
DOCUMENT RESUME

ED -207 5409 IR 009 660

AUTHOR ` Mayer, Richard E.
TITLE

..

. Analysis of a Sin Conpu er Programming Language:-
Transactions,Pr tatenents, and Chunks. Report Mo.le

79-2. Series i earning and Co ition.
INSTITUTION California Uni ., Santa Barbar Dept. of
J Psychology.-

\ SPOILS AGENCY National Science ioundatiogeoWashingc;n, D. C). `.-...-

t

puEl DATE [79]
GRANT SED-77-19875 .s.

.,....,,

NOTE 34p.; For a related ocuaent, see R 009k,662.

EDRS PRICE MF01/P602 Plus'Posta e.',.... .

DESCRIPTORS *Computer Science Education; Inttructioial
Innovation; '*Learning Processes; Learning Theories;
*Programing Languages; *Teaching methods.

IDENTIFIERS *BASIC Progranifg, Language

ABSTyACT
This discussion'of the kind of knowledge acquired by

a novice learning BASIC programming and how this knowledge say be'
most efficiently acquired suggests that people who do programming
acquire three basic skillq tiat are not obvio s either in instruction
'or-in traditional perfornance; (1) the abilit to analyze each
statement into a type of prestateaent, (2) th ability to enumerate
thetramsactions involved for each prestate ntfand.(3) the ability
to chunk, prestatements into general cluste fi or configurations. The
instructiondl implications of a psychological analysis of the basic
concepts underlying performance in BASIC programming Are considered,
and an alternative instructional Approachthe stra-nsactional,_
approach"-As reconmended for teaching programming. This approach.
involves teaching the underlying concepts of transactions,
prestatenents, and chunks using a concrete model of the computer,
before emphasizing hands-on learning. It is argued that once the
student_tas acquired the relevant subsUming cokcepts, the'
relationship between program and output,will be-more meaningful. Nine.:
references are listed, and appendices incllie the eight levels of
knowledge for BASIC; ezaaples'of transactiAs, Prestatenents, and
chunks and diagrams of the traditional apd transactional approaphes.
Other publications in this report series are listed. (HER)

1

e

Reproductions supplied by EDRS are the best that can be Haile

from the original document.
********************************-**********************4*****************

,

. . 1 .

4. 4

S

O" U S DEAATMENT OF HEALTH

1". EOUCATI9N WELFARE
NATIONAL INSTITUTE OF

EDUCATION
Lc.

oocumEN, ,,AS BEEN PEP40-
OuCEO E *ACT AS RECE,ED FROM

C3 AT NC, ;'T PO.N TS Or vE OR OP4..,ONS
TIE PERSON OP 13,PGAN,ZAT,ON OP ,G1N-

STiktE0 00 NOT NECESSAP,LY REPRE
r\JI SENT Or G tC,L AT ONA, NST.TU,E Or

C:)
EDuC110.4 POS 1 ON OR POL ,C '

SERIES IN LEARNING AND COGNITION

Analysis of a Simple Computer Prbgramming Language:

.

Transactions, Pripstvements and Chunks
J

Richard E. Mayir
-0'1114".

Report No.' 79-2,

7,

I

N)
.

\, Preparation of this teport was supported by Grant Sq,Z7719875 from the

CP-
National' Science Foundation:

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Richard F _ Mayer

TO.THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC!'

.4+1

f

a

04

A Psychology orLearning USU Computer Programming:

Transactions, Prestatements 4nd Chunks,
0,

7 This paper addresses the questifn: What does al5erson kn-Ow -following

learning of BASIC programming? Several' underly,ing conceptu41 structures
!

ariOdOrtified:' (1) a transactions an event that occurs the computer

and involve some operation on some object at some location, (2) a pre-

statement iss a set of transactions corresponding to a line of code, (3) chunks

are frequently occurring'configurations of prestatements corresponding to
. .

several lines of code.
. ..

.

Key Words andphrase" BASIC, learning, instruction.

,

do.

SIP

01,

)

Introduction

This paper deals with'two questions: What doe's a person know when he

'or she has acquired the ability to write and interl'ire* simple BASIC computer

programs? How shoyld a teacher instruct a person, so that he or she will most

'effectively acquire this knowledge?

In response to these questions, this pager suggests a.technique for

analyzing the knowledge that .a reamer may acquire in learning BASIC computer

programming. The main problem is to determine a system for specifying the

Ths
basic units Of knowledge and the rellatiohs among them.

r

t

J

Several researchers have argued for the need to apply the analytic'tools

of cognitive psychology on an. entire subject matter:-,For example, Greeno [3]

has staled: "A further impediment'to enthusiasm now.il the fragmentary nature

of the .illustrations, of detailed task analysis based oh cognitive theory. A

more reasonable *Valuation may be possible when we can display a relativel

complete analysis of the knowledge desir:ed As the outcome of instruction in

some subject..." This paper is to suggeWhow one mijht begin to

.attack this imp9rtant Problem in theisubject arpt of BASIC Programming.

BASIC programming was .choosen for several reasons. First, it is well-

i
defined subject area which is taught in schools and elsewhere. iSecond. it s

a rIeW subject matter -- less than 15 years old -- that has not been subjected

to the inteese instructional analysis of more established t ics subh as

mathematics. Third, the users and learners of'BASIe are lalreasingly turning

. .

out to be novices who will not become-professional. programmers. With micro-

' ..

'computers, programmable BASIC, becoMinq a Bart of,vieryday -business and

.home life, the demands for teaching BASIC to non-professionals'will e

increase. 17ZasiS on instructional Methods seems particularly important for

leariapes oho will not become prOfessiohT/PrOgrammers.

9

't

A

*It

r.

Levels of. Knowledge ig

One of the'first 'steps in attemting to describe the knowledge that one

must possess to.perfoFm BASIC programming is to determine the unit of knowledge.

. raditionally, the main' units of knowledge used in instruction havefbeen: (1)

the statement such as READ, PRINT, IF, LET, etc., and (2) ttTe program such as

a specific program containing the just taught statements.

In order to teach these two units of knowledge, instructional, seq9ences

'generally contain the following types of :frames: (1) statement definition --

text devoted to presenting the format and formal 'definition of ,the statment,

(2) statement grammar -- teXt devoted to the grammatical rules relating to a

statement sucn as allowable address labels; etc., (3).program example a

program that uses the statementa and rules described rn4itatement definition

rand statement grammar frames,\\(4) program exercises -- questions asking the

learner to write or interpret a program containing statements discussed earlier.
,v

It must be pointed out, however, that thekstatement and the program are

just two levels of knowledge. .The main thesis of this paper is thatthere'are

several possible levels that go.below the statement as the unit of knowledge,

and several possible levels about the statement. In general, instructional

sequences for BASIC have not fully exploited these alternative levels; however,

a careful analisis of "what Is reaeRed" in BASIC prog01(mming may indicate that j

occurs on levels other than those'taught. These levels are suggested

ieTable 1. Each level of knowledge about BASIC 'programming will be bisbosAld

in turn.

Insert Table 1 about here

V

O r.

V

1

a
a

4 3

machine level. The loweit level of knowledge suggested in Table 1 is the

machine level. Presumably, a person could k each specific,'s!ngle change:/,

that may occur within the actual hardware of he computer, as indicated by

machine language statements. Many instructional, manuals provide an introddctory

. --

.
' chapter that describes'thef azure of electrdimagnetic fields, dogic circuits,;

: . 1

octal code and the like. However, .this level knowledge is rarel

1
used by,

novices as a meaningful context for further learning; more often; i is treated

.r by student and instructor alike as extra technical information that is not

necessary/ for learning programming, Indeed, BASIC progromming does not

require an understanding of electronics or hardware or even octal code. Thus

this level of knowledge, 'whi'leimoortant to the potential pi-ofessional, may be

too detilled for the novice wno is learningTASIC for the first time.

Transactions. 'An-alternative to the machine level is the next level in

Table 1, the transaction'level. Transactions are not tied to the actual hard-'

ware of the comApter, but are related to the general functions of the computer

that underlie statements. A transaction is a unit of orogramming knowledge in

-which a general ooeration is applied-to an object at a general location. A,

transaction consists of three parts:
.

, 1 *
(1) operation -- Such

.

as MOVE, FIND, CREATE, DESTROY,, DECIDE, COMBINE.,
I

. .

(2) object -- such as number program, pointer, program line

(3) location -- such. as input stack, memory address, orogram space,
t

oUtput screen,' keyboard, file

. An example of a transaction 'is: move.thenumber that is on the top of the Input

stack to .0e finish stack (OP: MOVE, 08: number, LOC: input stack), or create

a certain number in memory space1 OP: CREATEOB: number, LOC: memory space),

or move the line pointer to the next line.of the Program (OP: MOVE, OB: pointer,

LOC: program space).
11, 0

r

a

T
A..

. 4

Tn general, the transaction level lias not'been exploited in instructional

manuals A notable exception is that many mannuals describe memory as a set or

erasteible blackboards; this analogy helps clarify one of the locations.

However, our research has suggested that the tractional level 'may be crucial \\

Providing understanding for novices (5,6 J . Transactigris providea

ns*, for the novice, of "explaining" what is going on inside the computer

when a particular statement is executed and of 'relating the new technical

.

language tjat he'er. She must learn'to genera) operations, locations and objects,

/ I
that he or she is already"familiar with.

Table.2 presents a list of the major transactions involved in .learning

elementarytBASIC programnii-ng. Note that these transactions are building blOCks

from which statemerts May be made.

Insert Table 2 about here

It is important to point out that transactions do not require an under-

standing of machine-level hardware and operations. In.our studies we have
re

used analogies to de.Scribe the locations inviolved,in transactions. For\ .

example, some of the main locations cal, be -successfully described'as fellows:

(1)' ticket window -- data card's are (*aced in a pile outside

ticket window and are moved inside, one at a time, as each is-

processed,

(2) memory scoreboard -- memory Ts.made up of many sauares in an

teraseable chAlkboard with a label permanently attached to each,

(3) output pad -- messages are written on 'successive lines;of a note, pad,

(4) program list and pointer arrow -- the program is like % recipe or

shopping list and the pointer arrow points to4the current ling on

. the program,

I**

41.

5

. 5) file cabinet - prbgrams ara.stOred in a file cabinet in alphabetical

order by name.

Since the objects and operations are generally familiar to the learner, it may
4

not be as imObetant to provide analogies for them.

Any line Of code may be translated into a series of transactions. 3y

describilp a statement terms of transactions, in addition to giving its,

formal definition, the teacher gives the learner a way'of understanding Nhat

I s going on inside the "computer" when a statementis executed.

In addition, evaluation of learning /(eased on transactions may provide

a more effective way of locating areas for remedial work. For example, a

.

test could ask a student to list the transactions for a statement or a simple
I

program. For example, if the learner has not yet mastered the concept of destruc-
. .

tive read in and non-destructive read out, the transactions listed -for a READ
i

or PRINTIstatement would indicate t is problem. y

In ,shbrt,'the underlying s cture of 'ASIC may be made up of 4ansactioqs%

Transactions are powerful uni s of knowledge bed theY)are few in number and

yet can cover all of the elementary BASIC statements.

Prestatements. The third level in Table Cconcerns prestatements. Pre-

statements are sub-categories of statements; they are more specific that the

general category of statements that all share the same name. For example, the
-

LET statement really includes several quite distinct and different tyoes,of

prestatements: to'set a counter suEh as LET X = 1, to perform an arithmetic

operation on a counter such as LET X = X/2, or to perform an arithmetic

operation and store the answer such as LET X 5/2, etc.

Each prestatement has its own unique series of transactions; thus the

transactions for a counter set LET are not to tame as the series of trans-

act-ions for an ariehmetic computation LET., HoweAr, for any oPestatement, the

11

6

list of transactions is the same regardleis of specific numbers or memory

locations ; thus the series of' transactions i s the same for any two counter set

LETs such as LET C 5 or LET X 6.
One' problem that many learners face is that the prestatements are not made

clear at the onset of learning. Each statement may actually be a family of

quite different prestatements, and the nature of the prestatements is often

not clarified explicitly in the instruction. Some of the major prestatements

are given, in Table 3.

Insert Table 3 about here A

Landa 4 has suggested that students ould be given algorithms for

learning different eases in Russian grammar. The same approach is possible with

respect, to learning prestatements; each has its own unique series of transactions

and these could serve as a way generating an algorithm folocating prestatements.

Statements. The statement level is the fourth level shown' in Table 1,

and constitutes the traditionally lowest level. A statement 'is a class of one

or more prestatements al I sharing the same "'name. Table 4presents the relation-
%

ship between statements and prestatements; further, Table 3 presents the relation

between preseatements and transactions.

While this is the most dominant level for instruction, full comprehension

lir
of BASIC may also involve the lower levels as well. The rules for dividing a

statement into a set of unique prestatements, and of analyzing'each prestate-

/lent into a series of transactions are sills, that may underlie the statement

Newel.

"4 Insert Table 4 about here

air

.?

Mandatory chunks. The neat level after statements in Tabled is the

mandatory chunk. level. A, mandatory chunk eis a series of two or more statements

that must occur in some configuration. For example, a READ statement always

requires a complementary DATA statement, or a FOR statement always requires a

NEXT statement. Thus some statements may be learned as members of a larger

chunk.

Learning may involve establishing a large repertoire of chunks; however,
4

NI

this chunking process should begin with mandatory chunks. Most textbooks and

manuals do explicitly note the existence of mandator; chunks, but many do not

build ,further on the concept of a chunk.

Examples of major mandatory chunks are given in Table 5.

Insert Table 5 about here

Basic non-mandatory chunks. The next level in Table 1 is for basic non-

mandatory chunks. A non-mandatory chunk is a series or configuration of pre-

statements that.is often used in a variety of programs to accomplish some

, general goal -- i.e. some larger series of transactions than a single pre-

statement. For example, IF and GOTO statements may be used in several different

configurations. These are listed in Table 61/Certainly these chunks are not

,meant to be an exhaustive list b only as xamples of how chunks may be built.

Note that each serves as a sort of super-statement in the sense that a long

list of transactions is called dofor.

Looping is one of the most difficult concepts underlying BASIC programming,

and many of the non-mandatory chunks involva different loop configurations,,

By spelling out the different types of loop configurations, learners may be

t

8

)better able to teal which one is involved in a given progralrThe main iparacter

istis common to all loop configurations are: (1) initial conditions -- the

state of the computer at the onset of the loop, (2) exit conditions -- 'the
4

conditions under which the computer will shift out of the loop to another

line on the program, C3) body of the loop -- the statements Alch as 'LET or

PRINT etc., that are xeCuted on each cycle through the loop, and (4) reset --

the statements such as GOTO that allow the computer to move from the end of the

loop back to the beginning. Each of the loop configurations in Table 6 may.:lbe

.related to these four characteristics.

.
Insert Table 6 about here

,Higher non-mandatory chunks. The next level in Table 1 calls for even

higher chunks.' An example is given in Table 7. This level is simply an

extension of the one before it and has no hard boundary line with it. As a

learner gains more'experience the size and number of chunks (or "super-

statements) he knows will grow. This approach is related to the "structured

'programming" revolution -- the idea Of dividing a program in recognizable!

chunks that are separate and removable parts of a program, Because this

technjgue has already received much attention, and because it is more related

to advanced learning in programming, it not be covered here.

Insert Table 7 about here

Programs. The highest level in Table 1 is the program level. However,

the program level is directly analyzable intoa set of chunks and statements.

It must be noted that this oaper does not deal with the important question of

9

4
what skills are required to generate a program, e.g. heuristics a d algorithms,

This .component,'of courser is required before a useful instructs nal science

of BASIC programming maybe established.

Implications for Theory and'Instruction
/

wThis paper began by asking what knbwledge is acquired by a novice learning

BASIC programming, and how can this knowledge be most,efficiently acquired.

In answering the'fi,rst question, this paper has suggested that people

acquire three basic skills that are not obvious either in instruction nor in

traditional performance. These skills are: the ability to analyze each

statement into a type of prestatement, the ability to enumeratesthe trans-
,

actions involved °or each prestatement, and the ability to chunk prestatements

into general clusters or configurations. This paper has shiawn the psychological

'structures that may be involved In Understanding-transactions, relating trans-

actions tb prestatements, relating prestatemjts to statements, and relating

2
restatements to chunks.

This psychological analysis of the basic concepts underlying performance

in BASIC programming leads to some instructional implications stated in the

second question. The traditional method of instruction for BASIC prograinming

is to help the learner see the relation between a list of statements (i.e.

program) and a certain outpuC. Generally, statements are defjned and examples

are given; the learner is encouraged to engage in "hands on" experience such
. -

as typing in programs and seeing wnat output comes out. This approach aoes

not emphasize the psychological concepts that Anderlie the 'relationship

between program and output.

An alternative Instructional' approach that could be called the

"transactional.approach", involves emphasi'zing the underl.wing concepts of

4

,

- . . 4 .
. ..

, . .

- relationthip between program and output wi I be more meaningful. Thetwo types
.

,

'//of instructional pObcedures are summarize in Table 8. It should be noted, of
. .

. II

.

.1 .2 . /0 4.

, . ., .)0"
.

.
. .

. _ . .% . .

transactions,,prestatiments, and chunks before emphSsizing "hands on" learning.
....,s, .

.
.

Once the student has acquired the relevan subsuming concepts] theh the

course that some studenti" may form the internaLopn

s. ,

-chun

transactions and

;:iprestatements even though they have 'not" been formally presented.

The-transac

It novice.
-4

final approach, however, Bakes ,sure t heyare then'acciuired byte

Insert Tab4e4E1 about herd
.

Traditionally, the statement level and the
.

rognele.velrof criowled90

have been emphasized. The,other levels -- transactionC.prestatements-and
a« .4

chunks -- have not beenlfas fully exploited as they could have been. The Main

implication -of this repork-is that these three levels, and their relations to

'rograms'afid'statements should be fully used in instruction for BASIC.'

with hOvides.. For example, learners must lea6 which transactions go with/

which prestatements,: which prestatements go with which statements, wnich

statements go with which chunks, and so on.
atik

Based on the foregoing'analysis,.the following recommen

instruction can be offered:

. .

(1) Explicitly teach the.
,
basic, transactions involved in elementary

BASIC,.incJuding locations, objects and operations., To 4411-iancl learning in

novices, a concrete or familiar model of the computer should be introduded

.

ariy.rn learning and-eeed throughout learning.', The model shoUld provide a

familOir context for ddicribing the basic locations, objects and operations

in the 'system.

416

LIP

11

f

Explicitly teach the sequence offtransactions for each prestatem .

iiThulio addition to qmal definitions and grAmmatical rules, instruction

should incisude ;he relationship beteen a prestatement and its underlying

transactions? 4
di

,,(3) Explicitly distinguish among the different prestafements that share

the same statement name. Students should receive prpctice ,in recognizing A

different typed ofprestatements for the same statement name. Sinceeach type
1

of prestatement has a different set of transactions, these should be'made clear.

*(4) Explicitly present man atory.chunks. This will allow novices to see

the relation among key prestatemen

(5) Explicitly present bu;t n-mandatory chun

(6) Evaluate and remediate OV asking learners t list transactions for .

iven

at the t

in", etc.

,(7) -Emphasize techniques for generating subroutines and strtIctured

ode. RemediatiOn may thus be based on correctly holes invknowledge

tional level, such as a failure to use "destructive memory read
;

programming. ,This will help.the novice ti develop additional chunks. Since

there are alrea4' many.fi.ne, m e advanced, treatments of structured programming

therV fs no need-ilehr,an'ex

It should be noted that these -recommendations are in addition to the many
/

instruotional proithuds already .in usesuch as encouraging active Dar-

ticipation frIM the' learner, using humor, and clearly stating the grammatical

rules.

Evidence A.

Will these recommendations result in improvements in the way novices lean

to interact with computers? There are encouraging empirical results which

suggest that the answer is yes [5, 6, 7, 8, 9 1.

r

12

For example, in a series- of experiTents [5 1/, college students who

had no prior experience with computer prograMmrhg,w4re taught a simplified

version of BASIC, including the statements EAL), PTT, LET, Fa TO, IF,and ENO;.

For half.of the learners, the instructional text re4rred to a concrete modet
t

f(the computer and explained each statement as a set of transactions within

thd model,. For the other half, the same basic infor tion was presented but

instead of'giving the model'or transactions the booklet emphasized the grammati-

cal rules: Results indicated that the model gro up perf rcrled better than -ehe
4

rule group on problems requiring creative programmin'g 4utnot on easy problems.

In particular, the model group exoeled on Interpreting what a program would

do and on writing long looping programs. In addition, there was evidence that

the model helped the lowieliiity students the most.

A follow-up study [6 1,-1,msed an actual concrete model of the computer

that the learners coulil view or operate. tudents were encouraged to see how .

each statement would be translated.into c anges in the concrete model,. Results

of a series of studies showed that'there were major differences between learners

who were introduced to the model before learning (and encouraged to use it

'during learning) and those who were introduced to it after learning. The

IP
before group performed better than the after group, and especially Oformed

better on problems requiring creative programming. Apparently, being able to
%

understand each statement as a set of. transactions .within a familiar context

resulted in broader, more meaningful learning.

More recently, Player 6 Bromage] asked college students,who had no

experience with computers to read a booklet similar to that used in the earlier

s'4dies. As in the above study, some learners/were given an introduction that

includeda concrete model of the computer and hints for how to relate the to-

be-learned statementi to it while ther learners received the same information

5.

aher-learning. As a test* the studOts were asked to write down all they

lb remember about selecte4 statements. The before group remembered,more

of

facts;

tual ideas while the after group remembered more of the, technical

ition, thei,eftire group tended to 'add* it more meaningful infer ces
,

and ref nces to the model while the afteroup made more vague state is

and inappropriate intrusions. These results are consistent Kith earli r

results: the conceptual ideas and good inferences of ,the before gr. p would
. -

le
. ,,.-'

be expected to support creative programming while the specific f ctl recalled
.

.

by theafterjroup would serve best in sikple retention guest(ons.

..7
...,

.

In another-study (8;), the same results were obtaiined Using a different

%

programmi ,g'language, namely a,filevanagement system dIscussed by Gould .5-*"

("Asher (2 In this .case; a different model' and different transactions
. .

were used, it the itit.werc the same-as with earlier studies.

Finally, a study (/] was conducted 1 which the instructional jnfor-

/
mati-on was presented in logi,cal. order or in a random order. A grouo of learners

. .-

-who read'about.the model'ancOiow td r it to trartsacfrops before they d

the text performed bets r than a contra
A .0

voup for the random passage but

the logical. Apparently,-.the use of tions is most important when the

material is poorly organized.

These studies may be sumra zed by saying that providing information about

' transactions (and using a cdn# ete model tb explain them) increases performance

esoeciSlly on creative probr mming tasks, especially for lbw ability sulrjects
. -

and especially ...hen meter' l.is not well organized.

I

tr;

7 4

14

References

1. Ausubel, D. P. Educational Ps cholo A Cognitive View. New York:

Rinehart & Winston, 1968:

2. Gould, J. D. S Ascher, R. N. . Quiry by non-programmers. Paper presented

atdconvention of American Psychological Association, 197A.

3. Greeno, J. G. Cognitive objectives o.f instruction: Theory of knowledge

for solving problems and answer:mg questions. In D. Klahr (Ed.),

Cognition and Instruction. Hillsdale, N.J.: Erlbaum, 1976,p. 158.

4. Landa, L. N. Algorithmization in Learning and Instruction. Englewood

Cliffs, N.J.: Educational Techrr9logy Publications, 1'974.

. E. Different problem-solving competencies established in

learning computer programping'with and without meaningful models.
V

fournal of Educational Psychology, 1975, 67, 725-734.

- 6. May , R. E. Some conditions of meaningful learning for computer pro-
.

grammin Advance,organizers and subject control of frame order.

nal of Educational Psychology, 1976, 68, 143-150.

7. Mayer, R. E. AdvanceLorgani4ers that compensate for the organization of

text. Journalof Educational.Psychology, 1979, 71, in press.

8. Mayer, R. E. Elaboration techniques and advance organizers that affect
V. I

techn,ical leai-nint Under edttorial review.

9. Mayer,A. E. &..Bromage\ Different recall Protocol or technical text

. due to sequencing of advance organizers: Assimilatipa_versus addition

encoding. Under editorial review.

% .

1.4

p

Footpote

Mk / PreparatiOn oCthis paper was supported by Grant SED77-19875 frOm the

15

National Sciehce Foundation. Requests for reprints and instructional materials

shou,,Id be sent to: Richard E. Mayer, Department of Psychology, Uniyersit/oof

California, Santa Barbara 93106.

41

s

I

A

1

V

Tible 1

Levels of Knowledge for BASIC

1. MACHINE

T?ANSACTION

3. PRESTATEMENT

4. STATEMENT-

5. MANDATORY CHUNK

6. BASIC/NON-MANDATORY CHUNK

H--(GHER CHUNK.

8. PROGRAM

4 .4

ti

,

Operation

,

'Object Location.

A.
FIND Number Input Stack Find the net number wafting in the Input 'stack.

'FIND Number Memory Address Find the number in a.partlicular memory space.
FIND Number Keyboard Find the number just entel-ed in the keyboard.
FIND

, Numr. Program List
,

Find the'number indicated in a particular place in the program.
FIND Ling Program List Find a.particular line in the program.
FIND, Program Program File Find a particular program in.the file.
FIND Command Keyboard. Find a particular fiord just entered in the keyboard.
FIND Place in Line Input Stack Find the end of line at)flput stack. /
MOVE

0' Numbtr Input Stack Move the next number at the input window to the finished pile.
MOVE Line'Pointer Program List Move the line pointer to a particular line oirthe program.
MOVE Program , Program List Move,a particylar program to f e program space.
MOVE , Printer Pointer Output Screen Move a pridteF,,pointer to a p rticular zone o e output screen.

.

Table 2

Some Basic 'Transactions

lm

CREATE 'Number Memory Address Writea numbr in a parftleular memory space.
CREATE Number Input Stack Put a number in line at the input window..

CREATE Number Obtput Screen Write .inumber on the output screen.
CREATE Program Program List Write a program into the program, space.
CREATE Word Output Screen Write a mestagf (such as OUT OF DATA) on output screen.
.CREATE. , Question Mark ,Output Screen ' Write a ?.on the outpui screen.

,

. '

DESTROY Number Memory Address Erase the contents of a particular memory space
.

DESTROY Program Program List Destroy a particular program' that is in the program space.
DESTROY Program

.
Program File Destroy a particular program that Is in the file.

1

DECIDE , Number Memory Adafess Apply a particular logical operation to numbers in memory.
.

.

DECIDE Numbers Program List Apply, a particUlar operation to numbers in program.
4

.- i

COMBINE Number Memory Address Apply a particular arithmetic operation to numbers in memory.
COMBINE Numbers Program List Apply a particular,arithmetic'operation to numbers in program.

ALLOW Command :Keyboard Execute next statement entered on keyboard. i
ALLOW Conmand Program List. Execute next statement pointed to by line pointer.

/
4 i... A.

Do not execute next statement pointed lo by line pointer.

'..-.:4-'-',,,

/"

',, i'

DISALLOW Command Program List

/'

I.

Prestatement

READ address

(Single Address

i.
4

DAIA number

(Single Datum
DATA)

PRINT address

(Single Address
PRIM)

ENO

Operation

READ) FIND,

DECIDE
CREATE
ALLoW
MOVE
FIND
DESTROY

CRIAIE
MOVE
ALIOW

It(address - number
(Counter Set

LET)

4)

FIND
FIND
CREATE
MOVE

ALCCOW,

FIND

CREATE
MOVE

ALLOW

CjtLAIE

ALLOW

FIND

FIND
DESTROY
CREATE
MOVE
ALLOW

lable)

Transactions Inyolved in 50Iected 'restatements

Object

Number

Number
Words

Comaind
Number
Number
Number.
Number

Line Pqinter
Command

Number

Place-in-line
Number
Line Pointer

Com-nand /

Number
Number

Line Pointer
Comman4

Word (READY)
Coomo.W

flambe,

Number
Number
Number

Line Pointer
Command

Location

Input Stack
Input Stack

Output Screen.

Keyboard
Input Stoc

Memory
Memory
Memory
Program
Program

Prpgram
Input Stocli,

Input Stock"

Program
Program

English Translation

1

Find the next number waiting at the input stack.
If there are no numbers In the input stack,

lf,no more print "OUT OF DATA", on screen,
data and wait for a'new command from the keyboard.

Otherwise, move the number at the input window to the finished pile.
find the number In the memory space indicated on the READ statement.'Erase that number from the memory space.
Write the new number Into the memory space.
Go on to the next statement,
and do what it says.

Find the numiter Indicated on the DATA statement,
Find the end of the line at the inpht viindow.
Put the amber at the end of the line at the input window.
Go on to the next stalemenb__,

and do what it says.

If more
data

Mammy
Output Scrten
Program
Program

Find the number in the memory address indicated.
Write that number on the next available space on the output screen.Go on to the next statement,
and do what it says.

Output Screen Write "READY" on the output eCreen.Keyboard Wait fur a new command from the keyboard.

Program

Memory
Memory
Memory
Program
Program

4-7

Find the number indicated on the right of t4eeleals.
Find the number in the memory space indicated on the left ;oolifthe equals.
Erase the number in that memory space.
Write the new number in that memory space..
Go on to the next statement,
and do what it says.

Prestatement

INPUT address

(Single Number
INPUT)

GO TO Ilne

IF address - number
MRMe

(Counter Match IF)

I

ti

NEW

MIN

STOP
fontrol/C

Operation

CREATE
ALLOW

CREATE
FIND
FIND

DESTROX
CREATE
MOVE .

ALLOW

FIND
MOVE

ALLOW

FIND
FIND

DECIDE
FIND
MOVE

ALLOW
MOVE

ALLOW

FIND

DESTROY
'ALLOW
CREATE

CREATE
Allow

FIND
MOVE.

ALLOW

DISALLOW
ALLOW

Question Hark
Command

Number
Number
Number-,

Number r

Number

Line Pointer
CoMmInd

Line
Line Pointer
Command

Number c
Number
Numbers
line

Line Pointer

Penman&
Line Pointer
.Commend

All Lines
All Lines '

Commends
tines
Lines

.4 Commend

Top bine.

Pointer
Command

Coaseand

Command

Table 3 (Continued')

Location English Translation

Output Sccreen

Output Screen

Output
Output
Memory
Memory
Memory
Program
Program

Screen
Screen

Program
Program
Program

4

Write a "7" on the output screen
Wait for a number to nimberilio he entered from the

keyboard, followed by depression or the RETURN key,
Write the entered number on the output screenne.tto"7°
FInd that number that was just entered.

Find the number In the memory apace indicated in the ',twit statement.
Erase the number In that memory spare,.
Write In the new number.
Go on to the next stateMent,
and flo what It says.

Find the line on the program indicated in the GO [0 cIati"ment.
Start woaRing on that statement, ignoring all others

inbetwe'en, and do what it says.

Program Fi

Memory FI
Program g Memory' If

m sat'isfie-d.Progra
P"gral If co

Program
Programprcondition Ot
PrograM

Program
Program
Keyboard
Program
Screen
Keyboard

Program
Program
Program

Program
Keybnard

not
satisfied

4 the number Indicated to the right of, the equals
nd the number stored In the memory space indicated
the numbers match,
find the line that' has the number Indicated after

and start working on that statement, lqnprIng all
and do what It says.

herwlse, go on to the next statement under this
and do what it says.

tia

In the

to the

THEN.

IF stOtennt.
left of the equals

IF statement,/

Find the program that Is now In the computer.
Erase that program.
Wait for program to he teed In on keyboard.
Copy each line of the program in the space inside the

computer, and on the screen.
Wait for an operating command.

Find thefirst line of the,program In the computer
Move the pointer arrow to this line
Execute this statement, and wnrk dawn room there.

Do not execute the next statement In the program.
Walt for an operating cnmmand from the keyboard.

6.

(

I

Table 4

Prestatements Involved In Selected Statements

,1

A
.0"

a

Type of Format- of ' .

Statement Prestatement rt Prestatement Prestatement .

LET Counter Set to Number LET addrses = nuinber, LET X = 2

LET Counter Set to Addresi LET address = address- LET X.= Y

LET Arithmetic LET address 1-'number operator number LET X = 2*4

LET Formula LET'address = address operator address LET'X 00Y*2
. .

-).

LET Mixed Formula LET address = address ooeration number LET X = Y*4.

same
LET 'Increment/Decremeht LET address,= address operation' number LET X = X+1

PRINT

PRINT

PRINT

PRINT

Single Message PRINT "message"

Single Address ip ORINT address

Multiple Address PRINT address list

Line Space PRINT (blank)

ti

I

4.

us

_PRINT "556,

PRINT Al -

PRINT Al,A2,A3

PRINT

41

1

orfoo

cs.

1111

Table 5

Some, Mandatory Chunk%

.

READ-DAT Chunk
qt,

- Rule: ery RE statement rgliu,ires a corresponding DATA statement.
4

I

Era

READ Al

.4 DATA 5

Pro ram-END Chunk

Rule: , very gram would have an IND sta4ment;

xample:

H

END

FOR-NEXT Chunk

Program

Rule: Every FO requires a NEXT somewhere beneath it, and every NEXT
requires a corritillOrding FOR somewhere above it. --

4r ,
E

gm.

_r

IFILine Chunk

,"(Rule: ,Every IF'statement requires that there be a line on the program

FOR X II 1 to 5 STEP 2

NEXT

corresponding to the _number after them.
4

Exampjfk:

10 IF Xw2 THEN, 50

:

50 (Mtitthave some statement)

c

I

0 111

At

"N4

1
J

Table 6,

Some Basic Non-Mandatory Chunks for Loops

Repeat READ Loop

READ 10 READ X The INITIAL CONDITION is/that numbers are waltini at
DATA 20 DATA 6,'7, 8, 9, 10 the input window and one is read in.

(more statements sugbas '30
LET or IF or PRINT) 40

GO TO (line with READ) 50

END 60

LET Y = 6t2
PRINi4X, Y

-GO TO 10

END

0111 XIT
CONDATIoN 4s that there are no more numbers at

e input win ow. If the computer tries to read but
there 'are no more numbers left it will end the program

,
and print OUT OF DATA.

.
.

The BODY OF THE LOOP.consists of a series pf statements
such as LET or IF or PRINT which operate on the number
that is read In.

The RESET statement sends the pointer arrow back to the
original state so the next number will 6 processed in

o the same loop. .

r"-"*"--.,

Branch Loop /
....

. --\
READ 10 READ X The INITIAL CONDITION is that numbers are waiting -at
DATA 20 DATA 2, 99, 6, 32, 4 the input window and one is read in. I

voic r\ P
IF-THEN (Branch 2) U IF X>30 THEN 60 The DECISION CONDITION is whether the number meets sore

\ some criteria. if so, the pointer shifts to Branch 2;

7
if not, it oes on with Branch 1..

'" (statements for Branch 1 ' 40 PRINT X The BODY OF INE LOOP has two parts: the body of the loop
sp0hps LET and PRINT) for Branch F'4nd the body of the loop for Branch 2.

GO TO (line with READ) 50 co- to to The RESET sends the pointer arrow\back to the same point
in the program for both branches. e

(statements for Branch 2 60 LET X = X/2
such as LET an() PRINT) 70 PRINT X

GO TO (line with RE1D) 80 GO TO 10

END 90 END
.

2

4 Table 6 (continued)

Wait for a Data Nu Or

REA4 10 READ X The INITIAL CONDITION is that numbers are waiting
,DATA 20 DATA 5, 12, 72, 6, -1 at the input window, and one is read in

. IF -THEN (exit line

with ENO)

(more statements)

GO TO (line with READ),

(more staie>rtA)

Wait for a Counter

4,-Let C = 0

IF C = THEN
(exit IT such as END)

(inure stdtement 0

30 IF X,0 THEN 60

PRINTA

50 GO TO 10

60 END

z

. The EXIT CONDITION is that if a certain number
(e.g. a negative number) is read in, then the pointer,
arrow will shift out of the loop.

The BODY OF THE LOOP consists dt one or more statements
after the EXIT decision but before the RESET

The RESET puts the pointer arrow back to READ and
ailOWs another cycle through the loop

2.0 LET C = I The INITIAL CONDITION is that the counter is set to
zero or one (or some other value)

30 IF C = 5 THEN 60 The EXIT CONDITION is that if the counter meets a
certain criteria the pointer arrow, will shift down
out of the loop 1

40. READ X The BODY OF THE LOOP contains statements such as LET
50 DATA 5, 20, 23,6,7, 10 and PRINT
,60 PRINT X

LET C = C+I JO LET C = C+I The RESET involves incrementing the counter and shifting .

GO TO (liqe with IF) ' 80 GO to ,30 back to the top of the loop

4-)

t.'

. 90 END

N
I

Table -7

Higher 'Order Chunks

READ-DATA - Operation Chain - PRINT ' END
4 -

Rules : When a member is head it is usually either printed, or it is

operated on with 4he result printed: Something is usually printed
before the program ends.

Examples: -1. READ X

/
1

...

r4.

2. DATA 4

3. LET X 11 X ÷ 2

4. IF X > 4 THEN 60 7

5. PRINT X,

6: END

3

f

4

O

Table 8,

.

Two Approaches to Teaching the Relationship

Between a Program_and It's Output

Traditional Approach

LISt OF 111, OUTPUT

STATEMENTS

eg.

Transactional Approach

IIST OF . TRANSACTIONS

-PP
..,.°WPRESTATEMENTS FOR EACH

iTIST tF.

STATEMENTS
LIST OF CHUNKS OF.

PRESTATEMENTS, RESTATEMENTS

OUTPUT

3

TECHNICA REPORT SERIES IN LEARNIA:AND.COGNITION

,Report No. uthors and Title

/8-1 Peper, R. and 'Mayer, R. E. Note - taking as a Generative Activity,

cational Ps cholo , 1978, 70, 514-22.)Journal o

78-2 .., Mayer,

Technic a

Educationa

R. E. 6 B
Text dire

s chal

ge, B. Different Recall Protocols for
Advance Organizers. (Journal of

1980, 72, 209 -225.)

7971, Mayer, E. T

(Instructional Sci

f Reseatch on Advance Organizers:
8, 133-167.)

"9-2 Mayer, R. E. Analysis f a. Simp e Computer Programming Language:
Transactions,,Prestatemen and Ch *. (Communications of the

1979, 22, 589-593.)

79-3 Mayer, R. ElabOration techniqu= c echriical Text: An

Experimental Test of the Learning\Strateg Hypothesis. (Journal

of Educational Psychology, 1980, 72, in press:)

80-1 Mayer, R. E. Cognitive Psychology and. Mathematical Problem

Solving. (Proceedings of the-4th International Congress .on

Mathematical jOucation). 1980.)

80-2 Mayer, R. E. Different Solution ocedures far Algebra Word

and Equation Problems.

/- _....--..
. .

80 -3 MayerRm-fr 3-ch-iiiiis f.r: Algebra Stor Problems.

/7
80-4 'lleyer,IR. E. 6 Bayman, R. Analyirs of Users' Intui 1 About

... if the Op4ration of Electronic Calculators.,. .

8611 Mayer, R. E. Recall of Algebra,Story Problems.

80-6 Bromage, B. K. 6 Mayer, R. E. Aspects of the Structure of

Memory for Technical Text that Affect Problem Solving Performance.

80-7 Klartzky, R. L. and Martin, G. L Familiarity and Priming Effects

tcture Processing.

81-1 Mayer, R. E. Contributions of Cognitive Science and Related
Research on Learning to the Design of Computer Literacy Curricula.

81-2 Mayer, R. E. Psychology of Computing Programming for Novices.

81-3 Mayer,R. E. Structural Analysis of Science Prose: Can We

AV
Increase Problem'Solving Pe'rformancek

81-4 Mayer, R. E.. What Have We Learned About Increasing the Meaningful-
ness of Science Proie?

3' R.;

