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' ABSTRACT
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,
Mark L. Miller and Ira P. Goldstein

A grammar of plans. is developed .from a.taxonomy of basic

planning techniques. This grammar serves es the basis for the design of

a' new kind of interactive programming environment (SPADE). in which

programs are generated by explicitly articulating planning decisions.

The utiliOy of this approach to program definition is that a record of

these decisions, called the plan derivation, provides guidance for

.subsequent modification or,debugging of the program.

Moreover, this grammatical approach to planning allows the

.development of a-taxonomy of bugs, as particular kinds of ,errors in

applying the planning grammar. Following a linguistit analogy, five

types of planning bun are characterized: syntactic, semantic,

pragmatic, circumlocutions, and slips of the tongue, The plan derivation

can be accused during subsequent debugging, to aid in diagnosing the

underlying cause of erroneous code. Repair is accompliihed Via

replanning, in which a substructure of the derivation le replaced. A
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debugging 'resistant for the SPADE environment (RAID) is designed based on

this theory.

The enterprise embodies DiAstra's.philosophy,df programming in

a structured 'fashion, bUt represents color* detailed study of planning

and debugging techniques thanhas previously been attempted.

This report describes research done at the Artificial Intelligence

Laboi.atory of the Massachusetts Institute of Technology. It was supported in

part by the National 'Science Foundation under grant C40708X, in part by the

Advanced Research Projects Agency of the Department of Defense under Office-of

Naval Research cgntract NO0014-75-C-060, and in part by the Division for Study

and Researchin Education, Massachusetts Institute of Technology.
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Grammar Based Editor. 3

1. Irftroduct on

1,1. Backgroundend Objectives

Miller & Goldstein
.

Our goalSin this ceport aft: (1) to understand the processes by which a.

programmer, whether human or machine, moves from a declarative statement of a

problem to a procedural statement of its solution; and (2) to discqver methods

by which these processes can te;facili ated., We see programming as involvingtwo-

principle activities: planning add debugging. .Most previous research has

studied these two activities in an isolated fashion. This reporI presents a.

wafted theory of planning and debugging,'based on a linguistic analogy.

_

The investigition'includes the'design area interactive programming

environment called SPADE. SPADE is an'tronym far Structured Planting and
Debugging Editor. This name emPhUsiies two themes: (1) our perspective on, r

programmpg as a'process of planning and debugging; and (2) our,expectation-that

SPAALlike systems will eventually help in achievigg the structured programming

*movement's goals of program reliability, read ility; extensibility, Portability,'

and so on. The objectives for the SPADE p °vamping environment are that itl

serve, not only as a practical applicitio of the theory, liqt.also as an

experimental crucible for testing claims of the theory.

In other papers the authors elaborate other dimension' of this linguistic

'approach to' problem salving. [Miller & Goldstein 1976a] provides an overvie* of

euf 'research es a whole. [Goldstein* Wi13ef.1976a] presents 'a long term

research direotiOn: applying the problem solving theory to the construction of a

lmarrking environment to teach elementary,. programming. In [Goldstein &

Miller 1926b] the authors design PATN, an automated problem solver. In [Miller &

Goldstein 1976b] the authors consider the use of grammars in the anapests of

elementary programming protocols. In iNdller & Goldstein 1976dj thelortt ors. take

kteps toward automating this analysis task by designing a system called PAZATN.

qt. 4

1.2. Overview

The basis for SPADE's design-is a unified problem solving theory-which

incorporates kfundamental.linguistic analogy. The theoiy rests on a taxonomy of

basic planning techniques: Planning,- according to the thedry, pfoteeds by A

sequence of design decisions, in which the programmer keleetsa plan type, and

then carrtes*put the subgbals defined 'by the application of that plan type-to'the

current problem situation.. This decision process is modeled by a context free

grainer.

4

- Mid analysis of planning leads to a taxonomy of program lags as well.

4

4 4
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Our claim that the theory unifies planning and debugging is based on'the fact
that classes of bugs pre defined by tracing their origins to particular types bf
erropeous deciskoni in applying the planning grimier. Following a linguistic
anallsgy, these planning bugs are characterized as: syntactic, pesantic,
pragmatic, circumlocutions, and slips of the tongue. t

The SPADE system willprovide an interpreter for cdntext free grammar
rules. 'It will provide bookkeeping facilities, metntaintng a. record of the
planning ,decisions made in the[ application of each rule. This data structure
generated ,by the grammar is called the plan derivation. Programs are merely the
terminal strings of such derivations. He PADE should encourage programmers
toArarticeiate their planning( decfsions, ra er than merely leaving the plan

-!implicit in the resulting code.

The derivation, structure created during planning episodes can be accessed
during subsequent debugging episodes to aid in diagnosing the underlying cause of
malfunctioning-code. -Repair would then proceed via replanning, in which a
substructure of the plan, derivation is replaced. One result of this repair would
be that the purely hiermihigal-deriiation tree is replaced by a chart Of
alternative derivition °trees.. Diagnosis and .repair' techniques based on this
theory are to be implemented in a debugging assistant called RAID (for RAtional
Implementation of trebugging). RAID will be a comp&nent ofthe SPADE environment.

This paper presents the design for SPADE. We plan to implement the 4.

jOstem. The implemented system will eirveks the basis for a set of experiient114
exploring aspects of the theory: such as the relative effectiveness of
alternative planning grammars. Examination of session transcripts, coupled with
Sittematic interviews of SPADE users will providi'evidence for answering the
following sorts of question;:

1. Do' users find the planning grammars adequate; or are there

planning 'tdecisioas which iiiply cannot be made given the
'6,restrictions of the grammar?

2. How much of the grammar would remain the same in moving'from'
one application tb another? We initially plan to implement the

domain dependent'portion of the grimmer for the Logo.elementary
gr programming domain.' Later we intend experimenting with

inning grammars for different domains, to include: the
'blocks lorld,i.a set theory world, and an elementary calculator
world.a

3 Do the plan derivation structures generated-by the grimier
serve is useful documentation, aiding one programmer in
understanding and modifying programs written by another?

'



Grammar Basedlditor 5 Miller & Goldstein

)1. How effective is the plum as a pedagogical alternative for

teaching.programming and problem solving? Cain its effectiveness

be, attributed to such factors as greater articulation of
. .

' planning and debugging 'strategies?4

The answers to these questions; in turn, will shed light upon a Jarger
cpstion addressed by the. enterprise: does collgutational linguistics provide a
valuable set of formal'concepts'and algorithm for constructing a theory of
problem solving? .

elaution two, presents our theory of planning. The third section
introduced =he SPADE system. Out theory of debugging," and its embodiment in
MAID, are the topics of sections four and five. We conclude by discussing
1imitations, extensions; and applications to structured programming, automatic
programming, and protocol'analysis.

. . t .
I

\._
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2. A Grammatical Theory of Planning,

It wouiehelp a great deal ifewe had ,a general language
specially designed for,talking about plans... Such a language
would, presumably, give us a convenient- notation for such
aspects es flexibilittof Plans, the substitUtion of subplans,
conditional and preparatory subplans, etc. For example, it does
not particularly 'letter 'in 'diet order Mrs. Jones chooses to run
her eirandi when she gets,tb town. 'The ..: subplans can be
perhuted in order, and so we say that this part ofher Plan is
flexibly. But she cannot permute the order of these with the 4

subplan for driving to town, or for driving home. That part'of
the plan its inflexible. Some subplans are executed solely for
the purpose of creating the conditions under, which 'another
iubplan is rele'vant:' Such preparatory 9r mobilizing subplans
cannot be froely moved about with respect to the other subplani"
that .they. anticipate. Another important, dimension of freedom
that should be analyzed is the interchangeability of subplans.

'Mrs. Jones can drive to town over a variety of equivalent
routes. The variety is limited only by the condition that they
terminate when one of her three alternative destinations is
reached, since only then would the next part of her"Plan-ecohe ;
relevant. Given a satisfactory Plan and a statement of the
flexibility and substitutability of its subplens, we should then
be atifir-to generate many alternative Plans that are also
satisfactork.-cAnd we.--Ihould like to hays ways for deciding
which combinationi--of Plans are most efficient....

a

'2.1. A Taxonomy of Plans
I

i

To arrive'at a syntax of plans, we begi y.formuleting a taxqnomy of
planning methods. Figure 1 presents a taxonomy of eriety of common planning ,..

.

techniques.*' We arrived at this taxonomy pertlYlby rospection, partly by
examining problem solving protocols [Miller & Goldstein Z6b], and partly by
studying the analyses of problem solving.provided,by polyati957, 1962.'1965;
1967. 1968]. The taxonomy is incomplete: different domaIns 'would emphasise

et al. 19601

different planning techniques. Yet there is certainly &core sotoif-plannind
techniques common to all domains,*

The nitial division in the taxonomy is into planning by identification,
by decompos ion and by reformulation. The first category captures those methods
which solv the problem by identifying it as one which is already known. Th6 ,

second provides guidelines for breaking the problem into'pieces.' The third'

4
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PLAN

.0"

D FY

DECOMPOSE---

1'

, .

Miller &\Goldstein
I

LI)
- PRIMITIVE.

DEFINED PROCEDURE

---CONJUNCTION

REFORMULATE-

I

REPETITION

--EQUIVALENCE

SIMPLIFY

ct'

INEAR

-SET

-SEQUENTIAL

DECOMPOSIT;ON
ONLINEAR

COMPOSITION

iRGENERIC <-4 EXPLICIT

EGROUP

[SPEC IAL I ZE

GENERALIZE

ANALOGY

FIGURE 1
TAXONOMY OF PLANNING CONCEPTS

8

ir

3



I
Grammar Based Editor 7 Hiller & Goldstein'

U.

ftludes.techniques that attempt to reformulate the problem, into a form more
Ainable to identification or decomposition.

.01P.

For.any domain,' there are primitives and previously solved problems.
Hence, the identification tlaSz..breaks into thqse two sub- categories:. Of course.
there can be enormous subtlety .in how a problmi is recomhzed as an instance of a
previously solved case.' Constructing a taxonomy does not resolve this issue). In
(Goldstein & Miller 1976b] re.introduce formal descriptions of the problem
domain, and hence can address his issue more precisely.

There are:Any decompoiltion techniques. The taxonomy of figure 1 cites
only two: decomposition into conjunctive subgoals and decomposition, into a
single subgoal; repeated some number,oetiies. Other decomposition techniqlos
are appropriate for problems that can be decomposed into a disjunctive set of
subgoals, or into a negation of some goal. Conjunction involves the critical
question of whether each conjunct can be solved Adffiependently,of the others, or
whether there are .interactions. .Repetition divides-into solution by simple
iteration of drlingle subgoal or solution by full recursion.

Reformulation 'is perhaps,the subtlest of thep4nning'cqtegories. It
includes finding an equivalent formulation of the problem which presumably it
easier to solve or a critical simplification whose solution is a stepping stone
to the solution of-the original problem. Occasionally, one may even reformulate
la problem into a stronger form: such as constructing an example when only -an
'existence proof is required.

How can we further explore this Set of Planning concepts Our first step

,

is to be more explicit about the decision process Involved-injelecting planning
.methods from this taxonomy.

,o

2.2. A Planning Grammar

We view planning as a4process in which the problem solver selects the
appropriate plan type and then carries out the subgoals defined by that plan,
applied to the curr t Problem.' From this viewpoint, the planning taxonomy
represents a decision ree of alternative plans. This decision process can be
formalized by a context ee grammar.8 A grammr is chosen to present these rules
because it provides a and compact representatiuseful for
characterizing the hierarch cal structure of planning. We would notergue that a
context free grammar is the appropriate formalism for representing a complete
theory of problem solving -- elsewhere we employ a more elaborate formalism.
However, we believe that the grammar represents'a useful abstraction of the
decision points in-the planning process.
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The top level rule in the problem solving grammar

P1: -SOLVE ->.PLAN (DEBUGr

Miller &

The nonterminal SOLVE is foimally analogous to the.nontermi'nal SENTENCE in a

linguistic grammar for, parsing or generating sentences. P1' states that planning

is first used to generate a plin,,with subsequent debugging then being required

to complete the solution. pr Mese, the plan may be entirely correct. For this

reason, DEBUG is in brackets, indicating that it is an optional constiVUent: We

shall have more to say about debugging in a later section.

The plaving taxonomy cAricterizes the planning process as involving

three mutually exclusive plan categories: identification, decomposition, and

reformulation. Hence, in planning, the problem solver must choose among these

alternatives., We represent, this by the disjunctive rule P2: .

'P2: 7) IDENTIFY 1 DECOMPOSE f REFORMULATE

Nbm lit us consider the details olpeach of these planning categories.

Identification consisted 9f using a primitiVe or using a pfiviously solved

problem. This is described by P3.

er-
P3; IDENTIFY -> PRIMITIVE I DEFINED

The first alternative leads to the use of primitives from the particular problem'

domain being investigated.

The planning theory is modular, and independent of the application

domain. But it is obviously critical to illustrate its applicability by concrete

,examples. In this report, we use the Logo elementary graphics programming domain

as our source of examples. The task in this dodainaIs to draw pictures with a

cursor called the "turtle" by means of programs that move the cursor on the

screen. Figure 2 illustrates the grammar rules for the primitives of this

domain. Figure 3 illustrates a typical goal undertaken by beginning programmersk

A "wishingwell picture."

The second identification alteriative, DEFINED, involves retrieving a

solgtion from the library of previously defied solutions and inserting it into

the current solution. These two steps are captured by the rule P4.

P4: "DEFINED -> USE-CODE & GET -FILE?
A

We now turn to the second major planning category, decomposition.- TWo

important decoiposition techniques are conjunctive plans, in which the problem is

sublvided.into independent parts, and repetition plans, in which the problem `is

10
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'lore 2. Grimmer Rules for Logo Prisi ives

Ll. PRIMITIVE

L2. VECTOR

L3. ROTATION

L4. PENSTATE

4

Miller & Goldstein

/

-> VECTOR I ROTATION I PENSTATE

-> f061ARDISACK + 'number"

LEF RIGHT + "number"

PENUP I PiNDOON.

1
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FIGURE 3
WISHINGWELL PICTURE
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. . .

, ehiracteritedin terms of a sub-problem repeated semi number-of times.

..

PP: DECOMPOSE Le).CONJUNCTION 1 REPETITION
.1. " .

:
\-Oise we nclude other plani for decomposing problems' c as disjunctive

'' plAnsthis.. is would be extended by addibg additional optibe. . , .

.

1.

: The tax y sbowiconIuhction as splitting into two cases: 9near 'awl
none bkr. 'The Ain case' is intended to represent the.sitdation. wherelh AA/

, %mini Cts cdnlbe solved entirely independently. ThasoldtiOn to the, original
. problei then becomes: simply sequeicing the,solutittisto the subgoals; or, in .

-some case ;, executing thelain any order, i.e the independence extends eveyto t
composition process. Solving for the rats of e 'factored polynomial 4s line

. (each rool.tyan be solved for indepefidently) and the Composition is set strypure

(the order ofthe'solutian dpes pet matter). 3olVing for'the Sub-pictureivethe .

wishing well shown eirller is independentobut to obtain,61010iiredrelations
between} iNt parts; some specific' sequence must by established. Rule: PG defines

othe two cases for conjunction:
,

0

PS: CONJUNCTION. -> CNEAR 1 NONLINEAR
, 1

.../

,

.Rule P7 specifies-the two alternatives for a linear solution:

4

P7: LINEAR -> SET 1 Spa

P7 s incomplete: (The composition of independently solved subgoals might

0.11,

be in Walt 1, or vi,a.some Intel-runt-control structure. A.goal of-our research
is to'develo the depth and breadth of Qs taxonomy and its associated procedural,

formsso as t include such constructs.

As
main Step f

SPPk

quential plan consists of a sequence of actions, eaCeconsistiiiof a
lliwed by an optional interface; these are preceded and 'followed by

up and cleanup steps.

PS: afti [SETUP] (MAINSTEP [INTERFACE] >* [CLEANUP]

The sence,of 4:Sequential Alan is-thatthe solutions to the main 'steps can be
des independently of each other..

, e

0 . A set plan is simpler: the independence of the composition implies that
. no Setup or cleanup Steps are necessary.

tst

6I

.P9: SET , MEW
- -

For the programming, domain, a setup, petwiteptitnterface,

t
.

or
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mipillstsibet either the additi'
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10 . Miller & Goldstein

a, line of code or a recursive application of

PAO: 'SETUP .-1.STEP

mAiNsfEp -> STEP

P124 INTERFACE -> STEP

P13: CLEANUP 1-> STEP

P14: STEP .> ADD I SOLVE

The dgrammar ndw:ldmits potentially infinite recursion. What is got
formalized by the context free' grammar is the fact that SOLVE is always attempted

with respect to. some spepikc.problem and in a definite context. 'Successful-

planning involves sdlvindilacessively simpler problems until a direct solution

in terms of the answer library is possible. The semantic and pragmatic
components, formalized in- [Goldstein& Miller 1976b], would constrain the

potentially infinite recursion allowed by the grammar.

Similarly, the grammar does not.capture the distillitjon between a setmq,

main sten, and cleanup: they are all simply steps.- There is,however, a

semantic distinctiOn: °For example, the distinction- between a main step and

setup depends on whether the code is designed to directly itcomPlish gods subgoal

- - -a main step; at to establish some prerequisite for accomplishing some subgoal

- - a setup. For example,oin'the Logo graphics domain,.main steps generally
involve'drawing a visible part of the picture while setup steps havif the gpal of
invisibly modifying thepositiont.or beading of the turtle between adjacent Main

steps-. The,MYcroft.pi.ogram (Goldstein 19741] included a promo annotator that

made such distinctions by c ring the picture drawn by the code with

predicOltlogic description of nded picture)'

P15 states that repetition- plans cln.be accomplished either by simple

loops or by full recursion. (The lattEr'is not elaborated here.)

P15: REPETIT4ON -) ROUND') RECURSION

it

'A round plan it the simple looping case,,which'talfbe accomplished either by

iteratipn or by tail-recursion. (Tail-recursion is the restricted case wherein

'the recursion 1.s constrained to be the last line of the proghtm. It is

computationally, equivalent.to a simple loop structure.) The following rule

captures. this:

P16: ROUND -) ITER-PLAN 1 TAIL -RECUR

Figure 4 'illustrates a triangle being accomplished by tireelifferent
4;6 Logo progrbp. These correspond to the use of,a sequential plan, a recursive

round plan and an iterative round plan. The annotations in parentheses, stating
40,

14:

A
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Figure 4.fr.Accomplishint A Triangle

/'

(Sequentiel Plan)

TO TRI-SEO . .

FO 1011. 7----10110.54---(accompliseilde one),

. v

RT 120 Interface Step--(prepare heeding for iide two)---

FO 100 two)-----,Fleigitep---(eccomplish side

. Sequentiel,

RT 120

i0 IRO

interface Step--(prepare heading for side three)-

Step---(accomplisb three)

Plan

p.

Main side

NT 120 Cleanup Step (accomplish heeding transparent ).-.1

ENO

(Tell Recursive Sian)

TO T111411C . I (ne stop step: does nit halt) I

FO 101 ---Pilin-qop-feccompliih side

-Seq Plc
RT 120 -Interface Step-(rep. heading side n+1)--1

-- Toil
TRI -AEC -----7-----Recurs /en Step Recurtive

Plan
ENO

(Itsretive Plan)

TO MI-ITER

3R EAT $ 7Repeat Step

FO 100 -4Main Step---(accompl
-Iterative

h s e o Plan

-Seq Plan -'
RT 120 interface Step-(prep. heading sidi n+1)-I

ENO

. .

15
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what the planning step is intended to accomplish, are semantic descriptions not

generatetrbilithe grants e4rammar. must be supplemented by semantic

intbrpretation rulds,loala such analysis:

es 0'. f,
Tail recursion may be reeNnted as a sequential plan plus recursion and

stop stone. Iteration is similar. ' q
,, t -

P17: ITER-PLAN -> 'repeat step' + SEQ

. P18: TAIL-REC -->
.

STOP-STEP SEQ + REC-SUP

P19: REC -STEP -> 'recursive program call"

1194 STOP-STEP . -> tsiOnprogram call" .

Reformulation, the, third major planning category, shoulci be briefly

mentioned: figure 5 proviOis a simple 'example of refoimulation by regrouping the

'parts: a wishing4411, originally decomposed into a riot, a pole and a well, is

later viewed as-decomposable.into a tree and a well. Reformulation techniques

depend intimately onthe problem description. ,Hence, We do not consider them

further ih'this report. The sebset ofthe planning grammar' employed here is.

unmerited in figure 6.

4

ow

v
4IP

1 c

V



GrAmmar Eased Editor 'Miller & Golccstein

Figure 5

REFORMULATING. THE WfSHINGWELL IN TERMS OF ATREE

TREE 7,.

'WELL
ELL

SINCE SPADE-0 HAS NO PROBLEM- DESCRIPTION, IT MAY NOT ALWAYS

BE APPARENT WHEN A REFORMULATI'ON HAS OCCURRED. SOMETIMES IT

WILL BE APPARENT, THOUGH, FROM THE DIALOGUE. FOR EXAMPLE:

1A. WHA1 ARE YOUR SUBGOALS?
. $

1B. 4100f, POLE, WELLf

.2. WHATA WOULD YOU LIKE TO DO?

2B. REDO CHOICE 1.

3A: CHOICE-1 UNDONE.

WHAT ARE YOUR SUBGOALS?

3B. TREE, WELL.

4A. RULE FOR. TREE IS: SOLVE -4.-
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,Figure 6. 02: A Granular of Plans

. PI: SOLVE -> PLAN + [DEBUG]

P2r PLAN -> IDENTIFY I DECOMPOSE I REFORMULATE

P3: IDENTIFY -> PRIMITIVE I DEFINED

P4: DEFINED -> USE-CODE & GET-FILE

PS: DECOMPOSE -? CONJUNCTION I REPETITION

P6: 'CONJUNCTION -> LINEAR I NONLINEAR

P7: LINEAR

Pe: SEQ

P9: SET

P11: SETUP

P11: RAINSTEP,

PIZ: INTERFACE

- ) SET I SEQ

- > [ SEUR] -01AINSTEP [INTERFACE]) 4, [CLEANUP]

*
- > (STEP)*

- > STEP--

- > STEP

-> STEP

P13: CLEANUP * -> STEP

P14: STEP -> ADD I SOLVE

P1S: REPETITION -> ROUND I RECURSION

'1016: ROUND

P17: ITER-PLAN

els: TAIL-RECUR

P19: RECTST
i

P20: STOP-STEP

ti

ctr-

- > ITER-PLAN I TAIL-RECUR

- > 'repeat step' SEQ

0
Ie-

- > STOP-STEP t SEQ t REC -STEP
/

- > recuralvaprogran call'

- $ 'stop progr
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e

3, The SPADE Editor

How can we validate a particular grammar? How can we judge whether the

grammar captures at some level of abstraction the set of planning decisions

in4blved in solving problems for some domain? One traditional methodology for AI

is to develop an automated problem solving system. The grammar, however, is

insufficient for this. Semantics and pragmatics are required to make our theory

deterministic. (We develop this in [Goldstein R Miller 1976b].)

But another methodology is possible. This involves incorporating the

grammar into an intelligent editing system to augment the capabilities of the

hmsav problem solver. The critical question is whether-such an intelligent

support system successfully aids the user. Itn this section we design sTE, am

editor for defining programs that incorporateiour planning grammar.

3.1. SPADE-0: A Rudimentary Planning Assistant

Thi name Structured Plenetn, and iebuggte, Editor emphasizes the link

between the problem solving_theory being evolved here,and the structured

prograaming dovement.- Dahl, Dijkstra, and Hoare [1972] properly argue for

programs that,reflect coherently structured problem solvihg. But they do not
develop a theory of panning in any great detail. Our effort in this diraction,

therefore; naturally supplements the examination of programmihg style initiated

by Dijkstra and colleagues.

Figures 7a anib illustrat n interaction with SPADE-0, oyr propoted

grainier based editor.12 The user interested in defining a Logo program for
drawing the wishingwell shown earlier. In the SPADE environment, this is done by

applying the planning grammar in generative mode. The user begins-by specifying
' whether the plan'is to be an identification, decomposition or reformulation. The

editor keepi thick of the pending subgoals, -allowing the user to move from one

goal to another.

Consider lines 0a and b of the SPADE-0 scenario.

6a. Do you wish to include thioptional constituent CLEANUP?

6b. >LATER

'These lines illustrate the user suspending one subgoal, without completing it, in

order to pursue another. Althdugh SPADE's default is to suggest subgonls in "top '

down* order, the system will offer the used the freedom to deviate flkm

-default, pursuing the set of retired goais,in any other order.. The decision as
to Whether CLEANUP step is needed in the sequential plan is part of the

1 9

IIIL
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.Fisre 7a. SPADE-0 Scenario (part a)

The preliminary /version of SPADE is little more than espookkeeper for the

_user's subgoels. it is currently being implemented-Pm assigninl an interpretive

procedure, to each grammatical primitive.

Ile. Vhit 0 the name of your top level procedure?

lb. >WW

2a. Rule for WW "is: SOLVE -> PLAN-4. [DEBUG].

Rude for WW-1 is: PLAN ->.IDENTIFY 1 DECOMPOSE 1 REFORMULATE.

What now? .

.2b. >DECOMPOSE

3a. Rule for WW-4 is: LINEAR -> SEQ UENTIAL 1 SET.

What now?'

>SEQUENTIAL
/ (

.

Rule for WW-5 is:.SEQ -> [SETUP] 4. <MAIN:4. [INTERFACE ] >* [CLEANUP]

Do you wish to include the opticinal constituent SETUP/

41): >No

Sat How many occurrences of <MAIN + [INTERFACED do you wantt

Sb. >3

6a. D0' you wish to include 'the optional constipent CLEANUP?

>LATE$

.LATER is'aAtommand understood by

terminate this path.,but that it

tconjunctive.goals, reminding the

records the 'information required

application of the SEQ rule. It

SPADE. .It means that the,user mints to

must be recommenced later. SPADE keeptrack of
user'of the pending goal list if asked. MereMere tt

to return to and eventually complete. the

can then go on to other goals.

2 0 (

1
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Figure 7b. SPADE-0 Scenario (part b)

7a. Your pending goals are POLE, ... and WELL. What NOW ...
7b. )POLE

SPADE applies the SOLVE.4rule recursivelg,

r
8a. Rule for POLE is: SOLVE -> PLAN [DEBUG]

Rule for POLE-1 is: IDENTIFY 1 DECOMPOSE ( REFORMULATE.
What now?

8b. )IDENTIFY

9a. Rule for POLE-2 is: IDENTIFY PRIMITIVE I DEFINED.
What now?

9b. >PRIMITIVE

10a Rule for POLE-3 is: PRIMITIVE,r> VECTOR -y ROTATION 1 PENSTATE
What now?

I0b. )VECTOR

)FORWARD 100 .

Ila. POLE completed. Pending goals are: ROOF, WELL, and WN-17 (CLEANUP of
WW). Whit now?

1lb. >WELL
,

go,

12a. Rule for WELL-1 it: PLAN IDENTIFY 1 DECOMPOSE 1 REFORMULATE.
What now?

,12b. )DECOMPOSE"`
Mere we have substituted a grammar which contains rules for conjunction but not
repetpion. TAU 011014 its to illustrdte the manner it.which SPADE avoids
intee044ating the' user when no actual delision is lleoWtred.

13a. Rule for WELL-4 is: DECOMPOSE -> CONJUNCTION: -

(Forced.)

Rule for WELL-5 is: CONJUNCTION -> LINEAR 1 NONLINEAR
What now?

.?
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Nt,

.0.- skeleton for the superprocedure. (The goal of deciding whether to include the

CLEANUP should not be c d with the goal of designing the CLEANUP once the

need for it has been stablished.) Somi.users might.prefer to defer this

%.(.,,

decision until the in: steps have been further elaborated. SPADE should). able

to accomodate the elt native solution order. '

The typeout combencing.at line 13a illustrates another feature of SPADE-

O. (A stellar sequence is shown at 2a.)

1

13a. Rule for WELL-4 is.` ..gcomposE -> CONJUNCTION.

(Forced.)

Rule for WELL-5 is: CONJUNCTION -> LINEAR I NONLINEAR

What now?.

4

Since the grammar is interpreted (rather than being "programmed in"), it is easy

to try out alternative grammars. Suppose, as is shown here, we employ a

simplified grammar in which the REPETITION rules have Bien eliminated. (This

might be useful in tutoring a novice for example.)` Then no decision is actually

required in applying the DECOMPOSITION rule. SPADE should nonce this, and not

interrogate the user in such cases.

Figure 8 illustrates one posOble derivation tree for WISHINOWELL as

fined using SPADE-0. The utility of this record of the user's design decisions

will become clearer when additional features of SPADE-0 are presented in the

section on RAID.

The implementation of SPADE-0 (which is-now in progress) will not be

difficult., It is simply a bookkeeeping system for applying the planning grammar

in generative mode to build a solution. The basic implementation technique is to

provide -an interpretive procedure for each grammatical operator (such as "I").

Additional featurescan be implemented by assigning specialist procedures to non'

terminals of the gi.ampar, as will be dbne for the debugging assistance

illustrated later.

3.2. Towards SPADE-1, and Beyond

1 .

_

There is an upper bound on 'the utility of SPADE-0 which canaot be

overcome by more careful human engineering. .111s s!hie to the Tap that SPADE-0.

)p)does not have access to a description of 0 problem being solved. When

application of the grammar rules results in a recursive application of SOLVE,

SPADE -0 has-no notion of the relationship of the subproblem to the top level

%goal. To overcome this funftmental liiitation, we intend to design and implement
,-- SPADE-l.

00
4,

1
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ABBREVIATED HIERARCHICAL PLANeDERIVATION.FOR A'WISHINGWELL

SOLVE -PLAN -DEC=LIN-SE

0

(
SETUP...--IDPRIMITIVE

6

rUSE-c6bE---
114STEP (WELL) . - ID- DEFINED-1.

GET-FILE

INTERFACE (BETWEEN WELL & POLE)4..---DEC..r-LINSEQ

MAINSTEP (POLE) . -ID PRIMITIVE

MAINSTliP

CLEANUP.

RIGHT 90

SQUARE 100

GET SQUARE-
FILE

FORWARD sp

--LEFT 90

INTERFACE (BETWEEN POLE & ROOF) ... -DEC... -LIN SE

FORWARD 10C

r-SETUP 90
-

INSTEP... FORWARD 50

LEANUP . .
RIGHT 120

MAINSTEP (ROOF)... DEFINED... TRIANGLE 100"

A
Ave '1

Sf

(1)

ai
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Figure 9 shows a hypothetical interaction with SPADE-1. In many respects,

SPADE-1 will be similarto SPADE-P. It,still is governed hy-iiii-Of context free

grammar rules, .ando still provides bookkeeping facilities for suspending and

.resuming subgoals However, SPADE-1 requests that the user `supply a formal

description of the, problem. (A library of standard problem descriptiont is

supplied for use as building blocks). The user need not comply with the reqqest:

however, without the Problem description; SPADE-1 can help only as much as SPADE-

0.

With a problem description, SPADE -1-would-be able to provide additional

Assistance. It could notice 'when a procedure for solving a subproblem' "already

exists in the answer library, by accessing the description of what that procedure

accomplishes. It could perform rudiientaryrdeCompositions, and perform more

substantial inferences when the user bypasses intermediate step's. ,Coupled with a

performance annotation module -(such as in [Goldstein 197p), SPADE-1 could
determine (in many cases) whether a given subprocedure satisfies its
specifications. .

The introduction of formal problem descriptions provides-a first
improvement over SPADE-0; introducing pragiatic constraints at choice points in

the grammar wouldhprovide a second. This leads to a more elaborate linguistic

formalism which we briefly consider in the concluding-section.

While we plan to perform these extensions, from SPADE -0 to SPADE-1 and

beyond, SPADE-0 will still serve a useful role. The grammar based editor can

support experiments on several important issues: (1) the adequacy of the

plannjAig premier; (2) the domain independence of the plannidg grammar; (3) tbe_,

utility of the planning grammar in terms of structured programming
considerations;/(4) the pedagogical `value of an articulate planning environment.

There is another dimension along which the theory as presented so far is

ingompl e: While the planninfies alone are ufficient to describe tiprograms

(As sta c, finished objects, they do not capture he process of defining possible

tolut ns, testing these solutions, and then debugging tillm. We lurid a theory of

bugs and of their diagnosis and repair, to supplement our theOry of/plans. This

i e purpose of the next two sections.

t

40,
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Figure 9. 3PADE-1 Scenario

With a description of the Odle*, SPADE could,be more helpful.

la. Tell moire name 'of your toplevel procedure?
lb. >WW

111111111

2a. Would you like to define a model?
2b. >WISHINGWELL

3a. OK. WISHINGWELL model found in Model Library.
Rule for V011 is: PLAN -> IDENTIFY,) DECOMPOSE I REFORMULATE.
What noV\fiE

3b. )ROOF POLE CL

4a. These subwials correspond to model parts. Are you pursuing a LINEAR
DECOMPOSITIONplan?

&b. >YES

5a. The pending subgoals aril ROOF, POLE, WELL and the decisions regarding
inclusion of preparatlry steps (WW -q) for WW. What now?

5b. >ROOF

6a. In the WW model, ROOF.is described as a triangle. Therd $s a TRIANGLE
procedure in the answer library. Hence, an IDiNTIFICATION plan pay ,
succeed. What now?

6b. >IDENTIFY

la. The TRIANGLE procedure in the answer, library satisfies the intrinsic
description of ROOF. Would you like to Use it?

lb. >YES

M Sa. Of. The ROOF is complete. Your pending goals are POLE, WELL, and WW-5.
What nowt

Ob. >

9a. The first order goals for the parts are now complete. 'WW-5 (the choice
of preparatory steps for WW) is complete. You have not expanded the
definitions for the interface step, WW-6, nor fer the cleanup step, WW-
S. What now?

r
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4. A Orammaijcal Theory of Debugging'

!.

,-.....4.- 4-,.. .
Bugs are so important tgii it04s useful to claisiiy them

and,eive they classes name'.. Inreal.world problem Solving we

oftea'Vevg names to impOrtant;classes of bugs. In electrical

.
.

en9peering, for example, -one classcof bugis "instability." It....

may be manifest as "thermal runaway' or "spurious oscillation"

in an amplifier: Thikunderlying cause is °positive feedback,'
am
'II- and third are several possible cures (patches) which may be

appliid: "negative feedbact," or 'isolation,' for example.

.k[aussman,i1/$73, p. 170.]

-
0 .

.

;P-In earlier'sectiohs, we constructed a grammar'of planning concepts-and

described program!' as the" terminal stringSSgenerated by this grammar.`

Unfortunately,-problem sdtvers, whether human or mashing, "mutt often. decide on a

plan despite not `only knowledge which is incomplete or undirtain, but also

limitatioUs on tam and memory resources. The 4gst of chOces in such situations

can turn out wrongly: debugging is then required. In this sect on, we folSow

Sussman'srAdvicel developing a classificatiJh of bugs. Our goal fn this

classification sche is to unify our. approaches to planning in debugging by

tracing the origin f bugs-to various types of erroneousplandligg choic s. In

section five, ,e a this erspective on possible planning, errors to t sign

. of a debugging assistant' lled RAID, to be, incorporated into the SPADE
..

environment.
.

Es

4.1. Type,: of Bugs

\
-/

Given our peripective on planning; debugging can be analyzed as the

1 calization, and 'repair of errors in applying the grammar rules during

414nerepon.' Since our planning r s were Constructed from operators for'

col junction, for disjufiction and f r ptionality, there arise, three basic classes '

of error: :
.0

4
, .4

(1) syntactic bugs in which` the planning grammar it- violated,
4

.such as when a required conjunct is
,

mAssing.

(2) semantic bugs in which the play's syntactically well-formedi-

but some semanti9 constraintArising Trot the particulrir

problem. is vaiated, such` as when a 'syntactically optional

constituent, needed because of the semantics of, the

peticSlar problem, is missing. a,

(3) pregnetieligs in .which an inappropriate s action from a

set Of Mirivally exclusive disjuncts is made.

2"
4

1-
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4 This'cateporizition is not complete: two OW ckassesObugs
ecircublecutionsi and 'slips of the tangue.°13 The first class represents plans
latch are successfulbut'inefficient. The second class-refers to iscellfieoui
errors $n execution including is-typings, is-spellings and incorrect
programming language syntax that do not, reflect basic conceptual mistakes in the
pan. eg

4.2. Syntactic Planning Bugs

When a .decision made during ,a problem scpving session viola is the
planning grammar, the resultant bug is termed spatacttc.14 An example of a
syntactic bug ii failure to include an obligatory conjunct. To illustrate this,
consider the following error. In the solution of, a problem, one subgoal matches
a previously solved problem. Hence', the problem solver incorporates a call to
the appropriate subroutine into the solution. But it is common to forget to load
the weile,containing the subroutine into the currant workspace. Figure 10
illustrates this difficulty: as lief e, the goal is to write a program that

..rn draws a wighingwoll. The root is a tr gle, Alih corresponds to a previously
defined subprocedure. A call to TRIANG E is placed in the VW prgcedure, but IN
is Vitiated before the fflo containing TRIANGLE is loaded.15

In test of our planning grammar, this is a symi:arVe big. The WW
pirocedurt is ungrammatical. The appropriate rule describing this situation is:

P4: DEFINED -> USE-CODE & GET-FILE

butithe file retrievol is missing.

Thus, syntarti ,. buds are those in which a necessary (injunct of a
planning rule is not present in the pltn. (3yntaCtic bugs might also be caused
by the presence b: an Ulna extra constituent, but this class of problems seems
less common.)' one could not expect a machine proble; solvor to make
this kind of error, give:. ' correct planning theory and no houri..tic limitations.

' However, resource limit3.on time or space alight result lo ct.is perf)rmance.
Moreover, it is a clomon Lucian error)er

Phe basic technique tor repailieg a 'synthetic bug ,onco Asoler.ed) is to
redo the culpable planning decision in such a way that the grammar is no longer
violated. Fut ,the case of a missingbat obligatory conjunct, this
solving for the constituen' in question, and incorporating that solution into the
larger solution at the reuired point. For the MM alcamplo in particular, it
means getting thq TR1ANG.E procetur) from a file, and then 1.-4 xecut?.rg WV the
corrected environment.

i-
. A

2V
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TO WW

10 TRIANGLE USE

0 Miller & Goldstein

Figure 10

DEBUGGING A SYNTACTICALLY INCORRECT PLAN

A NECESSARY' CONJUNCTIS MISSINP

END

WW

??? TRIANGLE UNDEFINED ???

4P

GET

ID-PLAN

("GET MISSING. UNGRAMMATICAL PLPAn
DEBUG BY COMPLETING PLAN,)

GET TRIANGLE FILE

eTh

Cr.

2D

the intended pictuu

ft,
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4.3. Semantic Planning Sues

Semantic bugs differ from syntactic imp in-that no planning decision
violates the underlying grammar: rathuthe usual case is tha; a constituent
Mich is optional in the grammar is Mt pre'sent, but is needed due to the
semantics of the particul0 problee. This distinction can be understood more

clearly by considering that systiesupplies broad constraints on'the structure of
soltions to alf)robipms; semantics supplies additional constraints in terms of

feaibres of the particular problem at hand. Rules 1)1 and Pd are typical rules in

the grafter for which this kind of difficulty can arise:

PI: SOLVE -),PLAN [DEBUG,]

P8: Sig [SETUP] + (RAiNSTEP + [INTERFACE])1,4. [CLEANUP].. _

Debugging is necessary if the.prograe produced during planning fails to

accomplish its intended.goals; otherwise, debugging is unnecessary. For a
concrete example involving P8, let us return to the WW problei% Part of th
problem specification is that the wishingwell be drawn in In upright position.
Suppose that the order in wOch the main steps are executed is to be: ROOF,
POLE:and then WELL. The,subprocedure for the TRIANGLE expects the turtle to
begin at a vertex, oriented along the circumference. Therefore, an initial SETUP

(syntactically optiomaL) "retation is required to vertically orient the
.e wishingwell as a whole. Furthermore, additional interface steps are required to

'establish therequired relationship between the ROOF and the POLE, that the POLE

connect to the ROOF by intersecting with the center of its bottom side. Figure
11 illustratet this local geopetry, contrasting a semantically incomplete WM
program to.a corrected version.

Since it iofterh effective heuristic to design'main steps before
interfaces, one would pot be iturprised if a human programmer designed the
subprocedures for" the roof, pole.and well, andthen concatenated them, but forgot
to inclu4e these necessary interficei. Ropover, even for a machine problem
solver, there are situations in uhiCh it would be Nor' efficient (and therefore
rational) to ditermine the need, if any, for such interface steps via trial
execution and debuggive, than via thorough but resource-intensive initial
planning.

In terms of tba planning grammar, the overal plan for the 11i is
described as a sequential plan 47 that is, a sequence'of main steps for the parts
with optional' interfaces, Given rule P8, the WW program illUstratidby the

ptevious figure is syntactically acceptable, but semantically incomplete.

Semantic bugs can also occur"when an optional constituent is present, but

30
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TO WW

10 WELL MAINSTEP

20*OLt MAINSTEP -

.. `Miller & Goldstein
Figdre 11 .

6

,DEBUGGING A gMANTICALLY'INCORRECT PLAN

AN OPTIONAL CONJUNCT IS MISSING _

FOR EXAMPLE:

"WW" MISSING INITIAL SETUP,

AND INTERFACE FOR POLE.

SEO-PLAN'
I

*USE IMPERATIVE KNOWLEDGE

OF MODEL PREDICATES TO

COMPUTE MISSIN( STEPS:

4

STARTS HERE

THE SEMANTICALLY CORRECTED PROCEDURE'

-TO WW

*5 WW-SETUP SETUP

10 WELL MAINSTEP-

**15, WELL-POLE-INTER INTERFACE-

20 POLE -`,MAINSTEP-

TO WW:SETUP

10 RIGHT.90

'20 FORWARD 50

30 RIgHT 90

END

EQ,OLAA END
HER

SEQ -BODY
OF

SETUP STEP

19

.4*

31

START
HERE

e



Ormsarksed Editor 18 Miller lk Goldstein

Isemantically inappropriate. An example which We observed in. a 'high schodl
student was to elwayibegin a procedure with the RENUP command, even when the
first main step Was to draw a visible vector. This resulted in eiher: (a) when
the' program was first run, the first vector mould be missing, and then the PINUP
would be deleted by a debugging edit; or tb) a PENDOWN command would be added to
the procedure: inefficient but otherwise harmless extra steps.

The goneralrepair strategy for semantic bugi is to redo the culpable
planning decision in such a way as to setisfy the violated semantic constraints.
In particular the repair(lbr a semantically incomplete plan is to solve for the
missing conjuncts and incorporate-then into the solution as a whole. For the
wishingwell, this involves designing setup and interface steps, and then editing
the WW siperprocrure to employ them.

4.4. Pragmntic.Plannintllgs

Some grammar rules describe alternative strategtes to. accomplish a given
plin. ,Formally these appear u mutually extlusive disjuncts., Examples include:

-) IDENTIFY J DECOMPOSE REFORMULATE
-> PRIMITIVE 1 DEFINED

LINEAR 1 NONLINEAR

A -) ROUND 1 RECURSION

Progneetti bugs are those in which an incorrdtt disjunct ii chosen.

P2: PLAN

P3: IDENTIFY

P6: CONJUNCTION

P1S: REPETITION

0
As. an illustration, consider grammar rule P6, for conjunctive plans: It

specifies two alternativls for accomplishing koet.of subgoals: a linear and a
nonlinear strategy. Now in'this time, the formal rolei Altyed.by'the alternative
disjunct, are syntactically indistinguishable with .respect to the overall
grammar. The progmettc difference, which is ndt formatlised here, is that a
linear decomposition solves for the sub- problems independlntly while a nonlinear
,decomposition solving for some subgoals given knowledge of other subgoals.

In general, linear plans are simpler to apply because of their
independence Assumption. Howeier,..pragmdtic bugs arise when the pldnner is faced
with a ty'pe of problem in which there arEA inherent interactions between the
steps. Anexample of.where linear problem solving is inadequate in the graphics
world is the (*patently imple task of'drawing a square inside atriangle (figure
12). 3uppose'a linear p an is pursued. This Ores rise to two main steps (the
square and the triangle , and an interface step.. If the main steps are solved
independently of one an ther (by meens.of ARE and TRIANGLE subprocedures), it
is, likely that.the fi ros produced will e of the wrong Sise,to permit the
desired INSIDE relation old. This violation cannot be corrected by altering

;1.2
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DEBUGGING A PRAGMATICALLY INCOR CT PLAN.

;

AN INCORRECT DISJUNCT HAS BEEN-SELECTED
.r

TO SQUARE-INSIDE-TRIANGLE.

1Q SQUARE.

20 TRIANGLE

END

INTENDED PICTURE:

LINEAR PLAN

SP0ARE, AND TRIANGLE

DE-STONED

INDEPENDENTLY.

4

ACTUAL PICTURE:

DEBUG BY CHANGING TO NON-LINEAR PLAN,

DESIGN SQUARE IN THE CONTEXT OF TRIANGLE. ,

33
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the order of composition; nor can it be repaired by modifying the interface.
.;.---The bug is pragmatic, in that neither dyntax por semantics ere violated, but the

choice of 'the lineal; over the nonlinear disjunct nevertheless leads to am
unsuccessful plan.

A pragmatic bug ii repaired by redoing the culpable planninb decision so
as to satisfy the violated pragmatic constraint. (It may be that the-problem
solver was ignorant of the relevant constraint prior to solving the current
problem, This brings up the matter 'ocskill acquisition which it deferred till
the' concluding section.) In the MAR6NITHIN-TRIANGLE problem, violation of the
predicate INSIDE is repaired by changing to a non-liniar plan. The second main
step to -be solved must be designedin the context of a particular'size decision
for the first main step. For exampler_the specification fbr TRIANGLE is changed
to require that, its side be larger than.a constant which is determi4od by the
side length of SQUARE.

. a
4.5. 'Circumlocutions" [Inefficiency Bugs)

r

/
A procedure which solves its specified problem, but in a roundabout

manner, is said to have a "circumlocution" or-an inefficiency bug. Such
inefficiencies can occur in plans where a non- optimal disjunct is chosen or an
unnecessary (but harml ss) optional' constituent is included. Correcting
inefficiencies is the typical concern of compiler theory and we do not address it
here, except to make the pqint that the hierarchical annotation (or derivation)
generated by the grammar is conceivably a useful description for a compiler to
access.

To illustrate this, consider rational form violations, the subclass of
inefficiencies due t9' local oddities in the code; such as sequential inyocations
of a given primitive)? This class of inefficiencies hal been extensively
investigated in the literature on optimizing compilers. However, it is possible
that such a rational tors violation is due to some 'serious omission in the
program; i.e., it i **yarning that a bug may exist [Goldstein 1974].
Traditional compilers have no basis for a'judgment, but-access to the planning
derivation of the program can often illuminate this issus

For example, one of the ways in which such an inefficiency bug can arise
is from the use of an "evolutionary" plan (Miller 1976]. Although thr Oammar
pP- pvided in this paper does not attempt to formalize this type of plan, basic
e volutionary plans are not complex. The programmer attempts to alter the code of
a pre ous program to achieve the specifications of a new, but similar, problem.
To ill trll& such a situation, however, we must develop a somewhat elaborate
e xampT .ellease reexamine figure 5. A wishingwell,inktially viewed as
involving three subproblems, has Men reformulated so as to involve two main

34
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steps: the.TREE,and the WELL. The TREE program is state transparent: it leaves

the turtle in the same state in which ir started, it the bottom of its tRUNK

(which serves as the POLE of WW). WW incorporates a nonlinearity for efficiency:

the top side of the WELL is accomplished in' two Tarts, to avoid retracing

Previous vectors." Suppose that the programmer needs &SQUARE subprocedure for

Use in another project. One strategy is to adapt WW by deleting the call to TREE

(figure 13). Afterfthis deletion, though, the resulting SQUARE contains
sequential calls-to FORWARD,: a rational form violation. The optimization is to

combine these two invocatiohs into a single call to the FORWARD primitive.

'Thus, a compiler could first check whether an evolutionary plan governs

the inefficiency. If so, it could perform the optimization with some confidence.

If not,.it should notifi, the programmer of the oddity in:the code.

4.6. "Slips of the Tongue' (Execution Errors)

%401, final category of bugs is necessary when human programming protocols

are to be analyzed. This class, 'slips of the tongue,* is a catch-all for

typographical errors, confusions due to orthographic similarity, incorrect

programmihg language syntax, noise on the computer line, and other failmiks to

successfully type in a statement' of codp. They are often diagnosed !Ac-

t-- chnventionar computing environments, simply as a result of the code being

_unrecognizable. The plan is not affected. We include this class for
completeness, so that our discussions may span the space of possible bugs. ,The,

planning grammar does not provide an explanation for the origins of these bugs. " .

The general repair technique for slips of the tongue is to: (a) undo the

side effects, if any, of the incorrect type-in; and (b) reexecute the type-in

correctly in the restored environment. This could be captured by a rule such as:

REPAIR -> [UNDO] REDO

A common error in debugging technique is to compound an initial 'flip of the

'tongue error' by reexecuting, without undoing undesirable side effects."

Haviava classification 9f basic bug types does not solve the debugging

problem: it iionly a starting point. The next step is to develop a theory of

diagnosis and'repair, by which the underlying bug made manifest by an
unsuccessful program run can be diagnosed, and then repair knowledge associated

with this bug type canAe'applied to correct the program. SoctAse five designs

the RAID assistant that will monitor a programmer duping the planning of a

pr<edure and generate caveats regarding possible errors for aid in subsequent

debugging. This monitoring will happen within the SPADE editing environment.

7
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Figure 13,

DEBUGGING A CIRCUMLOCUTION OR INEFFICIENT PLAN

TO WW.

5 RIGHTO
10 FORWARD 50

20 TREE

30 FORWARD 50

40 RIGHT 90

50 FORWARD 100

60 RIGHT 90

70 FORWARD 100

80 RIGHT 90

90 FORWARD 100.

END

EVOLUTIONARY PLAN

4*.

STARTS HERE
ENDS HERE

TREE

SQUARE-1

TOrSOUARE71

5 RIGHT 90 STARTS HER
ENDSA1ERE

10 FORWARD 501

30 FORWARD 501 RATIONAL FORM VIOLATION'

40 RIGHT 90

END

4 CAVEAT DRIVEN DEBUGGING

TO SOUARE:2

5 PIGRT 90'

10 rORWARD 100

40 RIGHT 90

END
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S. The RAO Debugging Assistant

Let us focUl on one particular component of [general heuristic

amowledge]: the art and techniques of ... debugging. The

school experience is dominated by the normative attitude implied

by right answer vs. wrong answer". The mathematician's

experience of athematics.is dominated by the purposeful-

constOuctive attitude implied by the struggle to "make it works.

He abandons fn idea not because it happened to go wrong, but

because he has understood that it is unfixable. Dwelling on

what went wrong becomes a source of power rather than a piece of

masochism (as it would appear to most fifth graders in
traditional math classes).

[Wert, 1973, p. 10]

5.1. Diagnosis and Repair

We have ow developed a taxonomy of bug types -- of whit use is it? Its

first use, we believe, is that it clarifies our understanding of debugging by

identifying major Categories.of error. -Secondly, it suggests how to disign

hotter debugging aids for the programmer and problem solver. In this sectionmel

develop this position by asigning the RAID component of the SPADE program

editor. MID is an acronym for &Monet Emplecilettoe of Debugging, stressing

our belie that debuggigQ often a consequence of heuristically Justifiable

problem solving, not an e arrassent indicative of irrational or sloppy

thinking. RAIDzis a tool designed to makedebugging a source of power, to the

probleis solver, as Papert suggests it can be.
4

Let us consider further how the taxonomy clarifies our understanding of

debugging. A programmer's approach to, debugging is, naturally, colored by the

bitgnostic tools provided by the particular computer system. However, the

facilities provided by a wide.range of computing environments have much in

common. These tools manifest what we term surface debugging techniques. They

are based on examination of the code and snapshots of the computational process

elicited by the code, both relatively superficial descriptions of the procedure

as conceived by the programmer. Figure 14 shows a grammar which -partially

forlializes this surface debugging activity.

Access to the problem descripti6n and -- most importantly -- the
programmer's plan allows for a deeper analysis of debugging strategies.

Figure 15 shows a taxonomy of these debugging strategies. -Figure 16 shows how

this taxonomy is transformed into what we term a deep debugging grammar, for

contrast with the previous grammar. Notice that examination of the plan plays an

important role.

3 7



Grammar lased Editor
Hiller & Goldstein

figure 14. Surface Gr r For

DEBUG -> ((DIAGNOSE] [REPAIR])*

DIAGNOSE, -> (ASR TRACE 1 "error")*

TRACE -> [SELF-DOC*] ate

SELF-DOC -> ADD- PAUSE-1 ADD -PRINT I ADD-TRACE

ASK -) "print definition'
1 'print value' 1"print fllel

REPAIR -> (RUN I EDITA SOLVE)*

ADD-PAUSE -> ADD

ADD-PRINT -> ADD

ADD-TRACE -> ADD

EDIT -) ADD I DELETE 1 CHANGE

RUN -> 'run statement of code' "response" [DEBUG]

. ADD -> "add statement of code' 'response [DEBUG]

'DELETE. -) delete statement of code' 'response' [DEBUG]

CHANGE -> 'change utatement of code' 'response [DEBUG] 'we

3S

6./

1010..



Grammar Based Editor Miller & Goldstein

i

i

FIGURE 15 - A TAXONOMY OF DEBUGGING TECHNIQUES

PARSE ---.NDVISE (planning choices)

DpEGNOSE-

DEBUG

ODE

RINTOUT

- - -

DVISE (rational form violations)

/
MODELADVISE (model violations)

---- PROCESS

.0.

--COMPLETE

4 REPAIR

ASK

TRACE

7 CORRECT .

30
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Figure 16. A Deep Grammer For Debugging

DEBUG -) ((DIAGNOSE] [REPAIR])*,'

DIAGNOSE -) (PARSE I CODE I MODEL I PROCESS)*

PROCESS -) ASE I TRACE I DO

CODE PRINX06T I "advise rational form violations"

MODEL -> 'advise model violations'
I

PARSE -> 'advise hpuristic planning choices'

REPAIR -> COMPLETE I CORRECT

COMPLETE -> 'solve for missing conjunct'

CORRECT -> 'choose alternative disjunct'

L.

,
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I

In the SPADE system, the end product of the interaction is not merely a

program, but a program annotated by its associated plan derivation (please refer

to figure '8 presented earlier). The reader has undoubtedly noted'that'far more

interaction would be necessary with SPADE, than with an ordinary editor-21. In

return for this extra planningreffort,Ahere are severiarpotential benefits. The

first, 1. t by knowing(ehe plan, the RAID component of SPADE would generate

cav r gar4ing,possible bugs for aid in subsequent debugging. Since

def ition of. the program generally occupies far less time. than debugging, some

additional effort in 'panning maiiwell be worthwhile in terms of more efficient

debugging: It is also possible that articulating the plan serves to improve a

student's planning skills." Finally, the plan-as commbntary should make tke

resulting' code 'far more undirsilndable to other programmers who, in larle"

projects, may be expected to modify or debug'the package. We have yet to

consider "human-engineering" aspects in designing SPADE/RAID, nor have we begun

tw experiment with it. Here,sel is only to describe those parts of the
RAID debugging assistant that ias pr medicated o our taxonomy of bug types.

5.2. Aid In Diagnosing Syntactic Bugs

'SPADE provides the facility o f being able to suspend the construction of

a solution of 'one sub-problem in order to analyze, other goals. This is useful,

since" occasionally' insight' into the solution of other goals is helpful for

completing the current problem. SPADE provides bookkeeping Acilities for this'

'suspension. The goal can be resumed Inter. To illustrate this: we shall refer

to,figuryLine 3b shows the user choosina.to postpone a goal..

11
.

%A.
3a. Rul 2 is: IDENTIFY -> PRIMITIVE 1 DEFINED.

'What

t-'
3b.. >LATER.

A(

ARID, the debugging component, w d create a caveat each time this

happens. The caveat would, record the fact that. the plan is syntactically'
. indomple),at this'poipt. A.ceireet is a demon, which would trWtered by

preiature execution of the procedure being designed. If this occurs, the

function of the caveat would be to remind the user of the syntactic incorroctness

0

. e

of the Grogram.

r

5b. >RUN WISHINGWELL

, '4 e

6a. Running,WISHINOWELL.at this time resultsqn the bug manifeitation:

UNDEFINED PROCEDURE POLE.
-

This is because*WISHINWELLis stactically incomplete: it contains

t the pending subboal POLE-2. The recommended repair technique 4s to
, .

41 41"
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L

re 17. RAID ice for tacticall Inc lets Plannin Be

Ia. Which liki to form?'
. .

lb. >POLE

4,-

2a4 Rule for POLE -1 is: PLAN -> IDENTIFY11 DECOMPOSE 1 REFORMULATE.

What now?

2b. )IDENTIFY

. * A -: g"

3a. Rule 'fin- POLE-2 is: IDENTIFY -> PRIMITIVE 1 DEFINED.

"What now?

3b. )LATER.

The LATERcoimand canes further processing of this subgoal to be postponed.

RAID. the debugging component, creates a caveat each time a LATER command occurs.

The caveat records the feet that this pert of the plan is syntactically

tecomplite at this point.
-44

4a. POLE-2 postponed. Your pending goal list cemtains the remaining subgoal

WELL. Which goal would like to pursue?

4b. >WELL.

5a. We have now completid the WELL subgoal. What now?

Sb. >RUN WISHINGWELL

I

The caveat recorded earlier is a "demon," triggered by premature execution of the

procedire being designed., if this occurs, the function of the caveat is.to

remtnd-the user of the syntactic incorrectness of the programs
, .

61,. Running WISHINGWELL at this time rem s in the bug manifestation:

UNDEFINED PROCEDURE: POLE.

This is because W SHINGWELL is syntactically

kthe pending subgoi POLE-2.- The recommended

co plots the solution of the subgoal POLE-2.

Pii-2?

6b. )Y .

incomplete: it contains

repair technique is to

Would you like to work on

7a. You were solving POLE via an IDENTIFICATION plan. You postponed the

decision (POLE-2) as to whichlicswereibrary to use.

The rule for POLE-2 is: IDENTIFY -> *MIME 1 DEFINED.

What new?

42
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complete the solution of the subgoal POLE-2. Would you like to work on

POLE-2?

Line 6a in the figure illustrates this.

5.3. Aid in Diagnoiing_Semantic Bugs
A -

Whenever an optional constituent is rejected, RAID would create a caveat

to the effect that the plan may be Semantically incorrect atthis point. When
the program subsequently is executed. and bugs occur, the programmer could request'

aid. This aid would include a description of which planning decisions are
possible semantic errors. This sort of Interaction with SPADE is'illustrsted by

figure 18.

LinOlb shows the programmer choosing, to dispense with an optional
interface step.

la. Is there an INTERFACE following WELL?

lb. >N0

6
. -

When the program is subsequently tested at line 2b, the programmer If not
satisfied with the results.

4b. >ADVISE-PLAN

5a. WELL may be semantically incompletd. Perhaps an INTERFACE is needed

after WELL. Wolad you like to reconsider, and include such a step?

RAID is then depipeepointing-lt that the decision to not include in optional,
interface may be (he culprit (line 5a).

5.4. Aid in Diagnosing Pragmatic Bugs

Certain alternativeTplanning methods have the relationship that one

method 0 simpler 'but subject to failure in some cases, ,bile the other is more

complex but more powerful. Examples are LINEAR versus NONLINEAR plan; and ROUND

versus RECURSIVE plans. -Whenever the user applies the simpler of one of these

pairs, RAID creates a city& to the effect that a commitment to a possibly

incorrect plan has been fade. This caveat serves the same purpose as those

created above for possible semantic tugs. Upon subsequent execution, if the user

Is unhappy witN the results, ',aid can be requested. The caveat then points out

possible pragmatic errors,

4 )

7
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Figure 18. RAID Advice For Semantically Inceiplete Planning Bugs

la. Is there an INTERFACE following WELL?

lb. >NO

Whenever an optional constituent is rejectedthe AHD debugging component
creates a caveat to the _effect that the plan may be semantically incomplete at
this point.

,e

2a. Wthavm now Completed subgoal WELL. What now?
--lb. >RUN WISHINGWELL

n

When the prograniimbsequently,is execated'and bugs occur, th rogrammer can
qu

lif

_reest aid. This aid includes a description, which plain decisions are
possible-semantic errors. In this case, thep procedure pro aces a °picture
which does not satisfy the VIVINGWELL model..., Vbile,.SPADE -0 can aid in pie"
diagnosis, 't,t,cannot. detect model violation's oltbout user input. YSPADE -1,
however, ,world perforajirdel di$giostaiN 1.

..,

3a. OK. What how? ,....

3b. >DIAGNOSE
,c,

_

4a. Rule is:

DIAGNOSE -> ADVISE-PL I ADVISt-CODE [ ADVISE-PREL 1 ADVISE-PROCESS.
What now?

4b. >ADVISE-PLAN. 'et n

5a. WELL maybe semanti a ly incomplet 'Perhaps an INTERFACE is needed
_after WELL. Wouldp ybukIike to rec nsider, and include such a step?

5b. >YES

8a. Solving for WELL-13 IINTERFACkafter WELL).

Rule is: SOLVE ->

4 AIt

t..

e.



MF-

Grammar Based editor 24 Miller 6 Goldstein

Figure 19 illustrates this kind of interaction with SPADE.

Sb. SADVISE-PLAN

6a. In designing SQUARE-WITHIN-1RIANGLE-3, you opted for a LINEAR

decomposition. It is possible that this problem involves some

interaction between.TRIANGLE and SQUARE. Do you wish to reconsider

your previous decision, and try a NONLINEAR decomposition?

Line 6a in the figure shows the RAID compOsent alerting the user to a possible

° pragmatic planning bug.

S.S. Assistance in Repair'

The system could do more than just alert the user to the problem. It

could also (a) return the user to the suspended goal, and (b) inform the user, by

means of the grammar; of what_ alternative constituents are avail le. Line 7a of

figure 17 (presented earlier) illustrates this repair as4wta. e for the .case of

a syntactic bug.

la. You were solving POLE via an IDENTIFICATION P. You postponed the

decision (POLE-2) as to which answer library to use.

The rule for POLE-2 is: IDENTIFY - ).PRIMITIVE 1 DEFINED.

Suppose the user decnes'to undo a given planning decision, perhaps

abandoning a very detailed plan which restated from considerable effort, in favor

of a new approach. It is possible that later the user may reconsider, and wish

to reactivate the abandoned approach. It would be rather unfortunate if RAID had

erasedall-records ofits existence. In fact, it would not. In order to keep'

trick of both active and-hung alternative VersIhns of each planning decision,

however, the derivation tree representation ceases to be adequate. A ,ore

elaborate data structure is required; SPADE/RAID would use a flan for this

pui-pose. The chart data structure was intro4uced in computational linguistics

[Kay 1973; Kaplan 19733 to economically store a record of alternative well-formed

substrings discovered during sentence paritAg. We introduce the chart here for

similar reasons. An example of such a chart applied to the planning context is

shOwn in figure 20; figure 21 shows a user taking advantage of this capability.

The chart data structure protides benefits which feed back into the

planning assistant as well. For example, with the chart one can distinguiph

betieen using a copy of a previous subprocedure 'in line,' versus tieing the

previous subprocedure as a 'black box" which is invoked:
.
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Figure 19. RAID Advice For PrausaticallY Incorrect Planning Bugs

1

la. Rule for MARE-WITHIN-TRIANGLE-lois:

PLAN -> IDENTIFY I DECOMPOSE I REFORMULATE
What now?

>CONJ

2a. I have assumed DECOMPOSE -> CONJUNCTION.

Rule for SQUARE-WITHIN-TRIANGLE-3 is:

CONJUNCTION -) Limmuj NON-LINEAR.
What now?

2h. >LINEAR

Certain alternative planning methods have the relationship that one method is
simpler but subject to failure in some cases. while the other is more complex but
more powerful. Examples are LINEAR tarsus NONLINEAR plans and ROUND versus
,.RECURSIVE plans. Whenever 'the user applies the simpler of one of these pairs,

RAID creates a caveat to the,effect that a conlitment to a possibly incorrect
plan has been mete.

/ If

3a. Rule is ...

3b. >

4a. We have now completed SQUARE-WITHIN-TRIANGLE. What now?
4b.. >RUN SQUARE-WITHIN-TRIANGLE

,

Upon subsequent execution, if the user is unhappy with the results, aid can'be
requested. The caveat Ikon informs him of possible preymatic errors. Nero. the
MARE -Willi -TRIANGLE procedure draws the picture "inside oat."

5a. Rule is:

'DIAGNOSE -> ADVISE-PLAN I ADVISE-CODE I ADVISE-MODEL 1 ADVISE-PROCESS.
What now?

Sb. )ADVISE-PLAN`

6a. In designing SQUARE-WITHIN-TRIANGLE-3, you'opted for a LINEAR
decomposition. It is possible that this problem involves some
interaction between TRIANGLE and SQUARE. Do you wish to reconsider

your previous decision, and try a NONLINEAR decomposition?
6b.4>YE3

7a. What non-linear constraint(s) doprui wish to add to the SQUARE?
. iK. >



FIGURE 20 4 CHART OF ALTERNATIVE PLANS

'm'a
TRIANGLE

WELL SOUARE

SEQ

TRUNK
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Figure 21. Returning to.a PrevioullyjHung Plan

la. Rule'for WW-1 is: PLAN IDENTIFY I DECOMPOSE I REFORMULATE

What now?

lb. >DECOMPOSE

.

Za. What are your subgoals?

Zb. >ROOF POLE WELL

3a. Rule for POET-3-4a: IDENTIFY -> PRIMITIVE 1 DEFINED

What now? .

3b. >REDO WW-1

Considerable planning effort has been invested in the current version of W -1.

The
AP
system should betable to record the state of the work so far in case tt is

ever needed again. It might seen too Costly, though, to save away multiple

copies of the.plan derivation every tine a choice is redone...

4a. Previous choice on WW-1 undone.

Rule for WW-1 is: PkAN -> IDENTIFY I DECOMPOSE 1 REFORMULATE

What now?
4b. )REFORMULATE

5a. What are yoursubgoals?
51), >TREE WELL

6a. Rule is): SEQ -> [SETUP] + (MAINSTEP+ [INTERFACE] >,* + (CLEANUP]

What vow?

6b. >REDO WW-1

At this point, the user has decided to return to the previous approach, finding

that the REFORMULATION has resulted in an even harder -Problem. SPADE's chart

representation for plan derivations in fact allows prior versions to be saved,

without incurring overwhelming storage costs.

7a. A previously hung version of WW -1 (WW -1:V1) exists, involving a

COMPOSITION plan. Do you wish to reactivate it?

7b. >YES

Ca. When WW -1:V1 was hung, your current goal was POLE-3.

Rule for POLE-3 is: ... 4 9
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yet another commonly observed source of program bugs.

unanticipated perturbations. is indicates hew the insights gained from a
grammatical approach to problem olving can lead to formalizing the origins of

rc

also benefit the currant proc re. Conversely, future changes could introduce

solved. If the CALL-CODE dish nct is chosen, the chart will contain only a
pointer to the shared substructu e: future improvements in the supprocedure will

The revised rule P4' has the virtue that one can specify whether future

changes to the existing subprocedure should affect the procedure currently being

Grammar Based Editor 25 Miller & Goldstein

iw

P4': DEFINED 7> COPY-CODEICALL-CODE &GET-FILE

f
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6. Conclusions

6.1. Limitations and Extensions

Miller & Goldstein

The ultimate version of SPADE ought to include a module for providing
intelligent planning advice and ftlling in low level details of 'partially
specified solutions. However, a context free grammar,'being_inherently non-
deterministic, would not suffice as the basis for a machine problem solver.
Solving problems by generating all possible derivations and then testing for a
solution would hardly be practical.

There is also a theoretical deficiency. There ought to be a facility for
skill acquisition: for summarizing previous semantic or pragmatic planning

errors to prevent their_recurrende on similar problems in the future. Such a
-capability was exhibited by Sussman's [1973] HACKER program for example. But our
context free grammar has no way of representing repair knowledge in such a way
that semantic or pragmatic bugs are not repeated.

Both of these deficiencies can be addressed by moving from the context
free grammar representation for planning knowledge to an augmented transition
network [Woods 1970]. Augmented transition networks generalize the context free
grammar representation. To see the way the ATN serves as a natural
generalization of the grammar, first eximineAlipme42-. Here we have an
equivalent representation for the G2 planning giammaras a (non-augmented)
recursive transition network. The ougnested transiApn network provides several
generalizations: (1) registers can be provided to store the values_of y6iables;

(2) predicates can be associated with arcs to control the' order of transition;
and (3) actions can be associated with arcs to build struct1iis during
transitions. These generalizations were introduced in computational linguistics

to overcome limitations of the CFG representation that parallel those that we
have met in the problem solving realm. Figure 23 is the planning ATN based on
62. 30114 (not all) of the registers, conditionu and actions (for storing and,
manipulating information .about the current sub-problem) are shown. Notice how
greater efficiency can be achieved via techniques such as Collapsing states
moving some information from the topological configuration to the registers
(e.g., the CONJUNCTION and SEQ+3ET nodes). Figure 24 shows how arc predicates
can be used to select the appropriate plan type on the basis of features of the
problem description. This approach (called PAT', for Plowing AM is developed
at length in [Goldstein & Miller l97611,1. Here our goal is only to show how
repair ;kill could be acquired by OAR/RAID by representing planning knowledge
in an ATN.

Consider again th SQUARE-WITHIN-TRIANGLE problem discussed in the RAID
' section. Recall that the derlylag cyrse of the bug was treating the SQUARE and

.s
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FIGURE22 - (NON AUGMENTED) RECURSIVE TRANSITION NETWORK FOR G2

POP

USE -

CODE

GET -

FILE

NONLIN

GET -

FILE
USE
CODE

I

SET STEP * POP

MAIN -

STEPSETUP

REPEAT-.

SEO

TAIL -
RECUR

RECUR
REF

C1EANUP POP

INTER-
FACE
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5:Librar (M)

a

M + Linearize (M)

Me Library
11.

NLD

NLC

CONJ

Interactiois (Ni)

LIN

REFINEMENT

L00110

Independent (M)

'It+ Model

(4)

erieric (M)

(3)

f
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FIGURE 23 - AN MIGMENTFD TRANSITION NETWOPY, FOR ?LAW:11NQ

SEQ +
SET

Onv

{G}÷{G}-Gk-").._

,SEQ (Gk)-4-Solve (M+-Gk)

Example Registers:
Register M - Predicate logic: description
Register S -.Current solution,(plan 'erivation)
-Register'{G} - Current Set of subgoal

POP

0

Example Conditionk- so

Me Library - "is problem description mate ed by

IT?"

re-

anything in the answer lib
Generic (M) - "Is the problem.descriftion r

,sented as a generic element?'

le Actions:
G ÷{Gl-Gk -

S+Library(M)

"Set register {G} to its current
"tOnte spinus subgoaL Gk."

- "Retuin A solution foun in
the ans er library." .
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EXPLICIT (M)

b

a
DECOMPOSE

GENERIC (MI

C

CONJUNCTION

REPETITION 1

_

FIGURE 24

PATN ' S DECOMPOSE NODE
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TRIANGLE subgoals as if they were Independent. In fact, 4a second order
constraint on their size's was imposed by theINSIDE,restriction. Future
-occurrences of this error couldlie prevented by addifig a condition that tests for
the existence of th NSIDE predicate ^0 the arc constraint that governs the4.
selection orifonlinearWns.

Specifically, this is done as follows: figure 23 shows that part of PATN
that corresponds to the rule,

P6: CONJUNCTION -> LINEAR 1 NONLINEAR. .

The default arc ordering causes the LINEAR plan to be attempted first. The;,
NONLINEAR transition is allowed only if the,HLCor NLD predicates recognize the
problem as containing a nonlinearity. Here, if INSIDE is present, the NLD loop
is taken and the problem description modified to make the inte (action expliCit

size predicate is added to the description of the4parts. Thus, a new arc
Constrain$, NLD-1NSIDE, serves to preyent this particular pragiatic planntng
error from happening-again.

6.2. Applications

II
4/-

These ideas lend themselves to avariety of application). We consider
thite: automatic programming, automatic protocol analysis, and structured
programming.

I

As semant4c and pragmatic capabilities are added to SPADE (reflected by
the increasing role of PATN in providing advice), the user would be consulted on

Amogressively fewer planning dedisions. The ultimate extension in this direction
is of course for SPADE to request no guidance at all from the user. The user
would supply the problem description; SPADE would provide the solution
procedure. One novel aipect of this approach to automatic programming is

- methodological: the SPADE series of systems' provides an implementation strategy
based on incremental simulation [Woods & Makhoul 1973].

Automatic programming is an extension of SPADE in direction in which
the user is pushed toward the higher level planning decisions, whereas the system
perfards more of the lower level choice'. Exploration in the opposite direction
is also' possible; in the extreme this' 'mounts to protocol analysis. Suppose
that the problem solving of a SPADE user is running far ahead of the system: the
user may wish to type in code directly, rather than laboriotsly detailing the
intermediate steps of the plan. -The system's job then.becomes linking the low
level event into a higher level, planning structures If every.event typed by the
user were at this code level, SPADE would'- superficially be serving as a
conventional editing environment. The difference would lie in the assistance
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possible during subsequent debugging. Ideally, SPADE woifid have a module (which

we call PAZATN, for Protocol AnelZer based on an ATM) for inferring the user's

plea -- and would therefore be able to support our deeper notion of debugging
even when the plan is only implicit. Figure-26 illustrates how a hypothetical,

version of the SPADE system, augmented by PAZATN, could significantly reduce the
amount of interaction required to articulate the planning knowledge as well as
the code for use by the system. [Miller & Goldstein 1976d] takes a more careful

look at the difficulties which the PAZATN module must fact, and presents a
preliminary design.

A final application is to prescribe jmproved programming methodology.
The entire enterprise embodies Dijkstra's philosophy of programming in a
structured fashion. Moreover, it represents a move detailed study of planning
and debugging techniq0s4than has previously been attempted. It indicates how
interactive editors.can stisongly encourage coherently structured articulate
plpningt. The underlyAn&.theory proyides atonalysis of the nature and griOn of
bugs, suggesting 'which sorts if bugs can be ivoided by improved design, and which
arise from justifiable heuristic choices. The occurrence of such uncertain
choices however. can oe recorded, leading to bookkeeping and diagnostic
capabilities such as those planned for RAID. -Better debugging advice -- going
beyond caveats for potentill difficulties -- must await the incorporation of PKTN
(ant to some extent PAZATN) into SPADE.

01.
This report has presented a unified theory of planning and debugging

based a linguistic analogy. The design of an interac'Ave programming
environment has also been described. The objectives for this programming
environment, SPADE, are tnat I.,: serve, not only,as a practical application of the
theory, but also as an experimental crucible for testing claies of the theory. 1

We expect the'. experimentation with SPADE will yield the following kinds
of information:. (a! hi 3vidence regarding the heuristic adequaey,sof the planning
taxonomy and, grammar? 'b) psychological evidence regarding the utility of the
grammatical formalism es a modeling tool, for characterizing varying skill
levels. in firms of phich .subsets -of the grammar are used successfully and
unsuccessfully; (c) compute science evidence regarding the efficacy of
alternative docomentidion standards and design methodologies; and (d)
pedagogical evidence regarding the value for a learner of orogramming in this

.type of articulate environment.

r'.11
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Figure 26. A Scenario Illustrating SPADE Augmented by PAZATN

la. We are now solving for a WISHINGWELL. Your pending subgoals are ROOF,

POLE, WELL, and the interfaces. What now?

lb. >SQUARE

Mere the user types in eh event at level of the actual code. The proper

inference is that the user is,solving for WELL using an IDENTIFICATION plan.

SWAME'is presumably in the user-defiked'answer library.

2a. OK. I am assuming that WELL has been solved by IDENTIFYing it with the

previously solved SQUARE procedure. What now?

2b. >FORWARD 100
4

.Aesin, the user has typed in a very low-level event whin requires careful

interpretation. There are a number of veCtor.commands which might be expected

syithetically. For example, this could be the interface between the WELL and the

POLE. However, if the SQUARE used for the WELL is of size 100: then FORWARD 100

meld be too large. Also, a preparatory rotation would have been needed. The

vector might also be a side of the TRIANGLE for the ROOF. However, if TRIANGLE

. is alrpadi in the answer library, aidentifidation would be expected, not a now

solution. Probably, this vector' accomplishes the Aext main step in PATN's

default solution order: POLE. However,,, PAZATN can employ a demon to pbstpone

final commitment until further evidence arrives.

3a. OK. What now?

30. >TRIANGLE
40

da. OK.' I guess ROOF has been solved by IDENTIFICATION with the, existini

TRIANGLE. So the FORWARD 100 mast be the POLE. Your only remaining

subgoals are the interfaces. Which interface would you like to solve?

It ti worth noticing how few user type-ins have been required in this dialogue --

fewer than even in conventional code -- yet the solution for the WISHINGWELL is

almost complete. Moreover, the system has inferred not only the code, but a

rather thorough description of the user's plan as well. This economy of

interaction would be achievable by the combination of SPADE, PATH, and PAZATN

enabling the" user to focus On the few critical 'planning choices that more or less

force the remainder of'the solution.

C
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1

7. Notes

1.. While there is some overlap, our objectives for SPADE differ in this
respect from the objectives of those working to construct programming ices
[Teitelman 1970,1974; Hewitt & Smith 1975; Rich & Shrobe 1975]. It is too early,
however, for a.detailed_comparison of either goals or methods.

E. The-virtues of the Logo -graphics world [Papert 1971a,b4.,1973],are:
(n)r__graphics is an environment in which multiple problem descrtiptions are
possible, ranging from Euclidean geometry to Cartesian geometry; (b) the
possible programs range over a wide spectrum of complexity; and (;) there is
extensive documentation on Milan performance in this area [G. Goldstein 1973;
Okumura 1973].

3. These task domains.are natural candidates for testing the generality
of the theoryx,.The blocks world is a benchmark AI domain which provides a
yardstick against which to measure the progress of our approach. The set theory
world has the virtues'of both intrinsic interest and straightforward semantics.
The creation of programs embodying yconcrete realizations of set theoretic
constructs is a standard programming task. Similar remarks are appropriate for
the domain of programming an eleeentari calculator, such as to perform routine
statistical analyses.

4. In [Goldstein & Miller 1976a] we presented a scenario for a
programming tutor called Sherlock. One extension nf the SPADE system preiented
here is toward such gazed-initiative AI based personal learning environments. At
the same time, the SPADE style of interaction suggests a more structured
alternative approach. Whether the additional structure is desirable for some (or
most) students is am empirical question to be addreised in future reifarch.

5. In [Miller & Goldstein 1976b] we presented.a different version (01)of
the planning taxonopy and grammar, in the context' of parsing a student protocol.
Our_ reasons for abindoning that version in favor of the current one should be
discussed. The earlier taxonomy was based on examining the directions-from which
a planner could obtain guidance: looking upward to general principles, downward
to domain specific heuristics, forward to anticipated needs, and backwards to
previously solved problems. The current taxonomy derives from examfhing`the
logistic description of the current problem. The former taxonomy emphasized the
roles of experimentation and uses of past problems; whereillire current one
treats these as details, some of which (such as experimenta ) remain to be
addressed. It remaini true that decomposition techniques can vary along
dimensions of domain specificity and generality. However, in some cases we found
the earlier taxonomy to be problematic. As we began to incorporate semantic and
pragmatie colitraints on the grammar (see [Golgptein & Miller 1976b]), it became

F;2
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increasingly difficult to maintain a formal distinction between certain examples
of domain dependent and-evolutionary plans. There is of course a trade-off in
assigning knowledge to the syntactic rules,, as opposed to assigni it to
Semantic or pragmatic constraints on their application. In order to j fy a
claim that the current version of the taxonomy is more parsimonious than the
previous one, we would need to carefully identify-the corpus of data. While we
do, in fact, believe that the current version is more elegant, the grounds for
this belief remain intuitive. In.subsequent research we intend to employ the
SPADE system as an experimental vehicle for contrasting alternative planning
taxonomies and 'their corresponding grammars.

6. The statement that there is a core sit of planning techniques common
to all domains is justified by examining the formal basis for the taxonomy. On
the assumption that problem descriptions are represented as predicate calculus4
statements, it is, clear that solution can proceed by: (1) identifying the
statement as one for which a solution procedure is known to exist; (2)
decomposing the problem into subproblems on the basis of the top level logistic
operator; or (3) reformulating the problem description such as by theorem
proving techniques. That is, domain independence of the, core set of planning
techniques holds, on a' priori grounds, to the same extent that problems in the
domain are describable using predicate calculus problem descriptions.

Of course this argument depends on the efficacy of the first order
predicate calculus as a problem description language. While we are not prepared
to argue for this here, it is clear that the, calculus certainly,has had some
success in the past (e.4. in mathematics) and hence is an obvious candidate'. Its

frequently observed deficiencies, such as non-directed inferencing, are discussed
in [Goldstein & Miller 1976b], where we define a procedural problem solver
organized around logical operators. It is also important to recognize that we

are not arguing foruniform. (e.g., resolatton-based) theorem prover styli
programming techniques.

Moreover, extensions of the predicate calculus, such as.higher-order

211 calculi, do not obviate the need for basic problem solving techniques for dealing

with conjunction, disjunction, negation, and quantification.

7. This view of planning is a simplification. It isserts that the
problem is analyzed.in a top down fashion. Of course, the problem solver can
engage in exploration and experimentation; or can identify a subgoal without
having a clear understanding of the overall plan. The dynamics of exploration
are not formalized by this grammar.

8. Our use of a context free grammar for problem solving closely

resembles De Rumelhart's [1975] work on story grammars. It= should be interesting

to see to what extent our respective theories, designed to account for
,-- superficially very different phenomena, 'continue to develop in parallel. Would

it be useful, for instance, to define a set'of semmertzetioe rotes (such as' those

63
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't
employed-by Rumelhart) to descilbe the planni process? One possible set of

plan summarization rules would foius on the BM nodes, suppressing printout for

nodes of other types. Conesivably, this could be useful in highlighting the

sWbprocedure organization.

. 9. The rules of the grammar are written using the following syntax:

disjunction: °a 1 le is read as, 'a or V;

mordered conjunction: 'a 4. b' is read as 'a and bt

where the order is s gnificant;

unordered conjunction: 'a & b' is read as, 'a and b',.

where the order is insignificant;.

.optionality: "Ear is read as, "a is optional';

iteration:

lexical category:

"(a) is read as,

'a repeated 1 or more times';

a lower case English phrase enclosed in

quotation marks (e.g., 'number')

describes a lexical item which is not

further expanded in the grammar.

10. The & operator is used, because the GET and USE can occur in any

order as long as they both precede execution of the procedure being defined.

11. While the Rycroft system designed by Goldstein was potentially

capable of semantic Senotation, it lacked a clear formalization of the range of

possible planning choices a program designer could make, and a description of

possiblo'errors in terms of%those design decisions. The grammar we present here

is intended to address these limitations.

12. The interactions presented here are hypothetical dialogues with a

system which has not been implemented. Although a crude preliminary

.
implemointation(SPADE-00), has recently begun, it is currently lacking several

.essential features.
One deficiency'of SPADE-00 is that it has not been interfaced with LLOGO

(Goldstein et. al. 1974); hence it is not possible to actually execute the

resulting,; programs. Another deficiency is that the RAID features described,in a

later section have not yet been coded.

The purpose of presenting' hypothetical dialogues, rather than actual

transcripts, is to enable the relideF to focus on the content, without being
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sidetracked by details concerning the ina4equacies of the implementation.

Readers who have access to the laboratofy's timesharing system. are nonetheless

invited to experiment with our trial versions of SPADE as follows. After logging
in, type :SPADE(cr).. :BSPADE. will generally be a newer, highly experimental

version. :OSPADE will be an older version, in case'of disastrous malfunctioning

by :SPADE.

SPADE-00 simplifies the interaction by employing a "menu" or "multiple

choice" style:

WHAT WOULD YQU LIKE TO DO?

sA -- IDENTIFY

'BB -- DECOMPOSE

-- REFORMULATE

>sa

Certain operations, such'as the"LATER capability, are implemented as special

"e1;a0e commands," in order to reduce ambiguity and simplify parsing. For

example:

>later

.1 DON'T UNDERSTAND: LATER.

Mater
POLE POSTPONED.

Once started, the system is self-documenting, and is gradually -becoming
friendlier "to use. Suggestions and bug messages may be_sent via the system

mailer to SPADE@MIT-AI.
$

13. The question arises as to whether the bug taxonomy is exhaustive when

circumlocutions and lips of the tongue are also included. In a trivial sense,

the answer is "yes" b causb `the latter class is open-ended by definition. In a,

deeper sense, the answ r may also be "yes"'in that no bugs need ever be assigned

tO this catedory which violate our intuitive requirement that the underlying plan

not be affected. This is a hypothesis which we tentatively accept but cannot

prove.

14. To avoid possible oniution, it should be stressed that our bug

classification does not correspo o the usual terminology of programming tiers.

While there is a slight analog t n be misleading. That is, "syntactic

planning bugs" does not refer tv th syntax of the programming language; it

refers to the hierarchical structure of the plrodess of constructing programs.

Similar remarks are in order for semantic and pragmatic planning bugs. For

brevity, we lay use the shorter.Phrases, e.g., "syntactic bug,' to refer to a

syntactic planning bug. For the. most part, we are not concerned here with syntax

errors (or "semantic errors")-in the usual sense.

4
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'15. A natural objection is that this particular bug coulebe eliminated
if the computing environment were modified so as to automatically -load
approp files when needed. We completely Ores. Indeed, it illustrates- the
poin that the grammar illuminates the design of improved computing environments.
It i no way alters the observation that, given any particular computing
enviro nt, certain syntactic constraints on the structure of programming plans
must be adhered to, nor that violation of these constraints constitutes one type-
of error.

16. Of course, the issue arises as to whether thohupan problem solver is
simply forgetting part of a known rule, or is unaware of the rule in the proper
form. This leads to a set of difficult problems in protocol analysis surrounding
the hypothesizing of the-grammar underlying a given individual's problem solving.
This topic, is pursued in [Hiller & Goldstein 1976b,d].

17. The occurrence-of two consecutive calls to a given primitive is adi
when a single invocation, perhaps with altered input, will suffice. In Logo, two
adjacent PENUP commands, or two adjacent. FORWARD instructions would be considered
ratio al form violations. ,.

1 16: This wishingwell Aram employs what Golds.tein [1974] termed ah
"insertion plan." The TREE shown here is inefficient in that it-achieves state
transparency via ritfcing the TRUNK. There is also a tradeoff in the WELL
between modularity and efficiency. The use of-the insertion plan to avoid
retracing on the top side of the WELL results in less modular cod These points
are noted only to avoid misunderstanding'-- they have no bearing the thrust of

.. the example.

I

19.1Viewing debugging from the 'Vantage point of this taxonomy sheds some
light on the issue of the pedagogical palzrof kinds of bugs. Our
current understanding of the first three (and to e extt the fourth)
categories of bugs suggests that encounters wittt suqbugs may be instructive in
teaching planning as well as debugging. However, "sips of the tongue" at best
provide some exercise in bug localization. Hence, a "forgiving" system that
minimizes the penalties for such low level bugs'is probably pedagogically sound.
The best example of this philosophy is the Interlisp DWIM (Do What 1 Medal
facility [Teitelman 1970,1974]. (By,contrast, our effort to make more of the
plea explicit might be called SWIM, i.e., Say Whot I Metre!)

20. If we define a context free grainer for debugging, then this error in
debugging technique can be classified. For example; if the rule of the debugging
grammar for fixing slips of-the tongue isqk

REPAIR -> [Imo] REDO
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Where undoing is optional since it is not always required, then the error of
failure to undo (due to forgetting or to confusioi regarding the existence of
side effecti) is semantic.

An alternative view of debugging would^be to characterize planning as a
Context free grammar;, while debugging is described as a traniformattonat
co4onent that maps, derivation trees. to derivation trees. This-would be
theOreticafly elegant, and this possibility deserves further Study. However,
resolution of this issue goes beyond the current paper.

21. Later we briefly introduce a module we are designing called PAZATN .

which wodld' helps to alleviate this difficulty. PAZATN would be capable of
parsing progrimming protocols, inferring -- from a combination of synthetic
expectations and analytic evidence -- which plans had beep used.

22. A fundamental hypothesis of the Logo project is that children learn
by Dlkng and thinking about whet they do. Ofie of our purposes in implementing
the SPADE editor is to explore this hypothesis by experimenting with the relative
merits-of SPADE versus the traditional Logo programming environment. In SPADE,
the student is required to be articulate. Whether this helps students to master
planning and debugging concepts more quickly -- or hinders them -- remains to be
seen. Our conjecture 1s4that despitethe ex6a interaction demanded, 'students

will find the need t9ehe articulate about their' problem solviikLar significant
help in learning, measured by an ability to solve harfir problems more
quickly.
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