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1 Introduction
I*"

T44 is a final port on NIE grant number I''E.G.780035, "Investigation of Pre-School Children's

Problem Solving Processes." This report is organized around several topics elated to different

aspects of cnildren's problem solving processes The details of the studies associated with each
-

topic are available in the papers listed in section 9.

2 Research .Background

The research program was initially supported by a grant from the Spencer Foundatior entitled

"Information Processing Models of Cognitive Devplopment." Reports on various segments of the

project have appeared over the past several years (Chi & Klahr, 1975, Klahr, 1973a, Klahr, 1973b,

Kiahr, 1973c, Klahr, 1976a, Klahr & Wallace, 1970a, krahr & Wallace, 1970b, Klahr & Wallace, 1972,

Klahr & Wallace, 1973) and an integrated description is presented in a recent monograph (Klahr &

Wallace, 1976), The second phase of the research. involved a shift in emphasis from theory

formulation at a general level to theoretically guided empirical studies of problem solving and basic

processes in young children. ,7his work, to be summarized in this report, was supported by grants

from ME (G-78.0035) and NSF (BNS77- 16805).

2.1 Genera' Orientation

Our research falls within the general framework of an information processing approach to the study of

cognitive processes and cognitive development. The general paradigm is to formulate information

processing models of the child at different levels of knowledge and then to construct a model that

explains the change from one level to the next.

Faced with the behavior of a child performing a task or learning how to perform it, we pose the

question: "What 46cessing routines and what kinds of internally stored information would, a child

need in order to generate the observed behavior?" The answer takes the form of a set of rules that

can be interpreted by an information processing device, i.e., a computer pr&Tam. The program thus

constitutes a model of the human. Such models are not "pure programming" inventions, for they are

constrained by Jour major psychological criteria: consistency with what we know of the physiology.of

the nervous system, consistency with what we know of behavior in tasks other than the one under

consideration, sufficiency to produce the behavior they purport to model, and definiteness and

concreteness.
.

6
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Unethstinctive teature of this approach is its emphasis on precision. since tne models are stated in

the form of running computer programs, they tend, to be much more detailed and explicit than is

typically the case. They include empirically t ,stable statements about the functioning of short term

memory, the control of attention, and the amount and organization of essential information in long

term memory. Although the models tend to be complex, theft logical consistency as well as theirr.
detailed predictions of behavior in various environments can be directly tested simply1/4py running

I
them.

1 ,

Once models of different performance levels have been constructed, we can begin to -examine the

differences among them. Since the model for each performance level is itself quite precise, the

nature of the change between one level and the next is better defined than in most other forms of

modelling. This is an important point, for a theory of transition between levels can be no better than
J

the model of what.is undergoing that transition.

r

Most ofwhat has just been said about modelling cognitive development applies equally to problems of

learning, from instruction. The purpose of education is to produce changes in the learner: in fife

content and structure of the information in her memory, in the processes she applies to that

information, and in 'the procedures for acquiring new information and additional processes. Thus,
.

education Otin be viewed as an a.tempt to produCe complex changes in an already complex and

adaptiveostem. The more we know about such a systemthatis,the better a model of the learner we

have--the more effective, we can be in- our :.clucation efforts. The creation of an information

processing theory of learning in an "instructional mode" can be viewed as a design problein Kiahr,

19766). The designer of a learning system must answer questions about when and how learning will

Occur, and about the effects that learning will havq upon the current system. These are, of course,

almost the same qUestions that face the cognitive development theorist. r
/

ksc13 Problem Solving and Planning
IV

The goal of this research is to improvebur understanding of how children learn to solve problems. .

The overall plan is to explore the effects of variations in instructional procedpres on children's,

learning of, and performance on, 'different kinds of problems. Based, on the empirical evidence

obtainect durltig these explorations, we construct.task-specific information processing models to
. .

account for learning and performance in each situation. Research durifig the grant period focused

primarily on one problem, the Tower of Nano% and some pilqt studies were initiated on a second

problem, the Tangram.

.,.
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3.1 The 1 ower of Hanoi

The "standard" version of this problem consists of a series of three pegs, and a set of n disks of
decreasing size. The disks sit initially on one of the pegs, and the goal is to move the entire n-disk
cfOirfiguration to another peg, subject to two constraints: only one disk can be moved at a time, and at
no point can a larger disk be above a smaller di:.,k on any given peg. A standard three disk problem is
shown in Figure 1.

'

A . 8 C
4 S

Prqbtem Move oil the disks from peg A to peg C.

Figure 1: Three-disk Tower of Hanoi problem.

2

A

In order to solve this problem you might reason as follows:

I have to build the stack up from the bottom, which means that I must get disk 3 from A
to C, but 2 is in the way, so I'll have to move 2 to B. But if I Want to move 2 to B, I must first
get 1 out of the way, so my first move will be 1 to C. Now let me reconsider the new
configuration.. In order to get 3 to C, I still have to move 2 to B, which I can now do. Now in
order to get 3 to C I must remove 1 from C, so I will put it on B, and at last I can move 3 to
C...etc. ,

..

1Although there are several other ways to solve the problem, the example shows that even this simple
version -of the Ozzie can tax one's ability to coordinate sequential rfasonirg, perceptual
discrimination, quantitative ordering, and short term memory processes.

...

For use with preschool children, we mod:lied the task in ways that changed its superficial appearance
while maintaining its basic structure.

Materials, We used a set of nes:,4 inverted cans as shown in Figure 2. The Cam-
were modified so that they lit very loosely on the pegs; when they are stacked.up it
impossible to_put h smaller can on too of a larger can. Even if the child forget; the

.

l
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relative size constraint, the materials provide an obvious physical consequence of
attempted violations: little cans simply fall of f bigger cans.

xternalliation of final goal. In add tion to the current configuration, tht foal -- or
target - configuration was always physically present. We set up the child's cans in a
target configuration, and th'e Experimenter's cans in the initial configuration. Then the
child was askA to toll the Experitncntor wii:_it to do in ordcr to (-3,A her cans (E's) to look
just like the child's. This procedure was used to elicit multiple-move plans: the child must
describe a sequence of moves>phich the experimenter then executes.

Cover story. The problem was presented in the context of a story in which the cans
are monkeys (large Daddy, medium size Mommy, small Baby), who jump from tree to tree
(peg to peg). The child's monkeys are in some good configuration, the-Experimenter's
monkeys are "copycat" monkeys who want to look just like the child's monkeys. The
cans are redundantly classified-by size, color, and family membership in order to make it
easy for the child to refer to them. The children found the cover story easy to
comprehend and remember, and they readily agreed to consider the cans as-monkeys.

Problem type- and! difficulty. The standard three disk problem requires 7 moves. We
used problems requiring from 1 to 7 moves by systematically using pairs of initial and final
states selected fro% the state-space (Figure 3). For example, state 23 to state 6 can be
solved in 1 move, while state 1 to state 15 requires 7 moves. We also varied the type of
goal configuration from "towers" (states 1, 8, and 15) to "flats" (e.g., states 3, 6, 10, and
13).

planning mode. For each problem, the child told the experimenter the full sequence
of proposed moves. The experimenter gave supportive acknowledgment but dirt net
move the cans, and then the next problem was presented. The protocol shown in Figure
4 is an example of two perfect 6-move plans.

3.1.1 Results of TOH study

N
What have we found so tar? Children as young as 4'can at least understand the "game", and solve up

to 3 move problems. Thus, as far as initial ability to assmilate the rules of a formal problem, even our

youngest preschoolers already possess some rudimentary skill. Most impressive, and surprising, is

the performance of the 6 year old children. Many of them can reliably broduce perfect 6 move plans.

The proportion of subjects in each age group producing correct plans fOr all problems of b given

length is shown in Figure 5a for tower-ending problems and Figure 5b for fat-ending problems. The

abscissa in Figure 5 is not overall pros )rtion correct, but rather a much more severe measure: the

proportion of subjects with perfect plans on all problems of a given length. For example, 9 of the. 13
N(68%) 6 Oar olds were correct on

,

all four4orthe 5 move problems, while only 3 of the 19 (16%) 5 year

olds and 2 of the 19 (11%) 4 year olds:prpduced four flawless 5 move plans.

. \
What is strikinggiven results of previous studies with children on this task- -is the absolute level of
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Fi.:', re 2: Child seated in front of "Monkey cans" working on a 1-move problem.

State 2 to state 1:, see fig. 3
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W-Till iari ii
Figure 3: State. space of all legal configurations and moves

for 3can problem.

t

performance. On the Tending problems, over two-thirds of the 5 year olds and nearly all of the 6 yeart

A
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Problem 25: 3/21/ _ 321/J_
initial goal

Move result

What you do is you put the daddy (3)
What you do is you move the daddy (3) over this tree

(points to C).
and move and move the baby . .

and then you moe the mommy (2).
wait: where could you move the mommy (2) to ?,
well first move the mommy (2) orVhis tree (points to C) 2BC 3/ 1/ 2
!hen put the daddy (3) on that tree (points to C) 3AC J 1/32
and put the baby ( I) over awe (points to A). IBA 1/ J32
Then how would the mother? ..
and after you put the baby ( I) over here (points to A)
you could put the daddy (3) (points to B) 3CB 1/ 3/ 2
then you cook' put the mommy (2) over the baby, 2CA 21/ 3/ _
and the daddy over the mummy. 3BA 321/ J _

3/21/ _ (initial),

Problem 29: 3/ J21 32I/J_
initial goal

3/ J21 (initial)
Oh. that O.K. That's easy.
Just take the yellow one (3) and put it on there (B).
Take the (pointing to 2(C)) ... and take .. , and take,

take the ha .
No.-take the blue one.(2). Pin it on there (B). 2CB 3/ 2/
and then, then take the yellow (3)
and put it on the blue (points toward C. then to B), 3AB ' _/32/ I
and then take the red (I) one and put it on here (A). ICA 1/32/ _
And then take the blue (2) one
and ... no, and then ... and then put the yellow (3)

one bete (C), 3BC 1/ 2/ 3
and then put the blue one (2) on the red ene, 2BA 21/ J 3
and then put the yellow one or, the blue one. 3CA 321/ J

Can 3 Yellow Daddy
Can 2 Blue Mommy
Can I Red Baby

J _I
A B C

Pegs

Figure 4: Two protocols and Pan encodings,

*
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Tower Ending

6yr

A
2 3 4 5

Problem Length

Flol Ending

3 4 5
1 -Problem Length

Figure 5: Proportion of children producing perfect plans.
(a) T-end problems; (b) F-end problems.

olds consistently gave perfect 4 move plans, and over half of the 6 year olds gave perfect 6 move

plans. Almost half of the 4 year olds could do the 3 move problems. Recall that these plans are verbal

descriptionp of transformations of hypothetical future states. Furthermore, all intermediate states are

different from, but highly confusable with, the two physically present states (i.e., the initial and final

con figu rations).

While the analysis described so far has produced some new information about preschoolers' ability to

solve th type of problem, it remains essentially a traditional type of "percentage-of-correct-moves"

analysis. Its weakness lies in the fact that i1 focuses primarily on what children can dp rather than on

what they 'mow. We felt it was important to go beyorid this in order to discover what strategies

children use when they generate their responses regardless of whether those responses are correct

or incorrect. In .order to characterize childrens' inadequate and limited strategies, it was necessary to

seek regularities in a of their plans, including the incorrect.ones.

For this analysis we constructed a response profile for each child andlhen matched that profile
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against tne protAes from a set of plausibly inadequate strategies. I he modeis were constructed in

what was essentially a boot-strapping method: based on an informal analysis of the children's

responses, we hypothesized a set of partially correct strategies that might g -ne' rte the observed

pattern of moves. Then the models' predictions were compared with the actual moves made by each

child on the full problem set. and the best fitting model N; chosen as the most characteristic

representation of each individual child.

Because of the surprising complexity of this set of models and the many problems against which each

model had to be evaluated, we wrote each of the models as a computer program. Each program

embodies a particular set of strategic and capacity limitations, and produces a characteristic pattern

' of correct and incorrect plans on the problem set presented to the children.

t

Our models ranged from a very simple one that always t to move the smallest ^an to its goal peg

regardless of the legality of the move, to Simon's (:965) "sbp\histicated perceptual" strategy. In

bet.yeen !hose two extremes were models that could attend to one or time obstructors, and which then

had to decide whether or not to worry zi' out the obstructor on top of the can that was supposed to be

moved or the can that was blocking the goal peg of the desired move.

t
Next, we obtained, for each of nine models, the characteristic profile that the model generated on the

problem set presented to the children. Tech of these characteristic profiles was compared with each

profile of the six year old children. This profile matching procedure enabled us to accurately (3

models accounted for almost 80% of the subjects' moves) and precisely (since the models are written

as computer programs there is no ambiguity as to what move they should have made under any

particular circumstances) capture the problem solving strategies used by children on the TOH. The

perform ...16e i many of the better 6 year olds was,captured by a model that had the (rapacity to

search three levels of subgoals; the very best child could solve even our hardest problems, producing

a response pattern indistinguishable from the sophisticated perceptual strategy on 7 move problems.

At the other extreme, the plan analysis (cf. Figure 5) revealed that the youngest children had difficulty

even with ? move problems..

31.27True" ;.tanning on the WOH

In this study, we gave minimum feedback (recall that children lever actually had their plans

implemented), in order to accurately access initial competence. This is in ['narked contrast to the

Mt dy of "learning by doing" (Anzac & Simon, 1979) in which subjects repeatedly solve the same

problem. In such situations, including our own earlier work on the TOH, (Klagr. 1978), subjects

quickly discover "subroutines" or "macros" in which the move of a two can stack can be consiVered

i
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as n Jingle entity, even though it must eventually be- unpacked into legal moves. In a subsequent

study with 4 can problems, we found evidence suggesting mat 6 year olds viewed a goal consisting of

3 cans on one peg and one can on another an two subproblems' creating the "tower", and moving

the single can to its peg. However, in these 3 can problems, such macroconstruction was unusual.

Simply by increaseing the number of objects frc 3 to 5 or 6, we can transform the TOH into a

problem that is difficult even for adults, and that can best be solved by planning. As the solution path

increases in length (to 63 moves for 6 cans) "true" planning, involving the abstraction of detail,

becomes necessary. Our present models have no ability to generalize from 2-move macros to the

more general notion of a recursive plan for moving stacks of decreasing size. One of our next

objectives is to determine the developmental course of this ability and to construct models to account

41110 for it.
to'

How and under what conditions Will children learn to plan on this task? The models for the strategic

variations were initially written as a set of LISP programs (see Appendix A).4'While LISP was an

appropriate medium for generating the 4C move profiles for 10 models, these programs were not well

suited for modeling self-modification and change. The strategies are currently being reformulated as

production systems in a language called OPS4 (Forgy, 1979) (see Appendix B). These systems of

condition - action rules are much more amenable to such analysis, and another objective 'far our

future work is to extend the currentstite descriptions in the direction of selfmoditying systems. (See

section 5.)

1

3.1.3 Summary & Discussion r the TOH study

The of this study prt,vi. !r* evidence that by the time children are ready to enter First

Grade, they have acquired the rudiments of a ncetrivial range of general problem solvinVnethods.

Furthermorl, the car. apply these methods to a novel task. This finding raises two opposing

questions: one concerned with why our subjects did so well; the other with why they did not do better.

As for the first: why have other investigators of this problem concluded that young children are

capable of no more than trial and error? There are several procedural differences between this and

previous studies, but we believe that the most important is our use of very fine-grained levels of

differential problem difficulty. While the Plan Analysis indicated that our children were no more

successful with the standard 3-disk (7move) problem, than were Piaget's (1976) or Byrnes & Sptiz's

(1979) subjects, a substantial number of them could solve up to 6move problems. The use of

proolems whose solution requirements lay between the standard 2disk and 3-disk problems revealed

some previously undetected problemsolving abilities

1
L
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It is likely that the externalization of the goal configuration also helped, principally by making it

unnecessary to maintain an internal representation of the goal?-and thus simplifying the difference

detection process. The net effect of the rest of the task modifications (cover story, familiar

environment and experimenter, interesting objects, etc.) was to maintain the children's attention long

enough to have them makelerions attempts to solve the many problems necessary for the profile

matching procedure.

Recall that although the 6-year olds did very well up through 5-move problems, the majority of 4-year-

old children could not produce perfect plans beyond the 2-move prqblems (Figure 5), and even their

first moves were as likely to be illegal as legal. One might conclude froni this that the processes vVg*

are studying divelop very rapidly between the ages of 4 and 6 years. However, such a conclusioy

bit puzzling when contrasted with the results from investigatipps of infants' search behavior (Graich,

1975; Harris, 1975; Piaget, 1954). By the age of 12 months, most children have no trouble setting

aside an obstacle in order to reach-a desired object if it is visible. And by118 months, most can uSe an

'object as a means to an end, such as reaching a toy on .a pillow by pulling the pillow, Thus, the

second major question raised by this study is: If children can solve what we have characterized as a

two-move problem at 18 months, why do they fail to solve our threemove problems when they are 4

years old?

It is tempting to attribute these discrepancies to "decalage" - Piaget's name for unexpected failure of

immediate transfer. For example, the difference between infant search and the poor performance of

our youngest subjects on a task requiring verbal solutions could be attributeZkp vertical decalage,

i.e., a situation in which "action is more advanced than verbal thought" (Ginsberg k. Opper, 1969,

p.109). Indeed, in a previous study, we allowed children to move the cans as they solved problems,

and the youngest children's performance was somewhat better than in the present study (Klahr,

1978). Of course, the TOH and the infant search tasks differ in many ways other than the verbal -

nonverbal distinction; the performance differences may be yet another example of Piaget's horizontal

decalage. That is, this may be a situation in which "Task contents ... differ in the extent to which they

resist and inhibit the application of cognitive structures" (Flave" 1963, p23). However, the decalage

label still leaves open the question as to the nature of the underlying difficulty.

We may begin to answer this question by distinguishing between two intertwined aspects of proble

solving: strategies and representations. Thus far, we have focused entirely on the former; in these

concluding comments, we offer some spinulations about the latter. Throughout the Strategic

Analysis, we assumed that the children's encodings were isomorphic to the external display: Cans,

pegs, positional relations (above and below), size relations, etc. The explanatory power lay entirely in
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strategic variations operating on uniform w . venoical encodings. While this may be a reasonable

approdth for the 6year olds on whom we used it,' it is probably not appropriate-for the youngest

children. The impact on performance of developmental changes in general encodirg and attenthgnal

processes has been emphasised by Baron (1978) and Klahr & Wallace (1970, 1976). EncodtAg

deficits have been, identified as the source of Silevelopmental differences in learning (Siegler, 1976),

and even with adultz. changes in external forms of isomorphic problems produce substantial

differences in performance (Simon & Hayes, 1976). We believe that one possible source of difficulty .

for our youngest subjects was the creation of an internal representation upon which their general

problem-solving methods could effectively operate.

.

Genera roblern-solving methods manifest themselves in rudimentary form by the end of Piaget's

"sen ry-motor period". They may emerge f:om the interarti of an "irate kemal" of regularity

detectors (Klahr & Walla -:e, 1976, Chap. 8) and primitive enco ings of sensory-motor activity. While

Much remains to be learned about the devek,prnental trajectory of problem solving methods, we now

even less about the development of encoding processes. In future investigations of problem olving

by very young children, it will be necessary to provide a moalislanced treatment of representational

and strategic variation.. We will recd to direct our attention to the conditions under which task

environments are encoded six-, that they can be appropriately operated on by the rapidly emerging

problem-solving processes.

3.2 Tangram

While the analysis of the TOH is well-developed, and has revealed some new and interesting results

about children's problem solving and planning skills, it would be premature to make a case for the

generlity of these results. It is necessary to explore other related problem solving domains,'adapting

and extending the methodology as required. In this section, we descritt a very different problem that

we have begun to study: the Tangram. This puzzle, of anci....1 Chinese linea41, resembles the

Western jigsaw puzzle, but it always has the same seven pieces, which are arranged to make a large t

number of different shapes. The seven basic pieces are shown in Figure 6 and some problemsar

shown in Figure 7 (taken from a widely available book on the puzzle, (Bitters, 1976)).

The problem needs no motivating "cover story": simply presenting the pieces and'the outline tftle

figure to be,built, and asking "Can you fit ti ;se all in here?" or "Fan you build this from these?" is

sufficient to engage preschnolers. 'Problem difficulty can be varied by varying the number of pieces,

and the extent to which their unique contours are revealed in the figure contour. For example, the

large square in Figure 6 is one ot...tiv most difficult problems (of course it is oesented without the

benefit of internal contours), while the various "running men" in Figure 7b are relatively easy.

16
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Figure 6: Seven basic pieces of the Tangram.

fi

The tangram provides a good exafnple of the vagueness with which instructional goals related to

problem solving and planning are often stated. Tangrams4re frequently used as a "manipulable" in

primary grade math instruction. One major distributor of educational materials (Creative

Publications) suggests using tangranis "to help students learn the conc pts of shape, congruence,

siMitarity, perimeter and area." It is clear that the tangram does require simple shape aid size

recognition and discrimination abilities as well as minimal competence at mental rotation and

translation. However, our basic 4nterest is in the planning skill that it can be used to reveal. Should

oneselect an'area and then search for a piece to fill it, or shOuld one select a piece, and then try to

find a suitable location? Which area or piece is most (or least) constrained? When is it clear that an

error has been made? 'H, w should one recover from an error? r_r

Although the tangram involves moving objects from one physical location to another, it is formally

unlike many familiar sequence constrained problems. In stich problems, the major task is to

determine the optimal - and, in some leases, unique - sequence of operations that transform the initial

state into the final state. By contrast, there is no unique or even Optimal sequence of piece

placements in the tangram. There are no moves that constitute necessary subigt a.s. All that matters

is thAltimate assignment of pieces to locations. In this sense Tangrams are similar to

cryptarithmetic puzzles in which addition problems are stated in terms of letters, and the problem is to

assign the numerals, 0 - 9, to the ten letters such that a correct addition occurs. Two of the best

known examples are
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For the first of these, on additional hint itypically provided in the form of one of the assignments : 0

-5.

Adult performance on cryptarithmetic problems has been studied extensively by Newell & Simon

(1972). Their analysis led to the first use of production systems as a theory of the control structure of

the human informatirin processing system.. The crux of the solution process consists of tentative

assignments of digits to letters, followed by a computation of the effects and further constraints of

that assignment. For example, on the first problem, since D = 5, one can compute that T = 0, and

that R is odd, since the two L's plus the carry require it.' Furthermore, A is limited to 1, 3, 7 or 9,eince

5 is already assigned. Further processing limits R to 7 or 9, because in the leftmost column, D + G =
R, and we already know that D = 5. In this manner, the constraints proliferate, with incorrect

assignments ultimately producing contradictions, at which point the problem solver must back up to

the bad assignment and correct it,

Similarly, in the Tangram, early assignments of pieces to places constrain subLequent ones. Bad

assignments may not be detected immediately and contradictions (manifested as areas unfillible by

remaining pieces) must be backed up to the point of error. Although they have provided exte ive

re
..

I



Final Report MC G-7EQ035 14

information on adult problem solving abititiis. crybiaritti Hello biouie* have never been used with

young children, because they require some basic arithmetic operations that are beyond the children's

competence. Tangrams provide a vehicle for studying many similar strategic abilities, while building

on a basic form matching operator that is readily available to preschoolers.

There are three related exploratory investigations of the tangram, concerning young children's

performance, adult performance, and a formal analysis of tangram solution strategies. In our pilot

studies with 5 year olds, we presented 2-piece problems. Children first had to make, and attempt to

justify, a prediction about whether or not the pieces we provided could he used to construct the form

presented. Then they were asked to actually solve the problem. We found that 5 year olds have no

difficulty understanding the basic task, and that they can solve most of our 2-piece problems.

Our formal task analysis led to the first order strategy shown in Figure 8. The six rules are stated as

very general perceptual productions, with an implicit ordering of rule application. The first four rules

say, in'effect, that pieces should be placed wherever there is unique and minimally ambiguous

contour information. (For example, the-small triangles and the square would be placed first in Figure

7b.) Rule 5 is much more difficult, for it requires a perceptual test that determines uniqueness of

location of a remaining piece. Using this kind of strategy representation, we generated a set of

problems at three levels of difficulty, easy problems have all their pieces placed by rules 1 to 4;

medium problems requi rules 5 and 6 as well; and hard problems cannot be solved by the strategy,

either because it leads to, ncorrect placements or to ambiguous situations.

These problem's were then presented to adults instructed to solve the problems while providing a

concurrent verbal protocol. [A complete protocol from a very easy problem is shown in Figures 9 and

10.] Preliminary analysis indicate3 high correlations between our classification of problem difficulty

and several performance measures. The protocols also provide a rich source of information about

aspects of planning not yet included in our simple task analysis, such as error recover backup; aild

macros.
1

4 U-shaped Curves

Issues related to information-processing models of cognitive development were aqlored during the

grant period. One important issue is whether or not empirical demonstrations of the existence of U-

shaped growth curves are of importance to developmental theory. VI many domains children appear

to first perform at a particular level and then, with development, to perform less well, followed

ultiMately by an increase beyond the initial level Such "U.shaped" developmental curves have
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TRY TO PLACE:

N
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V.

k-
IF <PIECE> OTHER THAN &SMALL TRIANGLE FITS
. IN ONLY ONE <LOCATION>,

THEN PUT <PIECE> IN <LOCATION>.

VI. IF <EDGE> OF <PIECE> EXACTLY MATCHES
<EDW.> OF <LOCATION>,

THEN PUT <PIECE> IN <LOCATION>, ABUTTING THE EDGES.

Figure 8 -: Strategy for placing Tapgrarn pieces.
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Figure 9: Sequence of piece placement on cat.
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clooh well

an aimOst tell for sure00020

1 00530 that this is a parallelogram riglit in here

00040 just by the shape of it fits perfectly

00050 uhm

2
00060 now by the shape of this going up. .

00070 it says to me

00080 it would be A, triangle there

00090 now by the shape oethis coming up.the thing gbing up like thaA

00100 this means

00110 the big triangle's 'going to be tore

00120 then by the shape of this

0010 it say: to me 41

. 00140 the medium triangle's Aping to be there

S 00150 now I have anerror

00260 so because of this little piece here
o

00170 it tells me that it can't be the triangle

...polso because it has that little-piece left

00190 so I know

00200 that it has to be the square
1718

00220 whichileavesms the two triangles fit in

Figure 10: Protocol on cat.
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attracted the attentioa ot many investigators in developmental psychOiogy, based on my analysis ot
underlying mechanisms I presented an argument (Klahr, 1981) that such curves are not of
fundamentaLinterest to developmental psychriogy. A summary of the argument is provided here.

There is no doubt that one can routinely discover such curves. They provide empirical account of
the course of growth of some particular cognitive.entity, and therefore they are certainly of descriative
interest. However, I will argue that they always reflect an artifact of the assessment procedure.: and
they must ultimately be accounted for bi general mechanisms of self-modification that are nelther

strained nor informed by U-shaped phelaomena. That is, anybody going about building El self-
, modifyi information processing system will have to -include, in order to explain morptone

develop ent;'atc or:the mechanisms that might be postulated to account for non-mor.otone
development. _Therefore,U-shaped curves do not {provide any challenge to developmental theory.

(

4.1 Banking and Calculating: they only look U-ish.

stat with, two non-psychotogical examples of what I mean when I say that U-shaped
developmental 'curves are always rreasuriement artifacts. For the first example, consider the
organizational development of a bank. In Stage I, we have a simple bank, where everything happens
under one roof. Absumo that we define the time it takes to get the loan as a measure of banking
performance. One can gointo tilt Stage I bank in the morning, talk to the loan officer for a few hours,
and show him or her all the relevant papers. While the loan is apprOved immediately, you have to
allow a few days for paperwork. So the Stage I bank gets a performancOpeasure of 2 days (see

Stage

1 II III IV

Bank (days) 2 1 \ 7Calculator Many 1 5
(key s'rokes)

110,

Table 1: Hypothetical Performance Measures.

In Stage II, the bank expands and gets more sophisticated. It acquires some computers. Now there

tiv
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are several branch banks operating under a management policy of ueoentralizeci decision making for.,
i

loans. You go into this Stage It bank, and the Wilk manager looks yoir over; she says you can have

your loan, the paper work is all done by computer, and you come back at closing time to get your\ money. Your performance measure for Stage II is 1 day -a 50% improvement over Stage I.'

The bank corftinue,; to grow. Now it has many more branches and a computer sufficiently powerful to

centralize all decision making about loans. The branch manager in this Stage III bank is really just a

customer interface now; sh- no longer has any discretionary power. Now you go into the bank and

you discover that the branch manager is constrained by a central policy, and a central computer. It

takes you a week to get,your loan and the Stage III bank gets a very poor score with respect to your

perfor-riance measure. Ultimately this bank expands and gets more and more sophisticated. Finally,

the bank reaches Stage IV: to get your loan you give it your Social Security Number, your employee

i payroll number, your secret code, your Master Charge number, your Passport number, and your palm

print. It does an instant credit check, and drops the cash out infl little till at your feet, Pert rmance
lk for Stage IV: 1./10 of a day.

i

Since we are measuring the performance of this bank in terms of how long it takes to give you a loan,

we discover non-monotone behavioral growth. In fact, instead of being U-ish, this developmental

curve is almost W-ish. Of course, if we had a dopel assessment of the rank's performance, we would

see quite clearly that with respect to all its operations, it has shown monotone growth. The peaks and\
. .

valleys we see are a consequence of our restricted view. Even a slight change in the narrow measure

concerned with*ans would have shown constant improvement. (For example, number of loans

granted per week). Moreover, the sensitivity of the loan granting decision rule has been enormously

increased through 'the replacement of the loan officer's rules of thumb by sophisticated risk

computation algorithms.

... 1

SeCond example. Suppose you want to measure the ease of computing a, variance on a hand
calculator that costs $100. Not so long ago, such a machine would have been a "four-function"
it alculator, (addition, subtraction, multiplication, and division) perhaps with a square root key, and

'..._

that was it. Computing a variance requireaa lot of button pushingquite inefficient. Just a few years
r

later, a calculator in that ;-'rice range had a special button: you entered a bunch of numbers and then

you pushed one buttoh a9d it would do the variance for you. This was often called a statistical

calculator. Today, calculators in this price range are programmable. You can write yo own

program, you can save it, or you can load "canned' programs. However the calculator no longe has

a variance button If yoei want to compute a variance, you have to make several key strokes; you h ve

to indicate that you want to loa ibrary program number 306, and then you'll get general purposecig
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button A to act like a valiance button .So with respect to rwillUer of key strokes required to compute

variances, this calculator first showed a remarkable improveinent and then a decline. Once again, by

focussinq on a single performance measure in a system that is undoubtedly increasing its overall

capacity and efficiency, we find a non-monotone curve

These examples have been chosen to illustrate the arbitrary and artilactal nature of U-shaped

performance measures of the growth of complex systems. Certainly children's minds are orders of

magnitude more complex than banks or calculators, and yet, with respect to the systems we are

assessing, our experimental measures are often narrower than the performance measures just

described. Although we may find many cases of U-shaped curves, they can tell us little about

developmental processes.

4.2 Qualitative and Quantitative Differences in Knowledge Systems

Perhaps the most determined effort to demonstrate that U-shaped curves are important for

developmental theory can be found in the recent work of Strauss and Stavy (1980). In this section, I

wil respond to several of their central arguments.

4.2.1 ExtenSive Quantity, Intensive Quantity and Transformations.

In order to solve Strauss' sugar water problems or Siebler's cOnservation problems, the child must

know something about transformations. Children's knowledge about the effects of such

transformations must be empirically grounded, rather than inherent in Some innate maturation of

cognitive structures. Furthermore, they depend very her7ily on the child's appropriate

characterization of the effect of different types of transformations on different dimensions of the

v; material. The empiricalitecessity follows from the fact that no transformation is jntrinsicallv either

preserving or changing of quantities. As shown in T!ible 2, the effect of a given transformation can be

categorized only with respect to a dimension of interest.
--

For example, does the act of pouring conserve quantity or not? The answer depends on both what is

poured and what is measplegl. If we pour a little sugar into red sugar water at 10 degrees C., we do

not change temperature, amount, height, width, or redness, but we increase sweetness. If we add

more of an identicar concentration, we do not change temperature, redness, or sweetness, but

amount increases, and So does liquid height, but not width (in a rigid container). On the other hand, if

we add water, we increase two "extensive" quantities, reduce two "intensive" quantities, and leave

one unchanged'.
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Pour to another container Add material
Add

Same
dimension

Differen!
dimension Sugar Water

more
of same 10'

C mix

Extensive dimension
Amount
Height-width

iv
T,

r,
r,

3.,

-r,
T.'
T.

T.
T.

Intensive dimension
Redness T6 T, T, T_ T,
Sweetness
Temperature

-T,
. T,

T,
Ts

T.
T,

T_
T.

r,
T,

T, .. null with respect to dimension (e g old Td
6 T s .. changes in dimension

Table 2: Transformational category for Operations on 10° C Red Sugar Water.

- fe.--
...

Our own account of the acquisition of conservation rules (Klahr & Wallace; 1976) places a very heavy
4.

emphasis on the detection of empirical regularities resulting from specific transformations of specific

materials in very limited quantitative ranges. However, there is nothing inherent in a particular

physical domain that is of any special psychological interest.

4.2.2 Quality, Quantity, Specificijy and Generality
,.

Two intertwintd dichotomies in the Strauss and Stavy approach are qualitative vesus quantitative

changes in rule systems, and development from specifio to general or vice versa. Their view is that

The true course of development goes from general to specific, and thus a rule system must go through

qualitative, rather than mere quantitative changes. According to Strauss and Stavy, Siegler's rules,r
arid, I suppose, their reformulation as production systems (Klahr & Siegler, 1978), exhibit only

quantitative change. Thus, they argue, the resultant view of development is from specific to general.

This view, according to Strauss and Stavy is incorrect.

What does it mean to characterize knowledge as specific or general? In Figure 11, is Rule IV more

c specific or more general than Rule 12 1believe that Strauss would call it more general because it is

correct on a wider range of examples, but its conditions are more specific.

Siegler's rule system for lance scale predictions (Figure 11) exhibits several properties that are of

. interest. First I think it is r that all the tests for the simpler rules are included in the more complex
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Model m
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IC)

o

It- (D).

Figure 1 1 : Deck:. i tree representation fo. 'our rules about balance scales.
(From Figure 1, Klahr & Siegler, 1978) /

rules. Secondly, it is clear that the most complex rule (Rule IV), although not including a shift in

dimension, does include a qualitative change: that is, to do the torque computation is to invoke a very

different set of processes in addition to the simpler ones of comparing weights or distances.

Secondly, the torque computation is configurel in the sense that thk effect of a given amount of

weight depends on the amount of distance. Does this qualify as a qiialitutive,change? Notice also

thit this system does torque computriori as a last resort. If there is an-easier way to make a decision,

the system will make it. In that sense the earlier rules are still manifest in the more complex rules, for
1

with appropriate input Rule IV, will do the same computation as Rule I.

I have been dealing with some notions that are fundamental to our understanding of developmental

processes: notions of specificity versus gene 1:ity, of inclusion versus non inclusion, of inherent

contradic.time and of qualitative versus quantitativeifts. I have tried to '-idicate that, even after the

careful attention they have received from many investigator's., all of these notioris can be rendered

vague, imprecise, and self-contradictory. I believe that one problem lies in the medium of our

'theorizing. Typically we state our developmental theories in words, with an occasional diagram
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thrown in for clarity. I believe that intormation processing models provide a vehicle for trieury

cL,.istruction that may enable us to state much mare precisely than ever before just what is going on

in cognitive development. ';

s:

5 Production Systems and Developmental Theory
v

In this section of the report I will try to accomplish two things. First I will describe a nonmodifying

production system (i.e. a state description), and give an example from an area of interest to cognitive

development. Then I will give a brief account of a few self-modifying systems.

5.1 A Simple Production System

A production system consists of a set of productions. Each production-consistikg of a cold-Won and

an action has the ability to examine a data base and change that data base contingent upon what it

finds there. Figure 12 shows a simple production system.- The data base has three active elements- -

we can think of this as the.activated part of long-term memory, as the context for the current

processing, as working memory or short-term memory. This data base is examined by. a set of

productions presumed to exist in long-term memory. These productions are condition-action rules:

they say "if you know something about the data base then you can add something else to the data

base. The system follows a cycle of recognition and action. In this particular production system the

mption is that once a data base element matches a condition element in a production thai fires,

then that element is no longer available to fire,any other productions unless it is reasserted into the

data base. P1 says that if you have a circle and a plus, replace them with a triangle. P2 says replade a

triangle with a circle; P3 says if you have two circles, replace them with a square and a plus.

If this production system were to operate on thedata lase shown here, it would behave as follows.

On the first recognition cycle, only P2 would have all of its conditions matched! It would "fire,"

consuming its input, and adding a circle to the database. On the next cycle, neither P1 nor P2 would

be able to find a complete match, but P3 would be satisfied It would fire, effecti%9Iy replacing the two

circles with a square and a plus. At this point, none 541v) productions would be satisfied and the

system would halt.

If you take production s istems seriously, you have to assume that the human information processing

system contains hundreds of thousands of productions, all potentially satisfied in any cycle, but .hat

only a limited subset of the data base is active at any one moment. Many detailed mechanisms tflat I

cannot go into here are described in the growing literature on production systems. This example

should give you the flavor, though, of what a production systgm is.



Final Fleport

Data Base

NIEG-780035

P2

Produtvons

Active Elements

PI: 0+
2 A ---
P3. 00 - 0+

P3

Figure 12: A simple production system with a data base.

Mao-gel I

PI:(1Same WI --o (Say 'balance',
P2tIl5ide X more WI --a (Say "X down"))

Model II
P1:14Same WI --a (Say "balance"))
P2t1(Sida X more WI (Say "X down"))
P3t(ISmme WI (Side X more D) --a (Say "X down"))

C

Model 1 1 1

P1o1(Sae WI --a (Say "balance'))
P2:1(5fde X moray) --a (Say "X down"))
P3:1(Same WI (Side X more DI --a (Say 'X down"))
P411(Sfde X sore WI (Side X less D) --a ev "s through)
PStt(Sftle X more WI 1Stds X more X down"))

Model IV
P1(11Some WI --s.(Say 'balance))
P2s(tSfde X more 13) ..) (Say ' down"))

P3(1(Same W) (Stile X more ni . (Say 'X down'))

P6'(11SIde X more WI (Side X less 0) (get Torques))
PS(IJSIde X More WI (S.de X more DI --a (Say "X down"))
PS:((5ome Torque) -., 1Say 'balance-II
P711(Sfde X more Torque)' a' (say 'X mown"))

Figure 13: Production system (P) representptions fbr Models I-IV. D = distance;
W - weight. (From Figure 2, Klahr & Siegler, 1978)

24

5.2 Production Systems for Balanc2 Scale Knowledge

In terms of a state description of a particular level of performance, a production system can be written

to embody a set of decision rules a subject might use to accomplish some task. For example, in a

recent paper (Klahr & Siegler, 1978), Siegler and I demonstrated the logical equivalence between a
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set of simple binary (Jec(sion trees for partial knowledge about we balance-scale, shown in Figure 11,

and a set of production systems (Figure 13). At the !bye' of the formal analysis these two

representations are equivalent. As the model of the human performance gets mor-, complicated, of

course, both representations get more complicated.

Figure 14 shows a decision tree for a child in a training session with the balance scale. She knows a

little bit about how the balance scale ie:.ks, but has only qualitative encodings of weight and

distance. This decision tree is now starting to get pretty complicateb and it requires a lot of extra

interpretation that's not explicit. The production system 'to do this same task consists of P1 to P8 in

Figure 15.
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Down I

7,9.12,16 IVI401)
5,141 (ID stancs)

*Elar:
: On Any Sonia Pec n A

Dostonc : 3rd Or 4th Peg

Figure 14: Decision tree for idiosyncratic rule used by a single child.
(From Figure 3, lelahr & Siegler, 1978)

f

This model can generate a detailed, momentbymoment, tractor), the mental processes that a subject

is hypothesized to use as she goes through the task of making a prediction about which way the scale

will tip, and then actually seeing it tip, and then trying to revise her hypothesis about whether weight

or distance is the dominant criterion. It is clear that in order to capture more of the subject's thinking

processes, that is to go beyond the balance scale predictions, and include more of the essestial

features of a training condition, we have had to increase the model's complexity.

Figure 16 shows a trace of the model in a Balance Scale training task. The model represents what

might. be in the subract's active memory at 'er each cycle. Notice there's quite a lot of stuff here that
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ns ton.I ) ICI. ASS weight distance) -clon -nsion 2> (CLASS weight distance)

<code I >:(CLASS left .fight both) sicle.2> (CLASS ibft right both)

cfrection>:(CLASS up down level)

...1:11:((predict) (weight same) .> (made is) (expect both level) say b)

P2i((predoct) (weight more Ziodc I>) (made rot (expect csocle.1> down) say d)

P3X(predict) (weight same) (distance more <side I>) --> (made Ix) (expect 'side I> down) say.d)

1:14:((predict) (weight me's Xdostante more) --> find bia)

P5A(preclict) (criterion (domensoon I >X<domens.on I> bog <side I>)
('dimension 2> bog (soda 2>) -> (made ill (expect <side I> down)say d)

P6i(predloct) (weight big 'side I>) --> (made sr) (exPect,<side I> down) say.d)

P7A(predict) (distance big <side ( >) --> (made as) (expect <side I> down) say d)

PS:((preeloctOdomenston 15) abs --> ATTEND)

Eli(expect) look)

E2:0 pact <sod° is dacchon>gpoe <side I> <cforectoon>) --> (did 116)(see > sawXresult corcect))

expect <side I> ochrecton>Xsee 'side 1.> 'direction>) abs (see) - -a laid ***see saw)
(result wrong))

SW) ((result wrongXcrile-con distant.) -.5 (old re)(dIstance weight))

SV4124(rosult wrongkrilerion weight) -> (old losXweight distance))

SW3X(resull covractkriteroon) . (old ail)

find big:(0PR CALL) turns (weighildistance big leftlright), one or two such.

look4oPn CALL) .1ooks for result of baiaKe IIPPingo
returns (see filitfrotthi down)

allensl:(0PR CALI) 1 initial encoding of same or difference on distance & weight;
'Owns (weignIldostence samelmore IcIttlet)

Figure 15: Production.system for child during decision, feedback, and criterion revision phases
of training experiment. (From Figure 4, Klahr & Siegler, 1978)

the sub;ect is presumed to know. For example, in Cycle 6, she's supposed to know that: she has

qualitative- encodings of weight and distance, she's currently using a criterion that says weight is

-% important, she made a prediction based on the expectation that the left side would go down, she

actually saw the right side go down, she compared thcse two, and she realized that she was wrong.

Now she's got to do something, and the next production that fires (SW2) will be onfthat says well, if

you did all that stuff and your prediction was wrong, you better change the criterion from "weight" to

"distance."

31
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(000310020)
Cycle I

. WM: (IPREDICT) (CRITERION WEIGHT))

Fire PS: ((PREDICT) (.DIMENSION ) >) ABS ATTEND)

putout from ATTEND ('nput to WM) > (we.ght more lettXd.stance more right)

Cycle 2
WM: ((DISTANCE MORE RIGHT) (WEIGHT MORE LEFT) (PREDICT) (CRITERION WEIGHT) 1

CONFLICT SET (P7 PA)
fire PA: ((PREDICT) (WEIGHT Kt PE) (0:STNNCE MORE) = > FIND DIG)

Output from FIN)) DIG t'npul to WM) > (osteAct b g right)(weIght big lett)

Cycle
WM ((WEIGHT BIG LEFT) (DISTANCE DIG RIGHT) (PREDICT) (WEIGHT MORE LEFT)

(DISTANCE PADRE RIGHT) (CRITERION WEIGHT))
cocircr SET (P2 P4 P5 P6 P7)
cONrLICT SET. (P4 PS) AFTER SRFCIAL CASE ORDER
CONFLICT SET (P5) AF TER WM ORDER

Fire P5: SPRED:CT) ICRITERION 40:VENSIGN.1>)(40:MENSION 1> BIG sSIOE 1>)

((DIMENSION?' BIG 'SIDE 2) (MACE Ali) (EXPECT (SIDE 1> DOWN) SAY.0)

e LEFT 'down

Cycle
WM. (( EXPFCT LEFT DOWN) IMAGE (PREDICT)) (CRITERION WEIGHT) (WEIGHT BIG LEFT)

(DISTANCE DIG RIGHT) (WEIGJ MORE LEFT) (DISTANCE MORE RIGHT))

few El: ((EXPECT) --) LOOK)
Putout (rem LOOK ('put to WM) > (see r.ght Clown)

S

Cyclt 5
WM: ((SEE RIGHT DOWN) (EXPECT LEFT DOWN) (MADE (PREDICT)) (CRITERION WEIGHT)

(WEIGHT BIG LEFT) (DISTANCE BIG RIGHT) (WEIGHT MERE LEFT) (DISTANCE MORE RIGHT))

CONFLICT SET. (EI,E3)
fore E3: ((EXPECT <SIDE I> (0IRECTION>)

(SEE (SIDE I> (DIRECTION) ABS (SEE) -> (DID s) (SEE SAW)

(RESULT WRONG))

Cycle Se.
WM ((REStf..T WRONG) (DID (EXPECT LEFT DOWN)) (SAW RIGHT DOWN) (MADE (PREDICT))

(CRITERION WEIGHT) 44VE!CI 1T BIG LEFT) (D:STANCE DIG RIGHT) (WEIGHT MORE LEFT)

(DISTANCE MORE R:GHT))
Fire 5W2.. ((nESuL T WRONG) (CRITERION WEIGHT) - (MO so) (WEIGHT DISTANCE))

Cycle 7
WM. ((OLD (RfSuLT wRONG1) (CRITFRION OISTAWE)(0:0 (EXPECT LEFT DOWN))

(SAW RIGHT DOWN) :MACE (PRED:Cir) tVIL :GI a az LEf T) (DISTANCE BiG RIGHT)

(WEIGHT !JORE LEFT) (MST rE MORE RIGHT))

Figure 16: Trace of system shown, in Figure 15: (From Figure 5,
Klahr 8 Siegler, 1578)

Note that this production system deals with two kinds of knowledge that a subject has to bring to bear

on a' task; not only the formal structure of the problem, but also jhgsiemandagUsaexperimentalx

situation. This feature of production systems if of particular relevance to developmental psychology.

In almost every area of cognitive development we have discovered that subtle differences in task

demands may lead to widely varied performance on the part of our subjects. If we have a modelling

procedure that accounts not just for the formal structure of the task, but also for the processing

requirements of the experimental situation we might be able to resolve some of the current

discussions about why versions A and B of task X lead to such wide differences in performance.
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Even more important is the fact that these kinds of models give us the capability to capture the full

Context of training experiments to model some of the micro structure of the developmental txocess.

Indeed, the model depicted in Figures 14 and 15 does just that; it accounts for the subject's response

to negative feedback about her prediction.

5.3 Variable condition elements

An important feature of production systems is illustrated by productions E2 and E3 in Figure 15. Their

purpose is to detect whether what was expected to occur actually did occur, ana the feature of
interest is their use of variables in the condition. The first element in E2-(expect <side.1>

<direction>)has two variables in it: <side.1> and <direction>. These are defined at the top of Figure 6

as small classes, pm/ member of which can satisfy thecondition element. Thus, if Working Memory

contains (expect left down) or (expect right up) etc., the fir % condition element in E2 will be satisfied.

When an element is satisfied, the variable is said to be temporarily bound to the particular value for

the rest of the attempt to match the entire condition. If WM contains (expect left down) and (see left

down) then En will be satisfied. More generally, E2 will be satisfied only when the system "sees"

exactly what it "expects."

This ability to perform variable matches and bindings gives production sytemAremendous flexibility

to vary their level of specificity, discrimination and generalization. Variable bindings are maintained

across the action side (as in P2), so specific information detected on the condition side can be

propagated, via the action side, back into Working Memory. This turns out to be a crucial feature of

the selfmodifying productions (to be describedbelow).

For all their merits, there are many problems associated with the use of production systems. First of

all, production systems appear to be very complex to people who are not familiar with them.

Secondly, they have many untestable assumptions built into them, and we can only decide whether

the whole system makes sense, not whether any single assumption.is correct. And they also have bits
.1"and pieces c` irrelevant mechanism, that is, things Vatpaving no psychological validity that are

Included because they are convenient, or because they represent part of the world that we're not

trying to model. Other problems abound, and the literature on information processing models is filled

with questions, self-criticism and exciting challenges. (c.f. Haugeland, 1416; Neisser, 1976; Newell,

1970; Pytyshyn, 1978).' However, despite all these issues, the area is worth the attention of

developmental theorists.
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5.4 Olden Times: State Descriptions

A brief history: teveral years ago there were productior system models for a few tasks of interest to

cognitive deveiopmentalists. All of them were based on Newell's (1972, 1973) init,al formulation of

production system architecture. In 72 Wallace ands (Klahr & Wallace, 1972) did a production system

version of class inclusion. We didn't talk about transition at all. Baylor & gascon (1074) wrilie a

series of papers on their work with children doing length and weight seriation, and they described

different seriation strategies in production system terms. They alluded to the kind of transition

rrocess that might be necessary, but they didn't have any model for it. They had only state

descriptions. In the same year, Richard Young (1973) completed a dissertation in which he studied

length seriation, and "accounted for strategic variations with different combinations of productions

from a "seriation kit." He argued that children get better on seriation tasks by adding productions

specific to disjoint parts of the seriation task.

In 1973 I described a set f production system quantification models in' which there was no explicit

transition process (Klahr, 1973); rather there was an assertion that one model differed from another in

intefesting ways, and that the models clarified what the job of the transition mechanism might be.

Subsequently, Wallace and I talked about conservation and about how the development of

conservation might go (Klahr & Wallace, 1973, 1976). We did directly address the development issue,

and we postulated some principles that might constrain the transition processes. We called them

consistency detection, redundancy elimination, search for local regularities, and global orientation,

But again, there was no running model that. actually didihe transitions. !n other words, all we had a

few years ar were some preliminary notions about hot. production sybtems might model

developmental changes.

) Even without explicit transition mechanisms, the "vintage" production systems . had much to

recommend them as models for interesting developmental phenomena. First of all, production

systems are conceived as serious theories of the control structure of the human information

processing system. Thus, any particular production system for a particular task setting is model

derived f(om one of these larger theories, and it integrat's many of the psychological principles within

it. ipecondly, the production systems, as do any simulation models, forte a lot of explicitness. They

force us to be explicit about how we think parts of the world are encoded, what the encoding process

**how that encoding process gerierate5 certain representations, and what kinds of strategies or

processes are used by those representations. This explanation, in turn, suggests improved

experimental procedures for evaluating our theories (c.f. Trabasso, et al., 1978).

a
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Having done all that, the production system formalism gives us a very dear statement of what state

differences might be. Because vie can compare two different systems, the job of the transition

mechanism is now a lot clearer. Another merit, 'mentioned above, is that they can include the

experimental demands in the same structure as the formal demands of the task, and they allow us to

better understand the intetction of the task itself with the general characteristics of the human

information processing system.
A

Almost every current developmental theory emphasizes the centrality of the child's own activity on the

learning process. Certainly it is the case that we must understand what it means to engage actively in

a cognitive event. But quite contrary to a common critical ct,aracterization of informatioli processing

models as static and passive (c.f. Neisser, 1976), they are the only theoretical formalisms that actually

engage is such activity. They do encode ttteir environments, they do create internal representations,

and they do seek matches between what is known and what needs to be done.

5.5 Modern Times: Self Modification

A capability for adaptive selfmodification is essential for developmental theory, but until recently,

therf have been no well specified ideas about how it takes place What we need is a way to get

beynd vague verbal statements of the nature of the developmental process. Perhaps the. most

important merit of production' systems is that they provide a basis for modeling sdlfmildification that

goes beyond ambiguous processes such as "assimilation" and "accommodation."

How does selfmodification take place in adaptive production systems? What evokes it, and what

what are its effects? It is beyond the scope of th0 report to provide any more than a superficial

answer to these questions, but one important fact reduces my reluctance to oversimplify: tne systems

really do run, and they are available for inspection. Thus any violence I do them can be rectified by a

careful reading of the original papers.

In general, all the systems make use of the ability to bine values from Working Memory to the variables

in the. action elements. Suppose we define x as a variabx: (class cat dog). Then a production like

P1: ((x) --> (saw x)) might match WM: ((dog) (cat)), and produce WM: ((saw dog) (cat)). It would fire

again, and produce ((saw dog) (saw cat)). Now consider sr+ action that creates a new production- -

call itBUILD. A production building production can be included in a production system, and can wait

for, a certain conditionspecified in terms of a mix of constants and variablesbefore building a new

production. For example,

P2: ((saw x)(saw y) -.> BUILD ((x)(y) -> (saw x and y))).

If P2 were applied to the WM from the above example, it would produce a new production:
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((dog)(cat) --) (saw dpg and cat)).

Notice that this new production is less general than P1, since it only fires on two specific, volues. On

the other hand it is more efficient than two firings of P1.

When a selfmoditying production system is operating, it need not go from a distinct performance

mode to a distinct learning mode. Instead, the performance and the learning productions have equal
-status with respect to responding to the elements in the data base. When a new production is

created, it becomes part of the total set of productions that -night fire on the next recognition cycle.

5.6 Some CU rrent Examples

In this section, I will describe four different research proje'ts that are investigating different aspects

of selfmodifying prodUctipn systems. Perhaps the clearest examples of self modification are

provided by Anzai's model of learning duripg, a single experimental session (Anzal, 1978; Anzai &

SiMon, 1979). The system proposes some general mechanisms for learning how to solve a problem

during repeated attempts at problem solution. Given the current interest in the potential similar:ty

between micro- and macrodevelopmental processes (KakiloffSmith, 1979), the Anzai & Simon

work is of particular interest to cognitive developmentalists.

Pat Langley, has worked on a wide range of problems with selfmodifying production systems. He

sta (angley, 1980) by studying people trying to induce rules for numerical combinations and
.

rote a production system to account for that induction process. The next development in Langley's

work (in press) was a self modifying production system that captures some essential aspects of the

scientific discovery process. His system can, given the approriate empirical regularities, induce rules

equivalent to Kepler's Third Law, Bode's Law, the Inverse Square Law, and Ohm's Law. Nonrcf. the

induction mechanisms depend on any explicit properties of the physical world. They derive inatead

from regularity detectors operating on quantitative symbols.
r

4

Anderson, Kline and Beasley (1978), within the formalism of Anderson's ACT production system, have

built a general model for selfm-odifying production systems that can account for concept learng,

schema abstraction, and some features of language acciyisition. They have not just talked about

transition mechanisms, they've built them. They have programs that run and do these things. One

kind of transition mechanism is a designation production in which a production simply has as its

action side the instructions to build another production of a certain %rm. Another kind of transition

mechanism is something they call strengthening: a central part of Anderson's system which

determines whether or not a production will fire is how strong it is. Yet another form of transition

36
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mechanism is to iruild a ueneralized production, in which some of the speciq conditions are

weakened in order to make thg.production more broadly applicable On the other sidle of that coin are

mechanisms that discriminate underAertain conditions. In order to build such a '-ystem, Anderson

ar:! his colleagues have to specify first exactly how it works, and second the conditions under which

these various mechanisms, (designation, strengthening, generalization, and discrimination) will

occur. This they have done, and they have been able to account for some of the better known results

from the experimental literature in the domains listed.

A particul rly interesting example comes from a dissertation by Clayton Lewis (1978). Lewis studied

the probl m of how an adaptive production system could, by using some simple rules for self

modification, demonstrate two efftcts of practice observed with humans--speed up and Einstellung

(Luchins, 1945). The former is evidenced - the robust speed-practice curves in almost every area of

human activity; the second is the venera effect whereby practiced subjects may be less able to

utilize a hint or short cut than unpracticed ones. A.s.'we shall see, Lewis' work also provides a nice

example of hNothe production system formalization can help to clarify many of the important

concepts in cognitiv development. The following-example is adapted from Chapter 1 of his thesis.

Consider a aim le production system that replaces one symbol with another until it reaches a goal.
t

Figure 17 showalaxeral such productions. P1, P3, and P6 replace single symbols, and P4 and P5

each replace a pair of symbols with a different pair. P1 is the stopping rule. The first production

system, PSI, consists- of P1, P2,433, and P4. When PSI starts to operate on a data base containing

nonly the letters A and C, the ensuing sequence is AC, BC, DE, and GE. During this sequence, 4

productions fired, and 4 symbol replacements occurred.

Assume that after much practice on this task, a learning mechanism notices that AC invariably

produces DE, and a new composite production is formed witch directly reflects this constancy. P5 is

added to the initial PS.1 system, producing a "practiced" system, PS.2. When the new system runs, it

achieves its goal in fewer cycles, and fewer symbols replacer It has avoided an intermediate

state, but although quantitatively different from PS.1, i.e,, faster, it is qualStatively unchanged, i.e., no

new intermediate s4eioccur, and it arrives at the same final state (GE). 41
ck

Now suppose a new rule-- hint or shortcut-were somehow given to the initial system and the

practiced system. The re Its are shown at the bottom of Figure 17. If the hint (P6) was provided

before practice produced P5, then it would take advantage of intermediate state BC. On The other

hand, the practiced system never generates an intermediate state that can satisfy P6, and the hint has

no effect. Thu's, the production system exhibits the Einstellung effc '.: shortcuts which can be used

before practice are ignored after pr ice.
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P1. G stop
P2: A B Initial set

0 P3: D G

P4: B,C D,E

P5: A,C D,E Composite production

P6a B G hint

Initial System

PS.1: (P1, P2, P3, P44

Trace: p2 p4 P3 P1

Trace: AC BC DE GE stop

Practiced System with Composite

PS 7: :P1, P2, P3, P4, P5)

"performance"

4 cycles, 4 replacements

PI .47

Trace: AC
PS P3

GE Stop 3 cycles; 3 replacementsDE
0'

Hint to Initial System

PS.1H: (P1, P2, P4, P6)

P2 P6 P1

Trace: AC BC GC stop

Hint uqracticed System

PS.2H: (P1, P2. P3, P4. P5. P6)

P5 P3 Pik
Trace: AC DE GE stop

3 cycles, 2 replacements

3 cycles; 3 replacements

Figure 17: Simple production system changed by hints and practice.

Practice produces a qualitative change as will as a quantitative one, for the praticed and
unpracticed systems obviously differ in their resnnse to the hint, and the use of the Flint leads to new

intermediate and final stages. This example does not addres., many important issues, such as the

rules under w(iich competing productions are selected, and the exact mechanism of production

creation. But it does begin to indicate the way in which issues of importance to developmental theory

can be clearly stated.

All of these systems have to specify a set of conditions under which production building processes
like generalization, discrimination, designation or strengthTineg will occur. in all cases, it is possible

that the new productions will degrade rather than improve performance. Although the local effects of

)6\
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self modification aru "mechanistic" and "preplanned," the gloual impact is often unpredictable. it

may produce m-igicts, inconsistencies and nonmonotone behavioral growth Whether or not fne'

system pets better or worse depends in part on the circumstances that lead to the self modification,
IL

and in part on the subsequent environmental demands on the system.

6 Structure-Process Invariance
or

Another important theoretical issue is the question of what aspect of the information-processing

system develops. In investigations of child-adult differences in information-processing abilities, a

distinction is often made between differences in processes -- i.e., in strategies for encoding and

accessing information -- and differences in structures -- i.e , in the underlying database upon which

thoSe processes operate. In this section I describe two situations in which children and adults appear

to have the same underlying processes and structures, but in which adults are nonetheless able to

execute their strategies at up to ten times the rate of children.

:
6.1 Elementary quantification

The first task domain is elementary quantification (Chi & Klahr, 1975). In the experiment, subjects

were presented with random arrays of dots, and asked to respond, as rapidly as possible, with the

number of dots. Adult reaction times were best fit by two linear regressions. The lower segment ((or

n = 1.3) had a slope of approximately 50 msec per item, and the upper segment (n = 4-10) had a

slope of 300 msec per item. Six year old children had a similar oualitive function, but the lower and

upper slopes were approximately 200 and 1000 msec, respectively. The process generating the lower

slopes has been termed "subitizing", while the prouessqfor numbers greater than 3 is some form of

counting or subitizing and adding. Thus, while both children and adults appear to encode and

process small numbers in one way and large numbers in another, children's pr'ocessing rate is 3 to 4

t -ls slower than adults.

6.2 Alphabetic access

The second task is simple alphabetic access. What comes after 0? What comes before H? We asked

subjects these sorts cf questions in order to learn about how familiar, long lists are stored and

accessed in memory, and how the internal representations and the retrieval processes change with

time. We focused on the alphabet because it is a common long list, with little explicit structure,

learned very early and used throughout life.

Based on our investigations, we have been able to propose a specific internal representat!..,n for the

dr
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alphabet, a detailed Model of the processes used to access the representation, and an estimate of the

speed of basic processes of the model.

Three major types of experimental procedures have been used in previous investigations of alphabet

storage and access:

1. In Order Decisions the subject must decide whether or not a presented letter pair is in the
correct alphabetic order.

2. In the Tartlet Recitation procedure the subject is presented with a pair of letters, and
must recite the alphabet (covertly or overtly) from the first letter to the second letter.

3. Forward or Backward Search. In this task the subject must say what comes nth after or
before the presented letter. For example: "what comes before P", or "what comes four
letters alter K."

Regardless of the procedure used, if one looks at reaction time as a function of alphabetic sition of

the stimulus, two findings consistently emerge: a) At the aggregate level, stimuli at the en f the

alphabet tend to require more processing than stimuli at the beginning; b) The RTs are definite) non-

monotone, and the fine structure of the RT pattern is similar across a variety of procedure / I
Lovelace & Spence (1972) used a forward search procedure: They found an irregularly incr asing RT

as a function of alphabetic position. The increase from the early portion ok the alphabet to e final

was substantial. The mean reaction time for the first six letters, A - F, was 890 msec, and for t e last

six letters, T - Y, was 1180 msec.

Lovelace and his colleagues proposed two possible processes that lead Jo the incrC stn RTs. One

possibility is that there are lower associative stre:Igths between adjacent letters near the end of the

alphabet. These weaker associative strengths lead to longer RI's. That is, it would take longer to do a

"next" toward the end of the alphabet than near the beginning. The other possibility is that the

intertetter associative strengths are equal throughout the alphabet, but there is differential access to

'particular letters. That is, there might be preferred entry points-in the alphabet, with fewer such entry

points toward the end of the alphabet: This would lead, on the average, to longer search sequences

(and higher RTs) fdf probes near the end of the alphabet.

In order to discriminate between these two possibilities, Lovelace, Powell and Brooks (1973) used the

target recitation procedure, varying the number of letters processed after accessing the probe letter.

They presented letter pairs with different separations, and the subject's task was to recite the

alphabet frorthe first to-the second letter. Figure 18 shows the RT versus the alphabetic position for

J
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separations of 2, 4 and 6 letters. Linear regressions run through these three sets of firs reveal nearli.

fuoctions Lovelace et al conc:uded that the longer reaction times at the end if the alphabet

do not come from greater difficulty of doing "nexts"; for if that were the case there would be a fan

eifect rather than parallel lines. Rather, they come from a greater difficulty of entering the alphabet

near the end.

3.0

0
0 2.5
ui

2.0
z

I/1 1.5
2
1-

1.0

z
0
0.

1U

TARGET
REciti.riuN

AFTER

Figure 18: RT as function of position and separation ("Lovelace, et al).

Mary -oestions remain oncerning the structure and processing of the alphdbet.

Although the Lov lace, et.al study supports the notion of preferred entry points, it does
not pi ..,vide any direct evidence. The present investigation demon,trates such entry
points.

The model, as stated thus far, is largely intuitive, with no specification of the
representation or processes involved. The present paper describes a detailed model,
written as a computer simulation, with model parameters estimated from the data.

The fine structure of the RT patterns has never been accounted for. The present model
attempts to predict the RT for each alphabetic position in both forward and backward
seal ch tasks.
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6.3 A preliminary description of the model

The model, shown in Figure 19, assumes a two level hierarchy consisting of a series of 5 or 6 hunks

containing from 2 to 8 letters each. Given a probe, there is a serial, self-terminating search tfor the

chunk membership of the probe, foP 3 wed by a serial, self-terminating search for probe position within

a chunk. Searchcs for chunks can be bi-directional, searches for position within chimk are

unidirectional in the forward direction.

On the after task the process works as follows. First, search for the chunk containing the probe;

having fou,1 the chunk, scan for the probe; when the probe is found do a "next". and output that

value. If there is n) next, that is, if the end of the chunk has been reached, then get the next chunk

and output the fir-6 item.

For the before task start by searching for a chunk containing the, probe item; whey, the chunk is

found, scan for the probe, keeping track of the prior position. When the probe is fikund, then get the

prior item and output it. However, if the probe is at the beginning of a ch0k, they there is no prior

item. In this case get the prior chunk, scan to the end of that chunk and output the last item.

All of this is shown more concretely i the hypothetical example shown in Figure 20. We assume a

segmentation in which the first chunk c nsists of letters A - G, then H H. K and so on, as shown at the

top of the Figure. There are two basic mes associated with this model. The time to move in either

direction at the chunk level is t1, time to mo e in the forward direction'withio a chunk is t2.

For the after task the model would work as follows. fter A r quires some constant amount of time

plus 1 Chunk search plus 1 next within a chunk. Aft B would consist of 1 chunk'search plus 2 nexts;

After C would consist of 1 chunk search plus three nexts, and so on. Now consider lat happens

near the end of the chunk boundary. After F requires 6 nexts within a chunk. After G requires an

extra chunls search, and 2 extra nexts. After H requires 2 chunk searches, but only 1 next.

Continuing this analysis leads to a hypothetical function as shown in the lower-curve: the important

features are a non-linear increase at the end of a chunk followed by a sharp decrease after the chunk

boundary: Note however, the steadily increasing values for local minima.'
For the before task, analysis is similar. We have used t'2 to indicate that doing a next and carrying

slot ,t 3 prior po takes longer than simp doing.a next. Before B requires 1 chunk access, and 2

nexts; before C, 1 chun and 3 nexts. When we get to before G, the chunk boundary, we maintain the

liver increment in reaction times; however when we get to before H we have to cross a chunk

boundary (from the second chunk to the L.st),, so we have to do 2 chunk searches, followed by a
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Figure 19b: ALPHA on "before".
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Figure 20: Hypothetical RT pattern from ALPHA.

search fdr the end of the first chunk. Then, when we get to Before I, we don't have to search the entire

list, so before I is faster than before H. The salient features of this curve are a nonuniform increase in

reaction times, and a local maximum on the before task at the beginning of a chunk boundary,

followed by a local minimum for what comes before the second item in a chunk.

In summary, the model makes specific predictions about the relationship between local maxima and

minima on the before and after task. The local maxima should occur at the end of a chunk for the

after task and at the beginning of a chunk for the before task. The minima -Mould occur at ther
beginning of a chunk for the after task and at the second element in a chunk for-the before task.

Since none of the previous studies used the before task, we conducted an experiment to assess this'

model, using both the before and the after task.

...

II

47
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6.4 Experiment I

6.4.1 Subjects

NIE- G- 180035

Twelve adult subjects Win introductory psychology courses participated in this experiment.

6.4.2 Materials
.,. I

42

The stimulus letters were all upper case. helvetica- medium, 1.5 in. high, black on a white 5" x 8';.- card.

A voice actuated microphone connected to a Standard timer recorded reaction times to hundreths of

a second. E would then record Ss reaction time, change the letter to appear next, and reset the timer

to zero. Stimulus onset was subject initiated, following a 500 msec delay.

6.4.3 Procedure

Subjects were instructed on the operation of the T-scope. They were asked to name aloud the

preceding letter or the following letter (depending on the condition) as quickly as possible without

making any errors. each S was given three practice trials, and was then given an opportunity to ask

questions or clear up any misunderstandings before the experiment began.

Each S received each of two experimental conditions. In the besnre condition, there were five

successive presentations of a randomized set of 25 stimulus letters B to Z, for which S was to name

the preceding letter. In the after condition, there were five successive presentations of a randomized

set of 25 stimulus letters A to Y, for which S was
4

to name the following letter.

Iik
The order of conditions was counterbalanced across subjects. In the event of an error, E would

replace the card in the stack randomly.

6.4.4 Results

For each subject, the median RT (out of five trials) for correct responses to each letter was

determined for the before and after tasks. Figure 21 presents the means (over the 12 subjects) for
,.,,

these median RT's as a function of the alphabetic position of the stimulus !Wm

The most striking feature of these curves is their agreement with the predicted relationship between

peaks and valleys of the before and after curves. For example, a loca: maximum on the after curve

occurs at G; the local maximum on the before curve is at H; while for the after curve, H is a local

minimum'. Similarly, the local max at K pn after and a local max at L on before are associated with
s

the local min on after at L. Strong effects here are at the boundary between G and H, the boundary

between K and L., and boundary between P and O. Other boundary effects are a bit weaker, and there

are some anomalies toward the end of the alphabet.

4b
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6.5 Experiment

While these results are consistent with the predict:ons from the model , the decision about how to

segment the alphabet is based on an informal post hoc analysis of local extreme points. The fact that

gmentation is consistent with the phrasing in the common nursry school "alphabet song",

tpro des some additional basis for believing it to be correct, but we have nb direct independent

evid nce that it is the segmentation (Zed by our subjects. In the second experiment, we asked

subjects to directly report their "entry points", if any. The independent assessment of the

segmentation allowed us to perform a much more rigorous evaluation of the model.

6.5.1 Subjects

Thirty students from introductory psychology classes participated in this experiment, half of these

being run by each of two experimenters.1

6.5.2 Stimulus Materials

Each subject was presented six sets of slides. Each set contained one slide of each of the 26 letters

of the alphabet (ArtyPe No. 1407 capitals). Sequencing of the letters within a slide set was random

with the restriction that no letter follow the same letter in any two sets. On half the occurrences of a

given letter the subject was required to name the preceding letter of the alphabet; on the remaining

occasions the task was to name the following letter. (On all six occurences of the letter A the tab!'

was to name the following letter and on all occurences of Z to name the preceding letter.)

6.5.3 Procedure

Each subject was seated before a translucent screen in a sound-deadened chamber; the

experimenter and all apparatus for stimulus presentation and response timing were outside the

chamber. Single letters were back-projected qrito the translucent screen, and the subject was to say

aloud, as quickly as possible, either the precedlng or the following letter of the alphabet. Each

stimulus letter was preceded by a warning buzzer, and by one of two different colored lights marked

"PRECEDING" and "FOLLOINING" which informed the subject of the type of decision.required on

that trial. A photocell on the back of the screen activated a Lafayette Model 5721 digital timer when

the letter came on the screen. The subject's spoken response activated a voice key which stopped

the timer and advanced the projector to an opaque slide. The experimenter initiated each trial

manually; the buzzer and light preceded the stimulus letter by approximately 1.5 sec. The stimulus

letters were presented at a rate of about 12 per minute.

1
Thrs experiment was designed and run by Professor E A Lovelace, at the University of Virginia Lovelace's work was not

supported by funds from this grant.
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The subjects were also instructed that oncjthey had responded with the appropriate letter they were

then to tell the experimenter what they had done to think of the correct response. These verbal

reports were classified into three categories a) didn't have to do anything, the letter just occurred to

me, b) had to covertly recite a specifiable portion of the alphabet, or c) had to du something, but not

explicitly described as recitation of a specific portion of the alphabet Whenever a subject reported

covert recitation of part of the alphabet they were asked to indicate the letter at which they began that

recitation if possible.

6.5.4 Results & Discussion

Most people were able to maintain very high accuracy levels while operating with a speed set; overt

errors of naming the wrong letter occurred on less than 1% of the trials. Voice key equipment

malfunctions and other errors account for data lost on about 1.5% of the trials.

For each individual the median reaction time (RT) for correct responses to each letter As determined

separately for the before and after tasks. Figure 22 presents the means of these median RTs as a

function of Ole stimulus letter presented. The data for the before task from Lovelace and Spence

(1972) are shown by the bottom curve; there is high correspondence between those times and the

after condition in the present study, r = .81, although the times were both longer and more variable

in the presenj study where before and after tasks were mixed. The RTs from experiment II are also

highly correlated with those from experiment I .78 for after, and r = .93 for before] even though

in Experiment I Wer-used a blocked design on before and after, while in Experiment II, before and

after trials were mixed.

These relative frequencies of reported necessity to "do something" on after trials correlated highly

with RTs on those trials (r = .90) and with after RTs in the earlier data of Lovelace and Spence (r.

.88). For before decisions the times also correlate substantially with the corresponding frequencies

= .80).

In most cases where individuals had to "do something", they reported covert recitation from a

specificable letter (90% for following decisions, ana .95% for preceding). Figure 23 shows the

frequencies with which various letters of the alphabet were reported as the beginning poN on those

trials when they engaged in covert recitation of a specific portion of the alphabet (Category B

responses). This plot provides clear evidence that there are preferred points of entry into the

alphabet, and that entry points are, to a considerable extent, shared by individuals. The deviation of

this plot from a rectangular distribution (which would denote no preferred' entry points) is clearly

greater in early portions of the alphabet than in later portions. This could result from a lesser
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tendency for there to be stable preferred entry points later in the alphabet, or it might simply reflect

the fact that there is less inter. individual consistency as to the location of those preferred points later

in the alphabet than near the beginning. If the alphabet is viewed as a highly over-learned serial list,

the regular peaks seem to establish the validity of conceptions of serial list learning as the acquisition

of a set of subjective subsequences or chunks, coupled with an order of the chunks

We will use the maximum values of this distribution to provide an empirically based segmentatiOn of
1

the alphabet. Based on the peaks of the before curve in Figure 23, the alphabet appears to be

segmented into chunks starting with the following letters: A, H, L, Q, U, X.

6.6 Description & Evaluation of ALPHA: a model of alphabetic access

In order to generate RT predictions from the model to compare with subjects' performance, we need

to be mcre specific about its component processes and about how each process contributes to the

overall RT. In this section we will describe a computer simulation model, ALPHA, for the before and

after tasks used in this study. First, we will describe the data structure for the representation of the

alphabet. Then we will discuss the processes that operate on this structure, and the number of

parameters that could be associated with these processes. Finally, we will present the results of

attempting to approximate all of the parameters with a two parameter model for the after and before

tasks.

6.6.1 Representation

In Figure 19alleach letter of the alphabet has a link pointing to the name of the chunk in which it can

be foUnd. The chunks are linked to their predecessor and successor chunk names, as well as to the

actual list of alphabetic elements that comprise the chunk. These lists are accessable only through

their beginnings, and only forward search is possible, since only the 'next' of each element 's

available in the representation.

The most important feature of this reperesentation is that prCbe letters do not have direct access to

their nexts or priors; instead they have direct access only to the name of the chunk in which the probe

is located. While this may at first seem non-intuitive, it is simply a formalization of the notion of

preferred entry points. When people use these entry points, they do not choose among them at

random. Rather, they tend to choose the one that is "just ahead" of the probe letter.
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6.6.2 ProcesSes

Figures 19b and 19c show the flow chart for ALPHA on the two tasks.2 The flow chart shows the

basic steps of the program, with some of the detail supressed fr clarity of exposition Associated with

each...sof the processes that contr.'oute to the differential times if., a parameter: n, is the time to access

the next chunk name, t, 12 the time to compare the chunk name with the chunk name of the probe; n2

is the time to access the next ;tem within a chunk, etc! The primed parameters correspond to similar

processes for the before task.

6.6.3 Parameter estimation and model evaluation

The predicted RTs from ALPHA depend on both the assumed segmentation of the alphabet and the

estimated values 16; all the parameters: Our goal in fitting the model to the data wils to maintain our

basic assumpbons about process and structure, w rile limiting the number of degrees of freedom in

the parameter esornation procedure. Therefore, we based the alphabetic segmentation not on the

same data set used for the paraiQeter estimates (the RTs), but rather on the peaks of the entry p9int

frequency fur ction described above (see Fig. 23). The paameter estimation procedure has been

reduced to a linear regressi,,n involving the number e executions of a single internal process: doing a

"next" on all the internal list structures in ALPHA that are required t produce the response to a

probe. That is, for each of the 25 possible probes on the after or before task, the model, in

addition to producing the answer, computes the number of times that it had to do a "next" on any of

its internal structures. In this manner, an effort estimate is computed for each of the probes, and this

effort estimate is regressed ag ainst le ,iTs. The regression produces an estimate of the basic "next"

time, and this estimate can then L used to generate a predicted time for each probe.

Table 3 lists the mimber of "nexts" executed for each prqbe letter on the after and before tasks.

The table also shows th mean RTs from experrment II, and the predicted RTs. The predictions are

generated by substituting the number of "nexts" associated with each probe position into the

regression equations shown in Table 4. The estimate r: the time to do a "next" on a list is 127 msec

for after and 153 cosec for befo-s, with the regression accounting for at least 50% of the variance.

(If we use a zegmentation based on the peaks of the RT curves, instead of the independent reported

entry points, then the amount of varianceeourted for increases to around 55%.) For example,
.1;

Tab 4 indicates that usponse to after-G, ALPHA requires 10 "nexts". Substituting n = 10 into

2
The program is written in MACL.ISP, a variant of LISP used at Carneme Mellon Univeristy Listings of the program and

sample runs are dvaliabin from the first author People with access to the A network can contact KLAffil@CMUA

3rhis
is a simple count of all CDFis used by all the functions in the LISP program as it does the after or before task.

r
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the regression equation yields a predicted time of approximately 1610 cosec, as shown in Table 4.

The actual Mean RT for after r is 1730 msec.

0
p41C lfe' y. 00$

TE rs

I t.

it
3.0 85.00

2 a 4.. 93.00
a 5:0 116.00
4 p 6.0 118.00

G 7.0 119.00
6 P- 8.0 169.00'

_ 0 _173.00
14 4.0 -.124.00

9 I r 5.0 164.00
10 / 6.0 .148:00

.8.0 173.00
-.12 5.0 118.00
13 PI 6.0 127.00

3 14 N 7.0 142.00
15.0 8.0 142.00

1,105_2_10,_0 209.00
17 q 6.0 174.00
18 M 7.0 115 CO
19 3 8.0 122.00
20_7 10.0 -186.00
21 V 7.0 182.00

5. 22 V 8.0 226.00
23 N 10 0 167.00
24 K 8.0 156.00
25 y 9.0 189.00

rilc4cf n ox(-1 ai- ore,lic kcf
93.77 -- -- 4.
111.45
124.13
136.80
149.48
162.16
187.51
111 45
124.13
136.80
162.16
24.13
136.80
149.48
162.16
187.51
136.80
149.48
162.16
187.51
149.48
162.16
187.51
162.16
,174.63

....

K10 seC-

2.0' 86.6' 156.2
3.0 113.0 171.5
4.0 155.0 186.8
5.0 166.0 202.06.0 193.0 217.3
7.0 256.0 232.6- .
16.0 377.0 370.1
3.0 179.0 171.5
4.0 249.0 186.8
5.0 256.0 202.0

1 11.0 306.0: 293.7
4.0 233.0 186.8
'5.0 166.0 202.0
6.0 249.0 217.3
7.0 202.0 A '132.6,

14.0 340.0 . 39.5
5.0 273.0 202.0

., 6.0 213.0 217.3
7.0 ____171.0. 232.6.._

13.0 288.0 324.2
6.0 195.0 217.3
7.0 378.0 232.6----12.0 306.0 309.0
7.0 247.0 232.6
8.0 177.0 247.9

Table 3: The number of "nexts" executed for each probe letter on the
after and before tasks.

Figure 24 contains a plot of predicted vs actual RTs (from Table 3) for after and before tasks. The

most prominent feature of the RT cur-es ale the local extreme points caused by chunk boundary

crossings. ALPHA appears to be able to capture these quite well on both after and before tasks.

On the after curves, the chunk boundaries at G-FI and K-L show close correspondence betwe

actual and prediCted. The next two boundaries, PC), and T-U, have the appropriate maxima, but

after R, although fast relative to after 0, is not a local min. Finally, there is an unpredicted local max

at after V. The before curves are also in closer correspondence at the earlier chunk boundaries.

The first four local maxima are exactly as predicted. Neither before M nor before R are the local

mins they should be, while before I and before V are.
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RT a 607 + 127n
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50%

54%

n = number of "nexts" on all lists and sublists

[ Segmentation ba8eIin entry point Frequencies]

Tab* 4: Regression results for ALPHA effort against Exp. 12data.

51

Perhaps the most interesA deviation from ALPHA's predictions are the slight but consistent' over

predictions for the first chunk, particularly for the before times for the first few letters. This might

result from alternative representations for these items ("the ABC's") that provide' more direct access

than the full process modeled by ALPHA.

6.7 !"*.hildren'5 Alphabetic Access

Essentially the same procedure was used to stud/ children's processing of the alphabet. Eight 6year

old children were presented with the before and after tasks as described in section 6.4; the major

difference was that each letter was presented only three times. Their RT patterns showed the same

general segmentation of the alphabet, and the same eftct of chunk boundaries. Regression results

indicated that ALPHAtould account for about 35% of the RT variance. However, the most interesting

difference was that the rate of processing for children was around 500 msec per next, even though

the same model seems to apply for adults and children.

. Thus, in two quite distinct domains, we have found examples of identical structures and processes in

children and adults, and yet we still find iprge differences in processing rates for elementary steps.

ab
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7 Instructional Theory

With respect to instructional theory, in collaboration wit. Robert Siegler, I have been investigating

theoretioal and empirical approaches to the question of how the acquisition of new knowledge in

children is related to the prior existence of old knowledge (legler & Klahi , 1981). We address issues

of critical stages, instructional readiness and the It between a child's current level of knowledge and

the kind of instructional material with which he is presented. We draw on examples from a wide range

of task domains, including classic Piagetian concepts about balance scales, time, speed, distance,

proportionality, and so on, as well as on the work mentioned above in problem solving and planning.

The chapter opens with a broad question: "When do children learn?" All of the research reviewed in

the chapter points to a single general answer. "Children learn when there is an appropriate

relationship between their existing knowledge 'd the instructional material presented to them." This

formulation indicates that the important tasks are to determine children's existing knowledge, the

relationship between their existing knowledge and a:ternative instructional material that might be

presented to them, and the idea! relationship between existing knowledge and instructional material.

We describe several distinct examples of rule assessment research aimed at addressing these issues.

There are four conclusions towards which this evidence seems to converge:

1. Children's knowledge can be characterized in terms of rules. This conclusion seems to be equally

valid for simple concepts, for more complex concepts, for procedural knowledge in -which sets of

rules are combined into strategies, and for the types of rules for learning that are embodied in self-

modifying production systems. The contents of all of these types of rules can be determined by

presenting problems on which different rules lead to distinct patterns of responses.

t
2. In cases in which children use two or more partially correct rules before mastering a concept or

procedure, the partially correct rules are ordered in terms of increasing correlation with the

predictions of the mastery rule. While there may be declines in the proportion of correct responses in

limited subsets of the problem domain (as in conflict-weight problems on the balance scale), children
S

will adopt only those rules that lead to an overall increase in the proportion of correct responses.

3. The effectiveness of a learnin experience is in part determined by whether the learning

experience discriminates the child's existing rule from the correct rule. On the time concept, younger

children benefited from problems that discriminated end points from time, but those same problems

had no effect on older children. Older children benefited from problems that discriminated distance

from time, but those same problems had no effect on younger ones In each case, this was due to the
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relationship bi:tween what the child already knew and what drmensluns were u ,.;iirninated by the

training problems. The similarity of the predictions generated by many of the Tow "" of Hanoi rules for

most of the possible problems suggests that the same phenomenon might well emerge there. Without

assessments of a child's existing knowledge, it would be extremely difficui$, if not impossible, to

anticipate wh'ich of the Tower of Hanoi or time concept problems would provide useful learning

experiences for the child and which would not. With such assessments, there is a principled way of

predicting.

'4. A major reason why children do not immediately adopt the correct rule for all concepts is their

limited encoding of the correct rule's comporent dimensions. Children's encoding of a dimension

may be inadequate due to lack of knowledge of the dimension's importance, lack of perceptual

salience of the dimension in the situation in which the concept is to be applied, or lack of adequate

ability to hold all of the relevant information in memory.

8 Summary

Pre school children's problem-solving processes have been investigated during the grant period in

both direct and indirect ways. The direct investigations have focused on substantive and

methodological issues related to how children solve a few well defined puzzles. The indirect work has

dealt with related issues: nonmonotone developmental curves, rates of processing, structure-

process invariance and instructional theory.

An important substantive contribution of this research is the discovery that by the time they reach

Kindergarten, children appear to have acquired many of the components of mature problem solving

strategies. These components are acquired without direct instruction, and there is substantial

variation In the particular components that exist in different children's repertoires. Therefore, any

attempt to instruct children to be better problem solvers must first make a careful determination not

only of the level of their performances, but, more importantly, precisely what strategies they are using.

Another contribution of this research has been the development of a methodology to facilitate such a

determination.

The focus on fine-grained characterization of underlying processes has also enabled us to propose

an interpretation of non-monotone growth curves, and we have argued that these surface nieasures

do not reflect any interesting underlying processes. Finally, our focus on rates, processes and

structures tyl potential norces of developmental differences. has provided a potentially, fruitful area for

further investigations of how children learn to problems.
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9 Papers Published During Grant Period

Klahr, D. Goal Formation, Planning, and Learning by Pre-school Problem Solvers, or:
'My socks are in the dryer'. In R.S. Siegler(Ed.), Children's Thinning: What Develops ?,
Lawrence Erlbaum Associates, Hillsdale, NJ, pages 181.212, 1978.

Klahr, D. Toward an information processing theory of cognitive development.
In R. Klewe & H. Spada (Eds.), Developmental Models of Thinking.
New York: Academic Press, 1980.
[German Edition:, Studien zur Denkentwicklung. Bern, Stuttgart, Wien:
Huber, 19814

Klahr, D. Non monotone assessmenI of monotone development: An information
processing analysis. In S. Strauss & R. Stavy (Eds.),
UShaoed behavioral growth, New York: Academic Press, 1981.

Siegler, R.S., & Klahr, D. WIren do children learn? The relationship between
existing knowledge and the acquisition of new knowledge. In R. Glaser (Ed.),
Advances in Instructional Psychr.logy. Vol.2, Hillsdale, NJ: Lawrence Erlbaum
Associates, 1981.

Klahr, D., & Robinson, M. Formal Assessment of problemsolving and
planning proceesses in pre-school children.Cognitive Psychology,

12, 1981, 113-148.
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10 Professional Activities During Grant Period

March 1978

April 1978

August 1978

Oct. 1978

Paper presentation at Annual Meeting of AERA, Toronto.

Invited paper at IEEE Computer Society Workshop on Pattern Recognition and
Artificial Intelligence Princeton, NJ.

Panel Chairman at NIE Research Conference on Testing,
Falmouth, Massachusetts.

Colloquium: National Institute of Education, Washington, DC.

Nov. 1978 Colloquium: Children's Problem Solving, Department of Educational Psychology,
McGill University, Montreal, Canada.

Nov. 1978 Paper presentation: Psychonomic Society Meeting, San Antonio, TX.

Dec. 1978 Visiting Scholar: Department of Psychology, University of Iowa, (1 week).

March 1979 Paper presentations at the biennial meeting of the Society for Research in
Child Development, San Francisco.

April 1979 Invited symposium, annual meetings of AERA, San FranciscQ.

Oct. 1979 Colloquium: Department of Psychology, Stanford University.

Nov. 1979

Nov. 1979

Paper presention, Psychonomic Society Meeting, Phoenix, Arizona.

Incited participant: Wingspread Conference on Basic Procesing in
Ma hematics Learning, Racine, Wisconsin.

Feb., 1980 Visiting Scholar, School of Education, Deakin University,
Geelong, Victoria, Australia, (3 weeks),

April, 1980 Colloquium: School of Education, Stanford University.

April, 1980 Colloquium. Groot) in Science and Mathematics Education,
University of California, Berkeley.

March, 1981 Colloquium: Graduate Center, City University of New York.

April, 1981 Symposium: Biennial Meeting, SRCD. Boston, Mass.
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Appendices

Appendix A is an annotated listing of the MACLISP programs for the nine models. Pages
A 9 and A-10 show some examples of how to use the models.

Appendix B is a listing of the production system version of Model 9, written in OPS4. The
trace on B-3 shows the model solving a seven move flat to flat problem. If followed
carefully, it should provide a good feel for the operation of the production system and the
complexity of the model. .. ,

p ..-
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Teavedels. second pass
is unordered list of peg-contents lists.

:::pegzontents list is (pegx Cn CN Cn) or (pegx)( see SETUP)
::;MOOs return nove-newstate pairs (or Just move)

or (ni: (00HE)). e.g. ( (c2 pega)((pega c2 cl)(pegb c3)(pegc)))
:::moves non-destructive return revised.states
;;;most functions need state variable as input
::;Global wars: CANORDER (see SETUP).TRACEON.PROBSTATES

:::to run, first do (setup). then (solve FN-NAME initial goal),
using initial and goal states assigned by SETUP.

-41.g (solve 'nod10 towa flat2)

;;;NOTE: Only M0010 is guarenteed not to loop. However SOLVE
should provide the right enviunment for testing any
new functions.

get only next move. do (NEXTMOVE 'fn-name initial goal)

11: to g:Z'skiblem N from PROBSTATES do (nthprob H), then
14: set valUes to its CAR and CAW( for inital and final states

. /

:::SETUP :reates a few initial and goal states
;; and calls setup2.

;; ;SETUP2 Uses SLURP to load function
which does actual setup of PROBSTATES (full problem set)

:;;TRACEOFF/TRACEON control output from TRY10 and LEGAL .

(COMMENT --CONTENTS-- ALLMOVES ALL_:MOVES ALL 2MOVES ALL_3MOVES ANY1S
ANY2$ ANY3S ANYNS AVOI000U8S BEFORE EULP10 DIFFS EMPTY ISIN
LEGAL LEGAL_MOVES MAKE MIUUIFF OD1 M0010 M002 M003 M0034
M004 M005 M006 M007 M008 MO 8A m0088 M009 MOVE NEXTMOVE
HEXTSTATES UTMPROB OKORDER OTHER PEGOF PICKUP PLACE REMAINS
REMOVE SEEPEG SETUP SETUP2 SOLVE SOLVEO STRIPP TOPCAN
TRACEOFF TRACEON TRY10 TRY2 TRY3 TRY4 MOUPROB)

r
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AI
;;;generate table of first moves for all modles'included in second list
;;first list is used to print corresponding-headings

:::outlttut to TIT. so use DRIBBLE to save file

(DEFUN ALLMOVES NIL
(PROD (ALLPROBS PROBSTATE INIT tIN CP)

(PRINT 'PEI)
(MAPC '(LAMBDA (N) 'PRINC '1 1, (PRINT 'MOD) (PRINT N))

(LIST 1. 2. 4. 5. 6. 7. 8. 9.))
(SETA ALLPROBS PRO/MATES)

LOOP (SETQ PROBSTATE (CAR ALLPROBS))
(SETQ IHIT (CAAOR PROPSTATE))
(SETQ(TIN (CADAA PRCBSTATE))
(PRIN( (CAR PROBSTATE)) .

(14AffILAMBDA (FN)
( ' 1

(SETO
PRINC

CP
1

(NEX) TMOVE FN INIT FIN))
(PRINI (CAR CP))
(PRINC
(PRINI (CAADR CP))
(PRINI (CADADR CP)))

(LIST 'MO01
MOD2
'14003

'MOD4 4

'MOOS
'MODS
'11007

'M0088
MOD10))

(SETQ ALLPROBS (CDR ALLPROBS))
(COND ((NULL ALLPROBS) (TERPRI) (RETURN 'DONE))

(T (GO LOOP)))))

;;;ALL-1MDVES returns all legal single moves from a
;;;format; ( ( (can peg)(new state))((can peg)(new state))..etc)

;;;ALL2_NOVES returns all legal double moves from STATE, except
;;; double moves of same can
;;;format:( ((movel).4move2><nevstate>)(movei><move2><newstate>)..etc)
1;1
;;;ALL_3MOVES similar to abovebut three moveMook-ahead
;;;

(DEFUN ALL_1MOVES (S)
(COMMENT RETURN LISTS OF ALL SINGLE MOVES AND STATES FROM STATE)
(PROG (MV MVSTATES NEXTMOVES)

(SETQ NEXTMOVES (LEGAL MOVES S))
LOOP (SETQ MV (CAR NEX1MOVES))

(SETQ MVSTATES
(CONS (LIST MV (MOVE (CAR MV) (CADR MV) S)) MVSTATES))

(SETQ NEXTMOVES (CDR NEXTMOVES))
(COND ((NULL NEXTMOVES) (RETURN MVSTATES))

(I (GO LOOP)))))

( DEFUN ALL_2MOVES (STATE)
(COMMENT ALL TWO CAN MOVES FROM CURRENT STATE)
(PROG (MVSTATE MVSTATES LEGALS TWODEEP)

(SETQ MVSTATES (ALL_IMOVES STATE))
LOOP (SETQ MVSTATE (CAR MVSTATES))

(SETQ LEGALS
(AVOIDDOU8S (CAR MVSTATE)

(LEGAL_MOVES (CAOR MVSTATE))))
(SETQ TWODEEP

(APPEND (MAF:AR '(LAMBDA (MV)
(LIST (CAR MVSTATE)

MV
(MOVE (CAR MV)

(CADR M-;
(CADR MVSTATF))))

LEGALS)
TWODEEP))

(SETQ MVSTATES (CDR MVSTATES))
(COMO ((NULL MVSTATES) ( REtURN TWODEEP))

(I (GO LOOP)))))

(DEFUN ALLJMOVES (STATE)
( COMMENT ALL THREE CAN MOVES FROM CURRENT STATE)

' (PROG (MVSIATE MVSTATES LEGALS THRELDEEP)
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(SETQ MVSTATES (ALL2MOVES SATE))
LOOP (SEW MVSTATE (CAR MVSTATES))

(SETQ LEGALS
(AVOI000UBS (CADR MVSTATE)

(LEGAL MOVES (CAOOR MVSTA'E))))
iSETQ THRECOEEP

(APP :3 (MAPCAR '(LAMBOA (MV)
(LIST (CAR MVSTATE)

(CAOR MVSTATE)
MV
(MOW: (CAR MV)

(CAOR MV)
( CAOOR MVSTATE))))

LEGALS)
THREEDEEP))

(SETQ MVSTATES (COR MVSTATES))
(COND ((lULL MVSTATES) (RETURN THREEDEEP))

(T (GO LOOP)))))

Wednesday 22 Oct 80 18:05

:;;ANY1S. ANYNS. ANY3S. all call ANYNS t5 search lists of n-move final states
:;:MVSTATES for any satisfied GOALS (GOALS is in same format as DIFFS)
:::e g.. does (CAN2 PEGB) exist in one of the final states generated by
:;;ALL_3MOVES?

PENN ANY1S (GOALS MVSTATES) (ANYNS 1. GOALS MVSTATES))

(OEFUN ANYNS (GOALS MVSTATES) (ANYNS 2. GOALS MVSTATES))

( DEFUN ANY3S (GOALS MVSTATES) (ANYNS 3. GOALS MVSTATES))

(DEFUN ANY1.5 (N GOALS MVS;;JES)
(PROG (GS MVS)

(SETQ GS GOALS)
GLOOP (COND ((NULL GS) ( RETURN NIL)),

(SETQ MVS MVSTATES)
STLOOP (COND ((NULL MVS) (SETQ GS (COR GS)) (GO SLOOP)))

(COW ((ISIN A (CAR GS) (CAR MVS)) (RETURN (CAAR MVS))))
(SETQ MVS (CDR MVS))
-(GO STLOOP)))

(MUM Avomoues (MV MVLIST)
(COMMENT BALT( itNY OCCURRENCES OF CAN IN MV FROM MVLIST)
(COND ((NULL WAIST) NFL)

((EQ (CAR MV) (CAAR MVLIST)) (AVOIDOOUBS MV (COR MVLIST)))
e(T (CONS (CAR MVLIST) ( AVOIDOOUBS MV (CDR MVLIST)))4))

(DEFUN BEFORE (X Y L)
(COMMENT T IF X BEFORE Y IN L AIL OTHERWISE)
(a (LENGTH (MEMBER X L)) (LENGTH (MEMBER Y L))))

:::CULPIO is 'perceptual part of MODIO. Detects culprits when move
;:, is know to be illegal.

(DEFUN CULPIO (CAN TO STATE)
(COMMENT rETURN SMALLEST OBSTRUCTOR TO MOVE)
(COa-MENT SPECIF TO 3-CAN 1( RATIONS)
(CD40 ((E4 CAN *C2) 'C3)

i(OR (MEMBER 'C2 (SEEPEG (PEGOF CAN STATE) STATE))

'Cl)
(MEMBER 'C2 (SEEPEG TO STATE)))

(T

.

;;;DIFFS uses CANORDER to parent,' min can f,rst

(DEFUN DIFFS (Si 321
(commcv RETURN LIST OF SUBGOALS AS CAN-GOALPEG PAIRS)
(REVERS/ (REM3VE NIL

(MAPCAR *(LAMBDA (CAN)
(COND ((NOT (EQ (PEGOF CAN S1)

(PEGOF CAN S2)))
(LIST CAN (PEGOF LA4 S2)))

(T NIL)))
CANORDER))))

PENN EMPTY (STATE)
(COMMENT RETURN FIRST EMPTY PEG OR NIL)
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(DEFUN PLACE (CAN PEG STATE) )
(COMMENT RETURN LIST OF CAN AC2F0 T3 TOP OF PEGS CAN LIST)
CONS CAN (SEEPEG PEG STATE))

(DEFUN REMAINS (SETT SET2)
(COMMENT REMOVES ALL MEMBS OF SETI FM SET2)
(COND (Wu SETI) SET2)

(T'IREmAINS (CDR SETI) (REMOVE (CAR SETI) SET2)))))

/3EFUN REMOVE (X L)
(COMMENT REMOVE ALL OCCURRENCES OF X FM L)
(COND ((NULL L) NIL)'

((EQ (CAR L) X) (RPIOvE X (CDR 1.))),
(T (CONS (CAR L) (REMOVE X (CDR L))))))

(DEFUN SEEPEG (PEG STATE)
' (COMMENT RETURN LIST OF CANS ON PEG IN STATE)

(CDR (ASSOC PEG STATE)))

(DEFUN :FTUP NIL
(SETQ UNA '((PEGA C3 C2 Cl) (PEGS) (PEGC)))
(SETA TOS '((PEGA) (PEGb C3 C2 CI) (PEGC)))
(SETQ FLATI '((PEGA C1) (PEGS C2) (PEGC C3)))
(S(SETQ FLAT2 '((PEGA C2) (PEGS Cl) (PEGC C3)))

ETUP?))

(DEFUN SETUP? NIL
(TRACEOFF)
(SETQ CANORDER '(C3 C2 C1))
(SETQ NOVELIST

'((C1 PEGA)
(C1 PEGS)
(C1 PEGC
C2 PEGA
C2 PEGS)
C2 PEGC)
C3 PEGA)
C3 PEGS)
C3 PEGC)))

(SLURP TONDAT) ,.
(SETPRO8).
(PRINT 'PROBLEMS_LOADFD))

(DEFUN SOL"' (FN INIT FIN)
(COMM SOLVE FROM INIT TO FIN USING FN)
(COMMENT PRINT MOVES AND STATES .SAVE LIST OF BOTH)
(PPOG (NEWSTATE MOVESTATE MOVENO STATELIST) '

(SETQ MOVENO 0.)
(SETQ MOVESTATE (SETQ NEWSTATE INIT))

LOOP SETQ STATELIST (CONS MOVESTATE STATELIST))
SETQ MOVESTATE (FUNCALL HI NEWSTATE FIN))
COND ((EQ (CAADR PO/ESTATE) 'DONE)

(RETURN (COMO (TRACEON (REVERSE STATELIST))
(T 'SOLVED))))

(T (PRINT (SETQ mOvE%0 (1+ MOVENO)))
(PRIN1 (CAR m..STATE))
(PRIN1 (SETQ NEWSTATE (CADR KOVESTATE)))
(GO LOOP)))))

(DEFUN SOLVED (STATE GOAL)
(COMMENT ASSUME STATE IS LEGAL .TEST FOR SOLUTION)
(COND ((NULL (DIFFS STATE GOAL)))

(T NIL)))

(DEFUN STRIPP (PEGNAME) (NTP 3. (EXPLODE PEGNAME)))

(DEFUN TOPCAN (PEG STATE) (CAR (SEEPEG PEG STATE)))

( DEFUN TRACEOFF NIL (SETQ TRACEON NIL))

(MUM TON NIL (SETQ TRACEON T)) k

(SETQ TRACEON.NIL) w

(DEFUN TRYIO (CAN TO STATE) .
.

( COMMENT TRY SPECIFIED MOVE .USING SPHefERC STRAT .RETURN MOVE
ACTUALLY SELECTED AND NEw STATE)

(COND ( TRACEON
(PRINT ltrying to move )
(PRIN1 CAN)

. it<
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(Dribbling./

:::Some examples of how to use the models from Klahr & Robinson

: ;; To get started:

(slurp toh5)(A3ADK17 TOME-MCL)

(setup)
PROBLEMS_LOADED T

Thursday 30 Oct 60 10:04

:::Now the criterial proLlenset has been loaded. and a few tor and
::: flat states have oeen created

The full problems set is a list named PROBSTATES
towa
((PEGA t3 C2 C1) (PEGB) (PEGC))

flat2
((PEGA C2) (PEGB C1) (PEGC C3))

::;to specifra problem, take car and caadr of nthprob, eg:
(nthprob 13)(((PEGA) (PEGB C3 C2) (PEGC C1)) ((PEGA C3 C2 C1) (PEGS) (PEGC)))

(car (nthprob 13))((PEGA) (PEGB C3 C2) (PEGC C1))
(cadr (nthprob 13))((PEGA C3 C2 C1) (PEGS) (PEGC))

;t0 make the next move from a particular state, using a particular function
;use NEXTMOVE with function name (quoted) and initial and final states
(nextmove 'mod3 flatl towa)(C2 (fi A))

(nextmove 'mod10 flail towa)(C2 (8 A))

:to repeatedly apply model to sequential- states produced b, that model,

;use SOLVE
(seta p20 (nthprob 20))(((PEGA Cl) (PEGS C2) (PEGC C3)) ((PEGA) (PEGB) (PEGC C3 C2 C1)))

(solve *mod10 (car p20)(csdr p20))
1 (C3 PEGB)((PEGC) (PEGS C3 C2) (PEGA C1))
2 (C1 PEGC)((PEGA) (PEGC Cl) (PEGB C3 C2))
3 (C3 PEGC)((PEGB C2) (PEGA C3) (PEGC Cl))
4 (C2 PEGC)((PEGB) (PEGC C2 CO (PEGA C3))
5 (C8 PEGC)((PEGA) (PEGC C3 C2 C1) (PEGB))SOLVE0

I
,L,

to apply model to problem for single move, use MODPROB
modprob 'mode 20)
((PEGA Cl) (PEGS C2) (PEGC C3)) ((PIGA) (PEAS) (PEGC C3 C2 C1)))
(C3 PEGS) ((PZGC) (PEGS C3 C2) (PEGA C1.)44-'

..-l-

::output is initiil-final state pair, follwed by move and new state

1

:to apply a model (or models) to all the criterial problems. edit the

:two lists in ALLMOVES and execute it
(ditf Weaves)
EMT
0
f list
(L1ST 1 2 3 4 5 6 7 8 2)
f
0
(MAPC '(LAMB'A 0 ...) (LIST 1 ...))

f
f list
(LIST 1 2 3 4 5 6 7 8 2)
0 .

(3)(3)(3)(3)(3)
(LIST 1 7 8 9)
0
f
(LIST 'MO01 'MO02 'M003 'M004 'MOOS 'MODE 'MOD? 'MOOBB 'M0010)
0

(3)(3)(3)(3)(3) t
(LIST 'MOOS 'M007 'MOMS 'MOD10)
0
esiAILMOVES 75

Page tal
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(allmoves)
PB MOD1 MOD7 M008 M0P9
9 C2_CB C3_CA C3_CA C3_CA
10 C2_CA C3_CB C3_CB C3_CB
11 C2_048 C3_AC C3_AC C3_AC
12 C2_BC C3 BA C3_BA C3_BA
13 C1_CA C1_CA Cl_CA C1_CA
14 CI_BA CI _BA Cl_BA
16 C1_BA Cl_BA CI_BA
16 C1_CA C3_A8 C:!_C8 C2_C8
11 C1_CA C3_CB C3_CB C3_C8
18 C1_CA C3_C8 C3_CA C3_CA
19 C1 AC C3_A8 C3_AC C3_AC
20 Cl_AC C3_CB C3_CB C3_CB
21 C1_CA C3 AB C3_AC C3_AC
22 C1...AC C3_A8 C3_A8 C3_AB
23 C1_CA C3_AB C3_AB C3_A8
24 Cl_AC C3_C8 C3_CA C3_CA
26 C1 BA C3_AC C2_BC C2_BC
26 Cl_BA C3_AC C2_BC C2. BC
27 Cl_BC C3_CA C3_CA C3_CB
28 C1 AC C2_AB C2_A8
29 Cl_CA C3_AB C2_CB C2_CB
30 C1_8C C3_BA C2_CA C2_CA
31 C1_BC C3_CA C2_8A C2_BA
32 C1_11A C3_AC C3_AC C3_A8
33 C1_8A C3_8C C3_BC C3 8A
34 Cl_BC C3_BA C3_BA C3_BC
36 C1_11A ,C3_CA C2 A8 C3_CB
36 'C1_8C C3 AC C2_CB .C3_AB
37 C1....AC C3_8C C3_BC C3 BA
38 C1 BA C3_BC C3 _11C C3_BA
39 C1_8A C3_CA C3_CA C3_C8
40 C1_11C C3_BA C3_841 C3_8C
DONE

;; ;for garrulous output. turn trace on
(tracton)T

Solve gmod10 tosia'towb)
trying to moves C1I to IPEGB
Can not fret to move/
trying to cove) C2I to (PEGC
can not free to move'
trying to 'novel C3I to (PEGS
1 (C3 PEGB)((PEGA C2 Cl) (PEGS C3) (PEGC))
Itrying to moves CII to IPEGB
an not free to move/
trying to novel C2I to IPEGC
2 (C2 PEGC)((PEGA Cl) (PEGC C2) (PEGS C3))
trying to move' CII to IPEGB
destination deg blocked' e

trying to motel C3I to IPEGC
(C3 PEGC)((PEGB) (PEGC C3 C2) (PEGA Cl))

' fling to move/ C11 to IPEGB
- (CI PEGB)((PEGA) (PEGS Cl) (PEGC C3 C2))
(trying to novel C2I to (PEGS
Can not free to move,
trying to hovel C3I to (PEGA
6 (C3 PEGA)((PEGC C2) (PLGA C3) (PEGS Cl))
prying to move' C2I to IPEGF1
(CZ PEGB)((PEGC) (PEGS C2 Cl) (PEGA C3))

/trying to move' C3I to Iprul
7 (C3 PEGB)((PEGA) (PEGS C3 C2 C1) (PEGC))MPEGA C3 C2 C1)

(PEGS)
(PEGC))

((C3 PEGS)
((PEGA CZ Cl)
(PEGS C3)
(PEGC)))

((C2 PEG':)
((PEGA C)
(PEGC C2)
(PEGS C3)))

((C3 PEGC)
((PEGS)
(PEGC C3 C2)
(PEGA C1)))

7C
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(COMMENT --CONTENTS-- wPS1ZE PROB1 PROB2 )

(SLURP C3150mL5P UCEOIT)
(slurp Jill)

(SETQ WMPSIZE '10.)

.(SWITCHES KEEP-INS ON TRACE LEVEL?)

(system
qltq3
( (qi) & el --> ((delete) .el)(q3))

q3toq4
( (q3) S eel --> ( <delete> el)(q4))

ay

solved
( (q3) - (want 1 ) --> (<write>)(writt> problem solved)(<write)((hslt>))

topgoal
((q1)(TOPG0A1. -PA PB -PC) & met --> ( <delete> el)

(attended .1)(GOAl. PA) (GOAL -PB) (GOjL -PC) (a Ise peg)
(b isa peg)(c isa peg))

ec

EMPTYGOAl.
((q1)(GOAl ()) & .E1 --> ( <DELETE> E1))

rgillgoal (peg peg -cx 1 y))113 eel -->
(<delete> s4)(goal cx on peg)(goal (peg -peg 1 y)))

unpack
((q1)(STATE 'PA .05 PC) --> -PB -PC (3 BIGGER 2) (3 BIGGER 1) (3 BIGGER 0)
(2 BIGGER 1) (2 BIGGER 1) (2 BIGGER 0) (1 BIGGER 0))

seenone
((q1)(peg -peg) --- (see topof 0eg IS 0))

Seel
((q1)(peg -peg -CX) --> (see CX ON peg) (see topof -peg IS -CX))

see2
((q1)(peg 'peg CX CY) --> (see -CX on -peg) (see -CY on -peg) (see topof -peg IS
CX) (see -cx above CY))

see3
((q1)(pey peg -CX CY CZ) --> (see CX on peg) (see CY on peg) (see -CZ ON
- PEG) (see topof -PEG IS -CX) (see -cx above -CY) (see ex above -CZ) (see -cy above

CUFF
((q3)(00041. CAN ON -PEGS) (see 'CAN ON SPEG1 & PEG2) -->
(WANT (CAN .PEG2 PEGI)))

WW2
((q4)(want (CANI 1 )) & .E1 (WANT (CAN2 1 )) & '42 (-CANS BIGGER CA112; -->
twOELETE> 'El))
TRY
((q4) & s° (want (CAN E01 PEG2)) & El --> ( <DELETE> e° El) (q5)
(TRY CAN 11G1 PEG2))

LEGAL
65) li e0 (try CAN '2) & -El (see tope P1 IS -CANS) (see topof 2 IS CAN2)(

(.CAN1 BIGGER CAN2) ->(q0) (MOVE 'CANS Pl 2) ((DELETE> e0 el))

TOBLOCK
(00, (try CAN1 Pl P2) & ol (see topof P2 IS CAN2) (CAN2 BIGGER CAN1)
--> (CA112 BLOCKS 'El))

FROMBLOCK
((q5) (try 'CANS P1 .P2) & 01 (sue CAN2 ABOVE -CANS)
(CAN2 BLOCKS El))

TRIED .

((q5) $ El (try 1 & e2 --> ((DELETE> -El -e2 ) (q5a))

MINItOCKER 7',



i
JSKCIOH2.0PSEA31CDK171 at CMIJ10a 3323 chars, 10 Wks Friday 12 Dec 80 09:03
((q5) (CAN1 BLOCKS MV) & .0 (CAN2 BLOCKS MV) (CAN1 BIGGER -CAN?) -->

p (dIELETE> e2))

subtry
((q5a) & el (C1 BLOCKS (try C2 -P1 -P2) & E3) & E2

(p4 & Mpl & 0p2 isa peg)
.

(se,: C1 ON 'p3) --> (40ELEJE> =e3 2 11) (try
'p3 'P4) (q5))

prep
((q6)(MOVE I ) (see I ) & 'El --> (<DELETE> -(1))

Nova
((0) & e0 (MOVE CAN =P1 .P2) & -El (PEG -P2 ' -TOCANS) & sE2 (PEG P1 'CAN I

FRONCANS) & E3 (PEG 1 P3) & 0E3 & E4 & WE2 (STATE I ) & (5 -->
' ( <DELETE> e0 El (2 13 -E4 5) (STATE (PEG P1 I FROMCANS) (PEG P2 =CAN I

TOCANS) (PEG t P3))(q1))

))))))))))))))))

(DEFUN PROBSET (INITIAL FINAL)
(LIST 1q1) (CONS 'STATE INITIAL) (CONS 'TOPGOAL FINAL)))

(seLq' town '( (peg a 3 2 :)(peg b)(peg c)))
(sat(' towb '((peg a)(peg b 3 2 1)(peg c)))
(setq flatl '((peg a 3)(-eg b 2)(peg c 1)))
.(setq flat2 '((peg a 3)(peg b 1)(peg c 2)))

(SETQ PROC1
. '((q1)(state (PEG A) (PEG B 3. 1.) (PEG C 2. )

(TOPGOAL (peg A 3. 2. 1.) (peg- B) (peg C))))

(SETQ .

' (q1)(state (PEG A) (PEG B 3. 1.) (PEG C 2.))
(TOPGOAL (peg a 2.) (peg b 1.) (peg c 3.))))

(set: prob3
1(q1)(state (peg a) 1)(peg c ))
(topgoal (peg a 3 2 1)(pe )(peg c))))

1

1

1/4

1
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Pribblin9.1
A
PPP

((STATE (PEG A 3) (PEG 8 2) (PEG C I))
007GOAL (PEG A 3) (PEG B 1) (PEG C 2)))

4,

;;;;seven move flat to f1atP

A
(start pp)Warning: WM and the network memory may be inconsistent

run 60 terse; 1. UNPACK
2. SEE1 3. SEE1 4. SEE1 51 TOPGOAL
8. GOALCAN 9. Q1TQ3

10. DIFF 11. DIFF 12. Q3TOQ4

BLOCK 16. TRIED 17. SUOTRY 18.

20. SUBTRY 21. LEGAL 22. PREP
25. PREP 26. PREP 27.

30. SEENONE 31. SEE2 32. SEE1
35. DIFF 36. DIFF 37.

40. TRY 41. TOBLOCK 42. FROthBLOCK 43.

TRY 46. LEGAL 47. PREP 48.

511. PREP 51..PREP 52. PREP
55. UNPACK 56. SEENONE 57.

60. DIFF
)11,

6. GOALCAN

13. WANT2
TOBLOCK 19.

23. PREP
PREP 23.

33. Q1TQ3
Q3TOQ4 38.
MIUBLOCKE 44.

PREP 49.

53. PRtP
SEE1 58.

I "day 12 Dec 80 09:18

7. GOALCAN

14:-TRY 15. TO
TRIED

24. PREP
MOVE 29. UNPACK

34. DIFF
WANT2 39. WANT2
TRIED 45. SU
PREP

54. MOVE
SEE2 59. Q1TQ3

(um)
((STATE (PEG 8) (PEG A 2) (PEG C 3 1)) (1 BIGGER 0) (2 BIGGER 0) (2 BIGGER 1)

(3 BIGGER 0) (3 BIGGER 1) (3 BIGGER 2) (PEG C 3 1) (PEG A 2) (PEG B) (SEE
TOPOF 8 IS 0) (SEE TOPOF A IS 2) (SEE 2 ON A) (SEE 3 ABOVE 1) (SEE TOPOF C
IS 3) (SEE 1 ON C) (SEE 3 ON C) (C ISA PEG) (B ISA PEG) (A ISA PEG) (GOAL
(PEG A)) (GOAL 3 ON A) (GOAL (PEG B)) (GOAL 1 ON B) (GOAL (PEG C)) (GOAL 2
ON C) (ATTENDED (TOPGOAL (PEG A 3) (PEG B 1) (PEG C 2))) (Q3) (WANT (3 C
A)))

run 100 FullP

DIFF
(SEE 1 ON C) (GOAL 1 ON 8) (Q3)

(WANT (1 C B)) .

DIFF
(SEE 2 ON A) (GOAL 2 ON C) (Q3)
--s
(WANT (2 A C))

Q3TOQ4
03)

-(Q4)
Deleted:

(Q3)

WAN
(2 BIGGER 1) (WANT (1 C 8)) (WANT (2 A C)) (Q4)
--s
Deleted:
(WANT (2 A C))

WW2
(J DIGGER 1) (WANT (1 e 8)) (WANT (3 C A)) (Q4)
-s

°dieted:
(WANT (3 C A))

INY
(ii All) (Q4)
-)
(INY 1 C 8) (Q5)

Deleted:
1WANI (1 C 8)) (Q4)

Page trt
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FRO';IBLOCK

(SEE 3 ABOVE 1) (TRY 1 C 8) (Q5)
-->
(3 BLOCKS (TRY 1 C 8))

TRIED
(TRY I C 8) 05)
-->
(Q5A)

Deleted:
(TRY 1 C B) (Q5)

SUB TRY
(SEE 3 ON C) (A ISA PEG) (3 BLOC
- ->

(Q5) (TRY 3 C A)
Deleted:
(Q5A) (3 BLOCKS (TRY 1 C B))

(TRY 1 C 8)) (Q5A)

LEGAL '

(3 BIGGER 2) (SEE TOPOF A IS 2) (SEE TOPOF C IS 3) (TRY 3 C A) (Q5)
-->
(MOVE 3 C A) (Q6)

Deleted:
(TRY 3 C A) (Q5)

PREP
(SEE 3 ON C) (MOVE 3 C A) (Q6)
- -ls,

Deleted:
(SEE 3 ON C)

PREP
(SEE 1 ON C) (MOVE 3 C A) (Q6)
- -)

Deleted:
(SEE I ON C)

PREP
(SEE TOPOF C IS 3) (MOVE 3 C A) (Q6)
- -)

Deleted:
(SEt TOPOF C IS 3)

. PREP
(SEE 3 ABOVE 1) (MOVE 3 C A) ()
- -)

Deleted:
(SEE 3 ABOVE 1)

PREP
(SEE 2 ON A) (MOVE 3 C A) (Q6)
- -)

Deleted:
(SEE 2 ON A)

PREP
OL

(SEE TOPOf A IS 2) (MOVE 3 C A) (Q6)
- -)

Deleted:
(SEE TOPOF A IS 2)

PREP
(SEE TOPOF 8 IS 0) (MOVE 3 C A) (0)
--,
Deleted:
(SEE UWE S IS 0)

6l ,
MOVE

a

Page t-2
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(STATE (PEG B) (PCG A 2)(PEG C 3 I)) (PEG 8) (PEG C 3 1) (PEG A 2)
(MINE C A) (Q6)

(Q1) (STATE (PEG C 1) (PEG A 3 2) (PEG8))
Deleted:
(STALE (PEG B) (PEG A 2) (PEG C 3 1)) (PLC 8) (PEG C 3 1) (PEG A 2)
(MOVE 3 C A) (Q6)

UNPACK
(STATE (PEG C 1) (PEG A 3 2) (PEG 8)) (Q1)
-->
(1 RIGGER 0) (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)
(3 BIGGER 2) (PEG B) (PEG A 3 2) (PEG C 1)

SEE1
(PEG C 1) (Q1)

(SEE TOPOF C IS 1) (SEE 1 ON C)

SEE2
(PEG A 3 2) (0)
-->
(SEE 3 ABOVE 2) (SEE TOPOF A IS 3) (SEE 2 ON A) (SEE 3 ON A)

SEENONE
(PEG B) (Q1)

(SEE TOPOF B IS 0)

QITQ3

(01)
(0
-->

(Q3)
Deleted:

(QI)

DIFF
(SEE 2 ON -A) (GOAL 2 ON C) (Q3)

(WANT (2 AC))

DIFF
(SEE 1 ON C) (GOAL 1 ON 5) (Q3)
-->
(WANT (1 C B))

Q3TOQ4
(Q3)

(Q4)
Deleted:

(Q3)

WANT2
(2 BIGGER 1) (WANT (1 C 8)) (WWI (2 A C)) (Q4)
-->
Deleted:
(WANT (2 A C))

TRY
(WANT (1 C B)) (Q4)

(TRY 1 C B) (Q5)
Deleted:
(WANE (1 C B)) (Q4)

LEGAL
(1 BIGGER 0) (SEC TOPOF B IS 0) (SEE TOME C IS 1) (TRY I C B) (QS)
--)
(MOVE 1 C 8) (Q4) St

rage Tr3
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Deleted:
(IMY 1 C 8) (Q5)

PREP
. (SEE TOEDF 8 IS 0) (MOVE I C 8) (Q6)

-->
Deleted:
(SEE TOPOF B IS 0)

PREP
(SEE 3 Om A) (MOVE 1 C 8) (Q6)
-->
Deleted:
(SEE 3 ON A)

PREP
(SEE 2 ON A) (MOVE 1 C 8) (Q6)
-->
Deleted:
(SEE 2 ON A)

PREP
(SEE TOPOF A IS 3) (MOVE 1 C B) (Q6)
-->
Deleted:
(SEE TOPOF A IS 3)

PREP
(SEE 3 ABOVE 2) (MOVE 1 C B) (Q6)
-->

,Deleted:
(SEE 3 ABOVE 2)

PREP
(SEE 1 ON C) (MOVE 1 C B) (Q6)
-->
Deleted:
(SEE 1 ON C)

PREP
(SEE TOPOF C IS 1) (MOVE 1 C 8) (Q6)

Deleted:
(SEE .. TOPOF C IS 1)

Friday 12 Dec 80 09:18

MOVE
(STATE (PEG C 1) (PEG A 3 2) PEG 8)) (PEG A 3 2) (PEG C 1) (PEG B)
(MOVE 1`C B) (Q6)
-->

. (Q1) (STATE (PEG C) (PEG 8 1) (PEG A 3 2))
Deleted:
(STATE (PEG C 1) (PEG A'3 2) (PEG B)) (PEG A 3 2) (PEG C 1) (PEG B)

(MOVE 1 C 8) (Q6)

UNPACK
(STATE- (PEG C) (PEG 8 1) (PEG A 3 2)) (Q1)
-->
(1 BIGGER 0) (2 BIGGER C) (2 81tGER 1) (3 BIGGER 0) (3 BIGGCE 1)
(3 BIGGER 2) (PEG A 3 2) (PEG B 1) (PEG C)

SEENONE
(PEG C) (01)
-->
(SEE TOPOF C IS 0)

SEE1
(PEG p 1) (Q1)
-->
(SEE TOPOF B IS 1) (SEE 1 On B) fk, It

Lei

Page 4-4
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SEEi
(PEG A 3 2) (Q1)
-->
(SEE 3 ABOVE 2) (SEE..TOPOr A IS 3) (SEE 2 OM A) (SEE 3 OU A)

01T03

(91)

-->
(Q3)

Dele'el:

(01)

DIFF
(SEE 2 OM A) (GOAL 2 ON C) (Q3)
-->
(WANT (2 A C))

Q3TOQ4
On%>
(Q4;

Deleted:
(Q3)

TRY.
(WANT (? A C)) (Q4)
-->
(TRY 2 A C) (Q5)

Deleted:
(WANT (2 A C)) (Q4)

FROMBLOCK
(SEE 3 ABOVE 2) (TRY _ A C) (Q5)
-->
(3 BLOCKS (TRY 2 A C))

1.RIED

(TRY 2 A C) (Q5)
-->
(OA)

Deleted:
(TRY 2 A t..; (Q5)

SUBTRY
(SEE 3 ON A) tB ISA PEG., ;3 BLOCK!, (14v 1 A C)) (Q5A)
-->
(Q5) (TRY 3 A 9)

Deleted
(0°,r) (3 BLOCKS (1otr 2 A C))

Friday 12 Dec 80 00.18

LEGAL
(.1 BIGGER 1) (SEE TOPOF II IS 1) (SEE TOPOF A IS 3) (TRY 3 A E) (QS)

(MOVE 3 A 8) (Q6)
Deleted:
(IRV 3 A B) (0)

P (P

(i11 3 ON A) 010vE 3 A 8) (QC)
-->

Deleted:
(SI! 3 CU A)

P 11 P

°PI Al

OPIrted

Olt 2 ON A)

r, vr 3 A 4(,)
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PEEP
(SFE TOPOF A IS 3) (MOVE 3 A B) (06)

-->
Deleted:
(SEE TOPOF A IS 3)

(SEE 3 ABOVE 2) (MOVE 3 A B) (Q61

-->
Deleted:
(SE,43 ABOVE 2)

PREP
(SEE 1 ON B) (MCA 3 A B) (06)

-->
Deleted:
(SEE 1 ON 8)

PREP
(SEE TOPOF B IS 1) (MOVE 3 A B) (Q6)

-->
neletet
(SEE TOPOF B IS 1)

PREP
(SEE TOPOF C IS 0) (MOVE 3 A B) (Q6)

-->
Deleted:
(SEE TOPOF C IS 0)

MOVE r"--

(STATE I
rG C) (PEG B 1) (PEG A 3 2)) (PEG C) (PEG A 3 2) 'PEG B 1)

(MOVE 3 A 8) (Q6)
-->
(01) (STATE (PEG A 2) (PEG B 3 1) (PEG C))

Deleted:
(STATE (PEG C) (PEG B 1) (PEG A 3 2)) (PEG C) (PEG A 3 2) (PEG B 1)

(MOVE 3 A B) (Q6)

UNPACK
( STATE (PEG A 2) (PEG B 3 1) (PEG C)) (Q1)

-->
(I BIGGER 0) (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)

(3 BIGGER 2) (PEG C) (PEG B 3 1) (PEG A 2)

(PEG A 2) (Q1)
--s
(SEE TOPOF A IS 2) (SEE 2 ON A)

SfE2
(PEG B 3 1) (Q1)
-->
(SEE 3 ABOVE 1) (SEE TOPOF B IS 3) (SEE 1 ON B) (SEE 3 OR B)

S11 NONE
(PLG C) (Q1)

(SEE TCPOF C IS 0)

(01),

0If,

(Sit ON B) (GOAL 3 ON A) (Q3)
*=o
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(CON"! (3 B A))

0!FF
(SEE 2 ON A) (GOAL 2 ON 1; (Q3)
-->
(WANT (c A C))

Q3TOQ4
(Q3)
-->
(Q4)

Deleted:

(Q3)

WANT2
(3 BIGGER 2) (WANT (2 A C)) (WAN( (3 B A)) (Q4)
-->
Deleted:
(WANT (3 B A))

Friday 12 Dec 60 00:18

A

TRY
(WANT (2 A C)) (Q4)
-->
(TRY 2 A C) (Q6)

Deleted:
(WANT (2 A C)) (Q4)

LEGAL
(. BIGGER 0) (SEE TOPOF C IS 0) (SEE TOPOF A IS 2) (TRY 2 A C) (Q5)

(MOVE 2 A C) (Q6)
Deleted:
(TRY 2 A C) (Q5)

PREP
(SEE TOPOF C IS 0) (MOVE 2 A C) (Q6)
-->
Deleted:
(SEE ';POF C IS 0)

PREP
(SEE 3 ON B) (MOVE 2 A C) (06)
-->
Deleted:
(SEE 3 ON 8)

PREP
(SEE 2 ON 8) (MOVE 2 A C) (Q6)
-->
Deleted:
(SEC 1 ON B)

PREP
(S TOPOF B IS 3) (MOVE 2 A C) (Q6)

Deleted:
(SfE TOPOF B IS 3)

'PEP
(SEE 3 ABOVE 1) (ROVE 2 A C) (06)
--)
Deleted:
(Stt 3 ABOVE 1)

PREP
(SEE 2 ON I) (MOVE 2 A C) (Q6)
--r
noted.
(SEE 2 ON A)

Page
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PREP
(SEE TOPOF A IS 2) (MOVE 2 A C) (QG)
--,
Deleted:
(SEE TOPOF A IS 2)

MOVE
(STATE (PEG A 2) (PEG B 3 1) (PEG C)) (PEG B 3 I' (PEG A 2) (PEG C)

(MOVE 2 A C) (Q6)
-->

(01) (SI ,, (PEG A) (PEG C 2) (PEG B 3 1))

Deleted:
(STATE (PEG A 2) (PEG B 3 1) (PEG C)) (PEG B 3 1) (PEG A 2) (PEG C)
(MOVE 2 A C) (Q6)

UNPACK
(STATE (PEG A) (PEG C 2) (PEG B 3 1)) (01)
-->
(1 BIGGER O)' (2 BIGGER 0) (2 BIGGER 1) (3 BIGGER 0) (3 BIGGER 1)
(3 BIGGER 2) (PEG B 3 1) (PEG C 2) (PEG A)

SEENONE
(PEG A) (Q1)

(SEE TOPOF A IS 0)

SEE1
(PEG C 2) (Q1)
-->
(SEE TOPOF C IS 2) (SEE 2 ON C)

SEE2
(PEG B 3 1) (Q1)
-->
(SEE 3 ABOVE 1) (SEE TOPOF B IS 3) (SEE 1 ON B) (SEE 3 ON 8)

Q1TQ3
(Q1)
-->

(03)
Deleted:

(Q1)

. 01FF
.

(SEE 3 ON B) (GOAL 3 ON A) (Q3)
-->
(WANT (3 B A))

Q3TOQ4
(Q3)
-->

Deleted:
(Q4)

(03)

TRY
(WAN! (3 8 A)) (Q4)
--,
CRY 3 8 A) (Q5)

Deleted:
(WANT (3 8 A)) (Q4)

f

1EGAL
(3 Al6UP 0) (Sit icrOF A IS 0) (SEE E6PJf n IS 3) WEE' 3 e A) (ril)

>
(MOW, 3 8 A) (QC)

Deleted.
(TRY 3 0 A) (Q5)

S

/ .4
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PREP
CS 3 ON 8) (MOVE 3 8 A) (Q6)

Delited:
(SEE 3 ON 8)

PREP
(SEE 1 ON P) (MOVE 3 B A) (Q6)
-->
Deleted:
(SEE 1 ON 6)

PREP
(SEE TOPOF B IS 3) (MOVE 3 B A) (Q6)
-->
Deleted:
(SEE TOPOF B IS 3)

PREP
(SEE 3 ABODE 1) (MOVE 3 B A) (Q6)
--
i.;:,leted:

(SEE 3 ABOVE 1)

PR'
(SEE 2 ON C) (MOVE 3 B A) (Q6)
--a
Deleted:
(SEE 2 ON C)

PREP
(SEE TOPOF C IS 2) (MOVE 3 8 A; (Q6)
-->
Deleted:
(SEE TOPOF C IS 2)

PREP
(SEE TOPOF A IS 0) (MOVE 3 8 A) (Q6)
-->
Deleted:
(SEE TOPOF A IS 0)

Friday 12 Dec 80 00:18

MOVE
(STATE (PEG A) (PEG C 2) (PEG B 3 1: (PEG C 2) (PEG 8 3 1) (PEG A)
(MOVE 3 8 A) (Q6)
-->
40) (STATE (PEG 8 1) (PEG A 3) (PEG C 2))
Deleted:
(STATE (PEG AN (PEG C 2) (PEG 3 3 1)) (PEG C 2) (PEG B 3 1) (PEG A)
(MOVE 3 B A) (Q6)

UNPACK
(STATE (PEG 11 1) (PEG A 4) (PEG C 2)) (Q1)
-->
(1 BIGGER 0) (2 BIGGER 0) (2 RIGGER 1) (3 BIGGER 0) (3 BIGGER 1)
(. BIGGER 2) (PEG C 2) (PEG A 3) (PEG 8 1)

SEE1
(PEG B 1) (Q1) *A

--,
(SEE TOPOF B IS 1) (SEE 1 ON B)

SEE,
(PEG A 3) (QI)
--)
(SEE TOPOF A IS 3) (SEE 3 '4 A)

s

51E1
(PEG C 2) (Qt)
--s



DS/(C:DFICOL.DRE3[A310DK17) at (M-10a ,11942 chars, 25 blks

(SEE 10101 C IS 2) (fU 2 ON C)

OITO3

(0)
--a

(Q3)
Deleted;
(Q1)

PROBLEM SOLVED

SOLVED
(Q3)
-->

Friday.12 Dec 80 09:18

END -- EXPLICIT HALT
22-productions (160 / 275 nodes) (75 / 163 features)
159 firings (427 RHS actions)
25.855346 mean working memory size (31 maximuo)
3.02515724 meap conflict set size (8 maximum)
39.735849 mean token memory size (61 maximum)
6.966 seconds (43.811321 msec per firing) (16.313'3173 msec per action)

NIL

(wm)((STATE (PEG 8 1) (PEG A 3) (PEG C 2))
(1 BIGGER 0)
(2 BIGGER 0)
(2 BIGGER 1)

106(3 BIGGER 0)
(3 BIGGER 1)
(3 BIGGER 2)
(PEG C 2)
(PEG A 3)
PEG B 1)

(SEE TOPOF 8 IS 1)
(SEE 1 ON B)
(SEE TOPOF A IS 3)
(SEE 3 ON A)
SEE TOPOF C IS 2)

(SEE 2 ON C)
(C ISA PEG)
(II ISA PEG)
(A ISA PEG)
(GOAL (PEG A))
(GOAL 3 ON A) /--~
(GOAL (PEG 8))
(GOAL 1 ON B)
GOAL (PEG C))

(GOAL 2 ON C)
(ATTENDED (TOPGOAL (PEG A 3) (PEG 8 1) (PEG C 2)))
(Q3))

...0

(undrib01e)

Page 1.40

061-1.


