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Preschool children's probleam solving processes are
both direct and indirect ways. Direct investigations

focus on substantive any methodological issues related o how: .
children solve a few vell defined puzzles, such as the Tower of Hanoi
and the Targram. Indirect investigations deal with related issues:

U-shaped

(or non-monotone) developmental curves, rates of processing,

structure-process invariance, and }nstrnctional theory. Findings
indicate that by the time children reach kindergarten, they appear to
have acquired without direct instruction variations on many of the
comporents of mature problem solving strategies. Therefore, atteapts
“o instruct children to be better problem solvers must first make a
careful determination not only of the level of their performances, °
but also of the strategies they use. A methodology involving the
characterization cf children's knowvledge in terms of rules has been
developed to facilitate such a deteraination. The position is taken
that U-shaped curves alvays -2flect an artifact of the assessmoent
procedure, do not reflect ary interesting underlying processes, and
ultimately must be accounted .r by general mechanisas of
self-modification that are neither constrained nor informed by
U-shaped phenomena. The focus cn rates, processes, and structures as
potential sources of develiopmental differences raps the domain for
further investigations of how children learn to\solve problenms.
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1 Introduction
A .

THfs is a final port on NIE grant number N'E-G-780035, "Investigation of Pre-School Children's
Problem Solving Processes.” This report is organized around several topics ’related to different”
aspects of cmldren s problem solving processes The details of the slu¢|es assocnaled with each

topnc are avallable m the rapers hsted in section 9.

2 Research Background

The research program was initially supported by a grant from the Spencer Foundatior. entitled
"Information Processing Models of Cognitive Devwelopment." Reports on various segments of the
project have appeared over the past several years (Chi & Klahr, 1975, Klahr, 1973a, Klahr, 1973b,

Klahr, 1373c, Klahr. 1976a, Klahr & Wallace, 19703, Klahr & VYallace. 1970b, Klahr & Wallace, 1972,

Kla[\r & Wallace, 1973) and an integrated descriptign is presented in d recent monograph (Kiahr &

Wallace, 1976), The second phase of the research, invoived a shift in emphasis from theory

formulation at a general level to theoretically guided empirical stydies of problem solving and basic

/processes in young children, }his work, to be ‘summarized in this report, was supported by grants

from NIE (G-78-0035) and NSF (BNS77-16905).

2.1 Genera:« Orientation

Our research falls withir the general framework of an information processing apprbach to the study of

i:ognitive’processes and cognitive development. The general paradigm is to formulate information

processing models of the child at different levels of knowledge and then to construct a model that

explains the change trom one level to the next. '
b .

Faced with the behavior of a child performing a task or learning how to perform it, we pose the
question: "What ‘cessing routines and what kinds of internaily stored information weuld a child
need in order to generate the observed behavior?” The answer takes the form of a set of rules that
can be interpreted by an information processing device, | e., a computer pk\gram The program thus
constitutes a model of the human. Such models are not "pure programming” inventions, for they aré
constrained by four major psychological criteria: consistency with what we know of the physiology .of
the nervous system, consistericy with what we know of‘ behavior in tasks other than the ohe under
consideration, sumcienéy to produce the behavior they purport to model, and definiteress and

concreteness.

-t

4 * . -
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One distinctive teature of this approach 1s its emphasig on preciston. Since tne models are stated in - -
the fcrm af running computer programs, they tend, to be much more detailed and exglicit than is

typically the case. They include empirically t -stable statements about the functioning of short term

" memory, the control of attention, and the amount and organizaion of essential information in long

term memory. Although the models tend to be complex, their logical consistency as well as their
s .
detailed prediciions of behavior in various environments can be diréctly tested s:mply({ay running

them.

'
'

Onc% madels of different performance levels have been construct\éd, we can beéin to ‘examine the
differences among them. Since the model for each performance level is itself quite precise, the
nature of the change between gne level and the next is better defmed than in most other torms of *
modelling. Thls IS an omporfant pomt for a theory of transmon between levels can pbe no better than

the model of what is undergomg that transition. , ‘
. . p N ~
—

Most of what has just been said about modelling cognitive development applies equally to probler;!s of T
learning from instruction. The purpose of education is to produce changes in the learner: in the
conter{t and structure of tha. information in her’ memory, in the processes she apblies to that y \ ;
information, and inthe procedures for acquiring new information and additional processes. Thus, N
education can be vnewed as an a.tempt to prodUCe complex changes in an already complex and
adapnve§ystem The more we know about such a s;stem -that-is,the better a model of the Iearner we
have--the more effective. we can be in- our education efforts. The creation of an mformatuon
processing theory of learning in an "instructional mode'; can be viewed as a design problem ¢Kiahr,
1976b). The desigrner of a learning system must answer questions about when and how learning will .
dcgur. and about the effects that learning will havg upon the current system. These are, of course, )
almost the same questions *hat face the cognitive developmen( theorist. - o

/

.

3 Problem Solving and Planning

The goal of this research is to improve“our understanding of how children learn to solve probiems. . '
The overall plan is to exptore the effects of variations in instructional procedyres on children's

learning 69 and performance on, diiferent kinds of problems. Based on the empirical evidence _

obtained dur?hg these explorations, we construct. task-specific information processnrg models to ( o
account for learning and performance in each situation. Research durlpg the grant period focused

primarily on one problem, the Tower of Hano\ and some pilQt studies were mmated on a second

problem, the Tangram.
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3.1 The Tower ot Hanoi

The “siandard” version of this problem consists of ‘a series of three pegs, and a set of n disks of
decreasing size. The disks sit initially on one of the pegs, and the goai Is to move the entire n-disk
c’&nﬁgwaliw to another peb. subject to two constraints: only one disk can be moved at a time, and at
no point can a larger disk be apove a smaller disk on any given peg. A standard three disk problem s

shown in Figure 1. .

- *

‘ * i

~

t 1
' ~
+
) , §
B C
Y
Prablem  Move oll the disks from peg A to pegC. 2

.

Figure 1: Three-disk Tower of Hanoi problem.

. 4 .
In order to solve this problem you might reason as follows:

I have to build the stack up from the bottom, which means that | must get disk 3 from A
to C, but 2is in the way, so I'll have to move 2 to B. But if | want to move 2 to B, | must first
get 1 out of the way, so my first move will be 1 to C. Now let me reconsider the new
configuration: In arder to get 5 to C, I still have to move 2 to B, which | can now do. Now in
order to get 3 to C | must remove 1 from C, so | will putit on B, and at last | can move 3 to
C.etc. .,

~

i .
Although there are several other ways to solve the problem, the example shows that even this simple
version -of the pudzzie can tax one's ability to coordinate sequential rgasonirg, perceptual

discrimination, quantitative ord'ering, and short term memory processes. . -
. -
[ 2

For use with preschool children, we mod:fied the task in ways that changed its superficial appearénce

while maintaining its basic structure.

‘' rial We used a set of nested inverted cans as shown in Figure 2. The dans
were modified so that they fit very loosely on the pegs; when they are stacked.up it is
impossible ta_put & smaller can on too of a larger can. Even if the child forgets the

\ ' .
/
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relauve size coristramt, the matesials provide an obwious physfcal consequence of
attempted violations: Ittle cans simply fall off bigger cans. -
\

e Externalization of final goal. In adc tion to the current configuration, the joal -- or
target -- configuration was always physically present. We set up the ‘child's cans in a
target configuration, and tHe Experimenter's cans in the initial configuration. Then the
child was askcd to tull the Expcrimenter wihiut to do in order to get her cans (C's) to look

" just like the child's. This procedure was used to elicit multiple-move plans: the child must
describe a sequence of moves,uch the expernimenter then executes.

'+

e Cover story. The problem was presented in the context of a story in which the cans

are monkeys (large Daddy, medium size Mommy, small Baby), who jump from tree to tree

(peg to peg). The child's monkeys are in some good configurition, the Experimenter’s

L * monkeys are "copycat"” monkeys who want to look just like the child's monkeys. The
cans are redundantly classified by size, color, and family membership in vrder to make it

easy for the child to refer to them. The ctildren found the cover story easy to

comprehend and remember, and they readily agreed to consider the cans as+monkeys. .

e Prablem type angv difficulty. The standard three disk problem requires 7 moves. We.
used problems requiring from 1 to 7 moves by systematically using pairs of initial and final
states selected from, the state-space (F'gure 3). For example, state 23 to state 6 can be
solvéd in 1 move, while state 1 to state 15 requires 7 moves. We also varied the type of
goal configuration from "towers” (states 1, 8, and 15) to "Hats" (e.g., states 3, 6, i0, and
13). : :

ro

o Pilanning mode. For each problem, the child told the experimenter the full sequence
of proposed moves. The experimenter gave supportive acknowledgment but d:d not
move the cans, and then the next problem was presented. The protocol shcwn in Figure
4 is an example of two perfect 6-move plans. . ) -

1

3.1.1 Results of TOH study ’

\

R \
AN
What have we found so iar? Children as young as 4°can at least understand the "game", and solve up
to 3 move problems. Thus, as far as initial ability to assmilate the rules of a formal problem even our
youngest preschoolers already possess some rudimentary skill. Most impressive, and surprrsrng. is ~

*

the performance of the 6 vear old children. Many of them can rehably /produce perfect 6 move plans

The proportion of subjects in each age group producing correct plans for all problems of & given
length is sﬁpwr'\ in Figure 5a for tower-ending problems and Figure 5b for fat-ending problems. Th.e'
abscissa in Figure 5 is not overall proy ortion correct, but rather a much more severe measure: ;r:e
proportion of subjects with perfect plans on all problems of a giveh length. For example, 9 of tha, 13
(69%) 6 yeLr olds were correct on all fourgf'the 5 move problems, wkile only 3 of the 19 (16%) 5 year
. olds and 2 of the 19 (11%) 4 year olds’ p{)duced four flawless 5 move plans.

What is striking--given results of previous studies with chiidren on this task--is the absolute level of
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Child's side
- (Goa! State) ——e *

Experimenter's side
{inshigl state) —+

Fizrre 2: Child seated in front of "Monkey cjar?s" working on a 1-move problem.
%, State 2 to state 1: see fig. 3 |

oo

- ’ \ State Number v P
o 1]
\ ® v VAR NO) o o2 J
dlialilel” S
) @llc @ @ \t
0.7 N\ 6

L

Figure 3: State space of all legal configurations and moves
for 3-can problem.

performance. On the T-ending problems, over two-thirds of the 5 year olds and nearly all of the 6 year

X5
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Froblem 25: 32V _ R R
nitial goal
' move result
: ! “ 2N . (initial)
What you do is you put the daddy {3) . .. . s
What you dois you move the daddy (3) over this tree
(points to CJ,
and move and move the baby .
and then you move the mommy (2). .
wait; where could you move the mommy (2) to ?,
well first move the mamimy (2) onghis tree (ponts to C) 2BC yi2
then put the daddy (3) on that tree (points to C) » 3AC - 132 .
and put the baby (1) over thare (points to A). IBA V32 -
Then how would the mothe:? . . , «
and after you put the baby (1) over here (points to A) .
you could put the daddy (3) (points to B} iCB V2
then you coudd put the mommy (2) over the baby, 2CA 21 ¥ _
and the daddy over the mommy. IBA 321 4 .
Problem 29: ¥y J21 N
nitial goal '
. , ¥ 21 (initiph)
Oh. that O.K. That's easy. . . "
Just take the yellow one (3) and put it on thcre (B). >
Take the (pointing to 2(C)) . . . and take . . . and take, .
take the ba . . .
No.-take the blue one (2). p\xl it on there (B), 2CB yu!
and then, then take the yeilow (3)
and put it on the blue (j.vints toward C. then to B), JAB ' 31
and then tiake the red (1) one and put it on here (A). ICA 13 . -
And then take the blue (2) one
and . .. no, and then . .. and then put the yellow (3)
one here (C), 3BC VY3
and then put the blue one (2) on the red gne, 2BA 21043
and then put the yellow one o the blue one. ICA R4 .

Can}  Yellow Daddy

Can2  Blue
Can | Red Baby
4 4 -
A B C
Pegs

»

Mommy

Figure 4: Two protocols and Pian encodings.

~
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, 2 ) 5 6 7
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Figure 5: Proportion of children p.rod"ucing perfect plans.
(a) T-end problems; (b) F-end problems.
olds consistently gave perfect 4 move plans, and over half of the 6 year oldé g.:;\ve perfect 6 move
plans. Almost half of the 4 year olds could do the 3 move problems. Recall that these plans are verbal
descriptionF of transformations of hypothetical future states. Furthermore, all intermediate states are
different from, but highly confusable with, the tv:o physically present states (i.e., the initial and final
configuritions). )

While the analysis described so far has produced some new information about preschoolers’ ability to

solve tt type of problem, it remains essentially a traditional type of "percentage-of-correct-moves"”

analysis. Its weakness lies in the fact that it focuses pramarily'on what childrep can dg rather than on-

what they know. We felt it was important to go beyorid this in order to discover what strategies
children use when they generate gﬁeir responses regardless of whether thesa responses are sorrect
orincosrect. In order to characterize childrens’ inadequate and limited strategies, it was necessary to

\
seek regularities in all of their plans, including the incorrect.cnes. -

)

For this analysis we constructed a response brofile for each child and then matched that profile

12
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against the proties trom a set of plausibly nadequate strateqies. ihe models were constructed in
. what was essentially a boot-strapping method: based on an iormal analysis ot the chidrer's
responses, we hypothesized a set of partially correct strategies that might g~ne' ite the obsgrved
pattern of moves. Then ihe modeis’ predictions were compared with the actual moves made by each
child on the full »roblem set. and the best fitting model w7 chosen as the most c'haracterishc

1Y
representation of each individual child. - '

Because ot the surprising complexity of this set of models and the many problems against which each
model had to be evaluated, we wrote each of the models as a computer program. Each program
embodies a particular set of strategic and capacity limitations, and produces a characteristic pattern

' of correct and incorrect plans on the problem set presented to the children.

Our models ranged from a very simple one that always { to move the smallest ~an to its goal peg
regardless of the iegalty of the move, to Simon's (1965) a histicated perceptual” strategy. In

" betwicen those two extremes were models that could attend to one or two obstructors, and which then

G had to decide whether or not to worry &' out the obstructor-on top of the can that was supposed to be

moved or the can that was blocking' the goal peg of the desired move.

Next.\we obtained, for each of nine models, the characteristic profile that the model g'énerated on the
problam set presented to the children. ~ach of these characteristic profiles was compared wnhleach
profile of ihe six year old chiidren. This profile matching procedure enabled us to accuratély (3
models acccunted for a]most 80% of the subjects’ moves) and precfsely (since the models are wrdten
as computer prc;grams there is no ambiguity as to what move they should have made under any
particular circumstances) capture tne problem solving strategies used by children on the TOH. The
perform _-1ée i nany of the better 6 year olds was,captured by a model that had the ~apacity to
search thr'ee levels of subgoals; the very best child could solve even our hardes} problems, pioducing
a response pattern indistinguishabie from the sophisiicated perceptual strategy on 7 move ;roblems.
At the ether extreme, the plan analysis (cf. Figure 5) revealed that the youngest children had ditticulty

even with 2 move problems.

3&1 .2."True"” stanning on the AOH

In this study, we gave minimum ;eedback (recall that children .aever actually had their plans
J'mplementéd), in ordér to accura\lely access initial competence. This is in ntarked contrast to the
st dy of "learning by doing” (Anzar & Simon, 1979) in which subjects repeatedly solve the same
problem. In such situations, including our own earlier work on the TOH, (Klakr. 1978), subjects

quickly discover "subroutines" or "macros” in which the move of a two can stack can be consi‘dered
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as -~ gingle entity, even though it must eventudlly be-unpacked Into legal moves. in a subsequent
study with 4 can problems, we found cvidence suggesting that 6 year olds viewed a goal consisting of
3 cans on one peg and one can on ancther a- two subproblems' - creating the "tower"”, and maving

the single can to its peg. However, In thesa 3 can problems, such macro-construction was unusual.

+
z

Simply by increaseing the number of objects frcm 3 to 5 or 6, we can transform the TOH into a
problem that is difficult even for adults, and that can best be solved by planning. As the solution path
increases in length (to 63 moves for 6 cans) "true" planning, involving the abstraction of dgtail,
becomes necessdry. Cur present models have no ability to generahze from 2-move macros to the
more gerferal notion of a recursive plan for movin‘g‘ stacks of decreasing size. One o} our next

objectives is to determine the developmental course of this ability and to construct models to account

1 1 i .
’ for it.

”~
How and under what conditions will children learn to plan on this task? The models for the strategic
variations were initially written as a set of LISP programs (see Appendix A)T"Whi!e LISP was an
appropriate meghum for generating the 4C move profiles for 10 models, these programs were not well
suited for modeling self-modification and changé. The strategies are currently being reformulated as
production systems in a language called OFEQ (Forgy, 1979) (see Appendix B). These systems of ~
condition - action rule\s are much more amenable to such analysis, and another cbjective “or our
future work is to extend the current stgte descriptions in the direction of self-moditying systems. (See
section 5.) ‘ ‘ !

N, - ™ , /

f
3.1.3 Summary & Discussion ¢ the TOH study

s The re_Jits of this study prcvr :r evidence that by the time children are feady to enter First
Grade, they have aqquired the rudiments of a ngn-trivial range of general problem solvin@methods.
Furthermor@. they car apply these methods to a novel task. This finding raises two opposing

questions: one concerned with why our subjects did so well; the other with why they did not do better.

Aé for the first: why have other invesiigators of this problem concluded that young children are
capable of no more than trial and error? There are several procedural di‘ferences between this and
previous studies, but we believe that the most important is our use of very fme-gramed‘ levels of
differential problem difficulty. While the Plan Analysis indicated that our childrer were no more
successful with the standard 3-disk (7-move) problem, than were Piaget's (1976) or Byrnes & Sptiz's
(1979) subjects, a substantial number of them could solve up to 6-mave problems. The use of
proolems whose solutnf)p requirements lay bewween the standard 2-disk and 3-disk problems revealed

ome previously undetected problem-solving abilities
P \

d 4§

g
.
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It 1s hikely that the externalization of the goal connguration diso helped, pnncipally by making it

unnecessary to mantain an internal representation of the goal=~and thus simplifying the diffcrence

detection process. The net effect of the rest of the task modifications (cover story, fanuliar -

e
-

environment and experimenter, interesting objects, etc.) was to maintain the children’s attention long
enougn to have them make gerious attempts to solve the many problems necessary for the profile
: . by

matchmg procedure. *

Recall that although the 6-year olds did very well up through 5-move problems the majomy of 4.year-
old chlldren could not produce perfect plans. beyond the 2-move prqblems (Figure 5}, and even their
first moves were as likely to be illegal as legal. One might conclude from this tha(‘ the processes w
** are studying dlvelop very rapidly between the ages of 4 and 6 yzars. However, such a comlusnon\gs a.,
bit puzzling when contrasted with the results from mvestngaﬂpns of infants' search behavior (Gral‘ch
1975; Harris, 1975; Piaget, 1954). By the age of 12 months, most children have no trouble setting
aside a}q obstacle in order to reacha desired object if it is visible. And by\B months, most can use an
‘object as a means to an end, such as reaching a toy on a pillow by pulling the pillow. Thus, the
second major questubn raised by this study is: It children can splve what we have characterized as a
two-move problem at 18 months, why do they fail to sc!ve our three-move problems when they are 4

years old?

Itis tempting to attribute these discrepancies to "decalage” - Piaget's name for unexpected failure of
immediate transter. For example, the difference between infant search and the pvor performance of
our youngest subjects on a task requiring verbal solutions could be attributeb% vertical decalage,
i.e., a situation in which "action is more advanced than verbal thought” (Ginsberg & Opper, 1968,
p.109). Indeed, in a previous study, we allowed children to move the cans as they solved problems,
and the youngest children's performance was somewhat better than in the present study (Klabr,
1978). Of course, the TOH and the infant search tasks differ in many ways other than the verbal -
nonverbal distinction; the performance differences may be yél another example of Piag'et’s horizontal
decalage. That is, this may be a situation in which "Task contents ... ditfer in the extent to which they
resist and inhibit the application of cognitive structures" (Flave" *963, p23). "However, the decalage
label still Ieavés open the questica as to the nature of the underlyirg difficulty.
~ 5

We may begin to answer this question by distinguishing‘ between two intertwined aspects of proble
solving: strategies and representations. Thus far, we have focused entirely on the former; in these
concluding commeﬁts. we offer some speculations about the latter. Throughout the Strategic

Analysis, we assumed that the children’s encodings were 1somorphic to the external display: ¢cans,

pegs, positionél relations (above and below), size relations, etc. The explanatqry power lay entirely in

1o
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strateg.c vanations operaung on uniform ar . vericical encocings, Wwhile this may be a reasonable
npprca'ch for the 6-year olds on whom we used it,' it is probably not appropriate for the youngest
children. The impact on performunce of developmental changes in general encodir and attentional
processes has been emphasised by Baron '1978) and Ktahr & Wallace (1970, 1976). Encodtng
deficits have been, identified as the source of “jevelopmental differences in Iearnlng {Siegler, 1976),
and even with adults, changes in external forms of |somorph|c prublems produce substantia!
differences in performance (Simon & Hayes, 1976). We believe that one possxble source of dlfhculty .
for our youngest subjects was the creatmn of an internal representatlon upon which the|r general

problem-solving methods could effectively operate.

v

LS

General.problem-solving methods manifest themselves in rudimentary form by the end of Piaget's
“sepﬁmotor period”. They may emerge f:om the interantgof an “it;nate kernal” of regularity
detectors (Klahr & Walla~e, f976 Chap. 8) and primitive encodings of sensory-motor activity. Vhile
much remains to be Iearned about ‘ne develzpmental trajectory f problem solving methods, we know
even Iess about the development of encodmg processes. In future investigations of problem sf vung
by very young children, lt will be necessary tc provide a mof}ﬂanced treatment of representational
and strategic variation.. We will nea to direct our attention to the conditions under which task
environments are encoded suc™ that they can be appropriately operated on by the rapidly emerging
problem-solving processes. " o

‘ s . ’ £ .

3.2 Tangram 4 .

While the analysis of the TOH is well-developed, and has revealed some new and interesting results
about children's problem solvmg and planning skills, it would be premature to make a case for the

»
~generahty of these results. Itis necessary to explore other related problem soIvnng domains, adaptnng

anq extending the methodulogy as required. In this section, we descnt% a very different problem that
we have begun to study: the Tangram. This puzzle, of ancic.:t Chinese Inneab'ez, resembles the
Western jigsaw puzzle, but it always has the same seven pieces, which are arranged to make a large f

P2

number of dtﬂerent shapes. T he seven basic pieces are shown |n Figure 6 and some problems ar \,\

shown in Figure 7 (taken from é widely available book on the puzze, (Elffers, 1976)). //‘

The p(oblem needs no motivating “ccver story”: simply presenting the pieces and’the outline of \t\he
figure to be built, and &asking “Can you fit ti 2se all in here?" or “Can you build this from these?" is
sufficient to engage preschclers. “Problem difficulty can be varied by varying the number of pieces,
and the extent to which their unique contours are revealed in the figure contour For example, the
large square in chure 6 is one of the most difficult problems (of course it ts gesented without the
benelif of internal contours) while the various "runfing men” in Figure 7b are relatively easy.

3

’ 16
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_dﬁna'}ity, perimeter and area.” It is clear that the tangram does req
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' .
Figure 6: Seven basic pieces of the Tangram.

ra

The tangram provides a good example of the vagueness with which instructional goals related to
problem solving and planning are often stated. Tangramsﬁre frequently used as a "manipulable” in
pnmary grade math instruction. « One major d:stnbulor of educational materials (Creative

. Publications) suggests using tangrams "to help students learn the concjpts of shape, congruence,

re simple shape and size
recognition and discrimiration abilities as well as minimal competence at mémal rotation and
tranglation. However, our basic interest i§ in the planning skill that it can be used to reveal. Should
one.select ararea and then search for a piece to fill it, or should one select a piece, and then try to

find a svitable location? Which area or piece is most (or least) constrained? When is it clear that an

error has been made? 'H:-w should one recover from an error? § .
~% i ‘ .

Although the tangram involves moving objects from one physical location to another, it is formally
unlike many familiar segyence constrained problems. In such problems, the major task is to
detérmine the optimal - and, in seme casés, unique - sequence of operations that transform the initial
state into the final state. By contrast, there is no unique or even optimal geguence of piece
placements in the tangram. There are no moves that constitute necessary subgca's. All that matters
is the\inltimafe m;_g,nmgm of pieces to .ocanons In this sense Tangrams are ‘similar to
cryptarithmetlc puzzles in thh addition problems are stated in terms of Ieners and the problem is to
asslgn the numerals, O - 9, to the ten letters such that a correct addition occurs. Two of the best

known examples are . an Co
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Figure 7: Problems associated with the Tangram.

DONALD . ~ SEND
GERALD MORE
.ROBERT MONEY

For the first of these, an additional hint is typically previded in the form of one of the éssignménts : D
. s
= 5, ‘

Adult performance on crypfarithmetic problems has been studied extensively by Newell & Simon
(1972). Their analysis led to the first use of broduction systém's as a theory of the control structure of
the human information processing system. The crux of ther so‘lution process consists of tentative
assignments of d}gits to letters, foliowed by a computation of the effects and further constraints of
that assignmém. For example, on the first problem, since D = 5, one can compute that T = 0, and
that R is odd, since the two L's plus the carry reqbire it.- Furtherimore, R is limited to 1, 3, 7 or 9,'since
S is already assigned. Further processing limits Rto 7 or 9, be;:ause in the leftmost column,D + G =
R, and we aiready know that D = 5. In this manner, the constraints proliferate, with incorrec
assignments ultimately producing contradictions, at which boint the préblem solver must back up to
the bad assign:neni and correct it. A .

3 -
Similarly, in the Tangram, early assignments of pieces to places constrain subsequent ones. Bad

assignménts may ﬁot be detected immediately and contradictions (manifested as areas unfillible by
' remaining preces) must be backed up to the point of error. Aithougb they have provided exte

nTve
o . .

/
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intormation on dadult probicm solving abihbes, cryplarith nelc piouiems have never been used with

young children, because they require some basic anthmetic operations that are beyond the children’s
competence. Tangrams provide a vehicle for studying many similar strategic abilities, while building

on a basic form matching operator that is readily available to preschoolers.

There are thrée related exploratory investigations of the tangram, concerning young children’s
performance, actult performance, and a formal analysis of tangram solution strategies. In our pilot
studies with 5 year olds, we presented 2-piece problems. Children first had to make, and attempt to
1ust|fy. a prediction about whether or not the pieces we provided could he used to construct the form )
presented. Then they were asked to actually solve the problem. We found that 5 year olds have no

difficulty understanding the basic task, and that they can solve most of our 2-piece problems.

Our tormal task analysis led to the first order strategy shown in Figure 8. The six rules are stated as
very general perceptual productions, with an implicit ordering of rule application. The first fo;r rules
say, in“effect, that pieces should be placed wherever there is unique and minimally ambiguous
" contour informatign. (For example, the-small triangles and the square v:ould be placed first in Figure »
7b.) Rule'5 is much more ditficult, for it requires a perceptual test that determines uniqueness of
location ot a remaining piece. Using this kind of strategy representation, we generated a set of
problems at three levels of difficulty; easy problems have all their pieces placed by rules 1 to 4;
. medjum prcblems requ}ﬂ rules 5 and 6 as well; and hard problems cannot be solved by the strategy,

either because it leads to Incorrect placements or to amLiguous situations.

These problem’s were th,n presented to .adults instructed to solve the problems while providing a
concurrent verbal protocol. [A complete protocol from a very easy problem is shgwn in Figures 9 and
10.] Preliminary analysis indicates high correlations betweeh our classification of problem difficulty
and several performance measures. The protocols also praovide a rich source of information about
aspects of planning not yet included in ‘our simple task analysis, such as error recover backup. i

macros.

4 U-shaped Curves

Issuee related to infcrmation-processing models of cogniti\./e development were e\x\plored during the
grant neriod. One important issue is whether or not empirical demonstrations of the existence of U-
shaped growth curves are of rmportance to developmental theory. tn many domatns children appear
.to first pertorm at a particular level and then, with development, to perform less well, followed

ultimately by an increase beyand the initial level Such "U-shaped” developmental curves have

§ : 14
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WHERE YOU SEE:

TRY TO PLACE:

L O G \ ®
VANRENYAY N
/\ AN /\ A

R L7 [ 7 S 4 / yayas

I, | |\ | t

) ‘ ‘\

IIL. / | K g ’>

v, \ I_\_

M. il -

V.  IF<PIECE> OTHER THAN A SMALL TRIANGLE EITS ~

IN ONLY ONE <LOCATIOND,
. THEN PUT <PIECE> IN <LOCATIOND.
' . ,o. !
VI. IF<EDGE)> OF <PIECE> EXACTLY MATCHES

<EDGZ=> OF <LOCATIOND,

. \ ’
THEN PUT <PIECE> IN <LOCATICN>, ABUTTING THE EDGES.

4

Figure 8: Strategy for placing Tapgram pieces.
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Lkan aimost tell for sire
that this is a parallelogram riggf'in h;re
Just by the shape of it fits perfectly
uhm . »
now by the shape of this going up -
it says to me ‘ . ' '{L
it would be zltrianIG.gherc .

now by the shape of this com{ng up ‘the thing going up 1ike that

this means :
{
the big triangle's going %0 be tE}re
then by the shape of this
it vays tome
the medium triangle’s going to be there
now I have an-error
$0 because of tﬁis 1ittle piece here

X
1t tells me that it can't be the triangle

because it has that little piece l8ft

$0 I know
that it has to be the square
uhich‘Jcnve;\nc the two triangles fit 12 ",

Y .

.8 A
”

¥

Figure 10: Protocol on cat. N
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attracted e attention of many mvesngators in developmental psycnol_ogy. bBased on my analysis of
underlying mecharisms | presented an argument (Klahr, 1981) that such curves cre not of

fundamentaiinterest to developmental psychr'ogy. A summary of the argument s provicied here.

I

There is no doubt that one can routme!y discover such curves. They prowoe eémpirtcal accounts of
the course of growth of some partncular cognitive.entity, and therefore they are certainly of descrijitive
interest. However, | will argue that they always reflect an artifact of the Essessment procedure. and
they t ultimately be accounted for bg general mechanisms of self-modification that are nefither
;o(st:::ed nor informed by U-shaped phetaomena That is, anybody going about building a self-
modityi mformatron processing system will have to include, in order to explam morptone
develop*

development Therefora u- shaped curves do not provnde any challenge to developmental theory.

- . /v -
* * / v

4.1. Banktng and Calculating: they only ook U-ish. .
l..eérﬂ{stah with, two non-psychological examples of what | mean when | say that U-shaped
developmental curves are always m'easur,ement artifacts.  For the first example, consider the
organizational development of abank. In Stage I, we have a simple bank, where everything happens
unéer one roof. Assume that we define the time it takes to get the loan as a measure of bankmg
performance. One can go mto this Stage | bank in the morning, talk to the loan officer for a few hours,
. and show him or her aII the relevant papers. While the loan is approved immediately, you have to
allow a few days for paperwork So the Stage | bank gets a performancs. 4neasure of 2 days (see

\t\ Table 1).

R T
\

Stage
- ! I m v
Bank (days) 2 1 \ 7’ 110
\ Calculator Many 1 5 '
{key 5*rokes) .

S\

Tabie 1: Hypothetical Performance Measures.

In Stage I, the bank expands and gets more sophisticated. It acquires some computers. Now there

~

‘)
Aw !

of‘ ‘the mechamsms that might be postulated to account for non-mor. gtgng :

—
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are several branch banhks operatmg under 4 nmruigunwnt pohCy ot decentrdnzed decision making for
i .

loans. You go into this Stage Il bank, and the bank munager tooks you over; she says you can have

your loan, the paper work is all done by computer, and you come back at closing time to get your

money. Your performance measure for Stage Il 1s 1 day -a 50% improvement over Stage I.

~
.

The bank corftinucs to grow. Now it has many more branches and a computer sutficiently powerful to
centralize al! decision making about Ioan;. The branch manager in this Stage Il bank is really just a
customer intefface now, sh~ no longer has any discretionary power. Now you go into tha bank and
you discover that the branch mahager is constrained by a central policy, and a central computer. It
takes you a week to get.your lpan and the Stage IIl bank gets a very poor scofe with respect to your
perfcrmance measure. Ultimately this bank expands and gets more and more sophisticated. Finally,
the bank reaches Stage IV: to get your loan you give it your Social Security number, your employee
! payroll numt.er, your secret code, your Master Charge number, your Passport number, and your palm

'prmt It does an instant credit check, and drops the cash out mﬂa httle till at your feet. Pertarmance
for Stage IV: 1710 of aday. < - ’
R .
Since we are measuring the performance of this bank in terms of how long it takes to give you a loan,
we discover non-monotone behavioral growth. In fact, instead of being U-ish, this developmental
curve is almost W-ish. Of course, if we had a glonal assessment of the bank s performance, we wouI&
see quite clearly that with respect to all its operations, it has shown monotone growth. The peaks and\
valleys we see are a consequence of our restricted view. Even a slight change in the narrow measure
concerned witlNgans would have shown canstant improvement. (For example, number of loans
granted per week) Moreover, the sensitivity of the loan granting decision rule has been _enormously
- increased through ‘the replacement of the loan officer’ s rules of thumb by sophisticated risk
computation algorithms.
A . - 1

Second example. Suppose you want to measure the ease of computing a variance on a hand
calculator that coots $100. Not sa long ago, such a machine would have been a "four-function”
Ealculator, (addition, subtraction, multipkcation, and division) perhaps with a square root key, and
that was it. Computing a varianfe requrrec)ﬂa lot of button pushing---quite inefficient. Just a few years
later, a calculator in that rice range had a sp\e’ciat button: you entered a bunch of numbers and then
you pushed one buttoh and it would do the vaniance for you. This was often called a statistical
caiculator. Today, calgulators in this price range are progirammable. You can write youy own
program, you can save it, or you can load "canned" programs. However the calculator no longe has
avariance button If yod want to compute a variance, you have to make several key strokes; you h ve

to indicate that you want to Ioaz{fbrary program number 306, and then you'll get general purpose

-

'

d) o
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button A 10 act ke a varrance button S0 with respect 10 nuier o1 key strokes required to compute
variances, this calculator first showed a remarkable improvement and then a dechine. Once again, by
focussinn on a single performance measure in a system that i1s undoubtedly increasing i its overall

capacily and efficiency, we find a non-monotorne curve

-

These examples have been chosen to illustrate the arbitrarv and artifactal nature of U-shabed
performance measures of the growth of complex systems. Certainly children’'s minds are orders of
magnitude more complex than banks or caiculators, and yet, with respect to the systems we are
assessing, our experimental measures are often narrower than the performance measures just
described. Although we may find many cases of U-shaped curves, they can tell us litle about

developmental processes.

4.2 Qualitative and Quantitative Differences in Knowledge Systems

Perhaps the most determined effort to demonstrate that U-shaped curves are important for
L}
developmental theory can be found in the recent work of Strauss and Stavy {1980). In this section, |

wili respond to several of their central arguments.

.

_4.2.1 Extensive Quantity, Intensive Quantity and Transformations.

In order to solve Strauss' sugar water problems or Siegler's cohservation problems, the child must
know something about transformations. Children's knowledge about the effects of such
transformations must be empirically grounded, rather than inherent in $ome innate maturation of
cognitive structures.  Furthermore, they depend very heevily ‘on the child's appropriate
characterization of the effect of different types of transformations on different dimensions of the
material. The emplrlcal ,pecessnty follows from the fact that no transformation is intrinsically either
preservmg or changmg of quantities. As shown in bele 2, the effect of a given transformation can be

categorized only with respect to a dimension of interest.
- .

For example, does the act of pouring conserve quantity or not? The answer depend$ on both what is
poured and what is measured. If we pour a Iitt!e sugar into red sugar water at 10 degrees C., we do
not change temperature, amognt. height. width, or redness, but we inciease sweetness. If we add
more of an identical concentration, we do not change temperature, redness, or sweetness, hut
amount increa.ses. :r?? so0 does liquid height, but not width (in a rigid container). On the other hand, it
we add water, we increase two "extensive" duantities. reduce two "intensive” quantities, and leave

one unchanged.

§):-
‘d(/

&
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=

Pour te another container Add matenal 1 4
Add more
Same Daifferent of same 10°
dimension  dimension  Sugar  Water C nux
Extensive dimension
Amount T T, T, T, T,
Height-width T, T, T, T. T,
Intensive dimension . '
Redness T, T, T, T. T,
Sweetness : ~T, T, T, T. Te
Temperature . T, T, T, T, T,

*Te = null with respect to dimension (e g old T,)
*T, = changes in dimension

Table 2: Yranstormational Gategory for Operations on 10° C Red Sugar Water.

fn - .
Our own account of the acduisffion of canservation rules (K'ahr & Wallace, 1976) places a very heavy
-~
emphasis on the detection of empirical regularities resulting from specific transformations of specific
materials in very limited quantitative ranges. However, there is nothing inherent in a particular

physiéal domain that is of any special psychological interest.

4.2.2 Quality, Quanmy, Specnfic:}y and Generality

Two intertwmed dtchotomies in the Strauss and Stavy approach are qualitative vesus quantitative

changes in rule systems, and development from specific to general or vice versa. Fheir view is that

~the true course of development goes from general to specific, and thus a rule system must go through

qualntatnve. rather than mere quanmatwe changes. Accordmg to Strauss and Stavy, Siegler's rules,
ar{d | suppose, their reformulation as production systems (Klahr & Siegler, 1978), exhibit only
quantitative change. Thus, they argue, the resultant view of development i1s from specific to general.

This view, according to Strauss and Stavy is incorrect.

What does it mean to characterize knowledge as specific or general? In Figure 11, is Rule IV more
specific or more general than Rule {2 | believe that Strauss would call it more mﬂaj’because itis
correct on a wider range of examples, but its conditions are more gpecific.

2
Siegler's rule system for balance scale predictions (Figure 11) exhibits several properties that are of

- interest. First | think it s r fhat all the fests for the simpler rules are included in the more complex

2t
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Figure 11: Decic. 1tree represeﬁtation fo. ‘our rules about balance scales.
(From Figure 1, Klahr & Siegler, 1978)  /

rules. Secondly, it is clear that the most complex rule (Rule IV), although not 'inciuding a shift in
dimension, does include a qualita}ive change: thatis, to db the torque computation is to invoke a very
differgnt sut of processes in addition to the simpler ones of comparirig weights or distances.
Secondly, the torque computation is configural in the sense that thg effect of a given am\ount of
weight depends on the amount of distance. Does this qualify as a quahmtwe change? Notice also
that this system does torque computatio: as a last resort. If there.is an ‘easier way to make a gegision,
the system will make it. In that sense the earlier rules are still mamfest in the more complex rules, for
with appropnate input Rule IV, will do the same computation as Rule .

A Y

| have been dealing with some noiions that are fundamental to our understanding of developmental

processes: notions af specificity versus genet ity, of inclusion versus noninclusion, of inherant
contradic,of/ns, and of qualitative versus quantitative ghifts. | have tried to "1dicate that, even after the
careful attention they have received from many mvesttgators, all of these notions can be rendered
vague, lmbfecise. and self-contradictory. | believe that- one problem lies in the medium of our

‘theorizing. Typiéally we state our developmental thevries in words, with an occasional diagram

.

o
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thrown In tor ctanty’. | believe that information processing models provide a vehicle for theury
custruction that may enable us to state much more precisely than ever before just what is going\on
in cognitive devélopment. {

¥ ' ‘

5 Production Systems and Developmental Theory

In this section of the report | will try to acco™plish two things. First | will describe a non-modifying
production system (i.e. a state description), and give an example from an area of interest to coghitive

develop:-ment. Then | will give a brief account of a few self-modifying systems.

5.1 A Simple Production System \

A production system consists of a set of productioms. Each production--consistigg of a condition and
an action--has the ability to examine a data base and change that data base pontingent upon what it
finds there. Figure 12 shows a siinple production system.'” The data base has three active eleménts--
we can think of this as the.activated part of long-term memory, as the contgxt for the current
. processing, as working menory or short-term memory. This data base is examined by'a_ set of
productions presumed to exist in fong-term memory. These productions are condition-action rules:
they say "if you know something about the data base fhen you can add something else to the data
baseJ The system follows a cycle of recogmtnow and action. In this particular production system the
BJﬂpthn is that once a da_ta base ele:ent matches a condition element in a production thai flres.
then that element is no longer available to fire any other pro‘ductions uriless it is reasserted into the
data base. P1 says that if you have a circle and a plus, replace them with a triangle. P2 says replace a

triangle with a circle; P3 says if you nave two circles, replace them with a square and a plus.

If this produ. .ion system were to operate on the.data ase shown here, it would behave as foliows.
On the first recognition cycle, only P2 would have all of its conditions matched? Tt would "fire,"
consuming is input, and adding a circle to the data base. On the next cycle, neither P1 nor P2 would
. be able to tind a complete match, but P3 would be s‘atisfied‘A It would fire, effectiv2ly replacing thehtwo
- circles with a square and a plus. At this point, none o’) productions would be satisfied and the

system would hait.

If you take production &lstems seriously, you have to assume that the human information processing
system contains hundreds of thousands of productions, all potentiglly satisfied in any cycl_e. but .hat
only a limited subset of the data base is active at any one moment. Many detailed mechanisms that |
cannot go into here are described in the growing literature 6n production systems. This examble

shouid give you the flavor, though, of what a production system is.
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Data Base

. . —
¢ ’ P2 P3 /

- Active Eiements

v Product-ons \

P1: O+ - A
n N — O
n. OO — O+

AN . .

Figure 12: A simple production system with a data base.

Pli{(Some W) --> (Say "balance™'?}
P21 ({Side X more W) -=> (Soy "X doun"))

Mode! 11
. ) Pl: ({Same W) --> (Say "balance”™))
P21 {(Side X more W) --» (Say "X dowun"})
P31 ({Some W) (Side X more O) --» (Soy *X down®"))

Node! 111
Pli((Soma W) --> (Say "baiance”))
. P2: ((Side X more M) -=> (Say "X down"})
P3: ((Same W) (Side X more B) --> (Say “X down"))
P41 (ISide X more W) (Side X less D) --» m ‘t2 through)
PS:1 ((Sicie X more W) Side X more D) -- !‘ X down™))
J *
Mode! 1V R ¥
Pli((Some M) -->.{Say "hatance™))
P21 ({Side X more W) --> (Say ' doun"))
P31 ((Soms W) (Syce X mare M > (Say "X déwun"))
P4’ ((Side X more W) (Sive X iess D) --> (get Torques))
PS1 (§Side X sore W) (Side X more O} --> (Say "X dowun”))
’ P6: ((Some Torgue) --> (Say “baiance™))
P?:((Side X more Torquel -=>' (say "X aoun))
AN

Figure 13: Production system (P) representations for Models I-IV. D = distance;
W = weight. (From Figure 2, Klahr & Siegler, 1978)

5.2 Producﬂor,\ Systems for Balancz Scale Knowledge
'

In terms of a state description of a particular leve! of performance, a production system can be written
3 ~» .
to embody a set of decision rules a subject might use to accomplish some task. For example, in a
¢
recent paper (Klahr & Siegler, 1978), Siegler and | demonstrated the legical equivalence between a

/ ;
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'
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set of simple bindry decis1on trees tor partia! knowiedge about the balancascale, shown in Figure 11,
ard a set of production systems (Figure 13). At the Revel of the formal analysis these two
representations are equivalent. As the model of the human performance gets mor~ complicated, of

course, both representations get more complicated.

Figure 14 shows a decision tree for a child in a training segsion with thé balance scale. She knows a
little bit about hnw the balance scaic /crks, but has only qualitative encodings c;f weight and
distance. This deciston tree is now starting to get pretty complicate?! and it requires a lot of extra
interpretation that's not explicit. The production system to do this same task consists of P1 to P8 in
Figure 15. '

; '
,,{ B1q Distonce] | Big Weight | | Big <Criteron >
Down Down Down
8,13.15 3.4 1.9.12.16 {Weght)
X 5.14 (D stance} . ¢
<Critarion>: ‘81" %
ntiolly Weight Weight i On Any Single Peg.n 2
Aftir Any Negohve Feedboch Distance: 313 Or 41N Peg
T WeigM == Distorce
Or Dittonce *>~weight

Figure 14: Decision tree for idiosyncratic rule used by a single child.
(From Figure 3, Klahr & Siegler, 1978)

v 4

This model can generate a detailed, moment-oy-moment, trac of the mental processes that a subject
is hypothesized to use as she qer through the task of making a prediction about which way the scale
will tip, and then actually seeing it tip, and then trying to revise her hypothesis about whether weight
or distance is the dominant criterion. It is clear that in order to capture more of the subject’s thinki.ng
processes, that is to go beyond the balance scale predictions, and include more of the essestial
features of a training condition, we have had to increase the model's complexity.

’

Figﬁre 16 shows a trace of the model in a Balance Scale training task. The model represents what
might be in the sub:2ct’s active memory at'er each cycle. Notice there's quite a lot of stuff here that

»



. Final Report
o .
. N\ v
J
\
- -3
L} —_—
' >
-

‘ you did all that stuff and your prediction was wrong, you better change the criterion from "weight" to

"distance.”

.
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sdimension I >{CLASS weight diclance)  “din “nuion 22 (CLASS weight distance)
<cide 1>(CLASS lett /ight both) <s:de.2> (CLASS gﬂ right both)
“direction>:(CLASS up down leve!)

&
Pi{(prodict) (weight same) -+> (made ¢3) (expect both level) say b)

P2X(predict) (weight morp <side 12) --> (made 1) (exject <side.l> down) say d)
P3A(predict) (weight same) (distance more <side 12) --> (made 21) (expect <side |> down) say.d)
PA&:{(predict) (weight morg Xdistance more) »->  hnd b13)

PS:A(predict) (criterion <dimension §>X<dimensson | > big <sde 1>)
(<imension 2> big <side 27) »-> (made 2s) (expect <side |> downksay d)

P6A(predict) (weight big <sice 12) «-> (made ss) (expect.<s:de |> down) say.d)
P74(predicl) (distance big <side §>) --> (made 13) (expect <side 1> down) say d)

P8:(predict X<dimension | +) abs --> ATTEND)

El{(expect) --> look) N

E2:{(okpect <side 1> <direction>)poe <side 1> <direction) «-> (did seXsee =ee> sawXresult correct))
(expoct <side 1> «dircclon>)see <side }> <diroction») abs (see) -->T0d ssXsee ==u- saw)
(result wrong))
SWi(result wrongXcrite-ion distance) «-> (old reXdistance eve> vet;hl)).
. (.
SW2:(({rosult wronglcrilerion weight) «-> (oid ssXweight »=e> distance))
»
SW3A(result corractderitesion) =<» (0!d es))
find big {OPR CALL) ;returns (weightidistance big leftjright), one or two such.

B Y
100k {OPR CALL) , looks tor result of batance Lipping,
returns (see leftjright down)

-—

’
LY

1]
attend:(OPR CALL) ¢ invtial encoumg of same or difference on distance & weight; k -
relurng (weignlidistance samelmoro icfljrght)
g ~

of training experiment. (From Figure 4, Klahr & Siegler, 1978)

the subject is presumed to know. For example, in dycle 6, sh@'s supposed to know that: she has
qualitative- encodings of weight and distance, she's currently using a criterion that says weight is

actuaily saw the right side go down, she compared thcse two, and she realized that she was w}ong. . |
Now she’s got to do something, and the next production that lges (SW2) will beoné” that says well, if

26

Figure 15: Production-system for child during decision, feedback, and criterion revision phases

important, she made a prediction based on the expectation that the left side would go 8own. she
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(020319020) - -
Cycle | . ' . . H
." WM: ({PREDICT) (CRITERION WEIGHT)) . !

Fwe PB: (PREDICT) 1«DIMINSION 1>) ABS --> ATTEND)
Dutput from ATTEND (input to WM) > (weighl more lettXdistance more right)

cin 2
G;N: WOISTANCE MORE RIGHT) (WCIGHT MORE LEFT) (PREDICT) (CRITERION WEIGHT) )
‘CONFLICT SET (P2 P4} .
< Fue PA; ((PREDICT) (WEIGHT KASRE) (DISTANCE MCRE) <> FIND B!G)

a Oulput from FINGCIG Lnput to WM} > (tistance big rightiweight big lett)
gm?(W(IGHT BIG LEFT) (blel\NCE BIG R!GHT) (PREDICT) (WEIGHT MORE LEFT) N
’ (DISTANCE MORE RiGHT) (CRITERICN WEIGHT))
COMMLICT SET (P2 P4 PS P6 PT) :
CONFLICT SET- (P4 P&) AFTFR $PFCIAL CASE ORCER . i,
CONFLICT SET (P5) AFTCR WMCRCIR )

Fire PS: {PREDIST) (CRITERICN <OATNSICN. I »K<DIMENS.ON 1> BIG «SIOE 12}
(<DIMENSION 2> BIG <5100 2) --> (MACE ¢«) (EXPECT <SIDC 1> COWM) SAY.D)

pscosssnss LEFTdown

cle &4 . )
. c:w (EXPFCT LEFT DOV/I) (MACE (PREDICTY (CRITERION WEIGHT) (WEZIGHT BiG \EFT)
(DISTANCE BiG RIGHT) (WCIG~T MORE LEFT) (DISTANCE MORE RIGHT))
Fire E£1: UEXPECT) --> LCOK)
Putput from LOOK (input 1o WM) > (see right down)

Cycle 5 .
IGHT)
W (SEE RIGHT OGVA IEXPECT LEFT DOWN) (FAAQE (PREDICT)) (CRITERION Wi
(WLIGAT BIG LEFT) (DISTANCE DIG RIGHT) (WEGHT MGRE LEFT) (DXSYAN;E MORE RIGHT))

© COMPLICTSET. (ELED .
Fire £3: ((EXPECT <SIDC 1> <DIRECTION?) )
(SEE <SIOE 1> <OiRECTION-) ABS (SZE) --> (DID w0} (SEE ===> SAW)

{RESULT WRONG))

cle Y
cyWM ?&ESU’J WRONC) (D10 (EXPECT LEFT DOWNI) (SAW RIGHT DOWN) (MADE (PREDICTH)

(CRITERION WEIGHT) WIIGHT BiG LEFT) (DISTANCE BIG RIGHT) (WLIGHT MORE LEFT)
. (DISTANCE MORE RIGnT))
Fire SW2: ((RESULT WRCNG) (CRITERION WEIGHT) +-~ {OLD &0 (WEIGHT s=e«> DISTANCL))

Cycle 7
‘ ! VWM‘ WOLD (RFSULT WRONC) (CRITTRION OiSTAMGCE) (D10 (EXPECT LEFT DOWNI)
(SAW RIGHT DOVINY \WMACT (PRZDICT N (WLIGHT B\G LEFT) (OISTANCE B.G RIGHT)

(WEIGHT MORE LEFT) (DIST4" 7€ MORE RICHTY)

Figure 16: Trace of system shown in Figure 15: (From Figure 5,
Kiahr & Siegler, 1478) ¢

Note that this prccduction system deals with two kinds of knbwledge that a subject has to bring to bear

on a"task; not only the formal structure of the problem, but also the demands of the experimental
sitvation. This feature of production systems if of particular relevance to developmental psychology.

In almost every area of cognitive develapment we have discovered that subtle differences in task{
denands may lead to widely varied performance on the part of our subjects. If we have a modelling
procedure that accounts not just for the formal 'structure of the task, but also for the processing
requirements of the experimentai situation we might be able to resolve some of the current

discussions about why versions A and B of task X lead to such wide differencesin performance.

|
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Even more important is the fact that these k:nds ol imodels give us the capability to cgp(ure the fuli

i context o.f training experiments -- to model some of the micro structure of the developmental process.
Indeed, the model depicted in Figures 14 and 15 does just that; it accounts for the subject's response
16 negative feedback about her prediction.

5.3 Variable condition elements Z

An important feature of production systems is illustrated by productions E2 and E3 in Figure 15. Their
purpose is to detect whether what was expected to occur actually did occur, ana the feature of
Interest is their use of variables in the condition. The first element in E2--(expect (side.1>
{direction))--has two variables in it: <side.1> and <direction). These are defined at the top of Figure 6

as small classes, any member of which can satisty the condition element. Thus, if Working Memory

»
contains (expect left down) or (expect right up) etc., the first condition element in E2 will be satisfied.

When an element is satisfied, the variable is said to be temporarily hound to the particular value for
the rest of the attempt to match the entire condition. If WM contains (expect left down) and (see left
down) then E? will be satisfied. More generally. E2 will be satisfied only when the system ' sees"
exactly what it "expects.” ; '

This ability to perform variable matches and bindings gives produc*ion sytemsffremendous flexibility
to vary their leve: of specificity, discrimination and generalization. Variable bindings are n;éintained
across the action side (as in P2), so specific information detected on the condition side can be
propagated, via the action side, back into Working Memory. This turns out to be a crucial feature of
the self-modifying productions (to be described below).

For all their merits, there are many problems associated with the use of production systems. First of
all, production systems appear to be very complex to people who are not familiar with them.
«Secondly, they have many untestable assumptions built ir]to them, and we can only decide whether
the whole system makes sense, not whether any single assumptio. is corract. And they also have bits
and pieces c! irrelevant mechanism, that is, things mat ihavmg no psychological validity that are -
included because they are convenient, or because thEy represent part of the world that we're not
trying to model. cher problams abound, und the literaturé on information processing models is filled
» with questions, self-criticism and exciting challenges. (c.f. Heugeland. +975; Neisser, 1976; Newell,
1970; Pylyshyn, 1978)." However, daspite all these issues, the area is worth the attention of

developmental theorists.
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~ 5.4 Olden Tunes: State Descnplions

A brief history: 8everal years ago there were productior: system models for a few tasks of interest to
cognitive developmentalists. All of them were based on Newell's (1972, 1973) init.al formulation of
production system architecture. In 72 Wallace and1 {Klahr & Wallac¢e, 1972) did a procuction system
version of class inclusion. We dida't talk about transition at all. Baylor & Gascon (1974) wrgie a
series of papers on their work with children doing length and weight seriation, and they described
different seriation strategies in production system terns. They alluded to the kind of transition
frrocess that might be necessary, but they didn't have any model for it. They had only staté
descriptions. In the same year, Richard Young (1973) completed a dissertation in which he studied
length seriation, and accounted for strategic variations with different combinations of productions
from a “seriation kit.” He argued that children get better on seriation tasks by adding productions
specific to disjoint parts of the seriation task.

In 1973 | described a set f production system quantification models irr which there was no explicit
transition process (Klahr, 1973); rather there was an assertion that one model differed from another in
intesesting ways, and that the models clarified what the job of the transition mechanism might be. '
Subsequently, WaUace and | talked about conservation and about how the development of
conservation might go (Klahr & Wallace, 1973, 1978). We did directly address the development issue,
and we postulated some principles that might constrain the transition processes. We called them
consistency detection, redundancy elimination, search for local regularities, and global orientation,
But again, there was no running model that_actually did-the transitions. !n other words, all we had a
few yeéars ago were some preliminary notions about h0\£. production systems might model
developmental changes.

3
_ Even without explicit transition mechanisms, the "vintage" production systems.had much to
recommend them as models for interesting developmental phenomena. First of all, production
systems are conceived as serious theories of the control structure of the human_information
prpcesslng system. Thus, any particular production system for a particular task setting is Jnodel
_ derived from one of these larger theories, and it integrat2s many of the psychological principles within
A it. §econd!y. th.e production systems, as do any simulation models, forve a lot of explicitness. They - .
S force us to be explicit about how we think parts of the world are encoded, what the encoding process
is,"how that encoding process generates certain representations, and what kinds of étrategigs or

processes are used by those representations. This explanation, in turn, suggests improved

experimental procedures for evaluating our theories {c.f. Trabasso, et al., 1978).
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Having done all that, the production systent formalisin gives us a very ciear stutem;m of what state
differences might be. Because we can co;npare two diflerent systems, the job of the transition
mechanism is now a lot clearer. Another r.'neril. 'mer;tioned above, is that they can include the
experimental demands in the same structure as the formal demands of the task, and they allow us to
better understand the intefhction of the task itself with the general characteristics of the human'
information processing system. s

4

—— )
Almost every current developmental theory emphasizes the centrality of ghe child's own activity on the
learning process. Certainly it is the case that we must una erstand what it means to engage actively in
a c@gnitive event. But quite contrar:y toa commo'n critical ch.aracterization of informatio. processing
y mode!s as static and passive (é.f. Neisser, 1976), they are the only theoretical formalisms that actually
eng‘age is such activity. Th’ey do encode their environments, they do create internal representations,

and they do seek matches between what is knéwn and what necds to be done.

d .
¥

5.5 Modern Times: Self ‘Modification .

A capability for adaptive self-modification is essential for developmental theory, but until recently,
therg have been no well specified ideas about how it takes placc. What we need is a way to get
bey{md vague verbal statements of the nature of the developmental process. Perhaps the most
important merit of production’systems is that they provide a basis for modeling self-mc‘dification that
goes beyond ambiguous processes such as "assimilation” and "accommodation.”

How does self-modification take place in adaptive production systems? What evokes it, and what
what are its effects? It is beyond the scope of this report to provide any more than a superficial
answer to these questions, but one important fact reduces my reluctance to oversimplify: tne systems
realiy do run, and they are available for inspection. 'Fhus any violence | do them can be rectified by a

careful readmg of the original papers.

I3

In general, all the systems make use of the ability to bin¢: values from Working Memory to the variables
in the.action elements. Suppose we define x as a variabid>x: (class cat dog). Then a production like
P1: ((x) --> (saw x)) might match WM: ((dog) (cat)), and prodiice WM: {(saw dog) (cat)). It would fire
again; and produce ((saw dog) (saw cat)). Now consider ar: action that creates a new producticn--
callit BUILD. A production building production can be inclucled in a production system, and can wait
for. a certain conditjon--speciﬁed in terms of a mix of constants and variables--before building a new
production. For example, ‘
P2: ((saw x)(saw y) - ) BUILD ((x)(y) -> (saw x and y))).

It P2 were applied to the WM from the above erample, it would produce a new production:
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. ((dog)(cat) --> (saw dpg and cat)).

. .

Notice that this new production is less general than P1, since it only fires on two specific vplues. On

the other hand it is more efficient than two firings of P1.

When a self-modifying production system'is operating. it need not go from a distinct performance
mode to a distinct learning mode. Instead, the performance and the learning productions have equal
status with respect to responding to the elements in the data base. Wﬁer:!a n.ew produétion is
created, it becomes part of the total set of productions that 'night fire on the next recognition cycle.

~

>

e

5.6 Some Current Examples
' 1 ]

In this section, | will describe four different research proje~ts that aré'in?vestigating differ'ent aspects
of self-modifying prodiction systems. Perhaps the ctearest examples of self-modification are
provided by Anzai's model of learning during,a single experimental session (Anzdl, 1978; Anzai &
Simon, 1979). The system proposes some general mechanisms for learning how to solve a problem
during repeated attempts at problem solution. Given the current interest in the potential similariy
between micro-‘and macro-developmental processes (Ka&pilothmith, 1979), the Anzai & Simon
work is of particular interest to cognitive developmentalists.

Pat Langley, has worked on a wide range or problems with self-modifying production systems. He

tt/aoafﬁngley. 1980) by studying people trying to induge rules for numerical combin‘ations and

rotg a production system to account for that induction process. The next deveTc;pment in Langley’s

work (in press) was a a;.elf moditying production system that captures some essential aspects of the

scientific discovery process. His system can, given the approriate empirical regularities, induce rules

-equivalent to Kepler's Third Law, Bode's Law, the Inverse Square Law, and Ohm's Law. None¢-af the

N induction mechanisins depend on any explicit properties of the physical world. They derive iné,tead
from regularity detectors operating on quantitative symb’ols. , ¢

' N
Anderson, Kline and Beasley (1978), within the formalism of Anderson’s ACT production system, have

built a general model for self-modifying production systems that can accaunt for concept le ‘ ning,
schema abstraction, and séme featurés of language acq\‘tisition. They have not just talked about
transition mechanisms, they've built them. They have programs that run and do these things. One
kind of transition mechanism is a designation production in which a production simply has as its
action side the instructions to build another production of a eertain form. Another‘kind of transition
mechanism is something they call strengthening: a central part of Ande'rson's system which
" determines whether or not a production will fire is how strong it is. Yet another form of transition

36
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mechanism s to T)ald a generanzed production, in which some’ of the specm? conditions are
weakened in order to make thg production more broadly applicable On the other sndfe of that coin are
mechanisms that discriminate undergertain conditions. In order to build such a ~ystem, Andcrson
ar his colleacjues ﬁave to specify first exactly how it works, and second the cnnditions under which
these various mechanisms, (designation, strengthening. qencralization, and discrimination) will
occur. This they have done, and they have been able to account for some of the better known results

from the experimental literature in the domains listed.

A particulfrly interesting examble comes from a dissertation by Clayton Lewis (1978). Lewis studied
the problem of how an adéptive broductﬁnon system could, by using some simple rules for self
" modification, demonstrate two effgects of practice observed with humans--speed up and Einstellung
(Luchins, 1945). The former 1s evidenced - the robust speed-practice curves in almost every area of
human activity; thé second is the venera  effect whereby practiced subjects may be less able to
utilize a hint of short cut than unpracticed anes. AS we shall see, Lewis' ‘work also provides a nice
example of hc’)x the production system formalization can help to clanfy many of the important

concepts in cognitive development. The following example is adapted trom Chapter 1 of his thesis.

-

Consider a einfle production system that replaces one symhol with another until it reaches a goal.
Figure 17 showé‘u@ral such produc tuons P1, P3, and P6 replace single symbols, and P4 and P5
each replace a pair of symbols with a different palr. P1 is the stopping rule. The first production
system, PS.1, consists of P1, P2,f>3. and P4. Whgn PS.1 starts to operate on a data base containing

ronly the letters A and C, the ermsuing sequence is AC, BC, DE, and GE. During this sequencet 4
productions fired, and 4 symbol replacements occurred. - L =<

Assume that after much practice on this task, a learning mechanism notices that AC invariably
produ'ces DE, and a new composite production is formed wHich directly reflects this constancy. PS5 is
added to the initial PS.1 system, producing a "practiced” system, PS.2. When the new system runs, it
achieves its goal in few‘er cycles, ang fewer symbolireplacemgnts. It has avoided an intermediate
state, but although quantitatively different from PS.1, i.e., faster, it is qualittatively unchanged, i.e., no
new intermediate sfétes' occur, ancf it arriveg at the same final state (GE). 4 '
J,

Now suppose a new rule--d hint or shortcut--were somehow given to the initial system and the
practiced system. The resflts are shown at the bottem of Figure 17. If the hint (P6) was provided
before practice produced PS5, then it would take advantage of intermediate state BC. On the other
hand, the practiced ‘system never denerates an intermediate state that can satisty P6, and the hint has
no effect. Thus, the production system exhibits the Einstellung effe : shortcuts wtnch can be used

before practice are ignored after prastice. ;5

3 e
\ \36
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\
P1. G -~ stop
’ P2: A ~ B Initial set
« P3: D - G
P4: B,C nd D,E . .
PS: AC -~ D, Composite production
/ P6s B - G hint
\Z
Initial System
. " PS.1: (P1,P2,P3,P4 " performance”’
Trace: P& P3P
‘ Trace: AC = BC = DE = GE = stop 4 cycles, 4 replacements
‘ . Practiced System with Composite
. /
PS 2: :P1,P2, P3 P4, P5) . ,
P v
Trece: AC '-? DE :3 GE = siop 3 cycles; 3 replacements
L/ !
Hint to tnitial System
PS.1H: (P1, P2, 3, P4, P6)
P P . .
Trace: XC '3 8C -6 GC = stop 3 cycles, 2 replacements
Hint tg Practiced System
*  PS.2H: (P1, P2, P3, P4, P5, P6) ,\
P
Trace: A\C"-5 DE ? GE -‘“stop 3 cycles: 3 replacements
14
. Figure 17: Simple production system changed by hints afd practice.
Rractice produces a qualitative change as wa2ll as a quantitative one, for the pragticed and
t 4
unpracticed systems obviously differ in their res?onse to the hint, and the use of the gint leads to new
intermediate and final stages. This example does not addres., many important issues, such a< the
rules under which competing productions are selected, and the exact mechanism of production
creation. But it does begin to indicate the way in which issues of importance to developmental theory
can be clearly stated. . '
i P

) All of these system§ have to specify 'a set of conditions under which production building processes
~ like generalizafion, discrimination, designation or strengthg\}\ir}g will occur. in all casas, it is possible

that the naw productions will degrade rather than improve performance. Although the local effects of

ERIC J5
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selt modification are "mechamstic” and "preplanned,” the gloval mpact 1s otten unpredictable. it
may produce cciicts, inconsistencies and nonmonotone bechavigral growth  Whether or nof‘i?\e'
system oats better or worse depends in part on the circumstances that fead to the self modlﬁ_catlon,

and in part on the subsequent environmenta! demands on the system.

6 Structure-Process Invariance

4
Another important theoretical issue is the question of what aspect of the information-processing

system develops. In investigations of child-adult differences in information-processing abilities, a

distinction is often made between differences in processes -- i.e., in strategies for encoding and
accessing information -- and differences in structures -- i.e, in the underlying database upon which

those processes operate. In this section | describe two situations in which children and adults appear

to have the same underlying processes and structures, but in which aduits are nonetheless able to

execute therr strategies at up to ten times the rate of children.

by

6.1 Elementary quantification

$

The first task domain is elemen.tary quanfification (Chi & Klahr, 1975). In the experiment, subjects
were presented with random arrays of dots, and asked to respond, as rapidly as possible, with the
number of dots. Adult reaction times were best fit by two linear regressions. The lower segment (for
n = 1-3) had a slope of approximately 50 msec per item, and the upper segment (n = 4-10) had a
slope of 300 msec per item. Six year old childrer{ had a simillar qualittve function, but the lower and
up.ar slopes were approximately 200 and 1000 msec, respectively. The process generating the lower
slopes has been termgd "subitizing”, while the proLesssfor numbers greater than 3 is some form of
counting or subitizing\ and adding. Thus, while both children and adults appear to encode and
process small numbers in one way and large numbers in another, children’s processing rate is 3to 4

t -2sslower than adults.

6.2 Alphabetic access

The second task is simple alphabetic access. What comes after Q? What comes before H? We asked
subjects these sorts of questions in order to learr dbout how famihar, long lists are stored and
accessed in memory, and how the internal representations and the retrieval processes change with
time. We focused on the alphabet because it is a common long list, with little explicit structure,

learned very early and used throughout life.

. Based on our investigations, we have been able to propose a specific internal representat:.n for the

AR
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alphabet, a detailed model of the procesccs used to access the representation, and an estimate of the

’

speed of basic processes of the model. .

r

Three major types of experimental procedures have been used in previous investigations of alphabet
storage and access:

1. In Order Decisions the subject must decide whether or not a presented letter pair is in the
correct alphabetic order.

2.1n the Target Recitation procedure the subject is presented with a pair of letters, and
must recite the alphabet (covertly or overtly) from the .furst ietter to the second letter.

3. Forward or Backward Search. In this task the subject must say what comes nth after or
before the presented letter. For example: "what comes before P”, or "what comes four
letters after K." N

Regardless on the procedure used, if one looks at reaction time as a function of alphabetié sition of
the stimulus, two findings consistently emerge: a) At the aggregate level, stimuli at the end\of the
alphabet tend to require more processing than stimuli at the beginning; b) The RTs are deﬁpitel non-

monotone, and the fine structure of the RT pattern is similar across a variety of proceduref Y

Lovelace & Spence (1972) used a forward search procedure: They found an irregularly incrgasing RT
as a function of alphabetic position. The increase from the early portion of.the alphabet tothe final
was substantial. The mean reaction time for the first six letters, A - F, was 890 msec, and for the last -

six letters, T - Y, was 1180 msec.

. ’
Lovelace and his colleagues proposed two possible processes that lead to the inc.re‘a'srng%r s. One
possibility is that there are lower associative strengths between adjacent letters near the end of the
alphabet. These weaker associative strengths Ieadxto longer RTs. Thatis, it woqld take longerto do a
"next” toward the end of the alphabet than near thg beginning.' The other possibility is that the
interfetter associative strengths are equal throughout the alphabet, but there is differential access to
“particular letters. That is, there might be preferred entry points’in the alphabet, with fewer such entry
points toward the end of the alphabet.. This would lead, on the average, to longer search sequences

{(and higher RTs) fdfprobes near the end of the alphabet. ¢

In order to discriminate between these two possibilities, Lovelace, PoweH and Brooks (1973) used the
target recitation procedure, varying the number of letters processed after accessing the probe letter.

They presented letter ‘pairs with different separations, and the subject's task was to recite the

alphabet from.the first to.the second letter. Figure 18 shows the RT versus the alphabetic position for

|
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separations of 2, 4 and 6 letters. Linear regressions run throdgh these three sets of RTs reveal nearly’
paralr. funcnons Lovelace et al conciuded that the longer reaction times at the end Jf the alphabet
do not come from greater diificulty of doing "nexts"; for if that were the case there would be a fan

eifect rather than parallel hnes. Rather, they come from a greater dxfficulty of entering the alphabet
near the end.
¢ . .

LoveLace . POwELL + 8&00;(5

) ®
0
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o
- 0 TARGET
? REcCIT, TioN
z
u .
§ } AFTER |
Lt e ~ “
5 |
AN 0 |
z ‘
o) . |
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w
& .

ABCDEFG)\'I/IJKLMNOPGRSTUVWXY 1

Figure 18: RT as function of position and siparatiog (.ovelace, et al}.

e

~

\

Man -'uestions remain Zoncerning the structure and processing of the alphdbet.

e Although the Lovelace, et.al study supports the notion of preferred entry points, it does
not yuovide any direct evidence. The present investigation demonstrates such entry
points.

' -
- g/
. e The model, as stated thus far, is largely intuitive, with no specification of the
representation or processes involved. The present paper describes a detailed model,
written as a computer simulation, with model parameters estimated from the data. .
. \
e The fine structure of the RT patterns has never been accounted for. The present model

attrmpts to.predict the RT for each alphab?ic position in both forward and backward
seaich tasks.
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6.3 A prehmunary descniplion of the modei

The model, shown in Figure 19, assumes a two level hierarchy consisting of a series of 5 or 6 ihunks
containing from 2 to 8 letters each. Given a probe, there is a serial, self-terminating search ifor the
chunk membership of the probe, fol' swed by a serial, self-terminating search for probe ggM‘\within
a chunk. Searches for chunks can be bi-directional, seaiches for position within chunk are
unidirectional in the forward direction.

¥

‘ On the after task the process works as follows. First, search for the chunk containing the probe;
having four}‘i the chunk, scan for the probe; when the probe is found do a "néxt". and output that
value. If there is n) next, that is, if the end of the chunk has been reached, then get the next chunk
and output the first item. P

\

iy

For the before task start by searching for a‘ chunk containing the, probe item; wher, the chunk is

—. found, scan for the probe, keeping track of the prior position. When the pr‘obe is fgund, then g;t the

C\ prior item and output it. However, if tt;e probe is ét the-beginning of a chuﬁk, they there is no prior
‘*f" item. In this case get the prior chunk, scan to the end df that chunk and output the last item.

the hypothetical example shown in Figure 20. 'We assume a

All of this is shown more concretely i
segmentation in which the first chunk consists of letters A - G, then H - K and so on, as shown at the °
top of the Figure. There are two basic times associated with this model. The time to move in either
direction at the chunk level is t, time to movg in the forward direction withip a chunk is ?2'

For the after task the model would work as follows. JAfter A r quires some constant amount of time
plus 1 chunk search plus 1 next within a chunk. ANW{: would consist of 1 churik’search plus 2 nexts;
After C would consist of 1 chunk search plus three nexts, and so on. Now consider w;ax happens
near the e~d of the chunk boundary. After F requires 6 nexts within a chunk. After G requires an )
v extra chunk search, and 2 extra nexts. After H requires 2 chunk_searches, but only 1 next.

Continuing this analysis leads to a hypothetical function as shown in the lower curve: the important

.feature's are a non-linear increase at the end of a chunk followed by a sharp decrease after the chunk

boundary: Note however, the steadily increasing values for local minima. /

b

~ For thi before task, analysis is similar. We have used t'2 to indicate that doing a next and carrying
alos -1 2 prior poj takes longer than simply doing.a next. Before B requires 1 chunk access, ar)d 2
nexts, before C, mand 3 nexts. When we get to before G, the chunk boundary, we maintain the A
lingar increment in reaction times; however when we get to before H we have to cross a chunk ‘

boundary (from the s{:cond chunk to the f..st), so we have to do 2 chunk searches, followed by a

ERIC | -
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Figure 20: Hypothetical RT pattern from ALPHA.

search for the end of the first chunk. Then, when we get to Before |, we don’t have to search the entire
list, so before | is faster than before H. The salient features of this curve are a non-uniform increase in
reaction times, and a local maximum on the before task at the beginning of a chunk boundary,

followed by a local minimum for what comes before the second item in a chunk.

In summary, the model makes specific predictions about the relationship between local maxima and
minima on the before and after task. The local maxima should occur at the end of a chunk for the
after task and at the beginning of a chunk for the before task. The minima should occur at the§
beginning of a chunk for the after task and at the second element in a chu‘:\k forthe before task.
Since none of the previous studies used the before task, we conducted an experiment to assess this’

model, using both the before and the after task. . \
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6.4 Experument |

6.4.1 Subjects

. Twelve adult subjects fr6m introductory psychology courses participated in this experiment.

6.4.2 Materials

P

The stimulus letters were all upper case helvetica-medium, 1.5 in. high, black on a white 5* x 8.-card.

4

A voice actuated microphone connected to a Standard timer recorded reaction tiraes to hundreths of
a second. E would then record Ss reaction time, change the letter to appear next, and reset the timer
to zero. Stimulus onset was Subject initfated, following a 500 msec delay.

'6.4.3 Procedure

Subjects were instructed on the operation of ‘the T-scope. They were asked to name aloud- the
preceding letter or the following letter (depending on the condition) as quickly as possible without
making any errors. Bach S was given three practice trials, and was then given an opportunity to ask

questions or clear up any misunderstandings before the experiment began.

Each S received each of two experimental conditions. In the be®are condition, there were five
guccessive presentations of a randomized set of 25 stimulus letters B to Z, for which S was to name
the preceding letter. In the after conditio:s, there were five successive presentations of a randomized
set of 25 stimulus letters A to Y, for which S was to name the following letter.

°
The order of conditions was counterbalanced across subjects. !n the event of an error, E would

-

replace the card in the stack randomly.
P ’
— ,

6.4.4 Resulits

For each subject, the median RT (out of five trials) for correct responses to each letter was
determined for the before and after tasks. Figure 21 presents the means (over the 12 subjegts) for

these median RT's as a function of the alphabetic position of the stimulus letter. .

Thie most striking feature of these curves is their agreement with the predicted relationship beiween
peaks and valleys of the before and after curves. For example, a loca} maximum on the after curve
occurs at G: the local maximum on the before curve is at H; while for the after curve, H is a local ‘

minimum. Similarly, the local max at K on after and a local max at L on before are associated with

.
the\lacal min on after at L. Strong effects here are at the boundary between G and H, the boundary
between K and L, and boundary between P and Q. Other toundary effects are a bit weaker, and there

are some anomalies toward the end of the alphabet.
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6.5 Expenment |l

While these results are consistent with the predict:ons from the rnodel , the decision about how t?
segment the alphdbet 1s based on an informal w~ost hoc analysis of local extreme points. The fact that

gmentation is consistent with the phrasing in the common nurs(éry school "alphabet song",
provides some additional basis for belicving it to be correct, buf we have no direct independent
evidénce that it is the segmentation dSed by our subjects. In the second experiment, we asked
subjects to directly report their "entry points”, if any. The independent assessment of the

segmentation allowed us to perform a much more rigorous evaluation of the model.

~

6.5.1 Subjects

Thirty students from introductory psychology classes participated in this experiment, half of these

being run by each of two experimenters.’

6.5.2 Stimulus Matarials T,

Each subject was presented six szts of slides. Each set contained one slide of each of the 26 letters
of the alphabet (Artype No. 1407 capitals). Sequencing of the letters within a slide set was random
with the restriction that no letter follow the same letter in any two sets. 6n half the occurrences of a
given letter the subject was rgquired to name the preceding letter of the alphabet; on the remaining
occasions the task was to name the following letter. (On all six occurences of the letter A the tasY

was ta name the following letter and on all occurences of Z to name the preceding letter.)

6.5.3 Procedure

Each subject was seated before a translucent screen foa sound-deadened chamber; the
experimenter and all apparatus for stimulus presentation and resportse timing were outside the
chambgr. Single letters were back-projected gpto the translucent screen, and the subject was to say
aloud, as quickly as possible, either the preced:ng or the following letter of the alphabet. Each
stimulus letter was preceded by a warning buzzer, and by one of two different colored lights marked
"PRECEDING" and "FOLLOWING" which informed the subject of the type of decision’ required on
that trial. A photocell on the back of the screen activated a Lafayette Model 5721 digital timer when
the letter came on the ;creen. The subject's spoken response activated a voice key which stopped
the timer and advanced the projector to an opaque slide. The experimenter_ initiated each trial
manually; the buzzer and light preceded the stimulus letter by approximately 1.5 sec. The stimulus

letters were presented at a rate of about 12 per minute.

11’rus expenment was designed and run by Professor E A Lovelace, at the University of Virginla  Lovelace's work was not
supported by tunds from this grant. '

[
v
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X
The subjects were also instrucled that once they had responded with the appropriate letler they were
then to tell the experimenter what they had done te think of the correct response. These verbal
reports were classified into three categories a) didn't have to do anything, the letter just occurred to
me, b) had to covertly recite a specifiable portio; of the alphabet, or c) had to do something, but not
explicitly descnibed as recitation of a specific portion of the alphabet  Whenever a subject reported
covert recitation of part of the alphabet they were asked to indicate the letter at which they began that

recitation if possible:.

6.5.4 Results & Discussion -t

Most people were able to maintain very high accuracy levels while operating with a speed set; overt
errors of naming the wrong leiter occurred on less than 1% of the trials. Voice key equipment

malfunctions and other errors account for data lost on about 1.5% of the trials.

For each individual the median reaction time (RT) for correct responses to each letter vsﬁs determined
separately for the before and after tasks. Figure 22 presents the means of these median RTs as a
function of tHe stimulus letter presented. The data for the Lefore task from Lovelace and Spence
(1972) are shown by the bottom curve; there 1s high correspondence between those times and the
after condition in the present study, r = .81, although the times were both longer and more variable
in the presen} study where before and after tasks were mixed. The RTs from experiment Il are also
highly correlated with those from experiment | [ = .78 for after, and r = .93 for before] even though
in Experiment | we-used a blocked design on ‘before and after, while in Experiment Il, before and

after trials were mixed.

These relative frequencies of reported necessity to "do something" on after trials correlated highly
with RTs on those trials (r = .80) and with after RTs in the earlier data of Lovelace and Spence (r =
.88). Fo‘r/l_)efo re decisions the times also correlate substantially with the corresponding frequencies
(t = .80). ’

In most cases where individuals had to "do something”, they reportad covert recitation from a
specificabl;a letter (30% for following decisions, and .95% for preceding). Figure 23 shows the
frequencies with which various letters of the alphabet were reported as the beginning poix on those
trials when they engaged in covert recitation of a specific portion of the alphabet (Category B
responses). This plot provides clear evidence that there are preferrea points of entry into the
alphabet, and that entry points are, to a considerable exten‘t. shared by individuals. The deviation of

this plot from a rectangular distribution (which would denote no preferred4 entry points) is clearly

greater in early portions of the alphabet than in later portions. This could result from a lesser ~
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tendenGy for there 10 be stable preferred entry points later in the alphabet, or it might simply reflect

the fact that there is less inter-individuai consistency as to the location of those preferred pornts later
in the alphabet than near the beginr{mg. If the alphabet 1s viewed as a highly over'zarned serial list,
the regular peaks seem to establish the validity of conceptions of serial list learning as the acquisition

of a set of subjective subsequences or chunks, coupled with an order of the chunks

We will use the maximum values of this distribution to provide an empirically based segmentatign of
/

the aiphabet. Based on the peaks of the before curve in Figure 23, the alphabet appears to be

segmented ihto chunks starting with the following letters: A, H,L, Q, U, X.

6.6 Description & Evaluation of ALPHA: a model of alphabetic access
i

, In ordef"to generate RT predictions from the modei to compare with subjects’ performance, we need
to be mcre specific about its component processes and about how each process contributes to the
overall RT. In this section we will describe a computer simulation model, ALPHA, for the before and
after tasks used in this study. First, we will describe the data structuse for the representation of the
alphabet. Then we will discuss the processes that operate on this structure, and the number of

* parameters that could be associated with these processes. Finally, we will present the results of
attempting to ~pproximate all of the parameters with a Mo-parameter model for the after and before
tasks.

»

6.6.1 Representation

In Figure Jga,"each letter of the alphabet has a link pointing to the name of the chunk in which it can

be feund. The chunks are inked to their predecessor and successor chunk names, as well as to the

actual list of alphabetic elements that comprise the chunk. These lists are accessable only through

their beginnings, and only forward search 1s possible, since only the 'next' of each element ‘s

available in the representation.

-

The most important feature of this reperesentation is that prcbe letters do not have direct access to

. their nexts or priors; instead they have direct access only 10 the name of the chunk in which the probe

is located. While this may at first seem non-intuitive, it is simply a formalization of the notion of

preferred entry points. When people use these entry points, they do not choose among them at

random. Rather, they tend to choese the one that is "just ahead" of the probe letter.
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6.6.2 Processes

Fugures 19b and 19¢ show: the fiow chart for ALPHA on the two tasks.?2 The flow chart shows the
basic steps of the g rogram, with some of the detail supressed fr  clanity of exposition Associated with
each the processes that contr.iute to the differential imes « a parameter: n, is the time to access
the next chunk name, t s the time to compare the chunk namie with the chunk name of the probe; n,
is the time tq access the next .tem within a chunk, etc! The primed parameters corresnond to sllmnlar

processes for the before task. - .

6.6.3 Parameter estimaiion and model evaluation

The predict2d RTs from ALPHA depend on both the assumed segmentation of the alphabet and the
estimated values fr,- all the parameters. Qur goal in fitting the model to the data wl'as to maintain our

basic assumptions about rocess and structure, wile limiting the number of degrees of freedom in

the parameter esiation procedure. Therefore, we based ‘the alphabetic segAmentation not on the
same data set used for the paraineter estimates (the RTs), but rather on the peaks of the entry pgint
f;equency furction described above (see'Fig. 23). The paParr;eter estimation procedure has been
reduced to a linear regressi.n involving the number o} executions of a single internal process: doing a
"next” on At f the internal list s‘ructure's n ALPH;\ that are required t\)\ produce the response to a

probefs

That is, for each of the 25 possible probes on the after or Belo\rf task, the model, in
addttion to producing the answer, computes the number ¢f times that it had to do & "next" on any of
its internal structures. In this manner, an effort estimate is computed for each of 'the probes, and this
effort estimate is regressed against i..e .ATS. The regression produces an estimate of the basic "next"

time, and this estimate can then L. used to generate a predicted time for each probe.

-~

Table 3 lists the number of "nexts” executed for each prgbe letter on the after and before tasks.
The table also shows tl. - mean RTs from experiment |l, and the predicted RTs. The predictions are
generated by suostituting the number of "nexts" associated with each probe position into the
regression equations shown in Table 4. The estimate r{ the time to do a "next" on a list is 127 msec
for after and 153 msec for befo-2, with the regression accounting for at least 50% of the variance.
(If we use & egmentation based on the p'eaks of the RT curves, instead of the independent reported
entry points, then the amount of varnanpezfcourted for increases to around 55%.) For éxample.

Tabla 4 indicates that .. ..sponse to aﬂerGfALPHA reﬁuires 10 "nexts". Substituting n = 10into

!

7

2Thc program is wntten in MACLISP, a vanant of LiSP used at Carnene Mellon Univensty Listings of the program and
sample runs are avanable from the fust author People with access to the A network can contact KLAHR@CMUA

3rms 1S a snmpfe count of alt CDRs used by all the functions in the LISP program as it does the after or before task.

/ ’ ‘ »
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The actual mean RT for after G is 1730 msec.

N

* ? N
the regression equation yieids a predicted time of approxunateiy 1870 msec, as shown in Table 4.

o
’ ' ..:! KtTERq . SFor s
chnk | penye Zt oxls AT predetec nexks AT oredic fecl
roy, 3.0 85.00 93.77 - - \
Z @ 4., 93.00 111.45 2.0 96.¢' 156.2
, 3 ¢ |50 116.00 124,13 3.0 113.¢ 171.5
4 pl 6.0 118.00 136.80 4.0 155.0 186.8
S & 7.0 119.00 149 .48 5.0 166.0 202.0
| 6 F |80 169.00°  162.16 6.0 193.0 217.3
— 02 %6 _110.0 ___ 173.00 187.5___ | 7.0 256.0 - 232.6
8 4.6 <124.00 111 45 16.0 377.0 370.1
3 9 1 T 5.0 « 164.00 124.13 3.0 179.0 171.5
- 100 ¥ 6.0 .148:00 136.80 4.0 249.0 186.8
—_—_t_ %X _ 1 B.0 173.00 167.16 _ 5.0 256.0 202.0
12 . 5.0 118.00 124.13 11.0 306.0: 293.7
13 ™ 6.0 127.00 136. 80 4.0 233.0 185.8
3 14 7.0 142.00 149. 48 5.0 166.0 202.0
15. ¢ 8.0 142.00 162. 16 6.0 249.0 247.3
[ pre_p 1100 209.00 187.51 7.0 202.0__, 2.6
] 17 K 6.0 174.00 136. 80 14.0 340.0 . 39.5
" 18 R 7.0 115 00 149.48 5.0 273.0 202.0
j 19 3 8.0 122.00 162. 16 . 6.0 213.0 217.3
2207 __110.0___, . 186.00 187.51 7.0 -171.0 232.6
21 7.0 182.00 14948 3.0 288.0 324.2
[ 22 v 8.0 226.00 162. 16 6.0 195.0 217.3
23 W 100 . 167.00 187.51 7.0 378.0 232.€
24 K 8.0 156.00 16216 T2.0 306.0 309.0
/A 25 vy 9.0 189.00 174.83 7.0 247.0 232.6 .
v - - .- 8.0 177.0 247.9
. )
._/ .
,(Io =sec
Table 3: The nimber of "nexts" executed for each probe letter on the N

after and before tasks.

s

mins they should be, while before | and before V are.

-

Figure 24 contains a; plot of predicted vs actual RTs (from Table 3) for after and before tasks. The
most prominent feature of the RT curves aie the local extreme points caused by chunk boundary
crossings. ALPHA appéars to be able to capture these quite well on both after and before tasks.
On the after curves, the chunk boundaries at G-H and K-L show close correspondence betweén\
actual and predicted. The next two boundaries, P-Q, and T-U, have the appropriate maxima, but
after R, although fast relative to after Q, is not a local min. Finally, there is an unpredicted local max
* at after V. The Qefore curves are also in closer correspondence at the earlier chunk boundaries.
The first four local maxima are exactly as predicted. Neither before M nor before R are the local
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A

.
. kY Rz '
af ter RT = 607 + 127n | 50%
before | (RT = 1260 + 153a. 54%

n = number of "nexts" on all lists and sublists

- »

[Segmentation ba%a,Qn entry point Frequencies]

) ;

Tag& 4: Regression results for ALPHA effort a_gaipst Exp. 2 data.

~

.Perhaps the most interesy'ﬁg deviation from ALPHA’s predictions are the slight but consisten®over
predictions for the first chunk, particularly for the before times for t'he first few letters. This might
result from alternative representations for these items ("the ABC's") that provide'more direct access
than the full process modeled by ALPHA.

6.7 Thildren’s Alphabetic Access

Essentially the same procedure was used to stud children’s processing of the alphabet. Eight 6-year
old children were presented with the before and afier tasks as described in section 6-4; the major
difference was that each letter was presented only three times. Their RT patterns showed the same
general segmentation of the alphabet, and the same ef{éct of chunk boundaries. Regression results
indicated that ALPHA ‘could acc.oun‘t for about 35% of the RT variance. _However, the most interesting
difference was that the rate of processing for children was around 500 msec per next, even though

the same model seems to apply for adults and children.

. Thus, in two quite dictinct domains, we have found examples of iientical structures and processes in

children and adults, and yet we still find large differences im processing rates for elementary steps.
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\ 7 Instructional Theory

With respect to instructional theory, in collaboration wit Robert Siegler, | have been investigating
theoretical and empirical approaches to the questior: of how the acquisition of new knowledge in
children is related to the prior existence of old kn0wI:adge (’éuegler & Kizhr, 1981). We address issues
of critical stages, instructional readiness and the fit between a child's current level of knwﬂcﬁge and
the kind of instructional matenal with which ke is presented. We draw on examples from a wide range
of task domains, including classic Piagetian concepts about balance scales, time, speed, distance,

proportionality, and so on, as we!l as on the work mentioned above in problem suiving and planning.

The chapter opens with a broad question: "When do children learn?” All of the research reviewed in
the cha'pter points to a single general answer. "Children learn when there is an appropriate
relationship between their existing kr.owledge‘ 'd the instructional material presented to them.” This .
formulation indicates that the important tasks are to determine children's existing knowledge, the
relationship between their existing knowledge and a'ternative instructional material that might be
presented to them, and the idea! relationship between existing knowledge and instructional material.
We describe several distinct examples of rule-assessment research aimed at addressing these issues.

There are four conclusions towards which this evidence seems to converge:

1. Children’s knowledge can be characterized in terms of rules. This conclusion seems to be equally
valid for simple corcepts, for more complex concepts, for procedural knowledge in which sets of
rules are combined into strategies, and for the types of ruies for learning that are embodied in self-
modifying production systems. The contents of all of these types of rules can be determined hy

presentina problems on which different rules lead to distinct patterns of responses.

2. In cases in which children use two or more partially correct rules before mastering a concept E)r
procedure, the partially correct rules are ordered in terms of increasing correlation with the
predictions of the mastery rule. While there may be'declines in the proportion of correct res;ponses in
limited subsets of the problem domain (as in conflict-weight problems on the balance scale), children

will adopt only thosé rules that lead to an gverall increase in the proportion of correct responses.

3. The effectiveness of a learning expernience is in part determined by whether the learnng
experience discriminates the child’s existing rule from the coriect rule. On the time concept, younger
children benefited from problem‘s that discnminated end points from time, but those same problems
had no effect on older children. Older children benefited from problems that discriminated distance

from time. but those same problems had no effect on younger ones  In each case, this was due to the
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relabonsinp betweren what the ghuld already knew and what dimensions were o comimated by the
training problems. The similarnity of(thc predictions generated by many of the Town of Hanoi rules for
most of the possible problems suggests that the same phenomenon nught well emerge there, Without
assessments of a child's existing knowledge it would be exiremely dlfhcm}, it not impossible, to
anticipate which of the Tower of Hanoi or time concpp* problems would movlde usefu! learning
experiences for the chi'd and which would not. With such assessments, there is a principled way of

predicting. '

"4. A major reason why childien do not immediately adopt the correct rule for all concepts is their

limited encoding of the correct rule's comporent dimensions. Children's encoding of a dimension
may be inadequate due to lack of knowledge of the dimension's importance, lack of perceptual -
salience of the dimension in the situation in which the concept is to be applied, or lack of adequate

ability to hold ali of the relevant information in memory.

i

8 Surnmary /

Pre school children's problem-solving processes have been investigated during the grant period in
toth direct and indirect ways. The direct investigations have focuéed on substantive and
methodological issues related to how children solve a few well defined puzzles. The indirect work has
dealt with related issues: non-monotone developmental curves, rates of processing, structure-

process invariance and instructional theory. .

An important substantive contribution of this research is the discovery that by the time they reach
Kindergarten, children appear to have acquired many of the components of mature problem solving
strategies. These components are acquired without direct instruction, and there is substantial
variation In the particular components that exist in different children's repertoires. Therefore, any
attempt to instruct children to be better problem solvers must first make a careful determination not
only cf the level of their performances, but, more importantly, precisely what strategies they are using.
Another contribution of this ~esearch has been the davelopment of a methodology to facilitate such a

determination.

The focus on fine-grained characterization of underlying processes has also enabled us to propose
an interpretation of non-monotone growth curves, and we have argued that these surface nfeasures
do not reflect any interesting underlying processes. Finally, cur focus on rates, processes and
structures an potential sorces of developmental differences. has provided a potentially frustful area for

further investigations of how children learn to woiv. problems.

b
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9 Papers Publiched During Grant Period

Klahr, D. Goal Formation, Planning, and Learning Ly Pre-school Problem Solvers, or:
"My socks are in the dryer’. In R.S. Siegler(Ed.), Children’s Thinking: What D¢’ elops?,
Lawrence Erlbaum Associates, Hillsdale, NJ, pages 181-212, 1978.

Klahr, D. Toward an information processing theory of cognitive development.
" InR.Klewe & H. Spada (Eds.), Developmental Models of Thinking.
New York: Academic Press, 1980. .
[German Edition: Studien zur Denkentwicklung. Bern, Stuttgart, Wien:
Huber, 1981.] : . :

Kiahr, D. Non-monotone assessment of monotone development: An information
‘ processing analysis. In S. Strauss & R. Stavy (Eds.),
U-Shaped behavioral growth, New York: Academic Press, 1981.

'

Siegler, R.S., & Klahr, D. WWen do children learn? The relationship between
existing knowledge and the acquisition of new knowledge. In 3. Glaser (Ed.),
Advances in Instructional Psychalogy, Vol.2, Hillsdale, NJ: Lawrence Erlbaum
Associates, 1981.

Kiahr, D., & Robinson, M. Formal Assessment of problem-solving and
planning proceesses in pre-school children.-Cognitive Psychology,
13,1981, 113-148,
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10 Professional Activities During Grant Period

. March 1978

April 1978
August 1978

Oct. 1978

Nov. 1978

Nov. 1978
Dec. 1978

March 1979

April 1979
Oct. 1979
Nov. 1979

Nov. 1979
Feb., 1980

April, 1880

April, 1980

»  March, 1981

April, 1981

Paper presentation at Annual Meeting of AERA, Toronto.

Invited paper at IEEE Computer Society Workshop on Pattern Recognition and
Artificial Intelligence Princeton, NJ.

Panel Chairman at NIE Research Conference on Testing,
Falmouth, Massachusetts.

Colloguium: National Institute of Education, Washington, DC.

Colloquium: Children's Problem Solving, Department of Educational Psychology,
McGill University, Montreal, Canada.

Paper presentation: Psychonomic Society Meeting, San Antonio, TX.
Visiting Scholar: Department of Psychology, Uriversity of lowa, (1 week).

Paper presentations at the biennial meeting of the Society for Research in
Child Development, San Francisco. :

- Invited symposium, annual fneetings of AERA, San Franciscg.

Colloguium: Qepartment of Psychology, Stanford University.
»
Paper presention, Psychonomic Society Meeting, Phoenix, Arizona.

In ted participant: ngspread Conference on Basic Processmg in |
Malhematics Learmng. Racine, Wlsconsm

Visiting Scholar, School of Education, Deaiin University,
Geelong, Victoria, Australia, (3 weeks),

Colloquium:; School of Education, Stanford University.

Coltoquium. Group in Science and Mathematics Education,
University of California, Berkeley.

Colloquium: Graduate Center, City University of New York.

Symposium: Biennial Meeting, SRCD. Boston, Mass.

~

»
6o
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Appendices

e Appendix A is an annotated listing of the MACLISP progirams for the nine models. Pages
A 9 and A-10 show some examples of how to use the mc')dels. ¢

e Appendix B is a listing of the production system version of Model 9, written in OPS4. The
trace on B-3 shows the model solving a seven move flat to flat problem. If followed
carefully, it should provide a good feel for the operation of the production system and the
ccmplexity of the model. -

v

}

“*

M
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s mogels, second pass
taQe. is unordered 115t of peg-contents lists,
en-contents Yist 1s {pegx Cn CH Cn) or (pegz)( see SETUP)
0D0s return nove-newstate pairs (or just move)
or (nii (DONE)). e.g. ( (c2 pega)((pega c2 ci)(pegb cl)(pegc)))
moves non-destructive ' return revised states
nost functions need state variable as input
Global vars: CANORDER (see SETUP).TRACEON,PROBSTATES

h -2

to run, first do (setup). then (solve FN-NAME initral goal),
: using initial and goa) states assigned by SETUP.
~¢.g (solve 'modl1d towa flat)

should provide the right enviggnnent for testing any
new functions.
to get only next move, do (NEXTMOVE °fn-name initial goal)

: to g;z\htgblem N from PROBSTATES do (nthprob M), then

« set values to its CAR and CADR for nital and final states
: ! .

:SETUP Zreates a few initial and goal states

: and calls setup2.

:SETUP2 Uses SLURP to load function

: which does actual setup of PROBSTATES (full problem set).
sTRACEOFF/TRACEON control output from TRY10 and LEGAL

06 B¢ G0 G0 Ve W G4 BE BE BE G4 Vs B0 OC Te 24 S5 G 0F L 06 0 06 S0 o4 o8

(COMMENT --CONTENTS-- ALLMOVES ALL_IMOVES ALL_2MOVES ALL_3MOVES ANY1S
ANY2S ANY3S ANYNS AVOIDOOUBS BEFOSE CULP10 NDIFFS EMPTY ISIN
i LEGAL LEGAL_MOVES MAKE MINDIFF M0D1 MOD10O ¥M002 MOO2 MOD34
MOD4 MODS5 MO06 MOD? MODS MOCLSA MOD3B MOD9 MOVE HEXTMOVE
MEXTSTATES NTHPRCB OKORDER OTHER PEGOF PICKUP PLACE REMAINS
REMOVE SEEPEG SETUP SETUP2 SOLVE SOLVEO STRIPP TOPCAN
TRACEOFF TRACEON TRY10 TRY2 TRY3 TRY4 MODPROB)

O

ERIC

A FuiText provided by Eric ‘
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-

iiigenerate tuble of first moves for ald moﬁe: included wn second list
iisTust list s used to prant corresponding "headings
siioutPut to T1Y, so use DRIBBLE to save file

(OEFUN ALLMOVES NIL
(PROG (ALLPROBS PROBSTATE INIT FIN CP)
(PRINT *PB)
(MAPC *(LAMBDA (M) annc "I 1) (PRIN1 "MOD) (PRIN1 N))
(LISY 1. 2. . 6. 7. 8. 9.))
(SETQ ALLPROBS PROBSTATES)
LOOP (SETQ PROBSTATE (CAR ALLPROBS))
(SETQ IBIT (CAADR PROBSTATE))
(SETQ/FIN (CADAUR PRCESTATE))
(PRINY (CAR PROBSTATE)) .
(MAPE " (LAMBDA (FN)
PRINC ']
}s:to CP_(NEXTMOVE FN INIT FIN))
(PRIN1 (CAR CP))
(PRINC °_)
(PRIN1 (CAADR CP))
(PRIN1 (CADADR CP)})
(LIST "i0D1
*MOD2
*M003
*MOD4 s
*MODS
*MOD6
*MOD7
"MODBS
*M0D10))
: (SETQ ALLPROBS (COR ALLPROBS))
. (COND ((NULL ALLPROBS) (TERPRI) (RETURN 'DONE))
s T (T (60 L00P)))))

;::ALL-1MOVES returns a1l legal single moves from >
iisformaty ( ( (can peg)(new state))((can peg)(new state))..etc)

-
.
.

ALL2_MOVES returns all legal double moves from STATE, except
double moves of same can
iformat:( (<wmovel><moveZ><newstate>)(<movel><move2><newstates)..etc)

ALL_3MOVES similar to abou .but three move™ook-ahead

e 99 0+ we @0 20 s @
.6 wo @ 01 ws 0 wus @
86 00 5« 08 ®s o0 eo @

(DEFUN ALL_1MOVES (S)
(COMMENT RETURN LISTS OF ALL SINGLE MOVES AND STATES FRUM STATE)
(PROG (MV MVSTATES NEXTMOVES)
(SETQ NEXTMOVES (LEGAL_MOVES S))
LOOP (SETQ MV (CAR NEXIMOVES))
(SETQ MVSTATES
(CONS (LIST MV (MOVE (CAR MV) (CADR MV) S)) MVSTATES))
(SETQ NEXTMOVES (CDR NEXTMOVES))
(COND ((NULL NEXTMOVES) (RETURN MVSTATES))
(T (60 L00P)))))

(DEFUN ALL_2MOVES (STATE)
(COMMENT ALL TWO CAN MOVES FROM CURRENT STATE)
(PROG {MVSTATE MVSTATES LEGALS TWODEEP)
(SETQ MVSTATES (ALL_1MOVES STATE})
LOOP (SETQ MVSTATE (CAR MVSTATES))
(SETQ LEGALS
(AVOIDDOUBS (CAR MVSTATE)
(LEGAL_MOVES (CADR MVSTATE))))
(SETQ TWODEEP :
(APPEND (MAPZAR *(LAMBOA (MV)
. (LIST (CAR MVSTATE)
MV

(MOVE (CAR MV)
(CADR M
(CADR MVSTATE))))
LEGALS)
TWODEEP))
(SETQ MVSTATES (COR MVSTATES))
(COND ((NULL MVSTATES) (RETURN TWODEEP))
(1 (GO L0oP)))))

. (ntrun ALL IMOVES (STATE)
NT ALL THREE CAN MOVES FROM CURRENT STATE)
| \1:]2\!:noc (MVSTATE MVSTATES LEGALS THRELDEEP) ¢ -

Aruntoxt provided by Eic

.

Woednesday 22 Oct 80 16:05

.
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(SETQ MVSTATES (ALL_2MCVES STATE))
LA0P (SEVY MVSTATE (CAR MVSTATES))
(SETQ LEGALS
(AVOIDOOUBS (CADR MVSTATE)
(LEGAL_MOVES (CAOOR MVSTA™:))))
£7Q THREVOEEP
(APP 1D (MAPCAR *(LAMBOA (MV)
(LIST (CAR MVSTATE)
(CAOR MVSTATE)
MV

(MOVS (CAR MV)
(CADR MV)
(CAOOR MVSTATE))))
LEGALS)
THREEDEEP))
(SETQ MVSTATES (COR MVSTATES))
(COND ((.4ULL MVSTATES) (RETURN THREEDEEP))
(¥ (GO LOOP)))))

ANYIS. ANY2S, ANY3S, ail call ANYNS t3 search lists of n-move final states
:MVSTATES for any satisfied GOALS {GOALS is n same format as DIFFS)

e g.. does (CANZ2 PEGB) exist in one of the final states gencratau by
ALL_3IMOVES?

@e #e o2 0o so e
*s 8o 8¢ @0 o ae
.o

(DEFUN ANY1S (GOALS MVSTATES) (ANYNS 1. GOALS MVSTATES))
(DEFUR ANY2S (GOALS MVSTATES) (ANYNS 2. GOALS MVSTATES))
(DEFUN ANY3S (GOALS MVSTATES) (ANYNS 3. GOALS MVSTATES))

(DEFUN ANYL3 (N GOALS MVS.. TES)

(PROG (GS MVS)
SETQ GS GOALS)

6LOOP (COND ((NULL_GS) (RETURN NIL));
(SETQ MVS MVSTATES)

STLOOP (COND ((NULL MVS) (SETQ 65 (COR 6S)) (GO 5LOOP)))

. COND ((ISIN N (CAR GS) (CAR MVS)) (RETURN (CAAR MVS))))
SETQ MVS (CDR MVS))
{60 SfLO0P))) -

(DEFUN AVOIDOOUBS (MV MVLIST)
(COMMENT "UFLTE AKY OCCURRENCES OF CAN IN MV FROM MVLIST)
(SOND ((NULL MVLIST) NIL)
(EQ (CAR MV) {CAAR MVLIST)) (AVOIDOOUBS MV (COR MVLIST))) -
T (CONS (CAR MVLIST) (AVOIDDOUBS MV (COR MVLIST))M))
. |

(DEFUN BEFORE (X Y L) ‘
COMMENT T IF X BEFORE Y IN L ,NIL OTHCRWISE) -
> (LENGTH (MEMBER X L)) (LENGTH (MEMBER Y L))))

:tCULP10 1s “"perceptual part of MOD10. Detects culprits when move
HY 4s know to be {1legal.
HH

(DEFUN CULP10 (CAN TD STATE)
COMMENT "ETURN SMALLEST ORSTRUCTOR TO MOVE)
COMMENT SPECIF TO 3-CAN  CITURATIONS)
(C0.D ((EY CAN *C2) *C3)
((OR (MEMBER 'C2 (SEEPEG (PEGOF CAN STATE) STATK))
2 )(n:na:n "C2 (SEEPEG TO STATE))) '
(7 °C3)))

.
DIFFS uses CANCRDER to juarantee min can f.rst

.o o8 0o
.. o0 we
s ae @0

(DEFUN DIFFS (S1 52)
(COMMENT RETURN LIST OF SUBGOALS AS CAN-GOALPEG PAIRS)
{REVERSE (REMOVE NIL
(MAPCAR ' (LAMBDA (CAN)
- (conp ((MOT (EQ (PEGOF CAN S1)
(PEGOF CAN $2)))
(LIST CAN (PEGCF (AN $2)))
. (T NIL)))
CANORDER))))

TUN EMPTY (STATE) o
l:lz\f: 'OMMENT RETURN FIRST EMPTY PEG OR HIL) b

wll Toxt Provided by ERIC

Page) 2.2
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(COND ((MULL STATE) NIL) .
N . ((MULL (CDAR STATE)) (CAAR STATE))
(T (EMPTY (COR STATE)))))

(DEFUN I3IN (N G MVST)
(SETQ STATE (N™H N MVST)) ~
fconD ((MEMBER ‘CAR G) (ASS0C (CADR G) STATE)) T)
(T NIL)))

(OEFUN LEGAL (CAN TO STATF) .
(COND ((NOT “(EQ CAM (TOPCAN (PEGOF CAN STATE) STATE)))
(COMD (TRACEON (PRINT *lcan not free to move|)))
NIL)
{ (NOT (OKORDER CAN (TOrCAN TO STATE)))
(COMD (TRAEEON {(PRINT "|destination peg blocked])))

dy '

/ (DEFUN LEGAL_MOVES (STATE) ™~
(COMMENT RETRUN ALL LLGAL MOVES FROM STATE)
(PROG (MVLST MOVES)
(SETQ MVLST MOVELIST) .
LOOP (COND {{LEGAL (CAAR MVLST) (CADAR MVLST) STATE) \
{SFI1Q MOVES (CONS (CAR MVLST) MOVES)))) °

(SETQ MV.ST (CDR MVLST)) = .
(COND ((MULL MVLST) (RETURN MOVES))
. (T (60 L00P)})))

_(DEFUN MAKE (MOVE_PEG STATE)
(LIST MOVE_PEG (MOVE (CAR MOVE_PEG) (CADR MOVE_PEG) STATE)))

MINDIFF expects subgoal order from DIFFS, so min is just CAR

(DEFUN MINDIFF (X Y) (CAR (DIZFS X Y)))

Models from Klahr & RObinson paper
In revised paper, Model 8 is MOD8B here, Model 9 is MOD10 here,
and M0JS is not used.

o ae =e @o
s @0 oo oo
.0 @0 o0 we

(oeFun modk (¢ 6)-
COMMENT RETURN MODEL1 ..OVE AND NEW STATE ."ROBABSY llLEGAL)
MAKE (MINDIFF € 6) C))

(DEFUN 0010 (CURRENT GOAL)
(COMMENT TRY10D OM MINIMUM CAN NOT ON GOAL PEG)
COMMENT RETURN LIST OF PAIRS OF LISTS MOVE-NEWSTATE OR NIL-DONE)’ ‘
LOND ((NULL (DIFFS CURRENT GOAL)) '(NIL (DOKE)))
(T (TRY1d (CAR (MINDIFF CURRENT GOAL)) . N
(CADR (MINDIFF CURRENT GOAL)) ' .
CURRENT))))

(DEFUN MOD2 (CURRENT GUAL)
(COND i(NULL (DISFS CURRENT GOAL)) *(NIL (DONE)))
T (VRY2 (CAR (MINDLFF CURRENT GOAL))
éﬁ:oa (MINDIFF CURRENT GCAL))
RENT))))

MOD3 and MODA differ only in use of TRY3 or TRY4, (i.e. focus on
to peg or from peg.

i

e @0 co we
s ae ae we
e ae @e e

(DEFUN OD3 (CURRENT GOAL) (MOD34 'TRY3 CURRENT GOAL))

. (DEFUN MOD34 (FN CURRENT GUAL)
(PROG (XCAN XPEG MEWMOVE NEWSTATE NDIFF) %
(SETQ MOIFF (MINDIFF CURRENT GLOAL))
(CAND ((NULL nOTFF) (RETURN "(NIL (DONE);))
(¥ (SETQ NEWMOVE
{ FUNCALL FN (CAR HDIFF) (CADR NDIFF) CURRENT))))
(COND {(LIGAL {CAR NCWIOVEY (CADR NEWMOVE) CURRENT)
(RCTURN (MAKE MEW OVE CURRENT))) .
(T (SETQ XCaM (CAR MEWMOVE)) .
(SETQ XPEG
(OFHER (PEGOF (CAR NEWMOVE) CURRENT)
(CADR NEWMOVE))) .
Q (RETURN (HAKE (LIST XCAN XPEG} CURRENT)))))) 7W.
EMC R TT—

ERIC ¢
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(DEFUN MOD4 (CURRENT GOAL) (MOD24 ‘TRY4 CURPENT GOAL)) § ‘ m«r

: MODS and MOD6 do breadth or depth first search, respectively.
:MOD6 uses similar structure to MODS. butl looks at 1 goal at each
depth{via LOOP) before moving on to next subgoal. ¢

’

(DEFUN MOD5 (CUR GOL)
(PROG (MDIFFS CANPEG! CANPEGZ)

(SETQ ND1FFS (DIFFS CUR GOL))

(COND ((NULL NCIFFS) (RETURM ' (NIL (DOME))))
((SETQ CANPEGY (AMNY1S NDIFFS (ALL_1MOVES CUR)})
(RETURN (MAKE CANPEGY CUR)))
((SETQ CANPEG2 (ANY2S NDIFFS (ALL_2MOVES CUR)))
(RETURN (MAKE CANPEG2 CUR)))
(Y (RETURN KIL)))))

(DEFUN MOD6 (CUR GOL)
. (PROG {XDIFF CANPEG NDIFFS)
(SETQ NDIFFS (DIFFS CUR GOL))
LOOP (SETQ XDIFF (LIST (CAR WDIFFS)))~
(COND ((NULL XDIFF) (RETURN *(Nil (DONE))))
¢(SETQ CANPEG (ANY1S XDIFF (ALL_1MOVES CUR)))
(RETURN (MAKE CANPEG CUR)))
((SETQ CANPEG (ANY2S XDIFF (ALL_2MOVES CUR)))
(RETURN (MAKE CANPEG CUR)))
(T (3ETQ NDIFFS (COR NDIFFS)) (GO LOOP)))))

(DEFUN MOD7 (CUR GOAL) ™~
(PROG (NDIFF TPEG FPEG 3PEG) ~
. (SETQ NDIFF (MINDIFF CUR GOAL))
(COND ((NULL HDIFF) (RETURN ‘(MIL (DOME))))
((LEGAL (CAR NDIiFF) (CADR NDIFF) CUR)
(REFURN  (MAKE NDIFF CUR)))
(T (SETQ TPEG (CADR NOIFF))
(SETQ FPEG (PEGOF (CAR NDIFF) CUR))
(SETQ 3PEG (PEGOF °C3 CUR))
(RETURN (MAKE (LIST °*C3 :
(cono ((OR (EQ 2PEG TPEG)
(EQ 3PEG FPEG))
(OTHER FPEG TPEG)) -
(T (OTHER 3PEG FPEG))))

. CURYIIMN
MOD8 and MOD8a not used. “True™ modB8 s MOD8S.

»

. we

(DEFUN MOD8 (CUR GOL)
(ROG (NDIFF TPEG FPEG 3PEG SUBCAN SUBPEG)
SETQ NDIFF (MINDIFF CUR GOAL))
COND {NULL NDIFF) (RETURN ‘(NYL (DONE))))
LEGAL (CAR NDIEF) (CADR NDIFF) CUR)
(RETURN (MAKE NOIFF CUR))))
;szro SUBCAN (CULP10 (CAR NDIFF) (CADR NDIFF) CUR))

SETQ SUBPEG (OTHER. (PEGDF (CAR NDIFF) CUR) (CADR NDIFF)))
COND ((LEGAL SUBCAN SUBPEG CUR)
(RETURN (MAKE (LIST SUBCAN SUBPEG) CUR)))
(T (SETQ TPEG (CADR NDIFF))
25:10 FPEG (PEGOF (CAR NDIFF) GUR))

SETQ 3PEG (PEGOF ‘C3 CUR))
RETURN (MAKE (LIST °C3
(COND ((OR (EQ 3PEG TPEG)
(€Q 3PEG FPEG))
(OTHER FPEG TPEG))
(T (OTHER 3PEG FPEG))))

-~

CUR)))))

(DEFUN MOD8A (CUR GOL)
(PROG (XDIFF CANPEG NDIFFS JIPEG TPEG FPEG MNDIFF)
SETQ NDIFFS (DIFFS CUR GOL))
SETQ MNDIFF (MINDIFF CUR GOAL))
LOOP (SETQ XDIFF (LIST (CAR NDIFFS)))
(COND ((NULL XDIFF) (RETURN *(NIL (DONE))))
((SETO CANPEG (ANY!S XDIFF (ALL_1MOVES CUR)))
(RETURN (MAKE CANPEG CUR)))
((SETQ CANPEG (ANY2S XDIFF (ALL_2MOVES CUR)))
. (RETURN (MAKE CAMPEG CUR))))
(SETQ NDIFFS (COR NDIFFS))
Q {COND ((£Q (CAAR NDIFFS) °C3)
‘ (SETQ TPEG (CADR MNDIFF)) .
(SETQ FPLG (PEGOF (CAR MNDIFF) CUR)) i




" DEKC: TOMS5 MCL[A310DK17] at CMU-10a 20719 chars, 35 blks Wednesday 22 Oct 80 18:05 Page &-6

(SETQ IPEG (PEGOF 'C3 CUR)) .{;
(RETURN (MAKE (LIST °C3 ‘

(COND ((OR (EQ 3PEG TPEG)
(EQ 3PLG FPEG))
(OTHER FPEG TPEG))
(T (OTHER 3PEG FFEG))})
CUR)))
(¥ (G0 LOOP)))))

(LEFUN MOD8B (C.3 GOL)
(PROG (XDIFF CANPEG HDIFFS)
(SETQ NOIFFS (DIFFS CUR GOL))
LOOP (SETQ XDIFF (LIST (CAR KODIFFS)))
(COND ((MULL XDIFF) (RETURN “(NIL (DONE))))
((SETQ CANPEG (ANY1S XDIFF (ALL_IMOVES CUR)))
(RETURN (MAKE CANPEG CUR)))
((SETQ CANPEG (ANY2S XDIFF (ALL_2MOVES CUR)))
(RETURN (MAKE CANPEG CUR)))
((SETQ CANPEG (ANY3S XDIFF (ALL_3MOVES CUR))) . W
(RETURN (MAKE CANPEG CUR))) ] P
(T (SETQ NDIFFS (CDR MDIFFS)) (GO LUOP)))))

.:MODS not used. But note kludge fro switching subgoal order and trying again

.
.
*

s @e
e @

(DEFUN ¥0DS (CUR GOL)
(PROG (XDIFF CANPEL NDIFFS MV)
(SETQ KOIFFS (DIFFS CUR GOL))
LOOP (SETQ XDIFF (LIST (CAR NOIFFS)))
(COND ((NULL XDIFF) (RETURN °(NIL (OONE)))) e
. ((SETQ CANPEG (ANY1S IDIFF (ALL_IMOVES CYR)))
(RETURN (MAKE CANPEG CUR)))
. ((SETQ CANPEG (AnY2S XPIFF [ALL_2MOVES CUR))) *
(RETURN (MAKE CANPEG CUI
(T (SETQ CANORDER® (REVERSE L ..ORDER)) .
(SETQ MV (MODI CUR GOL))
(SETQ CANORDER (RTVERSE CANORDQER))
(RETURN MV)))))

»~

(DEFUN MOVE (CAN TO STATE)
(COMMENT MOVE UNCONDITIONALLY AND RETURN NEW STATE)
((LAMBDA (POF)
(LIST (CONS, POF (PICKU® CAN STATE)) .
(CONS TO (PLACE CAN TO STATE)) «
((LAMBOA (OTH) (CONS OTH (SEEPEG OTH STATE)))
* (OTHER POF 10)))) .
(PEGOF CAN STATE)))

(DEFUN NEXTMOVE (FN CURRENT GOAL)
COMMENT RETURN NEXT MOVE FROM CURRENT TO GOAL USING FN)
PROG (CAN FROM TO CANTO)
(SETQ CANTO (CAR (FUNCALL FN CURRENT GOAL)))
SETQ CAW (CAR CANTO))
SETQ TO (CAOR CANTO)) .
SETQ FROM (PEGOF CAN CURRENT})
{FITURN (LIST CAN (LIST (STRIPP FROM) (STRIPP T0))))))

(OEFUN NEXTSTATES (STATE) -
COMMENT RETURM LIST OF ALL STATES 1. MOVE FROM CURRENT STATE)
MAPCAR ‘(LAMBDA (MV) (MOVE (CAR MV) (CADR MV) STATE)J

{LEGAL_MOVES STATE))) .

.+« sNTHPRO® useful for selecting a particular prodblem from PROBSTATES.

e~ ISETUP) before using. . :

es e ar
e e @0

:
(DEFUN NTHPROB (N) (CAUAF (NTHCOR (DIFFERENCE N 9.) PROBSTATES)))
(DEFUN OKORDER (CANX CANY) (BEFORE CANX CANY °(C3 C2 C1)))

(DEFUN OTHER (X Y) (CAR (REMAINS (LIST X Y) "(PEGA PEGB PEGC)))) \

(DEFUN PEGOF (CAN STATE)
(COMMENT RETURN PEG MCLDING CAN IN STATE)
(COND ((NULL STATE) (PRINT “Jerr: cart find can|))
((MEMBER CAN (COAR STATE)) (CAAR STATE))
| - (T (PEGOF CAN (COR STATE)))))

: QO FUN PICKUP (CAN STATE)
]E]{J}CjCOMM!nt RETURN LIST OF PEG SANS CAN) “
LN REMOVE CAN (SEEPEG (PLGOF CAN STATE) STATE))) 7

(o4




-
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(OEFUN PLACE (CAN PEG STATE)
(COMMENT RETURN LIST OF CAN ADZFO TD TOP OF PEGS CAN LIST)
.(CONS CAN (SEEPEG PEG STATE)))

(DEFUN REMAINS (SET1 SET2)
(COMMENT REMOVES ALL MEMBS OF SET1 FM SET2)
(COND ( @wLL SET1) SET2)
(T “(REMAINS (CDR SET1) (REMOVE (CAR SET1) SET2)))))

1DEFUN REMOVE (X L)
(COMMENT REMOVE ALL OCCURRENCES OF X FM L)
(COND ((NULL L) WIL)'
((EQ (CAR L) X) (RE“GVE x (COR L)))*
(T (CONS (CAR L) (REMOVE X (COR L))))))

(DEFUN SEEPEG (PEG STATE)
*" (COMMENT RETURN LIST OF CANS ON PEG IN STATE)
(COR (ASSOC PEG STATE)))
(DEFUN IETUP NIL i
(SETQ TOWA " ((PEGA €3 C2 C1) (PEGB) (PEGC)))
(SETQ T(VB °*((PEGA) (PEGE C3 C2 C1) (PEGC)))
(SETQ FLAT1 °((PEGA C1) (PEGB C2) (PEGC C3)))
SETQ FLAT2 " ((PEGA C2) (PEGB C1) (PEGC C3)))
SETUPZ))

(DEFUN SETUP2 NIL
(TRACEOFF)
SETQ CANORDER *(C3 C2 C1))
SETQ MOVELIST
*((C3 PEGA)
1 PEGB)
C1 PEGC
C2 PEGA
C2 PEGB)
€2 PEGC)
C3 PEGA)
C3 PEGS)
€3 PEGC))) -
(SLURP TOHDAT) ) —
SETPROB). :
PRINT *PROBLEMS_LOADFD))

(DEFUN SOL*'® (FN INIT FIN)
COMENT SOLVE FROM INIT TO FIN USING FN)
COMMENT PRINT MOVES AND STATES ,SAVE LIST OF BOTH)
(PPOG (NEWSTATE MOVESTATE MOVEHO STATELIST) -
SETQ MOVENO 0.)
SETQ MOVESTATE (SETQ NEWSTATE INIT))
LOOP (SETQ STATELIST (CONS MOVESTATE STATELIST))
SETQ MOVESTATE (FUNCALL FN NEWSTATE FIN))
COND ((€Q (CAADR MOVESTATE) ‘DONE)
(RETURN (COMD (TRACEON (REVERSE STATELIST))
(T *SOLVED))))
(T (PRINT (SETQ MOVE'.0 (1+ MOVENO)))
(PRIN1 (CAR MO._3TATE))
PRINI (SETQ NEWSTATE (CADR KOVESTATE)))
GO L00P)))))

(DEFUN SOLVED (STATE GOAL)

(COMMENT ASSUME STATE 1S LEGAL ,TEST FOR SGLUTION)

(COND ((NULL (DIFFS SYATE GOAL)))

(T NIL)))

(DEFUN STRIPP (PEGNAME) (RKTF 3. (EXPLODE PEGNAME)))
(DEFUN TOPCAN (PEG STATE) (CAR (SEEPEG PEG STYATE)))
(DEFUN TRACEOFF NIL (SETQ TRACEON NIL))
(DEFUN TRACEON NIL (SETQ TRACEON T)) !
(SETQ TRACEON. NIL)

(OEFUN TRYID (CAN TO STATE) '

(COMMENT TRY SPECIFIED MOVE ,USING SPH-PERC STRAT RETURN MOVE'

ACTUALLY SELECTED AND NEW STATE)
ltouo { TRACEON

EKC (PRINT "|trying to movcl)

(PRINY CAN)
T , ¥

Wadnesday 22 Oct 80 18:05
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(PRIN1 | to |)
(PRIN1 TO)))
(COND ((LEGAL CAN TO STATE) (MAKE (LIST CAN TO) STATE))
(T (TRY10 (CULP10 CAL TO STATL)
(OTHER (PEGOF CAH STATE) TO)
STATE))))

(DEFUN TRY2 (CAN TO STATE)
(COMMENT NOTE NEW STATE HOT RETURMED ,ONLY MOVE)
(PROG (TOP FROM)
(SETQ FROM PEGOF CAM STATE))
(SETQ TOP (TOPCAN FROM STATE))
(COND ((EQ TOP CAHM) (PETURN -(LIST (LIST CAN T0))))
(T (RETURN (LIST (LIST TOP (EMFTY STATE}}})))))

:::TRY3 and TRYS used by MOD3 and MOD4

(DEFUN TRY3 (CAN TO STATE) :
(COMMENT TRY SPECIFIED MOVE ,IF BLOCKED RETURN MOVE THAT CLEARS TO
PEG) - :
(COND ((LEGAL CAN TO STATE) (LIST CAN T0))
(T (COND ((NOT (OKORDER LAN (TOPCAN TO STATE)))
(LIST (TOPCAN TO STATE)

! (OTHER (PEGOF CAN STATE) T0)))

(T (LIST (TOPCAM (PEGOF CAN STATE) STATE)
(OTHER (PEGOF CAN STATE) T0)))))))

" (DEFUN TRY4 (CAN TO SYATE)

(COMMENT 1n; SPECIFIED MOVE .IF BLOCKED RETURN MOVE THAT CLEARS FROM
PEG) :
(COND ((LEGAL CAN TO STATE) (LIST GaN T0))
(T (CONP ((NOT (€Q CAM (TORCAN (PEGOF CAN STATE) STATE)))
(LIST (TOPCAN (PEGOF CAN STATE) STATE)
(OTHER (PEGOF CAN STATE) T0)))
(T (LIST (TOPCAN TO STATE)
(OTHER (PEGOF CAN STATE) T0)))))))

(DEFUN MODPROB (FN N)
(COMMENT APPLY MODEL FN TO PROBLEM N)
(PRINT (SETQ N (NTHPROB N)))
TERPRI)
FUNCALL FN (CAR N) (CADR N)))

Wednesday <2 Ucl 80 16:09
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:::Some examples of how to use the models from Klahr & Robinson
HH

i3 To get started:
(sYurp tohS)(A33:0DK17 TOH5 MCL)

(setup)
PROBLEMS_LOADED ¥

1::Now the criterial prollemset has been loaded. and a few tower and
;o: flat states have dDeen created n
:3: The full problems set s a 115t named PROBSTATES K
towa . 1
((PEGA t3 c2 C1) (PEGB) (PEGC))

fiet2
((PEGA C2) (PEGB C1) (PEGC C3)) - : . .

-

—

13:t0 specify' a problem, take car and caadr of nthprod, eg:
(nthprodb 13)(((PEGA) (PEGB C3 C2) (PEGC C1)) ((PEGA €3 C2 C1) (PEGB) (PEGC))) P

(car (nthprodb 13))((PEGA) (PEGB C3 C2) (PEGC C1))
(cadr (nthprob 13))((PEGA C3 C2 C1) (PEGE) (PEGC))

to make the next move from a particular state, using a particular function
.use NEXTMOVE with function name (quoted) and init+al and final states
(nextmove °‘mod3 flatl towa)(C2 (B A))

(nextmove °‘mod10 flatl towa)(C2 (B A))

1t0 r;peatedly apply model to sequenizl states produced by that model,
suse SOLVE )
(setq p2D (nthprob 20))(((PEGA CI1) (PEGB C2) (PEGC C3)) ((PEGA) (PEGB) (PEGC 3 C2 C1)))
(solve ‘modi0 (car p20)(cadr p20)) N ‘
1 (C3 PEGB)((PEGC) (PEGB C3 C2) (PEGA C1)) -~
2 (C1 PEGC)((PEGA) (PEGC C1) (PEGB C3 C2))

ics PEGA)((PEGB C2) (PEGA (3) (PEGC C1)) .

C2 PEGC)((PEGB) (PEGC C2 C.) (PEGA C3)) )

))

s (ca PEGC)((PEGA) (PEGC C3 C2 C1) (PEGB ) )SOLVED

-to app\y mode) to problem for single move, use MODPROB
modprod °‘modb 20)
(PtGA C1) (PEGB C2) (PEGC C3)) ((PEGA) (PEGB) (PEGC C3 C2 c:)))
ca PEGB) ((PZGC) (PEGB C3 C2) (PEGA Cg))*’ P

soutput 1s initid1-final state pair, foIlued by move and new state -t -

:t0 epply a mode) (or models) to all the criterial problems. edit the
;two lists in ALLMOVES and execute it
edit! alimoves) PN
017 '
’
f lise
(LIST1 2345867 89)
’

0
(MAPC *(LAMBDA # ...) (LIST 1 ...))
’

f 14t /
(tlSl 12345672809) T .

3)(3)(3)(3)(3) 1
LIST 1 9)
s

1 4
(llSY ‘MO0 °MOD2 'MOD) 'MOD4 °MOD5 'MOD3 "MOD? °“MODAB °M0010)

g:)(a)mmm '
G751 ‘Moo ‘MOD7 °n0DSS ‘M0D10)

E KC LMOVES 75

wll Toxt Provided by ERIC

e

-y
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(al1imoves)

] #001  MOD7  MODS  MOD9
§ C2.C8 (€3_CA CI_CA C3_CA
10 C2_CA C3i_CB (C3_Cs (3 Cs
11 C2_AB C3I_AC CI_AC C(C3_aC
12 C2.8C C3_BA C3_BA C(C3_BA
13 C1_CA C1_CA C1_CA Ci_CA
14 C1_BA C1 %A CI1_BA (1_BA
15 C1.8A (Ci_.A (C1_BA (C1_8BA
16 Ci1_CA C3_a8 C» (B C2_C8
17 C1_CA (3 C8 (C3_CsB C3_(C8

} 18 cica c3ZcB C3_ca CICA v
19 CI_AC C3_A8 C3_AC C3_AC.

20 C1_AC C3.CB C3_C8 C3_CB .
.21 C1_CA C3_AB C3I_AC C3_AC .
22 C1_AC C3_AB C3_AB C3_AB
% 23 CI_CA CI_AB C3_AB C3_AB
24 C1_AC C€3_CB CI_CA CI_CA
26 C1_BA C3_AC C2_8C C2_8C
26 C1_BA C3_AC C2_8C (2 8C
27 C1_8C C3_CA C3_CA (3 CB
28 C1_AC C3_CB C2_A8 C2_pS8
20 CI1_CA C3_AB C2.CB (2 CB
30 C1_BC C3_BA C2.CA C2_CA
31 C1_BC C3_CA C2_8A C2_BA
32 C1_BA CI_AC C3_AC C3_AB
33 C1_BA C3_BC C3_8C C3_8A
34 C1_BC C3_BA C3_eA C3I_8C
36 C1_BA ,C3_CA C2_A8 C3_C8B
36 ° "C1_8C C3_AC C2_CB .C3I_AB
37 Ci_AC C3_BC C3_8C C3_BA
3. C1_BA (C3_8C C3_BC C3_BA
39 C1_BA C3_CA C3_CA CI_CB °
40 C1_8C C3_BA C3_BA C3I_BC

for garralous output, turn trace on
aceon)T

o® oo as oo
“ e 0o as

solve °‘mod10 towa towd)
trying to move| C1] to |PEGB
can not free to move|
trying to aove| C2] to |PEGC
can not free to move| -
trying to move| C3| to |PEGB
1 (C3 PEGB)((PEGA C2 C3) (PEGB C3) (PEGC))
trying to move| C1| to |PEGB
¢an not free to move|
teying to move| C2| to |PEGC

(C2 PEGC)((PEGA C1) (PEGC C2) (PEGB C3))
trying to move] C1| to |PEGB
destination peg blocked| ¢
trying to mose| C3| to |PEGC
3 (C3 PEGC)((PEGB) (PEGC C3 C2) (PEGA C1))
‘¢rying to move| C1| to |PEGH
~ (C1 PEGB)((PEGA) (PEGB C1) (PEGC C3 (2))
trying to move] C2| to |PEGB
can not free to move|
trying to move| C3| to |PEGA
) (CI PEGA)((PEGC C2) (PRGA C3) (PEGB C1))
tfying to move| C2| to |PEGS

(C2 PEGB)((PEGC) (PEGB C2 C1) (PEGA C3})
{teying to move) C3| to |PFiB
? (C3 PEGB)((PEGA) (PEGB C3 C2 C1) (PEGCL))(((PEGA C3 C2 C1)

. . (PEGS)

(PEGC))
((c3 pEcs)
(PEGA C2 €1)
(PEGB C3)
(PLGC)))
((C2 PEGT)
((PEGA C1}
. (PEGC C2)
(PECB €3)))
o - . (63 recc)
« PEGS
ERIC (recc s c2)
e : (PEGA C1)))

Thursc‘,ay 30 Oct 80 10:04
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i rday lcvec

. g
(COMMENT ~-CONTENTS-- WHPSIZE PROB1 PROB2 ) : C
(SLURP CIBOMLSP UCEDIT)
(slurp §i11)
(SETQ WMPSIZE ‘10.)
(SWITCHES KEEP-LHS ON TRACE LEVEL2)

X

(systen
qitq3
( (1) & =el --> («delete> ‘el)(q3))

q3toq4
{ (93) & =e1 --> (<delete> =e1)(q4))

solved
( (q3) - (want ! ») --> (<write>)(<write> problem solved)(<write>)(<halt>))

topgoal .
((q1)(TOPGOAL <PA «PB «PC) & =el --> (<delete> =el)
(attended =21)(GOAL =PA) (GOAL =PB) (GOPL =PC) (a 1sa peg)
(b isa peg)(c isa peg)) 3r

EMPTYGOAL
((Q1)(GOAL (=)) & =E1 --> (<DELETE> =E1))

godican
((a1) (goal (peg =peg =cx I =2y)) & =e1 -->

(<delete> -al)(goal =cx on *peg){(goal (peg =peg ! =y)))
unpack -

(q1)(STATE «PA =PB =PC) --> =FA =PB =PC (3 BIGGER 2) (3 BIGGER 1) (3 BIGGER 0)
2 BIGGER 1) (2 BIGGER 1) (2 BIGGER 0) (1 BIGGER 0))

seenone .

((q1)(peg =peg)} --> (see topof =,eg IS 0))

sool

((q1)(peg =peg -qx) ==> (see =CX ON =peg) (see topof =peg IS =(CX))

ses2 . '

((q1)(peg =peg =CX =CY) --> (see =CX on "peg) (see =CY on =peg) (see topof =peg IS ﬂ!

sCX) (see =cx above =CY))

seed -
((q1)(pey =peg =CX =CY =(Z) --> (see =CX on =peg) (see =CY on =peg) (see =CZ ONM
*PEG) (see topof =PEG IS =(X) (see =cx above =CY) (see scx above =CZ) (see =cy above =(Z))

DIFF
(q3)(GOAL =CAN ON =PEG1) (see =CAN ON #PEG1 & =PEG2) --»>
WANT (=CAN =PEG2 =PEG1)))

WANT2 >
(q4)(want (=CANI t =)) & =E1 (WANT (=CAN2 | =)) & =E2 (=CAN1 BIGGER =CAH2) -->
<DELETE> <E1))

ryY

((q4) & =0 (want (=CAN =PEG1 =PLG2)) & *E1 =--> (<DELLETE> *e0 =E1) (g5)

(TRY <CAN =PEG1 =PEG2)) : :

LEGAL
(%) & <20 (try =CAN «P1 =P2) & =E1 (see topaf =P1 IS =CAN1) (see topof =P2 IS =CAN2)
«CAN1 BIGGER =CAN2) ->(QG) (MOVE =CAN1 =P1 =P2) (<DELETE> =e0 sel))

T08LOCK
((a8, (try =CAN1 «P1 +P2) & =e1 (see topof =P2 IS =CAN2) (=CAN2 BIGGER =CAN1)
==> (=CAN2 BLOCKS =E1))

FROMBLOCK .
((a8) (try sCAN1 =P1 «P2) & el (sce =CAN2 ABOVE »CAN1) =-> )
(=CAN2 BLOCKS =E1))

TRIED
((a3) & *E1 (try | =) & =e2 --> (<DLLETE> ~E1 =e2 ) (q5a))

O _Locken !




i

)
.(setq f1at2 "((peg a 3)(peg b 1)(peg ¢ 2)

".'JSKC:TQHZ.OPS[A31CDK17] at CMU-10a 3323 chars, 10 blks ‘ Friday 12 Dec 80 09.03

((g5)  (=CANY BLOCKS =HV) & sc2 (=CAN2 BLOCKS =MV) (=CAN1 BIGGER =CAN2) -->
(<DELETE> =e2))

subtry -
((q5a) & =e1 (=C1 BLOCKS (try =(2 =P} =P2) & =£3) & eE2
(=p4 & #p1 & #p2 152 peg) ’
(se: =C1 ON =p3) --> (<DELEJE> =e3 =E2 »E1) (try
*C1 =p3 =P4) (g5))

prep
((QB)(MOVE 1| =) (see ! =) & =E1 --> (<DELETE> =E1))

nove

((QG) & =e0 (MOVE =CAN =P1 =P2) & -E1 (PEG P2 ' =TOCANS) & *E2 (PEG *P1 =CAN I
*FROMCANS) & €3 (PEG | =P3) & #E3 & =E4 & WE2 (STATE | =) & =E5 --»

(<DELETE> =e0 =E1 =E2 =E3 ~£4 =E5) (STATE (PEG *P1 | =FROMCANS) (PEG =P2 =CAN |
*TOCANS) (PEG ! =P3))(q1))

1

NN

(ODEFUN PROBSET (INITIAL FINAL)

(LIST *(ql) (CONS "STATE INITIAL) (CONS 'TOPGOAL FINAL)))
ssttq'towa *( (peg a 3 2 i)(peg b)(peg ¢)
setq towb ‘((peg a)(peg b 3 2 1)(peg ¢))

A

))
(setq flatl '((peg a 3)/-eg b 2)(peg c 1 ;).
1)
(SETQ PROC1

"((q1)(state (PEG A) (PEG B 3. 1.) (PEG C 2. )
(TOPGOAL (peg A 3. 2. 1.) (peg B) (peg Ciyn)

(SEYQ PROB2 .
W(q1)(state (PEG A) (PEG B 3. 1.) (PEG C 2.))
(TOPGOAL (peg & 2. (peg b 1.) (peg ¢ 3.))))

(sei probd3
*((q1)(state (peg 2) (peq b 3 2 1)(peg c )) b
(topgoal (peg a 3 2 1){peWdl(peg ¢))))

Page t-2-
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[Orabbling. | )

g - .
ppf -
((e1)
(STATE (PEG A 3J) (PEG B8 2) (PEG C 1))
(10PGOAL (PEC A 3) (PEG B 1) (PEG C 2))) .
. ™
s;::seven move flat to flatf
:start pp)Warning: WM and the network memory may be inconsastent
>
cun GO tersef 1. UNPACK .

2. SEE1 3. SEE1 4. SEE1 5 TOPGOAL 6. GOALCAN 7. GOALCAN

8. GOALCAN 8. Q11Q3 S
10. DIFF . 11. DIFF 12, Q3T10Q4 13. WaNT2 14, TRY 15, TO ¢
8LOCK 16. TRIED 17. SUBTRY 18. TOBLOCK 19. TRIED
20, SUBTRY 21. LEGAL 22. PREP 23. FREP 24. PREP

25. PREP 26. PREP 27. PREP 23. MOVE 29. UNPACK
30. SEENOHE 31. SEE2 32, SEE1 T 33. Q11Q3 34, DIFF

35. DIFF 36. DIFF 37. Q310Q4 38, WANT2 39. WANY2
40. TRY 41, T108LOCK 42. FROMBLOCK 43 . HINBLOCKE: 44. TRIED 45, SU
BTRY 46, LEGAL 47. PREP 48 . PREP 49, PREP
50. PREP 51. -PREP 52. PREP 53. PRtP 54. MOVE

55. UNPACK 56. SEENONE 57. SEE1 58. SEE2 59, Q17Q3
60. DIFF “
>

© (wm)

((STATE (PEC B) (PEG A 2) (PEG C 3 1)) (1 BiGGER 0) (2 BIGGER 0) (2 BIGGER 1)
(& BIGGER 0) (3 BIGGER 1) (3 BIGGER 2) (PEG C 3 1) (PEG A 2) (PEG B) (SEE
TOPOF 8 1S 0) (SEE TOPOF A IS 2) (SEE 2 O A) {SEE 3 ABOVE 1) (SEE T0POF C

IS 3) (SEE 1 ON C) (SEE 3 OM C) (C TSA PEG) (B ISA PEG) (A ISA PEG) (GOAL
(PEG A)) (GOAL 3 ON A) (GOAL (PEG B)) (GOAL 1 ON B) (GOAL (PEG C)) (GOAL 2
O C) (ATTENDED (TOPGOAL (PEG A 3) (PEG B 1) (PEG C 2))) (Q3) (WANT (3 C

A))) : _—

>>
run 100 fullg .

OIFF
(SEE 1 ON C) (GOAL 1 ON B) (Q3)
(:ANT (1. C8)).

OIFF
(SEE 2 ON A) (GOAL 2 ON C) (Q3)
(;ANT (2 AC)) '

s
»

oo
3
cey /h_\\\
(Q4)
Deleted: ~~
(Q3)

WANT2 . '
(2 BIGGER 1) (WAHT (1 C B)) (WANT (2 A C)) (Q4)
-y .
Deleted: - .
{WANT (2 A C)) &

wANT2
(3 BIGGER 1) (WANT (1 ¢ B)) (WANT (3 C A)) (Q4)

.oy N
Ouleted: §
(WART (3 C A))

IRe \
(4an1 (1 @ 8)) (04)
o “™MY 1C 8) (05) 0,

leted: v
.Am (1 € 8)) (Q4) ,

IToxt Provided by ERI
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FROMBLOCK .
(SEE 3 ABOVE 1) (TRY 1 C B) (Q5)
-->
(3 BLOCKS (TRY 1 C 8))

TRIED
(TRY 3 C B) (Q5)
-=>
(Q5A)
Deleted:
(TRY 1 C B) (Q5) .

SUBTRY
(SEE 3 OM C) (A ISA PEG) (3 BLOC" (TRY 1 C B)) (Q5A)
-3

(Q5) {(TRY 3 C A) o

Deleted: -

(Q5A) (3 BLOCKS (TRY 1 C B))

LEGAL * .
(3 BIGGER 2) (SEE TOPOF A 1S 2) (SEE TOPOF C IS 3) (TRY 3 C A)
-y 2
(MOVE 3 C A) (Q6)
Deleted:
(YRY 3 € A) (Q5)

(Q5)

PREP ' ¢
(SEE 3 ON C) (MOVE 3 C A) (Q6)
.oy
Deleted:
(SEE 3 ON C)

c v
PREP
(SEE 1 ON C) (MOVE 3 C A} (Q6)
-=>
Deleted:
(SEE 1 ON C)

PREP
(SEE TOPOF C IS 3) (MOVE 3 C A) (Q6)
——>
Deleted:
(SEE TOPOF C IS 3)

PREP
* (SEE 3 ABOVE 1) (MOVE 3 C A) (Q¢)
-=>
Deleted:
(SEE 3 ABOVE 1)

J

PREP
(SEE 2 ON A) (MOVE 3 C A) (Q6)
>
Deleted:
(SEE 2 ON A)

PREP ’ : -
(SEE TOPOF A IS 2) (MOVE 3 C A) (Q6)
>
Deleted:
(SEE TOPOF A IS 2)

PREP
{SEE TOPUF B IS 0) (MOVE 3 C A) (Q6)
-*>
Deleted: ‘
(SEE TOPOL 8 IS 0)

Text Provided by ERI N
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STATE (PEG B) (PCG A 2) (PEG C 3 1 PEG B PEG C 3 1 PEG A 2 -

fuqve (pes o) (¢ ) ( ) ( ) ( ) .Jf? s
(31) (STATE (PEG C 1) (PEG A 3 2) (PEG-B))

Deleted:

STATE (PEG B) (PEG A 2} (PEG C 3 1)) (PEC B) (PEG C 3 1) (PE :
{uove LSRN ( )) (PEC B) (PEG C 3 1) (PEG A 2) -,
UNPACK
(STATE (PEG C 1) (PEG A 3 2) (PEG a)) (01) -
“=>

(1 BIGGER 0) (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)
(3 BIGGER 2) (PLG B} (PLG A 3 2} (PEG C 1)

SEE1
(PEG C 1) (Q1)
-->
(SEE TOPOF C IS 1) (SEE 1 ON C)

SEE2 N
(PEG A 3 2) {81)
-=>
(SEE 3 ABOVE 2) (SEE TOPOF A IS 3) (SEE 2 ON A) (STt 3 ON A)

SEENOHE

(PEG 8) (Q1)
-y
(SEE TOPOF 8 IS 0)

Q1703 - \\\
(Q1) :
-->
(Q3)
Deleted:
(Q1)

e

OIFF ‘Y
(SEE 2 ON-A) (GOAL 2 ON C) (Q3) _ .
(;ANT (2 A-C))

OIFF .
. (SEE 1 ON C) (GOAL 1 ON B) (Q3)
=,

(VANT (1 C 8))

Q3T0Q4
(Q3)
-->
(Q4) - -
Deleted:
(Q3)

WANT2
(2 BIGGER 1) (WANT (1 C B)) (WANT (2 A C)) (Q4)
oo:otod
(WANT (2 A C))

TRY 4
(WANT (1 C 8)) (Q4) -
(;RY 1 C 8) (Q5)
De'leted:

(WANT (1 € B)) (Q4)

LIGAL .
(1 BIGGER 0) (SEC TOPOF 8 1S 0) (SCE TOFOF C IS 1) (TAY 3 C B) (05)

1OVE 1 € 8) (Q6) _ .
ERC i
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Deleted: -C
(JHY 1 C 8) {(Q5)

PREP
(SEE TCROF B IS5 0) (MOVE 1 C B) (Q6) .
>
Deleted:
(SEE TOPOF B IS 0)

PREP
(SEE 3 O A) (MOVE 1 C B) (Q6)
> ° ’
Deleted:
- (SEE 3 ON A)

PREP
(SEE 2 ON A) (MOVE 1 C B) (Q6)
.-y -
Deleted:
(SEE 2 ON A)

-

PREP
(SEE TOPOF A IS 3) (MOVE 1 C B) (Q6)
>
Deleted:
(SEE TOPDF A IS 3)

PREP
(SEE 3 ABDVE 2) (MOVE 1 C B) (Q6)
--> -
.Deleted: ]
(SEE 3 ABOVE 2) . T

PREP
(SEE 1 ON C) (MOVE 1 C B) (Q6)
>
Deleted:
(SEE 1 ON C)

.

PREP il
{SEE TOPOF € IS 1) (MOVE 1 C B) (QO6)
s &
Deleted: -

(SEE TOPDF C IS 1) . .

-

MOVE

(STATE (PEG C 1) (PEG A 3 2) (PEG B)) (PEG A 3 2) (PEG C 1) (PEG B)

{MOVE 1°C B) (Q6) .

-=>
(Q1) (STATE (PEG C) (PEG B8 1) (PEG A 3 2))

Deleted:
STATE (PEG C 1) (PEG A"3 2) (PEG B)) (PEG A 3 2) (PEG C 1) (PEG B)
MOVE 1 C B8) (Q6)

UNPACK . ,
(STATE (PEG C) (PEG B 1) (PEG A 3 2)) (Q1) . \
-=>
(1 BIGGER 0) (2 BIGGER () (2 BIGGER 1) (3 BIGGER 0) (3 BIGGLR 1)
(3 BIGGIR 2) (PEG A 3 2) (PEG B 1) (PEG C)

SEENONE
| (PEG C) (Q1)
-~

| (SEE TOPOF C 1S 0)

SEEY .
(PEG 8 1) (Q1)

o .
¢ ,EMC“ ’topor B IS 1) (SEEC 1 DM B) 50

IText Provided by ERIC ;
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SEE?
(PEG A 3 2) (Q1)
-=>

(SEE 3 ABOVE 2) (StE.TOPQOr A IS 3) (SEE 2 ON A) (SEL 3 Ol A)

Q1103
(Q1)
->
(Q3)
Dele'en:

(Q1)

DIFF
(SEE 2 On A) (GOAL 2 CK C) (Q3)
>

(WANT (2 A C)) o

Q3T0Q4
(Q'!\
-->
(Q4,
Deleted: -
(Q3)

TRY:
(WANT (2 A C)) (Q4}
(;RY 2 AC) (0Q5)
Deleted:
(wANT (2 A C)) (Q4)

FROMBLOCK
(SEE 3 ABCVE 2) (TRY _ A C) (Q5)
--> .
(3 BLOCKS (TRY 2 A C})

JRIED
(TRY 2 A C) (Q5)
-->
{Q3A)
Deleted:
{TRY 2 A+, (Q5)

SUBTRY .
(SEE 3 ON A} (B ISA PEG; 3 BLOCKY (TR 7 A C)) (Q5A)
-y .
(Q5) (TRY 3 A 9)
Deleted:

{0%4) (3 BLOCXS (Inf 2 A C))

LEGAL
(3 BIGGER 1) (SEE TOPOF B IS 1) {SEE TOPOF A IS 3) (TRY 3 A B) (Q%5)
-
(MOVE 3 A B) (06)
Oeleled:
('RY 3 A B) (G5)

PRIF
(5¢E 3 ON A) (MOVE 3 & B) (QC)
.oy .
Deleted:
(st 3 on Ay

Fae
(% 200 Ay (" vE 3 A B G

R

Beleteg
(it 2 on 8y

I

Page +5
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PRSP . . -¢
(SFE JOPOF A IS 3) (MOVE 3 A B) (Q6) '
.-> *
Deleted:
(SEE TOPOF A IS 3)

PREP
(SEE 3 ABOVE 2) (MOVE 3 A B) (Q6)
- >

Deleted:
(SEfg3 ABOVE 2)

-

PREP
(SEE 1 ON B8) (MCVE 3 A B) (Q6}
-—=>
Deleted:
(SEE 1 OH 8)

PREP
(SEE TOPOF B 1S 1) (NOVE 3 A B) (Q6)
.3
Neletey. )
(SEE T0POF B8 IS 1)

PREP .

(SEE TOPOF € IS ) (MOVE 3 A B) (Q6)

——s .

Deleted: - r
(SEE TOPOF € 1S 0)
o~

MOVE . e
(STATE § G C) (PEG B 1) (PEG A 3 2)) (PEG C) (PEG A 3 2) /PEG B 1)
(MOVE 2 A 8) (Q6) . L
>
(Q1) (STATE (PEG A 2) (PEG B 3 1) (PEG )
Deleted:

(STATE (PEG C) (PEG B 1) (PEG A 3 2)) (PEG C) (PEG A 3 2) (PEG B 1) )
(MOVE 3 A B) (Q6)

St

UNPACK
(STAYE (PEG A 2) (PEG B 3 1) (PEG C)) (Q1)

(1 BIGGER 0} (2 BYGGER 0) (2 BIGGER 1) ¢3 BIGGER 0) (3 BIGGER 1)
(3 BIGGEW 2) (PEG C) (PEG B 3 1) (PEG A 2)

SEf1
(PEG A 2) (Q1) (

-y

(SEE TOPOF A 1S 2) (SEE 2 ON A)

SEE?
(PEG & 3 1; (Q1)
-->

(SEE 3 ABOVE 1) (SEE TOPOF B IS 3) (SEE 1 ON B) (SEE 3 O B)

S Nour
(PLG C) (Qt)

vy

(SLE TCPOF C IS 0)

LRRL )]
{Q7)
({\\)
O leted:
{0t} -

N ,
S0 % N B) (GOAL 3 ON A} (03)

Ia
~

L Y
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(35T (3 B A)) ) ﬂ.—“j

OIFF
(SEE 2 O A) (GOAL 2 Om L; (Q3)
b )

(WARTY {¢ A C))

QITOQ4
{03}
-->
(Q4)
Deleted:
(Q3)

WANT2

(3 BIGGER 2) (WANT (2 A C)) (WANT (3 B A)) (Q4)
De:eted: l

(WANT (3 B A))

TRY
(WANT (2 A C)) (Q4)

(TRY 2 A C) (Qf)

Deleted:
(WANT (2 A C)) (Q4)
: »
LEGAL

(+ BIGGER 0) (SEE TOPOF C IS 0) (SEE TOPOF A IS 2) (TRY 2 A C) (Q5)
(MOVE 2 A C) (Q6)

Deleted:
(TRY 2 A C) (Q5) )

PREP
(SEE TOPOF C IS 0) (MOVE 2 A C) (Q6)
—— .

Deleted: ’
(SEE ~ :P0F € IS 0)

PREP
(SEE 3 ON B) (MOVE 2 A C) (06)
-y ,
Deleted: -
(SEE 3 ON B)

PREP
(SEE 1 ON B) (MOVE 2 A C) (Q6)
-=>
Deleted: ' ¢
(SEE 1 ON B)

PREP
(S " TOPOF 8 1S 3) (MOVE 2 A C) (06)
=-=>
_Deleted:
(SSE TOPOF B IS 3)

PREP
(SEE 3 ABOVE 1} (MOVE 2 A C) (Q86)
-3
Ueleled:
(SEL 3 ABOVF 1)

PREP
(SEE 2 On A) (MOVE 2 A C) (Q0)
it d

\?-!etod*

L 2 ON A : /
ERIC ) Y ‘

IToxt Provided by ERI
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PREP ‘ \5',0

(SEC TOKOF A 1S 2) (MOVE 2 A C) (Q0) .

Deleted: . .
(SEE TOPOF A IS 2)

(8
MOVE

(STATE (PEG A 2) (PEG B 3 1) (PEG C)) (PEG B 3 1" (PEG A 2) (PEG C) L ¥

(MOVE 2 A C) (Q6)

PTS .-
(01) (51 . (PEG A) (PEG C 2) (PEC B 3 1))

Deleted: . s
(STATE (PEG A 2) (PEG B 3 1) (PEG C)) (PEG B 3 1) (PEG A Z) {PLG ()

(MOVE 2 A C) (Q6)

UNPACK
(STATE (PEG A) (PEG C 2) (PEG B 3 1)) (Q1)
(: BIGGER 0) (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)
(3 BIGGER 2) (PEG B 3 1) (PEG C 2) (PEG A)

SEEMONE .
(PEG A) {Q1) N
--> .

(SEE TOPOF A IS 0)

T SEEM

(PEG € 2) (Q1)

—-y )
(SEE TOPOF C IS 2) (SEE 2 ON C)

SEE2
(PEG B 2 1) (Q1)
->
(SEE 3 ABOVE 1) (SEE TOPOF B IS 3) (SEE 1 ON B) (SEE 3 ON 8)

Q11Q3
(e1) N .
-~ .
(Q3)
Deletesd:
(Q2)

DIFF ’
(SCE 3 ON B) (GOAL 3 ON A) (Q3) .
>
(WANT (3 B A})

" Q3T0Q4
(Q3j

-~>
(Q4) "
Deleted:
{3) '

TRY
(wWANT (3 B A}) (Q%)
(;RY 3 B A} (Q%)
Deileted:
(WANT (3 B A)) (Q%)

&>

[REA.TH
{3 BIaoER 0) (SIE fCFOF A IS 0) (SEE Tukub B 1S 3) (TRY 3 8 A) (03}
>
(MOVe, 3 8 &) (QG)
Deleted.
Q LIRY 3 0 A) (Q9%)

" FRIC
¢ ‘A
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3 04 B) (MOVE 3 B A) (Q6)

Deleted: "
(SEE 3 ON B)

PREP
(SEEL 1 ON B} (MOVE 3 B A} (Q0)
>
Deleted:
(SEE 1 ON B)

PREP
(SEE TOPOF B IS 3) (MOVE 3 B A) (Q6)
->
Deleted:
(SEE TOPOF B IS 3)

PREP
(ste 3 ABOVE 1) (MOVE 3 B A) (Q6)
>
Ccrleted:
(StE 3 ABOVE 1)

PREP
(SEE 2 ON C) (MOVE 3 B A) (Q6)
-—>
Deleted:
(SEE 2 ON C)

PREP
(SEE TOPOF C IS 2) (MOVE 3 B A; (Q6)
~-~>
Deleted:
(SEE TOPOF C IS 2)

PREP .
(SEE TOPOF A IS 0) (MOVE 3 8 A) (Q6)
-=>
Deleted:
(SEE TOPOF A IS 0)

MOVE

Friday 12 Dec 80 09:18

(STATE (PEG A) (PEG C 2) (PEG B 3 1)) (PEG C 2) (PEG B 3 1) (PEG A)

(MOVE 3 B A) (Q6)
(51) (STATE (PEG B 1) (PEG A 3) (PEG C 2))
Deleted:

(STATE (PEG A\ (PEG C 2) (PEG A 3 1)) (PEG C 2) (PEG B 3 1) (PEG A)

(MOVE 3 B A} (Q6)

UNPACK
(STATE (PEG B 1) (PEG A 3) (PEG C 2)) (Qt) '
>

(1 BIGGFR 0) (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)

(. BIGGEK 2) (PEG C 2) (PEG A 3) (PEG B 1)

SEEL
(PEG 8 1) (Q1) o4
-3
{SEE TOPOF 8 IS 1) (SLE 1 ON B)

SEEY
(PEG A 3) (QU)
i

(SEE TOPOF A 1S 3) (SEE ) "7 A)

erry 5 -
#

: O tec 2y (o
]ElzJﬂ:-.
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(SEE TOFOF C 15 2) (SSE 2 ON C) ﬂ-—[l

Q11¢3
(Q1) _
.3 .
{Q3)
Deleted:
(Q1)

PROBLIM SOLVED

SOLVED
(03)

-=3

END -- EXPLICIY HALTY

22 productyons (160 / 275 nodes) (75 / 163 features)

159 firings (427 RHS actions)

25.8553406 mean working memory size (31 maximui:)

3.02515724 meap conflict set size (8 maxinum)

39.735849 mean token nenory size (61 maximum)

?.966 seconds (43.811321 msec per firing) (16.3133173 msec per action)
NIL

{(wn)((STATE (PEG B 1) (PEG A 3) (PEG C 2))
(1 BIGGER 0) .
(2 BIGGER 0)

(2 BIGGER 1) .
(3 BIGGER 0) o

(3 BIGGER 1)

(3 BIGGER 2)

(PEG € 2) - -
(PEG A 3) -
(PEG B 1)

(SFE TOPOF B IS 1)

(SEE 1 ON 8)

(SEE TOPOF A IS 3)

(SEE 3 ol A)

(SEE TOPOF C 1S 2)

(SEE 2 ON C)

(C ISA PEG)

(8 ISA PEG)

(A ISA PEG)

(GOAL (PEG A))

(GOAL 3 ON A) —
(GOAL (PEG 8)) ‘

(GOAL 1 ON B) :
{GOAL (PEG C)) -
(GOAL 2 on C)

gaggguozo (TOPGOAL (PEG A 3) (PEG B 1) (PEG C 2)))

T (undribble)




