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Introduction

This publication is written for middle school teachers of grades 5-9 without
specialized backgrounds in geometry. We have arranged it in three parts, hoping that
children and young adolescents will thus have an opportunity to experience'some of the
activities and suggestions which we have presented.

Part | is a brief overview of the geometry curriculum of the middle schocl including
the present state of affairs, a rationale for inclusion of geometry in the curriculum, the
geometry that we believe should be taught, and suggestions for teaching it.

Part Il is a presentation of several selected topics for study: axiomatic systems and
models, distance, congruence, constructions, and transformational geometry. This
material is specifically not organized for immediate classroom use, but rather requires
adaptation to the particular classroom ‘setting. Most of the sections include thought-
provoking supportive exercises worthy of discussion, activities that are ready for im-
mediate classroom use, and references for further study. We purposely omitted all
“‘proofs’” from the written presentations, though many of the exercises provide oppor-
tunities for this activity.

Part Il is an extensive collection of references for additional activities as well as
readings in the area of geometry. We hope this bibliography will assist teachers in
enriching their own geometry curriculum and in developing their own activities.

’ r Douglas B. Aichele
Melfried Olsen



An Overview and Commentary -

PRESENT STATE OF AFFAIRS

The word **geometry”’ is from the Greek word *‘geometrein,’” which is composed of
tne parts **geo’’ (earth) and “"metrein’’ (to measure), since geometry was originally the
science of measuring the land. It has a rich and beautiful historical development which
grew primarily out of the human quest to understand and quantify the environment. In
geometry, as in other subjects, the emphasis on the pragmatic too often overrides the
aesthetic in our instruction. Although geometry is a very practical subject, the history of
the development of geometry is as interesting as virtually any other voyage throughtime.

The most complete attempt to assess individuals’ geometric knowledge was underfaken
by the Education Commission of the States through the National Assessment of Educa-
tional Progress. The following two excerpts provide information about what students
know and can do.

Most of the geometry items given to 9-year-olds involved identification of
terms. Nearly all could name a circle and triangle, but only about one-fourth
could identify a cone. sphere, or ellipse. Almost half of the children could
select a pair of parallel lines from a set of several different cotnfigurations of
line pairs, but only 20% of them successfully drew a line parallel to a given
line. About one-third of the children could select a right angle from® the
alternatives of right, acute, or obtuse angles (4, p. 4).

Some geometric figures are recognized by most 17-year-olds,_but they do
not know many other geometric facts. Nearly all the students named a circle,
75% named a cone, and about 50% named a cylinder. Fewer than one-half
named either a cube or a sphere. About 75 % knew that the diameter of acircle
is twice the length of a radius. Fewer than 40% could bisect an angle using a
straightedge and a compass. Slightly more than one-fourth of the 17-year-olds
found the area of a square with a perimeter of 12 inches (4, p. 81).

These statements provide us with indications that some geometry is taught to and
learned by students, but they also indicate that improvements can be made concerning the
teaching and learning of geometry. The National Council of Teachers of Mathematics
conducted a study in 1975 of second and fifth grade classrooms and found that *‘though
geometry is mentioned as being part of texts, objectives, and testing, 78 % of the teachers
report spending fewer than 15 class periods per year on geometric topics’” (1, p. 13).

Thus, we find that while geometry is con:idered a viable part of the curriculum, most
teachers seem to pay only lip service to that fact and instead concentrate on teaching
number concepts and arithmetic skills. We suspect that teachers’ lack of knowledge and
previous success in geometry account for their position in this regard. It is any wonder,
then, that children’s geometric knowledge is weak?

In order to get full benefit from Part II of this book, teachers must have some
background in the basic concepts undergirding the subject of geometry. We certainly do
.notadvocate the teaching of geometry to pupils in the middle school in a manner presented
here—that is why we have provided the extensive bibliographical background and the
selected activities. We hope that readers will feel convinced that geometry should be
taught and will not hesitate to implement their convictions. With the commonly held
notion that we teach as we are taught, we hope that teachers and teachers-to-be canuse the
presentations found herein as a model for future presentations on similar topics.

8
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WHY GEOMETRY?

The past twenty years have demonstrated that students are concerned with the explora-
tion, study, and measurement of space. Geometric ideas such as position, direction, size,
shape, and similarity are inherent in a child’s earliest experiences. In fact, some conjec-
ture that by the time children enter school, their intuitive knowledge of geometry is as
great as their developmental concepts of numbcr. Almost every object has inherent
geometric properties, and as children internalize these properties they are primed for
future activities built around cubes, prisms, cones and, later, rectangles, squares, and
triangles. The use of geometry in many professions, including art, engineering, and
architectural designs, is undeniable. Geometry is all 3round us! This may be an over-
simplification, but we live in a geometric world—operi your eyes on your next excursion
through a day of your life.

Geometry is an indispe1sable way of life; for in its very structure, form, and
beauty, every imaginable object is governed by propertics of geometry. With-
out this tool of knowledge, our very lives, our needs, and the world about us
wotld be altered beyond any describable form. Yet, because of its inherent
structure and utility, geometry finds its application in the vocational needs of
the most demanding professions: architecture, engineering, navigation,
physics, and art, to mention a few. For this reason, many people feel it is too
technical a subject for them to understand, and certainly beyond young chil-

: dren. However, in daily life we can identify innumerable instances where
geometric insights have been applied to the nearest vbjects. Geometry has
been used to design the form of this page, the pencil used to write this article,
the desk on which I am writing, the light bulb that illuminates the room, and
the room itself, which is one of many ina building located at a point on this
spherical planet (7, pp. 454-55).

All too often students remember geometry as the subject in which they *‘proved”’
theorems, although when pressed, they cannot recall what it was they proved, nor
necessarily remember the structure of the proof of a particular theorem.
Geometry is not thought about in the same fashion as arithmetic, although there is much
agreement on the fact that both subjects are important. With arithmetic, almost all people -
concur on the relevance of teaching addition, subtraction, multiplication, and division,
but with geometry it’s another niatter. There are disparate views on how much, why,
when, and to whom geometry should be taugiit. Despite this lack of consensus, gcometry
is on the rise in the elementdry curriculum, and the enthusiastic teacher shouldbe prepared
to teach it, whatever it may be. The following quotations further emphasize this position: .

Elementary and upper grade teachers should consider giving geometry a '
prominent place in their mathematics programs because of the wealth of i
problem-solving activities with geometric content. Furthermore, the omission '
of geometry from & mathematics program will limit a teacher’s opportunity to
develop a student’s non-numerical, mathematical ability (3, p. 444).

The teaching of geometry in the elementary school can also be justified by
the fact that children have an innate curiosity for the subject stimulated by
environmental experiences before entering school. The students can see posi-
tion, shape, and size in space as entities that can be used, controlled, and
manipulated to explore their environment. And since geometry is a way of
modeling our physical environment and because there is a great abundance of
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models suitable for all levels, from kindergarten through graduate school,
geometry is a natural vehicle for developing intuition, creativity, and 2 spirit of
inquiry. Further, geometry is a fertile source for interesting and challenging
problems, and geometric methods are powerful tools in problem solving (6,
. p-469). :

Jean Piaget provides us with the clearest evidence that school children have the ability
to learn geometric concepts. His research indicates that children’s initial understanding is
of simple topological concepts (closure, interior, exterior, continuity) prior to progressing
through projective and then formalized Euclidean concepts with topological properties
providing the foundation upon which the rest are formulated. Furthermore, similar
research supports the conclusion that children can learn geometry at an early age without
damaging conceptual development of other concepts (i.e., arithmetic). The development
learning advocated by Piaget has implications here also. If children learn by manipulating
their environment, then geometry will be useful for this manipulation. As noted earlier,
the environment of a child is filled with geometry, including topological, projective, and
Euclidean concepts with intuitive three-dimensional conceptual development occurring
very early and prior to two-dimensional development. The adept teacher will not only
provide geometric solids for the children to observe, manipulate, and measure, but will
also include spatial experimentations similar to those provided by the use of ESS geoblock
activities. Not only will this provide an effective technique for teaching, but it provides a
rationale for the concepts taught. i .

Teachers need to be cognizant of these considerations to understand what will happen
in the classroom. Children, as should be expected, will be inaccurate in their initial
attempts at geometry at this early age. Teachers should, however, encourage the child to
setout for himself or herself and not worry about early mistakes that can be corrected later.
To continually refresh us in our thoughts about ““Why Geometry?’* we should consider
the message found in the following two citations:

in an effort to save our own and the children’s time, we often conclude that
the learner does not need firsthand experience. We feel justified and sometimes
even benevolent or noble in imparting to tender young minds the formula fora
t:iangle’s area or for the volume of a pyramid. In so doing we usurp the rights of
our children, and we deceive ourselves. We usurp the rights of children if we
+ell a child the secret of some truth or principle, because we drain from him the
zest for finding it out. We remove from him the need for inventiveness. We
remove his opportunity to face a challenge from which he might learn greater
trust in himself and greater skill in thinking. We remove from him some
excitement about learning.

We deceive ourselves when we equate telling with teaching. To be told and

 to be taught are not the same thing. To be told is tobe released from obligation.

. Tobe told s to become other-dependent, rather than self-dependent. To be told

is to be denied the growth-producing experience of reaching out to capture
another truth. : ;

Telling too much to children is not a fault of teachers alone. Some textbooks
also tell far too much. Occasionally a teacher feels obligated by a text to deal
with a topic in a manner that is inconsistent with his/her beliefs about how
children best learn (5, p. 83).

One can hardly spesk of effective instruction in geometry without recalling
remarks made by Werthcimer. He reminded us that children who are taught
specific solutions or techniques cannot handle variations, because they fail to

11
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react to the inner relations of the problem. They fail to see the relationship of
the parts to the whole. A learner should be aware of the structural features of a
problem that set up strains, stresses, and tensions. Structural features create
vectors, or mental forces, and determine their direction, quality, and inten-
sity. These in turn lead to the steps and operations that fulfill the requirements

H

of the problem (5, p. 85). ,

WHAT GEOMETRY SHOULD THE CURRICULUM CONTAIN?
SUGGESTIONS FOR TEACHING
M &~

There is growing evidence among mathematics educators that geometry-
should be experienced in each year of schooling\‘\from kindergarten through
grade 12. Geomerry is the study of spatial relationships of all kinds, relation- .
ships that can be found in the three-dimensional spaice we live in and-on any
two-dimensional surface in this three-dimensional space. These relationships
can be discovered all around us. Observe the many \tjifferent shapes in yoyr
environment. Thisis geometry. Listento the description of the path of the latest
space rocket. This is geometry. Coinpare the photograph taken with a polaroid
camera to the object that it pictures. This is geometry. otice the symmetry 10
be found in a spherical or cubical shape and the lack (‘:\f symmetry in some
modern works of sculpture. This is geometry. All of these involve spatial
relationships. Children are aware of spatial relationship’ from their earliest
days. Introducing them to'the idea of geometry as being concerned with shape
and size in the material world will help them to realize and appreciate that
mathematics is something that plays an important role in the world in which we
live (2, p. 473). ' ‘

The emphasis placed on geometry by the mathematics educator is not new, as similar
feelings were exhibited in textbooks at the turn of the century. Furthermore, geometry was i
the classical study by the early mathematician from which all other aspects of mathematics
were initially derived. In fact, educators today feel that the study of geometry, equality,
congruence. similarity, symmetry, etc., provides a rich source for the visuglization of
arithmetic and algebraic models. The explorative study of two- and three-dimensional
figures and the transformations of -tt ose figures in a child’s environment reflect an
introduction to significant sophisticated mathematical ideas which the child can investi-
gate prior to the formal introduction via precise definitions and theorems.

The intuitive introduction at any early age, plus the solid geometry and transformation
topics which follow at a later age, are useful for future scientific work. However, many
parents, and especially teachers, promote a nonenthusiastic response to this situation.
Geometry has often degenerated into an effort to prove theorems and has thus derived a
present definition that may be difficult to change. These disagreements, the slow accep-
tance, and disagreements concerning inclusion of the new topics demonstrate the lack of
consensus over the appropriate purpose and worth of geometry in the curriculum.

Having established objectives, the question of what geometry should be
taught'is, however, still not answered. Over the past ten or fifteen years there
have been the proponents of synthetic geometry, of analytic geometry, of
vector geometry, and of transformational geometry. Which of these geome-
tries should we teach elpmentary' teachers? The answer is, **None of them,

i2 11
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and all of them.”’ This response is not as ambiguous as it sounds. With - -
‘ reference to *‘none,”’ no one geometry should comprise an entire course. It is

a waste of time to put elementary teachers through a careful development of

any single geometry. The advocates of a careful development of one-
geometry support their position with the contention that geometry is an ex-
cellent vehicle for teaching the natare of a mathematical system. We're kid-

ding ourselves if we think that this is what we're accomplishing in teaching
geometry 1o all except the most sophisticated students (9, p. 458). .

We believe that some of the techniques and strategies particular to each of the geome-
tries will prove beneficial as problem-solving tools. For example, many difficult prob-
lems posed in a synthetic setting are resolved easily by employing an analytic argument.
Hoewever, students typically are not able to solve problems by considering such alter-
native strategies. They merely approach the problem with the **given’" information and
try to create a string of statements which €volves into what is to be ‘‘proved.;’ .

We envision a geometry experience for middle school teachers which not only includes
topics and techniques selected from synthetic, analytic, transformational, and vector

_ geometry, but also provides opportunities to examine three-dimensional space concepts.

Furthermore, teachers should have the opportunity to examine typical Euclidean concepts
in other settings (e.g., distance, congrience). We make a plea for study of alternative
distance definitions such as the *‘taxicab” distance as well as for.an examination of
alternative models such 25 the sphere and certain finite systems. Intimes when technology

_has advanced to the point where wne earth is readily perceived in a spherical sense, we

cannot ignore, nor expect our children to ignore, the geometry associated with this
historically famous model. Fui.hermore, there is probably ;no more intuitive model
available for our scrutiny.

We close with a few suggestions that teachers can usc in teaching informal geometry.
First, desizn and implement activities that require pupils to manipulate, trace, or construct
geometric figures and solids. Classification by comparison is a natural sequel to discov-
ering properties of these figures and solids. Next, design activities aimed at discovery
relationships (e.g., shape, size) among the figures or solids. Finally, plan activities
focusing on sliding, {lipping, and turning these figures or solids. For example, examining
whether the size and/or shape of a right triangle changes wheniit isrotated is as importanta
consideration as examining whether the number property associated with a group of
checkers changes when the checkers are placed in a circular arrangement instead of a
linear arrangement. ' ' g

You wil! note that these suggestions in no way excluded the sphere, though most

readers probably will not interpret them in this way. Why not? Because our frame of
reference is typically Euclidean. May we suggest you try a unit on inforral geometry on
the sphere (study Part 11, Section 2.1 .2) first.
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2.1

Axiomatic Systems and Models

2.1.1 WHAT IS AN AXIOMATIC SYSTEM?

The gti!lwater Racquetball Club is sponsoring a tournament. The major concern in
organizing the tournament consist of making all the necessary preliminary arrangements,
providing a hospitality suite during the tournament, coordinating the use of the court
facilities during the tournament, and providing the tournament winners with trophies.
Clearly some organizational scheme is necessary to enable the club to host the tournament
effectively. A committee approach seemed the best strategy, with three basic rules for
forming the committees:

Rule i. Each pair of committees has exactly one member in common.
Rule 2. Each committee member is on exactly two committees.
Rule 3. There are exactly four committees.

Le 's see now. Basing your reasoning on these rules, how many club members will be
serving on the committees? How many members will each committee have? At least two
interpretations of these rules become apparent. One 1s:

ABC

ADE

BDF

CEF .

Figure 2.1a

{

Here single letters represent < ‘committee members '’ and rectangles represent ‘‘commit-
tees.'’ So, for example, ‘A"’ is a committee member and “BDF’’ is a committee.

Andther interpretation has a more geometric orientation: In Figure 2.1b *‘points’’ and
“‘lines'* replace ‘‘members’’ and ‘‘committees. **Thatis, ‘‘A’" is realized as a point and
“BDF,"’ a line.

15
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Figure 2.1b

Regardless of which interpretation of the rules is being made, a total of six club
members will be committee members and each committee will have exactly three mem-
bers. How does one know there is not another interpretation of these rules with more than
six membeis?

This rather simple example illustrates much of the background necessary for studying
axiomatic systems. First of all, it is desirable for individuals who are engaging in
beneficial discourse to agrec on most of the words and terms used, though frequently this
is the reason for the discussion! At any rate, it is very difficult to offer precise, universally
accepted definitions for many of our words. In some ways mathematicians recognize this
dilemma and through the very structure of mathematics offer an alternative, which is to
“*accept without definition’’ some of these words and concepts. We refer to such entities
as primitive or undcfined terms. What are the primitive or undefined terms in the
introductory example?

If we agree that certain terms will not be defined, then we probably should also accept
that certain statements involving these undefined terms will k2 accepted without verifica-
tion. We refer to such statements as axioms or postulates. One might wonder just how
many of these undefined terms are permissible in a mathematical systém. As a matter of
convenience and economy it is desirable to hold this number to a minimum. In our
introductory example, the axioms Were the three rules concerning committee member-
ship. These rules involved the notions pf * ‘committee "’ ar d **‘committee member, ** which
were the primitive or undefined terms. ;

When we asked the question, **How many club members are on each committee " ", we
were really addressing the consequences or tmplications of the rules. In other words,
certain statements ‘‘follow logically>> from the rules and one another and provide
additional information about the system. We mus! agree on certain rules of reasoning so
that we will be able to determine how and when one statement *‘follows logically*’ from
another. These logical consequences are called theorems.

We must remark here that while some concepts are left undefined, e.g., the axioms,
many are not. These statements, called definitions, must also respect the laws of logical
reasoning which undergird the mathematical system. For instance, in the introductory
example, if we were to define a subcommittee as a subset of a committee with exactly two
members and define each subset of a committee with two members as a subcommittee, we
would be employing circular reasoning, thus violating a premise of logical reasoning.

Now, we are ready to synthesize” our findings and more formally characterize an
axiomatic or postulational system consisting of the following:

I. A set of undefined terms which form the basis of the necessary vocabulary.
2. A set of axioms or postulates.

16
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3. Laws of formal reasoning, e.g.. laws of Aristotelian logic.

4. A set of theorems which present properties of the undefined terms and which are
derived from the axioms by the iaws of logic.

5. A set of definitions.

On the surface, the construction of a postulational system nay appear quite trivial,
After all, one has only to accept some undefined terms and axioms and then apply a few
well known principles of logic to derive additional statements—nothing to it! Further-
more, after this activity has been completed, one cannot really say much about its merit as
it was all based on undefined premises!

This is all true, but there is a little more to it. If a person was moved to develop a
postulational system, that person would undoubtedly be concerned about illustrating or
realizingit in some more or less intuitive way. Suchan illustration serves as a model of the
system. More formally. & model of a postulational system exists if each of the undefined
terms has been assigned some meaning so that all of the consequences are true.

Toillustrate the relationship between a postulational system and a model of that system,
recall the introductory example. The postulational system consisted of:

1. two undefined terms— *‘conimittee’’ and ‘ ‘committee member”’
2. three axioms—Rules 1, 2, and 3

3. definitions and theorems which respect the laws of formal logic and which wWuld
be included as the sy.tem was enlarged.

A model for that system was illustraicd in Figure 2. 1a where the committee members are
the eiements of the set {A, B, C, D, E, F} and the committees are enclosed in the
rectangles; -hat is, the committees are designated ABC, ADE, BDF, and CEF. If this
interpretation is in fact a model for the postulational system, then each of the undefined
terms must be assigned some meaning (have they been?) ard cach of the conscqucnces
must be true under this assignment. Let’s examine this last requiremenlspre closely.

Fitst, is Rule 1 true in this model? That is, does each pair of committees have exactly
one member in common? Yes, we can see this by examining the table below which shows,
for example, that committees ABC and ADE have only member A in common.

Committees
ABC ADE BDF CEF ?
ABC — A B
. 2 ADE A -
E ,
g BDF B D —_
©  CEF c E F -

Does Rule 2 hold? That is, is each committee member on exactly two committees? Yes,
we can also sce this by examining the table below which shows, for example. that member
B is on only committees ABC and BDF. 4

Committee Members
A B C D E F
ABC ABC ABC ADE ADE BDF
ADE BDF CEF BDF CEF CEF

s
]
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Now. what about Rule 3? Yes, it holds since our model was exactly four
committees—ABC, ADE, BDF and CEF.

So, interpreting committee members by the letters A, B, C, D, E, F and committees by
ABC. ADE, BIF, and CEF qualifies it as a model of the given postulational system.

Before leaving this model, we note that since there are six (finite number) committee
members, we refer to this model as a finite model. Had it becn the case that an infinite
number of committee members was possible, we would have referred to it as a infinite
model.

Now, iet’s consider another postulational system and a model for it. The undefined
terms are: a set C of elements called coins; a set B whose elements are subsets of C called
bins. This system has five postulates:

Postulate 1: There exists at least one bin.

Postulate 2: There are exactly three coins on every bin.
Postulate 3. Not all coins are on the same bin.

Postulate 4: There 1s exactly one bin on any-two distinct coins.
Postulate 5: There is at least one coin on any two distinct bins.

We can exhibit a model for this system by letting C = {A, B, C, D, E, F, G} and B be
comprised of those subsets of C which form the colu-ans of the array below:

A B C D E F G
B C D E F G A
‘E _F G A B C

We must show that each of the postulates has true meaning when interpreted in this
way. That is, we must examine each postulate very carefully to be sure that the
interpretation being made is true. We wili not verify all of the postulates here as this is the
content of Exercise | at the end of the section. However, as an exampie, let’s examine
the interpretation of Postulate 4. We must be able to select any two distinct coins and
exhibit exactly one bin containing them. Perhaps this is most easily accomplished by
scrutinizing the table below which was prepared by considering all of the possible pairs of
coins and the bins containing them. The entries in the table are exhaustive and clearly
show that each pair of distinct coins is contaifigd on exactly one bin.

Coins Bin C oins\ Bin Coins Bin

A B ABD B.D ABD C.G GAC
A C GAC B.E BCE D,E DEG
A.D ABD B.F FGB D,F CDF
A.E EFA B.G FGB D.G DEG
A F EF. C.D CDF E.F EFA
A,G GAC C,E BCE E.G DEG
B,.C BCE C,F CDF F.G FGB

Al

If we replaced the undefined terms *‘coin’" with *‘point** and “‘bin’’ with *‘line"* we
would have 2 finite postulational system usually referred to as Fana’s 7-Point Geometry.
This system could be modeled by letting the set of points be P = {P.. P3, Py, Py, Ps, Py,

. 18
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P;} and the set of lines be comprised of these subsets of P witich form the columns of the
array below. That is, P, is a *‘point’’ and {Pl, P2, P,}, or simply P,P,P,, isa “line.”’

Pl Pz P3 P4 P5 Pd p7
P 2 P:) P 4 P5 Ps P 7 Pl
P4 P5 Pg P7 P| Pz P3

Many of the notions we have come to use are derived through intuition, guessing, trial
and error, and a host of other less than systematic means. Other than the fact that the
axiomatic approach addresses the very heart of the structure of mathematics, it is the
means by which we can prove that certain statements are correct. Children and adoles-
cents should have opportunities aimed at developing skills involving intuition, guessing,
estimating, etc. However, they should also have opportunities to make conjectures and
verify the accuracy of these conjectures, as well as the conjectures of others, within a
mathematical framework. Several postulational systems together with models of them are
given in the exercises to provide such opportunities.

You will note that most of the examples given above make fis€‘of combinatoric logic.
The use of combinatoric logic by students on a task enables us fo classify them as *‘formal
thinkers '’ respective to that task. It is during the middle schpol years that studerts are
making the transition from concrete to formal thought. Give them the opportunity to see
how they approach problems of this type. ‘

Exercises

I. Verify that the * ‘coins/bins " interpretation of the 7-Point Geometry is a model for that
system,

For the remaining exercises. it is understood that the undefined terms are *‘point’* and
“line. "’ ' .

2. 13-Point/13-Line Geometry

Postulate 1: There exists at least one line.

Postulate 2: There are exactly four points on every line.
Postulate 3: Not all points are on the same line:

Postulate 4: There is exactly one line on any two distinct points.
Postulate 5: There is at least one point on any two distinct lines.

Let the set of points P = {P,, P5, Ps, ..., P13} and the set of lines be comprised of those
subsets of P which form the columns of the array below:

P, P, P, P, Py Pg P; Py Py Fy Py Pia Py

P, P, P, P, Po Py Py Py Po Py Py Pu P

P, P, P P, Po Py Py Py Py Py Pi P Pg

Po Py P2 Py P Py Py Py Py Py P: Py Py

Show that this interpretation is a model of the postulational system.
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3. Young’s 9-point/12-line geometry

Postulate 1: There exists at least one line.

Postulate 2: There are exactly three points on every line.

Postulate 3: Not all points are on the same line.

Postulate 4: There is exactly one line on any two distinct points.

Postulate 5: Givena hine/ and a point P not on/, there is exactly one line on P and not
on any point of /. .

Let ihe set of points P = {P.. P.. P,, Py, P, Py, P;, Py, Py} and the set of lines be
comprised of those subsets of P which form the columns of the array below: ~

P P, P, P, P, P, P, P, P, P, P, P \
P, P, P, P, P, P, P, P, P; Py P; P,
P, P, Py, P, P, P, P, P, P, P, P P,

Show that this interpretation is a model of the posalational system.

. Affine Geometry

Postulate 1: There exists at least one line.

Postulate 2: There are at least two points on every line.

Postulate 3: Not all points are on the sam.e line.

Postulate 4: There is exactly one line or any two distinct points.

Postulate 5: Givena line / and a point P not on /, there is exactly one line on P and not
on any point of /.

Let the set of points be the 25 letters A, B, C, ..., Y (all the letters of the English
alphabet except Z). The lines are the 30 sets of five letters which occur together in any
row or any column of the three blocks below:

7

A B CDE Al LTW A X QOH g
FGHI1J S VEH K R KIBY
K LMNDO G ORUD J CU S L
PQRST Y C FNQ VTMED
UVWXY., M P X B J NGEWTP

Show that this interpretation is a model of the postulational system.
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2.1.2 TWO FAMILIAR MODELS

The intent of this section is really to examine two models of a well-known postulational
system. But before considering these models, we must be introduced to the postulational
system.

The undefined terms are **poinc * and *‘line.’’ We define *‘plane’’ to be the set of all
points under consideiation.

The in:tial postulates establish relationships among the undefined tern .. They are:

Postulate 1: There exist at least two lines.
Postulate 2: Each line is a set of points éontaining at least two elements.

Since postulational systems are developmental by nature, one must be prepared to make
decisions that will affect the direction that the system takes. Forexample, we arenow ina
position to decide whether or not to introduce the concept of distance into the system. Itis
advantageous for us to infuse this concept for at lcast two reasons. First, we will be better
able to explore relationships between number concepts and geometric concepts. Also, this
is, the approach most closely followed in school geometry classes. Since the distance
concept is so pervasive in the geometry curriculum, a special section has been prepared
(Section -.2) whirh not only addresses distance in our evolving postulational system but
interprets this concept in several models. I

Postulate 3: Corresponding to each pair of points P and Q there exists a nonnegative
real number PQ satisfying the conditions: (i) PQ = Oif and only if P=Q
and (ii) PQ = QP.

We define the nonnegative real number corresponding to the points given in Postulate 3 as
the distance between P and Q.. The postulate and definition appear intuitively reasonable
since distance between points is positive except when the two points are the same point (in
this case, the distance is understood to be zero). Also, the wording of the definition
suggess that distance is not directional. Furthermore, it is important to observe that the
postulate assigns a nonnegative real number (o every pair of points.

A very timely question concerns the maximum distance between any arbitrary pair of
points. Let's investigate twu models of this evolving postulatioha: system and address the
issue of maximal distance between an arbitrary pair of points in each model.

The first model and clearly tht most well-known is attributed to Euclid, a Greek
mathematician, around 300 B.C.. Euclid desperately attempted to provide definitions for
all terms. He defined a *‘straight line’* as *‘that which lies evenly with the points on
itself,”” and a **point’’ as *‘that which has no part.”” Neither of these definitions proves to
be very useful or informative; we really can regard them only as undefined terms. Itisalso
appropriate to regard ‘‘line’’ and ‘‘straight line’’ as synonymous. The notion of a
*plane " is interpreted as the *‘flat surface”” which contains all of the points and lines.
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The notion of Euclidean distance is addressed in Section 2.2.3. For our purposes in this
section, however, we need only remember that Euclidean distance is best understood as
the length of the path *‘as the crow fliéw ** We also acknowledge that two points can be
arbitrarily far apart and hence there is no real number which s the maximum distance that
points can be apart. So, in the Euclidean model, distances are not bounded.

Now, let’s turn our attention to a mode! which, with increasing technological advances
and space exploration, becomes more intuitive than ever before. Imagine that the plane is
the surface of a sphere—think of the plane as the surface of a globe, basketball, or
beachball. Interpret points as in the Euclidean model and lines as great circles of the
sphere. Recall from your studies in geography, that a great circle is determined by
intersecting a plane containing the center of the sphere with the sphere itself. The concept
of plane, point and line is illustrated in Figure 2. 1c.

S

Figure 2.1c

The distance between two points on the sphere is defined to be the minimal length along
great circle paths having those two points as endpoints. This is shown in Figure 2.1d
where the minimal great circle path is denoted d, (A, B). This interpretation seems rather
intuitive except when the points are *‘poles *—like the north pole N and south pole S in
Figure 2. Ic. This distance, d, (N, S), is one-half the circumference of any great circle and
the maximum distance between any two points on the surface of the sphere (why?). This
means that we can determine the maximum distance between any two points on a sphere
unlike the situation which prevailed in the Euclidean model. Thus, we say that distance is
bounded on the sphere.

. Figure 2.1d




We close this section with an analysis of a familiar statement.
Two distinct points determine only one line.

Is this statement *‘true’’ or *‘false*? Most people would say the statement is trve as they
recall their studies of Euclidean geometry. But forthose who interpret this statement in the
spherical model, this conclusion is not so immediate. Consider the north pole N and the
south pole S in Figure 2. 1e. It is clear that there i» not aunique line passing through N and
S, but instead there are infinitely many lines passing through N and S—lines of longitude.
So, the original statement is *‘false "’ when interpreted in the spherical model. The heart of
the problem with this statement seems to reside in the fact that the distance between N and
S is the maximal distance.

N

S

Figure 2.1¢

Regardless of the model, the statement that **two distinct points lie on at least one line’’
is correct. It could be strengthened to include a condition of uniqueness by disallowing the
points to be the maximum distance apart. So, :

- —_— Pl . .
Two distinct points lic on at least one fine, and if the distance between the
points is not the maximum distance, the ling is uniqte.

is a statement with true interpretations in both thé Euclidean and spherical models.

We believe it is critical for students to be allowed to evaluate statements within a given
context, i.e., within a given model. The spherical model, being so intuitive and available,
provides a natural opportunity for such activities. Several typically Euclidean statements
are included in Exercises 4- 10 with this intent, and many of these statements, as well as
many statemgnts’found in the Activities, are addressed in detail elsewhere in this book.

Exercises

1. Verify the statement below as a consequence of only Postulates 1 and 2.
There are at least three points and two lines.
2. Exhibit a model for the postulational system which includes only postulates 1 and 2.
(Hint: letP = {P,. P., P;} where Py, Py, P; represent points and L be the subsets {P,,
P} and {P,, P;} which represent lines).’

" 3. Conpsidering the earth as a sphere, name several of its great circles.
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In the remaining exercises, familiar Euclidean statements are given. Examine each of
them in the spherical model and decide if they are correct.

4.
5.

6.

Given any three collinear points, one of them always falls between the other two.
Side-Angle-Side (SAS) Triangle Congruence Criteria.

The measure of any exterior angle of a triangle is equal to the sum of the measures of
the two fémote interior angles.

7. Through a given poim ot on a given line there can be drawn exactly one line parallel
to the given line. .
8. The sum of the mcasures of the angles of a triangle is 180°.
9. Through three noncollinear points there is a circle.
10. fhe square of the hypotenuse of a right triangle equals the sum of the squares of the
legs.
Activities

* Examine the following concepts in the spherical model and decide how they difter from
their usual Euclidean interpretations:

A.

FARSTZTO0mMEOoN®

Point B is between points A and C

A coordinate system for a line

Segment joining points A and B

Ray beginning at A and containing B
Angle and angle measurement
Betweenness for rays with the same vertex
Plane separation

Convex set

Congruence of segments, angles and triangles
Perpendicularity

Circles

Parallelism
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2.2
Distance

Distance! The word probably conjures up a clear meaning in the mind of the reader, but
we conjecture that the meaning has been derived from a limited exposure to what distance
can mean and how distance can be defined. It is the purpose of this section to provide an
alternative look at the usual definition of distance, with some resulting ramificasions, and
to consider a definition of distance in the spherical model.

2.2.1 WHATIS DISTANCE?

Well, first of all, distance results from a method of measuring, and this measuring is
usually between two points. What this measuring does is assign a number (and unit) to two
points, say six miles, torepresent ‘ ‘how far apart’’ they are. Intuitively, we usually regard
distance between points as positive, except when the points are the same, in which case
the distance is understood to be zero. We also regard distances as non-directional, that is,
the distance from paint P to point . is the same as from Q to P. Many studerfts tend to want
to associate direction with distance and, not surprisingly, this concept is considered when
dealing with the introduction of integers. Thus, to avoid the problem, it is preferable to
use the phrase *‘distance between P and Q"' rather than *‘distance from P to Q.’ * We shall
use the preferred terminology.

Formally stated, we introduce the following two considerations.

Postulate . Corresponding to eaca pair of points P and Q there exists a nonnegative real
number PQ satisfying the conditions: (i) PQ = Oif and only if P = Q, and (ii) PQ = QP.

Definition. The nonnegative real number, PQ, corresponding to the points given in the
above postulate is called the distance between P and Q.

With the above postulate and definition in hand, we shall proceed to look at two
different models and three different ways of defining how we are going to measure
distance.

2.2.2 SPHERICAL DISTANCE

We looked earlier at the spherical model where points had the usual connotation and
“‘lines’’ are considered as great circles on the sphere. For our purposes, we define the
distance between two points P and Q on a sphere as the minimal tength along great circle
paths having those two points as endpoints. If P and Q are not ‘‘poles’’ of a sphere, we see
why we say minimal length, for consider Figures 2.2a and 2.2b where both paths have
endpoints P and Q. Thedength of the path in Figure 2.2a s shorter and we choose its length
to be the distance between P and Q, and denote it dy(P, Q).

What is the distance between P and Qif they are *‘poles?”’ In Figure 2.2¢, if Pand Qare
the north and south poles, respectively, of a sphere with radius r, we note that the distance
dy(P, Q) is one-half the circumference of any great circle (and if you recall the formula for
circumference, di(P, Q) = % (Q2wr) = mr). -

v
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Figure .22 Figure 2.2b

\

\

We also note that the maximum distance between two points on\a sphere with radiusris
- the distance between “*poles,”” #r. Because of this, we have a situation on a sphere that
- does not occur in our other models—we have what we term a finite or bounded distance.
| That is to say, there is a maximum distance between any two points on a sphere.

We are familiar with the use of a number line, but how do we use this idea to measure
distances on a sphere? Suppose we had a sphere whose maximum distance was M. If we
cut off the usual number line at M and —M and bend it to .nake a circle (Figure 2.2d), we
have a coordinatized circle which we can use to measure distances. The only problem we
face is that when we connéct the segment to make the circle, we have two names ** -M"’
and **+M" for a single point. We resolve this situation by assigning ‘*+M’* as the
coordinate of this point.

— “Figure 2.2¢ f 2
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-Mor

-M - 1 +M -M +M

‘ . ' Figure 2.2d

Exercises

2.

3.

When P and Q are *‘poles,”” how many lines do contain P and Q?
If P and Q are distinct-points, but not ‘‘poles,’’ how many lines contain them?

Obtain ; large spherical ball (soccer ball, basketball or beach ball) or a globe and mark
two points on it that are not poles.

(a) Using along picci: of string or wire, find the line that contains P and Q.

(b) Using the line you found in (a), find the circumference of the ball. Using a meter
stick, measure this length. .

°

ball.

(d) Using the line you found in (a), find thé distance between P and Q. Measure this
distance with a meter stick.

(¢) Using the line you found in (a), find the maximum distance between points on the

Repeat Exercise 2 by picking different locations for points P and.Q, until you are
comfortable with the concept of ‘‘line containing P and Q,”' ahd the ‘‘distance
between P and Q.”

While it is clear that many of the-concepts of ‘'spherical geometry can be illustrated
using a ball of some sort, when it comes to working directly with great circles (lines of
the sphere), the *‘basketball*” illustration leaves something to be desired. Instead, a
two-dimensional representation is preferred. A circular geoboard is exactly what we
need. (Instructions for constructing a circular geoboard are given in the activity at the
end of this section).

When considering the exercises which follow, we ask you to remember that children have
had many experiences with a *‘circular geoboard'’ by the time they reach kindergarten,

and they have mastered some skills by the end of the first grade. How? They have usnally

becn exposed to a circular clock! Make sure you relate this exercise back to those
experiences.

" (8) Suppose we have a sphere where the maximum distance is 10, i.c., M = 10, and

217
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A, B and C are points with coordinates 3, 7, —4, respectively, denoted A(3), B(7),
C(-4) on the figure below.

Find d,(A, B), d,(B, C) and dy(A, C).

M=10

.(b) Suppose M = 12 in (a) above. Find d,(A, B), d(B, C), d.\A, O).

(c) Note dy(P, Q) sometimes depends upon M. For instance, dy(A, B) = 4 in both 5(a) .

and 5(b), but di(B, C) = 9 in 5(a) while dy(B, C) = 11 in 5(b).-

Note: Some readers may recognize-Exercise 2 from studies they previofnsly performedin

" a history or social studies unit. The concept involved is **great circle routes.’’ The above

method will work well to show students that the shortest distance between two cities on a
globe is found by considering a great circle route between those two cities. That this

distance looks strange when transposed to a *‘flat’’ map, where students draw the *‘other

straight line’’ with a ruler, is no wonder because we are combining two distinct concepts.
By the way, except for jet stream allowances, this model is the model of airplane travel!
While it is clear that the distance between two points can be determined, we generate no
specific method for finding that distance. Unless a circular geoboard is available, we
recommend finding the desired distance by using string or wire and then measuring.
Although the method is cumbersome, we feel that it provides necessary preparation to

better comprehend the spherical distance and con(. pt of a line on a sphere.

2.2.3 EUCLIDEAN DISTANCE

.

In this instance we return to our usual understanding of a plane as a **flat surface*" and
have a better concept of what is implied by distance—sometimes referred to as ‘‘as the

‘crow flies’ (Figure 2.2¢). This originates from the fact that here, as in spherical distance

considerations, two points determine a line. As with the spherical model, the line between
distinct points P and Q can be found by appropriate use of string, wire, or a rubber band.

28
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) Figure 2.2¢ .

The calculating of Euclidean distance is a very simple matter, but it depends upon
prerequisite knowledge of two-dimensional, coordinate graphing and the Pythagorean
Theorem, which states:

“‘In a right triangle, the sum of the squares of the lengths of the legs equals the
square of the length of the hypotenuse.”’

Figure 2.2f shows the relationship, which is stated a* + b? =c* where a, b, and ¢
represent the Euclidean lengths of the indic. .ed sides of the right triangle.

-

hypotenuse of
length ¢

leg of
length b

leg of length a

Figure 2.2

The usc of a two-dimensional coordinate system is pictured in Figure 2.2g. We must
have an origin 0, and two perpendicuiar number lines, say x and y. With these specified,
we name point P as P(1, 10). {he coordinates of Pare called (1, 10) and indicate P is 1 unit
to the right and 10 units up. Similarly point Q is named as Q(16, 2) and the Euclidean
distance between P and Q, dg(P O), is indicated by the dotted line.

<
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Whet. P, Q and the dotted line are given, a ‘‘natural’’ right triangle, AAPQ, emerges
(Figure 2.2h) with A(1, 2), P and Q as the vertices. Furthermore, using the coordinates of
P, Q, and A, we can determine the Euclidean lengths of the legs of AAPQ, that is, dg(A,
P) = 8 and dg(A. Q) = 15. Using the Pythagorean Theorem we know (dg(P, Q))? =
(de(A, P))? + (de(A, Q))? hence (di(P, Q))? = 8% + 15? = 289—so0, (de(P, Q))? = 289
and de(P, Q) = 17. ‘ o

Of course, the distance between two points will not always be a whole Aumber. For
instance, if P(1, 3) and Q(4, 5) are given, we find (dg (P, Q))? = (3)* + (2) = 13—so
(deP, Q))* = 13 and dg(P, Q) = V'13., The use of a<alculator will enable students to
calculate this to the degree of accuracy desired. Also, younger children might use string
and rulers in conjunction with the graph paper to obtain a fairly accurate measurement
between the two points (keeping in mind the units usad on the graph paper and ruler).

For a general way to compute Euclidean distance we examine a case where P(x, y) and
Q(x,, y,) are given (Figure 2.2i). After drawing right triangle APQ, we find d;{A, Q) =(x
~ xy) and dg(A, P) = (y ~ y;). Hence, (dg(P, Q))? = (x — x)? +(y — y1)? and dg(P,
Q) = V(x = x))* + (y — y,))?. This is the general form for calculating Euclidean
distance.

P(x.y)
» (x )’K
2
b
7 -
P | Y-y
7
qxlvyl) s I
—— A
X = X
i J’x
i S
rigin
Figute 2.2i
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Exercises

Using the above as a model, complete the following exercises. Q i

1. (@) If P2, 1) and (-2, —2) are specified, find de(P, Q).
(b) If P(—4, —1) and Q(1, 11) are specified, find dg(P, Q).
(c) IfP(5, —1) and Q(—3, 6) are specified, find dg(P, Q).

2. IfP3, 7)is given, find cight points that are § units from P. Place these cight points
on a graph and make a conjecture concerning their location.

Note: In exercises 1(a), (b), (c) above, de(P, Q) is 5,13 and V113 units, respectively. In
exercise 2, the points which are -easy to find are (3,2), (6,3), (7.4), (8,7), (7, 10),
(6,11), 3,12), (0, 11), (=1,10), (-2,7), (—1,4) and (0,3). When graphed, these
points lie on a circle of radius 5§ whose center is (3, 7).

2.24 TAXICAB DISTANCE

~ If Friclidean distance has the connotation of *‘as the crow flies,”’ then taxicab distance
can be classified as “as the taxi travels.”” Again, we use our connotation of a plane as a
““flat’* surface, but measure distance differently. Consider Figure 2.2j, where P(1, 3) and
Q(~-2, —2) are given and we consider the grid as a part of town, each unit representing a
block. The distance between P and Q is considered the distance an **honest’” taxi would
travel horizontally or vertically from one point to the other. The dotted segments suggest
two such possible routes and clearly the distance is eight blocks in each case. We denote
the taxi distance as dy, and for this example note dr(P, Q) = 8.

'\

. Figure 2.2)




The taxicab distance is perhaps the distance that is most familiar to kids atan early age.
Although not all cities are laid out on a rectangular grid exclusively, almost every city has
an arca as such. This prompts us to use phrases as, **It is seven blocks to school,”” **1t is
eight blocks to the store,”” **My friend lives two blocks away,’’ and *‘It is four blocks to
the park.’’ All of these phrasés are indicating distance measured by the taxicab method.
This method of calculating distance is also appropriate in many rural areas, where the
rectangular grid, based upon one mile instead of one block, was legislated by -the
government. The ambitious teacher will make wise us= of the students’ understanding of
the above uses of the taxicab distance.

We are now in position to give a formal definition for the taxicab distance between two
points. The only concept needed 1. ~hsolute value of a number a, denoted by!al. The
absolute value concept is best illustrated by an example. For instance,

| 8| =8, |13]|=13, | -89|=89and |93 | =93

In general, the absolute value of a number is itself or its additive inverse (opposite),
whichever is larger. If P(3, 5) and Q(1, 8) are two points, the taxicab distance bstween
them is found by finding how far apart the first coordir ates are, how far apart the second
coordinates are, then adding the Two results (in this case | (3-1)|=2and | (5-8) | =3
which, when added, is equal to 5). This allows us to *‘drive’’ along the horizontal
distance, then **drive”’ along the vertical distance to find the total distance between.two
points. _ .

Formally, if P(x,, y;) and Q(xs, ys) are two points, we define the taxicab distance
between P and Q as dr(P, Q) = | (x; = x2) | + | (y1 = y2) |. We make this definition to
insure that there is a definite taxicab distance between any two points in a plane, whether
or not they are located at a **street corner.”” In the exercises which follow, we use only
points whose coordinates are integers. Hence, graph paper can and should be utilized to
determine the solutions, as all points are located at **street corners.”’

Exercises

1. (a) If P(1, S) and Q(3, —2) aie given, find dr(P, Q).
(b) If P(—3, 6) and Q(4, 13) are given, find dr(P, Q).
(c) If P(1, ~3) and Q(—8, 7) are given, find dr(P, Q).
(d) If P(=3, —4) and Q(2, —3) are given, find dr(P, Q).
2. If P(3, 8) is given, find as many points as you can that are 5 units away from P. Place

these points on a graph and make aconjecture concerning their location. How does this
compare with the soluticn in Exercise 2 of Section 2.2.3?

3. IfP(1, 5) end Q(3, 9) are given, we know d(P, Q) = 6. How many *‘paths’’ could a
taxi take in traveling between P and Q?

4. Find two points P and Q such that dr(P, Q) = dg(P, Q).

S. For each pair of points P and Q calculate both dr(P, Q) gnd de(P, Q). Conjecture.

(a) P(l’ 5)’ Q(3, 7)- d'l'(P’ Q) s dE(P9 Q) = —_—
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6. In 5(b) and 5(d), d(P, Q) = 7and dg(P, Q) = 5.
(a) Can you find P and Q where d(P, Q) = 7 and dg(P, Q) * S, and
(b) Can you find P and Q where d(P, Q) # 7 and dg(P, Q) = 5?

(c) P(—1, 6), )4, —-6), dr(P, Q)
(d) P(4o -3)0 Q(o. o)o d‘r(P. Q)

7. What is meant by an ‘*honest’’ taxi?

Note: In exercises 1(a), (b), (c). (d), dr(P, Q) = 9, 14, 19, and 6 respectively.

.

In exercise 2, the points (3, 3), (4, 4), (5. 5), (6,6). (7. 7), (8, 8), (7,9). (6, 10), (5, 11),
4.12),(3, 13),(2,12). (1, 11), (0, 10), (= 1, 9), (=2, 8), (=1, 7),10, 6). (1, 5) and (2, 4)
are all 5 units from (3, 8). This when graphed does not outline a circle as the points did in

- exercise 2 of section 2.2.3, but instead outlines a **diamond’* whose *‘center”’ is (3, 8).

In exercise 3, there is a large number of paths. However, using graph paper and
considering an “*honest’’ taxi, we see that there are 15 paths. You should try to find all of
them.

In exercise 4, we see that any two points on the same horizontal or vertical line are the
same taxi and Euclidean distance apart.

In exercise 5, note that the taxi distance between two points is always equal to or larger
than the Euclidean distance. When considering ‘*as the crow flies’’ and *‘as the taxi
travels,’’ this is easily understood.

In exercise 6(a). consider p(0, 0) and (0, 7), and in exercise 6(b) consider P(0, 0) and
Q(0, 5). These are only one of many solutions for each.

In exercise 7 the discussion of what consti:utes an ‘‘honest’’ taxi should precede any
work students perform with taxi distance.

Activity

If you do not have access to a circular geoboard, we provide the directions for
construction of a circular geoboard having maximum distance 10, that is, M = 10. The
use of a compass and protractor is necessary, and this construction can be modified to
accommodate other values of M.
1. Obtain a 25-centimeter-square piece of ply\.vood. one-half inch thick.

2. Obtain 20 finishing nails about 1 inch long.

3. Find the center of the piece of plywood and construct a circle of radius 10 centimeters.
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. Using a protractor (and great care) divide the circle into 20 equal parts and place your

nails there. Choose one point as the origin, 0,-and assign positive coordinates to the
nails on the right and negative coordinates to nails on the left of the origin.

. Below is what the finished product should look like.
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2.3
Congruence

2.3.1 WHAT IS CONGRUENCE?

In a very general way two geometric figures are congruent if they have the same size
and shape. Some teachers explain that two geometric figures are congruent if one of them
can be ‘‘moved onto” the other one so that they fit together exactly. This approach
suggests a technique or way of *‘moving’’ or *‘transforming’’ these figures in the plane. In
our development, we have not yet explored these ideas, but we shall look deeply into them
later on.

Suppose we have two segments, say AB and XY, of equal length as givenin Figure 2.3a.

A
Y

Figure 2.3a

Since segments AB and XY consist of different sets of points, we know that as sets of
points they are not equal; that is, AB # X Y. So, we find ourselves in a situation where AB
# XY, but AB = XY. This might seema bitconfusing to you at first, but itis analagousto
the situation involving two different persons of the same height. Itis incorrect to conclude
that these individuals are the same individuals because they are the same height. To the
contrary, all that we can say about them is that they are simply the same height! Returning
to segments AB and XY given in Figure 2.3a, we cannot correctly say that they are the
same or equal—only that they are the same length!

So, we say two segments are CONGRUENT if they have the same length. That is,
segments AB and XY are congruent if AB = XY in this instance, we write AB = XY.

Since we have made such anissue of the difference between equality and congruence of
line segments, is it ever appropriate to write AB = XY? AB = XY?

In light of this discussion and our previous developments, it is reasonable to attempt to
define some analogous relation between angles. Suppose we have two angles, say ABC
and XYZ, of equal measure as given in Figure 2.3b.

Figure 2.3b

n
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Since angles ABC and XYZ are different as sets of points, they are not equal; that is,
X ABC #» X XYZ. So, we find ourselves in the situation where £ ABC » X XYZ but.
mX ABC = mX XYZ just as we did with segments eatlier.

So, we say two angles are CONGRUENT if they have the same measure. That is,
angles ABC and XYZ are congruent if mx ABC = m4 XYZ; in this instance; we write
%X ABC = X XYZ. :

Is it ever appropriate to write X ABC = A XYZ? mX ABC = mx XYZ?

Now we are ready to introduce the congruence relation for triangles. Suppose we have
two triangles, say ABC and XYZ, as given in Figure 2.3c.

A

B Y
Figure 2.3¢

Consider the sets containing the vertices of these triangles; let S={A, B, C}and T={X,
Y, Z}. Suppose that a one-to-one correspondence exists between sets S and T described
by:

A ‘‘corresponds to’’ X, B *‘corresponds to”’ Y, C *‘corresponds to * Z
In abbreviated form, we write these correspondences as

A—X BesrY Ce—2Z
Or, we agree to shorten this abbreviation still further to read
ABC e XYZ

So, whenever we write ABC «— XYZ, we mean that a one-to-one coirespondence
exists between the vertices of the triangles ABC and XYZ defined to mean A «— X,
B« Y, Ce—>Z. What does ACB «— XZY describe? CAB «— ZYX? The implication
here is that the orde: in which the matching pairs appear is irrelevant in describing the
correspondence. .

Another observation is that the one-to-one correspondence between the vertices of the
triangles imposes a one-to-one correspondence between the sides of the triangles, and it
imposes another one-to-one correspondence between the angles of the triangles. For
triangles ABC and XYZ in Figure 2.3c, under .the one-to-one correspondence
ABC «— XYZ, we have one-to-one correspondences for the sides and angles given by

EH)W,B_CHY_Z-,A_Ct-éﬁand
LA XX, 4B > LY, XCeaXZ

Pairs of corresponding sides (AB and XY, for example) and corresponding angles ($.A.__
and X X, for example) are commonly referred to as CORRESPONDING PARTS of the
triangies. )

We z2re now ready to define the congruence relation for triangles. Consider two
triangles, say ABC and XYZ, and a one-to-one correspondence between their vertices,
say ABC «— XYZ. Ifevery pair of corresponding sides is congruent and every pair of
corresponding angles is congruent, then the two triangles are CONGRUENT and the
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correspondence ABC «— Xﬁ is called a CONGRUENCE In this instance, we write
OABC'= AXYZ.,

When we write AABC = HXYZ, we mean that a oue-to-one correspondence exists
between the vertices of triangles ABC and XYZ definedby ABC «— XYZ. Furthermore,
it means that each of the corresponding sides of these triangles is coagruent; thatis, AB ==
XY, BC = YZ, AC = XZ. And, each of the corresnonding angles of these triangles is
congruent; thatis, $A = XX, XB = Y, XC = 2.

. We can now ask some familiar questions. Is it ever appropriate to write AABC =
OXYZ? AXYZ = AABC?

We hope it is clear from our definition of triangle congruence that the following

concepts are involved: ‘

(i) aone-to-one correspondence between the venlces (also the sides and angles) of the
tnangles.

(ii) congruence of the corresponding sides of the triangles, and,
(iii) congruenc\eéﬁof the corresponding angles of the triangles.

The crucial prerequisite concepts involved are one-td-one correspondence, segment
congruence (length or, more generally, distance), and angle congruence (measure).
Teachers should be particularly alert to activities that encourage the achievement of these
prerequisites so that a synthesis of them, i.e. , triangle congruence, is the desired outcome.
The most frequently omitted cendition is one-to-one correspondence; to help you in this
area we have included exercises 4-6 at the end of the section.

Now, a very provocative question. Is there some minimal combination of side and/or
angle congruence conditions that will guarantee triangle congruence? You may recall
from your earlier studies that if certain combinations of only three segment and/or angle
congruences can be shown to exist, then the remaining three congruences needed to
guarantee the triangle congruence (from the definition) must alsohold. The Activity at the
end of this section is directed at this issue.

Exercises

1. Show that every segment is congruent to itself. This says that segment congruence
satisfies the REFLEXIVE PROPERTY.

If AB = XY, then show that #Y = AB. This result says that segment congruence
satisfies the SYMMETRIC PROPERTY.

If AB & XY and XY = PQ, then show that AB = PQ. This says that segment
congruence satisfies the TRANSITIVE PROPERTY.

If a particular relation satisfies the reflexive property, symmetric property, and
transitive propérty, we say the relation is an EQUIVALENCE RELATION. Since
segment congruence satisfics these three properties, we say segment congruence is an
equivalence relation. .

2. Show that angle congruence is an equivalence relation.

3. Show that triangle congruence is an equivalence relation.

39 -

39




é

4. Draw any triangle and label the vertices A, B, C.

(i) How many one-to-one correspondences betwcen"i_i'fmglc ABC and itself are
there? Write each of them down and see if you can determine a scheme for
representing them. )

(i) Which of the correspondences given in part (i) are congruences when
AB = BC?” T

(iii) Which of the correspondences given in part (i) are congruences when
AB = BC = AC? )

5. Consider the four-sided figure given in Figure 2.3d below. How many one-to-one
correspondences are there between this figure and itself? Write each of them down and
see if you can determine a scheme for representing them.

6. Consider the five-point;d star given in Figure 2.3e below. How many one-to-one
correspondences are there between the star and itself? As in exercises 4 and 5, write
each of them down and-see if you can determine a scheme for representing them.

A

Figure 2.3d Figure 2.3¢

Activity

The intent of this activity is to help yon understand that if ¢ertain combinations of only
three segment congruences and/or angle congruences can be shown toexist, then the three
remaining congruences needed to guarantee the triangle congruence (from the definition)
must also hold. You may use a ruler, protractor, or compass to complete the activity,
remembering that some of the constructions you will be asked to make ure impossible with
the information given. Assume we are completing-this activity in the Euclidean model.

(i) Can you constructatriangle ABC having AB = 2.5cm, AC=1.5cm,andmX A .

= 357 Would all triangles constructed from these directions be congruent to
yours? ’

(if) Can you construct a triangle XYZ with XY = 2cm, m% X = 45, andm& Y = 602

Would all triangles constructed from these directions be congruent to yours?

(iii) Can you construct a riangle ABC having AB = 3cm, AC=2cm,and BC=3.5
cm? Would all triangles constructed from these directions be congruent to yours?

(iv) Can you constructa triahgle ABC withmX A = 40, n.X B = 80, and m4 C = 60?
Would all triangles constructed from these directions be congruen to yours?

5 .
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(v) You cannot construct atriangle ABC having AC =4cm, AB=2cm,and BC= 1
cm. Why? Can you give other lengths for AB, AC, and BC sothat no triangle can
K . be formed?

(vi) Using only your ruler, construct any tnangle that has no two congruent sides.

Describe the procedure you would use to construct a second triangle that is
congruent to the first. -

Is there more than one way to obtain this second triangle?

How many of the six parts of the first triangle were used in forming the second
e triangle? .

_ What is the least number of congruent parts necessary tc :nsure that the two
" ) triangles are congruent?

(vii) Construct triangle XYZ with m4X = 40, XZ = 3 cm, and YZ = 2 cm. Now
construct tnangle AP withmX A =40, AC=3cm, and BC=2cm. Thesetwo
triangles need not be congruent. Why?

<
(viii) Isitpossible to assign measures to angles and lengths to sides so that no triangle is
determired? Explain.

LY

2.3.2 'TRIANGLE CONGRUENCE CRITERIA

) We saw in ti:e last section that if certain combinations of only three segment and/or

> angle congruer. .es of two triangles can be showr toexist, then the triangles are congruent.

One of the most common of these side/angle combmatrons, usually referred to as
_~''Side-Angle-Side’’ and denoted **‘SAS”’, is:

If between two tnangles there is a one- to-one correspondence between the

vertices-in which two sides and the included angle of one triangle are con-

gruent, respectively to the corresponding two sides and th: mcluded angle of
* the other triangle, then the two triangles a?‘e congruent.

This idea is shown in Figire 2.3f, where we have triangles ABC and PQR and the
one-to-one correspondence ABC «—> PQR with AB = =PQ; XBe %Q,and BC = QR
That is, we have two triangles with a one-to-one correspondence defined between their
° vertices and two'sides and the included angle of one triangle congruent, respectively, to
the two corresponding sides and included angle of the other triangle. So, all of the
requirements seem to be satisfied and we are justified in conclu,dlng that AABC = APQR.

- > -

[ A P

Figure 2.3
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We could verify that these triangles are indeed congruent by showing that AC = PR,
4A = XP,and £C = ARby" <ans of a ruler and protractor. However, if we accept the
SAS statement, this last activity is not necessary.

The **SAS’’ congruence criteria do afford us much economy in establishing triangle
congruences. As a matter of fact, they cut our work in half!

Now, let’s enumerate all of the possible analagous combinations of sides/angles under a
one-to-one correspondence between two given triangles. They are:

Angle-Side-Angle (ASA)
Side-Side-Side (SSS)
Ang's-Angle-Side (AAS)
Side-Side-Angle (SSA)
Angle-Angle-Angle (AAA)

Which of these, if any, guarantees that the triangles so related are congruent? The answer
to this question :s the focus of the remainder of this section. You may wish to return to the
Activity in Section 2.3.1. for some welcome hints.

First, let’s consider a precise statement of ‘‘ Angle-Side- Angle."’

If between two triangles there is a one:to-one correspendence between the

vertices in which two angles and the included side of one triangle are

congruent, respectively, to the corresponding two angles and the included side
- of the other triangle, then the two triangles are congruent.

InFigure 2.3g, there is a one-to-one correspondence between the vertices of triangles RST
and XYZ defined by PST «—> XYZ and AR =4AX,RS=XY,and XS = &Y.

Figure 2.3g

r

We could verify that RT = XZ, AT = %Z, and ST = YZ using ruler and protractor
methods and thereby conclude that ARST = AXYZ. But, such an approach would allow
us 10 conclude that only these particular triangles (triangles RST and X YZ) are congruent,
not that any two triangles satisfying the ASA relationship are congruent. We want to be
assured that any two triangles satisfying the stated ASA relationship must be congruent.

“We are able to establish this as a consequence of the SAS criteria assumed earlier. The
“actual proof of the ASA criteria is not presented here but several hints are gnven in
Exercise 1 for those who wish to try.

If we were to formulate a statement for *‘Side-Side-Side,’’ we would have:

3
4

If between two triangles there is a one-to-one correspondence between the
vertices in which the three Sides of one triangle are  congruent, respectively, to
the three sides of the other triangle, then the tnangles are congruent




Let’s assume this statement with respect to triangles ABC and DEF in Figure 2.3h under

' the correspondence ABC «— DEF where AB = DE, BC = EF, and AC = DF.
/
C B F
D
. ' E
A . .
Figure 2.3h

We could verify that these two triangles are congruent by using a protractor to measure any
two of the corresponding angles and appealing to the ASA criteria for congruence. And,
this measurement approach is appropriate with children who -are experiencing these
criteria fur the first time.

The actual proof is not included here, but it is similar to the argument used for
establishing the ASA criteria.

SAS, ASA, and SSS are the most well known and remembered criteria for triangle
congruence. Children are usually introduced to them early and are able to recall them
many years later, Before moving on to some of the more 'specific and more easily
forgotten criteria, we should pause to recognize that we did not speak to the proof of the
SAS criteria as we did with ASA and 3SS. As a matter of fact, we indicated that both ASA
and SSS were consequences of SAS. But where did SAS come from? How were we able to
adopt itas a congruence criterion? It turns out that the SAS criterion must be assumed as it
cannot be established as a consequence of earlier statements. We will explore this matter
later in the section. - -

¢ Now, let’s formulate a statement for “Angle-Angle-S}de.”

If between two tr angles there is a one-to-one correspondence between the
vertices 'n which two angles and a side not included by those two angles of one
triangle are congruent, respectively, to two angles and a side not included by
those angles of the second triangle, then the triangles are congruent.

" In Figure 2.3i, conside the correspondence ABC «—> PQR between triangles ABC and
PQR with A = %P, £C= %R, and BC = QR.

C Q

Figure 2.3i

If the AAS statement provides criteria for congruence, then AABC = APQR. You
should examine several similar situations involving triangles with two angles and a side
not included between the angles in an effort to determine if we can include AAS in our list

=
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of triangle congruence criteria. What do you thin’.”
Now, let’s consider the_triangles given in Figure 2.3j and the correspondence
PQR «> XYZ with PQ = XY, PR = XZ, and xR = XZ.

X

" R zﬁy

Figure 2.3j

We have a one-to-one correspondence between the vertices of triangles PQR and XYZ
in which two sides and an angle not included by these sides of one triangle are congruent,
respectively, to two sides and an angle not included by those sides of the second triangle.
This is the basis for the statement we would like to include as the SSA criteria. Are
triangles PQR and XYZ congruent? NO! And, we can arrive at this conclusion for many
reasons, one being that the corresponding angles P and X are not congrrent. This is a
sufficient reason, but what a1z some others? o

This means that our candidate for SSA criteria is an unacceptable triangle congruence
criterion. If we study the triangles in Figure 2.3j a little more closely, we may be able to
find some clues as to why our SSA candidate failed. In particular, study the measures of
angles P and X. If these measures were the same, then the triangles would be congruent
(by ASA) and eac. sould have exactly one right angle at Qand Y, respectively. Why?

What we have discovered is that our SSA candidate holds only for certain types of
triangles “es, only for right triangles. Now, we can presentthe SSA congruence criteria:

If between two right triangles there is a one-to-one correspondence between the
vertices in which the right angle, side opposite the right angle, and another side
of one triangle are congruent, respectively, to the right angle, side opposite the
nght angle, and a side of the second triangle, then the triangles are congruent.

The S84 criteria forright triangles are illustrated in Figure 2.3k where PQR '«—> XYZis
the cv.respondence between the vegtices of tnangles PQR and XYZ and £Q = XY, PR =
X'Z, and QR = YZ. By the SSA criteria for right triangles, APQR = AXYZ.

P

Figure 2.3k

The only remaining combination of three side/angle congruences is ‘‘ Angle-Angle-
Angle”” or **AAA”". It should be clear that if three angles of one triangle are congruent,
respectively, to three angles of another triangle, the triangles need not be congruent. This
is shown in Figure 2.31 where ABC « DEF is the correspondence between triangles
ABCand DEFand XA = XD, XB = XE, and X C = X F. But, none of the sides of these
triangles is congruent, so the triangles cannot be congruent. :
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Figure 2.M

The following table sumn.arizes our findings for all possible combinations of three
sides/angle congruences and whether or not they guarantee congruence criteria for the

triangics.

. ~
- iy

Combinations of Triangle Congruence Type of Basis for Including
- Sides/ Angles . Criteria Triangle in Our System
SAS Yes all - assumed
ASA Yes all proved
SSS Yes all proved
AAS Yes ' all proved
SSA Yes right pm;r;d
triangles .
AAA No ~ - —

el

Now iet’s examine each of these criteria in terms of the models presented earlier.

Euclidean Model

Recall, we interpret a point as an ordared pair of real numbers and define the distance
between two points A (X;, Y1) and B (x3, y2) as dg(A, B) according to the formula,

dg(A, B) = Vixz — x))? + (y2 — ¥0?

Tﬁis distance is really the length of the side of the triangle ABC opposite the right a;nglc C
in Figure 2.3m. : _——
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y
? B(Xa. y2)

ly,‘— yl’

e T

—— X

Figure 2.3m

If we now interpret our major definitions with respect to this distance, we say
segments PQ and XY are CONGRUENT if de(P, Q) = de(X, Y).

angles Pand X sre CONGRUENT if m4P = m X (no change since distance is the
only conce pt affected).

triangles PQR and-XYZ are CONGRUENT if there exists a |-| correspondence
between the vertices (also sides and angles) of the triangles, each of the correspond-
ing angles is congruent, and each of the corresponding sides is congruent. That is,
PQR «— XYZ; 4P = X, 4Q= XY, XR = £Z; dg(P, Q) = dg(X, Y), de(P,-R)
= dE(x' Z)! dE(Q! R) = dE(Y! Z)' R

Though we never mentioned it, the resalts in the table really apply to the Euclidean

. model. Since much of your geometric thinking andintuition is really Euclidean in nature”

and since we felt it would be easier for you to discover (or rediscover!) these criteria with
that frame of reference, we elected that approach. Your intuition may prove *o be less
valuable, however, as we examine the taxicab and spherical models.

Taxicab Model a :

In Section 2.2.4 we interpreted a point as an.ordered pair of real numbers and defined
the distance between two points A(x,, y,) and B(xy, ys) as dr(A, B) according to

dr(A, B) = [x3 = x,| .+ |ys - y,|

Recall, this distance was really the sum of lengths (Euclidean distances) of the sides
opposite the non-right angles in triangle ABE (Figure 2.3m) or the sum of the vertical and
horizontal Euclidean distances betwgen A and B

We can now interpret the major definitions as we did earlier.

segments LM and RS are CONGRUENT jf dr(L.'M) = dr(R, §). _,
angles L and R are CONGRUENT if MXL = m4R (no change since distance is the
only concept affected). . .

triangles LMN and RST are CONGRUENT if there exists a one-to-one correspon-
dence between the vertices (also sides and angles) of the triangles, each of the
corresponding angles is congruent, ang each of the corresponding sides is con-
gruent. That is, LMN «— RST; AL = AR, 4M = £S,AN = %T; dy(L, M) =
d(R, S); dr(L, N) = d(R, T) and d(M, N) = dr(S, T).

6
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Now we are ready to explore the various abbreviated congruence criteria in terms of the
Taxicab model. Let’s first look at the SAS statement—Are two triangles related according

to the SAS criteria necessarily congruent in this model? The answer is NO! And, the

explanation which follows shows why.
Consider triangles ABC and XYZ in Figure 2.3n where A(2, 7), B(2, 1), C(8, 1), X7,
6), Y(10, 9), and Z(13, 6).

I

——
-‘ y
r : " Y(10,9)
A2, 7 ’
13,6
X0, A6
",
C8, 1)
L B2, 1) - -
Figure 2.3n

Now, d(A,B) = |2 -2 | + |1 7| =6anddr(X, Y;= [10-7| + |9~ 6| =6.So,
segments AB and XY are congruent. Since the m4B = 90 = m& Y, angles I and Y are
congruent. Furthermore, dr(B, C) = |8 — 2| + |1 - 1| = 6and dr (Y,2) = |13 - 10|
+ |6 - 9| = 6. So, segments BC and YZ are congruent. Thus, we have a one-to-one
correspondence ‘between . the vertices of triangles ABC and XYZ defined by,

- ABC <« XYZ and two sides and an included angle of one triangle are congruent,

respectively, to twosides and an included angle of the second triangle. Are triangle« ABC
and XYZ congruent?

No, they arc not congruent, since the definition of triangle congruence cannot be
satisfied. That is, the remaining corresponding sides (AC and XZ) are not congruent since
dr(A, ©) = 12 and dy (X, Z) = 6!

This example illustrates an extremely important idea and answers the question of why
the SAS criteria were assumed earlier. You see, the Euclidean and Taxicab geometries are
both models of our postulational system to this point. One could interpret them simulta-
neously without fear of including results which do not pertain to both. But since we desire
to economize and shorten the criteria for triangle congruence in our system, we must look
at the impact of this decision upon both models. o

The impact of this decision for the Euclidean model is thé collection of criteria outlined
in the table. Namely, we are ablc to establish auditional congruence criteria from this one
““SAS’ assumption. From the example above, to make the **SAS’’ assumption is to
climinate Taxicab geometry as a tenable model of our system. So, if we include the SAS
criteria in our list of assumed tatements, or postulates, then Euclidean geometry remains
as a model and the Taxicab geometry is eliminated. )

This also serves to illustrate the role of models in developing mathematical systems.
The fewer the assumptions, i.c., assumed statements, the more models which exist. As
new assumptions are made and the list of postulates thereby cxpanded, the number of
models is decreased’as fewer interpretations of the systems are possible.

\
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Many models are more interesting than others, but they all serve a purpose. The
Taxicab model, when presented as an alternative with the ordinary Euclidean distance, is
very interesting andit serves as the motivation for the inclusion of the SAS criteria into our
. system.

Now, we will focus on another model.

Spherical Model !

In Section 2.2.2 we interpreted the plane as the surface of a sphere and the distance
between two points P and Q (Figure 2.30), d,(P, Q) on the sphere is the minimal length
along great circle patks having those two points as end points.

- s

.

Y o

Figure 2.30

Since the spherical model is so intuitive, one can readily interpret concepts using such
concrete objects as a basketball or beach ball; one must also be warned, however, that this
very asset can be also a liability at the same time.

Interpreting the major concepts with this definition of distance we say:.

segments AB and XY are CONGRUENT if d,(A, B) = dy(X, Y).

angles B and Y are CONGRﬂENT ifm4B = m&Y (no change since distance is the
only concept affected). .

triangles ABC and XYZ are CONGRUENT if there exists a one-to-one correspon-
dence between the vertices (also sides and angles) of the triangles, each of the
corresponding angles is congruent, and each of the corresponding sides is con-
gruent. That is, ABC «— XYZ; XA = XX; XB = £Y; C= XZ; d,(A, B) =
di(X, Y); di(A, ©) = &(X, 2); d(B, C) = d,(Y, 2).

Assuming that SAS is a congruence criterion, we could establish that both ASA and
SSS are also congruence criteria (Exercise 1) in this model.
.. Unfortunately, the AAS statement presented earlier is not acceptable as the following
example illustrates. Consider triangie NEF and NFG (Figure 2.3p) where N is the point
that is at a distance one-fourth the circumference of a great circle from the line containing
E, F, G. Also, consider the correspondence NEF «— NFG. We have £E = 5 G, 4 F =

4 F, and NE & NG (since d,(N, E) = d,(N, G)) and hence all of the criteria of the earlier

AAS statement satisfied. But, ANEF # ANFG since clearly d,(E, <) » dy(F, G). This
- means that the AAS statement presented earlier does NOT guarantee triangle congruence
in the spherical model. '

-
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Figure 2.3p

The educational importance of examining alternative models like the sphere becomes’

more obvious now as we realize we must reexamine the stated AAS criteria and,

. hopefully, be able to formulate a statement that will be true in this model.

Intuitively, we encountered a problem with the AAS statement because of the speclal
relationship between N (north pole) and the line EG (cquator). After much scrutinizing,
we would formulate a statement which disallows this relauonshnp In the spherical model,
the AAS criteria for tnangle congruence are:

If between two angles with sides of length less than one-fourth the circumfer-
ence of a great circle there is a one-to-one correspondence between the vertices
in which two angles and a side not included by those anglcs of one triangle are
congruent, respectively, to two angles and a sice not included by those angles
of the second triangle, thcn the triangles are congruent.

The very process of cxamnmng and reexamining one’s conpctures in an effon to
determine such a statement is the very heart of mathemauics. Actn\vmcs of this kind are
extremely difficuit for children and adolescents because they involve h\gper order cogni-
tion. The spherical madel permits pupils to interact with mathematical ideas in a more
concrete semng, and teachers should be prepared to reward pupils exhlbhmg sound
mathematical progcsscs ~N

Now, let's examine the SSA statement for right triangles mentioned carlier. I$'i ta
congruence criterion in the spherical model? If no(, can you provide an example whic

illustrates this conclusion (Exercise 3)?
Finally, we saw earlier that the AAA relationship stated did not result in congruence

criteria (in the Euclidean model). Reconsider the AAA statement with the spherical
model: A

If between two triangles thcre is a one-to-one correspondem:e between the
wvertices in which three angles of one triangle are congruent, respectively, to the
three angles of the othcr triangle, then the triangles are congruent.

Does the AAA relanonshlp guarantee that the two triangles are congruent (Exercise 4)"

After studying this section, you will, we hope, better understand the criteria for triangle
congruence and how these criteria are interpreted in the Euclidean and spherical models.
We further hope you understand why the SAS criteria musg be postulated and the role that
an alternative definition of distance (taxicab distance) played in arriving at that conclu-
sion. l'-"mally, we hope you will use the spherical model to explore mathematical ideas
because it'is a readlly available medel and appropriate as we experience technological
advances. -

—



Exercises

1. Use the following hints to establish the ASA criteria mentioned in this section
(Euclidean and Spherical models) in Figure 2.3q. That is, consider triangle ABC and
XYZ and the corresponding ABC <> XYZ with XA = XX, AB = XY, and 4B =
%Y. To establish the ASA criteria we must show that AABC = AXYZ in both the
Euclidean and Spherical models. ) )

A

Figure 2.3q

(i) The desired triangle holds if BC = YZ. Why?

(ii) Now suppose BC and YZ are not congruent, i.e., they are not the same lengtﬁ.
Then one of them is longer than the other, say BC > YZ.
(iii) So, there must be some point D betweer B and C with BD = YZ (Figure 2.3r).

~ . .

Figure 2.3r

(iv) The correspondence ABD «— XYZ is a congru... :. Why?
(v) ABAD = XX and £BAD = XBAC. Why?
(vi) ButmXBAD < mXBAC. Why? So, £ BAD and X.BAC are not congruent.

(vii) This eontradiction implies that segments BC and YZ must be congruent. So, -

_triangles ABC and XYZ are congruent. Why?

1
2. Provide an argument which establishes SSS as a triangle congruence criterion in both
o the Euclidean and Spherical models. . .
- i x
3. Give an example which shows that the SSA statement for congruence of right triangles
does not hold in the Spherical model. -
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4.

Formulate a statement for congruence of two right triangles in the Spherical model
which involves two sides and an angle not included between those sides. (Note: The
resulting statement would be the SSA congruence criteria in the Spherical model).

. 'Show that the AAA statement is a congruence criterion in the Spherical modei.

Prepare a table that summarizes our findings for all possible combinations of three
side/angle congruances and whether or not they guz .ntee a congruence criterion for
the triangles involved in the Spherical model.

Activities

l.

-Euclid proposed in Book I (Proposition I) of his monumental work entitled Euclid’s
Elements* that a very special relationship existed between the measure of an exterior
angle of a triangle and the measures of the remote interior angles associated with that
exterior angle. Specifically stated,

. In any triangle, if one of the sides be produced, the exterior angle is equal to
the two interior and opporite angles, ... (p. 316)

We can see that this statement is erroneous in the Spﬁricala_rgod_el_ by considering

; triangle ABC in Figure 2.3s where m4BAC < 90, AB 1 BC, AC L and the
distance between A andthe line containing B, C, Dis one-fourth the distance of a great
circle. '

&

Figuire 2.3s

Now, angle ACD is an exterior angle of triangle ABC, and angles BAC and ABC are
the two opposite and interior angles (remote interior angles). The relationship men-
tioned by Euclid clearly does not hold in this case. That is, mX ACD # mXBAC +
mX ABC. ' .

What alterations or restrictions could be made in Euclid’s statement to produce a
statement that explains .he relationship between an exterior angle of a triangle and the
remote interior angles?

/

*’i‘. L. Heath (Translation and Commentary), The Thirteen Books of Euclid’s Elements
(Volume 1). New York: Dover Publications, Inc., 1956.




Euclidean model. s

2. Consider the statement: All triangles are isosceles. -

The rcmalmng activities are-a bit more advanced and should be mtcrprcted m the
’ i —

!

Criticize the following ‘‘proof’’ of thié statement.

With regard to triangle ABC in Figure 2.3t suppose that ray AO bisects oo
angle BAC, line OM is the perpeudncular bisector of segment BC, and the ’

segments OD-and OE are perpendicular respectively to segments AB and

AC. —

7

Figure 2.3t

The correspondence DAO «— EAO is a congruence (Wh y?. From this congruencé,
it follows that AD = AE. . ¥

— —

The correspondence BOD «— COE is a congruence (Why") Thus, DB = E
follows that AD + DB = AE + EC, or, AB = AC.

Hence, triangle ABC is isosceles. A /

. Consider the statement: All obtuse angles are right angles.
Criticize the following * proot:” of this statement.

Suppose angle ABC in Flgure 2.3u is obtuse.




Construct ray BE rpendlcular to ray BC so that E and A are in the same half-plane
determined by BC and BE = BA. Observe that ray BE is in the interior of angle ABC.
‘Construct ray %é perpendicular to ray CB so D and A are in the same half-plane
determined by BC and CD BE. . .
[
Suppose the perpendicular bisectors of segments AD and BCinteresect at O. Construct
- segments OA, OB, OC, OD and observe that OB = OC and OA = OD (Why?).

KA L A o GO B e
0 4 ik

It follows that AOAB = AODC (Why?) and 40BA = £0CD.

-1
.

4 So, mAABC + m4CBO = mxDCB + m%BCO and since 4CBO = %BCO, we
have mX. ABC = mX4DCB = 90; it follows that angle ABC is a right angle.

2.3.3 TRIANGLE lNCONGRUlfNCE

-In section 2.3.2, we explored triangle congruence criteria in the Euclidean model and
Spherical model. We saw that while several of the congruence criteria mvolvmg sides and
angles of triangles applied to both models, some did not.

Just as the notions of segment congruence and angle congruence, i.e., equality of the
numbers associated with distance and angle measure, are critical in developing triangle
congruence criteria, there are equally important notlons predicated on the assumption that
corresponding sides and angles of triangles are not congruent We will begin the discus-
sion of this most interesting topic by exploring relationships between sides and angles ina
single triangle. ¢

Consider triangle ABC in Figure 2.3v. '

- C

Figure 2.3

o ¥

Measure the lengths of/siqes AB, BC, and AC (to the nearest ceiltimeter) and compare
each of them to the sum of the lengths of any two of them. That is, compare the length of,
say, side AC with the sum of the lengths of the other two sides, AB + BC. We see

_AB + BC = 5cm + 4¢m = 9cm>3cm = AC

Repeating for the other two sides, we would see

AB +AC = 5cm + 3cm = 8cm>4cm = BC
BC + AC = 4cm + 3cm = 7cm>5cm = AB

This illustrates a vcry 1mportant mathematical prmcnple referred to as the Triangle
Inequality.

e
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In any triangle, the sum of the lengths of any two sides is greater than the

length of the third side.

We really made no mention of whether this illustration was bémg made in the Euclidean

model or Spherical model. Do you think it makes a difference?

Now let’s examine the measures of the angles of triangle PQR in Figure 2.3w and their

relauonstups with the sides of the triangle.

Using a protractor, we find that:

and using a ruler we find that:

<

Ve

Angle P is the angic h'avmg the largcst measure in the triangle and s1de QR is the longest
side. It is not simply coincidence that side QR is opposite angle P. As a matter of fact, if
we compare any of the measures of the angles of riangle PQR we see that the lengths of
the sides opposite share the same relanonshnp Thisis summanzcd in the following table.

Figure 2.3w

mxP =88 -
m4Q = 62°
m4R = 30° -

QR =8cm
PR= 7cm
PQ=4cm

$

Angle measure Length of side opposite
comparisons comparisons
m4P > mxQ QR > PR
-m4P>mxR QR>PQ
m4Q> miR PR > PQ

Thus, we have illustrated another interesting mathematical relationship.

2
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If the 1neasure of one angle of a triangle is greater than the measure of = seeond
angle then the length of the side opposite the first angle is greater than the length
of the side opposite the second angle.

What about this statement when interpreted in the Sphencal model?
Before leaving this example, let’s interchange the notions of angle measure and segment
length. That is, we would have the statement:

> If the length of one ;si—de of a triangle is greater than the length of a second side,
then the measure of the angle opposite the first side is greater than the measure of
the angle opposite the second side. -

-Using Figure 2.3w, we could complete the following table to illustrate it.

<

Length of side Angle measure opposite

. comparisons i comparison,

— QR > PR m4{P > mxQ
QR >PQ mXP > mXR
PR > PQ m4Q > m4R

To this point, interpretations in either the Euclidean model or Sphericai .nodel are valid.
However, we encounter a problem witli a familiar statement when the interpretation is in
the Sphencal model. The statement is: ‘ ‘

.. Inaright triangle, the length of the side opposne theni ght ary| (hypotenuse) is
the longest side. ,

To see this, study triangle NEQ in Figure 2.3x where N is at a distance one-fourth of the
.0 . o

X

Figure 2.3x

circuinference of a great circle from line EQ. We see that triangle NEQ has two- -right
angles and the side opposite 2ngle E, NQ is the same length as the side opposite angle Q,

NE. Also, the length of side EQ was chosen to be greater than the length of either of the
other sides of the triangle. So, the statement is false sirce the longest side is not opposite
the right angle of the triangle. As we have seen before, tne problem resides in permitting N

53
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to be at a distance of one-fourth the circumference ofa great circle from line EQ. The
statement will be interpreted in the’ Spﬁeﬁcai madel with this restriction added. That is,

* In the Spherical model if a right triangle has sides of length less than one-fourth
the cireumference of a great circle, then the length of the side opposite the right 1
angle (hypotenuse) is the longest side.

The1 lationships so far have only addressed the sides and angles of one triangle. We are
now ready to explore relationships involving two triangles. The first such relationship is.
the SAS Incongruence Criteria or Hinge Theorem:

It two sides of onetriangle are congruent respectively to two sides of a second
triangle, and if the measure of the included angle of the first triangle is greater
than the measure of the included angle of the second triangle, then the third side .
of the first triangle has length greater than the third side of the second triangle.

This situation is ilJustrated with triangle ABC and triangle DEF in Figure 2.3y, where Kﬁ

= DE and AC DF and mx A > m 4D. Since m4 A # mXD, triangle ABC is not”

congruent to ti.angle DEF under the correspondence ABC <= DEF. Measuring and

' comparing the 'engths of segments BC and EF enables us to conclude BC > EF, thereby
* verifying the desired conclusion of the statement. -

Figure 2.3y

We close this section with the SSS Incongruence Criteria, which is really the converse -
of the Hinge Theorem. Consider triangles ABC and DEF in Figure 2.3z where AB = DE,

AC = DF and BC > EF. How does m%A compare with m4 D? Using a protractor to
B + R {

4 . \\
- B/\ C i E \ F \

Figure 2.3z

measure angles A and D, we see that mX A > mXD. Thus, we are able to conclude a
relationship between the included angles by knowmg the relatnonshnp between the length
of the sides opposite these angles. So, _ -

If two sides of o: - triangle are congruent respectively to two sides of a second
triangle, and if the third side of the first triangle has length greater than the third
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side of the second triangle, then the included angle of the first triangle has
greater measure than the included angle of the second triangle.

Finally, can you formulate a statement that would probably be referred to as the ASA -

Incongruence Criteria, if it were true? This statement is:

f two angles of one triangle are congruent‘ respectively to two angles of a
econd triangle, and if the included segment of the first triangle is longer than
the included segment of the second triangle, then the measure of the third angle
of the first triangle is greater than the measure of third angle of the second
. triangle. c : ‘
An investigation of a few examples,fboth on the sphere and in the plane, will provide
the reader with a better feeling for the validity or nonvalidity of the criteria. All too

infrequently instruction in geometry focuses only on congruence relations and omits
notions of incongruence in much the same way as inequality concepts are omitted from

lessons concerning number concepts. There are several exercises at the end of this section
that address this topic. Try them.  ~

Exercises

Y

1. Does the SAS Incongruence Criteria hold in both the Euclidean and Spherical
models? How about the SSS /ncongruence Criteria? *

2. Formulate and examine statements involving all of the possible combinations of three

sides/angles of two triangles to determine which of them yield valuable incongruence
criteria.

In the remaining exercises in this section, all lengths are less than one-fourth of the
circumference of a great circle if interpreting in the Spherical model.
: s 1 €

‘ \
3. In the figure below, if AB > AC and EC = BD, then show CD < BE.

C
E > -
A ) .
4. In the figure below, if CE = AD and CD < AE, then show BC < AB.
C
E

A B

D
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. Inthe figure below, if A = {D, AB = DE, andm4B < m4E, then show m4C >
m4F. ) C .

N A ) D
BAC EZ - F

. Inthe figure below, if AB = DE, 4 A = D, and AC < DF, then show m¥ C > m«F.

A -—_
B/ N i | .

. Int“efigure below, if £ A = 4D, XB = £E, and AB < DE, then show AC < DF.

A D

AN

. In the figure below, if AB = AC and AX = AY, then show XY < BC.

#

-
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2.4 A '
Constructions -

2.4.1 WHAT ARE THE BASIC CONSTRUCTIONS?

In this section we are concerned with simply introducing constructions in the spirit and
tradition of the Greeks—constructions utilizing only a straightedge and éo;npass. When
one is actually able to perform these constructions, one possesses the tools for exploring
some of the most interesting relationships among triangles and their associated circles.
The review of the-basic constructions below is intended as a refresher for those who have v

. AN .
forgotten or as an introduction for these who have never been treated to this aspect of

geometry before.

Construction 1

Copy a given line segment. '
We are given segment ABand wish to copy it on the ray with endpoint X (Figure 2.4a). ~

Figure 2.4a

We copy AB on this ray by constructing an arc of the circle centered at A having radius
AB at X. The point where this arc intersects the ray, say Y, is the other endpoint of the
desired segment. So, AB = XY. (Why?) . . -

Construction 2 . )
. - * {

Copy a given ang'le. % ‘ )
We are given angle ABC and wish to copy it so that aside of the constructed angle is ray
PS (Figure 2.4b). -

A B

Figure 2.4b
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Construct an arc of a circle having any radius centered at B and let X and Y be the points
where this arc intersects the sides of angle ABC. Construct an arc of the circle having
radius BX at Pand designate‘the intersection of this arc with PS as R. Now construct an arc
of the circle with radius XY and centered at R. This arc intersects the previously
constructed arc centered at P; deignate this intersection Q. Complete the construction by
drawing ray PQ. Thus, angle QPl‘\‘_ has been constructed and X ABC = X QPR. Why?
(Note: It should be clear that since PS divides the plane into two Half-planes, it is possible
to repeat this construction and exhibit another angle having side PS congruent to angle
ABC. We have addressed the construction in only one of the half-planes here.)

Construction 3 ) _ /

Copy a given triangle. ; ,
We are given triangle ABC and wish to copy one side of it on the ray with endpoint X
(Figure 2.4¢). ' ’ g

B 1N

Figure 2.49.

-

First, construct an arc of the circle centered at A having radius AC at X; let Z be the '
point of intersection of the arc and the ray. Now, construct an arc of the circle centered at Z
of radius BC. Also, construct an arc of the circle centered at X of radius AB. Denote the |
point of intersection of these arcs by Y. Now, tomplete the construction by drawing.
segments XY and YZ. Thus, we have corstructed éXYZand AABC =AXYZ. (Why?)

(¥4

Construction 4 ) '
Construct the perpendicular bisector of 4 given line segment. ,
We are given line segment AB and wish to determine a line that is both perpendicular to
AB and passes through its midpoint (Figure 2.44). '

ot,

-

v

Figure2.4d
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Construct an arc of a circle centered at A having a radius greater than half the distance

betweel;A.qnd B. (Why?) Using this same radius, construct anarc of the circle centered at

. B. Sintéthe radius was suitably chosen,, these two arcs will intersect at Pand Q. Now, the
construction is completed by drawing PO. Why is PQ L AB? Why is AM = MB?

Construction 5 - ,
T L :
Bisect a given line segment. i

This construction is identical to Construction 4 where we rcc'ogriize that M is the

~

midpoint of {ine segment AB (Figure 2.4d). ...

Consttuction 6 .

Construct a perpendicular to a given line through a given point.
We are given a line / and a point P (not on /) and wish to construct a line on P that is

.perpendicular to / (Figure 2.4¢). "

A Figure 2.4e o

Construct an arc of a circle centered at P having sufficiently large radius so that the arc *
intersects / in two points, A and B. The construction is essentially completed after
_ recognizing that we can construct the perpendicular bisector of line segment AB (Con-
struction 4). That is, we have constructed a line through P that is perpendicular to /.
It is important to observe that in our disqussion the point P was nor on /. How would one
proceed if P were on {?

Construction 7

Construct the line that is parallel to a given line and contains a given point not on the

~ given line. . :
We are given a line / and a pbint P noton / and wish to construct a line on P parallel to /

(Figure 2.4f).

. m
A
. — P[. —p 11 -
- . — |
Figure 2.4f
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Perhaps the simplest approach would be to repeat Construction 6 twice. First, construct
line M perpendicular to / and containing P. Next, construct line n perpendicular to m and
containing P. The line is thus parallel to / and contains P.

Can you provide an alternative construction that utnhzes Construction 2?

Construction 8 . !
,

Bisect an angle.

) We are given angle ABC and wish to determine a ray with endpoint B lying in the
. interior of angle ABC and bisecting it (Figure 2.4g).

Figure2.4g v

First. construct an arc of a circle having any radius centered at B and let X and Y be the
points.where this arc intersects the sides of angle AF;C. Now, with X and Y as centers,
draw arcs of circles with radius BX (or any other rad:us for which these arcs wi!l intersect)
and designate the point of intersection in the interior of angle ABCas Z. Draw ray BZ, the

. desired bisector of angle ABC.

V,_«,ﬁ-.",__,._.f“___

A
- 5t

Construction 9 v

Construct a line segment on a given ray (containing the endpoint of the given ray) of
length equal to n times the length of the given segment. ‘

We are given line segment AB and we wish to construct a line segment on the ray with . ’~
endpoint X that has length ntimes (n s a positive integer) the length of AB (Figure 2.4h).

‘/“ S N N UPUUR W U
O S B B

X2 Xn-1

Figure 2.4h

We begin by zopying line segment AB on the ray (Construction 1) and thereby
determining X, so that AB = XX ;. Now, repeat Construction ! using X, as the endpoint.
That is. determine a point X on the original ray so that AB = X ,Xz. So, n repetitions of
Construction 1 carried out in this way will produce a line segment of length n times the
length of line segment AB.
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Construction 10

Subdivide a line segment into a given number of non-overlapping congruent line
segments. :

Suppose we have line segment AB and we wish'to subdivide itinto n non-overlapping
congruent line segments (Figt:re) 2.4i).

X ,

Ay A Az An B

Figure 2.4i
) —

We begin by drawing any ray having endpoint A and not containing B,.say AX.
Construction 9 enables us to determine points X, Xz, ..., X, on ray AX so that AX, =

XXz = ... = Xy Xu. Now, draw line segment’X,B. Using Coslstruction 7, construct a

line paraliel to )_(:ﬁ through X, and designate the point where this line intersects line
segment AB by A,. Repeat Construction 7 in this way at X2, X3, ..., Xp.y, thereby
determining points Az, Ay, ..., Ay, onsegment AB. The segment AB has therefore been
subdivided into n non-overlapping congruent segments, AA =AA, = ... = A,.B.
Can you suggest an alternative construction procedure that utilizes Ccastruction 2?

Activities
The activities below reinforce the constructions in this section. Try them.

1. Draw a segment of length 3 cm. Using only a straightedge and a single settiﬂg of your
compass, construct an equilateral triangle whose sides are 3 cm in length.

2. Construct.an isosceles triangle *¥hose base is 2 cm long and whose congruent sides
are 3 cm long.
s -
3. Draw two acute angles having unequal measure. Construct an angle whose measure is
the sum of their measures.

4. Draw any triangle ABC. Construct another triangle XYZ so that its perimeter is twice
that of the perimeter of triangle ABC.

5. Construct a parallelogram PQRS from any given triangle PQR

6. Given a segment of length 3 cm, construct a square with a diagonal of length 3cm.
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7. Construct a rhombus (parallelogram with sides of equal length), given the lengths of

the diagonals.
<
8. Construct an angle whose measure is 45°,

.

-

9. Construct an angle whose measure is 60°. 0
10. Construct an angle whose measure is 105°.

11. Give;_ a segment of unit length, construct a segment of length (a) V2, (b) V3,
(c) V5.

12. Construct an isosceles right triangle whose longest side has length 4 cm.
13. Construct an equilateral triangle whose altitude has Jength 4 cm.

14. For any segment AB construct a seg‘ment whose length is V2 AB + V3 AB.

15 Describe how you would construct a segment whose length is k times the length of the
given segment where K is a positive rauonal number.

16. Using exercise 15 and any segment AB, construct asegment whose length is %5 AB.

1

“

2.4.2 EXPI'JORING TRIANGLE-CIRCLE RELATIONSHIPS

Alltoo frequently constructlon activities-degenerate into meaningless tasks with no real
mathematical importance. The typical pattern for a unit on constructions requires that the
student learn some basic construction techniques as’ discussed in the preceding section,

practice each ad nauseam, make some artistic designs, and then forget them and returnto -

the usual course concepts. We feel that techniques and applications of constructions can
be integrated with course concepts to ‘‘discover’’ mathematical relationships.

This section deals specifically with mathematical relationships between a triangle and
its associated circles and lines. The discovery format is followed and there are no proofs of
any of the examples shown. We hope these activities will motivate you to develop specific

. activities appropriate t¢ vour teachmg level. . -

Angle Bisectors .

(1) Consider any triangle ABC and construct the angle bisector of each angle of the

triangle (Figure 2.4j). Observe that these three angle bisectors are concurrent at a point

referred to as the incenter of the triangle, and denoted I.

[rs




Figure 2.4

)

Recalling an important property of an angle bisector, namelv, that points on the angle

bisector are equidistant from the sides of the angle, we know that point I is equidistant
from the sides of the triangle. Thus, it must be the center of a circle which is tangent to the
. sides of the triangle. This circle-is called the incircle of the triangle.

Now with A’, B’, C’ denoting the points of tangency of the incircle with BC, AC} AB
respectively (Figure 2.4k), we consider AA’,BB’, CC’ and observe that these segments
are concurrent at a point, usually referred to as the Gergonne point of the tnangle and
denoted G.

Fignre 2.4k

” . o

(2) We now consider triangle ABC with its extended sides. First, we wishtg determine
the center of a circle, called an excircle, which is tangent to AB, AC and (Figure
2.41). This problem: in itself provokes some thought, and one possible solution requires
the student to recall the property of angle bisectors mentioned in (1) above. With this in
mind, it is clear, then, that the intersection of the bisectors of the appropriate exterior
angles will determine the center, I, of the desired excircle and, heace, the excircle itself.
This excircle is tangent to AB at a point, say C".
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N Figure 2.41 ~

.
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Based on the : procedure degscribed above, itis possible to construct two more excircles,
one tangentto AC, AB and R, while the otheris tangent to BC, AB and XE, with centers
at I, and I,, respectively. We should note, however, that it is simple to minimize the
number of constructions by using vertical angles. In light of this, how many angle
bisectors must be constructed to locate the centers Ia, I, and I. of the desired excircles?
With the above eXcircles constructed with A”; B” and C" the respective points of

tangency of the excircles to sides BC, AC and AB, we determine AA”, BB” and CC" and e T

observe that these segmentsare concurrentat a point, usually referred to as the Nagelpoi nt’
of the triangle and denoted N (Figure 2.4m). P

Yhe incircle described in (1) and the excircles described in (2) are called the four
Tritangent Circles of the triangle; these circles-are appropriately named as each is tangent
to three sides of the triangle, or.is-tangent to one side and two extended sides of the
triangle. These cir/c,l;sarﬁféfated to still another circle associated with the triangle. These
relationshipswe will explore later. .

—~Two additional problems related to the angle bisectors of a triangle are:

(3) Determine if the points of intersection of the angle bisectors of two interior angles
of a triangle and the sides opposite these angles are collinear with the point of intersection
of the angle bisector of an exterior angle of the third vertex and the extended side opposite
that vertex.

‘ I
(4) Determine if the points of intersection of each of the bisectors of the exterior angles
of a triangle and the extended sides opposite each vertex of the triangle are collinear.
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R Figure 2.4m

Altitudes

(1) Considerany triangie ABC and construct the altitudes of the triangle (Figure 2.4n).
We observe that the three altitudes are concurrent at a point, called the orthocenter and”
denoted H. It is also an interesting and constructive exercise to determine the location of -
the orthocenter for different types of triangles. L : v

o

Figure 2.4n
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(2) The feet of the altitudes, say D, E and F : Figure 2.;1n), determine a triangle, called
the orthic triangle of triangle ABC. There are many other interesting problems related to
the orthic triangle: ’ ‘

(a) In Figure 2.40, D:and F are the feet of the altitudes from vertices A and C,

respectively. Determine the relationship between AC and the perpendicular

bisector of DF. -

)

Figure 2.40

3

Suppose we repeat the above for each of the remaining sides of the orthic
triangle. Does a relationship exist among the three perpendicular bisectors so
determined? !

(b) InFigure 2.4n, construct the bisectors of the angles of the orthic triangle: What
. relationships did you find? From this construction may we conclude that the
. orthocenter of any triangle is the incenter of its orthic triangle? Be careful, note
< Figure 2.4p for an example when the given triangle is not acute.

Figure 2.4p
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(c) Faenano’s Theorem. In an acute- anglcd tnangle ABC, the inscribed triangle Y
(any triangle with its vertices on of AC, AB and BC) having

minimal perimeter is the orthic triangle. . T
M‘—‘

(3) Consider an equilateral triangle ABC (Figure 2.4q) and determine its incenter, I,
and its orthocenter, H. What relationship exists between H and 1? Construct the incircle
and describe the points of intersection of the incircle with Al Bl and CI. Describe the
orthic triangle of ABC. Does this concur with the results found in part (2)(b) above?

Figure 2.4q

Now, let P be any point on equilateral triangle ABC or any point in the interior of the
triangle (some possible locations for P are given in Figure 2.4r), and find the sum of the
distances from P to AB, AC and BC. How does this compare with the length of the
altitude?

A

P
B P#C o

Figure 2.4r

(4) Returning to Fi gure 2.4m, construct the incircle, the center i, and label the points
of tangency of the incircle to BC, ACand AB, A’, B’ and C’, respectively. Locate I,, I,
and I, the centers of the excircles, and make observations for (Figure 2.4s):

{a) A,land], )
(b) B,1and1,

(c) C,1and I,

(d) triangles [ I,l. and A'B'C’
(e) .KL and—l;i;

() Blyand LI
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(® Cle and LI .
(h) 1and the orthocenter of triangle LI

, Figure 2.4s

N
k4

Midpoints

__(1) Consider triangle ABC with L, M and N, the respective midpoints of BC, AC and
AB. AL, BM and CN are called Medians ofthe triangle, and we observe that these three
)M%}

segments are concurrent in a point, usually reféred to as the Centr d of the triangle and
denoted G (Figure 2.4t). What relationship exists L, BGand GM, CN

ween AG
and GN (consider AG/GL, BG/GM; CG/NG)? -

Figure 2.4t




In Figure 2.4t, let X be the midpoint of AL and Y = CX N BA. What relationship exists

WAMML—\TQQ
With the above remarks in mind, the following is left as struction: Given three

non-collinear points A, B, G, construct triangle ABC such that G is its centroid.

(2) Construct perpendiculars to BC, AC and AB at L, M and N, respectively, and
observe these lines (the perpendicular bisectors of the sides of the triangle) and concurrent
at a point, called the Circumcenter of the trianglc and denoted O. Since O is equidistant
from A, B and C, itis the center of a circle containing A, B and C, called the Circumcircle
of the triangle (Figure 2.4u).

A

v |

Figure 2.4u I

(3) Some observations are now in order to consolidate portions of our findings. .

" €@ Considér a triangle ABC with Hits orthocenter. Observe that each of the points
A, B, C and H, is the orthocenter of the triangle formed by the other three
points. Also, the circumcircles of the triangles ABC, BCH, CAH and ABH are
congruent (Figure 2.4v).

Figure 2.4v .
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(b) Let Pbe a pointon the circumcircle of triangle ABC, and let J. Q and R be the feet
of perpendiculars from P to BC, AC and BA, respectively. Observe that J, Q and
R lie on a line, called the Simson line of P for the triangle (Figure 2.4w).

Figure 2.4w

(c} The triangle formzd by the points of intersection of the lines containing the
altitudes of the triangle with the circumcircle has its sides parallel to the corres-
ponding sides of tae orthic triangle of the given triangle (Figure 2.4x).

Figure 2.4x




(d) If the tangents drawn to the circumcircle at the vertices of the triangle intersect
the opposite extended sides of the triangle, the points of intersection of the
tangents with the opposite extended sides cf the triangle are collinear.

(e) Consider triangle ABC with H its orthocenter, G its centroid, and O its circum-
center (Figure 2.4y). We observe that H, O and G lie on a line, called the Euler
line of the triangle. Another interesting relationship exists among H, Oand G; can
you decide what it is? It is helpful to consider HO/OG.

Nine-Point Circle

Consider triangle ABC with H its orthocenter, and construct the following groups of
points: (1) the midpoints of the sides of the triangle, say L, M and N; (2) the feet of the
altiudes on the sides of the triangle, say D, Eand F; (3) the midpoints of HA, HB and HC,
say X, Y and Z, respectively. These points all lie on a circle, the Nine-Point Circle. (It
was O. Terquem who named the circle the Nine-Point Circle, and this is commonly used
in English-speaking countries. Some French geometers refer to it as Euler’s Circle, and
German geometers usually call it Feuerbach’s Circle.) See Figure 2.4z below.

Figure 2.4z
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There are many observations that canbe made withregard to the nine-pointcircle, a few
of which are listed below.

(a) The radius of the nine-point circle is one-half the radius of the circumcircle.

(b) If U denotes the center of the nine-point circle, then U is the midpoint of HO, and
hence, U is on the Euler line.

(c) The nine-point circle is the circumcircle of the orthic triangie.

(d) Tangents constructed to the nine-point circle at L, M and N, respectively, are
parallel to their respective sides of the orthic triangle.

(e) Feuerbach’s Theorem: The nine-point circle is tangent to each of the four tritangent
circles of the triangle.

(f) If Pis onthe circumcircle, and J and Q are as in Figure 2.4w, then PH ﬂfl6= Kis
on the nine-point circle and PK = KH.

(g) Let T, be 1/3 of the distance from Mto E, T; be 1/3 of the distance from N to F, and
T be 1/3 of the distance from L to D, then the triangle T,T.T; is equilateral.

(h) Thecircumcircle of triangle ABC is the nine-point circle of trnangle LIplc wherel,,
Iy, I are the centers of the excircles of triangle ABC.

(i) The midpoints of LI _Icl.,, Ipla, and 1,1, L.1 lie on the circumcircle of triangle ABC.

() The or*hcenter, O, of triangle ABC is the midpoint of the segment joining the
incenter, I, of triangle ABC to the circumcenter of triangle LI,1..

A Final Problem

Consider any triangle ABC. Construct an equilateral triangle ABC’ with sides of length
AB onside AB so that C' is nor in the same half-plane as C determined by AB. Repeat this
construction using the other sides of triangle ABC. We have determined three equilateral
triangles, named ABC’, AB'C and A'BC (Figure 2.42").

Figure 2.4z’
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Considering AA’, BB’, and CC’, we see they are concurrent at a point called the
Fermat point of the triangle and denoted F. What conclusions can be reached about the
lengths of these segments? -

Suppose we permitted C' to be in the same half-plane as C determined bi_}B and
permitted B’ and A’ to satisfy similar conditions. What can now be said about ’,ﬁ’,
and CC"? About AA ", BB’ and CC'?

The examples above are important as they relate to the geometry of the circle and
triangle. Frequently, studies in geometry omit these relationships because of the difficul-
ties that arise should one desire to formally prove each assertion. We believe that these are
suitable for any lab situation where thc purpose is to *‘discover’’ relationships, with the
proof of such relationships left open. None of the above was intended to serve as a
rigorous proof butonly to imply how much more we could do with constructions which at
the same time enhance the mathematics being learned by the students, even if the learning
occurs intuitively. .

We feel that the above are also important in that most of the geometric constructions
occur—and combinations of many of them occur—in a single problem. Itis our hope that
the imaginative mathematics teacher can utilize these examples to design discovery
lessons, math lab activities, or enrichment opportunities.
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2.5
Transformational Geometry

In this section we are going to look at a specific model of transformational geometry.
There are three basic types of transformations which can be considered:

(a) Topological transformations, modeled as changes in shape and size;

(b) Rigid transformations, modeled as changes in position (the one we will look at
further); and

(c) Projective transformations modeled as changes in visual perception.

Topological transformations are best shown by considering an inflated balloon and
mancuvering it into different shapes. Topological transfc :mations are possible in the
balloon as long as you do not cut it or fold two points together.

Projective transformation concepts are best shown by shadows. One concept uses
parallel light rays to cast shadows (such as those cast by the sun) while another concept
uses light rays which originate from a single point (a flashlight). Both topological
transformations and projective transformations allow for changes in size and shape, while
rigid transformations do not, and as such, rigid transformations appear easier to study
because all they allow for are changes in location. In other words, rigid transformations
deal with the concept of congruence (see section 2.3).

There are three basic kinds of rigid transformations that can successfully be studied in
the school—slides, flips, and turns. We use this terminology because of its comprehen-
sion by students; mathematicians would use the words translations, reflections. and
rotations. Before we discuss slides, flips, and turns, we make a few comments. All
transformations have the effect of **acting’’ on an object to change it in some way. This
pron.ts the thought of what the object looked like before it was changed and what it looks
like after the change. Instead of using **before’’ and **after™ to connotate these concepts
we use the words ‘‘pre-image’’ and *‘image”’ to indicate the same idea.

2.5.1 WHATIS A SLIDE?

First of all, let us consider slides. Two easy ways of considering slides are the shooting
gallery and a children’s slide illustrated in Figures 2.5a and 2.5b.

Using colored pencils, the reader should make a red S to indicate a starting location
(pre-image) and a blue S to indicate where the red S ends up (image) after the slide
transformation has been applied. Itis well to note that slides do not have to be horizontal or
vertical and that there are two important concepts connected with slides which can be seen
by the use of a slide arrow. The arrow indicates a **direction’’ and a *‘length,’’ and is not
to be treated as a ray. While the concept of what to do may be readily seen, the actual
drawing of the image, given the arrow and the pre-image, may prove more difficult. The
following exercises will give you needed practice in finding images. We suggest you have
a straightedge, compass, paper, and red and blue colored pencils ready to use for these
exercises.
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Figure 2.5a

Figure 2.5b
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Exercises

Draw the images of the following shapes, given the pre-image and the slide arrow.

¢
’ &
»

(1)
3
|
F (2) -

(3) /

|
. Ineach of the preceding three exercises it should be noted that the pre-image and the

- image were congruent. In this case we become more specific and say the image and

pre-image are ‘‘slide congruent.”

2.5.2 WHATIS AFLIP?

|

% Second;fet us look at flips. Flips can also be considered through another aspect ofa

f shooting gallery (see Figure 2.5¢) as well as through the use >f a mirror. The use of a
mirror has prompted some people to use t}w"térhlinology “*mirror images’’ when referring

r to flips. although the use of a mirror as a'model for flips has limitations.

~
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"Gallery—80

Figure 2.5¢

Still using colored pencils, the reader should make a red M to indicate the starting
location (pre-image) and a blue M (image) to indicate what would happen to the red Miif it )
was the target of an expert shooter. Again, we note that there is an interesting feature
associated with flips—there is always a line about which the flip is made. The Gallery 80
idea s a bit limiting in its location of the flip line so that we give the following examples
(Figure 2.5d) also, using a solid line for pre-image and a dotted line for image.

flip line
flip line /
T~
) \ \\
\ \
A \
\ \
-------- . \ \
~ .
'I \‘ \
{ \ \
:' a \
: i N
LY ¢
‘\\ ’I' \
\\“”—“ S \\
\
@ \
\
\
\ -
Figure 2.5d
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. The twoexamples indicate that (a) the image and pre-image may be on opposite sides of
the flip line and not touching it; (b) the image and pre-image may both lie on both sides of
the flip line; (c) if the pre-image touches the flip line, so will the itnage; and (d) the
pre-image and image are congruent, as they were with slides. In case (d), we say the image
and pre-image are flip congruent. The concepts of a flip line and flip images are usually
easy to grasp; however, the actual construction of a flip image is not as easy to do. The
following few exercises were selected to encourage you to participate in the construction
of flip images. : ‘

Exercises

With the above examples and considerations in mind, complete the following.

1. For the flip line properly chosen (Figure 2.5¢), the letter T is both the pre-image and
image (in which case we say that T is the image of itself). What other letters of the
alphabet can be made into images of themselves by an appropriate choice of a flipline?
Note that the style of printing may make a difference as to.whether or not a letter can be
made into an image of itself by an appropriate choice of flip line.

4

flip tine

<
'

Figure 2.5



Note: This exercise leads to a concept worth noting, but upon which we choose not to
dwell. The concept is symmetry. Symmetry is dealt with in many ways, especially inart,
in middle schools, and the particular symmetry noted above is called line symmetry with
ixs flip line being called *‘the line of symmetry.”” Any geometric figure has a line of
symmetry if it is the image of itself using some flip line. For many examples of line
symmetry, consider any middle school textbook series, the article by Sanok, or carefully
look at *‘Mother Nature.’’ /

2. Using the given flip line and triangle as the pre-image, find the image. /
flip line _ /

/

3. Using the given flip line and pre-imagc, complete the image. Can you find other words
that provide similar happenings (try a vertical fIiR line through the oy?

4. Is the dotted figure the mage of the selid figure under the given flip? Why? How can
you easily tell? RN :
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Note that in the fourth exercise, although the figures are congruent, they are not flip
congruent! ,

At this point, the wise teacher will make use of the concept of folding or tracing to:
{a) find the flip line if the pre-image and image are given, or (b) find the image given the
pre-image and the flip line. We encourage the teacher to indicate that flip lines are unique
when found in (a), and flip images are unique when found in (b).

s

2.5.3 WHAT IS A TURN?

The third transformation we wish to introduce is that of aturn, and-once again we return
to the shooting gallery (Figure 2.5f), but introduce a different picture. Here we use the
‘*spinning’’ target idea. We note that a model of this can be easily constructed with a paper
plate and a brad fastener. i

Gallery—380
(" ' )

Figure 2.5f

From this idc;a, consider the solid T as the starting location (pre-image) and the dotted T

_ as the ending location (image) and note the following about a turn: (a) there ‘s a center {or

the turn (some callita ‘‘pivot”’), (b) there is a curved arrow that is asscciated with a turn.
This arrow shows both the direction and amount of turn, (c) if we connect the ends of the
arrow to the center of the turn, an angle is formed which can be associated with the turn,
and (d) the image and pre-image are congruent, and we use the term *‘turn congruent.”’

There are other examples that can help picture the concept of a turn. For the following
examples, try to sketch a picture for the turn indicated. Also, locate the center of the turn
and the turn arrow. Consider:

(1) an end view of a swing with a person swinging,
(2) a scissors with one side stationary,

(3) a ferris wheel,

(4) a person on a trapeze,

(5) a pendulum on a™lock,

82 -




(6) a hand on a clock, and

(7) consider others not mentioned above.

- Exercises

Upon completion of the above, try the following. In exercises 1-4, you are given the

. pre-image and turn arrow with center C; find (ne image. You may wish to use ‘‘onion
skin’’ paper to do these exercises. If you pla-e two sheets cf it on top of each other, you
can physically turn one sheet the propér amount and you will be abie to properly see the
correct image.

' (N )

3) 4)




In exercises 5-8, determine if the dotted figure is the image of the solid figure under the
given turn with center C and turn arrow specified. You again may wish to operate in a
manner similar to that suggested in exercises 1-4.

(5) ( (6)
o (O ..
e C .

I’I-\\
o
\\\‘/
~/
]
M &)
o C
e C
. A
/7 \
v /7 N\
/ \
/7 N
/ \
‘ [ DY

2.5.4 EXPLORING SUCCESSIVE MOTIONS

We are now going to examine the situation where we do one rigid transformation and
follow it by another rigid transformation. We are going to restrict ourselves to an
extensive study using slides and turns, while leaving.open many other combinations
which are suggested in the dctivities.
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Successive‘Motions of Slides

Supprse we have two slide arrows, labeled S,and S, asin Figure 2.5g. Finding the slide
image of P using slide arrow S, is done by using the solid arrow. '

S

Fizure 2.5¢

L.

Using arrow ,, if we call P, the slide image of P, we can find the slide image of P, under
arrow S;—which is done by using the dotted arrow. If we call this point P, we say P, is
the image of P, and denote that by S2S,(P) = P;, we can also readily discern an arrow Sa
that makes P, the image of P, and write S3(P) = S:5.(P). :

Exercises

1. (a) In fioure 2.5g, use the slide arrows, S, and S; and point P to find S,S2(P). (Note
that this means we first use slide arrow S, and then slide arrow S,.) -
(b) After having done §,S;(P) and S.S.(P), what kind of figure is formed? What
relationship does PP; have to the figure formed?

2. (a) Find S,Sx(Q) and S,8:(R) for S;, Sz, Q and R given below, calling $,52(Q) = Q:
- i and 8182(R) = Rz.

Q

o

* Q

S:

Si

(b) Measuremz and RR;. What do you notice?
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3. Find S, such that $,5,(Q) = R below.

Se

4. Find S, such that $,5:(Q) = R below.

~

* Q

‘

Note that 1n exercise 1¢(b), a parallclogram is 10rmed withﬁz as a diagonal. In exercise
2(b), QQ: and RR: have the same length and are parallel. Exercises 3 and 4 provide
opportunities to help visualize what is actually I appening with slides and also points out
the necessity to think about ‘‘inverse"’ relations. You wil! know the solution when you
find it.

In our previous discussion we were very narrow ir our choices for S; and S.. Further
investigations are warranted by choosing S, and S, to be *‘parallel’” or to be going
“‘opposite’’ directions In fact, using S; and S, going in the same or opposite directions is
precisely the modef th is most often used on the number line to *‘pictorialiy’’ depict
addition and subtraction of whole nuinbers and integers. It is with integers thatarrows first
receive attention as portraying a situation that has two variables— -*‘direction’” and
“*distance."’ It is to this end that the above exercises are aimed.

It should also be noted tha* you can do successive motion of slides with any number of

slide arrows.

Successive Motions of Turns (with the Same Center)

Analogous to what was presented above with slides, we want to consider what happens
if we do successive motions of two turns with the same center.

Suppose we huve two turn arrows, T, and T, at center C (Figure 2.5h). Find the turn
image of P (calling it P,) using T,. Now, if we find the turn image of P, (call it P,) using
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Turn T,, we say that P, is the image of P and we denote that by T, T,(P) = P,. We alsocan
discern two turn arrows, T3 and Ty, that make P, the turn image of P, and write Ts(P) =
TyP) = T.T«(P).

Figure 2.5h

We can see that T,(P) = P., as well as Ty(P) = P,. Atthis stage, we are going toallow both
possibilities.

Exercises

1. Using the above turn arrows (Figure 2.5h;, T, and T, and point P, find T, ToP). (Note
that this means that first we use turn arrow T, and thenturn arrow T,). What con jecturce
can you make?

. (a) Using points Q andR and turn arrows T, and T, with center C below, find T, TAQ)
= Qz and T]Tz(R) = Rz.

.

[

(b) Measure angles QGQ; and RCR;. What do you notice?
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3. (a) FindT:suchthatT,T,(Q) = Rbelow (using C as the center for both turn arrows).

OQ'

&s

(b) Find T;suchthat T, T»(Q) = R below (using Cas the center for both turn arrows).

* Q

Note: In exercise 1, T, To{(P) = T,T,(P); thus order is not important if turns are around the
same center. In exercise 2(b). the measure of the angles is the same.
~

Activities

l. For exercises 3(a) and 3(b) above, you should be able to locate two possibilities
for turn arrow T,. Also, as with siides, we have been very narrow in our choices for T,
and T in that we have had them go the *‘same direction"" and they have the same
center. A situation similar to slides occurs if the turns have the- same center but

" “‘oppasite directions,’’ but a more interesting situation arises if T, and T, have
different centers, und is weH worth the investigation, but it is beyond the scope of this
book. .

2. For more advanced students, investigations in the following areas can be used. It
should be noted that these investigations are just as important as the ones we have
provided above, but are more complicated.

(a) If welet F,and F; be two parallel flip lines, find F,F,(P) = Q,, F,F,(P) = Qa,
FIFZ(R) = v[ and FgF](R) = VQ.




Measure PQ,, PGz, RV and RV, and whatdo you notice? We note that Q, and
Q. are different points. asare V, and Va, whichis different from what happened
in prior exercises concerning successive motions with slides and with turns
using the same center. Furthermore, FF2 looks like a slide as docs F,F,. Try
more cases for F, and Fz, P and R and see what happens!

(b) If we let F, and F, be two flip lines which are not parallel, find F,F»(P) = Q,,
F.F(P) = Qq, FiF2(R) = V, and F.F,(R) = V; below.

Measure angles PIQ,, P1Q;, RIV,, and RIV,. What do you notice? Measure the
**small”’ angle formed by the intersection of F, and F,. Conjecture?

As in 2(a) above, we not= that Q, and Q; are different points as are V, and Y.
Also F,F, here looks like a turn with Center I as does F,F,. Try this with other lines

and points and see what happens.

(c) If we let F, be a flip line and S, be a slide arrow parallel to F, below. find
S\F(P) = Q, and F.S«(P) = Q..
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S,

Here we again find that Q, = Q., and perhaps S,F, looks like another slide. To convince
yourself otherwise, pick a point R “*below’’ line F, and find S,Fi(R).

Itis interesting to note that successive motions of slides, flips or turns will always give
congruent pre-images and iffrages. However, there may be times when successive mo-
tions may not be as easily recognized as the exercises which have been proposed thus far.
Specifically, the above activities do netedmprise the total package of successive motions.
Among those left to be considered are successive motions of: (a) a flip and a slide where
the slide arrow is not parallel to the flip line, (b) a slide and a turn, (c) aturn anda flip, and
(d) a turn and a turn where the turns do not have the same center of turn. Also, successivge
motions are not limited to two motions, but any number of successive motions can be
accommodated. We have, however, covered the successive turns we, feel that middle
school students could explore in some detail. For a look at student materials on this topic,
consult the materials produced by the University of Illinois  ‘mmittee on School
Mathematics entitled Motion Geomerry (Phillips and Zwoyer, Harper and Row, New
York, 1969).
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