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Abstract
In this paper we look at some of the ingredients and processes involved in the
understanding of mathematics We analyze elements of mathematical knowledge,
organize them in a coherent way and take note of certain classes of items that share
noteworthy roles in understanding We thus build a conceptual.framework in which to
talk about mathematical knoshedge We then use this representation to describe the
acquisition of understanding We also report on classroom experience with these ideas
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...

I. Introduction
When a mathematician says he understands a mathematical theory, he possesses much more
knowledge than that which. cor),cerns the deductive aspects of theorems anti proofs He

knows abciut examples and heuristics and how they are related He has a sense of what to
use and when to use it, and what is worth remembering He has an intuitive feeling for the
subject, how it hangs together, and how it relates to other theories He knows how not to be
swamped by details, but also to reference them when he needs them

This paper is concerned with this important extra-logical knowledge that is often' outside of
traditional discussions in ma,thematics The goal is to develop a conceptual framework in
which to talk about mathematical knowledge and to understand the undei standing of
maAhematics in order to improve how to fears, teach, and do mathemro

Poiya once remarked that, "A well-stocked and well-organized body of knowledge is an asset
to the problem solver Good organization which renders the knowledge readily available
may be even more important than the extent of the knowledge [18, p 85) The same is true
for aspects of mathematics other than problem solving Thus, our first task is to seek
answers to the questions "What are the ingredients of mathematical hnowledge, th pes

and their functions?", "How can this knowledge Lie organized and representecP"

2. An Epistemology of Mathematical Knowledge

This section presents a conceptual framework for mathematical knowledge that is based, on
the role of various kinds of knowledge in the understanding of mathematics in general arid

of mathematical theories in particular This epistemology is based on material found in
textbooks, lecture notes, discussions, and protocols of neophyte and expert mathematicians, it
reflects the experience of teachers, students and practitioners of mathematics Where there
were alternatives for classifying and representing knowledge, the one choosen was that that
best fit the author's experiences in learning and in helping students to learn mathematics
The reader .15 cautioned that this epistemology is not complete and exhaustive, that is, it does
not represent all aspects of mathematical knowledge -

When one analyzes the knowledge that mathematicians students and professionais the /

when they do and explain mathematics, it becomes clear that ther.e are several kinds of
mathematical knowledge (1) clusters of strongly bound plecei of information, such as the

,
stat- of a theorem, its name, its proofs], an evaluation of its importance, which can be
taken together to comprise a single item, such as a theorem, and (2) relations betWeen the

items such as the logical connections between theorems

M"
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2.1 Exarnyles, Results and Concepts

We can disti uish three major categories of items results, which contain the tia,ditional
logical-ded tive elements of mathematic;, i e, theorems, examples. which contain illustrative
material. and concepts which contain mathematical definitions and heuristic notions and
advice

Results can be organized by the relation of logical support in which A -> B means that
result A is used to prove result B For instance in the theory of unique factorization, (8),
before one can prove that every intcter can be uniquely factored, one must first prove
supporting results on the Euclidean algorithm and the greatest common divisor Results
together with the relation% of logical support comprise Results space

The collec.hon of examples also has a natural relation Examples can be organized by the
relation of constructional derivation in which A --> B means that example A is.used to
construct example B For instance, the Cantor set is constructed from the unit interval by
the process of "deleting middle thirds" (7 22), and thus, unit interval --) Cantor set

I the unit myrtle

deftgo squrnce of ;Pr; bi deleting middle thirds

0 ( )

0 ( ( ) ( I

0_()....( )D.( )._()J

imittrqr set it 1,ize Cantor In

p4.

Cantor functions andllighei dimensional Cantor sf-is can also be constructed from rhr unit
interval and the Cantor set (4, 7, 22)

The following cluster of examples is familiar to evei yone's arithmetic experience One %tarts
with the natural numbers N, and then btiilds the integers Z by introducing non positive
integers, say. by doing subtractions Quotients then lead to the rational numbers Q, from
which one can build the real numbers R, by filling in the "gaps" If one goes on to study
elementary number theory, one then builds more examples, such as the Gaussian integers
Zlilthe field of integers modulo a irne ZIpZ. and the p adlc numbers Q

-1)
These

examples can be organized according their constructional relations

V./
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N

The p-adic numbers have arrows coming from both Qan
td

ZIpZ since either can be used to
construct Qv (Qv can be constructed from Q by completion of Cauchy sequences with

respect to a metric Nast like the construction of the reals R from Q, or from Z/pZ by an
algebraic construction involving "inverse limits" [2]) The point Is that there ake two
constructional routes leading to Qp. and thus a directed graph, and not simply a tree, Is

needed to show the relattons

Examples have some general properties worth noting (I) pictures are an Integral part of
many examples, -(2/ constructions are like procedures, (3) the pictures need not be static. in
fact those shown for the Cantor set are merely a few frames from a sequence

The category of concepts includes both formal and informal ideas, that is, definitions and
heuristics Definition's could alternatively be included In Results-space since they are the
logical atoms from which the proofk are deduced This approach was not adopted, rapier,
they are included in Con,cepts-space to highlight the interdependence of Ideas and keep
track of conceptual dependenuespas one's network of idea? grows Informal Ideas, e g
mega-principles" and "counter-principles" (see Section 23). often evolve from more formal

ones, eg rdefinnions, under the forces of such "genetic" processes [5, 147 as paraphrase [121
analogy, generalization, specialization [17], and "monster-ban-mg" 00)

Concepts can be organized by the pedagogical judgement that concept A should be known
about bethre concept B, which we shall call the relation of fiedagogical ordering Sometime_
it simply reflects the fact that concept A enters into the definition of concept B, at other
tarries, it reflects expository. tastestror instance in studying arithmet$ properties of the
integers, one needs to know about division before being able to talk about primes, once one
kflows,atrout primes, one can go on to discuss prime factorizations

A concept carr
most mathemati
concepts are mos
Schmidt process,
ptocedures So
be defined,eithe

, .
expressed either as a declarative statement the familiar formulation of

al definitions ...- or as a procedure or the result of a procedure Some

naturally expressed In declarative form, an others, such as the Gram
Gaussian elimination, Newton's method, aie most naturally expressed as
concepts can be expressed in either way, sue as "eigenvalue" which can

as the X of Av-Xv, or as a ro4 of the characteristic polynomial det(A Al)
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r 0 The concept of "square root of a number" has aspects involving both declarative and

procedural knowledge it can be thought of either as an "x" whose spiare is that number, or

as the outcome of an algorithm like that taught in high school

Thus, mathematical knowledge can Lie structured by three major types of item/relation pairs
-- exam pi'constructional derivation, results/logical support, and conceptslpedagogical
ordering which establish three representation spaces for a mathematical theory Examples

space, Resuttl-space and Concepts-space They are best shown as directed graphs where the
direction matches the predecessor-successor ordering Inherent in the relations,

2'.2 Dual Relations I

When considering a theory item, one can decide whether to classify it as
concept and then fit it into the appropriate representation space
predecessors and successors One, can also consider items outside.of the
with which it is associated Dual relations concern these inter-space
introduced to capture both the way in which one's atterktton moVts east
types of items, and the naturalness with which we assalate items th
distantly r?lated in the senses defined by the in-space relations

I

result, example or
y determining its

epresentation space
elations. They are

between the three
it ctften seem to be

Specifically, dual items are defined a! follows

The dual items of an example are Me ingredient concepts and re.; t. needed to
discuss or construct it, and the concepts and results motivated by it

The dual items
needed to state
from it

The dual items
the groundwork
things about it

of a result consist of Me cramp/0 motivating it, the concepts
and prove it, and Me concepts and examples that are derived

of a concept are the examples motivating it, the results laying
for it, and,the exampl s illustrating It and the results proving

Thus the dual of an item contains sets of the other two kinds of items

dual(an example) r {results), {concepts)
dual(a result) - (examples), {concepts)
dual(a concept) - {examples), (results)

I Thr h.sr ni the an rd dual here hi nn tettznlcsl reI'ilnn to i A U3e In the thenq 01 Ire( tot upst ea h ihere in a

Trieimphnil-cA1 corincolon

4
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The subset of examples in the dual set of an item Is called the examples-dual, the subset of

results. tt4 results-dual, and the subset of concepts, the concepts-dual

The duttl of an item can alternativelly be sub-divided into subsets containing items that
precede the itern..in the understanding or development of a theory, the pre dual, those that
come afterAhe item, the post-dual, and those that have neither a strong "pre" nor "post"
flavor To use Polya's words, the pre-dual items are "suggestive", and the post dual,
"supportive" of an item (17. pp 4-5) For instance, concepts needed to prove a theorem

would be Included in the pre-concepts-dual of the result

TwO items are said to be related via the dual idea if they share common dual items The
mathematical world is full of dual relations the examples of the real numbers and the p
adic numbers are related via the concept of completion, the concepts of measure and length
via the example of an interval (a,b), Pythagoras:s Thrrem and the Law of Cosines, via an
example of a right triangle, concepts of continuity and differentiability, via the example of
the absolute value function, concepts of countability and measure zero ate relied via the
Cantor set, concepts rof fixed points and the power of an operation, via the example of

cosnx
'.

3"
One can define various equivalence relations that are based upon the dual Idea For
instance, two items are dual equivalent if their duals are equal Two dual equivalent results

would share identical sets of concepts and examples, for instance Dual equivalent items are
very similar and in many senses are the "same" and should be identified

Relation via the dual idea is extremely useful becapse it describes how we associate
knowledge that is not necessarily closely related in the sense of the three relations operating
within the three repreientation spaces It also ties the spaces back together

2.3 Epistemological Classes .

Not all examples, results and concepts are equally important or serve the same function in

one's understanding We group those that play noteworthy roles in understanding Into
epistemological classes These classes are not necessarilrdisjoint since an item may play more

than one role

For instance, when learning a theory for the first time, one can grasp certain perspicuous
examples Immediately and easily These start up examples help one get started in a new
subject by motivating basic definitions and results, and setting up useful intuitions

The "circles and lines" example is such a start-up example from differential geometry The
,--- following is a paraphrase of Spivak's use of It (24) to introduce the theory of cui vature of

plane curves

II'
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/'

We begin by considering circles anilines We can agree that circles curve and thatcfines

don't Furthermore, small circles "curve more than large circles (This IA consistent
with our observations about lines, which arc a limiting cased ,Thug we note that
curvature is inversely related to the radius So for a circle we define the curvature to be

the reciprocal of its radius Now what about more general plane curves? Well, we lift
our circle-line definition to thigeneral case by fitting circles onto the curves

This simple example suggests how one can approach the study of curvature, when
formalized, this example becomes the osculating code definition of curvature It provides a
strong pictorial representation for curvature (udes) and a handle (the osculating click) for
calculating it

This example exhibits many properties that a start-up example should have (I) IL motivates
fundamental concepts. (2) it can be understood by Itself, (3) it Is projective, le, its specific
situation can be lifted to the general case, and (4) it provides a simple and suggestive
picture

...

Reference example., are another important class of examples They are examples that one
refers to over and over again They aie basic, widely applicable and provide a common
point of contact through whichtmany recults and concepts are linked together ...

Reference examples are used as standard cases to check out one's understanding For

Instance, no matter where one is in the study of real analysis, one invaiiably refers to R2 to
see how things really work In eleratntary number theory as well as algebraic number
theory, one always looks at the integers Z In linear algebra, a very useful reference example
is what Michener [II) calls the Basic 16, it is the collection of the sixteen 2X2 matrices whose
entries are O's and Is This collection contains examples illustrating many ofbthe "good" as
well as the 'bad" things that occur in eigenanalpis, it is also a rich source for counter
examples These matrices seem to be ubiquitous th }oughout mathematics

Model examples are paradigmatic, generic examples They suggest and summarize
expectations and default assumrtions abouLresults and concepts They are indicative of the

r

\
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general case

For instance, in the study of real valued functions, the following diagrams indicate the

general kind of behavior a function has at a point where it has a simple discontinuity The

diagram on the left represents a function with an "aberration" discontinuity at x, i e, the

right and left hand limits exist and are the same, but the function has the "wrong- value at

x,-and the diagram on the right represents a 'jump. discontinuity, ie, right and left limits

exist but are not the same

-x
Observe that the specific measurements in these pictures are unimportant, what counts is

that they capture the essence of the situation

I
Because of their,generic nature, model examples are often closely related to without loss of

generality arguments For instance, the model examples for conic sections are usually

pictured as having their major axes aligned with the x- and y-axes (see any calculus book.

eg , [26)), these diagrams are completely general because one can always use the coordinate

transformations of translation and rotation to change variables in order that the axes are so

aligned

Model examples are flexible and manipulatable structures which usually must be fine-tuned

to meet the specifics of a problem FOr instance, to capture the fact that a function has a

lair jump discontinuity, the lines in the above example could be made very far apart

Counter-examples are familiar to everyone as examples that show a statement is not true

They sharpen distinctions between concepts

Some counter-example are referenced frequently For Instance, the Cantor set is useek

repeatedly in the study of measure and Integration as a counter-example in connection with

Hems whose concepts-dual includes the concept of "measure zero" A specific use is with the

result "countable sets have measure zero" whose converse is refuted by the Cantor set which

is an example of an uncountable set that has measure zero (7, 21, 221. The factorization of 2

as (1-1)(1.0 is often used as a counter-example to show that not all rational primes (i e ,

numbers which are primes in Z) are prime in the setting of the Gaussian integers Z(il

Other counter-examples are used once to establish a point and then are abandoned Such a

hapax legomenon (3) has a limited use in the theory and memory of it Is often very short-

lived, perhaps because it has so few connections to the rest of one's knowledge
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In summary, major epistemological classes of Examples space are start up examples,

reference examples, model examples, and counter-examples

Concepts-space has two major epistemological classes in addition to the obviously important
class of definitions These other classes contain the heuristic advice that we give to ourselves

and to others, while working in a theory 2 mega principles and counter principles

Mega principles (MP's) are kernels of wisdom an the form of powerful suggestions or
generally valid statements For instance, the MP Look at extreme points is a very powerful
heuristic in calculus and analysis Symmetric monies are nice is a mega principle from
linear algebra, it is a synopsis of many results that show symmetric matrices are well

behaved, eg ,'diagonalliable and numerically stable (13, 25) Try Me 2X2 case is powerful
advice in the study of matrices Another useful suggestion in this and other domains is-the
MP to Try special cases involving only 0's and l's

Royden's analysis book presents "Littlewood's Three Principles" which are striking examples
of mega-principles, Royden gwotes from Littlewood [21, Chapter 3, Section 6)

"There are three principles, roughly espressikile in the following terms I very

(measurable).sct Is nearly a finite union of in,te'rvals; every (mrassil'able)
function is nearly rontinitous, every convergent sequence of (measurable)
(unctions is nearly ur4ormiy tonvrrgent o of the results are fairly
intuitivr applications of these ideas If one of the pripciple; would be the-
obvious means to settle the problem if it were 'quite' true, it is natural to ask
If the 'nearly' is nrar enough, and for a problem that is actually solvable it
generally is"

In summary some MPs provide imperatives or advice while others, give an idea of what to
expect Mega-principles express broad "flavors" of a theory that are often remembered long
after the details have been forgotten Like model examples. they provide broad, suggestive,
initial descriptions algid expi'rtatlons

Counter-principiel4CP's) alert one to possible sources of blunders or troubles For instance,
ever yone knows about the CP Watch out for division by 0 In linear algebra and numerical
analysis,-the counter-principle Multiple roots are troublesome warns of potential tiouble when
multiple roots occur, eg, in diagonaltzing or numerical computations The CP from calculus

when changing the variable of integration, don't forget to calculate the new differential
dv- v'(x)dx is a word of warningfanithar to all calculus students

2r*AvA 11)61 Inn !,chocnield is 41 deal Y.10 mnrc rcncrai 60moin4Indercndent Airstcrics whereas nu+ t.,n,ern

with heurtsik 9 'hilt sic rcte, Ant in I rarlicuist domain alihnufh come mIchl Indio! he 9clui in s tired mirst

414111,
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CP's are distillations of many results, counterexamples: and failed attempts Like counter-

examples they add focus and limits to one's Intuitions They are often related to MP's as

cavaets to warn of misapplications of the MP For instance, related to the MP(n-2) is the

CP that suggests being careful about jumping to (inductive) conclusions without checking

Out the case of na3

Results-space also has several epistemological classes

11 Baste results establish elementary but important properties of concepts and examples For

example, the result 11 is an etgenvalue of the matrix, A (l e , Au 4v) Iff deae1 -A13-0 is a result

basic to the stucirot eigenvalues It relates the procedural formulation of the eigenvalue
concept (solving the characteristic equation) with the declarative (existential) formulation
Other basic results link concepts with examples, such as The outer measure of an interval is

its length which links the concepts of measure and length via the reference example of an
interval as well as relating the concept of measure to the interval example

Key results establish fundarhental facts of a theory which are used repeatedly once they have

/been proved For instance, the "Side-Angle-Side" theorem is a key result from plane

/ geometry

Cu! runating results are the goal results towards which a theory drives The test of a
culminating result is to ask, "If this result Is omitted has the' main point of the theory been

missed?" If the answer is yes, the result is a culminating result For example, the
Fundamental Theorem of Calculus is a culminating result from calculus The Jordan
Normal Form Theorem, the Cauchy Integral Formula, the Itiesz Representation Theorer6.

and many other 'name' results are culminating results of their theories Many culminating
results are equivalency or classification results that connect alternative descriptions,
definitions and approaches, such as the theorem showing thaS all real vector spaces of a

given dimension are isomorphic, or Wedderburn's Theorem which gives a large number of

different formulations of projective modules 191

Less important than basic, key and culminating results are transitional and technical results

which provide logical string-stones Old work out technical details for a theory

There are many analogies between the epistemological classes model examples, mega-.

principles, and culminating results are all important items within their categories which are

usually remembered for a long time_ counter-examples and counter principles serve a

limning function, basic results and start-up examples provide easy starting points-in a
theory, reference examples and key results are important and frequently used

It should be remarked here that scattered throughbut Po 'yarns books [17, 181 are hints at some

. of the elements of this epistemology For instance, in Induction and Analdgy [171 he mentions

three special kinds of examples --"extreme", "leading", and "representative" in several

14
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exercises

.

p 23 -25) The latter two are very similar to the start -up and model examples

discussed. s section In Mathematic& /Discovery, Po lya. speaks of the Imporitde
certain key fact 8, p While he does touch on some of the elements 0(ithis
epistemology, he does so peripherally to his main points and does not pursue their analysis
or use further

Other authors also single out elements of an epistemology For instance, Rodin in-kir classic
analysis book Principles of Mathematical Analysis uses four headings to organize the

presentation "definitions". "theorems
t,

"examples ", and "discussions" [22) Many authors
display some sort of concepts graph to describe the organization of material, eg, [21, pi)

2.4 A Reprasentation Feramework

In addition to knowledge of how an item relates to other items, we also have the clusters of

Information
which comprise the item itself All three of our item types results, examples,

and concepts contain similar yokces of information For instance, each has a Jetting which
is the mathematical context in which the item is known Each can have a decarative aspect
or statement for a concept, a formal matienatical definition, for a result, a (if then)
statement, for an example, a caption, describing what it shows Each can have a procedural
aspect for a concept, a procedural formulation, for a result, a proof, for an example, a
construction An item may have both procedural and declarative aspects (e g, the eigegvalue
concept//, or just one teg , the Gram-Schmidt process), It may have'more than one of either

e or both aspects (eg, a result with severalwoofs) In addition, each item has certain other
.features such as a worth rating, eg, the "Michelin" rating [ii) which indicates Importance by

asssignment of from zero to four is 3

We tie these cluyo<rs of information together In our representation by amalgamating them
into one data ructure which has slots-for the various component aspects and attributes All
three types can be represented by the same fundamentahaframeAvork This

reservation frir ework is then modified slightly for the three item classes of our
epistemology -_-,exCmples results. concepts to reflect information and features special to

-them For instance in the case of results, the representation includes pointers to the con vet se
or more general-or stronger results or pointers to counter-examples where these are not
possible

Dr lett/ the ratinp tit me ht hr Inv retint rrUtt- %huh noilrinp hr Important ru It worth Ott,.
for ..r. !into, in. ,,1 worth A artohr Inr tremelv Imrntsni reu,in worth nt- Y to

theme'', e
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Figure I shows some of the representation frame for the Cantor set example Instead of
pointers or ID's, we S1/41W the .name or the statement for item listed in the various pointer

fields

Figure I

II) E333 CLASS Reference, Counter-example RATING *** NAME Cantor Set

STMNT SETTING R
CAPTION The Cnntor set is an example of a perfect, nowhere dense set that has

zero It ,chows Owl uncountable sets can have measure 0.

DEMON- AUTHOR stnndnrd
STRA- MAIN -IDF A Delete "middle-thirds"
'PION CONSTRUCTION

0 Start with the unit interval (0,1);
I From (0.)), delete the middle third (113,2/3),
2 from the two remaining pieces, (0, I/3) & j2/3, delete their middle thirds,

(119, 2/9) & (7/9, 8/9),
3 From the four remaining pires, delete the middle thirds;
N /II Nth step, delete from each of the 2" pieces its middle third.
The HAM of the lengths of de pieces removed is I;
what remains is called the Cantor set

PICTURE

17.

timittng set is Cantor set

REMARKS Linter set IA good for making things happen almost everywhere or almost nowhere.

LIFTINCS Construction of general Cantor sets.

IN-SPACE POINTERS
BACK unit interval
FORWARD Cantor function, general Cantor sets, 2-dimensional Cantor set

DUAL-SPACE POINTERS
CONCEPTS, couninhlc, mensurc zero, closed, perfect, geometric series
RESULTS "Perfect sets are uncountable, *Countable sets have measure 0"

BIBLIOGRAPHIC REFERENCES
See Gelhaum and Olmstead for details of general Cantor sets.
See Hoyden for Cantor functions

PEDAGOGUES Raclin, Hoffman, Royden
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To organize mathematical knowledge by means of our conceptual framework, we must make

several judgments For instance. recall our arithmetic examples of S'ection 2 First, we must

choose the representation space for an item (e g. Q, the rational numbers example, could
alternatively be classified as a definition), and second. the item must be tied into Its chosen

space by determining,its predecessors and successors (eg. Qppints back to Z, and ahead to
R and Qp) Third, we must link an item to its dual items (eg , QcaD--te linked to concepts

of division, completeness, density. and cardinality. and to results on the irrationality of (2)°.
aind the Archimedian properties of the real line) Fourth. we can sort the dual items into
pre- and post-duals While the specific representation we build reflects certain personal.
pedagogical, historical and esthetic biases. the representation scheme is perfectly general

12 Understanding Understanding MorAernaticS

In summary, our conceptual framework for a mathematical theory includes

s

(I) Knowledge of the items themselves for each we know Its statement, diagram,
proof, constructionwor procedural formulatiorf, etc;

(2) Knowledge of the individual representation spaces and their predecessor

successor relationships.

(3) Knowledge of inter-space relationt such as the dual idea.

(4) Epistemological knowledge of the functional role of items in understanding,
such as start-up. reference examples. etc,

The reader is reminded that this epistemology is neither exhaustive, exclusive nor static

Rather, it represents some important aspects of mathematical knowledge whiciii is a

constantly evolving structure
in

can view mathematical knowledge as a many faceted

polyhedron that can be. held in the hand, rotated, examined from many perspectives, and
sliced through along many different planes, our representation tries to capture some of these
cross-sectional views, such aS its illustrative, pedagogical and inferential aspects

Also, a particular representation reflects the state of one's knowledge base at a particular
moment in time As long as one keeps learning and thinking, this knowledge base will
change and adapt to reflect new knowledge and updersianding Knowledge is not frozen
While it may appear similar for long stretdies of one's intellectual time, it is not static
Points of great change or re-organization probably suggest that something important is
happening in one's understanding These aspects are worth looking at further

3. Undexstanding as an Active Process
I

Understanding Mathematics is a very active process While at first glance it may not seem
so, especially in comparison with problem solving, it does involve significant effort on the
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part of the understander To 'understand a theory, one must-explore and manipulite it on
many levels, from many angles, 4,ith facility and spontaneity One must be able to travel
freely through it, experiment with its items, survey its overall mathematical topography, shift
the level of concern from detail to broad overview and vice versa, and be able to ask

questions One gains understanding by examining relevant examples, perturbing settings
and statements and fiddling around numerically and pictorially To discover what makes

an individual item or a whole theory really work, one must do quite a bit other than
passively waiting for understanding to happen

One ihoulii try to unlerAtarA everything isolated acts by collating them
with rel.-teed faints, the newly discovered through its convection with the'
already assinitlatcd, the unfamthar by analogy with the accustomed, special

rcsilts through generalization f (To-Jai results by means of suitable
specialization, complex situations by (Ls "rung them into their constituent
parts, anal details by, ctriprchending them within a total I:Picture, (20)

>Understanding is a complementary process to problem solving in many ways it is more
difficult to describe than problem solviiig since, as Palya points out, it is a matter of more

r-or less And not yes or no (19) That is to say, dnderstanding has many levels and is never

really totally finished Actually, undeptanding, in our sense of building up a knowledge

base with all its links and structures, can he taken together with problem solving expertise to

comprise a larger view of underktanding

There Pare many senses and degrees of undefstanding Polya abstracts four "levels- of
understanding a "rule" from his readings of Spinoza (l8, p 134) (0 "mechanical" when one
has memorized the rule and can apply it correctly, (2) 'inductive" when one has tried it out

in simple cases and is convinced that it works in these cases, (3) "rational" when one has
accepted a demonstration of it sand (4) "intuitive" when one is convinced of its truth beyond

a doubt I

Poincare also has written ;bout understanding In p-articular, he points out the need for
going beyond the rationTi4 level 05, p 240}

"What if it, to understand/ To understand the demonstration of a theorem, is

that to esaminc AucccAlvely each or the syllogisms composing it and to"
ascertain its correctness, its conformitv'to the rules of the gam' Likewise, to
understand a definition, is this Merely to recognize that one already knows the

meaning of all the terms employed

For some, yes, when they have done this, they will gay I understand For the

majority, no

Clearly then, a deep understanding of a theory involves more than knowing just the details

I CA,
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of theorems and proofs, it goes beyond simple. in space links But what should we demand
for full understanding? And how should we go about achieving it

Having deep understanding of a body of mathematics has been likened to knowing one's
way around a landscape Polya and Szego describe it [201

o

There as a similarity between kliowing one's way about a town aro] ma<terinr
a field of knowledge, from any even point one should be able to reach any
other point One il even better Informed if ondi can immediately take:the most

), convenient and quieket ratb from the one point to the other If one lc very
well informer] Indeed, one'ean even execute special feats, for example, to carry

out a journey by cystematleally avoiding certain path: whseh are euctomary

There i an analogy helv,ccn the tack of constructing a well integrated body of

7
lcwledge from acquaintance with isolated truths and the building of a wall
out of unhewn citOneF One mUict turn each new insight and each new :tone
over, andoyer, siew it from all Rides, attempt to lain it on to the edifice at all
posiible points. until the new findi at suitable place in the already cittabliithed.'
in such a way that the areas of contact will be ac large as possible and the
gape ac small a' poscible, until the whole fermi one firm structure`

di

Thus if understanding is a matter of more or less", then clearly deep understanding is a
matter of "more" A richness of knowledge is needed for deep understanding

3.1 Questions that robe and Prompt Understanding

Despite the lack of widely used, well-defined states and criteria foi understanding, we ihould
not be detered from trying to explicate the understanding process In this section we offer
some questions to help make the process and lfvels of understanding more crisp and
accessible .... , ,

When one understands an individual result, concept or example item, one is obviously in
command of much information about it The follotving questions pi obe one's undei itanding
of an individual item in the context of a mathematical theory At the same time, they

.represent a general strategy for understanding Being able to answer them is evidence of
understanding an item in a thorough way Being able to ask them indicates knowledge of
how to learn

The intent of this series of questions 15, not only to make explicit some of the ingredients and
processes necessary in the the acquisition of undrstanding, but also to pi esent them in such
a way that a student can learn how to go about understanding Thus the goal is similar to
Polya's for problem solving [16) for which his list of "How To Solve It Questions"'is offered

r
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r.

in the hope of aiding the problem solving process

The questions are

i What is the statoment of this item The setting' "for

2 Do I understand the statement' Should I review or examine the ingredient
concepts. especially 4he import4nt ones and those to which I have previously

not done Justice'

3 Whatis-a picture ordiagram forIthis, item"

4 Am I reasonably comfortable with this item's immediate predecessors" ,Are

there any predecessors on which I should bone up' Or remember to come
back to"

5 Do I know any of duU helms for this item, such as counter-examples,
model examples, reference examples, culminating results, basic results, etc ?

Am I aware of the importanrones' Should I periTse some,of the others'

6 Can I say what is the gist of this item? Of its sta,(einfrit? Of its
demonstration'

7 What is it good for? Why should I bother with it? What is its significance
to the theory as a whole'

8 What is the main idea of its proof, construction or procedure? Are the
details important' If so, can I summarize them.'

9 Is thire some way I can fiddle with this Item? Perhaps check out a few
test cases'

10 What happens if I perturb its statement' Does it generalize' Is it true in
other settings' Can it be strengthened by dropping some hypotheses or
adding some conclusions If not, why not: can I cite a counter-example and

. can I pinpoint what goes wrong? If so. is the new demonstration similar or
different from the original Is it much harder' Should I just be aware that

it exists, and forget about the details until I need them?

II Can I see how this item fits in with the development of the 'theory as
developed in the approach I am taking? What about other approaches) Is

this item important or critical of is it simply a stepping-stone or a peripheral

embellishment"

1r

A
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)

12 Can I close my eyes and visualize or describe this item's connections to
other items in the theory, to the theory as a whole. to other theories) Have I
seen anything like it before)

Clearly this list of questions is rather long and one should not be attempt to answer all of
them at once But one should try to pitk off as many questions as possible on an initial try.
and if the item is important and worth the effort, come back to the list several times
Through work directly with the item and indirectly vith other flans. one eventually answers
most of the questions The last question is a keystone to understanding in a deep way and
should be given a try during the very first exposure to an item and repreatedly thereafter
At first, the answer given will be very shallow, but later it will become more global and
encompassing It might take two.or three passes over the material over several years time
perhaps, to be able to expound upon these questions, but that is the fullness of
understanding that a mathematician strives for in his work and a student should also set as
his goal

The acquisition of full understanding is often a three pass process On one's first exposure
to a subject. which often occurs while one is taktpg a course, one tries simply to become
f\miliar with an itein and its immediate neighbors (predecessors, successors, pre dual items)
One OWE'S to learn the definitions, read through demonstrations, of/en checking them out on
a step-by-step basis This first phase is mostly concerned with Items one at a time, it is very
minimal and local in outlook

On the second pass, which often comes in reviewing a course, one tries to gel a mole overall
feeling for the iubject and the flow of its development At the least one tries to be able to
recall definitions, examples, theorems, and their demonstrations, to see what are the essential
assumptions and culminating items, and to know how to get from one item to another This
second phase is concerned with items and relations within the representation spaces and the
theory as a whole. it is more global in outlook than the first pass

Tfie third pass often comes after the course is over, perhaps on another exposure to the
material through a diffeient presentation or context, for instance. when listening to a series
of lectures. "for culture" One starts to see connections between several subjects One
recognizes that the raison d'etre of the subject is to address certain questions and tat the
whole development hinges on certain undei lying ideas, axioms of /examples, that the stiPject
is very similar lo another subject. that many of its items are shared by another subject and
are in some sense "the same" as items in another subject The third pass thus has a
perspective that can encompass several theories

We can correlate these observations and Polya'sidea of levels in Spinoza Our fir pass is
similar to the '`mechanical" and "rational" levels, the second pass, to the "inductiv'e" level.
and the third pass, to the "intuitive" level of understanding

:.0

./
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3

3.2 Knowledge Involved in Understanding

Many of the answers, and the processes needed to find the answers, to these questions can be
described in terms of our epistemology Briefly put, the following informiiion is involved in
the answers

I the statement and setting of the stern,

2 the concepts used .r the statement, especially those in the pre-concepts dual.

3 a picture or diagram for the itern. \
4 review of predecessor items, tagging of items on bases such Is worth or
placement on an agenda of items to be,examined in future.

5 the item's dual with emphasis on epistemological classes,

6 a paraphrase, synopsis or outline of statement. and demonAranon

7 look-ahead through the in-space successor and post-dual items with an eye for
important items and epistemological classes

8 overall structure of demonstration main idea. plan and skeleton,

9, exgerimentation with variable elements in statement or picture.
(

10 perturbation of setting and statement search and conjecture In more general

settings, ,addition and/or deletion and/or alteratio of elements In the statement!'

look up in references, retrieval of known countere ample%

II relations with successors and motivated post dual items, dependence on
predecessors and motivating pre-dual items, knowledge of the (pectagogicai)

exposition, knowledge of the topography detours around, direct routes between,
and well-worn paths to certain items

ir
12 intra-space, inter-space, and trans-theory connections, investigation of
scnnenesssrelations through dual and analogy relations

Thus to understand an item in a deep way, (me ought to know about (I) the item itself, (2)
its intra-space relations to other items of the same type. (3) its inter space relations to other
items of Offerers/ type, (4) dual relations to other items of like type. and (5) relations to
items in other theories

'Ow
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3.3 Understanding A Theory As A Whole

Understanding a theory as a 'whole is more than Just understanding its parts In addition to
understanding member items. it includes understanding the ties that bind the theory
together and to other theories Understanding a theory, like understanding an individual
item, involves information about items and connections In addition, it has a perspective

4,
which always seeks to view the item in relation to the whole theory

Briefly, understanding a theory as a whole involves

\\.

I knowledge of the epistemological classes knowing which are the start up,
reference and model examples, the MP's, the CP's, the basic, key and

- . culminating results etc epistemological knowledge

2 knowing the "pros" and "cons" of items which items are good for what,
which items are appropriate,,and when, how to use them, what their limitations

are annotative knowledge

3 seeing the overall intra-space relations of the Individual representation spaces,
knowing routes and detours (eg "from this Item I can get to that one", "this
string of items doesn't lead anywhere", "the following is a quick and dirty way to
derive item X ")- knowledge of a mapping nalltre

,

4
(knowing the inter-space relations such as the items used in recurring dual

relations, which items are the basis for striking dual relations, knowirig which

/ items are dual equivalent, or nearly so, knowing which items are strikingly
similar in the dual sense but are not so within their own representation graphs
knowledge of sameness and closeness, especially in the sense of the dual idea

".,6

5 abstracting and naming the "arrdvs". or intra- and inter-space relations, (e g ,
C,),:->R construction is called "completion" process)

6_,..4cognizing dual and analogy links between items in other theories and
theories as a whole knowledge of transtheory links

7 recognizing clusters of items generalizing or sharing common features and
perhaps eliminating common redundancies and elevating them to the -default",
"common sense" or "foundation" knowledge)

4. Classroom Applications ,

The ideas presented' here w re used in a seminar with six MIT freshmen The purpose of

r

ft
)
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this seminar was two-fold (I) to teach and explore the -rich theory of efgenvalues(eg , the
perturbation and location of eigenvalue theorems such as fou'iki in Ortega's book (13)), and

(2) to make young mathematicians aware of the ingredients and processes involved in
understanding mathematics

The epistemological and -.organizational ideas seemed.natural to the students, especially in

discussions in which the students worked out their ideas about keeping (rack of what they
knew and wanted to know They 'essentially asked for a representation that anc ed

examples, results and definitions, with orderings, and cross-space, ie, dual, connections

These ideas were also a source of homework problems For instance, a standard type of
problem in the seminar was

Another was

List the dual Items for a given item

Tell everything you can about this item

After the discussion on representation 4 the students were asked as a homework assignment

to map out the knowledge domain of the seminar according to our representation scheme,

about a month later, they were asked to update their representations In the seminar we all

workgd together to meld our representations While there were some lively debates on how
to weave an item into the representation, these sessions always seemed to benefit the students

by making them aware of larger issues of how the 'subject hung together Thus the
organizational process, itself, proved very helpful for developing understanding

Another type of problem which they enjoyed involved the comparison of theorems
addressing a similar topic (e g , the location of eigenvalues In the Gerschgorin'Circle,
Symmetric Perturbation, and Hoffman -Wielandt Theorems (13, Chapter 3))

Alter shout * month the students wantett to resitw and catalogue what had this], tar been covered in the seminar

At first the attempted to Iltt all the items In chronologkal order Next they artil tltls Ilsi Into two 11111

(definitions and theorems) and thin a third fecarnriesi they tried to order Ow according to hen Items tics tarred

this the found unXistisfactory since item' came tip more than once and chronology seemed to have very little In

ell with anything Next they re- ordered results according in what we here have called 'logical support arid

esamples by a mixture of chronotorY and increasing complexity conkepts remained In chronolop,k al order hkh

was easentially this anthor s pedagogical order) This author then bold them about directed graphs and litres and

with 11111e prorrtIng they adopted the three ferreseniationsparha of !hilt paper They were then happiiy

proceeding to raga ni/e cverNihing this way in dirty colors ol chalk when one 01 the iitudent )tamped up grhhe4

another color chalk and rounding his fist on the blackboard said But that a not elf there la each of these results

should be connected to anme examples and definition* And $o entered the dual Idea
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WAtcA theorem is easiest to use, and when?

Which provides the best results, and when? /
Cook up at least three (2X2 or 3X3) exat pies to iilustrate your answers

Most students used reference'examples (e g , the identity, Basic IS) and model examples (e g ,
diagonal. upper tnangular) in their answers Together we inveiligated more complicated
matrices with less simple entries (eg, non-symmetric matrices, matrices with entries of t's and

10-115, the Hilbert matrix)

In general. the students displayed a level of 'mathematical maturity that one would be happy
to see in advanced students They became excellent question askers and idea generators,
discussions often left the areas of the author's expertise and entered areas where all were on
"hands and knees" together In short, they became active

4

4.1 A Theorem Proving Anecdote
5 ...

t

Even though the emphasis of this course was not on proving theorems but on
understanding them, the following anecdote shows how natural some of the ideas of this
paper were to them One of the students. ken, requested that we prove the Cayley Hamilton
Theorem tCHT) which-states that every matrix A satisfies its own characteristic polynomial,
det(A,X0.0 The students agreed to try to find a proof, but they did not want to wank out a
purely computational proof involving manipulation of 2x2 and then 3x3 matrices with an
induction argument for the general case Also, we did not want to become involved in
considerations of the "minimal polynomial" and its attendant. algebra The following is a
nearly verbatim report of the dialogue that ensued when the students were asked to suggest
a plan of attack

0

JOHN The theorem is certainly true for the identity matrix 1

DAVID. Check Further if the CHT is true in general, it must be true for
diagonal matrices Right?

ERM Right

JOHN That case is easy

DAVID OK So now we should be able to show it's true for diagonalirable

matrices, by using the similarity transform SIDS, on diagonal matrices and
hcfPing that the algebra gots away

KEN So?

1..

)
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DAVID So, then maybe we can get the general case by doing the same thing on

upper triangular matrices and using the fact, le, Me Jordan Normal Form
Theorem, which we haven't proved, but know about and all believe, that all
matrice,s,are similar to upper triangular matrices with their elgenvalues on the

main diagonal

KEN That sounds good to me

JOHN Does all the algebra come out right?

ER M Let's try it and see

And so we de4lopeci David's plan by establishing the theorem in the tipper triangular case

((25 p 224) gives an approach to this) and it did indeed lead to a proof of the theorem
`There are several noteworthy features about this episode (I) the line of reasoning parallels
exactly the direction of constructional derivation of one branch of the examples graph we

built Identity --> Diagonal --> Upper Triangular, (2) they strongly used reference and

model examples teg, identity, diagonal and upper triangular matrices) of the eigenanalysis
domain, (3) the whole interchange was completely spontaneous and took but a minute The
rest of the seminar was truly amazed at the speed at which David formulated his plan, and

also how pretty it was David commented that it seemed the "obvious" thing to do Ken

chose to write about this theorem, its proof and the Importance of examples as his term

paper

/
4.2 Some Commdnts on Problem Solving

During the semester, the students met to work on some selected problems in p one on-one
manner The ground rules were that these sessions were not tests, they could look up
anything they wa'nted in our notes and references, they could always ask for suggestions and

advice, there were no time constraints, and if possible, they would try to think out loud
while they worked

All the sessions were tape-recorded The problems ranged tri difficulty and style from
standard questions with a stated goal, such as .,

07

Show that the possible elgenvalues of an involution (U2-1) are 1 and -1

Give a counter - example to show that interchanging rows of a matrix does

not leave its elgenvalues unchanged

to more vaguely -posed problems, such as

9
,.

.,
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What can you say about the spectrum of it permiktatton matrix?

Most all of the students handled the first question by using the declata 've definition for
"etgenvalue" All the students answered the second question by examinin the reference
collection of the "Basic 16" Most attacked the third question by ex in e 2X2 cases to
form a preliminary conjecture-and then some of the 3X3 cases totest and reftne it. not all
started out this ,way, but those that tried to attack the problem through more general
arguments found they could not get a handle on the problem and thus followed the heuristic
of examining the two dimensional case To this author's delight they handled these
problems with great poise and enthusiasm They fere, for the most part, completely
undaunted by the fact that they had to decide how to hack the open-ended problems As a
bonus their answers were very complete

5. Understanding Mathematics

Understanding mathematics Is a process that can be understood and to some extent taught
In our view of understanding, a good part of the process is concerned with building and
enriching a knowledge base This Includes creating associations of many kinds as well as
items It also involves differentiating between various kinds of items according to their
function in acquiring knowledge. familiarity, and expertise

In summary, some of the ingredients of the process of understanding matematics are-

I Knowledge of items and relations general types such as the item/relation !fairs
of the three representation spaces and dual relations, as well as particular ones
such as generalization and specialization,

2 General strategic or control knowledge such as knowing to restrict the
situation under consideration to the particular case of an example, such as a\N
reference example, in particular, restricting the situation under consideration to
the case of a example of known generality, such as a model example, analysing
how things/work, and then lifting back up, knowing to fool around with
examples, especially reference or marls, when out of Ideas, knowing to perturb
statements and settings,

r,

3 Meta knowledge such as knowing to keeppne's eyes open for items of Special
note such as models, references, MP's, etc, and knowing that keeping track of
links by mapping out one's knowledge base (at least thinking about trying td\do
this) can be a useful not only to-keep track of what one knows but to build
global understanding,

4 Epistemological knowledge knowing that certain items serye particular
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functions in understanding, and that some ideas and processes, such as the

"group" idea Cl] or the "divicre4and conquer" technique ill] are very general and

pervasive through all of mathematics

5 Representational knowledge of knowing how-to organize ant` keep track of

what one knows such as throughvaps and networks of items.anq relations, and

through representation schemes, such frameworks'for individual items

Thus, to understand an item of a theory fully, one must be able to examine it at different

levels of detail and from several points of view, follow infra-space and inter-space

associations, perturb and fiddle with items, and survey the overall topography of the spaces

individually and together, and, link the% with other theories. In short, to achieve a deep

sense of understanding one must have established many links of all kinds

ti
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