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/' PREFACE

t
The purpose of this study was to develop a technique to optimize software for execution on a

Multiple-Instruction Multiple-Va Path (MIMD) computer and test its efficiency on existing flight
simulator programs. This effort was performed in support of the Air Force Human Resources
Laboratory's work on Advanced Simulattfr Concepts, which is, in turn, part of a larger effort (or
thrust) entitled "Engagement Simulation Technology"

The work was accomplished by Denelcor, Inc., Denver, Colorado, and Washington State
University (VSU) under Project 6114 sponsored by the Air Force Human Resources Laboratory,
Operations Training Division, Williams Air Force Base, under contract F33615-79-C-0009.

The principal investigators and authors re Dr. Robert E. Lord of WSU, Ms. Swarn Kumar of
WSU, and Dr. Rodney A. Schmidt of Denelcor, Inc. Patiick E. Price was the Air Force project
engineer throughout most of this project; however, during the final stages, he was succeeded by
Terrance K. Templeton.
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SgCTION 1: INTRODUCTION

p ,
Real-time flight.trarning.simulators generally use

several single - instruction single-data path (SISD) computers

to attain the-required processing capability. This is .

*similar to the capability offered on a smaller 'scale by a

multiple-instruction multiple -data path (MIMD) computer.

Until recently, however, apractical functioning MIMD olm-

puter had- not been implemented -- all predictions of
increased speed,and fidelity with MIMD architecture were

purely theoretical. Even though an operating MIMD computer

now exists, there are still problems obtaining the maximum

efficiency fromthe software. BecaUse the trend is toward

More parklel computer processing and parallel processing
configurations, the Air Force sponsored this study to

4 develop the technology needed to "take advantage of 'the

benefits offered by MIMD.prchit'ecture. The purposes of this

study.were to detertine which software techniques are most
practical to implement, and to determine the implications of

- using an MIMD computer in real-time simulation.

ti

Computer Architecture

The machine used in the study was Denelcor, Inc.'s
HeterogeneousiElement Processor (HE2). HEP is an MIMD

machine of the shared resburce type as defined by Flynnl.

In this type of organization, skeleton processors compete
for execution resources in either space or time. For .

example, the set of-peripherag processors of the CDC 6600

may be viewed as an MIMD machine ippiemented by the time-

-multiplexing of ten prbcess states to one functional unit.

1M. J, Flynn. "Very High SpeedComputillt Systems".

Proceedings rEEE, 54 (1966), pp. 1901-1909.
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In a HEP processor, two queue time-multiplex the'pro-
cess states: One queue provides i put to a pipeline that
fetched a three-address instruction, depodes it, ob4ins the
two operands, and sends the infor ation to'one of several.

Tipelinedfunction units that complete the operation. If

the operation is a data memory a cesd, the process state
enters a ,Fecond queue. This qu ue provides input to a pipe-

lined switch that _interconnects several data memory modules
with several processors. When the memory access is com-
plete, the process state is re urned to the first queue.
Figure 1 shows the processor o ganiation, and Figure 2
showa the system layout.

Each HEP proceisor supp rts up, to 128 processes, and
nominally begins executing anew instruction (on behalf of
some process) every 100 nandseconds,(ns. The time required
to complete anl

/

.nstruction s:800 ns.. Thus if at least
,eight' independent processeb (processes that do not share

data) are executing in one processor, the instruction execu-
tion rate.is 107 instructions per second per procegsor.

r .

\

HEP ihstructiond and
I

data words are 64 bits wide. The

floating-point "format is',sign Iregnieede with a hexadecimal,

, seven -bit,..45ccess-64 exponent. All function units, except,
the divider, execute one-instruction every 100 ns. The

divider can support this rate momentarily but is slower on

the average.

Tasks,

Since HEP attai s maximum speed whE)n all'of its pro-
,

cesses are'independ a simple set of protection mecha-
nrSmsis-incorporat d to allow potentially hostile users to
execute simultaneo sly. A domain of protection ih HEP is
called a task, and consists of a set of processes, with the
dame task identif er (TID) in their process states. The'TID
-specifies a task status word that contains base and limit

p

4
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FROM DATA MEMORY

VIA SWITCH
TO DATA MEMORY

VIA SWITCH
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- MEMORY RESULT

REGISTER

FETCH
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6 I

PROGRAM
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Figure 1 - Processor GNpanizaVon
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PIPELINED
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Figure 2 - HEP System Layout

-'1" 6 -

9



addresses defining the, regions 'within the various,memories

accessible by the processes in that task. In this way, prb-

cesses within a task may cooperate but are prevented from

communicating with ehose,in other tasks. Processes in dif-

ferent tasks or processors may communicate via data memory'

if they have overlapping allocations theie.

, -

Processes area scarce resource in HEP. In addition,

'the .synchronization.primitives
used in HO make processes

difficult to virtualize. 'As a result, the maximum number of

processes a task. uses must be specifie to the system when

0. the task.is loaded. The operating system insures that the

total allocation of processes, to tasks does not exceed the

number available. A create fault (to6 many processes) can

occur only when one or more tasks'have created more pro-

cesses than they were allocated. In this event, the offend-

ing task or tasks (not necessarily the task that actually

causeT the create fault) are removed from the Processor.

Protection violations, create faults, and other error

conditions arising within a process cause traps. ''A trap is

the creation of a process executing in a,supervisor Cask.

Sixteen tasks .a.e available in' each .processor; 1.ght-are

user tasks'aid the other eight are corresponding supevisat:

tasks. When a proces§ causes a trap; 61e-entire task is

made dbrmant to-prevent further execution' by any process in

. it. .A process is created n.the Corresponding supervisor

task to hap4e the condition This scheme is not used for
\ 0

create' fault, howeveriJa create-fault/Suspends execution of

' .
alb. processes, regardless of task,' except those actually

handling the fault.
.%,

Create fault occurs be'fore all provsses hale been

used; This Allows any create instructions ina progress to

complete 'normally, and allows' for the creation of'the create

fault handler process. Alrother traps in%HEP are precise

in the sense that they prevent the execution of any subse-

quent instructions in the offending task.

12
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SynchrOni;ation

..

Any register or .data memory iodation in HEP can be, used
doto synchronize two processes in a producer-consumer fashion.
This requires three access states: a reserved state to pro-
vide for mutual excldsionc. a full state, and an empty State.
When' an instruction executes, it tests the states of loqa-.
tions and modified them indivisibly. Typically on instruc-

4-

tidn
.

testd its sources full andits.debtination empty. If a
testfails, the process reattempts the instruction on its
next turn for servicing. If all tests succeed, the process
executes the instruction andosets both sources empty and-the

) destination reserved. -che operands from the sources are
sent to'the function unit, and the program oounter in the

.A*Kocess state is incremented. -When the functi9n,urilt
eventually wr4tes a result in the destination, it sets the
destinationfullo
1

° 4, A deStinatteh may be tested full rather taAriempty,e,to
-prederve the state of a source or to override the state ),,f a
source or destination. A reserved state, however, may not
be over;idden except by certain privileged imstructions.

s-
Ipput-output synchronization .is Dandled,naturally by

mapping I/O device registers into data memory address space
4 (an interrupt handler is just a process that is Attempting

to read an input location or write an output'location). I/O.

device addresses are not relocated by the data memory base.
'address. All I/0=addressed operations are privileged.

Switch
4

.1

The switch that interconnects processors and data
memories to allow memory sharing consists of a number of
nodes conpected by ports. Each node hasthree ports and can'
simultaneously' send and receive-4a Message on each pert. The

. .



t4
messages contain the ad ress of the recipient, the address

of the originator, t ' peration to be performed by the

recipient, and a prio ity. Each switch.node receives a

message on each port every 100 ns. The node attempts to

-retransmit each message on a port that reduces the distance

of -that message from its recipient; for this purpose, each

node has a table that maps the recipient address into the

nu5per of a port that reduces distance. If there is

conflict for a port, the node routes one message correctly

and the rest incorrectly. To help insure fairness, an

incorrectly routed message has its priority incremented as

it passes through the node. Preference is given in

conflicts to the message with the highest priority..

The success or failure of the operation (based on the

access state of the memory loCation) must be reported back

to the processor so it can decide whether to reattempt the

operation. Thud, the time required to complete a memory

operation via the switch includes two message transmission

times, one in each direction.

The propagation delay through a node and its associated

.wiring is 50 ns. Since a message is distributed'among two

or three nodes at any instant, the switch isitwo-colorable

to avoid conflicts between the beginning,of one message and

the middle of another.' When the Switch fills-up,due to .a

high conflict rate, misrouted messages begin to "leak".

Every originator is obliged to reinsert a leaking message ,

before inserting a new assage% Special measures are takin

when the priority reaches its maximum value. This avo' s

1indefinite delays for such messages: A preferable s eme

would have been to establishIpricrity bi time,of'ffieseage

,creation, but this would have required too many bit's.

1
FORTRAN Extensions ao

/

Two extensions to.AL FORTRAN allow'parallelisi in source

programs. First, subroutines may execute in parallel with

1

- 9-
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their callers, either by being CREATEd instead of.CALLed or.
by executing a RESUME before a RETURN. Second, variables
and arrays whose names begin with "$" may be used to
transmit data between two processes via the full-empty
discipline. A simple program to add the elements of an
array $A is shown in Figure 3. Thepubributines INPUT and
OUTPUT perform obvious, functions; ehe subroutine ADD adds
the elements-. There are a total of 14 proC'esses executing
ai?a'result o' running the program - -.the main program

itself, the INPUT and OUTPUT subroutines and 11copied/Of.
ADD.

As a parallel computer, HEP has an advantage over SIMD
machines and, ore loosely coupled MIMD machines in solving
large systems of ordinary differential equations that simu-
late continuous systems. In this application, vector opera-
tions are difficultito apply because of the precedence con-
straints in the equations, and loosely coupled MIMD organiz-
.ations are hard to use because a good partition of the pro -
b ].em to share workload and minimize communacatiOn"is hard to
find. Scheduling becomes relatively easier as the number of
processes increases. It is quite simple with one process
per instruction as in a data flow architecture.

Problem Selectioh

The cont actor principal investigator and the. Air Force
. Contract o i or had a large number of programs and 'program
segments t xamine and select. These included tens of
thousand o source lines provided by the Ait Force contract
monito an several programs provided by the contractor *-

pri ipal investigator. The contract monitor provided the
si lationnsysteM for the T-38B and A-10 aircrafts. These

_programs'are clearly most representative of current and
future simulation programs.. A complete program, howeveri..

'N, was too large for the scope of this study. Futher, these
*`"ZI.orprOgrams supported a "map in the loop" and had inputs and

S. - 10

,

4
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C ADD urt THE ELEMENTS OF

C THE ARRAY $A

REAL $A(1000,$S(10)i$SUM

INTEGER I

CREATE INPUT($A,10-00)

DO 10 1=1,10

CREATE ADD($A(100*I-9-9),$S(I),T00)

10 CONTINUE

'CREATE ADD($S,$SUM,t0)

CREATE OUTPUT($SUM,1)

' END

C NOELTS ELEMENTS OF $V

C ARE ADDED AND PLACED IN $ANS

SUBROUTINE $ADD($V,$ANS,NOELTS)

REAL $V(1),$ANS,TEMP

INTEGER J, NOELTS

TEMP=0.0

DO 20 J=1,NOELTS

TEMP=TEMP4-$V(J)

20 CONTINUE

$ANS=TEMP

RETURN

END

Pigure 3. NEP FORTRAN Example

11 -
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.outputs external'toithe computer. Thutc,th T-38B and A-1
simulation programs provided interesting-code'segments fo
analysis, but could not be esxecuted'on REP. Four Subrou-
tines, however constituting, the solution of the flight
equations for' tbe A-10 aircraft were selected for the
study. The samg,subroutines 10 the T-38B simulation used:
more than 50% of all of the CPU "cycles used by the total
,simulation. Thus it was felt that'-the results gained from
studying these subroutines could be extrapolated to, the
entire simulation.

0,.

61. s .To include comPlete program whose 'serial and patal-
lel versions could be executed on HEP, the contractor

4furnished a program that simulates the flight characteris-
tics of a ground - launched missile'.' This program is a

-sequential FORTRAN program of 442 source lines that solves a
set of 10 nonlinear, first-order differential equations.

The code supplied by the Aire contract monitor
included a library of mathematical functions' that many of
the modules invoke. Thus, one elementary fuhction and two
mathematical.functidhs were also included in the study.

f

t

- 12 -
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SECTION 2: PARALLELISM AT THE l4 CHINE INSTRUCTiON LEVEL

Elementary F notions

A significant computation task in' any, scientific

computing activity is approxim ting elementary functions
-(SIN, LOG,,SQRT, etc.).. The e tensive mathematical library

in the listings supplied by the Air Force contract monitor,
, .

indicates that this is the case for flight simulation.

1

I. Evaluating Polynomials_

- Since the very beginnings of electronic digital

computing, the preferred aethod of approximating elementary

functions has been polynomials. 'We have found no evidence

that parallel computing %alters this choice. Thqs we

concentrate on-parallel methods of evaluating polynomials.

4"
0

. The evaluation of a polynomial/ of degree n,

7

Pn(x) = a() + a1x + + anxn

requires 2n operations2; Thus Horner's rule

Pn

Pi = 1x) ai

Pn(x) = PO

i = n-1,n-2,...,0
4

2F. Winograd. "On The Number of Multiplications Required

to Compute certath Functions". Proceedings, National

Academy of Science USA,,Vol. 58-(1967), pp. fg40-1842.

18
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1

is optimal for SISD computers because fit requires precisely

2n operations and 2n time steps. But we know that, given n
processor's, the lower bound for polynomial evaluation is
[log2n] +1 time steps3. From this, and future examples, it
is clear that Horner's,rule is no longer optimal for MIMD
computing, where execution time is the criterion.

To describe techniques for evaluating polynomials, we
require the following' notational conventions:

(n',m) denotes a polynomialof n terms in which the

smallest is multiplied by xm, and

(0,m) denotes the variatde x to the mth power.

To analyze the perforrynce of the algorithms, we assum9d:

(a.) a sufficient number of processors that execute

arithmetic (add, multiply) in one time step area

available,

(b) results of an operation are available to all
processors in the next time

processors suspend operations until, all Operands

are available, and

(d) there is no opetational overhead in assigning a
°

process or performing an operation.

For HEP, assdmptions a, b, and c present no problgin so.
long as "sufficient" does not exceed the number available
(for elementary function, this is the ease). In general,

3Ian Munro. "Optimal Algorithms-for Parallel Polynomial
Evaluation". Journal of Computer, and System Sciences, 1973,

pp. 189-198.

- 14.-
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assumptions will net toldas will be seen in the code for
elementary function, however, the assumptions do hold by use

of pertain coding,PFacticeS.

A straightforward method of evaluating a polynomial.

Pn(x) is to decompose it into two polynomials of lesser

degree. This method computes4,n(x) as

where

and

4

Pn(x) C)n/2(x)*X
n/2+1 + Rn/2ix)

/ (x) = a
n
xn/2-1

n 2
+ an/2 +1

R
n/2 1=

an/2
X
n/2

+ + ao

and then computes Qn/2(x) and Rn/2(x) similarly by #.

binary splitting. Thus it starts by computing in parallel

and then

4

a1x +a0 , a3x+a2 , a5x+a4 , anx+an....1
v.

(A
1
x+a

0
)x2 + a x+a- (ax+ae)x2+ a x+a

3 2'
i0

5 4".*

t, The time required for this algorithm is approxiMately

2 log2

This algorithN can be improved by performing the binary
splitting in the Fibonacci ratio instead of in halves. Let

F(i) denote the ith element of the Fibonacci sequenc?

1,1,2,3,5,8,13,21,...

and,for a polynomial of.degree n determine the least i such
that F(i) > n+1.' We then split the evaluAtion of the poly-

nomial by:

- 15 -
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(n+1,0) = [n +1- F(i -1),0] [0,F(i-1)] +

The execution time for'lage.ri is,a;log n + p(log n) where A'.

a= 1/log(1/2(15 + 1)]1= 1.44.

An example of the ude of Fibonacci spli ing to evaluate a
polynomial of degree 20-is shown in Figure 4.

Improve.Ments to the Fibonacci splitting method have,
been reported ,(Munro, 19:73), but the improvements appear

only for very large values of n. For elementary functions
where the degree of the polynomials is generallysless1

than
20,.',.a.discussion of these improvements does ,not seem

warranted.---Table 1 presents the largest degree polynomial--
thitt may be evaluated in t steps using Fibonacci splitting
veAus using the best known algorithms.

et

't = 2 3 4 5 61k _7 8 9 .10 11

Fibonacci . 1 2 4 7 12 20 33' 54 ''.488 -143

Best Known 1 2 4, 7. ,12 21 37 63 107 187

Table 1 - Greatest Degree of Polynomial Computable in Tim

t /

In addition to the splitting techniques, a e aliza:-

tion Of gotner's rule to mak it amenable to parallel com-
Outing has been reported by / orn4 If the exeC,tionrgime

of an addition and a multiblicationare the same, however,

v,

/ ,
/

,

'- 4W. S. Dorn. "Genera]Azation of Horner's Rulefor
PolynoinialEvaluation".! IBM Journal, April 1962, pp.

239-245.

I
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th's method requires 2 log n steeps ror the evaluation of an

nt1h ordr polynomial.

cific Examples

The approximation of elementary functions by an MIMD
computer., requires not only techniques for parallerevalua-,

tiori of polynomials but also techniques forv4enerating coef-
ficients of "best" approximations. The laCter subject has
received extensive Attention in the literature and is not
ad,dressed here5. /

..--The specific elementary functions chosen to be included

in this study were the approxiMation of cosine and logarithm
(basee).

9
The algorithms: use a 64-bit floating point word

with an 8-bit 'exporieht (Radix 16) and a 56-bit normalized.

fraction.

Cosine

The cosine function accepts an argument (A) in the
range -1611 < A < 1611 ald produces a result in the range
-1 < cos(A) < 1. The method used converts the argument into
the range,0 < x ( 2n by the relationships

cos(x) = cos(-x) =scos(x+2KIT).

Next,'the argument is reduced to the range 0 to n/2 by the'
relationships pictured in Figure 5.

:14e2

5The interested reader is referred to Computer
Approximations by J. F. Hart, et. al. (New York: Wiley &.

,k Sons, Inc., 1968).

* I
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0

3 ir/2

cos(x)

k cos(2n-x)

Figure 5 Cos ne Function Relationships

Finally, the function is approximated by a 9th degree poly-

nomial in the converted argument x2. That is:

cos(x) = P9(x2).

More concisely:

cos(a) = cos(6b) Se(-1,1)
b > 0

1

Cos(b) = cos(c + 2kn) kc(0,1,2,...,1012)
0 < c < 2.

cos(c) = 6cos(y) a c(-1,1)

0
0 < y <, /2

6,y defined -0 < c < /2 y = c

6 c= 1

_- 19-
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1/2 < c < y=-1r -c

6 = -1

c < 3 TV2 y =
6 = -1 :

1

3 1/2 < c < 21T. y = 271-c

6 = .114 . t

cos(y) = P9(Y2)

with coefficients

p0 = +.9999 9,999 9999 9999

a.

9000 E+09999 3632

P1 = -.4999 9999 9999 9999 9948 3628 4300 E +0

P2 = +.4166 6666 6.666 6665 976 7005 4000 E-1

P3 = -.1388 8888 8888 8853,0208 2298 E-2

= +.2480 1587 3014 9274 6422 2970 E-4

P5 = -.2755 7319 2096 6674 8555 E-6

p6 = +.2087 6755 6674 2345 8605 E-8

'P7 = -.1147 0670 1991 7777 7011 E-10

p8 = +.4776 8729 8095 7170 ) E-13

P9 7.1511 9893 7468 8700' E-15

This p4ynomial approximation has an'absolute accuracy
of 20.19 d,igits10 (16.77 digits16). Scaling the argument

into thq.c7range [0,2.Trl causes a lobs of Frog.16,(A/21T71

digits16: Therefore, the machine word size pf 1.4 digits16

should _determine accuracy.
4

The approximation was programmed, and its accuracy
tested, with.50 uniformly distributed argument values in the

range 0 to 2. The results were compared with 112 bit rou-

tines. Statistically the results were as shOwn in Table 2.

=. 20 -
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magnitude base 2 log

maximum absolute error

maximum relative error

ge,relative error

1..01 x 10-15 -49.8

1.99 'x 10-15 -48.8

4-.01,x 10-16_ -51.2

-

Std. deviation of relati4e error 4.01 x 107'6
L.

Table 2 - Accuracy of Cosine Approximation

1

The algo4.ithm comprises the followlag tasks:

.-11 - Remove sign from argument'.

T - Scale yagnitude of argument into 0 to 2

)6.- Select qUadrant reduction

/T4 - Performreduction and-saves quadrant:sign

T5 -*Evaluate approximation

I, T6 - Combine approx. value and quadrant sign

T7 = Empty multiple, last uses variables

The tasks have the following precedencegraplv.

T5

All tasks'except T5 have no internal parallelism or are more

efficiently processed sequentially. T51" Evaluate approxi-

mation",, has the computational tree shown in Figure 6..

5

I
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step
.

2. \
1 P1 Y2 y2 1

V II JV '2 -1,2

\/2 4y,* P2 Y4
PO '/ V \ \P4 / P6 i

1 4 2
Y -1r

\-..

P8I\ \-/ 2 i 63 / y 6 .172_ \ty4 /P'7

.-----'
4 + + V 6\/,;\//. /73i/ 4\t

+ *.

Width

5

6

4

2

7
1

P9(Y2)

Figure 16: Cosine Task 5 Computational Tree

This routine was-programmedfor HEP and resulted in the
following performance:

otal number of instructions executed 60
Ninber of instruction cycles used 24,
Ma imum.number of concurrent processes 6

Average number of concurrent pr6cesses 2.50 .

Planned number of waved off instructions ,1

Storage:
Total words of:

Program Memory . 69

Register. Memory 25

Constant Memory .29

thus we have achieved a speed-up of 2.5 in evaluating the
cosine unCtion..

- 22 -
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L olarithm

,

The second elementary function examined was the approx-

imation of logaiithm base e. The method breaks the input

range of the argument into two different ranges., Range I is

(1)-1/2 <
11)1/2, .where the function uses a direct`

rational approximation of the form:

log(a) = ziP3(z2)/43(z2)1

z = a-1
a+1

For Range II, (2) -1/2 < a or (2)1/2 < a, we can use

the following relationships to convert to bise2 logarithm

and extract a bounded value to approXimate:

loge(a) = loge(2) log2(a)

log2(a) = log2(f22) = n + log2(f), 1/2 < f <

We now approximate log2(f), the result of which we

,combine Oith n, then multiply by log (2) for the final

result..7.

.log2(f) yR6(y2) - 1/2

y = 1/2(1
((2)1/2/(f (2)-1/2)1)

at,
More concisely:

Range I:
for (2)

-1/2 < a < (2)
1/2

loge(a) z[P3(z2 )/43(z 2
)]

'z = (a-1')/(a+1)

Range 'II

for a < (2)
-1/2 or (2)

1/2 < a

loge(a) = loge(2), log2(a)

- X23 -
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a = 16
n

2
-N

''. f :lc {64,...,63}

N c {0,1,2,3}

\
1/2 < f < 1

r

log2(a) = (4n - N - 1/2( + (log2(f) + 1/2)

(log2(f) + 1/2) yR6(y2)

y =:1/2 - (2)
1/2

/ (2 f + (2) 1/2
)

Execution time decreases by

loge(a).= loge(2)1 (4n - N - 1/2)'+'yR'5(y2)

where coef of It! = loge(2) times, coef of R:

loge(a) = z(Pi(z2)/43(z2))

p0 = -24.01 3917 9559

P1 = +30.95 7292 8215
p2 = -9.637 6909 3368

, .1)3 = +.4210 8737 1217

90 = -12.00 6958 9779 6052'55E+0

g1 = +19.48 -0966 0700 8897 31E+0
.g2 = -8.911 1090 2793 7831 23E+0
G3 = +1.0 E+0

2105 1'0E+0

3765 01E+0
6865 93E+0

9797 15E+0

log2(f) loge(2)-. YR'6(Y )"-----
.

ro = +4.000 0000 0000 000 67E+0

r1 =, +5.333 3333 3332 4188 96+0
r2 = +12.80 0000 0198 2788 68E +0

'r3 = +36.57 1412 4660 5914 90k44 .

r4 = +113.7 8399 8715 006637E +0

r5 = +371.1 3591.8715 6528 26E+0:
r6 = +1379, 3999 4910 9060 60E+0

These approximations proVide 19.38 digital. (16,09
digits16) of"absoluteaccuracy for Rafiige I, and 17.18

digits10 (14.27 digits16) of-relative accuracy for Range II.

4

4

0

4
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As was the case with the approximation of cosine, this

ap roximation was split into several tasks to facilitate

pa allelism. The tasks are as follows (tasks within

,brackets [] apply only to Range II)

T1 - Select range

[T2] Extract fraction (1/1eto 4)

[T3] - Extract exponent

(T4] - Select fraction and exponent adjustment values

[T5], - Adjust fraction (1/2 to 1)

T6 - Form approx. argument

T7 - Evaluate approiimation

(T8] - Form result exponent

[T9] - Combine exponent and approx. value

T10 Empty'mutliple last use variables

This set of tasks has the following precedence graph:

(T ]

N,
[ Tg 7-7> T7

T1, "Select range", has the following parallelism:-

a < 2
1/2

T6

-(Ranr I)-

7625 -

2
1/2 < a

[ 9]

4

T10

(Range II)



T6' "Form approximate argument", has the following
parallelism:

T7, Evaluate approximation", has the computational trees
shown n Figure 7.

The remaining tasks have no internal parallelism or, are more
efficiently processed sequentially.

'The logarithm approximation was tested using two sample
sets of 100 uniformly distributed values in the range.0 to 2
and 0 to 106. The resukts were compared against 112 bit
routines; the statistics on the accuracy obtained are given
in Table 3.

e

Ran e (0,2) 'magnitude base 2 log

maximum absolute error 7.61 x 10-16 -50.2
maximum. relative error 8.35 jt 10-16 -50.1
average relative error 3.20 x 1e16 -51.5
Std. deviation of relative error 1.84 x 10-16

Range (0,106)
I /

maximum absolute error
maximum relative error
average relative.error
Std. deviation of relative error

.magnitude base 2 .log

x 10-16 -50.4
4.52 x 10-17 -54.3

3.15 x 10-17 -54.8
x 10-18

table 3 - Accuracy o

.44

Logarithm Approxiiation

- 26 -
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Range. I

numerator

.
step z

1 P \
42 i z2\ /3

*

2 z\lc 2 \* p,
.1/4z .

\ * *\\z5 ///:+

3

\\

5

Range II

step

.1 r5 y2

\if
2 r y4 *

\
3

4

5

6

denominator

PO 'z qo width\

3 p 3

4

1..\

:

+
r

4

z(P3(.2) /Q3(z2))

4 4

r3

\

y'

y2 1

2

1

total 17

operations

I

r r lY\

r2 \*

\I
1...3,2 y2

\/ \ie

* * 5

y4 'N /.+
Z.+ \

width

4

t

'yR6(y2)

figure 7 Logaritha Task 7 Couputation l Trees
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The, approximations for the two ranges performed as follows:

Range I:

Total number of instructions executed 47

Number of instruction cycles used 30

Maximum number of concurrent pebcesses 4

Average number of concurrent processes 1:97

Planned number of waved off instructions.%

,Range II:

Total number of instructions executed '66

Number of instructions executed' , 32

Maximdm number of concurrent processes 5

Average number of concurrent processes 2.28

Planned number of waved off instructions 4
o

Storage:

Total words of:

Program Memory 103

Register Memory 26

Constant Memory 69

Assuming that arguments in-the two ranges are equally
probable, the speed-up of this algorithm is 2.125.

.

General Code Sequences'

This section examines the problems of generating paral-
-lelism at the machine instruction level for general code'
sequences.. The basid techniques. consist of tree height
reduction methods: In some cases optimal algorithms exist,
in others only heuristic methods apply.

4"

- 28 -
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Tree HeigiNt Reduction Techniques

The basic entity to which tree height reduction applies

is expression evaluating. From simple fan-in arguments it

is clear that given an expression' of n distinct atoms and

involving the binary operations of,addition, subtraction,.
multiplication and division, a lower bound on the tree

height is [log2n]. In many cases, however, the tree/produc-

ed by an ordinary compiler does not'acffieve this lower

bound. Thus we consider associativity, commutativity, and
distributivity to reduce tree height.

Consider the following expression and its treerepre-

sentation:

A + (B * C)) + D'

By associativity and commutativity, we can reduce the

expression and its tree height to:

(B * C) + (A+ D)
41k

The original expression could use only one processor

for its evaluation and required three time steps, whereas

the transformed expression can be evaluated try twolproces-

sors in only two time steps. If we restrict ourselves to

- 29 -34
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associativity and cdmmutativity, algorithms presented by 4.

Baei and Bovet6 have been shown to be optiMal. But distri-4

.butivity can also reduce tree heights. Cdtisider:

A + B (C + D * E * + G
F

e

This expression has a tree height o 6 and can be reduced- by
associativity and commutativity to tree he,ightof 5. By'

also using th w of distributivi y, however) we produce:
.61

A+G.+B*C+B*D*E*F

6J. L.-Baer and'D. P. Bo et. "Compilation of Arithmetic
.

EXpressjond for Parallel Computation". Information
Prqcessing Wirth Holland Publishing Cohpny, Amsterdam,
1969..

- 30
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o 4

0

(1`
This has a tree height of 3. Using four processOrs would
result in a spded-up of 2 over the original expression.,
Unfortunate'.y, we cannot just distribute a multiplication-.

across a parenthesis and reduce tree height'. For exaMMI

.

A *B * (C + D)

has a tree height of 2. Using.the disttribdtive law, we get,'

A **B *C+A*-13'* D

which has a tree height, of 3. There areggod algorithms
that reduce free height using distributivity, associativity,
and commutativity, but they are not necessarily optimal.

We now consider multiple expressions, as would be the
case with a set of assignmestatements. 'Cahsider:-41..,

A'=B*C*D

E = F * A D

E

0

This block of assignment statements Hits a tree height of 4,
which may be reduced to 3 tiq back substitution;

A =13 * C * D
E=F*B*C*D.
G = F * C * d + H

.1 - 31°- ,36



gum,
Obs ve, however,that considerably more, operations ha ve

0.1
been introduced t6 achieve this reduction:

In addition to arithmetic expression, linear recur-

,sences offtisa possibility for significarit speed-ups. - ,

`Consider the-linear recurrence represented by the following

nested DO loops:

. D0.3 I = 1, 10

DO 3 J = 2, 1-k

3 A (I,J) = A (I,).-1) + B(J)

. Thd _outer loops can be done simultaneously as:
'

DO 31.J = 2, 10 .

31 A(1,J) = A(1,J-1) B(J)

DO 32 = 2, 10 .

32 A(2,J) = A92,J-1) + Bp)
J'

At,

..,0°

Further, the interior of each loop is just:

A(I,J) =A(I,1) + B(.2) +' + B(J)

This expressioncan be evaluated in logarithmic speed.
Hence 'the total speed-up could be as high as tilt this is

at.a cost of considerably more.code. Alsot the efficiency

in this example is only 50%.
ti

Another area t has been s'Udied iconditional
branches represe ed by IF statements. For an isolated IF

statement, all nstruction steams must be funneled through. -

the branch, as with a JOIN statement. But asection of code
with s Vetal IF statements and some assignment statements

may be e ressed as:

(a); a set 'of assignment statements all o which may be

executed sim(iltaneously,

0-""

(

Owe

3
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(b) a set of Boolean functions all of which may be

evaluated simultaneously,
o

(c) a binary 1ecision tree through shich one path will

be followed for each execution of the program seg-

ment, and ,

(d) a collection of sets of assignment 'statements with

a single variable on the right where each set is

associated with each*path through the,tree.

These techniques have been written as a PLP program and

applied to a set of 8'6 FORTRAN programs7. Averaged over

the,86 programs, these techniques could, use 35 processors,

resulting in5a sped -up of 9.2 and an-efficiency of 33%.

Specific Examples

To determine the applicability of these., techniques,- we

examined the code of both the ground - launched missile'and

the_A-10 flight simulation. In neither case could we find

significant amounts of. code wheie back substitution could be

. applied. Funther, the code_contained no DO loops that c91w-

stituted linear,rectirrence equations. -Ior were there signi-

ficantIF blocks that would beneelt from reorganiz,tion. As

would be e5ipected, however, arithmetic expression evaluation,

Pictrided.extenitNie!parallelism. For example,-consideruthe

expression fer'the variable QDOT -- typical of expressions

from both programs.

QDOT = IYS *' (.(RH0/2) + WZ) t US.* 4-.83912 * CIA,)

- US *
C-

8.86989-* RHO/4 * QS

- 21.1 * RS * PS z- LC * FTZ)

sQ

7KUck, Days
Complexity". Co
Algorithms, J.
1973).pp. 17-48

SO

1 . "Multioperation Machifte Computational

lexit of Seuential and Parallel NumeriCal.

F Traub, Bd.. -(New_York: Academic Press,

1. --33- ,%3
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Figure 8 'shows a standard parse tree for this assign-
ment. It contains 18 arithmetic operations and could be
evaluated in six time steps using five processors. This
would result in efficiency of 60%: Figure 9.shows the
modified parse tree after associativity, commutativity, and
distributivity have reduced the tree height-. This tree has
a height of only 5 and consists of 19 operations. The modi-
fied tree,could be executed in five tune steps using six
processors. This alio results in an efficiency of 60%.

During this phae of the study,, it became apparent that
applying these techniques to'a significant section of code
was beyond the capabilities of manual techniques'. The num-
ber of'operations required makes it immensely time consum-
ing, and the probabilities of error would be so high as to
make the results' suspect. The only alternative is to con-
struct programs to .automatically analyze, the code segments
and produce parallel instruction sequences.` This, too., is a
significant task beyond the scope of the work. Section 5
discusses the impact and value of these techniques.

-.34 -
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-Figure 8. - Parse Tree of Expression for QDOT
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Figure 9 -.Modified Parse Tree for (J)OT
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SECTION 3: PARALLELISM AT THE TASK LEVEL

One of the most common methods,of producing a parallel

program is to take a sequential program and "parallelize"

it. This involves identifying tasks within the sequential

program and recognizing that those tasks, together with the

implied flow of opntrol, represent a task system. When such

a division is poesible, standard techniques are available to

produce parallel code.

Task SyStems

We define a task as,a unit'of computational'activiti,

specified in terms of the input variables it requires, the

output, variables it generates,-and its execution time. The,;

specific fransforivtion that it imposes on' input to

produce its output is not part of the specification of a

task. Thus the tasks may be bonsidered uninterpreted. Let

J = (Z1 fT2,...Tn) be a set of tasks and . an irreflexive

partial order (precedence relation). defined oh J. Then C =

(J.) is called a task system. The, precedence relation

means that if T T' then T. must complete execution'

before T'.

From this definition we introdube a graphical repre-

sentation, called a precedence graRh, for'taak systems.

T is con ists of a directed graph whose vertices (nodes) are

heto sIJ and which has ad edge from T to T3 if T <' T'.

A T" s ch that 'T q" T' does not exist. Thus the

set of es'i the precedence graph represedts the smallest

relation whoie transitive closure is,.

Many seq uential programs and program, segments canbe

viewed as' precedetice graphs. Figure 10 shows an example of
4

a program segment and its,related precedence graph. Since

the'relaAon irreflexive, antisymmetric and transi-

tive, tke precedence graph is acyclic -- -it repreSents only
r-

37
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C*** TASK 15 COMPUTE THRUST
NDX=ITHRUST-1

.LT. THRUSTIME(ITaRUST)) GO TO 151
NDX=ITHAUST

IF (ITHRUST .LT. LTHRUST) ITHRUST=ITHRUST+1
151 THRUST=THRUSTAB(NDX)+THRUSTSL(NDX)

*(TIME-THRUSTIME(NDX))
Cr* TASK 23 COMPUTE LT

NDX=ILT-1

IF(TIME .LT. LTIME(ILT)) GO TO 231
NDX=ILT
IF (ILT .LT. LLT) ILT=ILT+1

231 LT=LTAB(ND;) +(TIME-LTIME(NDX))*LTSL(NDX)
C

C*** TASK 29 COMPUTE CMQS
NDX=ICMQS-1

IF(TIME .LT. CMQSTI,ME(ICMQS)) GO TO 291
NDX=ICMQS.

IF(ICMQ.LT. LCMQS) ICMQS=ICMQS+1
1 .CMQS=CMQSTAB(NI,X)+(TIME-CMQSTIME(NDX))*CMQSSL(ND*)

C
,C*** TASK 11 COMPUTE TIME

CALL 11K11(STO)
C

:C*** TASK 5 ,COMPUTE QS

QDOT= $T(70)

CALL RK5(STEP)

Figure 10 - Program Segment and Related Precedence Graph

- 38 -
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straight line code (or code that can be viewed as s raight

line). We can deal with data-dependent branches that fall

entirely within a task, but not Conditional branches to

other tasks. Further, many loops can !be "unrolled" (viewed

as straight line code) and handled in an acyclic manner. In

one instance, discussed later, .we can deal with specific

kinds of cyclic graphs.

With each task T we associate two _events: initiation

and termination. An execution sequence of an n-task- system

C = (J,<) is any string (5 =a 1, a2,...,a2n of task events

satisfying the precedence relationsand:consiting of exactly
one initiation and one termination event for each task. A

task system that represents a sequential program has only
one execution sequence; for other task systems (perhaps

equivalent- to the sequential task system)there may be

several.

To discuss determinant task systems, we must define an

ordered setof memory cells M = (M1,.M2,...',Mm) that repre-

sents the physical system on which task systems execute.
With each task T in a sy,tem C we associate two, possibly
overlapping, ordered subsets of M: the domain DT and the

range RT. When T is initiated it reads the values stored

in its domain cells; when it terminates it writes values

into its range cells. Given an execution sequence fora
task system, we can define the value sequence V(Mi,(5) as the

sequence of values written by terminating tasks in § for

which Mi e RT. BefOre the first event in any execution

sequence, we expect the memory cellsto containyailues. We

'refer to that set of values as the initial state Po.

We can now define, more rigorously-the intuitive concept

of determinant task systems:

A task system C is determinant if for any given

initial State Po, V(Mi,6) = v(mi, 1), 1 < i < m,

for all execution sequences i, and
A

4.
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From this definition, it is clear that a task system
that represents a sequential program is determinant since
there is only one execution sequence- Given two ,task

systems both consisting of the same tasks, they arse said to
''''

be equivalent if they are determinant and, for the same
initial state, produce the same'value sequences.

Our goal now is to define a method by whigh, given a .

determinant task system (i.e. one representing a seqUenti,
program) we can derive,another determinant task system
equivalent to the first has in some sense more par,41-
lelism. In fact, our method will derive one with maximum
parallelism subject to the constraint that weetve no know-
ledge of tht-internal transformations performedby the
tasks: We begin with the following definition:

Given a task system C, then tasks T and
,T' are noninterfering if hither

T < T' ar T' < T 0"

7or-

RT 11 RT I = RT fl DT I = RT, n DT = 0

We now state, without formal proof8, a fundamental
Theorem regarding noninterfering tasks and determinancy:

_,/
-

s Task systems consisting of mutually'

noninterfering tasks'are determinant.

The final development falls naturally from the Theorem.
Given a determinant task system C = (J, <) we construct

- -

8Intemstedreaders may consult Operating Systems Theory
by EdswarTG. Coffman, Jr. and P. J. Denning (Englewood
Cliffs, NJ: Prentice Mall, 1973).
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dnother task s /stem C' = (J,<1) that is equivalent to C
but whose precedence relation is constructed from on
the basis Ilat.(T,T') c mly if it is necessary to
insure that T and T' are nonAnterfering. The resuiting.task
system is, by the Theorem,'determinant. Further, it is
Maximally parallel in that any further reduction of the'

precedenS relation results in nondeterminancy. Finally,
since < c'<, every execution sequence of C is an .

1 execution sequence of C' and, since C' is determinant, every
execution sequence of C' produces the same Value sequence.
Therefore. Cl is equivalent to C. This is formally stated'ln
the following Theorem: ,

. ,

From a given determinant task system C = (J,<)
nstruct anew system C' = (J,<) where <'

is the transitive closure of the relation:

X = {(T,T') < (RT nRT,) u n DT. ) U'(RTIn DT) 0

Then C' is the. unique, maximally' parallel. task system

equivalent to C.

S

Scheduling

Standard Task Systems

Given a determinant task system and the execution time

of each task, the problem remaint of assigning the tasks to
p processors. More formally, we define the scheduling
problem to be the following: we are given

(1) a set of tasks J = {T1,
2), an irreflexive partial order J,

C3) a weighting function ,W from S to the positive

integers, representing the execution time of each
of the tasks, and

(4) the number, of processors p.

(
- 41 -
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K.

We may be executing as many as p Basks at any point in time.

If task T is first-vecuted at time t using processor K, 1

then it is executed only kt times t, t+1,..., ,t+W(T)-1 using

processor K each time. It is also required, for any task T'

such that T' <' T, that T' compldte execution at time t'

when t' < t. A schedule is an assignment of tasks to

processors that satisfies the above conditions and has

length tmax, where tmax is the maximum, over all tasks, of

the times at which the termination events occur. The

scheduling, problem, then, is to determine an assignment that

MinimiAs tmax. This problem is NP-complete9 and can be

considered intractable. There are, however, polynomial time

bound algorithms that produce good schedules. One such

algorithm is critical path list scheduling.

The algorithm is defined as follows:

(1) Given a task system and a list that orders the

tasks, we require a scheduling strategy that

assigns (to a free processor) the first unassigned

task in the list whose precedence constraints have

been met. Such.a strategy is called demand list

scheduling. '

0

(14) The critical time of a task is the execution time

of that task plus the maximum critical times of

any successor tasks.

(3) If the tasks are ordered on. nonincreasing critical,

time, then the resulting list schedule ls.called

critical path list scheduling.

9J. D. Ullman. "Polynomial Complete Secheduling Problems".

'Operating Systems Review, Vol. 7 No:..4 (1973), pp., 96-101.,
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Kohlerl° reports a preliminary evaluation'in which 20

task systems, scheduled using critical path -liSt scheduling,.

' produced 17 optima]: schedules. The worst-cede schedule was c'

only 3.4% longer than optimal. Using only limited back-

, tracking with a critical path list scheduler, Lord" found .

that in 100 randomly generated cases, 89 were scheduled

optimally. . He further fourki-that for all cases the

schedules had an expected time of only .36% longer, than

optimal. The worst-case time was 5.6%)longer. Thus we

conclude.that critical path list scheduling is an acceptable

technique for practical application.

Cyclic Task Systems

As we have observed before, the s tandard task system

represents an acyclic computational method. This method

applies to repetitious calculations such as flight simula-

tion 1Rroblems by treating the calculation of derivativ .es and

the updating of the state variable as a task system, .

scheduling those tasks, and then repeatedly executing that

schedule. In some cases, however, shorter solution times

can result if we represente,problem as a cyclic task

system. For example, consider the Van der Pol equation

written as two first-order equations:

1100: 27c2 = u(1 x)x2 x1

'uW. H. Kohler. "Preliminary Evaluation of The Critical

Path Method for Scheduling Tasks on a Multiprocessor

System". IEEE Transactions on Computing, Vol. C24; No. 12

(December 1975), pp.. 1235-1238.

11'R. E. Lord. Scheduling liecurre e,Eqoations for Solution

on MIMD Type Computers. PhD Dissertation, Washington State,

.Universdty, 1976.
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By using .some uitable integration method (for example,
4th order Runge-Kutt as indicated by thefunctionrk), the
main part of a program for solving these equations is as
follows: _

while time < runtime do

for i <--- 1 until 4 do

der.] <--- x2

der2 <--- u*(1-xl.*xl)*x2-xl

x1 <--- rk(der1 ti,1)

x2 <--- rk(der2,i,2)

time <--- time + h

The Calculation_ interior to the "for" loop can be
represented by.the acyclic precedence graph shown in Figure -'
11. AssAming that each binary operation can be executed in
one time unit and that the function rk canbe evaluated in
four units, the entire "for",loop can be represented by the
cyclic precedence graph shown in Figure 12. T3 calculates
u*(1-xl*xl), T4 calculates *x2-x1, and T1 and T2 calculate4,
the function rk.

(Given two parallel processors, one way to schedule this -
soldtion is to assign the tasks interior to the "for" loop
to processors. This_ Should be done in such, a way as to pre-,
serve the precedence relations and yet complete all tasks as
quiCkly as possible.. The Solution to the problem is the
repeated execution of this schedUle. Such an assignment is
ShOwn by the Ga4tt chart in Figure 11. Note' tha-this
assignment/ is' s good as possible -- the precedence graph
hies a. maximum atfi length equal to the assignment period.

41
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The Gantt chart in Figure 12 shows the assignments made

if we assume some initial values for Xi and X2 and then

assign the tasks from the cyclic precedence graph while

maintaining all precedence constraints. This assignment has

a repetition period ofseven units, as compared with nine

units for assigning the acyclic precedence graph. This

shorter' schedule is the motivation for examining flight

1-simulation equations to determine their minimum solution

period and to schedulefthem in that minimum period with as

fev; processors ass possible.

The method used constructs.a task system representing

the solution to the flight simulation equations, where the

tasks that update the state variables are flagged. The

precedence graph:of4the task systeM is allowed to be 'cyclic

so long as each cycle traverses at least one flagged task.

The minimum -.solution p4riod is then determined by examining

all cOles in the graph..
.',

Let the cycles be denotd by Cl, C2,:..,Cm. For each

cycle let L(Ci) denote .its length and #(Ci)-sthe number of

flagged tasks in the cycle. Then the minimum solution
.

. .

period tmin is: .

,

Once t\e minimum solution period is detCcmined, a critical

path, list scheduler can, with only sligh&modifications,..--.,

.
produce an efficient schedule whose repeated execution

solves the flight simulation problem. .,

Lmin = Max ilL(Ci)/#(Ci) I ,I 1 < i < m}

,Synchronization

Once a schedule has been determined, there must be some

way to insure that'the schedule is f011owed. A general

assumption rWe regarding'MIMD computing is that the precise

execution rate of individual processors cannot be used to

prove the correctness of a program. This assumption applies

.- 47 -
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to REP; although we know th4t executign rates of probesses
are qenerally the same, detailed knowledge of the progreis

of each process is beyond the scope of normal analysis of ,

programs. Thus, having deterTined a schedule.for computing

the tasks, it now remains to implement ft.

Much of the work on lcheduling assures, at i6ast

implicitly, that soMe-meChanism-external to the processore

assigns the tasks to the processors. But our exec4tion

times are estimates only; so the scheduling mechanism would

have to Monitor the progress of all processors Instead we
seek a mechanism whereby all the tasks to be executed by a

single processor are presented as a sequentialiprogram.
Synchronization primitives,' operating on'semaphores, coordi-

nate those tasks.

Dijkstra12 introduced the primitives P and V,' which

- .
operate uninterruptably on-an event variable* termed a

semaphore, to control resource allocation among cohcurrent

processes. For our purposes we may dtllne P and V as:
O

P (E):

en E+E-1
wait

P is' normally used before a process uses a nonsharable

resource; V is executed when the use of the resource is.

completed.
o

Denning13 'shows that these primitives can'synchronize

concurrent tasks. As an example, consider the task system

V (g):
E+E+1

12E.
1

Dijkstra.: "Cooperating Sequeftt11 Proesses".

rogrammin9 Languages, F. Genuys, Ed. (NeW York: -Academtc

Press, 1968) pp. 43 -112.

131).-J. Denning. "Third Getration Computer Systems".

Computing Surveys,Vol.3 No. 4 (1971) pp. 175-216.
/

/
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.

and concurrent program shown in Figure 13. The program uses

P and V operating on the suitably initialized semaphore X23.

'Clearly, the program correctly executes the task system. °

Since we are using task systems to represent computations,

precedence constraints' arise because one task computes data

elements,used by another task. If we were to consider a

task system that represents.a calCulationlloop, such as

shown in Figure 14, We find that the first program still'

represents a valid solution Oth; problem. This is because

it is implied that both stream A' and'stream 2 complete

execution before beginning the second executicifl of these

streams.

Such methods of computation have beeh previously

proposed for handling looped and c *nditional execution using

constructs named "fork" and "join", But if the alternate

program executes the task'system, then the P and V

operations ,are no longer valid. This is so because if S2

runs more quickly than Si, at some point T2complet4 the

calculation of the 'data eYtment that causes the precedence

constraint before T3 has consumed the previous value. Even

ifwe assume a queye for this data element, in any real

implementation t14 queue would be of finite Size and hencAr

subject to overflow. To overcome this difficulty, we use

two state semaphores associated with each data element or

variable, as indicated by:
(1,

VAR

2 VALUE

2 SEMAPHORE ['E','F']

where 'E' indicates empty and W.indicates full. We now

define the P and V operations as:

P(VAR) :

IF VAR.SEMAPHORE = 'F'

THEN VAR.SEMApHORE <- 'E'

ELSE WAIT

- 49 -
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PARBEGIN

r

Sl: Tl; P(X23);73; 14

S2: 12: V(X23); 15

PAREND

4

S

ti

Figure 1 Task System and.Concurrent Program
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41/

'REPEAT N TIMES

PAUEGIN .

Si: Ti ; P(X23); T3; T4

' S2: T2; V(X23); T5

PAREND

ALTERNATE -

PARBEGIN,

Si: REPEAT N TIMES
St 4

Ti ; P(X23); T3; T4

END

S2: REPEAT N TIMES

T2; V(X23); T5

END

PAREND

Pigure'14 - Taik System for Repeated Execution
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V(VAR):
IF VAR.SEMAPHORE = jE'

THEN VAR.SEMAPHORE <- 'F'
ELSE,.5.14

Then if we let X23 represent'tpe variable responsible'for

the precedence constraints from T2 to T, the alternate pro-
gram correctly executes the task system.

To further simplify the prOgramMing aspects of such a
. synchronizing method,we note that,j.n a language involving
assignment statements; context determines whether the opera-
tion is P or V. That'is, any synchronizing operation on the

left of the assignment symbol denotes.a V operation. All

others denote a P operation.' InwHEP FORTRAN, represents

both P and VCcontext denotes which operation i implied.

*. If some task T1. computes a value used by two other task's, T2

and T3 ('each in separate instruction streams), then the
coordinatiprpplem between T1 and T2 is separate from the
,coordination problem between in and T3, Hence, two copies

of the variable are required so.that two separate semaphOres

are available.

9(

utomated Techniques-
, .

,Daring the course of this study, we developed andused
programs to automate many of the steps involved in preparing

a problem for parallel solution. We believe that sufficient

knokedge is available to construct a CSSL-type language
translator14 that would produce efficient parallel code for
the types .of "Problems we 'have studied.. But the class of,

problems so far studied i4s relatively small; desirable

14See "Continuous System Simplat,ion Language" by J. C.
Strauss, et. al. Simulation, Vol. 6 No. 12, Decembet, 1967.
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extensions to such a language may be poorly understood.)
Thus we feel that a practical approach for the immediate
future is to use a set of utility programs that will, signif--

icantly aid programmers in constructing parallel programs

yet not impede them in the methodologies they use. In the

remainder of this section we discuss the various utility
programs which- we feel would be useful and the. source lang-
uage restrictions they would impose op the programmer.

t,

We assume that the definition of a flight simulation
problem will be extended to a sequential FORTRAN program
that defines the derivatives'in terms of the state variable,

and updates the state variables by whatever technique is

desired. In general, we 'assume that updating each state

variable is a separate program segment, so they can be

designated individual tasks where desirable. Since each
program segment must be simple enough to be represented by a

cyclic task system, restrictions on conditional branches.

' willbe required. Selecting code segments for'tasks'is not

unique -- we can give only guidelines as to what constitutes

a good selection. Thus'we require the programmer to specify

which pieces of code oonstitutetasks. No branches can

occur from one task to another. In practice we have found

that this restriction is not at all severe.

There are a variety of methods the programmer could use

to indicate what constitutes a task. We have used a comment

card of the .form
C"

C***TASK n [,SV]

to indicate that the following statements 'constitute task n;
the option SV indicates that the task updates & state or

recurrence variable: This directive-is terminated by

another task comment card or by an END card. ,Since the

final maximally parallel task system equivalent to this 4

desequeati4o1 program is rived from the ranges and domains of

the tasks, and since range and domain determination is not
always possible in FORTRAN, further extensions of the
comment cards are required. Specifically, if the statement

- 53r'



,CALL SUBR (A,B,C,)

is within a,task, there is no way to determine if A, B, and
C are in the range of this task, the domain of the task, or

both. Also, it may not be worth the effort to analyze all

of the equivalence statements. Thus we use comment cardt of

the form ,

4 C *** RANGE (list)

and

C *** DOMAIN (list)

to indicate that all variables within the list are in the

range or, domain' of the currdnt task.

Another piece of information required by automated
analysis is an estimate of the execution time of each task.
We have chosen the units of this measure to be the number of

instructions executed within the task.. If the code con-

stituting the task is straight line code, thenumber of
.instructions is known at compilation time. But if the task'

contains conditional branches or invokes external subpro-

grams, the execution time of the task-is not usually,deter-

minal;le; the programmer must supply an estimate. To this

end we use a comment card of thee form

C *** TIME n

to specify the'execution time as n machine instructions.
Note that specifications of range, domain and time are
required only if the form of the code precludes the utility

froM determining the values.

A'final comment card reduces analysis time by listing

alocal variables that are to be excluded from range-domain

analysis. This card has the form

C *** LPCAL_ list

and indicates that, for this task, variables in the list are

to be excluded fromboth the range and domain of the task.

- 54 -
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This is used mostly for variables that are first in the

range and.then in the domain, as would be the case for DO

loop controls variables.

A PASCAL program wag constructed for this study to
determine range and domain.- It soon became evident, how-

ever, that this program must perform lexical and syntactic
analysis of_FORTRANsource code just as the FORTRAN compiler

must do. Therefore, compiler output was used to determine

the-ta`sk system. This requires, the following:

°(1) A source code-image. This allows the extent of
the tasks to be ddtermined, and comment car's

6

pertaining to range; domain and time to be

examined.
)

(2) An image of the generated machine code. This

allows execution time to be estimated for
those tasks that consist of'only straight

line code. .

(3) Across.reference listing. This allows ranges
and domains:of the tasks to be determined.

If suitable compile options are invoked, all this informa-
tion is in the compiler otftput'listing., The outptit of this

program is the cyclic task system required for a scheduler,

\-)

.
and the names of variables involved irr.intertask communica-

tion. An additional output is a file of the source program

whieh is used to construct .the parallel prograt.

The second utility program is the scheduler, The

inputs are a cyclic task system, an estimate of the execu-

tion time, and a specification of the number of processes. ,

The output _is.a schedule that is not necessarily optimal but 6

has good efficiency. In test runs, the schedules produced,

for 100 randomly generated cycliC)task systems resulted in

93 schedules that were optimal. The expected schedule

length was no more than .158% longer than optimal.
/^
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The third utility program uses the output of the

previous two programs to determine the synchronization
required to insure that the.ichedule is not violated.., The

basic algorithm examines, for each pair of task's to be exe-
cuted in different pcocesseswhich variables are in the
range of one and the domain of the other, For thoie varia-

bles, asynchronous (semaphored) variables must be used.

For each variable Vi it must e the case that Vi E RT

for some task T. Thk possibilities for each variable .are:

(a) For all tasks T' such that Vi c DTI, T' has been-

assigned to the same processes as T, in which case no

synchronization is required.

(p) There is only one task T' with Vi e DTI and it has

,been assigned to another processor. Further, if the

variable name has only one instance' in both T and T',
then'the variable name is. prefixed with a.$ in both T

and T' and the asynchronous variable is placed in

COMMON.

(c.) There are Multiple tasks T' such that Vi .c DTI and

some of these tasks have been assigned to different

processors thanT. In this case, for each T' which has

been assigned to a different processor we associate a
new asynchronous variable $W. This variable is placed

in COMMON. The assignment statement $W = Vi is placed

tat the end of, the code for T, and the assignment

statement Vi = $W is placed at the beginning of the

code for T'.

Another utility pr6qram that would be useful is'one
that actually constructs the code sequences for the various

processes based upon the preceding analysis. This would IDS

4, particularlyjasefLur in a system with a flexible text editor.

This would allow the programmer to add output statements or

as
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exceptioh-handling code. This utility has do firm technical
requirements; it is more a convenience feature for the

prograimer.

Rpults

The methods of the previous section were applied to the
flight simultibriof a ground-launched missile.. :The miethodo-,

logy employed in programming the flight simulation equations
for an MIMD computer can be dttvided into several categories.

These include equation segmentation, scheduling and synch-
ronization.

Equation segementation takes a representation of the
problem, in our case a sequential FORTRAN Program, and
identifies. the tasks. These tasks are considered to be
individual_ computational activities, and could range from

machine instructions to groups of FORTRAN state--
ments. We chose individual statements or small groups of
Statements, where any branching took place entirely within
the group of statements identified as a task. An example o
this, task selection is shown in Figure 15, which shows a

portiori, of the sequential code and indications of some

specific tasks. In thia case a tot&I of .140 tasks yere)
identified. Ten of thell.update the state variables by the

chosen integration method, and 'one updates the independent
variable, time. The remaining 29 tasks are associated with
evaluating the derivatives.

The next step was to estimate the execution time of
each task: SiTice the REP computer executes all instructions"
in the same time, this involved-compiling the program and
'counting the number of machine instructions generated by,
each task. The number of inqtruetions per ,task rangdd from-
-2 to '88, with an average of 34'.6, We next determined ao

maximally parallel task system equivalent to the sets of
tasks selected, and the sequential program for tho e tasks.

.

S.
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0127 0
0128 C*** TASK 17 COMPUTE ACOO
0129 NOX:IACOO*1 . 4001#w

0130 IFITIME .LT. ACDOTM(IA00)) GO,T0e171
0131 ND)(=IACUO

,.

0132 IF(IACDO .LT. LACDD) IACO0=1AC00+1
.0133 171 AC0O=ACUOTB(NDX)4(TIME-ACOOTM(NDX))
0134 .

. *ACOOSL(NDX)
0135 C .

11111

0136 C * ** TASK 18 COMPUTE UDOT
0137 1.100T=RS*vS-WS*0S-32.17*STHETA+MASS*
0138 :(THRUST-RH0/2*(US.04X)*OS+wX)*ACOO)
0139
0i40
0141
0142
0143

0147
0148
0149

;* 0150

11

LC***, TASK 19 COMPUTE FTY. FTZ
GAmTfiEtt(THETA..:THETAZ)*c0Sp4I4(PSI-PSIZ)*SINPHI *
GAmpSI=( PSI-PSIZ)*COSPHI-(THETA-THETAZ)*SINPHI
FY=5441*GAMP31
IF (ABSIFY) .LE,380r GO TO 35
Fy=SIGN(380..FY)

::

35 FZ=844i*GAm
.:c

THE
.;::::

IF (ABS(FZ).LE.380) GO TO 36
F2=SIGN(380.,FZ)

36 CONTINUE
,

::::.::

PTY=FY*CoSpHl+FZ*SINPH/
FTz=FZ*COSpHI-FY*SINPH/ :: ::

0151 c*** TASK 20 COMPUTC ACNAPH
0152 IF (MACH .LT. ACNMH(IAcN)) GO TO 201
0153 NUX=IACN
0154 IF(IACN .LT. LACN) IACN=IACN.4.1
0155 Go TO 203
0156 201 IF (aAcH .GE. ACNMH(IACN-1)) GO TO 202
0157 IF tlAcN 'GT. 21 ZACNT./ACN-1
0158 202 NDx=IACN-1
0159 -203 AcNAPH=ACNTABINDX14.(MACH-ACNMH(NUx))
0160 *AcNSL(NDX)
0161 C
0162C * ** TASK 21 COMPUTE VOOT
0163 VD0T=MASS*(FTY-RH0/2*US*ACNAPH*(VS-WY))-Rgi;US
0164 C

,

0165 C*** TASK 22 COMPUTE WOOT . .

0166 WooT=Os*US+32.17*CTHETA+MASi*(RHd/(-2)*US*ACNAPH*
0167 (WS.4.14Z)-FiZ)
01.68 C * ** TASK 23 COMPUTE LT
0169 NOX=ILT-1
0170 IF(TIME .LT. LTIME(ILT)) GO TO 231
0171 'NDX=ILT
0172 IF (ILT ,LT. LLT) ILT=ILT+1
0173 231 LT=LTAB(NDx)t(TIME-LTImE(NOX))*LTSL(NDO
0174 C

Figure 15 - Task Selection
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, Figur 16 shows 41e task'system'for the 40 tasks com-

prising th problem solution. The task number"and'execution

time (in ma hive instructions) are within the nodes. All

arcs go left to right. Observe that the threeitaske

highlighted in Figure 1.5 (tasks 18,,19 and 20) can all be' 4

- executed in parallel.

Before scheduling, we make, a transformation on the

parallel task system to shorten the solution time. In

,Figure 16 we see that the longest path traverses-nodes 7',

39, 19 and 31, and has a length of 212 units. This path

doe's not-determine minimum execution, time, however, because

there is no path from node 31 to node 7. The ffiinimum ime

is insteadrdetermined by.the cycle traversing 7, 3.9,1A,

6 and 3, which has a length of 252. This yields a minimum

execution time (for n iterations) of n * 126f-constant.

Thenext steps in Our methodology, were scheduling the

transformed task system for execution o p processors and

synchronizing Figure 17 shows the resulting schedule.

The schedules for the flight simula n problem were

programmed -for HEP FORTRAN and were executed n the HEP.

Equation segmentation, in conjunction with the urth-order

Runge-Kutta formula given by (RK41,"was,used for the

- /eight-processor schedule shown in Figure 17. The compute-

-tions of tile integration forptila were also done as parallel **.

tasks. This _scheme was also programmed'using six proces-

sors; the speed-u was 3.98. The speed-up and'efficiency of

the eight procesSbr p4gram, along with the computational

results, are shown in Table 4.

.6 PROGRAM P vA T1 TP S
P

EP

r,

RK ' 8 -2848 '4.87 5.78 72.3%

Table 4. Speed-4p & Efficiency, Eight Processors
1, ,

4
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PHIDOT PHI-- PSI RDOT
8 37 sin(THETA) 37

YeN
33 7

.s

32

- . , . PDOT
7 38 . cos (THETA) 12 WIND (z), ,, ,.

26 . ( .

6 39 sin (PHI).
,

1

QDOT
-s

39 .v::. . 31, .

,/
PS1DOT

II I 111111111111 ..

5 40 cos (PHI) 28 CMIA (t) 18 UDOT US 4121`..

o
THETA. DOT

4 3 , 17 ACDO (t) 27 IYS (t) 10 Z RS

4 0 36

HIPIIIiii ,:i MMM

3 16 RHO (Z) 25NCLDT (MACH) p ill ACNAPH (MACH)... 21f2DOT, WS
MMMMM . .. ..

.1 . II
I I

2 4 21
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, %

.

.. ..

1 . .
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.
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15 ,29 11
1
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Figure 17 - A Schedule Using Eight Processors
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1 P.

Subsequent' analysis has shown that the speed-up shown
in Table 4 can be increased to 7.0. This is accomplished by
reducing the .amount of synchronization. 'The following
'analysis indicates the efficiency losses in the scAution.-'..

Let

A = number of cycles required by actual
computation,

B = number of cycles required by the best
schedule,

C = number of cycles required by synchronization. .

For the eight- processor scheme wIthRK method, the values of
A, B and 0 are:

.and'

,
A = 1384/8 =173 cycles
,B = 192 cycles = 10.9% of A
C ='(78 4- 2)/8 = 19.-5, average

C = 23 for wt'rst case = B

The total number° of .cy,cles is -then given by, --

Cycles" =- A (8,-' A), + C

= 173-F 19 +
= 21,5

The predicted ;solution time, is given by
,

BST' =, Cycles x 28,00p x .8 x 10-6 =. 4.816 Seconds

Corrtpar this to 't Taal 'solution time, given by Table 4,
of 4.87 -se.conds.

- ,. '

Althoilr 'execution 'of the A-10 code was impossible, as .

discussed in ,SectiOn 1, some analysia was' ,glade of 'the fou'r
subroutines ZM6SF101, ZM6SF tO2 , ZK6AF103,- and M6S,Ia10.E.
These subroutine's 'were treated as. a single code segment arid
'Were divided 'into 50 tasks. The total execution time of the
tasks was 28d3 machine instructions, or 2.242 milliseconds.



on HEP, using a single processing' stream. Since the eacu-

,
'tidri speed on'HEP considerably exceeds the requirement",
large amountsvofjaralielism did not seem required. We did,

however, schedule the task system for maximum speed -up,

which for this system resulted'in a solution time of 671

machine instructions or .537 milliseconds using five

processors.' The effiCiency of this solution is 83.5%, but

does hot'include synchronization requirements:

J5334,milliseconds (30 times per second), as specified by

comment lines ,in the subroutine EM6SF101t
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SECTION 4. REORGANIZATION

c.

This section-deals with' problem-solving' by alternate

methods that are either inherently parallel cTslerld them- :

selves to parallelization. Specifically, we cover the pro-
,

blem of solving ordinary-plifferential equations and examine*

Awo examples in the general area Of mathematical library

functions.

Parallel 'Technique
A'
s.for 46inary Differential Equations

General Nethodi
4,

. This section deals with parallel"methods for ,solving a

set of n ODEs denoted by A

y'(t) = f(t, Y(t)) Y(0) = Yo (1)

where.,

tO, t E Rn, y R -> Rn, _f : R x Rn -> Rn
°

I

Most methods that solve (1-) generate approximatiohs yn

go.
to y(tn) on a mesh a.= to < t1 < t2 <...<tN.= b, These .,

.

are called step-by-stepdifference methods. An r-step dif-
ference method is one thatcqmputes Yn+T using r earlier

"valu'es yn,_ynj.1, ,.., yn_e+1.., This numerical integration of

(1).by finite differenCes is a sequential calculation.

Lately, several authors have addresled the question of using
. -some_ of these .eormufas.SimuJ.taneously'on a set of arithmetic-

processors to increase the imtegration speed. . ,

_,--
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Interpolation Method
--

Nievergelt16 proposed a parallel form of a serial

integration method to solve a differential equation, in

which the algorithm is divided into subtasks that can be

'computed independently. The method is-as follows:

(1) Divide the integration interval [a,b] into N equal

subintervals (ti_1, ti], t0 = a, tN = b,

i = -1,, 2, 3,-... , 11 .

4

(2) M'ake a.rough prediction A of the solution y(ti)

(3) Select a certain'number MI of-values yij, j.= 1;

, Mi in he vicinity of y?

(4), Integrate simultaneously (with an.accurate

integration method M) all the system

.
f(t, y), y(to)= yo, t0 < t < t1

yi = f(t,y) y(ti) = yij , ti < t < ti+1

j = 1,..,Mi, i=1,..,V-1

.'

The integration interval (a,b] will be covered with

lines of length (b=N, which are solutiqns of 41) but go

not join at their ends. These branches are connected4by .

interpolating, at t3,.t2, ... , tN the previbusly

found solution over the next interval, to the right. The

time of this computation can be represented by

TPI
= 1/N'Jtime for eial integration)

+ tiMe'to predict y?

+ interp lation time + bookkeeping-time

J o

Nievergelta arallel'Methods for Integrating

Ordinary Differen 1 Equations". Journal OI,Computer and

System Sciences, 1973, pp. 189-198. 4
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. / "-Interpolation can be,done in parallel. If'we assume
that- the time-consuming part is really the evaluation of
f(t, y), the other contributions' to the total time of compu-

?tation become negligible. The speed-up is roughly 1/N. But
to compare this method with serial integration from a to b
using method M, the error introduced by interpolation is
important. This error depends on the problem, not on the_
method. For linear problems thb error is oroved to be
bounded, but for nonlinear problems it may not be. Thus the
usefulness of this method i s restricted to a specific class
of problems, and depends on the Choice of many. parameters

41g4like A., MI, and.the method M.

Range -Kutta (RK) Methods

The general form of an r-step RK method, the integra-
tion step leadidg from Yn to Yn+i, consists Of computing ,"

K1 = nn f(tn, yn)

Ki = hn f(tn +aihn, yn +,bij

Irn+1 = yn + RiKi
ti

with appropriate valUes of a's, b's, and 'R's.

four-step serial RK, method is

K1 = hn yn)

K2 = hf(tn + h/2, y3 + (1/2)K1)

K3 = hf(tn 4th/2,,. yn. + (1/2)K2)

K
4

= hf(t
n

0 Y4+1 = yn

h, yn + x3)

1 /6(K.t, + 2K2 2K3 + K4)

- 66 - .
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bMirAQIcer'and,Liniger17 considered Runge-Kutta formulas

that can be used in a parallel mode. They introduced the

concept of computational front for allowing parallelism.

Their parallel second and third order RK formulas are

derived by a modification of Kopal's results". The

parallerschemes have the structure: .

1

first order: K1 = hn f(tn, yn) (RK1)

second order:

y1 = yt + Ki

K
1

= h
n
f(t

n n
, yi)

1

f(tn + ahn, yn + bKi) (RK2)

Y2 ...112 R2

n+1 1 1 2 K2

third order: K3 = K1
1

= K2 .

K3 = hnf(tn + ahn, yn
2

+,bK.1
3

+ cK23 ) (RK3)

y3 0 = R3 K3 R3 K3 + R3 Kg.
n+1 .11 1 2 2 3

'To

I7N. L. Miranke ana W. M. Liniger. "Parallel Methods for

Numerical Integration of Ordinary DifferentiallrEquation,".

Mathematical Computation, Vol. 21 (1967 \ pp. 303-320.

'

r8Z. Kopal. "Numerical Analysis with-`Emphasis on The

Application of Numerical.Techniques to Problems of

'Infinitestimal Calculus in Single Variable". Wiley, New

York: Chapman & Hall 'London, 1955-A R 17, 1007.,
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The parallel character-of these formulas is based on
the fact that RKi is independent of RKi if and only if
i < j , i ,j q 1, 2, 3. This implies thatit RK1 runs one
step ahead of RK2 and RK2 runs one step ahead of RK3, then
(using Kopal's values of R) the parallel third order RK
formula is given by:

K . = hf(tn,.4.2, y11.0.2)
T,n+2

y1Y
n+3

= y K
n+2 1,n+2

(-5 = hf(t ah, y1 + aK
2,n+1 n+1 n+1 1,n+1

(PRK3)

y2 y2
+

(1-1/2a)K + (1/2a)K
n+2 n+1 1,n+1 2,n+1

= hf(tn a1h, y2 + (al 1/6a)K + (1/6a) K2,n)
m3, 1,n

y3 = y3 [(2a1 1)/2a](K - K ) + K
n+1 1,n 2,n 3,n

where

a = 2(1-3a2 )/(3(1-2.301.

One valteof "a" suggested by Kopal is 1. This gives
al '= 1/2 + 1/217. The above third -order RK formula

requires three processors to. compute the three function
evaluatio6 in parallel..

Themain drawback of (PRK3) is that it is weakly
stable. Miranker and Liniger (1967) show *hat the scheme
leads to an error that grows,linearly with n as n -> and h
-7 0 for ,tn = nh - constant. his problem is due tb the
,basic nature of the one-step formulas with respect to their
y-entries, which are the only ones thp,t contribute to the
-d-iscussion of stability for h -> 0.
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Predictor-Corrector (PC) Methods

The serial one-step methods Of th Runge:-Kutta type are

conceptually simple, easy to cede; se f-starting and numer-

ically stable for a large.classof pr blems. On the other

hand, they are inefficient; because their one-step

nature, they do not make full use o the available Informa-

tion, and their nOmerical stabil.i-ty does not extend to their

parallel mode. It seems plausible/that more accuracy can be

obtained i e value of yr.14.1 is made to.depend not only on

yn but also, say, on.yn_i Yn-2, en-Tlf fn-2'

For this reason-_-ftli-ttg6p method's have become very popular.

For high accuracy they usually tequire less work than

one-step methods. Thus, the desire to obtain parallel

schemes for such methods is reasonable:

A standard, fourth-order,lidams-Moulton serial

predictor Corrector (SPC) ip:

yP = y h/24(55fe ._59fc - 9fc ) (SPC)

i+1 .i-2

vC = y h/24(9 P + 19f 5fc f- ) I

uiti 1 i+1 1 i-1 i-2

op

N The computation scheme (called IcVE) of one PC step to

'calculate yi4.1 is:

Cr lb.

1. use the prddi for equation to calculate an initial

approximatio to yi.1.1. Set i = 0.

2. Evaluate th- derivative function f
i+1*

3. Ifse the corrector equation to calculate a better

approxima ion to yi4.1.

44 Evaluate the derivative function f
c

i+1

k I/
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5. Check, the termination rule. If its isnot time -to stop,
increment i, set.yi+1 = 'and return to 1.

i+1

Let T = total time takenby function evaluation done for
one step of PC.

TPCE = time taken to compute predictor-corrector

equation fora single equation.
A .

Then the time taken by one step of SPC

T1 = 2(nTPCE + 1f).

Miranker and Linigerl (1967) developed formu1aw4t4 the
PC method in which the corrector does, not depend serially on
the predictor, anak the corrector calculations can -be per-
foimed simultaneously. This Parallel Predictor-Corrector
{PPC) operates in a PECE mode, and the calculation advances
s tepv at a time. There are 2s processors and each proces-
s6r performs either a predictor or a corrector calculation.
Th.s scheme,is shown in Figure 18. A fourth order PPC is
given, byr

yp ryC h/3(8fP - 56 + 4fc - fc ) (PPC4)
. i +1 ,1 -1 i i -1 i -2 i -3.

y' h/24(9fP 19f?. - 5fc fc )

1 3.--1 1-1 i-2 i-3

Thus, the parallel time for a single step of (PPC4) is given
by

wh

Vw

= nT
PCE

+ Tf + 3nT
DC

+ 2TTPPC
-
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Predictor

Corrector

1

Compute

Derivatives

Update
State'

Variables

Compute

Derivatives

IMr
Update

State
Variables

i -1

Figure 18 - Parallel PC Scheme

-r/Ticg = Tf,,as defined before a nd

Il
DC

-=9 time taken for data cortunication

i

T = time taken for synchronization.

_-,

r
Generally,

'

the highdi- accuracy and fewer functionevalua-1

tions of PC methods (as compared to RK methods) are obtained

a
at the cost of increased complexity and sometimes, numeri-

cal instability. .The parallel RK metho ll 'ven by Miranker

and Lini4er (1967) d4 not inherit the stabblily of their
. . , . .



serial counterparts. On the other hand, P'PC methods in

Miranker and Liniger, as described above, are as stable as
their serial formulas. This is proved by Katz et.i1.19.

Block-Implicit Methods
A

Sequential block implicit methods as described by
Andria et. el.20 and Shampine and Watts21 produce more

than one approximation of y at each step of integration.
Shampine and Watts and Roesee22discuss block implicit
methods for. RK and PC Eype schemes. A-two-point, fourth
order PC given by Shampine and Watts is:

:

-

C
r f

. .

19N. Katz, M. '.A. Franklin and A. Sen. "Optimally Stable

Paeallel Predictors fox Adams-Moulton Correctors". Computing
and Mathematics with Aipplications,. Vol. 3, (1977), pp.
217233.

'24. D. Andri4 G.' D. Byrne and D. R. Hill. "Natural,
Spline_BlockImplicit Methods". BIT, Vol. 13 (1973), pa.
111-144

ti

21L. F. Shampine and. H. A. Watts. "Block Implicit One Step
Metho, ". -thematicbl Com btation Vol. 23 (1964) pp. 731-1;

740. .,;-

;.---
. )

22,T. ,,,, ser. "A Runge-Kutta for All Seasons". SIAM-Review,'
Vol. 9: ( . 1967), *. 417-452.

f
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1/3(yfi-2+ 4fciLl+13q)'

YP 1/3(yF. + yF + yF) + h/12(29fF - 72fF +79fc.)

i+2 i -2 . 1 i-2 i-1' i

. --Y
1+1

+ h/12(5fF' + afP fP )

1, 1+1 1+2
.

h/3.(fc',+ 4fP +;f13ti
1+2 1 i ,i+1, i+2

(BPC)

Woraand23 describes the natural way to parallelize

(BPC) using the number of *ocesors-= number ofe block points

by the schemes shown inFigure 19. The parallel tittn,for

one Block calCulation given by Franklin24xas:

T = (2nTPCE
+ 2Tf + 6nTric + 4T5)/2

,

Frankli,also gives a performance comparison of (PPC) and

parallel"(BPC) methods in cake Of two proceso;6. °

23p, B. Worland. "Parallel Meth ds for the Numerical

Solution of Ordinary Differential Equations ". IEEE

Transactions 'on Computing", Vol. C-25 (October,'1976), pp.

.1045-1048:

'24M. A. Franklitl. "Parallel Solution of Ordinary

Differential Equations". IEEE Transactions on'Computfrig,'

.,Vol. O-27. No. 5 (May, 1978).
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to

I

Processor 1

Processor 2

Results

P
Yi+1,

p \
fi+1

. c, c

Yi+1 fi+1
. t

(

.
.

,

r I
. ,

P
Yi+2

p

fi+2 Yi+2 fi+2

Figure 19 , Parallel Scheme for BPC

For implementation, we used the parallel predicto-
.

Corrector method in donjunction with the techniques

described Ai SeCtiod 3. For comparison, we also included

the resulti of the lunge -Kutta solutions.

The schedules for the flight simulation problem discus-
sed in Section 3 were programmed using HEP FORTRAN'and were

.executed on the HEP parallel computer. tqle compUtatiOnaL
,results are shown in Table 5. The sequential times T1 and

the parallel, times Tp with p p&cessors are given in.terms

of seconds. For comparison, the times pr the Runge-Kut-ta
,

method described -in Section 3 are,also,included.

- 7.4 -
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PROGRAM P 111

$

Tp S EP

RK 8 28.18

°PC -21.59

*

4.87' 5:78 72.3%

3.33 6.48 81%

TABLE 5 - Speed-up & Efficiency: Predictor-Corrector

and Runge-KuttaMethods

1.

The four - processor scheduleyas run in combination with

the parallel predictor-corrector formula given byqpP

The program ceated -eight instruction streams in paal 1,

'fOur for predictor and four for corrector iteration. he

achieved speed -up and efficiency in this case, as coMpared

to therserial prograM, is shown in Table 5.-Since the

Serial PC methods are expected to be more efficient than

_Serial RAC methods, the difference in' speed-up of their

=
parallel mode is also to be expected. On the other hand,

thedata communication and synchronization in parallel

predictor-corredtor is more than the method using,the RK

formula. These calculations are done in the following'

analysis of the lossok the efficiencies in both programs.

Let

A = number of cycles requitcl by actual computation,

B = number of cycles required by the best schedule,.

C = number of cycles required by synchronization.

For the eight-processor scheme with the RK method, the

values of A; B, C; -are:

A = 1384/8 = 173 cycles

B 192 cycles = 1.0.9% of A

C = + 2)/8 = 19.5 average

and C = 23 for worst-case = 11.91 of -B

A

- 75 -
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The total numher-bi cycles is then given

Cycles = A (B - A) + C

+ 19 + 23: = 215

The pr edicted solutdon time is en by ,-.

PgT = Cycles x,28,000 x x 10-6 =.4.816 seconds

Ifiher the actual 'bolution t me given by Table 5 is 4.87
sec nds.

1
For the 'fbur-pr SeessoPC method, the values of A, B,

A, =- 1384/4 134'6*

B = ,163 = 4.9% of A
/

C = (86 x 2)/4 + 50/$ = 55./5- average

'and C = 58.in worst case = 15. % of

-
1!) . %..

This gives the, total number of cycles required by the
sprogram . ,

Cycles = A + GB - A). 47, C -tea.

= 3W+"17 + 5 = 421 cycles

.,
1.

Tiffs gives the predicted /efficiency for the PC method

,

. /
.. PE

/
.

= 4156/421 = Ef2%,

where the ,Actual'efficiency giVgn by Table 5 is 81$.
.

tr.
Mathematical,Functions.

1 et

ee t.e*

In addition to,the,teorgarlization of differential equa4,
ons, we have-examined_the reorganization of two.common
nctions of a Mathematical library. In the'c4ase of differ-

- , -

tial equations, the reorganization resulted in differerrt4
,
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,
algorithms bei)ig employed, whereas.in the cases we are :abolg

to discuss the algorithms'are identical but the programs, are.

considerably reorganized.

/Shortest Path Problein

Shortest path' problems' are among the most fundamehtal
and commonly encountered problems in transportation and com-

munication networks. We included such .a problem in this

stud] for thred,reasons.. First, it is directly applicable'

to flight simAlation studies as a mathematical utility

function. Second,it is used to schedule algorithms for
generating MIMD programs that solve ordinary differential

equations. Finally, the techniques used 10 derive parallel-
,

_ism clearly show the limitations of automatic detection of

parallelism. We elaborate this third point in Section 5.

The shortest path problem we Examined Was the all-to-
all program: given, n nodes (points, vertices, etc.) and

giyep a distance (cast) between each ordered pair of points,
determine the 'minimum distance (or cost) and path between

all pairs,of nodes. The distance or aost'function does not
require the-distance frOm i to j to be the same as the

distance from j-tb-i. Further, the triang1/e inequality is

not required to be satisfied. Finally, the distance values

may be-negative so long as there are no negative cycles. "

Such h-a problem coeld well be stated as: giVen a_,Wqrnbe'r f

locations (latitude, longitude and altitude) and'gilven 1-

fuel consimption of an aircraft between all adjacent pairs,
of points., what is tWe'minimum fu0....consumption between some

a.

.

giyen point and any other point?

T
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The literature contains well over 200 papers on short-
-es path algorithms25.: We chose Floyd's algorithm26,-

which is very gehemal arid-provides the minimum path as well
as the cost of that'."path. The nodes of the graph are
represented by, the integer§ 1, n and the ,path *length

(cost) is'represented by an n-by-n matrix W where Wi,j is
the distance,from node.i to node j. Node j must be adjacent
to i (otherwise Wi,j has the value ea). The sequential

algorithm is ghoWn in Figur.20. ,For the algorithm to
produce the paths as w'exr as the shOrtest distance, we. need

a se-cond'nby7n matrix Z (often referred to as the optimal-
PolieY.matrix) mhere'Zi,j ig initiated to j if Wi,j'
and:zero Qt,herwise. ,During,executionvof the innermost loop,

-if it is found,that 14j,i + Wi,k is less than Wj,k then.

(in addition tb replacing Wj;k) the value of Aj,k.is
replaced with the current raue of Zj,i. Upon completion
of execution, the shortest path=from vertex a to vereex b is

edetermined'by the vertex sequence:
O

'VA] = Zamb

%12 = Zymb

V3 =
.

Zv2"

b = Z
#

Vq4?

k

.4

*

25N,,,p. 0ar,Ld C.1/4% Pa'ng. Shortest Rath Algorithms:

. Taxonomy and Annotation: Technical Report No. CS-e0-057.,
Computer.SciericeDepartrilent,Ifshington_State University,

A Pullman, WA (March, 1980.

26R. W. Floyd. rAlgorithm 97c Shortest Path".
Communications of the ACM, Vol. 5 (1962), p.

a
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PROGRA1 MINPATH

READ N,W
FOR I = 1 T0- DO

FOR J' = 1 TO Nt DO

a

FOR K = 1 TO N. DO

IF Wj;i. + Wi,k < 1A6,k

THEN

Wj,k <- Wj,i Wi,k

WRITE W

I 1
Figure Minim6m Path AlgOrithm

a

To,determine a parallel version of this algOl.ithm, we

define the code in the most - interior Loop_ to be a task and

denote it as Tijk. The algorithm requires that the execu--.,

tion of Tijk be complete before starting. execution bf Tuvw,

(denoted by.Tijk <A,Tuyw) if ijk precedes uvw in the 4-

natural lexical order. We now determine the maximally

pa allei task system equivalent to,the tfsk systeM of the

equential program by examining the.range and dbMain of the

tasks Tijk. We denote ?herr ange (memory locations that are .

Wtitten.i to by Tijk by Rijk and the domain (memo'ry cells,'

read by jk) by Dijk.
I

. .Notie that
fi

W3 ,k, Wi,

7 9 6

. c

t 1



For determining the range, note that !Re problem' requires

that there be no.negative -weight Cycles (if this *ere the

case there would be no 'minimum path for any nodes, within the

negative cycle). , Thus, if .i. = i ,then

'11

Wj,k _- Wi,j +Wi,k ,

t .Cs. ) . ,

and if. i 4 k then

Thus

Wj,k < Wj,i Wi,k

V

Rijk =1141j,k if i j "and L. .1c.,

t 0 otherwise ?

From, the above range and domain we 'obser've that givep .

distinct° T, T' where

then

A..

and,

D.-
T n R

13IT n Dl,

'T

Si = {Tijk .1<j<n, 1<in

0

0

- 80 -
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Consequently, f6tt each value 9f*-4,4A-11 tasks in Si may be

executed in parallel. Thus:

PROGRAM PARRATH,

for i <- 1 to n do

for all 1<j<n and 1 <k <n,

do concurrently

S<- Wii + Wik
if S W. then31 ,

Wij-.. <- S

is a.(correct program' that produceq the same results as the

'sequentral program MINPATH. The parallel versi9 can, use n2

processors, resulting in a speed-up on n2. Since n2 proces-

sors,may be larger tIlAn the number available, in typical '

systems, we programmed this parallel algorithmofor use,of K

processors whereK is'in the range of 1 to n. This prograM

o is shown' ig .Figures 21 and..22.

The memory limitations of the ?rototype HEP limited us

to a.m4rix site of 40 40. We ran. randomly generated test

cases for thiS si'zt using from-1 tb 14 pr9cesses. The

results.are shown in Table 6. The agreem nt between actual

andipredicte0 efftciinc,is.good.s When p number,/ oT

processes*(P) is a divi!r of the dime sion (N) of the

A MaZrix, the efficienCies-are excelAnt. 46

Oe

Linear Equation Solver

. .Solving a Se pf linear equations is a problem of

central importapce. Nearjytevery mathematical library
i

contains programs for its solution. One 9f the most. popular.
, ...,

4
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'ROGRAM PARPATH'

READ N,W

$K <- p.

CREATE STREAM 1 1)
CREATE STREAM 2 (2)
CREATE STREAM 3 (3)
CREATE STREAM 4. (4)
CREATE STREAM 5 (5)
CREATE STREAM 6 (6)
CREATE STREAM 7 (7)
CALL STREAM8 (8)
WRITE W.

k

O

Figure021 Main Program foi Parallel Path
Using Eight Processes

PROCEDURE *STREAMi ( L)

0

FOR I = 1.TO N DO

FOR J = L TO N STEP 8 DO

FOR K = 1 TO N DO

.

f IF + Wi:k < W3A,

'THEN
WO

_wj,k <- Wj,i Wik
,

$K <- $K + 1

WAIT UNTIL $K = I

Figure 22 Subro tine ''for Parallel Path

V

I
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N

40

40

40/
ti

4 .4

40 5

40. 7

40 8

40 9

40 ip

.40 11

40 12.

40 13

.

40 14.

Efficiency

Solution Time Achieved 'Predicted

I,

- 1.3102
p.

.65408

.45176'

.32808

\\.

:22749

.19565

.16524

'.18217

.16573

.18099

.19492

:2(1017

..13582

. .

TABLE 6 - Performance o

1.0 1.0

.966 .952

,998 , 1.0

..997

.959 ° .952'

6 .952
o

. 99 1 .0 `-t".

. 898 .889-

.988 1.0

. 905 .909.

.84 .83

.779 .769

.931 .952

Parallel Path Algorithm

t.

. ,
I?
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, .

algorithmS is LU decomposition using Gaussian elimination/
With some form of pivoting. We address orLy partial
pivoting'.. Details of this algorithm can be found'in any
standard text on numerical analysis, such as Introductionto
NU erical Analysis27. Figure 23 shows a serial progtamfor
L(1decomposition.. Our method:of reorganizing is to unroll
the DO loops, apply the techniques of Section 3, schedule
the resulti parallel system, and finally write a number of
subroutin s, employing DO loops whose parallel execution is
equival t to the original program.

The tacks we have selected are indicated in Figure 21. .

y consist0of the code segment that works on a particular
olumn j for a particular value,of k. We denote those tasks
by

{.1'=(Tik ,1 1 < K < j < n, K < n - 1

The precedence constraints imposed by the sequential program.
are

=
k

T1-) I j<1 or k<mr.
a

,Thus, C = <) is the task system that represents the
sequential program. The range, and domain of these tasks
are:

,/-11(T?c),= {A(iii) I k<1Sil }
t

D(Ti) = ri(i,41111 1-k<i<n] u [A(i,k) k<i<n )

0 ,

,?y
.

2 C
27F. B. Hildebran4..4New York: McGraw Hill, 197A) .

,

,
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Program LUDECOMP (A(n,n)L.

,For' k <- to n-1 do

Find-:1 such that'-

1A(j,k)f, max {1A(k,k)1,...,(A(fi,k)11

PIV(kj <- -j [ppot row]

7t's

A(PIV(k),10 k(k,k)
6

For i <- kti to n do

1A(i,k) <-,A(i,k)/A(k,k) [elements<ofr]

t

4

For j <- k+1 to n do.

A(11,IV(k),j) <-> A(k,j)

For i <=7k+1 to n do

A(i,j) <- A(i;i) 7 A(i,k)*k(k,j).

.
A.

o , J
eS

: 7

Fid4Ne-23 4=?Qtoig am for LU Decomposition

" /
go
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Frpm this we can observe 'that, for example,

(Tk+I
k+2. Th }

.1,

11 n. I ,11.

.

are all mutually noninterfering tasks and comld'be executed

in parallel. ),\ More specifically, we observe that C'

(T,<), where < is.the transitive closure on the
relatioh

= { (Tk, T )' i,k<j<n .} (T.Iirk Ti(.41) I k<j<n }

,

is-a maximally parallel system equivalent-to C. This system
. :

is Illustrated in Figure 24.

.
,,,

Given the task system.0 we now determine the execution
time of the _tasks and f

r
that,determine a schedule. We

assume i4IPI
a that one multiply andone subtract,,Or one multiply
and one c6mpare,sanstitutes a time step._ Thus, neglecting

. . k
any overhead for loop Control, the execution-time W(Tj) for
each of the.tatks is given by:

t

vk v n+1-k if k=1..
W( .)

. .T
n-k ,, kK) ., -

A
...

Treating the task system C' together with 14(TO, as a

weighted,graph we observe that the longest'path traverses

the nodes :
. .* .

'. :1
1 2 2 3 "3 '' n1-1 nT1, T1, T

2
, T2, T3, ..-,T

n-1'
T
n-1

,
.

We denote this path as.S1 and the length the path as
..

N
n-1

°.L(S1) = r-i+1 +`2

fir
j=2

r

= n2 - 1

-.86,-
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Since the problem Cannot b solved' in a time shorter than

this path length ;, We developed a schedule where the t4isks

constituting S1 are assigned to processor 1 and the remain-

ing tasks are assigned to (n/2] - 1 additional processors.

' Processor 2 executes the tasks

N

4- 4 5 5 n'
T1, T1, T2, Tg, T3, Tn_2

. More generally, processor j executes the tasks

2j--1 . 2j 2j 2j+1 P
T2 , T2 , Tn_2(i_1)

We denote is as Si. Note that this is not a path through

the graph. .FOt the case where n is even, this schedule is

illustrated in Figure 25. SinceNthis schedule has length

n2 - 1, the 'length of the longest path, then this schedule

is optimal.for n/2 processors. Using this schedule we note

that

lim
lim /- =

n ->n->
n->

d3/3 +-0(n.2) 2

(n2-1) n/2' 3
4

.anal his effigiency is achieved to within 2% for relgtivery

small n (n >50T..
.

These schedules wer-pt4grammed usingHEPTORTRAN," and 0
were run, on the H90 parallel computer : POA.hougA°the program

solved'a Set of. recorded'tdming for
4--

"only the LU 'AedomPosition sot that It could, be.compared.with

predicted soluti* filmes. .,,Tattle°7 the actual. and
]

predliCted efficiencies '!or the, nUMbdr,of equations -ranginz 4-

I

a

10 ,tat 35 and the number parainainstiqidtion strums
,

ranging from 2'to 8.

o

9
.4

q
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Ti
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Ti
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T2 T2

3
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1

3
,T1 Ti
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T2

5
T2

5
T3

s

5
Ti

6
Ti

6
T2

7
T2 _

7
T3 k

'VP
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'n-1T1

T7

n-2
T2

n,1
T3

n
-T3,

n
Ti

n

'T2

_
X

J

4.

0

. -

n `e2n-.1- 3n-2 4

n-3 n-2 n-1 n.r.1

Tn_3, Tn_2 Tn_2 Tn_i
n

Tn-1.
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Figure 25 - Schedule Using n/2-Processors (n even)
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no. of
equaT
tions 2 3

number o

- 4

pro ssoi-s /-

5 6 7

10

A

P

.833

.852

.719

.739

V.642

.678

.633

.85

A ..888 .79A, .740 .654 .618 .625

15

P .900 .815 .766, .679 .652 :681

A .921 .843 .774 .758 .67i0 .623

20
P .931 .863, .798 .789 .703 .656

A .934 .878 ,%830 .763 .755' .692

25 I

-P .944 . .896 .855 .739 .788 .726

A .942 ..892 .844 .818 -.757 .744-

30
P .949 .931 .863 .843 .783 '.777

A .948 4.901 .'862 .819 .790 .747

35
r .956 .918 .880 .843 .827 .779

.581

..33

.605

.640

.642

75

.710

.745

.741

.769/

A =Actu'al efficiency.

P = Predicted efficiency.

Table 7 Efficiently 1,1:1 Decomposition /.

-
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SECTION 5: CONCLUSIONS

In this study/We have examined programs that are all in

support of fjight simulation, but'which can alto be'categor-
ized by the-types of mathematical functions or services that

they supply. Categorized in thi manner they are:

(1) numerical approximation of elementary functions,

(2) solution of linear-algebraic equations,

(3) solution of shortest path problems on graphs, and

(4) solution of ordinary differential equations.

For problems in the first category,' we examined the
program at an arithmetic instruction level and produced

parallel code based on this examination. These techniques

produced speed -ups in the rangeof two to three. Since-.

elementary function approxithation inmolves small amounts

computation, these very modest speea-ups are perhaps to be....

expected., In producing parallel code for these functions,

we were guided by the formal work in the area of polynomial

evaluation. We.do not foreseany automated approach to
producing a.-library of elementary functions for a particular-

MIMD computer, but this Aoes not adversely affect the

potential of MIMD computing. Wstorically, elemen -tary func°-

. tion libyries have been cod in machine language and high-

ly tailored for the target machine.

To solve linear algebraic equations, we unrolled the DO

loops, represented the computation as a task system, and
'horn this produced a number of DO loops that could be exe-

cuted in parallel. As we mentioned in Section 2, automatic,

deEection of parallelism within nested DO loops is receiving -*N

considerable research interest. Webelie.)zgikhat,if future

Air Force simulation requirements include flexible hibtlyr

representations (generally requiring solution of lin#ar

algebraic equations), either the algorithms developed here

will be of benefit or automat -ic recogniters of-parallelism

within nested DO, loops will be available. The speeA7up
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available in this problem typa,is bounded only by the size
of the problem.i For example, given a set of 100 linear
equations, our:algorithm-solves'them approximately 35 times
faster. than a sequential equivalent, ang with very good

efficiency.

Producing aearallel version of the shortest path pro-
gram involved. unrolling the DO loops and treating the

resulting codatas a task system. To determine the preced-

ence relations, however, we use information from both the
code.of the'program and knowledge of the input data sets for'
whiCh'this program was correct. Thus it is difficult to see

how automatic _detection of parallelism within DO loops could

have produced the same parallels we did. But this should
not detract_ from the benefits of MIMD computing. In most

flight s4-m-e-la-tIbn programs, minimum and maximum path algor-

ithms are usually utility routines; their status as library

function should be .ors the case for 'th'e linear

equations'; parallelism and speed-up is bounded only by the

si)e of the problem. Bor.example, given a shortest or long-
.

Jest path probAm involving 100 points, a speed-up of 100
over an equivalent sequential program is achievable With
efficiencies near 100%.

For solving ordinary differential equations, a variety
of techniques Were investigated. Those_ described in Section

3 seemed most successful. Two distinct flight simulation

programs_ were :examined, using these techniques, Yhe ground -

launche missile and the aerodynamics portion of the A-10

flight s mulation. The A-10 aerodynamics is approximately

twice as uch,code as the missile simulation (2803 machine
instructio s versus 1384) and presumably rep sents,the

approximate fidelity of simulations curient y used for

training purposes. On these assumptions w conclude that a

MIMD computer.dt the power' of HEP could Re used in Air Force

flight simulation projects- in two ways: f

(1) as'a multiprogramming comp ter capable of running'
several concurrent si-mul tions (If the fidelity of

he'A-10 simulation, o'

92 -
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(2 as a computes capable of running one or two con-

current flight simuratidns of significantly more

fidelity,than the current A-10 programs..,

7 Gr,eater fidepty is possible not only in the aerodynamic .

section but also in computing, visual cues or the trainee.

,Should an MIMD computek of significantly less power

than HEP be employed for flight simulation, our study
indicates that there is adequate pafallelism within these.

types of, problems that lesser computing powerwould

adequate for single simulation programs.

.e

10/

a
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