests, the peaked *est estimates had
the highest mean absolute errors. The rectangv ar cests had the
smallest errors, but the errors for the normal tests were only slightly
larger. Errors for all three peaked tests exceeded the value of .125
observed in the no-linking condition. Only the 5-item normal and
rectangular tests exceeded this value., In all cases, mean absolute
error decreased with increased test length. The pattern for the
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) Table 56. Asymptotic Ability Estimates--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean SD Error _ .rfror R

Normal 5 .089 .TU5 .217 .285 .996
Normal 15 091 .955  .095 .44 996,
Normal 25 .092 971 .09 . 140 .996
Rectangular 5 .093 .809 170 .233 .996
Rectangular 15 .093 .955 .097 . 146 .996
Rectangular 25 .086 .985 .089 .135 .996
Peaked 5 .0l3 .601 .324 .10 .996
Peaked 15 .062 .729 .225 .292 .996
Peaked 25 .081 .786 . 184 L2U7 .996
No Linking 003 .970 125  .162  .396

root-mean-square errors in ability estimates was identical to that
observed for the mean absclute error.

The correlations between true and asymptotic ability were uni-
formly .996 for the nine anchor tests, which is the same value ob-
served when no linking was performed.

The summary characteristics of the asymptotic ability estimates
for the heterogeneous c¥se are presented in Table 57. These summary
statistics had mich the same pattern as those of the homogeneous
case. As in the homogeneous case, the-peaked tests produced estimates
with means closer to zero than did the other anchor tests: these means
{ncreased with increased test length. The means for the normal and
rectangular tests were essentially the same, and clustered between
.083 and .090; they did not vary systematically with test size. The
standard deviations of ability estimates were smallest for the peaked

. tests. They were closest to 1.0 for -the rectangular tests, although
the standard deviations for the normal tests were only slightly lowar.

The no-linking condition produced estimates with a mean of
-.013, ‘closer to zeru than any of the anchor tests. The standard
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Table 57. Asymptotic Ability Estimates--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Absolute RMS

Method Mean 3D Error4 Error R
Normal 5 .086 .T42 .216 .284 .996
" Normal 15 089 .951  .091  .136  .996
Normal 25 .089 .967 .091 .132 .996
< Rectangular 5§ .090 . 806 16T 231 .995
Rectangular 15 .090 .951 .092 .138 .996
Rectangular 25 .083 .982 .085 .126 .996
Peaked 5 .041 .598 .325 L4 . .996
Peaked 15 .060 .726 .226 .292 .996
Peaked 25 079 - .782 .183 - 245 .996
No Linking -.013 .962 .095 127 .995

deviation of estimates from the no-linking condition was .962; this
was exceeded only by the 25-item normal and rectangular tests.

As before, the peaked tests performed most poorly in terms of
mean absolute er:ror, with values ranging from .183 to .325. The rec-
tangular test performed slightly be:ter than the normal test, al-
though differences were small at the longer test lengths. At test
lengths of 15 or larger, mean absolute error was less than .092 for
both the normal and rectangular tests: these were the only tests with
mean absolute error below the .095 observed for the no-linking con-
dition. Mean-absolute error decreased with increased test length.

»

The pattern for root-mean-square error was similar. The peaked
tests performed most poorly, with root-mean-square error from .245 to
411, The rectangular tests performed only slightly better than the
normal tests, particularly at the longer test lengths. Under the no-
linking condition, root-mean-square error was .127, which was ex-
ceeded by all tests-except the 25-item rectangular test.

i
The correlation between true and asymptotic abilsty was .995 in
all cases but one; when no linking was done, this correlation was .995.
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Efficiency of ability estimation. The relative efficiencies of
the various anchor test linking procedures for the homogeneous case
are presented in Table 58. Th> average item information with the
true {tem parameters was .314. This dropped to .278 with the estima-
ted item parameters and, hypothetically, perfect linking.

Table 58. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters
True Paranggrs ©.314
Est. i@rﬁ;&}‘é’ig' .278 .887
Normal 5 274 .875 .986
Normal 15 | 275 877 .988
Normal 25 .275 877 .988
Rectangular 5 274 .873 .984
Re~tangular 15 275 .876 .987
Rectaagular 25 275 ‘ .876 .987
Peaked *© 274 .875 .986
Peaked 5 .275 .876 .987

) Peakec 25 .275 .876 .987
No Linking . .266 849 .957

The efficiencies of these linking methods, relative to that
achieved by using true paorameters, clustered between .§73 an. .887,
with the highest figqures observed for the normal tests. With respect
to the estimated parameters, the efficiencies of these anchor tests
ranged from .984 to .988, with the normal tests being slightly supe-
rior to the rest. All these values were higher than the .957 ob~
served in the no-linking condition.
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The relative efficiencies of the various anchor test linking
procedures are presented in Table 59 for the heterogeneous case. The
average item information with the true item parameter§ was .305.

This dropped to .271 with the estimated item parameters and perfect
linking.

Table £9. Effi~.ency Analysis--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Average Efficiency Relative to

Item . -""True Estimated
Method Information Parameters Parameters
Trrue Parameters .305
Est. Parameters 2T .889
Normal 5 .281 .858 .965
Normal 15 .262 .860 - 968
Normal 25 .262 .859 .967
Rectangular 5 .261 .855 .962
Rectangular 15 .261 .858 .966
Rectangular 25 262 .8%9 .966
Peaked 5 .261 .857 .964
Peaked 15 .262 .858 .966
Peaked 25 - .262 .859 .967
No Linking .2u8 .814 .916

The efficiencies of these linking methods, relative to that
achieved by using true item parameters, clustered between .855 and
.360. Once again, slightly higher figures were observed ‘for the
n.ormal tests. With respect to the estimated parameters, the ef-

‘zian~les of these nine anchor tests ranged from .962 to .968, with
~e normal tests being slightly superior to the rest. All these
values were higher than the .916 observed in the no-linking condition.
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Results--Robust-ﬂéximum-gﬁkelihood Scores

In addition to the Bayesian ability estimates which were comput-
ed for all simulated examinees, maximum-1ikelihood estimates were
computed for the examinees included in the calibration groups of
1000. Identical analyses of item parameter error, asymptotic ability
estimates, and efficiency were computed for these estimates for the
homogeneous condition. For direct compar ison with the results ob-
tained using the Bayesian scores, summary statistics for the Bayesian
scores were recomputed using only the 1,000-examinee calibration

groups.

Fidelity of parameter estimation. Table 60 presents the com-
bined results of item parameter er:ior for the maximum-1likelihood and
Bayesian scores. For the maximum-1ikelihood scores, biases in the .
means of the a parameters were largest for the peaked tests and small-
est for the rectangular tests although, again, differences between the
normal and rectangular tests were small. All of the anchor tests ex-
cept for the shortest two peaked tests, yielded smaller (in absolute
value) bias figures than did the no-linking condition. Bias in the
mean of the a parameters decreased with increased test lengths for
the peaked tests, but no trends were observed with test lengths for
the other anchor tests.

The bias in the standard deviation of the a parameters was of
approximately the same magnitude for all three anchor test types,
and showed no consistent trends with test lengths. The no-1linking
condition yielded a bias of .112, which was exceeded only by the
S-item tests.

o

With respect to the Bayesian scores, the largest bias in the
mean of the a parameters was also observed for the peaked tests, the
smallest bias for the rectangular tests. In general, bias figures
were larger for the Bayesian scores. Biases for the standard devia-~
tions of the a parameters for the Bayesian scores, nowever, were of
approximately the same magnitude -as those observed for the maximum
likelihood scores, although the maximum-1ikelihood scores yielded
somewhat smaller bias for the peaked tests.

For the maximum-likelihood scores, the biases in the means of the
b parameters were largest for the peaked tests, with small differences
between the normal and rectangular tests. All of the bias values were
larger than the .147 observed in the no-linking condition, although
they all decreased with increased test lengths. Biases in the stand-
ard deviation of the b parameters were largest for the peaked tests,
and again, there were only small ditferences between the normal and
rectangular tests. These values decreased with increased test length,
and all were greater than the .228 observed with no linking.

11,
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Table 60. Item Parameter Error--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Bias in RMS Bias in RMS

Method - Mean SD Error R Mean SD Error R
Normal §

a 575 .264 .906 .493 -.035 .2u8 .822 .329

b . L1184 -.091 .338 .980 .U53 .599 .962 .946
Normal 15 -

a .101 .100 .586 .u89 -.003 .069 .594 ,u72

b 217 .258 .506 .980 .232 .353 .535 .981
Normal 25

a .073 .089 .578 .489 .0us .081 606 ,u79

b .222 .281 517 .980 217 . 300 .u88 .982
Rect. 5

a .395 .202 767 .491 .050 .191 .687 .u23

b . 149 .018 .350 .980 .285 .u39 LT40  .955
Rect. 15 ) ,

a .095 .096 - .58 492 -.022 . 066 .606 474

b .219 .260 . 497 .980 .249 . 381 .560 .981
Rect. 25

a .043 .080 .566 .491 .037 .079 .598 .479

b .227 .314 544 .980 213 .308 .490 .982
Peaked 5

a 1.087 . uu7 .384 496 -1.047 -.185 1.182 .319

b -.007 -.324 419 .980 1.964 4,508 5.075 .954
Peaked 15

a .620 281 .945 .49y -.688 -.075 .880 .370

b 072 -.116 .328 .980 1.100 2.050 2.-508 .9u3
Peaked 25

a JU57 .226 .811 492 017 074 .599 ,U6T:

b 2123 7 -.017 .348 .980 . 337 . 327 .583 .980

" No Linking
a . 143 .112 .629 .501 . 143 112 .629 ,.501
b .47 .228 Juuy .973 .47 .228 .Lauy 973




Biases for the Bayesian scores were smaller, in general, than
they were for the maximum-likelihood scores. They tended to increase
with increased test lengths, and approximately half were smaller than
the values observed with no~linking.

For the maximum-likelihood scores, root-mean-square error in the
a parameters was largest for peaked tests. The advant.age of the rec-
tangular tests was slight, There was no consistent trend with test
length; about half of the values were smaller than the value of .629
observed with no-linking.

This same pattern of root-mean-—square errors in the a parameters
was observed for the Bayesian scores, and the magnitude of the errars
was approximately the same for the two scoring methods.’

Root-mean-square errors in the b parameters for the maximum-
likelihood Scores were largest for the peaked tests, and the normal
and rectangular tests performed equally well. There was a strong
tendency for the root-mean-square error to decrease with increased
test length, although all values were larger than the .LLY¥ observed
with no-linking.

For the Bayesian scores, root-mean-square errors increased with
test length for the normal and rectangular tests; the magnitude of
the errors was much smaller for the Bayesian scores than for the max-
imum-likelihood scores.

~

The correlations between the true and estimated a parameters
were smallest for the peaked tests and largest for the rectangular
tests when using the maximum-likelihood scores. When the Bayesian
scores were used, all the anchor tests produced correlations which
were of approximately the same magnitude, and consistently higher
than those observed for the maximum-likelihood scores.

For the maximum-likelihood scores, the correlations between true
and estimated b parameters were of about the same magnitude for all
the anchor tests, with the 15-item peaked test per forming worse than
would otherwise have been expected. For the Bayesian scores, these
correlztions were uniformly .980 for all nine anchor tests.

Characteristies of asymptotic ability estimates. Table 61 pre-
sents the summary statistics for the asymptotic ability estimates with
maximum-likelihood and Bayesian scoring. When maximum-likelihood
scores were used, the S-item normal and all of the peaked anchor tests
produced means sonewhat deviant from zero. The remaining anchor tests
produced means near .1. The no-linking procedure produced a mean of R
.034, better than that produced by any of the linking procedures.

The linking procedures did a better job of producing est mates
with 2 mean of zero when these estimates were scores computed with a
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Table 61, Asymptotic Ability Estimates--Anchor Tests
Heterogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
RMS RMS

Method Mean SD  Error R Mean - SD  Error R
Normal 5 .092 .739 .290 .996 225 1.027 .285 .9%5
Normal 15 .09 .945 L143  .996 .098 1.023 147,996
Normal 25 092 .962 .138 .996 .098  .995  .147 .996
Rect. 5 .092  .805 .235 .99% <107 .965  .1u6 .997
Rect. 15 .093 .950 . 143 .99% L1117 1,044 172 .996
Rect. 25 034,979  .130  .996 088 .997  .138 .996
Peaked 5 .ou0 .597 412 .996 .259 2,694 1,781 .980
Peaked 15 .058  .723  .295 .996 .49C  1.796  .956 .997 °
Peaked 25 .079 .780 .29 .996 .204 1,008 .233  .99%
No Linking .034 .965‘ <133 .996 -034 2962 133 .996

modal Bayesian algorithm. No mean was larger than .093. This was not
surprising since the Bayesian algorithm explicitly regressed estimates
toward zero. Again, there were but slight differences between the
normal and rectangular tests. This time, however, the peaked tests
performed best, with means between .00 and .079. Even these, how-
ever, were still larger than that obtained by not linking at all.
Neither data set revealed a trend toward decreasing means with in-
creased test length.

The normal and rectangular tests, coupled with maximum-likeli-
hood scoring, produced estimates whose standard deviations were close
to 1.0, typically between .965 and 1. ould, with slightly "better"
estimates produced using the normal tests. . The peaked tests produced
estimates with .*andard deviations quite large, at least for the 5-
and 15-item tests. The longest peaked test, and all the normal and
rectangular tests, produced estimates with standard deviations closer
to 1.0 than was observed with no-linking.

With the Bayesian scores, ability estimates were systematically
less variable, as would be expected from a procedure which regressed

7 Luo- 145




all estimates away from the extremes., The peaked test produced esti-
mates less variable than the others:; no standard deviation here was
greater than .780. Although the differences were minor, the rectangu-
lar test produced estimates with standard deviations closer to 1.0
than did the normal test. Still, the no-linking value of .962 was
exceeded only by the 2y~-item rectangular test.

There were few differences between the scoring procedures in
terms of mean absolute and root-mean-square errors. ¥For both proce=-
dures, the normal and rectangular tests performed best, with a slight
advantage given to the rectangular test. Overall, the Bayesian scores
performed slightly better than did the maximum-likelihood scores. In
both cases, fthe peaked tests performed worst, although here the dif-
ference was much more marked for the maximum-likelihood scores. Only
for the 25-item rectangular test with Bayeslan scores did the errors
ever drop below the level observed with no-linking.

All the correlations between true and estimated ability cluster-
ed near .995 when Bayesian scoring was used. These correlations were
more variable with maximum-likelihuod scoring and, for the peaked anq
rectangular anchor tests, showed a slight decrease with increasing
anchor-test length.

Efficlency of abilitv estimation. Table 62 presents the effi-
clency figures for the maximum-likelihood and Bayesian scores. For the
Bayesian estimates, average ivem information was essentially .267 for
all nine anchor test conditions. For the maximum-likelihood scores,
this level was not reached until the 15-item normal and rectangular
anchor tests were used; for the peaked test, 25 items were necessary.
For the Bayesian scoring, efficlencies were essentially the same for
the three anchor test types, and these values Increased only slightly
with test length. All were above the level achieved in the no-linking
condition. For the maximum-likelihood scores, the efficiencles were
generally lower than for the Bayesian scores, even at the longest test
lengths. All of the S5-item tests performed poorly, as did the 15-item
peaked test. Efficlency, with respect to the estimated parameters,
increased with test length, but still half the tabulated entries were
below the value of ,954 achieved with no linking.

Discussion

The data on anchor-test linking methods can be summarized rather
briefly since there were several distinct trends with few exceptions.
In terms of parameter bias, the peaked tests performed most poorly,
often yielding large errors in parameter and ability estimation.
There were few consistent differences noted between the normal and
rectangular tests, especlally for longer tests, although at the
shorter test lengths, the rectangular test was usually superior.
Differences among the test types tended to fade when the criterion
was no longer bias hut was the correlation between true and estimated
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Table 62. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Systematically Sampled Examinees

Bayesian Maximum Likelihood
Efficiencies Efficiencies
Relative to Relative to
Avg. Item True Est. Avg. Item True Est.
Method Info. Params. Params. Info. Params. Params.
True Params. .306 .306
Est. Params. .270 .882 .270 882
.Normal 5 .267 .872 .989 .235 770 .873
Normal 15 . 267 .873 .990 .266 .870 .987
Normal 25 . 267 874 .992 .267 .872 .989
Rect. 5 . 266 .87 .988 .254 .831 .943
Rect. 15 .267 .873 .990, . 265 .867 .983
Rect. 25 . 267 .873 .999 .266 .870 .986
Paaked 5 .267 .87 .988 .227 VLD .81
Peaked 17 .267 .873 .991 .29 .813 .922
Peaked 25 . 267 .874 <99 .266 .869 .986
No Linking .260 .850 .964 .260 . 850 .964

parameters or true and estimated ability. Differences among the test
types also disappeared when their relative efficiencies were taken as
the criterion.

Anchor test length was a salient factor when oﬁe investigated
the errors of a-parameter and ability estimation. Across test types,
there were only small differences observed between the 15- and the
25-item tests; the S-item tests were typically mush worse than the
others. The trend toward decreasing errors with increasing test
lengths was expected, but was observed only for the a parameters,

For the b parametars, this trend was reversed, with: amaller errors
ob: °rved with the shorter tests.
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The test length effects disappeared when correlations and effi-
ciencies rather than biases and errors were considered.

Wwhen comparisons were made between the Bayesian and the maximum-
likelihood scores, the former were consistently better based on all
the criteria used in this research.

2

Conclusions

Data presented in this section of the report provided the first
opportunity to compare all four 1linking methods. In an effort to a-
void confusion, only data relevant to the conclusions drawn are pre-
sented Since the parameter-error statistics bear little direct re-
lation to the utility of the linked items, they will not be discussed.

In terms of capacity to produce an asymptotic metric with the
correct mean, the anchor-group method was generally superior. 1In
nearly all configurations {nvestigated, the anchor-group method pro-
duced a mean correct to the second decimal place. The Bayesian
equivalent-tests method produced the most devian. mean. Asymptotic
means for eachwof the methods were essentially equivalent in the
homogeneous and heterogeneous conditions.

The most accurate asymptotic standard deviations were produced
by the anchor-test method. With a 25-item rectangular anchor test, it
procuced an asymptotic spandard deviation within .015 of the true
value. 1In less favorable configurations, however, it produced stand-
ard deviations .4 unit in error. The equivalent-tests procedure pro-
duced results nearly as good as the best anchor-test configuration.
The equivalent-groupé and anchor-group procedures produced results
somewhat less accurate.

Using root-mean-square error as a composite error-of-metric
index, the anchor-group and anchor-test methods produced the least
error and were approximately equivalent. The equivalent-tests method
produced the most error. -

Viewed in terms of linking efficiency, the anchor-test method
produced the most efficient item pogls. 1Its efficiencies ranged from
.986 to .988 in the homogeneous condition and from 965 to .967 in
the heterogeneous condition. Configured properly, the anchor group
procedure resulted in equivalent efficiencies, but with smaller groups,
the efficiency dropped somewhat. The equivalent-tests method produced
efficiencies slightly lower than the least efficient of the two anchor
procedures. The equivalent-groups method, whose assumptions were vio-
lated by these data, produced efficiencies slightly lower than those
of the equivalent-tests procedure.

-
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Although not considered in the previous discussion, the no-link-
ing condition should not be forgotfbn. In terms of errors in the
asymptotic distribution, it produced parameters as good as those pro-
duced by the best of the other methods. Tts efficiencies were some-
what lower than those of the equivalent-grggps procedure, however,

Use of the maximum-likelihood scoring procedure with the anchor-
group or anchor-test procedures did not seem to be warranted by the
data. In addition to producing less efficient item pools than did
the Bayesian scoring procedure, this procedure appeared to bias the
asymptotic metric more severely. Since it was investigated primarily
as a means of reducing bias in the metric, these results suggest that
it is not a useful scoring procedure for linking in the environmdnt
investigated here. ?‘

Neither of the anchor methods were evaluated in the randomly
sampled data set because their performance in that set was assum®d to
be equ%lalent to thefr performance in the systematically sampled data
set. e same assumption was reasonable for the equivalent-tests
method but that method was, nevertheless, evaluated in both sets and
thus provides a test of ng assumption. 1In this data set the equiva-
lent-tests method produced parameters with root-mean-square errors of
356 and_..231 in the shomogeneous and heterogeneous conditions, respec-
tively, and efficiencies of .971 and .949. 1In the randomly selected
data set, corresponding values were ,209, .143, .962, and .944., The
asymptotic error statistics appeared somewhat smaller in the randomly
sampled condition but the efficiencies were comparable.

Efficiencles for tne Bayesian equivalent-gr&hps procedure were
.988 and .973 for the homogeneous and heterogeneous condftions,
respectively. These efficiencies compare very favorably with .988

“and .968, the best efficiencies obtained by any method in the sys-

tematically sampled data’ set, This suggests that, if examinees are
randomly sampled from the population of interest, the Bayesian
equivalent-groldps procedure can produce item pools as efficient as
any of the more complicated methods.

7Y
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VI. LINKING WHEN EXAMINEES ARE SELECTED

Investigations of linking discussed in previous chapters were
limited to populations that could, more or less, occur in nature, No
explicit selection had been done in defining the population and the
distrlbutions of abilities were essentially symmetric. The research
discussed in this section of the report dealt with a selected popula-
tion, The examinee samples used were those of the .selected data set
described in an earlier section. Briefly, the upper two-thirds of a
sample were selected, on the basis of number-correct scores, to simu-
late selection that occurs in Air Force recruits. The procedure was
very similar to that used by Ree (1978).

The selected data set contained only one row of the matrix of
test lengths and sample sizes corresponding to a sample size of 1,000,
Tbis restriction of the data set was done primarily to save computer
costs since adequate data regarding the joint effects of test length
and sample size had been collected and discussed in earlier sections
of this paper. Since the entire matrix was not available, only the
homogeneous analyses were done.

%

Equivalence Methods

Procedure

The equivalence linking procedures used on the selected data set
were similar in form to those used in previous sections; the same
equations were used to perform the linking. Because of findings of
previous sections, however, only the modal Bayesian scoring method
was used for equivalent-groups linking. The remaining five linking
methods were not used. The equivalent-tests and no-linking proce-
dures were the same as before.

Results

Fidelity of parameter estimation. Table 63 presents fidelity-
of-estimation statistics for the homogeneous condition using selected
examinees. Columns one and two present means and standard deviations
of the true a and b parameters for the items used with the selected
data set. AS was the case with items used in previous data sets, no
notable departures from the population values were observed.

Biases in the parameter estimates are presented in columns three
and four. The a-parameter means were essentially unbiased for the
equivalent-tests and no-linking procedures. The a parameters were
underestimated by .335 units when the Bayesian equivalent-groups pro-
cedure was used. The equivalent-tests procedure produced b parameters
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Table 63. Item Parameter Error--Equivalence Methods
Homogeneous Condition Using Selected Examinees

True Bias in Absolute RMS

Method Me an SD Mean SD __Error _ Error R
Equiv. Groups

a 1.601 .501 =-.335 -.,008 U476 .624 .46k

b 176 1.340 -.530 .843 .893 1.102 .974
Equivalent Tests - .

a 1.601 .501 =~.015 112 Luuy .589 .Us8

b 176 1.340 051 .390 .45 622 . 968"
No Linking ) g

a 1.601 .501 =~.015 112 . 491 .651 . 465

b L1176 1.340 -.378  .400 .522 .657  .975

with nearly the correct mean. The other two procedures produced under:
estimates of the b parameters.

The Bayesian equivalent-groups procedure produced a parzmeters
with nearly the correct standard deviation. Standard deviations of
, the a parameters were slightly greater than the correct values for the
other two methods. All linking procedures produced b-parameter stand-
ard deviations that were larger than those J>f the true parameters.
- The equivalent-groups procedure produced the largest standard devia-

tions. o r,

Columns five and six present absolute and root-mean~square
errors of parameter estimation. Errors in a-paramcter estimates were
approximately equal for all methods. The equivalent-tests method
produced the least error and the no-linking procedure produced the
most. Errors in the b parameters were about equal for the equive-
lent-tests and no-linking procedures. The equivalent-groups pro-
cedure produced b-parameter errors substantially greater than those
produced by the other procedures.

Ccrr “ations between true and estimated parameters are presented
in the last column of the table. The equivalent-groups and no-1link-
ing procedures were trivially different in terms of this correlation.
The equivalent-tests procedure produced correlations somewhat lower
than the other two procedures.

Characteristics of asymptotic ability estimates. Table 64 pre-
sents statistics descriptive of asymptotic ability estimates. These
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Table 64. Asymptotic Ability Estimates--Equivalence Methods
Homogeneous Condition Using Selected Examinees

Absolute RMS
Method Mean sD Error Errotiﬁv R

Equiv. Groups -.813  1.565 .823  1.000 .996
Equivalent Tests -.156 1.250 .265 .369 . 996

No Linking -.566 1.265 .566 .642 .996

statistics should be interpreted relative to a standard normal popu-
lation even though the items were calibrated on a population distinct-
ly different. The first column presents asymptotic means resulting
from application of the items to a standard normal population. All
procedures resulted in net underestimates of abilities. The equiv-
alent-tests procedure p-oduced the mean closest to the true value of
zero, and the equivalent-groups procgdure produced the one most devi-
ant.

Asymptotic standard deviations are presented in the second
colunn. All three linking procedures produced estimates that were
quite deviant from the mean. The equivalent-groups procedure pro-
duced the most deviant estimates, however, and the other two methods
produced estimates about equally deviant.

Absolute and root-mean-square errors of the asymptotic estimates
are presented in columns three and four. The equivalent-tests proce-
dure produced the least error, according to both statistics, and the
equivalent-groups procedure produced the most error.

Column five presents correlations between true and asymptotic
ability estimates. All three procedures resulted in correlations of
.996, indicating that the regressions were abaut equally linear.

Efficiency of ability estimation. Table 65 presents calibration
and linking efficiencies for the selected data set. As was true of
corresponding tables in previous sectbons, columns two and three are
simply manipulations of the data in column one and coiumn three is
most informative relative to linking efficiency. As can be seen from
column three, linking efficiencies of the equivalent-groups and no-
linking procedures were equal. The lirking efficiency of the equiv-
alent-tests procedure was somewhat lower

Linking efficiencies were quite high for all methods. These
figures are not, however, directly comparable to those from previous
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Table 65. Efficlency Analysis--Equivalence Methods
Homogeneous Condition Using Selected Examinees

Average Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters
True Parameters .325
Est. Parameters .268 .824
Equiv. Groups . 265 .814 .988
Equivalent Tests .262 .807 .979
No Linking .265 .814 .988

data sets because these figures represent averages of only four cells
rather than the 12 represented in previous tables.

Anchor Grdugruethod

Procedure

The anchor-group linking procedure used for the selected data
set was essentially the same as that used for the systematically
sampled data set. The modal Bayesian scoring procedure was used
throughout this section, as the maximum-1likelihood procedure demon-
strated no distinct advantages in previous analyses. Details of the
linking procedure were presented in the previous section and will not
be repeated /here,

Results

Fidelity of parameter estimation. Table 66 presents parameter
error for the anchor-group design in the selected data set. Bias in
the estimates of the mean a parameter was positive for the normal
group (indicating overestimates) and slightly negative for the uni-
form group (indicating underestimates). Bias tended to decrease
with increasing anchoi group size for both normal and uniform groups.
Bias in the standard deviation of the a parameters showed the same
trends as the means. Bias tended to decrease with increasing anchor
group size and was smaller for the uniform group than for the normal
group. The no~linking condition very slightly underestimated the
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Table 66. Item Parameter Error--Anchor Groups
Homogeneous Condition Using Selected Examinees

td

True Bias in Absolute RMS

Methqd Mean SD Mean SD Error Error R
Normal 10 ‘

a 1.601 .501 .220 .213 .536 .703 .466

b. .176  1.340 .063 .182 . 306 . 429 .972
Normal 30

a 1.601 .501 .181 .192 .517 .682 U6l

b L1176 1.340 .ouy .205 . 309 429 .973
Normal 50 ) ’

a 1.601 .501 .163 187 .505 672 . 465

b L176  1.340 .060 .221  .315 LU34 .974
Normal 100 ' )

a 1.601 .501 . 144 .179-  .503 . 666 LU67

b .176  1.340 .043 243 . 321 L uu0 974
Uniform 10 .

a 1.601 .501 .129 . 184 . 492 . 657 LUs56

b L1760 1.340 .030 .262 . 348 .508 .972
Uniform 30

a 1.601 .501 =.010 .125 L uu8 .601 L U461

b L176  1.340 .065 .395 LU25 577 974
Uniform 50

a 1.601 .501 -.005 .123 . 460 .609 L U6l

b L176  1.340 . 057 .388 LU17 .548 974
Uniform 100 -

a 1.601 .501 -.915 .119 . 459 .610 LU67

b .176  1.340 . 055 401 LU25 .561 974
No Linking

a 1.601 .501 =.015 112 491 .651 . 465

b 176 1,340 -.378 . 400 .522 657 .975

a-parameter mean and showed less bias in the a-parameter standard de-
viations than did any of the linking methods.

The biases in the means of the b parameters were very much alike
for both anchor groups, but the no-linking condition substantially
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underestimated the mean. Bias in the standar ¥ deviation of the b

parameters revealed a tendency for increasing ~ias with increasing
anchor group size for both normal and uniform groups. The normal

group, however, showed smaller bias in standard deviation than the
uniform group, while the no-linking method had one of the largest

biases in standard deviation.

Absolute and root-mean-square error for the a parameter showed a
decreasing trend with increasing anchor group size for the normat
groups. The uniform groups showed less error than the normal groups
overall. The no-linking group showed errors midway between the uni-
form and normal groups.

Errors in the b parameters followed the opposite trends noted
for the a-parameter errors,; errors increased with increasing anchor
group size and error was less for uniform groups than for normal
groups. The no-linking group showed the greatest b-parameter error.

Correlations between true and estimated parameters tended to in-
crease with increasing anchor group size and to be somewhat higher in
the normal groups than in the uniform groups for the a parameter,

For the b parameters, there were neg.igible differences between the
g8.oups. The correlation between true and estimated a parameters in
the no-linking group was comparable to that observed in the normal
and uniform groups and the b-parameter correlation in the no-linking
group was the highest of all groups.

Characteristicsﬁof asymptotic ability estimates. Table 67 pre-
sents descriptive statistics for asymptotic ability estimates for
each anchor group in the selected data set. Column one, showing the
means, indicates that parameters linked using normal or using uniform
anchoi groups tended to underestimate the population mean of zero;
The normal groups appeared to have oloser estimates than the uniform
groups over all group sizes, while the no-linking condition showed
the greatest deviation from zero. There were no apparent trends
with respect to increasing anchor gr?up‘size.

Standard deviations were somewhat higher than the population
value of 1.0 and showed a trend for increasing values as the anchor
group size increased. The normal groups produced standard deviations
closer to 1.0 than did the uniform groups, and the no-linking condi-
tion produced t'e largest standard deviation,

Absolute and root-mean-square error, presented in columns three
and four, showed a tendency to increase with increasing anchor group
size and to be larger for uniform than for normal groups. No-linking
produced the largest errors.

There were no differences across & d>up composition or group size
in terms of the correlation of the true with the asymprtotic ability

1&5
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Table 67. Asymptotic Ability Estimates--Anchor Groups
Homogeneous Condition Using Selected E£xaminees

Absolute RMS

Method Mean sD Error  Error R
Normal 10 _.084 1.081  .119  .161  .996
Normal 39 -.109 1.111 .130  .185  .996
Normal 50 -.09% 1.118  .128  .181  .996
Normal 100 118 1.131 .3 .203 .996
Uniform 19 143 1.14  ..168  .236  .996
Uniform 30 -.130  1.281 .217 .295  .996
Uniform 50 - 136 1.236 .217  .29%  .996
Uniform 190 -.138 1.2 .222  .299  .996
No Linking _.566  1.265  .566  .642  .996

estimates. All correlations, including the no-link;ng group, were
uniformly .995.

Efficiency of ability estimation. Table 63 presents the average
{item information and relative efficiencies for the anchor-group link-
ing method. The efficiencies reilative to the estimated parameters,
shown in column three, revealed a <light tendency to increase as
anchor group size increased. The normal groups showed an almost
trivial advantage over the uniform groups, while the no-linking con-
dition showea the highest efficiency.

Discussion

Much of the information presented thus far has been less than
definitive. Different analyses suggested different interpretations.
Fidelity analyses, for example, suggested that anchor groups using a
uniform distribution yield less parameter error than those using a
normal distribution. Asymptotic ability statistics suggested that a
normally distributed sample yields results superior to those of a
uniform distribution. Efficiency analyses, on the other hand, showed
both normal and uniform anchor groups to have about the same effi-
ciency.

-151-

156

L e S——




Table 68. Efficiency Analysis--Anchor Groups
Homogeneous Condition Using Selected Examinees

Average ° Efficiency Relative to
Item True Estimated

Method Information Parameters Parameters
True Parameters .325
Est. Parameters . 268 .824 .
Normal 10 .263 .810 .983
Normal 30 . 265 .813 .987
Nermal 50 265 813 987 "
Normal 100 . 265 .813 .987
Iniform 10 .263 .809 .982
Uniform 30 .263 .810 .983
Uniform 50 . 263 .810 .983
Uniform 100 . 264 .812 .986
No Linking 265 814 .988

[ — - - —— v D e P A T Al A ot A il e e e e

Results of the efficiency analysis for the anchor-groups proce-
dure were especially noteworthy in view of the rather large discrep-
ancy between the distributions of ability used in the anchor groups
and those used in the calibration samples. The anchor groups had
abilities witl a mean of zero and a standard deviation of one. The
selected examinees in this data set had a mean greater than zero and
a standard deviation less than one.

Although the no-linking condition showed the highest efficiency,
the b-parameter mean and asymptotic ability mean were quite deviant
from their true values. The reason the efficiency of the no-linking
condition did not reflect these deviant parameter estimates {s be-
cause efficiency statisties, like correlations, are insensitive to
linear transformations of the data. 1If, however, an attempt was mede
to link items calibrated on groups widely different in ability (verti-
cul equating), the no-linking procedure would show much lower effi-
ciencies because each set of items would tend to shift the scale
closer to its own metrie,
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As discussed earlier, efficiency analyses are the most appropri-
ate evaluative criteria to apply to the linking procedures. The
efficiency analyses suggested the following observations: (a) group
composition tended to make very slight differences in observed
efficiency, (b) there was a tendency for higher efficiency as test
length increased and anchor group size increased, the latter being
less pronounced than the former, and (c¢) increasing anchor group size
did not substantially increase the efficiency.

Anchor Test Method

Procedure

The anchor-test linking procedures used for th» selected data
set presented in this section were identical to tho<e used for the
randomly and the systematically sampled data sets, Details of these
linking procedures were presented earlier and will not be repeated
here. Analys~s were performed only for the condition where the items
were originally calibrated on 1,000 cases for four-different test
lengths. Only the homogeneous condition is presented here. Modal
Bayesian ability estimates were used throughout.

Results

Fidelity of parameter estimation. Fidelity-of-estimation stat-
istics for the homogeneous condition are presented in Table 69. All
of the anchor test procedures overestimated the a parameters, although
this bias systematically decreased with increased anchor-test lengths.
The smallest biases in the mean 4f the a parameters were observed for
the rectangular tests, although at the longer test lengths the normal
tests produced biases nearly as small. Much larger biases were ob-
served for the peaked tests at all three test lengths. When no link-
ing was performed on the data, bias in the mean of a parameters was
-.D15. This figure was exceeded by all nine anchor test methods.

_ Biases in tne standard deviations of the a parameters were larg-
est for the peaked tests. There were few differences observed in the
biases for the normal and rectangular tests. All the biases system-
atically decreased with increased test length. 1In the no-linking
condition, bias in the standard deviation of the a parameters was
.112. This figure was exceeded by all nine anchor test methods.

All anchor test methods produced b-parameter estimates that were
essentially unbiased in their means. The largest bias observed,
-.082, was quite small. The no-linking group produced considerable.
bias, by comparison. This was expected, however, as the mean ability
levels of the calibration groups were substantially above zero.
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Table 69.
Homogeneous Condition Using Selected Examinees

Item Parameter Error--Anchor Tests:

True Bias in Absolute RMS
Method Mean SD Mean sD Error Error R
Normal S ,
a 1.601 .501 617 .366 .794 .998 . 466
b .176 .3“0 -.030 .088 0262 0353 0973
Normal 15 ¥
a 1.601 .501 . 181 . 194 .51l 672 . 466
- b L1T€ . 340 .037 219 317 . 450 .973
Normal 25
a 1.601 .501 . 156 .188 .506 .662 LU67
b .176 . 340 .050 .2 .329 .u6u .973
)
Rectangular 5 .
a 1.601 .501 .552 . 337 LUy .939 . 1466
b 176 340 -.007 .54 .252 .3uu .974
Rectangular 15
- a 1.601 .501 .188 . 197 .518 BTT 466
b 176 . 340 .Louy 211 .313 L4u5 .973
Rectangular 25
a 1.601 .501 .123 L174 . 493 .6u6 LU67
b .176 .340 .055 .273 . 347 . 489 .973
Peaked 5
a 1.601 501 1.192 .588 1.273 .51 L 465
b 176 L340 -,082 .346 .34y Lu62 ° 973
Peaked 15
a 1.601 . .501 .T48 L1416 . 396 L1113 465
b 176 L340 -,033 -.157 2T .367 .973
Peaked 25
: 1.601 .501 .566 . 345 .755 .951 . 466
b 176 L340 -,002 .057 . 257 .353 .973
No Linking
- a 1.601 501 <,015 112 . 491 .651 . U465
b L176 1,380 -,373 400 .522  .657  .975

i
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As was observed for the b-parameter means, all three peaked
tests underestimated the b-parameter standard deviations; this bias
decreased with increased test length. Biases in the standard devia-
tion of the b parameters were of approximately equal magnitude for
the normal and rectangular tests. Except at the 5-item test lengths,
this blas was positive; for both the normal and rzctangular tests,
bias increased with test length. All of the anchor tests produced
biases smaller than that observed for the no-linking condition.

Mean absolute and root-mean-square errors in the parameters
are presented in columns five and six of Table 69. The peaked an-
chor tests performed most poorly according to both of these “indices
of error for the a parameters. In general, errors for the rec-
tangular tests were smaller than for the normal tests although, as
before, these differences were smal’. Both indices of error de-
creased with increased test length, In most cases, the no-linking
condition yielded smaller absolute and root-mean-square errors in
the a parameters than diq_any of the anchor test conditions.

Overall, the magnitude of absolute and root-mean-square errors
in the b parameters was approximately equivalent {or all three types
of anchor tests. Both types of errors decreased with increased test
length for the peaked tests, but increased with test length for the
normal and rectangular tests. The no-linking procedure ylelded
larger absolute and root-mean-square errors in the b parameters than
did any of the anchor-test methods.

The anchor-test-method correlations between true and estimated
a parumeters clustered between .465 and .U67; .for the no-linking
condition, this value was .465. The anchor-test correlations for
the b parameters were almost uniformly .97 (the correlation for the
5-1tem rectangular test was .974), slightly lower than the value of
.975 observed with no linking.

Characteristics of asymptotic ability estimates. Table 70 pre-
sents the summary characteristics of asymptotic «“ility estimates for
the homogeneous case. Columus one and two present the means and
standard deviations of the asymptotic ability metric. All of the
" anchor tests produced means slightly below the targeted zero. None
of the three test types produced means consistently closest to zero
but the normal tests corsistently produced means most deviant. Dif-
fererices among these means were small, however. Means consistently
decreased with test length for the rectangular tests and increased for
the others. The no-linking procedure produced a mean much more
deviant from zero than did any of the anchor-test methods.

A1l of the peaked tests produced ability estimates with standard
dev'ations less than 1.0. The S5-item normal and rectangular tests
did likewice. The longer normal and rectangular tests produced esti-
mates with standard deviations greater than 1.0. In all cases, the




Table 70. Asymptotic Ability Estimates--Anchor Tests '
Homogeneous Condition Using -Selected Examinees

Absolute RMS
Method Mean SDﬁf Error Error

Normal 5 -.117 .892 .135 . 188
Normal 15 -.115 1,111 L1300 195
Normal 25 C =107 . 126 .133 .198
Rectangular 5 102 918 .15 164
Rectangular 15 107 1.105 . .186
Rectangular 25 .110 ;.1u8 . .215
Peaked 5 16,709
Peaked 15 .106  .843
Peaked 25 097 {913

No Linking .566 /1.265

i

standard deviations of ability ‘estimates increased with anchor test
length. The standard deviation of the no-linking condition was 1.265,
a value further from 1.0 th;n was produced by any of the anchor tests.

Mean absolute and réot-mean-square errors in the ability metric
are presented in columns three and four of Table 70. The magnitude
of absolute error was approximately the same across the three types
of anchor tests, with a tendency for the smallest peaked test to
produce errors larger than the rest. Mean absolute errors increased

.with test length for the rectangular tests, and decreased with test

length for the peaked tests. Four the normal tests, these errors did
not vary systematically with test length. Mean absolutz error in the
no-linking condition was much higher than that observed for any of
the anchor tests. Exactly the same patterns were observed for the
root-mean-square errors in the ability estimates.

The correlation between true and estimated ability was uniformly
.996 for all the anchor tests and for the no-linking procedure.

Efficiency of ability -estimation. Information and the relative
efficiencies for the anchor-test procedures for the homogeneous case
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are presented in Table 71. The average item information with the
true parameters was .325. This dropped to .268 with the estimated
parameters and, hypothetically, perfect linking. The average item
information with the anchor-test procedures and with no-linking was
.265.

Table 71. Efficiency Analysis--Anchor Tests
Homogeneous Condition Using Selected Examinees

Average Efficiencerelativé to
Item True Estimated
Method Information Parameter's Parameters
True Parameters .325
Est. Paraneters .268 .824
£
" Normal 5 . 264 .813 .987
Normal 15 .265 .815 .989
Normal 25 . 265 .81 .938
--\ ¥
Rectangular S‘ij .265 .815 .989
Rectangular 15 .265 .815 .989
Rectangular 25 . 265 .814 .988
Peaked 5 . 265 .81 .988
Peaked 15 . 265 .81 .988
Peaked 25 .265 .814 ) .988
No Linking .265 .814 .988
-,

—— e e .l s il

The efficiencies of tnese linking methods, relative to that
achieved by using true parameters, clustered between .813 and .815.
With no linking, the relative efficiency was .814. With respect to
the estimated parameters, the efficiencies of the anchor test pri-
cedures ranged from .987 to .985, with no overall difference observed
across anchor tests. The corresponding efficiency figure for the
no-linking condition was .988.
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Discussion

Overall, the peaked anchor tests tended to perform most poorly
when errors in item parameters were takep as the criteria. There
were few differences observed between the normal and rectangular
tests but, when differences were found, they tended to favor the
rectangular tests. 1In most cases, the indices of bias decreased
with increased test length; the 15-item tests performed nearly as
well as the 25-item tests and better than the S5-item tests. There
were essentially no differences across anchor test types and test
lengths in the correlations between true and estimated item param-
eters.

Mqre relevant to the study of linking methods are the character-
istics of the asymptotic ability estimates produced by each method.
There were few differences observed across anchor test types in
terms of their ability to produce estimates with a mean of zero and
standard deviation of one, and in the absolute and root-mean-square
errors in these estimates. When differences were found, they typi-
cally indicated that the peaked tests were somewhat worse than the
others. There were nd consistent trends with test length. The cor-
relations between the true and estimated ability were identical across
all nine anchor tests,

Perhaps most important in this study, however, were the indices
of efficiency of the anchoi test procedures. Essentially no differ-
ences were found across anchor test types and test lengths; all

_efficiency figures were between }987 and .989.

J
Conclusions

Analyses presented in this section have been, in part, a repli-
cation of analyses done on the randomly sampled examinees. Examinees
used in this section were randomly sampled frum a single popula.ion.
The difference between these groups and those of ‘the previous. data
set was simply that the single population was redefined as kLaving
been selected, and thus skewed in distribution. ,

Many of the findings with the selected sample paralleled those
of the randomly sampled data set. Specifically, equivalent-groups or -
no-linking methods produced pools of items as efficient, in terms of
linking, as did the more cofiplex anchoring methods. The equivalent--
tests method, as before, was inferior to the other methods.

The anchoring methods were far superior to the equivalence and
no-linking methods in reproducing the original standard ability metric. _
This was simply due to the fact that only the anchoring m~-thods had
informa-ion regarding the "correct" metric.
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As a general conclusion, it appears that the equivalent-groups
method is simple and effective for linking sets of items if examin-
ees used in calibration are all sampled from a common poputation,
regardless of its shape. If, however, the original metric must be
reproduced, the equivalent-groups method has no way to reproduce it.
Miring items calibrated on a selected group with items calibrated on
%.1 unselected group would be one example where an original, or at
least a common, metric would need to be' reproduced.
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VII. PRACTICAL APPLICATIONS OF LINKING

Development of a Composite Avproach

The linking tasks the Armed Services must face in de ping
adaptive-testing item pools can be reduced to two. First, .ne items
comprising the initial pool will be calibrated in several sets on
several groups and must be linked onto a common metric. Jecond, new
items will be added to the po.! at later dates and must be linked on-
to the same metric. Data pr¢- .ted in the preceding sections provide
good solutions to the first problen. These solutions will be sum-
marized below. Data presznted in these sections provide some solu-
tions to the second problem. More ~omplex solutions, however, re-
quire further analyses. (See Appendix C for a suamary of a meeting
with Air Force personnel in which the Armed Serv.ces linking problem
was discussed.)

The primary objective of linking is to produce a pool of items
that will function together efficiently., Efficlency of th’ method
i{s thus the most important criterion for choosing a method to link

.the initial pool. Since norms will undoubtedly be constructed on

the basis of the metric of the initial pool, additisnal criteria must
be considered in choosing a method for linking future items to the
original pool. Specifically, addition of th- new items should not
distort the original metric and, therefore, a m:thod that produces
little distortion should be chosen. Hence, the asymptotic-estimate
criteria are 21so relevant to this linking problem. Discussion and
analyses presented below will be limited to these relevant criteria.

Linking the Initial Item Set--A Summary of Findings

Given that the opjective in calibrating aand linking the initial
item pool is to obtain a set of iters that fufretion efficiently,
several methodological suggestions can be made. The eciivalent-
groups linking method using modal Bayesian scoring works as well as
any of the more complicated linking procedures when examinees are -
randomly sampled from a common population. TIf i. is possible to
sample in this manner, there is no advantage to using a more compli-
cated procedure. The method worked about equally well at all test
lengths investigated. It exhibited a slight tendercy toward greater
efficiency with larger examinee samples, but these findings were in-
consistent. The di.ferences were not sufficiently consistent to sug-
gest whether 500, 1,000, or 2,000 examinees should be used; in prac-
tice, the largest avallable sample would probably be used.

Analyses of calibration efficiency provided some guidance re-
garding the sample size and test length necessary for item calibra-
tion. Generally, larger samples and longer tests produced more
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efficient parameter estimates. If a tradeoff could be made between
test length and sample size, however, these analyses suggested that
emphasis should be placed cn increasing the test length, since in-
creases in test length were three to four times as effective as pro-
portionate increases in sample size.

In the Armed Services environmment, it is conceivable that new
test items might be calibrated in conjunction with AFEES administra-
tion of the current ASVAB. If the new items were to parallel a
subtest on the ASVAB, this subtest would be a potential anchor test,
but random distribution of experimental subtests across the AFEES
population would elim’nate the need for an anchor test. Simul-
taneous calibration of the new and old ASVAB it-ms would, however,
result inr 3 longer .est and, therefore, better calibration so the
two tests should be calibrated together, even if the ASYAB subtest
is not used for linking.

If .random distribution were to prove imp-actical, the analyses
of previous sections suggest that an anchoring method should be
used. Either 100 anchor examinees or 15 to 25 anchor items would
provide efficiency equivalent to that obtained by randomly sampling
examinees. If the new items were to be administered concurrently
with the ASVAB, the anchor-test method of lirking would be an obvious
choice. Previous analyses suggest that rectangular and normal anchor
tests work about equally well. Each of the present ASVAB subtests has
an information curve which is similar to one of these two forms.

Linking Across Time-~Further Analyses

An item pool, regardless of the care taken in its crcation, is
not likely to remain static forever. For a variety of reasons, new
items will be added and old items will be removed during the life of
the item pool. These new items must be calibra.ed and linked onto
. the metric of the original items.

Since the examinee population is likely to change over time,
the equivalent-groups procedure is not an appropriate method of link-~
ing the new items to the old. The equivalent-tests procedure, even if
its assumptions .ould be met, would still be an inefficient proce-
dure. Given that individuals are likely to change over time, the
anchor-group procedure would not be appropriate.

- The anchor-test method, if the anchor test remained constant,
would be as effiecient over time as it is at a single time. Therefore,
it appears to be the method of choice for linking over time. 1If a
constant anchor test can be maintained, linking over time will pro-
duce no more difficulty than linking within a single time period.

It is conceivable, however, to perform anchor-test linking

using several anchor tests over time. A current ASVAB subtest may be
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used as an anchor test for new items. These new items may be used to
form a new ASVAB subtest. This new ASVAB subtest may then be used as
an anchor test for linking the second new set of items. Before this
cascading rrocedure is attempted, however, it is important that its
effects on efficiency and the ability metric be known. (This is
probably an oversimplificatinn of the problem since future versions of
the ASVAB are likely to be adaptive. It provides a manageable model
for analysis, however, and should provide some insight into the prob-
lem.)

Method. Item parameters and ability levels for a sample size of
1000 and test lengths of 20, 35, 50, and 65 items were taken from the
systematically sampled data set. This data set was chosen because
each group within each of the four cells was sampled from a different
population. This is analogous, to some extent, to what would happrn
if groups were sampled at different time periods.

Within each cell, five calibration groups were arbitrarily
ordered. The first group was linked, using the equivalent-groups
procedure, to a standard (i.e., mean zero, variance one) population.
(Note that this does not imply anchoring, and each initial group was
linked to a different standard population.) Fifteen items were then
selected from the test given to the first group as an anchor test.
The first 15 were selected and, since the items in the tests were ran-
domly ordered, represented a randomly sampled subset of items. These
items were administered to the second calibration group and, using
these items as an anchor test, the items in the second test were
linked to the first. Fifteen items were selected from this linked
second test and used to link the third test. This procedure was re-
peated until the fifth test had been so linked.

Asyﬁptotic—ability—estimate and efficiency statisties were then
calculated. They were calculated on the first test alone and then
on each of the remaining tests in combination with the first. Cumu-
lative effects of linking could thus be observed as more new tests
were cascaded upon the old,

Although the modal Bayesian scoring procedure had proved superi-
or to the maximum-likelihood procedure when a single anchor test was
used, it was not obvious to what extent its inherent bias would
affect linking in a cascaded environment. The robust-maximum-likeli-
hood procedure was thus additionally considered as an unbiased pro-
cedure.

Results. Table 72 presents asymptotic-ability-estimate means
and standard deviations fcr cascaded linking using modal Bayesian
scoring. The level of linkage refers to the number of linkages re-
quired to link back to the original test. Average errors represent
the average absolute deviation of the row or column entries from the




Table 72. Asymptotic Ability Metric
of Cascaded Tests--Modal Bayesian Scoring

Level of Test Length Average
Linkage 20 35 50 65 Error
Mean 0 .118 .u88 .053 .154
1 .052 .43y .064 -.032 .079
2 -.152 .337 Lou7 -.0u48 157
3 -.028 .279 -.027 -.034 .156
y L1116 .329 -.009 .073 .076
Average Error .121 143 .0u0 . 164 L7
Standard 0 1.136 1.189 1.089 7.194
Deviation 1 1.057 1.080 .936 .914 .155
2 -.833 .909 .912 .872 .256
3 . 854 .801 .943 .842 .292
4 .9u9 .88¢ .918 . 887 .2uu
Average Error .198 272 .161 .315 .237

zero-level values. The zero-level values differ from each other be~
cause no anchcr method was used to anchor the first tests to any
common metric.

The most notable observation that can be made from the first
half of Table 72 is that there were no apparent trends in error with
increasing linkage “istance at any of the four test lengths with
respect to the means. The column with the most deviant starting
value, .488, showed some tendency to drift toward zero but this trend
was not conelstent,

The standard deviations exhibiced a tendency to drop with the
first one or two linkages. After that they appeared to stabilize at
approximately .9. No differences in this tendency were apparent
across the various test lengths.

Table 73 present. asymptotic-e. timate means and standard devia-
tions for robust-maximum-likelihood scoring. Unlike the Ba,=sian
procedure, the maximum-1likelihood procedure showed a slight tendency
to produce increasing means with increasingly distant linkages. This
tendency was inconsistent, however.

‘ -1636 3




Table 73. Asymptotic Ability Metric
of Cascaded Tests--Maximum-Likelihood Scoring

Level of Test Leagth Average
Linkage 20 35 50 65 Error
Mean 0 .079 406 .0u8 .103
1 .061 . 497 .070 . 145 .0u3
2 . 120 .537 .062 .163 .062
3 .225 .592 .0l40 210 112
y L1TH .558 .oy L2UT7 .100
Average Error .075 . 140 012 .088 .079
Standard 0 .876 .951 .906 1.018
Deviation 1 .845 1.015 .9us5 1.121 .059
2 1.009 1.026 .998 1.123 .101
3 1.083 1.107 1.047 1.183 167
Y .995 1.073 1.038 1.232 147
tverage Error .123 .104 . 101 . 146 .119

Standard deviations, u<ing the robust-maximum-1i'-elihood proce-~
dure, rose rather than fell, By the third linkage, they were deviant
from the initial values by .167, on the average. This dropped to
.147 by the fourth linkage and may be indicative of a stabilization,

Table 74 presents linkage efficiencies of the cascaded tests
using modal Bayesian scoring. No consistent trends in efficiency
were observed. A s3light inconsistent trend toward lower efficiency
with increasing linkage distance and an inconsistent increasing trend
with respect to test length were observed. The overall level of
*fficiency was somewhat lower than levels observed previously in the
systematically sampled data set; efficiencies with Bayesian anchor-test
linking using a constant anchor test were .970, compared to .929 here.
It should be noted, however, that the conditions of linking were some-
what different as five tests at a time were linked before, and only
two at a time were linked here.

Table 75 presents linkage efficiencies of the cascaded tests
using robust-maximum-likelihood scoring. A more definite decreasing
trend in efficiency with linkage distance was observed here than had
been <bserved using Bayesian scoring. An inconsistent inereasing
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Table 74. Linkage Efficiency of
Cascaded Tests--Modal Bayesian Scoring

Level of Test Length
Linkage 20 35 50 55 Average
1 .943 .981 .983 .930 .959
2 .874 .914 .954 .918 .915
3 .895 .862 .969 .911 .909
y .958 .883 .959 .936 .934
Average .918 ".910 .966 .924 .929

Table 75. Linkage Efficiency of
Cascaded Tests--Maximum Likelihood Scoring

Level of Test Length
Linkage 20 35 50 65 Average
1 .968 .962 .993 .972 .974
2 .972 .923 .989 .965 .962
3 .865 .892 .967 .940 .917
il .920 911 .972 .863 .917
Average .931 .922 .980 .935 .942

trend with respect to test length was again observed. 1In general,
the maximum-likelihood scoring procedure produced somewhat more ef-
ficient linkage than did the Bayesian procedure. Where the average
linking efficiency was .929 for the Bayesian procedure, it was .942
when maximum-likelihood scoring was used.

Discussion. Linking ubing cascaded anchor tests with Bayesian
scoring did nct exhibit any substantial tendencies toward decreasing
efficiencies with increasing linkage distances. Slightly more con-
sistent tendencies toward lowered efficiency were observed with max-
imum-1ikelihood scoring. Maximum-likelihood scoring produced slightly
higher average efficiency than did Bayesian scoring across the con-
ditions investigated. Slight trends in bias were observed with
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respect to asymptotic standard deviations using either method but
none were observed with respect to means or efficiencies.

It should be noted that no trends were built into the true abil-
ities used in this simulation. Abilities of each group were differ-
ent but not in any predictable fashion. If trends were present in
the true abilities, a trend might be noted in the estimation errors.
A substantial long-term trend in ability is unlikely to be observed
in Armed Services testing, however. Short-term trends produced by a
military draft situation are unlikely .o affect more than one or two
generations of test items. Such a situation is similar to the one
simulated here.

Design for a Specific Application

Following is an example c¢f how the information learned about
linking techniques in the preceding sections could be anplied to a
practical linking problem such as might be faced by the Armed Ser-
vices. The problem presented below i3 one developed, in cooperation
with Air Force personnel, to be representative of the linking problem
the Armed Services will encounter in the development of an item pool
for computerized adaptive administration of the ASVAB or its succes-
sor. The problem described is presented only as a hypothetical link-
ing environment. The test described, while intended to reflect
expected conditions, is not based on specific studies and should
not be considered optimal, in any sense, for test design.

Descrigpion of the Problem

A new adaptive version of the ASVAB is to be developed. It will
contain 10 subtests, 8 of which will be power subtests. Only the
power subtests will require calibration by IRT methods. For each
of these eight subtests, a pool of approximately 200 items will be de-
veloped., These items will be similar to items previously used in the
ASVAB, with the exception that they will be written to cover the dif-
ficulty range from b = -2.5 to b = 2.5. The distribution of difficulty
is expected to be nearly rectangular with somewhat heavier representa-
tion in the center.

Examinees for use in calibration will come primarily from all the
AFEES. One additional hour of examining time to take experimental
tests will be provided for 1,000 examinees at each of the AFEES. This
means that roughly 50 new items, on the average, can be administered
along with the current ASVAB. The eight item pools, in total, will
contain 1,600 items. If 65,000 examinees each take 50 items and the
1,600 items are equally apportioned, each item will be administered
to 2,031 examinees. .
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Some of the new subtests will parallel subtests on the current
ASVAB; others will not. It is not essential that all individuals
within a given AFEES take the same test. It is essential that the
administration instructions and time requirements be identical for
all experimental tests given vichin a single AFEES.

The objective of calibration and linking of these items is to
obtain eight item pools, each of which contains items which function
efficiently together for estimating ability. The actual scale:on
which the items are linked is not critical but, if the new items
parallel an old ASVAB subtest, there should be a way of translating
the new test scores to the familiar ASVAB scores. Furthermore, there
should be some provision by which new items can be added to a pool
znd linked to the original metric.

d '

A Proposed Linking Design

when applicable, the equivalent-groups method of linking pro-
vides the most trouble-free and efficient linking available. I¢
appears that tests can be randomly distributed among AFEES if care
is taken and thus the equivalent-groups procedure is the method of
choice. The Bayesian scoring procedure is the preferred scoring
method. ' :

Three major factors should be kept in mind when assembling the
experimental tests. First, administrative constraints require that
all tests use the same administration instructions and that each
requires no more than an hour to complete. Second, calibration effi-
ciency is enhanced wit. longer tests. Third, calibration of each pool
in equal-sized sets of items on equal numbers of examinees results in
greatest linking efficiency.

Prior to assembling the administration packets, rough time es-
timates for completion of items in each of the pools should be ob-
tained either from pilot administration or from past experience.
Each pool shoula then be divided into the largest equal parts that
can be administered within the time allowed. No item overlap is
required.

Examinees can be apportioned across the eight pools equally
or unequally. If they are to be apportioned equally, the number
of examinees can be decided by simply dividing 65,000 by the number
of item subsets. It may be more appropriate, however, to apportion
unequally. The number of examinees apportivned to each subtest may
be decided by the relative importance of the pools, the relative
ease of calibration of the various item types, the number of subtests
within each of the item pools, or by other considerations. Samples
used within a pool should be of equal size; samples for different
pools do not need to be of equal size.
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Experimental tests should be randomly distributed among AFEES
(and their mobile testing sites). While data presented in preceding
sections have suggested that the equivalert-groups procedure works
reasonably well even when test3 are systematically distriouted, non-
randomness may result in the equivalent-groups method being less effi-
cient than one of the anchoring methods. If the items in a pool par-
allel an ASVAB subtest which is routinely administered to all exam-
inees, the ASVAB items should be combined with each of the individual
experimental tests when calibration is done. 1If distritution of test
packets is done randomly, no explicit attempt at anchoring need be
done; the purpose of including the ASVAB items is simply to increase
calibration efficiency by increasing the test length. If distribution
is non-random, explicit anchoring may be desirable.

Conceptually, expressing scores of the new tests in terms of the
‘old ASVAB scores may seem to be a simple matter of using the appropri-
ate ASVAB subtest as an anchor test and toen anchoring new items to
it. Ability estimates from the new tests should, it seems., be equiv-
dlent to abilit;’ estimates from the old. There are two reasons why
thig is not the case. For finite-lengtih tests, regardless of the
scoring procedure used, ability estimates will contain some error and
be biased to at least a small degree. Unless the ability 2stimates
from the ASVAB subtest and the new items have equivalent error and
bias, ability estimates of one wili not be equivalent to the other,
even if linking is perfect. Secondly, the old ASVAB is not expressed
in an TRT abdlity metric. Obviously, then, ability estimates from
the.old ASVAB will not be equivalent to ability estimates from the
neW tests, even for infinitely long tests.

So even after the item pools are linked, correspondence be-
tween the new adaptive ASVAB and the old conventional ASVAB will not
be immediately available. These correspondences can be developed by
conventional equating ;rocedures but only after the item pools are
ineorporated into a testing strategy and its error properties are
known.

Addition of new items to the pool at a later time will require
an anchor test., The most straightforward choice for such a test
is a conventional test composed of items from the original ASVAB or
the original new item set and kept constant in composition for all
future additions. FResearch in a previous section suggested, however,
that new anchor tests can be selected as time passes with slight
efficiency loss and little bias. Use of the new ASVAB as an adaptive
anchor test is another possibility. Further research into adaptive
anchor tests should be done before such a method is applied, however,
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VIII. SUMMARY AND CONCLUSIONS

Summary

Previous Literature

This report began with a review of the psychometric literature
relevant to linking and equating which resulted in a number of find-
ings. The first was a general framework for classification of link~
ing and equating designs. Linking methods were classified on two
general aspects: the design by which data are collected and the al-
gorithm by which the linking transformations are made. The data
collection designs were of four types: (a) sampling of equivalent
examinees (equivalent-groups method), (b) sampling of equivalent
iLems (equivalent-tests method), (c) anchoring through a common group
of examinees (anchor-group method), and (d) anchoring through a com-
mon set of items (anchor-test method). There were a variety of trans-
formation algorithms which can be grouped into linear, nonlinear, and
Item-Response-Theory (IRT) methods.

Since the overall research project was limited to linking of
IRT-calibrated items, the review concentrated on IRT linking and
equating studies. The vast majority of the reported studies used
the Rasch IRT model. These tended to be more descriptive than evalu-
ative. The more evaluative studies suggested that Rasch equating
worked well for examinees of average or above average ability but
worked poorly when low-ability groups were equated to higher-ability
groups. This deficiency was probably due to the model's inability
to handle guessing.

Among the studies investigating linking using the more appro-
priate three-parameter IRT models, there was some confusion regarding
the distinction between prediction, linking, and equating. A distinc-
tion was made here by defining prediction as relating s-ores on on2
psychological dimension to scores on another using regress..n tech-
niques, by defining equating as establishing a correspondence between
two tests measuring the same psychological dimension using non-regres-
sion techniques, and by defining linking as putting parameters of items
measuring the same psychological dimension on the same scale. Examples
of research which inappropriately confounded these techniques were
discussed.

Linking Criteria

The criteria used in past studies for evaluating the adequacy
of calibration, linking, and equating were not only confusing but,
typically, not useful for comparing various techniques. Two new
classes of criteria were developed for use in this project. The
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first considered tne asymptotic characteristics of ability estimates
using estimated item parameters. Through this class of criteria, the
biasing effects of calibration and linking errors could be assessed.
The second class of criteria consisted of the information and rela-
tive efficiency of ability estimation resulting from the use of item
parameters containing calibration and linking errors. These criteria
were used to assess the relative test lengths required by the varjdous
methods to produce equivalent precision of measurement. Techniques
for separating amounts of inefficiency due to calibration and to
linking were presented.

Simulation Design

Considering deficiencies in previous studies of linking, a simu-
lation study to determine appropriate linking methods was designed.
In developing the simulation model, care was taken to ensure that the
test items specified were similar (in terms of their item parameters)
to Armed Services items likely to be encountered in actual linking
problems, and that the populations of simulated examinees were defined
to be similar in ability to those likely to take such tests.

Item parameters were specified after analysis of available data
on current ASVAB forms. Included in these data were IRT item param-
eters for an experimental ASVAB form paralleling Form 7 and conven-
tional item parameters from norming administrations of new ASVAB Forms
8, 9, and 10. The ability distributions were determined from samples
of 500 examinees from each of 65 AFEES responding to ASVAB Form 7.

The distributions of both ability levels and item parameters
were generated from the mean, variance, skew, and kurtosis of the
AFEES or ASVAB distributions using a random number generator capable
of generating distributions of shapes specified by these four moments.
Three basic data sets were created. The first, the randomly sampled
data set, contained five replications at each of 12 combinations of
test length and calibration sample size and simulated the condition in
which test booklets were randomly distributed among the entire AFEES
population. The second, the systematically sampled data set, contained
the same combinations of test length and sample size but simulated the
condition in which test booklets were distributed systematically among
relatively few AFEES. The third, the selected data set, contained
only one sample size and simulated the condition in which a selected
recruit population was used.

Three categories of evaluative criteria were used to assess the
adequacy of calibration and linking. The first category, fidelity
of estimation, examined the relationships between true and estimated
item parameters. Statistical indices used included the familiar
bias, absolute error, root-mean-square error, and correlation used
in previous studies. The second category, characteristics of asymp-
totic ability estimates, examined the relationships between true and
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asymptotic (i.e., infinite-test-length) ability estimates. Statis-
tical indices included the mean, standard deviation, absolute and
root-mean-square error of the estimates, and the correlation between
true and asymptotic ability. The last category, efficiency of abil-
ity estimatior, included average item intormation (an index closely
related to the precision of estima*ion) and relative efficiency, the
ratio of information from two sources. In this study, efficiencies
were computed relative to the true and estimated item parameters,
yielding efficiency indices of the linked items and linking proce-
dure, respectively.

Results

In evaluating the basic data sets, three general conclusions
were reached. First, the parameter correlation data generally sup-
ported other studies which assessed the calibration effectiveness of
OGIVIA, the calibration program used in this study. The b parameters
were very well estimated and the a and c parameters were less well
estimated. Second, test length appeared to be relatively more impor-
tant to calibration effectiveness than was sample size; efficiency
analyses suggested that increases in test length were at least three
to four times as effective in improving calibration efficiency as pro-
portionate increases in calibration sample sizes. Finally, there was
little difference in calibration efiiciency between randomly and sys-
tematically sampled examinees, but there was a large difference in ef-
ficiency between these and the selected examinee groups.

In the randomly sampled data set, two general linking methods,
the equivalent-groups and the equivalent-tests methods, were evalu-
ated and compared. Comparisons were done in bpth a homogeneous link-
ing condition, where the items to be linked were calibrated in tests
of equal length using ¢ minee samples of equal size, and in a heter-
ogeneous condition of mixed test lengths and examinee sample sizes.

The fidelity-of-parameter-estimation analyses were unable to
provide any conclusive evidence regarding which linking procedure
was most effective. The asymptotic ability analyses, however, sug-
gested that two 1inking procedures based on Bayesian ability estima-
tion (an equivalent-groups procedure) were sSomewhat more effective
than the others and that the equivalent-tests method was typically
no better than not linking at all. The third set of analyses, those
using the relative efficiency criteria, suggested that the equivalent-
groups procedures were superior to the equivalent-tests procedures
and that those using Bayesian scoring procedures were slightly superior
to the others tested. Relatively-little efficiency was lost when the
0GIVIA-produced parameters were used with no explicit linking. Effi-
ciency loss due to linking error was always less than that due to
calibration error and, although test length and sample Size had a
definite effect on calibration efficiency, no strong effects appeared
with respect to linking efficiency.

i
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In the systematically sampled data set, two additional linking
method® were considered along with the equivalence methods. The
anchor-group method linked item sets using common examinee groups
of different sizes and compositions. The anchor-test method linked
item sets using common tests of different sizes and compasitions. 1In
terms of linking efficlency, the anchor-test method produced the most

| efficlent item pools. The anchor-group method resulted in efficien-
| cles equivalent to tnose of the anchor-test procedure if large groups
| were used, but with smaller gr.ups the efficiencles dropped somewhat.
| The equivalence methods were somewhat less efficlent than either of
the anchor methods. Bayesian scoring was the method of choice.
Maximum likelihood appeared not to be a useful scoring procedure

for the linking conditions investigated.

f

|

|

! Results from analyses based on data from linking when examinees

l were selected tended to parallel those of the Fandomly sampled data

| set. The equivalent-groups and no-linking methods produced item

‘ pools as efficient as the more complex anchoring methods. These

| methods were 1lneffective in recovering the original metric, however.

| Mean asymptotic estimates were blased downward considerably from the

l true values, and standard deviations were larger than the true values.
One of the more complex methods would have to be used if recovery of /
the original metric was desired.

J—_

Application to a Practical Linking Problem

An application of the results of this research to a practical
linking praplem was described. The problem consisted of calibration
and linking of item pools for computerized adaptive administration

“ of the ASVAB. The general suggestion was that experimental test
booklets be randomly distributed and equivalent-groups linking be
used. For addition of items at later times, an anchor-test linking
method was suggested. A further simulation was done to investigate
the effect of cascaded anchor tests in whicu a new anchor test was
created for each link. Nelther excessive drift nor loss in efficien-
cy was noted. It was concluded that such cascading could be used if
necessary but that a constant anchor test should be preferred. When
maximum-1likelihood and Bayesian scoring procedures were compared, in
the cascaded condition, the maximum~likelihood procedure showed a
slight efficiency advantage over the Bayesian procedure.

Conclusions

If the item-1inking procedures suggested in this report are
followed, parameter errors due to imperfect linking should be a rela-
tively mincr problem in “ne development of an adaptive-testing item
pool. With proper procedures the efficlency loss due to linking
errors should be approximately 1%. This is small in comparison to
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the 108 to 12% efficiency loss due to calibration errors. This study
thus appears to have answered the question: How should different
item sets calibrated in different examinee groups be linked?

Next to the findings regarding linking, perhaps the most impor-
tant results of this project were the developments of new classes of
criteria of calibration and linking adequacy. It is concelvable
that calibration, noted to be a greater problem than linking, might
be improved by using a different calibration program. Prior to this
study, no adequate method of comparing calibration effectiveness of
various calibration programs and algorithms had been available. The
efficiency statistics presented here allow a direct comparison of var-
ious procedures in terms of their capacity to provide parameters con-
ducive to accurate estimation of ability. Since ability estimation
1s the objective of ability testing, these criteria seem ideal.

Analyses of the basic data sets using the program OGIVIA were
presented in sufficient detail that they could easily be replicated
using other calibration techniques. Evaluation-of other calibration
techniques using the efficiency criteria should quickly answer the
question of which procedure is best. Since efficiency has a direct
translatioq?into test length, it should be useful in a cost=benefit
-analysis of ‘the various procedures if the best, procedure also should
turn out to be the most expensive.

The asymptotic-estimate criteria should have application in
evaluating various equating methods. In this study, these criteria
showed that, using estimates of the item parameters, the relationship
between 4rue and asymptotic ability was not perfectly linear. 1In
populations such as those eonsidered here, this did not appear to be
a great problem. This nonlinearity may be a problem in the vertical
equating of tests of widely different difficulty levelis. It was not
uncommorn for tests investigated in this project to fail to yield abil-
ity estimates much below -2.0. If two tests were suvatantially . if-
ferent in difficulty and the parameters were less-than-perfect estim-
ates, the relationship between the two tests might be nonlinear. This
is an area trat should be investigated before IRT vertically equated
tests are used for real decisions.

As a third area for application of the new criteria, efficiency
analysis might ve applied to investigating the appropriate number of
parameters in an IRT moael. Rasch enthusiasts, and some others, have
suggested that the Rasch model is the appropriate method to use be-
cause other parameters in the mult*i-parameter models are too difficult
to estimate. Using efficiency asaiysis, it should be possible to de-
termine how many examinees and items are required for the additional
parameters in a two- or three-parameter model to produce a net gain in
measurement, efficiencv.




In summary, it is likely that there will be few questions con-
cerning the development of Armed Services adaptive testing pools that
cannot be answered from data presented in this report. Calibration
presents somewhat more of a problem than does linkina, but further
research using criteria developed here should help solve this prob-
lem. Finally, developmen.s resulting from this project may aid in
the solution of some other IRT-related psychometric problems.

»
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APPENDIX A--SUPPORTING TABLES

Table A-1. Characteristics of the ASVAB
General Science Subtest by AFEES

AFEES N Mean SD Skew Kurtosis
1 500 L2759 .9975 -.2559 -.9677
3 500 -.2700 .9629 .2230 -.6U93
5 500 .ou2y .9233 -.2850 -.4963
6 459 .1316 1.0036 -.3345 -.5874
7 500 L1577 9717 -.3273 -.5866
! 500 -.1189 .9899 -.0409 -.6064
9 497 -.1391 .9960 -.0U3s -.7140

10 500 .0586 .9589 -.1956 -.6268
12 500 . 1587 .9123 -.2064 -.7096
13 498 -.0388 .9763 -.1974 -.6223
14 498 .3U136 .8849 -.4363 -.3761
i5 500 -.3154 1.0679 ,0456 -.7725
16 500 .0173 1.0550 -.1409 -.8760
18 498 -.3985 1.0101 .0824 -.6752
19 498 .0021 .9756 -.0912 -.8322
20 497 .4389 .8544 -.5075 -.3148
22 5C0 -.2880 .9980 .1660 -.7573
24 500 .1239 .9uu9 -.2193 -.6742
25 499 L3173 L9534 -.5289 -.4252
26 500 .2643 L9311 -.3749 -.U4579
27 498 -.5292 L9194 .3814 -. 45Uy
28 499 -, 4400 .9658 L4163 -.6887
29 199 -.1850 .9564 -.031 -.8177
30 498 -.2212 1.0073 L1015 -.7309
31 50N -, 4460 L9945 .2912 -.6558
32 500 -.6U475 .8614 .4003 -.163%
33 £00 -.2171 1.0002 .0805 -.7691
34 499 -.0318 .95u2 -.1562 -.6uuY
35 499 -.5602 .9253 L4211 -.3806
36 u98 -.4u83 .9480 L1514 -.4097
37 499 -.0875 .9508 -.1301 -.6380
38 499 -. 4957 .9286 , 2750 -.3721
41 500 L0943 .9005 -. 1907 -.6111
42 499 .0197 .9257 -.0553 -.5823
43 499 -. 1200 1.0224 -.0094 -. 7847
un 499 -.0471 L8941 .0706 -.6153
45 510 -.1833 .9828 .0308 -. 7571
46 500 -.2542 1.0306 .0859 -.8044
47 500 - 4734 .9692 .28u2 -.U4526
u8 499 L0146 .9763 -.0841 -.7965
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Table A-1. Characteristics of the ASVAB
General Science Subtest by AFEES (Continued)

AFEES N Mean SD Skew Kurtosis

49 498 -.1054 .8751 -.0u21 ~-.u6us

50 530 ~.43u9 .9739 .2451 -.804Y

51 - U935 -.2721 .9763 AT77 -.7T167

52 500 .2393 .9309 -. 4302 ~-.3879

53 499 .312 .3180 -. 4255 ~-.4789

54 498 .0830 .9668 -.2u21 .5689

55 500 .3658 .9486 -.5263 -.3761

56 499 L1372 .9923 -.3809 -. 4164

57 500 . 1026 .9327 -.0894 ~.8000

58 500 <.2050 ° 1.0407 -.3811 ~.62uY

59 500 . 3496 .9u76 -.5014 ~-.u554

60 ’ 499 . 16138 .927? -.1803 -.7032

61 499 . 3851 .9024 -.6893 L3777

62 498 -.0607 1.0162 -.1157 ~.8639

63 497 - .3890 .9301 -.3154 ~-. 7474

64 590 L4154 .9066 -. 14386 ~.5772

55 500 .3866 .9587 -.4136 -.6086

{ 66 500 .oug2 .9uu6 -.094Yy -.6210
67 50C -.0438 .9523 ~.0587 ~-.6479

- 68 50C L1077 .9942 -.2687 -.8586
69 497 .2357 .9770 -.2619 ~-.859%6

70 590 L4520 .8901 -.5993 .ERQ6

71 © 499 .2950 .92145 -.2888 -.6018

72 500 L4u13 .9064 -.6921 .2333

76 498 2952 .9114 -. 4368 -.3101
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Table A-2.

Ttems Selected for Inclusion in the
Normal, Rectangular, and Peaked Anchor Tests

True Item Parameters

- —

Estimated Item Parameters

Anchor Test a b e a B g
Normal 2.2766 .0338 1401 2.2717 .0078 .1059
1.8243 -1.83u4 3763 1.4526 -2.3105 .17u8
1.7780 1.9989 1893 3.0000 .7863 .0955
1.8099% L4235 L1170 2.2358 U736 .1079
3.8753 -.T2U42 . 2951 3.0000 ~.T405 . 1901
2.5663 -.3764 1719 2.3082 -.4020 .0924
1.9929 .3155 1834 1.9821 . 3446 . 1689
1.5909 1.0338 1102 1.7310 1.1774 .1342
2.5162 -1,1096 1104 2.1824 -1.1509 .0059
2.1169 -.5U06 2442 1.6920 ~.6036 .1106
2.6324 . 6080 3174 2.3324 L6768 .2907
2.3331 .7268 3429 1.9484 LT717 .3210
2.1136 =1.,2472 1364 1.8686 -1.2710 .0643
2.2304 -1.6778 1435 2.0307 -1.5930 . 1640
2.2070 1.3933 30567 3.0000 1.4893 .2275
1.8899 -.0312 1902 1.6845 -,0108 .1378
1.8079 -.3500 2895 1.7847 -.2940 .25%1
1.5047 -.5989 1255 1.6149 -,4958 L1126
1.8%09 .2759 2322 1.6597 . 3591 . 2240
1,4296 . 7051 2286 1.6929 . 8457 .2637
1.7189 -.9806 3265 1.6022 -1.0177 .2227
1.8392 -1.5184 1105 1.7279 -1.4533 L0377
1.6760 1.4379 .3101 1.9381 1.5048 .3151
1.7838 -.1039 2143 1.4660 -.1524 . 1183
1.3747 -.4829 1455 1.3737 -.3864 . 1557
Rectangular 2.27166 .0338 L1401 2.2717 .0778 . 1059
1.8243 -1.8344 . 3763 1.4526 -2.3105 L1746
2.3085 2.1240 . 1439 2.4515 2.1056 . 1259
2.0181 .9706 1956 2.6381 .9975 . 1558
2.5162 -1.1096 L1104 2.1824 =1,1509 . 0059
3.8753 -.72U42 . 2951 3.0000 -.TU05 . 1901
1.8098 L4236 .1170 2.2358 L4736 .1079
2.,2070 1.3913 . 3067 3.0000 1.4893 .2275
2.2304 -1.6778% 1435 2.0307 -1.5930 . 1640
2.1136 =1.,2472 1364 1.8666 =1.2710 .0643
2.6324 .6080 3174 2.3324 L6748 .2907
1.A750 1.4379 3101 1.9381 1.5048 . 3151
1.8292 -1.5184 1105 1.7279 -1.4533  ,0377
~-18
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Table A-2. TItems Selected for Inclusion in the
Normal, Rectangular, and Peaked Anchor Tests (Continued)

True Item Parameters Estimated Item Parameters
Anchor Test a b c E] B é
Rectangular 1.4949 -1,9274 . 1493 1.2598 -2.1565  .0977
(Cont.) 1.3346 2.3002 . 1202 2.1999 2.3542 .1633
1.9929 . 3155 . 1834 1.9821 .34u6 . 1689
2.5663 -.3764 .1719 2.3u82 -.4020  .0924
1.8353 -.7625 . 1751 1.5589 -~.8333 .0606
2,331 . 7268 . 3429 1.9484 L1717 .3210
1.5909 1.0338 . 1102 1.7310 1.1774 L1342
1.7525 -1.8702 .2204 1.6999 -1,7u462 .2693
1.3509 -1.8081 L1144 1.3265 -1.86U6 .0699
1.3889 1.87u4 . 1674 1.9353 1.9720 . 1973
1.8009 .2759 .2322 1.6597 .3591 .2240
1.5617 -, 4916 . 1561 1.7318 -.3962 . 1286
Peaked 2.2755 .0338 . 1401 2.2717 .0778 . 1059
2.5241 ~,1973 . 2941 2.2957 -.18%0 .2327
2.5663 ~-.3764 L1719 2.3082 -.4020, .0924
2.1322 ~,2409 .1218 1.8271 =-.2715 .0364
1.9838 .0308 . 1765 1.82u46 .0u82 . 1243
2.1322 . 1437 . 1296 1.7626 .1053 .0788
2.5678 -.0124 .2990 2.0325 -.0081 .2535
1.7472  ~.244y . 1108 1.7626 -.1665 . 1060
1.8899 -,0312 . 1902 1.6845 -.0108 . 1378
1.8609 -.U4679 L1111 1.7660 -.4194 .0573
2.1462 -, 3844 . 1625 1.8270 -.H42U5 .0751
2.8007 -.4uny . 3155 2.4904 - 4772 .2332
2.2596 ~.0840 .2209 1.5028 ~,1956% .0838
1.5617 ~.u4916 . 1561 1.7318 -.3962 . 1286
1.8079 -.3500 . 2895 1.7847 -.2940 .2531
2.1945 - 4153 .2529 1.7870 =-.4213 . 1749
1.7838 -.1039 .2143 1.4660 -.1524 .1183
2.1038 -.2952 . 3263 1.6991 -~.3u497 L2141
1.4159 -,1788 . 1443 1.4208 -.1162 .1102
1.5732 ~.2968 .2128 1.5095 -,2477 . 1697
1.8253 ~-.1994 .2239 1.4196 -,.3236 .0758
1.9929 . 3155 . 1834 1.9821 L3446 . 1689
1.7777 -.3u84 2414 1.5750 -.3u496 . 1905
2.2983 .,2287 3771 1.6622 ~.2980 . 2831
2.2819 -,3800 . 3237 1.7573 =~.4519 2211
15,
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APPENDIX B--REVISIONS TO PROGRAM OGIVIA

The item calibration program, OGIVIA, was obtained from James
McBride of the Navy Personnel Research and Development Center in San
Diego. The version received was written by Jerry Edwards of the
University of Washington and had been revised and updated by John F.
Gugel of the U.S. Civil Service Commission. A review of the program
revealed several problems. Their possible impact and the corrections
made are detailed below.

4 variant of the test information value was originally used for
the scaling factor in the Newton-Raphson ability estimation routine.
This factor was replaced with the second derivative of tne log of the
Bayesian posterior density function. In theory, this substitution
should have mage little difference in the ability and parameter esti-
mates obtained. In fact, différences in the second and third decimal
place were occasionally observed. This was assumed to be due to the
fact that the criterion for termination of the iteration was a change
in the absolute value of the ostimate of less than 0.005 and that when
the original scale factor was used, there was no assurance that the
estimate was within 0.005 of the final value at this point. The dif-
ferences were thus attributed to increased accuracy of estimate ob-
tained with the modification. Tt was also noted that changing to the
second derivative resulted in an average 20% decrease in the computer
time required to estimate ability.

Another inefficiency was noted in the Newton-Raphson procedure.
It appeared that this procedure, by itself, was not always successful
i~ locating the modal Bayesian ability estimate. In some cases, the
Bayesian posterior density function can be of a sufficiently irregu-
lar shape that a starting value very near the final estimate is re-
quired for convergence. The original program discarded examinees
whenever the ability estimate failed to converge in 20 itcrations.
To preclude such examinee loss, the original algorithm was augmented
by adding a bisection routine. The bisection was invoked whenever
the Newton-Raphson procedure failed to converge within seven itera-
tions. Following the bisection procedure, providing that a root
existed in the interval -8.0 < § < 8.0 (a virtual certainty), the
Newton-Raphson procedure was called again to refine the estimate and
was allowed to iterate up to eight times.

A final problem was encountered when OGIVIA discarded items
whose parameter estimates exceeded pre-established bounds. While in
practical calibration applications this may be an acceptable solution,
in the present research design it presented a serious biasing effect
on the comparisons of different cells in the design. To alleviate
this problem, items whose parameter values would have caused them to
be discarded were arbitrarily bounded as foilows: g
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Although somewhat arbitrary, thers values appear to reflect
reasonable ranges for the parameters and seemed preferable to loss of
the item. These item parameters were-bounded on both the first and
second stages of the OGIVIA program, y
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