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. - ABSTRACT . .N
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Log 1inear models are prohdsed for the analysis of structural relations
.. -
among mu]tidimensibna]'developmenta? contingency tables. Models of quasi-

independence are suggested ‘for testing specj?it hypothesized patterns of.
development. Transitions in developmental categorizat%ons aré described
by Markov models applied to suctess1ve contygency tdbles. A discussion
: of the role of Pearson chi square and log 11ke]1hood significance tests in

model selection is followed by two illustrative data sets.
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.,]develobmenta1 domains (Bates, Begnigni, Bretherton, Camiori, and Voltera,
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Log 11near models are a rezeﬁELyfdeve1oped'data analysis’technique s,

¢

that prov1de a means for tze analysis of structural relations afiong mu1t1- ﬁ“

dimensional developmenta] contingency tables. Utilizing Piaget's (1970)

1

“definition of structure as a set of transformations governing.a.process

of self regulation, hypotheses can be framed concerning synchrony among

o

*' 1979; Wohlwill, 1973). *For example, one could explore patterns of re-

»

1atio?ship among perspective taking levels and other domains of social
cognition such as friendship (Selman, 1980).or among severa1‘]inguistic -
and cogn{tive classifications (Bates et al., 1979). In addition, chaﬁées
in structural relations over time, as in Bates et al. (1979) discussion .
of local’ homology models for exam{ning ﬁ€<:tions”bft¥éen gestural %nd |
linguistic complexes, are also germane to Piaget'gicongept of -structure.

The organization of this investigation is divided into four sections.

-4

In the first section, an outline of the 1og 1inear model is presenfed as
well as the Fi:iona]e for tests of significance. The next section discusses

developmental hypotheses with respect to developmental contingency tables.

.

- Thirdly, log linear approaches to developmental contingency tab]eé are

" presented. The fourth section follows with two illustrative examples.

?

Log Linear Models

« »

Log linear- models are structural models,.describing cross ¢lassified

data. The complexity of the data is-reflected by the number of parameters

in the modél descriBfng its structure (Bishop, Fienberg, and Holland, 1975).

For a two way contingency table of order I (i =1,2. . .1) by J (j =1,2. . .3),

the logarithm of the expected count in the Mij-%h cell is written in _« -
S R el

LY ~ ’
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{1) "where log Mi' represents the natural logarithm of thé)expected values

, and the u paraffters are analogous to their counterparts in an enaJysis !

. of variance mode1 (see Bishop, Fienperg,_anq Ho]]anq, 1975; EVeritt, 1377; ‘ ; .
7 Fienberg, 3977). ' '
(1) log Mij =y + Uy ik + Us(5) + Uio(is) © -
The analogy to énalysis of variance is maﬂe'obvious by inspecfion of -the
~;naximum 1ikelihood parameterxestimates presented in (2), (3), a?d (ﬂ); where _
, 1= iog m., for all i and j. ' ‘ ¢ w»”””jr"

/ 1] 1J- 5 . . _ L st
(2) u = % i ]ij/IJ

= 1 - =I 93
. (3) Ui (4) .('i+/d) U whefe ]i*_ j.]ij and-is the mean for each

cach row, j

Wivieliy) = Ny - v )
The maximum 1ike1ihood estimates presented in (2), (3), and (4) are équiva]ent
across a wide spectrum of samp11ng assumptions, ranging from the assumption
6\\samp1e‘31ze as a randgnnvar1ab1e (Poisson sampling) to the assumpt1on of
fixed marginal conf1gurat1ons of sums or product multinominal sampling (see
Bireh, 1963). Marginal sums refer to the total sum for any row or column. '

. L4 ‘. ‘ \ . .
Hierarchical Models ) - {

4

Log linear models are often arrangeg hierarchically to facilitate
comparisors among models. Another model that could apply to a two way table

is written in (5), where the parameter estimate analogous fb interaction

.

is deleted,

) . tS) log m 1.p + u]( j + u2<j) .
7 . -

Since the degrees of freedom for any model are equ1va1ent to the number "of.
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parameter estimates subtiracted from the tota]'number of cells, the model

in (1) is said to. be “saturated" whereas (5) is "unsaturated" as it has N

T ow

fewer barametehs than data cells. In eddition,_(s) is subsumed by (1), as

X - it contains allwthe parameter estimates of (1), less one. Thus, (5) and

+

(1) are hierarchically-related.

Notation and Hierarchical Ahrangement -

/' 3 4 L . ’

_ I¥-hierarthical-models are assumed, each parameter estimate can pe
T oo .

P

expressed convienently by & variable number and a set of brackets, following

Fienbehg (1977), with the entire model }ebresented by the highest terms in L~
the expression. Thus (]) is expressed as /12/ designating "main effects”

and "interaction" and (5) is expressed as LT@?/,vdesignating "main effects”
without "interactign." "
LI !
Goo&ness of Fit S f

The relative adequacy: of a model can be tested by summary measures of

. .
'Y
.,

-

the goodness of fit. The Pearson ch1 square statistic, preﬁented in (6), .

f \
is asymptot1caf1y d1str1buted as X:IUnder thg\Zill hypothesis of independence.

The 109 11ke11hoéd rat1o stat1st1c, GZ, written\in (7) is also asymptotically
i;::> distributed as X_ . With degrees of freedom appropr1ate for the model
‘ under est1mat1on, although the Pearson statistig has been demonstrated to

follow the asymptotgc X. distribution more closely when the table is spUF?E\\\\

, . Q
(Larntz, 1978). .y ' :
1 2 2 . .. ) 9
(6) X~ = : (Xi'- M;)"/M;, where X, M represent observed and estimated &
T . . I }> . values, respectively '
. ()62 =2 % Jog (X./M.) '
. i S M
Goodness of Fit and Nested Hierarchies .

A . -

- °  The log.likelihood ratio statistic, GZ,’is minimized by the process of

. maximum likelihood estimation and can be partitiqQned additively if models
4 . N . ’ ! '
) \ \

Foow : 7
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are arranged hierarciically. Thus, the relative increment in selecting one,
LN * 2

.

mode] rather\than another is indexed by the.change in the G° 'statistic ’ /

(Goodman, 1969). For example, 1f two linear models are nested Where1n ‘

modeL twp has only a subset of the parameter estimates (u-terms) conta1ned

in the first model, the 62 statistic for:the second model is presented in

. ~ _ . .
{8), and represents a partition t{to a measure of the distance of “the .
parameter estimates ' : 2 - Y

(8) 6%(2) = 62 /T2)/(1)] + 62(1) y ;

.

*

of model *(2) as compared to model (1):‘as well as the distance of the parameter
estimates foi the first model (Bishop, Fienberg, and Ho]]and, 1975; Fienberg,
(1977). Model fitting, as in quantitative analysis (Joregkég, 1978), is a
process of trading simplicity of expression for exp]anation ef all of the
observed datﬂ: The addition of‘garaheters will .ineyitably increase tae
gooéness of fit of the model to,the observed data, but the incremental im-
crease in fit obtained with additioaa] parameters, especially for nested
models, ts apt to be more important than,accounting for a{] observed fre-
quencieés. The .latter, accounting,fgr al] observed frequencies, is possible-
because 1og linear models are not stogchastic; log linear models do not
explicitly represent errors q% measurement etc. *®

LY

Quasi-Independgnce

Although the log linear model §1lows for a wide variety of structura]

models, often an investigator has hypotheses concerning the specific cells

£l

that should contain the observed _counts. By f{xing these ""hypothesized"
\ LY

cells to have an & priori value of zero, te;me& structural zeroes rather than

sampling zeroes (Bishop et al., 1975), one could then expect the remaining |
observations: to be independent 6f variable c]assificat%on. The degrees of

4
freedom appropriate for a test statistic under the model of quasi independence

B
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Jds presented in (9), where V is the number of degrees of freedom‘usually

associated with the ﬁpdeﬂ for the-complete case, Ze is the number of cells

&

with structural zeroes,"and'Zp is the number of zero éntries in the 'pected

%

marginal configurations. .

{9) DF =V - Ze " Zp

.

' ' Developmental Contingency Tables .

Deve]opmenta] proce$ses can be structured in terms of continuity and
change in the organi{atﬁon of behavior., Continuity in ofganization is

often framed as a stage, where a stage is assumed to represent a benchmark

-~

or prototypical organization pf behavior (Feldman, 1980). Change is

—

ascribed to stage transition’and occurs in the context of a geﬁéra],model of

_. equilibration (Pfﬁget, 1970). One concern for developmental psychology is .

whether or not an individual's organization, or structure, is consistent
) . .

4 ° -

* across domajns (cognitive, social) or tasks (object permanence, means-end).

In addition to hypotheses concerning relative stage synEhrony or asynchrdﬂ§,

a second dimension of structure concerns patterns of change in classificatio

" over time.

=

Typicaily, particular hypotheses about stage synchfony are operationalized

. - ¥ \
as expectations of all counts in an I x J contingency table, wbere I
1,2. . .J) indéxes

(i = 1,2. . .1) indexes the number of rows and J Kj s

the number: of columns? Table 1 represents the general I x J-table. As in
N LN

(6), xij denotes an observed cognt.and "event" can denote domains, tasks,‘k

or times of observations (Hoffman, 1980).

\ . . s

N
b

2

n

L4
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Develogpmental Models: Two Way Tables , . L .

- .
. Wohlwill (1973) has proposed several possible’patterns of observed ’

[

’ . _— b A
frequency counts. Model I corresporids to an.interpretation of Pjaéet's

~ theory that assumes synchronous mental &eve1opment for different domains or
’ . ® R L . f
* tasks. For a two way fablé, one would expect the diaggnal entries to

»

contain all of the observed.values; off diagonal entries are-treated as errors
. ' 3 ] )

e

of misclassification. The entries in Table.2,.indexed by I, repre§ent the

. pattern of expected counts for model I.

Y e em s s s e e e e e s o e d——-‘-f--—

. Insert Table 2 Here

A second model proposed by Wohlwill was the triangular hypothesis of

-
-

decalage. For example, if event one is a prequisite for a second évent (Ila),

LI 3

or if the first event is a preintervention observation and the second, a post-

At

' jnterJention observation (LIb), one could expect observed entries to reflect,

, . . v . ?
a predominance of off diagonal cell enthries as well as the d1a§§ha] entries
of Model I The cell entries for model Ila are below the diagonal and

conversely, are above the diagonal for mode*.Ilb, as-presented in Table 2.

-

Entries that are not in cells designated by the triangu1arfhyp0thesis are

‘ . 3

cqps1dered to be a product of errors 4n measurement

\

Deve1opmenta] Mode]s Mu1t1d1mens1ona14Tables

Previous efforts have focused’on structural analysis of the two way®

- & . ¢ -

developmental table (Hoffman, 1980; Thofas, 1977). * However, restriction to

.

the two way cross c1a§31fica%10p is'potentia11y.mis1eading, especia11y for a

vyt

complex- data set. The problem s'ana1ogous to the effects of part1a1

.t iy

correlation in quant1tat?ve aqg}ys1s, two var1ab]es may appear to be related

due to a common relationship with a third yar1ab1e. In addition, QUg§t1ons

6‘ - 1]




‘concerning (a) changes in mu1tidtmensionai cross classified structure over
* « . L3 /\
time or (b ) $tructural re]at1ons among, several doma1ns, rema1n unanswered by
reliance or series of two way tables. To 1}1ustrate,deve10pmental models

for a three way table are presented next;_ Table 3 represents the.generaJ

three d'menstona1 developmental céntingency taoﬁe. ) As‘in‘the two way N
case, I (i 1,2, . .T) indexes rows, J (j = 1,2. . .J), indexes columns, ' i
\and'for the threeAdimensiona1 table, K (K = ]”?" . .K), indexes "slices."
“,rxijk indexes the observed counts. o - . SR
N e N
- . Insert Table 3 Here ‘ '
Log Linear Models for Developmenta? Refations ‘ ;
Severa1~hode1s'of reTatien among events are conceivahTe;ﬁthree;gre . S
proposed for j11ustratire purposes. Model III is a "djagonal" hyoothesis of -

complete synchrony among domains or tesks corresponding to Model I in the’
two way array: If Model 11T is assumed, expected counts should’ be ]oca11zed

in the cells on the djagonal of the three way array, XIJK for all i = J = k,

_ and assuming, for simplicity, I = J = K. ‘For a three way array, the
L) N ’ . ' .
saturated model, /T 2°3/, is presented in (10). . . -
(10 Tog Mgy = uy(4) * va(s) * Y3y * ¥rais) * stk * Yaaik) +

Y123(i3jk)

-

If model III represents the true state of events, then the aoplication of"

’

structura]igeroes to the d1agona1 ce]]s, fol]owed by an appropr1ate adJust-

ment in the degrees of freedom, as noted in (9), resu]ts in a model of quas1=

1ndependence among the three events; [J/ 12/ 13/, which is presented in (11).

(11 g ik * (i) * Y2() Fuz) —

’
.

io . .

%

~




el e e

. Model 1V ’ . T

e ) Y »
Mode}JIV) "block diagonal® or partial synaehrony, might arise in the .

case where events two and three are synohronohs'hut exhibit decalage. With

\

respect to'the.first event. This model corresponds to a variation of the

triangular hypothesis of the two way-table. For examp]e ,the f1rst~event'ﬂ

i \.\
could be a prerequ1s1te for events two and theee, which, in turn, are

v
. s

‘synchronous. -For. I'= J = K, observed counts should be 1oca11zed in X,

. ijkK
cel]s where i = j = k and i>(j = k). Aga1n, the model of quas1 independence

1/ /2/ /3/, could be app11ed W the three way array, to test-the feas1b111ty

«

of model Iv. C . .

Model V o PR

Model V is a model for conditional independence.among developmental events,.
L . ’

For 'example,.if process C is assumed to uhderlie response‘patperﬁs A.and B,
» . N .

;. ) .
- then levels of A and B sﬁggfd be conditionally independent for each fixed -

value of C.” Conditional independence is anatogous to thé«conoeot of -partial»

correlation in quantitative.analysis, in that the parfial correlation between

two variables may be small if the effects of .a third variable are accounted

for. For examole, if perspective taking is presUmed to be the process by,

¥

which social_structure evolves, then one miéht expect high relationships

among measures of perspective taking and structura] re]ations ahong other’
domains of social cogn114bn _Rather than focusing on rela;qve synchrony
among domains., cond1t1ona1 1ndependence models could represent a test for the
relative contrabut1on of a process, e.g., persgecthe tak1ng, to a set of
respense re]ationships. -For a. three way arrays, a modeﬂ ofvtonditgona]

1ndependence for B and C ggns1dered as the second and th1rd var1ab1es,

—

: \n
respectively, is presented in (12). Note that interaction terms conta1n1ng

/12/ have been assumed to' be null for (12); thus, (12) is nested within (10).

" [y [ &/>f' ) ]

o

)

s




: * ‘»\ . ‘ ‘ ( ‘ﬁa ) s
) . . n .
. ' N « » 4 ; .
(12) Tog my 5 =y 5y * upq4) * u3(k) T U30i5k) T Y23(5K) - "'&
3 1
1f mode1~V describes the data structure adequately, the 6% statistic shoul¢

not be s1gn1f;cant at the chosen <L level. _ Lo "

<
Transitions .in T1me Cont1ng;ncy Tables and Markov Mode]s Lo
)
In the course of ar intervention study, one might assess the stability

of change over t1me _If changes in state can’be d1sp1ayed as contingency

tab]es, vary1ng from t1me 1 to time T then the process can be modeled by

’ ‘Markov‘chains, where each individual is classified at edch time. -Marﬁgx
’ ‘ ~chain .models for cross classt®ied data have two componengs--an‘injtia1~
probabikity vector 6f caEegorx”probabi1ities and‘a matrix of transition

probabilities, denoting the prébabi]ity of category stability or category

. trangition across time. The initial probabi]ities will be regarded as a
v
. ’ reference point, $0 further d1squss1on will concerw’the matr1x of trans1t1o

— [ L N

> \ t

probab1?1t1es ) s .
. .

(2

‘Transition\probabi]ities are easily estimated'from cross e}assified
. ! / ' -
data. Table 4 presents a poll of voting preference and is taken from

Bishop et al., (1975, p. 259), The four transition probab111t1es are -estimat
%

by (13) and a cogent derivation is presented 1in B1shop et al. (1975)

(]3) P1J= X /X . , ) Fd
a . ‘ ‘ . : L

N t ’ ‘ *,
- 1

Markov Models and Sfationarity

. The order of a Markov chain refers to the assumptions’ concerning .the
\ -
underlying' process of change[. If the state occupied by an individual at tir

t depends only on his state at time t-1,the process is said to, be first .

[y 4 ! 4




-

order Restr1ct1ng‘gttentlon gg‘the first order chain,, 1f the trans1t1on

4

probab111t1es are’ independent of t1me, then the process s descr?bed as

. §tat1onarx, rggﬁrdZESS of order. In other words, the. 1hd1v1dua1 s. responses

are stable across theltime interval sampled :

<

[
* .

Log L1near Mode]s and Markdv Chains ’

If an. event h§§51 categor1es and is measured at T times (t = 0,d. .

the stat1onar1ty of the transition probab111t1es is tested by f1rst arrang1ng ’

«ﬁ,vr

the data 1nto an I X I X T tab]e where each of the T t?gns1t1on arrays, “of

v

order I x I, is a layer 1n the I x I X T tabie If time is the third variable,

¢

E ]

4 . .
the model-of conditional 1ndependence presented in (14) should fit the

observed counts inthe I x I x T table. Cond1t1ona1 independence indicates .
v 3 ¢ [

® ' e . . . .
-that time and,afor example, voting-preference, are independent, conditional

1

-« - . -« A - a - - R ed " . (
on initial voting preference. Similarly, one could envision intervention

. -studies where the procéss is stationary for the control group, but noty for
\ .

" the treatme group. . . ' , . jig

Two D1mens1ona1 Array o tﬁ%.

.
-

8D 108 Mige = v uya) * a(5), * V300" M12(33) * M1s(ik)
| - e ' . ] . l"?
. I1lustrations , -

”‘
: \W‘x

’

r . Two illostrative'examp1e§ are provided to h1ghlwght the app]iaat1on of

log ]inear models fo developmental contingency tab]es.

“ N . ‘

- L 2dd .

Table 5 contains-an I x J table; adapted “from Noh1w1L1 Q;%73 p. 220), *-

ofsynchronousprogress1on between levels of concept A and 1evels of concept B

- 13
e o 4

The .application of Model I to these data requires fixing the dnagona1 entr1es,




~ . - 1
v Y /Z///
-, ik ' : . 1
) g M - & . ® l . -~ -
whereij’= Jj, to zéro and testiny the log linear model of guasi independence
a7./2/.. Hode] Ila, the triangular hypothesis, involves structural zeroes
= *for all X i3 where «i > j, as'well as for the diagonal entries, i = j. The -

-

mode] of quas1 1ndependence is then f1tted to the entries in the table.

Table 6 présents the G2 stat1st1c, w1th accompany1ng degrees of freedom;

fo#’fhe model of complete Jndependence, fo]]owed by models of quasi
v IIa)-

independence (1 The md!é] of synchrony appears to fit these data

best as eviden;ed by inspect1on of Table 6-and the significance %; the -

‘difference ‘statistici 6° (FULL) - 6%(1) = 167.63 with 5 df.
- ( ’
. Table 6*insert here
_Three Dimensiond1-Array. ” C )

An I x J x K table of artifitial data is presented in Table 7, with
¢ - : -
. -.-—-.——---: ————————————— “=

\

< Insert Table 7 here
I =J=K= 3. Model LI, complete synch?ény,'is a test of the log linear
’ 4

model of quasi 4ndependence, with structg£ai§zeroes for the diagonal cells,

2

ei=j =k The 6 statistic for.Model III i5 35.88 with=17 df. In

contrast, Model IV, partial synchrony, involves a test of'quasi independence

with structural zeroes as.in Model III, jn-addition to cells where i (J = k)
. : \ '

N -

(X5175 X397 x322).: T;e)é
g2 statistic of 29.64 #ith 14 df.

6% (1V), is 6.34 with 3 df, which is not significant at o =

2 statistic for this version of Modg} IV yields a
The difference statistic, 62 (I111) -
.05,.suggesting

that Model III may be more appropriate for thiS'da&a set,

N . é/

L4




Summary and Discussion

] ' ¢ 4

The log linear model is appropriate}for the analysis of multi-

-

dimensional; developmental contingency tables. ‘Several models of develdp-

-

ment can be postulated congerning relations among events, changes over

time, or some combination thereof. Modkls of quasi independence allow
=

_ for point hypothesis testing whiie utilization of modular hierarchies may

help investigators to formulate é]earer hypotheses in relation to prior
. . . ) /
expectations, particularly in relation to éhe relative contribution, as

irdexed by the 62

statistic, of each event to the total gestalt. Thé%a

_:_v. %‘.
intention of this presentation was to establish a script for the analysis
of developmental relationrs, while allowing.for variation and exténs@on

to new themes bytothé&,investigatorg.
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Levels of concept B

Table 5

Levels of.'conoept A

-1 .2 3 4 5
. ' 1 18 2 0 0 a
| ' 2 | 2 16 2 0 0
3 0 2 16 2 0
. ! 0 0 2 16 2
5 0 0 0 2 18
z’\
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. . "Table 6 X <
Mode1"1 &
" Comflete Table 183.3 ‘
‘ .1 - “ 15,67
\ Ila N 10.15
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