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UNDERSTANDING UNDERSTANDING MATHEMATICS

- . : '
by
EDWINA RISSLAND MICHENER
-~
. Abstract

In this paper we look at some of the ingredients and processes involved in the
understandjng of mathematics We analyze elements of mathematical knowledge,
organize thein in a cohérent way and take note of certain classes of items that share
notewarthy roles in understanding  We thus build a conceptual.-framework in which to
talk about mathematical knowiedge We then use this representation to describe the
acquisition of understanding We also report on classroom experience with these itleas

The work reported 1n this paper was supporled sn part by the National Science Foundation
{under granlt number 77 |9083SED) and conducied al the Artificigl Inteligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts The views and
conclusions conlained in Lthis paper are Lhuse of Lhe aulthor and should nol be interpreted as
necessarily represenling the official poiicies, either expressed or implied, of the National
Science Foundation or the United States Government
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E R Muchener 1 Understanding Understanding #athematics

1. Introduction

When a mathematician says he understands a mathematical theory, he possesses much more
knowledge than that which. concerns the deductive aspects of theorems and preofs He
knows about examples and heurlstlcs and how they are related He has a sense of what to
ute and when to use it, and what 13 worth remembering He has an intuttive feeling for the
subject, how 1t hangs together, and how 1t relates to other theories He knows how not to be
swamped by details, but also to reference them when he needs them

This paper is concerned with this important extra-logical knowledge that Is often outside of
traditional discussions in mathematics The goal s to develop a conceptual framework in
which to talk about mathematical knowledge and to understand the undeistanding of
mathematics n order to improve how to féarn, teach, and do mathemajics )

Poiya once remarked that, "A well-stocked and well-organized body of knowledge i1s an asset
to the problem solver Good organization which renders the knowledge readily available
may be even more important than the extent of the knowledge ™ (I8, p 85) The same 15 true
for aspects of mathematics other than problem solving  Thus, ouy first task 15 to seek
answers to the questtons “What are the ingredients of mathematical knowledge, th pes
and their functions?”, "How can this knowledge b organized and represented?” '

r

2. An Epistemology of Mathematical Knowledge

T his section presents a conceptual framework for mathematical knowledge that is based on
the role of various kinds of knowledge in the understanding of mathemalics 1n general and
of mathematical theories 1n particular  This epistemology 15 based on material found in
texthooks, lecture notes, discussions, and prolocols of neophyte and expert mathematicians, it
reflects the experience of teachers, students and practitioners of mathematics Where there
were alternatives for classifying and representing knowledgé, the one choosen was that that
best fit the author's experiences n learning and (n helping students to learn mathematics
T he reader Js cautipned that this epistemology is not complete and exhaustive, that 1s, it does
not represent all aspects of mathematical knowledge '

v “ ~

When one analyzes the knowledge that mathematicians - students and professionals  use
when they do and explain mathematics, 1t becomes clear that there are several kinds of
mathematical knowledge (1) clusters of strongly bound pieces of informatlon such as the
stat of a theorem, its name. ils proofls], an evaluation of lts lmportance which can be
taken together to comprise a single item, such as a theorem, and (2) relations between the
items such as the logical connections between theorems .

N a
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2.1 Exam;?les, Results and Concepts
We can distipguish three major categories of items results, which contain the tuadnmnal
logical-dedyltive elements of mathemalics, 1€, theorems, examples. which contain iilustrative -
matersal, and conceprs which contain mathematical definitions and heuristic notions and

advice .

Resulis can be orgamzed by the relation of logical support in which A -> B means that

result A s used to prove result B For instance in the theory of unique factorization, (8],

before one can prove that every intefer can be uniquely faclored, one must first prove .
supporting results on the Euclidean algorithm and the grealest common divisor  Results -

together with the relations of lozical support comprise Results spage . .
!

' *

The collection of examples also has a natural relation Examples can be or’gamzm‘l by the
relation of constructtona! deyivation in which A --> B means that example A 1s ‘used to
construct example B For instance, the Cantor set s constructed from the unit interval hy
the process of “deleting middle thirds™ (7 22], and thus, unut interval --> Cantor set

f) I the urat tnirrug!

-

deftwe sequence of sets by deleting muddle thirds

° o ! ¢ »

O () Y_ () __1

0.0 )00 .00 - '

fernateng set 15 the Cantor 12t

Cantor funcuuns andMhgher dimensional Cantor sels can also be constiucted from the unit -
interval and the Cantor set (4, 7, 22) .

The following cluster of examples 1s famihiar to everyone’s anithmelic experience  One starts
with thesnatural numbers N, and then bAiilds the integers Z by inlroduaing non positive
integers, say. by doing subtractions Quotients then lead to the rational numbers Q, from
which one can build the real numbers R, by filing in the "gaps™ If one gors on to study
elementary number Lheory, one (hen builds more examples, such as the Gauswuan integers
Z{1)..the field of integers modulo aﬁmme ZipZ. and the p adic numbers Q. These

. P
examples can be organized according Y thetr constructional relations

i,
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T he p-adic numbers have arrows coming from both Q and Z/pZ since either can be used to
construct Qp { can be constructed from Q by completion of Cauchy sequences with

respect to a metric pyst hike the construction of the reals R from Q, or from Z/pZ by an
algebraic construction involving "inverse imits™ [2]) The point is that there ake two’
constructional routes leading to Qp and thus a directed graph, and not simply a tree, Is

needed to show the relations .
Examples have some general properties worth noting (I) pictures are an Integral part of
many examples, 42) constructions are ltke procedures, (3) the pictures need not be static. in
fact those shown for the Canior set are merely a few frames from a sequence

T he category of concepls includes both formal and Informal 1deas, that is, definstions and
heuristics  Definitions could alternatively be included in Results-space since they are the
logical atoms Trom which the proofs are deduced This approach was not adopted, rather,
they are inciuded in Congepts-space to highlight the Interdependence of ideas and keep
track of conceptual dependenues as one's network of ideas’ grows Informal Ideas, eg, .
"mega-principles” and "counter-principles” (see Section 23), often evolve from more formal
ones, e g ~definitions, under the forces of such “genetic” processes [5, 14T as paraphrase (12},
analogy, generalization, specialization [17), and “monster-barring” {10} .

_ Concepts can be organited by Lhe pedagogufal judgement that concept A should be known
about before concept B, which we shall call the relallon of bedagogical ordering Sometimes
it simply reflects the facj that concept A enters into the definition of concept B, at other
tires, 1t reflects expository. tastesﬁ For instance in sludying arithmetjc properties of the
integers, one needs to know about divsjon before being able to talk about primes, once one
knows about primes, oné can go on to discuss prime factorizations .

A concept carr b expressed either as a declarative statement  the familiar formulation of

most mathematijal definitions -~ or as a procedure or the result of a procedure Some

concepts are mos{ naturaily expressed in declaiative form, and others, such as the Gram

Schmude process, {Gaussian elimination, Newton's method, aie |most naturally expressed as

procedures Somfe concepts cin be expressed in eigher way, such as “eigenvalue” which can
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¢ =0 The concept of "square root of a number” has aspects involving both declarative and
procedural knowledge 1t can be thought of either as an "x" whose square is that number, or
as the outcome of an algorithm hke that taught in high school _ ‘
T hus, mathematical knowledge can ke structured by three major types of item/relation pairs
-+ examplesiconstructional derivation, resultsilogical support, and conceptsipedagogical
ordering -- which establish three representation spaces for a mathemitlcal theory Examples
space, Results-space and Cencepts space They are best shown as dlrected graphs where the

direction matches the predecessor-sutcessor ordering inherent in the relations,
* a

2.2 Dual Relations! ' v :,{/

W hen consnd‘enng a theory item, ooe can decide whether to classify 1t as h result, example or
concept and then fit 1t Into the appropriate representation space by determining its
predecessors and successors One can also consider items outside of the fepresentation space

. with which 1t 15 associated  Dual relations concern these inter-space telations. They are
introduced to capture both the way in which one’s attention moves easily between the Lhree
types of items, and the naturainess with which we assotiate items thit often seem to be —
distantly r>lated in the senses defined by the in-space refations

Specifically. dual ttems are defined a$ follows

4 LI IS

T he dual ttems of an example are the ingredient concepts and resiyty needed to
discuss or construct if, and the’concepts and results motivated by i!’g

The dual wems of a result consist of the examples motivating i, the concepts
needed to state and prove it, and the concepts and examples that are derived

Sfrom it e )
\

T he dual ttrms of a concept are the examples monvating il, the resulls laying

the groundwork for i, and Me examplys wWustrating it and the results proving

things about 1! /

Thus the dual of an item contains sets of the other two kinds of items
dual{an example) = {results}, {concepts}
“dual(a result) = {examples}, {concepts)

. dual{a contept) = {examples), {results}
A
| S *’.J
The t1ar of the 2 ord dual here has no 1&Chnical relatian to Ha uge In the theory of vector apaces glihouph there 12
- metapharical ¢onnection . 1
t
bt
Q ' !
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The subset or'examples in the dual set of an item is called the examples-dual, the subset of
results. thé results-dual, and the subset of concepts, the conce pts-dual

The dudl of an item can alternatively be sub-divided Into subsets containing items that
precede the item in the understanding or development of a theory, the pre dual, those that,
come after Ahe item, the post-dual, and those that have neither a Strong “pre” nor “post”
flavor To use Polya’s words, the pre-dual items are “suggestive”, and the post dual,
“supportive” of an ttem (I7. pp 4-5] For Instance, concepts needed to prove a theorem
would be included in the pre-concepts-dual of the result

Two ttems are said to be related na the dual idea \f they share common dual items The
mathematical world is full of dual relations the examples of the real numbers and the p
adic numbers are related via the concept of completion, the concepts of measure and length
via the example of an interval {ab), Pythagorass Thgorem and the Law of Cosines. via an
example of a right triangle, concepts of continuity and differenuability, via the example of
the absolute value funcuon concepts of countability and measure zero ate rel>ted via the
Cantor set, concepts ‘of fixed ponts and the power of an operation, via the evample of

cos™x L

One can define various equtvalence relations that are based upon the dual idea For
instance, two items are dual equivalent if their duals are equal Two dual equivalent results
would share 1dentical sets of concepts and examples, for Instance Dual equivalent ltems are

~ very similar and in many senses are the Ysame™ and should be identified

Relation via the dual idea Is extrémely useful because jt describes how we associate
knowledg? that is not necessarily closely related in the sense of the three relations operating |
within the *hree reprelentation spaces It also ties the spaces back together

2.3 Epistemological Classes .

Not all examples, results and concepts are equally important or serve the same function In
one's understanding We group those that play noteworthy roles in understanding into
epustemologieal classes These classes are not necessanly‘dns}olnt since an itern may play more
than one role <
For instance, when learning a theory for the first time, one can grasp certain perspicuous
examples immediately and easily These starf up examples help one get started in 2 new
subject by motivating basic definitigns and resolts, and setting up useful intuitions

The “circles and hines” example is such a start-up cxamplc from differential geometry The
following is a paraphrase of Spivak's use of it [24] to introduce the theory of tuivature of
plane curves
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We begin by considering eireles and lines  We can agree that circles curve and thal#mes
don't Furthcrmore, gmall circles “curve more™ than Jarge cireles  (This 15 consistent .
with our observations about lines, which arc a limiting case) . Thus we note that .
curvature i1z inversely related to the radius  So for a circle we defline the curvature to be

the reciprocal of its radius Now what about more general plane curves? Well, we {ift

our circle-hne defimition to the general case by fitting circles onto the curves

This simple example suggests how one can approach the study of curvature, when -
formalized, Lhis example becomes the osculating cucle definition of curvature U provides a
strong pictorial representation for curvature {cucles) and a handle (the osculating ciicle) for
calculating 1t

v .
This example exhibits many properties that a siarl-up example should have (I) i\ motivates
fundamental concepts. (2) it can be understood by itself, (3) it is projective. i€, its specific
situation can be hifted to the general case. and (4) it provides a simple and suggestive
picture

-

&

Reference examples are another important class of examples They are examples that one
refers to over and over again They ate basi. widely applicable and provide a common
point of contact through which’many rfults and concepts are linked together N

Reference examples are used as standard cases to check out one's understanding For

instance, no matter where one is in the study of real analysis, one invallably refers to R? to
see how Lhings really work [n eleméntary number theory as well as algebraic number
theory, one always looks at the integers Z In linear algebra, a vety useful reference example
is what Michener [I1] calls the Basic 16, 1t 15 Lhe collection of the sixteen 2X2 matrices whose
entries are 0's and I's  This collection contains €xamples illustrating many oftthe “good™ as
well as the "bad” things that occur In eigenanalyms, 1t ts also a rich source for counter
examples These matrices seem to be ubiquitous throughout mathematics

. Model examples are paradigmatic, generic examples They suggest and summarize
expectations and deiaull assumptions about.results and concepts  They are indicative of the

. { )

"
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general case

For 1nstance, 1n the study of real-valued functions, the following diagrams indicate the
general kind of behavior a function has at a point where it has a simple discontinuity The
diagram on the left represents a function with an “aberration” discohtinuity at x, 1e, the
right and left hand limits exist and are the same, but the function has the "wrong” value at
x.7and the diagram on the right represents a "jump” discontinuity, ie, right and left limits

exist but are not the same "

et —

Observe that the specific measurements in these pictures are unimportant. what counts 13
that they capture the essence of the situation )
' "

Because of their géneric nature, model examples are often closely related to without loss of
generality arguments  For instance, the model examples for conic sections are usually
pictured as havm'g their major axes aligned with the x- and y-axes (see any calculus book,
eg, (26)), these diagrams are completely general because one can always use the coordinate
transformations of transiation and rotation to change variables in order that the axes are 30
algned

Model examples are flexible and manipulatable structures which usually must be fine-tuned
to meet the specifics of a problem For Instance, to capture the fact that a function has a
"big” jump discontinuity, the lines in the above example could be made very far apart
Counter-examples are famitiar to everyone as examples that show a staterment is not true
They sharpen distnctions between concepts ‘

-~
-

Some counter-example are referenced frequently For Instance, the Cantor set is used
repeatedly in the study of measure and integration as a counter-example In connection with
items whose concepts-dual includes the concept of "measure zero” A specific use 15 with the
result “countable sets have measure zero” whose converse 1 refuted by the Cantor set which
15 an example of an uncountable set that has measure zero (7. 21, 22) The factorization of 2
as (1-1)(1+1) 15 often used as a counter-example to show that not all rational primes (ie,
numbers which are primes in Z) are prime in the setting of the Gaussian Integers Z()

Other counter-examples are used once to estabhsh a potnt and then are abandoned Such a
hapax legomenon (3} has a limited use in the theory and memoty of it is often very short-
Hved, perhaps because 1t has so few connections to the rest of one’s knowledge

it
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In summary. major epistemological classes of Examples-space are start up examples,
reference examples, medel examples, and counter-examples

Concepts-space has two major epistemological classes in addition to the obviously tmportant
class of definitions T hese other classes contain the heuristic advice that we give to ourselves

and to other's, while working 1n a theory z mega-principles and counter principles

Mega principles (MP's) are kernels of wisdom tn the form of powerful suggestions ot
generally valid statements For instance, the' MP  Look at extreme pornts is a very powerful
heuristic 1n calculus and apalysis  Symmetric matries are nuce 1s 3 mega prinaple from
linear algebra, it s a synopsis of many results that show symmetric matrices are well
behaved, ey, 'diagonalizable and numenically stable (13, 25) Try the 2X2 case 15 powerful
advice in the study of matrices Another useful suggestion in this and other domains is the
MP to T'ry special cases tnvolving only 0's and ['s
4
Rsyden‘s analysis book presents "Littiewood's Three Principles™ which are striking examples
of mega-principles, Royden quotes from Littlewood (21, Chapter 3, Section 6)
¢

"There are three prineiples, roughly exprescible in the following terme Fvery
(measurable) set 15 nearly a imte union of inpervals; every (measurabie)
funetion 15 nearly conbinuons, every convergent sequence of (mearurable)
functions 1s nearly ulormly convergent Most of {hc results are farly
inturtyve applications of thece deas  If one of the pripaiples would be the:
obvious means to setlle the problem if 1t were “quite’ true, 1l 18 natural to ack
if the “nearly’ 1s nrar enoupgh, and {or a problem that is actually rolvable 1t
grocrally 15" “ ‘

In summary some MP.s provide imperaliyes or advice while others give an idea of whal to
expect Mega-principles express broad "flavors” of a Lheory thal are often remembered long
after the detalls have been forgotten Like model examples, they provide broad, suggestive,
initial descriptions apd expertations

v
" —

Counter—prmaple‘.{ij'_s) alert one to possible sources of blundeis or troubles For Insiance,
everyone knows about the CP Watch out for divison by 0 In hinear algebra and numenical
analysis, the counter-principle Multiple roots are troublesome warns of poienlial Liouble when
multiple roots occur, e g, 1n diagonaljzing or numerical computations The CP from calculus

-~ when changing the varable of integration, don't forget to calculate the new\i!jferentla!
dv=v'(x)dx -- is a word of warming®familtar to all calculus students

- *

;
Polya 116) ana Schoenleld F2 ) deal with more reneral domain-independend tirateples whereas nui afiern a

v
with heartsiicy that arc rcter ant to a particndar domain alihough some might Indeed be u'clul inalarge) coniesy
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CP's are distillations of many results, counter-examples, and failed attempts Like counter-
examples they add focus and limits to one's intuittons They are often related to MP’s as
cavaets tg warn of misapplications of the MP  For instance, related to the MP(n=2) is the
CP that suggests being careful about jumping to (inductive) conclusions without checking
out the case of n=3 - .

;
* s

Results-space also has several epistemological classes

* Bassc results establish elementary but important properties of concepts and examples For

~ example, the result A 15 an egenvalue of the matres A (Le, AveXv) tff det{ AN1)=0 13 a result
basic to the study®ot eigenvalues It relates the procedural formulation of the eigenvalue
concept (solving the charactenstic equation) with the declarative (existential) formulation
Other basic resujts hnk concepts with examples, such as The outer measure of an interval ts
us length which links the concepts of measure and length via the reference example of an
tnterval as well as,{ilatmg the concept of measure to the interval example

" Q‘}ﬁ

K ey results establish fundarhental facts of a theory which are used repeatedly once they have

been proved For instance, the "Side-Angle-Side” t!;eorEm 1s a key result from plane

/geometry

Culminating results are the goal results towards which a theory drives The test of a
culmtnating result 15 to ask, "If this result Is omitted has the’ main point of the theory been
. missed?” If the answer is_yes, the result 1s a culminating result For example, the
Fundamental Theorem of Calculus is a culminating result from calculus  The Jordan
Normal Form Theorem, the Cauchy Integral Formula, the Riesz Representation Theoref,
and many other “name’ results are culminaung results of their theortes Many culminating
results are equtvalency or classification results that connect alternative descriptigns,
definitions and approaches, such as the theorem showing tha\ all real vector spaces of a
given dimension are isomorphic, or Wedderburn’s Theorem which gives a large humber of
different formulations of projective modutes [9]
Less important than basic, key and culminatng resuits are transitional and fecknical results
which provide togical st&pmgﬂtones and work out technical details for a theory
There are many analogies between the epnstemoi'ogncal classes model exampies, mega-’
principles, and culmmating results are all important items within their categories which are
" usually remembered for a long time, counter-examples and counter principles serve a
limiting function, bastc resuits and start-up examples provide easy starting points 'in a
, theory, reference examples and key results are important and frequently used

-

It should be remarked here that scattered th?ough‘out Polya's books (17, 18] are hints at some
P . of the elements of this epistemology For instance, in /nduction and Analagy (17), he mentions
three spectal kinds of examples --"extreme”, “leading”, and “representative” -- in several
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exercises p 93-25) The latter two are very similar to the s'tart-up_an_d mode! gxam'ples
discussed. s section In Mathematical Discovery, Polya speaks of the lmportanée of
certain “key” factx{l8, p 85) While he d/oes touch on some of the elements of this
ephstemology, he does so peripherally to his main points and does not pursue their analysis )
or use further .

[

’

Other authors also stngle out elements of an epistemology For instance, Rudin in” hiy classic’
anaitysis book Principles of Mathematical Aralysts uses four headings to organize the

presentation “definitions”, "theoremy’, "exatples”, and "discussions’ (22] Many authors

display some sort of concepts-graph to describe the organization of material, eg . {21, p®)

- -

- ' . & .
2.4 A Repxagentation Framework , '
- ) 7 .

In addition to knowledge of how an item relates to other ttems, we also have the clusters of

qlformauon which comprise the jtem itself  All three of our ltem types -- resuits, examples,

and concepts -- contain Similar pkces of information For instance, each has a sefting which

1s the mathematical context in which the item is known Each can have a dec.aralive aspect .

or statement for a concept. a lormal matinatical definttion. for a result, a (if then)

statement, for an example, a caption. describing what it shows Each can have a procedural

aspect for a concept, a precedural formulation, for a result, 2 proof, for an example. 2

construction An item may have both procedural and deciarative aspects (e g, the eigenvalue

concept), or just one (€g . the Gram-$chmidt process), It may have'more than one of either
¢ or both aspects (eg. a result with severalgroofs) In addition, each item has certain other
features such as a worth rating. eg . the "Michelin” rating (1] which indicates Importance by
asssignment of from zero to fout .S . )y - %
We ue these clu;és of idformation together in our represeniation by amalgamaling them
inta one data_structure which has slots for the varjous component aspects and attributes  All
types can be represented by the same fundamentalaframework This
resentation fragework s then modified shightly for the three jtem classes of our
gptstemology -- examples results, concepts -- {0 reflect information and features special to
thern For anstance In the case of results, the represenlation includes pointers o the converse

e .
or more general.-or Stronger results or pointers: to counter-examples where these are not
possible g - A ,
-‘
R .

* » .

-

1 -
nneﬂ)/ the ratinp scheme v # dor Interexting rewsltns warth notiKing s dar IMporiant revultn warth g Alop
0 * - ‘ ‘
ess for wery impartant sosbte worth & datour sese for cnvitemely Imponiant fesnbin worfth & parney  in
-

thomathy ex . -

-
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Figure | shows some of the representation frame for the Cantor set example Instead of
—_ peinters or ID's, we show the nam~ or the statement for item listed in the various pointer -

frelds .
,' . ‘ . - {
. Figure 1 !
- ’ v
1D E333 Cl ASS Reference, Counter-example RATING x x x  NAME Cantor Set
STMNT  SFTTING R ‘ _—

CAPTION The Cantor set 13 an example of a perfect, nowhere dcme el that has
mﬂtﬁre zero It thows that uncountable sets can have measure 0.

. DEMON-  AUTHOR sandard

STRA- MAIN-IDFA Delete “nuddle-thirds” .
*TION  CONSTRUCTION '
} 0 Start with the unit interval [0.1];
! From (0.1}, delete thé middle third (1/3.2/3),

2 .From the two remaining preces, [0, 1/3) & [2/3, 1), delete lhctr m!ddle thirds,
(79, 2/9 & (119, /D, ; r
3 From the four remaining pieces, delete the middle thirds; ,
N /M Nih step, delete from ecach of the ZN" preces 1ts middle third,
—~ The sum of the lengths of thie preces ramoved i 1;
what remains 1t called the Canior sel

PICTURE
i ¥
?\ )—_-"_ l
i —( )1
} ‘
b Limuttng set is Cantor sel
. , REMARKS Cé;uor zet 12 gaod for making things happen almost everywhere or almost nowhere.
LIFTINGS Eomlrucll'nn nf general Cantor 1els.
]
IN-SPACE POINTFRS ; - ‘
BACK untt interval /
FORWARD Cantor function, general Cantor sets, 2-dimensional Cantor set -~
DUAL-SPACE POINTFRS
CONCEPTS. countable, measure zero, closed, perfect, goometric u'riu
RESULTS "Perfect tots arn uncountable”, “Countable se1s have meaiure 0°
RIBLIOCRAPHIC RFFFRENCES
—~ Sec Gelbaum and Olmstead for details of genoral Cantor sets. . . J’
§ Sce Royden for Cantor funclions
PEDAGOGUES Rudin, Hoffman, Royden )

)
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@
Ta organize mathematicai knowledge by mians of our conceptual framework, we must make
several judgments For Instance. recall our arithmetic examples of Section 2 First, we must
choose the representation space for an item (eg. Q, the ritional numbers example, could
alternatively be classified as a definition), and second. the item must be tied into its chosen
space by determining its predecessors and successors (eg. Q ppints back to Z, and ahead to
R and Qp} Third, we must link an ttem to 1ts duai\nems (eg.Q canbe linked to concepts

of division, completeness, density, and cardinality. and to results on the srrationality of (2}"5.
and the Archimedian properties of the res! line) Fourth, we can sort the dual items into
pre- and post-duals While the specific representation we build reflects certain prrsonal,
pedagogfcal, historical and esthetic biases, the representation scheme is perfectly general

In summary, our conceptual framework for a mathematical theory includes
4

-
-

(1) Knowledge of the ttems themselves for each we know its statement, diagram,
proof, constructiommor procedural formulatiod, etc ;

(2) Knowledge of the individual representation spaces and their predecessor
successor relationships. :

(3) Knowledge of inter-space relatlon‘. such as the dual idea,

(4) Epistemological knowledge of the functional role of items in understanding,
such as start-up, reference examples, etc, .

Tha reader 1s reminded that this epistemology is neither exhaustive, exclusive nor stauc
Rather, 1t represe'nts some important aspects of mathematical knowledge which s a
constantly evolving structure One can view mathematical knowledge as a many faceted
polyhedron that can be. held in the hand. rolated, examined from many perspectives, and
sliced through along many different planes, our represenlation Lries to capture some of these
« cross-sectional views, such as its illustrative, pedagdgical and inferential aspects
Also, a particujar representation reflects Lhe state oi one'd knowledge base at a particular
moment 1n time As long as one keeps learning and thinking, this knowledge base will
change and adapt to reflect new knowledge and upderstanding  Knowledge 15 not frozen
While 1t may appear similar for long stretches of one's intellectual time, it §s not stattc
Points of great change or re-organization probably suggest that something important is
happening in one’s understanding  These aspects are worth looking at further

+

~

3. Undegstanding as an Active Process

»
Understanding gathematics 1s a very aclive process While at first glance It may not seem
so, especially in comparison with problem solving, it does involve significant cffoit on the

‘10
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‘3 )
part of the understander To understand a theory, one must-explore and manipulate it on (
many jevels, from many angies, with faahty and Spontaneity One must be able to travel

* freely through 1t, experiment with jts items, survey its overall mathematical topography, shift
the level of concern from detail to broad overview and vice versa, and be able to ask
questions Qae gains understanding by examining relevaht examptes. perturbing settings

~ and statements and fiddling around numerically and pictorially To discover what makes
an tndividuaj ttem or a whole theory really work. one must do quite a bit other than
passively walting for understanding to happen )

.
“Onc shoul try to undfrstag% c\:crﬂhmfz kolated [iacls by collating them
- with related facte, the newly diceovered thraugh its conpection with the
’ already acumMated, the unfamihar hv analogy with the accustomed, special
resslts through generalization general reenlte by means of suitable
spectahization, comples  atyations by dis sebing them anto ther contlituent
parte, and{do!auk by cdmprehending them within 2 total pieture”.  [20)

-

>Undemand|ng 1s a complementary prosess {0 problems solving  In many ways it is more
( difficult to describe than problem solving since, as Polya ponts out. it is a matter of “more
£=or less and not yes or no” [19] That s to say, dnderstanding has many levels and Is never
really totally finsshed  Actually, undesianding, in our sense of building up a knowledge
l base with all its lsnks and structures, can be taken together with problem solving expertise to

[ comprise 2 latger view of undergtanding .
There are many senses and degrees of unde¥standing Polya abstracts four “levels™ of
. ~ uoderstanding a “rule” from his readings of Spinoza [i8. p134] (I} "mechanicat” when one
has memorized the rule and ¢an apply it correctly, (2) “inductive™ when one has (ried 1t out
- in simple cases and 15 convinced that i works in these cases, (3) “rational” when one has
accepted a demonstration of it. and {4) "intuitive” when one is convinced of its truth beyond

a doubt § & ’

‘ , - , -«

L
. Poincare also has written sbout understanding  In particular, he points out the need for
going beyond the ratgnal level {15, p 240}

“What 15 11, 16 understand? To understand the demonstration of a theorem, is
, that to examine sucecsively ecach of the syllogieme comporing 1t and to”
akcertain 1tk correctness, ite conformity’ to the rules of the game? Likewise, to
* understand a defimtion, 18 this merely o recogmze that one already knows the .
meamng of all the terms employed 3

For kome, yes, when they have donc thus, they will say | underctand  For the

maprty, no ‘

Clearly then, a deep understanding of a theory involves more than knowing Just the detalls

‘

.
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of theorems and proofs, it goes beyond simple in space links  But what should we demand
for full understanding” And how should we go about achieving It?

Having deep understanding of 2 body of mathematics has been likened te knowing one’s

" way around a landscape Polya and Szego describe (201 -

"There s 2 similanty between kpawing one’s way about a town and madtening
a freld of knawledge, from any given pomt one should be ahle (o reach any
other point  One ik even better informed 1f one can immediately takethe most
»  convenrent and quekect path from the one pont o the other I ane 1x very
woll informed 1ndeed, one’ can even execute speeaal feats, for example, to carry :
out a ourney by sy:lf:nahtally avoiding ccrtamn paths which are cuttomary

There 1c an analogy betwcen the task of constructing 3 well-integrated body of -

)c(o-v!cdge from aequaintance with isolated truths and the building of a wall
/ou! of unhewn stoncs  One must* turn cach new nuight and cach new stone

aver, and aver, view it from all sides, attempt o Join gt on o the cdafrec at all , . -

posaible pointe. until the new finds 1tk synable place in the already extahhished.

m such & way that the areac of contact will be ar Jarge ac pocable and the ~

gapx as amall a< poscible, until the whole forms one firm strueture ™ .

Thus if understanding is a matier of "more or less”, then clearly deep understanding Is a
matter of “mote” A richness of knowledge 15 needed for deep understanding

31 Questions that Qrobe and Prompt Understanding

Despite the lack of widely used, well-defined stages and criteria for understanding, we sStould

not be detered from trying to explicate the understanding process In this seclion we olfer
some questions to help make the process and Jevels of undersianding more crisp and,
accessible -~ ‘ /

When one understands an individual resull, concept or example ilem, one is obviously In

command of much information aboul 1t The foiloping questions piobe one's undeisianding

of an tndividual 1tem in the context of a malhemalical theory Al the same time, they .
_represent a general sirategy for understanding Being able lo answer them is evidence of
understanding an item it a thorough way Being able to ask them indicates knowledge of

how to learn

The intent of Lhis series of questions is not only to make exphicit some of the ingredients and
processes necessary in the Lhe acquisition of undgrsianding. bul also o piesent them in such
a way that a student <an learn Aow to go about understanding Thus the goal is similar to
Polya's for probiem soiving {I6) for which hus hist of "How To Solve It Questions™ Is offered

Lol ]
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£

=
in the hope of aiding the problem solving process
r 4 ’
The questions are "
1 What 1s the statement of this item  The setting? {/‘

2 Do I understand the statement’ Should I review or examine the ingredient
concepts. especially 1he importgnt ones and those to which I have previously
not done justice’

3 Whatisa picture ordiagram for?thm item’
4 Am I reasonably comfortable with this itemn's immediate predecessors® Are
- there any predecessors on which I should bone up’ Or remember to come
' back to? ‘

5 Dol know any of du3l tfems for this stem, such as counter-examples,
model examples. reference examples, culminating results, basic results, etc?
Am I aware of the inportant'ones’ Should I perhise some.of the others’

] -

r\
6 Can I say what 1s the gist of this item? Of s statemgnt? Of its
demonstration?® A
-~ . & » .
’ B 7 What 15 1t good'for? Why should I bother with i What is its significance
. to the theory as a whole’
8 What is the main idea of its proof. constructlon or procedure? Are the
details important> If so, can I summarize them®
’.‘ L]
1’ 9 Is thére some way I can fiddle with this item? Perhaps check out a few
test cases’
10 What happens if I perturb 1ts statement® Does it generahize® Is it true in
other settings® Can it be strengthened by dropping some hypotheses or
adding soine conclusions If not, why not: can I cite a counter-example and
.can I pmpoaint what goes wrong? If so, 15 the new demonstration similar or
different From the original Is it much harder> Should I just be aware that .
it exists. and forget about the details until I need them? .
11 Can I see how this item fits in with the development of the theory as
developed jn the #pproath I am taking? What about other approaches® 1s '
—~ this tem hinportant or critical gr is it simply a stepping-stone or a peripberal

embellishment?

E | .

¢
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12 Can I close my eyes and visualize or describe this item's connections to
other items in the theory, to the theory as 2 whole. to other theories®> Have |
seen anything hke 1t before® '

Ciearly thfs list of questions is rather long and one should not be attempt to answer all of
them at once But one should try to pitk off as many questions as possible on an iniual try.
and 1f the iem is important and worth the effort, come back to the hList several times
Through work directly with the item and indirecily with other ilems, one evenluaily answers
most of the questions The last question js a keyslone to understanding in a deep way and
should be given a try during the very [irs\ exposure to an item and repreatediy thereafler
At first, the answer given will be very shailow, but later it will become more global and
encompassing It might take two or three passes over the malerial over several years time
perhaps, to be able to expound upon these questions, but that is the fullness of
understanding (hal a2 malhemalician sirives for in his work and a sludent should also sel as
his goal

The acquisition of full understanding is often a three pass process On one's firsl exposure
toa subject. which often oceurs while one s takipg a course, one tries simply o become
fAmiliar wilth an ilggn and 1ts immediate neighbors (predecessors, successors, pre dual ilems)
One tmes to learn the delinilions. read through demonstrations, often checking them oul en
a step-by-step basis  Ttus first phase is mostly concerned with items one at a lime, il is very
minimal and ltocal in outlook

On the second pass. whith often comes in reviewing a course, one tries to gel a moie overall
feeling for the subject and the flow of its development Al the I€ast one tries to be able to
recall definitions, examples, theorems, and thejr demonsirallons, to see whal are the essential
assumptions and culminaling siems. and to know how Lo get from one item to another This
second phase 15 concerned with items and relations within Lhe represenialion spaces and Lhe
theory as a whol;. 1t 15 more global tn outlook than the first pass

Thie third pass often comes after the course iy over, perhaps on anolher exposure to the
malerial through a diffeient presentalion or context, for instance. when listening 10 a series
of lectures, "for culture™ One starts to see connections between several subjects One
recognizes that the raison d'etre of the suhject Is to address cerlain questions and Lhal Lhe
whole develbpment hinges on certain undeilying ideas, axioms o1 examples, Lhal the subject
Is very similar Lo another subject. that many of its items are shared by another subject and
are 1n some sense the same” as jtems In another subject The third pass thus has a
perspective that can encompass several theories

We can correlate these observayons and Polya'sMdea of levels in Spinoza Qur fIFS pass is
similar to the “mechanical” and “rational” levels, the second pass, to the “inductive” level,
and the third pass, to the “intuitive” level of understanding

f

L .
(Y.
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8.2 Knowledge Involved in Understanding v
L]

Many of the answers, and ihe piocesses needed to find the answers, to these questions can be
described 1n terms of our epistemology Brefly put, the following mforme,iion is involved in
the answers . .
. \e ¢
, * I the statement and setling of the item. ' »

2 the concepts used In the statement, especially those in the pre-concepts dual,

3 a picture or diagram for the 1tem,

*
]

4 review of predecessor items, tagging of items on bases such as worth or
placement on an agenda of ttems to be.examined in future, J

r
5 the item's dual with emphasis on epistemological classes,
A
6 a paraphrase. synopsis or outline of statement and demonStration

. 7 look-ahead through the in-space successor and post-dual items with an eye for
iumportant items and epistemological ¢lasses

8 overall structure of demonstration main 1dea. plan and skeleton,

9. exgenmentauon with variable elements in statement or picture,

< L]
10 perturbation of setting and statement search.and conjecture in more general
settings, addition and/or deletion andfor alteration, of elements In the statemen®
look up in references, retrieva) of known gounter-:)amples.
1| relations with successors and motivated post-dual items, dependence on
predecessors and motivating pre-dual items, knowledge of the (petfagoglcal)
exposition, knowledge of the topography detours around, direct routes betweeh,
and well-worn paths to certain items ’

-

’
i2 intra-space, lnter-sp‘ite. and trans-theory connections, investigation of

semeness relations through dual and analogy relations
-

Thus to understand an stem in a deep way, one ought to know about (i) the item itself, (2)
its intra-space refations to other items of the same type. (3) its inter space relations to other
items of different type. (4) dual relations to other items of like type, and (5) relations to
ttems in other theories ) .

/ ' « ' .
;;I_r
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’

3.3 Understanding A Theory As A Whole

Understanding a theory as a whole 1s more than just underst'andmg is parts  In addition to
understanding member items. 1t includes understanding the ties that bind the theory
together and to other theories Understanding a theory, like understanding an individual

item, involves information about items and connections In addition, it has a perspe‘:uvl

which always seeks to view the item in relation to the whole theory
Briefly, understanding a theory as a whole involves

| knowledge of the epistemological classes knowing which are the start up,
reference and model examples, the MP's, the CP's, the basic. key and
- . clminating results etc  epstemological knowledge

2 knowing the “pros” and “cons” of items which items are good for what,
which items are appropriate.and when, how to use them, what their hmitations
are annotative hnowledge

1

A ]

3 seeing the overall intra-space relations of the individual representation spaces,
knowing routes and detours {eg from this item § can get to that one”, “this
string of items doesn't lead anywhere”, “the following 15 a quick and dirty way to

. derive item X"y knowledge of a mapping natlire
4 I’knowmg the mter-space' relations such as the items used 1n recurring dual
. refations, which items are the basis for striking dual relations, knowing which
items are dual equivalent, or nearly so, knowing which items are strikingly
simifar in the dual sense but are not so within their own represeNtation graphs
\ knowledge of sameness and closeness, especially In the sense of the dual tdea

.

»

5 abstracting and naming the “arrdws”, or intra- and Inter-space relations, (e g,
. Q:->R construction ts called "completion™ process)
L]
G)e’cognmng dual and antlogy links between items in other theories and
theories as a whole knowledge of trans-theory links
- <
7 recognizing clusters of items generalizing or sharing common features and
perhaps eliminating common redundancies and elevating them to the "default”,
“common sense” or “foundation” knowledge
-~

4, Classroom Applications -

The 1deas presented” here ww in a seminar with six MIT freshmen The purpose of

v, ')
I}

r
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this seminar was two-fold (1) to teach and explore the Tich theory of eigenvalues (eg, the
perturbation and location of eigenvalue theorems such as found in Ortega’s book [13)). and
(2) to make young mathematicians aware of the ingredients and processes involved in
understanding mathematics

The epistemological and .organszational ideas seemed,natural to the students, especially in
discussions 1n which the studemis worked out their ideas about keeping frack of what they
knew and wanted to know They essentially asked for a representation that includ{i\

examples, results and definstions, with orderings, and cross-space, te, dual, connections
These 1deas were alsc a source of homework problems For instance, a standard type of
problem In the seminar was i

[ .

List the dual t1ems for a given item

a ’

Another was

Tell everything you can about this ttem *

b}

After the discussion on represeniation 4 the students were asked as a homework assignment
to map out the knowledge domain of the seminar according to our representation scheme,
about a month later. they were asked to update their representations In the seminar we al|
worked together to meld our representations While there were some lively debates on how
to weave an item Into the representation, these sessions always seemed to benefit the students
by making them aware of larger issues of how the subject hung together Thus the
organizational process, itself. proved very helpful for developing understanding

*
.

’ 4

Another type of problem which they enjoyed involved the comparison of theorems
addressing a similar topic (e g, the location of eigenvalues in the Gerschgorin'Circle,
Symmetric Perturbation, and Hoffman-Wielandt Theorems {13, Chapter 3))

1

‘Alttl' ahoul & Mmonth the students wanted (o review and catningue what had thus fnr been covered in the acmiinsy
At lirst they mitempted to liat all the Hemy In chianalagicsd m'd:'f Next they aphit tige et Tnin two Tkt
(definittons and thenrems) and then s thitd (examplest  (heY iried 10 order these mccarding 1o w hen ltema o<y urped
This they Inund untatiafaceary since dlema came up more than once and chronolagy acemed to have very thile to
dq wih anything Neat they ze-ordered resulis sccarding io wha: we here have called “loplcal support  and
cvampled by n mixture of chronotopy and increasing campledivy  conuepis remained in chitonological nrder (which
was casenitally this anthor s pedapogicnl order)  This suthor then 101d them aboul directed graphe #nd treey and
with a Hile rrorPrllnp they adopied the three feprescniation praphs ol this paper They were then happily
procecding 10 ntpanize cvervthing this way in three color of chalk when onc of the atudents jumped up prabhed
annther color chalk and pounding Rt (iss on the blackhoard said  Bul thst s not el mucﬂ. enach ol theae reaulin

aheild be connected 10 aome cSamples and dclindtions And 82 entered the dusl iden

-~

= )
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W hick theorem ts eastest to use, and when?
W kich provides the best results, and when? , 7
Cook up'at least three (2X2 or 3X 3} exarmples to tjlustrate your answers

Most students used reference\cxamples (eg . the identity, Basic 16) and model examples (eg,
diagonal. upper tFlangular) in their answers Together we lnvc'ztigated more complicated
matrices with less simple entries (e g, non-symmetric matrices, matrices with entries of €'s and

lO"'s, the Hilbert matrix)

In general. the students displayed 2 ievel of mathematical maturily that one would be happy
to see 1n advanced students They became excellent question askers and idea generators,
discussions often left the areas of the author’s experlise and entered areas where all were on
"hands and knees” together In short, they became acttve

L}

4,1 A Theorem Proving Anecdote

Even though the emphasis of this course was not on proving theorems but on
understanding them, the following anecdote shows how natural some of the tdeas of this
paper were to them One of the students, ken, requesied thal we prove the Cayley Hamalton
Theorem (CHT) which-states that every matrix A satisftes its own characterisuic polynomial,
det{A-AD)=0 The students agreed to try to find a ptoof, but they did not want to wofk out a
purely computational proof involving manipulation of 2x2 and then 3x3 matrices with an
induction argument for the general case Also, we did not want to become involved in
constderalions of the "minimal polynomial” and its attendant algebra The following is a
nearty verbauim report of the dialogue that ensued when the sludents were asked (o suggest
a plan of attack

JOHN T he theorem is certainly true for the identity matrix

DAVID.Check Further if the CHT s true (n general, it must be true for
diaginal matrices Right?

1

ERM Right
JOHN That case is easy

DAVID OK So now we should be able to show ('S true for diagonalizable

matrices, by using the similarity transform § Ips, on dlagonal matrices and
Adping that the algebra goes away

KEN Sof : -

Aoy 0 g
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\

DAVID So, then maybe we can get the general case by doing the same thing on

. upper triangular matrices and using the fact, le, the Jordan Normal Form
Theorem, which we haven’t proved, but know about and all belteve, that all
matrices, are similar to upper triangular matrices with thetr eigenvalues on the
matn diagonal

KEN That sounds good to me
JOHN Does all the algebra come out right?

ERM Let’s try it and see .
And so we devéloped David's plan by establishing the theorem in the upper triangular case
1\([25- p 224) gives an approach to this) and 1t did indeed lead to a proof of the theorem
T here are several noteworthy features about this episode () the line of reasoning parallels
exactly the direction of constructional derivation of one branch of the examples graph we
built Identity --> Diagonal --> Upper Triangular, (2) they strongly used reference and
model exampies (e g, identity, diagonal and upper triangular matrices) of the eigenanalysis
domain, (3) the whole interchange was completely spontaneous and took but a minute The
rest of the seminar was truly amazed at the speed at which David formulated his plan, and
also how pretty it was David commented that It seemed the "obvious” thing to do Ken
chose to write about this theorem, its proof and the Importance of examples as his term

paper

4.2 Some Comments on Problem Solving

During the semester, the students met to work on some selected problems in a one on-one
manner The ground rules were that these sessions were not tests, they could look up
anything they wamted in our notes and references, they could always ask for suggestions and
advice, there were no time constraints, and if possible, they would try to think out loud
while they worked

All the sessions were tape-recorded The problems ranged fn difficulty and style from
standard questions with a stated goal, such as . »

Show that the possible elgenvalues of an tnvolution (Uz-!) are +] and -1

or
Give a coynter-example o show that interchanging rows of a matrix does
not leave its eigenvalues unchanged

to more vaguely-posed problems, such as .

D
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W hat can you say about the spectrum of a ptrm@lon matrix?
‘H

Most all of the students handled the furst question by using the declatatiye definition for
“eigenvalue”  All the siudents answeréd the second question by examining the reference
collection of the "Basic 16" Most attacked the third question by ex e 2X2 cases to
form a preliminary congecture-and then some of the 3X3 cases to-test and refine it, not all
started out this way, but those that tried to attack the problem through more general
arguments found they could nol get a handle on the problem and thus followed the heuristic
of examining the two dimensional case  To this author's delight they handled these
problems with great poise and enthusiasm T hey were, for the most part, completely
undaunted by Lhe fact that they had to decide how to alttack the open-ended problems As a
bonus their answers were very complete

B. Understanding Mathematics .
Understanding mathemalics is a process that can be undersiood and to some exlenl laught
In our view of undersianding, a good part of the process js concerned with butlding and
enriching a knowledge base *This includes creating associations of many kinds as well as
items It also involves differentiating between various kinds of items according to Lheir
function in acquiring knowledge, familiarity, and expertise

In summary. some of the ingredients of the process of understanding matgematlcs are’

| Knowledge of items and relations general types such as the item/relation pairs
of the three representation spaces and dual relations, as well as particular ones
such as generalization and spectalization,

"

2 General strategic or contro) knowledge such as knowing to restrict the
situation under consideration to the particular case of an example, such as a
reference example, in particular. restricting the situation under consideration to
the case of ap example of known generality, such as a model example, analysing
how thlngs?work. and then hfting back up, knowing to fool around with
examples, especially reference or moiels, when out of ideas, knowing to perturb
statements and seitings,

3 Meta knowledge such as knowing 1o keep pne's eyes open for items of special

- note such as models, references, MP's, etc, and knowing that keeping track of
hinks by mapping out one’s knowledge base {at least thipking about trying to~do
th1s) can be a useful not only to'keep track of what one knows but to build
global understanding,

4 LEpistemological knowledge knowing that certain items serye particular

2.

-
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3

functions in understanding, and that some ideas and processes, such as the

"group” idea {1} or the "@vld?and conquer” technique {i1] are very general and
pervasive through ail of mathematics

% Representational knowledge of knowing how to organize and keep track of
what one knows such as through-maps and networks of items-and refations, and
through representation schemes, such as frameworks for individual items
Thus, to understand an item of & theory fully, one must be able to examine it at different
levels of detail and from several points of view, follow infra-space and inter-spact
associations, perturb and fiddle with items, and survey the overall topography of the spaces
individually and together, and. link thenz with other theorles. In short, to achieve a deep
sense of understanding one must have established many links of all kinds
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