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de develop a theory of artits - ‘raerie-snygre Zentral force law which
differs considerably from the .s.a -~ »& apcrozch  In particular, we make
no explicit Bse of elculus By tesrrrong witr quaM1teive aspects of sclutions,
we are led to @ number of gecretrica'’y realizable pnys cal 1nvariants of the
orbits. Consequently most of our trw.revs raly only on simple genmetrical
relationships. Despite 1ts sirpiic <., - ~anetary gennetry 15 powerful

enough to treat a wide-range of uert. 7 iy Wi relstive ease  Furthermore,
Without 1ntroducing any more mazhirzr g ‘ntair fL.il mantitative results

ihe .paper concludes with suggestione .y furtner resear boInts the geometry

of planetary orbits
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1. Some Qualitative Results '

i
117 nt/oducuon
coL * N -
. /

From junior high scheg) on. students of science are taught that Kepler's Laws

describe the motion of planets around the sun They are given no hint of how they
»

£
“themselves can understand the "why™ of these laws By high school the students have been

taught Newton's discovery, that the inverse-square,force law accounts ‘or those beautiful
eliipses, but the connection is not yet for their eyes After a year or so of college 1t s finally
time to plow through the thoroughly siandardized ard unmotivalea 5roofs, using intricate -

manipulations with differential equations
In this paper we outhine an approach to orbital mechanics which Js accessible to
btg\lnnlng‘phyncs students and presupposes no knowledgs of calculus We give an
elementary (yet mathematically correct) treatment of Kepler's Laws and also Investigate a
simple first-order perturbation theory for orbits 10 an inverse square field Qur theorems
and proofs arise ngtbirally from trying to understand orbits 1n terms of their physical
tnvariants e therefore feel that our treatment prevides a belter view of “what doing
{
physics 1s\eally ike” than does the standard route v.a algebraic manipulations

( y

. The key to the method lLies 1n consdering the velocity space picture for a planet's

+

moton about the sun  The concept of a +elocity space 1s not normally encountered by the

v 7
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studen” R he O she o prranet b e gt m otk it tert 6l the reemalities of
-~
/
Hamtlronian mehanc. We thine bore 0 eaonror thir <o fay because though it s
. . , .
-

usually conades d an s2vanal Lps T e Ll b space piz ure of agparticle’s motion

hies at the carc gl MNewonian e nan 8 Jatees the qualitalive comrm.of Newton's Fema

ror our purgc e ol -FA s simply b by mal incerattian, hetween ohjects take place

by a mocifiraiien e velcory cather rhan by 4 chanee in po rion Appreciation of thys
»

r
PRt cap eretl, aryg ho ~oLrlnprsn of phy e ntainnn and nnmnmmjmg and Vetoc“y
4 ’

SPACBUS 4 N4 urAl renl tor s o, Teow on primarnly ranceptus! breakthrouzh  In Part

~
Tl o

T when we ﬂz;:u:}\“'u'bwon we shall 4- why rich dividends ¢an be yielded by

.

looxing at physimal phenamena in the v he concrprual frame In this case, velocity space

Inthe talluwine presents 1o ae haye ¢ rd to walk rather a narraw path between
Two extremes  Ofone hand 3 descniption of our methods and results would take no more

than 3 few pages 1t we used the full prerision of mathematical apparatus (includmng .
' .

T
catculus: available ro srience students after 3 1ew years of univergity education  On the

other hand we vould hiave sprnt consiserably more space developing a complete and self -

.

contained course for very eatly physics students Since we [eel the material can be,useful at
' L]
boch levels of physics edutalion, we have allempled 2 compromise We apologize both to

those who lind our presenration exlenced and perhaps verbose, aid to those who might

find 1t sketchy and incomplete
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We gratefylly acknowledge the inspiration and ®ncouragement of Seymoutr
Papert He introduced us to this way of thinking about orbits, and pointed out the basic

- El

results described in Sections 2 and 3 These sections closely follow parts of his paper
; -
(reference 1) which presents a broader view of the conception of educalion In science and
mathematics from which thls work grew We would l1ke‘ lo thank the editor and referee
from The Amertcan fournal of Phystes for many encouraging and helpful.cor'pments and
r also to thank Suzin Jabarl of the MIT Aruficial Inteiigence Laboratory for preparing the
iMustrations for thts-paper

-

2 The Orbtt ts Closed
/
. Standard approaches begin with the arduous task of proving that planetary
orbiis are precise elupses We begin by proving a more gualilative proposition, that orbits
] L] ~

are closed [n doing so we dispense with a greal deal of analytic clutter, and the important

special nature of inverse-square orbils which makes them closed comes inlo central focus

We wiil prove that no orbit like that In Figure | 15 possible
’ Jf a planet crosses a half-line from the sun twice, then U crosses Ut at

the same point each tbje—no! further out or closer tn

We assume two pleces of knowledge

-
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* 1 The force on the planet, when it 15 distance r from the surf, s K/r? towards the

-sun

-

bl L4
\ ; p
2 Angular momentum is conserved We use this in the form of Kepler's Law
that the radius from the sun to a planet sweeps out equal areas in equal times This can be

easily derived and we remind readers of its simple geometric proof in the appendix

s

s
*

A
%

Now consider diametrically opposite pieces of the orbit which subtend the same

(small) angle measured from the sun, as in Figure 2 Kepler's law states that

AL e | ,

What else do we know about the arez or the time? Geometry tells us that

2
) Al {1
A2 r2 '
2 v

Those t2s are too suggestive for us not to make a connection with

F= Kni'r2 In fact .

2
F r  F A st
—2 = '2 hence 2 - ! - 1
F‘ r2 F‘ A2 Atz 2




-~

v

We can adentify these terms  According to Newon's Second Law, on each piece of the
‘

orbit, FAt is precisely AV the change in \.felocuy2 which we call the "kick” assoctated to
- '

that piece  Thus the last equation says that the change th velocity over one ptece of orbit

e«actiy cancels the change on the opposite plece Starting on the half-line which the orbit
¢

crosses twice, divida the orbit ali the way around into similar pairs of opposite pieces The

total change in the planet’s velacity between successive crossings of the H¥IE-line rs the sum

of the chinzes in velotity gver each small piece, adding these up 1n opposing pars, we see

Yy the tor>l change s zero. Whensver the planat crosses a given half-line, 1t has the same

-

e -
velotly ~

" Now Kepler's dictum of equal area in equal time allows us to conclude that at two
crossings o‘f the half -line, not only velocity but distance from the sun is the same Figure 3
shows the areas swept out by the planet id some shorl time At after successive crossings of
the half line through A, B, and O The velocities at A and B are equal Therefore the

preces of orbut AC and BD) are both equal to VAL, but the area of AOC must equal the

area of BOD Theg A equals B and the orbit closes

3 A Theorer tn Velocity S pace

L]

The preceding proof rested on the fact that the kicks over opposite pleces of the

orbit have equal magnitudes




Figure 3: AC=BD, area AOC=area BOD, therefore 0A=0B and A=B.

69{/, -
N o

Figure 4: Part of an orbit divided 1nto equal-angle sTices.
4 & .
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But, to derive this equation it 1sn't necestary that the pieces of orbit be opposite We need
- >

only that

L3

- "and this 1s true for any two ple.es of the oibit over which the radial angle changes by the
same small amount  So, If we divide i whole oibit 1nto sma;ll pieces subtending the same
angie A8, the "ifxci;" vectors for the various pieces ali have the same length (Figure 4) Not

- anly are ail the lengths equal, but the 1otation between sucessive kick vectors 1s constant and

eguais Af .

Thus we hav.e a very simple alg‘ornhm for generating the changing velocity as
the planet moves along Its orbit Starting at a given velocity vector we add on kick vectors
one after another Each addition 15 a step of constant length and successive steps differ in
direction Ry the constant turn, 8 It is easy to see that the algorithm GO FORWARD a
short distance, TURN through a, small angle, GO FORWARD the same short dlstan.ce.

'{QRN through the same smali angle, , will generate a arcle® We conclude that the kick

L]
vectors hine up along a circle {(Figure 5) .

We can Interpiet "adding on succrssive kick vectors” by introducing the notion of

-

veloctty space  The velocity.of an ubject is usually described by a “velocity vector”, that is, a

[y




PR Y
[ - 1
[ - ‘ L3
’ £ ‘l 4
o . * 4
(4
r
[
* - 1
-
e
i
]
.
[ / { \
.
! &
. -
.
e
, %

o "
gure 5: Placing the kick vectors end to end. 2 »

3




s *

: N PAG. ¢

o

L
drrection and a speed (length) In comparing different velocities 1t 1s useful to put the tail

of all veloaity vectors down at some comman.point, 0, and to depict a velocity by the point

where the tip of the velocity vectar lands |With this convention, we can draw two differen
. , . F} =
pictures to describe the motion of an ob ject

-
- f p - .
- ’

(1) the coliection of successive positions of the ob ject 1n “real” space, and

t

(2) the collection of successive positions of the tip of the object’s veloaty vector

) Thxs&a'p‘ath In “velocity space".?pncture of how velocity changes

.

-
T—

The second picture is called the "velocity space path™ or “velocity diagram”.
Figure 6 exemplifies these two kinds of diagrams

Velocity s the tl}mg. that changes position, ktcks are the things that change
veloaty To get from an object’s position at one instant, t, to 1s position at teAt, we add‘ on
the vector ¥At To get from the object’s velozity at one instant to the velocity at a shightly

- EY
later time, we add on ctor, FAt  Adding up successive VAt vectors gives the

)
L
position space pathy adding kick vectors gives the velocity space path  We can now. restate

our result as
>
o

-
.

Circie T heorem

For an cbfect moving tn an tnyerse-square fleld, the veloctty space

path ltes on @ ctrcle




POSITION
PATH

VELOCITY PATH

h ]
Figure 6 One object's position space and veloci1ty space paths.,
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To avoid confusion we point out that the center of this circle 15 not necessarily at

the,origin in velotity sgaﬂe
\‘
+

]

™~ 4 The Veloctty Space Path
' e

- -
S ~

Our Circle Theorenptells us that the velocifl space path fies on a circle But 15 1t
’

- a complete circle or just part of 17 We can answer that question and a bit more

}

— > We showed that an orbit which does manage to get all the way around the sun

!

grosses every half-hne fram the sun exactly once Such an orbit is a simple closed curve

Ay

-~
In a complete 1evolution, Jberefote, the direction of the plansl's velocity veclor must change

through 360° (See referdnce 4) Thal means that tn veloctty space geouhe path meets every
.
half-line from the veloary space origin It foilows that closed orbits in position space

correspond to complete circles in velocity space, and we have learned, besides, that the

-

origin of velocity space fs ipgde the circle

i~ ‘

We now have a good qualitative picture of the velocity space path for a closed

orbit (Open orbits are discussed in section 1) In Pait I1, we will extract information about

R : the position space orbit from our veloaty space diagram
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1. Invariants of the Orbit

5 Angular Momentum

-

L
As we have seen, the velocity space path of a planet in an Inverse-square fleld lies

. .
on a arcle One obvious invariant of a circle ts its radius How can we Interpret this

L]

tnvanant physically?

We got the arcle in section 3 as the resuit of the algorithm “forward distance D,
turn angle A8, repeat™ As one can see {Figure 7), this generates a circle of radius D/A8 In
& our case A8 was an arburary small angle and D was the magnitude of the kick FAt over

the corresponding small piece of«orbil. Lelting u dencte the radius ¢ the velocity circle, we

have . -

-

=3

-,
\

[5=N
<>

b )
It is not smmediately obvious that this is a constant However, we can simplify the
expression using the facl from geomelry Lhal Lhe area swept out over 2 small piece of orbit

1§

' Ae %rzﬁﬂ

Then u-EQL- r?AL We can eliminaie Lhe apparenl dependence on the nan-constant term

r2 by usmg F Kir

2, we ocbtain .




2

RADIUS'

p = radius x A6
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The'term 2A!A’1L, which tells how fa‘st the planet is sweeping aut area, 15 precisely the
constant called angular momentum, L (See Appendix ) Therefore
The radius of the velocity urcle equals the force constant
K divided by the angular momentum L. u=K /L
For a fixed gravitational field, the radius of the velocity circle tells us the planet's angular

momentum  a larger radius gives a smaller angular momentum.
/

' .
6 Ortentatlon

The velocity circle has another invariant so obvious it is easy to overl‘ook—the
position of its center 1n velocity space  As we remarked above, ever, ithough the origin 0 §s ‘
instde the velocity circlé it need not be at the center of the uircle Let 3 be the vector
running f:am the origin in velocity space to the center of the velc;city circle, and let U be
a radial vector of the circle (Figure 8) In terms of 7 and ﬁ we can think of the planet's
path In velodlty space as follows at each moment the velocity ¥ is the sum of a constant
vector 7 and a vector U of constant.lzngth (equal to uvK/L), Va5 The velocity space
path 13 generatecf as the radius U sweeps around the tip of the invarlant vector?

| Th;re is a quite remarkable relation between the motion of T, the position space
radius vector (tail at the sun, head at the planet), and the motion of this “velocity space

-
rad;us, u .

Correlatton of Anglﬂ;tn Posttion and Velocity S pace

b A
At each froment the planel’s radtal vector r (s perpendicular Yo the




\. ¥
" (
» 3
ORIGIN:+IN
VELOCITY CENTER
SPACE OF CIRCLE
i
/..\ -
4
|
L4
N ¢
Figure 8: The invariant 2.
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-
radtus u of the veloctty circle

To see this we examine how Lhe kicks fit into both diagrams  In position space each kick is

f -

A
parallel to the radial vector r In velocity space the same kick 1s tangent to the velocity

B
circleand hence perpendicular to the velocity circie radius u.

a >
Hence'u 1s perpendicutar to r !
Correlation of Angles 15 a powerfut principle It tells us
(1) Each point on the velocity space path corresponds to 2 unique point in the

planet’s orbil  (The planet cannot altain the same velocity at two different points in its

-
Pl

‘ orbit) o -

(2) The planet’s position vector Sweeps around the sun at the same rat® and with

*

-
thé same direction {clockwise or counter- clockwise) as its velocity sweeps around the circle
L]
in velocity space  The two are always 90 degrees out of phase (Figure 9) \
. { N '
- ¢ Now we can,give more meaning to the z vector The planet’s speed, v, is .
r
- .
¢ greatest when the U and Z vectors are lined up, least when they are opposed v
A .
\\ Ymax=#:z Therefore the 7 vector points 1n the direction of maXimum speed and

n=u-zZ,

opposite to the direction of minimum speed

. The points of greatest and least speed occur where the velocity vector 15 parallel

i +
to u, ahd s0 perpendicular to the position spacé radius T It is not hard to show then
that the point wheie speed auains its maximym (respectively, its minimum) corresponds to

u

the minimum (respecuvely, maximum) distance from the sun The reader can fill in the

. deétails of the proof sketched below
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POSITION
OSITIO VELOCITY
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. »
/ POSITION
VELOCITY 1
.3-
v POSITION
. VELOCITY

Figure 9 Snapshots of position and velocity over an orbit U,F.
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£

-
Step 1 At a maximum or minimum distance the velocity v must be

A
perpendicular to the rads r

r

Step 2 The velocity diagram shows that there are precisely two points where this

can occur \

\

,. Step 3 Conservation of Angulalk {Homentum Implies that r_.. correspcnds to
!

-

Ymin 279 Foyn 10 Venay

Now we have some more qualitative information about the shape of the orbtt‘~
there is precisely\one point of maximum distance from the sun, and one of mintmum
distance They occur on opposite sides of Lhe sun since the corresmndlng_ﬁ vectors point
in opposite directions The  vetor determines the ortentation of the orbit. It points in

the direction of maximum speed (Figure 19)

-~

7 Shape and Symmetry .
What more does the length of T tell us abbut the orbit? Cons_ider what would

happen if 'z‘v.anished ~There would then be no direction picked out for maximum speed

or distance from the sun The planet would have to travel around the sun in a circle at |

uniform speed (Another way to see this V would be equal to U and therefore always

1

perpendicular to™ and of constant length “the characteristic of uniform circular motion )

v

-
This suggests that I indicates how the orbit deviates from a circle. We can

make this precise  One obvious measure of the non-circularity of the orbit is the difference

in the extreme distances from the sun, : -




s

)

<

max

il

Figure 10. 7 determines the orientation of the orbit.
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\ )
. Tmax Tmin ‘

If we want an invariant that depends only on the shape and not the size of the orbit it 1s

better to see how much the ratio ) i

o Fmax/Tmin -

differs from | The length of 2, retates the maximum and minimum speeds

=lU-I v wil+Z

vmin max

To relate speed to distance from the sun we use angular momentum. If the angular
)

-

momentum 15 L then

L=v X Iy

min * Tmax*Ymax

because at these places in the orbit v is perpendicular to r (Section 6) T herefore:

max  _ Vmax u+2

-

13

Since u=K/L we can also write

Y'max K+ Lz ’ :
K-Lz

+ -

11

rmin

But K depends only on the nature of the gravitational field so we see that our “shape

-

invariant” is determined by Lz The larger Lz, the more the orbit deviates from a circle

In section 1 we wiii derive the analylic result that the orbit Is an elltpse and Lz determines

its eccentricity -
In fagtf knowledge of K and thesvelocity dlagram essentially determines the

planet’s molion The maximum velocily can be read off the diagram immediately, as can

. u=K/L, so we know L The shortest radius in position space has length r ., «L/v ... and _—

. t

')
\)‘ . e S




- \ ' PAGE I7

&
9 »

| .

[

—

-l
13 perpendicular to Vm;\‘ (Section 6) Having this one vector, Fne WE €an generate the

-
r

- orbit starting at the posituan determined by, o

'

with the following algorithm
4

I Travel a short distance ¥At tn the direction of ¥

2 Measure the change tn angle, A8, 1n position space.

4

3 Find the veloaity at this new angle (by rotatmg's through 48 and consuiting
the velocity diagram) ”

4 Return to step] This generates the entire position space path

Notice that the velocty dxa\gram isisymmetnc about the line determined by 7
The above algorithm (ranslates this fact tnio a symmetry of the position space orbit
Starting at the nearest point o the sun, construct the orblt in the forward direction for a
while, along AVI for Aﬂi. then along '\vz for Aﬁz. and so on  Now go back to the
starting pmﬁt and run the algorithm back\yards with the same sequence of Af's Since the
velocily diagram Is symmelric we generale tft\e same small segments of orbit, except that they

have been. flpped aboul the line perpendycular toZ Therefore the entire orbit is
t

symmetric aboust this ine 4 N !

\
\‘ -

\

t

8 Summary

We have so far obtalned the following ln\‘ormatlon from the velocity diagram.,

I The radlus of the velocity circle dete\mlnes the orbit's angular momentum:

\

u=K/L n
\

a 2 The cenier of the velocity circle determihes the orientation of the orbit 63
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I Perturbahons N .-

S The Perturbation Formula, Radial T hrust
It 15 In the study of perturbations, or how orbits change under small kicks other
than those given by the sun, that our use of velotity diagrams really pays off. It pays off

for a very good reason, which we mentioned in the introduction as a qualitative form of
¥

Newton’s Second Law of Motion °
¢ Force acts on the paths of particles by changing velocity and ;wr
positien
If we fall to take account of this fact we may be faced with situations that appear
counter intuitive  For example, suppose a spaceship in a clrcular orbit around a planet

applies a small outward thrust (Figure ila)~

How will the orbit change? “Intuilion” may suggest that the orbit will elongate in the

direction of the thrust, something like Figure 1lb In fact, the orbit will elongate, but in a

direction perpendicular to the kick as In Figure lic

A To understand this we consider how the kick changes the velocity diagram The

/

spaceship started in a circular QLYS whose veloity diagram is centered on the origin
Since force affects velocity and not position, it 15 reasonable (and we shall show below) that

the effect of the kick 1n velocity space reaily ts just to move the velocity circle in the

»

direction of the kick (Figure 12} The corresponding change in the position space orbit is
[ Y
the "counter-intusttve” effect described above
Qur strategy for studying perturbations will be to see how kicks change the

- i)—
ke '



Figure 11

W11l the outward kick on orbit {a) produce /{b) or (c)?

’

-

-
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Figure 12

POSITION AFTER

VELOCITY AFTER

The perturbation Haduced by an outward kick.
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—

velocity diagram  More precisely, we know Lhat the shape and orientation of the orbit 1s

determined by Lf, tHe 7 vector times the angular momenturn, so we want to find the change
- Y

in L2, A(L7), produced by an arbutrary kick

- EY -
* The basic velocity space equation, ¥ =3 + T, gives LZ = LV - LG Since G has

1
length K/L we have LU - K3, where 3 Is a vector of unit length whose direction is
determined solely by the object's position (It 15 perpendicula/éo the radial vector 7) To
compute the effect of a kick A% on L3 « LV - K2 notice that since kicks do not affect
posmon,? is unchanged K is also unchanged Therefore the changein L7 Is the same as
the change in L7, and the first-order approximation to the change in a product of
changing quantities gives

-

Perturbatton Formula A(LT) = VAL + LAV )
4 t

We can use the Perturbation Formula to tidy up our discussion of the “radlal
thrust problem",(l’tgure M) Since AV Is in the radial direction, the angular momentum
does not change (AL = 0), so the formuta implies A(LT) = LA'\?;. This means that the
velocity diagram changes‘ from a Z vector of zero to a T vector in the directlon of AY
(Figure 12)
Intuitively, the vcloc;ty’clrcle is "pushed” in the direction of the kick Note that an inward

kick at the bottem of the position space orbit would have the same effect
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Frgure 13: The perturbation 1nduced by a tangential kick.
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10 Tangential Thrust, Solar Wind, (2 | g
¥
- T In this section we apply the Perturbation Formula to some other orbit problems

/ Tangenttal Thrust Suppose again that a rocket starts 1n a aircular orbit, but this

]

’

*._time provides a tangential kick (Figure 13) To determine A(L1) = '\'}EL . LA:# we note that

" VALisan impulse in the direction of AV since AL Is positive and ¥ is parallel to AV

Then the newly created 2 vector must be in the dlre;:gxon of the impulse {Figure 13) Th.e

eiongat:ofn In position space 15 again perpendicular to the kick .
The Solar Wind® Assume the- rocket 1s affe;:ted not only by the planet's gravaty

but also by a small constant force (Luehrmmann's “solar wind”) If the perturbing force 13

small compared to gravily, each revolution of the rocket will be nearly an ellipse. We can

therefore think of Lhe orbil as an ellipse which varies througyume Fo compute how the

ellipse changes we view Lhe wind as providing impulses all along the orbit {(Figure i4) and

sum A(L?) = VAL + LAV over one revolutic‘m ‘

- M =%
( The LAV contribution Is a net change in the direction of 4v To compute VAL

r
» we notice that AL is positve on the bottom half of the Orglt and negative on the top half

as showh in Figure I5b We can sum the VAL by exploiting the symmetry of the orbit
The vertical components of the VAL's on the left cancel the vertical components of the
Au, a

VAL's on the right, leaving only a horizontal component in the direction of AV (Figure
1%) This adds with LAY to produce a 7 vector In the direction of the wind Intuitively,

the velocity circle gets “blown™ in the direction of the wind The orbit elongates

perpendicular to the wind as in Figure 16
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Figure 14  The solar wind.
/

A

e




H -~

-

—— ——

VAL

Figure 5. The vectors ¥V (a) and VAL (b) fqr the solar wind. . In {c)

we see that 1':he vertical components of VAL on the left

-

cancel the vertical components on the right
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Fiqure 16. Position space change in the orbit under the solar wind.
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Since the wind does not affect the symmetry of the orbit about the vertical axis we can
apply the same analysis as above to show that the LT vector continues Increasing in the
direction of the wind From this we conclude that the orbit becomes more and more
eccentric while the cirecuon of T remains constant, and the orbit continues to eiongate
perpendicular to the wind

The orbit becomes closer and closer to a straight line, and 1t eventually reaches a
point where the “smali” wind can havirge qualitative effects over a himescale of less than
one revolution (the orbit in fact reverses direction), and our method of averaging over an
enttre revolution becomes inappropriate

The r{2°¢) o F/)e!d If €15 a small constant (we will take 1t to be positive), we

f2-o!)

can treat the central force field of magnitude 1™/ as a perturbation of the 2 field The

perturbing force 15 some force (positive or hégative) in the radial direction To understand

L

how this perturbation affects the orbu, we make the important observation that the shape

of a r'2

or 17(2+6) orbit does not depend on the scale which we use to measure radius
Therefore we can determine shape by using any scale which makes 1t convenient to
compute the eff:eu of the peiturbatiun Fui the urbit shown in Figure 17, we scale to make
the distance OP equal to one  Since ifr2 < 1@ for r < L and 1r2 > 1/r%*9 for r > [ the
perturbing force 1s as shown

For this perturbation the kicks are radial, so L 1s constant  This m.eans A(LY) -

LAZ, but from the perturbation formula, AL = 0 implies A(L7) - LAY Hence AT« A7

Now we can sum 87 -A¢ over an entire orbit  The left-right symmetry of the orbit and

perturbing force means that the sum of hotizontal components of the kicks must cancel,

34
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figure 17: Orbrt with perturbing force indicated for r '(2“').
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r ~

and the ng' A7 downward, thal i, peipendicular (o the original 7 Subseque‘lﬁ's wili be

. . A - *
perpentseular to the current T and this resukts primarily 10 a rotation of z, not a change in

//-H‘ length (Figure 18) The "major axis” of the position space orbit, by the consequences we

derived fro%orrelauon of Angle, must follow this counter-clockwise totation  Though

Y
the orbgt r;:taqns 1ts shape L7 precesses (Figure 19) '
- . o
Y Warning It should be remarked that in Phe preceding two examples we looked at
™,
-,

e -
the F vectors as representing 4V for the perturbation formula  Of course we should have

> e a
used FAL, but, because & the symmetry involved, the At factor cap be ignored in those Hp
"“Q\. ,
cases In more complicated siuations, though, this does become an 1ssue  For example, we

-
~

invite the reader to use the techniques uf this seclion to tieat the ¢ rturbation snduced by
L

an oblatesun

. C} V. Andlyhe Results

il The Orbit ts a Conte Section

"

An ob jection that Is sure to occur to some of our readers goes something like this
L]

"All these intuilive methods are fine, but if you want useful quanttative inforimation you

LY

have to return to the standard differenual equations you've been trying to get along
. R < LY

without” i
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S

! Of course there are orbit problems our simple methods won't handle As for the

standard results, however, we are able to derive the orbatal equation directly from our

. velocity d:agramf.mng no mare than trigonometry.
&
‘ -
. The orbut is describr®d in polar coordinates by the equation
re L
u -2 cosf

-
The proof 15 2 natural correlation of the basic quantities, rv,0,2and L using

o
e
the definition of angular momenlum At a point in the orbil when the § vector and the 7

vecior differ In direction by an angle & we construct the angular momentum iriangle (see

appendix)

<7 -
The area of the triangie OAB in Figure 20 is tﬂdeﬂnltlon LI2 If his the height

of the triangle tien > .

1
~L= —rh ’
2 2

Since u and r are perpendicular, the height of the triangle is given by h = u - z cos 8. ‘
‘ Therefore
Lathar(u-zcosf)

A >
Here 6 represents the angle in wlocuyr:pccc belween { and the fixed vecjor T Correlation

of Angles implies that 8 also measures tshe angle in position space from Ttoa fixed Iector
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a“

perpendicular toZ Thezefore r and 8 are polar coordinates in position space

The above equation describes 2 conic section When the origin of velocty space
lies within the circle, u>z and the orbit 15 an elipse  'When the origin Is outside the circle, u
< 2 and the orbit 15 hyperbolic \.{Vhen the circle passes tfirough the origin, u = z and the

orbit 1s parabohic (Figure 21}

Writing th’e eguation tn the form
9 L L/
/4 k
1_(%)‘:059}: ! _(LX) cos

. Lz

we get the “standard form™ for a conic section and see that  / K 1s the eccentricity, and

L2/K 15 the radius of the orbiz when the eccectricity 1s zero

X

12 Conservation of Energy

Energy conservafion does not agise naturally using this geometri¢c approach

although we ¢can obtain the result as a simptle application

Apply the law of cosines to the velocfty dlagram in Figure 22 to get




Figure 22: v

2

Cy

<t

z

2

+ u2 - 2uz cosd.
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2 _ 2 rI
v — 2 *+ 4w =2uz cosb

L
SttutINg z cosd = u - T {from Section i1} we obtain

2 _ 2 2
\'4 = Z —u+2uL
r
and hen<e (since u = & /L)
' )
2
\'4 K - 22—- l.J2
2 r 2
z%—u?

Since z and u are constant for the orbit, o Is 2 constant, i1 total energy, E It is

interesting to note that when the planet crasses the seml-minc” axis (¥ perpendicular 10 V) T,
2

N 2.,2.22 v

Z, and v form a right triangle with vo=u®-27, hence the kinelic energy 2 s exactly the

negative of the total energy there

13 Kepler's Thtrd Law

We can use the relation of angular momentum to area swept out, 2A=Lt. to
compute the period of the planet'sf revolution  In one period the planet sweeps out the
entire area of ity eliiptical orbit  The area of an ellipse of seml-major axls a2 and

2 /
eccentricity e Is glven by A-r @ V1-¢° For the orbit we have

4
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1
; i
a = 3 (rmm+ I'max) = — (._.L_.. + __L__)

n

The eicentritity 15 e = 2fu, 350 1 -e? v 2* = l K T

f
j Then the fleriod 18 determined by

. LT= 2-a2{1—e?

1

or
3 N

_ 2-3/2\Jk — 2 33/2

) Lu Jk -

In terms of quanti'ies appearing 1n the veloci'y diagram we gel
|

7= 27K . ’ 2K 7
(u2-22)% (-2€6)% .

{7

14 Open Qrbm -

Rather than treat the hyperbolic case 1n detas), we leave the reader to venify the

following

| For an open orbit, the arc of the velouty circle which is actually traversed is the
part shown below, bounded by the tangents to the crcle through the origin of velocity

space Velouty space geometry gives the correlation of cnergy with hmiting velocity, v

l 1,
ERIC A
= s . -




Figure 23  The velocity dragran form an open orbit
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Figure 24. Deflection angle for an open orbit.
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2202 R[2E {Figure 23}

2 The deflection angle {angle between the two asymptotes of the hyperbola) can
be,easily found as a function of energy and angular momentum tan —i— --L_ﬁ_‘iE (Figure
K

24) ’

15 Suggesttons for Further Research

We have by no means exhausted the study of the geometry of orbits in this
paper The geometry of orbits, particularly the perturbauion lheorj, Is a rich source of
problems, even of mini-research projecls of ihe lype described by Luehrmann®. Below we
make some suggestions for problems and St:ld)' topics
An (nstrutive paradox The Galilean iransformalion requires the rejation between velocities
measured In two different frames of refrence moving with relative veloity '\'}0 tobe V' =V
‘_:0 This 1t is a simple matter to move into 4 frame with relative velocity 2 and transform
the? vector for an elliptical orbit to 0 Why then does one not observe a clrcular/ orbit tn
the new frame? In partcular, whal fails in the algoiithm of Section 8 which does generate
a circle in position space given a circle centered about the orlgin in velocity space?

An Atd to Astrogatton? Suppose we had to pilol a spaceshlp in a gravilational field (such as

simulated in computer “space war games) Would a velocity dlag.ram be a useful addition

to our Instrument panel? Fou example, to change {rom an elliptical orbit to a clrcular orbit

)
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we need only comsult the velocly diagram and apply a force to cancel the'Z vector. On the
other hand, lots of information Is lacking if we use only the velocity picture Ingérceptlné
another spaceship is a tricky problem involving timing (Although merely matching its
orbit is easy) What other instruments should supplement or possibly replace a velocity
diagram?

Geometry of the harmonw osctllator A 1undamental geometric property of solutions to the
Ji:? differential equation is that they have a vector constant of motion (f,or the maximum

veloaity, or the Runge-Lenz vector are all possible choices for this constant) The two

_ dimensional harmonic oscillalor with equal mode frequencies has a similar structure.

Solutions have an obvious axis which may also be assigned a magnltu'de in any number of
ways  Can one develop a useful velocity space geometry for that system? Can one treat
simple pe‘rturbauons, as with orbits? - )

More Solar Wind A further discussion of the solar wind phenomenon could make use of
the fact that the force field is conservatlve and therefore Lhe energy of the orbit is constant
This implies that the angular momentum decreases as the orbit becomes more eccentric.
Thus the velocity circle is not only “blown by Lthe wind™ but also the radius becomes‘larger
and finally infinite when the orbit degenerates to a line, Show that thg changing vek‘xlty
circle always passes through two fixed points in the plane (Figure 25)

~

Our method of averaging over enure orbits is only a first-order perturbation

theory whereas the formula

a2y ) 4 Lo b
ds ds ds

e
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Figure 25: Changing velocity circle under solar wind,
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-

'

(s 15 any parameter) 15 exact One would like to have a treatment of the solar wind which R,
, works niear the turnaround points, zfu approaching |
. Finally, is there a complete perturbation theory based on the geometry of orbits?

' ¥
In particular how can one treat perturbations out of the plane of the orbit?
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: ' b Appendix: Angular Momentun and Kepler's Second Law .
- 5 . .
Throughout this paper we have been assuming Kepler's Second Law  There is a
o . L] ’
\"“slmple geometric preof of this which we place here in an appendix because 1t did not g
‘ ¢ . .
" . originate with us it can be found in Newton's Principial 1
éﬂ * 1 - ® - Zf
) -

The ahgular momentum, which we denote by L, is defined to be twice the area of
%the triangle determined by~the velouly vector and the radius vector from the sun to the ﬁ_
p[anvet As shown below L is constant if the velocity doesn’t change -~ the triangles haye

. = f ' *

équal areas since they have equal bases (the length of V) and equal heights (Figuee Al).
I'J ’ - ~

More remarkably,’L remains constant if we change the veloctty by applying any hick tn the

radial directton (towards or away from the.sun) The effect of a kick &% on the anguI;r

-
[

momentum triangle is illustrated below (Figure A2) The kick changese to V', but triangles

OPQ and OPQ' have the same base, OP, and he same height {h in the dlagram&mce or
F . » .

' ‘ Yy @
and QQ' aie parallel Therefore OPQ and OPQ_‘ have the same area, and angular

: |4 :

2. momentum s unchanged

£

. 4
A planet moving about the sun, subject to po force but the sun’s gravitation, has

-

every kick applied 4n the radial direcion None of 1hes§ change the angular momentum,

. whiche s therefore an invauiant of the planel’s bl To find a geometric interpretation of

5 - .
.thns fact, ” examune the orbit al time intervais 41 small enough thai the velocity does not

'3 , - ! ~ / ,
change much over cach interval n each interval (he radius vector sweeps out a small

" trlangle . The area of one of these small triangles 15 ) > .

[ b » ‘ !
ﬁ!;-l
4




L=vh {/

h=HEIGHT OF
BOTH TRIANGLES

or




Figure AZ2:
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Area OPQ = Area OPQ'
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}
(base) x (height) = 1 1
; -— L
} /n;D 5 ) ,‘)-v:.‘.txh.-.-sz-‘rt
s‘(h ast

fgure Al) The total area swept out over some long time

x

T -A(| . A[2 .

15 the sum of the areas of the small triangles

1 )
Az —rat. +— LA, +
2L vtz 2
- 1
= -;—L(At‘-f.ﬁtz-r- )

1 . ! ‘
—_— LT .
2

This gives Kepler's Second Law

For a body moving 1n a radial force field, the radial vedor swERRs
L]

Pl

out equal areas 1n equal umes.
) L g + N
~ It 15 unfortunate that this proof s not more often presented Jn p

n

hlslcs courses (although

—

Feynman 5 duscusses 1t and there i3 2 movie ?

demonstrating this argument)
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