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CHAPTER I ._f”e

H ! -
) C BAs(g CONCEPTS . . .

- N kS
< . "
N .
- . T .

SECTION 1 - LENGTH AND TIME o

L}

— B _ -
’
o

¥ Length of. distance is measured in terms of an arbitrarily defined SI*

unit called the meter (m). One meter was originally defined -to be
. 1/10,000,000 of the distance between the North Pole'and the Equator,
measured along a parallel of longitude through Paris,‘France. More re- .
cently, the meter has been defined in teffhs of .the basic properties of -
the wavelength of 1light. . -

- 1 meter = 100 centimeters (cm) : :
= 1000 m1111meters,1mm) . , .
0.001 kilometers (km) -
3.281 feet_(fy)
,1.094 yard (yd)

= 39.370 inches (1n)

5280 ft = 1 mile (m1)

. . ands -

’

- P}

- *ime is measured ih terms of an arbitrarily defined SI unit called the
second (s). One second was originally defined as 1/86,400 of a mean SOLAF ™
- day. It is now defined—#h terms of the vibration frequency of the nucleons i
within a particular atomic nuclegs?" - B

LABORATORY T \
+ -_1 . \
- 7

o The sgudent hould be able to use gtfious length measuring devices (ruler,
meter stick, vernier caliper, micrometer caliper, cuthetometerr Mmedsuring
microscope, etc.) and thus measure distances, areas, and volumes. -

o

When making céleulations, it is ihporﬁhnt to consider significant figures.
A significant figure is defined as one that is known to be reasonably \“ .

trustworthy. One and only one estiiliated or doubtful fiqure is retained

and regarded as significant in reading a physical measurement. A usa@ful,

but very rough, rule states that in multiplication and division the result

should have as many significant.figures as the least accurate of the factors.
- All integer data (e.g., 5 s, 4 m, 40 days, 100 years, 4000 miles, etc. )

w111 be considered to have 3 51gn1f1cant figures unless otherwise stated.

WCRKED EXAMFLES . * - . : -

4 .

1. The length of a football f1e1d s 100.0 yards. Express this length
in meters. . ‘

100.0 yd = (100.0 y )(377;;5—;5d = 91.41 m A

- " .

% :I is the International System of units‘Jhlch is the preferred system of units
: [:R\f:Eoz scientific measurement. .

- . = f 4y | -3
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One of the Olympic track events is the 100.0 meter dash. Express

this distance in feet.

100.0 meters = 1—58—;—&) =328.1 ft ’

-~

{100.0 m) (

The distance between St. Louis, Missouri and Chicagd, Illinois is
about 300 miles. Express this distance in kilometers.

5280 ft 0.001 km

) ( ) ( im ) ! .

lm
3.281 ft

300 mi (300 mi) (

483 km

PROBLEMS

=
3

The distance betweeh the sun and the earth is about 93 000, 000 miles.
Express this distance in kilometers.

. (1.50 x 108 km)

The diameter of a typical carnival ferris wheel is 10.0 meters.

How far (in feet) will a rider travel in one revolution of the rris
wheel? HINT:  The circumference of a c1rc1e of diameter D is D.

J

o (103 ft) .
An "Olympic sized" swimming pool is at least 25.0 meters long.

Many American p are 35.0 yards long. Which pool is longer?
how much?

By

-~ (Olympic sized, 2.35 yd}

. AnAmerican made automobilétypically has a speedometer with a range
of 0 to 120 mph. 1In the not too distant future the United States
will’ probably convert to the metric system and speedometers will be
calibrated in kilometers per hour. What range of numbers will then
appear on the speedometer scale? | .

(0 to 193 km/hr) -

"

SECTION 2 - MASS AND WEIGHT

Mass may be thought of as a quantltatlve measure’ of ¢he 'resistarnce of

a body to a change in its- state of-motion.

For/example, a more massive

body is more difficult to start from rest or btlna to a stop than is a-
less massive body (frictional effects are ignored).




-~
In the metric systém mass is measured in an arbitrarily defined SI unit’
called the kilogram (kg)-where

’ \\* 1 kilogram (kg) = 1000 grams (g)
/ : .
In the English system mass is measured in slugs (sl)

Mass may also be thought of as a measure of the quanti z of material .
1n a body. . R

Weight measures the pull of gravity on an ébject.

In the metric system weight is measured in a unj {ed the newton (N).

Weight in newtons (on earth) =(9.8) (mass\{n kg)
Thus, 1 kilogram weighs (on earth) 9.8 Newtons.

In,the English system weight is measured in pounds (1b); 16 ounces (oz)= 1 1b.
) /

Weight in pounds (on earth) = (32) (mass in sl)

A useful conversion factor is /

(3

11b=4.45N

Mass should not be confused with weight. Mass and weight are proportional
to each other but mass and weight measure two basically different gquanti-
ties. For example, on earth a mass of 1 kg weigchs about 2.2 pounds.
Similarly, a mass of 2 kg weighs about 4.4 pounds. These samé masses
would have different weights if they were taken to the moon or any other
celestial body with a different size and/or composition than the earth.

Mass is a more fundamental quantity than weight since the mass of an ob-
ject .is independent of its location. Weight, on the other hand, varies

with location. For example, the weight of a person on the moon is only
k\ about 1/6 of his weight on the earth but his mass is the same. .. g
A "150 lb earthman”weighs only about 25 1lb dn the moon. g
- i
By )

Mass may also be defined operationally. If two isolated objects are mads
to interact with each other (for example, two gliders on a level air

. track are tied together by a compressed spring which is subsequently re-
leased) and as a result of the interaction object #1 travels a distance
of Sy while object #2 travels a distance of 85, then, by definition

52 mass 1° m1




For example, if as a result of  an interaction one object travels

40 cm while the second object traveis 15 cm the ratio of mass #2 to mass
=#1 is (40 cmy/(15 cm), or 2.67.

If object-#1 is chosen to be equal to.one unit of mass, then
. ’ vy s
(mass #2) = m, = P (mass #1) = P (1 mass unit) =

0

n
N

1

2
2 ' 2

For example, if in the above example mass #1 is 1 kg, then m, = 2.67 kg.

LABORATORY
- 1

The student should be able to use various types of balances (spring
balance, double pan balance, bathroom scale, substitutidn type balance,
etc.) and thus measure a range of masses (several kilongms to 1077 -
1073 grams). k R

. [}
Alsb, using a device such as the air track, the student should be able
to operationally define and measure mass. ° '

WQRKED EXAMPLES .

1. In a grBcery store meat is sold by the pound '(one pound is tue
standard weight of a certain mass). A shopper purchases -a 5
pound roast. Suppose the scale were calibrated in kilograms. What
* reading would appear on the grocer's scale?

R . 5 1b =(5 1b) (5-2d) = 2.3 kg
L 2.2 1b
P \
Iy R . . \ 3
} NOTE: Strictly speaking 1 kg ¢ 2.2 1b, but 1 kg weighs 2.2 1lb.) ’

"~ 2. A typical adult’'female weighs 110 1b. Express this weight in newtons.

‘

110 Ib = (110 1b) (2595 28N, _ 490 N

. 2.2 1o’ " 1 kg

r

= 4.9 x 10° N

3. What is the weight of a 40 kg mass on earth?

W= (40 kg)(gl'(8 N

) = 390 N = 3.9 x 102 N

STUDENT PROBLEMS

-

1. In an attempt to measure the unknown mass of an air track glider
by having it interact with a standard 0.25 kg glider on a level
air track the following data was recorded: {)




distance moved by standard glider = 40 cm

- ‘ ;  distance moved by unknown mass = 18 cm
” Find the mass of the unknown glider. ¢ ,
(0.56,%g) 7>
‘ I'4 ot \.".
2. The weight of a certain person is 150 1b. Find this mass ik kilo-
g grams. . . Y
T, . (68 kg) L W \ .
P 3. A can of pears weighs 12 3/4 ounces. Express this weight in newﬁéys. LT F
T f (3.6 N) o
° v, . N\
o T
N SECTION 3 - MEASUREMENT AND ERROA: ACCURACY; PRECISION e

Y

.Jhenever you make a measurement, there are certain errors in the measure-
-ments. -

A) -Systematic Error. These error e produced by Eﬁggg defects in the
measuring instruments or their use. They can be eliminated from the
’ final results of measurements. .
' /
B) Random Errors arise from totally unpredictable sources and cannot be
eliminated. However, their effect on the final results of measurements
can be minimized. ' - .

e Ll

Thgxﬁffthmetic Mean of a set of measurements m,, m_, m_, m,, oMy of
. : - - . . 17 2 3" 4
- .- the same quantity is given by "\ &

- N
sum of "readings
number of readings

ARITHMETIC MEAN =

m

. For example, it a length is measured 7 times and'the results (in cm)

} are 4.52, 4.64, 4.72, 4.54, 4.63, 4.57 and 4.59 the arithmetic mean is
. = _4.52+ 4.64+4.72 + 4.54 + 4.63 + 4.57 + 4.59
) 7 ,‘ ‘
= EZ%Ei = 4.60 cm - \ =

N
S

\

R

1

1

i
}

o




PR . N * 4
'3

The abgollite deviation from the mean d. of an individual reading m; s

“{s the absolute value of the difference between the reading m and” the
mean value m of the set of readings. ) . ) /
, . . . p
A a, = |m, - m|”~ !
i i

For example, for the data above, thq?absolute deviations from the mgj%
are(0.08, 0.04, 0.12, 0.06, 0.03, 0.03 and.0.01) cm, respectively.

¢ s
The average absolute deviation.is defined by . . W

, ., ‘
sur of absolute deviations from the mean ./ .
" number of readings . B '

d =

;
a ® ;
‘

- ] ) iaa'l 1

Pl . - .
. N : .
- . . S .
-7 v . -
- ., ol

For examplé, for the aﬂove set of readings L ‘
‘ c \ i e

!
!

A

g

\ 7
_0.37 cm \‘ ‘ ’ I : ’ -
-7 ) - : :': . -

|
‘-0 | i . .o

, L
7 0.08 + 0.C4\+ 0.12 + 0.06 + 0.03 + 0.03 + 0.0
|

\ "~

The uncertainty in a set of measurements is usuﬁlly considered to be +d.
i 1

For example, for the above et of data the uncértainty is #0.05 cm.
¥ 7

\ - -

The measured value of a quantity is usually Lﬁstéd as

¢ ) ;t‘a ;:: l I
This means that the "“true value" probably ¥1es in the range defined by
m-3d and (m + 4d). ‘ Cl .

\ i ) )
For example, in the data used above the results of the measurement would
be recorded as ;

(4. 6 + O.QS) cm

This means that the "true reading proﬁébly lies in the range 4.55 to
4.65 cm. ’ )

f H »
, The results of different sets of m&asqiements of the same quantity or )
of sets of measurements of differen quantities are considered to be

identical if the ranges defined by W ¢ d overlap. N

v ) \ )
\ ) .
. H
-—

1




’ . Vo 4 T \
- For example, if the speed of‘a car were measured on- 3-sa@parate occasiorns - =
and the results were (2.50 % 0.03) m/s; (2.56 + O. Ql) /s and (2.45 * O. 05) .
m/s, one might Isay that the results of t;he flrst; and third measurements were :
identical since the ranges Gefined by (m + uncertainty) overlap. Thy -
range indicated in the Second measurement does not overlap cither of the _ . -
other two -ranges; hence, the second measurement is significantly different

than the ‘other two measurements. ) R e

rhd .

2 AN
The precls;,@ c;f\q set c.E‘measurements refers to the size of the uncer-

K tainty.» A 1. uNcertainty indicates Q_premse measurement. Precision C
. 1mp1xe§ repe ta5111 Y.

.- . Po- y@ ;
_ 5. For&xan\ple, he secgnd speed measurement above is the most precisely " N
- deterﬂuned valub. « . . a3~

’ :

| .If al][ measurements\ ere allkerone—half of the smallest scale div1s1on on i '
the mstrument is the uncertainty. This is a}so the mmum uncertainty

L for any measurement. - ,’ o ,i
. M Y T I .
. ' Accuracx refers to thegcorrectness of a medsurement. A measurement may R
He precise but inaccurate. For example, a precise measuF¥ement may‘e T
e/ made on an instrument which has a systemat:.c error (e.g., a *non-zeroed" .
' scale). An accurate measuring device is one whlch gives the same results -
as an instrument which is correctly calibrated against a standard. .
’ ' » ‘ \ ) . P
. K . .
LABORATORY L .
_—l— . i

a The student should be able to apply the above techniquess« to ‘'the determina-»
tion of the "best values" c? a variety of experimentally determined quant:.-

: ties. For ekample,, e . - .
N . . . /
; '\ Value of a resistance \ . - -,
| : _ Diameter of a cylinder \ N S St
- Mass of a typical penny « i ’
| ~
‘ Speed of a glider in a given envixonment on an air track
Average velocity of a falling hodyx - x
etc. | ) - s s
WORKED EXAMPLES . o T e e
1., Repeated measurements of ta acceleration of a falling body yield : s;

| the following results: 9. 75, 9.73, 9.84,-9.47, 9 99, 9,90, 9.69,
9.79, 9.85 and 9.80 m/s?. Find m, d~ : . ‘

s
IS5




1
¥

5
o

“ 9.7 .  0.07
9.73 . 0.09

9.84 " 0.02
9.87 0.05

9.99 Q.17

9.90 0.08

) 9.69 - 0.13

- 9.79 - G.03
N 9.88 -0.03
9.80 . 0.,02

A 10{98.21 10}0.69
e - “F e 9.8 d = 0.07

Therefore. résult is (9.82 + 0.07) m/s2.

N - N 3 o ‘.
According the 'Life Insurance Statistics the

"normal life . .

expectangy" fer & white female born in the United States today .

+

statement?

(1975) is about 74-75 years. Just what is exactly meant by this

It is really somewhat hard to interpret this statement.

. ;
What ‘it

lmay mean is that if all white females born this year in the United

Stateswere able to live their entire lives

and medical conditions then the average age
years. S ‘ . N =

The statement ‘above does not mean that all white females torn in. 1975

under the present social
at death would be 74-75

i
5

will live to be 74-75; it merely implies thrat the "avérage" one will

live to be 74-75.

figures.

The statement above says nothing about the uncertainty in the 74-75

For exapple,

.as well as the case whe

the case of mdst dying in the range of 70-80
re large numbers would die of varigus child-

hood" diseases and ¢ mplications of childbirth and large numbers
would. live beyond 80 yéars could both lead to the 74-75 average.

Heﬁce.‘the statemerit above is’incomplete and,

meaningless. It is‘a good example of the mi'su

-

‘
i
A :

How could the above statement be imp’ved?

tﬁerefore, somewhat
se of statistical data.

<
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STUDENT PROBLEMS' ~ : S N

L

o~ - ' ‘ -
1. Electrical resistors are sometimes labeled as 1%, S%Q‘IO% or 20% ' 7
resistors. what do you think this terminology means? In particulsar,

Tevplain this terminology as it applies to a 10%, 500 ohm resistor. _‘ /
_ ) e (refers to uncertainty; /
- ‘ . . {500 * 50) ohms} | /
P . ER / b

2. "The "normal score" on an "IQ" test is in the range 90-11¢. What is
meant by a "normal sco{eﬂ?

3. wWhen a person buys a life insurance policy he is essentially betting
the company that he will die before the company has collected enough -
. money from him to offset the loss it incurs when he dies. Discyss
- ’ in 2 general way how the insurance company sets the rates for its

various life insurance policies.

! 4.. Repeated measurements of the time of fall of a freély falling objert
. yield the following results: 4.65, 4.86, 4.67, 4.76, 4.84, 4.84,
4.94, .66, 4.90, 4.70, 4.95, 4.65, 4.91, 4.74, 4.99 s. Find m,

and d. ° o
: " ’ : (4.80 s; 0.11 s)

. 1 e
i

SECTION 4 - BASIC ELECTRICAL CONCEPTS*

.3 - + \
L Electric charge is a property of matter which causes objects possessing .
. ¢ . ~haracteristic to react with each other in 'certain ways. In particu-
N ‘ere are &wo types of electric charge - positive and negative. Ob-
j~rcs naving charges of, the same type reggl each other and objects having
charges. of different types attract each other. ) -

;Tﬁe upit of -electrical charge is the coulomb (C). .

Current refers to a.flow of electrically charged particles. In many
“caseg of:interest this flow is restricted to a wire. Here negatively
charged particles called elections flow in the wire. 1f this flow is
a;&axs in one direction we speak of a direct current (pc). 1If the flow
- - periodically reverses itself, first flowing onc way and then the other °
?ﬁay, we speak of an alternating current (AC).

<
., s

nedy

— s . .
. [
v

#This matarfal. is pzésented here for reference purposes and should not xeally
be considered as part of Chapter I. Howeveér, much of this mat.rial will be R
quite useful %o help students understand Chapter IV - Temperature and Heat = ’

> where much-of the"materia{’(laborato:y meésurements, in particular) is related

Q

$o-electrical concepts. . , .

n® .
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Current is ﬁeasured//g/ peres (A). If 1 coulomb of electric charge
passes a poxnt’;n/I'second,we say that the current is 1 ampere - i.e.,

1A= 1//[5/ H

A meter used to measure current is called an ammeter. The electrical
symbol for a DC ammeter is o

+

O~
) -19

The electroﬁ‘?as a charge of 1.6 x 10 ~.C. Hence, one ampere means that

6.25 x 1018 electrons flow past a point each second when the current is 1 amp,

Electric circuits are combinations of ‘devices through which an electric .

current flows. For a steady current to flow the circuit must provide a’

path(s) which is(are) c?mplete (i.e., closed). - . .
The Potential Difference (Voltage) V between 2 points in a circuit ‘s~ ’_,/,
measured by the work W (in es) required to move a unit p051t1ve ghargé .

from one point to the other.
Voltage is measured in volts (V). If.one joule of work is needed to tove
1 coulomb of -charge between two points in a circuit,we say that the poten-
vial difference between these two points is 1 volt. That is, 1V =1J/C,
o an £
If a charge Q moves between 2 points in a circuit"that differ in potential
by V volts,then the work W done by the charge Qﬁiq/movinq from the higher
to the lower potential point is W = QV.

A meter used to measure voltage is called a vbltmeter. The electrical
symbol for a DC voltmeter is - ton

: (T

\" .

Electromotive Force (EMF) is a term which_aescribes a device which does
work on the charged particles moving through it. A battery or a genera-
tor are examples of sources of EMF. In moving through a source of EMF a
positively charged particle picks up electrical energy as it goes from
the lower to the higher potential side of the source of EMF. EMF is mea-
sured in volts. The EMF is measured between the terminals of the device
when it is delivering no current.

For example, an ordinary ”D-cell” used An flashllqhts has an EMF of

1.5 V. .
. \

EMF's deliver currents to external cirguits connected to them. The electri-
cal symbol for a battery is , - _ and for a DC generator is
_._f.._ —_—— T+

ek
<
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Voltages across a resistor are called voltage drops (IR drope
the convention that current goes through a‘resistor from the high poten-

-11-

The resistance R of a conductor measures the impeding effect it has on
a current passing through it. Resistance is measured jn ohms (). An

ohm is defined a~ the resistance of a conductor which will carry 1 ampere
when the ends of the corductor differ in potential by 1 volt. That is,

7

1Q

1v/a
Resistance also depends upon the length £ (in meters), cross-sectional
area A (in m¢)}, material and temperature of the conductor:

« -

g

Y

s R=op

where . 1s the resisti aty - a characteristic of the material. ¢ is
measured in Om. Resistivity is a function of temperature. N
Ti.e symbol for resistance is __MN_

Y

L - -
R e i
Chm's Law fs a relationship -holding for most metallic conductors:
' v
1=~ =
R

This relationship can be applied to any part of

a circuit or to the en-
tire circuit.

For exampie. if a voltage of 5V is applied to a 10 ( resistor, the cur-
‘rent will e I = V/R = 5 V/10 & = 0.500 A.

Resistance can be measured by using an ammeter and a voltmeter.

crnnecééd
as follows:

meu‘\"

Key ; /

-

‘

Be careful to observe polarities when connecting meters. /The key is
merely @ device for turning the current off and on.

), using

tial enc to the low potential end.
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In a series circuit all of the current flows through each resistor

successively. The current in all of the resistors is identical and the .
total potential difference across resistors connected in series 1s equal ‘
To the BUh of the potentlal differences across the separate resistors.

The total equivalent resistance R of a series combination R;, Ry, R3,...is

=R +R + .
- R=R + R+ Ryt oo,
- - A
For example, for 3 resistors - 34, 5Q, 8 Q - connected in series . R

R= (3-# 3+ 8)2 =16.0 Q.

A typical series circuit, using these resistors, might be the following:

3Q 5Q 89

12 v . ‘ )
'[ .

In a parallel ‘circuit the current can follow two or more separate paths.

The total current through the parallel combination is equal to the sum of
the separate currents in the individual branches of the combination. The
voltage is the same across each of the branches. The total equivalent .
resistance R of a parallel combination‘Rl, Rzz R3, ... is

£ - -
SR tE et
1 R 3

s f

For example, for 3 resistors - 3 @, 5Q, 8 Q2 - connected in paralle!

1_1 1 1 _40+24+15 79
ﬁ 3IqQ 582 89 120 @ 120 @
120 @ _ e
.. R= 5= 1520

’

A typical parallel circuit, using these resistors, might be
39

v .
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Electrical Energy U is measured in joules (J) and kilowatt-hours (kW-hr).
1 kW-hr = 3.6 x 10~ J. For a Dc-gircuit (and certain AC circuits) obeying
Ohm's Law ’

2
. . ' U = TVt = IRt A A
R R
For example, 1f a current of 5 A flows through a 10 Q resistor for 5
inutes. the electrical enerqgy developed is U = 12rt = (5 A)2(20 ) (300 5. *°

“i\y.SO x 104 J = (7.90 x 104 J) (1L kW-hr/3.6 x 10 J) = 0.208 kW-hr.

. \ -~
Electrical Power P isﬁ‘electrical(enerqy/time) and is measured in watts (W)
and kilowatts (kw); 1 kW = 1000 W. 1In a DC-circuit (and in some AC cir-

ciits) for which Ohm's Law is, valid

‘ 2 \ ‘ -
= = R= —
\ P=1IV=I1I 2 '

\ -

For eihmpié, if a direct current of 5 A flows_through a 10 & resistor, the
electrical power developed is P = I2R.= (5 A)2(10 Q) = 250 W. !

Also, ] watt =1 jogié/second or 1 W= 1J/s.

In various electric circuits electrical enexrgy is converted into heat
(toaster, iron, space heater, etc.), sound (loudSpraker in stereos, TV's,

etc.), motion (various kinds of motors), light (incandéEben@»lamp).

-,
-

~ e .

» : .

\\

Given a circuit diagram, a battery, connecting wires, resistances, ammeter,
voltmeter, timer, etc., the student should be able to hook up the circuit
and mezsure the various electrical quantities - current, voltage, power,
energy, - applicable to all parts of the circuit. i

.
s - ~

SOLVED PROBLEMS . .- - , \

¢
1. Find the current in the circuit below. Also, find the electrical
energy consumed by the circuit in one hour. . '

S .
R R, R, o _ _ B
40 6 R 10 9 .

+ ' - .
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. ~///////gbe/€6tal iesistance”R of this series circuit is-
/ ‘R=R1v+R.,+R3=4Q+69+109=20.09 ’
Therefore, the current flowing is )

. _v_1v o : d
-- - I=%R . 20.0Q (_"600 AT \/ y
. - The electrical energy U consumed is N :
. P | . v \ ,
U=Pt=1IVt=IRt=—1t
- . . R
. » . ' . I \\'
Iyt = (0.600 A) (12 VY (3600 s) = 2.59 x 1& J .
. ‘.2 ’ B . .
1%Rt = (0.600°A)2(20 Q) (3600 §) =-2.59 x lOA\.\J
. )
v2 (12 v)2 - 4 1 kW-hr
' t = 20 (3600 5) = (2.59 x 10" J) (———-;6—) . e
3.6x10 J
4 s = 0.0072 kW<hr

/ .
2. Find the jcurfent in the circuit below. ‘Also, find th&lectrica!
energy-cgnsumed by.the 10 Q resiStor in one hour.

. ' ) I R, w4 ] \ _

The total resistance R of the cifcdit ::.s

1.1 . 1 1 o1 41 _a5F10+46 31,
R R "R, 'R, 40 68 \lo® 60 60
1 2 T3, &R |
60 [
R=z70=1.940 . ,

- v _ 12V '
=L w5 =6.20 A
T"R% 100 ;

. ~ N ,
.\ . *
The 10 R resistor has 12 V across, it (as dg the 4 % and 6 Q resm@rs) .
- - ° N * .

.
- ’ 1 . [

- A}

- ™ T ) \—/ ter ° ’
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) ‘U =Pt = ‘-;—J. = 0(—%}’1—)—) (3600 s) = (1.44 x 10 2 kW) (1 hr)

1.44) x 10”2 xw-hr

-‘ ‘ 6
. =2 3.6 x 10 J
= (1.4.4 10 © kw-hr) (———kw-hr )
. ) " T
. ) 4
. =52x10 J 7
3. In the circuit below, find the current in the 8 Q resistor and the
pover consumed by the 10 @ resistor. 100 = R2
A ;
¢ - :
The resistance RP of the parallel combination is
. - - [ 1"
L5 1. 1 1 _12+10+8 30
R, 12 1240 159 120 Q 120 Q 3
| ST I dn-a009 ‘ g
\ -’ = ES =4,
\ ,;:é{ y F&ﬁ 30 ..
. T ) Y —-'4:: i A
L - The total resistance R of the clrcult is-
3 - . \-a
\ “ ) =89+4‘2=12.0Q‘
The current I delivered by the battery is = ¥
v _ 12V )
N = — B ———e = oc A '
I=g*na- b \
1.00A flows through the 8 @ re31t\pr. Hence the,gotential drop o,

’ across this resxstor is . R

1
. -

(1.00 A) (8.00 Q) = 8.00V <~ - | -

- ‘! cPherefore, the voltage across the 10 @ resistor is (12 - 8)V = 4.00 V '
and the power P used by this resistor is

_ i V_Q(
P R_—_LIOQ l)GOW

, »n

'

’




STUDENT PROBLEMS

1. What resistance must be placed in parallel with a 30'9 resistor in
order to reduce the combined resistanece-to- 10 Q2

o (15.0 Q)

2, Compute the resistance of 500 m of copper wire (resistivity is-
1.8 x 1078 Om)haking a cross-section of 0.30 rm2.

. I (30 Q)
, / :

3. For the circuit below find all of the currents and voltage drops.
/7 How much electricAl energy is consumed by the circuit in 30 minutes?

m’
—
=
W N -
now oW
o o
(SRS
N
a w
P P

Voltage across R/
Across (R, + R3)
Across 84 =

!
: 4
4. A50Q electric heater operates on a 110 V line. Find the rate at
which heat is developed. 3 : ~
(2.42 x 10° W ) "

.
(0
-
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CHAPTER II

TRANSLATIONAL MOTION »

SECTION 1 - DISTANCE - .

The position P of an object in space can be spe¢ified in terms of its \
X-, Y- and 2- ¢oordinates: (X,Y,2). : : A\,

- |
For example, the position of Point P in the XY plane, as shown below, "
could be specified as (3,4); i.e., 3 units right of 0 on X and 4 units /!
above O on Y. ' - . .

a Y . /
. 6+ . P(3.4)" A . - - /
~ qp-—--' i I" -
. | . !
-
21 ] ’
5, No X
-~ 0, "1 2 3
. » Cy Fig. (1) .
‘ The distance s between two\ points (xl, Y, Zl)‘ and }(xz, Yz, Zz) is
given by , )
Y ST I 2. 2 )
= - - + -
s (Xz Xl) + (YZ,YI) (22 Zl) S
For example, if an 'object P nqvés along a strsight line from point '
ﬁ""‘""" : (I%,2,3) to point (4,3,7), the total distance s traveled is | \
, Ly V- + 2%+ (-3)?
7 o e ‘ [
. ) =‘/32+12+42 ,

] ‘ . Y26 .
' = 5.10 / o

&

: /
/ GRAPHICAL REPRESENTATION

" - The position of an cbject may or may not change with time. This move-
ment (or non-movemeut) may be represented on a position-time plot, time-
plotted horizontallv. e e e e el

» ) ~ For example, Figure (2) below represents the motion of a stationary
3 - object while Figure (3) represents’ the motion of & moving object.

¥ 4+ - - - - - - .

i
«

-

,r" i
A e . //



4 &
F o .
-’ ‘//i
14 - i
—a 1 N
/9//1 +—+t ; + Er & t(s)
Fig. (2) '

X (m) -

” WORKED "EXAMPLES —

.

2.

An automobile travels from St. Louis, Missouri‘to Chicago, Illinois,
a distance of approximately 300 miles. Find this distance in meters.
5280 ft ) '

ot (T E) = 48k 10°m

300 miles = (300 mi) (

Graphically interpret the motion represented by the followlng
position-time nlot.

X (m)

6
-4 .
2
0 ‘ 4 + -+ $ - t (3) i
. ‘ : 2 .4 T 6
. ‘ 7 Fig. (4
at t =0, X=0 | | s CONCLUSION: the object travels 2m
= 1s, X = 2m } ’ during every second of
=28, X = 4m time; i.e, it moves -
= 3g, X = 6m h uniformly ~

T

STUDENT PROBLEMS

I;

A typical carhival carousel has a radius of 10.00 meters. ©On a

typicdl "ride" the carousel revolves 50.00 times. Wwhat total dis-
tance igfcbvered by a rider during one ride?

-
-

o (3142 m)

25 ' :
v
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2. A car is traveling down an interstate highway and the driver notices
. that he passes the "5 mile post" at 3:00 p.m., the "10 mile post"”
: at 3:05 p.m., the "20 mile post” at 3:14 p.m., the "50 mile post” at

3:40 p.m. and the "75 mile post" at 4:00 p.m. Graphically represent

this motion on a time-position plot, time plotted horizontally.
Describe the general characteristics of this motion.

. .
- N .

Ans. .
\\
\
mi \
X (mi) \ .
f \
A\
| 60“- \\
" A
_ .
' \
40 < ' . Y
rl -2 N \4
204 . - .
4 0 AL ,
——t—t————— ¢t (i)
0 20 4 -~ | 60 :

’ ] 0 . M .« \
(The motion is not uniform: there is'a gradual increase in the speed
of the car.) / ’

g Vowy

SECTION 2 - SPEED AND VELOCITY . T e .

. ; \ .
The avegade 3pged (V) of a body which travels a distance s in time t is
‘ dafined to be : \ - :
. - 8/ L \

- — - - — I . . V= r—

’ aed

i ) ; i “"'\

Speed merely specifies the numerical value ©f the rate of motion of
an object. It is a scalar quantity. . \ 5

\
v

VA

\n

he units of speed are the units of length divifled by che units of
time. For example, spéed may be measured in meﬂgrs per_geedﬁd (m/s),
feet per second (ft/s), miles per hour (mph or m%ngxf’étc.

A
y
24 \
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For example, the average speed of an automobile which takes 6 hours
to go from St. Louis, Missouri to Chicago, Illinois, a distance of
300 miles is . -

NOTE: 60 mph = 88 ft/s is a useful conversion factor.

e e e e —— a

Velocity is a vector quantity, -the.magnitude of which is equal to the 1
speed. The dirgction of the velocity is the direction of the motion.
The units of velocity are the same as the-units of speed; however, a
direction must be appended to each velocity reading: for example,

30 m/s, North. = Q\

Velocity changes if speed and/or direction change(s).

For motion along a straight ed and velocity are synonymous if

one employs the additional genventfon that motion in one direction along
_the line has a positive velocity”while motion along the other direction

has a negative velocity. Usually, the directions of the conventional

coordinate axes define the positive and negative directions.
. AN

- — h Speed and/or velocity can be represented yraphirally. For exahple,.Fig. (5)
' - represents motion at a constant speed while Fig. (6) represents motion at a

steadily increasing speed.

?V-(m}s) ?v (m/s)

-_—

L ;

\ -

- /

-

+—+ +—— t (s8) -

L] ¥ T L4 T | ¥

STEADILY INCREASING SPEED

g 1 3 I L3 1
v ™1 =1 7 T 2 ] \

t (s)

-CONSTANT SPEED
Fig. (5) Fig. (6)

-

More complex types of motion ar®, of course, possible.

\

Speed may also be interpreted as the slope of the positien-time curve.

rise of curve
run of curve

. Slope =

For example, in Fig. (3) for a run of 4 seconds (t = 0 to t = 4 s),
the corresponding rise is 2.5 meters (X = O to X = 2.5 m). Hence,

rise e 2:5Mm - o_ . 2.5 m
run 4.00 s = O 4.00 s

)

‘m
v spped = =0.63 3
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Therefore; Fig. (3) representsia uni form motion with a speed of

0.63 m/s. 7 ’
~ b ) ) .

can be defined at each point, referring to
The result obtained should be inter=
d or velocity at that point. .

For non-linear curves, slope

. the tangent line at that point.
T——preted as the instantaneous spee
- " i
The motions represented by Figa‘(7) below are motions which*dg§ﬁ§t b:ve

. graphs with single valuds for the slope. That is, the slopes’ Fig. (7)
dily increases

¢hange with time. For example, in Fig. (7B} the slope stea
Fig. (7a) the -

with time; this indicates a steadily increasing speed. . In
then it levels off and attains

. slope initially increases with time but
S a constant value. .. - : ; 7 V4
Q s
X (m) N X (m) .
? .
' L o - - . - -

- s
t(s)
(a) . : (b)
Fig. (7) - ’
H
: LABORATORY / N v
The student, using such length measuring devices as meter sticks and
. such time measuring devices as electric timers and stroboscopé€s, should
| be able to measure the average speeds of such objects as falling bodies
; or air track gliders. ' v
: ' * o
@ .
* WORKED EXAMPLES
F
E . .
E 1. A bus travels 250 miles in 5 hours. ' Find the average speed in miles
{ per hour and feet per second.
. y — _ s _250mi y ’ \
) V=2 % hr = 50.0 mph
mi, 88 ft/s )
= (50.0 hr)(60 mph ) .
// =73.3 —:_E | 7 B t
) 2(




L < - ~
e

. N R
N . Cos g .

2. An a&tbmobile is traveling at a speed of 60 mph when the driver

> ‘ sees a dog dart onto the road ahead and stcp dead in its tracks. ~
. Assuming a reaction timé of 1.50 gseconds, how far (in meters) will -
. —the car travel while the driver moves his foot from the accelerator e
_ to the -brake? ; N “ , ’
.
» : . o —_i . — R -
AY_t © ) . _‘ P

[ - =
.

s = Vt = (60,0 =) (1.50 ) ‘ ..
- hr_ .

.

) (1.50 s)

y p o mi, (88 ft/s); _ 1m
_ = (60.0.70) (60 mph) '3.261 ft -
'Ie ~, M . N
’ /:7}022 m ‘
- . 2 ~ { * .
o ) 3. The following Mdat.. are recorded by ‘a group of students studying the -
| . motion of an isolated moving glider on a frictionless -level air .
track: ) c o ! N ; i N
X 'POSITION OF GLIDER (x) . * TIME OF OBSERVATiON (%)
- ‘ (m) _ (s) -
~ ; R 0 0 .
’ 0.20 0.4
! . 0.40 0.8 ' ‘
. 0.60 1.2
° . 0,80 1.6
1.00- 2.0 - .
. 1.20 2.4
1.40 ' 2.8
Y 1-60 o N i 3-2 g
§~ co o Construct a position-time plot for this data. From this plot
S _ . determine the average speed of the glider. .

B

‘F c - : . X \m) ) . N R o :
e, e i - z . ’

e T 1.60 -

L




4 . M
N : - -

-rise {1.60m - 0 m) 1.60 m m
= =

. - ’

- R v_ =-slope = run (3.2 s*- 0 8) 3.2 s 0.50 s .
‘él . .2
- t - -
. STUDENT PROBLEMS . . '
3 ] . DR - . * i
- EN . L - ' N
1. A bus travels 75 kilometers in 5 hours. Find its speed in km/hr.
. ' - ' ‘ R (15.0 km/hr)

S L . ) , . ‘ )
= 2. A driver for a trucking company is to deliver & load of scrap iron
* -to a Suburban New York factory and then return te his subyrban

.Washington D.C. home hase with.his empty truck. Assuming that the
distance between the two locations is 100 miles, "that the unload-
ing process takes two hours, -that the driver stops for a half an
. hour along the road for lunch and that he returns to his home bsse .
%4t 5:00 p.m. (he left at 8:00 a.m.), what average speed must he
- haintain onthe road? '

R e S

. (30.8 mph)
3. Johnny Rutherford, winner of the 1974 Indianapolis 500 race main-
° _ tained an average ‘speed of 158.6 mph. How long did the race take

(4 significant figures)?

- (3.153 hr)

N
[

4. Light travels at a speed of about 300,000 km/s in a,\(acudm. The
nearest star, Proxima Centauri is 4.2 light years away. (A light
year is the distance that\’light will travel in one year.) What is

' the distance to Proxima Centauri? .
. 13
, (4.0 x 1077 km)

¢
¢ _ -

5. A ball was dropped from rest and its position was recorded at inter-
vals of 0.05 s. The following-data were recorded:

POSITION (XY TIME (t) b .
{cm) . (s) : '
, "7 0.0 0.0
e 4.0 o 0.05
10.4 : 0.10
B . 19.3 0.15
. . 30.4 ) 0.20
44.2 0.25
61.4 . 0.30
73.8 . 0.35 (
99.7 0.40 &
123.1 0.15
.148.9 e 0.50 )

Construct a position-time.plot. . Describe the general characteristics
of -the motion. Find the slope of the curve towards the end of the o
motion. What is the average speed towards ghe end of the motion?

a . .
25 . /

{
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SECTION 3 - ACCELERATION *

Accelerat’ sn is a vector quantity which gives the rate at which velo-
city is changing. For a body having velocity Vo at-time t, and velo-
city V at time t, the average acceleration ELAS given by

) V-v
o]

AV

3= —2. .
t-to At -

V=V, +at, if t_=0..

AV and At represent the changes in the velocity and time, respectively.
T Lo, ’ ,

If the velocity of a} r _changes uniformly then we say that its

acceleration is consta .. In detail, for such a body with velocity Vo

at.time t,, and velocity V at time t its constant acceleration a is the

same as its average acceleration (a = 3).

s 2

. i vV-v
o]

Av
@ Ty -t T ’ ()
! (o]

o V=V_+at, if t;= 0 ‘ \ (2)

For example, an auto accelerating uniformly from rest to 30 m/s in 10.0 s
would have “an acceleration of

a -

30.0 m/s - 0 ) )
e 10.0 s - q = 3,00 m/s/s = 3.00 m/s ’

3

~

29
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* This section deals only with motion along a straight line - linear acceleration.
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divided by

Note that the units of acceleration involve a‘'distance unit
the square of a time unit ({ e.q., ft/s*4, mi/hrz,‘m/sz).

Normal.~, both time units are kept the same. Mixed time units such as
ft/sec/hr, m/s/day are usually not used (mi/hr/s for automobile applica-

" tions is &n exception).

For cases of constant acceleration the average velocity V,of a body is

_ V4V
V=T (3)

3
N,

and the distance s covered in a time t is
4)

which can be shown to give
2 ‘
(5)

il
»
v

Also, it can be shown that
. v2 = V02 + 2 as / (6)
For cases where the Dodv gtarts from gest, (V, = 0), equations (2),
(5) and (6) become ) .
o
V=at;s=>at};, v <245, v =0) - 7)
2 \ o]

For a freelyﬁfalligg,hggx_(negligible air resistance) it is found that
the acceleration is roughly constant (near the earth's surface). This

acceleration is referred to as the acceleration of gravity.
g = 32 ft/s2 = 9,8 m/52

acceleration due to gravity*

- Therefore, for a freely falling body, equations (2), (4), (5); and (6)
become .

V=V +gt T (8)

V°+V 1 2 (9)

(10)

* We will assure that g has 3 significant figures.

" ERIC 30
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For e*ample, a body dropped from rest will cover 4.90 m.iﬁ‘i”s;~ -

R

\
5=Vt + % gt’ = (0) (1 &) + -;—(9.8 n/s2) (1 8)2 = 4.90 m

celeration of a given motion is equal to the slope of the velocity-

curve of the motion.

For cases of uniform acceleration the velocity changes by the same

amount ﬁgr each uniform increment of time. Hence, the velocity-time ' |
curve is a straight line. \
In detail, for a body dropped from rest (V_ = 0] the velocity-time

curve would be as follows: ©

vV (m/s)

+ $ -+ +——e» t (s)
1.0 2.0 3 4.0

.0
The slope could be calculated from a run of 3sec (t =0 tot= 3 8)
and a rise of 29.4 m/s (V=0 to V = 29.4 m/s).

3 sec -0

slope = %3%9. - 2_9..1.4—.QL=—-—Q = 9,80 m/32

This, of cource, is the gcceleration due to gravity, as it shdh;d be.

LABORATORY

The student, using such length measuring devices as meter sticks and -
rulers and such time measuring devices as electric timers, gpark timers
and stroboscopes, should be able to measu

accelerations of such objects as, falling bodies and gliders on an air
track.

For example, from the following set of data (glider on an air traék)
the student should be able to construct position-time and velocity-
time graphs as well as measure the acceleration.

. :;;
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e DATA
N S
POSITION (m) O 0.11 0.24 0.34 0.5 0.75 0.96 1.19 1.44

oo

WORKED EXAMPLES R

1. A bodyﬁltnrtinq from rest, moves with a constant acceleration of
10 m/s“ for 6 seconds._Pind (a) the speed V at the end of 6 secondg:
(b) the average speed V for this S5 seconds; and (c) the distance s

covered in the 6 seconds, .

(a) V=v_+at= (0)(638) + (10 n/8%) (6 8) = 60.0 m/s

VeV
. (b) V = ©,.80m/8+ 0 _ 3,0 4ys
" 2 2
(c) s=vt+ % at? = (0)(6 8) + %(10 m/s2)(6 )2 = 180 m
’ A
or ' _ LY

Y — R b %‘_

8=Vt = (30m/s8)(68) =180 m ‘ :
J - ’ -

2. 1In passing a truck on an upgrade on a highway an automobile
accelerates from 30 to 60 mph in 20 seconds. Find (a) the.
acceleration (in ft/s*); (b) the distance covered (in feet) during
the acceleration process. After passing the truck, the auto slows
down to 30 mph in 15 seconds. Find (c) the acceleration and (d)

the distance covered while the auto is slowing down.

(a) Since 30 mph = 44 ’t/s
V-V

- c., 88 ft/s - 44 ft/s _ 44 ft/s 2
a Y 20 8 20 s = 2,20 ft/s
() 8=V e+ Zat?= (44 £t/8)(20 5) + 2(2.20 £e/8%) (20 8)

880 ft + 440 ft = 1320 ft : , :

=1.32 x 103 £

(c) Here the acceleration is negative:

Vv -V '
o _ 44 fr/s - 88 ft/s _ -44 - - 2
a=—¢ = 15 s 15 ft/s 2.93 ft/s

O
&>
‘hn )W

TIME (8 O 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80




2

pees

S

B’S

i - - B
>
«
- L ;
2 B
] . .

(@ s=vt+sat? = (88 fr/e) 1T+ L(-2.93 £e/8®) 05 s’

- v

= 1320 £t - 329.6 ft .
= 990.4 ft . . o K
: = 990 ft , o o -

According to some recent data from the Environmental Protection Agency
(E.P.A.) certain automobiles are able to come to a stop from €0 mph
in about 250 feet. Find the average, constant acceleration,

2 \\
V=V°+2as 7

- 2 2 . * : B
v2- v o _ (88 ft/sec)  -7744 ft/s? -

2 s 2(250 ft) = 7500 ft

]

-15.488 ft/s> .

-

-15.5 ft/s> .

%

A ball thrown vertically upwards returns to its starting pbiht in
4 seconds. Find its initial 3peed.

The‘upwards direction is usuallg considered to be the positive direc-

_tion.- Hence, here g = -9.8 m/s“. -

B

At t =4s, s=0 (Itisback toits starting point.)

s =Vt +Lat
o 2
s - %-at2 0 - %(-9.8 m/sz)(4 s)2 ) ©o
v = —% - T = 19.6 W/s

A boy leans over the top of a building and throws a ball downwards
at a speed of 10 m/s. Find (a) the distance s covered by the ball

in 5 seconds; (b) its speed V at the end of the 5 seconds and (c)
its average speed V over the 5 3econd period. ’

Since the motion is downwards and the acceleration is downwards
all quantities will have the same sign.

(a) s =Vt+ -;— at? = (10 m/s) (5 s) + %—(9.9 n/s?) (5 )2

= (50.0 + 122.5)m = 172.5 m =173 m 7




(b) V=V +gt=10mn/s (9.8 m/s?)(5s) = (10 + 49)T =.59.0 m/s
Vo4V
= o lom/s + 59 m/s _ 69 m *
(c) v= 3 — 2 T Ty = 34.5 /s
STUDENT PROBLEMS | e -

1. A pebbBle dropped from a bridge hits the water below in 4 seconds.

.Find (a) the speéd (m/s) with which it hits the water and (b) the .
height (m) of the bridge. . _ - = " .

((a) 39.2 m/st (b) 78.4 m)

2. A stone igrprojectgdrvertically upwards with a speed o£m35~n¥6{5g?m;ma~7
Find (a) the maximum height reached; (b) the time to reach the top- |
—most point; (c) its speed when it retyms back to its projection
point and (d) the total €ime to return to the starting point. .
. ((a) 31.9 m; (b) 2.55 s; (c) 25.0 m/s; (d).5.10 8)
3. A 1000 kg pile dr;yerﬂhémmer is dropped from a height of 3 meters.
With what speed does it hit the pile?

(7.67 m/s) ----
4. A truck traveling at 75 mph passes a stopped police car at the
instant that the police car begins~to accelerate at 10 ft/sz. How
.~ much time lapses before the car overtakes the truck?

(5.14 s) . i

\ )
i

- 3 ) !
SECTION 4 - LINEAR MOMENTUM AND ITS, CONSERVATION

s

.

-The Linear Momentum P of an object of mass m and velocity Vs -

- °
\ P=nmv _

IS
cN

Sk - )
The units of linear momentum are kg m/s and sl ft/s. Linear momentum
is a vector whose direction is that of the velocity. For example, a
5 kg body moving at 4 m/s to the right has a linear momentum of P = 20
kg m/s to the right. = ‘

. 0 t
Conservation of Linear Momentum. In any collision process between two
or more bodies the total linear momentum of all bodies before the col-~
lision is equal to the total linear momentum of all bodies after the
collis%on, ' ' N

.

-

\\
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! ' -, For example, if my (velocity u,y) collides with m, (velocity u,) and the
T respective velogities after the collision are V; and V,, then

-

+ m, o :
1 : ) mpup ¥ My Yyt mYs (1)

» Remember that the velocities are vector quantities and thus equation
(1) above stands for 3 scalar equations:

.+ =
DU “‘2914_ Ve ™Vox

+ =
mluly mzuzy mlvly + mzvzy - (2)

-~

&b

i

= * + -
muy Lt muy, = MV MY,

/ where u._, uly’ uy ' V1 e Vo vlz’ ... refer to the various X-, Y- and
Z- components” of tﬁe vefoci%!es Uy, Uy, Vl, Vz, (see Section = of this
chapter and Chapter 2 of Math Study Guide).

, We say that linear momentum is a conserved quantity.
¥

: %@ RATORY

e;vh. Using an air track, a ballistic pendﬁlum, a model pile driver or other
v similar apparatus the student should be able to investigate the phenomenon
of collisions, and thus study the conservation of linear momentum.
WORKED EXAMPLES . , .
. L}
1. A 10 g buldet hits a 1 kg squirrel sitting on a fence, and as a result of .
the collision the squirrel and bullgt move horizontally «t 5 m/s.- The -
bullet is initially moving horizontally with a speed u. Find the initial
speed of the bullet. ’ f-
(Horizontal Iinear momentum before collision) ’
i'\ N = (Horizontal linear momentunt after colbision)
Xr\ . g

o (0.01 kg) (w) = [(1 + 0.01)kg] [5 w/s]

505 m/s

u

* 2. A 200 1b hockey player is moying due east at 40 ft/s with the puck
toward the open net. 'He is/hit by a 220 lb defenseman moving 30°
north of west at 22 ft/s, who holds on. What is their speed and
direction immediately after collision (both players glide upright on
the ice)? /

* L

*Optional Material

[N
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X-c._ sponent equation - .

D —

(200 1b) (40 £t/s) + (220 1b) (-22 fr/s cos 30°)

e {420 1b) ¢ cos 91, / ) a

Y-component equation

(220 1b) (22 fc}s sin 30°7 = (420 1b) (V sin )

(2)

:
E 1.
|
;

To find g divide (2) .by (1): .

_ {220) (22)(.500) /

tan ¢ = 1300) (40) - (220) (22) (. 866)
= 0.635" :
¢ = 32.4° N of E . -
substituting in (2) . —
V= (220) (22) {.500) ft/s 10.7 ft/s
(420) (.536) :
. / .
STUDENT PROBLEMS
A 10,000 kg truck moving at 4. 50 m/s (about 10 mph) strikes a
stationary 2,000 kg car in the rear. Find the speed V of the car
,fmmedlately after the ¢dollision. (The cars move together after the
‘ L \
collision.)} (3.75 m/s)
2. A 0.200 ké glider moving at 0.500 m/s on a level air track strikes -

an initially stationary 0.400 kg glider in such a way that the gliders
lock together and move as a unit after the colllslon. What is the compositc
glider's speed after ;he collision? ’

. '

(0.167 yf/s) ‘ .




3. A glider at rest at one end of a level air track has a special gun
on it which shoots ball bearings in a backwards direction. Initially,
the glider, gun and ball bearings have a mass of 400 g and are at
rest. If the qun fires three ball bearings successively at 10 m/s -

relative to the glider, and if each ball bearing has a mass of 50 g,
what is the speed of the glider and attached gun immediately after
the third ball bearing has been fired? '

(6.00 m/s)

SECTION 5 - NEWTON'S LAWS OF MOTION: GRAVITATION

A force may be thought of as a push or pull. Forces are measured in
SI . -s of newtons (N) and English units of pounds (1b). Forces
have .irections associated with them. Usually these directions areé
specified by reference.to a typical rectangular coordinate system
(XY-axes in plane of paper).

/

s/

Force Combonents. Any arbitrarily directed force F can be resolved
into its components along the 3 coord. nate axes. In two dimensions
Fy = F cos 6 and Fy=Fsin 8, where 6 is the angle F makes with the
X-axis. ‘

For example a 10 N force making an angle of 30° with the X-axis has
X- and Y- components.

(10 N) (cos 30°)
(10 N) (sin 30°)

F cos 8
F sin 0

(10 N) (0.866
(1o N)(0.500

Fy

= 8.66 N
Fy =

5.00 N

).
)

,Force Combination. The total force acting on an ‘object is equal to

the sum of all of the separate forces acting on the object. Proper
attention must be paid to the usual sign conventions.

For example, if a vertically upwards force of 10 N and a vertically
downwards force of 15 N act on an object, the net force acting is 5 N,
vertically downwards. :

Newton's Laws of Motion

1. A body left alone'(no unbalanced forces acting) maintains a con-
stant velocity.

2. The time rate of change of momentum is equal to the unbalanced force
acting,
_Ap _ A(mv)
T At At :

L4

37
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. Vo

law becomes \

1

= é-_v-. = N \\
. -P m At Rna

This states that an unbalanced force acting on a bndy will pro-

L duce an acceleration which is directly proportional to force
» ‘ and inversely proportional to the mass. \
. } _ . )
N~ ~ 3. For every gction (force) F, there is an equal and oppos1t;\;ggggigg
, - (force) ~F. (F and -F act on differept bodies,) \
_ If mass.m is measured -in kg and acceleration a is meastired in m}fz,
. force F is measured in newtons (N). If F is in pounds and a is in ft/sz'
, * then m is measured in slugs (sl). - !
S . Law of Universal Gravitation '
Any two masses m, and my; whose centers are separated by a dlstance r
attract each other with a force F given by
|
m m \
- <12 |
F=G ) i
r - i
when m; and m, are in kg and r is in meters, then G, a constant of pro-
— portionality, is
f R G=6.67 x 10-1'l N mzlkga
"""" LABORATORY ' L

<

| Using such equipment as meter sticks, electric timers and an air

. track, the student should be able to measure the accelerations of
gliders which-are descending a sloping air track, or are being sub-
jected to horizontally directed forces on a level track.- From such

; measurements the student should be able to infer the forces acting.

-

WORKED EXAMPLES

) l.. Find the force needed to g1ve as kg mass an accelerat1on§of
8 m/s

. F = ma
' = (5 kg) (8 m/s?)
j = 40 kg m/s2
. ' /_.4"'9 40.0 N

In most problems mass remains constant and then Newton' ? second

-

de o+

o

-




2.

A 3200 1b automobile is trayeling at 60 mph (88 ft/s) on a straight,
level road when the driver sees an obstacle ahead. He applies the
brakes and comes to a stop in 250 ft. Find the retarding force
supplied by the brakes.

2 2

vV = Vo + 2 as ] 'y ; . -
2 2 ‘ -
v2 -y 2 :

. o _0- (88 ft/s)? _ -7744 2 _ 2

a e TS B8 se/s? = -15.5 £e/s
— . w -
F=macoas= 3399———5(-15.5 fr/s%)
9 32 ft/s :
= (100 s1) (-15.5 £t/s°) o

-1550 1b = =1.55 x 103 1p —

The minus sighﬁshows that the force is actingrin a direction oppo-
site to the motion. .

-

A 6400 1lb elevator is accelerated upwards at 4 ft/sz. Find the
tension T in the elevator cables.

y e e T
F = ma
or .
(T - 6400 1b) = éﬁgghlgi.(4 ft/sz)
32 ft/s
T = (B00 + 6400) 1b . i a=4 gt/s
.. = 7200 1b ] e . -
3 . fe
= 7.20 x 10" 1b . »
6400 1b

Solve problem 3 above for a downwards acceleration of 4’ft/52.

F = ma \ . B

or A 2
(T - 6400 1b) = (200 sl) (-4 ft/s”)

T = (6400 = 800) 1b : . | -
= 5600 1b = 5.60 x 10° 1b

3y _
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5. 1500 kg automobile is parked on a 15° slope. What retardinq

o . rce must the parking brake supply if the .uto is not to roll
' d n the hill? .

s
-

'

W = weight

FA= up push of surface

’

e M

|

. T T . .
S Resolve the weight W into components parallel (Wp) and perpendicular

(Wi) to the surface.

x
]

W sin 15°
(1500 kg)(9.8\mvsz)(0}262{

|
..,

3851 N |

Friction force must Lalance W
= Friction farce = 3851 N,
= 3.85 x 103N

;o 6. Estimate the gravitational force between Raquel Welch and Jim Brown

when both are standing facing each other. If these two objects
are strongly attracted to each other, is that attraction likely a

. result Just of this force? Assume their centers are 75 cm apart.
t Let the weights be. 54.5 and 90.9 kg. *

°

mm
12 7

F=gG 3
r
- ! & ~,

L = (6,67 x 10 Nm%/kg?) (54.5 kg) (90.9 kg)
‘ 2
s " (0.75 m)

\ . =5.87x 107N |

.

NOT LIKELY!

40

Frictién = frictional florce acting
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sruﬁENT PROBLEMS - -

.. g . N
[

, R 2 what upwards force must be exerted on a 15 kg mass in orger to .
- . . cause it' to fall downwards with an acceleration of 5 m/s”?
] 3 . ’ -

¢ (72.0 N)

2. A 3200 lb automobile accelerates from 0 to 60 mph in 12 seconds.
Find the foxce required to produce this acceleration.

» (733 1b) : \
: . . . 2 5 : ) . X .
o ’ 3.. A 1500 Kg automobile is moving up a 10° :lope at a constant speed of
X : : . 15 mph. What {orce must be supplied by the auto in order to main-" -
i tain this -speed? (Neglect frictiomal effects.) . : b
i . L - . . . 3
: - « : (2.57 x 107, N) |
E ) ) ) 4. A 160 lb"man,is standing on a bathroom scale in an elevator. What E
E ‘will be the reading on the scale if.the elevator ancelerates upward
* at 4 ft/s’? Downwards at 4-ft/s2?
] W - : : - " (180 1b, 140 1b).
5. If;?he Qraviiationél force between 2 bvdies is found to be F '
when they are 10 m apart, find the force when they are 20 m apart.’
(F/4) \ ,
SECTION 6 - WORX; ENERGY; POWER ) .
. - =
Work. When a force F acts on a body and moves it a distance s along -
* ‘the direction gfzthe/fbfge} the work U done by the force F is
; ' " U= Fs - .

¢ -

measured in joules (J) or foot-pounds (ft-1b). .1 J=1Nm.__

N

Work is

- " . For example, if an upwards force of 5 N acts on a 10 kg body and moves
) it 5 m upwards the work done hy th2 5 N force is (5 N)(5 m) = 25.0 J.

Energy measures the ability of a body to do work. Energ& is also mea-
sured in joules and foot-pounds.

Al -
~ \

o ® . Potential Energy (E_) measures a body's ability to do work because of
o ] "its position. The Hravitational potential energy Ep of a body of mass
.« m (weigh. WY which is a distance h above an arbitrary refqrence'level is’

) .
¢ - 6 ¢

E_= mgh = Wh
o = ™9

Ta . .
. . * \ LY -
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L

The body carn be thoyght of as acquiring this potential energy by being
. lifted (by an external force) through this distance h.

¢ . For examble, a 5,kg mass which is 10 m above a certain reference level
has a potential energy of (5 kg) (9.8 m/sz)(IOtn)= 490 J. \In returning
. to this lower level the hody can do 490 J of work.

. Kinetic Energy (Ek) measures an object's ability to do work because of ;tg
L motion. The kinetic energy E of a body of mass m and velocity V is .
E' [ N - ) _‘, . . 1 2

. . R N Ek=_é_mv

. For example, a 100 kg body moving at a velocity of 30 m/s has a kinetic

\ energy of (0.5) (100 kg) (30 m/s)2 = 4.50 x 104 J. In stopping,this body can
. do 45,000 J of work (assuming no frictional losses).
- 3 . ~
Conservation of Enerqgy. Energy can neither be created noyr destroyed,
but only transformed from one type to another. In motions resulting from
~ the action of the gravitational force

2

' E. + E_ = constant’ ~
k P ’

For example, a stationary 5 kg body 4 meters above a reference level

has Ep = 196 J, E, = 0. As it falls towards the reference level it .
loses EP but speeds up and then“gains an equal amcunt of Ex. At all

points in the motion, E .+ Ep = 196 J. .

' Power P measures the rate at which work is done.

v

_ vork

= time

=4
t

»

The units of power are joule/second = watc (W) or ft-1b/s. .

work done = (Power) (time); U = Pt

i

Some useful conversion factors are:

1w
. 1 kilowatt (kW)
1 kilowatt hour (kW~hr)
1 horsepower (hp)

¥

1 3/s

1000 W 6

(1 kW) (1 hr) = 3.60 x 10 J
550 ft-1lb/s = 33,000 ft-lb/min

- voo= 746 W ¢
NT““”~\uﬁﬁwM~ For example;, if a 2 %g/mass is lifted 5 m in 3 s the power exerted is
T et ¥
. (2&g) (9.8 m/s2) (5 m _ 98
P'/= T = = 32.7 W
3o b 3s 3s _ o
A Y N
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An elastic collision is one in which both linear momentum and kinetic
enerqgy are conserved.

A partially elastic (partially inelastic) collision is one in which
linear momentum is conserved but some kinetic znergy is lost; the
objects separate after the collision. .

An inelastic collision is one in which linear momentum is conserved
and some kineti¢ energy is lost; the objects stick together after the
colliision.

a

LABORATORY

a

Through the use of such a device as a model pile driver or a ballistic
pendulum the student should be able to measure potential energy, kinetic
energy and work, and study elastic, partially elastic, and inelastic
collision phenomena. L

L}

WORKED EXAMPLES )

1. Compute the work done by a pump which discharges 800 gallons ofw*
water into a tank 100 feet above the intake. The weight density
of water is 62.4 lb/ft3 and 1 gallon = 0.134 ft3.

work = mgh = (weight)(ﬁeight)

0.134 £t3. 62.4 1b

) (
gal ft3

weight (800 gal)( )

.6689 l1b = 6.69 x 103 1b
work = (6689 1b) (100 ft)

= 668,900 ft 1lb

. = 6.69 x 105 ft 1b

2. A waterfall is 300 meters high. -Find the potential energy of 1 kilo- —
gram of water at the top of the falls. What is the velocity of this
kilogram of water when i: is 150 m above the bottom of the falls.

(Assume water is at rest just before it starts to fall.) b

mgh = (1 kqg) (9.8 m/sz)(300 m) = 2940 J = 2.94 x‘103 J

At top, Ep
Ek =0

€

*See Chapter V, Section 1, for a discussion of density.
~y
ll u ‘- '
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| /
Haifway down, Ep = ?-gﬂ J.= 1470 J = 1.47 »{103 J
| /

_ ' 1 2 _ 1.4 2
- E = 1:;,‘70 3= 5w =21 %g V)
V2 = 1540 m2/s2

LY

i
V # 54.2 m/s f
,

i
'

In a model pileczfiver a 4 kg mass falls 1 m and drives a nail 3 mm
into a wood block.. Find the original potential energy of .he 4 kg
mass, its kinetdc energy and velocity right before impact with the
nail, and the ‘average force it exerts on the mails— — !

!

At beoinning, E, = mgh = (4 kg) (9.8 m/s2) (1 m) = 39.2 J

Just before impact, Ek

E
P

v2 = 19.6 m%/s>

V = 4.43 m/s

Work done = 39.2 J = (F) (d) = (F)(0.003 m)

39.2 J

_ L 4
22— = 13,067 =131 x 10" N

F =
An average student weighs 800 N. (a) Compute the increase in poten-
tial energy of this student if he walks up a flight of stairs to a
vertical height 4 m above his initial position. (b) If he walks up
a spiral staircase instead of an ordinary stairway, will the answer
to part (a) change? Why or why not? (c) If he rufis instead of
walking, will your answer be different? (d) If he climbs the 4 m
in 4 s, what is his power output (in horsepower)? ‘

(a) Change in Ep = mgh = Wh = (800 M) (4 m) = 3200 J = 3.20 % 103 J

(b) Same answer as (a), only the vertical height counts.

(c) 3Same as answer (a). Speed does not enter into E_ idea.
HYow he gets to the top has no effect on final Ep?

1 hp
746 W

‘work _ 3200 J
time 4 s

(d) Power = = 800 % = (800 W) ( ) = 1.07 hp

Is this realistic?




|
|

-40- . ) .

5. PFor worked example #1 of Section 4, find the total kinetic energy
both before and after the collision. Consider only the horizontal
part of the motion. \ ;

Before collision: E, = %(0.01 kg) (505 m/s)

+

Y
™~

After collision: Ek = %(1«01 kg) (S m/s)2

= 12.6 J

.

= 12757 = 1.28 x 10> J e
L [

r -

Percentage of original kinetic energy which is lost .

1275

(.12_75_.-_.:L2'—63) x 100% = 99.0%

what happens to the kinetic energy that disappeared? i -

6. Two like billiara\balls (200 g eéch) collide head on. One ball is
golligioﬁ"hnd the other one is moving at 5 m/s.

at rest before

Assume elastic collision and motion along a straight line. Find
the velocities of| the balls after the collision. :

(0.2 kg) (5 m/s) + (0)

L2 xg1 5 we)? # 0

or

from (1)

put this in (2)

-

5 ﬂ/s

25 m2/s2

25 m2/s>

2V

2

2

2 1
m1V1 + §-m2v2

2 + !

(0.2 kg) (V;) + (0.2 kg)(Vé)

1 2 1 2
5(0.2 kg)V, " + 3 (0.2 kq)V,

]
<
+
<

(1)

]
<
+
<

r

1 2 .42)_

2
25 mz/s2 = (5 m/s - V2)2 +~V2

= (10 m/s)V2
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~
) V, = 5.00 n/s

; / and from (1) |

. i

V1 = 0 ,

L Conclusion: As a result of the collision the objects merely exchange
velocities.

\- .

STUDENT PROBLEMS

: 1. _A body of mass 4 kg is raised a distance of 10.m in 15 seconds.
§ Find the work done and the power exerted.

. 0 T(392 7, 26.1 W)

2. A 10 kg object is thrown vertically downwards from a bridge at 15 -
m/s. Find its kinetic ener;§\3fter 5 seconds. *

(2.05 x 10% )

3. Calculate the horsepower needed to lift a 100 pound mass to a
height of 30 feet in one minute.

(0.0909 hp)
<
4. Find the potential energy gain as a 5 kg mass is raised a distance

L of 10 m.
S; (490 J)
o

5. A 3200 pound automobile is traveling at a speed of 30 mph'down:a'
- 30° slope. What force must the brakes exert if the auto 1s t? bé
brought to a stop in 250 .feet? (Assume auto is still on incline.)

(1.99 x 103 1b)

END OF CHAPTER PROBLEMS '

1. . A ball is dropped from a height of 2 meters above a tile floor and
rebounds to a height of 1 meter. Find the velocity of the ball
immediately after its collision with the floor. What percentage
of its original kinetic energy is lost during the collision? What
happens t6-this kinetic enerqgy?

- , (4.43 m/s; 50.0%)

2. A 2000 kg automobile is pulling a trailer on a level rpad at a steady
speed of 20 m/s. The force of rolling friction on the trailer is
900 newtons; this force opposes the motion. (a) What is the direction
and magnitude of the force which the trailer cxerts on the car?
(b) what is the direction and magnitude of the furce which the road
exerts on the car? . ‘ . .

* ((a) 900 N, badkwards, (b) 900 N, forward,

,‘ o 6 - 1.96 x 104 N, up) _J




>

4.

5.

i

A person leaning over the side of a bridge throws a stone upwards
with a speed of 30 m/s. The bridge is 100 m above the water. Find
the maximum height achieved by the stone and the speed with which

it hits the water. PFind the total time of flight.

(45.?'66"33}5 m/s; 8.52 s)

An inclined plane makes an angle of 30° withsthe horizontal. Find \

the force needed to mgve a 50 N box (a) up the plane with an

acceleration of 5 m/s“ and (b) down the plane with an acceleration

of 5 m/s°. Neglect friction and apply all forces parallel to the

incline.

((a) 50.5 N, up plane; (b) 0.510 N, down
T plane)

A 50 N block is prpjected uﬁ.ag inclined plane which makes an
angle of 30° with the horizontal at a speed of 15 m/s. How far up
the plane will it go before coming to a stop? How long will it take
to return to the starting point? Neglect a'l frictional effects.

(23.0 m; 6.12 s)

—pe
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CHAPTER III

ROTATIONAL MOTION
¢ ' . \

SECTION 1 - QQEEE;PETAL FORCE

A body moving with constant speed in a circle is said to have uniform
L circular motion. This is an accelerated motion since the direction of
- the velocity is continually changing. '

A body /executing uniform‘Zi ular motion (speed V) has an acceleration
which [i§ directed perpendidular to the velocity V and, hence, points
toward the center of the circle. The value of this centripetal (center-
seeking) acceleration a is

[

- where r is the radius of the circle.
For example, for a S kg mass moving 10 m/s around a circle of 4 m radius
the centripetal accelerat.on is -

vV 10 ms)? 100 mPss?
a=—= =

r ;o 4m 4 m

= 25.0 m/s2

-
i

A body’ executing uniform circular motion must have an unbalanced force
F acting on it~ The force is directed towards the center of the circle.
: This. centripetal force F has a mégnitude of
] X

- mv .

F=—

a r

t. F9r example, the 5 kg mass above, which moves at a speed of 10 ﬁ/s in a !
~circle of radius 4 m, has acting on it a centrally directed force of

.- 2 ' i
L (5 kg) (10 m/s)” _ 125 N . _
4 m

LABORATORY v

Using such devices as commerxcially available centripetal force apparatus
or air tables the student should be able to investigate centripetal forces
and accelerations. T -




WORKED EXAMPLES

4 1. A body of mass 0.200 kg is rotating in a horizontal circle of radlus
. 2 50 cm at 120 revolutions per minute (rpm). (a) Calculate the ‘centri-
' petal force acting and (b) find the period T of this motion (the
period is the time for one complete revolution).
(a) One revolution in this problem means a distance of 2mr =,

(21) (0.500 m) = 3.14 meters is traveled.

rev rev 3.1416 m, ,1-min,

120 =—— min (120 ( rev )(60 s | 6.28 n/s
2 2
mv (0.200 kq) (6.28 m/s) ~ _ 15.8 N
v 0.500 m )

\\ f_ﬂ_,,‘—»~"‘”'/"”

(b) Period =T = Circumference _ 3.14 m

Speed T 6.28 m/s

= 0.500 s

2. Why is it harder for a car to make a given turn at high speed than
at low speed?

For a turn of a given. radius the centripetal-force needed to produce
the circular motion of a given car depends only upon the square of the
speed of the car; the higher the speed, the more centripetal force
needed. :

L)

The friction between the road and the tires is the mechaniem that
produces the needed centripetal force. At higher ‘speeds the needed

" frictional force just may not be available and, hence, the car will .
skid. e -

3. The “normal" human body can safely stand an acceleration of approxi-
- ’ mately 9 times the acceleration of gravity. With what minimum
radius of curvature imay a pilot safely pull out of a dive in which
the plane\*g traveling at” 135 m/s (300 mph)?

g At the bottom of the dive two forces act on the pilot: (1) the down-
2 wards force,mg of gravity and (2) the upwards force Fy due to the

i ‘ force of the seat on him. Together these two forces mast add up to

: the needed upward centripetal force.

2
FP_-mg= m_
up r ‘
2
F = mg + Ll AN
up r 4

bl |
If he were sitting on a scale on his seat it would also read Fup'
Why? — ,
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{/ Here, ' N 2
mv
- = + b — \
wp = 9 M9 = mg\s T , ,
2
. v ~
3 8,9 T r !
. , , )
=V _ (135 m/s)X_ _ 18225 "
- ‘ 8q - . 78.

é I (8)(9.8 wi?) 88
’ =232 m . ) B '

STUDENT PROBLEMS

1. The prescision clock in a physics laboratory has a second hand
"10.7 cm long, which makes one revolution per second. (a) Find
the speed of the tip of this hand. (b) Find the centripetal accel=-

- eration of this tip. C

((a) 0.672 m/s; 4.22 m/s>)

2. A man is standing at the equator. Taking the radius ¢f the earth
to be 6.40 x 10 m, what is the speed of the-man with respect to
the cqntenjbf the earth. Find his centripetal acceleration. Com-
pare your re;glt with g. ’ 5 .

: (465 m/s:0.0338 m/s“; 0.345%)

-3. The gravitational force of the sun on the earth is 3.08 x 1b22 N. d

(a) Find the centripetal acceleration of the earth in its orbit

(radius of 1.496 x 108 km, mass of 6.09‘x 102% xg).
.y

(b) Find the speed of the earth in its orbit’ u51ng result of

part (a). - -

.

‘ AR
(c) Find the perlod of the earth's revolution about the sun in
... -seconds and.ih days, using the result of part (b) ~Compare
-~ with your ca lar. .
. © (@) 0.00513 m/s%: (b) 2.77 x 10% m/s;
R (c) 3.39 x 10’ s, 393 days

SECTION 2 - ROTATIONAL ANGLE, VELOCITY, ACCELERATION

. -
Angglag'disglggeggnt (rotat10na1 angle) spec1f1es the. angle through which

a body ha ta It is normally measured in radians and is denoted

‘by 6. One rad1an is the angle subtended at the center of a circle by

an arc equal in ‘ength to the radius.

1 radian = 1 raé = 57.3°
ﬁﬂ rad = 360° = 1 revolution (rev)
. ,,/’ R . .




—

‘Itgigfmeasured in rad/s2 and is denoted by the Greek letter alpha - a. -

-46-

Radian is a pure (dimensionless) number.
—_—

For example, if a grinding wheel rotates 2 complefe times we say that
it has experienced an angular displacement of 4w rad {or 720° or‘z rev).

Angular displacement has direction: counterclockwise = positive and
clockwise = negative.

Angular velocity specifies the rate at which a body is turning through
an angle. It is normally measured in rad/s and is denoted by the Greek
letter omega - . .

If a body turns through an angle in a time t, its average anqular

“velocity w is given by o

Angle Turned Through
Time

LA
Tt
For example, a body rotating at a rate of 3 revolutions per minute has

an angular velocity of 6m rad/60°sec = 7/10 rad/s.

Angular velocity has a direction: _counterclockwise = positive and
clockwise = negative.

Ai-tular Acceleration sbecifies the rate at which angular velocity changes.

If the angular velocity of a body changes uniformly from w, to w in a
time t, then

woTe, _ Change in Angular Velocity

t Time

a =

An increasing (in the counterclockwise sense) angular velocity implies
a positive angular acceleration; a decreasing angular velocity implies
a negative angular acceleration.

. I ! .
For example, if a grinding wheel changes its anqular velocity from +50
rad/s to +100 rad/s in 10\ s, its angular acceleration ic

A

(100;30: rad/s _ ¢ qo rad/s2

The linear quantities of arc length s, (radius r) velocity V and acceleration a
are related to the corresponding -angular quantities of angular displacement
6, angular velocity' w and angular acceleration o such that

AR

s = r0
V=rw
- a=ro

Corresponding analogies exist between the equations for uniformly

accelerated motion and the equations for uniform angular acceleration,

- a1




LABORATORY

) -47-"
— w+ W
0 = wt = 2 t
2 i .
6 = mot + (1/2)at
w=w + at
o
i wz =W 2 + 200
o —

Using such equipment as a regularly rotating body (e.g., an electric
fan), various time measuring devices such as stroboscopes and electric
timers and various length measuring devices such as meter sticks,

vernier and micrometer calipers,

the student should be able to measutre

the various angular quantities (displacement, velocity, acceleration)

and relate them to each other and to the corresponding linear quantities.

SOLVED PROBLEMS

-

- 1. A 0.500 meter radius grinding wheel is rotating at 180 rpm.

[§

Find

- (a) the angular velocity of this wheel and (b) the 11near speed of

q5p01nt on its periphery. .
- 1
. ﬂuwﬁ_mialm w = (180 = )(Gom:n)(zieiad) = 6% rad/s = 18.8 rad/s
(b) V= wr = (18. g XX )(0 500 m) = 9.40 m/s

2. An electric motor revolving at 3600 rpm is ‘turned off and slows

down uniformly to a stop in 10 seconds.

acceleration of the motor shaft and (b) find the total

" (b) 6

(a) 3600 L&Y
min

angular displacement as it slows to a stop.

m
= (3600 %) @112, 2 “‘”‘) = 1207 f2d
1l rev S
f2d 'm - m
w_+atoras= o _ 0 rad/s - 1207 rad/s

(o] . 10.s

t

rad

rad

(a) Find the angqular

==127 rad/s2

wt + (1/2)at? = (1207 2900 8) + /2 120 225 o )2

12007 rad - 6007 rad = 600% rad = 1.88 x 10°

IE 0

rad =

300 rev




3. R 3 speed electric fan is revolving at 1200 rpm (high speed). 1It'is
then switched to low speed (600 rpm) and it is noted on a revolution
counter that the fan makes 450 revolutions in going from high speed
to low spiec. Find (a) the angular acceleratlon, (b) the time re-

quired toijo from high speed to low speed. " . N
- ' (a) 1200 rpm = (1200 r"") (20"‘:") (2’1T Z‘s)e 40m rad/s . \\
Similarly, 600 rpm = 207 rad/s ; 450 rev = 9071 rad "
wz = woz + 206 ’
o = w? - woz - (20m rad/s)2 - {4dﬁ rad/s)2 ‘ o
20 (2) (900 rad)

[~

(400 ~ 1600)‘"2 rad _ -27 rad
1800m 2 3 2 -

s S E

. 2 wo + w

! = + = e

(b) © T w, (1/2)at > t
¢ = 20 _ (2)(900m rad) _ lsooms_ 30
W+ w, ~ (20m + d0mrad/s _ 60m -0s
\
STUDENT PROBLEMS

: y -
1. An electric fan goes from 600 rpm to 900 rpm in 20 s.+ Find (a) its j'

angular acceleration and (b) the angle turned through during this
accelerating process.

rad ‘
((a) 1.57 5= : (b} 1.57 x 103 rad) \
s i
- 2. An electric drill is rotating at 3000 rpm as it is drilling a hole

in a piece of wood. It then encounters a knot in the wood and
stalls (stops rotating) almost immediately ‘it makes 50 revolutions
in going” from 3000 rpm’ to a dead stop). (a) Find the angular accelera-
tion and (b) f1nd the time involved in the stalling process.
((a) =157 rad/s?; (b) 2.00 s)

3. The beaters on an electric mixer are rotating at 600 rpm. The
prongs of the beater have a radius of about 3 inches (7.50 cm).
(a) Find the angular velocity of the beaters and (b) find the -
linear velocity of one of the prongs.

((a) 62.8 rad/s; (b) 4.71 m/s (10.5 mph))

~ | . 53 1
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SECTION 3 - TORQUE AND STATIC EQUILIBRIUM

Torque refers to the effectiveness of a force in producing rotation
about an axis. It is defined as the product of the force.F acting
‘and the perpendicular distance L from the axis of rotation to the lize
-of action of tie force. £ is referred to as the&lever arm.

.

.

. _  Torque = t = (P)(%)

Y

Torque is usuallf measured in newton-meters (Nm) or pound-feet (1b ft).
Torques are dire®tional and are usually referred to as counterclockwise -
(positive) or clockwise (negative). ' '

]

Torque Combination. The total torque acting on an object is equal to -
the sum of the separate torques acting, raking proper allowance for the
sign convention defined above. For example, if a clockwise torque of
“50 Nm and a counterclockwise torque of 150 Ng act on a body, the net - e
torque acting is 100 Nm, counterclockwise. )
The center of mass of a rigid body is a point at which we can congider
all of the mass of the body to be concentrated. For many calculations
of interest a rigid body may be replaced by a point mass (mass equal to -

___the actual mass of the body) located at the center of mass positi®n

3

of the rigid body. 1In a uniform gravitational field the terms center of
mass and center of gravity are Synonymous,

For example, the center of»mass of a uniform meter stick WOq;d be located
at its 50 em mark while the center &f mass of a doughnut would be located
at the-center of the hole.

An object is said to be in static equilibrium if the total force acting.
‘on the op¥ect is zero and the total térque acting on the object is zero.

That is,’ . ‘ h
_ 1F, =0 .
ZFY=O‘ )
w o |
- ) t=0 “ -

These are algebrfic sums.

-
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.LABORATORY
s Using a balance (or other similar devices) the students should be able

TN to develop the)laws oftstatic equilibrium. Also, they should be able
7 to determine unknown masses using such ‘a balance - both for cases where
— the balance is supported at its center of gravity and for cases where

the point of support is not at the center of gravity.

S - . .
f‘ WORKED EXAMPLES
% .. . . as . .
X 1. A rigid stick is acted vpon by the indicated fcrces. 35 this
E, stick in static equilibrium? Neglect the weight of the stick.
L% | 10 N
f , e
30 em 40 cm
4N 6 N ) b

. The total force acting on the stick is zero: 10 N, up and .
— (6 + 4) X, do%n.

-

. - L N B - .
For the torque calculation choose ‘the axis to be at the point of
" appiication of the 10 N ferce.

J t= (4 N)(0.400 m) - (6 N) (0.30G m).= (1.60- 1.80)Nm = -0.20Q N

Therefore, clockwise rotation will occur.
’

2. A 50 N board is supported as shown. Find the tensica in each section
of the rope.. : Y .

3 AN
2 m
| o

. |
7\ o -
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s <
’
' = = - ’ ]

Z Fy 0 =T, cos ) T, cos 6 ‘ :

Therefore T2 = 'r1 =T

I F,=0=2Tcos6-50N I ¢ § R

- 1m .
Now cos 6 = 1.50 m - 0.667 )
Therefore, from (1)
50N _ SON _S0ON _
= 2cos 8 (2(0.667) : 1.334 ~ 3/-3N
N A\
3. A 500 1b sign is supporté& as shown below. The sign is uniform in
density. Find the force exerted by the rope -and-the— exerted——— 5
by the pin. v
= o _
(FR)X = ER cos 30 o.gss FR )
P to the left
R
. o
’ , (ZB}Y = FR sin 30 = 0.500 FR, up
' (F ) Let (FP)X = X- part of pin force
pY
30° (FP)Y = ¥- part of pin force
' ) '
/ i I 2 fe LBy =0 =~Fply + (Fp)y
PIN . ‘ ’ or 0.866 F. = (F,), (1) »
. AN
z l]F,=0= (F ), + (F ), -W=0
S S — = = - =
. 4 ft , Y R'Y P'Y .

hence unsoclvable.

\
\

’
Let the pinibe the point about which torques are taken.

or 0.500 FR+ (FP)Y = 500 1lb (2)

But equations (i) and (2) contain 3 unknowns (F_), (F.)., (F.), and are
. . P X P'Y
Another equation is needed.

{

i

e
>
/
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, Lt=o
or, -(500 1b) (2 ft) + (FR)Y(4 ft) = 0 (3)

{NOTE : ((FR)X, (FP)X and (FP)Y have lever arms of zero.)

_or ] .

1000 1b £t = (0.500)F (4 ft) = (2.00 ft) (F - N

T 1000 .1b_ft _
FL= == ——2= -
R 2.00 ft foree—exerted_py_Eggg = 509 1b

e —

From (1), (FP)x 0.866 FR = (0.866) (500 1b) =‘433 1lb

"

and from (2? (FP)Y 500 1p -~ Q.SOO FR

| 500 1b - (0.500) (500 1lb)

/ 500 1b - 250 1b ‘

250 1b — T T T s

AN )

.
]

STUDENT PROBLEMS

1. A 206 g meter stick has force acting on it as shown below. Vhat
single vertically directed for {magnitude, direction, and point of
application) must be applied to produce static equilibrium?

N

f \
" o \

S N
20&5’ 50 cm
30 em <(5.96 N, up; 66.8 cm
from left end)
5N w{ “an
’ \
AN

2. The 5 1b rigid body shown below is acted upon\by the indicated forces. —
{ what total force acts on the body? Find the torque tending to rotate
the object about point P. W at upward force appMNed at point Q
would hold the body in static equilibrium?

)
’
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3 b e
4 ft P
. et g — Q - :
N 0 - 44— 4 1b Pl
. R 2 ft
4 1b - ’
/ ‘ A
— ;.,_" »
e (: (16 1b, down; 42.0 ft-lb,
: clockwise;_ 10.5 1b)

~
i

SECTION 4 - ;ézn'r OF INERTIA; ROTATIONAL ENERGY ]
, ]

5

Moment of Inertia measures the resistance a body offers to a change
F———-———-—-in its angular veloc1ty. It is the angular counterpart of mass. It s
depends vpon both the mass of @ body and—the-distribution of this mass -
abouf the axis of rotation of *ae vody. For example, for a point mass T
m rotating at a perpendlculat distance r from a fixed axis, the moment of l
inertia I is defined to be 2 .

I=nmr

[

Any extended body can be thought-ef as a collection of masses: m, m,,
m., ... located at distances Eyr Tyr Tgr oo from the axis of rctation.

_ Consequently ' 3
2
-~ I= Z My .
, i
. y _ 2 2 2 '
o =mr + m,r, + LIS + ...
‘ For certain specifically shaped bodies this sum is relatively easy to ’
evaluate using the techniques of the calculus. Some specific results
are:
Sphere (axis through center; mass m; radius r; solid) I = (2/5)mr \
Point Mass (mass m, distance r) . I-= mr2
\l‘hln Ring 2
Hollow Cylmder (mass m, radius r; about its I=nmr —
Hoop " own axis)
Q Thin Uniform Rod (mass m, length &; about an axis 2
ERIC perpendicular to rod at' its center) I = (1/12jm J
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t

1 -

Solid Cylinder; Disk (mass m, radius r, axis through I= (1/2)mr2
’ center and perpendicular to
its plane face)

-

Moment of inertia is measured in units of kg-m2 or sl-ft%. For example,
a 5 kg mags rotating in a circle of radius 5 m has a moment of inertia I
of I = mr? = (5 kg) (5 =2 = 125 kg-m?. ‘

The angular acceleration a, torque t and moment of inertia I are related
by the equation

' T=Io . - ~
Sign conventions should be observed as noted in Section 3. The above

equation is the angular counterpart of the linear form of Newton's Second

Law, F = ma. . o i '

“

For example, an unbalénced torque of 50 Nm acting on a body whose moment

of inertia is loo'kg—m2 will produce an angular acceleration of -
- { ‘
=L 50 Nm _ (50 kgm/sz)(m)
= - = = : >
T 103 kgm® 100 kgm

- i
0.500 rad/s>

n

Rotational Eﬁe;gx}(EK)R is possessed by any rotating body.

- 2 e
(EK)R = (1/2)1Iw ‘;}‘ .

'(EK)R is measured in joules (J) or foot-pounds (ft-lb):"‘*‘jl
For example, a body with a moment of inertia of 125 kg-m?;rotating with
an angular velocity of 10 rad/s has a rotational™kinetic. €figrgy of

(1/2) (125 kg-m?) (10 rad/sP = 6.25 x 103 J.

L 4

If a body is moving as a whole (translating) and rotating simultaneously,
its total kinetic energy (E,) is made up of two parts: (E.) . due to
its translational motion and (Eg) gl due to its rotational kinetic energy.

€| + (®)
K»X\ KR

(E,)

(]

K

1/2)mv? + (1/2)16° -,

i

Here V represents the velocity of the center of mass of the body and ,
the axis of rotation must be through the center of mass of the body.

An example of this type‘of motion would be a blackboard eraser which is
thrown up into the air in such a way that it rotates as it moves along. -

[
V]
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wOrk U must be'aone on a rotatlng object in order to produce an angular
acceleration Q.

U = Te ’ r '>.=

Work U is measured in joules, torque T is measured in newton-meters and

angle 6 is measured in radians. . % o
For example, if a torque .of 15 Nm is applied to a grinding wheel as it /
rotates through 15 rad.the work U done, U= 16 = (15 Nm) (15 rad) = 225 J.

Power P is analogously defined by the equation

P =10

For example, referring to the above data (t = 15 Nm, € =.15 rad) and
assuming a time of 10-seconds (and uniform angular acceleration) the -
power delivered to the wheel is P = tw = (15 Nm) (15 rad/10 s) = 22.5 W. |

-~

LABGRATORY

Using commercially available equipment such as rotatable disks, rlnqs

and cylinders as well as a modified electric fan, the student should be

able to measure angular displacement, angular velocity, anqular-accelera—
tion; he should also be able to measure the moment o. inertia of the appara-
tus. Finally,she should be able ta relate torque, work and power to the
various angular quantities noted above.

’,

SOLVED PROBLEMS
s . ' .
1. An electric fan blade assembly has a mass of 10 kg and an effective
moment of inertia of 8 kgm“. It is rotating at 1200 rpm. Find
its rotational kinetic energy.

( .

a

2 rev, ,1 min, 27 rad ‘
= M = ')
€ = (/Do (1/2) (8 ¥gu) | (1200 =0 (5o (C)] .
. 2 2 -4
- = (4)(16007°) J = 64007° J = 6.32 x 10 J

2. The electric fan noted above is operated by a 500 W motor. The :
shaft which is attached to the motor and fan blade assembly has
a diameter of 6 cm. (a) What is the maximum torque available from
. this motor at this rotational rate? (b) Such an applied.torque
should produce an acceleration but it abviously doesn't because
of the uniform rotation rate of the fan. Explain.




(a) P = 10

(b) The motor torque of 3.98 Nm is balanced by "ctional_torques'

« due to bearlng and shaft friction. Also? re is air fric-
, tion and energy delivered from the fan in the way of a mov1ng
current of air coming out of the fan. .
- 3. A meter stick has a mass of 150 grams. Find its moment of inertia
- through a transverse axis through its center. ' N ;
[ ]
1= (1/12me? = (1/12)(0.150 kg) (1 m)? = 0.0125 kgm2
B "4, A 1 kg ball re:ls from rest down a smooth inclire 10 metsrs high.
- Find its linear speed when it is at the bottom of. the incline.;
. 5~
(E,) = (E) + [E) = total mechanical energy at bottom :
. e K T K R
= (/0)mv? + (1/2) w2
A
= (1/2) (m) (v2) + (1/2) (2/5 mr*) (V/x)?
; 2 2 2.
= (1/2)mV° + (1/5)mv° = (7/%0)mV
= total mechanical energy at top (concervatlon
of enerxgy)
= mgh - . f\‘
. |2 '
.. mgh = (7/10)mV . y
' \
v? = (10/7)gh " -
. Lo v = /(10/7)gh
T T
- v/ 1o (9'?’ m/sTTUO M _ 580/7 m/s = V140 wE T~ . __
Vv =11.8 m/s
STUDENT PROBLEMS _ - ‘
1. Compute the moment of inertia of a 5 kilogram wheel having a radius
of 0.5 meters. @ssume all of the mass of the wheel is in its rim.
(1.25 kgm )
d4L
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An electric motor runs at 1800 rpm and is rated as a 200 W motor.
How much torque does it deliver? . __J
(1.06 Nm)

A cord 4 m long is wrapped around the axle of a wheel. The cord

is pulled with a constant force of 30 N. When the cord leaves the

axle, the wheel is rotating at 120 rpm. Find the moment of inertia

of the wheel and axle. . :
- © (1.52 kgm®) )

3 1.

2.

of the system. P B

: B ,
An electric motor runs at 1800 rpm and is reted at 1200 W. How much

torque can it deliver? ‘
‘ (6.37 Nmi

The drive wheel of a belt drive attached to an electric motor has a
radius of 10 cm. The drive wheel rotates at 1 rpm. - The tension
in the belt is 100 N on the slack side and 400 N on the taut side.

.Find the power transmitted by the belt.

{(5.65 x 103 W) -

Y

A c1rcu.1ar disk has a radius of 10 cm and a mass of 2 kg. Find its
moment of inertia.

(0.010 kgm?)

A dumbbell rotates about an axis through its center of mass, per-
pendicular to the dumbbell axis. Each mass is 0.50 kg, the distance
between the masses is 0.30 m and the angular velocity is 5 rad/s. :
(a) Find the speed of each mass. (b) Calculate the kinetic energy

o 2R

{(a) 0.75 m/s; (b) 0.28 J)

The flywheel in a typical.automobile engine has a mass of 10 kg

amd a radius of about 20 cm. Assume that the mass is distributed
uniformly throughout the disk. (a) Find the rotational kirnetic
energy of this flywheel at 5000 rpm. (b) Find the kinetic energy
of a car moving at 50 mph (assume a mass of 1500 kg). (c) Compare
and contrast results of (a) and (b).

((a) 2.74 x 10% 3: (b) 3.75 x 105 3; -

e (c) By of flywheel = 10%‘EK of auto)

(s
&
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" " CHAPTER IV S B
- TEMPERATURE AND HEAT \
; ﬁ A
2 N \\ ‘\\ -
SECTION 1 - TEMPERATURE SCALES AND MEASUREMENTS \ =

There are-three temperature scales that are generally used: the C\151us(centi-_
{ grade’scale, the Fahrenheit scale and the Kelvin (absolute) scale.

rt’
2 On the Celsius scale j°C) water freezes at 0°C and boils at 100°C; o¢
= . - the Fahrenheit scale ( °F) water freezes at 32°F and boils a. 212°F ion
the Ke1v1n scale (°K) water freezes at 273°K_and boils at 373%. * ' .

Ve

The conversion factors zelatlng the various scales are

y

\ ~ remp. (°c) =.5/9 [remp (°m - 32]°c .
Temp, (°F) = (9/5[Temp (°C) + 33])°F .
‘ = Temp. (°k) =[remp (%Y +273°K '

Also, a change of 1 centigrade degree (C®) is equivalent to a change of
9/5 Fahrenheit degree (FC) and to a change of 1 Kelvin degree (K°).

s For example, a temperature of 100 F is equivalent to
"7 7 100° F = 5/9 [1o0 - 32] °c = 37.8°%C
N = [37.8 + 2737%= 311%
when a solid object of length % is subjected to a temperature change AT
its length changes by Af. -
S ] - ya
2 AL'= afAT

where a, the coefficient of linear expan51on, is a characteristic of the
material. O is measured in units of 1/C°, (or 1/F°),%% in meters (or a any
other suitable length unit) and AT in c®. A positive AT normally producese
a p051tive A% and a negative AT normally produces a negative AL.

I

For example, if a copper rod (a = 17 x 10 /C ) of length S meters has
its temperature changed from 20 to 100°C, its length will cRange by .

AL = a2AT = (17 % 10°-°/c®) (1.5 m) (100 - 20)c® = 0.0020 m

Table 1 gives valurs of @ for some common materials. o .

*These values arc true at a "standa;d" atmospheric pressure, .-
1 atm = 1.013 x 10 > Pa. ¢ ~ B
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o}, Table 1
Coefficients of linear expansion, a
Coefficient, Coefficient,
Substance | x 10~5/% _ x 10°5/°F '
i / Aluminum 2.4 1.3
- Brass . 1.8 1.0
Concrete 0.7-1.2 0.4-0.7 )
Copper 1.7 0.94 .
Iron 1.2 0.67
Lead 3.0 1.7
Quartz 0.05 0.008
-Silver 2.0 1.1
Steel’ 1.1-1.2 ., 0.67

A Bimetallic Strip is a device 'constructed by attaching a thin strip of
one metal to a thin strip of another metal (iron-and brass are typical
metals used)s If the combination is straight at one temperature it will
bend at lower and higher temperatures. For a strip clamped at one end
(a brass-iron strip) ’

&

’

_ 2
= (Lo /2d)(aB - aI)AT

- ~

here As is the distance traveled by free end of strip, L, is length of .
strip, 2d is the thickness of strip, AT is the temperature change and
‘a are- the respective linear expansion coefficients of brass and iron.
Tge deflectlon As is much greater than the linear expansion (contraction)
of ritner material.

Obviously, such-a device can be used as a thermometer. ) .

When a volumewv is subjected to a temperature change AT, its volume changes
by AV

/AT = Liguids . .
(3a)VAT - "Isotropic Solids"

{

5

Av
- : Av

]

where B, the coefficient of volume expansion, is a characteristic of the
liquid, o is the previously defined linear expansion coefficient. B8 is
measured in units of 1/c® (or 1/F®). a positive AT normally produces a
positive AV and a negative AT normally provides a negative AV. .

IS

For exambie,’if 10 cm3 of mercury (£ = 18 x 10—5/C°) is heated from
0°c to 100°C, its volume will change by

AV = BVAT = (18 x 10-5/C°)+10 cm3)(100 Co) = 0.18 cm3




.

When a solid container holding a liquid is heated (or cooled), both the
cOntalner and the liquid expand (contract). The net apparent change in
thdé volume of the llgqu equals the difference between the two expansions
(contractions). That is,

AV = (B - 3a)VAT

In a liquid in glass thermometsr a temperature chahge produces a volume
change in the liquid((alcohol + water) or mercury, usually), and a con-
sequent change in the length of the liquid volume ?n the thermometer stem.

. I ’
For example, if a temperature change of 10 degrees! produces a length changq
of 0.50 cm, then a change of 50 degrees will produce a change of 2.5 cm.

Table 2 gives values of B for some common liquids. - .
A -
: Table 2
Coefficients of volume expansion, B
Coeffzc1ent, Coefficient,
Substance x 10 /°c x 1074/°F
: " Ethyl alcohol 11 6.1
Glass (average) 0.2 0.1
' Glycerin 5.1 2.8
- Ice 0.5 0.3
. Mercury ° 1.8 1.0
Pyrex glass 0.09 0.05
‘Water 2.1 1.2

s

The resistance of a conductor is a function of ;ggggrature. If a certain
conductor has a resistance R, at 0°C and its temperature is changed by AT,
then its new resistance R will be

[
/N
.

' ~O
where k, thé tempekature coefficient of re51stance, is measured in 1,27,
R and R, are measuréd\ in ohms and 4T is in C".

R = R_(1 +kAT)
o’

In platlnum resistance thermometers a temperature change in the wire
produces a resistance change in the circuit and a consequent current
change which may be read dlrectly as a temperature.

Table 3 gives values of k as well as other useful values for various
metals.




-61-"

Table 3

Properties of Metals as Conductors

Temperature
- 5 Resistivity - Coefficient.of

: (at 20°C), Resistance Density  Melting

. (ohm~m) k (per c°) (g J/cm3) Point " (°C)
Aliminum 2.8 x 1078 3.9 x 1073 2.7 " 659
Copper . 1.7x10°8 . 3.9 x 1073 8.9 1080
Carbor (amorphous) 3:5 x 107° -5 x 1074 1.9 3500
Iron 1.0 x 10‘3~. (50 x.107 7.8 1530
Manganin . 4.4 x 1077 1 x 107 8.4 910
Nickel 7.8 x'10°° 6 x 1073 8.9 1450

’ ‘Silver 1.6 x 1078 3.8 x 1073 10.5 960
Steel 1.8 x 107/ 3 x 1073 7.7 1510
Wolfram (tungsté;) 5.6 x 10°° 4.5 x 1073 19 ‘3900

v

A-typical curve relating resistance to temperatu§§ is given below:

200 4
150 +
100

v

50 +

3

Resistance ()

A Fe

L 4

0 50100150

v

Temperature (OC)

0°c.

h)

A typical curve describing such a device is given below:

—

A thermocouple is a device in which two junctions of dissimilar metals
(copper and constantan, for example) are kept at different temperatures.
When properly connected to a voltage indicating device,a yoltage will be
developed which is proportional to the temperature difference of tLhe two
jinctions. One junction is nommally kept at a reference teémperature of
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10 +

\ ' 7 -
A N
o]
4.
3
24
1+

Voltage (mV)

AL

-l I | L '
L] 1 ] LB

0 50 100 150 200

Pemperature Difference (c®)

A thermistor is a device whose resistance changes non-llnear;x w1th :
temgerature. When connected to a_proper e1ectrlc circuit, such a device
can be used to measure temperature.

}
i
i

— A typical turve describing such a device is given below:

Resistance (kfl)

—————F
Y 50 100 150 200 .

(o]
Temperature ( C)




LABORATORY . / . '

- .. - s .

The studeat should be able’ to use a variety of temperature measuring
devices (liguid in glass, ermocouple, thermistor, resistance thermometers,
for gxanple)‘to measure the rature of various objects .(liquids, gases,
operating electronic components, operating hpusehold appliances, etc.).

- o |

SOI:VED PROBLEMS .

1. Ethyl alcohol freezes at about -117°C. What are the corresponding
Fabrenheit and Kelv;n readings? :

F = 9/5 ([Temp (° c)] * 32)°r | »

(9/5t-117)" %+ 32)°F s . :
-179°F ) . |

|
. - . [ P

v
]

~
(]

[Temp (°c) + 2737k \ ‘ L

f

(=117 + 273)°%K B .

= 156°K
* 2. A steel tape neasure (callbrdted at 20°C) measures the length of a
copper rod q_vloo .00 cm at 10° G- What is the actual length of the

rod? ) \ . .

The steel tape is short at 10°C

( AL .= alAT ‘
- o -6 :

Ny - ar - A0 0c® = 1 x 107
'! . % C -
\\u- =1.1x 1074
. = 0.00011

’ = 0.011%
! H
That is, the'tape is sho?t by 0.011%.
. 99.989% 100% '
Finally, 1oo?oo - X :
- (100) (100) cm _
X = 99 989 = 100.01 cm
D | % ndl
! v

\\m
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3. The resistance Rpq of a coil of insulated copper wire is 4.000 {
at 20°C. I.nd its resistance Ry, at 200°C. Such conditions as .
these might simulate the operaticn of an electric heating appliance
(toaster,'space heater, etc.). ’ .-

|
R (1 + kAT) . }
o]

« R 4.000 Q

29

R[1+ (3.9 x 1073/c®) (20c°)] :

R = 4.000 @ _ 3.711 @ -

(1.078)Ro _ . B
[o} 1.078

R

-3,.0 Oy
oo = 3-71 201 + (3.9 x 10 7/c) (200¢ Y]

6.60 0 - ;

4. In a typical application of a thermocouple thermometer the voltage
developed is about 5 millivolts. The reference junction is kmpt at
0°C. Find the temperature of the hotter junction.

From graph above (page 62) 5 mV correspords to about 110-115°C.

.
i <

STUDENT PROBLEMS

1. At what temperature are the Falrrenheit and Centigrade readings
identical? What is the equivzlent Kelvin reading? ’

(-40°; -40°F; 233%)

2. An accurately calibrated Pyrex glass vessel (linear expansion‘bo— ~
efficient = 3.0 x 1076/c°) is filled with exactly 1 liter (=1000 cm
= 1073 m3) of mercury (volume expansion coefficient = 1.8 x 1074/c®)
at 20°C. How much mercury will spill over when the temperature is
raised to 100°C? 3
, (14 cm™)

3. A thermistor is being used to measure temperature. The thermistor
is part of a circuit and the resistance of the circuit, exclusi-e
of the thermistor, is 50 ohms. Assuming that a constant potenpial
is applied to the circuit/, by about what per cent will the current
in the circuit change if the thermistor te@perature goes from 20°C
to 100°C?

(about 20% increase in current)

4. A brass-iron bimetallig strip of length 25.cm, thickness 0.5 cm,
is straight at 25°C.. One end of the strip is clamped and the strip
.is heated to 425°C. By what distance will the free end of the strip
travel? ' - ’

\ | . - (3 cm)
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SECTION 2 - SPECIFIC HEAT \ S

\

Heat is a form of energy associated with the yrandom motion of the mole-
cules of a substance. An increaged temperature implies,an increased
random motion . \ |

Heat E.ergy is. measured in‘units of calories (cal),.kilo alories (kcal),
and British thermal units (Btu).

N

1 calorie of heat energy is required to raise the temperature
of 1 gram of water by 1 celsius degree (specificallylfrom

(‘ 14.5 to 15.5°C)‘- *\ .

1 calorie = 4.185 joules /

{
1 kilgcalorie- (Kcal or kg-cal) equals 1000 caloriej/ot

1 kilocalorie =# 4185 joules /
. ’ / .
1 British thermal unit of heat energy is required to raise
the temperature of 1 pound of water by 1 Fahrenhe¢it degree
(specifically from 63 to 64°F).

1 Btu-= 778 ft-1b = 252 cal =/0.252 kcal
. r
(NOTE: The relationship 1 kcal = 4185 J is sometimes referred
to as the mechanical equivalent of heat. ;

- = 7
The Heat iCapacity of a body is the quantity of ﬁeat needed to raise the
temperature' of the body by one degree. It is véasured in kcal/c® or
BtU/Fo- o

The Specific Heat c of a body is the quantity jof heat needed to raise
unit mass of the body by one degree. It is measured in kcal/(kg c®) or
Btu/ (1b F°). Numerically, the specific heat has the same value in both
systems o{ units. That is kcal/ (kg Co) = Btu/(lb F°).

The relationship between the heat energy Q gained (lost) by a body
(mass m and specific heat c¢) undergoing a temperature change AT is

¢ = mcAT

It is' assuméd that the body does no* uvn"~ ‘o a change in state.

For examole, if a sample of lead (mas% of 1 kg, specific heat of 0.030
kcal/(kg C)) is to be heated by 50 C, the required hgat enerqay is
0 =imcAT = (1 kg) (0.030 kcal/ (kg ¢°®)) (50 C°) = 1.5 kcal.
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* When two or more objects with different temperafures are brouaht into
contact with each other energy is conserve d
3 - (Heat energy lost by "hot" objects) = (Heat energy gained by "cool" objects):
The above relationship assumes no heat energy loss (or gain) to (from)
the surroundings; it is.referred to as the Method of Mixtures.
y If a device (mass m, specific heat c) is being heated electrically
! (as<uming 100% efficiency) by a power supply delivering P watt§“£gyprent
I, voltage V)for a time t
' Pt = IVt = mcAT
where AT is the temperature chapge and a proper choice oEVunits must be
made. If the heat delivering device obeys ohm's Lan;
. | S .
) : Pt=IVt=IZRt=‘—l:—t=chT
7
where R is the resistance. A
) Table 4 giveg values of c for some common materials.
Table 4
‘ Specific Heat of various Materials
o P Specific Heat
(kcal/ (kg C°) or
Material Btu/ (b F%))
alcohol (ethyl) 0.58
| aluminum - 0.22
PR copper 0.093
glass 0.20
ice 0.50 .
iron 0.11
lead 0.C30 -
mercury : 0.033 )
steam 0.48 -
water 1.00
» ' wood ) 0.42 .
zinc 0.092
< ’
A’ '
LABORATORY ) :

-~

Using the traditionally employed method of, mixtures, the student should
be able to measure the specific heat of various materiels.

s
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Also, using such methods as the continuaus flow-electric -calorimeter and/or
. methods in which mechanical energy is directly convertgﬁ-into heat energy,
the student should be able to measure the mechanical eguivalent of heat.

-

Finally, using traditionally accepted methods the student “should be able
to measure the average specific heat of such devicgﬁyas an electric toaster

or. an electric iron. !

p /
Y E // ,_/
N « ' / /‘/ A
SOLVED PRUBLEMS ' '/ -
"/
1. How many kilocalories are needed to rajise the te rature of 500

grams of aluminum from 20°C to 100°C?;

.0 = mcAT = (04500 kg) (0.22 k*al/(kg c©)) (100 - 20)c®

8.8 kcal

2. An ‘aluminum container of mass 100 grams contains 500 grams of Water- \
BotH* are, at a temperature of 20°C. 500 grams of water at 80 C is then
mixed with the cooler water. Find the final equilibrium temperature T
of the mixture. Assume no loss to the surroundings.

Heat. lost = Heat gained
/ .O , B \ "
(0.500 %g) (1 kcal/ (kg €°)) (80 - T)C°*

= (0.100 kg) (0.22 kcal/ (kg €*)) (T - 20)°

n
+ (0.500 kq) (1 kcal’(kg c®)) (T - 20)c°

40.0 - 0.500T= 0.022 T - 0.44 + 0.500 T\ 10.0
50.44 = 1.022 T

T = 49.4°C1 ' -

'3. A 500 W electric heater is being used to heat 1 kg of water }n a
. 300 g aluminum vessel. What temperature change will be produced in
S minutes? Assume no heat loss to the surroundings.

Energy in = (Power) (Time) .
= (500 W) (300 s) = 150,000 J
1) %
e = (150,000 J) (1 kcal/4185 J) - .

35.84 kcal

0
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(0.300 kg) (0.22 kcal/ (kg C°)) (AT}

Heat = 35.84 kcal

-

(1.00 kg) (1 kcal/(kg c°)) \aT)

+

(0.066 + 1) (kcal/c®) (AT)

AT = 35.84/1.066 = 33.62 C~

STUDENT PROBLEMS

1. Determine the final temperature when 1 kg of water at 20°¢C is mixed

with 1.5 kg of water at 80°C.
‘ (56°C) .
2. A 400 gram piece of material at 100°C is lowered into a 250 gram

aluminum container holding 500 grams of water at 20°c. The final" —
equilibrium temperature of the mixture is 26.9°C. Find the specific

heat of the material. o
(0.131 kcal/(kg C))

3. In an experimént in\which water flows by an electrically heated
b resistor at a known rate the following data are collected:

. . i 5
Power dissipated in resistor - 500 W .
Temperature of water entering device - 20°C
Temperature. of water leaving dewjce - 30°%
Total mass of water involved - 7.20 kg -
Time of flow - 10 minutes

From this data calculate the mechanical edquivalent of heat. Compare

with the accepted value. 3
‘ (4.17 x 10 J/kcal)

!

SECTION 3 - TRANSFER CF HFAT /

Heat Transfer can be accomplished through the process;t,of conduction, -
convection, radiation. .

Conduction refzrs to a process of heat transter through a solid object
or a fluid in Ghich energy is passed along from molecule to molecule
but in which there is no net motion of the molecules involved.




For example, for a rectangular slab of thickness L and cross-sactional
area A with one side at temperature T and the other side at temperaturc

- -

. =69~

T,, (T > Tp) the heat energy transferred per unit time, P, is

$

kA
P=1 (Tz

in units of W/m C°)or kcal,{s .m CO).

(NOTE : (T2 - Tl)L is sometimes referred to as the temperature gradient.

Table 5 lists the thermal conductivities of some common mdterials.

P

Table 5

» k is called the ithermal conductivity and is measured

Thermal Conductivities of Some Common Materials

Therma) Conductivity

Material {kcal/(m s Co))‘ N (W/m-C°)
Copper 0.092 3.9 x 10°
Aluminun ( 0.051 2.1 x 102
Iron, Steel 0.0011 4.6 |

Ice 5.2 x 1074 2.2 |
Glass 1.9 x 1074 o.‘so{ .
_Wood (0ak, 0.38 x 107 0.16

Pine) 0.28 x 10 0.12
Réck and 4 '

Glass Wool 0.093 x 10 . 0.039
Water 1.4 x 1074 0.59
Hiydrogen 0.41 x 10°4 . 0.17
Air 0.055 x 10

~N
N,

"v.023
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{ > .
Convection is a process of heat transfer in which heat energy is carried
along by a moving fluid such as air or water. .

* By analogy with the conduction case the heat energy transferred per
unit time, P, by a moving current of fluid with cnbss-sectlon A, velocity
v,. thickness (or length) L and a temperature gradieént (T2 - Tl)/Lnls
KAV

= =——= (T. - .
12 B (T, Tl) ‘ .

l

where L = B//V and B is a constant that‘depends upon the properties of
the fluid sudp as its specific heat and viscosity.

Radiation is a process of heat transfer in which the energy is transferred --
by means of electromagnetic waves.

For a body of surface area A and temperature T(OK), the heat energy
radiated per unit time is

4
/ P = €OAT

ere P is power, dy the Stefan-BQItzmann constant, is 5.67 x 10 -8

/(m2-(K°) ) and € is the emissivity (a pure number having no units)
which depends upon the surface of the radlatlng body. € is-always between
' J 0 and 1. € =1 for a black body (it looks' black™at “room temperature)
A black body is the "perfect"” radiator {and absorber).

The above relation considers only radiation emitted by the body itself.
The body, of course, absorbs radiation from the outside and the net
radiation emitted is /

P = eoAT3AT

where T is the temperature of the body and AT is the temperature difference
between the body and its surroundings.

3 ’

LABORATORY
-
Using commercially available equ.pment the student should be-&ble‘;o
measure the thermil conductivity of good conductors like coﬁpgg,anﬂ poor
_conductors like wood or cork as well as study the phenomena of ‘tempera-
ture lag of a cooling or warming body such as a calorimeter or a thcrmo-
meter. -

*Optional material

.
N /

-

,
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30LVED PROBLEMS

? ’,

., 1. An oak entry door to a house is 10 cm thick, 250 cm hiyn and 100 cm
N wide. How much heat energy will be transferred through this door
in-8 hours if the average outside temperature is 0°C and the average

Ve e inside temperature is 25°Cf
/ . N ) kA . |
P=L— (Tz-Tl) . T
- s " ?
_ £0.16 w/mc®) (3.50 m) {1.00 m) o
T 0.100 - ¥ ~ — (25-0)c
= 100 W (2 signif%cant figures) -
S
Heat energy through door in 8 hours is )
' 3600 s 6

(160 W) (8 hr) ( ) = 2.9 x 10° 7

1 hr R
= 6.9 x 10° kcal

.

2. A‘prical incandescent light bulb filament (tungsten) has an effec-
tive area of 7.70 x 10”2 m? and operates at a temperature of 2450°K.

The emissivity of tungsten is about 0.30. Find the energy radiated
in 1 hour. -

EOAT4

lge]
L]

8 w/mz(x°)4)(7.7o x 1075m%) (2450°k) %

I

(0.30)(5.67 x 10

. 47.2 W

Energy radiated in 1 hour

”,

= (47.2 W) (3600 s) = 1.90 x 1v° J '
. (NOTE: Strictly speaking, answers should have only one significant
figure. )
gure:) .
” . '
A

STUDENT PKOBLEMS ‘
} 9 o
1. A typical double boiler has an aluminum vapor pan, diameter of 25
cm and thickness of 2 mm. The lower pan contains water at 90°C and

tne upper pan contains milk at 5°C. Find the rate at which heat is
transferred to tie milk. ) :

»

. (1:1 x 102 kcal/s)

70 - L
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2. The human body has a normal temperature of about 98.6°F (37°C).
At what rate does it radiate per urit area? If you are in a 70°F(21°C)
room what is yovur ggg_radiation per unit area? Assume an emissivity
of about 0.1l. ' ,

5 x 10* w/m?; 3 w/m’)

S

END OF CHAPTER PROBLEMS ' ' o

l. Air conditioners are sometimes rated iﬁatons; 1 ton feaus the air
conditioner can remove 12,000 Btu/hr from the space to which it is
attached. -1 Btu/hr = 7 x 1072 kcal/s. Suppose that a 1 ton air

- - - conditioner can maintain an empty room at 70°F (21°C) when the out-
side temperature is 95°F (35°C) by running half of the time. How
many people can occupy the room without exceeding the capacity of
the air conditioner? Each person,liberates about 500 Btu/hr {about

.n . 0.035 kcal/s). ; : )

. _(12 people) -

2.  Inh the winter -why does the metal blade of a snow shovel feel colder
than the wooden handle of the shovel?

- > 4
~3. The sun has a diameter of about 1.39 x 106 m and an average tempera-
ture of about 6000°K. Assuming that the sun is a perfect black
bod¥ how much power is radiated? (Area of a sphere of radius R is
s . 4mR°.) :

(4.46 x 1020 w)
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CHAPTER V -

PROPERTIES OF GASES AND LIQUIDS

SECTION 1 - DENSITY, SPECIFIC GRAVITY, ARCHIMEDES PRINCIPLE

-

.The demsity p of a body is defined ai

p = density = mass per unit volume . -

_ hass of body _m. .
: volume of body V - -

Typical density units-are g/cm3, kg/m3, and g/liter. S
& .

The density of water (at abéut'4°C) is 1.000 g/cm3 = 1000 kg/m3?‘ -

!

The weight density Og-df a body is detined as \

Weight d nsity = pg = weight per unit volume

, - ' _ weight of bdédy W
) . \ " volume of body Vv

Typical units are N/m3, lb/ft3. .
13

pry

Specific Gravity 1s defined as

density of body
density of water.

S.G. = Specific Gravity =

whi 1 can be shown to give

mass of body
mass of equal volume of water

5.G. =

weight of body.
weight of equal volume of water

Specific gravity 1s a pure number, independent of any unit system.

For example, the density of aluminum is 2.70 g/cm3 or 2700 kg/m3 while ~

1ts specific gravity is merely 2.70. Similarly, the weight density
of alumirnum 1s 168 1b/ft> or 26,460 N/m>. -
A table of values of density, weight density and specific gravity of
several typical solids, liquids and gases is givem below.

The weight density of water (at about 4°c) is 62.4 lb/ft3 or 9800 ﬁ/m3.~-




TABLE
Substance Density Density “ Weight Density Weight Density Specific Graviéy
(g/emd) | kg/md) . (8/md) " (1b/£ed) '
Aluminum ! S5 " 2700 26,460 168 1 2.70
Brass | 8.70" , 8700 85,300 ; 5430 ?7 8.70
Copper i 8.92 . 8920 . 87,400 ? 556 i , 8.92
' 7.86 ' 7860 . 77,000 ' 490 v 7.86
- 11.3 11300 111,000 705 I
Wwater 1.000 1000 9, 800 62.4 1.000"
(4%¢) . ’ , , . ]
- Alcohol | 4.s01 801 7,860 - . 50 0.801
Mercury 136 13600 133,000 e 136 '
SAir v 0.00129 1.29 12.6 - 0.080 : 0.00129- -
Helium * 0.00018 0.18 1.76" 0.011 i 0.00018
Ooxygén * .  0.00143 1.43 14.01 o~ 0.089 0.00143 .

- For solid§ with a density greater than water

*1 atmosphere, 0°C =-standard temperatpre and pressure (STP)

- .

- Archimedes Principle states that a body wholly or partly immersed in
a fluid (liquid or gas) is buoyed up by a force equal to the weight
of the fluid displaced by the body. g

e

" - Buoyancy (up force) =Fy = Weight of fluid displaced

._WF

. = OFVFq, ‘ ,

whére o_ = density of fluid displaced,\{F = volume displaced and 4=9.8 m/s2.

F

For example, a helium fillza balloon which displaces 0.100 m3 of air
-(density of 1.29 kg/m”) will feel an upward buoyant force of
(1.29 kg/m3) (0.100 m3) (9.8 m/s?) = 1.26 N.

’

weight in air’ -
(weight in air)-(apparent weight in water)

°

specific Gravity =

-

NOTE: The buoyant offect of the air is neglected here since it is very
small compared to the buoyamt effect of water. N

- - -

. R .
/ - . . .
\




One method used to measure the specific gravity of liquids involves
measuring the mass of a solid *n air, when submerged in water and

when submerged in the liquid. Here

Specific Gravity of liquid = mass of displaced liquid
mass of equal volume of water

NOTE: Again we neglect buoyancy of air effect.

LABORATORY

Using a variety of length measurirg devices (meter stick, vernier

caliper, micrometer caliper, etc.) a variety of mass measuring devices
(spring balances, double pan balances, subgtitutien type balances, etc.)
as well as graduated cylinders, specific gravity bottles, etc., a student
should be able to measure the density, weight density and specific gravity
of various solids and liquids. -

A ]

WORKED EXAMPLES (Neglect bubyancy of air.)

1.

Find the density p, the weight density ¢ and the specific aravity
of a sample of iron ore if 5.50 m” has a’mass of 38,500 kg.

density = p = 28220.kg _ 505 k9 _ 5 o5 103 g m3
5.50 m3 ms?
X 2 ' N 4 3
weight density p_ = (7000 ;?_;) (9.8 m/s°) = 68,600 —3 = .86 x 10 N/m

Specific Gravitv = S.G. = dens%ty of iron
. density of water

3

7000 kg/m

3
¢ 1000 kg/m

7.00

A helium filled balloon rises when rezleased because the upward *
buoyant force on the balloon exceeds the downward force of gravity

on the balloon and its contents. Helium is a "lighter" substance

than air. How large a balloon will be needed to support a 150 lb .
person? (Neglect the weight of the balloon and helium.)

The upward buoyant force F_ must be at least 150 pounds. The
volume of air VF which wil? have this weight is given By

S( _ " —
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. Fp = PpVpg y -
v =‘FB _ (150 1b)(4.45 N/1.00 1b)_ 4, g 3
F- p.g (.29 kg¥m3) (3.8 m/s?) :

F

3. An object has a mass of 71 g in air and apparent masses of 43 g
in water and 20 g in. sulfuric acid. Find the specific gravity of
the acid.

mass of displacea acid
S.G. =
- : mass of equal volume of water

? apparent loss of weight in acid
apparent loss of weight in water

_ A7 -200 g _ 51 _
(71 - ¥3) g 28

4. A sample has a mass of 50 g in éLn@agqqg apparent nass of 40 g
1n water. Find its specific gravity. T e e

[}

{
weight in air =209 _ 5 00

apparent weight loss in water T 10 g ’ L

S.G. =

.

STUDENT P.{OBLEMS

1. Find the_weigﬁt (in pounds) of 4 ft3 of water, aluminum, mercury.
. . ;
i (250 1b; 672 1b:=3.40 x 10 1b)

2. A typical circular backyard swimming pool has a diameter of 15 feet
and a depth 'of 4 feet. Find the weight of the water in this pool.
Compare this to the weight of an automobile.
\
. (4.41 x 104 1b; about 15 autos have
same weight)

. " D2
NOTE: Volume of cylinder = (~Z—0h

diameter .
depth (height)

where D
h

3. A solid measures 1000 g in air and 600 g in a liguid whose specific,
gravity is 0.700. Find the specific gravity of the solid.

(1.75)
. 4. A metal sphere has a diametér of 10 cm and a mass of 4,000 g.
Find its density in g/cm”™, in kg/m3. (Volumé'of sphere
eqguals 4/3ﬂR3; where R = radius.) .

. (7.64 q/cm3; 7.64 x 103 kq/m3)

8.




SECTION 2 - PHASE CHANGES .

Any substance which has a definite chemical composition will exist
in one of four phases; solid, liquid, gas, or plasma. !

! ~

The heat of fusion H_ of a.solid is the amount of heat energy Q needed
to change a unit mass of the solid into a unit mass of liquid without—
a change in temperatuare.

e

Heat of fusion of ice 80 kcal/ky, (at 0°C and 1 atmosphere of préssurg)

4
P 144 Btu/lb (at 32°F and 1 atmosphere of preéessure)

s PG

Example.

, I g
How much heat Q is needed to melt 20 grams of ice at 09¢?
7

-

Q = fﬂHf : . //:/’/, s \ . g Q‘
g ' \ P

(0.0200 kg) (80 kcal/kg) = 1.60 kcal

i

The heat of vaporization Hv of a liquid is the amount of heat ene gy Q
needed to change a unit mass of the liquid into a unit mass of gag with- :
out a change in temperature. _

Heat of vaporization of water = 540 kcal/kg, (at 100°C and 1 -\

atmosphere of pressure)

.

\

972 Btu/lb, (at 212°F and 1
4 atmosphere of pressure)

Example.

How much heat Q must be removed from 20 g of water vapor or steam at
100°C to condense it- to liquid «* the same temperature?
/

Q= raHv . T
= (0.0200 kg) (540 kcal /kg) -
= 10.8 kcal “
“ .
A plasma occurs when enough heat has been added to a gas to causc the
molecules to break up into pairs of electrically charged particles called ,
ions. . \
NOTE: Students should review the material of Chapter 1V which deals‘with _—
— L. 0® : : -
specific heat and the‘method of mixtures.
: avar




+

>

LABORATORY

Students should be able to use thermomneters, calcrimeters, steam traps,
boilers, tnermistors, etc. t» measure heats of fusion and vaporization.

WORKEZ "EXAMPLES |

\

. . . 1 . O

1. Find the final equillbrlum temperature T when 200 g of jce at 0°C
i 1

and 400 g of water at 50°C are mixed together.

¢

t Heat gained by ice = Heat lcst by warm water
(0.200 kg) (80 kcal/kg) + (0.200 kq)(1 kcal/ (kg o deg) (T-0)C°

= (0.400 kg) (1 kcal/ (kg €°))(50-T)C®

or 1\&0’+.0.200 T = 20.0 0.409 T - 20.0

0.600 T = 4.0

2. A vessel contains 500 g of “ater and 300 g of ice - equilibrium tem-
pera.ure of 0°C. 100 g of steam at 100°¢ is introduted into the mix-
ture. Describe what happens. ’

Keat.lost bv steam = Heat gained by ice and water

i (0. 100 %g) (540 kcal/kg) + (0.100 kg) (1 kcal/ (kg c®)) (100-T)C°

3 L]
Al

{f* = (1.300 kg)(SO kcal/kg) + (0.300 kg) (1 kcal/ (kg Co))(T-O)CO
) + (O-SOUckg). (1 kcal/ (kg c°))(T-oic;° ‘ |
. : 54.0E+ 10.0 - 0.10C T = 24.o'f\+ 0.30L T + 0.500 7 \
N | "40.0 = 0.900 T |
T = 44.4°%C ‘ )

You have 900 g of witer at 44.4°C. S

¢
STUDENT PROBLEMS :

1. How much heat is absorbed when 140 g of ice (OOC)‘is melted?
i - . .

. - ' (11.2 kcal)

8(} &
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\
\

\
2. 0.500 kg of water is at 20°C. How much heat is needed to boil 1t
all away? )

(310 kcal)
3. A student takes the followiﬁg data in a lab situation mecasnuring the t
' heat of fusion of ice (ice is at 0°C): .

calorimeter mass = 60 g
water in calorimeter = 400 ¢ )
total mass of calorimetex, . « °
water and ice addel = 618 g ’
initial temp. of water = 38°C b
equilibrium temp. - =_5°C

‘ c{calorimeter) ) = 0.10 cal/q°C

Find the heat of fusion of ice.
‘ é
79.8 kcal/kg) |
& *
2

SECTIOY 3 - PRESSURE AND ITS MEASUREMENT

/
!

LY

force F
Pressure = ———— P = - -
—_ area ) A '

NOTE: Force F must be perpendicular to area A.
\

1 N .
Units of pressure = *E—, iE_’ ﬁ,’ 1 —5; = 1 pascal (Pa)
2" 2 2 2
ft in m m . -
Example. . :

.
i

Find th§dpressurg'on the bottom of a cubical container, 1 ft on side,
of water. .
2 \

The total force 03 the bottom of the container is 62.4 lb (wateY

weighs 62.4 1lb/ft”). The totdl surtace area of the bo-tom of the coq;

tainer is (1 ft) (1 ft) = 1 ft2, or 144 in?. :

’ V'
1 ¢

P = g =82:43b . 4433 393 = 62.4 395 ey
- 144 in in ft

The Eressufe P éye to any column of fluid of height h and density o is

3 P = pgh - L

Pressure depends only on the depth of the fluid and not the shape of the
container. '

J
|

»

/
where g = acceleration of gravity.

*
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T v

1§géggle.

‘What is the pressure (in 1b/1n ) at the bottom of a 34 foot vertical
:water pipe?

1b
)—147—3-

1?/
Atmospheric Pressure. Air exerts 'a pressure on any ob]ect immersed 1n
it. This pressure varies somewhat.dependxng upcn one's location on the

surface of the earth: It drops as one goes above the surface of the
earth. By-convention and measurement the gtandard sea level value is

. L
~ ' 1b )
B = ogh= (62.4 127 (34 ££) = (2121.6 o) (L EE

' ft Ft 144 in

14.70 1b/in?
1.013 x 10° N/m?

1 atmosphere (atm)

4

[ =4
1.013 x 10~ Pa (pasgals)
1013 millibars }

1

\

.
1}

7 cm of mercury

Pascal's Principle: Pressure changpks applled to one part of an enclosed
filuid (liguad or gas) are LransﬁfEted undiminished to all other parts
of the enclosed fluid.

) /
Example. ! /

\
Find' the total pressure P,ot at a depth of 20 cm in an open container of
water. Total pressure is equal to atmospheriq pressure Py plus pres-
sure due to- the water P

. H.,0, Y
. . 2 - , //
Prot = Patm * PH2O ' ;
’ -~ //-'
= 1.013 x 10° ¥ = + oah » !
. m
= 1.013 x 10 —5 + (10> —30(9 g = 75) (0.200 m)
m m S
. p ’
= 1.033 x 10° N/m° : )/

An hydraulic jack, lift or press consists of two conn ZCted cllwnders -
one has a yery small ‘crcss-sectional area a and the her a very large

cross-sectional area A. -
A weight placed on the larger piston can be lifted by applying a force
on the small piston. According to Pascal's Pdinciple

S




By =

P ) = P =P .
\ small pistomw large piston -
d
- force .on sgail piston (f)\= weignt on large piston (W)
area of small piston (a) area of large piston (A)
P rd 2 f .
e W :
//// a - A
e
: e
Exhmple. -

ik order to raise an automebile weighing

e pistous are, 4 cm? and 1000 cm2.
a 4 cm2 4\;
f = A W= (___—___75)(16'000 N) = (1666 (16,000 N)
1000 cm
RS <+
, = 64.C N

LABORATORY .

The student should be ablew pressure measuring devices * should )

be able to verify Pascal’'s PrirClple on an hydraullc device.
WORKED EXAMPLES . . T v

|

1. An open container filled with a fluid of density p was fitted with a
. tight fitting piston of arga A. Another force F was applied to the
piston. Find thé pressure at a depth h below the surface.
L]
i

P.= P_ + gqgh B ) - \
! N J
- g + h
= pg .

If the ferce F was increased, then the change in pressﬁre-wouid be
transmitted without loss throughout the whole confined liquid. -
3 F Y .

/ L}
PR
STUDENT ' PROBLEMS | . (g
- .
1. Wwhat 1s the pressurc at the basc'of a (olumn ol mercury 7¢N.J mm
high 1f p for mercury = 13.60 x 103 kq/m ? . ;
(=4
(1.013 x 10° N/m%)
¥
-




-H2~ -

2. A ballerina weighing 105 lbs stands on one toc.. The arca of
contact between her toe and the floor is 2.5 in~. What pressure
does she exert on the floor? ¢

(42 1bs/in® ¥ 3 atm)

3. An hydraulic barber charr has a large cylinder with an area of 120 cm2
and a small cylinder with a;\area of 4 cm4. How much downwara force
must be applied on the small cylinder to lift the chair and cugtomer
(total weight 250 1bs)?

' s % (8.33 1bs)
>~

4. what is the total pressure on a swimmer who is 1.50 m below the surface
of the sea? .(Density of sea water is 1025 kg/m3.)

x (1.16 x 10° N/m® = 16.9 1b/in’

1.15 atm)

i

SECTION %4 - GAS LAWS
f

Boylé's Law: Liguids and solids are considered to be virtudlly iﬂ'
compressible. However, gases undergo volume changes with changes iA pres-
sure (constant temperature). Boyle's Law states:. ' *

(Pressure) (Volume) = Constant, (for constant temperifére)

\ % ’ /
- . VvV =P b (T = constant) 1
\ or D P1'1 22 ;
\- f \“\/ .
. where P. and V., are the initial ~ressure and volume
. and Pa‘and szare the final pressure And volure.
!

— LXﬁE’Te‘T_“— T - T . ) e -

1500 cm3 of air is containeg in a cylinder at 105 N/mz. If this air
1s now compressed to 300 cm” without a change in temperature what will
be the final pressure? .

PV, =P

1Y1 = BoYs /
v 3
N
powp Lo (105 ) 1200 @, 105 Ny (13 | 5 00 x 10°
2 771 2 3 2’73 2
2 . m 300 cm m m

Cay Lussac's Law states that the volume of an enclosed gas at constant
pressure is directly proportional to its temperature (YK), or

vV = kT. (for constant pressure)
where k 1s a constant ofﬁproportionality

or
k=2 &Y




or
v1 v2 '
. - = (P = constant) .
T T
1 .
~ ‘ ' ’ -
Example .

A'contaiger is-filled with 10 m of gas at 27°C. The temperature is then
raised to 87°C while the volume increases in order tb maihtain equal |

pressure. Find this new volume. ! Coe L . -
Vl - v_2 - \ L..\f 3
Tl T2 \
~ . 1
oo Lo o (100879 + 27390 L 10'm’) (360) _ ., o s
2 T 2 (27° + 2739)K (300) )

-

Charles' Law states that pressure of a confined gas at constant

volume is directly proportional to the temperature, where T is 1in

degrees Kglvin. 3 )
P = kT

v
o

P -z

== o

" T ‘5 unstant volume)

{(k is a proportionality constant.) ’ // . .
. / [N r

(V = constant) \Nk\*‘“S

"
I

P
N

o '
A balloon is inflated; o a presstre’of 3 x“lQ? N[mz, Its temperature
is 7°C. The gas is hetated to 35°C. What is“the new pressure, assuming

volume remains constant? -

Ty 3x 105N 350C + 273)k 3 x 105 N 308
P2 = Pl — = ) ( i
T, 2

) =3.30 x 105 N

3

The Gen!&al Gas Law states that the product of pressure and volume ;s
directly proportiwal to the Kelvin temperature.

PV
PV = kT ?r o= T

where k is a'proportionality constant. ’

- ot \
4
v
P B

L 4

79c + 27K~ m2 ) oo m2,
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¢ éi;; le. , ) . LI
o Nitrogen is stored in tanks.at 227% gnd 105 N/m2 pressure. If 5 liteqé,/y/ 1
) at this temperature and pressure are put into a 1 liter tank at 27°%, R
what is the pressure in the tank? 4 i
& . , |
sz2 ) P1V1
Ty T
v. T
2 .
: P, =P, (259 : .
Va Ty o
‘e . 5 % _
_ ,J0° N _. 300, _ SN
= > )(1)(500) = 3,00 x 10 3 .
m ‘ m . i
- Gadég Pressure. Most pressure measuri’ng jauges give readings which indi-

cate the difference between the actual pressure on a gas and the atmos- ' ;
phecic pressure. For example, if an automobile tire gauge reads 30
"pounds"”, this means that the pressure in the tire is actually about
45 1b/in?. , .

s - 2\
, LABORATOCY ! T .-
(' . - ) B | _ -

The student should be able to verify the proportionality of pressure

to temperature and find the absolute zero point by extrapolation.

a

Also, the student should be able to verify Boyle's Law and Charles' Law.

STUDENT PROBLEMS

1. 3 liters of hydrogen is at 26.8°C and 1 atmosphere of pressure.
It then is compressed to 2 liters at a pressure of 1.80 atmosphere.
. Find the new temperature of the gas.

(36Q°K)

2. An automebile tire when cold (27°C) has a pressure of 45 lbs/ihz !
(30 lbs/in2 + atmospheric). . After being driven 100 miles, the
temperature of the enclésed air has risen to 52°C. What is the new
pressure? , - . . .

‘ o , , (48.8 1bs/in)

. v
ALY

s »

3. . A bubble rises from the bottom of a lake where the water alone pro-
duces .a gressure of 2 atmospheres. If the volume of the bubble .
is I5 cm” at the bottom, wiat is its volume when it reaches the :
sugfagé, assuming no temperature change? :

. or . - ‘ i . . oo . (45~cm3), .
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SECTION 5 - HYDRODYNAMICS

K ”

Discharge Rate Q is the ‘volume V per second of a fluid that flows
| through a. full pipe of cross-sectional area A.

i . .

,
Vs . . ‘ - .

Q= %-= Av, where v = velocity of the fluid.

When there are different cross-sect‘pnal areas (A,. A A3, ...) in the pipe, |

" Alvl = A2v2 = A3v3 = ... <:;

Example.

Cne end of a circular pipe“has a #adlus r. of 3 in. while the other end
has a radivs r, of 6 in. The viZb01ty vy of the fluid in the 3 1inch
section is & ft/s. Find the welbcity v, in the 6 inch section.

2
Rvy =AYy .
A n——_ ' 2 -
. i ft £t £-
‘.’2 = A Vl = 12 Vl = (3 ln)z (6 —S——) ='§—6 6 s—“) = 1.50 ;—
2 b ; (6 ing N
2 . s

Torricelli's Theorem states that the velocity + £ outflow of a fluid ..
. from a container of the fluid filled to a distance h above the opening &\\

will have the samre speed "as if the liquid Had fallen from the same
héight. Thatis, i

—— .

v = v2gh
Example.
A'fank of water\<;:ight = 10 ft) is sitting on the ground. A valve
“is opened 1 ft ve the oround. How fast will the water flow from the
opening?
v = v2gh ’

V2 x- (32 ft/s<) (10 ft - 1 ft)

. V576 ftl/s2

24.0 ft/s

Bernoulli's Thecoreq states that the work done in transportating an
incompressible luid through a frictionless pipe is equal to-the cnange .
‘in the total nechanical energy of the fluid. T




1
- LS - +
(Pl P2)6 S M, o+ mgh, -5 mv, mghl)
or !
lj
m ' m 1
P — + — = +
1o mv, + mgh1 P2 > mv2 + mgh2 |

where m is the mass of the fluid, p is its density, Pl, v1 and h1 are the
pressure, speed and height of the fluid at one point in the stream; and
Py,vy and hz are the pressure, speed and height at some other point in
the stream. h; and h, are measured with respegt to some arbitrarily
chosen level. M

\

- \ . . .
stated in other ways, along'a stream of incompressible fluid

4. _‘{‘ m 1 2 o
! P E'+ 3 mv- + mgh = constant (energy form)
1. .2
P +5 Pv + hog = constant (pressure form) |
. e |
B, vl . |
og * 29 = constant (height form) ‘
Example.

Fluid flows through a horizontal pipe at a
wher€ the c.gyss-sectional area A, is 0.200

rate of 6 ft3/s at a place
ftz and the pressure P. is

. * 30 1b/inZ.

What would be the pressure P2 at a point where the cross- |
sectional area A2 is 0.150 ftz?
2 -1 2
Pl + 5 pvl + oghl = P2 + > pvz + ‘oghz .
= = = g T 9' :
. Now , h1 h2 and aghl pgh2 and v1 A1 v2 7 Az
: 1 2 1 2 '
. pl + 2 OVl = P2 + 2 QV2
2 1 2 o - A
= + - - — -
=P Vi T 2°Y; /
// 7 .
p, 2 ° 2 p 2 . 2“
= + = - = 4+ = - A
Ppralvy = v =Bt 3 EQ/.Al) (Q/ 2)_‘

/ety /(32 /82

. 2
1b .
(30 ,)(144 in ) + [262 4
. 2 2
in ft

. 76 ft3/s 1,28 £e3/s )
. e ft/s,2 _
Q _0.200 ft? 0.150 ft>

]

2

Z-J .- ‘} ‘-':
g 8




2 2 2
1b
= 4320 2+ 0.975 225 (900 £/ - 1600 -f—t—)
2 3 5
ft ft S s .
= 4320 1—b§ + 0.975 lb—2 (-700)
£t £t

4320 —l—b—z- 682.5 12

ft ft

3637.5 lb—2
i £t

(1]

3.64 x 103 lb/ft2 = 25.2 lb/in2

Phe Work Done in forcing a volume of fluid through a pipe against an
. opposing pressure is given by

, Work = (average pressure) (volume)
}- N
W = PV
Exgégle.

What would be the work done in_forcing 100 ft3 of water into a water main
against a pressure of 20 1b/in“?

[N

. W

PV

.2

(20 12y L4410 ) g0 £
. 2 2
in ft

2.88 x 105 ft 1b

»

The student should be able to use compression balances, spring balancegs,
platform scales, pressure gauges such as Bourdon gauges, hydraulic jacks,
hydraulic valves, and volume measuring devices and thus study various
aspects of moving fluids.

STUDENT PROUBLEMS

1. A siphon 1s a hose or :ube that can be used to move a fluid over some
obstruction from one contdiner to another at a lower level,. 1f the
lower end of a siphon is 2 ft below the level of the fluid beiny
siphoned, find the rate of: flow of the fluid out of the siphan.

(11.3 ft/s)

- -

-
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A tank holding gasoline has a 1 cm2 hole punched i1n it 2.50 m below the level

of the iiquid 1u :che tank. What is the rate at which this gasoline will flow
of the 2 ' N

out the tank (0.700 liters/s)

water is pumped in an irrigation system so that it causes a 4 in. diameter
horizontal pipe to remain full at an average water velocity of 10 ft/s. How
many -cubic- foot per second gaes through the pipe?

(0.873 ft3/s)

How long would it take the pump in #3 to pump 1 acre-foot of water. 1 acre-
foot means that an area of one acre will be covered with 1 foot of water. 1
= 3
acre foot 43,560 ft-. ‘ (13.9 hours) —
Two pipes at the same horizontal level are 6 in. in diameter -and 2 in. in dia-
meter. These pipes are connected. Water flows through the 6 in. §ecti0n at
a rate of 2 ft/s with a pressure of 15 1b/in2. Find the velocity and the pres-
éyre where the diameter drops to 2 in. (18.0 ft/s; 1.85 x 103 lb/ftz)

OF CHAPTER PROBLEMS

A Solld metal ball with a specific gravity 7.7 w.ighs 5 1b in air, and 4.55 1b
when i1mmersed in a liquid. Find the specific gravity of the liquid.

(0.69)
How much heat is needed to change 150 g of ice at -400 F into 140 g of steam at
O > .
3007 Fz (28.1 kcal)

. .
400 g of water and 100 g of ice ’re mixed together in a c. tainer and are in
equilibrium at 0° C. 300 g of steam at 100° C are fed nto the mixture. Find
the final equilibrium temperature. Describe the final mixture.

(a) 100° C; 193 g of steam and 600 g of water, all at 100° C)

A typicalfbackyard above-ground swimming pool has a diameter of 15 feet and a
depth of 4 feet. (a) Find the total pressure on the bottom of the pool. (b)
Find the total force acting on the bottom S6f tne pool. (c) What is th weight

" of the water in the pool? (d) Are: the answers to (c) and (b) different? Why?

(16.4 1b/in%; (b) 4.17 % 10° 1b; (c) 1.10 x 10% 1b; (&) Yes) - .

The maximum depth to which scuba divers may safely descend is usually considered ~
to be about 135 feet. (a) What total pressure exists at this level? Air at

normal atmospharic pressure is about 20% oxveren and 80% nitrogen. - Assume that

the volume of air breathed per breath at a depth of 135 feet is the same as N
that on the surface (sea level); also assume that air enters the lungs at the
pressure of the surroundings when one is below the water. Assume a constant
temperature. (b) Comment on the effects of breathing air at this depth from -

a tank filled on the surface with "normal air". -

(ta) 73.2 lb/in2 or about 5 atm; [(b). equivalent to breathing 10%
oxygen at the surface)

what horsepower is required to pump wateg to a height of 20 feet and then force
it 1nto a main at a pressure of 25 lb/in® if 150 ft3/minute is to be pumpeda?

. . (22.2 hp)




CHAPTER VI

SOUND & WAVE MOTION

SECTION 1 - BASIC WAVE PROPERTIES

Wave motion involves the transport of energy through a medium, such
that there is no mean displacement of the particles of the medium,
. which vibrate about an equilibrium position. )

A transverse wave is a wave in which the motion of .the particles of
the medium is perpendicilar to the motion of the wave {(e.g. a'wave in )
a string), producing a shape as shown below.

Particle Motion Crest

Wave Motion

Trough : ' 3.

A longitudinal wave is a wave in which the motion of the particles of
the medium is parallel to the motion of the wave (e.g. waves on a
spring), producing a shape as shown below. (Sound waves are longitudinal

waves. ) . A
Particle Motion Rarefaction Wave Motion
g

' { S \ Compression / :

' Wavelength is defined as the.distance between successive crests - or .
troughs - (compressions - or rarefactions - in a longitudinal wave).
See illustration below. It is usually symbelized X' (Greek lambda) and ~

measurea in meters in the metric system. .
N . k— A -ﬁWavelength ‘
’ @

: (equilibrium

ppsit1ons)
4 | :
o
g Amplitude ) e
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% The wave speed v is the speed with which the crests and troughs (cohﬁ—;
pressions and rarefactions in a longitudinal wave) move through the
medium. It is determined by the physical properties of the medium.

S

Thé‘ggglitude A of a wave is the maxim displacement of the particles
of. the medium from equilibrium position as the waves move through the
medium. See illustration above. ‘ ’

The frequency, f, of a wave is the numb¥r of crests per second that
pass a given point in the path of the wave. It is determined by the

) source of waves and measured in cycles per second (cps) or hertz (Hz).
‘ 1 cps = 1 Hz. {Dimensions of frequency Pre 1/s.) :

The period T of a wave is the time betweén the éassage of successive
crests. ’ . ) : .
) 1 -
T = 3 Hz -—AO.ZSO S N |
. The wave equation relates the variables o \speed v, frequency f, and
, wavelength A; for any wave: - \

v = Af o

o

! ' For example, a 20 Hz wave with a 3 m wavelength must be moving with a
/ , speed .
. i
i

-

v (3 m) (20 dz) = 60\0 m/s

|

! .

4 LABORATORY \ -
1

The student should be able to directly measure the speed of a wave with |
appropriate length and time measuring devices For example, he should . '
be able to use a meter stick and stopwatch tojmeasure the speed of a
wave on a sSpring, or using appropriate equipment ne should be able to
measure the speed of sound in air. He should |also be able to make
direct measurements of wavelength and frequen when these are ir the
appropriate range. ) \

WORKED EXAMPLES

1. A 'sound wave yifh frequenqy 440 Hz travels 'through the air and then
into a swimming pool. What is its wavelength in each medium if
the speed of sound in air is 340 m/s and in water is 1500 m/s?

=380n/s _ 5993 m - -

In air: A = = 340 Hz

<

.

) In water only the speed changes (f determined by the source):

A = % _ 1500 m/s _ 3.41 m - -

440 Hz |

Q . -~




2. If a water wave has a wavelength of 2 ft, and a speed of 5 ft/s,

what is the period of the wave? .
1 v
T = f;, and f = X . ~.
therefore ) ’ 5
) A 2 ft |
T v 5 ft/ 0.400 s

1

STUDENT PROBLEMS

If A sound wave with a 2 m wavelength in air {v = 340 m/s) travels
into water (v = 1500 m/s). What is the perlod of, the wave 1n — s
_each medium? : ° ’ . .
P (5.88 x 10”> s in both)
2. Which of the wave properties, amplitude, wavelength, speed, frequency,
will directly affect the speed of the individual vibrating particles
of the medium? - . -

4 - -

] ‘o ) ) (amplitude & frequency) e

3. Waves are put into a stretched spring by vibrating one end. They
move dqwn the spring with a‘speed of 6 ft/s and a wavelength of —
1.5 ft. If the frequency is doubled by shaking the’end twice as
fast% what will be the new wavelength and speed? .

BRI o ‘ © (.750 ft; 6.00 ft/s)

~
<

SECTION 2 - SUPERPOSITION, STANDING WAVES, AND HARMONICS oA

*

. The ﬁt;nckp;e of sug_gposxtlon states that the dlsglacement of a particle
in the 'medium due to the presence of two waves at the same time is the
sum of the displacements that each wave would produce singly. For example,
the two waves a and b, shown below, will produce the wave form c.

LY

i \ B r




-92- -, . .

= -
- . .,

L2

A standing wave on a string'is a pattern of string vibration in.which

the string vibrates in the ghape of a.portion of a wave, with gertain. )

points never moving and other points undergoin maxin oscillation. .

Two traveling waves with the same amplitude and wavelength, traveling - -
- in opposxte directions, will produce a standing wave. ) |

~— " )
A node is a pozﬁt in a standlng wave that has zero displacement at all |
txmes.‘ v1brat1ng strxng fixed at both ends Has nodes at its ends. ?-

An antinode is a point in a standlng wave‘that has ggﬁlmum amplitude\of
osc1llat10n.

’

' Modes of oscillation refgr to the various shapes or waveforms with which .
a body can vibrate. - . \\\\;
0 * ;

The fundamental mode of a string fixed at both ends is the simplest pat-
- tern of oscillation possible. It is shown below. ’

.
) .
: ~ N

‘Fundamental v .
- \ o
‘Harmonics of a string, fixed at both ends, are the basic - aveforms with
which the string can vibrate. The first harmonic, is the fundamental i .
and the others are often called overtones. The number of the harmonic
gives the number of antinodes in the waveform. The second and thivd * .

o) harmonics are shown below. A strlng may vibrate with more than one
. harmonic at a time, in Which case its shape Ls determxned by the Principle
- of Superposition.

~ .

Second Harmonic - . Third Harmonic °

R
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", The frequencies of harmonics are inteqral multiples of the fnngamgngal_
frequency. If f, stands for the frequency of the fundamental, then
the frequency, f,, of the’nth harmonic is .

fn = n/f1 b T e

for example, if the fundamental frequency is 220 Hz, -the third harmonic
frequehcy is .

t
) L £ =3 x 220 Hz = 660 Mz .
i - -
The string equation gives t fundamental frequency of a string fixed
at both ends, whose mass m/ is in kg, length L in m, and which is

under a tension T in N.

£ L ' '
B 1 2nV¥.wL

For example, we may find the fundamental frequency of a string 1 m in
length, whose mass is 10 g and is under a tension of 8L N.
— [ _ AN
N
-1 8l N g
1 2() m) 0.0100 kg/ 1 m

- £

- =(1/2) /8100 Hz

- é/z) (90 Hz) = 45.0 Hz .

LABORATORY

The student should be able to verify the string equation fbf something
like a guitar string using suspended weights, meter stick, and a fre—
quency determining device guch as a stroboscope or an oscilloscope.

- -

WORKED EXAMPLES

!

/
.1. Pind the frequency of the fourth harmonic for an 80 g, 2 m long
string fixed at both ends and under a tension of 144 N.

~ 80.0 x 10 ~ kg/2 FL\\§,

r

.= 15.0 Hz .




f.; = 4f1 = (4) (15.0 Hz) = 60.0 Hz

2. If the string-below has a fundamental frequeficy of 330" Bz, with
what frequency is it vibrating as shown?

4 antinodes n=4 gfourtﬁ harmonic)

1

L

. ! £ 2 (4) (330 Hz) = 1320 Hz = 1,32 » 1'03 Hz -

4
3. show the shape of the waveform on a strxn& if 1t is vibrating
with its fundamental and second harmonic simultaneously. The ampli-
tude of the second harmonic.is half that of the amplitude of the
fundamental. )

-
-

Here we must sketch the two waves and roughly add them using the "
Principle of Superposition.

Fundamental

-

Second Harmonic

—— e e —
— e e e —
— e — pasmss

—— e g
.
— e e

- .
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\ : = .
\1'., Wllng the tension on a stnng“ ﬁxed at both ends, has what effect R
R ‘on its frequency? . - -
(Increésed*:by ;{-factor 1.41f &
. " 2. A string 40 cm long and with-a mass of ,36{&9 is put Under a’ tension
o of 490 N. What is its fundamental frequency? What is the funda- "
e ¢ mental frequency of a sample of the same string uuce as.long-and %%
J T under the same tension? - . T S
e v e : . (92.2 Hz; 46.1 Hz) - A
i ‘~. 3. If a string, fixed at Loth ends, is vibrating with a node at its
¥ = - centexr, what harmonics cannot be present? . N
. = ’ . ,
=Y .2, "% (all odd harmonics) .~ , e

B - ¥
4. If the fundamental frequency of a string is ‘200 Hz, sketch the har-
monic whose frequency is 600 Hz,

.
v

5. Sketch the shape of a string v1brat1ag w:,t(x its fundamental and its
; .third hammonic simultaneously. The amplityde of.the third harmonic.
Ct . is 1/2 the amplztude of the fundamental. M

3 .

- 1

SECTION 3 - SOUND POWER, INTENSITY, AsD DECIBELS -
f

The power of a wave, or theﬂsmwm? is propoxtional

to the guﬁre of the wave anélitude A.

‘ ~ : Yo 'paaz . .5

. Por example, doublmg the amplltude of a wave mcreases 1ts povwer by
. a fa(:tor of four.

b

|
F

/
The intansit_:x of a wave is defined as the _power it carries_per uniit area,
If P represents the power that a wave carries through an area a pérpen-
dicular to the wave motion, then intensity I is givein by

* 1~ P/a

For example, a sound wave that carries a power of 5 x 10-3 watts thi/'ough
a window of area 2 m® has an intensity of

-3 . |
. 1-5-1‘—1-%——"—=2.50x;o3wm2 .
» . 2 n :
The inverse e law states that the jntensity of a wave in space.daz_
creases as 1/d4% where 4 is the distance from the source. .
! . I« l/d2

! . - - J—

100 | g
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. by a factor of four.

N §

Thus, doubling the distance from the source decreases the wave intensity

E

The intensity level (I.L.) is proportipnal to the_gggmgg_lgga;i;hm_of
the jntepsity and is' a measure of loudnéss. at a single frequency. In.
decibels, the intensity level is given by

I.L. = 10 log (I/Io) 4

where I Ts the intensity of the sound wave whose intensity level i% being -

calculated, and I, = 10~12 W/m? is the intensity of the minimum audible
sound. - -7

For example, the ihtenélty level of the sound wave in the last example, is -

I.L. = 10 log (2.5 x 1073410712

10 log (2.5 x 109)

10 (log 2.5 + log 10°) = 10 (398 + 9)

-

(R

94 dB

1] “ - .
In approximate terms, a_change of about +3 4B corresponds to a doubling
of the incensity I; -3db, of course, implies’ a halving of the "intensity
I. If the intensity level is raised by another +3db, the intensity
again doubles - it becomes four times what it was originally; that is, .

+6 dB implies an intensity four times as great; and so on. Each succes-
_, 8ive doubling means a change of +3db.. )

-

LABORATORY

The student should be able to use a sound level meter to map out a
pattern of intensity level from a speaker or other source. He should
also be able, to verify the inverse square law.

WORKED EXAMPLES

-

-

1. If the intensity level at one position is 75 dB, what is the intensity

level at a point twice as far from the source of sound?

- If we use subscripts i and 2 to represent the first and second

positions respectively, we can write

~— IL1 - IL2 = 10 log(Il/Io),- 10 log (12/10)

, =10 [109(‘11/10) - log(I/1 )] ‘ ’

#
o




= 10 10g[(1,/1_)/(1,/1)]

L, - IL, = 10 log (I,/1,)

!

But we know I, = 75 4B and the inverse square law says (Il/Iz) = 4.

IL, = 75 &b = (10 log 4) db = 75 db - 6 db = 69 dB
or using the’ﬁpi:;imtion agéve, for a case of cutting the irltensity
by a factor of 4 (= 2 x 2), the intensity level goes down by 6 db_.
(=2 x 3 db).

2. One sound wave produces a sound level meter reading of 60 dB. What
would be the reading if the amplitude of the wave were multiplied
by four? )

—

We may use the formula from the previous example.

. IL, = IL, = 10 log(I,/I,)
2
Here le = 60 dB ang/I,/I, = 1/16 because I « P = A", 3

-

- IL, = 60 - 10 log(1/16)
= 60 + 10 log(16) = 60 + 12 .
= 72 dB ‘
or, usingthe approximation above, for a case of multiplying the

. amplitude by four (intensity up by a factor of 42 = 16), the inten-
sity level goes up by (4)(3 db) = 12 db. :

-

1. If the “window" to your car is 1 6:2 in area, what power is collected
by your ear from the ainimum audible sound wave with intensity Ia?

K . (160°16 w)

2. What is the inteusity level of a sound with 1000 times the inten-
sity of the minimum audible sound?

(30 aB)

‘3. A speaker produces a sound level meter reading of 82 dB at & distance
of 5 m. What would be the reading if the sound power output of the
speaksr is doullled?

: (85 4B) ’\

ot

L sy

o
M»‘"‘




4.

,50

-98~

A sound level meter reads 80 dB at a point 6 m from a speaker pro-

ducing a constant tone. How far away must the meter be moved to

give a 70 dB reading, aséum@ng no echoes and no other sources?
(19.0 m)

-

A speaker produces a sound level meter reading of 50 dB a certain
distance away. What will be the reading three times as far from
the source if the speaker is turned up to put out a wave with five

- times the amplitude?
(54.4 aB)

i



"Absolute deviation:
average, 6
definition of, 6 '
Absolute temperature scale,
, (see Kelvin scale)
Acceleration, 24~29
angular, 54
average, 24
< definition of, 24
of freely falling body, 25
of gravity, 25

Accuracy: .
definition of, 7
, versus precision, 7
Ampeter, 10
Ampere, 10 RN
Amplitude of a wave:
definition of, 90
Angular acceleration, 46-47
Angular displacement, 45-49
definition of, 45 .
Angular welocity: '
- averags, 46
definition of, 46
Antinode, 92
Archimedes® principle, 74
Atmospheric pressure, 80
Average absolute deviation,

| _ Bermoulli's Theorem, 85-87
| . simetallic strip:
t _ deflection of, 59

Black hody, 76

Boyle's law, 82

-

Swoyancy, 74-75,
definitiom af, 74

Celsius scale, S8
Centar of mass, 49, 54
definition of, 54

{ses Celsius scale)
Centripetal force, 43-45
: definition of, ‘43
E Charge, elactric,
' (ses Electric charge)
E {
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INDEX

Charles' law, 83
Circuits, electric,

(see Electric circuits)
Circuit:

parallel, 12

series, 12
Circular motion uniform, 43
Collisions, 38-41

definition of:

elastic, 38

inelastic, 38

partially elastic
Conductivity,

thermal, 69
Conservation of heat energy, 66
Conversion equations: .

for linear to angular motion, 46

for temperature scale, 58
Current, 9~10 !

alternating, 9

definition of, 9

direct, 9

D-cell, EMF of, 10
Decibels, 96
Density, 13-76 /
definition of, 73
table of, 74
of water, 73
weight density:
definition of, 73
Deviation from the mean, ahsolute
definition of, 6
Discharge rate
definition of, 85
Distance: ‘
formula for distance between two
points, 17
measursment ot, 1 R a4 \\'
Electric charges ° . :"'9
detinition of, 9
types of, 9 v
Electric circuits: | |
definition of, 10 ;'
Electrical -concepts, basic, 9-16 :
Electrical energy, 13
Electrical heat, 66
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Electromagnetic waves, 70
Electromotive force:
definition of, 10
Electron, charge of, 10— -
Emissivity, 70
Energy, 36-41
consexvation of, 37
definition of, 36
electrical, 13
kinetic, (see Kinetic energy)
potential, 36 T
rotatienal, .54=57
English system of measurement, 3
EMF: measurement of, 10

Equality,

of different sets of ‘measurements, 6=7 -

Error:
.definition of-
random, 5

systematic, 5

Fahrenheit soale, 58 -
Force, 32-36,43
centripetal, 43
combination, 32
components of, 32
definition of, 32
" Prequency, 90, 93
of harmonics, 93
Fundamental harmonic, 92

']

Gas Laws, 82-84
Boyle's Law, 82
Charles' law, 83
GaysLussac's law, 82
. General Gas law, 83
Gauge pressure, 84
General Gas law, 83
Graphical representation, 17-19
_position=-time plot, 17.
Gravitation, Law of Universal, 33
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INDEX

Harmonics, 92
frequencies of, 93
Heat:
capacipy, 65
definition of, 65
_ of fusion: .
definition of, 77
of ice, 77
specific, 65
transfer, (see Transfer of heat) .
of vaporization:
definition of, 77
of water, 77
Hydraulic jack, 8§-8l
Hydrodynamics, 85-88 .

Inertia, moment of: s y
definition of, 53 //

Iné?!\p, moment of, 53-54
formulas for objects, 53-54 /

IR drops, )
\\1 (see voltage drops)
ntensity,
of a wave, 95
Intensity level, 96
Inverse square law, ‘95-96

Kelvin scale, 58

Kinetic energy
definition of, 37
total, 54 .
rotational. 54

Lever arm:
- definition of, 49
Linear expansion, 58-59
coefficient of, 58 .
with temperature change, 58°
Linear momentum, 29=32 . )
conservation of, 29
definition of, 29
Longitudinal wave, 89

103




t
Mass: ' -
definition of, 2-4
operational, 3-4
as opposed to wezght, 3
Mean, arthmetic
- definition of, 5
Measuredvalue of a quantity,
equality of different sets
of measurement, 6-7 - -
recording, 6
versus true value, 6

'——”H”bhanical equivalent of heat, 65
Method of mixture$, 66
Metric system, 3
Mode:

fundamental, 92

of oscillation, 92 F
Moment of Inertia - A

(see inertia, moment of)
Momentum:

linear, 29-30

in Newton's Second Law, 32

&

: Newtor.'s Laws of Motion, 32
Node, 92

ohm's Law, 11, 13, 66
Dvertone, 92

Parallel circuit, 12
Pascal's principle, 80
Period, 90
phase changes, 77-79 )
Phases,
" of a substance, 77 . [
Plasma, 77
Position: specification
of am object, 17
Potential difference
(see Voltage)
pPotential Energy: _
grantational, 36-37
definition of, 36
Power:
and angular motion, 55
definition of, 37
definition of electrical, 13
o and electrical heat, 66

,C ~ of a wave, 95

- 1006

second law, .32,54 : ‘.
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brecicion:

definition of, 7
Pressure, 79-82

definition of, 79

due to column of fluid, 79
Principle of Superposition, 94

Resistance,

. definition of,'! 1l

formulas, 11
as a function of temperature, 11
measurement of, 11
in a parallel circuit, 12
in a seriegs circuit, 12
temperature coefficient of, 60
\
Series circuit
| (see circuit)
Significant figure:
definition of, 1
division and multiplication of, 1
specific Heat, 65-68
Spec?é gravity:
definition of, 73
of liguids, 73
of solids heavier than water, 74
table of, 74 e
Speed, 19-23 ot
definition of, 19
instantaneous, 21
slope of p051t10n-t1me plot, 19
of a wave, 90 :
Standing wave, 12
State equilibrum, definition. of, 49
Statistics, 5-9
(see also“accuracy, deviation

equality, ‘error, mean, measure, value

uncertainty)
Stefan-Boltzmann constant, 70
String equation, 93 . !
-Superposition, principle of, 91-92
Symbol for:
battery, 10
DC ammeter, 10
DC generator, 10
voltmeter, 10
Temperature gradient, 69-70
Temperature scale,' 58
Celsius, 58
conversion facto s, 58
Fahrenheit, 58
yh
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Kelvinm, 58
. Thermal conductivity, 69
Thermistor, 62
Thermocouple, 61-62
. Thermometer:
bimetallic strzp, 59 -
glass, 60
Time, 1
i Torque, 49-52, 54-55 \ .-
3 combination, 49 b .
: definition of, 49
\ Transfer of heat, 68-72
conduction, 68-69
convection, 70
radiation, 70
Transverse wave, 89
Torricelli's Theorem, 85
True value versus
measured value of a quantity, 6
d Uncertain ty: j
minimum, 7 /
N in a set of measurements, 6
' gize of, 7
Uniformly accelerated motion
equations, 46-47
Units of,". -
angular welocity, 46
density, 73
energy, 36
force, 32,33
heat, 65 \ -
linear momentum, 29
pressure, 79
rotational energy, 54
torque, 49
weight density, 73
work, 36

[

\
N

1

velocity, 20-23
angular 46
definition of, 20
, and Newton's first Law, 32
Voltage:
definition of; 10
measurement of, 10

]

-102- ‘ £

bl

Voltage drops: : 4
~ definition of, 11
Voltmeter, 10 L
Volume expansion:
ccefficient of, 59
with temperature change, 59-60

*

L

_Wave: ,
. | equation, 90

intensity of, 95-96
power of, 95 .
properties, 89-91
speed, 90
a‘standing, 92
Wavelength, . «
efinition of, 89 Ceeel
Weight,
finition of, 3
a opposed to mass, 3 ;
Weight density: ‘
degxnition of, 73 I
of water, 73 : .
its of, 73

- able of, 74 : |

W(')tk ’ 8-40 i
and angular acceleration, 55
defxn;tion of, 36 u

involted in movement of ¢harge, 10




