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A grammar of plans. is developed from a taxonomy of basic

’ planning techniques. This grammar derves as the basis for the design of t
2’ new kind of interactive programming. environment (SPADE), in which
. programs are generated by explicitly articulating planning decisions.
t The u_\;ﬁiﬂy of this approach to program definition is that a record of

these decisions, called the plan derivation, provides guidance for ,

’" . subsequent modification or.debugging of the program. . .

N ’ : ' Moreover, this grammatical approach to planning allows the
.development of a- taxonomy of bugs, as partiéulhr kinds of errors in

applying the .planning grammar. Following a linguisti¢ analogy, five .

_ types of planning bugs are characterized: 'syntactic, semantic, t

. pragmatic, circunlocufions, and slips of the tongue. The plan derivatjon ‘

can be accessed during subsequent debugging, to aid 1ip diagnosing the

4 underlying cause of erroneous code. Repafr is accomplished via

.o - ) replapning, in which a substructure of the derivation is replaced. A

- , debugging ¥ssistant for the SPADE environment (RAID) is designed based on

this theory. . ’

The enterprise embodies Dijkstra's. philosophy of programming in

a structyred ‘fashion, but represents a more detailed study of planning

ll'.ld debugging techniques than-has proviou.'? been attempted. '
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1.1. Background and Objectives

problem to a procedural statement of rs solution. and (2) to discqvor lethods
by which these processes can be .facilitated.. We see programming as 1nvolv1ng' two-
principle activities: planring and debuuiu. « Rost previous research has
studied these two activities in an isolatesd fashion. This report presents n
urified theory of planninq and debugging, based on a linwistic analogy

= "

A

~

The investigation” 1nc1udosjtho dosign ofrln 1ntoract1vo programming
onvlronlont called SPADE. SPADE is an’ acronym for Structured Planning and
Dedbugging Editor. This nase uphﬁsizos two themes: (1) our perspective on,
programmjng as a'process of pllnnino ané¢ debugging; and (2) our)xphctation that
SPadEL1like systems will ovontunlly help in achievifrg the structured programming

'-ove.cn;'s goals of progru reliability, readatility; extensibility, portability,

Our goals:in this report are: (1) to understand the processes by which a .
. programmer, whether human or machine, moves from a declarative statement of a

« Y

and so on. The objectives for the SPADE p ogramping onviron’ont are that it! '

serve, not only as a practical application of tho theory, but also as an

’ exper imental crucible for testing claims of tho thoory. ) ; et

h]

..

X _In other papers the authors elaborate other dmnsion‘k of this linguistic -
‘approach to’ problem solying. ([Miller & Goldstein 1976a] provides an overview of

ouf ‘research as a whole. [Goldstein & Millef .1976a] presents ‘a long term.

research direction: applying the problea solving theory to the c,onstruction of a

1sarning environment to’ teach elementary. programming. In (Goldstein &

Riller 1226b] the au'thors design PATN. an automated problem soiver. In [Miller & -

Goldstoin 1976b] the authors- consider the use of grammars in thc analysis of
olqontnry programming protocols. In EMller & Goldstein 1976d} the “aut
ktops toward autoutino this analysis tuk by dosiantng a system called PAZATN.
‘- '
3 . 4

1.2. Overview

¢

The basis for'\§PADE 's dosign 43 & unified problu solving theory - chh
incorporates a fundamental. linguistic analogy.- The theary rests on a taxonomy of

‘basic planning techniques: Plannino. according to the thedry, proeoods by &

sequence of design decisions, in which the pronrmor hloc'tt a plan type and

* then carrtes out the subgbals defined ‘by the application of that plan type  to the

rs. take

current problem situation. This docuion process is wodeled by a context frae . .

. .

grammar. . . . : . o

. - / . .
- - This analysis of planning leads to a taxonomy of program bigs as weéll.
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Our claim that the theory uktfies plannin’n nnd dﬁbhgginp is based on the fact
that ' classés of bugs are defined by tracing their origins to particular types of
orrqceous docisi\r_\s in applying the planning grammar. Following a linguistic
logy, these planning bugs are characterized as: syntactic, gemantic,
prcmtic. circumlocutjons, and slips of tho tongue. .k '

.

4

The SPADE !:ystol will provide an 1ntorproter Tor context free grammar
fules. . It will provide bookkeeping facilities, mefntaining a. record of the
plunnmq ‘decisions made in the application of each rule. This data structure
generated by the grammar is cnliod the plar derivation, Progrms are merely theé
terminal strinx of such derivations. He PADE should encourage programmers
: to’articulatc their plannino' desfsions.mr than merely leaving the plan
mplicit in tho resulting code. . . T

)

~

The derivation struc’turo created during planning episodes can be accessed
during subsequent dobugging 6pisddes to aid in diagnosing ‘the underlying cause of
malfunctioning- code. "'Repair would then proceed via replanning, in which a
substmcturo of the plan dorivation is replaced. One result of this repair would
be that the purely hicrarchienl "derivation tree is replaced by a chart of
alternative derivation tre s. Diagnosis and repair techniques ‘based on this
thoory are to be implemented in a debugging assistant called RAID (for RAtionll
lemntation of TUebugging). RAID will be a co-p&unt of . the SPADE environnnt

~ This paper prosents the dosign for SPADE. We plan to 1nplenent the
JSystem. 'The implemented system will sorvo as the basis for a set of experiment
exploring aspects of the - thoory. such as the relative effectiveness of
alternative planning grammars. Examination of sossion transcripts coupled with
'sys’ttntic interviews of SPADE users will provido evidence for answering the

following sorts ot qusstions: ,
> /

LT .
) “‘, 1. Do users find tho planning grammars adequate; or are there
planning ‘decisions which simply cannot be ndo given the

"e restrictions of the grammar? . S ) N
. : v '

2. How much of the gramsar would remain the same in moving from'
one application td another? We initially plan to implement the '
domain dependent®portion of tho grammar for the Logo .elementary
programming domain.? Later we 1ntond .xporinnting with
‘anning“Ngrammars for different domains, to include: the
*blocks world," a set thoo.ry world, and an olmnury calculator
world.? - - - .

3. Do the plan derivation structures generated by the grammar
serve as useful doculonution. aiding one programmer in
uqdorsunding and modifying programs writton by another?

-
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A. How effective is the system as a pedagogical alternative for
teaching. probral-ing and’ problon solving? Can its offoctivenoss
‘be_ attributed to such factors as greater articulation of
planning and d.obt'lgging ‘strategies?’ -

»

- e . ” . 4 '
: The answers ko these qu;;iioni; in turn, will shed light ypon a larger
stion addressed by the  enterprise: does cofiputational linguistics _provide a
‘qguable set of formal concepts ‘and algorith-s for constructing a thoory of
vroblol solving? - . R . ot '

?

:

Sggtion two, proscnts Qur thoory of planning
introduces the SPADE system.

The third sectien
our theori of debugging,” and its embodiment in
We conclude by discussing
limitations, extensions; and applications to structlrod programeing, automatic
progrcl-inn, and protocol analysis.

.~ \\ ,
’ . ¢ » - ) . , ’ -" [

Miller & Goldstein.’
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2. A Grammatical Theogl of Planning | : S

It wouid‘help a gront deal if wo had a general language
specially designed for talking about Plnns Such a language
would. presumably, give us a convonicnt notation for such
aspects s flexibility'.of Plans, the substitution of subplans,

r . conditional and preparatory subplans, etc. For example, it does
not particularly matter in what order Mrs. - Jones chooses to run
her errands when she gets tb town. ‘The ... subplans can be

. periuted in order, and so we say that this part of -her Plan is- .
floxibla But she cannot pornute the order of these’ with the A
subplan for driving to town, or "for driving home. That part'of
the plan #s inflexible. Some subplans are executed solely for

\ the purpose of croating the conditions under- which ‘another
: subplan is relevant:' Such preparatory or mobilizing subplans
~ cannot be froely moved about with respect to the other subplans’
that .they anticipate. Another 1lporign{ dimension of freedom
. that should be analyzed is the interchangeability of subplans.
+Mrs. Jones can drive to town over a xarioty of equivalent ~
routes. The variety 13 limited only by tha condition that they
~ terminate when one of ‘her three altornativo destinations is
reached, since only then would the next part of her Plan™ bccone
\*~\ relevant. Given a satisfactory Plan and a statement of the
bility and substitutability of its subplans, we should then
. be able-to generate many alternative Plans that are also .
t satisfactory \\And ws~should like to haye ways for dociding

. which conbtnationi*o! Plans nro most efficient.

-\a

. \~
*

'3.1. A Tnxohony of Plans'

: i e
To arrive at a syntax of plans, we begi

planning methods. Figure ] presents a taxonomy of

[Hllli? ot al. 1950]

o
r

S

y .formulating a taxqnomy of

griety of common planning

\&techniques S We arrived at this taxonomy part)y DYy
examining problem solving protocols [Miller & Goldstein

rospection, paHtly by
6b], and partly by

' studying the analyses of problem solving- provided by Polya [1957, 1962, 1965,

1967, 1968].

The taxonomy is incomplete:

diffcront domains would smphasizq

different planning techniques.

tochn;quos common to all do-aing,'
. ’ o

by dcco-pos
which solv

ion and by reformulation.

second provides guidelines for breaking the problem into pieces.’

.
LS

Thflnitial division in the taxonony 1: 1nto planning by 1dont1f1cation.

the Q:Pblﬂl by identifying 1t as one which is already Known.
The

Yot there is certainly a core set,of planning .

The first category captures those methods

Thé

third

s

:‘ f i\

- b
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. M ludes_techniques that attempt to rtfo?‘lulnt\o' the pro.bhl into a form more .
Jl\lblo to identification or decomposition, . e /
. —_— . : ' . ]
. , - ' N ;:
For .any domain,’ there are primitives and previously solved problems. )

Hence, the 1donttf1cnylon class.breaks into these two sub:cntegquos; - Of course,

there can be enormous subtlety.im how a problem is recogndzed as an instance of a

previously solved case.’ Constructing a taxonomy does not resolve this 1ssui}. . In

(Goldstein & Miller 1976b] we. introduce formal descriptions of ‘the problem ,

domain, and hence can address Yhis issue more precisely. o o ' "

There lr’hi'any decomposition techniques. The taxonomy of flqur‘e, 1 cites . _<1/
only two: decomposition into conjunctlvo_subgoals and decomposition into a-
single subgoal, repeated some number of times. Other doc'o-posltlon techniques |
are appropriate for problems that can be decomposed into a disjunctive set of - -
subgoals, or into a negation of some goal. Conjunction involves the crlticgl\v—’A
Question of whether each conjunct can be solved aMependently of the others, or

whether there are .nteractions. -Repetition divides into solution by simple ' .
iteration of a single subgoal or solution by full recursion. -

o

——

! Reformulation “4s perhaps tie subtlest of the planning’ categories. It
includes finding an equivalent formulation of the problem which presumably is
_easier to solve or a critical simplification whose solution is a stepping stone
.t0 the solution of ‘the original problenm. Occasionally, one may even reformulate
ja problem into a stronger form: such as constructing an example when only-an ~
existence proof is required. , ’
How can we further explore this set of &nnlno concepts? Our first step
is to be more explicit about the decision process involved- in selecting planning
methods from this taxonomy. ' ) ‘

y ' /\

" / ~

2.2. A Planning Grammar ‘ - : N
y ‘ .

~ -

We view planning as a process in which the problem solver selects the .
appropriate plan type and then carries out the subgoals defined by that plan
applied to the currdyt problem.” From this viewpoint, the planning taxononmy
represents a decision tree of altarnative plans. This deciston process ‘can be

- formalized by a context Pxee gramsar.® A grammar is chosen to present these rules ‘
') 'because 1{t provides a ‘yimples and compact riprisontnt Nuseful for $ "
characterizing the hierarchical structure of planning. We woulmguo that a -
context free grammar is the appropriate formalism for representing a co-ploio
theory of problem solving -- slsewhere we employ a more elaborate formalism.
However, we believe that the grammar represents ‘a useful abstraction of the
decisfon points in: the planning process. )

* ”
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‘The top level Fu}o in the problem solving grammar {

Pl: - SOLVE - =>-PLAN + [DEBUG)®

The nonterminal SOLVE is fofmally analogous to the nonterminal SENTENCE in a
" linguistic grhmar for parsing or generating sentences. P,l" states that planning
is first used to generafe a pldn, with subseguent debugging then being required
to complete the solugion. Of course, the plan may be entirely correct. For this
reason, DEBUG is in brackets, indicating that it is an optional constituent: We
3hall have more to say about debugging in a later section.

" The plagning taxonomy characterizes the planning process as involving
three mutually exclusive plan categories: identification, decomposition, and - .
reformulation. Hence, in planning, the problem solver must ehoose among these
alternatives. We represent, this by the disjunctive rule P2.

'P2: PLAN . -> IDENTIFY | DECOMPOSE | REFORMULATE
. Now lét us consider the details o’o/ach of these planning categories.
ldentification consisted of using a primitive or using a pFeviously solved
problem. This is described by P3. '

[P VU *

P3: IDENTIFY =) PRIMITIVE | DEFINED ~ . .

—

The first altefnative leads to the use of primitives from the particular problem’
domain being investigated. - .

-« 1 . .
The planning theory s modular, and independent of the application
do-a&n. But it is obviously critical to illustrate its applicability by concrete

‘..oxuples.' In this report, we use the Logo elementary graphics programming domain
as our source of examples. The task in this dodain*™is to draw pictures with a
cursor called the "turtle” by means of programs that move the cursor on the
screen. Figure 2 illustrates the grammar rules for the primitives of this
domain. Figure 3 illustrates a typical goal undertaken by beginning programmers,
A "wishingwell picture.” . ‘ . '

N * . »

. The second identification alternative, DEFINED, invelves retrieving a
solut’lon from the library of previously deﬂ!od solutions and inserting it into
the current solution. These two steps are captured by the rule P4.

&+

N [N

P4: "DEFINED -> USE-CODE & GET-FILE'?

We now turn to the second major planning category, decomposition.- Two

* important decobposition techniques are conjunctive plans, in-which the problem \13

sub-?vidpd. into independent parts, and repetition plans, in which the problem is
' - [ I . .

I3

\

i
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. clur'nctoriud 1n terms of a sub-problu ropntqd some nudur of times.
N LTI .

'i_gs:’ DECONPOBE \" ‘CONJUNCTION | amnnon o

A

.") ) - -’ ! - .
-Were we ‘to\lneludo otfm' plans for docounosing problns‘?\ﬁ\u disjunctivo\
iohs '

pl.nu ﬂlilr

le would bo extended by addlﬁg additionll opt

{\u

H . ¢ : : .
. Tllc taxdnomy shows, conjnﬁctiqn as splitti,na 1nto two cases: 1jnear’ Jua
K nonl bi’r " The ‘iinéar case'is intended to represent the. sitdation- whereih ‘the
* . tonJ cts cdn be solved ontiroly in'dopondontly The solution to the. original
problol then becomes: siqply soquencinq thg,,solutfbhs to ‘the .subgoals; or, in
sono caus, executing them’ in any order, i.e the 1ndopondonco extends even- to t g
conposition process. Solving for the roots of a hctorod polynomial is 1ine
(sach rooffigan be solvod for 1ndopondontly) and the composition is set strycturs
(the order of the’ solutidn dges g't uttor) Solving for the sub- picturos f the
wlshinw&; shown efrlier is independent,. but to obtain: thﬂuirod \rolntions

between parts; some specific sequence must by unblishod Rule- P6 defines

tho two cases for conjuhction . . -
- Al 4 -

P6: conJuucnon -> Livear | NONLINEAR o .

A {

-Rule P7 spocifios tho 1 altornlativos ‘for a ‘linnr solution .. . s

) " P7: LINEAR . -> SET 1 SEQ * . ~
o o , L a , . ‘. N
Y O P7 \s incomplete: /The compasition of independently solved subgoals might .
, he in parall 1, or via .some intoi-rupl control structure. A.goal of -our research
is to dovolo the dopth and breadth of nuo tlxonoqy and its usociaud procodurnl
?  ~forms so as tp include such cqnstructs - . S ‘

up cnd clunub steps. . .
. o » v _
. P8: sSm . .->‘[8|-:TUP] + (MAINSTEP »[INTERFACE])' * [CLEANUP] ‘. ) * ot

JE S 1

des indopondcntly of each other.. ° » .

S

»

Tho«g sénce- of . uquontial glan is .that the solntions to the main stops can be

i

P . A set plan is simpler: tho 1ndopondonco of tho co-position implies that
no setup or cleanup steps are nocosury . .
N 4 *

"P9: SET, -3 <mp>- . - o
- - - )
_ For the progrming domain, a setup, um itop‘ilntorhco. or cluntf -~ ,
R \ I , . ) v U * ’ T m .
.o, . N . . -
;/-. SO p, ‘ - . L

'n) . » - . . 1 o T . C » t

«. - ‘, ' N ” " . N lJ‘ . . .
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1sts'o£ oithor tho additi of a line of code or a recursive application of
E v - N
Pl0: SETUP - - = STEP

.P11: MAINSTEP - -> STER

-P12: INTERFACE .,  -> STEP

P13: CLEANUP - r> STEP l
Pl4: STEP "=> ADD | sows

The grammar now Idnits potentially tnfinite recursion. What 4s pot
 formalized by the context free grammar is the fact that SOLVE is always attempted
'with respect to. Some speci ic problem and in a definite context. s_uccusful

planning involves sqlvin“cossively simpler problems until a dlrect solution
in terms of the answer library is possible. The semantic and pragmatic
components, fornal'izod in. [Goldstoi/& Miller 1976b], would constrain the
potentially infinite rocursion allowed by the grammar. : Q

2
» a

Similarly, the grammar does not capture ;ho disttﬁction between a sotq.
main step, and clomup ‘they are all simply steps.. There is, "howevar, a
semantic distinction: -For example, the distinction between a main step and a
setup depends on whether the code is designed to directly iécon;ilish ;o‘o subgoal
---a main step; of to establish some ‘prerequisite for accomplishing some subgoal
-- a setup. For oxnplo.‘in ‘the Logo graphics domain, main steps gonorally
tnvolve ‘drawing a visible part of the picture while setup steps have the goal of
invisibly mdifying the. position’. or heading of the turtle between adjacent mdin
steps. The. Hycroft program [Goldstoin 197ﬂ included a program annotator that
made such distinctions by ¢ ring the picture drawn by the code with a
predicag® logic doscri‘ptior_\ of nded picturo.“ .

ns "states that rmoti\ton plms cnn .be accomplished either by simple
loops or by full recursion. (Thc lat®r-is not elaborated here.) o

4.

P1s: Renrm_}on -> ROUND °| RECURSION J

3 ®» v

‘A round plan is _the simple looping case,  which’ cafbo acconplishod either: by
iteration or by ‘tail-recursion. (Tail-recurshon is the restricted case wherein

"tho recursion is constrainod to be the last line of the program. It is
co-puutionally oquivalont to a silplo loop structure.) The following rule

clp;uru this :

<

E

P16: ROUND » =) ITER-PLAN | TAIL-RECW . . »

Figure-4 ‘illustrates a trianglo being nccolplishod by tﬂru/difforont
5, Logo progr~> These correspond to the use of. a sequential p-lan. a recursive

round plan and an iteritive round plan. The annotations in parentheses, stating
. - ) . .

’

-
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N_—  Figure 4 "Accomplishing A Trisngle -

.

/

—

« (Sequentie) Plan)

TO TR1I-3EQ T .

FO 100 ——Main s(p-—( sccomp) 1845 1de one )}————
LY R

- L 9 -
RY 120 —Interface Step—(prepere heeding for side two)—|.

FO 100 —,'ﬂuﬁ'ﬂop—(/ucmluh s1de two)

e " e— Seguentie)
RT 120 —Interfece Step—(prepare heading for side three)- Plan

.

ib 100 ——Main Step—{accompiish side three)

RT 120 —Cleanup Step—{eccomp)1sh heeding transperency )

»
/

(Ted) Recursive P/(m)

30 TRI-REC . ’ t (ne stop step: does net halt) !

D 100 ——NainELep—{ eccompliih side n

N . ) e=Seq Ple
RT 12¢ ~Interface ;hp-(pop. heading side nél)-

, . o To{)

TRI-REC ——————Recursion Step - - ! Recursive

‘ = Plen

-

N ’ (1teretive 'l!n)

10 ™i-17ER

Ju’r ) ———Repeat Stop— —r —
‘ - : e=Iterative
h sjde n

FO 100 —Main Step—1(sccom) o ,,_J Plan
~Seq Pla

RT 126 —Interface Step—(prep. haading side n+1)-J

1, 0 y “,
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&

— what the planning step is mtondod eo aceolalisjj. aro semantic descriptions not ’
mnorltod“bthho qruu o\cruur must be supplolontod by semantic
1ntirprotation rulw allow Tor sych analyus.

I
- o

T Tail r,cursion may Eo @tﬁd as a sequential plan plus recursion and
o stop steps. Iteration is similar. 7 o ¥
. 2 . s
P17: ITER-PLAN -> *repeat step® + 3EQ -
P18: TAIL-REC .+=> STOP-STEP & SEQ + REC-STEP - :
P19: REC-STEP - 'rocursivo program call® - ' o
'P}y STOP- sm L 'stop program call® \ .

Roforluhtion. tho :ma njol' planning catogory, shoulc/ be briefly

lontioncd figure 3 provides a simple éxample of rofo!'-uution by regrouping the

“parts: a wishiagwell. originll}y decomposed into a rbof, a pole and a well, 1is

- ) later viewed as decomposable into a tree and a well. Rofomlauon techniques
’ depend intimately on- *the problem description. Hence, 'we do not consider them
further in ‘this ropog‘t. The su’bsot of -the planning grammar employed here is.
summarized in figur’o 6. . l .

v

Y
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;/\/ ' Flgure 5 i
~
-= REFORMULATING THE WISHINGWELL IN TERMS OF A TREE ,
I .r * -
" -ROCF
TREE o2
| f L_POLE
- ’ \ - -
o ]
R >3
&« WELL — ’ o .' —HELL
. ‘ _j 1 g i -
- e Q. \-' . >
SINCE SPADE-0 Has No PROBLEM‘DESCRIPTION, IT MAY NOT ALWAys —
BE APPARENT WHEN A REFORMULATFDN HAS occunnsn. SOMETIMES T
WILL BE APPARENT, THOUGH, FROM THE ‘DIALOGUE. FOR EXAMPLE :
i /. < - . .
/ A -
1A, WHAT ARE YDUR SUBGOALS? N
N ~ ) S
1B, ‘RooF, POLE,‘WELLV ; ‘ \\\ .
) ZA NHAf'QbULD YOU LIKE TO DO?
" 2B, Repo cHoIcE 1, . )
5n. CHOICE 1 UNDONE,
WHAT ARE YOUR SUBGOALS? . A
" 3B, TREE, WELL. '
“‘ . ] :/
- ~
4a. RULE FOR.TREE IS: SOLVE = - o .

A




Grammar BSased Edi

. L 4
" Y N

- “Hillor' & Goldstein

. Pl:
PZr‘
P3:
Pa:

P8

P7:
P8:
P9:
P1o:

,ill:

P12:
P13:

Pl4:

P18:
‘P16:
pr
P18:
P19:

P}!O :

~

SOLVE
PLAN
IDENTIFY
DEF INED

.

DECOMPOSE

'CONJUNCTION -> LINEAR | NONLINEAR

- Figure 6. G2: A Grammar of Plans

s
-> PLAN + [DEBUG] ‘ . ( '
> IDENTIFY | DECONPOSE | REFORNULATE | e
-> PRINITIVE | DEFINED :
-> USE-CODE & GET-FILE

-> CONJUNCTION | REPETITION

.

LINEAR -> 8ET | 81Q ,
R i :
8EQ -> [SETUP] ¢ <MAINSTEP Ynmmw'_ s [CLEAWP]
S T~ , - )

SET -> CSTEP) .
SETUP -> STEP™ . - ‘

. . \ ’
MAINSTEP . -> STEP ¥ :
INTERFACE -5 STEP - .
CLEANUP « -)> STEP -
STEP -> ADD | SOLVE

- . . - :
REPETITION  -> ROUND | RECURSION

@; L3
ROUND > ITER-PLAN | TAIL-RECUR
ITER-PLAN => "repeat step" ¢+ SEQ
TAIL-RECUR {-> STOP-STEP 7'350 © 4 REC-STEP -
RECyS‘IiEP ) «)> "recursive program call®
] -

STOP-STEP -5 :ztop progra ca)l®




3 . Gremmar Based Editor o 12

.
14 ] . -
# '
< . .
. * -7
‘.

- 3, The SPADE Editor

How can we validate a particular gramsar? How can we judge whether the
grammar captures at some level of abstraction the set of planning decisions
inv®lved in solving problems for some domain? One traditional methodology for Al
is to develop an automated problep solving system. The gramsar, however, is
insufficient for this. Semantics and pragmatics are required to make our theory

deterministic. (\h develop this in [Goldstein & Miller 1976b].) —

. ' ;o -

But another methedology is possible. This involves incorporating the

grammar into an intelligent editing system to aumlit the capabilities of the

hmg problem solver. The critical question is whothor such an intelligent

support system successfully aids the user. ‘5n this section we design SPADE, an
editor for defining programs that incorporates our planning grammar.

A

b4

1. SPADE-0: A Rudimentary Planning Assistant =

(

’ ’ - 1
The name Structured Rlenning and Dedugging Editor emphasizes the link
between the problu solvinn -th-.ory being evolved here and the structured

proorahlno dovement . Dahl, Dijkstra. and Hoare [1972] properly argue for .

program$ that 'i'ofloct coherently structured problem solving. But they do not
develop a thoory of g}mnino in any grut detail.” Our effort in this dirdction,
therefore; naturally supplements the examination of procr-mg style initiated

by Dijkstn and colluwos ) . . - "

, Figures 7- m?‘ﬁ 111ustr|t: n interaction with SPADE-O, oyr propoud
gramsiar based editor.'? The user interested in defining a Logo program for
drawing the wishingwell shown urlior. In the SPADE environment, -this is done by
applying the planning grammar in generative mode. The user begins.by specifying
whether the plan is to be an identification, decomposition or reformulation. The
editor keepi track of the pending subooals. 4llowing the uur to move from one
goal to another. .

L]
»

Consldor lines 6a and b of tho SPADE-0 scenario. ‘

’

6a. Do you wiih to mciudo the optional constituent CI.F.ANUP? ¢

6b.. HLATER . ] L '
‘These lines illustrate the user suspending one subgoal, without co-pining it, in
order to pursue another. Althdugh SPADE's default is to suggest subgo.ls in "tép
down" order, the system will offer the user the freedom to deviate r"o- this ™
default, pursuing the set of refjuired goals,in any other order. . The decision as
to whether a CLEANUP step is needed in the sequential plan 1is part of the

BN Iy
A

\ '
1] .

Niller & Goldstein

—

\

-,
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A re T ’ -_F_lggré 7a. SPADE-0 Scenario (part a) o
, | \

.. The preliminary persion of SPADE ts little more than a bookkeeper for the

.user’'s subgoals. it is currently being implemented Dy asstgnind an in{erpretive
| procedure to éach grammatical primittve. : ;

~
b

]ln. Vhit is the name of your top. level procedure?

1b. W AR — - )
2a. Rule for WW'is: SOLVE -> PLAN + [DEBUG]. . ‘
, Rude ﬁor WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE. *
. + What now? . . . '
‘2b. >DECOMPOSE R

~

. * - { }‘"

'an'. Rule for WW-4 is: LINEAR - SE‘QUENTIAL | SET. i
What now?- ’ .- .

.. ~ ‘&
3b. >SEQUENTIAL —_— B ,
y — 4a. Rule for WW-5 is: SEQ -> [SETUP] + <MAIN:+ [INTERFACE]>® + [CI_.EAWP]
S ' Do you wish to }nclude the optional constituent §ETUP~? e
" " 4b. dNo o . co . o )
.‘ ) - e ‘
Sal How many occurrences of (MAIN + [INTERFACE}> do you want?
5b. >3
, . ‘ / .
6a. Do you wish to include 'the optional coﬂstgz:uont CLEANUP?
_—6b. JLATER ‘ a

X ‘ ' ' »
. _LATER ts. a2ommand understood by SPADE. It means that the,user wants to

- terminate this path,,but that {t must be recommenced later. SPADE keep.s(traclro]‘
esCORjunctive goals, reminding the user of the pending goal list 1f asked. Qerc tt .

. _records the informatton required to retura to, and eventually complete, the *
epplication of the SEQ rule. It can ther go on to other goals.

.
- v 7
-~ v
" -
. » o !
, - .

- . : . -

, . “ » A JEN
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Fiﬂl‘. Tb. SPADE-0 Scenario (part b) - S

~
» .

and WELL.

&

7a. Your pending goals ll‘O' POLE, ... th uo\'ﬁ e
7bl )POLE "';4

SPADE applies the SOLVE.qule recursively,

8a. Rule for POLE is: SOLVE -> PLAN + [DEBUG]
Rulo for POLE-1 is: IDENTIFY | DECOMPOSE | REFORHULAIE
What now?

8b. >IDENTIFY

L]

. N - \
9a. Rule for POLE-2 is: IDENTIFY -)> PRIMITIVE | DEFINED. - ' s
What now? .

" 9D, YPRINITIVE

-

10a -~ Rulo for POLE-3 is: FRIHITIVE =) VECTOR | ROTATION | PENSTATE
_ What now? ,
10b. >VECTOR ' '

’ L)
.
. W9

>FORWARD 100 . - . .

lla. POLE completed. Pondinu coals are: ROOF, \IEI.I. and W -17 (CLMP of

WW). What now? _

s . [

11b. DWELL ‘. .

[ * > : >
' /
12a. Rule for WELL-1 1f: PLAN -) IDENTIFY | chonposa | REFORMULATE.
What now? ( ‘
.12b. >DECOMPOSE co A v

Hero e Aave substituted ¢ grammar uhtch contatns rules for comjunction but mot
repetition. TM.: allows us to tllustrdte the manner tn which SPADE avoids
int pating the user when no actuel n’tuou is ;'oqmrcd

l3l Rulo for WELL-4 is: DECOMPOSE -) CONJUNCTION: - - ’
(Forced.) .
. Rule for WELL-3 18 CWJUNCTION => LINEAR | NONLINEAR
What now?
. . e
- ‘ ) : r
, \. i
; ' )
r 21
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A
skeleton for the superprocedure. (The goal of deciding whether to tnclude the
CLEANUP should not be c d with the goal of designtrg the CLEANUP once the
need for it has been hstablished.) Somé. users might prefer to defer this
decision until the main steps have been further elaborated. SPADE should pe able
to accomodate the aﬁ\qnuve solution order. *

The typeout commencing at line 13a illustrates another feature of SPADE-
0. (A similar sequence is shown at 2a.) v
. ¥
13a. Rule for WELL-4 1 DECOMPOSE -> CONJUNCTION.
(Forced.)
" Rule for WELL-5 is: CONJUNCTION -> LINEAR | NONLINEAR
What now? )

«

Since the grammar is interpreted (rather than being 'progrmed"in"). it is easy
to try out alternative grammars. Suppose, as is shown here, we e-pIOy'a
simplified grammar in which the REPETITION rules havé b‘an eliminated. (This
might be useful in tutoring a novice for example.)* Then no decision is actually
required in applying the DECOMPOSITION rule. SPADE should notice this, and not
" interrogate the user in such cases. ’

Figure 8 11Tustrates one possible dorivaution( tree for WISHINGWELL as
d}linod using SPADE-0. The utility of this record of the user's design decisions
will become clearer when additional features of SPADE-0 are presented in the
section on RAID. . .

-

The implementation of SPADE-0 (which is-now in progress) will not be
difficult. - It is simply a bookkeeeping system for applying the planning grammar
in generative mode to build a solution. The basic implementation technique is to
provide - an interpretive procedure for each grammatical operator (such as °*}").
Additional features—can be implemented by assigning speciglist procedures to non¢
terminals of the gfammar, as will be ddne for the debugging assistance
illustrated later. ' i

~

-

3.2. Towards SPADE-1, and Beyond

X

The:re is an uppu: bound on ‘the utility of SPADE-0 wxhich canjot be
overcome by more careful human engineering. . Tifis “s‘due to the faft that SPADE-0.
does not have access to a description of the/problem being /solved. When
application of the grammar rules results in a recursive appl‘icat_ion of SOLVE,
SPADE-0 has-no notion of the relationship of the subproblem to the top level

Wgoal. To overcome this fundamental limitation, we intend to design and implement
SPADE-1. - . |

22
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SOLVE—PLAN—DEC-—‘-LIN—-SE%

LY
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\
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- -

¥

—INTERFACE (BETWEEN WELL & PQLE)ia. .-—DF:C. . —LIN —SEQ'I:

>

&

- ) N
* )
‘/ Figure '8 .
ABBREVIATED HIERARCHICAL PLANe DERIVATIOW ‘FOR A'WISHINGWELL
g - )
~ /ot )
, ( ’{ . ' 44/ -
—SETUP. .. —ID—PRIMITIVE — RIGHT 90
USE-CQODE — SQUARF 100
- ~ID- ) i
: ?AINSTEP (WELL) . .. ~ID DEFINED—{GET_FILE : . GET SQUARE-
. FILE

MAINS@#F..:—FORWQRD 50

CLEANUP. .. —LEFT 90

|
A .
i

FORWARD 10@

| MAINSTEP (POLE)... —ID—PRIMITIVE-
rd

Al

_ INTERFACE (BETWEEN POLE & ROOF) ...-DEC...-LIN—SE

-

Y-

v

Y . S

¥

0

ETUP...—2LEFT 90

L 4

INSTEP..,'—FORWARD 50

LEANUP. ..

*

.
[ S

—RIGHT 120

. |
o

—MAINSTEP (ROOF) ... —DEFINED...

io;rp.%[ posed axeumrexs .

—TRIANGLE 100

- UT93ISPTOD 3 ISTTTW

®

»
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Fioura_9 shows a hypothetical interaction with SPADE-1. In many respects,
SPADE-1 will be similar-to SPADE-0. It.still is governed bya set of context free
grammar rules, and still provides bookkeeping facilities for suspending and
.resuming subgoals.. However, SPABE-1 requests that the user supply a forml
description of the problem. .(A library of standard problen doscriptions is
supplied for use as building blocks). Thp user neéd not comply with the request:
however, without the problem description, SPADE-1 can help oniy as much as SPADE-
0. . . ) AN .

‘ VWith a problem description, SPADE-1-would-be able to provide additional
assistance. It could notice when a procedure for solving a subproblem' ‘already
exists in the answer library, by accessing the doscriqtion of what that procedure
acconplishes It could perform rudimentarw decompositions, and perform more
substantial inferences when the user bypasses intermedjate steps. .Coupled with a
‘performance annotation module -(such as in [Goldstein 19761), SPADE-1 could
determine (in many casu) whothor a given subproceédure satisfies its
specifications. —\ ‘

" The introduction of formal problem descriptions provides-a first
improvement over SPADE-0; introducing pragmatic constrai;xts at choice points in
the grammar wouldyprovide a second. This leads to a more elaborato Iinguistic
formalism which we briefly considor in the com:ludinwoction . ]

N\ .

~Whils we plan to porfon these extensions, from SPADE-0 to SPADE-1 and

beyond, SPADE-0 will still serve a useful role. The grammar based editor can
support experiments on several important issues: (1) the adequacy of the
plnnnﬁng grammar; (2) the domain independence of the planniy grammar; (3) the .

- utility of the planning grammar in terms of structured progranling
considora'tions/u) the pedagogical ‘value of an articulate planning environment.

’

. There is another dimension along which the theory as presented S0 far is
While the planning rules alone are jufficient to describe programs

We npe‘d: a theory of
and of their diagnosis and repair, to supplement our thoory of plans This
e purpose of the next two sections.

o \

to
&
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la.
1b.

2a.
. zp.

Ja.
3b.
4b.
Sa.

Sb.

Ga.
L

6b.

7a.

7b.

~ 8a.

8.

Oa.

. These subgdals correspond to model parts.

Figure 9. SPADE-1 Scenario -

imn a doscrtptton oj the problem, SPADE could .be more Aelpful.
LA

Tell ne the nm of your toplevel procadure?

W ‘ . o |\ .
Would you like to define a model? ' |
WISHINGWELL

P .

oK. HISHINGVELL lodol found in Model Library. .

Rule for W’ll 1s: PLAN -> IDENTIFY. | DECOMPOSE | REFORHULATE s
What now? ..

YROOF POLE L | o ’

s R
Are you pursuing a LINEAR
DECOMPOSITION plan? )
>v£s . ®

3 N

~

: ROOF, POLE WELL and ;ho decisions rcgarding
steps (Wu- Q) for W. What now?

Thc pending subgoals ar,
" inclusion of preparat
)ROOF 2
’ a
In the W model, ROOF is doscribed as a trianglé. Therd js a "TRIANGLE

procedure in the answer library. Hence, an IDENTIFICATION plan may
succeed. What now?

>IDENTIFY

The TRIANGLE procedure in the answer librlry satisfies the intrinsic
description of ROOF. Would you like to use 1t? -
>YES

OK. The ROOF is complete.
What now? .

Your pending goals are POLE, WELL, and WW-5.
>

¥

. .
The first order goals for the parts are now complete. W-S (the choice .
of preparatory steps for WW) is complete. You have not expanded the

definitions for the interface step, W-6, nor for the cleanup step, WW-
8. VWhat now?

.
—
’
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~ ' 4. A Grasmatical Theory of Debugging’ ' I
b _~
s .,:""' o . Bugs are 0 inportcnt ;hat it-A4s useful to classify them ..
. o and give th¢cluus name¥. . In real world problem solving we
) oft:LMv' names- to inpor;cnt ‘classes of bugs. In electrical -~
« +“° . - ongineering, for example, one class of bug-is "instability.” It
. may be manifest as “thermal runaway® or "spurious oscillation®
. in an amplifier: The-underlying cause is "pasitive feedback,"
”\ ‘é and therd are several posxible cures (patches) which may be
cppli’d: *negative feedback,® or "isolation,® for example.
; X[ Sussman, 773. p. 170.) A
< © . © 2 .
»In earlier sections, we constructgd a :Imr of planning concepts “and
L described programs as the terminal strings generated by this grammar.
\ ) Unfortunctcly, problem sifvers, whether human or machine, must often.decide on a
7 plan despite not only knowlédge which is incomplete or uncrtain, but also
' ( . “1imitations on tfle and memory resources. The hest of chgices in such situations
. can turn out wrongly: debugging is then required. In this section, we fol‘ow
\( Sussman's;advice, developing & classificatifn of bugs. Ourlgo.al in this
’ . classification schege is to unify our. approaches to plarning gnd” debugging by
, tracing the origin ,ﬁ bugs-to various types of erroneous planiigy choices. In
section five, we a this perspective on possible plcnning errors to t sign
’ ~ . of,a debugging assistant t¥lled RAID to be intorporated ,into the SPADE
environment. ‘ L Lot ) . -
L] ‘ . .
[‘/\\ 4.1. Types of sugs- - | v
) Givon our porspcctivo on planning, dobuggqlg can be analyzed as the
l cllizction and ‘repair of errors in wplying the grammar rulos during
neration. > S8ince our planning s were conctructcd from oporators for-
con junc ioh. for disjunction and fwtionality. there arise_ three buic classes
of-error: © o . :
‘ < ’ - . X' )
' (1) syntactic bugs 1in whicli\ the pl@anning grammar is-violated,
4 ’ X _.suth as when a required conjunct is nissing
. / ‘ /— A}
’ . = - (2) semantic bugs 1in \mich the pla syntactically. well-formed,
- ' but some semantig constraint, Rrising from the particular
problem. is vié'iated, such’ as when a syntactically optional
*m constitucnt. needed because of the sonantics of, the
S wticﬁcr problem, is missing. I
. y J
. ) ﬁ - “\" (3) prunctic 3us in .which an inappmriato s,dion from a
" N set of mutually exclusive disjuncts is made. .
oo . s : .
T N L *,
» K
r ’%. -, v -
S 27 e
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B, K , ,

) This "cateporization 1is not complete: two other cl.asses’buas u} -~
“circumlpcutions® and "slips of the tdngue.*'® The first class represents plans
which are successful but -inefficient. The second class refers to miscellineous .
.errors {n exocu‘ffoil including mis-typings, mis-spellings and incorrect ‘
programming language syntax that do not reflect basic conceptual mistakes in the

. ’{f"' N— . '
- n- - ' ."]
, 4.2. Syntactic Planning Bugs - - ,
N\ . ' . \a//
. When ‘a decision made during a problem sqlving session violates the

Planning grammar, the resultant bug is termed syntactic.'* An example of a

- syntactic bug is failure to include an ob‘ligatory conjunct. To illustrate this,
consider the following error. In the solution o‘f‘ @ problem, one subgoal matches
& previously ‘solved probles. ' Hence, the probles solver incorporates a call to
the appropriate subroutine into the solution. But it is common to forget to load
the #ile containing the subroutine into the curront \iorkspnce. Figure 10
1llustrates this difficulty: as befdore, the goal is to write a program that .

e draws a wishingwsall. The roof is a triwngle, which corresponds tn a previously

defined subprocedure. A call to TRIANGLE is placed in the WW' prqcedure, but W

is exeCuted before the fflo containing TRIANGLE is loaded.'®
s r

-

In tom of cur plonring grammar, this is a sym:iectic bug. The W ~

procedure is ungrammatical. ‘\he appropriate rule desciibing this situstiom is:

A
»

P4: DEF‘INED "7 => URE-CODE & GET-FILE

butythe file retrievsl is missing.

S

) Thus, s'y:;arti'. bugs are those in which a necessary (}njunct of a

¢«  bplanning rule ls not present in the pl,n. (Syn_taétic bugs might also be caused

by the presence b’ an illagal extrn constituent, Lut this class of problems seems

less common.)  ‘Normally one vouid not expect a machine problen solvor to make .
this kind of error. give. A correct planning theory and no houri.tic limitations. ’
However, resource limits.con time or space might resu't in tlls rerf rmance.
Moregver, it is a conmon Luman error.'s’ '

v
-

The basic tecliniyue inr yepairing a ‘synfictic bug ,once isvlared) is to

redo the culpable plauning deciscon in such a way that the grammar is mo longer

violated. For the case of a nissinwt obligatory comjunct, this 1m}f198

solving for the constituen* in quest.on, and incurporating that solution into the

“. larger solution at the r%auired point. For thie WW egcuplu ‘In part.cvlar, 1t

means getting the TRIANG.E proceMur. from a filu, and then 1 x xecut’rg W¥ “n the
corrected environment. . } s , . ~

»
- »
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. gigure 10 .
~ DEBUGGING A SYNTACTICALLY INCORRECT PLAN
L A NECESSARY CONJUNCT "IS MISSING
\ ARt .
T0 HW ]
10 TRIANGLE——— USE
P !
L AL -
END ' ¢ v
Wi . GET
797 TRMNGLE UNDEFINED 2?77
~ » +,
("GET" MISSING., UNGRAMMATICAL PLANJ ‘ nilb‘
"DEBUG BY COMPLETING PLAN.) ' : r
GET TRIANGLE FILE—— ‘
2
J /\ -
7 CoL ‘ - P - .h ‘ " the intended picture
et I | '
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4.3. Semantic Planning hg’

Semantic bugs diffdr from synuctic )ugs in that no planning decision
violates the undorlying gramair; rather the usual case is that a constituent
which is optional in the grammar is l& present, but is needed due to the
semantics of the pnrticu“l@ problu This distinction can be understood ‘more

clearly by considering that- -syntex’ supplies broad constraints on the structure of

x{“tions to nll\probius. semantics supplies additional constraints in terms of-
features of the pnrticulnr problem at hand. Rules P1 and P8 are typical rules in
the grasmar for which this kind of difficulty can arise:
. RN : .
Pl: SOLVE ->.PLAN & [DEBUG] ot o .
P8: SEQ '=> [SETUP] + CMAINSTEP + [INTERFACE]> + [CLEANUP].
Debugging is necessary if ftho,progra'l,'pr"oduud during planning fails to
accomplish its intended.goals; otherwise, debugging is unnecessary. For a
concrete example involving P8, let us return to the WW problem. Part of the

. problem specification is that the wishinmll be drawn in .an upright position.

Suppose that the order in wl;‘ch the main steps are executed is to be: ROOF,

'POLE, ‘and then WELL. The. subprocedure for the TRIANGLE expects the turtle to

begin at a vertex, oriented glong the circumference. Therefore, an initial SETUP
(synt.ncticnlly option.aL) rotation is required to vortically orient the
wishingwell as a whole. Furthomro, additional interface steps are required to

"establish the .required rolationship between the ROOF and the POLE, that the POLE .

- connect to the ROOF by 1ntorsoct1rm with the center of its bottom side. Figure

i1 illustrates this local goontry, contruting a semantically mco-ploto Ww

program to a corrected vorsion

~

. Since it u‘ofuh an effective houristic to design main steps before

_interfaces, one would pot be surprised if a human programmer designed the

subprocedures for:the roof, pole.and well, and then concatenated /them, but' forgot .
to 1ncluq_o these _necessary interfaces. Mogeover, even for a ‘machine problem
solver, there are situations in which it would be mor efficient (and therefore
rational) to dStermine the need, 1f any, for such interface steps via trial
execution and dobuggirw.f than via twough but resource-intensive initial
planning. . o

In terms of thc planning granar. the overa}é plan for the \6 is
described as a sequential plan - that is, a sequence of main steps for the parts
with optional interfaces, Givon rulo P8, the WW program illustrated by the
pr‘ovious fiigure is syntactically acceptable, but smnucally incomplete.

3
_ Semantic bugs cug also occur"wl\on an optional constituent is present, but
30 ‘ _
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X DE;B‘UGGI.NG A SEMANTICALLY -INCORRECT PLAN .

AN OPTIONAL CONJUNCT IS MiSSING. _

" FOR EXAMPLE: o
| "Wi" WISSING INITIAL SETUP,
- AND INTERFACE FOR POLE.

" 70 WM

10 WELL —— MAINSTEP 2
ZOQ’OLE-——MAINSTEP,:{ , ENDS HERE
- RSEQ-PLAN s s
* USE TMPERATIVE KNOWLEDGE ] .
" OF MODEL PREDICATES TO , At
COMPUTE MISSING STEPS, . L . ’
- ‘ ' - . STARTS HERE
THE' SEMANTICALLY CORRECTED PROCEDURE
e ) — R . -
-TO WW .
*5 WW-SETUP———— SETUP  —
10 WELL ‘MAINSTEP{ -
*15 WELL-POLE- INTER — INTERFACES . -
20 POLE — "MAINSTEP :
; I SEQ, PLAR |
) . !
O WY-SETUP ,
10 RIGHT-90 —— |
. ‘BODY OF - ') .
" 20 FORWARD 50 ——SEQ—, © sTaRT |
L Rt 90 — o SEPSTER o RRE ] A —\V
END ‘
. ’ ) c - L "’
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sémantically inappropriate. An example which lwo observed in- a “high schodl
‘student was to always begin @ procodurc with the RENUP. command, even when the

first main step was to draw a visible vector. This resulted in oi}hor (a) whon -

the: program was first run, the first vector would be missing, and then the PENUP
would be deleted by a debugging edit; or {b) a PENDOWN command would be added to
~the procoduro inefficient but otherwise harmless extra steps.

The general repair strategy for semantic bugs 1s to rodo the culpable
planning decision in such a way as to satisfy the violated semantic constraints.
In particular the repair for a semantically incomplete plan is to solve for the
missing conjuncts and incorporate “thea mto the solution as a whole. For the
wuhinmll. this involves designing setup and, interface steps, and then oditino
the W suporproczduro to employ thes. T

4.4. Pragmstic Planninf Bigs ' ;

Some grmr rules describe alternative strategtes to. accomplish a given
plan. Fomlly these appear as mutually exclusive disjuncts. Examples include:
( - " z
P2: PLAN | => IDENTIFY J DECOHPOSE 4 uronluur;
P3: IDENTIFY => PRIMITIVE | DEFINED - s
P6: CONJUNCTION => LINEAR | NONLINEAR
P1S: REPETITION 5 -> ROUND | RECURSION

’

Pregmattic Imas are those in which an incorréct disjunct is chosen.
»

" As. an illustration, consider grammar rule P6, for conjunctivo pluu' It
spociﬂu two alternatives for |ccolplish1ng 4,30t of subyoals: a linear and a
.nonlinear strategy. Now in" this case, the formal roles Rldyed by the alternative
disjunctf are syntactically indistinguishable with .respect to the overall
grammar. The pragmetic dlffor,nco, which is ndt formallized horo. is that a
1inear decomposition solves for the ub-probllu independintly. while a nonlinear
,dcco-position solys for son. zubooals given knowledge of other wbgonls

) In general, 1linear plans are simpler to apply bocnuu of their
1ndepondonco Assumption. However, pragmitic bugs arise when the plmnor is faced
with a typo of problem in which there are inherent interactions between the
steps. ' An-example of where 1inear problem solving is 1n|doqu|to in the graphics
world is the qopu:ontly imple task of ‘drawing a square iaside a “triangle (figure
12). Suppose’a linear plan i3 pursuod This gives rise to two main steps (‘the
square and the triangle), and an interface/ step.. If the main stops are solved
-1ndopondontly of one angther (by means.of ARE .and TRIANGLE subprocedures), it
is. 1ikely that .the figtres produced will be of the wrong size. to permit the
desired INSIDE relation old. This violation cannot be corrected by altering

/. N

Q ‘ e , ) . ¢ :22

~
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lgure 12 .
DEBUGGING A PRAGMATICALLY INCOR CT PLAN.
/

AN INCORRE&T,DISJUNCTVHAS BEEN SELECTED

-

- : % _ =

T0 SQUARE INSIDE- TRIANGLE LINEAR PLAN --

10 SRUARE . //J SPUARE, AND TRIANGLE .
20 TRIANGLE *- - _ | DESIébED o
END - , : L . INDEPENDENTLY.

4
- .

4

INTENDED PICTURE: ACTUAL PICTURE:

DEBUG BY THANGING TO NON-LINEAR PLAN,
* DESIGN SOUARE N THE CONTEXT OF TRIANGLE.
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\ the. order of composition; nor can it be repaired by modifying the interface. )
+——Tie bug is pragmatic, in that neither syntax por semantics gre violated, but .the -
choice of ‘the linear, over the nonlinear disjunct nevertheless leads to an
lnuccoufu} plan. ‘ ' ‘
A prapmatic bug is repaired by redoing the culpable planniny decision so
as to satisfy the violated pragmatic constraint. (It may be that the ‘problem ' .
solver wa¢ ignorant of the relevant constraint prior to solving the current '
problem, This brings up the matter ‘of ,skill acquisition which is deferred till
the’ concluding section.) In the SQUARF-WITHIN-TRIANGLE problem, violation of the
predicate INSIDE is repaired by changing to a non-linear plan. .The second main
step to be solved must be designed—in the context of a particular-size decision .
for the first main step. For example, the s'pocific.uon f6r TRIANGLE is changed’
to require that its side be larger than.a constant which is determined by the
side louct\h of SQUARE. -,

. #
4.9. °Circumlocutions® (Inefficiency Bugs) ° )
/

.A procedure which solves its specified problem, but in a roundabout
manner, is said to have a "circumlocution® or -an trefficiency bug. Such \
inefficiencies can occur fin plans where a° non-optimal disjunct is chosen or .an
unnecessary (but harmless) optional  constituent is ingluded. Correcting
inefficiencies is the typical concern of compiler theory and we do not address it -
here, except to make the pgint that the hierarchical annotation (or derivation)
generated by the grammar is conceivably a useful descriptton for a compiler to .
access. . - 1 : oo

e '

To illustrate this, consider rettonel form violetions, the subclass of
inefficiencies due @locnl oddities in the code; such as sequential inyocations )
of a given primitive.'” This class of inefficiencies has been extensively -
investigated in the literature on optimizing compilers. However, it is possible
that such a rational form violation is due to some ‘serious omission in the
program; i.e., it i% & warning that a bug may exist [Goldstein 1974].

Traditional compilers have no basis for 2’ judgment, but.access to the planning *
derivation of the progras can often illuminate this issug.

4 ' 2 ' A
k For example, one of the ways in which such an inefficiency bug can arise ) ~
is from the use of an "evolutionary® plan [NMiller 1976]. Although the gCammar
provided 1in this paper does not attempt to formalize this type of plan, basic
evolutionary plans are not complex. The programmer attempts to alter the code of

.

»
& prevjous program to achieve the gppcifications of a new, but similar, problem.
To i1lldgtra®™ such a situation, however, we must develop a somevhat elaborate .
examply. £Please reexandne figure 3. A wishingwell, initially viewed as e
' involving three subproblems, has bden reforsulated 80 as to involve two main -
L2

Q | ) o - 34
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steps; the TREE and the WELL. The TREE program is state traaspareat: it leaves
the turtle in the same State in which it started, at the bottom of its TRUNK
(which serves as the POLE of WW). WW incorporates a nonlinearity for efficiency:
the top side of the WELL is accomplished in' two -parts, to avoid retracing -
previous vectors.'? Suppose that the programmer needs & SQUARE subprocedure for
use in another proJoct One strategy is to adapt W by deleting the call to TREE
(figuro 13). After’ this deletion, though, the resulting SQUARE contains
sequential calls -to FORWARD: a rational form violation. The optimization is to
combine these two invocations intq a singlo call to the FORWARD primitive.

B Th*us. a compiler could first chock whether an evolutionary plan governs
the inofficioncy If so, it could perform the optimization with some confidence.
1§ 4 not,.it should notify the programmer of‘the oddity in. the code.

4.6. "Slips of t[ui Tongue® (Execution Errors)

x
[

‘A final category of bugs is necessary when human programming protocols
are to be analyzed. This class, ®slips of the tongue,® is a catch-all for
typographical errors, confusions due to orthographic similarity, incorrect
progra-ir’\g language syntax, noise on the computer line, and other failures to
-successfully type.-in a statement’ of codp. They are often diagnosed b}'
cqnventional compyuting environments, sinply as a result of the code- being
unrecognizable. The plan is not affected. We include this class for
completeness, so that oyr discussions may span the space of possible bugs.

planning grammar does not provide an explanation for the origins of these bug;
l

”

The general ropnir technique for slips of the tongue is to: (a) undo the

side effects, 1if any, of the incorrect type-in; and (b) reexecute the type-in

correctly in the rostorod environment. This could be captured by a rule such as:
! ¢ -

» REPAIR -> [UNDO] + REDO

A common error in debugging technique is to compound an initial *slip of the.

tongue error® by reexecuting, withou.t undoing urdesirable side effects.?

!

.

Havipg a classification of basic ‘bug types does not solve the debugging
problea: 1i¢ i\bnly a starting point. The flext step is to develop a theory of
diagnosis and ‘repair, by which the underlying bug pmade manifest by an
unsuccossful program run can be ‘diagnosed, and then ropair khowledge associated
with this bug type can /60 appliod to correct tho program. &:cgn five "designs
the RAID assistant that will monitor a programmer dyting the planning of a
pyﬁ/oduro and generate caveats regarding possible errors for aid in subsequent
debugging. This monitoring will happen within the SPADE editing environment.

pd
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Figure 13

DEBUGGING A CIRCUMLOCUTION OR INEFFICIENT PLAN

-T0 WN'

5 RIGHT 90
10 FORWARD 50
20 TREE
30 FORWARD 50

50 FORWARD 100 |

60 RIGHT 90 - ( . STARTS HERE
70 FORWARD 100 o FNDS HERE
80 RIGHT 90 )

90 FORWARD 100

END -/
& EVOLUTIONARY PLAN

» . . »

) SQUARE-1

TOr SAUARE-1 ‘ o
5 RIGHT 90 SNDaTE HER

| ENDS ;HERE
10 FORWARD 50 - ENDSHER
30 FORWARD =0 J RATIONAL FORM VIOLATION

40 RIGHT 90

w
4 CAVEAT DRIVEN DEBUGGING

TO SOUARE-2
5 RIGHT 90
10 ¥ORWARD 100
40 RIGHT 90
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5. The Debuggin A;sisunt

. -

Let us focus on one particular cpqponont'of [general heuristic
kaowledge]: the art.and techniqués of ... debugging The
school oxporionco is dominated by the norlativo attitude implied
by "right answer. vs. wrong answer". The mathematician's
oxporionco ef mathematics is dominated by the purposeful- ]
constructive attitude implied by the strugjle to "make it work®. .
He abandons an idea not because it happened to go wrong, but
because he has understood that it is unfixable. Dwelling on
what went wrong becomes a source of power rather than a piece of
masochism (as it would appear to most fifth gradors 1n
traditional math classos)

(Papert, 1973, p. 10]

We have pow dovolopod taxonomy of bug types -- of what use is it? Its
ﬂrst use, we believe, is that it clarifies our understanding of debugging by

5.1. Dumosis and Repair

[}

identifying major categories.of srror. Secondly, it suggests how to design.

better debugging aids for the programmer and problem solver. In this section
develop this position by designing the RAID component of the SPADE program
editor. RAID 3s an acronym for ARAtional Implementationm of Debugging, stressing
our belief that dobuggiq!_’% often a consequence of Aeuristically justifiedle
problel solving, not an embarrassment indicative of irrational or °®“sloppy®
thinking. RAllh is a tool designed to lako debugging a source of power to the
problem solver, as Papert suggosts it can be.
< .-

. Let us consider “further how the taxonomy clarifies our understanding of
debugging. A programmer's approach to. debugging is, naturally, colored by the
diagnostic tools provided by the particular computer system. However, the

_ facilities provided by a wide .range of computing environments have much in

common. These tools manifest what we term suiface debugging techmiques. They
are based on examination of the code and snapshots of the computational process
elicited by the code, both relatively superficial descriptions of the procedure
as conceived by the programmer. Figure 14 shows a grammar uhich ‘partially
for,lizcs this surface debugging activity.

Aci:pu to the problem descriptién and -- most importintly -- the .

programsmer's plea allows for a deeper analysis of debugging strategies.
Figure 13 shows a taxonomy of these debugging strategies. -Figure 16 shows how
this taxornomy is transformed into what we term a deep debugging grammar, for

‘contrast with the previous gramsar. Notice that examination of the plan plays an

important role.
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Figure 14. A Surface Grimmer rorﬂi§19>g

'DEBUG.  -> [DIAGNOSE] + [REPAIR]"

DIAGNOSE, -> <ASKTTRACE | *error®>”

TRACE -> [SELF-DoC*] + RUN"
SELF-DOC -> ADD-PAUSE-{ ADD-PRINT | ADD-TRACE

ASK => "print definition® | "print value® |"print fileé") ...

REPAIR  -> <RUN | EDIT | SOLVE>"

ADD-PAUSE -> ADD .

ADD-PRINT -> ADD

ADD-TRACE -> ADD

EDIT ~ -> ADD | DELETE | CHANGE

RUN -> "run statement of code® + *response® + (DEBUG])
. ADD > "add statement of code® + "response” + [DEBUG]

-> "delete statement of code® + *response® + [DEBUG]

-> "change statement of code® + "response® + [DEBUG]

/

i 3

g
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. FIGURE 15 - A TAXONOMY OF DEBUGGING T§CHNIQLIES
& ~
——PARSE—ADVISE (planning choices)
v, ) _
, +—PRINTOUT
) +=—=-CODE — .
' oo . - L—aDVISE (rational form violations)
» — DIEGMOSE- ‘
o S
- }—MODEL — ADVISE (model violation‘s)
/-'/‘V .~ ) *
—ASK T
—_ . L prOCESS—}— TRACE ' ' ’
4
P} _—DO )
DEBUG ™1 ' c -
-~ .
_—COMPLETE ‘ -
— REPAIR— ’ )
— CORRECT * )
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DEBUG
DIAGNOSE
PROCESS
CODE
MODEL
PARSE
REPAIR
CONPLETE

CORRECT

Figure 16. A Deep Grammar For Debugging

-> <[DIAGNOSE] + [REPAIR]"

1 4

-) CPARSE | CODE | MODEL | PROCESS)>"

=> ASK | TRACE | DO

- 3 . “ ,«

- PRIgJOﬁT | "advise rational form violations®

=> "advise model violations"
-

=> "advise heuristic planning choices®

-> COMPLETE | CORRECT

'd

=> "solve for missing conjunct®

~

=> "choose alternative disjunct®

‘ ‘s

t
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- " In the SPADE system, the end product of the interaction is not merely a

" happens.

,1nteroct1on would be necessary with SPADE, ‘than with an ordinary editor.

program, but a program annotated by its associated plan derivation (please refer
to figure 8 presented earlier). The reader has undoubtedly noted that’ farlnor_o

In
return for this extra planning effort, ‘there are sover;'&r potential benefits. The
first i t by knowing the plan, the RAID component of SPADE would generate

z't{s)/r‘zardina possible bugs for aid in subsequent debwgging Since
d_of ition of_ the program 9enerally occupies far less time. than debugging, some
additional effort in nning may well be worthwhile in terms of more efficient
debupging: It is also possible that articulating the plan serves to mprovo a

studént's planning skills.?? Finally, the plan-as commentary should make ts‘ )

rosultino code far mofpe undors‘ndablo to other programmers who, in lar
proyocto, may be expected to modify or debug the pacnge Ve have yet to
consider “human-engineering" aspects in designing SPADE/RAID, nor have we begun
te experiment with it. Hero.\dq;al is only to describe those parts of the
RAID debugging assistant that age predicated on our taxonomy of bug types.

.

5.2. Aid In DiagnosinLyntcctic Bugs

-

' SPADE pro\z:ldes the facility of boino able to suspend the construction of

a solution of ‘one gub-problem in order to analyze.other goals. This is useful,
since” occasionally insight into the sblution of other goals 1s helpful for
colplet_ing'tho current problem. SPADE provides bookkeeping ‘t8cilities for this

"‘sus'nension. . The goal can be resumed later. To illustrate this;" we shall refer
to ,fiaur@ };}“9 3b shows the user choosinﬁ.to pottpono a goal. |
. N ! . > * I'd et
3a. Rulz is: IDENTIFY -> PRIMITIVE | DEFINED.
. ‘\ﬂ'llt_ y e 3 ] .. [
3b.. JLATER. = | . ) (

RAID, the debugging ‘component, w&ud create a caveat each time this
- The cavut would record thé fact that the plan is syntactically’
indompleje .at this poipt. A caveat is a demon, which would trigfered by
premature oxecution of the procedure being designed. If this occurs, the
function of the caveat would be to reaind tlic user of the syntactic ‘incorrgctness
of the program. -~ ’

, L,
., ‘e .. ¢ . .
6a. Running WISHINGWELL.at this time results-in the bug manifestation:
. ‘ UNDEFINED PROCEDURE POLE.
’, <This, is bocluso-wlsulmwﬁl.l. is s;ntactically] 1nconploto° it contains
‘e the Pending subaoll POLE 2. The recommendedrepair tochni‘quo 4s to,

-

Sb. >RUN WISHINGWELL

a

3
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v " Figure 17. RAID ﬁm for Syntactically Incomplete Planning Bugs
- - + Al - ‘}’

Lu, Whien sibgodt Wil o 106 o orsner T T L

‘ . S
I . 1b. DPOLE
- A
' 242 Rule for POLE-1 1s: PLAN -> IDENTIFY,| uaconposa | REFORMULATE.
Vhat now? ~
2b. >IDENTIFY _' ' 4

‘What now?
- 3b. DLATER.
The LATER command causes furthcr processing of this subgoal to be bostponed
] RAID. the debugging compomeat, creates a caveat each time a LATER commard occurs.
,~' The caveat records the fagct that thts part of the plan is syntactically
4 ucouplete ¢t tats point.
o /y g
4a. POLE-2 postponed Your pending goal list coentains the rémaining subgoal
WELL. Which goal wuld like to pursuo?
4b-. OMELL. ] . *

# “~ 3a. Rule Yor POLE-2 1s: IDENTIFY -> PRINITIVE | DEFINED.
L

. I
.9 . 2

. / . R * 2

Sa. We have now completéd the WELL subgoal. What now?

5b. DRUN WISHINGWELL

The caveat recorded eariier is a "demon,” triggered by premature oxgc}atton of the
. procedure being designed. If this occurs, the function of the caveat ts-to
vrmuTQc user of the syntactic ircorrectness of the prograa‘n'

61':. Running HISHINGHELL at this tine rest in the bug manifestation:
UNDEF INED PROCEDURE: POLE.
This is because W{SHINGWELL is syniactically incomplete: it contairs
the pending subgoal POLE-2. The recommended repair technique is to

copplete the solution of the subqoal POLE-2. Would you like to work on
99-27 SN
- 6b. Y ' '

~

. L
7a. ‘You were solving POLE via an IDENTIFICATION plan. You postponed the
decision (POLE-2) as to which gswerglibrary to use.
A The rule for POLE-2 is: IDENTIFY -> ;RIHITIV! | DEFINED.
: What 'now?

-~
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Q ' ©
© complete the solution of the subgoal POI.E 2. Would you like to work on .
POLE-27 ' ’ i

-~

Line 6a in the figure illustrates this.

5.3. Aid in Diagnosing Semantic Bugs

Vhonevor an optional constituont is rojoctod. RAID would create a caveat
to the effect that the plan may be semantically incorrect atgthis point. When
the program subsequontly is executed. and bugs occur, the programmer could request’
aid. This aid would include a description of which planning -decisions are
possible semantic errors. This sort of interaction with SPADE is illustrated by
figure 18. A

’

Line® 1b s!wws the programmer chooging to hiwonso wi'th an optional

]

- 1a. Is there an INTERFACE following WELL? ,
1b. HONO ' , . ;
- ; : ) Y

I4

~

When the program is \suﬁuquontly tested at line 2b, the programmer i3} not

satisfied with the results.

4b. D>ADVISE-PLAN s
5a. WELL may be semantically incompleté. Perhaps an INTERFACE 1s n'eoded
after WELL. would‘you like to reconsider, and include such a step?

RAID is then dep tod.pointing.&t that the decision to not include &n bptiomlh
interface may be the culprit (line 5a). .Y

S.4. Aid in Diagnosing Pragmatic Bugs 1 R

Certain alte‘r"nativo"pl'anning methods have the relationship that one
method is simpler but subject to failure in some cases, while the other is more
complex but more powerful. " Examples are LINEAR versus NONLINEAR plans and ROUND
versus RECURSIVE plans. -Whenever the user applies the simpler of one of these
pairs. RAID creates a cavdit to the effect that a commitment to a possibly.
1ncorroct plan has been made. This caveat serves the samé purpose as those
created above for possible semantic 1ugs Upon subsequent execution, if the user
is unhappy with the results, gid can be roquostoﬂ_. The caveat then points out
possible pragmatic errors. ' ’

< . . .

-
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F‘lg\j re 18. RAID Advice For @um;; Ince‘ploto~ Planning Bugs J
‘ B

Al

la. Is ‘there an I-NTERFACE followina HEI.I.? : -
“1b. >NO :

v
L)

Uhenever an optional constitueat is rejected,’ the RAID dedugging component
creates a ceveat to the a!!oct thct the plan my be semantically tncomplete at
" this point. e ) '

1)
\

2&. Ve, have now completed subgoal WELL. What now? \

—2b. JRUN WISHINGWELL -
4

When the program subsequently ts executed-and bugs occur, thvrogramer can

-

.request atd. This aid {ncludes d Jescrtptton of which plamn dectsions are
possible semantic errors. In this case, the » procedure produces a°picture
WAhtch does rot satisfy the WISHINGHELL model .- ;htlc SPADE-0 can atd in plan
dtaynost:. ‘1t .cannot. detect padal violations l‘lthout user tnput (SPADE-1,

hmver g per]am#dol d}snostsi%‘

\ +

3a. OK. What how? S TN B ~
~3b. ODIAGNOSE g ‘e
4a. Rule is: ' - ' '
DIAGNOSE -> ADVISE- n.m 1 wasfcooe || ADVISE-MODEL | ADVISE- -PROCESS.
‘ What now? © . e
4b. )AWISE -PLAN . “f« - . )

2

Sa. WELL may bo smntidfly 1ncolplot;\ ‘Perhaps an INTERFACE 1: needed
_ .after WELL. Would yé ike to rec)nsidor. and include such a step?
5b. )YES -

Ga. Solving for WELL-13’ (INTERFAC& after HEI.I.) -
' Rule’is: SOLVE -) .

-]

LY

. sV
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»
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. - * ) to. A >
P Figure 19 illustrates this kind of interaction with 3PADE .
( -

Sb. DADVISE-PLAN

- 6a. In designing SQUARE-WITHIN-TRIANGLE-3, you opted for a LINEAR
decomposition. It is possible that this problem involves some
. interaction between TRIANGLE and SQUARE. Do you wish to reconsider
your provious decision, and try a NONLINEAR docolposition-?

l.ino 6a in the figure shows the RAID compopent alerting tho user to a possible
pragmatic plmninc bug.

*

* /
* \ A< '
, _ 8.8. Assistance in Répair’
* The system could do more than just alert the user to the problem. It
-could also (a) return the user to the suspended goal, and (b) inform the user, by
. means of the grammar,; of what alternative constituents are availsble. Line 7a of
figuro 17 (presented earlier) illustrates this repair assistiice for the .case of
‘a muctic bug. - .

L}
x

—~ ° Ta. You were solving POLE via an IDENTIFICATION Pm You postponod the
decision (POLE-2) as to which answer library to use.
+ The rule for PQLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
. Suppose the user decides to undo a given planning decision, perhaps
abandoning a very detailéd plan which resuited from considerable effort, in favor
of a new approach. It is possible that later the user may reconsider, and wish
to reactivate the abandoned approach. It would be rather unfortunate if RAID had
erased "all -records of -its existence. In fact, it would not. In order to keep:
track of both active and -hung slternative versfons of each planning decision,
however, the derivation tree representation ceases to be adequate. A pore .
elaborate data structure is required; SPADE/RAID would use a €hart for this
purpose. The chart data structure was introguced in computational linguistics
[Kay 1973; Kaplan 1973] to economically store a record of alternative well-formed
N iubstrings discovered during sentence parsifig. We introduce the chart here for
similar reasons. An example of such a chart appliod to the planning context is
shown in figure 20; figure 21 shows a user taking advantage of this capability. .

The chart data structure pro(idu benefits which feed back into %hol
planning assistant as well. For example, with the chart one can distinguigh
between using a copy of & previous subprocedure "in line," versus Gsing the
previous subprocedure as a "black box" which is invoked: a

L .

e
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' Figure 19. RAID Mvigo For}rgguccllx Incorrect Plciming Bugs
\ ) :

“1a. Rule for SQUARE-WITHIN- TRIANGLE-].is:
PLAN -> IDEN'[IFY | DECOMPOSE | REFORMULATE
What now? N
1§. >CONJ D
2a.. I have assumed DECOMPOSE -> CONJUNCTION.
* Rule for SOUARE-HITHIN-TRIMLE 3 is:
CONJUNCTION =) LINEAR - l NON-L INEAR. . -»
What now?
2h. JLINEAR ¢

+

A
Certain alternattve pluniu methods hue the relationship that one mthod {s

stmpler but Subject to Jatlure tn some cases, while the other i{s more complex but
more poper!ul Examples are LINEAR versus NONLINEAR plans and ROUND versus

.- »RECURSIVE plans. Wherever the user applies the simpler of ore of these patirs,

. RAID credtes e caveat to the effect thet « cominitment to ¢ pouthly incorrect

" plen has deer made. . -

' Co ) <

3a. Rule is ... " . \

3. >

4a. Ve have now conpletod SGJARE-HITHIN-TRIMLE What now?
4b." DRUN BWARE-HITHIN-TRIMLE

Upon subsequent execution, {f the user ts unlmpn with the results, atd can’ bc
requested. The caveat thern taforms him of possidle pnmttc errors. Here, the
SQUARE-WITRIN-TRIANGLE procedure drows thc ptcture "tastide out.” )

-

Sa. Rule is:

' - DIAGNOSE -> ADVISE-PLAN | AWISE CODE | ADVISE-HODEL | ADVISE-PROCESS.
What now?

8b. >ADVISE-PLAN'

. \ Ga. In designing SQUARE-HITHIN -TRIANGLE-3, you opted for a LINEAR
/\4 decomposition. It is possible that this problem involves some
interaction between TRIANGLE and SQUARE. Do you wish to reconsider

your provious decision, and try & NONLINEAR decomposition?
6b. \YES .

~

7a. What non-linear constraint(s) do you wish to add to the SQUARE?
. > ‘ g S

16
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e

(- . Figure 21. Returning to.a Previously Hung Plan

\ ll.’ Rulo’ for W-1 is: PLAN -3 IDENTIFY | DECOMPOSE | REFORMULATE
What now? '
1b. >DECOMPOSE

»
P 4

/

2a. What are your subgoals?
2b. JROOF POLE_ WELL

3.. Rule for POL'E-%#! IDENTIFY -> PRIRITIVE I DEFINED

. What now?
. " 3b. >REDO WwW-1
Constiderable planatng effort has beer invested in the curreat version of WwW-1.
TAe system should de‘adle to recerd the_ state of the work so far ia case {t s
ever needed agein. [t might seem too costly, though, to seve eway multiple
coples of tA¢’plan dertvation every time a choice ts redone...

y
4a. Previous choice on WW-1 undone.

Rule for WW-1 is: PEAN -> IDENTIFY | nacoﬁaoss | REFORMULATE
- What now? N

4b. >REFORMULATE :
"\\:\.

Sa. What are your subgoals?
5b. >TREE WELL

3 -

6a. Rule is; SEQ -> [SETUP] + <MAINSTEP + [INTERFACE]>® + [CLEANUP]
. What ‘W? °
6b. DJREDO Ww-1

. .

At thts potat, the user has decided to return to the previous approach, finding
that the REFORMULATION has resulted im an even harder prodlem. SPADE's chart
representation jor plan derivations in fact allows prior versions to be saved,
without tucurriu ournheluiu storege costs. .

7a. A proviously hung version of WW-1 (Ww- l :V1) exists, involving a

QECOMPOSITION plan. Do you wish to reactivate it? J—
7b. DYES ©

Ca. When WW-1:V] was hung, your current goal was POLE-3.
Rule for POLE-3 is: ... 19
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‘ . 7
P4': DEFINED _-) QOPY-CODE'CALL'CODE &-hET-.FILE

The revised rule P4' has the virtue that one can specify whether future
changes to the existing subprocedure should affect the procedure currently being
solved. If the CALL-CODE disjynct is chosen, tho chart will contain only a
poinrter to the shared substructufe: .future mrovmnts in the suhproceduro will
also benefit the currsnt procedyre. Conversely, - future changes could introduce
unanticipated perturbations. is indicates hew the insights gained from a
grammatical approach to problel olving can ledd to formalizing the origins of
yot another commonly observed source of prngrn bugs.
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6. Conclusions

6.1. Limitations and Extensions :

The ultimate version of SPADE ought to include a module for providing
intelligent planning advice and ftlling in low level details of *partially
specified solutions. However, a context free grammar, being inherently non-
deterministic, would not suffice as the basis for a machine problem solver.
Solving problems by generating all possible derivations and then testing for a
solution would hardly be practical.

There is also a theoretical deficiency. There ocught to be a facility for
skill acquistition: for summarizing previous semantic or pragmatic planning
errors to prevent their recurrence on similar problems in the future. Such a

‘capability was exhibited by Sussman's [1973] HACKER program for example. But our

context free grammar has no way of representing ropnr knowledge in such a way
thlt semantic or pragmatic bugs are not repeated.

Both of these deficiencies can be- addressed by moving from the context
free grammar representation for planning knowledge to an augmented transition
network [Woods 1970]. Augmented transition networks generalize the context free

- gramnmar representation. To see the way the ATN serves as a natural

generalization of the grammar, first examine . - Here we have an ~

equivalent representation for the G2 planning grammar ‘as a (non-augwented)
recursive transition network. The augmeated trans n network provides several
generalizations: (1) registers can be provided to store the values of yafiables;
(2) predicates can be associated with arcs to control the order of transition;
and (3) actions can be associated with arcs to build structdres during
transitions. These generalizations were introduced in computational linguistics
to overcome lilintions of the CFG representation that parallel those that we
have met in the probl- solving realm. Figure 23 is the planning ATN based on
GZ. Some (not all) of the registers, conditiong, and actions (for storing an
manipulating information sbout the current sub-problem) are shown. Notice how
greater efficiency can be achieved via techniques such as collapsing states --

moving some information from the topological configuration to the rogistors—\\;

(e.g., the CONJUNCTION and SEQ+SET nodes). Figure 24 shows how arc predicates
can be used to select the appropriate plan type on the basis of features of the
problem description. This approach (called PAT'. for Plenning ATN) is developed
at length in [Goldstein & Miller 1976LJ. Here our goal is only to show how
repair gkill could be acquired by SPADE/RAID by representing planning knowledge
in an ATN.

Consider again the SQUARE-WITHIN-TRIANGLE problem discussed in the RAID
section. Recall that the

S1. . Cs

L/

e of the bug was treating the SQUARE and -

a
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Il ’ '

TRIANGLE Subgoals as-if they were independopt. In fact, ‘a second order
constraint on their sizes was imposed by the~INSIDE restriction. Future
-occurrences of this error could- be prévented by ddding a condition that tests for
the oxisfenco of th NSID! predicate to the arc construnt that governs the
selection omnunur ns.

Spocifically, this 1s done as follows' ficuro 23 shows thlt(pqrt of PATN
thlt corresponds to the rule, '

- /

P6: CONJUNCTION => LIHEAR | NONLINEAR.

The default arc ordering causes the LINEAR plan to ba attempted first. ThQ,
NONLINEAR transition is allowed only if the .NLC or NLD predicates recognize the
problem as containino a nonlinearity. Here, if "INSIDE 1is present, the NLD loop
is taken and the problem description modified to make the integaction explicit.

A size predicate is added to the doscription of the'parts. Thus, a new arc
constrainj, NLD-INSIDE, serves to provent this particular pragiatic planning
error from happoning -again. l/ ) '

, 1 S
6.2. Applications ' —

. -

These ideas lend themselves to a'varioty of applications. We consider
thrée: automatic progremming, automatic protocol “analysis, and structured
programming. ‘ ( )

~ ™ \

As semantjc and pragmatic capabilities are added to SPADE (reflected by
tho increasing role of PATN in providing advice),}he user would be consulted on

- progressively fewer planning decisions. The ultimate oxtonsion in this direction

1s of course for SPADE to request no guidance at all from tho user. The user

" would supply the pr.oblon ducription. SPADE would prouido the solution

procedure. One novel. nspect of ‘this approach to automatic programming is
methodological: the SPADE series of Systems’' provides an hplmntation stratogy
based on tncremental stuulatton [Hoods & Hakhoul 1973]

Automatic programming is an extension of SPADE in a direction 1in which
the user is pushed toward the higher level planning decisions, whereas the systel .
performs more of the lower level choice‘ Exploration in the opposite direction
is also possible, in the extreme this gmounts to protocol analysts. Suppose
that the problem solving of a SPADE user is runping far ahead of the system: the
user may wish to type in code directly, rather than lnborioqsly detailing the

'1ntornod1ate steps of the plan. - The system's Job then .becomes linking the low

"level event into a higher level. planning structure, If every .event typed by the
user were at this cod® level, SPADE would supor;ucully be serving as a
conventional editing environment. The difference would lie in the assistance
—_y LA \

p .
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‘
.

possible during subsequent debugging. Ideally, SPADE ;tohd have a module (which
we call PAZATN, for Protocol AnelZer based on an ATN) for inferring the user's
plen -- and would therefore be able to support our deeper notion of debugging

sven when the plan is only implicit. Figure 26 illustrates how a hypothetical

version of the SPADE systes, augmented by PAZATN, could significantly reduce the
amount of interaction required to articulate the planning knowledge as well es
the code for use by the system. [Hlllor & Goldstein 1976d] takes a more careful
look at the difficulties which the PAZATN module must face, and presents a
prolilinw design. : -

A final application is to pro‘scribo improved programming methodology.
The entire enterprise embodies Dijkstra's philosophy of programming in a
structured fashion. Moreover, it represents a more detailed study of planning
and debugging techniques ,than has previously been attempted. It indicates how
interactive editors.can stii ongly oncouraqe coherently structurod articulate
planning,. The upderlying theory provides a%malysis of the naturs and erigin of
bugs, suggesting which sorts ¢f bugs can be "avoided by lnprovod dosign. and wh:ch
arise from justifiuble I)ourist.ic choices. The occurrence of such uncertaiu
choices however, can ve rerorded, leading to bookkeeping and diagnostic
capabilities such as‘those planned for RAID. - Better debugging advice -- going
beyond caveats for potentidl difficulties -- must await the 1ncorporation of PKTN
(and’to some extent PAZATN) ‘nto SPADE. .

This report has presented a unified theery of planniig nnd debugging
based a linouis'tc analogy. The duion of an interactive programming
environment has also been described. The. objectives for this programming
environment, SPADE, are “nat . serve, not only as a practical apilication of the
theory, but also as an experimental crucible for testing clups of the theory.

Ho expect tha:. experimentation with SPADE&:II yield the fouowing kinds
of information: (a’ Al avidence regarding the heuristic adoquac‘} of (he planning
taxonomy and grammar: °‘b) psychological evidence regarding the utility of the
grammatical formalisam &s a modeling tool, for characterizing varying skill
levels, in \erms of which subsets -of the grammar are used successfully and
unsuccessfully: (c) compuler science evidence regarding the efficacy of
alternative documentution staundards and design methodologies; and (d)

pedagogical ovidence 1 egarding the valuo for a learner of orogramming in this
. type of articulnto anviromnt

o0
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- .
Figure 26. A Scenario Illustrating SPADE Augmented by PAZATN
la. We are now solving for a HISHINGUELL. Your pending . subgoals are ROOF.
POLE, WELL, and the interfaces. What now? : >
1b. >SQUARE
- LY

Here the user types (n ah event at level of the actual code. The proper

tnference is that the user is solving Sfor WELL using an IDENTIFICATION plan.
SQUARE ts presumably in the user-defined ‘answer library.
i . . E

. - 5 :
2a. OK. I am assuming that WELL has been solved by IDENTIFYing it with the

_previously solved SQUARE procedure. What now? <
2b. >FORWARD 100 4

.Again, the user has typed in « very low-level eveat which requires careful o
interpretation. There are a rumber of vector commands which might be expected
synthetically. For example, this could be the interface between the WELL and the
_POLE. However, if the SQUARE used for the WELL 1s of stze 100  then FOAWARD 100
mlq be too large. Also, a preparatory rotation would have bgen needed. The
vector might also be a side of the TRIANGLE for the ROOF. However, if TRIANGLE |
. 18 already in the answer library, an-tdentification would De expected, rot a new
— solutfon. Probably, this vector accomplishes the next main step in PATN'S
default solution order: POLE. However, PAZATN can employ a demon to pdstpore @
Jinal commitment until further evidence arrives.

h

3a. OK. What now? . ‘ ‘ )
3b. STRIANGLE ‘ - ' ~

da. OK." I guess ROOF has beem solved by IDENTIFICATION with the existing
‘ TRIANGLE. So the FORWARD 100 must be the POLE. Your-oarly remaining
subgoals are the interfaces. WAhich interface would you like to solve? €
’ ‘ A

It 18 worth moticting how few user type-ins have been required ta this dialogue -~
Jewer than even in corventioral code -- yet the solution Jor the WISHINGWELL 1s
almost complete. MNoreover, the system has inferred mot orly the code, but a
rather thorough description of the user's plarn as well. TAis ecormomy of
tnteraction would be achtevable by the combination of SPADE, PATN, and PAZATN
enabling the user to focus or the few critical *planning choices that more or less
Jorce the rematnder of the soluttion. :
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» 7. Notes

[

'y

1.-While there is some overlap, our objectives for SPADE differ in this
respect from thp objectives of tlioso.worling to construct progremming cppreng\icos
[(Teitelman 1970,1974; Hewitt & Smith 1975; Rich & Shrobe 1978]. It is too early,
however, for a detailed_comparisen of either goals or methods.

, 2. The virtues of the Logo ‘graphics world [Papert 1971a,b;, 1973]. are:
(a)ﬂmor_uphlcs is an environment in which lultfplo problem descAiptions are
possible, ranging from Euclidean geomstry to Cartesian geometry; (b) the
possible programs range over a wide spectrum of complexity; and (g£) there is
extensive documentation on huisan perforsance in this area [G. Goldstein 1973;
Okumura 1973). o :

3. These task domains.are natural candidates for testing the generality
of the theory... The blocks world is a benchmark Al domain which provides a -
yardstick against which to measure the progress of our approach. The set theory
world has the virtues -of both intrinsic interest and straightforward sesantics.
.The creation of programs embodying -concroto' realizations of set theoretic
constructs is a standard prograsming task. Similar réesarks are appropriate for
the domain of programming an elementary calculator, such as to perform routine
statistical analyses. o

S~ 4. In [Goldstein & Niller 1976a] we prc;ontod a scenario for a
procrcﬁlng tutor called Shor.lbck.k/Ono extension of the SPADL system presented
here is toward such mtxed-initidtive Al based personal learning environments. At
the same time, the SPADE style of interaction suggests a more structured
alternative approach. Whether thé additional structyre is desirable for some (or

most) students is am empirical question to be addreised in future res€arch.

5. In [Miller & Goldstein 1976b] we presented-a different version (Gl) of
the planning taxon and grammar, in the context of parsing a student protocol.
Our reasons for ab&ndoning that version in favor of the current one should be
discussed. The earlier taxonomy was based on examining the directions from which
a planner could obtain guidance: looking upward to general principles, downward
to domain specific heuristics, forward to anticipated needs, and backwards to
proviougly solved problems. The curreat taxonomy derives from oxnfhlpg‘tho
logistic description of the current probles. The former taxonowy emphasized the
roles of experimentation and uses of past problems; where e current one
treata these as details, some of which (such as experimenta ) remain to be
addressed. It remaini true that decomposition techniques can vary along
- dimensions of domain spoclficlty' and generality. However, in some cases we found
the earlier taxonomy to be problematic. As we began to incorporate semantic and
pragmatic cotraints on thoigr'-u- (ses [Golgstein & Miller 1976b]), 1t beceme

, ) £2 4
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1ncrusinjly difficult to maintain a formal distinction between certain examples
of domain dependent and evolutionary plans. There is of course_a_trade-off in
assigning knowledge to the syntactic rulos. as opposed to assigni it to
semantic or pragmatic constraints on their application. In order to 3 fy a
claim that the current version of the taxonomy is more parsin_onious than the
previous one, we would need to carefully identify ‘the corpus of data. While we
do, in fact, believe that the current version is more ologant the grounds for
this belief ruain intuitive. In subsequent research we intend to employ the
SPADE system as an experimental vehicle for contrasting alternative planning
taxonomies and their corresponding gramsars.

6. The statement that there is a core set of planning techniques common
to all domains is justified by examining the formal basis for the taxonomy. On
the assumption that problem descriptions are represented as predicate calculus
statements, it is clear that solution can proceed by: (1) identifying the
statement as one for which a solution procedure is known to exist; (2)
decomposing the problem into subproblems on the basis of the top level logistic
operator; or (3) reformulating the problem description such’ as by theorenm
proving techniques. That is, dolain independence of the core set of planning
techniques holds. on ¢ priort 9rounds. to the same extent that problems in the
domain are doscribable using predicate calculus problem descriptions. N

"~ Of course this argument depends on the efficacy of the first order
predicate calculus as a problu description language. While we are not prepared
to argue for this horo. it is clear that the calculus certainly has had so-o
success in the past (e.g. in mathematics) and hence is an obvious candidate. ' Its
frequently observed deficiencié¢s, such as nop-directed inferencing, are discussed
in [Goldstein & Miller 1976b], where we define a procedural problem solver
organized around logical operators. It is also important to recognize that we
are not arguing feof.-uniform. (e.g., resolution-based) theorem prover style
progra-mg techniques. - . ’ -

Horoovor. extensions of the predicate calculus, such as-higher- -order
calcult, do not obviate the need for basic problem solving techniques for dulinc ]
with conjunction, disjunction, negation, and quantification.

7. This view of planning is a simplification. It @sserts that the"
problem is analyzed in a top dowr fashion. Of couwrse, the .problem solver can
engage in exploratien and experimentation; or can identify a subgoal without
having a clear understanding of the overall plan. The dynamics of exploration
are not formalized by this grammar.

‘8 Our use of a contoxt free grammar for problu solving closqly
resembles D. Rumelhart's [1973] work on story grammars. It should be interesting

~to see to what extent our respsctive theories, designed to account for

superficially "very different phenomena, continue to develop in parallel. Would

it be useful, for instance, to define a set'of sumwarizetion rxles (such as those
J
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mloyod"b; Rumelhart) to describe the planni process? One possible set of
plan summarization rules would focus on the SOLVE nodes, suppressing printout for
nodes of other types. ConCeivably, this could be useful in highlighting the
swbprocedure organization. — v

9. The rules of the grammar are written using iho following syntax:

—-—

disjunction: *a | b" is read as, "a or b*;

sordered conjunction: *a + b* is read as, "a and b* :
’ ' where, the order is significant; .

unordered conjunction: *a & b* is read as, "a and b®,.
where the order is insignificant;

' s ;,
.optionality: *[a]" is read as, "a is optional®;
N y
iteration: = " is read as,
_ "a repeated 1 or more times®;
lexical category: a lower case Engiish phrase enclosed in
. ‘ . quotation marks (e.g., “"number®)
. describes a lexical item which is not

\y .o further expanded in the grammar.

10. The & operator is used, because the GET and USE can occur in any
order as long as they both precede execution of the procedure being defined.

- 11. While the Hycrof't systemn designed by Goldstein was potentially
capable of semantic annotation, it lacked a clear formalization of the range of
possible planning choices a program designer could meke, and a description of
possible errors in termss of “these ‘design decisions. The grammar we present here
1s intendéd to address these limitations. .

12. The interactions presented here are hypothetical dialogues with a
system which has not been implemented. .Although a crude preliminary
hploqpntatxon"(SPADE-OO). has rocontfy begun, it is currently lacking several

.essential features. -

One doficioncy'of SPADE-00 is that it has not been interfaced with LLOGO

. [Goldstein et. al. 1974]); hence it 13‘ not possible to actually execute the

resulting.programs. Another deficiency is that the RAID features described .in a
later section have not yet been coded. o )
The purpose of presenting ‘hypothetical dialogues, rather than actual

.transcripts, is to enable the roid,i; to focus on the content, without being

v ) (;4 ‘ ~.
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sidc?;'ackod by details concerning the uuaequacios of the 1lplemntation.
Readers who hlve access to the laboratory's tlleshlring system. are nonetheless
invited to experiment with our trial versions of SPADE as follows. After logging
in, type :SPADECcr>. ﬁSPADE, will generally be a newer, highly experimental
version. :OSPADE will be an older vors’ion. in case of disastrous nlfunctioning
by :SPADE.

SPADE-00 simplifies the mtenction by employing a "menu® or 'lultlple
choice® style:

WHAT WOULD YQU LIKE TO DO?
sA -- IDENTIFY :
sB -- DECOMPOSE

sC -- REFORMULATE

dsza
' -

~

Certain operations, such as the LATER capability, are implemented as special
'Qthﬁ' commands," in order to reduce ambiguity and simplify parsing. For
example: )

>later . Co

.1 DON'T UNDERSTAND: LATER.

>0later

POLE POSTPONED.

Once started, tho‘systel is self-documenting, and is gradually -becoming )
friendlier to use. Suggestions and bug messages may be _sent via the system
mailer to SPADEOHIT-A‘I. ~

13. The question arisos as to whather the bug taxonony is exhaustive whon
circunlocutions -and slips of the tongue are also included. In a trivial sense,
the answer 1: "yes® ’Iﬁcnus\a \lho latter class is open-ended by definition. In a,
deeper sense, the answdr may also be "yes" ‘in that no bugs need ever be assigned
to this category which violate our intuitive requirement that the underlying plan

not be affected. This is a hypothesis which we tentatively accept but cannot
prove, : . .

14. To avoid possible konTusion, it should be stressed that our bug
classification does not correspo 0 the usual terminology of progrming Jore. \
While there is a slight analog be misleading. That is, "syntactic
planning bugs®" does not-refer to th&syntax of the programming language; 1{t
refers to the hierarchical structure of the process of corstructing programs.
Similar remarks are in order for semantic and pragmatic planning bugs. For
brevity, we imay use the shorter .phrases, e¢.g., "syntactic bug,” to refer to a
syntactic planning bug. For the most part, we are not concerned here with syntax
errors (or "semantic errors”")-in the usual sense.

.
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"15. A natural objection is that this particular bug could ‘be eliminated
- if the conputing environment were modified so as to automatically “load
approp files when needed. We completely ajree. Indoed, it illustrates the

-

nt, certain syntactic constraints on tht structuro of programming plans
must be adhered to, nor that violation of these constraints constitutes one type-
of error. .

M -
vy

16. Of course, the issue arises as to whether the huy problem solver is

- simply Yforgetting part of a known rule, or 13 unaware of the rule in the proper

form. This leads to a set of difficult problems in protocol analysis surrounding

the hypothosizing of the grammar underlying a given individual's problem solving.
This topic is pursuod in [Hillhr & Goldstoin 1976b,d]. : . .

e

17. The occurrence of two consecutive calls to a given primitive is odd
when a single invocation, perhdps with altered input, will suffice. In Logo, two
adjacent PENUP commands, or two adjacent FORWARD instructions would be considered

r07a1 form violations.

18." This wishingwell pl‘arn uploys what Goldstein [1974] termed ah
“insertion plan.® The TREE shown here is inefficient in that it-achieves state
transparency via Ttr(cing the TRUNK. There is also a tradeoff in the WELL
between nodulnrity and efficiency. The use of the insertion plan to aveid
retracing on the top side of the WELL results in less modulatr codgh_These points
are noted only to avoid misunderstanding “-- they havo no bearing the thrust of
o the example. -

19.'viewing debugging from the vantage point of this taxonomy sheds some
light on the issue of the pedagogical yalue of vari s kinds of bugs. Our
current understanding of the first three (and to ﬂo extgnt the fourth)
categories of bugs suggests that encounters witk su bugs may be instructive in
teaching planning as well as debugging. However, "slips of the tongue® at best
provide some exercise in bug localization. Henceé, a *forgiving" system that
minimizes the penalties for such low level bugs is probably pedagogically sound.
The best example of this philosophy is the Interlisp OWIM (Do What I Mean)
facility [Teitelman 1970,1974]. (By contrast, our sffort to make more of the
plan explicit might be called SWIN, 1. e., Say What I Mean!)

L 4

20. If we define a context free grammar for debugging,. then this error in
"debugging technique can be classified. For omplr if the rule of the debugging
grammar for fixing slips of- the tongue 1:-;,* ,
REPAIR "-> [UNPO] + REDO

- -«
P

o
el K
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whoro undoing is optional since it is not always required, then the error of
failure to undo (due to forgetting or to confusion regarding the existence of
side offects) is semantic. . -

An alternative view of dobugging would be to characterize planning as a
context free grammar, while dobugging is described as a tran&]oruattoul
co"ponont that maps, derivation trees. to derivation trees. This would bo
thcbretically elegant, and this possibility deserves further study. However,
resolution of this 1ssue goes beyond the current pupor

21. Later we briefly introduce & module we are dosigning called PAZATN .

-which woild help- to alleviate this difficulty. PAZATN would be xcapable of
parsing progralling protocols, 1nferr1ng -- from a combination of synthetic
expectations and analytic evidence -- which plans had been used

[

22. A fundamental hypothesis of the Logo project is that children learn
by doding and thimRing about what they do. One of our purposes’ in implementing
the SPADE editor is to explore this hypothesis by experimenting with the relative
werits "of SPADE versus the traditional Lago programming environment. In SPADE,
the student is required to be articulate. Whether this helps students to master
planning and’ debugging concepts more quickly -- or hinders them -- remains to be
seen. ° Our' conjecture {s that despite. the extha interaction demanded, studonts
will find tho need 2«-&- articulate about their problem solvih,q_a significant
help in lurning,
quickly.

measured by an ability tp solve har{or problems more

.
-

\
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