\

i

ED 207 549
AUTHOR ~
TITLE

v

INSTITUTION
SPO’S AGERCY
PUB DATE
GRANT

NOTE

« EDRS PRICE

YDENTIPIERS

ABST§ACT

DESCRIPTORS

/ .
DOCUMENT RESUMB .
« . v " IR 009 660
Bayer, Richard E. l
Analysis of a sin
Transactions, PrgsStatements, and Chunks. Report No.
79-2. Series i earning and Cognhition. N .
California Onivw™,, Santa Barbar Dept. of
Psychology. - c)
National Science Poundatioq-_washington, D.C.
(79] « i
SED-77-19875 - ,

34p.; Por a related zoculent, :EE{33’%09\662.
MP01/PC02 Plus Postage. ‘= o (f\\\

- #*Computer Science Education; Instructional

Innovation; *Learning Processes; Learning Theories;
*Programing Languages; *Teaching Methods. . -
®*BASIC Prograning Language

.

This discussion® of the kind of knouledge acquired by

a novice learning BASIC programming and hov this knowledge may be -
most efficiently acquired suggests that people who do programming

acquire three basic skillsg tjhat are not obvious either im instruction

‘or-in traditional pepforamance: (1) the ability to analyze each

statement into a type of prestatement, (2) thé ability to enumerate
+he transactions involved for each prestate
"to chunk,prestatelents into general clusters or configurations. The
instructiondl implications of a psychological analysis of the basic

concepts underlying performance in BASIC programaing -are considered,

and an alternative instruc¢tional approach--the "transactional
approach™~-is recommended for teaching programaing. Tkis approach-
involves teaching the underlying concepts of transactions, -
prestatemeénts, and chunks using a concrete model of the conputer,
befecre emphasizing hands-qn learning. It is argued that oace the
student has acquired the relevant subsuming concepts, the® .
relationship between program and output,will be more ameaningful. Nine;
references are listed, and appendices incl@ge the-eight Levels of .
knowvledge for BASIC; exalples of transactiols, prestatenents, and

chunks and diagrams of the traditional apd transactional approaches.
Other publications in this report series are listed. (HEB) 'Y e

Computer Programming Language:’

nt,.ard (3) the ability

I3

- . . , \\ , Vil
. *) . %
AN
- ~ Q. t
4
» - »]
‘\/‘ — -,
‘ .
- .‘ »)

‘. .9
tt##t#tttttt(ttttttttt‘#ttttttt#ttttttt#tt##ttt*ttttttttttttttttttttttt ..
® Beproduciions supplied by EDRS are the best that can be lage L I
* from the original document. * *

################t##########t###################‘#####l############'####

/

EKC . e

wll Toxt Provided by ERIC

l

q

.. A e . >
-
— »

-

3
.

B , SERIES IN LEARNING AND COGNITION N .-
! ° Vs QE'A.YMENYDFHEALT;‘ N * " - . N) * .) ".
EDUCAY'QN‘WELFAHE ‘ N . 2
NATIONAL INSTITUTE OF

. . ¢
EDUCATION W) .
) 1 4
TS DOCUMENT =AaS BEEN REPRO-)

DUCED EXACT AS RECEWVED FROM
THE PERSON OR QRGAN'ZATION OR GiN-
AT NG 1T POINTSOF v EWN OR OP.NIONS

-

ED207549

STATED DO NOT NECESSARILY REPRE-: ., .
SENTOFFIC AL NAT ONAL INSTTUTE OF . ,
EQ\;(AV‘ON POS ' ON OR POLICY = . ,
r \ / ~
* - . " R ’ .
Analysis of a Simple Computer Prograrming Lfanguage: -
4 - . ' - .
t Transactions, Prpt%tements and Chunks - .-
. * ' Richard E. Hayﬂ /
. - ~- .
) . . Report No.’ 79-2
" - h A » - &
] J ., - . B f
’ f 7/ s . »” '
. ". N
- .
s -~ . .)
L. . N
~ " . »
- . . .
/ . ’) “ vy
/” * \ . .
. LERY
o ’ - :
< / ‘ A ‘)
. ; ” ,
\ - - l
. .))
. N [. i R . ’
. -
A ¢ N
. . - ') 4
- < . .
Y ‘ ’ . . ; “
.] . . . , . .
-9 0L , . . . oo
\y Preparation of this Peport was supported by Grant SED,77-19875 from the
\Y , ,. e T
O~ National Science Foundation : :
; ‘ : . ~PERMISSION TO REPRODUCE THIS
N ¢ < L MATERIAL HAS BEEN GRANTED BY
. . N .
. Q h ! - ~ . 13 / N
) Q ' . :) . t) _Rj_?hud_j‘_._uny-nx—-
I - : v ' , T '
9 - , - T0-THE EPUCATIONAL RESOURCES
ERIC - e L Q e INFORMATION CENTER (ERIC)’
- ' B ' . % 7
. e . , . N

AY Y
LA s 1‘)
L]
_ ,
T , .
. re L 4 »
< 4
. ot N
. . .~'¢}f . e X
Jow e . A
v A Psychology of'Le'arning BASLE Computer Programming: .
. oo - Transactions, Prestatements 4nd Chunks - I .
[} .:':v -?"” - ~ ,‘ .
.) P . * , . -
. * -~ This paper addresses the questifn: What does a Person know following
L3 ' . v o M
. learning of BASIC prpgramming? Several underlying conceptual structures
: !
) arewe®tified: (1) a transactions fQ an event that occurs ,ih the computer
' ~
*-» N .
© and involve some operation on some object at some location, (2) a pre- .
4 t - . . . -
4 N N
© | statement is a set of transactions corresponding to a line of code, (3) chunks
¢ N . .
< are frequently occurring "configurations of prestatements corresponding to
. . . . : - . - i
several lines of code. .
C . .) .)
= Key words and-phrasa: BASIC:’learning, instruction. N
- K L
3 : . - -
L] \ . ' . “
: Kl L4 ' 0
L \.) o
v ’ A ’ ~ : ’
L™ '
: & + - \
o ! /, >
v * »
i Lo
] « . // -
’ A
: : , J : - v
~ / , :
, ’ .
" L]
A L
14 v P
" . 4 ,
. L . ., P #
’. . ' '
, { / ¢
" : -
» Y 4
] [‘.
‘ ’.i" ~
"‘ a4
LV ! : o f

‘ O ‘ L . .
ERIC® /- !
.

Introduction .

‘effectively acquire this krfow] edge?

J

-

This paper deals with™two questions: What dods a person know when he
{ P . .

"or she has acquired the ab:llty to write and 1nterpres simple BASIC cémputer

AN
programs? How should a teacher instruct a person, so that he or she wull mos t

\\ In response to these questions, this pader suggests a'techniquqrfor

)
»

analyzing th& knowledde that a fearner may akquire in learning BASIC compucér

programming. The main problem is to determine 3 system for specifying ihé

S

Ly

basic ungts of knowledge and the reyatiohs among them.

» .

Several researchers have argued for the need to apply the analytic’ tools

.

of cognitive psychology on an entire subject matter— For example, Greeno [3]
‘ 4

has stafed: '""A further impediment to enthusiasm now .i§ the fragmentary nature

of the.illustrations, of detailed task analysis based on cognitive theory. A

more reasonable ®valuation may be opssible when we can display a relativel !
.) . . i) "" .}'h
complete analysis of the knowledge desired as the outcome of instruction in
' !V ‘.
. . . A
somé subject...' This paper is an gttempt to suggest “how one might begin to

.attack this BTBQrtant groblem in fﬁé,sub}ect arg# of BASIC orogramming.

BASIC programming was choosen fb; several reasons. First, it is weli-
. " 2 -
e

defined subject area which is taught in schools and elsewhere. ~ pecond, it is

S

a few subject natter == less than 15 years old == that has not been sub;ected

1

to the intemse unstruct:ona} analysis of more established :;bics suth as .

. -‘ " . . -

mathematics. Third, the users and learners of ‘BASIC are ﬂnc;easingly turning
: . . ’

out to be novices who will not become "professional. programmers. With micro-

»
ve , . LY

‘computers, programmable in BASIC. becoming a bart of .everyday .business and *

A - \\. . "
.home life, the demands for teaching BASIC to non-professionals‘will [Lkgly

» -

increase. -EmfpPasis on instructional methods seems oarticulariy important for
: - ¥ - : .
learger's who ~i'l1! not become prbfessioﬁaf/;rdgrammers.

’

¢ b ‘
_ . ' ' ' TN . |
.)' ‘ . ‘g
I (2
- ﬂ y I]
Levels of. Knowledge)
.~ L d . J .f‘ :
- " One of the first ‘steps in attemating to describe the knowledge that one ~ .
' . i 7 -
. MUSt possess to. perform BASIC prodramming is to determine the unit of knowledge. .o l
‘r‘ . \. .) |
+) raditionally, the main units of knowledge used [n_lpstrucgion have’been: (n T
the statement such as READ, PRINT, IF, LET, etc., and (2) tHe program such as ‘
. ! - a specific program containing the Just taught statements. ‘
, “ ' *In order to teach these two units of knowledge, instructional sequences

generally 7ontain the following types oflfranes- (1) sTatement definition -~

(. text devoted to presentnng the format and formal Befinition of the statment,

(2) statement grammar -~ t€xt devoted to the grammatical rules relating to a

-
.

l
|
|
\
;
|
1
|
|

7 statement sucn as allowable address labels; etc., (3),program example -- a : ’

program that uses the statements and rules described in #tatement definition

; h .

and statement grammar frames,\‘h) program exercises -- questions asking thé_

learper to wtite or interpret ;\program containing statements discussed earlier, 4
v . . v '
‘- ft must be pointed out, however, that thelstatement and the program are

just two levels of knowledge. .The main thesis of this paper is that there are

’

several possible levels that go .below the statement as the unit of knowledge,

\l

f and several possible levels about the statement In general, instructional . .
. . } P
sequences for BASIC have not fully exploited these alternative levels. however, ‘
a careful anal»5|s of "what Is feared'' in BASIC progﬂénming may indicSte that ’/ ‘
. . learnigg occurs on levels other than those "taught. These levels are suggested
inTable |. Eagh level of knowledge about B8ASIC brogramming will be discussid .
in turn. ’ . ‘ . y
, \ TLT Tttt m .
, Insert Table | abopt here
. : N
: i .
2) .) 4
hd

.y .

¢ . * ¥
- o) .
. v

(V]

.y
¥,
b Y
»

) -/ * T) ‘ 3 "

Machine level, The'lowq§t level of knowledge suggested in Table | is the

machine level. Pre5umably, a persdh could kng each specific,‘sinéle changeq
that may occur wathun the actual hardware of he computer, as indicated by

machine language statements. Many cnstructuonal .manuals provide an introductory

,' chapter that describes ' the ature of electrdamagnetic fields, -logic circuits,,
" octal code ana,the liké. However.,ihis level if knowlgdg; is rare;>'used by,
- ~

ncvices as a meanungful context for further learning; more often; i

.

is treated

[

bv student and 4nStructor alike as extra technucal information that is not

- ~ -

T

necessary/ﬁor learning programming., Indeed, BASIC programming does not

"VCQuire an understandiné of elect?oniés or hardware or even octal code. Thus
this ;evél of knowlevg;,‘whfle:}mbortant to the oote:tial professional, may Se
_too detdiled for thé‘nOViC; wno is learniﬁE’BﬁSlC for the first time.

Tran%;Ltions. * An® alternatxve to the machine level is the next level in
*

Table 1, the transaction-level, Transactlons are not tfed to the actual hard-*
ware of the comAPterh but are related to the general functions of the computer

that under|ie statements. A transaction is a unit ¢f programming knowledge in

- 4 . . M . . i . A
"which a general operation is applied to an-object at a general location. A,

transaction consists of three parts: '
, L . . £ » .
- (1) operation -- sueh’as MOVE, FIND, CREATE, DESTROY, DECIDE, COMBINE

.2 %
1 - . ¥

(2) obJect -= such as number& program pounter program line

" (3) locatuon .- Such as 4nput stack, memory address, .orogram space,
¢y

“

¢ . OUtputrscreen,'keyboard, file N
An 2xample of a transaction is: move'the_number that is on the top of the input
"+ stack to.gfte fzn'isheﬁ stack (OP: MOVE, 0B: number, LOC: input stack), or create
. . * / .

a certain number in memory space}gl ¢OP: CREATE,, 08: number, LOC: memory space),
[y ' 4 . . ¢ * -~ .
or moye the line pointer to the next Jline ‘of the srogram (OP: MOVE, 08: pointer,

LOC: program space). . ' © e .

D T, T

E

O

RIC

Aruitoxt provided by Eic:

Y3

. \) (4 L . "
‘ ‘ - ¥
Tn general, the transaction level has not’been exploited in instructiona]

'manuals . A notable exception is that many mannuals describe memory as a set

-
- N

erasdable blackboards; this analogy helps clarify one of the locations.

However, our research has suggested that the tra®Sactional level ‘may be crucial

N\

- ‘

-~

5,6] . Transactiqds provide: a’

ifvoroviding understanding for novices |

- r'd

[] .
ns, for the novice, of 'explaining'' what is going on inside the computer

- ’ 2. . . " .
when a particular statement is executed and of relating the new technical

.

language that he

.)
that he or she is already *familiar with, ‘- '

Table'2 presents a list of the major transactions involved in Jeérning
A . N

¥ .
elementary 3ASIC programming.

. - [
v

from which statements ﬁéy be made. ’

\ ' P]

Insert Table 2 about here —

N

It is important to point out that transactions do not require an under-.
standing of machine-level hardware and operations. In our studies we hgve

used analogies to describe the locations involved: in tragsactions. For

* S -

example, some of the mainflocations cah be successfully described as follows:
(1)” ticket window == data cards are placed in a pile outside &

ticket window and are moved inside, one at a time, as each is

’
.

~
processed, . ‘ . A
{

(2) memory scoreboard -- memory is.made up of many squares in an. .

. [}

’éraseable‘qh%lkboard with a label permanently attached to edch,
i . T A - . R - -
{3) output pad -- messages are written on successive lines:of a note pad,

A " .
f4) orogram list and pointer arrow == the program is like % recipe or -

af . .

shoooiéq list and the pointer arrow points to™he current]ine on

the program, .) . Y

.

of*

She must learn’to general operations, locations and objects.

Note that these transacticns are building blocks

A}

Ve

~

ERIC

Aruitoxt provided by Eic:

{5) file cabinet -- programs are.stored in a

file cabinet in alphaéetical
{

. .

order by name. | ‘
[' !
Since the obJects and operatioas are generally fam|||ar to the learner, it may
- 4
not be as lmdb?tant to provide analogres for them.

Any line of code may be translated into a series of transactions. By

describing a statement in terms of transactions, in addition to giving its
. P,
the teacher gives the learner a way of understanding w~hat

" formal definition,

. v '
'S going on inside the ''computer' when a statement is executed.

e "

In addition, evaluation of learning/ased on transactions may provide

t

a more effective way of locating areas for remedial work.

For examole, a-
test could ask a student to list the transactions f;r a statement or a simgle.
[N . 1 '
program. For example,
. . . -
‘tfve read in and non-destructive read 9ut, the transactions listed .for a READ

T .
or PRINTlstatement woqu indicate this problem. " _ ~\ .

. *

. In shbrt, the underlying s

Transactions are powerful unitys of knowledge bEExqs thef\ere few in number and

yet can cover all of the elementary BASIC statements. J//

The third level in Table l'concerns prestatements. Pre-

4 .

statements are sub-categories of statements; they are more specific that the

Prestatements.

general category of statements that all share the same name. For example, the
. . < - .
- . ‘
« LET statement really includes several quite distinct and different tyoe;,of

.

to perform an arithmetic

.-

prestatements: to’set a counter suth as LET X = |,

operation on a counter such as LET X = X/2, or to perform an arithmetic

-
.

operation and store the answer such as LET X = §/2,

-

. A
Each prestatement has its own unique series of transactions;

etc.

.

thus the

transactions for a counter set LET are not Jge Same as the series of trans-

¢ - N A

actions for an arifhmetic\computation LET. ., HowevEr, for any pfbstatement, the

. : »
/ -

cture of RASIC may be made up of fﬁansactioqsi

if the learner has not yet mastered the conceot of destruc-

E

list of transactions is the same regardleSs of specific numbers or memory

. .
™ v

-
locations; thus the series of transactions is the same for any two counter set

LETs such as LET C = 5 or LET X = Zé;. .)

. * -
One’p(oblem that many learners face is -that the prestatements are not made

-

clear at the onset of learning. Each statement may actually be a family of

quite different prestatements, and the natyre of the prestatements is often

not clarified‘explicimly in the instruction. Some of the hajo? prestatemertts

¢ -—

.

are gjven sn Table 3.

)

Insert Table 3 about here /

. ’\ . --------------;’ .

‘Landa [4] has suggested that studengizshéZId be given algorithms for

——

y 3
learning different cases in Russian grammar. The same approach is possible with

respect, to learning prestatements; each has its own-unique series of transactions
and these could serve as a way generating an algorithm fol locating prestatements.
Statements. The statement level is the fourth level shown in Table |,

anq constitutes the traditionally lowest level. A statement is a class of one

. - !

or more prestatements all sharing the same“name. Table h'presents the relation-
. . ’ . . » ’
- ! @ Y . .]
ship between statements and prestatements; further, Table 3 presents the relation

between prestatements and transactions.
while this is the most dominant level for instrugtion, full comprehension

of BASIC may also involve the lower levels as ~ell. .The rules for dividing a

- ~
[l

’ .
statement into a set of unique prestatements, and of analyzing each prestate-

mant into 3 series of transactions are skills that may underlie the statement

{

havel .

.

P e

3
<

3

- / .
Mandatory chunks. The neéxt level after statements in Table*] is the

mandatory chunk- level. A mandatory chunk js a series of two or more statements

that must occur in some configuration. For example, a READ statement aiways

requires a complementary DATA statement, or a FOR statemeht always requires a

e}

¢
NEXT statement. Thus some statements may be learned as nembers of a larger

chunk.) . : o

. A N
°4Learning may involve establishing a large repertoire of chunks; however..
this chunking process should begin with mandatory chunks. Most textbooks and
. \ ! - L .
manuals do explicitly note the existence of mandatory chunks, but mdny do not

build further on the concept of a chunk.

Examples of major mandatory chunks are given in Table 5.

. -
.

Basic non-mandatory chunks. The next level in Table | is for\basic non-

mandatory chunks. A non-handatory chunk is a series or configuration of pre-

statements that.is often used in a variety of programs to accomplish some
i

-~ . .

. general goal -- i.e. some larger series of transactions than a single pre-

statement. For example, |F and GOTO statements may be used in several different

configurations. These are listed in Table 6./ Certainly these chunks are npi

meant to be an e;hausti@e list gyé?only as éxamples of how chunks may be built.

2

Note that each serves as a sort of super-statement in the sense that a long
, K

Jlist of transactions is i:lled‘%or.

L00pin9 is one of the most difficult concepts underlying BASIC proéramming.
and many of the non-mandatory chunks involvlf different loop config&rations”,
8y spelling out the different types of loop configurations, learners may he

I3 . .

k)

8

better able to tell which one is involved in a given progréq.'~The main gharacter-

istfcs common to all loop configUﬁftions are: (1) ipitial conditions =-- the
d state of the computer at the onset of the loop, (2) exit conditions == the \
* conditions under which the computer will‘shift out of the lopp to anothe()
"'ling,on the program, (3) body of the loop --.the statements such as'gET or

‘< t d , s . ~ .
PRINT etc., that are\executed on each cycle through the loop, and (4) reset -
the statements such as GOTO that alkow the computer to move from the end of the

loop back to the beginning. Each of the loop confiquraionsih Table 6 may..be
related to these four chgracteristics. ! ’

\] , (
- Insert Table 6 about here ,

= . .Higher non-mandatory chunks. The next level in Table | calls for sven

higher chunks.: An example is given in Table 7. This level is simply an
extension of the one before it and has no hard boundary line with it. As a
learner gains more experience the size and number of chunks (or super= -

stateﬁents) he knows will grow. This approach is related to the "structured

-

. ‘programming'' revolution == the idea of dividing a prograh in Eecognizable, .
cﬁunks that ére separate and removable parts of a program, Because this

technjique has already received much attention, and because it is more related

-

"to advanced learning in programming, it will not be covered here.

(// . Insert Table 7 about here
/

' Programs. The highest level in Table | is the program Jevel. However,

the program level is directly analyzable into-a set of chunk$ and statements.

It must be noted that this paper does not deal with the important question of

’

. ’
l .
P s

. Q

ERIC

Aruitoxt provided by Eic:

.
» e R
. M -

R o ' 9
what skills are-required to generate a program, e.g. heuristics and algoritﬁms:

Th[s.component.'of course, is required before a useful instructiondl science

of BASIC programming yuy}be established. ' . . /
. | - :

]

implications for Theory and Instruction

,

«This paper began by asking what knowledge is acquired by a novice learning | SR

BASIC programming, and how can this knowledge be most,efficientl} acquired.

3
v

7 -

- |

In answering the first question, this paper has suggested that people

acquire three basic skills that are not obvious either in instruction nor in

-

traditional performance. These skills are: the ability to analyze each
. , -
statement into a type qf prestatement, the ability to equmeraté\ﬁhe trans- v

actions involved for each prestatement, and the ability to chunk prestatements

“ .

. ’ ‘e . . .t »
into general clusters or configurations. This paper has shbwn the psychological
. -
‘structurgs that may be involved ‘in dnderstandjng‘;ranssctions, relating trans- . S
actions to prestatements, relating prestatements to statements, and relating »
.] o ‘i
restatements to chunks. ') ' ‘ .)

This psychological analysis of the basic concepts underlying performance
in BASIC prograﬁming,leads to some jnstructional implications stated in the

second questiop. The traditional method of instﬁgction for BASIC programming

.

is to help the learner see the relation between a list of statements (i.s.

_program) and a certain output. Generally, statements are defined and examples

Y .
. N

are given; the learner is encouraged to engage in '‘hands on'' experience such

,as typing in programs and seeing what output comes out. This aporoacH aoes

not emphasize the pgvchological concepts that wnderlie the relationship - .

N \ : :

between program and oltput. ‘ N

s An alternative instructional approach that could be called the

”transécgional,aporoach“, involves emphasizing the underlying concepts of
L 4 . .

. . N
Al ’

?

&Y . N i .
Ay . : . .

“~ .
\l
- .
(I
. .
? «
’ N
.- e
M .
.
. L
‘ A
‘
.-
-
. L] d
- .
-
o @ ’
o
\\ - "
P .
. oa P Y
‘e
. .
:
. . J
v
~
/

.

-

- %ariy-(i‘n Tearning and <sed thiroughout learning.'. The model shadld provide a .

jf’amilfgr context for describing the basic locations, ObJéCtS and operat|0ns

)

"re.latiorfs‘mp bétween program ‘and output wi\! be more meaningful. The-two types

BASIC, incJuding locatjons, obJects and operations., To &hhanc& learning in

. LI ¢ . \;
' Ao LT e SR R
. y) * Ty
4 » - f ‘ . *
Ce ‘ ! .o ‘ ., - 10 [
transactaons, pres'tqtoments. and chunks before emphés';znng "hands on'' learning. - ’ \
* Once the student.has acqutred .the relevan Subsumlng concepts {0] then the) J
. . . Py . ’

1
’
. ~ * \ o -

of inst'ructional pﬂocedures are sdmarize? in Table é It should be noted, of

& .

. e’
course) that some students may form the_internal. con% transactions and

M prestatements evén th0ugh they have not been formally presented

. -

The"transac Qnal approach however makes sure they are then acdu:red by t'he

hovice. s - . e . .)) . | |
a -, . Q . -~ 4 Q
Yo N ® @ @ @ @M @ v = @ - = - . N . . "
“ i ']
1 . - - - .
insert Tabde”8 about here - ’

© ,-v" : RS

-

. | o i
' ‘ ¢ . ¥ ‘e T }
Traditionally, the siatement level and the rogPMP 1eel of kaowledgs' | . |

. s ‘ . - . K i

. . N ¥ . -
have beéen. emphasized. The.other levels -- transactions,. prestatements and

. . . IS
» L - v

chunks -- have not beer as fully exploited as the9 could have been'. ., The main “

imp-licatiOn of ';hi.s reporg is that these three levels, and’ their relations Lo)

P .

N
»

‘programs’ ahd statements should be mo ‘e fully used in instruction for BASIC

N &

with noviges.- For example, tearners must learn which /transactions go with .

- N
o . ST . o % -/
which.prestatements,.' which prestatements go WIth whlch statements, which o ,

N - . .. | ’ WL
statements go with which chunks, and so on., . / -

: \ - . y
Based on the foregoing analysis,. the following recomw
’ YR

“

instruction car be offered:

.
L4 »

(1) “Expligitly teach the basic, transactions involved in elementary —

» L

‘novices, a concrete or famnhar model of the comouter,should be introduded

. in tha system, - T . o

. .

'S

»
- » . . . N "
’ . N .

’

L

B
.

w

s ‘Thus *n addutnon to f)ﬁnal defmutuons and grammatical rules, instruction

~

,trafsactions. 5

of prestatement has a different set of transactions, these should be' made clear.
\\-N

. s
- - - . 1
N L4 ‘ ’)
p - . - - /
;. % ’ ’ 1
| , . .
“georicitly ¢ ' !
(ExDllclt[y teach the sequencp of‘transactlons for each prestatem

4

shou['d mciude ;he relatlonshup beteen a prestatement and nts underlying

.
-

»

. - -
)

" S N 3 . N
<(3) Explicitly distinguish among the different prestatements that share
‘ - v s

the same statement name. Students shoujld re‘cg’ive practice in recognizing a
T 3 = T

different typed of ‘prestatements for the\ same stateknt name. Since:.gach type
. . 0' a -

‘(4) Explicitly present mandatory.chunks. This will allow govices tolsee.

the relation among key prestatements. ' ~
- (5) Explicitly present basic néﬁ:mandatory chuqu. /
, . /
* (6) Evaluate and remediate by asking learners tJ list transactions for . _- ‘

Remediation may thus be based 0}1 correctly holes invknowledge

in'', etc.

v

(7) -Emphasizé techniques for generating subroutines and structuréd

. -

: . t .
programming. This will help :the novice tg develop additional chunks. Since (

” .
- *

there are already many fine,"

-

the!ﬁs no need- 't?r an ‘ex

It §hould be noted that thesg recommendatuons are in add:tlon to the many

e advanced. treatments of structured programming

fl‘ﬁ‘e msuuctuonal proqu-uds already .in use, 5uch as encouraging active par-

ticipation frdm the learner, using humor, and c1early stating the grammatucal

- . .
rules, °* - - ' é‘ v
1> .
Evidencé . PR ; i !
Wll these recoméndatjons resuit in improvements in the'way novices leatn

to lnceract with computers? There are em;Ouragnng empirical results whnci

suggest that the answer s vyes | 5 6, 7. 8, 9 1.

I"

.

"

N

‘for example, in a series—of experiments |

4

5], college students who

had. no prior experience with computer programmrhg

“version of 8ASIC, including the statements READ, PR‘NT,

For half.of tﬁe learners, the)nstructfonal text re

the model B

-

For the other half

the same basic

infor

re taught a simplified

-

\

LET, FO TO, IF_and END .

ﬁfrred to a concrete modet
\ .

fof(the computer and explained each statement as a set of transactions within

tion was Dresented but

iﬁstéaﬁ of'g|v1ng the model or transactions the hooklet emphasized the grammati-

]

cal

1]
rules:

Results indicated that the model group performed better than “he

rule group on oroblems requiring creative programming Qut not on easy prohlems.

In particular,
- RS

do and on ;riting long looping progrags.

:

’

the mode] hélped the low'ébiiity students thegmost.

.

A follow-up study |

6 L-used an actual concrete mode! of the computer

- _ghat the learners could view or operate,

each statement would be translated

e

.into changes

in the concrete model ..

in addition,

-

the model groug excelled on {nterpreting what a program would

there was evidence' that

tudents were encouraged to see how

Results

\/

°

of a series of studies showed that ‘there were major differences between learners

who were introduced to the model before l¢arning (and encouraged to use it

during learning} and those who were introduced to it after learning.

The

before group pgrformed better than the after group, and esoecially~§@¥?ormed .

batter on problems requiring creative prfogramming.

v Ll

-

A

’ 4
Aogirently, being ablg to

- N hd
understand each statement/as a set of. transactions within a familjar context

resul ted

More recently, Mayer & Bromage [

-

experlence with computers to read a booklet sum-lar to that used

s\g\les.

in broader,

more meaningful

“9

learning.

!

] asked cdllege students who had no

nn the earlier

As in the above study, some learners/were given an introduction that

5

3

included-a concrete mddel of the computer and hints for how to relate the to-

be-learned statements to it,<:ii£:/ﬁ4her

¢ j . . .
learners receivea the same information

N , / * ' v 4 l
- . / . R a _ . ") /
' aféer*learning. As a test, the stud7ﬁts were asked to write down all they

~ ¢ \

1d remgmber about selectad statements. The before group remembered.more

i -

of thejcg ntual ideas whi'le the after group remembered more of the, technical
¢ . g e g . N e
gdition, the before g;zﬁo tended to add in more meaningful infererces

Y o . N

K

and ref®Mnces to the model while the after \gar'oup made more vague state
- and inaoprppriagé fntrusions. These results are consistent with earl]
Y . . N
. .. ’ $.
results: the conceptual ideas and good inferences of .the before gr

p would
N . N . e o8
: be expected to suoport creative programming while the specific fécts recalled
. . 'Y ., . a

- N . -
by the—after group would serve best in sifple retention questions.

~

Jn §n6thef‘study [8:],.the same results were obtajned using a different

' - Programmi q'lanbuage, namely g‘file}panagement system ¢fscu§sed by Gould &

In this .case, a different model” and/different transactions
» : ’ :

were used, but the
* L

x
- .

Finally; astudy [7] was conducted “inY whjch the instructional .infor-

mation-was presented {n logigal. order or "nfa random orden. A grouo of learners
) . ,

who read’ about the model” and fow té ralagk it to transactions before they d

[N ‘) M LI
- the text performed bettgr than 3 contrgl group for the random passage ght
/ 4
th;\logical. Apparently, :the use of tgxggjctions is most important when the
~ v F‘G . »
mdterial is poorly organized.

att
&

- : N - 4
. ' transactions (and using a cdng ete model tb explain them) increases performancg

especidlly on creative

'

progr mminé tasks, especially for 'lbw ability sulrjects,

ERIC B N ' ., | .

Aruitoxt provided by Eic:

hY

References

1. Ausubel, D. P.' Educational PsychéTBjyx\f Cognitive View. New York:

Runehart § Winston, 1968:

2. Goﬂld J. 0. & Ascher, R. N.

at convention of American Psychological Association,

€

3. Greeno, J. G.

for solving problems and answering questiens.

N £

Cognition and Instruction.
. ”

?
L. .Landa, L. N.

-

r

Hillsdale‘ N.dJ.:

.o ' rl
- Query by non-programmers.
Cognitive objectives of instruction:

Erlbaum, 1976, ».

Algorithmization in Learning and Instruction.

P;per presented
1974.

Theory of knowledge
. . -
in D. Klahr (Ed.),

158.

Englewood

Cliffs, N.J.:

5. May

- .

6. _Maygr, R, E.

‘

\gramming: Advance. orgtnuzers and SubJect control of frame order.
-, \}\D(ﬁgiizf Educatuonal Psvchology, 1976, 68, lb3-lSO. ‘-

7. Mayer, R. £. Advancemorganikers that.compensate
Aﬂ»ﬂ\ B
a text. Journal ‘of Educatlonal Psycholqu, 1979, 11,

8. Mayer, R. E.

JO

technjcal Iearn:n’h Under ed’torial

review.

Journal of Educatronal Psvcholoqy, 1975, 67, 725-734,

» : [
Educational Techmglogy Publications, 1974,
\
E. Different problem=solving cémoetencies established in

learning computer programpang wlth and wrthout meaningful models.

Some condntcons of meaningful learning for computer pro-

.
)

\

»

for the organuzatuon of

. -

in press.

tlaborptuon technlqueg ahd advance organizers that affect

o

9. Mayer, 'R, E. &. Bromaqe Different recall protocol;/féi/technncal text
+ » due to sequgncipg of advance organizers: Assimilatiog..versus adﬂ}tion
7 >
encoding. Under editorial review.

!

-
«
.
.
-
.
.
’
14
.
“
l .
'
¢
.
1
»
.
L]
.
,
s
*
-
.
.
f
.
L
’
LI

JERIC ¢

Aruitoxt provided by Eic:

Footnote) ~ !

 Preparation of.thjs paper was supported by Grant SED77-19875 €rém the

National Sciefice Foundation. Requests for reprints and instructional materials

should be sent to: Richard E. Mayer, Department of Psychology, University of
California, Santa Barbara 93106. S
. . .) P
. \ . - ;
. A . ' .
, oy .
/
- N) = — ’
N - . g
. <, p
. v
, ¢ ’ bl - 3 ‘
' LY - -
. S N "
- M ‘ ’
4 \—\/'/
. -7 # . R
’
- -
. " N
d - @ T \ -
~ . . /
, . I
(""—" B .7 .
s . ,
' . i / ; . Y.
» . L ‘
: .
-~ M I .
fk Irj .
R J
o |
» C < . -
4 y .
~ O
‘i. .
- \ - ’
‘ ‘ Y o
T L J
AN) - . T~ -

s

I" ? ‘ L4
Table | .
. ' " v,
" Levels of Knowledge for BASIC
" !]
1. MACHINE ' . . . -
2. TRANSACTION , ' ’
- .
3. PRESTATEMENT)))
4. STATEMENT®
’ ‘e \\ .
, 5. MANDATORY CHUNK N
y 6. BASIG NON-MANDATORY CHUNK S . . o
7~ H@&R CHUNK . .
. , .8. PROGRAM ° ’ - . e |
,) 1
. (¢ i " . . 1
. '“ - PR . 4 . i
'Y A .]
N ’) . 8 i
‘h £ ¢) ' ‘ . \ . 1
4 .) K \ !
r . ~ ' b |
I
14 N \:.\ 7 ’ . \
. - . - . :

L3

N

Operation
e e—

MOVE

“ FIND
FIND -

FIND
FIND
FIND ~

FIND , .

FIND
FIND

MOVE
MQVE
MOVE . _,

CREATE
CREATE
CREATE
CREATE
CREATE

.CREATE- ,

DESTROY
DESTROY
DESTROY

DECIDE ,
DECIDE

COMBINE
COMBINE

ALLOW
ALLOW

DISALLOW ',

Object

Number
Number

Number = 7

Number,_
Llnii
Program

Command
Place in Line

Numb&?
Line ‘Pointer
Program

Printer Pointer

ANuniber
Number
" .Nuinber
* Program
Word
Quest}on Mark

Number
Program
Program
Number
Mumbers

Number .

Numbers

Co&nwnd
Conmand

» Coumand

4

e

i

Location.

Input Stack
Memory Address
Keyboard ’
Program List
Program List
Program File
Keyboard,
Input Stack

Input Stack
Program List
Program List
Output Screen

Memory Address
triput Stack
Output Screen
Program List
Output Screen

.Output Screen

Memory Address
Program List
Pragram File
"
Memory Address
Program List

Memory Address
Program List

Keyboard

Program List

v
Program List

-

¥

L

Table

Sume Basic Transactions

Find
Flnd
Find
Find
Find
Find
Find
Find

Move
Move
Move.
Move

Write
Put a
Write
Write
Write
Write

Erase

2

,
L

‘

the next number wajting in the dnput ‘stack.
the number in a.pact¢cular memory space.
the number just entefed in the keyboard.

the' number indicated in a particular place in the program.

a.particular line in the program. \
a particular program insthe flle.
a particular word just entered In
the end of Vine a;/}nput stack.

the keyboard.

/

the next number at the input window to the finished p]le.
the line pointer to a particular line on' the program.

a partictlar program to zhe program space.
a pr!dte pointer to a pérticular zane o

a numb&r in a particular memory space.

number In line at the input window.

adnumber on the output screen.

a program into the program space.

a mesbage (such as OUT OF DATA) on output screen.
a l.on the outpu% screen

the contents of a partlcular memory space

e output screen.

Destroy *a particular program' that Is in the program space.

Destroy a particular pr%gram that Is in

the file.

[

7, '

Apply a parllculgr logical operation to numbers in memory.
Apply a particular operation to numbers in program.
. . .

Apply a particular arithmetic operation to numbers ih memory.

Apply a particular arithmetic operation to numbérs in program.
+ Execute next statement entered on keyboard.

Execute next statement pointed to by line pointer.

. .
/ .

Do not execute next statement pointed to by line pointer.
-\ . ‘

.X

»
\ : ’

§ -

e A

ERIC

I o,

?_res(alemen_g

READ address

(Single Address READ

»

DATA "i“ﬂﬁi_'
(Single Datum
DATA)

[N

PRINT addreys
(S!ngle Address
PRINI)

END

Lti address - tber FIND

(Comnter Set
LET)

.

N
Lo bt

/

?

Operat jon

| S)

FIND
DEC I1DE
CREATE

"oaLdu

[

i

MOVE
FiND
DESTROY
CREATE
MoVt
ALLOW

FIN
FIND
CREATE
MOVE
ALLOW,

FIND
CREATE
MOVE
ALLOW

CHEATE
ALLOW

.

FIND ’
DESTROY
CREATE
MOVE
ALLOW

Transactions inyolved in Selected Prestatements

Object

~

Number
Number

Words
Coumand
Number
Number
Nusnber.
Nuber

Line pyinter
Comsnand

+ Number

Place-in-~line
Number

Line Pointer
Command

Number
Number

Line Pointer
Comuam!

Word (READY)

Comnl

Number
Number
Number
Nunber
tine Pointer
Command

«

X,

- Table 3

’
Location
~oca’ on

fnput Stack
Input Stack
Output Screen
Keyboard
Input Stock.
Hemury
Hemory
Mewory
Proyram
Program i

If more
datae

Prpgram
Input Stocl
tnput Stock
Program
Program

Hemor y

Output Sc reen
Program

Progr am

Output Screen
Keyboard

. Progrem ?
Memoi Y
Hemor y '
Memor y . i
Program
Program

English Translation

Find the next number waiting at the input stack.
If there are no nimbers in the lnput stack,

1600 moe print vyt OF DATA" on screcn,
data

and walt for a'new command from the keybeard. -

Otherwise, move the number at the input window to the finished pile.
Find the number in the memary space indicated on the READ statenent .-
Erase that number from the meMOry space.

Write the new nuaber jnto Lhe menory space,
. 6o on to the next statement , °
and do what it says. - ’ !

-

Find the nuiber indicated on the pATA statement, . B
Find the end of the line at the inpht window. |
Put the plmber at the end of the |ine at the Input window. ‘

Go on to the next su?hm,nl.\
and do what if says.

Find the number in the wemory address indicated.
Write that numter on the next avgilable space on the output screen. .
G0 on to the next statement, .

and do what it says. <

\ '

Write “READY' on Lhe outbut gcreen.
Walt far a new command from the keyboard.

Find the number Indicated on che right of lhsaQu/als-
Find the number in the memory space indicaled on the left of the equals.
Erase the number in (hat memory space.)
Write the new rmmber In that memoOry space., -
Go on to the next statement,

and do what it says.

-, L -
, . ' TR § . . .
. , . * 1
. A~ M) .' ' . <
: ' . \ ™
. [N ~
e Co .
N] : N . - *
L)
rT—'T-'F—'"—'
. . \ t
. \ '2
. . \ -
. . Table 3 (Continued) . '
Prestatement Qgera!lon Qyjec! Locatlon \ English Translation
a = —— e - T m——— — - "' -— - _— et e — o
. .
INPUT address CREATE * Questlon Hark Ontput Screen Write a """ on the output screen
{Single Number ALLOW . Command Output Screen Walt for a number to mimber®n be enterrd from the .
. InPyrT) e ~ keyhoard, fol lowed by depression of the RETURN key,
‘ * [N CREATE Number < Output Screen Write the entered number on the output screenmext to 7'
! FID_OP * Number Ontput Screen Find that nimber that was just entered.
FINp . Nmbgr', N Memory - | Find the number In the memory space Indicated in the Input statement.
- DESYROY Number ¢ . Memory Erase the number in that memory spare.. .
. - CREATE Numl’)er . Hemnry Write In the new number. . . '
MOVE L llpe Pointer Pr()gram Go on to the next statement, >
. ALLOW Command Program and do what It says.)
GO TO tlne . FIND ‘¢ Lline Program Find the }line on the program indicated in the GO 10 statement .
i o, | MOVE Line Polnter Program Start WO Ing on that statement, ignoring all others
: o ALLOW Command Program inbetwien, and do what It says. ' ’
’
1 N .
i adiress - ’.“‘L"k'.', . FIND '/ Number .. Proqram !Fln'd the number indlcated to the right of. the equals in the IF statenent,
- THEN I@ FIND Number Memory Find the number stored In the memory space indicated 1o the teft of the equals
(founter “Match IF) - DECIDE Numhers Program & Hemory” |f .the numbers match, *
. P FIND Line Programy o ond " find the line that has the number indicated after THEN, \
- ' . MOVE Line Polinter * Program sa!?wn:ﬂ‘ and start working on that statement, Ignoring all
3 : ALLOW * Command Program and do what It says. :
MovE Line Polinter Program Otherwise, go on to the next statement under thls If statement,
X]H’condl!lon .
. ALLov + Command Program)’ o and do what It says. .
¢ , . satisfied
NEW FINDI ALl Lines « Program Find the program fhiat Is now In the computer. .
. ' DESTROY ALY Lines - Program Erase that program. ! , ‘
/. . "ALLOW Cowmands Keyboard Walt for program to be typed In on keyboard.
: . CREATE Lines Program Copy each line of the program In the space inside the .
' CREATE Lines Screen computer, and on the screen, \
* Allow 4, - Command Keyboard Walt fqr an operating command. *
) - #
RUN . FIND Top Ulne, Program Find the'first line of the program In the computer)
¢ MOVE. Pointer Program . Move the polnter arrow to thls lline
ALLOVW Command , Piogram Execute this statement, and work dawn fxom there.
stofP DISALLOW Conmand Program Do not exscute the next statement In the program.
fontrol/C ALLOV Command ™~ Keybbard Walt for an operating command from the keyboard. -
A} . “ *
/7 N ¢/ '
~] e ." ‘.‘):]
. 4 ‘e
. . .
» . . ‘ N Y . .
Q 5 - . : (- . s
ERIC: <t - - T
) > » :)

[V

Prestatements Involvad In Selected Statements

-t

hi
\' ’

f Type of
Statement Prestatement
LET Counter Set to Number
LET Counter Sei to Address
LET Arithmetic
LET Formula

. T
LET Mixed Formula
LET ‘Increment/Decremeht
PRTNT Single Message

_PRINT ° Single Address g
PRINT Multiple Address
PBINT Line Space
I

Table &.

Format of

Prestatement

————

. LET addrgss = number.

.

N . : .

h g
V4

LET address = address

LET Eddress

L2
=

number operator number

LET addrés's

i

address operator address

LET address

address operation numbet

LET -address

same T -
‘address operation number

PRINT “message“
PRINT address ., '

mmtnd——

PRINT address list

PRINT (blank

)

[

e

)y~ °

(W)

* Prestatement

LET X = 2%4

PRINT 55"

LET X = 2

LET X.= ¥

,
’

LET X wyY#Z

LET X & Y#be

LET X = X+1

PRINT A1 .
PRINT Al,A2,A3 N

PRINT ¢

& L 3 N -
L s S }
s t
v O / .
2 . Table 5 .
~ a4 L - / . : o
Do I Some Mandatory Chunkg \
N R . + . e
e - . .. L . *) 7
‘ I ¥ . ¢

. ., : Al . . . / .
REAQ Al . /\
: . DATAS .o :
/’. - ’ : - .
° Program=END Chunk/ -0 R

. \ Rule: ,!Vevry\p‘rjgram should have an END stat&ment‘. . h

xample: - . S
\\ 0 . Program \ e
END & . L .
FOR-NEXT Chunk ' o .
’ Rule: Every FOR\requires a NEXT somewhere beneath it, and ewery NEXT
. ~ requires a correwding FOR somewhere above it. --
-" <, .. . s
Example: . . ’ \ . - .
FOR X = | to 5 STEP 2 1}
P—
© . NEXT ! g
) . T .o ,
. . L)

& . tPyline Chunk .

r - ' ' .
. ¢ Rule: Every IF'statement requjres that there be a line on the program
N < : . 4
* corresponding to the number after them, | "
[-~ - . ‘ 4 4 \
,/1/ Example:) . - /‘1 .
: ~ T 10 IF Xm2 THEN 50 - g ' -
- - . ' 'g
' - :' v - -
. - 50 (Must have seme statement) < 1
" . - \,
- ' ' :
r o & * ’ *‘
’ - ﬂ.‘\ N ’ * Y rae - 7 .
N ’ - ’ 2 ' . -
“\” &
T N < M . i N ”. ! [[y

Repeat READ Loop

READ
DATA

(more statements sughy as
LET or IF or PRINT)
. N~

G0 TO (iTne with READ)

v

END

i/

Branch Loop

O
READ
_DATA

3

IF-THEN (Branch 2)

(statements for Branch |
syth as LET and PRINT)
g

GO TO (line with READ)

(statements for Branch 2
such as LET and PRINT)

GO TO {line with READ)

Table 6 .

Some Basic Non-Mandatory

READ X
DATA 6,7, 8, 9, 10°

°

LET Y = 612
PRINGX, ¥

460 T0 10

.READ X
DATA 2, 99, 6, 32, 4

\F X>3b THEN 60

PRINT X

GO TO 10

LET X = X/2
PRINT X

GO TO 10
END

Chunks for Loops

*

The INITIAL CONDITION is thft numbers are wai{ing at
the input window and one is read in.

?XIT CONDYTION ¥s that there are no more numbers ‘at
e input window. If the computer tries to read but
there ‘are no more numbers left it will end the program
and print OUT OF DATA. : .

v
The BODY OF THE LOOP.consists of a series of statements
such as LET or IF or PRINT which operate on the number

that is read In. ; .
. “x

. The RESET statement sends the pointer arrow back to the

original state so the next number will be processed in
the same loop.)

r“\\.

. N\ , '
The INITIAL CONDITION is that numbers are waiting at
the input window and one is read in. X

A [
The DECISION CONDITION is whether the number meets some
some criteria. 1f so, the pointer shifts to Branch 2;
if not, it&ioes on with Branch 1. '

The BODY OF)YHE LOOP has two parts: the body of ‘the loop
for Branch T“and the body of the loop for Branch 2.

The RESET sends the pblnter grrow\back to the same point
in the program for bpth branches. ~

-
-

L]

-~

"Hait for a Data Nu .
READ
. DATA

7

1F-THEN (exit line ~ ,:

" with END) .

(nore statements)

GO TO (line with READ) "

(more s ta[emefts)

A
i

- Wait for)a Counter

] ’ \ ;
: \ -
«“et C=0

-

IF C= ' THEN
(exit line such as END)

*n

(mure stdtements)

LET C = C+)
GO TO (line with IF) *

' - o ‘I
s .

50

60

20

30

40 -

50
60

J0
80

30

READ X

DATA 5, 12, 72, 6& -

IF X<0 THEN 60

4

¥

" PRINT X /

b
G0 TO 10

END

LET C = |

IF € =

-

READ X
DATA 5, 20, 23, 6,7, 10
PRINT X

LET C = C+)
GO to 30

END

5 THEN 60 !

.
+ 1 ‘

Table 6 (continued)

L]

The INITIAL CONDITION is that nunbers are waliting
at the Input window, and one is read In

The EXIT CONDITION is that if a certain number
(e.g. a negative number) Is read in, then the pointer
arros will shift out of the loop.

The BODY OF THE LOOP consists d{ one or more statements g
after the EXIT decision but before the RESET

The RESET puts the pointer arrow back to READ and
ailows another cycle through the loop

. ' N ,
“The INITIAL CONDITION s that the counter is set to
zero or one {(or some other value) .

The EXlT CONDITION is that if the counter meets a
certain criteria the pointer arrow will shlft down
out of the loop

>

The BODY OF THE LOOP contains statements such as LET
. and PRINT .

The RESET involves incrementing the counter and shifting . ,
back to the top of the loop 37 ‘
i

* Table 7

Higher Order CHunks

\ . + I3
READ-DATA - Operation Chain = PRINT - END

¢

Rules:

P

When a member is read it is usually either printed, or it is

operated on with ¢he result printed.
before the program ends.

Something is usually printed

L4
’

Examples: 1. READ X - ‘
) 2. DATA & ’
~
¢ 7 . -
i’ 3. LET X=X ¢+ 2
) b, IF X > &4 THEN 60 7 . ,
) - lt‘-
5. PRINT X, ..
. . -~
6. END "
M L
‘ ? Y h i’ \
- \) ’
A}
» 'lI .
-) B E . L]
» . i a
. . * ¥ N
{ . , *
r 1,
I N N -
- . ? . b
\-.‘ M , ‘.’-‘ hd . !
e . . R ‘ .
P 32 .
» ' k]
£ ‘\ ‘ hd
/ Vi P o L

Table 8, ')

L4

_Two Approaches to Teaching the Relationship

- Between a Program.and It's Output

-

R

Traditional Approach

’/}\._

LIST OF - » OUTPUT

STATEMENTS °

Transactionhal Approach

LIST OF . TRANSACTIONS

Y 4
. ﬁ .
/ PRESTATEMENTS FOR EACH

.
. 1

LY

15T OF ~ OUTPUT

STATE’.’ENTS ' LIST OF ~ CHUNKS OF ' / :
\ : iy

PRESTATEMENTS , RESTATEMENTS

f . .
>, . .) N
4 x‘# IR] ® 4 . .
- v Y

e 3
- . . ~ -

TECHN I CAL\REPORT SERIES IN LEARNING AND COGNITION : -
f . Report No. uthors and Title : B \ .
7 s * '
. 18-1 Peper, ;?\)\E::d Mayer, R. E. Note-taking as a Generative Actnvtty. ' .
. . Journal of cationat- Psychology, 1978, 70, S14-522.)
./ . ‘ \ “ 4 ’
‘ 78-2 . ge, B. 'leferent Recall Protocols for
Advance Organizers. (Journal of T .
1980, 72, 209-225.) ~
‘ 79<} Héyer, R. E. \?bhqi:te f Reseatch on Advance\Organizers: o
(Instructional Scieqce,f 19 8, 133-167) ..
/ ¥9-2 Mayer, R. E. Analysis of a Simple Computer Programm|ng Language: '
o Transactions, Prestatemen and Ch (Communications of the . -
ACM, 1979, 22 538 -593.) N
79-3 Mayer, R. E. Elaboration techniqu echnical Text: An
Experimental Test of the Learning“$trateg Hypothesns (Journal
‘ of Educational Psychology, 1980, 72, in press. Y) '
) 80-1 - Mayer, R. E. Cognitive Psychology and. Mathematical Problem
\ Solving. (Proceedings of the bth International Congress .on
Hathematlcal ’pucatlon) 1980)
4 . .
© 80-2 Mayer, R. E. D[fferent Solution Arocedures for Algebra Word
. " and Equation Problems. / -
< .
—_ 80-3 - tﬁyen;,ﬂz E“"SEﬁ’aas fjk Algebra Stor Problems BT
L] ? - ‘
80-4 ,:prer,lR. E. ¢ Bayman, P. Analyéfs of Users' Intuitidns About
~ .~ /7 the Opération of Electronic Calculators... . _ i
/ X ' ’ |
» 80%5 Mayer, R. E. Recall of Algebra Story Problems. - ‘
80-6 BFomagé, B. K. § Mayer, R, E. Aspécts of the Structure of - ‘
Memory for Technical Text that Affect Problem Solving quformance.
80-7 Klatzky, R. L. and Martin, G. L. Familiarity and Priming Effects .
. ng;icture Processing. X -
81-1 - Mayer, R, E. Coﬁt}ibutions of Cognitive Science and Related

Research on Learning to the Design of Computer Literacy Curricula.’

81-2 Mayer, R, E. Psychology of Computing Programming for Nocices:

81-3 Mayer, R, E, Structural Analysis of Science Prose: C(an Ve
¥ Inctease Problem Solving Performance

: 81-4 Mayer, R, E. . What Have We Leéarned About Increasing the Mean!ngful- \
" ness of Scnence Prose? ’ - ~

hd <

e)

