v

<

' ‘ DOCUMENT RBSUME

“ ED 210 037 IR C09 856 N e s
' T . .
AUTHOPR = ‘Lord, Robert E.; And Others o : -
TITLE Multiple-Instrugtion, jMultiple-Data Path Computers: };
. T Parallel Pnocess-nb ILpact on Flight Simulation
. « Software., Final Rébor;. ‘) -
INSTIPOTION .Defielcor, Inc., Denver, Colo.; Washington State .

. . Univ., Pullman.
SPONS AGENCY (\Air Porce Human Resources-lab., Broéks AFB, Texas. S

FEPORT NO AFPHRL-TR-B80-64 .
PUB DATE Aug 81) "
CONTRACT F33615-79-C-0009 ’ . , -
NOTE . 104p. , : .
. . -~
EDPS PRICE MF01/pC05 Plus Postage. ‘
- DESCRIPTORS *Computer Programs? *Computers; '*Flight Trainirg;
Mathematical Formulas: Mathematical Models: C N
"y N) *programing: *Simulation ' ,
IDEW%IFIEPS *Computer Architecture ‘ N
ABSTRACT

whé ,purpose of this study was to evaluate tle
parallel processing impact of mul*iple-instruction multiple-data path
(MIMD) computers on flight simulation software. Basic rathematical
functions and arithmetic expressions from typical flight simulation

\ goftware sere selected €nd run on an MIMD computer to évaluate the P

improvemen*t in execution time that regults from the parallel)
archi tecture cf this type of computer. Recommenda€§ons as to the
types of tasks which are optimally suitable for thig computer
architecture are made, .together witlr the improvement in execution

speed to be 'expected. Tyentye«gix referénces.are listed.

(Author/LLS) ’ o . .)

J " .
.) ’-&-i

S !

Ry ' T T T ‘

'S &
, N) L TS~
‘ N

¢ A4 ;- » .o /
cy - , ‘
- ok e ok sk oKk koo ook 3ok ok ok 3k oo s o ok ok ok oK ke ol ok sk Sk ok ook Rk ook ok ok koo ok ok ok oK ok ok HOK oK o koo e kekok ok
* Reproductions supplied by EDRS are the best that can be made *

* from the original .document. ‘ *
sk ook ok s sk Kok ok ook ok ok ok ok ok ook ok Kok ok ok SRk ko ok ok ok ok ok kK kR KR KR sk ok ok kK ok ok

Al

%,

IText Provided by ERIC *

2

U.S. DEPARTMENT OF EDUCATION "
¢ NATIONAL INSTITUTE OF EDUCATION I
EDUCATIONAL RESOURCES INFORMATION 1
AFHRL-TR-80-6 1 - CENTER (ERLC) S
. This document has been reproduced as

tecerved from the person of organization

onginating 1t
 Minor changes have been made to improve

reproduction quahty

.

® Points of view or opinions stated in this docu
. ment do not necessanly represent officiat NIE
" positon of policy

PATH COMPUTERS:
PARALLEL PROCESSING IMPACT ON . *
FLIGHT SIMULATION SOFTWARE :

. . MU -INS] I - -
. m— H _/MULTIPLE-INSTRUCTION, MULTIPLE-DATA

By

Robert E. Lord
Swarn Kumar
W ashington State U niverarty
Pullinan, Washington 99164

Rodney A. Schmidt
Deneleor, Inc.
3115 East $0th Avenue
Denver, (.nlnrgdo 80205

¢ OPERATIONS TRAINING DIVISION
Williams Air Force Base. Arizona 85221

2 2>

I

t e~

-
¢

\,

LNHMOVC OUVIM

.

Angust 1981

Final Report

v

Approved for pubhic release. distnibution unlumited

/

e Q 4

LABORATORY -

o | . L N
AIR FORCE SYSTEMS COMMAND .\
BROOKS AIR FOR§E BASE,TEXAS 78235 \

1Y

- in. vonnection with a definitely Covernmenl related procurement.

NOTICE . o

¢
13

When Government drawings. spc,mflcaer other data are used for any purpose other than

the United Suates

Government incurs no responml)lhl\ or an\ obligation wh‘alsoevcr The fact that the
Government may have fermulated or in any way supplied the said dra\ung~ specification-. or
other data. is not to be regarded by unph(allon or otherwize in any mannvr construed. as
ll(enamg the holder. or any other’ person or corporation: or as c¢on eyving any rights pr’ :
pcrlL»mn to manufacture. use. or sell any pal('nu'd invention that'may pn any way be related

therelo.
g . -

The Public Affairs Office has reviewed this report. and i.l is releasable to the National
Technical Information Service, where it We available 16 the general public, including :

“foreign nationals.
- N N

:

This report has been reviewed -and s approved for publication.

v

TERRANCE k. TEMPLETON

Contraet Monitor s
MILTON E. WOOD. Technical Director ™ Lo B :
Operations Training Division .) . : ’ >
/,, N \ . fff\ \)
RONALD W, TFRR) (‘oloncl USAF ’ _ ! -0
Commander . /' ' ;" .
» i I. ! v d
s f
o « ‘
N - :)
S if ‘: ’ »)
i .
. . }a,;;j <
1 ; :! i /%—
P gc .. w', . N
. a .

N

»

P
—

lv
J i) oo i
1 UL
. i . ;
¢ s , , \
' ¢
- 4 / e :
v Y
- s M . ¢ n ~ .
o - 1
4

s
3 L
A
‘n

- - -

’ -
‘. !/’ . PREFACE .

N o
The purpose of this study was to develop a technique to optimize software for execution ona 3
Multiple-Instruction Multiple-Rata Path (MIMD) computer and test its efficiency on existing flight
simulator programs. This effort was performed in support of the Air Force Human Resources
Laboratory’s work on Advanced Simulatér Concepts, which is, in turn, part of a larger effort (or
A thrust) entitled *‘Engagement Simulation Technology,. . .

/ The work was accomplished by Denelcor, Inc., Denver, Colorado, and Washington State
University (WSU) under Project 6114 sponsored by the Air Force Human Resources Laboratory,
\ Operations Training Division, Williams Air Force Base, under contract F33615-79-C-0009.

The principal investigators and authorsare Dr. Robert E. Lord of WSU, Ms. Swarn Kumar of
WSU, and Dr. Rodney A. Schmidt of Denelcor, Inc. Patrick E. Price was the Air Force project
engineer throughout most of thls project; however, during the final stages, he was succeeded by
Terrance K. Templeton.

. NOTICE Y

& /
When Government drawings. specifications. or other data are nsed for an\y purpose other than
if connection with a definitely| .Covernment-related proenrement. the United States
Government incurs no responsfflity or any obligation whatsoever. The fact hat the
Government may have formulated or in any way supplied the said drawings. specifications. or
other data. is not'to be regarded by implication, or otherwise in any manner constrned. as
licensing the holder. or any other person or corporalion: or as conveying any rights or

permission to manufacture. use. or sell any patented invention that may in any way be related

therelo.

2 ‘ -

The Public Affairs Office. has reviewed this report. and it is releasable to the National

Teclmic&nformalion Service. where it will be available 10 the general public. ficinding
/

foreign ndyjonals.
.

This repog has been reviewed and is approved for publication.

TERRANCGE K. TEMPLETON ’ /

Contraet Monitor

" A
MILTOY E. WOOD. Technical Director
Operations Training Divisiom :

1
RONA& W. TERRY. Colonel. USAF ' ’ /

Commander*

ey o~ " -

~pr
-7
4

- TABLE OF CONTENTS

4

a

.

SECTION 1: - INTRODUCTION‘)....’.....'.....‘......5........‘......

'Y ‘ L4

COMPULEr ATChIiteCEUTE.s.esceeseecnerenraecansnosendoseeaifesd
TaSKSe/smeeosessoossssiosssssadosssscsossssssosassansascaacd
Synchronization..............«.........5............1...8
SWitCheeeeoeaeeoesasssssssscscsssassossssssssavsssssssaseed

* PORTRAN EXteNthONS..,eeeeeeeaceeonncennssesneemencanessdd

Problemlselect'ion.....o00.0,,000..0.0000'00000000.0.0...'.0000010
: 2

. , S \\ . - | :
SECTION 2: PARALLELISﬁ\AT THE MACHINE INSTRUCTION LEVEL..13

\;

\

>

Elementary Fuﬁctlons.o..roQ\ooooooo 1'000000000000.00.00000013

3

Evaluatlng Polynomlals.o\\ooo0000000000000\:000000‘00000013

4

Spec1f1c Examples......................................18

. 0081ne..........*¢...... AP £ 1
LOGarithmMececececeenesesebosossascccacsacsanscnsncaesall
General Code Sequences......... D 1.
" Tree Height Reduction TechniguesS...cc.eeevereioceaeeess29
Specific Examples...a....... G

@ -
o r ~)
. y‘ .
¢ p ’

. . SECTION 3: PARALLBLISH AT THE TASK LEVEL.oe.eueooecccaaeed]l

t

'TaSk gystems.oo.ooo000000000000.0000000;00000000.0000000000;37
.SchedullngooooofooooooooooloooooI’OOOOIOO0.0000000.0‘00000000041

Standard Task Systems.goooo:‘boo 0.00000;0000‘00000000.0041

Cyclic Task §yStemS.....eeeehecfectocdececcoccnctacendedl
Synchronlzation.
Automated Technique.
Results....;...ﬁ...u..........2......;.,.....Z.....u...;;g57 :

o.00000,00‘000000)0..0000'000000.0000'0000:047
00.00000_.0000.‘000000000000000000000'000052

.

i -~ <

SBCT_ION 4:" REO&ANIZATIO&...v.............O...‘o....00010106'4‘- . -

' Parallel Technlques forJOrdlnary Differential Equat10ns...64 =<
General Methods....”.............s....................s64
) Interpolation Method....ievevvrsresionnsereassseassnsabd
Runge Kutta (RK) Methods....................l....5..66
Predictor~Corrector MethodS..i.iesersscnntossnnsesssb9 .
Block Implicit MethodS..vvissennenennnrnnnsnneeeneas?2 .
Resqlts..a,..xi...rfz....L....;.............2..........7¢
Mathematical Functions...............f...................:76
Iﬂk\ Shortest Path Problem.....eceeevssssencsssssssstoesyensl? ' -

Linear Equation Solver.......oo..oo...oo..oo'00000000\0081

i § -

SBCTION 5: .CONCLUSIONS.O._..:\.....‘...Ooop......Q.........91 .

« .
‘ v [

P N

Oy a

S
~
\-

SECTION 17 INTRODUCTION

—

"1 Real-time flight.training. simulators generally use
several single- -insfruction single-data path (SISD) computers
_to attain the required processing capabllxty. This is .
similar to the capability offered on a smaller scale by a
multiple-instruction multiple-data path (MIMD) computer.
Until recently, however, a ‘practical functioning MIMD etm-
puter had not been implemented -- all predictions of
increased speed and fldellty with MIMD architecture were
purely theoretical. Even though an operating MIMD computer
now exists, there are st111 problems obtaining the maximum
eff1c1ency from-the software. Because the trend is toward
more parallel computer processzng and parallel processing
configurations, the Air Force sponsored thlS study to
develop the technology needed to'take advantage of "the"
benefits offered by MIMD architecture. The purposes of this
study-were to determine which software technlques are most
practical to 1mplement, and to determine the 1mp11catlons of
using an MIMD computer in real-time simulation.

~

»

~

/ .
. Computer Architecture
L]

‘The machine used in the study was Denelcor, Inc.'s
Heterogeneous «Element Processor (HEP). HEP is an MIMD
machine of the shared .resource type as defined by Flynn‘.
In this type of organization, skeleton processors compete
for‘executlon resources in e1ther space or time. For
example, the set of ~peripherall processors of the CDC 6600
may be viewed as an MIMD machine implemented by the time-
'multlplexlng of ten prbgess states to one functlonal unit.

\

M. J, Flynn. “"Very High Speedxcomputiﬁé Systems"
Proceedings IEEE, 54 (196%), pP. 1901-1909.

~

»

"In a HEP processor, two queues/ time~multiplex the pro-
cess states. One gqueue provides input to a pipeline that
fetches a three-address instructign, decodes it, obtains the

" two operands, and sends the information to”one of several:
‘pipelined function units that complete the operation. If

the operation is a data memory agcess, the process state
enters a gecond queue. This qu
lined switch that‘;nterconnects several data memory modules
with several processors.” Wwhen /the memory access is com-
plete, the process state is returned to the first queue.
Flgure 1/shows the processor organization, and Figure 2
Shows the system layout. ¢

- Each HEP processor supports up. to 128 processes, and
nom1na11y begins executing a/new instruction (on behalf of
“some process) every 100 nanoseconds {ns). The time required
to complete an’jinstruction is 800 ns.. Thus.if at 1east
eight’ indepéndent processe} (processes that do not share
data) are executimg in one processor, the instruction execu-
tion rate.is 107 instructions per second per processor.

HEP ihstructions and data words are 64 bits witle. The

floatlng point format is slgn magnltude with a hexadecimal,

. seven-bit, "&xcess-64 exponent. All functlon units, except

the d1v1der, exeCute one- 1nstructlon every 100 ns. The
divider can support th1s rate momentarlly but is slower on
the average. b :

A ddmain of protection inh HEP is
| consists of a set of processes. with the
The "TID

FROM DATA MEMORY TO DATA MEMORY
VIA SWITCH . “VIA SWITCH

PERFORM
FUNCTION

/ .
- PERFORM
FUNCT 10N

\ ' N
FETCH ‘ | REGISTER STORE
OPERANDS - MEMORY \ RESULT

/ FETCH ﬂl
\ insTRUCT 08 4

61

PROGRAM
MEMORY

B

w

Pigure 1 - Processor @ganizggion

-5 -

10

PROCESSOR

PIPELINED
SWITCH ©

’

MEMORY

.

\

v

~

PROCESSOR

MEMORY

Pigure 2 — HEP System Layout

- .
s

addresses defining the reglons w1th1n the various. memorles
access1ble by the processes in that task. In this way, pro-
cesses within a task may cooperdte but are prevented from '
communlcatlng with those -in other tasks. Processes in dif-
ferent tasks or processors may communlcate via data memory
if’ they have overlapplng allocations there.

Processes "are_a scarce resource in HEP. In addition,
"the synchronlzatlon .primitives used in HEP make processes
Jifficult to virtualize. ‘As a result éthe maximum number of
processes a task. uses must be specified to the system when
the task.is loaded. The operating system insures that the

* ‘total allocation of processes, to tasks does not exceed the

number available. A create fault (too many processe$) can
occur only when one or more tasks have created more pro-
cesses than they were allocated. In this event, the offend-
ing task or tasks (not necessarlly the task that actually

caused the create fault) are removed from the processor.

/” -

protection violations, create faults, and other error
conditions arising within a process cause traps. ‘A trap is
the creation of a process éxeecuting in a. superv1sor task. -
Sixteen tasks aée available in' each.processor; eight are ‘'
user tasks: and the other’ eight are correspondlng superv1oor
tasks. When a proces§ causes a trap, the entlre task is
made dprmant to -prevent further executlon by aqy process lq
it. .A process 1is created in. the cOrresponding superv1sor
task to handle the coqdltlon. Thls scheme is not used for
create fault, however; iga crea€E~fault/suspends executlon of
all processes, regardless of task,'except those actually
handllng the faylt. -) { .

.

Create fault occurs before all proqgsses have been
used. This allows any create instructions 1n:progress to
complete normallyy, and allows for the creation of’the create
fault handler process. all other traps in:HEP are precise
in the sense that they prevent the executlon of any subse-
quent 1nstructlons 1n the offendlng task. .

- ~ -
-

. . .
. . - .. .
.
. < ., ‘ .
.

. Synchronization - . "
. A Any register or .data memory location in HEP can be_ used
\\\‘ »to synchronize two pProcesses in a producer- consgumer fashion,

This requlres three access states: a reserved state to pro-
vide for mutual exclus1on, a full state, and an empty state,
When an instruction execﬁtes, it tests the states of loca-
tlons and modlﬁ}es them indivisibly. Typically an instruc-
tidn’ tests jts sources §u11 and its destination empty, 1If a
test -fails, the Process reattempts the 1nstruct10n on 1ts
next turn for servicing. If all tests Succeed the process
“executes the 1nstructLon andssets both squrces empty and- the
; destination reseryed 'The operands from the sources are
. . sent to-'the function unit, and the program oounter in the
ocess state is 1ncremented *When the functign un1t -
fgsentually wn&tes a reSult in the dest1nat10n, 1t sets the
destination. full,, : .

‘L “) A deStlnatl‘n may be tested full/rather tﬁaﬁ’empty
preserve the state of a source or to override the state f a
source or destlnatlen. A reserved state, however, may not

* be overridden except by certain privileged 1nstruct10ns.

L4

Input-qutput synchronization -s handledfnaturally by
mapping I/0 device registers into data memory address space °
v (an interrupt handler is just a process that is attempting
to read an input location or write an Output location). I/O
‘device addresses are not relocated by the data memory base
. address. All I/O-addressed operatlons are prlv%leged

. ‘ ~
¢

~
< < .
¢ Switch ' N : . N
N <, s) « "/ N

‘u The switch that interconnects processors and data
., memories to allow memory- sharing cons1sts of a number of
' nodes connected by ports. Each node has three ports and can
s1mu1tane0us1y send and recelve.a message on each port. The

messages contain the address of the recipient, the address -

of the originator, tBerdperation to be performed by the

. recipient, and a priority. Each switch.node receives a

‘ message on each port every 100 ns. The node attempts to
retransmit each message on a port that reduces the distance
of -that message from its recipient; for this purpose, each
node has a table that maps the recipient address into the
number of a port that reduces distance. If there is

. conflict for a port, the node routes one message correctly
and the rest incorrectly. To help insure fairness, an
incorrectly routed message has its priority incremented as
it passes through the ane, Preference is given in
conflicts to the message with the highest priority.

-,

The success or failure of the operation (based on the

access state of the memory location) must be reported back

7 to the processor so it can decide whether to reattempt the
operation. Thus, the tlme requ1red to complete a memory

operation via the switch includes two message transmission

tlmes, one in each directjon.
I 4

The propagatlon delay through a node and its a53001ated
. wiring is 50 ns. Since a messade is distributed’ among two _
or three nodes at any instant, the switch is ®two-colorable >
to avoid conflicts between the beginning,of one message and_ .,
the middle of another. When the switch fills-up due to a 7,
high conflict rate, misrouted mesSages begin to "leak". f'
Every orlglnator is obliged to reinsert a leaking message .
before inserting a new méssage. Special measures are takén
when the priority reaches its maximum value. This avolds *
. '1ndef1n1te delays for such messages. A préferable sgﬁzée ! g
. - would have been to establish 'priprity by time .of’ message ,
creation, but Fhls would have required too many b1é§. \

, |) s) -. .A ‘ . } \ '
- FORTRAN Extensions C -) y

>
-t

-~ ()
Two exten81ons £ PORTRAN allqw parallellsm in source
‘programs. Flrst, subroutlnes may éxecate in parallel with .

A <
3

F"f N o~
o »

their callers, either by being CREATEG 1nstead of. CALLed or .
by executing a RESUME before a RETURN, Second, variables
and arrays whose names begin with "$" may be used to Coo
transmit data between two processes via the full-empty
discipline. A simple program to add the elements of an
array S$SA is shown in Figure 3. . The{ subroutines INPUT and
OUTPUT perform obvious. functions; t e‘subroutine ADD adds
the elements. There are a total of 14 processes executing
as- ’a’ result OF running the program --.tHhe main program
itself, the INPUT and OUTPUT subroutlnes and 11 coples/of
ADD. §

e i

As a parallel computer, HEP has an advantage over SIMD
machines and Jnore loosely coupled MIMD machines in solving
large systems of ordlnary dlfferentlal equations that simu-
late continuous systems. In th1s application, vector opera-
tions are d1ff1cult to apply because of the precedence con- -
straints in the equations, and loosely coupled MIMD organiz-

- .ations are hard to use because a good partition of the pro-

&

&y

blem to share workload and minimize communication ‘is hard to
find. Scheduling becomes relatively easier as the number of
- processes increases. It is quite s1mple with one process
per 1nstruct10n as in a data flow archltecture.

- ' ol -

:#

. Problem Selection ° *

.

4

The contractor principalqlnvestigator and the, Air Force

segments xamine and select. These included tens of
thousands’ of/ source lines provided by the Air Force contract
monit : several programs provided by the contractor *
principal investlgator. The contract monitor provided the

lation~system for the T-38B and A-10 aircrafts. These

) programs ‘are clearly most'representative of current and -

future simulation programs. A complete program, however,
was too large for the scope of this study. Futher, these
y'programs supported a "manp in the loop and had inputs and

2 -
e * /t’
.

~c

a

10

20

ADD UF THE ELEMENTS OF -

THE ARRAY $A

REAL SA(1000,$S(10);$SUM

INTEGER I

CREATE INPUT($A,1000)

po 10 I=1,10 '

CREATE ADD($A(100%I- 99),$5(1) 100)
CONTINUE

* CREATE ADD(S$S,$SUM,10)

CREATE OUTPUT($SUM,1)
END

NOELTS ELEMENTS OF $V

ARE ADDED AND PLACED IN $ANS
SUBROUTINE $ADD(S$V,SANS,NOELTS)
REAL SV(1),$ANS,TEMP

INTEGER J, NOELTS
TEMP=0.0

Do 20 J=1,NOELTS

" PEMP=TEMP+$V(J)

CONTINUE

SANS=TEMP

RETURN ‘ -
EN D N _f(,‘,,.&

pigure 3. HEP PORTRAN Example
o

-1 - .

. % : ‘ , .
:outputs e;ternélftd’the cbmputer. ThusL‘tﬁe T-38B and A-{10
simulation Programs provided interesting code segments fo
analysis, but could not be executed on HEP. Four subrou-
tines, however -- constituting the solution of the flight
equatlons for'the A-10 alrcraft -- were selected for the | o
study. The samé Subroutines 1ﬂ the T-38B simulation used. .
more than 50% of all of the CPU cycles used by the total .
.Ssimulation. Thus it wes felt that -the results gained from
studying these subroutines could be extrapolated to the

entire simulation. - e, ' -
To include a complete gxogram whose serial and paral-
lel versions could be executed on HEP, the contractor
s furnished a program that simulates the flight characteris-
‘tics of a ground-launched missile.’ This program is a
~sequential FORTRAN program of 442 source lines that solves a
set of 10 nonllnear, first~order differential equatlons.
The code supplied by the Air_Eofge contract monitor
included a library of mathematical functions that many of
the modules invoke. Thus, one elementary function and two
mathematical‘fupctidhs were also included in the study.

!

N

S
v.

SECTION 2: PARALLELISM AT THE MACHINE INSTRUCTION LEVEL ~ |-

.

4
-~

Elementary Punctions

>

A significant computational-task in any scientific .
computing activity is approximztidg elementary functions

- (SIN, LOG, .SQRT, etc.).. The extensive mathematical library
in the listings supplied by the Air Force contract monitor |
indicates that this is the c7$e for flight s1mu1at10n.

-

BEvaluating bolynomials. ’

4

Since the very beginningé of electronit digital
computing, the preferred method of approxlmatlng elementary
functions has been polyn&mlals. We have found no evidence
that parallel computing -alters this choice. Thus we

concentrate on’ parallel methods of evaluating polynomials.
Q- . B ~ .

&

The evaluation of a polynomial of degree n,

Po(x) = apg + a1x + ... + anxd : ay)
L~ . .
requires 2n operations2: Thus Horner's rule

n. n .
Pi = (P‘i+1x)' + ai i = ?-1,!‘1-‘2,...,0 .
Pn(x) = PO - i , . .

-

2p. Winograd. "On The Number of Multiplications Requlred
to Compute Certain Functions". Proceedings, National
Academy of Science USA,+Vol. 58 (1967), pp. J840-1842.

.

- 13 -

- * !

is optimal “for SISD computers because gt requires precisely
2n operations and 2n time steps. But we know that, given n
proceéssors, the lower bound for polynomial evaluation is
[logynl+1 time steps3. “ From this, and future examples, it
is clear that Horner's, rule is no longer optimal for MIMD
computing, where execution time is the criterion.)

To describe technlques for evaluating polynomlals, we
require the f0110w1ng notat10na1 conventions: :

M]
3

(n%m) denotes a polynomial:-of n terms in which the
smallest is multiplied by x™, and

(0,m) denotes the variabple x to the mth power.

)

)

To analyze the performfnce of the algorithms, we assumgd:

(a) a sufficient number of processors that execute
arithmetic (add, multiply) in one time step are .
available,

(b) results of an operation are available to all
' processors in the next time §=:pL

) .
(c) processors suspend operations until all operands
T are available, and] . K

(4) there is no opekatlonal overhead in ass1gn1ng a

. process or performing an operation. %m

For HEP, assdmptlons a, b, and ¢ present no problgm SO
long as "suffilcient" does not exceed the number available
(for elémentary funct10d§J this is the case). In general,

\ .

-+

31an Munro. "Optimal Algorithms for Parallel Polynbmial
% Evaluation". Journal of Computer and System Sciences, 1973,

assumptions will ﬁét’hoid-~as

'élementary function, however,
of certain coding. p;actices. .

A,stratghtforward me thod
Ph(x) is to degompose it into

-~

will be seen in the code for
the assumptions do hold by use

of evaluating a polynomial
two polynomials of lesser

, deg;ee. This method computes - Pn(x) as
L oGn/241

Pnh(x) Qn/z(")'x + Rn/z(x) -
where
+ = n/2-1

A
and
- n/2
“n/2 = /2 et g , ,

and then computes Q (x) and R (x) similarly by ¢,
binary splitting. Téus it starts by computing in parallel

A

and then . \
\ .

2 . ” 14
(A1x+a0)x + a x+a4,... s

3

x+aé,(a7x+a6)x2+ ag

The time fequirgd/for'this algorithm is approximately
2 logp n.

This algorithin can be improved by performing the binary
splitting in the Fibonacci ratio instead of in ‘halves. Let
F(i) denote the ith element of the Fibonacci sequenég\

. N ' /—"\t
1),1,2,3,5,8,13,21,... !

and.for a polynomial of degree n determine the least i such

that F(i) > n+1. We then split the evaluation of the poly-
nomial by:

20"

v (n+1,0) = [n+1-P(i-1),0] [0,F(i=-1)] + [F(i-1),& -

’
. The execution time for 'large .n is.a?log n + O(log n) where 4 .
: ,) : . AL -
a= 1/10g(1/2(’5 + 1)1(= 1.44., -
/>‘

R P .
An example of the_uég of Fibonacci splibggng to evaluate a
polynom}al of Qegrée 20-is shown in Figure 4.
‘/ ;N . —

Improvements to the Fibonacci splitting -method have ,T
‘been reported (Murro, 1973), but the improvements appear
only for very 1arge values of n. For elementary functions
where the degree of the polynomials is generally'less than
Zoffa,discussipn of these improvements does -.-not seem ..
warranted STable 1 presents the 1argest degree polynomial—
thit may be evaluated in t steps using Flbonac01 sp11tt1ng

verkvus using the best known algorlthms.

‘

~ ‘ ~ _ e .
' e =2 3 4 s 4 7 8.9 10 oM
Fibonacei - . 1 2 4 7 12 20 33> 54 =88 -143
" Best Known 12 4, 7.2 21 37 63 107 187

cx

v

Table 1 - Greatest Degiee 07 Polynomial Combhtablexin Time t
s v /’ . ’ -t

tion of Horner's rule to make it dmenable to parallel com-
Puting has been reported by, orn. If the execytion fime
of an addltlon and a mu1t1p11cat10n are the same, however,

¥ ' ’ ° Y 1
R ‘ / .o -
v 3 ‘ ’

In addltlon to the spllgzlng techniques, ya aliza--

ha 4W. S. Dorn. "Generay&zation of Horner's Rule- for
Polynofial Evaluation"./ IBM Journal, April 1962, pp. °

239-245.
' R « . ' “ "
. » - 165‘ - '.“‘ .

{ A R vt . A\ 21 ‘ -
EJSU;‘ . ' S \ : O

L]

Jigure 4 ~ Fibonacci Splitting of Pyg(x)

1,00 <1,
X
0>

1,05 <1,1X
<

.

~

’

3

A

egdreésed heres._ o

‘the range-0

this method requires 2 log n steps for the evaluation of an
nt order polynomial. .- ’

&
’

Specific Examples - B
- - , , . .

<’ S -
The approximation of elemenzsry functions by an MIMD

'computer“requires not only techniques for parallel’ evalua-

tion of polynomials but also techniques fory generating coef-
ficients of "best" approximations. The lafter subject has
received extensive atténtion in the literature and is not

L4

~—The specific elementary functions chosen to be included
in this study were the approxiﬁation of cosine and logarithm
(basey) . The algorlthms use a 64-bit floating point word
with an 8 bit exponent (Radlx 16) and a 56-bit normallzed
fraction. . . A . ST

Cosine

The cosine function accepts an argument (A) in the
range -1611 AL 1611 agd produces a result in the range
-1 < cos(A) < 1. The method used converts-the argument into

< x kX 2n by the relatlonshlps

cos(x) = cos(-x) =e¢cos(x+2Kmn),. e

Next,” the argument is reduced to the range 0 to n/2 bi the’
relationships pictured in Figure 5.)
- v

' ’ A o T :;Q
! , T 'a’}:? . .
T % . D
’ ~
> /
(b

(

5The intéreéted reader is referred to Computer *
Approximations by J. P, Hart, et. al. (New York: Wiley &,

Sons, Inc., 1968). . : " e
. N

.

cos(X)

[}

v cos(2n1-X)

51V2

Pigure 5 -~ Cosine Fungtion Relationships

Finally, the function is approximated by a 9th degree poly-
nomial in the converted argument xzt That is: .

L Cos(X)

More concisely:

cos{a)
cos(b)

cqs(c)

Al

6,y defined

[t}

Pg(xz).
cos(8b)

N

scos(y)

4

-0

cos(c + 2knm)

L

<

A

-

65(‘1,1)
b >0

|}
k€(0,1,2,ono,1012).
0<e <2,
§e(=1,1)
0 <y« /2

/2

c <

1< ¢C < 3v/2° y=c-=
P

3'§/2§_C<2m‘
/

o <
o
—
=

!

0

-

cos(y) = P9(Y2) —3 - -

_with coefficients . : T,
. , .
. Py = +.9999 9999 9999 9999 9999 3632 9000 E+0
Py o= -.4999 9999 9999 9999 9948 3628 4300 E+0
Py = +.4166 6666 6666 6665 9756 7005 4000
P3 = ~.1388 8888 8888 8853 0208 2298
Py = +.2480 1587 3014 9274 6422 2970
‘Pg = ~.2755 7319 2096 6674 8555
- pg = +.2087 6755 6674 2345 8605
_ ' .1147 0670 1991 7777 7011
. . Ppg = +.4776 8729 8095 7170 .J
, Pg = -.1511 9893 7468 8700

el
~J
I
!

3

’

.This pohynomial approximation has an ‘absolute accuracy
of 20.19 dﬁgits1o.(16.77 digitsqyg). Scaling the argument
into thgsrange [0,2.4) causes a loss of [Tog16~(A/2"71
digits16f Therefore, the machine word size of 1f digitsyg
should determine accuracy. ';Z C

The approximation: wés programmed, and its accuracy
tested, with-.50 uniformly distributed argument values in the
range 0 to 2. The results were compared with 112 bit rou-
tines. Statistically the resu1t§ were as shown in Table 2.

- - v T ’
i . . 4 ¢ ’ > .
—_— . R . \
- v
“ " 4
N
.

o magnitude base 2 log
maximum absolute error, . ° 1.01 x 10715 -49.8™
{ . A .
¢ maximum relative error . 1 99 x 10"15 -48.8
. e)
ayerage.relative error " 4 01.x 10'16_ -51.2
" std. deviation of relative error _4:01 X f0f16~' -----
.0 . s
L ' " mPable 2 - Accuracy of Cosine'Abgrgxigation“
2 ') :
. Thedalgo:}thm comprises the followiug tésks:
: : .~y - Remove sign from argument ;l “ -
Ty ~ Scale 9agn1tude of argument into 0 to 2
T§.— Select quadrant reductlon
'//E4 - Perform reduction and- save. quadrant. 81gn
; Tg - Evaluate approximation
ﬂ L » Tg - Combine approx. value and quadrant sign
b . x ' 79 = Empty multiple,last uses variabFes '
’ The task§ have the following précedence»grapg: s N
N ,I h ~ . ‘x' , . TS . .; T7
. - Ty . '
\ / .
| * 0 /T4 ’ > "6
] . T3 ‘-
<)

v

. . .

All tasks ‘except Ts have no internal parallellsm or are more

efficiently processed sequentially. T5," Evaluate approxl-
mation", has the computational tree shown in Figure 6.

K { .

. o

\\

Pg(Y?)

Pigure %:‘

/

’ X ’ \ ./
7 ' + ‘

Cosine Task 5 Compﬁggtional Tree

[

This routine was- programmed for HEP and resulted in the

following performance:

)

otal number of instructions
§\E?er of instruction cycles
Makimum number of concurrent
Averade number of concurrent

3
o

executed
used
processes
processes

60
24 .

2.50

Planned number of waved off %nstructions 1

Storage:
Total words of:
« Program Memory

Register- Memory B

. : Constant Memory

L4

69
25
.29

,

Thus we have achieved a speed-up of 2.5 in evaidéting the

cosineaiunbtionu

\

Logarithm \ :
. { . . ‘ »

The second elementary function examined was the abprox-
imation of logarithm base e. The methad breaks the input '
range of the argument into two different ranges. Range I is
(21)'1/2 Lag (2)1/2, where the function uses a direct
rational approximation of the form:

log(a) =z[P3(z2)/Q3(22)]

‘ [k.’
z = 271 _

a+l
For Range II} (2)‘1/2 < a or (2)1/2 < a, we can use

the following relationships to convert to bdse 2 logarithm
and extract a bognded value to approximate:

loge(a) = loge(2) * logp(a) \
logy(a) = 1ogy(£:22) = n + logp(f), 1/2 < £ <]

" We now approximate log,(f), the result of which we "
. combine With n, then multiply by loge(2) for the final
result. % ’ ' '

© logy(£) =Y¥Rg(y?) - 1/2

721y

.
.

y = 1/200 - l(2)1/2/(f + (2)

,

! Ak L
More concisely:

Range I:
for (2‘)“‘/2 <ag (2) "/

2

Coy 2y /0.t 22
logg(a) =z[P3(z“)/Q3(2°)]
'z = (a=1)"(a+1) |

Range 'II g
for a < (2)-1/2 or (2)1/2 < a

loge(a) = 1ogg(2),» logp(a)
-5 -

. ")
. : \ . ¢
n -N ™ '
a=16_ ¢ 2 . f DC{.-64,...,63}
N € {0,1,2,3)
1/2 < £ < 1
[) : ' ’
logy(a) = (4n - N = 1/2(+ (logy(£) + 1/2)
(logy(£) + 1/2) yRg(y2)
y =172 - ()2 /2 « £+ (2172
Execution time decreases by
loge(a) .= loge(2), * (4n - N - 1/2) +'yR'g(y2)

where coef of R' = loga(2) tipes, coef of R:

logg(a) = z(P3(22)/Q3(22))

Po -24.01 3917 9559 2105 10E+0
Py = +30.95 7292 8215 3765 01E+0
N P2 = -9.637 6909 3368 6865 93E+0

, : -P3 = +.4210 8737 1217 9797 15E+0 . -
go = -12.00 6958 9279 6052 “55E+0 N

gq = +19.48.0966 0700 8897 31E+0

- .92 =.-8.911 1090 2793 783] 23E+0

Gy = +1.0 E+0 - e S

loga(£f) * loge(2).= YR'G(YZY‘“\~ _ . R

ro = +4.000 0000 0000 OOQ 67E+0 :

rq = +5.333 3333 3332 4188 96+0
ry = +12.80 0000 0198 2788 68E+0
. "r3 = +36.57 1412 4660 5914 90E+Q -)
: rgq = +113.7 8399 8715 0066 ‘37E+0 '~
‘ r5 = +371.1 3591 8715 6528 26E+0. : .
rg = +1379, 3999 4910 9060 60E+0 N

These approximations provide 19.38 digitsqyg (16,09
digitsgg) of "absolute accuracy for Range I, and 17.18
digitsqg (14.27 digitsyg) of relative accuracy for Range II.

)

- s N 4

<

§ .

" As was t
approximation
parjallelism.
‘brackets [] a

T4
{T2]
(T3]
[T4]
{Tg].
Te
T7
[Tg]
[T9]
Ti0 |

This set of t

Ty, "Select r

a <

ﬁg case with the approximation of cosine, this
was‘sp}it into several tasks to facilitate
_The tasks are as follows (tasks within

pply only to Range II):

o

Select range
Extract fraction (1/
Extract exponent _
Select fraction and exponent adjustment values
Adjust fraction (1/2 to 1)

Form approXx. argument ’
Evaluate approiimation

Form result exponent

Combine exponent and approx. valuec
Empty mutliple last use variables

16%to 1)

asks has the following prepedenceggraph:

~ ' i
. [T5]—-—-——> Tg——}o > T4
\[Tz]/ S T10

Pad

ange", has the following parallelism: -

& - g
\\
. ™~) K
\
Te S mé'%

(Range II)

™

-~

: =7
Ter "Form approximate argument”, has.the following

parallelism:
N/ N/
+\\\\\\\\\i ,;;/////:
f .
Tq, Evaluate approximation®, has the computitional ‘trees
shown\in Figure 7. :
. e
The remaining tasks have no internal parallelism or, are more
efficiently processed sequentially. . - :

" The logarithm approximation was tested using two sample
sets of 100 uniformly distributed valués in the range 0 to 2
and 0 to 106 The results were compared against 112 b1t
routines; the statistics on the accuracy obtained are given
in Table 3.

~Range (0,2) ‘ ‘magnitude base 2 log

>

maximum absolute e;ror 7.61 x 10=16 _s50.2
maximum. relative error 8.35 x 10-16 -50,1
average relative error 3,20 x 10~16 -51.5
Std. deviatioq’of relative error ~ 1.84 x 10~16

2

-

Range 10,105) . ‘. magnitude base 2 log

maximum absolute error 6.55 x 10°16 -50.4
maximum relative error 4.52 x 10-17 -54.3
average relative.error g 3.15 x 10-17,
Std. deviation of relative error 7§§§ x‘10f18

3

Pable 3 - Accuracy of Logarithm Approxisation

Range I
numerator,

<

1
total 17
operations

€
-

P

i
.

. A}

The .approximations for the two ranges performed as follows:

o N

Range I:
Total number of instructions executed 47
Number of instruction cycles used 30
Maximum number of concurrent prdcesses 4

Average number of concurrent processes 1.97
Planned number of waved off instructions.y 6 N
N 3 :

-

.Range II:
A

§)Total number of instructions executed “§6
® Number of instructions executed' , 32
Maximdim number of concurrent processes 5 :
Average number of concurrent processes 2.28
Planned number of waved off instructions 4 ' .
R
Storage:) .

Total words of:

Program Memory 103
Register Memory ' <o 26
Constant Memory C, 69

Assuming that arguments in-the two ranges are equally
‘probable, the speed-up of this algorithm is 2.125.

ISR

- General Code Sequences

This section examines the pioplems of generating pggal-
‘lelism at the machine instruction level for general code”
sequences. - The basid techniques.consist of tree height
reduction methods. In some casgé-obtimal algorithms exist,
in others only heuristic methods apply.

N f , . . * “]

~ne

- 28 ~

.
@ o

Tree Height Reduction Techniques -

The basic entity to which tree heigﬁt reduction applies
is expféssion evaluating.- From simple fan-in arguments it
is clear that given an expression of n distinct atoms and
involving the binary operations of. addition, subtraction,

multiplication and division, a lower bound on the tree -
height is {logyn]l. In many cases, however, the tree produc-

ed by an ordinar? compiler does not ‘achiieve this lower
bound. Thus we consider associativity, commutativity, and

distributivity to reduce tree height.

Consider the following expression and its tree repre-

sentation:

(A + (B *C)) + D’

1

By associativity and commutativity, we can reduce the
expression and its tree height to:

B

(B * C) + (A, + D)
-*

¢

The original expression could use only one procéssbr
for its evaluation and reqpired three time steps, whereas
the transformed expression can be evaluated Ry two proces-
sors in only two time stepsi If we restrict ourselves to

.- 29 -:34

o

hY

/ .
associativity and commutativity, algorithms presented by
Baer and Bovet® have been shown to be optimal. But distri-

;5q§ivity can also reduce tree heights. Consider:
-, N ’ .

°

@

‘'

.

This expression has a tree height of 6 and can be reduced by
assoc1at1v1ty and commutat1v1ty to tree he;ght of 5. By"
also using thé laws of distributivi Yo however; we produce.

<4

«

/ A+G+B*C+B*D*EHF

o

..
-

6J. L. Baer and'D. P. Boyet. "Compllatlon of Arlthmetlc

Expressjons for Parallel Computation", Information
Prqocessing '68, North Holland Publlshlng Cohpany, Amsterdam,

o

o I o

35:

- ,) t Y ‘ .:‘
. . \:
This has a tree helght of 3. Using four processors would
result in a spéed up of 2 over the original expression. .
\ Unfortunaté&y, we cannot Just distribute a multbpllcatlon -
across a parenthesis and reduce tree height. For example,

4

A* B * (C+ D) .

. / . P
has a tree height of 2. Using.the dissribdtive law, we get,’

hd 3
kY
-

A*B*C+A*B*D .

which has a tree height of 3. There are.good aldgorithms

P Ehat reduce freé height using distribptivity, associati&ity,'

and commutativity, but they are not, neceSsariiy optimal,
- v .

.0 °

We now consider multlple express1ons, a§ ‘would be the

case w1th a set of ass1gnme7qi?tatements. ‘Cansider:~.
1

A=B*C*D B . C |

- a

|
/
!
|

n
=
+
=~

™ This block of assignmen;’statements s a'tpee height of 4,
which may be reduced to 3 by back substitutioh: .
A =B*C=*D
T E F *B * C * D‘
G=F*B*C*C+H

g

r

M - 31°- . 36 . T

)

_gences offér ‘a possibility for significant speed-ups.

_“statement, all

4

I4 -) ;) * o~
Obsggze, however, 'that considerably more operations have
beéhn§ntroduced ;A achieve this reduction‘.\‘{7

In addition to arithmetic expression, linear recur-

-

‘Consider the-linear recurrence represented by the following

. nested DO loops: - .
R T , .0) *
DO'31I=1, 10 -
DO 3 J = 2, i - P

3A (I,J) =A (I,%1) + B(J)

"
K3

Thé buter loops c¢an be done simultaneously as:

DO 31.J = 2, 10

- .31 A(1,3) = A(1,J-1) + B(J)
‘ DO 32 F = 2, 10 . A
. '\32 A(2,J) = A92,J-1) + B(J) ‘
- : . ° - " i R
f. . ~ L \'* i
Further, the interior of each loop is just: . Bl

»
3

. A(I,J) = A(I,1) + B(2) +*** + B(J)

.
This exppessioh'qan be evaluated in loéérithmic speed.
Hence the total speed-up could be as high as 23& But this is
at a cost of considerably more .code. Also% the efficiency
in this example is only 50%. ")
.. N . .

Another area t has been studied is\conditional «
branches represented by IF statements. For’an isolated IF
nstruction streams must be funneled through
the branch, as with a JOIN statement. But Z/gggtion of code
with sqz:;j? IF statements and some assignment statements

may be expressed as: i .

L4

¢+
’

+ (3) a set of qssignmené statements all of which may be
executed simbiltaneously, ’ '<i

*
F .
.
by
.

Q é N -~ . :) ’ > 537 A

e = 32 -) e
v . * »(» . . .
- ' (SN [.-\ (<

4 ‘4

ve

" Specific Examples .. . : <

. applféd. Further, the code_contained no DO loops that cznh

Y

(b) a set of Boolean functions all of which may be

- .

evaluated simultaneously,

e

¢ *

. .(c) a binary Fecision tree through which one path will

be followed for each execution of the program seg-

ment{ and R .

(d) a collection of sets of assignment Statements with
a single variable on the right where €ach set is
associated with each 'path through the tree.

These techniques have been written as a PLA1 program and -
applied to a set of 86 FORTRAN programs7. Averaged over
the, 86 programs, these techniques counld use 35 processors,
resulting in, a spg?d—up of 9.2 and an—efficiency of 33%.
. : _ J .] v
- 8

X

To determine the applicability of these techniques, we
examined the code‘Pf both the ground-launched missile’and
the .A-10 flight simulation. In heither case could we find
significaht amounts of. code where back substitution could be
stituted linear, recurrence equations. or were there signi-
ficant-IF hlocks that would benefit_from»peorganifgtion. As

would be ‘ekpected, however, arithmetic expressiofi evaluation '

«

praovideéd .extensive’ parallelism. For example, consider gthe
expression fer‘gfe_variable QDOT -~ typical of expressions
from both programs. : i

-

- -

4

1YS *’L(RHO/Z)»*-(hé + wi) ¥ US. * 4u§3§32’* CMAQ

QDOT = ‘ 2)
~ Us % 8.86989 * RHO/4 * CMQ * Q5 . V-

‘ - 21.1 * RS * PS =~ LC * FTZ)

Algorithms, J. F) Traub, Ed. -(New.York: Academic Ppess,
1973) pp. 17-48) ' f

L
-

7Kﬁck, Davi J. "Multioberation Machiine Computational
Complexity". Complexity of Sequential and Parallel Numerical

~ N\
A

&

. “? o
-33- 38 - .

¥

L}
2

——

Figure 8 'shows a standard parse tree for this assign-
meht. It contains 18 arithmetic operations and could be
evaluated in six time steps using five processors.' This
would result in an effliciency of 60%. Figure 9 shows the
modified parse tree after associativity, commutativity, and
distributivity have reduced the tree height. This tree has
a height of only 5 and consists of 19 operations.. The modi-
fied tree, could be executed in five tihe steps using six
processors. This also results in an efficiency of 60s%.

During this phaée of the study,, it became apparent that
applying these techniques to-a significant section of code
was beyond the capabilities of manual techniquesz The num-
ber of operations required makes it immensely time consum-
ing, and the probabilities of error would be so high as to
make the results suspect. The only alternative is to con-
struct programs to'automatically analyze the code segments
and produce parallel instruction sequences.' This, too, is a
significant task beyond the scope of the work. Section 5
qisgusses the impact and value of these techniques.

¢ . I . .

D
.

-.34 ~

v
® UsS 8.8+« RHO 4 RS PS
A .
h .
. 1O, O ‘
N . -
WS WZ US 4.8 ./ cMQ Qs 21.1 LC FTZ
N\ -

]
© O - O) ®

" cMA

/
)_.
1O ®
‘!
a' ~ 3y
1YS
o
.‘ A Q'DOT

-Pigure 8. - Parse Tree of Expression for’QDO;‘ .

. , i .
. *
) ’. LA
.

'-35 -

40

4

I

>
~

?igtlre9-uodifiedparse!1reeﬁom:m.-

41

Id > -~
i~

IYS

'\)

FTI2

I I vy

¥ .

- .
SECTION 3: PARALLELISM AT THE TASK LEVEL

.,

- One of the most common methods .of producing a parallel
program is to take a sequent1a1 program and "parallelize”
it. This involves 1dent1fy1ng tasks within the segquential
program and recognizing that those tasks, together with the
implied flow o;cgpntrol, represent a task system. When such
a division is po¥sible, standard techniques are available to

AY

produce parallel code. . 2 .

. ?ask Systens

- We def}ne a task as a unit ‘of computational activity
specified in terms of the input variables it requires, the
output,variables it generates, and its execution time. The,
specific %}ansform@tlon that it imposes on its input to ’
produce its output is not part of the specrflcatlon of a
task. Thus the tasks may be considered uninterpreted. Let
J = ($1,T2,...T) be :a set of tasks and <+ an irreflexive
partial order (precedence relatien). def1ned oh J. Then C =
(J,<*) is called a task System. The precedence relation-

-

means that if T <* T' then T must complete execution ’ .
before T'. - - STy .
° Y ” . -

L4

From this definition we 1ntroduée a graph1ca1 repre-
sentation, called a precedence graph, for task systems, °
- Ew/gﬂls con 1sts of a directed graph whose vertices (nodes) are
] he tagks:J and which has an edge from T to TV if T <+ 7',
A T'' such that 'T <+ .7'' < T dges not exist. Thus the
set of (edges’in the precedence graph represerts the smallest
relation whose transitive closure is <-, ;,

o \
. ’

AN Many sequent1a1 programs and program segments can -be
Lo vlewed as precedence graphs. FlgUre 10 shows an example of
7 a program segment and its. related precedence graph. Since
+ the’ relat n <- is 1rref1ex1ve, antisymmetric and transi-

'« tive, the precedence graph is acyc11c ~=-it represents only
[

[“v Iy

S . fNG

[C*xk* TASK 5

Chx* TASK 15

151

B ! N

COMPUTE THRUST

NDX=ITHRUST-1

IF(TIME .LT. THRUSTIME(ITHRUST)) GO TO 151 ~
NDX=ITHRUST

IF (ITHRUST .LT. LTHRUST) ITHRUST*ITHRUST+1
THRUST= THRUSTAB(NDX)+THRUSTSL(NDX)
*(TIME-THRUSTIME (NDX))

L

Cy* * TASK 23 COMPUTE LT

231
C

oA

c

C

~

C*** TASK 29

L*** TASK 11

NDX=ILT~1
IF(TIME .LT.
NDX=ILT

IF (ILT .LT. LLT) ILT=ILT+1
LT=LTAB(NDX)+(TIME~LTIME (NDX)) *LTSL(NDX)

LTIME(ILT)) GO TO 231 ‘ .

COMPUTE CMQS ‘ ' \%
NDX=ICMQS-1

IF(TIME .LT. CMQSTLME(ICMQS)) GO TO 291

NDX=ICMQS. .

IF(ICMQ&B LT. LCMQS) ICMQS=ICMQS+]1
CMQS=CMQSTAB(NBX) +(TIME- CMQSTIME(NDX))*CMQSSL(NDX)

COMPUTE TIME
CALL RK11(STEP)

-

.COMPUTE QS

. QDOT=$T(70)

CALL RK5(STEP)

Pigure 10 - Program Segment and Related Précédence Graph

s .

° . - A

-

~~‘ - 38 - = . '

43

a“n

3

e

@

stralght line code (or code that can be viewed as straight
line). We can deal with data-dependent branches th:\\gall
entirely within a task, but not conditional branches to
other tasks. Further, many loops can be "unrolled" (viewed
as straight line code) and handled in an acyclic manner. In
one instance, discussed later, we can deal with specifiqg
kinds of cyclic graphs.

With each task T we associate two .events: initiation
and termination. An executign sequence of an n-task system
C= (J,<*) is any string § =a 1, agsecera2p of task events
sat'isfying the precedence relation and ‘consisting of exactly
one- initiation and one termlnatlon event for each task. A -
task system that represents a sequentlal program has only
one execution sequence; for other task systems (perhaps
equivalent to the sequential task system) there may be
several. '

»>

-

" To discuss determinané task systems, we must define an
ordered set -of memory cells M = (Mg, My,...,My) that repre-
sents the physical system on which tdsk systems execute.
With each task T in a system C we associate two, possibly
overlapping, ordered subsets of M: the domain Dp and the
range Rg. When T is initiated it reads the values stored
in its domain cells; when it termlnates it writes values
into its range cells. Given an execution sequence § for-a
task system, we can define the value sequence V(Mj,s) as the
sequence of values written by terminating tasks in $ for
which Mj; ¢ Rp. Befdre the first event in any execution
sequence, we expect the memory cells'to contain values. We
refer to that set of values as the initial state Pg,.

We can now define‘moreArigorouslyithe intuitivé concept
of determinant task systems: . -

A task 'system C is determinant if for any glven
1n1t1a1 State P,, V(Mj,8) = V(Mj,8 '), 1< i i m,
for all execution sequences # and $§'.

L}
1

4 Py

- From ‘this deflnltlon, 1t is clear that a task system
that represents a sequent1al program is determlnant since '
there is only one execution sequencey - Given two task
systems both consisting of the same tasks, they a£9 said to *°
be equivalent if tMey are determinant and, for the same
initial state, produce the same' value sequences.
. ' .))) . . " R “
our goal now is to define a method by which, given a
determinant task sxpteh (i.e. one representing a séqdéntia S
program) we can derive another determinant task system)
equivalent to the firséﬁwhich has in some sense more paral-
lelism. 1In fact, our method will derive one with maximum
. parallelism subject to the constraint that wé%h ve no know-
- - ledge of the®.internal transformations performedfby the
tasks: We begin with the following definition: :

Given a task system C, then tasks T and
. T' are noninterfering if éither ‘

T <+ T or T' <+ T O"

-QYr-— ¥

- °
<

"“Rp M Rpr = RpN Dpr = Rp N Dp=g°

>

" We now state, without formal proof8, a fundamental
Theorem regarding nonlnterferlng tasks and determinancy:

N ' Task systemé consisting of mutually’
noninterfering tasks are determinanf.

- I
~

The final development falls naturally from the Theorem.
Given a determlnant task system C = (J, <*) we construgp

8Interested .readers may consult Operating Systems Theory
by Edward G. Coffman, Jr. and P. J. Denning (Englewood
Cliffs, NJ: Prentice Hall, 1973) :

- 40 - I

o . , ' 45¢

&

:'precedencevpeletion\results in nondeterminancy. Finally,

., execution sequence of C' produces the same value sequence.

AN

'

dnother task system C' = (J,<*') that is equivalent to C

but whose precedence relation is constructed from <* on

the basis that- (T,T') € <t only if it is necessary to
insure that T and T‘ are noninterfering. The resuiting. task
system is, by the Theorem, determinant. Further, it is

maximally parallel in that any further reduction of the’
e,

-

since <*' e'¢*, every execution sequence of C is an . .
execution sequence of C' and, since C' is determinant, every

Therefore C' is equivalent to C. This is formally stated“in
the following Theorem: .

From a given determinant task system C = (J,<*) -
ks épnstruct a new system C' = (J,<*') where <*'

is the transitive closure of the relation:

x={('r,'r_') < | (Rp NRpr) (ngDT.) y (RpiN D) ;40'} ‘

Then C' is the unlque, maxlmally parallel task system
‘ equivalent to C. - . . .

o X . : . ‘ .-l\
8cheduling

o) ~
M

Standard Task Systems t

Given ‘a determinant task system and the execution time
of each task, the problem remains of assigning the tasks to
P processors. More formally, we deflne the scheduling
problem to be the follow1ng we are given) . -,

’

(1) a set of tasks J = {Ty, T3,...,T4
('2) . an irreflexive pertial order < on J,
(3) a weighting function W from S to the positive
' ’ 1ntegers, representlng the execution t1me of each
of the tasks, and ‘ "
(4) the number of processors p.

-~ 41 -

. o T ge

o

>

v . . T Tea ot

\

We may be executing as many as p fasks at any point in time.
If task T is-first~g§g§uted at time t using processor K,
then it is executed only 4t times t, t+1,..., t+W(T)-1 using
processor K each time. It is also required, for any task T'
such that'T' <+ T, that T' compléte execution at time t'
when t' < t. A schedule is an assignment of tasks to
processors that satisfies the above corditions and has
length tmax, where tmax is the maximum, over all tasks, of
the times at which the termination events occur. The
scheduling, problem, then, is to determine an assignment that
minimiz®s tmax. This problem is NP-complete9 and can be
considered intractable. There are, however, polynomial time
bound algorithms that produce good schedules. One sych
algorithm is critical path list scheduliég. /

’

The algorithm is defined as follows: .

(1) Given a task system and a 1ist that orders the
¢ tasks, we require a scheduling strategy that
assigns (to a free processor) the first unassignea
task in the list whose precedence.constraints have
been met, Such.a strategy is called demand list
" scheduling.
<1\2) The critical time of‘a task is the execution time
of that task plus the maximum critical times of
any successor tasks. : ' ‘

| 2

(3) If the tasks are ordered on. nonincreasing c;itiéalg

time, then the resulting list schedule ‘is called

critical path list scheduling.
S~ .

N ¢
\l ¢ 3
. # -

N e

e
LS

1

'97. D. Ullman. "Polynomial Complete Scheduling Problems".
‘Operating Systems Review, Vol. 7 No:i4 (1973), pp. 96-101,

- 42 -

oo g -

-

]

Kohler10 reports a preliminary evaluation in which 20

task systems, scheduled using critical path -list scheduling, .
produced 17 optimal schedules. The worst-cag® schedule vas
only 3.4% longer than optimal. Using only limited back-
- tracking with a critical paéh list scheduler, Lord!! found .
that in 100 randomly generated cases, 89 were scheduled
optimally. . He further founh/that for all cases the
schedules had an expected time of only .36% longer, than
optimal. The worst-~case time was 5.6%)1onger. Thus we
conclude-that critical path list scheduling is an acceptable
technique for pract}cal'application. ‘

——

- : =

Cyclic Task Systems

As we have observed before, the standard task system
represents an acyclic computational method. This method
applies to repetitious calculations such as flight simula-
tion problems by treating the calculation of derivatives and

the updating of the state variable as a task syStem, , %

scheduling those tasks, and then repeatedly executing that ~
sghedule. In some cases, however, shorter solution times
can result if we represgnt"%he\problem as a cyclic task
., system. For example, cons;der the Van der Pol equation'
" written as two first-order equations: ' ‘

B

[3

. 2.
1Eb x2 = ull - x7)xy = X4

10w, H. Kohler. "Prelimihary Evaluation of The Critical
Path Method for Scheduling Tasks on a Multiprocessor-
System". " IEEE Transactions on Computing, Vol. 624 No. 12
(December 1975), pp.. 1235-1238. co

o PR 1
1%R. E. Lord. Scheduling Recurrence Eguations for Solution
on MIMD Type Computers. PhD Dissertation, Washington State .

.University, 1976. : . . v

ﬁ«

2

4th ordet Runge-Kutt% as indicated by the. functlon rk), the

By using .some i§itab1e integration meéhod (for exahple,
main part of a program for solving these equatlons is as

follows: -
=, | while time < runtime do . - -
’ ® ! for i <Z-- 1 until 4 do] o >
dqr1 <=== %,]
dery <--- u*(1-x1‘x1)*x2-x1 v
X1 <=-- rk(derq,i,l) - h
‘ . Xy <==- rk(deré,i,Z) o
’ w 0 - -
time <--- time + h ' v - ‘
<

) -

The calculatlon interior to the "for" loop can be
represented by. the acyclic precedence graph shown in Flguret'
11. Assuming that each binary operation can be executed in
oné time unit and that the function rk can.be evaluated in
four units, the entire "for". loop can be. represemted by the
cyclic precedence graph shown in Figure 12. T3 calculateés
u*(1-x1*x9), T4 calculates *x,-xq, and T1 and T2 calculate %
the function rk. ’

EY

. (
~ ¢Given two paralle]l processors, one way té schedule this --
- . solition is to assign the tasks interior to the "for" Loop o
. to processors. This should be done in such a way as to pre-,
serve the precedence relations and yet completé all tasks as

¥

qu1ck1y as possible.

The solution to the problem is the

repeated executlon of this schedule.
shown by the Gaﬂtt chart in Figure 11.
assxgnment is’
Ha's a maximum

]

Such an asszgnment 1s
Note that -this

S good as possible -- the precedence. graph
ath length equal to the assignment period.

49

>

L) N - g -
. - *«\,:
’/) l Q '
—_— d . .
. . s .
¥
- . \' »
‘ »
L]
. ¢
g e
‘ []
, vide ¥
] ’ hd : -~ "1
- .} “ ,

') . - 1‘_—7_>{ I I > -’)
PIT, | T- |T T= | T T T T . .
=3 3 I 3 I 3 I

L~
\p = .
2Tl T2 H] T2 ATl T2 g
v ‘ / -] 1. ' \ . ‘
5 i -
- - L . © ¢
‘ FPigure 12'- Cyclic Representation and Schedule ~ *

e

»
-

- » The Gantt chart in Figure 12 shows the assignments made
if we gssume some initial values for Xj and X5 and then
assign the tasks from the cyglic precedence graph while
ma1nta1n1ng all precedence constraints. This assignment has
a repet1t10n period of seven units, as compared with nine
units for assigning the acyclrc precedence graph. This
shorter schedule is the motivation for examining flight

9§ 51mulat10n equations to determine their minimum solution

period and to schedule” them in that minimum period with as
- few processorg as possible. ‘

o

‘ The method used constructs-a task system representing
the solution to the flight simulation equatigns, where the
tasks that update the state variables are flagged. The
precedence graph, ‘of*the task system is allowed to be ‘cyclic

. so long as each cycle traverses at least one flagged task.
The minimum solutlon perlod is then determ1ned by examining
all cytles in the graph |

~ I

Let the cycles be denoted by Cq, C2,...,Cm. For each
cycle let L(Cj) denote lits length and #(C;)”the number of
flagged tasks in the cycle. Then the m1n1mum solution

period tpin is: .

(enin = Max e/t | | 1eigm

Once :%e minimum solution period is determined, a critical
path list scheduler can, with only slight modifications,—
. produce an efficient schedule whose repeated execution
solves the flight simulation problem. = .
~

-

Synchronization

-

-) A

Once a schedule has been determined, there must be some ’

way to insure that'the schedule is followed. A dgeneral
assumptjon mgde regardlng’MIMD computlng 1s that the precise
execution rate of 1nd1v1dual processors cannot be used to,
prove the correctness of a program. This assumption applles

A

\.

~

' . A .
~ to HEP; although we know that executign rates of processes
are generally the same, detailed knowledge of the progress
of'eSch'prooess'isobeyond the scope of normal ‘analysis of .
programs. Thus, having determlned a schedule.for computlng
the tasks, it now remains to implement it. ”

» -

Much of the work on 3cheduling assures, at I¥ast
implicitly, that somé mechanism external to the processors
assigns the tasks to the 'processors. But our execytion
times are estimates onl?} so the scheduling mechanism would

have to monitor the progress of all processors » Instead we

seek a mechanism whereby all the tasks to be executed by a
single processor are presented as a sequentlal program.,
Synchronlzatlon primitives, operating on semaphores, coord1-

nate those tasks. -

pDijkstra'? introduced the primitives P and V," which -
operate uninterruptably on.an event variabDle’ termed a

- semaphore, to control resource allocation among cohcurrent
Pprocesses. For our purposes «e may a®fine P anq V as:

—_— ’ - _ M
P (E): if E 1. vV (E):
en E<E-1 v E<E+1. -
elde wait -

N

P is normally used before a process uses a nonsharable
resource; V is executed when the use of the resource is.

completed. - f
¢ . /) - 3

Denning13 shows/;hat these primitiwves can ‘synchronize
concurrent tasks. As an example, consider the task system

.
L S & °

|

1ZE W. Dljkstra. "Cooperating Sequehtf’i Proesses"
JProgramming Languages, F. Genuys, Ed. (New York: Academlc
Press, 1968) pp. 43-112. . -

13p,-J. Denning. "Third Geﬂgration Computer Systems"
. Computing Surveys, Vol. 3 No. 4 (1971) pp. 175-216.
7 - . .

i

- oy . ,
;(.L’ —48- .

»

and comrcurrent program shown in Figufe 13. The progréﬁ uses
P and V operating on the suiéably initialized semaphore X23.
_‘Glearly, the program qorrecth executes the task system.
Since we are using task systems to représent computations,
.precedence constraints’ arise because one task computes data
elements .used by another task. If we were to consider a.
.task system that represents. a calculation,loop, such as
shown in Figure 14, we find that the first program still "
represents a valid solution {0 the problem. Thi's is because
it is implied that both stream W' and’ stream 2 complete
execution before beginning the second execqtidﬁ of these

s streams.

Such methods of computation have been previéusly
proposed for handling looped and cSnditional execution using
constructs named "fork" and "join". But if the alternate '
program executes the task' system, then the P and V - x
‘operations are no longer valid. Thig is so because if S2
runs more quitvkly than S1, at some point T2 complete$ the
_calculation of the data e¥ement that causes the precedence
" constraint before T3 has consumed the previous value. Even
if we assume a queuye for this data element, in any real ' ’

. implementation thé& queue would be of finite ‘size and hencg’
suqucf to oVerflow. To overcome this difficulty, we use
.two state semaphores associated with each data element or

variable, as indicated by: -

@
’ /
’
¢

- ~ 1 ° VAR .
2 VALUE ‘ .
' 2 . SEMAPHORE ['E','F'] -

where 'E’ indicates.empty and 'F'.indicates full. "We now
define the P and Vv operations as:
’ P(VAR): . -
IF VAR.SEMAPHORE = 'F' o
THEN VAR.SEMARHORE <- 'E'
ELSE WAIT

! M »

”
ry 3

wra . v e
e ¥ . L
N ~ - ~
A ey . .)
- - .
L]
- S + .
,v/“f s -
t 4
’ . - [N
- -
s ——
¢ v -
»
4 -
s s »
. . v
\‘
z 4 - 4;@
s -
‘
. .
»”
~

< e B , L2
PARBEGIN * . T
S1: TL; POX23);7T3; T4
S2: T2: W(X23); TS o :

&

PAREND . . o R
<+) - \‘.. '
Ns%f@ .
‘t f v ’
M A}
. - Task System aﬁd_Concuféent,Program
. . . . - ,, «
N L
- 50 - ~
¥
¢ ' s (. .
e 55 - . -«
ERIC. - e 95,
VA Euli Text Provids ic A ~
’ » - & -

-
, .
-
Y
{
Y
; .
~
‘e
2
O
rd

Y

° .‘ \ ',. 0
+ ‘REPEAT N TIMES, .)

PARBEGIN . ,
S1: Tl;\P(XZS); T3; T4 -
v 82: T2; V(X23); T5

A

.

PAREND A
ACTERNATE
- PARBEGIN, - _
B S1: REPEAT NTIMES > d
1L PORD); T3 T
END |
. $2: REPEAT N TIMES -
‘ ST VR TS
. END
PAREND : .

——

’ . - P

LY

Pigure 14 - Task System fbr Repeated Execution

"
-

96

V(VAR): _
¢ IF VAR.SEMAPHQRE = JE' -
“THEN VAR.SEMAPHORE <- 'F' L »
N ELSE\}I‘f v ‘
N \—'\‘) i
= . v

N

Then if we let X23 represent'tbe variable responsible’ for
the precedence gonstraints from T2 to T3, the alternate pro-
gram correctly executes the task system. - '

To further simplify the programming aspects of such a
. 'synchronizing method, we note that, in a language involving

ass1gnment statements, context determines whether the opera-

tion 1s P or V. That'is, any synchronizing operation on the
left of the ass1gnment symbol denotes a V operation. All
others denote a P operation.’ In®HEP FORTRAN, represents
both P and V; '‘context denotes which operatioq_i 1mp11ed.

"+ If some task T1. computes a value used by two other\tasks, T2

and T3 (‘each 1n separate instruction streams), then the
coord1nat1Qh$prob1em between T1 and T2 is separate from the
coordlnatlon problem betwegn 1 and T3. Hence, two cop1es
of the variable are requlred so’ that two separate semaphores

-

are available. . «

«'Ii‘ /‘ '. . »
. ' - ’ N .

Y
utomated Techniques.

.

]
"

,Dﬁring the course of thig study, we developed and used
programs to automate many of the steps involved in preparing
a problem for parallel solution. We believe that sufficient
knowledge 'is available to construct a’CSSL—type language
translator'4 that would produce efficient parallel code for-
the types .of problems we ‘have studied.. But the class of
problems so far studied is relatively small; desirable

.

-

~

14gee "Continuous System Simﬁlation Language" by J. C.
Strauss, et. al. Simulation, Vol. 6 No. 12, December, 1967.

°

_ 52_ . (p\

.' s

>

;
pAR—

—r

comment cards are required.

H

extensions to such a language may be poorly understood..

Thus we feel that a practical approach for the immediate
future is to use a set of utility programs that will signif-
icantly aid programmers in constructing paraliel programs
yet not impede them in the methodologies they use. 1In the
remainder of this section we discuss the various utility

.programs which we feel would be usefuf‘and the source lang-

L4

uage restrictions they would impose op the programmer.
We assume that the definition of a flight simulation
problem will be extended to a sequential FORTRAN program
that defines the derivatives’in terms of the state variable
and updates the state variables by whatever technique is

- desired. In general, we assume that updating each state

variable is a separate program segment, so they can be
designated individual tasks where desirable. Since each
program segment myst be simple enough to be represented by a
cyclic task Ssystem, restrictions on conditional branches.
will be requlred. Selecting code segments for‘tasks’ is not
unique -- we can give only guidelines as to what ‘constitutes
a good seléction. Thus we require the programmer to specify
which pieces of code constitute ‘tasks. No branches can
occur from one task to another. In practice we have found
that this restriction is not at all severe. ’

There are a variety of methods the programmer could use

* to indicate what constitutes a task. We have used a comment

card of the .form
. C***TASK n [,SV]

to indicate that the following statements constitute task n;
the option SV indicates that the task updates a‘state or
recurrence variable. This directive-is tesminated by
another task comment card or by an END card. .Since the
final maiimally parallel task system equivalent to this

ﬁequenxia} program is derived from the ranges and domains of

the tasks, and since range and domain determination is not
always possible in FORTRAN, further extensions of the
Spec1f1ca11y, if the statement

[y

, CALL SUBR (A,B,C,)

2

is within a.task, there is no way to determine if A, B, and . ;//—\\“
C are in the range of this task, the domain of the task, or
both. Also, it may not be worth the effort to analyze all:

of the equivalence statements. THus we use comment cards of - TN
the form . : . ‘
L R C *** RANGE (list)
. and ‘ :
o B C *** DOMAIN (list)] o

to indicate that all variabiles witﬁid the list are in the
- range or, domain' of the currént task. ~ '

Another piece of information required by automated
analysis is an estimate of the execution time of each task.
We have chosen the units of this meagure to be the number of
instructions executed witlrin the task. If the code con-
stituting the task is straight‘line code, the-number of)
instructions is known at compilation time. But if the task’
. contains conditional branches or invokes external subpro-

grams, the execution time of the task -is not usually -deter-
minabBle; the programmer must supply an estimate. To this
' end we use a comment card of the, form ”

~

\

£l

C *** TIME n .

to specify the' execution time as n machine instructions.
Note that specificéiions of range, domain and time are)
required only if the form of the code precludes the utility

.from determining the values. ' :

- A'final comment card reduces analysis time by listing
*
3 ocal variables that are to be excluded from range-domain
’ analysis. This card has the form . ¢
} - . C *** LOCAL list
and indicates that, for this task, variables in the list are
to be excluded from both the range and domain of the task.
-%A .. - . ‘ » A -

- 54 - .

- 59

g

Y-
. ., » . 7

This is used mostly for variables that are first in the
range and then in’ the domain, as would be the case for DO
loop controls variables. ' -

A PASCAL . program was constracted for this study to .

. determine range ‘and domain.- It soon became evident, how-

’ ever, that this program must perform lexical and syntactic .
analysis of FORTRAN source code ‘just as the FORTRAN compiler
must do. Therefore, compiler output was used to determine
the- task system. This reduires&;he following:

s ~

(1) A source code -image. This allows the extent of
the tasks to be determlned, and comment cards
. . pertaining to range, domain and time to be
. examined.).

(2) ° An image of the generated machine code. This
‘allows execution time to be estimated for

ﬁ. , those tasks that consist of only stralght .

11ne code. - S s

{(3) A.cross-re§erence'1isting. This allows ranges
and domains:of the tasks to be determined.

1 B T -

If suitable compile options are invokéd, all this informa-
tion is in the compiler odtput ‘listing.. The output of this
progfam is the cyclic task system required'for a scheduler,

. and the names of variables involved in@intertask communicas
tion. An additional output is a file of the source prograﬁ) *\
whieh is used to construct the parallel program.

- The second utility pProgram is the schedulépv - The
{nputs are a cyclic task system, an estimate of the execu-
tion time, and a specification of the number of processes. ,
The output .is.a sghedule that is not necessarily optimal but
has good efficiency. In test runs, the schedules produced
for 100 randomly generated cyclié)task systems resulted in
93 schedules that were optimal. The expected schedule

length was no more than .158% longer than optimal.
. . N /, 4 L. \

- 55 -

\ The third utility program uses the output of the

previous two programs to determine the synchronization
required to insure that the schedule is not violated.. The

basic

thed;

range
bles,

for s

(a)

algorithm examines,

for each pair of tasks to be exe-

in different processes,” which variables are in the
of one and the domain of the other. For those varia-_
asynchronous (semaphored) variables must be used.

For edch variable V; it must\be the case that V; ¢ Rg
ome task T. Thé possibilities\for each variable .are:

-

For all tasks T' such that Vi e Dpis T' has been-

assigned to the same processes as T,

'in which case no

synchronization is required.

There is only one task T' with Vi ¢ Dpr and 1t has
been a881gned to another processor. Further, if the
varlable name has ohfly one instance” in both T and T,
then ‘the variable name is. prefixed with a. $ in both T
and T' ahd the asynchronOus variable is placed 1n
COMMON -

(b)

L]

.

-

There are iultiple tasks T' such that Vi and
some of these tasks have be€en assigned to different
processors than- T. In this case, for each T' which has
been assigned to a different processor we assoc1ate a
new asynchronOus variable $W. ThlS variable is placed
in COMMON. The assignment statement $W = Vi is placed
¢at the end of, the code for T, and the ass;gnment
statement Vj = SW is placéd at the beginning of the
code for T'. ' -

(G‘) ‘E DT!

.

Another utility pré@ram that would be useful is one
that actually constructs the code sequences for the various
processes based upon the preceding analysis. This would be’
particularly useful in a system with a flexible text editor.

This would allow the programmer to add output statements or

~

v’

o

A

exception-handling code. This utility has fo firm technical
requirements; it is more a convenience feature for the
programmer. . ' '

/ i .. A

-

Results

.

The methods of the previous section were applied to the
flight simultibn-of a ground-launched missile. :'The methodo-,
logy employed in programmlng the flight simulation equations
for an MIMD computer can be divided into several categories.
These include equation segmentation, scheduling and synch-

roni zat ion.
t “

Equation segementation takes a representation of the
problem, in our case a sequential FORTRAN Program, and
identifies the tasks. These tasks are considered to be.
individual. computatlonal activities, and could range from
1hd1v1dual machine instructions to groups of FORTRAN state-
ments. We chose individual statements or small groups of
statements, where any branching took place entirely within
the group of statements identified as a task. An example of
this, task selection is shown in Figure 15, which shows a
portion of the sequential code and indications of some
specific tasks. In this case a tot&l of 40 tasks yere |
identified. Ten of them update the state variables by the
chosen integration method, and ‘one updates the independent
variable time. The remaining 29 tasks are associated with

evaluating the derivatives. '_'**~~ T

B The next step was to est1mate the executlon time of
each task. Since the HEP computer executes all instructions
in the same time, this involved-compiling the program and

‘counting the number of machine instructions generated by,

each task. The number of instructions per task rangéd from

2 to 88, with an average of 34.6, We next determined a,

maximally parallel task system equivalent to the set, of
tasks sélected, and the sequential program for thoge tasks.

62

.r

¢

S

?igure 15 - fask Selection
A* ll

0127 ¢ .
0128 Ce¢xy TASK 17 COMPUTE Acoo N)
0129 NGX=IACDO~1 Rl
0130 IFYTINE LLT. ACDOTM(IAcDO)) GO-TO 171
0131 nNpX=1ACDO .
0132 IF{IACDO LT, LACDD) IACDO=IACDO+1
..0133 179 ACO00=ACUOTB(NDX)+(TIME-ACDOTM(NDX)) ,

, 0134 : *ACOO0SL (NDX) N
‘0135 ¢ . . .t .

" Filiii 0136 C*s*4 TASK 18 COMPUTE UDOT o '
,"h“0137 UDOT=RS*VS=WS*0S=32+174STHETA+MASSx» ”m
i 0138 ¢ (THRUST=RHO/2% (US+4X) *(US+1X) *ACDO)]
oz 0139 C#ey TASK 19 COMPUTE FTY . FTZ oRa0e

0140 GANTHE=({ THETA= THETAZ)tcOSPHI+(PSI-PSIZ)tSINPHI

0141 GAMPSI=(PSI=PSIZ)*COSPHI~-(THETA- ~THETAZ! *SINPHI,

o142 . . FY=5441*GANPSY

0143 IF (ABS(FY),LE.380) GO TO 35

0144 FY=SIGN(3804+FY)

9145 35 Fz=84414GANTHE

0145 IF (ABS(F2).LE.380) GO TO 36

0147 FZ=SIGN(3804+F2) .

0148 36 CONTINUE . : ' '

0149 BTY=FY«COSPHI+F2*SINPHI >~ = '
w0150 __ FT2=F2+COSPHI-FY#SINPHT . . .

T 0151 C**, TASK 20 COMPUTE ACNAPH . . s
0152 IF (MACH oLTe ACNMH(IACN)) GO TO 201 .
0153 NUX=IACN
0154 IF(EACH JLT. LACN) IACN=IACN+1
0155 Gu TOo 203

-0156 203 IF (MACH +GE. ACNMH(IACN-I)) GO TO 202 A’

: 0157 < IF (IACN .GT. 2x IACN-xAcu-1
0158 202 NDX=IACN=1 o
0159 -203 ACNAPH:ﬂCNTAB(NDXW+(HACH-ACNMH(NDX)) ’

“HT 0160 : *ACNSL (NOX)

i+ 0161 C ') oA
0162 C¥%s TASK 21 COWPUTE VOOT - —&-

- 0163 VDOT=MASS*(FTY~ aHoxatus*ACNAPH*(vs NY))-RS*US
0164 C
0165 C**4 TASK 22 COMPUTE WDOT
G166 WDOT=GS*US+32, 17*CTHETA+HASS*(RHO/(-2)*US*ACNAPH!
0167 - ${US+WZ)=FT2) ? . ,
01%8 C**4 TASK 23 COMPUTE LT '
0169 MOX=ILT=1
0170 IF(TINE LLT. LTIMECILT)) GO TO 231
0171 T NDX=ILT .o
9172 IF (ILT LT. LLT) ILT=ILT41 .

v+ 0173 234 LT= LTAB(NDx)t(TIME-LTIME(NOX))*LTSL%NDX)

v 0174 . . kN N

L4

-
-

, Figure 16" shows Eﬁe task system for the 40 tasks com-
prising the problem solution. The task number ‘' and ‘execution
time (in malchine instructions) are within the nodes. All
args go left to right. Observe that the three tasks
highlighted in Figure 1S (tasks 18,.19 and 20) can all be” |

- exécuted in parallel. '
Before scheduling, we make. a transformation on tﬁé
. parallel task system to shorten the solution time. 1In
_Figure 16 we see that the longest path traverses nodes 7,
39, 19 and 31, and has a length of 212 units. This path’
does not'detérmine.minimum execution -time, however,vbecause
there is no path from node 31 to node 7. The minimum time
is instead determined by.the cycle traversing 7, 39, 1%, 32,
6 and 3, which has a length of 252. This yields a minimum

ekecqtion time (for n iterations) of n * 126 +‘const§nt.
h h .
. »

<

The-next steps in our methodoiogy-were scheduling the
transformed task system for execution op-p Processors and
synchronizing? Figure 17 shows the regulting schedule.

The schedules for the flight simula®&iQn problem were

mprogrammed—for HEP FORTRAN and were executed '
Equation segmentation, in conjunction with the
Runge-Kutta formula given by (ﬁK4ﬂ,“was'used for the

> feight-processor schedule shown in Figure 171. The computa-

.tions of the integration formula were also done as parallel ,
tasks. This scheme was also prog;émmed'using six proces- '
sors; the ébeed-up‘was 3,98, The speed-up and efficiency of
the eight pﬁocessbr pfogram, along with the computational
reéu}ts, are shown in Table 4.

PROGRAM

-

2818 . "4.87 5.78 72.3%

Speed;up & Efficiency, Bight Processors

+ >

Table 4.
N

- >

] ‘18.21.32

.65 o " -pigure 16 - Maximally Parallel .Task System

- ; -
L

UDOT-(1-) {? .

VDOt (3

WDOT (3) -
L]
2 }-PDOT (4)

As
18.22.31,Sé
26,31,32.33 _
18.22,31,

aqooT (5

320 RDOT 6
)/ ,
PHIDOT
g;' PHIDOT (7)
| =)8 THETADOT (g)

PSIDOT (@™

ZDOT (1)

@ 13,15,17,23,27,28,29.30 . : \ L ’ _ -
\Z . : y | ,

. PHIDOT | —PHE-- | ~| | PS RDOT :
8| @ sin (THETA) ‘ | y, PS! 37
o~ ,39 ! ~ \\9 . %2 '
7| 38 'cos (THETA) 22 WND@ -] ng 4 P . | 38
R (.
6 39 sin (PHI) : }‘:39 v
| C R T , R
5 40 cos (PHI) 28 "CMIA () oot 1 us || 407
| | % I “
L
|& - 1 K e N U BN
4. 3 THETA. | 17 acDO () | 27 IS @ 20T | 10 2 “"6 RS |~
3 1l 16 RHO@ | 25™GLDTMACH) [H20HHACNAPH MACH 4 WoOT| 3 ws
| . T H R :
|| MASS () | (MACH CLPS MACH) | . vooT |
2 T 14' 2 : 30 LC () VI 2 VS
: &
THRUST () , CMGS () TIME AU R
il 25 LT | NS I , 5 QS
0 10 20.30° 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 192,

Pigure 17 - A Schedule 031ng Elght Processors

68

v

L e Subsequent' analysis has shown that the speed-up shown
1n Table 4 can be 1ncreased to 7.0 This is accomplished by
reduclng the amount ‘of synchronlzatzon. "fhe follow1ng
‘analys1s-ind1cates the efflclency 1osses in the solutlon..

Let . ‘
A = number of cycles required by actual
. computatlon, . .
> ‘ B = number of cycles requlred by the best .
T, . & schedule, : - .
T C = - number of cycles requiged by synchronization.

4

For the elght-processor scheme with RK method, the values of
A, B and G are: :

. . S~ .
... A <1384/8 =-173 cycles : A
- . B = 192 cycles = 10.9% of A ‘ g
i -4 . Cc='(78 % 2)/8 = 19.5 average o
N and C = 23 for w8rst case = 11.9%.0f B . ’ ", ‘

\n

The.tbtaf'number°of.cycles‘is-then given by,
as Cycles’ =-A + (B = A), +.C P .
/// ‘ = 173.+ {9 +523‘ \ o . -
= 215 ' o . |
. - - ~
The predlcted solutlon t1me is given by

S
o

f -

Q?\BST Cycles X 28, 000 X .8 x 10~6 =n4.816:seconds .

.8

. Cémpare this to tge_agghal'so;ution time, given by Tabie 4,
g of 4.87. seconds. . ' '

Althohdh ‘execution ‘'of the A-10 code was impossible, as.
. dlscussed in+Section 1, some analysis was,made of ‘the four
subroutines ZM6SF101, ZM68F102, ZM6AF103, and ZM6SP10E.
, These subroutlnes were treated as.a single code segment and
; ‘.were d1v1ded into 50 tasks. The total execution time of the

tasks was 2803 machlne 1nstruc€10ns, or 2 242 mllllseconds
» 3

l - .
; . " . L4

e

e 1

, oo o xs o

. . .

‘on HEP, using a single processing 'stream. Since the execu-
. " tidn speed on' HEP considerably exceeds the requirement15,
large amounts_of parallelism did not seem required. We did,
however, schedule the task system for maximum speed-up,
which for this system resulted”in a solution time of 671
mdchine instructions or .537 milliseconds using five
processors.” The efficiency of this solution is 83.5%, but
does not'include synchronization requirements.

)

SR .‘u' T
4533,3 milliseconds (30 timés per spcond), as specified by
comment lines .in the subroutine ZnGSF101% '

-
»

- 63 -, R

RIC RN/

[

-

SECTION 4. REORGANIZATION

. f . -~

This éection’deals gith'problem—solving‘by alternate
methods that are either inheiehtlycparallel or- lend them-)
selves to parallelization. Spec1f1ca11y, we cover the pro-
‘blem of solving ordlnary dlfferential equatlons and examine

,Lyo examples in the general a;ea of mathematical library
functions.

PUgEEE %

LY

<
- . . '
. R L
’ . - ./ 3

: Parallei;Techniques~for Oédinafy Differential Equations
General Methods -’ . i

3 S

This section deals with parallel’ methods for .solving a
y set of m ODEs denoted by A

v

y'(t) = £(t, ¥(£)) , vl =yo (1)

t

o

.. tgr t € Ry Yy e R y : Rx R} -> RN
& ¢ 0

Most metﬁeds that solve (1) generate approximations Yn
to y(ty) on a mesh a.= tg < tq < ty <...<t .= b. These "
are called step—by-step dlfference methods. An r-step dif-

ference method is one that cqmputes Yn+1 using r earlier
'values Ynr Yn-1r

~

foou Yn~r+1' This numerical integration of
(1) by f1n1te differences is a sequentlal calqulatlon. -~
Lately, several authors have addresged the question of us1ng
some, of ‘these fbrmulas 51mu)taneous1y on a set of arithmetic -
processors to increase the 1ntegrax10n'speed.

e

-

Interpolation Method : — ,

Nievergelt16 proposed a parallel form of a §eria1 'y
integration method to solve a differential equation, in
which the algorithm is divided into subtasks that can be

* computed indépendenfly. The method is>-as follows:
) (1) Divide the integration interval [a,b] into N equal
subintervals [tj_q, £31s tg = @y ty = b,)

.

="1,.2, 3,‘.0. ,Nn

i

. (2) Make a rough prediction yé of tﬁe solution y(t;)

. (3) Select a certain number Mj of values Yjq. jo= 15 a
cee ¢ My in ghe vicinity of yg] -]
(4).‘Integrate’simultaneOusly&(with an accurate _ o
» integration method M) all the system
R ‘)
y'' = f(tl* ¥)r y(tg) = Yoo t0_<_‘f-,<_t1 { s
y' o= E(t,y)y y(tg) = ¥i5 0 b S St

g \ ' ,j .=\1l°°lMiI i=1]oo'N-1

x

The integration interval [a,b] will be covered with R
iines of length (b=a)/§, which are solutions of (]) but do
not join at their ends. Thesé branches are connected, by
ihtgrpolating, at tys s -ee ty-q’ the previbusly
féund solution over the next interval, to the right. THe
© time of this computation can be represented by

LGN

TPI = 1[N'ﬂtime for serial integration)

. -~) + time® to predict yg ' , o
+ interp}lgtion time + bookkeeping-time

t

AN

a / M » * 14
. 167, Nievergelt. " arallel Methods for Integrating C 7
Ordinary Differen il Bquations". Journal of .Computer and

System Sciences, 1973, pp. 189-198. . ‘ ‘ *:

AN ~)
- 65 M_.

*

. . " ' 72 | | | R

Interpolatlon can be.done in parallel If 'we assume
thatethe time~ conSumlng part is really the evaluatlon of
f(t, Y), the other contributions to the total time of compu-
tation become negligible. The speed-up {; roughly 1/N. But
to compare this method with serial 1ntegratlon from a to b

,using method M, the error introduced by 1nterpolat10n is &

important. This error depends on the problem, not on the -

method. For linear problems the error is Jproved to be

bOunded but for“nonllnear problems it may not be. Thus the
usefulness of this method 1s restrlcted to a specific class

of problems, and depends on the ¢hoice of many. parameters
ike y?, M;, and the method M. "

3

Runge-Kutta (RK) Methods

&

The general form of an r-step RK method, the integra-
tion step leadirfg from Y, to Y,;4, consists of computing ¢

K1 = n f(tnl Yn)
- N 1Y
Ki = hn f(tn +\aihn, yn +blj Kj)
“»
) N '
Yn+1 = ¥n * RiKj .

v i
'

w1\F appropriate values of a's, b s, and R's. A class1cr4

four-step serial RK method is '
K1 = hy f(tn"yn) - ’
L} A 2 . ‘
> / ~
Y. Ky = hf(tn + h/2, Yp *+ (1/?)K1) .
) - K3 = hf(t, h/2, y, + (1/2)Ky) _ (RK4)
K4 = hf(tn + h, yn + 83)
. ' . - L]
. & Yo+1 = Yo * 1/6(Kp + 2Ky + 2K3 + Kq) 3

- "
\

(V4
\ , - N .
. 'Mir ker’and.Liniger17 considered Runge-Kutta formulaé
that can be used in a parallel mode. They introduced the .

\\~concep of ™ comp&tational front for allowing parallelism. .

* Their parallel second and third order RK formulas are
"derived by a modification of Kopal's results!8, The *
parallel' schemes have the structure: '

. . 1
first order: Kq = h, £(tnh, Yn) ‘ (RK1)
. y!' =yl ey]
mt\ n "
e * . i ' . R
b . second order:_K2‘= K=h £f(t , y1)
9 S 1 o n n

S~

: 1 2
Ky = By f(ty + ahy, yp + bKy) (RK2)

w3 - m2K2+R2K .
. Yan 11 2 2 ¥

«
-, -

- . _

third order: K3 = K4

. 3 - ,
) . K2 = K2 -) \]
) 2 3 3
J . K3 = hy-£(tn + ah,, ¥p +.bKq + cKz) (RK3)
‘ .8 .
o , y3 » = R3 k3% Rr3 k3 + r3 k3.
’ n+1 «1 1 -2 2 3 ;
p %) - N a)

17§, L. Miranker'gnd W. M. Liniger. "Parallel Methods for
Numerical Integration of Ordinary Differential‘%quatiqgi".
* Mathematical Computation, Vol. 21 (1?67)\\pp. 303-320. . s
v,

~ v em . M LA ’ J
183, Ropal. "Numerical Analysis with-‘Emphasis on The
. Application of Numerical Techniques to Problems of
‘Infinitestimal Calculus in Single Variable". Wiley, New
York: Chapman & Hall London, 1955-4 R 17, 1007.. .

‘ ”

~

’ ‘ . w-67-

/

%4 ' ')
..

The pardllel character of these formulas is based on
the fact that RK; is independent of RK; if and only if
i<3j, i,j=1,2, 3. This implies that .if RK1 runs one
Step ahead of RK2 and RK2 runs one Step ahead of RK3, then
(using Kopal’s values of R) the parallel third order RK
formula is given by:"

. X
K . = hf(t 1 . :
. ?,n+.'_). n+2: Yn+2) . '
R4 y!' =y 4k (PRK3)
n+3 n+2 1,n+2 3
(K = hf(t _ + ah, y! + akK)
2,n+1 n+1 n+1 1,n+1

2 2= y2 4+ (1-1/2a)K + (1/2a)K
Y2 Yo TValk, T /22) 2,n+1

K = hf(t, + ajh, y2 + (aq - 1/6a)K + (1/6a) K
3,n . noe 17 YD - 1{In . zln)
M . <>
3 = y3 4+ (227 - 1)/2a] (K - K + K
yn+1 yn . !)/ (1,n 2,n) 3,n
where T .
a = 2(1-35?)/[3(1-2a1)]- L

One val®e.of "a" suggested by Kopal is 1. This gives
ay = 1/2 + 1/2/3. The above third-order RK formula
requires three processors tor compute the three functlon
evaluatlohs in parallel.

The ‘main dgawback of (PRK3) is that it is weakly
stable. Miranker and Liniger (1967) show #what the scheme
leads to an error that grows, 11nearly with n as n ->*® and h
-3 0 for tn = nh - constant. his problem is due tb the

'bas c nature of the one-step formulas with respect to thelr
y-entries, which are the only ones that contribute to the * >
"discussion of stability for h -> 0,

Y s

o

,

’

Predictor-Corrector (PC) Methods ,

The serial one-step methods of thd Runge-Kutta type are
"conceptually simple, easy to code, self-starting and numer-
ically stable for a large .class of problems. On the other

hand, they are inefficient; because £ their one-step

nature, they do not make full use o

‘the available informa-

tion, and their
parallel mode.

numerical stability does not extend to their
It seems plausible/ that more accuracy,pah be

obtained if the value of yni1 is made to.depend not only on
yn but also, say, on'¥p_1: yn_z,,.yﬁugﬂd En-1r Y R
For this reasoa— istep methods have become very popular.
For high accuracy they usually require less work than
one-step methodé., Thus,. the desire to obtain parallel

schemes for such methods is reasonable. .
A standard, fourth—ordgr,~Adams-Mou1ton serial
predictor ¢orrector (SPC) ig: . ,
K - ’r/ T
€ . '/’ N
yP = yS + h/24(55£F -59£C + 37€C - 9f€) . (SPEC)
i+1 i . /h S S ,1=2 i- .
., : "] ') ol
vC = y© + h/24(9£P _ + 19£€ - 5£C + f°€
Vi T Y RO, i 7% TR
’ . - . \L.
¢
N The computation scheme (called PECE) of one PC step to

0.

to yj+1. Set i

5 . . ' . p : . ;
2. Evaluate the derivative function fi+1' Co L
; Ty .. 4 . \

: b ‘ Coh.

3. . Use the cqrrector eguation to ecalculate a better \
' . . < B

approximation to ¥;i;1- \ ‘
. A . |
44 Evaluate/ the derivative function f§+1 |

-

’

. 1
.

5. Check, the termination rule. If it is rot time-to stop, -

increment i, set ¥j41 = y€ 1'and_return to 1. ‘

‘ i+
Let Tf = total time taken'by func*lon evaluatlon done for
one step of PC. - .
TPCE = time'taken to compute préaictor—corrector
equation for.a single equation. ‘
Then the tlme taken by one step of SPC is .
+

¢ Miranker apd.Liniger1(1967) developed fdrmu;aS$fhé the
PC method in which the corrector does: not depend serially on
the predicter, angk the corrector calculations can be per-
formed simultaneously. This Parallel Predictor-Corrector

{PPC) operates in a PECE mode, and the calculation advances

teps at a time. There are 2s processors and each proces-
sé?)performs either a predictor or a corrector calculation.
This scheme is shown in Figure 18, “k fourth order PPC is
given‘byr '

a «! -7 /‘ L
Y ;)y? + h/3(8fP - 562 % 4fC - - £€) (PPC4) ,
\\\\1+1 Ci-1 ¢ i=-1 ., i-2 i-3.
€ =y® + h/24 fP+19f°'3-5f° + £C .
Yi Ty gt /208, 19E;] i-2 * i3

N L

Thus ghé parallel time for a single step of (PPa4) is given

by * - J - o ,
| g
= +
)TPPC -nTPCE + Tg 3nTDC + ZQS ‘ .
- whexe, \
- . \
— i \‘ \
’) -
’ {
- 70 -—
» . ’ N

Compute Update
. Predictor . State’
' Derivatives - vVariables

’

% Compute Update
) . Corrector State . VR
Derivatives Variabags ' , .

/ . i-1 i -

a, -

Pigure 18 - Parallel PC Scheme

oL

»

» \ ' .) ' ' !
: - = Tg as definéd beforevaﬁgf/ '

2 ‘ = 13 ° 3
The » time taken for data co?muplcathn

T. . = time taken for synchronization.

&ﬂ—. Generally, the high&} accuracy and fewer functlon evalua-) R
tions of PC methods (as compared to RK methods) are obtained

at the cost of increased eomplexity and sometlmes, numeri-

cal instability) .The parallel RK methog; given by Miranker . .
and Llnlger (1967) q8 not inherit the stabllliy of their)

Ld '

o

£

[

serial counterparts. On the other hand, PPC methods in
‘Miranker and Liniger, as descrlbed above, are as stable as
their serial formulas. This i$§ proved by Katz et.a1.19.

- -

.

Block-Implicit Methods ; T’~7 ’
P - » .

Sequential bléck implicit methods as described by
Andria et. .al.20 and Shamplne and Watts?! produce more
than one approximation of y at each step of integration.
Shampine and Watts and Rasser22- discuss block implicit
methods for RK and PC type schemes. A -two-point, fourth-
order PC given by Shampine and Watts is: " :

-
%

1

-

P
! v
19N Katz, M A, Franklln and A. Sen. "Optlmally Stable
Parallel Predictors fqr Adams-Moulton Correctors". Comgutlng
*and Mathematics with Apgllcatlonsp Vol 3, (1977), pp.
217-233. - .
. N a ~

"20F, D. Andria, G." D. Byrne and D. R. Hill. "Natural.
Spline Block Implicit Methods". BIT, Vol. 13 (1973), pp.
‘ 131—1‘440 * [N

”~

-

s

21L F. Shamplne and. H. A. Watts. "Block Imp11c1t One Step
;:thematlcal Comgutatlon, Vol. 23 (1964) pp. 731-

/

A

Y

P

"A Runge-Kutta for All Seasons". SIAM Review,'

1967), ‘ppo 417—4520

-
.

>

~E 79

Y B .
: ® F]

%

<
T
i

1/3(yS _+ y© _+ y€) '+ h/6(3£C - 4£C. +13£C)"

A £ % PO o B Sk B i- i-1 i N
‘ yP = 1/3(yS¢ _+ y© _+ yS) + h712(29£C -72£C _+79£F)
i+2 Ti-2 i1 1 i-2 - i-1 i
y@ -2 yC + h/12(5E% + 8£P - P) 7 EPC
,¥i+1 Yy /124 i. i+1 fi+%) . . f),

.
N hd . . 4
A

) L d = c"-i'-h' fc+ 4fp +;'fp YRS .
L 2 T YT 73 i« i+l ! i+2) k

)

Lo
A K -

b ' Worland23 descrlbes the natural way to parallellze
{BPC) using the number of‘procesors = number of.block points

“ 4 by the schemes shown in-Figure 19. The parallel ‘time\, for
24

~ + one Block calculatien given by Franklin ;1s'
TBPC = (2nT PCE + 2T¢ + énT e + 4T)/2
St annklln also gives a performance comparison of (PPC) and
parallel {BPC) methods in case of two procesons.‘ N
, > i
3 ’ *. ,
w ¥
i Iy ’;

23P, B. Worland “?arallel Métgags for the Numerical

’ Solution of Ordlnary DLfferentlal Equations" IEEE
Transactlons ‘on Computlng_, vol. C-25 (October,’1976), pPpP. s
11045-1048. : x
‘ - 2AM, A, Franklln. "parallel 501utlon of Ordlnary _ . -
Differential Equations" IEEE Transactions Qn‘Computthg, '

. vol. G-27.No. 5 (May, 1978)

4 : . - 73 -) <

o o 80 ~ ‘

¥ p P \| .c c
Processor 1 Yi+1. £i+1 Yi+1 £iva

) P P ..]* ¢ '
Processor 2 Yi+2 £i4+2 Yi+2 £i42
)
7

Pigure 19 - Parallel Scheme for BPC . ‘

an
Results ' ‘ ’ .

For implementation, we used the parallel predictok-
corrector method in eonjunction with the techniques
described fﬁ Sectxon 3. For comparison, we also 1nc1uded
the results of the Runge—Kutta solutions.

>
The schedules "for the flight simulation problem discus-

sed in Section 3 were programmed using HEP FORTRAN and were

" .executed on the "HEP panallel computer. The computatlonal
‘results are shown in Table 5. The sequentlal times T4 and
. the parallel, times Tp with P processors are dgiven in terms

of seconds. For comparlson, the times for the Runge-Kutta
method descrlbed 1nlﬁect10n 3 are also 1nc1uded

[

-

Ce

v 3 R
L] i v P ~
: PROGRAM P P T, - Sp Ep . T
e ‘J‘ - ’ ¢ » ‘ ¢
oW 8 28.18 4.87° 5,78 72.3% ;
: ' BC g .21.59 3.33 - 6.48 ~ 813 s
S

{,f .
TABLE 5 - Speed-up & Efficiency: Predictor-Corrector
- _ and Runge-Kutta Methods .

L4

. -
-} > -~ . [PREN
-
>! "
s

The four-processor schedule was run in combination with
" the paralleI predictor-corrector formula given by

The program cyéated ‘eight instruction streams in par 1 1,
four for predlctor and four for corrector iteration.
achleved speed-up. and efficiency in this case, as compared
to therserlal program, is shown in Table 5. -Since the ° s
Ser1a1 PC methods are expected to be more eff1c1ent than
Serlal RK methods, the difference in speed- up of their
parallel mode is als® to be expected. On the other hand, .
the-rdata communlcatlon and synchronization in parallel

: predlctor-corredtor is more than the method using-the RK
formula. These calculations are done in the following'
analys1s of the loss of the eff1c;enc1es in both programs.

3

. «
M - N
2 -
.

3 . S :
. . . P

.
-

v
>
1}

number of cycles requiqso by actual computétion,
number of cycles required by the best schedule,
number of cycles required by synchronizar}on. .

o f = .) N N
.

¥ M .

O w
non

For the eight-processor scheme with the RK method, the
values of A, B, Care: : . ;

4

1384/8 = 173 cycles o L
192 cycles = 10.9% of A .
(78 + 2)/8 = 19.5 average ’

23 for worstfcase = 11.,9% of-B e .

~

A
B
C
C

N ‘) [. -

Cycles = A+ (B - A) + C
o & 173 + 19 + 23. = 215

& I < !

a

The predicted selution time is given by - = . ¢
3 . ’ 8 15 : . '

* p8T = Cycles X.28,000 x

For the fbur-prigéssorsPC method the values of A, B
nd C are: ’

?

©1384/4 1‘346'

A = , ,
"B =363 £ 4.9% of A ' o ‘e ' :
_ C= (86 x 2)/4 + 50/8 = 55.5 average e
and C = 58-in worst case = 15.9% of B.« >
T e ' b\ N ’

This ;gives the,tq}gl?numbe} of cycles required by the

program . . .

2

Cycles = A + (B ~ A)-% C S
=356 4717 + 58 = 421 cyclés ,

&, . Ed
.
*

This gives' the predicted /efficiency for the PC method
. / * - .

i ..‘/ @ ‘. N
L, PRE) /. ‘
. PE = 356/421 = 82%, . . -
where the.ectual“efficiency gﬁvgn by Table 5 rs_81§. .
Lot 3 o R

-—

. : .“ : . - ?

¢ o Mathematical, Functions. :
. Y o L. .

Lo - *o l Rt , . N

6°

In addition to, the ,feorganization of differential equa%,
tions, we have- examlned the reorganlzatlon of two.common
fhunctions of a mathematlcal library. 1In the case of differ-

e t1a1 équatlons, the reorganlzatlon resulted .in dlfferent

.
. 3 . +
M w ..
- -
, , / .
-~
v . — '16 - o .
' - 83 N
- ol v »
s . ') ;'
b
; . . s N - .
d 3 N § . .

s " ° : . - q
S N .

4 R B
[> d E

. ~

algorithms being employed;’whereas.in the cases we are‘ébdﬁt

to discuss the algorithms®are identical but the programs aré. [¢
considerably reorganized. -
«)) N . L
/Bhortest Path Problem / f

’ shorteEt path‘problems are among the most fundaméhtal
and commonly encountered problems in transportation and com-
munication networks. We included such .a problem in this
study for threé reasons. First, it is directly appllcable
" to £light s;mq}atlon studies as a mathematical utility .
function. Second,+it is used to schedule algorithms for

. ¥ " generating MIMD programs that solve ordinary differential

*equations. Finally, the technigques used to derive parallel- .

. _ism clearly show the limitations of automatic detection of s
- parallelism. ' We elaborate this third point in Section 5.
. N

The shortest path probfem we @xamined was the all—tg—'
all program: given n nodés (points, vertices, etc.) and ’
given a distance (cost) between each ordergd pair of points,
determine the ‘minimum distance (or cost) and path between

"all pairs.of nodes. The distance or cost function does not
require the’ d1stance frOm i to j to be the game as the i
distance from j to i Further, the triangle inequality is
not required to be satisfied. Finally, the distance values
may be.negative so long as there are no negative cycles.

. Such -a .problem could well be stated as: given a Eﬁmberigﬁ
locations (latitude, longitude and altitude) and gilven y

‘ fuel consumptlon of an &dircraft between all adjacent palrs

" . of p01nts, what 1s tHe‘mlnlmum fued.consumption between some
" given point and any other point? ') / o f

.

] .
The 1iterature contains we11 over 200 papers %n short-
" est{ path algor1thms25 " We chose Floyd's algor1thm26‘
which is very generwl and provides the minimum path as well
as the cost of that path. The nodes of the graph are .
represented by the integerg 1, 2,..., n and the path dength -
(cost) is ‘represented by an n-by-n matrix W where Wi,j is '
“the distance. from node .1 to node j. Node j must be adjacent
.to i (otherwise w1 4 has the 'value =). The sequential ’
algorithm is shown in Flgure 20. , For the algorithm to
" produce the paths as well as the shortest distance, we.need
a second n-~by-n matrix 2 (often‘referrea to as the ogtimal-
polley matrlx)vwhere 34 .3 i 1n1t1ated to j if Wi, j # .
and. zero otherw1se. During execution’of the innermost loop,

3

\

-if it is found that WJ it Wik is less than WJ K then
(in addition to replac1ng Wy k) the value of Aj,x-is ! A
replaced with the current gaiue of Z5,ij. Upon completion Ny

‘'of execution, the shortest path-: ‘from vertex a to vertex b is
‘determlned’by the vertex sequence: il

. < .
) 1V‘l = Za1’5 .‘ -
w '] * t 7oy 4
VV2 = ZV1 ’b l e) |) -
. ‘ Y , / i @ ‘ &
Va = 2 > A ! .
37 b, =) , p ‘
N ~ /
o .. a) 0
3 - . ’ i .
- Y b = Z ; [4
. Vgl ' .- ‘
A ’
. -) .,0 A /)) ' A} . . -
2
. 25N, Déo and C. Y& Pang. Shortest Path Algorithms:
Taxonomy ard Annotation. Technical Report No. CS-80-057,
Computer. Science Department,.yeshingtoneState University,
\ Pullman, WA (March, 1980). . . .,

" - < . A ..
.. 26R. W. Floyd. "A¥gorithm 97¢ Shortest Path". _
Communications of the ACM, vol. 5 (1962), p. 345.. '

2
- Ad
.

E&i.2 ST -

3 e by :
. S - ‘58 ‘-\9 ay " ?
R .- v

. N
PROG MINPATH .
v P
~ ' ¥ -
2 ‘L . -
' READ N,W - R ;
FOR I = 1 TO-NDO * ' . . .
. © FOR J'= 1 TO N DO] -
L ‘ 'FOR K = 1 TO N DO ., - .
. > °. - ’ . °- ‘e
‘ R CIP W, F Wik < Wk)
L | THEN ' C L
’ Wj,k {~ Wj,i .+ WJ'_.,k i | -
WRITE W AN ,

A} . \
. - . b

, [4

- ' Figuréﬁbo - Minimum Path Algorithm

e . . . p . \
(3 ‘ ~ ‘;: ' F)

To.détermine a parallel version of this algorithm, we .
q;fine the code in the most-interior loop. to be a task and
‘denote it as Tjjk. The algorithm requires that the execu-.
tion of Tik be complete pefore §t§rting‘exeCutidn b§ Tuvw-
(Qenotad bY;Tijk < Tyyw) LE ijk precedes uvw in the &L
natural lexical order. We now deétermine the maximally
parallel task system equivalent to.the t¥sk system of the

q {,;éiguential program by exam;ning the.range and domain of the
' ”A tgsk% Tijk“ We dehote ¥hewrange (memary 1og§tioﬂs that are
wtitten.ipto by Tjjk) by Rjjk and thé domain (memory cells

read by ,ijk) by Dijk‘ i ' N ‘
i . » . R e —
- ' NO{:‘,{E that . “\ ' o E ,-
r ’ - -

| i ‘
| Digk =.0Wg, ke Wi,i0 Wikl

" For determining the range, note that e problem'requires
that there be no.negative weight cycles (if this ﬁere the
case. there would be no ‘minimum path for any nodes within the-
negatlve cycle)., Thus, if i =4¢, then

o

. ¥ < °
Rijk =.{'Wj,k if i #jand i # k,
. 0 otherwise

a’ “

| -

0
-

)
From, the - above range¢ and domain we observe that given

‘ dlstlnct T, T' where <.
- ‘ . . M ‘ .

>

-

T,‘ T' ¢ S§ = {Tijk|'1<§j<n']<£<n }

/

Consequently, f&r each value of*x(/all tasks in sl may be
executed in parallel. ‘Thus: .

PROGRAM PARRATH:

- for 1 <~ 1 to n do

g

for all 1<j<n and 1<k<n|
do concurrently

S<~ W
if S 2 w tgen

e.lj'< S

Q ' -

¢ - N
P R

is a.correct proqram'that produces the same results as the’
sequential program MINPATH. The parallel versign. can use n2
- processors resulting in a sﬁEed ~-up on n?, sin&e n2 proces-
sors.may be larger than the number ava11able in typical

systems, we programmed this parallel algorlthm for use.of K‘\<y
processors where K is'in the range of 1 to n. This program_

is shown 52 Figures 21 and.22. -
. N

v *

.Y ° \\‘ N
The memory.limitations of the Prototype HEP limited us

to a matrix size of 40 x 40. We ran rdndomly generated test
cases for this size usfng from-1 to 14 prgcesses. The :
results. are shown in Table 6. The agreemgnt between actual
andcpredlcted eff£c1gnié%1s good When S¥he numbeﬂ of TR
‘processes ‘(P) is a divi®dr of the dimerpsion (N) of the '
magrlx, the eff1c1enoles are excelf!nt. e *

_ . - - 1]

» '
. .
.
.

pre -

L

Linear Equation Solver ’ - o
"\ ’ : ~ i "~ .

) Solving a set of linear equations is a’proplem of

central importance. Nearlysevery mathematical library

- contains progdams for its solhtion. One of the most: popular.

$ROGRAM PARPATH -

-y
READ N,W
$SK <- 0. > .
CREATE -STREAM 1 (1) s
CREATE STREAM 2 (2))
CREATE STREAM 3 (3) - |
s |CREATE STREAM 4. (4)
CREATE STREAM 5 (5) | . ’
CREATE STREAM 6 (6) :
CREATE STREAM 7 (7)
CALL STREAM-8 (8)
WRITE W. :
N ’ . v ’
t 7 . , oo
SRR Pigure®21 - Main Program for Parallel Path
: Using Eight Processes
/ - ‘ !)
’ . 4
))) o’ .
- T S : Ll
® . v . . ¢ v .
o .
- PROCEDURE "STREAM; (L) : S
" - |FOR I = 1.TO N DO " ; |
FOR J = L TO N STEP 8 DO
FOR K = 1 TO N DO
/ - .)
, (IF Wy, + Wi x < Wy B
e N ' THEN C R
- . vt .
. _ C 5,k <7 Wy, Wy
«a . - - ! b h '
| SK <- $K-+ 1 © ’ : R
. /| WAIT UNTIL $K = 8 * I ‘
S ' P T
i : @ :
/ ‘ _ Pigure 22 } Subroytine for Parallel Path -
.- ne ‘I‘ ‘ ne:,, . (. L . . !-
. - 82 =
L4 - L4)
,) 4 ‘e
.o ™ .
"q." - v ‘ . 89 "l hd
LY .) 5) . ;

RS

-\

\ ? | ,‘A’._

A

. o |
oo b C Efficiency |
N 11

Sélutiongmé Achieved " 'pred j cted
n‘ ’ ° ' *

& , v

-~

40 ‘ < 1.3102 e
: o .
40 [, 2- . .es408 .10 T 1.0

- v -
4071 3 -, L. .45176

e /o4 an .32808 . \\ .998 1.0

s s .26258 L .997 - 1:0
.. 40 I 22789° 959/~ . v .952°
- Ao, 7 : 19565 ‘.dggi} 552

40 ' 8 .16524 / C..99) 1.0V "

- . 48 9 .18217 898 ° . 889
.40 10 . 16573 L .988 - (0
40 11 18099 . .905 . '.9p9‘ .
40 12, . .19492 84 : .83
40 13 021017 ¢ 779 .769
- 40 14 Coo w7s82 .931 . .952

. e
[.4' " ’ } z !
‘ 3 { C g\\,

TABLE 6 - Performance ok parallel Path Algorithm -

’
'y L .) .) 4 1y
* (S . . . I
{ Y
. -
’
’:k‘
»
. ¢
- H
i §
, ¢ ; 7 * . ’ M .

¥ ’ * . -
. .

' S e |

A

P ' . .) o
algorithms is LU decomposition uéing Gaussian elimination® /
with some form of pivoting. We address oqﬂy partial
pivoting. . Details of this algorithm can be found’ in any ‘

' _standafd text on numerical analysis, such as Introduction . to ' v

T Nupler ical Analy§is27. Figure 23 shows a serial program for

s .=‘fﬁfaecoﬁpds;tion..‘Our method. ‘'of reorganizing is to unroll

the DO doops, apply the techniques of Section 3, schedule

the resultifig parallel system, and finally write a number of

subroutings, employing j2]e] 1oo§§ whose parallel execution is

t to the original program. . - .

K

olumn j for a part1Cu1ar value of k. We denote those tasks

tg = {Ti. 1<K<j<n, K<n-1} R ’:> }
4
THe precedence constraints ‘imposed by the sequential program
are . : . v - S . kY
. . - . .
<= [T, T | 3<1 or k<m].
k mh . .
-Thus, C = (J, <*) is the task system that represents the , .

sequential program. The range. and domain of these tasks

are: .
£ ¢

< "R(TI), = (A(L,9) | k<igny L \+ -

k : = v TR
? ;o ; .) ’ .
| . v : Crrs s _ B I :
R D(lec) = {A(1,§Q |-k<i<n] y [A(i,k) { kﬁfﬁ“ '
‘ =] . . . T ol
ft [y " .,.' ¥
| * : e ~ oo

.o 275, B Hildebrand. (New York: McGraw Hill, 197%).

_' -, '
- l > ot L
. H - < -, T N X .
N 7 LI - o 0
T - I b
s, . o = 84<- . . 3 s
. . . N *
9; » * :’o
.. . - ~ [.‘;
« K1 .
b ’
+ ’)
t # ¢ 4 A} . '

v’ ’ "
- X (
. EA v, .
. . % X ';
P§ogream LUDECOMP ('A(n,n))_.‘ T,
JPor k' <~ 1" to'n-1 do - , ‘ -
' e S T - =
Find - such that) . -
-~ t') M
|Agj,k2l = max {lA(k,k)',...,|A(n,k)lL A
PIV(k) <~ 3 . [pivot rowl ‘ ' >
I ’ Y <] ’
A(PIV(k)Ié} <> N(k}§)
1 Por i <~ k+1 to 1 do - ' K

» N . _J
A(i,k) <-.A(i,k)/A(k,k) [elements(Of:L]
1"+ Por j <~ k+1 to n do :)
- = - - ¢
A(BIV(k),]3) <=> A(k,])
 For i <~ k+1 to n do)
'y N ‘
A(i,3) <-"A(il'j).-. A(ilk,)*p‘,(klj)"
R (, % RS
® -9 'v" J‘ ;’« .
. v, ’
T . ¢ o TN
i . s S
‘: Y ¢ ' -
~ Fidgﬁe-23 e}Prog am for LU Decomposition
. w,, oot _/‘ “7 ° \" | ’ .
N %
v /m *
. - ,
J ' >‘¢- .
N . ° \
TV - 85 -
- o 92 .

Ti, jok

From this we can observe ‘that,

k+1

{Tk ,‘Tk

-~

. k‘*‘é.

? Th } Py
f,00 0 ¢

-

ko

A

for example,

are all mutually nonlnterferlng tasks and could be executed
in parallel 5 More spec1f1cally, we observe that C' =
(T,<*), where <* is,. the transitive closure on the

relation

‘X = { (‘T}}:’
is” a maximally
is 4llustrated

R

Given the

J) 'l‘k<j_<_n PR (qﬁk TJ+.1) | k<j<n } g

parallel system equivalent'to.C.
< SRt
in Figure 24, ’

- L

This system

\

-~ ") . i a4,
task system . C' we now determine the execution

7’

:

assume that one multiply and one subtract, dbr one multiply
and one compare, canstitutes a time step.. Thus, neglecting

t1me of the tasks and fromzthat determlne a schedule. We

any overhead for loop EBQFrol, the executian-time W(Tj) for °
each of the.tasks is given by: = . ~ =

k’=j‘) . , .’.I * o

Y fner-k if
k<3

k
w(Tj) n-k

r
- °

) . : s . M . , . R CRR TN
Treating the task syséem c' togethér with W(Tﬂ) as a
weighted graph we obsenve that the longest‘path traverses

the nddes : - .ot 3 - g } .
* PR i . g" . .
1 .2 2 . 3°:3 '° _n-1" .n . ' :
T1’ T]’ T2 ’ Tz’ T3’ ovoo’Tn_1’ Tn"1 .
- y
We denote this path as - S1 and the length oﬁ the path as
"L(/;) R)) .
. et .))
“L(Sy) = A+l +°2 > 3§ =n2 - 1
j=2 o
» . R
. ' w7 . -
[}
. .) .
) ’: » - b /> -
o p Ird " _.86‘;_ i }
- ' J—“‘ . "\
. ' . ", 5 e '
. [
Q - - ‘7; 93 %

b

¢
v

. *- ‘“ ’ B i .
* - ‘ a . 44
. : K
i \
4‘ b t
2
! . n
“ K A}
v oo .
” ©
!’O > - ’
. A
- !‘ - N 1
. c
:‘
- S - 0 . e -
L) . . ¥ .’ > . .)
Pigure 24 - Maximally Earoallel Task System Equivalent to C
(X . ff. - . 3
T ~‘ . h A °
: 'l e " o e
> r- . - 87 - ‘ ')
o / ‘ / s ®
. o : s ». .
\.1 . - : y ~ a o . . ‘94 N 0 . N :
ERIC - 4 e
- se -
;) & -

/
.
-~
-
4
7
%
é\‘« .
.
-
.
4
>
‘ »
-
-
3.
. .
L]
’
.

o4

.

4 . ,
Since the problem tannot be solved in a time shorter than '
this path Iength; we developed a schedule where the tasks
constltutlng S5, are ass19ned to processor 1 and the remain-
ing tasks are ass1gned to [n/2] - 1 additional processors.
’ Processor ? execuE/s the tasks

-3 4- 4 5 5 n- . _
AN , T‘l’ T‘]’ T?, Tg, T3’ o-oo” Tn_z ‘_ ,
" More generally,hprocessor j executes the tasks B
. K | | | . - .
0 23=1 . 2) 2] 2j+1 n :

o T2 ’ T2 f e ey Tn_Z(j_‘]) Al

We denote is as S§j. Note that this is not a path through
the graph. .For the case where n is even, this schedule is
illustrated in Figure 25. Since.this schedule has length ¢
n2 - 1, the ‘length of thé longest' path, then this schedule
is optimal .for Q/Z processors. Using this schedule we note

that: . ’ &

~ (& : . T
' lim n3/3 +-0(n?)

Sp/P = n=> = (n2-1) n/2’

lim
n->

i)

<

X .
. . . -
- . -
- 1 .
. . ‘ s . . o
£ - 2 L 2
(

. o -

. . and this effiéiency is achieved_to within 2% for relatively
small n (n >. 50) . _ '

’ > -
- »
v

ot Thpse scﬁedules were pr$grammed us1ngsHEP FORTRAN, ‘and ®
" were run,on .the H%P parallel computgr. APEhough the program "
. solved a set of ligéar eguataonsm we recorded tamlng for .
only thf LU Eedomp031tlon so*thaﬁ t could be compared w1th
‘the predlcted solutlon ?mes. Table 7 glvés the actual and
redicted efflc;enc1es “£or theﬁnuﬁbgr of equatlons ranging ,
from 10 .tg 35 and the numberkbf'paralleﬂ 1ns?ruct10n streéﬁs 3
: ranglng from 2'to 8.) . L .- . } y

- - =7 . *

n-2| n-1| n=1| n
Th-2|Tn-2|Tn-14Tn-1

: s, / 3 4, 4 | 5 5. - |:n=1 n | n / '
\ t. - P Ty T4 T2 T2 T3 | Tr-%|Th-3 Tn-z
.) " ' “ . 5 ’ e 8); - .) /
" AT 7 5 1 6 6 | 7 77 | n |
" P Ty). Ty T | T2-} T3. Tp-4 \
“(| ') . . . ‘ %L . AL . [.

3]

w

$.
: n-3 n-2 n-2 n=1 n : P
\ . .(n/2)-1 T‘, T T2 '} T3 T3, : //////////
i L] ,a B . . ! / n i
. . ,n=1 1. n n /
. . n/2/ ,' T T4) ’ ' //////////
: T) 4 ' . £ -/

| |
1 1 *1
2 -4 n2

R
[
e e

l
I
¢ 0N n “2n-1 3n-2 4n-4 5n-8 n2-9

:
. p
”, ’ ° '
R . , . - QU . _
.

) St T - ‘ ‘ N 97
vo - o . . . R ' . ‘ ‘ . \ . . ‘

P

- 90 -

\ +
no. of number off prodessots -
equa- .
‘tions 2 3 -4 15 6 7 8 .
A .833 .719 -.642 .633
10 ‘ :
P .852. .739 .678 .q@s
A .888 .794, .740 .65j .618 ..625
15 . ' ’ ¢ . a
‘ P .900 .815 .766, .679 .652 - ;681
. K .921 .843 .774 .758 .670 .623
20 . |
f P .931 .863, .798 .789 .703 .656
s
A .934 .878 %830 .763 .755° .692
25 : ' | '
.» .944 . ,896 .855 .739 .788 .726
A .942 .892 .844 .818 °.757 .744-
30 .
: P .949 .9]1 .863 .843 .783 ~.777 .745
A .948 _.901 .862 .819 .790 .747 .741
35 [N - - y
T .956 .918 .880 .843 .827 .779 .7697
) [‘ ¢ b5
- .i /
A = Actual efficiency. ‘
P = P%ed}cted efficiency. / \
: ‘ £
. . - ,f?
AN
: £
Table 7 - Efficiendy of LU Decomposition i'“'
1Y)“’,‘;,,
- - f;»’ ’
5 (
-] ' {
’ »-9 \‘ ! ‘,' e

’b

A 2

SECTION 5:

v

CONOLUSION%

.

s

In this study”/we have examined programs that are all in

_ support of flight simulation, but which can also be’categor-

ized by the-types of mathemaﬁica@ functions or services that
they supply. Categorized in thié\?enner they are:

(1)
(2)
(3)
(4)

numerical approxlmatlon of elementary functions,
solution of linear -algebraic equatlons,

solution of shortest path problems on dgraphs, and
solution of ordinary differential equatiogps.

For problems in the first category,’” we examined the
program at an arithmetic instruction level and produced
parallel code based on this examination. These techniques
produced speed-ups in the range.of two to three. Since”:>
elementary function approximation inyolves small amount f
computatlon, these very modest speed -ups are perhaps to be’
expected. 1In produc1ng parallel code for these functions,
we were guided by the formdl work in the area of polynomial
evaluation. We. do not foreseS;eny automated approach to
producing a. 11brary of elementary functions for a partigcular.
MIMD computer, but this .does not adversely affect the
potential of MIMD computing. istorically, elementary func-
tion libraries have been codgg'en machine 1anguage and high-
ly tallored for the target machine. :

To solve linear algebraic equations, we unrolled the‘DO
loops, represented the computation as a task system, and
‘from this produced a number of DO loops that c0u1dwbe exe-
cuted in parallel.. As we mentioned in Section 2, automatic.
detection of parallelism within nested PO loops is receiving-
considerable research interest. We belie that if future
Air Force simulation requirements include flexible ubdy’
representations (generally requiring solution of lingar
algebraic equations), dither the algorithms developed here
will be of benefit or automatic recognizers of parallellsm
within nested DO. loops will be available. The speed -up

. “
N . » '
\ 4
.
‘. . . 4 -

e

-

-

-

-] " o] i
N #

h . .
available in thxs problem type is b0unded only by the size
of the problem.i For example, glven a set of 100 linear
equatlons, our algorlthmnsolves ‘them approxlmately 35 times
faster. than a sequentlal equivalent, aqg with very good

efficiency. v p

Producing a sarallel version of the shortest path pro-
gram involved. unrolllng the DO loops and treating the
resulting code as a task system. To determine the preced-
ence relations, however,iwe used, information from boeth the
code 'of the program and knowledge of the input data sets for
which’ this program was correct. Thus it is difficult to see
how automaticidetection of parallelism within DO loops could
have produced the same parallels we did. But this should
not detfact-fgpm the benefits of MIMD computing. 1In most
fli@ht simutatidn programs, minimum and maximum path algor-
ithms are usually utility routines; their status as library

- function should be adequate. was the case for ‘the linear

equatlonsu parallellsm and speed-up is bounded only ?X‘the
si}e of the prublem. Ror example, given a shortest or long-
est path probldm involving 100 points, a speed-up of 100
ovér an equivalent sequential program is achievable with
efficiencies near 100%. ' ‘

For soIvihg ordinary differential equations,'a variety
of techniques were 1wyestlgated. Those described in Section
3 seemed most successful. Two distinct flight simulation
programs_were,examlned using these techniqueg, ¥he ground-
missile and the aerodynamics portion of the A-10 o
imulation. The A-10 aerodynamig¢gs is approximately
“quch' code as the missile simulation (2803 machine
sents, the

training purposes. On these assumptions wé conclude that a
MIMD computer' of the power' of HEP could be used‘in Air Force
fright simulation projects in two ways: R

-

(1) as’ a multiprogramming compfQter capable of running’
several concurrent 51mu1 tions qf the fldellty of
the A-10 simulation, o

A

(2) as a computer capable of runnlng one or two con-
current fllght simulations of significantly more &

f1de11ty ‘than the Current A-10 programs.

Greater fide ity is possible net only in the aerodynamlc -
sectlon but also in computlng visual cues Eor the trainee.

[
o «

) . Should an MIMD computer of s1gn1ﬁ1cantly less power
- than HEP be employed for flight simulation, our study
indicates that there is adequate pafallellsm within these
types of, problems that lesser computing power would b@
adequate for s1ngle simulation programs.

D

s

.

~\

-£

-

”~

v

v
REFERENCES

’

Andria, F. D., G. D, Byrne and D. R. Hill "Natural_Sp%ine
Block Implicit Methods". BIT, Vol. 13 (1973), pp. 131-144,

L

Baer, J. L. and D. P. Bovet "Compilation of Arithmetic
Expressions for Parallel Computation”. Information Process-
ing 68 Ahsterdam: North Holland Publishing Company, 1969.

-

Coffman, Edward G. Jr. and P. J. Dennlng. Opengtlng Systems
Theory. Englewood Cliffs, NJ: Prentice Hall, }973.

Denning, P. J. "Third Generation Computer ‘Systems”
Computing Surveys, Qi. 3 No. 4 (1971), pp. 1975-216.

Deo, N. and C. Y. Pang. Shortest Path Algorithms:
Taxonomyand Annotatidn. Techpical Repeft No. CS- -80-057,
Computer Science Department, Washlngei:\State University,
Pullman, WAiiE?rch 1980) ‘v .

Dijkstra, E. W. "Cooperatlng Sequential Processes". Program-
ming Languages, F. Genuys, -Ed. New York: Academlc Pregs,
1968) pp. 43-112.

-t

~

Dorn, W. S. "Generallzatlon of Horner s Rule for Polynom1a1

Evaluation"”. IBM Journal, April 1962, pp. 239-245. ; Vet
H ’, S

Floyd, Rs W. "Algorithm 97: Shorbeét Path". Communications
of the ACM, Vol. 5 (1962), p.-345.)

Elynn, M. J\ "Vgry High Speed:Computlng Systems ~ Proceed-
1ngs IEEE, Vol. 54 (1966),4pp. 1901~ 1909. - . s
Franklln, M.A. "Parallel Solution of Ordinary Differential
Equations" IEEE "Transactions on Computlng, yol C -27 No. 5
(May ., 1978)f . P :

Y

.

~ - .

N .
Hart, J. F. et. al. Computer Approximations.'New York:
Wiley & Sons, Inc., 1968, .~ - . -

¢

Hildebrand, F. B., Introduction to Numer1ca1 Ana1y51s. New o

.York McGraw Hill, 1974.

’r - -

-Katz, N., M. A. Franklin and A, Sen. "Optimally Stable

Parallel Predictors for Adams~M0u1ton Correctors",, N
Computing and Mathematics with Appllcatlons, Vol. 3 (1977),

pPp. 217-233.y¢ ¢ . - -

Kohler, W. H. "Preliminary Evaluatlon of the Critical Path.
Method for Schedullng Tasks on a Multiprocessor. System".

.
IEEE Transactions on Computing, Vol. C24 No. 12 (December

1975)., pp. 1235-1238,

A

Kopal, - 2. Numer1ca1 Analysis w1th Emphasis on The Agpllca-,
tiop of Numer1ca1 Technlgues to Problems of Infinitesimal

-Calculus in Slqgle Variable. Nef York: Wiley and Sons, Inc.

(1955) o -

Kuck, David J. "Multioperation Machine Combutetional
Complexity". Complexity of Sequential gnd Parallel Numerical

/

Algorithms, J. F. {raub, Ed. New York: Academic Press (1973) .
p\po 17-480, . : . : N ' \\

]
Lord, R. W. SchedullnngeCurrence Equatlons for Solutlog on
MIMD Type Computers. PhD Dissertation, Washington State e .
Un1ver51ty, 1976. .) ‘ .

) > * T ' /
Miranker, N. L. and W. M. Liniger. "Parallel Methods for the
Numerical Integration of Ordinary Differential Equations".

Mathematical Computation,‘Vol. 21 (1967), pp. '303-320.
~ S ‘ *

- Munro, Ian. "Optimal Alg@rfthms for-pParallel Polynomial

Evaluation".' Journal of Computer and System Sciences, 1973,
pp. 189-198. - .

N1evenge1t, J. "Parallel Methods for Integratlng Ordinagy
Differential Equatlons" Communications of the ACM, Vol. 7

'No.,12 (Decembers 1964), pp."731-733.

- 96 -

\

. (S}
Rosser, J. "A Ruhge-Kutta for All Seasons". SIAM Review,

_Vol. 9 (July, 1967), pp. 417-452. ‘-

r
[

Shampine, L. F. and H. A. Watts. %Block Impficit One Step
Methods". Mathematical Computation, Vol. 23 (1964), pp.
731-740. . - tt .
.) X
f Strauss, J. C., et. al. "Continudﬁs System Simulation “
Language"?‘ Simulatién, Vol. 6 No. 12,,(December 1967).

Ulkman” J. D.-"Polynomial Complete Scheduling Problem3".
Operating.Systems Review,.Vol. 7 No. 4 (1973), pp. 96-101.

- N .

Winograd, F. "On The Number of Multiplications Required to
" Compute Certain Functions". Proceedings Natjonal Academy of
Science.USA, Vol. 58 (1967), pp. 1840-1842. _
WOnland: P. B. "Parallel Methods for The Numerical Solution
of Ordinary D}fferential Equations”. IEEE Transdctions on
_Computing. Vol. 9725 (October, .1976), pp:‘tQA5—1048. v

‘

. v -

A} . c v < . . . 2

%
N -

