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PREFACE

4A part of our goal at CSE has been to develop new 'and improved

psychometric techniques to study, develop and characterize achievement

tests arrd achievement test items. Recently our efforts have been focused

on certain errors tilat.eccur when using criterion-referenced tests.

In particular, we have investigated probfeffs related to estimating

and controlling the false-positive and false-negative error rates asso-

ciated,with a test and a population of examinees. In' other words,
/

4 we are concerned about passing those examinees who should pass, and re-

taining those examinees who need remedial work. This paper deals with

one aspect of that problem.
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App ABSTRACT

Wilcox,(1977) examines two methods of estimating the probability of

a filse-poSitive on false-negative decision with a mastery test. Both

procedures make assumptions about the fbrm of the true score distribution

which might not give good results in all, situations. In this paper, .

% A'

. upper and lower bounds on the two possible error types are described

which no assumption, about the form of the true score distribution.

Ill trations are given on how these bounds might be used to determine

th= length of the test.
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Introduction

1

Recently, Wilcox '(1977) considered two methods of estimating the

probability of makinga false-positive or false-negative-decilsionwitha

.

masteryteste Both of these procedures make an assumption about the
-

,

form of the distribution of true scores over the population of examinees.

-In thisvaper, tipper vIdower bounds to these probabilities are described

which make no assumption about the true score distribution beyond,that

qsl first two momdnts exist. We begin by stating explicitly the model

that will be used to describe a mastery test after which we consider

briefly the importance of false-positive and false-negative decisions

relative to the'other proposed methods of characteriziq sugh tests.

1. The Model,

Consistent with Hambleton and Novick (1973), Harris (1974), Novick

enCitewis1(1974), Huynh 476), Fhaner (1974),rand Wilcox (1977), we

may describe a.mastery test a's follows: An instructional program is

developed with the goal of fostering certain specific skills in the

students taking. the course. For each skill area, a domain of test items

is constructed. A total of n items is randomly sampled from this domain

and administered to an examinee for the p4rpose of determining whether`--

the examinee's true score, say z, is above 'or below the known criterion

score 4. If 4<c) the examinee is a master and he /she is advanced to

the next level of instruction; otherwise, the examinee is given remedia
I

work. The decision ;<;0 ismade if, and only if, x >x0 where xo is some

appropriately chosen passing score and where x is the examinee's 'number

correct observed scor4. Note that the choice for the passing score xo

may be made in accordance with the "losses" associated with the prob-

ability of a false-positive,or filise-negativd decisjon (e.g., Hambleton
low

and Novick, 1973).
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For this model of a.mastery test, the.re are two possible errors.

Thefirstis-a, false-positive error which occurs when x>xo and <40.

false-negative error' occurs Then x<ko-and

Let a = Pr(x>xo, c<40 and 8='Pr(x<x0, In, this paper 4' and P .

are defined in terms of a, group of individuals.. In particular, g(c),

the distribution of 4, is the probability density function of true

scores over a population of examinees. This is in contrast to the

Aayesian app7oach where g(c) is the prior distribution for a specific
A

examinee. (See, e.g., Novick and Lewis, 1974.)

As mentioned earl-ier, Wilcox (1977))descrjbes two methods of.esti-
.

mating a and B both of which assume4that tbe *distribution of 4 over the
. .

population of eximineestes a particular pardhetric form: the 'first

estimation procedure assumes that the conditional distribution of

observed scores for a single examinee is given by

= (xn) cx_ )n-x,

the binomial probahility function, and,that the distribution of 4 is

_ 11)
r r s

r-1
1-4)

s-1
,

(1.2)

the beta distribution with parameters r>0 and s>0. For'n>10 it appears

that this estimatfk procedure gives fairly good results even when

bservatiOns are generated according to a two-term approximation to the

ompound bionomial distribution. The same is also true for the bthr

timatioAprocedure which uses an arc -sine transforpation on the

observed score of an examinee and which assumes a normal prior

dlitribution.

7
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The assumption that has a beta distribution deserves serious

consideration since there is evidence that the resulting beta-binomial

(or negative hypergeometric) probability model may give a gobd fit to

data (Keats and Lord, 1962; Lord, 1965), One difficulty with this model

is that, with the exception of U-shaped distributions, the, distribution

of true scores can have at most-one mode. Thus, it is not at all clear

whether the-beta-binomial model will yield reasonably accurate values

for a and_8 in every case.
b

One possible solution to this problem is to consider some other

method of estimating the true score distribution.. (See, e.g., Maritz,
1

1967; Lord, 1969.) However, the robustness of these alternate mode4s in

terms of estimating a and B is unknown and difficult to ascertain.

Another, possibility is to use some coefficient that reflects

indirectly the values of a and B but which manes no assumption about the

form.of gN. For example, one might use the proportion of agreeMent

(Hambleton'and Novick, 1973) or Cohen's Kappa (Swaminathan, Hambleton

and Algina, 1974). Several. other coefficients have been proposed as

well (Harris, 1974; Livingston, 1972; Brennan and Kane, 1977). In terms

of a and 8 , all-of these coefficients present at least two- problems.

First, the exact relationship of a and B to these other indexesis

unknown. Second, none-Of these other indexes makesa distirLion between

false-positive and false-negative decisions. This latter problem is

pgrticularly troublesome'since the seriousness of a false-positive

decision may not be the same as the seriousness.of a false-negative

decisionowhich,in turn,may have an effect on the decision rule used to

de7ermine whether is above or beloii 50... An illustration of this point

arises in the situation considered by Hambleton and Novick (1973),
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Novick and Lewis (1974) and Huynh'(1976) in whieh.constant fosses are

associated with the two possible errors. Thus,-we let the constants cl

And c2 "represent the "cost" of a false- positive and false- negative

, declsion, respectively. Within this framework a natural choice for the

L

passing -score x0 is the one which minimizes

(1.3)

the Sayes-risk. An index such as' the proportion of agreement,is of

little'help in the search for an optimal passing score since we can

guarantee th its maximum value of one will be attained simply by

passing (or'failing), every examinee. This is not 6 say the indexes

such as the proportion of agreement of' Cohen's K'appa haveA4ttle or no
fi

value. Indeed, these indexes are important since, at.a minimum, we want

to make consistent decisions across comparable Mastery tests. The

advantage of a ands is- that they provide a d'ireA indication of how

certain we can be that a correct decision IS being madeowhen trying to

.

decid whether; is above or below
,

For still more illustrations of

. 1

-
/

this point, the reader is referred to Huybh (1976), Van der Linden and
1 . . 4'

. .

Mellenbergh (1977) and Wilcox (1977): ...i...
.

. .

.Given that it is desirable to know thd values of a ands , it is

-natural to want to know whether their value 4s smai ip regardless of the

actual form of the true score distributibn. With this goal in mind, we

consider situatjons.which yield upper and lower ,bounds for both a and a

but which make no assumption about thA'fof'm-of g(;).
,

O
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2.' An Upper Bound as ajunction of n

Befoi-e describing our'main results, we note that.an upper bound to

a and 0 is readily' derived when the binokial error model (Lord.and

Novick; 1968, Chapter 23) is assumed to hold. In othef words, we are

assuming that the conditional distributiOn of observed scores for-an

examinee is given by expression (1.1). From Wilcox (in press) At

.

4, 'followscimmedistely that

and

a < E f(x I = co)
x xo

-1

<
E

f(x lc 40)'
5=02

r

(2,1)

(2.2)

We observe thatofrom a theoretical-point of view, the assumption

that f(x1c) is a binomial probability function has been criticized by

-several writers when an item sampling model ;applies (Hambleton et gal.,

*4

1978; Lord and Novick, 1968, Chapter 23; Lord 1965; Meredith and Kearns,

1973). The binomial errormoderwould seem deserve serious considera-
__

tion in practice since even more restrictive mo 1 ,give a good fit to

data (Keats and Lord, 1962; Lord, 1965). Nevertheless, one might prefer

a more general pr ility function for describing the conditional

distribution Of obsery d scores. Lord (1965) as well .0 Lord and Novick

(1968, Chapter 23) suggest that a two-term approximation to the compound

bionomfal be used. Rdsults reported by Wilcox (in press) suggest that
11

when this more general probability fugction is adopted, the ."intuitively

obvious" upper bounds to wand 0 given by expressions (2.1) and (2.2)

ti

A
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will still hold. However, a rigorous proof that this is the casremains

o

to.be found.

3. Upper and Lower Bounds to a and s, That are a Function

of the First Two Moments of the True Score Distribution

Is it possible to improve upah the upper bounds on a and a giveri.by

expressions (2.1) and (2.2) without making, any assumption about the form

of g(0? In many cases, the answer is yes.

For notational convenience we let: i

V
Al

.

the event x >. -x0=

Ac = the event x '< x
o, /

t.

1
. -

..
/..

t

A
2
= the event ; > CD

0

Ac the event <
o.

"k-

2

The intersection of two events is denoted by the juxtaposition of the

corresponding symbols. Thus, AlA2 represents the event x x0 and

>
0'

i.e., a correct-positive decision. We begin by deriving lower

bounds, to Pr(AlAz) andPr(q.A).

OLet u and a2 represent the mean and variance of the true scores of

the examinees. In practice u and '02 are unkhown; however, they may be

estimated as follOws: 'Let N1,...,xkte the obSdrved scores of k randomly

selected examinees taking an n-item test. For the binomial error model

(Lord'and NoviA, 1968, Chapttr 23)

u = (kn)-lE x.

2 _ - 2
a - p

IA

11

1.

J
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f,

may be used as an estimate of p anda 2'where

14 1
[kn(-h-i)j1

If a two-term approximation to ittie compound bionomial distribution is
.

Oeferred, we still use 0 to estimate` p but we replace6 2 with .

.

.

i . t
, ,

4".

_ 6 2

7 x

where,

(n-2d) 1^1 (1-p)/[n(n-1)+2d]

n
2
(n,l)av

2

2[11x(n-Px)-02-noi]
d =

2
a
x

and p
x

are the variance and mean of observed scores

the varrance of the item diffiCulties.

Let

and'

where

.

and where av
2

is 4

2

o P.'s< 0 f

44.

62
,

2
a .+.( -II )

=

(P (1-P)-a2)/(1- 0)c0,
0!

otheivise,

m = max 41(1)*-0,.41-0)(1-4)}

or.

12

(3.3)

,



It fol3owi, from resultg,givf/by Skibinsky (1977) that

O

Pr(A2). < U. (3M
.

From the ionferroni inequality NeYe.g., Miller, 1966, p. 8),

.

-Pr(AiAi) > 1 - Pr(A2)-

. which"; together with (3.4) implies that

-7r4.

s. (3.5)-

Pr(Aip) > 1'- U - Pr(A1). (3.6)

5

'The proportion- of examinees9paping the test serves. as- an estimate of

Pr(A1). :Thus, we have an estimate of a lower bound on Pr(qAp:
.

1.,

V °. In some,caseetthe lower bound to PrOkcAc2 ) will be close to one
, 1 .

which implies that both a and a are relatively small since both areess
'

than or equal to 1,- Pr(AiAp. In particular, (3.6) implies that

tf
.

+ Pr(A1).a + s < (3.7)

A lower bound on Pr(A
1
A
2
) can also be derived-by replacingtd,in

*..

(3.2) with

u <

1
. 11

:

4

Thkresulting value of U, say 111,'is such that'

Thus,

'e

Pr(A2)< U1.

Pr(A1A2) > 1 - U1 - PrOp.

3

'SY 55:

41
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An upper ound for both a and B is readily derivedas follows:

Since,Alq is a pubs4t of bothALand

< Pr(A.II,bm Pr(Aoc

Mto

)., and so
-\

a < min(Pr(A1), U1].

Similarly,.

.

,A

9

(3.8)-

s < min[Pr(Alc.), U) (3.9) N..

We conclude this seotion by describing lower bOunds on both
. .

,o..

an 8. for t we have-"that

o'
a = Pr(A,A2)

> 1 T Pr(A1.5 Pr(A2)'

> 1 - Pr(q).

for similar reasons

(3.10)

i! > 1 - U1 - Pr(A1). (3.q13.)

lb'

An Upper Bound to a ands Assuming That-

The Binomial Error, Model Holds

,

In the previous section we described upper and lower bounds to a

ands, which depend only on or Oilityto estimate the firs and second"-
J.

moments of the true score distribution. Asoted above, suc estimates4l',

'.

%"(.,....,)

dre readily available when the conditional 'distribution of observed /

scores for any examinee is given by a two.-item,approximation to.a com-

pound binomial distribution Asshown by Rutherford and Krutchkoff

a Ak

(1967) such estimates are also available for a wide variety of
. f

situations.
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In this section we indidate how.the inequalities (3,10) and (3.11)

Might be improved upon when the binomial error model is assumed to hold.

Since

a = 1*(A Ac)1 2
=Pi.(ApPr(Allq)

it follows that

a f(xic<co). (4.1)
X=X

0

From known properties about the binomial probability fpnction (see

Wilcox, in press; Fhaner, 1974) which can be derived from results given

by b6hmann (1959, Chapter3), we have that

n

f(XIC<C0)< E (1)1() f(Xlc=c0).

X=X0 X=X6

Hence, 4
n

a < U1 E (
x

) e0 t ) n-x
0

x=xo

For similal4 reasons, it can,be seen that

-xo 1

<U E (1) d (1-c0) n-x (4.3)
x=0 8 0

(4.2)

It was suggested to the author that a theorem by Markov (recently
.

applied by Lord and Stocking, 1976) might be applied to obtain bounds on a

and.O. It:should be pointed out) however, that the conditions of this

theorem, as described by Lord and Cressie (1975), are not satisfied in

general. To see this,it is sufficient to observe the first derivativg,

15
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.0 n
of h., ) :=T (X} * (1-On". ,with respect to is negative.

x=4.1

.

1

The derivative of h2() =.1-h
1
(0 is Positive', but the'second derivative

can be negat7:7S(See;howevery Karlin and Shapley, 1953.)

5. Another Application

As an 'illustration and another application on how the upper bounds

to a, ands miO
1

t bei used, we consider the p ;oblem of determining how
T;.

many items to include on a Mastery test. for technical reasons (Fhaher,

1974; Wilcox, in press) it is necessary to formulate the above model of

mastery testing in a slightly different fashion_ In addition to the

.driterion,score we specify the constants and where
1
<0sg2.

If <4<2.4.0 say that the examinee is classified correctly with prob- .

ability one since there is negligible loss if a misclassification is
44

aVe

made. 'However, if,tsi or we want to be reasonably certain that

a ,correct decision is made. More specifically, we want to choose n, the

test length,' so that the probability of both a false-positive and false-

negative decision,is reasonably small. We specify .this criterion by

requiring

, a < a*

and

0 < 13*

(5.1)

where a * and S * are given constants. For this model of a mastery test

i
we now have that a PpPr(x > xo; <' 1) and s =Pr(x < x0, > 2).

If
0'
=

1
=

2'
it may be impossible to choose n so that (5.1) and

16. ..
4 a
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(5.2) ire satisfied. The solution given

the smallest n so that simultaneously

and

n,

n=x
x
(n x.

) 1

rrX < a*

0

x -1
0 n x n
z (

x
) (1-; )

-x < B *
-2 2

x=0

12 -

y Fhaner (1974)-is to choose

u/---

(5.4)

For the sake of illustration, suppose a*=.12, 8*=.04,

u=.945 and a
2
=.003. To determine an appropriate,teg. length we first

compute upper bounds to a and S. Since false-positive and false-negative

decisions are now 'defined in terms of and 2.rather. than the
u

exprAsions for and are no longer appropriate: To determine an

upper bound on Pr(), we now use

2' u < 2
. - L =

2

11' 2 < <
1

= max Cu (t 2-11 ), (11-2)(1-101

and iVe replace U with

U =

a
2

2
, if 0 < a < m

0.24.0c2_02

(p(1-11)-1J2)/((1 2)2), otherwise.

In our example, m=.0025
2
=.945 and the resulting vtlge;Eof U is

.544. If we assume that the binomial error model holds, we nay apply

the arguments of the previous section which imply that -

*3'

4
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x-
s< U'

bc=0

(x) C (142)

(1-
1

n
. 54 E

X=0 Ai

,

As for ct., We use

<

cl, ci < p 1

in= max tu(Cru); (u -C1)(1-ti)]

andthe upper bound to a is

2

if 0 < < m

(311.)` -

o

(11(1-11)-a
2
)/((1-c

-1)c 1),
otherwise.

For the case at hand, m=.0135 and E3 =.7.

is .0476 and so

,.,a < Ul (X)
x

c (1 ci)
X=X

= .048 x () .7x .3n x.

c5c=x0

13

(5.5)

resulting value of U4

iv

(5.6)

ige evaluated these upper bounds for incre.4441g,values of n with xo

chosen to be the smallest integer such that yn>co. For- this particular

case, the smallest value -0(n 'required So that both (5.1) and (5.2Y are

sat ied is n=10 with x0=8. If inequalities (5.3) and (5.4) .rather
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than (5.5) and (5.6) are'used, werequire n=25. Thus, we are able, to

justify a substantially shorter test thann=25 without making any

assumption about the form of the true score distribution.

As a final illustration, we analyze some test data reported by

Huynh (1976): A five-item arithmetic test-was administered to 91

students whose test scores x=0, 1,, 2, 3, 4 and 5 have frequencies 4, 14,'
a

9, 17, 21, 26, respectively.: The mean and'variance of the trueiscore

distribution are estimated to be P=.653 and a2 =.065. The resulting

value of V is .52. Also, U1=.77. Thus, letting retain the

same'values as before,

-and

$ < .51 e
n-1

(n) gx in-x

x=0

a < .76 E. (
x
) .7

x
.3n -x.

xx=

. Setting ce=.12 and 0=.09,41the minimum required test length is a=19 with

x
0
=16.

Concluding Remarks

In sumffiary, we have indicates methods'Of obtaining"upper and fower

bounds to.both a and f3 which make no assumptions about the form of the

true,score distribution, The first method depends only on our ability

to determine the mean and variance of the true-score distribution/ As

indicated above,. such estimates are readily available when the binomial

or compound binomial error model is assumed. The second method is based

on the binomial error model which is frequently used to describe ar
.. ., ik.

19
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mastery test. As was-illustrated, the resulting upper bounds may be

Particularly useful when determining the length of.the test.
ti
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