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of items from the total'set of test items and use item résponse theory,
with each subset. While factor analysis is the most commonly pronosed pYo-
cedure for detenmining dimensionality, a recently developed procedure called
order analysis may also fprove to be useful for isolating\unldimensfbnal
item.sets- ' ’ . o y
< ‘ ‘ . . R
The ffrst study in this report dealt with a comparison of three ordef ,
analysis prbcedures:. Krus.& Bart's (1974) procedure and Reynolds! (1976)
procedures using two of Cliff's (1977) consistency indices, c¢ 1 and~ct3, .
respectively, -The comparisons were based on.seven simulated aatasets with
known factorial dimensionality, and two multidimensional sets of mathematics
data. The 3 procedure reprgduced the factor structure for all of the
. simulated daEésets, while the other twd procedures performed very poorly.
‘However, for the '‘mathematics data, all.three procedurec failed to repro-,

e Y .

The second\gtudy in ‘this report p:;éenrs preliminary results using a new
order-analysis procedute which solves some of the difficulties with ‘thé
othep procedures in reproducing factorial dimensionality. .This new proce-
dure "(dubbed ORDO) reproduced the factors for the mathematics data as well
as for the simulated data. It is hoped .that ORDO will rapresent a useful

alternative to factor analysis for deté;mining unidimensional gtem sets
appropriate for latent-tralt methods. )
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‘Current latent-trait methods require that the latent space:
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underlying a group's test performence be unidimensional. However,
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many testS'yield multidiﬁensfonal data, implying
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that more thpn one
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latent trait would be necessary to account for“test performance. A

.
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. pessible solution to this problem of,multidiﬁengionality would Be to
. . . ‘i -

" . 4 . . 3
isolate unidimensional sub§e€§ of items from the total set of test
= N 4 ’.‘A

items and.use item regponse theory with each subset. While factor
. !

.
L4 .

dnalysis is the most commonly-propdsed procedur /for determining .
dimensionaltiy, a recenfly developed procedUr%‘Sﬁlled order 4nalysis
. 7 .

.

may also prove to be useful for %§olattng unidimensional item sets.,
The firstlstudy in this report.dealt with a comparison of three

order analysis procedures: Krus & Bart's (1?}4) procedure and - .

Reynolds' (1976) procedurgs using two of Cliﬁﬁ's (1977) consistency
- K] ' . \ -
“indices, c,, and E;é;u}éséec;16ély., The comparisons were based on
N : i

seven simulated datagets

two multidimensioxz{ set
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ith known factorial dimensionality, and

of mathematics data. Tﬁé\st3 procedure . -

reproduced the factor -structure for' all of the simulated datasets,
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’culties with the other procedures in reproJ;cing factorial dimension-

2 ‘ . . ‘

while the other two procedures performed very poorly, However, for the

mathematics data,’all three procedures failed to reproduce the factors.
. -~

The second study in this rep9ft présengs pﬂLliminary results

using a new order-analysis procedure‘which solves some of the diffi~-

1]

ality. This new préceduré (dubbed ORDO) reproduced-the factors for

the-matkematics data as well as for the simulated data, It.is hoped

\ -
that ORDO will represent a useful alternative to factor analysis for
detérmining unidimensional itﬁgggets appropriate for latent-trait

methods. - . ' !
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A major issue in 1tem response theory concerns determ1n1ng~the .

~

Introduction

-

-

-

number of 1atent d1mensions (traits) needed to adequately account for -

the test performance of a group of individuals, If.all of the relevant

dimensions are not accounted for, then jhe requirement of local -

|
s ¥ ]
|
|

independence of items will not hold and the item response model will

be intractahle. This problem is compounded by current practical

limitations of itemtresponse theory. While there have been multidimen—,

sional latent trait models proposed, estimation problems arlsing

from these models have rendered them all but useless in the field,

Hence, the current state of affairs regarding item response theory
prevents one from considering more than one latent trait at a time.
This means that the latent space. under consideration has to be unl-
dimensional in order-to be practicable. However, many tests yield
multidimensiiral d4atd, implying that more than one latent trait would .
be necessary to account for test performance.

One possible solution to this problem of multidimensionality

.

would be to extract unidimensional subset$ of items from the larger, . ’ )

multidimensional\hat of items, and use {tem response theory to generate

separate ability estimates from each ‘subset. The most commonly pre-

scribed method of determining the dimensionality of a set of items is

factor analysis. However, Krus (1975) points out that factor analysis

methods contain a congiderable amount of indetermjnancy due to a

relative fack of cénsensus‘regarding such issues as (1):appropriate

factor extraction method, (2) the problem of communality estimation,

and (3) the number of factors to_ extract, Krus.has su&;ested use of R

order analysié as an alternative to factor analysis i

etermining

the dimensionality of a set of data. . C e e

Order analysis (Krys, Bart, & Airasian, 1975; Krus, 1975) was

developed to investigate logical relations between the elements of

+
a binary data matrix. The method presumes thst elements measuring .

a single dimension show chara:teristics'pf a strong simple order,
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i.e., that the relations betwgen the elements are transitive, asym—-
metric, and connected (see Coombs, Dawes, and Tversky, 1970). .

. The relation of interest in order analysis is dominance. If¢
a.person.fails 1tem{§ and,passe;/item j, then item i is said to
dominadte item j for/tnat person, This foliows from transitivity;
since the persoh is dowinated by item i (fails 1tem i) and the person
dominates item J (pAsses item j) then it is implied that item i N
dominates item j. This will be callei an ij dominance. .

1f there is a one-dimensional latent attriﬁhte underlying the .-
‘behavior reflected by the data, - then the item .relations will be
consistent across persons (Coombs, et at., 1976). Hence, for any:
items i and j, all pérsons snould show either an ij dominance, or they
should all show a ji dominance. Lack of consistency across oersons
is in violation of tne order-analytic model., However, since there e

Are usually errors of, meastrement present in.the data matrix, some -

amount of ‘inconsistency is tolerated. Krus et 51., (1975) proposed

the use of McNeFar s (1947) z statistic for correlated proportions to - :
evaluate the preponderance of ij dominances over ji dominances. If

;ne value of 2 is sufficiently large, then item i is concluded to - ) -
dominate item j for the entire group.‘ It is also assu?ed that the . '

jibgominances are due to error, In the cdse where there is a aingle
order présent in the‘set of items, gach item will dominate all items )
"below" it- in the order, and transitivity, asymmetry and connectednese .
will all be realized)\ This set of items,” also called a chain, will'

essentially form a Guttman scale., . .

There; are.times, however, ‘when the z value between two 1tems i
and j does not indicgte a clear ij dominance or ji dominance. This -- AR
violates the connectednegs piwperty that there mhet be a reiation
between each pair of items in the order. According jo Krus (1975), ,

this 'indicates that items i and j are.not members of the.same order, ‘ .

. ‘and that the data are multidimensigkal. Based on this, a deterministic .

-

order-analytic model f r determiq}ng the dimensionality of an item . -

’

set was developed (Krus & Bartg 1,974/, and’ later a probabilistic
model , (Krus, 1977). s

T . '
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'Cliﬁf (1977) developed a numner of indices to assess the consistency
of simple orders. The first, c;i, reflects the proportion of the total
number of , dominances in a dataset which are consistent with a particular
ordering. Another inportant index, %30 is similar to Ctl efcept that
it contains an adjustment for the number of dominances expected by
chance fcr 1ndependentqitem9; It ls equi?alent to Loevinger's (1947)
index of homogeneity. o . . ; .
. R Reynolds (1976)‘rejéeted the approach of using Mcﬁemaris z

test to evaluate the relation betwéer items and then using the relations
-to generate item cnains. He pointed out' that Krus and Bart's (1974).
deterministic method does not necessarily yield a gmique s€t of item
-chains and that. other, more optihal" chains may also be extracted, .
Reynolds also‘%oted that the ﬁru? and Bart procedure lacked any . .
goodness~of-fit statistics to evaluate how ;ell an ordering is consis— ' 1
tent acrpss persons, Reynolds outlinggf;n algorithm, using one of 1
. ; Gliff's (1977) consistency indices, to extract ‘item chains. Each \\\s
. ' 1ten in the set is used a’s &' starting peint in a chain. T?e most
consistent items.are then successively added .to the chain until the
.. overall chain consistency index valPe drops below some minimally
acceptable level. -Redundant chains are then deleted, and the remaining
£hains are 1nterpreted as representing ‘the dimensions of the dataset.
Earlier studies have”“failed to show a’CONSistent relationship ‘
P between the results of order analysis and factor £1alysis, Krus ani
s _ ¢ Weiss (1976) found congruence between the& two methods for Thurstone S
) 1947, p. 140-143) "bex data", Hdé;ver, when they analyzed random
data using Armstr%ng and Soelberg's (1968) method, they found differing
. results using. oxder analysis and factor analysis. Bart (1978) reana-
lyzed the data reported in Bock\énd kieberman (1970) and concluded s

that. the factor structure of a set of data did not a;¥ear to relate in

Q . a clear way to the order structure. . ’

»
ey . .
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+ ’  Study I
¢« , .
oo The purpose of the first,study was to comparé different order- :

analysis'procedures on a number of datasets with varying fa:;Lrial . .w
dimensionality. Seveﬁ simulated dichotomous datasets were geherated. . ;)//' |
These datasets differed both in terms of number of common factors and ™ K;. l

|

in terms of variance of thm'item difficulty vaels. Also, two datagets’ RS : b

composed of signed-numbers mathematics icems (desccibed merxe. fully
~in Birenbaum and Tatsuoka (1980)) were used iJ{comparing the order=
. * analysis procedures, These analyses could aid in ‘the understanding )
, of the differences among the procedures, as weIl as providing insight .2,

regarding which procedure would be most useful in Extracting sets of .

“items which satisfy the unidimensionality assumption of current latent-

tralt models (Lord & vaick, 1968). - ’ ., 3
‘ s . . , .
- .’ - v . L 4 » i
a . = .. . . '
| . " Method : o .
N - . . .
; N w ) . ) .
Simulated Datasets ’ T . .
Seven simulated dichotomous dataséts were generated using the =

FORMAL' and TUCKLIB packageg of ‘FORTRAN subroutines at the University
¢ of Illinois. Eacn\daraset, which consisted of 10 items and 500
persons, was computed as follows. A f T pattern’ mﬂtrix and a
vector ,of uniquenesses were specifiedgzéythe uset. From this infor—
mFtion a population variance-covariance matrix was generated,using
a modified Tucker; Koopman, and Linn .(1969) procedhre which
simulQCEd the effects of tandom.error on the variance-covariance
matrix by allowing? for the influence of 'a number of minor.random
factors.” This’ population variance-cdvariance matrix was’'then used in
conjunction with a vector of user-specified, population item means to .
generate dichotomous item scores from a multivariate ‘normal populatibn. .

The seven simulated datasets are described in Table 1. It .
was defided that the distributions of item difficulty levels might have

- «“ b ¢ -

" .
' s k] -




Table 1
Descriptions of thgﬁSimulated Datasets

. 3
[}

Dataset Label' a Description (10 items, N=500)

Hl factor with high spacing between the item meags.

factor with moderate sPacing between qye’irep means.,

factor.with low spacing between the item means.

- -

factors with high spacing between .the item means.

o factors with moderate spacing between th& item meansa,

factoss with low spacing between the item means.

Consisted of ten independent items with moderate spacing
between the means (essentially a' 10-dimensional dataset).

\

-

Table 2
|
Examples of gthe 16 Signed-Number
"Mathematics Skills : /
N 4
Item (Skill)’ oo Example ’ Operation .
. . -

1 i~ (-I0)y =11 - Subtractiap ’
2 9= (=7) =16 - Subtraction : '
3 v -] -9 = ~16 . - " Subtraction

4 * =12 - 3 = ~15 ° Subtraction

5 -3 - 12 = ~15 ¥ | Subtractien

6 ~6,~ (~-8) =2 Subtraction

7 ~16 = (=7)s= -9 Subtraction

8 8~6=2 -Subtraction

9 2~-11 = -9 , . Subtraction

' + 6+ 4 =10, Addition
11 ‘ ~14 + (=5) = =19 - Addition

12 e =5 + (=*7) = =12 Addition

13 - =3+12=9 Addition P
14 -6 + 4 = -2 © Additien
15 12 + (-3) =9 Addition
16 . ¢ 3% (+5) = =2 = Additfon

- [ - . -‘ -

o v -

e .7
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6 2 ,
a differential effect on the order-analysis procedures. Hence, three

types of item mean distributions were used: Highly spaced means where

each item difficulty level 1s very distinct from that of the other

" items, moderately spaced means where sore item difficulty levels are

sim.lar, and means which had the same pALulation difficulty level
but whose differences in sample difficulty levels were due only to
random vaglation. also, for the two-tactor datasets (H2, M2, L2)
items 1 - 4 always loaded on one factor, and items 5 - 10 loaded on
the otner factor.

Dataset M10 was unique in that it was generated so that there
were no common factors among the 1tem§. It consisted of 10 unrelated
items with moderately spaced means, This dataset was ﬁseful in
comparing‘Grder—analysis‘brocedures in their abilities to indicate a,

lack of order structure.

Mathematics Data

The mathematics dataset consistec of 16 dichotomous mastery ’ °
score;)dérived from a 64~1item signed-numbers tesg administered to
125 eighth grade students during November, 1979. There were 16 -
skills, each measmred by fo;;\ﬁirallgl\icems. Examples of these
skills are whown in able 2, If a stu&\éﬁt\geta\least three of the
four items correct, he or she was deemed 2 master Sf\thgs\fkill and
glven a mastery score of one. Otherwise, a score of zero was-given
(non—hastery). .

Two forms of the mathematics dataset were analyzed. BRirenbaum EA
and Tatsuoka (1980) describe a procedure for detecting inapy »priate
strategles used by students in solving signed-number problems. Often,
students can get "corre;t" answers to some of these problems using
incorrect strategles. Once an incorregt strategy was detecteq for
a given student, it was possible to determine the items for which the ’
stdadent would.have given the correct answer using;thé inappropriatse

siiategy. An "adjusted" dataset was then construtted from the original

64-item mathematics dataset such that items deemed to have been gotten




\ v
correct by an inappropriate strategy were rgscored as 1incorrect,
Dichotomous maséz;y scores were then recomputed for the adjusted
dataset,” Order analyses were subsequently performed on both the
unadjusted (UMATH) and adjusted (AMATH) 16-item mastery datasets.
®

Order-Analysis Procedures

Three order-analysis procednres were used: the deterministic
order-analysis method of Krus and Bart (1974), Reynolds' (1976)
algorithm using €.y as an extraction index, and Reynolds' procedure

using c To determine the presence of a relation in Krus and

Bart's ggocedure; a criterion McNemar's 2z value of l.6z was used,
Krus' (1977) probabilistic order-analysis procedure was not used for
+two reasons. First, it was decided that the results obtained from
the deterministic and probabilistic models would be similar enough
that both procedures‘ would not‘be necessary 1in this study. Second,
since Reynolds' (1976) method is deterministic, the deterministic

. /} order-analysis method was chosen in order to peimit the most stralght-

forward comparisons among the results of the different methods,
Results

- - k2
B \"'

Simulated Data

In orde "o verify the factor structures of the simulated
datasets, s - common factor analyses of the matrices of phi
* coefficien%s were performed. For dataset; where more than one common
factcr was extracted, factors were rotated using the Varimax criterion.
b The results o; thesg‘faqtor analyses, along with the item means and
standar% deviations; are shown in Appendices 1 through 7. All seven
. . datasets%showed clear factorial dimensicnality in agreement with the
factor pattern matricesgfrom which the datasets were generated,  For
. dataset Mio, a scree test of the eigenvalues led to the conclusion

-

that no- common factors were present,

14




Table 3 ¢

Item Chain Extraction for Datasets Hl, M1, and Ll
’ J P

7

/ -

z 1/ Overall Co sten
Item Chains Extracted’; a . n§i ¢y
/ Statistics

Krus & Bart : e1 . : ‘3 ¢, 3 KR20
Dataset Procedure . Procedure - Procedure
. o
' ; r
- HIl (1~2-3~4-5-6-7-8:9-10) (1-2-3-4~5-6~7=8~9-10) (1-2-3—4-5:6-7-8—9-10) .972 944 875"
- . »
Ml (2-3-4~5-6~7) (1-2~3~4~5-6-7-8-9-10) (1~2-3-4-5-6-7~5-9~10) .863 .901 .942
1) '
R (8)
9)
(10) : '\\- o
c ]

L1 (1) (1) (1-2~3-4~5-6-7~8-9-10) .071 . 745 .965
2) @)
3) .(3) .
) %) ‘
(5) (5)
(6) (6) t
%) ) , :
(8) _ (8)
(9) 9)
(10) (10)

t

Note: Cutoff values of ctl and Ct3 used were .90 and .70, respectively. . (/

1 - All of the items loaded on a sjingle factor. '
. . f

o
i)
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The orijer-analysis results for datasets Hl, M1, and Ll are
shown in Table 3. .For Hl, all three procedures correctly extracted
a single chain (dimension) of.items. For M1, the thrée procedures were
not in agreement. While the single chain was correctly extracted
. . using C g use of the other two’ procedures yieldéd multiple chains:
However, if the minimum consistency level of ctl is lowgfed from .90
to .86, then the correct single chain would, have been extracted for
tt'le_ctl procedure. For dataset L1, compoéed of items which were

highly similar in terms of difficulty level, the c_. procedure was the

) t3
ouly procedure which extracted the single dimension. The other.two

- procedures failed to d;térm{ne any item chains. Note that the overall
value of ¢ . was near zefo, while for .

tl 3
Table 4 shows the order-analysis results for datasets H2, MZ,

it was fainly high.

. and L2. For H2 Krus & Bart's (197&? procédure colild not accurately
‘Jj ) extract the two-factors. Items 6, 7, and 2 were incorrectly gombined
in a chain with items 1, 2, 3, and 4. Reynolds' procedure extracted L

1
. ’ _ the correct chains when either c_. or .3 was used. For M2, however,

tl
only the 3 procedure extracted the two dimensions. The ¢

< procedure extracted one of the dimensions, :but could not extiact the
other. The results for Krus and Bart's ﬁfocedure were chaotic in
terms of the factor strueture of this dataget.’ For ‘dataset L2,
as for L1, only the ct3 proceéurevcorrectly extra?ted the two dimensions.
The other two procedures failed to combine any items irito chains.
The chain extractiom results for M10, shown in Table 5, -
1lustrated'other differences among the three procedures.. In this
. dataset, there were no rea; common factors present among the items.
The 3 procedure egtracted no chains at all. .Krus and Bart's
procedure, however, yielded a large (8-item) chain, and the

ctl‘procedure yielded a number of small chains.,

\
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. ;S  Table 4

Item Chain Extraction for Data;gts'HZ, M2, and L2

. ™

+ )
. , .
' . Item Chains Ext‘ract:edl Overall Consistency
Statistics . ’
N ’ C C . .
Krus & Bart . P tld t3 ¢y C.q KR20
Dataset Procedure roce.ure .Procedure * t
H2 (1-6-2-7-3-9-4) (1-2-3-3) (1-2-3-%) .655  .303  .749°
. (5=8-10) ] (5-6-7-8~9-10) ° (5-6-7-8-9-10)
\ ‘e .
. - o .. '
" Al . ) *‘\
M2 (6~1-7-4=9)" (1-3-4-9) . (142-3-4) <,755  .374 .703
< (5-8--10) (1~2-4-9) . i (5-6~7-8-9-10) .
' (2) (5-6-7-8-9-10)" )
3 = g , '
" '0 ?
oL ) ) (1-2-3-4) .036  .329 .826
() (2 - (5-6~7-8-9-10} . ,
E)) 3 - (
N @) 4) : ¢
(5) : OGn ‘ @
- 6)- - (6)
. (7) )] a
. (8) (8) 2
€)) 9) «
(10) (10)

Note: Cutoff wvalues of°ctl and C 3 used were ,90 and .70, respectively.

* 1 -~ Items 1 - 4 loaded highly on oné factor, and items 5 -~ 10 loaded'hfghly on the other factor.
] . - .

18 -
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Tahle 5

.; Item Chatin Extractibn for Dataset M10

&

Overall’ Consistency

. IEe@ Chains Extractedla - ‘ : . SEati&;ics
, . *c . c - .
Krus & Bart tl - t3 S c c KR20
Dataset . Procedure , Procedure Procedute tl t3 -
) M10 (1-2-3-6~7-8-9~10), (1-2-10) } . ¢D) .606 ~,011 -,057 i
(4) o (1-3) - -~ e (2) 1
. L6 él—-ﬂ , 3).
. 1-8) (4)
(1-9) | ) . ,’*‘ .
w . Lo (6) ' .
(5) - (7 . :
(6) S ® ’
: \ o ® .7 :
. ’ . . I ‘[ (IQ)
i

Note: Cutoff values of el and 3 used were ,90 an .70, respectively,

. ‘r -
1 - This dataset contained no comnmon factors. - -
.ot .

': ‘ :,. . __K“ / . : R N

. ’ l,l, - . \‘ :/
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Mathematics Data SN s

Factor analyses of the matrices ¢f phi coefficients for the two .
mathematics datasets are shown in Tables 6 and 7. For the UMATH
dataset, two-factor solution is presented, although a scree test of
the eigenvalues did not clearly suggest the number of factors to
extract, Factor solutions were obtained for two through five factors,
and the two-factor solution best approximated simple structure. *The -
subtraction items (I - 9) comprised qne factor, while four of the
addition items (13 - 15) comprised the second factor. The four
second-factor items were all skills dealing with the ‘addition of
two numbers that were opposite in sigm. ,

However, when the data were adjustednfor presumably erroneéhsly
correct responses (AMATH) , two clear factors of subtraction and ‘
addition emerged. Only two eigenvalu:s were greater than one, and
a very cfear simple structure was present. The correlation between --

.

the two factors was .46, ' L .
Order analyses of the mathematics data, shown in TaBle‘E, gave

very hifferent resulfs from those of the factor analyses. For both -

datasecs, neilther the Krus & Bart procedure nor the Ce1 procedure

ylelded chains that showed any resemblance to the actors. The

.3 Brocedure also failed to reproduce the f;ctor structure for

either dataset. For AMATH in particular, the c':3 procedure found

one chain with fairly high overall consistertcy (ct3 = ,764).

+

Discussion

©

It quickly became clear from the results of thHe simulated data
that Krus & Bart's (1974) procedure did not perform very well, in
reproducing the factor structures of the datasets. The ctlxprocedure
did not fare wuch better; it reproduced the factor structures only for

[ [

datasets Hl and H2, Basically there are two reasons for the poor

results from these two procedure&. First, when a factor contains two

4
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Simple' Common Factor Analysis of Phi -

Table 6

13

1 4

Coefficients for the Unadjusted Mathematics (UMATH) Dataset
fl t e

Mean

S.D.

Faétor I

Item . Fagtor II Eigenvalyes
loadings loadings
1 .648 .480 .817 -.119 5.449
2 .6 80 .468 .. 847 -.120 2.245
3 .584 495 .696 -.078 1.665 |
4 .576 496 .698 -.162 1.223 |
5 V720 451 .891 -.096 1.028 |
6 744 .438 713 .082 757 |
7 .824 5382 .617 .068 712 |
8 .856 .352 - . 485 -.025 545 |
.9 704 458 .633 .118 - 4456 |
10 .992-  ,089 . .119 .037 .407
11 912, ,284 . 368 .159 . 2371
12 936~  .246 - . 352 .060 .338 -~
13 920 272,038 .° .765 .252
14 944 - 231 -.011 .591 .238 '
15 .920 .272 -.035 .509 .165 -
16 920 272 .051 .684

o

.150 )

Note: Factors were rotated usiné the Oblimin method.

Caeff{ciénté-ﬁor the Adjusted Mathemapiqg7(AMATH) Dataset

7

" Table 7

Simple Common Factor Analysis.of .Pb?

AN

Item Mean S.D. Factor 1 Factor II Eigenvalues *
» loadings + loadings
. < .
1- .600 492, .834 .015 8.216
\\»2 .624 486 .865 .007 2.881
3 .536 .501 771 -.022 7] .836
4 .«536 .501 .770 -,024 .682
5 .688 . 465 .937 .030 . 608
6" .664 474 .895 .041 .501 '
7 .696 462 920 .050 «396
8 .792 .408 +679 -.068 370
9 .648 480 .749 .068 * 4347
10 . .960 .197 144 . 353 . 285
11 .888 - 317 . 108 . 745 251 .
12« .904 296 .069 .7861 .225
13° .888 31 -.086 .858 . 172 .
14 .896 .30 .-.008 .850 .099 .
15 .872 «335 -.09 .81% .087
16 .880 «326 -.014 .833 . 045

Y
N\

~ ‘.:L

V"
v

<J
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T;blq 8

Item Chain Extraction for the Mathematics Datasets

N Item Chains Extracted

Overall Consistency

Note:

04

Cutoff values of i1 and .3 used were .90 and ,70 respectively,

*

. . ! Statistics
Krus & Bart . t1 N €3 c c KR20
Dataset Procedure . Procedure' . Procedure \‘\.~/ tl t3
UMATH (4~1-5-7-11-10) (4-5-11112-10) (4-3-1-2-5-6-11-12-10) .678 ,509 .86hK
(3-2-8-15);, (3-5-11-12-10) (4-1-5-6-7-8-10) ’ N
(9-13) (1-2~12-10) (9-11-12)
(6-16) (3-5-14-10) (5-14-10)
(12) (9-12-10) ° (13)
(14) (4~8-10) (15)
(1-7-10) " (16) .
(6-10) (12) : g
/ (13-10) ’ s
. (15) > ]
=  AMATH (3-1-6~8~15-10) (3-4-6-5-7-11~12-10) (3-4~1-2-9-6-5-7-8- 777 764 936
(4-2-~5-16) (3-6-5~7-14~12-10) . 15-16-11-13-14~12-10)
' (9-11) (1-2~5-7-11~12-10) :
. (7-13) (4-6-5-8-10)
o (14) (2-7-16-10)
(12) (9-14-~10) .
(5=13~10)~ .
(15) 2
— , \\

71

—

-
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levels of ,30 and +90 computed from a sample of 100 persons. The

>

or more items with highly similar diffi;ulty levels, all of these y
itehs will frequently not appear on the same chain. Ttems that are
too close together in terms of difficulty will often fail to show

a clear dominance relation, indicated by :a low value of &cNemar's_i.’

Hence, by Krus & Bart s pro;oéufE, this absence of, a relation will

imply that the items do.not belong to the same dimension. Correspondingly;\
¢

the low 2 value also means that ctl between the items will also be | ;
very low. Thus, items similar in difficulty often show very' inconsistent .
dominance relations. . '
'The second problem with Krus & Bart s procedure and the ¢ el procedure e
is also related to the distribution ‘of item difficulty leyels. Two . :'
items which aré independent can show a consistent dominance relation .
which is due solely to difficulty differences between the two items.
For example, consider two items that are independent and have difficulfy .
expected.number of dominances of item 1 over item 2 is equal to
100 x p(failing item 1 & passing item 2) = (100)(.70)(.90) = 63. .
Likewide, the expected number of dominances of item 2 .over item 1}

{s equal to 3." In this case, z = 7.39 and ¢, = -91. This fllustrates

that items that are disparate in difficulty will'tend to show consistent.

donminance relations regardless ofrwhether or not they belong to the .

same factor, 3
The value of 3 for the above-mentioned example is O, This -

illustrates a desirable property of ¢ t3° that the expected number

of chance. dominances (for independent itcms) is taken into consider-

ation. The c 3procedu-re is also less prone to the first problem

described above thaL items too similar in difficulty level tend rtot

to show a clear dominance relation,

The. Cea procedure yielded chains which correctly reflected the
factor structures for all seven simulated dd@asets. It was found to
be consistently superior to both the cti(ﬁhd Krus & Bart procedures.
The better performance of Ce3 compared with c;l is in agreement with
results found by Cudck (1980). However, for the mathematics data,

PR ’

-
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the ct3 procedure did a poor job of reproducing the factorial dimen- ,:
sionality. Two reasons are nffered for this finding, First, the |
mathematics datasets showed a fairly strong first factor as evidenced ﬁ
QZ‘Fhe magnitude of the first eigenvalues: The two-dimensional

da~asets showed no strong first factor. For the mathematics data,

t
~N could have distorted the chain-extraction process. A second reason

c 3 may have been unduly influenced by the first factor, which @

Y

for the failure of ct3 to reproduce the factors for the mathematics
data concerns the correlation hetween the factors. The factors for
- the simulated datasets were all orthogonal, whereas for the mathe-
matics data the factors were substantially correlated (e.g. r = .46
for AMATH). in>the case of correlated fahtors; the 3 procedure Tper
N may not be able to distinguisi between iters loading on different

factors,

3

Study I1I *
S/
An attempt was made to develop a new order-analysis procedure .
. which allev. ted the problems of current procedures., Study 1
illustrated three major shortcomings of current order-analysis
procedures for reproducing factorial dimensionality:
1) Items from the same factor with similar difficulty levels
can be seen as being inconsistent (in the sense of showing
about as many dominances as gounter—dominances) and are
T therefore deemed to belong to different dimensions. \\
2) Two items t:hat are independent can show a consistent
dominance relatigon which is due solely to difficulty
differences between the items.
3) Order analysis of a set of items with an oblique factor *

structure will often not reproduce the factorial dimensions.
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The new order-analys{g procedure, termed ORDO, was designed
specifically to addr;;s the first two of these problems, Basically,
ORDO represents an amalgamation of Krus and Bart's (1974) procedure
and the Reynolds (i976) procedure using « Krus anc Bart's approach
seemed to be a good place to start in developing a new procedure,

as it "truly" reflects the basic ordér-analytic principles .of items
(and persons) forming simple orders. Reynolds' procedure, on the
other hand, deals with *he consistency of an item set which is
assumed to be an indicator of the orderability of the item set.' In
this sense, Reynolds' approach might be termed an indirect order-
analysis procedure, ’

ORDO represents a radical departure from other order-analysis
procedures in that it extracts partial orders of items rather than
simple orders (see Coombs, et al., 1970). The connectedness property
of simpld orders ~reates the first problem with order-analysis pro-
cedures mentioned above. Considering dimensions as partial orders
allows for two items to fall in the same dimension without there
necessarily being a dominance relation between® them. This may seem
problematic, as the lack of a dominance relation between two items
also representsethe primary evidence that those items are from
different dimensions, However, a pair of items from the same dimen-
sion that do not show a dominance relation have another characteristic --
high proximity. The proximity measure used is the squared Euclidean
distance between the points representing the two items, which is
also equal tc the total number of persons for which one of the two
items dominated the other. If two items are close together on the
same dimension, few persons will pass only one og)them. This high
proximity characteristic is not evident for pairs of items which do
not measure the same dimension,

The basic algorithm for JRDO proceeds as follows. Compute the
item dominance matrix and reorder the rows and columns in terms of
decreasing item difficulty level, Compute*McNemar's‘i statistics
for each item pair, as well as chi-square tests for association. If

the values of z and chi-square  are both significant then conclude

—— T ' - \

28
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that a true relation (beyond th#t attributable to difficulty difféf-
ences) exists between the two items. If either or both are not
significan*, then conclude that a true relation is not present. Next,
use the relation information to extract a chain of items using Krus
and Bart's (1974) method. This forms what is termed a "skeleton"
chain of items. Items are then added to the chains that have high
proximity to one of the skeleton chain members. This process

rea.lls in each skeleton chain member and itemé added to it being
considered as an equivalence class, where items between equivalence
classes should how consistent dominance relations, and items within
equivalence classes should not show consistent dominance relations.
The chain-extraction process is then repeated for items which are not
already members of a chain until all l.ems are placed in a chain
(singleton chains are allowed). The number of extracted chains is

interrreted as the dimensionality of the dataset.

Methcd znd Results
, | A :

The simulated and mathematics datasets described in Study II were
order-analyzed using ORDO. Although the results for the simulated
data are not shown here, ORDO correctly reproduced the factors for
all seven datasets. The results for the mathematics data are shown in
Figures la and lb. For the UMATH datase )RDO extracted four chains.
Awo of the chains were equivalent .to the factors f dﬁa/;;r the two-factor
~solution given in Table 6. The >ur chains ggfé/;zbeled: subtraction,
addifion of two negative numbers, addition of two numbers with opposite
signs, and addition of two positive numbers, For the AMATH dataset,
ORDO extracted two chains which were clearly the same as the two
factors of addition and subtraction. For both datasets, chains containing .
addition 1§ems showed few equivalence classes, éue to highly similar

means for those items. .




. s
ORDER I 5 4 | 1 e 7
’ (Subtraction) 3 2 . .8
& / 7
-
ORDER II : I
( Addition of 12
two negative
numbers) ' ’ i '
’
’ A Y
[13] '
) ORDER III | 14
' (Addition of 5 '
numbers with 16
opposite signs) -
w ' ‘
ST - \
ORDERTYL . - [ 10 ]
( Addition of
Y two positive N i
v numbers)

-

Figure 10 Orcer analysis results for UMATH dataset using ORDO ( brackets denote
"y equivalence classes, arrows denote dominances ). '




20

ORDERTI:
(Subtraction)

}

ORDER II .
{ Addition)

$

Figure 1b. Order analysis results for AMATH dataset using ORDO (brackets denote
equivalence classes, arrows denote dominances ).
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Discussion

v The resuits of this study support the use of ORDO as the ordeér— _ ’
analysis procedure to use in assessing the dimensionality of a rest.
\
ORDO matched. the ¢ ¢3 procedure in reproducipg the factors present .

in the simulated data, and it outperforn}d the ¢ procedure in

determining "the factor structure of the mathematzzs data. Apparenrly,
*  ORDO 1is less sensitive than the c ¢3 procedure to oblique factor
structures and/or dominant first factors in a dataset.
The main ;otivation éér extracting unidimensional subsets of
items concerns satisfying the unidimensionality requirement of latent—
trait models. Lord & Novick (1968) state that if performance on a
set of items has an underlying multivariate normal distribution and
a single common factor 1s present in a matrix of tetrachoric corre-
- lation coefﬁicienté, then the latent space 18 unidimensional and
! local independence holds. 1In this study, phi coefficients were used
. . rather than tetrachoric coefficlents, There are two persistent\h
problems‘with tetrachorie. correlation coefficients., When one item .
dominatea another item in a ﬁerfectly consistent mannegt (i.e., no
counterdoainanceg) the tetrachoric correlation 1is equal to 1.0,
. However, since in most cases the correlation coefficient is calculated "
for sample data, one would typically be reluctant to accept 1.0 as
a population correlation estimuate. Also, matrices of sample tetrachoric

. coefficients will often be non~Gramian,. in vinlation of basic assumptions

of the factor-anal tic modei. Neither of these problems occur when
phi coefficients are.psed. While phi coefficients are influenced
* by the relative difficulty levels of the items, Comrey (1973) reported

finding the 1influences of difficulty faztors to be minor; and he

-, . endorsed the usc of phi ratherithdn tetrachoric coefficients.

. Hence, phi coefficientq‘were deemed to be agproprieee in this study.

Crder analysis avoids many of_the problems involved in factor
. analysis, Also, no distributional assumptions are required 1in the
order-analyric model. This study has shown that ORDO can yield

.
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i
3

results that are highly similar to results found with factor analysis,
Order analysis may represent a very desirable alternative to factor
analysis in assess%pg the diﬁensionalityvof tests, )
Certa%nly more res%§rch is neééssary to determine éhe evéntual
usefulness of order analysis in determining item sets which are

appropriate. for item response theory.

-
.
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Appendix 1

Factor Analysis Results for Dataset Hl

O
A 3

Mean ., s.D. Factor I
' loadings _
¢
1 .100 .300 446
z 2 .196 .397 ) .611
3 .312 . . 464 727
4 424 495 | 791
5 .518 .500 . .840
6 .608 ) .489 .810
7 .702 458 «745
8 .810 .393 T . .609
9 914 . .281 439 7
- 10 .99Q .063 . .110
\
. -]
< Appendix 2
Factor Analysis Resdlts for Dataset Ml
Item = Mean S.D. Factor 1
- loadings
/// 1 .330 : 471 . 711
2 .322 . 468 .699 -
3 : 454 .498 .838
4 480 ' . 500 851"
\ < 5 .528 . 500 .835
- 6 .566 ~ .496 .845
v 7 .616 - 487 844
- 8 744 437 «757
9 736 . 441 .753
10 .756 .430 722

o ‘ : 36
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, - Appendix 3 -
) Factor Analysis Results for Dataset L1-
!
Iteh Mean- - S.D. Factor I.
" loadings
1 .480 .500 .866
2 490 .500 .877-
. 3 470 .500 848
4 { - <480 .500 , .845
v 5 .488 ! '500 ‘ .846 N .
6 . 480 .500 856 7,
7 <470 ) " .500 L8831
8 474 R . 500 .854
< 9 4rn 500 ' ¢ .868
10 Al 499 .856
Appendix 4
¢ Factor Analysis Results for Dataset H2
» .
3 - .
. Item Mean S.D. - Factor I Factor II
* ' . loadings loadings
. s - * ‘% M A
’ 1 .210 . 408 -.049 T .591
2 . 396 .490 043 . 809
3 592 T 492 -.013 .808
4 .808 «394 . ~-.035 «565
5 . 242 429 .639 -.006
. 5 » 290 454 711 - ,.046
. 7 458 499 .827 .011
8 «576 <495 .832 -.057
: ‘ 9 716 451, «736 ~-.027
10 . 824 .381 «588 ~-,075
: —¥
\ »
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- . Appendix 5 ¥ )
Factc;c Analysis Results for Dataset M2
Item Mean S.D. Factor 1 Factor II
loadings ° dgadings
1 2226 . .419 .083 . .e80- ,
2 416 .493 -.002 . 857 ] ‘
3 .436 0496 -.002 .862
- - 4 .718 .450 -'0031.“ .578 . '
5 1122 .l328 .667 -.042
6 .106 .308 , 4633 . " -.054
7 .400 .490 . «765 . ~.018 °
3 404 491 .762 -.030 . :
. , 9 .904 ©.295 .371 .073 - %
. 10 .90% . «295 «372 . .048 ‘ ‘
. Appendix 6
Factor Analysis Results for Dataset L2
Item Mean $.D, Factor I Factor II
loadings loadings
u
1 .510 .500 -.90 «856
2 »500 .500 "= A8 .832
3 494 .500 ~{d13 .852
4 496 .500 16 .838
5 498 .500 «839 .009
6 «522 .500 .848 -.005
7 «522 .500 .819 -.001 ~
8 $S512 .500 «848 ~.015 «
9 .510 .500 -‘0,819 "0015
- ah

38




Appendix 7

' Factor Analysis Results for Dataset M0

Mean S.D. Jactor Eigenvalue % of
- Number -Variance
1 .072 «259 1 1.18 ©o. 11:8
2 «258 .438 2 1.17 y 11.7
3 .368 - .483 3 l1.11° 11.1
4 JAl4 493 4 1.07 10.7
5 408" - 492 5 0.99 9.9
6 e 540 .499 6 0.99 9.9
7 .626 484 7 0.95 9.5
8 . 744 437 8 0.87 8.7
9 .824 .381 9 0.85 8.5
10 898 .303 10 0.82 ) gz~
} L

o
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