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ABSTRACT

The Structure of Social Relationships: Cross-Classifications

of. Mobility, Kinship, and Friendship

The paper describes a multiplicative (Toglinear) model for square tables

(or other cross-classifications) which is helpful in locating cells where

counts are relatively dense or sparse. This specification eliminates the

confounding of prevalence and interaction effects, which has plagued other

schemes for interpreting such tables. The model yields a parsimonious set

of parameters which describe the table, and goodness of fit can be assessed

with standard inferential procedures. A multiplicative specification which

fits a particular cross-classification may be obtained in any of several ways.

For example, one may begin with a complete or partial theory about the cross-

classification, or one may begin without a theory. By examining residuals

fro, it under a given model,4t is possible to improve the specification

in successive rounds of estimation. The counts may be smoothed or aggregated

* to minimize the chances of fitting and interpreting trivial or unreliable

fluctuations in them. Maximum-likelihood estimation is emphasized, but

diagnostic.information may be obtained using computationally simpler algorithms.

The model (and associated inferential methods) can also be used in the com-

parison of two or more classifications. The exposition is illustrated using

data on the occupational mobility of Ame'ican men, on the educational attain-

ments of Wisconsin sibling-pairs, and on the occupations of male Detroit

friendship-pairs.



lne general problem may be stated as follows: Having given the number

of instances respectively in which things are both thus and so, in they are

thus but not so- in which they are so but not thus, and in which they are

neither thus nor so, it is required to eliminate the general quantitative

relativity inhering in the mere thingness of the things, e,nd to determine the

special quantitative relativity subsisting between the thusness and the soness

of the things.

Doolittle (1888) as qLoted by
Goodman old Kruskal (1959:131)



Social scientists often analyze square tables of counts, where persons,

relationships, qr other subjects of interest have been classified twice

using the same set of categories. For example, in studies of social mobility

persons are often classified by their own occupation (or educatton or social

class) and by the occupation (or education or social class) of their fathers.

Marriages may be classified by the occupation,. education, ethnicity, or reli-

gion of each mate. Persons may be cross-classified by place of birth and

place of residence, by political party preferenct before and after an elec-

tore? campaign, and so on.

While these sqUare tables of counts may be interpreted and analyzed in

many ways, one plausible and traditional interpretation says that each

observed count has two components. First, there are effects of the prevalence

of observations within each category of the classifications taken singly.

kr example, in a classification of American men by their own and by their

fathers' Sobs, one expects to find aeny blue-collar sons with blue-collir

fathers, simply because many men work at blue-collar Jobs. Second, there

are greater or lesser tendencies for categories to interact, that is, to

occur jointly. To continue the example, one expects to find many men in the

same occupations astheir fathers and few in vastly dissimilar occupations.

The verbal distinction between prevalence and interaction is easy to

maintain, but for many years a sound statistical representation of it eluded

the efforts of social scientists. The history of this pursuit and the common

faults of proposed solutions have been reviewed by Hauser (1978; also, see

Featherman and Hauser 1978: Ch. 4). In the next section of this paper I

describe a class of multiplicative (Ispnear) models whose parametersocorre-

spond exactly to the intuitive concepts of prevalence and interaction effects.'

7

Empirically, the correspondence between parameters and concepts only becomes

useful when a model of the desired form fits the data. Since one always

assumes the existence of prevalence effects for categories of the classifi-

catory variables, the empirical problem is to specify the form of the inter-

actions. Sometimes, sociological Ueory will provide sufficient guidance

Io model specification (Goldthorpe and Payne 1978, Hope 1980), but,often

theory will provide incorrect, incomplete, or contradictory directions. For

these reasons I describe methods for assessing goodness of fit and for improv-

ing specification through the examination of residulls. After illustrating

these ideas in an exploratory analysis of an American father-son occupational

mobility table, I show how several conventional statistical analyses of the

same table lead to misleading conclusions. Users of empirically based

search strategies run the risk of overfitting data; that is, one loses

parsimony and reliability by seeking to fit every feature of a sample of

observations. In order to minimize such misuses of empirically guided search

methods, I have elsewhere described methods of aggregating and smoothing data

prior to model selection (Hauser : 79). In the next section of the paper I

give two are empirical illustrations of the model: an analysis of similarity

in the educational attainments of Wisconsin sibling pairs and an analysis of

similarity in the occupational positions held by Detroit men and their friends.

The traditional distinction between prevalence and interaction effects is

motivated in part by an interest in comparing these components across time

and place or between segments of a society. In the last section of the paper

I use American mobility data for several cohorts to show how models of the

present form may be used to measure and to interpret differences among

populatim.

8



A Multiplicative Model of the Mobility Table

My model is a special case of Goodman's (1972c) general multiplicative

iodel _RI. cross-classified data, but I take a slightly different approach

from him, in developing models of the mobility table. First, I limit my

attentjon to the class of models in which there is only one interaction

parameter for each cell in the classification. Second, 1 domed assume that

the categories are ordered. Third, I emphasize the use of exploratory methods

in model specification. Elsewhere, these models and methods have been applied

in analyses of the 1949 British' mobility table (Hauser 1978), of several

American mobility tables (Featherman and Hauser 1978: Ch. 4), of Rogoff's

(1953) indianapoils mobility tables (Baron 1977, 1980), o' a 1972 British

mobility table (Goldthorpe and Payne 1980), and of an American ethnic inter-

marriage table (Shavit 1978).

let xij be the observed frequency'in the 13th cell of a classification

. where i = 1,...,1 and 3 = 1,...,J. In the resent context the same categories

will appear in the same order in rows and'columns, and the table will be

square with 1 = J. For k = 1,...,K, let'llk be a mutually exclusive and

exhaustthe partition of the pairs (I,j) in which

ilxiji mij "eh.) ( I )

where 613 a 6k for (i,j)c Hk, subject to the normalization nni = 144 = on61, a 1.
I j ij

The normalization of parameters is a matter of convenience, and we choose the,

value of a so it will hold. Note that in contrast to the conventional

' structural mode' for counted data ($ishop, flocberg and Holland 1975: Ch. 2),

the Interaction effects in rquation 1 are not constrained within rows or

columns even though the marginal frequencies are fitted exactly.2

9
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The model says tbeexpected frequencies are a product of an overall

effect (a), a row effect (0 ) a column effect (v ), and an interaction effect

(6
ij

). The row and column parameters correspond to the concept of prevalence.,.

For example, in an occupational - mobility table theueflect oacupaOlonal

supply and demand, demographic replacement processes, and past and present

technologies and economic conditions. The cells (I, j) are assigned to K

mutually exclusive and exhaustive subsets, and each of those sets shares a

common interaction parameter, 6k. lids, aside from total, row, and colimin

effects, each expected frequency is determined by only one interaction para.. IF

meter, which reflects the density of observations in that cell 'relative to

that in other cells in the table. That :s, the interaction parameters of

the model correspond directly to the concept of the joint density of observa-

tions (White 1963:26), and they may be interpreted as indexes of the so(ial

distance between categories of the row and cclumn classifications (compare

Rogoff 1953:31-32).

While my model is a special case of Goodman's (1972c, sec. 3) general

multiplicative 'model, uniAte several of the models which Goodman (Table V)

applied to the British (and Danish) mobility tables, my model does not assume

ordinal measurement of occupations.
3

Of course, the assumption of ordinality

may help in interpreting results, or'empirical findings may be used to explore

the metric properties of a classification. The hierarchical dimension is

strong in most occupational classifications, and the present applications

are artifiCial in ignoring that.

For the model to be informative, the distribution of levels across the

cells of the table must form a meaningful pattern, and °twin which tlu.

parameters are identified (Mason, Mason, Winsborough and Poole 1973,, Haberman

1974:217). Further, the number of levels (K) should be, substantially less V)
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than the number of cells in the table. These latter properties are partly

matters of iubstantive and statistical interpretation and Judgment, rather

than characteristics of the general model or of.the I have found it .

difficult to interpret models where the number of levels is much greater

than the niaid)er of categories recognized in the occupational classification.

It may be helpful'to present the model of equation 1 6 more than qne

ways There is a pronouncedr'r4ghtward skew in multiplicative effects because

decremental effects are bounded between 0 and 1, while Incremental effects

are unbounded. It is, for this reason,.useful to take logs of frequencies

ii
and parameters and to write the-model in additive form; then incremental and

decremental effects may each range from zero to infinity in absolute value.

Let u = log n, um) . log Bp u2(j) = logy), u.2(1j) log 6ij, and

u3(k) = log 6k. The model is

* * *
log'mo = u um) u2(j) u12(1.0 (2)

where u
12(.ij)

u3(k) for (1, j) c H
k'

and Hk is defined as before.
4

Here,

* * *

the normalization of parameters is YU.11"
./

. E u2(j) .

iu

u,,e,'1 . O.

A slight variation of equation 1, which I present in multiplicative form,

Is more suggestive of the way in which I have manipulated empirical data for

purposes of estime,ion and testing. With Hk defined is before, let

t .

milk ' (10036k for (1. J) r Hk (3)

and

milk 0 foo: (1. I Hk. (4)

subject to the normalization nel - 144 . ihSk
k

1, where nk js the number of

j k

ells assigned to the k
th

level. This version of the model suggests a

Airinsional representation of the original 2;dimensional table in which'

J(K-1) °Oahe interior cells contain structural zeros, and the original 1J

requencies are fitted by'row (Be), column (1j) and,level (6k) parameters,

s under a model of quasi-independence (Goodman 1972c:689; Bishop, Fienberg

nd Holland 1975:225-226).

To estimate and test models of the present form I have represented cross-

la4ifications as incomplete multiwaf arrays, and 1 have used Fay and

oodman's (1973) computer Adgram, ECTA, to estimate frequencies by iterative

escaling and 6 run tests of goodness Lf fit (and other hypotheses). Under

he usual sampling assumptions, e.g., that the data were obtained by iadepen-

ent Poisson or simpleimultinomial sampling, maximum likelihood estimates are

btained inithis way (Goodman 1972c:663-667; Bishop, Fienberg and FAland 1975:.

06-298),. The likelihood ratio test statistic (G2) computed by the program

s asymptotically distributed as X
2
with degrees (if freedom equal to IJ, the

umber-of cells in the array which are not structural zeros, less the number

f independent parameters which have been estimated. Often this will be IJ - 1

(1-1) - (J-1) - (K-1) = (1-1) (J-1) - (K-1), but it may he greater, depend-

ng on the arrangement of levels within the ori9ina1.2-way array (Bishop,

ienbury and Rutland 1915: Ch 5, .p. 227; Wand and Fortier 1978). Great

are should be used in computing degrees of freedom when the design specifies

eparabie subtable; (Bishop, Fienberg and Holland 1975: Ch. 5).

ECM does not estimate parameters for models of incomplete tables. I

save estimated the (additive) parameters by regressing logs of estimated

requencies on dummy-variable representations of the rows, columns, and levels

4 the design. That is, i created a dum=my variable for each row (but one),

or each column (but one), and for each level (but one); then I regressed

12



logs of estimated frequencies on these three sets of variables. By construc-

. Con this regression completely accounted for the estimated ireouencies. I

used an auxiliary program to renormalize the parameter estimates as deviations

from the grand mean and to compute and display residuals. Using other

packaged programs for the analysis of categorical data, one can estimate the

models and obtain parameter estimates and measures of fit in a single pass

by the methods of maximum likelihood or weighted least-squares (Evers and

Namboodiri 1919; Goldthorpe and Payne 1980).

1111 presenting goodness of fit tests and comparing alternative models.

it is convenient to ese a single letter to denote each variaule. for

example, in the next section I let P . father's occupation, S = son's occe-

pation. and H = the levels of interaction to which the several cel!s in

the mobility table are assigned in the model. Following the conventional

notation, in which the highest ortior marginal distributions fitted under a

given model are listed in a series of parentheses, I denote the model by

(P)(S)(H). Written in this form it is clear that the model is one of stat-

istical independence, conditional on the assignment of cells in the P by S

41
table td levels of H. 'Under the modet the association between P and S is

spurious; no association (quasi-independence) between P and S occurs within

levels of H (Goodman 1072c:689). One could think of the scher- as a la/ent

factor or latent structure model in which the levels of H are latent classes

(Goodman 1974:1231). However, the assignment of cells and hence, of observa-

tions to levels of H, is strictly deterministic, so the term "manifest

class" might be more fitting.

Mobility to First Jobs of American Men

Table 1 gives frequencies in a classification of son's first, full-time

civilian occupation by father's (or other family head's) occupation at son's

tt

H

16th birthday among American e'er, who were aged 20 to 64 in 1973 and were not

currently enrolled in school. The data usere obtained in the Occupational

Changes in a Generation (OCG) v,pplement to the March 1973 Current Popula-

tion Survey (Featherman and Hauser 1975, 1978).
5

Table 2 is a convenient

TABLE 1 ABOUT HERE

display of the final model for the data of-Table 1. Each numeric entry in

the body of the tab'e gives the level of Hk to which the corresponding entry

in the frequency tabla 4:.s assigned; one may think of them as subscripts of

dummy variables pertaining to the density of interaction in the several

regions of the table. Formally, the entries are merely labels, but for

co9:enience in interpretation the numeric values are inverse to the estimated

density of mobility or immobility in the cells to which they refer. I offer

no a priori rationale for the specification of interaction effects in Table

2; it is the outcome of a search procedure that I describe later.

TABit-2-A060-htid

On this understanding the model says that, aside from conditions of

supply and demand, immobility is highest in farm occupations (level 1) and

next highest in the upper nonmanual category (level 2). If one takes the

occupation groups as ranked from high to low in the order listed, one may

say there are zones of high and almost uniform density bordering the peaks

at either end of the stttus distribution. There is one zone of high density

that includes upward or downwar ovements oetween the two nonmanual groups

and immobility in the lower nonmanual group. Mobility from lower to upper

nonmanual occupations (level 3) is more likely than the opposite movement,

and the latter is as likely as stability in the lower nonmanual category I 4



(level 4). Moreover, the densities of immobility in the lower nonmanual

category and of downward mobility to it are identical to those in the second

zone of relatively high density, which occurs near the lower end of the

occupational hierarchy. The second zone includes movements from the farm

to the lowe, manual group and back as well as immobility in the lower manual

group. last, there is a broad zone of relatively low density (level 5) that

includes immobility in the upper manual category, upward and downward mobility

within the manual stratum, mobility between upper manual and farm e. ups

and all movements between nonmanual and either manual or farm groups.

The design says that an upper manual worker's son is equally likely to be

immobile or to move to the bottom or top of the occupational hierarchy;

obversely, it says that an upper manual worker is equally likely to have been

recruited from any location in the occupational hierarchy, including his own.

It is worth noting that four of the five interaction levels recognized

in the model occur along the main diagonal, and two of these (levels 4 and 5)

Are assigned both to diagonal and to off-diagonal cells. Thus, immobility

varies among occupational strata, and it is in some cases less likely than

mobility. Also, 'with a single exception the '2sign is symmetric. That is,

net of row and column effects upward mobility is more prevalent than downward

mobility within the nonmanual group. This asymmetry in the design is striking

because ii suggests the power if upper white collar families to block at

least ore type of status loss and because it is the only asymmetry in the

design. lot example, Blau and Duncan (1947:58-67) suggest that there are

semi-permeable class boundaries separating white collar, blue collar, and

'farm occupations, which permit upward mobility but inhibit downward' mobility.

The only asymmetry in the present design occurs within one of the broad

classes delineated by Blau and Duncan!

15

10

Table 3 gives the row, columns and interaction effects estimated in the

1973 OCG data under he model of Table 2 for intergenerational mobility to

son's first job. The estimates are expressed in additive form; that is, they

are effects on logs of frequencies under the model of equation 2. The row

and column effects clearly show an intergenerational shift out of farming

and into white collar or lower blue cellar occupations. These reflect temporal

shifts in the distribution of the labor force across occupations, differential

fertility, and life-cycle differences in occupational positions. The inter-

action effects show very large differences in mobility and immobility across

the several cells of the classification, and these differences closely follow

my interpretation of the display in Table 2. Differences between interaction

effects may readily be interpreted as differences in the logs of the estimated

frequencies, net of row and column effects.. For example, the estimates say

that the immobility in farm occupations (at level 1) is 3.40 = 3.044 - ( -.356)

greater (in the metric of logged frequencies) than the estimated mobility or

immobility in cells assigned to interaction level 5 in Table 2. In multi-

plicative terms, immobility in farm occupations iS e3'4° - 29.96 time greater

than mobility or immobility at level 5. It would be incorrect to attach too

much importance to the signs of the interaction effects reported in Table 3,

for they simply reflect our normalization rule that interaction effects sum

to zero (in the log-frequency metric) across the cells of the table. For

example, while the effects of levels 4 and 5 each reflect relatively low

densities, it is not clear that either effect indicates "status disinheritance"

in the diagonal cells to which it pertains (compare Goodman 1969a. 1969b).

TAillfJ05-0 ORE

.n any event the effects do show a sharp density gradient across interaction

levels. The smallest difference, between levels 3 and 4, indins a relative
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density e'
549 .243 = e 3°6 = 1.36 times as great at leve1.3 than at level

4. immobility in farm occupations snd in upper nonmanual occupations is

quite distinct from densities at other levels, but also immobility in the

farm occupations is e
3.044 - 1.234 e1.810 6.11 times as great as in the

upper nonmanual occupations.

Overall, the design resembles a valley in which two broad plains are

joined by a narrow strip of land between great peaks. The contours of the

peaks differ in that the one forming one side of the valley is both taller

and more nearly symmetric than that forming the other side.' Figure 1 is a

pictorial representation of the model. whose dimensions are based on my esti-

mates of the row, column, and interaction effects (in multiplicative form).

The base of the figure is a unit square; that is, 1 have renormalized the

(multiplicative) row-and column effects so the sum of each set is one.

Further, the total volume under the surface is one. Thus, length and breadth

can be read as probabilities, and height is proportionate to probability.

Variations in interaction effects (the vertical dimension) are far larger than

those in the horizoncal dimension. For this reason the vertical scale has

been compressed by a factor of 10, so vertical and horizontal distances are

not directly comparable.

FIGURE T ABOUT iltRE

Evaluating the Nude,

The model of Table 2 provides less than a complete descriptton of the

mobility data in Table 1. Under the model of statistical independence the

likelihood-ratio statistic is G
2 6167.7, which is asymptotically distributed

as X
2
with 16 degrees of freedom. With the model of Table 2 as null hypothesis

e= 66.5 with 12 degrees of freedom, since 4 degrees of freedom are used to

create the five categories of IL By the usual inferential standards the model

does not fit, for the probability associated with the test statistic is very

small. On the other hand the model does account for 98.9 percent of the

association in the data, that is, of the value of G
2
under independence.

Given the extraordinarily large 'sample size, small departures from frequencies

predicted by the model are likely to be statistically significant.

Exact tests of the difference between any two interaction parameters can

be carried out in a straightforward way. Modify the model to combine the two

groups to be contrasted in a single interaction level, and fit the revised

model. Since the revised model is a special case of (nested within) the initial

model, the difference between the likelihood-ratio x
2

statistics (G
2
) of the

two models will be distributed as x
2
with one degree of freedom. For example,

if I combine levels 1 and 2 of the present model, the revised Aodel yields

G
2

= 676.3 with 13 df. so I reject the hypothesis Ghat immobility is the

same in the farm and upper white collar categories with G
2

= 676.3 - 66.5 =

609.8 with 1 df.

By examining errors one can more fully evaluate the fit and perhaps see

how to improve the model. Table 4 displays a measure of lack of fit for each

cell of the mobility classification. It expresses errors as natural logs of

the ratios of observed frequencies to those estimated under the model:

40g(eij) = log (xij/mii) = log x1j log mij, (5)

where x
ij

is the observed frequency and m
ij

is the estimated frequency in the

ij
th

cell. As long as the errors are small, say, less than +.20, they can be

interpreted approximately as proportions. Thus, expressed in this way the

errors have a convenient interpretation, and positive and negative deviations

are expressed symmetrically in the metric of the (loglinear) model. for Pi
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example, the entry of .06 in the cell (3.1) says the observed mobility from

upper manual to upper nonmanual occupations is e°6 1.06 times the mobility

estimated under the model.
1

The entry of -.11 in the cell (2.3) says mobility

from lower nonmanual to upper manual occupations is e
.17

.84 times the

mobility estimated under the model, i.e., 16 percent less. As suggested by

these two examples, the approximation is better when the error is small.

TAII.14AtibUntkr

Under the model of Table 2 cells (1,1), (2,1), and (5,5) are fitted

exactly, each by its own parameter. The fourth level --cells (1,2). (2,2),

(4,4), (4,5), and (5,4)--is also fitted closely. The largest deviation is

the 4 percent underestimate of movement from lower manual to farm occupations.

Each other deviation at level 4 is less than one percent. The lack of fit

in the model occurs primarily at level 5 of the design. There is a positive

deviation of .10 in the one diagonal cell (3,3) assigned to level 5, so

immobility in the upper manual (skilled) occupations is not quite so low as

in some other cells, at the same level. At the same time the largest positive

error at level 5 is that for upward mobility from lower manual to lower noh-

manual occupations. The two largest negative errors at level 5 pertain to

the exchange between upper manual and lower nonmanual occupations (cells (3,2)

and (2,3)). Even relative to the low density (presumed by the model) through-

out level 5, there is a blockage to movement between the skilled and lower

white-ollar occupations. This is more striking because there is no similar

hindrance to exchange between the ski'led and upper white collar occupations

(cells (1,3) and (3,1)) or between the lower manual and lower nonmanual occu-

pations (cells (4,2) and (2,4)). From the entries in !able 4 one might argue

that the model and the fit could be improved 5y creating a sixth interaction

level to include cells (3,2) and (2,3) and, possibly, (1,5), which indicates

19

IA

a very low rate of mobility from upper nonmanual origins to first jobs in

farming.

The indexes of error in Table 4 are in a metric that facilitates intir-

pretation and comparison, but they take no account of Sampling variability,

which is inverse to expected frequency. Perhaps .the simplest way to take

account of sampling variability in the errors is to form the ratio

P 1_41,1 T MiiAZu

Mu
(6)

which is the square root of the component of the Pearson chi-square statistic

for each cell of the table. The z
ij

are (roughly) interpretable as unit

normal deviates.
8

Since there are several more cells in the table (25) than

degrees of freedom under the model (12), the expected value of z2 is con-

siderably less than unity. However, 1 have not made a correction for that

here (see Bishop, Fienberg and Holland 1874:135-141).

Table 5 displays standardized errors from the model of Table 2. Again,

one is impressed with the close fit at level 4 and the heterogeneity at level

5 of,the modrl. The interpretation of these errors must be tempered by the

results in Table 4, for the standardized errors are not in the metric of the

model. Taken in conjunction with earlier results, Table 5 also suggests a

respecification of the model in which as a first step cells (2,3), (3,2) and

possibly other negative outliers would be assigned to a separate level.

ilohever, because the sample is so large, 1 have not carried the analysis of

Table i beyond the model of Table 2.

tAllit:S ltitlf-Olit
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Mobiitty Ratios

One other index is particularly useful in evaluating the specification

of interaction effects. From equation I, observed frequencies may be expressed

in terms of estimated parameters and errors:

. .

xij n aiyhjeij . (7)

Divide both sides of equation 7 by the first three terms on the right-hand side

to obtain

Re
ij

f ijefj .

iJ

(8)

I call R the new mobility ratio, or, simply, the mobility ratio. In the

case of diagonal cells Rij is equivalent to the new immobility ratio proposed

by Goodman (1969a, 1969b, 1972c; alsot see Pullum 1975:74), but I suggest

the ratio be computed for all cells of the table as an aid !n the evaluation

of model design. If the model is specified correctly, the estimated inter-

.

actions (6
IJ

) will be more useful in interpretation than the RiJ, for the

latter'iall confound interaction effects with sampling errors (e
ij

). On the

other hand, when the model is not correctly specified, the errors (eij) will

reflect specification error as well as sampling variability. For this reason

0

the R
ij

can be useful in revising 41,00401 which does not fit the data.

To illustrate the use o: theRij, fable 6 gives these indexes for the

counts of mobility to first jobs. Obviously, the pattern of the eij conforms

to nue earlier description of the design. Moreover, as may not have been

obvbn.: from the 6ij (Table 3) and the eii (Table 4) taken separately, the

fit is gold enough so there is no overlap it interactions across levels

4.1. recognized In the design. For example, if immobility among skilled workers- -

in cell (3,3)--is high relative to mobility in other cel;s at level 5 in

1G

tAbit:fABOUTHERC

Table 2, the immobility in that category is still substantially less than

the immobility in any other occupation group. Again, level 5 appears to be

heterogeneous, but I have not carried the analysis of Table 1 beyond the

model of Table 2.

Conceptually, R
ij

is related to R
ij'

Rogoff's (1953) social distance

mobility ratio and Glass's (1954) index of association:

(9)

where N is the ium of observed counts, and xi and xj are, respectively,

th th
suns of counts in the i row and in the j column. Both R

ij
and R

ij
may be

interpreted as ratios of observed counts to those estimated from a scale

factor and row and column effects under 4 given statistical model (see lieuser

1978:9K-924). Indeed, R
ij

R
ij

in the special case of the model of simple

statistical independence, which specifies no interaction effects. in terms

of equation 1, R
ij

becomes I/
ij

when we specify 6
ij

1 for all i and J.

As a measure of interaction, Rij has several undesirable properties.

Although Rif was supposed to be independent of prevalence (row and column)

effects (Rogoff 1953:32), it varit nversely es the marginal proportions in

the I

th
row and j

th
column. the me um of Rij is the reciprocal of the

larger of the marginal proportions in the ith row and jth column. Also, the

set of R
ij

for a square table determines the row and column marginal distri-

butions. This renders R
ij

useless in comparing interaction effects across

tables with differing marginal distributions, for the multiple sets of R
ij

cannot take on, values corresponding to the hypothesis of no change. Further,

the itij cannot be symmetric across the main diagonal (itij Rji)--showing, 22,
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for exampte,lquel propensities toward upward an4 downward mobility'- unless

the observed counts are symmetric (xij = xj1). Thus, propensities toward

upward and downward mobility cannot appear to bit the-same unless the fre-

quencies of upward and downward mobility are the same, and, Consequently,

the two marginal distributions are the same (Blau and Duncan 1967:93-97,

Tyree 1973). These undesirable properties all arise because, when the model

of simple statistical independence does not fit the data, Rij confounds

prevalence effects (of rows and columns) with interaction effects (Goodman

1969b). That is, the important difference between Rij and Rij is that the

new mobility ratio is obtained from a model that fits the data,,,so row and

column effects are not confounded with relative densities (interactions) in

the interior of the table. For these reasons R
ij

does not have the undesir-

able properties of Rij. In general, (1) Rij is not bounded; (2) in a square

table the set of R
ij

do not determine the marginal frequencies (nor the _

amarginal effects); and (3) the set of Rj i can be symmetric, i.e., R;j

under any set of marginal frequencies (or effects) (compare Tyree 1973:

577 -580).

In this context it is instructive to show the relationship between the

parameters of the multiplicative model and the marginal frequencies of the

mobility table. The model fits the observed marginal frequency distributions,

that is, t o.. = xj and mid xi, se
1 1J

. , . .

L au i a gyjilli a 74$0ii = xj (10)

. .

t a iliyhj = a eityjaij = xi. (11)

In

Thus, the marginal frequency in a given column (or row) is the product of

the correspqnding column (or row) effect, a scale factor, and a weighted

sum of the row (or column) effects, where the weights are the interaction

effects for corresponding rows (or columns) within the given column (or row).

Similarly, from equations 7 and 8 we can write

rid e *aYOiRfj "t x,, g n Yji ij ij ji E i" (12)

and

E

xii = a 01E Yj61je1j a Olt viRij = xi: . (13)j

F.0 one may alternatively think of the nen. mobility ratios as weights in

the exoressions relating marginal frequencies to corresponding narginal

`effect. There are expressions in the old mobility ratios, flu, which

are formally similar to equations 12 and 13; however, those expressions can

be simplified to eliminate the Rii, while equations ;2 and 13 cannot be

simplified to eliminate the Rii. For example, from the definition of Rip

xij k xi.x.i Rii ,

io
ix,,

'. -2 / Xi
411

=xi
ij

(14)

(15)

for by definition E x, R N.
i "

Suppose it were possible to solve for the marginal effects by writing

linear equations in the Rij, so (following Blau and Duncan 1967:93 -94):

t
i
R
ij

= m for elf j

*

06)

and E 'r Rij = n for all f. (17)

Neer these conditions equations 12 and 13, respectively, can he rewritten as

23 24
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x
..1

u a yj

xi a Of n .

19

In

pattern of association in the mobility table for much the same reasons tha.

(18) Rio is defective. Further, by obtaining new mobility ratios (Rij) under

relatively simple models of quasi-independence (which are special cases of, ///

the model of equation 1), I can diagre the pattern of association witheut

positing a model for the full table. In some cases one can obtain sound

diagnostic information without extensive calculation.

Table 7 shows standard outflow ants inflow tables based on the data of

Table I. The 1973 OCG table of mobility to first jabs appears to re-

semble other mobility tables, such as the 1962 and 1973 OCG tables for

mobility to current jobs (Hauser ane Featherman 1976; U.S. Department of

Health, Fducation, and Welfare 1969). Ikee is evidence of status per-

sistence and self-recruitment; the latter is especially strong in the case of

farm occupations. There is also substantial short-distance mobility. last,

et--,t for the prevalence of lower manual first occupations--which is greater

than the prevalence of lower manual fathers' occupations--the flow of man-

power is primarily from lower to higher levels of the occupational hierarchy,

and there is a marked decline in the proportion of men with farm occupations

relative to the proportion with :arm origins.
9

(19)

That is, if the mobility ratios determine the marginal effects, then x is

just a scalar multiple of vj, and xl is just a scalar multiple of al, which

is to imply the model is indistinguishable from the Simple independence model

and Rij is indistinguishoUu from Rij. 110 in general-the model is not that

of simple independence; Rij is not equal to Rij; and the row and column para-

meters are not scalar multiples of the marginal frequencies. This says that

the row and column effects under the model are not generally determined by

the R
ij'

In summary, the ....- mobility ratios appear to have properties that

make them useful in model specification.

Mobiliti_Ratios and Other Measures of Interaction

Do the substantively novel features of ny interpretation of mobility

'to first jobs merely reflect peculiarities of the 1973 OCG data? Obversely,

are those features a consequence of a different way of looking at the data?

If the old mobility ratios (Rij)°provide misleading clues about the structure

of mobility tables, are there valid measures which are easier to obtain than

the new mobility ratios (Itij),?

In this section I attempt to answer these questions by subjecting the

1973 OCG data of Table 1 to a number of alternative analyses. In brief, the

answers are as follows. The 1973 OCG table of mobility to first jobs is

generally, stmilar to other mobility tables, and any novelty in my conclusions

arises from the:use of my structure) model. Moreover, I have directed

my criticisms of mobility indexes primarily at the old mobility ratio, Rij,

4):4 several other common measures of association also fail to elucidate the

Again, Table 5 may be helpful in evaluatingOther measures of association

when the latter are presented in multipl:cative form. One previously unmen-

tioned feature of the array of Rij is their high degree of symmetry across

the main diagonal (with the marked exception of the interchange between upper ,

and lower nonmanual occupations). 'his symmetry of upward and downward flows

is not apparent in the inflow and outflow tables, nor are many of the other

patterns of association in Table 6. One possible exception is lite relatively,'

high degree of immobility in the upper nonmanual and farm occupations. In
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any event I shall not pursue th2 comporisdn of Tables 6 and 7, for neither

the Inflow ner outflow tables are purported to free the pattern of associa-
g

tion from the influence of both marginal distributions.

Clid Nobility Ratios

-ratios -) fin the data of Table 1
1j

under the model of simple statistical independence. Clearly, one need not
A

resort to hypothetical data to show the differences between interpretations

based on thepld and new mobility_ ratios. The entries in Table 8 are similar

to these *thicken experienced student of mobility has encountered on many

occasions; for example, compare Pullum's (1915:3 -7) description of the 5 X 5

British mobility table. From the 'i,+, one would conclude (correctly') that

there is substantial immobility at both the top and bottom of the occupation

hierarchy, bbt not nearly as much immobility as is indicated by theRir The

It

ij,
also show status immobility it the three middle occupation groups, but

less In the lower manual than in the other two categories. In contrast the

R
lj

show aliery low level of immobility in the upper manual group, and they

show moderate and roughly equal levels of immobility in the lower nonmanual and

lower manual groups. Both sets of ratios show greater than expected inter-

change between the upper and lower nonmanual groups with the upward flow

exceeding the downward flow. The "iJ show asyemKtric flows between the lower

manual and farm groups, both of which are below expectations, but between these

same two tiroups the Rij show roughly equal flows which are larger than those

expected from row, column. and scale effects. With a single exception the

ij
decline regularly as one moves away from the main diagonal in any row or

column; but the R
ij

are low and fluclate irregularly outside the eight cells

in .the upper left and lower right corners of the table. Outside those same

corners four of the R
ij

(in cells (3,2), (3,3), (3,4), and (4,2)) show

27
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greater frequencies than expected, but none of tne Rij show greater fre-

quencies than expected. last, with a single exception the R
ij

are greater

In size in corresponding cells below than above the main diagonal, and this

suggests a preponderance of upward relative to downward mobility. At the

same time, tl_le_j_laseroughl4L.the saaw-stoe--in-eorresponding yet-ft-oho

and below the main diagonal with the exception of the one asymmetry in the

specificaticn of the model.

TAftrinilltiMitTrt

The relationship between the R
1j

and R*
ij

can be clarified by expressing

the former in terms of the latter. By definition

.x
ij
N

R
ij xixj

Under the model of equation 1 and from equations 7 and 8 1 write

(20)

Xij . a 0, yj Ric , (21)

. . . *

so N sEEx
1 j

ijil IJ

By substitution front equations 21, 22, iiP, and 13 1 rewrite equation

20 as

R
lj

(22)

*
(n 0

I

y i.)(m E ai yj R (z E Oi tj Rip
4

i r (23)

pe Ey R )(dy Ea. Rip (E y.j Ri )(tell)
J ij j 1 j i 1 ij

The double sum in the numerator of equation 23 is a scale factor which dees

not vary. with the indexes i and.j. Thus, the variable parts of the expression

say that Rij is related,tp Rij inversely as the product of weighted averages

of the column and of Vie row parameters, whose respective weights are the

28
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new mobility ratios in the ith row and the j
th

column. In general Rij will

be low, relative to Rir when the new mobility ratios in the it row and the

j
th

column are large, and Rij will be -high, relative to Rij, when the new

mobility ratios in the 1
th

row and the j
th

column are small. For example,

the relatively large value of R33, the old immobility ratio for upper non-

manual (skilled) occupations, Is explained by the very low levels of associa-

tion throughout the third row and the third column of the table (when that

association is indexed b) R
ij

). In general a given row and column need not

contain only high or only low Rif, and the relationship of Rij and Rij will

vary among cells in the mobi!ity classification.

Standardized Deviates

Are other expressions of residuals under the model of simple independence

more instructive with regard to the structure of association in the mobility

table? The upper panel of Table 9 shows standardized deviates under the model

of statistical independence (recall equation 6 and Table 5). in looking at

the standardized deviates we have left the (multiplicative) metric of the

model, That is, the standardized deviates are test statistics, and they
S.

reflect variations in the standard errors of deviations of observed from

expected frequencies across cells of the table, as well as the pattern of the

residuals themselves. Thus, we would expect the standardized deviates to be

More helpful to us in locating extreme outliers, as in cells (1,1) and (5,5),

than-in evaluating the pattern of association in the table. In any event

the pattern exhibited by the standardized deviates is rather close to that

of the old mobility ratios. Similar results would be obtained had we chosen

to express the residuals as components of the likelihood-ratio statistic (02)

gr as Freemen-Tukey deviates (Bishop, Fienberg and Holland 1975:136-137; but

see Larntz T978).

24
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Haberman (1973) has ,uggested a transformation of the standardized

ieviates, which is in our notation

zu
(24)

the adjusted-residual, dij, has better asymptotic distributional properties

than z
ij'

and Brown (1974) has shown that d
ij

is more effective than z
ij

in

identifying a small number of outliers. The adjusted standardized deviates

ire shown in the lower panel of Table 9. As one might expect the adjusted

ieviates are not more instructive with regard to the overall pattern of asso-

:iation than are the unadjusted deviates or the old mobility ratios. At the

;awe time they do clearly identify three large positive deviates (in cells

:1,1), (4,4), and (5,5)) whose elimination might elucidate the pattern of

association throughout the table; 1 shall elaborate this suggestion later.

'arameters of the Saturated Loglinear Model

Like the specification of equation 2, the conventional parametric repre-

,entation of the loglinear model also describes frequencies in terms of pare-

*eters for row effects, column effects, and interaction effects. Moreover,

me can "saturate" the model by including all main effects and interactions,

.hus fitting observed counts perfectly. Critics have suggested to me that

interaction parameters under the saturated loglinear model would yield, ty

inspection atone, substantially the same interpretation as that obtained

ising my model. However, the usual normalization of parameters of the log-

inear model gives priority to row and column effects relative to interactions,

.hat is, relative to association in the interior cells of the table. Even

:hough the saturated loglinear model fits a table completely, this conventional



normalization of parameters has much the same effect on the pattern of

interaction parameters as the assumption of statistical independence has

on the pattern of old mobility ratios. Consequently. under the saturated

loglinear model the multiplicative parameters for the interactions are no

more informative than the residuals from the simple independence model:

the marginal effects are too large in rows or columns where the interactions

are strong, and the marginal effects are t000mall where the interactions

are weak. Obversely, the estimated interactions are deflated or inflated

relative to a model In which row, column, and interaction effects are given

equal priority.

An algebraic presentation of the conventional loglinear model may

clarify this argument. let

lii
t- log mu (25)

where m
ij

is the expected count in the ij
th

cell, and z c m
ij

N. The

i j

saturated loglinear model says that

(ij u + u1(1) * u2(j) + u12(1j) '

subject to the constraints

and

211

1

um) - - u ,

I

1

I j

(j ) u '

u12(1j) (ij (u1(1) + u2(J)) + u.

( 29 )

(30)

(31)

Note that equation 26 and equation 2 are identical (excepting notation), and

the constraints on row and column parameters are the same in the two models.

The important difference between the models of equations 2 and 26 lies in the

constraints on the interaction parameters (u12( -and- u12(1j)) and in the

implications of those constraints for the specification of equalities among

subsets of interaction parameters. The specification that the interaction

parameters. sum to zero within every row and within every column of the table

(see equation 27) is equivalert to the model of simple independence in its

(26) implications for interpretirg the pattern of association in the table. By

relaxing the normalization or the u12(1j) in equation 27 one canik.ain new

insiohts into the pattern of association in the table.

This observation can be elaborated by writing the main effects in the

saturated model (or equations 26 and 27) as functions of the main effects and

and interactions in equation 2. In the loglinear metric 1 substitute equa-

tion 2 for 1
ij

in each of equations 28 to 31, recalling the constraints on

suis of the u -terms:

U1,41 2
1, 1

u,,,.
u12(ij)

E
u12(1j) °'

(27)
.

Under these constraints the LI-`erns are obtained by a row and column decom-

position of the logs of expected frequencies paralleling that in a two-way

analysis of variance with one observation per cell (Bishop, Fienberg and

Holland 1975:24):

E

I

'

31

U U

(28)

u1(1) u1(1)
+

Ej u12(1j1"

32

(32)

(33)



and

2/

g2(j) u2(4) + f u12(ii)/1
(34)

.
umii) + umin - (1 u120.1)/J + + 2u . (35)

The constants in the two models are the same; the main effects of the I
th

row differ by the average of the interaction effects in that roe; the main

effects of the j
th

column differ by the average of the Interaction effects

in that column; the interaction effects of the ij th cell differ by a constant

less the averages of the interaction effects In the I th row and the j
th

column. Note that equations 33 and 34 are (additive) analogs of equations

10 and H, respectively. Just as the marginal sum of frequencies in any row

(or column) varies with the interaction effects in that row (or column). so

the main effect of any row (cr column) in the saturated model varies with

the interaction effects in that row (or column), Similarly, equation 35 is

an (additive) analog of equation 23. Just as Itij varies (inversely) relative

to R
ij

as a function of the interactions In the i th
row and jth column, so

mu(ij) varies (inversely) relative to the o2(ii) as a function of the

interactions in the i

th
row and j

th
column. If we regard equation 2 as the

structural model, then the conventional row by column decomposition of the

saturated model yields main effects and interactions which are mixtures of

parameters of the structural model (compare Goldberger 1913 or Duncan 1975:151).

For example, Table 10 presents the multiplicative parameters for a

saturated model which fits the data of Table 1. These tell essentially the

same story as the old mobility ratios in Table 3, but they are a slight

improvement over the old mobility ratios. Note that the parameters in cells

Ozpiand (5,5) are larger than the old mobility ratios in Table 8, end the

variations in parameter.. of the sparser cells is less than that among mobility

jK

ratios in the corresponding cells. the improvement occurs because the row'

and column effects under statistical independence are based on suss of

frequencies, while they are based on sums of logs of frequencies in tne case

of the saturated loglinear model. The operation of taking logs reduces the

effect of positive outliers on the row and column sums, and so reduces (but

does not eliminate) the influence cf the small number of large interactions,

i.e., of the positive skew of frequencies, on the row and column effects.

However, the array of parameters in Table 10 is still substantially misleading

in respect to the pattern of association in Table 1. for example, it shows

roughly equal immobility in cells (2,2), (3,3), and (4.4) and it does not

suggest the homnrneity of densities in cells assigned to levels 4 or 5 in

Table 2.

TAW lo-Aatifila

Adjustment to UnIform,HMrginals

i shall consider one other method of inspecting the pattern of associa-

tion in the full mobility table. Hosteller (1968) drew attention to Levine's

(1967) use of iterative proportional rescaling to adjust British and Danish

5 x 5 mobility tables to uniform marginal, distributions. This adjustment

facilitated Levine's interpretation of the mobility tables and exposed simi-

larities in the pattern of association in the two tables. (For further

evidence and discussion of the simi:arity of the British and Danish tables

see Goodman 1969a, 1969b and Bishop, Fienberg and Uolland 1975:100.) The

iterative proportional rescaling procedure is generally attributed to Deming.

who suggested it be used to adjust sample cross-classifications to known

marginal distributions (Scheuren and Oh 1975); the same procedure is used to

obtain, maximum-likelihood estimates of frequencies in loglinear models of

contingency tables when no '...ased-form estimates exist (Bishop, Fienberg and

Holland 1975:83 -87). The method has been applied fregeently in recent years
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(Duncan 1966; Tyree and Trees 1974; Gamier and Hazelrigg 1974, 1916;

liazelrigg 1914a, 1914b; Hauser et al. 1975a; Pullum 197!; Hauser, Featherman

and Hogan 1977).

The adjustment procedure is straightforward. Each row entry is multi-

plied by the ratio of the desired row sum to the actual row sum. Then each

column entry is multiplied by the ratio of the desired column- sum to the

actual column sum. By alternating row and column adjustments, convergence

of the adjusted cell counts to both desired marginal totals is usually

obtained within a few iterations. Multiplicative adjustment preserves the

Initial pattern of association in a table because odds-ratios are invariant

to scalar transformations applied uniformly across rows and columns. For

example, the upper panel of Table 11 gives hypothetical frequencies in a

2 x 2 mobility table. The odds-ratio in this table is

x
11
/x

12
x
11

/x
21 x11 x22

x21 x22 it1;71ZZ'
x2I x12

( 36)

Suppose the frequencies in interior rows 1 and 2 of the table are multiplied

by arbitrary non-zero constants, say, a and b. respectively. Likewise, the

frequencies in the interior columns of the table are multiplied by non-zero

constants c and d. The adjusted frequencies are shown in the lower panel

of Table II. Under this transformation the marginal proportions will not

generally be preserved, but the odds-ratio will be unaffected, for

(ac xi, )(bd x22) xil x22
xl2 x21

(31)

As early as 1912 Yule recognized the desirability of constructing measures

of association with this invariance property (Goodman and Kruskal 1954:147).

In fact both the old (Ass) and the new (Rij) mobility ratios have this

35
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invariance property, i.e.. that they preserve the odds-ratios in the observed

frequencies; this is obvious from inspection of equations 20 and 21.

MOCE-11-40T-1Ltif

In recommending adjustment to uniform marginals Hosteller (1968:8)

implied that the adjusted frequencies elucidated the pattern of association

in a table:

...we can interpret the resulting numbers as transitional or
conditional probabilities expressed in per cents--either son's-
distribution given'the father's category, or father's given
the son's... In the sense of having a common nucleus of asso-
ciation...it would be fair to say that the two occu7ational
tables are nearly equivalent.

Sirolarly, in respect to the same example, Bishop, Fienberg and Holland

(1915:100) write

By comparing diagonal values we see that, except for category
1, the tendency for fathers and sons to fall into the same
category is stronger in Denmark than Britain. By looking

across rows we can see, for fathers in each category, in which
country the sons are more mobile.

Again, Fienberg (1971:308) suggests chat standardization to uniform marginals

permits one "to look at the association or interaction, unconfounded by the

two sets of marginal allocations."

While it is strictly correct that the original marginal frequencies of

a table cannot be deduced from the set of frequencies adjusted to uniform

marginals, neither do the adjusted frequencies display the pattern of asso-

ciation in the sense intended here. For example, Table 12 gives the adjusted

frequencies of the data in Table 1. I chose uniform marginal sums of 5,

so the condition of simple independence would yield an entry of unity in

each cell (compare Tyree and Tress 1974). The pattern of marginally adjusted

frequencies in Table 12 is virtually identical to that of the old mobility

ratios in Table 8, and it is markedly different from the pattern of the new

3ti
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_Amobility_ratios in Table 6. One_ heerovement is that the adjusted frequencies

are more nearly symmetric about the main diagonal than are the old mobility

ratios. if the marginal adjustment eliminates variation in the marginal

distributions, why doesn't it uncover the underlying pattern of association

in the table? The problem lies in the distinction between marginal distri-

butions (xi. xj) and marginal effects (91, vj); recall equations 10 and II.

Equalization of the marginal distributions does not equalize the marginal

effects; the former differ from the latter because they are confounded with

the underlying pattern of interaction in the table. For example, consider

again the third row or the third column of the mobility classification (upper

manual occupations). Because the interactions are weak in that row and

column. the marginal proportions are relatively low. Consequently, the

adjustment procedure induces too large a relative increase in the marginal

frequencies in that row and column, leading to an excessively large adjusted

entry in the (3,3) cell.'0

fABIE 12-11 *Unita

SAMiTarly, in analyzing the British and Danish mobility tables Levine

(1967) adjusted the frequencies to uniform marginals, took logs of the

adjusted frequencies, and fitted smooth curves to the logs of adjusted fre-

quencies. Levine's model is flawed because the initial multiplicative

adjustment did not reveal the pattern of association in the British and-

Danish tables. However, if adjustment of the full table to uniform marginals

does not yield the interaction structure, neither is it valueless. The

procedure can he used as a rough guide to similarity or dissimilarity in

0314s-ratio of the two or more tables, even though it does not provide

a satisfactory picture of the pattern of association in any one classification.

3,

In culinary, I. have evaluated several measures of association which

are based on the model of simple independenceand other measures which are

based on the saturated model. There are real differences among these

measures of association. for example, Haberman's adjusted deviates are

useful in locating a small number of outlying frequencies. When the inter-

action structure .is ..yemetric but the marginal distributions are not, the

marginal'y adjusted frequencies or the multiplicative parameters of the

saturated model will display the underlying symmetry, but the old mobility

ratios will not. At the same time, each of the measures I have reviewed

suggests essentially the sane interpretation of the pattern of association

in the mobility table. This interpretation is in each case fundamentally

different from that suggested by the new mobility ratios (Rip. This differ-

ence occurs primarily because the other measures of association confound

main effects (of rows and columns) with interaction effects.

Model Specification Under Quasi-Independence

One can obtain superior insights into the structure of association in

a-table by temporarily- ignortng those cells of the classification which

contribute most to the confounding of interaction effects with row and

column effects. In Goodman's (1965, 1969a) terms one "blanks out" those cells

and fit models of quasi-independence to the remaining cells. Equivalently,

In my multiplicative models for the full table, I fit one parameter to

each cell which is to be ignored, and I assign the remaining cells to a

single level of the design matrix. Table 13 shows the equivalent design

matrices for three models of quasi - independence in the 5 x 5 table.

TAUT 11 ABOITTERE
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Model Q1 is the quasi-perfect mobility model. It ignores (or fits

exactly) the frequencies on the,bain dianpnal, which represent occupational

- inheritance relative to the five - category oc'.upationil classification. Under

the ull hypothesis there is no association in the remainder of the table,

which is coded at level 1 in the design matrix both for the full and the

partial tables. Frequencies are estimated in those cells by,iteratively

fitting a matrix containing ones at level 1 and zeros elsewhere, 1.e the

Ql design matrix in the left -hand column of Table 13, to the observed

marginal frequencies in the fitted cells. That is, the fitting procedure

preserves both the observed marginal frequencies and the hypothesized lack

of association in the fitted portion of the table. While there are 25

degrees of freedom in the 5 x 5 table, we lose nine degrees of freedom in

fitting row, column, and scale effects, and we lose another five degrees of

freedom is fitting the six-level Q1 model. Thus, under the null hypothesis

that the is no association off the main diagonal, there are 25 - 9 - 5 = 11

degrees f freedom for error.

Ts e 14 summarizes the fit of maximum ljkelihood estimates of the

indepe

mobilit to first Jibs (Table 1). Clearly ModelQT-iceounts for much -of

the association in the table. While G2 683.06 is still very large relative

to its /degrees of freedom, it is only about one-ninth the value of G
2

under

staple IndeOendence. further, whila the simple Independence model mis-

nce model and other multiplicative models of the 5 x 5 table of

'-alloc es 20.1 percent of the Joint distribution of fathers and sons (as

indicated by the index of dissimilarity, a, in the fourth column of Table

14), Model Q1 misallocates only 5.5 percent of the observations.

lidITTUABOUrliElit
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The first panel'of Table 15 presents ratios of observed frequencies

to those expected at level 1 of Model Q1, i.e., within the zone of quest-

independence 4pecified in the design matrix. Although the diagonal cells

are not assigned to level 1-of Model Q1, we have also shown ratios c' observed'

to expected frequencies in the diagonal cells. The diagonal entries are the

indexes of immobility proposed by Goodman (1969a, 1969b);' they are ratios

of the observed frequencies to those frequencies which would have been

estimitee in the main diagonal if the quasi - independence hypothesis held in

the main diagonal. Alternatively, we may say they Art the frequencies

predicted by the row, column, and scale effects at level 1 of the desi:

Those expected frequencies are not productd directly by the computer

program (ECTA) used to estimate Models Ql, Q2, and Q3, but with a simOlk

model in a small tablelt is convenient to estimate thu expected frequencies

in those cells from the expected frequencies in the level where quasi-

independence is presumed to hold. Under the null hvothesis all of the min:-

ratir. within the zone of quasi-independence and equal to unity (Goodman

1968, 1969a). Thus:If we know only three expected frequencies in a 2 x 2

O
subtable of the full to we can solve for the fourth expected frequency

by setting the odds-ratio in ti-esnAitSbliee-cie, For example, Table

16 shows tht-expeeted frequencies in each cell of the mobility ble and

Model Ql. To obtain the expected frequency in cell (1,1), we could like}

entries in cells (1,2), (3,1), and (3,2) to write

754.9 (344.1)
m 312.3
11

697.7

he

(38)

Other combinations of cells could he used to obtain the sa;e estimate within

the limits of rounding error. In models (like Q3) where a relatively large

number of cells has been ignored, It may take a certain amount of ingenuity
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to fill in the expected frequencies for all of the blanked -out cells.11

TABLE413AithFCAFtotffli- IRE

The ratios of observed to expected frequencies in Table 15 are not

new mobility ratios (Rip, but they differ from the Rij only by a scelar

multiple. That is, I have expressed the Rij as deviations from a scale

factor (or grand mean) for the full table, but the ratios in Table 15 are

expressed as deviations from expected frequencies at level 1 of the design.

The relationship between those ratios an" the R
ij

is like that between the

normalization of parameters in dummy-:eriable regression and in multiple

classification analysis. In the former case the reference point is the

effect of one category, of a qualitative regressor, and in the latter case

the reference point of effect measures is the grand mean of the dependent

variable. With the understanding that a change in normalization has occurred,

I shall refer to the entries in Table 15 as mobility ratios.

tinder Model Q1 the mobility ratios show a pattern of association which

is somewhere between that displayed by the Rij (Table 8) and the Rij (Table

6). Relative to the R
ij'

the ratios in Table 15 are larger in cells (1,1)

and (5,5), and they are also relatively larger in cells (4,5) and (5,4) and,

to a lower degree, in cells (1,2) and (2,1). The ratios for Model Ql do

not appear to fall as rapidly as one moves away from the main diagonal as

do the Rij. At the same time there is still a relatively high ratio in the

central diagonal cell, (3,3).

The fit of Model Ql is not very close, and there are relatively large

mobility ratios in four of the cells which were not fitted exactly under Model'

1--(1,2), (2,1), (4,5), and (5,4). For these reasons 1 write the design

rix of Model Q2 to ignore those four cells as well as the diagonal cells.

thus, Model Q2 has only seven degrees of freedom for error under the null

hypothesis. White (1963) and Pullum (1915) advocate models of this foi-m;

also, seefienberg (1976) for an evaluation of this specification as applied

by Pullum. The fit is much improved under Model Q2, so one would expect the

re,luuals to be more informative. Under Model Q2, G
2

= 50.05, which is only

0.8 percent of its value under simple independence. The model misclassifies

only 1.4 percent of the joint frequency distribution of fathers' and sons'

occupations.

The mobility ratios for Model Q2 show a pattern which is far more like

that of the R. One problem is the relatively high ratio in cell (3,3), but

there is otherwise little variation in the ratios outside the intersections

of rows 1 and 2 with columns 1 and 2 and of rows 4 and 5 with columns 4 and

5. Moreover, the change in specification has again increased 'he mobility

ratios in cells (1,1) and (5,5).

I make one other effort to fit the data more closely without precluding

the estimation of all of the row and colt, m effects, that is, without making

it impossible to obtain mobility ratios for all of the cells in the table.

In Model,Q3 I ignore all of the cells on the main diagonal cnd on the

adjacent minor diagonals. Here the fit is rather close with G
2

= 15.7 with

three deylcnc of freedom and e = 0.6. Of ccurse, in obtaining this fit I

ignore (or fit exactly) the cells containing about three-fourths of the

observations, but my purpose is not to fit the data both closely and parsi-

moniously. Rather, I am trying to explore association in the table by

fitting it closely in a way that permits me to-obtain diagnostic measures of

association.

Clearly, relative to the standard set by the pattern of Rij in Table 6,

Model Q3 is very helpful in uncovering the pattern of association in Table412

The mobility ratios in Panel Q3 of Table 15 show all of the major features of
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the display in Table 2 and of the Rij in Table 6. Taken in conjunction with

my review of other residual measures, the lesson in this illustrative

analysis should be clear. Diagnostic or exploratory analysis of a classifi-

cation will often be improved by ignoring large parts of the classification.

It may be better to ignore too much than too little of the classification,

provided one is left with enough information at the end to construct diagnostic

measures for the full table. In the present case, did I not wish to show

the evolution of the array of mobility ratios under successively improved

specifications, I would specify Models Q1, Q2, and Q3 in advance and look at

the Mobility ratios only under Model Q3 -- because it fits well--as a guide to

specification of a more parsimonious model. In fact, after orounino cells with

similar mobility ratios under Model Q3, I wrote the specification in Table 2

by inspection.

In this context it is instructive to recall my earlier comparison of

constraints on parameters'of the saturated model with constraints on para-

meters in my multiplicative model. In the former case parameters for row-by-

column interaction are constrained within each row and column of the table;

that is, the sum of interaction parameters is zero (in the loglinear model)

and the product of interaction parameters is unity (in the multiplicative model)

within each row and within each column of the table. In the latter case a

similar cousraint holds over all cells of the classification, but not within

each row and column. The quasi-independence model, like our multiplicative

model, provides superior diagnostic insights because it, too, does LA con-

strain interaction parameters within rows or columns. This is easy to see

if we consider the array of expected frequencies under the quasi-independence

model. Within the zone of quasi-independence there are no row-by-column

interactions. In the remainder of the table the observed frequencies are

43.
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fitted exactly with multiplicative parameters defined by the ratio of observed

frequencies to those expected from row and column effects within the quasi-

independent zone of the table. Given any set of expected frequencies (and

row and column effects) in the quasi-independent zone of the table, the

remaining frequencies (and their corresponding interaction parameters) can

vary freely, so clearly there are no constraints on the interaction parameters

within rows or columns. The absence of row and column constraints on inter-

action parameters, shared by my model and by quasi-independence models, leads

in both instances to improved diagnostic and interpretative insights into

the mobility table.

Model Specification by Median Fitting

Throughout this exposition I have relied on maximum-likelihood estimates

obtained by iterative proportional rescaling, but computationally simpler

methods may suffice, especially in the analysis of small tabl,-.'s. To illus-

trate, 1 repeat the estimation of Model Q3 by median fitting. For a full

treatment of such methods, see Tukey (1977: Ch. 11). Panel A of Table 17 gives

the natural logs of observed frequencies in,those cells of Table 1 which are

luasi-indeoendent under Model Q3. In the last column I show row means obtained

is the first step in the analysis. 'Deviations of the entries in Panel A from

the row means are carried forward to Panel B. and in the last row of Panel R

I take column means. Panel r shows deviations from the column means in Panel

i, and here I begin a similar analysis by medians. In Panels C though I, I

alternate the extraction of row and column medians until, at Panel I, the row

medians are each rather close to zero. In rows or columns containing an even

lumber of cells I take the midpoint of the two central observations as the

median. The solution requires minimal calculation because most of the medians
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can ascertained by inspection; beyond the initial computation of means

subtraction is the main arithmetic operation.

--- --V
TABLE 17 ABOUT HERE

In Table 18 I cumulate the several row effects and the several column

effects fined in Table 17. The resultant row and column sums are the

estimates of main effects under Model Q3. The row effects are larger (absol-

utely) than the column effects because they i :lude the grand mein of the

observations. In Panel A of Table 19 1 use the row and column effects to

estimate logs of frequencies in the cells of Table 1 which were ignored in

fitting Model Q3. for example, the estimate in cell (1.1) is 5.219 + .331

5.556. In Panel B of Table 19 I assemble the residual, from the Interior

cells in Panel I of fable 17 together with the deviation. of observed from

expected log frequencies in the cells ignored in fitting the model. Panel

C shows the antlogs of the entries in panel 8, which can be interpreted as

the mobility ratios in Table 15 under Model Q3. Obviously, my crude manual

fit does not exactly reproduce the mobility ratios obtained from the maximum-

likelihood estimates, but the pattern is close enough for diagnostic purposes.
12

1A01 ETILANDITIONTTERr

In using exploratory methods, like those illustrated here, one always

runs the risk of overfitting data; that is, one may model features of the

data which occur only as a result of sampling fluctuation. The surest

protection against overfitting is independent validation, the test of a

model against independent observations. It may also help to smooth the

Ir.& statistically, e.g., 'ay averaging across population subgroups or by

aggregating SOP2 categories of the row and column classifications. I have
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illustrated then.! methods elsewhere (Hauser 1979), and I shall not elaborate

them here. Rather, it may be more instructive to consider other data to

tolvicia-the--prosentmeramiLanty_fruitfullybe_applied..

Sibling_Resemblance in Educational Attainment

In the Wisconsin Longitudinal Study of Social and Psychological Factors

in Achievement (Sewell and Hauser 1980) more than 9,000 male and female high

school graduates were interviewed in 1975--18 years after high school gradua-

tion--and in roughly 2,000 cases a randomly selected sibling was interviewed

in 1977.
13

Panel A of Table 20 gives the counts in a classification of self-

reports of educational attairmnt by respondents (in the 1975 study) and ,

their siblings (in 1977)': The association between these two variables should

be indicative of the strength and manner in which so..ial, psychological, and

genetic factors in the family of orientation lead to similarity in the educa-

tional attainments o siblings. There is an inherent symmetry in the way we

look at this table. Neither sibling's education is causally prior to that

of the other; rather, we think of both as determined by exogenous factors

in their families and in the larger society. In looki at these data, our

main interest lies in the joint occurrence of each pair of educational out-

comes, and we want to abstract the density of each joint occurrence from the

widely varying relative frequencies of levels of schooling.

By inspection of Panel A of Table 20, it appears that the symmetry in

our interpretation of the table is reflected in the counts. Notice that

corresponding row and column sums are very similar, as are corresponding

entries, xi., and xji, across the main diagonal. This symmetry appears also

in corresponding row and column percentage distributions, shown in Panel B

and Panel C of Table 20. formally, the hypothesis of symmetry says mil = mil

for all I / .1; the maximum - likelihood estimates of off-diagonal frequencies
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are just mu = mii = (xii + x )/2. Diagonal frequencies are not constrained

by this oodel, so mil xi, for all I. Under this hypothesis thv test statistic

G
2

is distributed as X
2
with K(K-1)/2 df (Bishop, Fienberg and Holland 1975: Ch.

TABLE 20 Ai101.ifi1WW

Panel 0 of Table 20 gives the maximum-likelihood estimates; the model fits

rather well, for G
2

= 11.59 with 15 df. Panel E gives the row percentage

distributions of the symmetric counts; these are of course the same as corm--

pending column percentage distributions. Most persons complete only 12 years

of schooling, but there is a itcondary mode at 16 years -the completion of a

4-year college. Educational attainments of siblings are positively correlated,

but even among pairs where one sibling attended graduate school, the chances

were about equal--30 percent--that the other sibling only graduated from high

school or only graduated from college.

While the finding of symmetry greatly simplifies the interpretation of

the data, one might hope to find yet a more parsimonious pattern of interaction

underlying the observations. Panels F, G, and H of Table 20 show the vahles

of three of the indexes of interaction that were discussed above (computed

from counts in Panel A). As shown in Panel F. the model of simple independence

fits poorly. The ratios of observed to estimated frequencies suggest little

tendency for siblings to share in completion of grades 12 or 13, but there

is a stronger tendency toward joint completion of grades 14 and grades 16 or

17+. Further, the ratios are curiously high in cells (13, 15) and (15, 13).

Panel G gives parameters of the saturated model. The parameter in cell (12,

12) is now the largest in the table; this shows how the corresponding entry

in Panel F was depressed by the large relative frequencies of high school

graduation among respondents and siblings. There remain tendencies toward
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joint completion of grades 14 and 16 or 17r, but these are not so large as

in Panel F. Again, the relatively large entries in cells (13, 15) and

8). (IS, 13) are surprising; those two levels of schooling are neither adjacent,

nor are they typical points of termination in the educational process.

Panel H shows counts adjusted to uniform row and column sums of six, and

these show substantially the same pattern as the parameters in Panel G.

All three of these sets of indices show a general tendency for the values

to fall as one moves away from the main diagonal (meain, excepting cells

(13, 15) and (15, 13).

Panel I specifies the interaction parameters in a very simple multipli-

cative model which is based upon some--but not all of our observations about

Panels F. G, and H. The model says that there are equal tendencies of

siblings to share in the completion of grades 12, 14, and 16 or 17+. lbese

are the major termination points of schooling in the United States. Other-

wise, the model says, there are no tendencies toward association or dissocia-

tion between the educational attainments of siblings. This model fits the

data of Panel A rather well, yielding G
2

= 22.59 with 24 df; the model uses

only 1 df for interaction. As shown beneath Panel J of Table 20, the estimates

say that sibling pairs are 2.84 times more likely to complete 12, 14, or 16

and 17+ years of school s to complete any other combination of years of

schooling. Panel J displays the products (Rij) of parameter estimates and

residuals under this model. These generally confirm our inferince about the

fit of the model, but there may 1E2 a slightly lower tendency than estimated

for siblings to cluster at grade 14 and a slightly higher tendency for them

to cluster at grades 17+. In any event, the overriding feature of the data- -

which is not accessible by inspection--is the tendency for siblings to share

in the completion of major segments of the educational process. Otherwise,
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there is little or no tendency toward similarity in their educational

attainments.

The data of Table 20 are fitted well, also, by a model that incorporates

two further simplifications: (I) that the main effects are identical in

corresponding rows and columns, and (2) that the joint density of siblings'

attainments at major educational transitions is precisely three times greater

than densities elsewhere in the table.

The first of these two hypotheses -- marginal homogeneity--is suggested by

the earlier finding that the counts are symmetric. Symmetry incorporates two

distinct hypotheses. First, it says that interaction effects are equal in

corresponding cells above and below the mein diagonal, so for example, tiii * ail

for all i and j in the model of equation 1 and ul2ij) 0 u12(j1) for all 1 and

j in the model of equation 26. This hypothesis--called quasi-symmetryis

already implicit in the specification of parameters in Panel 1 of Table 20.

Second, symmetry also implies that main effects are equal in corresponding rows

and column, that is, row and column marginal distributions are homogeneous. As

noted earlier, the combination of quasi-symmetry and marginal homogeneity implies

equality in population counts in corresponding cells above and below the main

diagonal, that is mij . mil for all I and j.

Models of symmetry, quasi-symmetry, and marginal homogeneity can easily

be fitted and evaluated using a 3-way array composed of the original table

and its transpose. let 1 the original row variable, 2 = the original column

variable, end 3 * the transposition variable (whose values specify the original

table and its transpose). Symmetry is imposed by fitting the marginal config-

urations (12)(3), leaving K(K-1)/2 degrees of freedom for error. Quasi-symmetry

is imposed by fitting the marginal configurations (12)(13)(23), leaving

qK-1)(K-2)/2 degrees of freedom for error. The goodness-of-fit test statistics

generated by this set-up should be divided by two because of the double entry
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of each count; equivalently, each count in the array may be divided by two.

The difference between the test statistics under symmetry and quasi-symmetry

yields a test of the hypothesis of marginal homogeneity with K-1 degrees of

freedom, one for each distinct constraint on row and column effects.

For example, In the data of Panel A of Table 20 we have already noted

that symmetry yields a likelihood-ratio test statistic G2 = 11.59 with 15 df.

Under quasi-symmetry, we obtain G
2

= 8.95 with 10 df, so the test of marginal

homogeneity yields G2 - 2.64 with 5 df. ThPS, the data are consistent with

both of the hypotheses subsumed under symmetry.

The second simplifit tion is suggested by the model of Panels i and J of

Table 20; the joint density of observations is roughly three times greater in

cells (12,12). (14,14), (16,15), (16,17), (17,16), and (17,17) than elsewhere

in the classification. I specify a model in which the density is precisely

three times greater in the selected cells by fitting only the row and column

marginal configurations (as under simple statistical independence) to a table

of starting values in which 3s have been entered in the high density cells and

Is in all other cells. In order to estimate the simplified model--incorporating

symmetry, and three-fold density--1 modified the starting values in the set-up

used to test symmetry and quasi-symmetry and fitted just the univariate marginal

distributions for rows, columns, and transposition. This simplified model fits

the data very well; G2 25.99 with 30 df. That is, in the simplified model

1 estimate only six parameters. one for the scale factor (total count) and

five for the row/column effects. Finally, on the basis of this analysis the

test statistic may be partitioned into four additive components: (1) departures

from quasi-symmetry (G2 8.95 with 10 df), (2) other departures from the model

of differential density at major schooling transitions (G2 13.64 with 14 gm

(3) departures from marginal homogeneity (G2 2.64 with 5 df), and (4)



departures from three-fold density (G2 = .76 with i df). None of these

coeponents of error approaches statistical significance.

Occepational_Similarile of_ Friends

In Table 21, Panel A shows counts in a classification of the occupa-

tions of a sample of Detroit mea and their friends.14 The data were obtained

trims a sample of 1,000 men who were asked to name and to describe the occu-

pations of their three best friends. Since the sample clusters friends

within respondents, there are in effect fewer than the 2,d73 nominal observ-

itions suggested by the sum of counts, but I hive made no correction for

this lack of independence.

As shown in Panel 8, respondents choose friends whose occupations

resemble their own. Between 41 and 48 percent of the nominations from each

occupatiohal group fall within the same group. Panel C shows the ratios of

observed frequencies to those estimated under simple independence. In the

source, Jackson (197/:63) refers to the diagonal entries of Panel C as

TAKTITIAW HEW

self-selection ratios; he comments that self-selection is highest among

upper white collar men and least among blue collar men, while friendship

declines with social distance throughout the table. As shown in Panel C.

the model of simple independence fits these data very poorly (G2 = 778.17

with 9 df), and for this reason the ratios in Panel C are quite misleading.

One might expect to find a certain symmetry in the table, for it is

difficult to see how affinity between occupational categories as such should

depend on the direction of choice. At the same time the counts in Panel A

of Table 21 are clearly not symmetric, for men at the top of the occupational

hierarchy must choose friends of the same of lower status, while those at
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thr bottom must choose friends of the same or higher status. The model of

symmetry, which fit in the previous case, must be rejected here (G2 = 42.46

with 6 df). However, a weaker model, quasi-symmetry (bishop, Fienberg and

Holland 1975: Ch. 8), does fit these data (G
2

2.25 with 3 df). The model

of quasi-symmetry, like that of symmetry, says interaction effects are the

same in corresponding cells above and below the diagonal, but it does not

add the constraint of homogeneity in corresponding marginal effects. Thus,

under quasi-symmetry m
ij

may differ from m
Ji

because the 1
th

row and the 1
th

column effects may differ and because the j
th

row and the j
th

column effects

may differ. Panel D of Table 21 gives the estimated frequencies under quasi-

symmetry, and these were used in the next stage of model selection.

Since theory and data suggest that observations cluster along the

Aagonal, 1 fitted a quasi-independence model that ignored those four cells. '

The starting values for that model are shown in Panel E and, following the

methods used in Table 15, ratios of observed to expected frequencies are

given in Panel F. The model does not fit well, but it is a great improvement

over simple independence. The new self-selection ratios suggest that within-

group choice is high at either extreme of the states hierarchy. Moreover,

when out-group choice occurs, white collar men choose other (higher or lower

status) white collar men, and to about the same degree blue collar men choose

other (higher or lower status) blue collar men. White collar men are much

less likely to choose blue collar friends, and vice versa. When the blue-

collar/white-collar line is crossed thereis little status differentiation

in choice within the out-group.

Penel.G of Table 21 specifies a model with the features which appeared

in the ratios in Panel F, and Panel H displays the relative densities (Rip
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under this model in the original table (Panel A. The model of Panel G

fits very well (G2 s 6.46 with 5 df); moreover, a very simple pattern appears

in the parameter estimates under this model (shown beneath Panel H), namely,

that the estimates are in the ratios 1:2:3:4:5. With this as a clue, in

the final model, 1 specified:ttt relative densities would have the hypo-

theiized_valites.b.y_f_ittinia, the row and_column marginals of the observed

table to the starting values shown in Panel 1 of Table 21. Note that the

entries in Panels G and I are identical, but the latter are hypothesized;

parameter values, and the former are arbitrary subscripts of variables.

Since the parameters are specified as constants, the final model (nominally)

has 9 df, and the fit is very good (G
2
- 7.63); little is lost by imposing

the constraint of linearity on the parameters. Plainly, my final model

of the Detroit data differs substantially from Jackson's analysis by inspec-

tion of departures from independence. There are different tendencies toward

self-sklection in each occupational gm ?, and these are greatest at the

extremes of the status hierarchy. When out-group friendship occurs, it tends

to be among white collar men (for white-collar choosers) and among blue-collar

men (for blue collar choosers). White collar men rarely choose blue-collar

friends, and vice versa; when such choice occurs, status distinctions within

the out-group are ignored. This final model is just as parsimonious as that

in the source; it estimates no parameters for interaction. Yet, unlike

Jackson's analysis, it fits the data well.

Comparisons_Eletween_Classifications

In a series of analyses my colleagues and I were able to locate no

sociologically interpretable historical changes in the relative occupational

54411ity chances of American men when we used saturated models of the mobility

classification (Hauser et al. 1975b, Featherman and Hauser 1978: Ch. 3).

Reviewing those null findings we thought the lack of significant evidence

of change might be the low statistical power of our models, rather than the

absence of change in mobility chances. A parsimonious model increases

statistical Tower in comparisons; the need for parsimony, as much as the

issue of interpretition, motivates our efforts to apply models of the present

form. While other models may be even more parsimonious, my model's do use

far fewer parameters to fit a given table than does the saturated model.

In discussing comparative methods, I start with general hypotheses about

the restrictions imposed by the model and later take up more specific

hypotheses about the values of parameters or sets of parameters.
0

!we borrow a model that fits one classification in order to fit a

::-Jcond classification, we readily obtain an explicit test of the partition

1f cells in the initial modl. Recall, for example, that the mOde1 of Table

! fits the aggregate table of mobility from father's occupation to son's first

ccupation in the 1973 OCG survey with G
2
= 66.5 on 12 df. To test the

issignment of cells to levels in this model, I use the same model in an

nalysis of mobility from father's occupation to son's first occupation by age

sing data from the 1962 OCG survey. That is, where P = father's occupational

tratum, M = occupational stratum of son's first job, A = age in 5-year

roups, and H = the model of Table 2, I fit the model (PA)(WA)(HA) to the

962 data and obtain a test statistic of G 2 = 121.? with 108 0, which is

of statistically significant. That is, conditional on variation in occupa-

ional origins and destioations between cohorts, the same set of equality

estrictions fits interactions between father's occupation and son's first

:cupation in the 1962 OCG survey as in the 1913 OCG survey. The lack of

ignificant departures from this model does not indicate that mobility

lances are numerically identical (or even remotely similar) in these twu

trveys.
15

I have tested only the hypothesis that the restrictions on



49

interactions across eel's of the classification are met in both sets of

data, not the hypothesis that interaction parameters take on the same value.

In a straightforward way we may also test the equality of interaction

parameters among ti more cross-classifications. For example, 1 compare

mobility from father's occupation to son's first occupation across nine five-
&

year age cohorts covered in the 1913 OCG survey. Under the assumption that

mortality is negligible during the prime working ages (20 to 64), while

first jobs pertain to a fixed point in the life-cycle, these comparisons

reflect conditions of labor market entry during the period from the late 1920s

to the early 1970s. As shown in the first column at the top of Table 22, 1

begin by fitting the model (PAI(WA)(H), in which occupational origins and

destinations vary across cohorts, but relative mobility chances do not vary.

I have 9 mobility subtables, each with 16 Jegrees of freedom after condition-

ing on the observed marginal distributions; since the five-level model of

Table 4 uses just four degrees of freedom, there are 140 degrees of freedom

for t ror. Unde,- this specification I obtain the significant test statistic,

235.3. At the same time the simple model of Table 2 is quite powerful;

it explains G2 . 661.7 with 4 df (Featherman and Hauser 19/8:200). I also

fit the same table with the model (PA)(WA)(11A), which fits or!, a and destina-

tion effects as in the initial model, but permits the parameters of the model

to vary across cohorts. Under this model I obtain G
2

175.6 with 108 df;

relative to the initial model, 1 fit four more parameters for each of eight

subtables. Again, the test statistic is statistically significant, showing

that there are non-chance departures from the specification within one or

more cohorts. More important, since the model (PA)(WA)(HA) is obtained from

(PA)(WA)(H' by relaxing restrictions on interactions to the latter, I may

test these restrictions by taking the difference between the two test stat-

istics; I obtain G
2

. $9.1 with 32 df (top line, third column of Table 22),
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whose probability is Ty small under the null hypothesis. Thus, there are

statistically significant intercohort variations in parameters of the model

of Table 2. In passing I note that the last test statistic is larger rela-

tive to its degrees of freedom than the test statistic for intercohort change

under the model (PA)(WA)(PW) in the same classification; (12 = 166.6 with 128

df, for which a = .012.

TABLE 22 AimuT

To summarize, by conditioning on the marginal distributions and fitting

the models of constant interaction and of variable interaction, subject to

a given design matrix, we can test he fit of each of those two models;

further, a contrast between those two models yields a global test of change

in the parameters of the design matrix. Using a similar procedure we can

test hypotheses about change in each level parameter of a cross-classification,

and at the same time we can test hypotheses about the lack of fit within eatt---

level of the design matrix. Again, we construct appropriate test statistics

by contrasting bierarcNical models and exploiting the additive properties of

the likelihood-ratio test statistic (G2); see Bishop, Fienberg and Holland

(1975:126-127).

Figure 2 defines and shows the relationships among four types of models

3f the tress-classification from which we obtain the desired test statistics.

:onsider a four-way incomplete classification in which two factors wit" I

ind J categories, respectively, represent the mobility Late (or other cross-

:lassification), a third factor with K categories specifies the int action

?ffects, and a fourth factor with L categories represents the replicates of

the x J cross-classification which we wish to compare. Further, denote
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the number of (independently variable) cells within the kth level of the

design matrix by Mk.

RUT AlolUitfir

As shown in the first row of Figure 2 I condition on the observed

marginal distributions of the I x J classification and fit models of constant

association and of variable association tc the entries in the four-way classi-

fication. 'Ider the model of constant association, e.g., (PA)(WA)(H) in the

example of Table 22, I denote the likelihood ratio test statistic by G
2
, and

under the -" e1 of variable association, e.g., (PA)(WA)(HA) in the example

of Table 22, I denote the likelihood ratio test statistic by G
2

b'
Then, as

shown in the second row of Figure 2, I blank out or ignore (by entering

structural zeros) each of the counts at the k
th

level of the design matrix,

and I fit the models of constant association and of variable association to

the counts in the truncated four -way classification. I repeat this proce-

dure for each of the K levels of the design matrix. Under the model of con-

stant association in the truncated classification I denote the likelihood

ratio test statistic by G c2
"

and under the model of variable association in

the truncated classification I denote the test statistic by Gd. When I

blank out or ignore entries at the k
th

level of the 1 x J classifications I

am implicitly fitting constants to each of those entries, so the degrees of

freedom under models of the truncated classification are reduced by the

number of (independently variable) counts at the kth level of each 1 x J

classification.
1G

By comparing the terms G:, Gi2), et, and G:d% I can test a variety of

hyiitileses about change in interactions (level parameters) among the several

I x J classifications and about lack of fit within levels of the r-del.

These contrasts and the associated degrees of freedom are shown in Figure 3.

I have already oiled (in Table 22) a contrast like that on Line 1, which

gives an overall test of constancy in the level parameters across the several

1 x J classificatioh3. Recall that the model of variable association relaxes

restrictions on parameters of the model of constant association, so the

comparison, G
a

2
-

'

G'
b

yields a test of coral -ancy in all K level parameters

across the L mobility classifications. Since a K-level design has K - 1 df,

while the model of constant association specifies only one set of level

parameters, it takes (K 1)(L - 1) more degrees of freedom to specify the

model of variable association than to specify the model of constant associa-

tion.

FIGURE 3 ABOUT Wilt

The contrasts on Lines 2 and 3 of Figure 3 are of lesser interest, but

I include them for the sake of completeness. The comparison on Line 2, G2 -

G
2

d'
is analogous to that on the first line, but the test ignores parameters

at the k
th

level, which have been excluded both from the models of constant

and of variable association; thus, the test has (L - 1) fewer degrees of

freedom than the global test on Line 1. In the model of constant association

the L sets of counts at the k
th

level of the I x J classification are fitted

b: a single parameter, but (implicitly) a parameter is fitted tc each of

these counts when entries at the k
th

level are blocked. Thus, the comparison

on Line 3 of Figure 3, G
a

2
- G c2

'

yields a test of the combined effects of

change and of lack of fit at the k
th

level of the design matrix, and this

test has LM
k

1 degrees of freedom.

The comparison of Line 4 of Figure 3, Gb - Gd2, yields a test of fit aty.)

the k
th

level of the design matrix across the L mobility classifications.
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2
Gb is obtained under the model of variable association in the full classifi-

cation, so it reflects lack of fit at each of the K levels across the L

mObillty classifications. I obtain Gd by relaxing the Mk - 1 equality

restrictions on interactions at the kth level within each of the L mobility

classifications, so the test statistic has a total of 1.(14k - 1) degrees of

freedom. Since the models used to generate this test condition both on the

marginal distributions and Interaction parameters of the L distinct I x J

classifications, the overall comparison, G12:4 - Gd, may be regarded as the sum

of L independent test statistics, eat.' with Mk - 1 degrees of freedom, per-

taining to lack of fit within the kth level of one of the L classifications.

Plainly, an analogous test may be obtained at the k
th

level of any I x J

classification merely by contrasting the fit of the full classification with

that of the classification from which counts at the k
th

level have been removed

In the fifth line of Figure 3 I show a comparison of all four of the

test statistics from Figure 2 that tests the L - 1 equality restrictions

imposed by the model of constant association at the kth level of the design.

One may think of this comparison as a contrast between the models of Lines 1

and 2 of Figure 3, or alternatively, one may think of it as a contrast between

the models of Lines13 and 4 of Figure 3. That is, the contrast in Line 2

differs from that in Line 1 only in permitting the k
th

level parameter to vary

across the L classifications, and the contrast in Line 4 differs from that in

Line 3 only in permitting the k
th

level parameter to vary across the L classi-

fications.

I illustrate some of the contrasts in Figure 3 by continuing my analysis

of intercohort change in mobility to first occupations among American men.

In Lines 1 to S of the first panel of Table 22 I report test statistics and

degrees of freedom under the model of constant association as each level of
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the design (Table 2) is ignered in turn. Since levels 1, 2, and 3 each

include only 1 count per cohort, I use 8 df more than in the constant

association model for the full table when I ignore the entries at these

three levels. There are five entries in each of the nine cohort mobility

tables at level 4. When these 45 entries are ignored, the remaining row,

column, and level effects are each still identified, so I lose a total of

44 degrees of freedom relative to the model of constant association in the

full table.

If I used the same rule to calculate the degrees of freedom lost in

ignoring level 5 as in ignoring level 4, I would end up with a negative

number in Line 5, rather than the 24 degrees of freedom reported there. That

is, there are 17 counts in each cohort mobility table at level 5 of the

design, so one might (incorrectly) say there are 140 - [(17)(0) - 1) - -12

degrees of freedom under the model of constant association when level 5 is

ignored. The error in this calculation tlecome> obvious when w, 'irpect the

display in Table 2. First, since level 5 covers all of Row 3 and all f

Column 3 of the mobility classification, there are only four independent

entries in each of Row 3 and Column 3. Second, by the same token there is

no effect of ' 4 3 nor of Column 3 when the fifth level of the mobility

:lassification is ignored. Thus, the erroneous calculation has subtracted

four too many degrees of freedem for each of the nine inter-cohort tables.

Then we add these back in, we obtain the correct 24 degrees of freedom under

:onstanl association when level 5 is ignored.

Alternatively, we may obtain the correct degrees of freedom by enumer-

iting the number of parameters fitted to the truncated classification.

Ignoring the cells at level 5, consider the design in Table 2. For each

:ohort there are two separate 2 x 2 subtables which have neither rows nor
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column in common. For each cohort it takes four degrees of freedom to fit

the lower right hand 2 x 2 subtable, which has, of course, Just one degree of

freedom for interaction. We use four degrees of freedom. also, in fitting

the upper left hand 2 x 2 subtable. Since three level parameters appear in

the upper left hand subtable, it may appear that the model for that subtable

is underidentified. That is not the case because one of the interaction

parameters (from level 4) is determined in the lower right hand 2 x 2 sub-

table. In summary, I fit each truncated cohort table exactly (exhausting

the eight degrees of freedom of the 8 counts) with a model in which four

interaction levels appear in the two 2 x 2 cubtableC. This explains why there

are no degrees of freedom for error when I fit the model of variable associa-

tion to the classification from which level 5 has been deleted. When 1 fit

only one set of level parameters to the truncated classification under the

model of constant interaction, I have (4 - 1) x 8 24 degrees of freedom

for error, which is the same result obtained above by subtraction.

In the second part of Table 22 I show values of G
2
and degiees freedom

under the model of variable association as each level of the design (Table 2)

is ignored in turn. In the full table the model of variable association

leaves 100 degrees of freedom for error. Since levels 1, 2, and 3 of the

design each includes only 1 count per cohort. the fit does not improve, nor

do the degrees of freedom change, when I ignore the cells at those levels

under the model of variable association. Since level 4 has five (indepen-

dently variable) counts in each of the nine cohorts, and one degree of freedom

is used at this level for each cohort by the model of variable association,

I lose four degrees of freedom for each cohort when I ignore level 4 in

fag,. the model of variable association; this leave 72 degrees of freedom

for error. As explained above, the degrees of freedom are exhausted when

I ignore level 5 in fitting the model of variable association.
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Recall from Figure 3 that the contrast between the test statistic for

the full table under the model of varfoOe association (62 = 175.6 with 108

df) and the test statistics below it in the second panel of Table 22 are of

2
the form. Gb - G. That is, they reflect lack of fit at each level of the

design. Since there is only one count at each of levels 1, 2, and 3, there

is no lack of fit at these levels under the model of variable association;

this is, of course, a formal property of the design in Table 2, and it has

no confirmatory value. When 1 compare the test statistics in Lines 1 and 4,

I obtain G
2

= 34.8 with 36 degrees of freedom. Since the test statistic is

less than its expected value, I infer that the fit is satisfactory at level

4 of the design. There are no degrees of freedom for error when I ignore

level 5 of the design, so I may attribute all of the lack of fit (62 = 175.6

with 108 df) to level 5. Obviously, this test statistic is significant, and

the result suggests I might refine the present design by splitting level 5

in Table 2 into two or more levels. Note these tests for lack of fit (and

the companion teats for change reported 'later) are not inuependent; these is

no inconsistency between my use of the overall test statistic for erre,

evaluate the fit at level 5 and a component of the same statistic to eval-

uate the fit at level 4.

In the third panel of Table 22 I report on each ethe differences

between the entries on that line in the first and second panels. On the

2
first line the difference is a test statistic of the form, G

a

2
- G

b'
and on

2
the remaining lines the differences are test statistics of the form, Gc

2
- G.

3n the first line I obtain the overall test statistic for change in level

parameters, and the remaining lines give the test statistics for change at

)
ill but the specified level of the desiyi matrix. Since the full cross-

4.

:lassification has K 5 levels of interaction. and I compare L = 9 cohort
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tables, each of the latter test statistics has - 1)(g - 2) = 8 x 3 = 24

degrees of freedom. To obtain the test statistics for change at each level

of the design, l again take differences between the test statistic for the

full table and that on each line below it (recall line 5 of Figure 3).

These are reported in the fourth panel of Table 22. lntercohort changes in

parameters at leveli 1 and 3 are plainly not significant, while that at level

2 is (on my reading) of borderline statistical significance. At levels 4

and 5 there is statistically significant change in the parameters, whether

I evaluate the nominal probabilities associated with the values of 62 or

use an appropriate simultaneous inferential procedure (Goodman 1969a).17

Again, these test., for change are not statistically independent; note that

the sum of the test statistics for the five tests is larger than the test

statistic for the global contrast (59.7 with 32 df), and the sum of degrees

of freedom in the five tests is 40, rather than the 32 degrees of freedom for

change in the level parameters.

HOltS

1 1 assume the lamiliarity of the reader with logiinear models for

frequency data. Fienberg (1970a, 1977), Goodman (1972a, 1972b) and Davis

(1974) give useful introductions, as does the comprehensive treatise by

Bishop, Fienberg and Holland (1975). 1 rely heavily on methods for the

analysis of incomplete tables, which have been developed by Goodman (1963,

1965, 1968, 1969a, 1969b, 1971, 1972c), Bishop and Fienberg (1969), Fien-

berg (1970b, 1972), and Mantel (1970); again, Bishop, Fienberg and Holland

(1975, especially pp. 206-211, 225-228, 282-309, 320-324) is valuable.

Applications of loglinear models to occupational mobility data include

several of the papers by Goodman just cited and, also, Hope (1974, 1980),

Hauser et al. (1975b). Pullum (1975), lutaka et al. (1975), Featherman.

Jones and Hauser (1975), Ramsh (1977), Hauser and Featherman (1977), Baron

(1980), Hauser (197R), Goldthorpe, Payne and Llewellyn (1978), Uoldthorpe

and Payne (1980), Duncan (1979), and Featherman anu Hauser (1978).

2
1n the I x J cross-classification there are (1 - 1) (J - 1) degrees

of freedom for two-way interaction. The conventional structural model yields

two-way interaction effects for each of I x J counts by constraining the

product of interaction effects within each row end within each column of

the table; these constraints identify (1 - 1) (J - 1) independent inter-

action effects. Instead, the model of equation 1 identifies the two -way

interaction effects by constraining some of them to be equal across cells

of the classification.
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Many of these modelsas well as problems in comparing their goodness

of fit--are reviewed by Bishop, Fienberg and Holland (1975): Chs. 5, 8, 9),

and some of the same models are discussed by Haberman (1974: Ch. 6). Duncan

(1979) and Goodman (1979b) have recently proposed additional models for

classifications of ordered categorical data.

4
1 denote parameters of the loglinear model in equation 2 by u*, u*1(1),

etc., in order to distinguish them from the u- terms of the conventional row-

by-column parameterization (Bishop, Fienberg, and Holland 1975: Ch. 2).

The reported frequencies are based on a complex sampling design and

have been weighted to estimate population counts while compensating for

certain types of survey nonresponse. The estimated pivulation counts have

been scaled down to reflect underlying sample frequencies. and a further

downward adjustment was made to compenvite for departures of the sampling

design from a simple random sampling. The frequent! estimates In Table 1

have been rounded to the nearest integer, but my computations are based

on unrounded figures. 1 treat the adjusted frequencies as ir they had

been obtained under simple random sampling (Featherman and Hauser 1978:App.13).

Occupation, industry and class of worker were coded in detail using

classification methods of the 1960 U.S. Census, and the detailed occu-

pation codes were aggregated to form the broad groups shown in the table.

The broad occupation groups have been defined in a slightly unconventional

way (on the basis of data on the schooling and incomes of current occupa-

tional incumbents). Sales workers other than retail sales workers have been
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alaced in the upper nonmanual group, while proprietors have been placed

In the lower nonmanual group. This does not substantially affect tae

findings relative to those based on a more conventional classification of

ipper and lower white-collar jobs (Featherman and Hauser, 1978:180-184).

6This observation is elaborated by Featherman and Hauser (1978:177-100).

7Unsuscripted e is the base of natural logarithms and should not be

confused with the sample residuals in the multiplicative model, eij =

8
Larntz (1978) has shown that z

ij
has better small-sample properties

than lo components of G
2 (the likelihood-ratio test statistic) or Freeman-

Tukey deviates.

9See Featherman and Hauser (1978:66-67) for further discussion of these

patterns.

10
Just as I have shown 'hat parameters of the saturated model are mixtures

of parameters of my model, it is also easy to show that the Hosteller ad-

justments yield indexes which are mixtures of the parameters of my model.

11 In more complex modeIs other methods may be needed to estimate

the missing frequencies, such as those used to estimate parameters for

models of the full table. The manual computations are often convenfeA,

and ECTA converges more rapidly when cells with unique parameters are

66
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ignored than when the program is forced to fit them exactly.

a!
1- tit took the author about an hour to prepare this illustration using a

small electronic calculator.

13T
his example was developed by Brian ClarPidge. :Both the subsamples

tries in each of the third row and the third column, and we no longer need

to estimate marginal effects of the third row or the third coluhm of the

mobility classification. Thus, one is well-advised to apply the general

rule that the degrees of freedom for error-Under a model is equal to the

number of cells in the classification less the number of indepehe.ent

constants fitted to it.

of respondents and of their siblings were highly stratified by sex and

educatiooal attainment. but 1 have treated the data as if they were ob- l7
Featherman and'Hauser (1978:200-208) for further discussion of

tamed by simple random sampling.
these results.

14
This example was developed with the assistance of Shu-ling Tsui.

The Detroit data were collected by Edward Laumann; 1 estimated the counts

from percentages and marginal frequencies in a secondary analysis,of these

data by R. Jackson (1977). For this reason the counts in Panel A may differ

slightly from'those in the original data.

15
There are methodological differences in the measurement of first)

occupations in these two surveys, and for this reason it would not be sur-

prising if the two models (or their parameters) differed substantially.

For more details about this cemparlion see Featherman and Hauser (1978:

200-208).

216
The degrees of freedom of-the statistics G

c

2
and G

d
may be difficult

to enumerate because they depend on the pattern of the design matrix as

well as on the number of cells at the k
th

level. for example, when level

5 of the design in Table 2 is blanked out, we delete only 4 independent en-

6'7
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TI.NILE 1

Counts in a classification of mobility from Father's for Other Family
Bead's) Occupation to Son's First Full-time Civilian Occupations J.Z. Men

Aged 20-64 in 1973

Son's occupation

Father's
occupation

Upper

Nonmanual

Lower

Nonmanual

Upper
Manual

Lower
Manual Farm Total

Upper Nonmanual 1414 521 302 643 40 292C

Lower Nonmanual 724 524 254 703 48 2253

Upper Manual 798 : 648 856 1676 108 4086

Lower Manual 756 914 771 3325 237 6003

Farm 409 357 441 1611 1832 4650

Total 4101 2964 2624 7958 2265 19,912

Patti Counts are based on observations weighted to estimate
population counts and compensate for departures of the
sampling design from simple random sampling. Broad occupa-
tion groups are upper nonmanuals professional and kindred
workers, managers and officials, and non-retail sales
workers; lower nonmanuals proprietors, clerical and kindred
workers. and retail sale:worker's upper manuals craftsmen,
foremen and kindred workers; lower manuals service workers,
operatives and kindred workers, and laborers. except farms
fkrms farmers and fans managers, Ur* laborers and foremen.

TABLE 2

Asymmetric Five-level Model of Mobility from Father's Occupation

to First Full-time Civilian Occupation

Father's

Son's occupation

occupation 1 2 3 4 5

1. Upper Nonmanual 2 4 5 5 5

2. Lower Nonmanual 3 4 5 5 5

3. Upper Manual 5 5 5 5 5

4. Lower Manual 5 5 5- 4 4

S. Farm 5 5 5 4 1

NOTE: Broad occupation groups are upper nonmanuals
professional and kindred workers, managers and
officials, and non-retail sales workers; lower
nonmanuals proprietors, clerical and kindred
workers, and retail sales-workers; upper manuals
craftsmen, foremen and kindred workers; lower
manuals service workers, operatives and kindred
workers, and laborers, except farm; farms farmers
and farm managers, farm laborers and foremen.
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TAKE

Estimated Parameters of the Model of Table 2: Mobility from Father's

(or Other Family Head's) Occupation to Son's First Full-time Civilian

Occupation, U.S. He Aged 20-64 in 1973

Category of row, column, or level
Design factor (1) (2)

Rows ((ether's occupation) -.466 -.451 .495 .570 -.148
Columns (son's occupation) .209 .190 .240 1.020 -1.660
Levels (density) 3.044 1.434 .549 .243 -.356

Grand mean 6.217

TABLE 4

Log of Ratio of Observed to Expected Frequencies in the Model of Table 2:
Mobility from Father's (or Other Family Head's) Occupation to Son's First
Full-time Civilian Occupation. U.S. Men Aged 20-64 in 1973

Father's
occupation

Son's occupation

1 2 3 4 5

1. Upper Nonmanual .00 .01 .02 -.01 -.10

2. Lower Nonmanual .00 .00 -.17 .06 .06

3. Upper Manual .06 -.13 .10 -.01 -.07

4. Lower Manual -.07 .14 -.08 .00 .04

5. Farm .03 -.09 .08 -.01 .0n
m

*Fitted exactly udder the model.
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TABLES

Standardised. Residuals from the Model of Table 2: Mobility froM Father's

for Other family Mead's) Occipation to Son's first full-time Civilian
Occupation, U.S. Men Atird 20-64 in 1973

-Father's

Son's occupation

occupation' 1 2 3 4 5

1. Upper Nonmanual .00° .26 .29 -.24 -.60

2. Lower Moniaanual .00 .04 -2.76 1.71 .45

3. Upper Manual 1.60 -3.38 2.80 -.51 -.74

4

4. Lower mammal . -1.97 4.14 -2.28 -.05 .60

S. Yarn .65 -1.62 1.58 -.32 .00k

Fitted exnctly under the nodal.

fOi

1

TAut.R 6

New Mobility Ratios (Rii) Under the Model of Table 2: mobility from

Father's (or Other Family Head's) Occupation to Son's First Full-time
Civilian Occupation, U.S. Men Aged20-64 1/1.1973

a
.

Father's
occupation

Son's occupation

1 2 3 4 5

1. Upper Nonmanual 3.42 1.28 .71 .70 .64

2. Lower Nonmanual 1.73 1.28 .59 .75 .75

3. Upper Manual .74 .61 .77 .69 .65

4. Lower Manual .65 .80 .64 1.27 1.32

5. Farm .73 .64 .76 1.27 20.91



TA812 7

Standard Outflow and Inflow Tables: Hodllity from Father's (or Other
Family He4J's) occupation to -en's First Full-time Civilian Occupation.

U.S. Men Aged 20-64 in 1973

Fether'y
occupation,

Son's occupation

Total(1? (2) (3) (4) IS)

OutPoor

1. Upper lionmanual 48.4 17.8 10.3 22.0 1.4 100.0

2. Lower Monmanual 32.1 23.3 11.3 31.2 2.1 100,0

3. Upper h..nual 19.5 15.9 21.0 41.0 2.6 :00.0

4. Lower Manual 12.6 15.2 12.8 55.4 4.0 100.0

S. Farm 8.8 7.7 9.5 34.6 39.4 100.0

Total 20.6 14.9 13.2 40.0 11.4 100.0

Inflow

1. Upper Wommenual 34.5 17.6- 11.5- P.1 1.8 14.7

2. towel Monmanual 17.7 17.7 9.7 8.8 2.1 11.3

3. Viper Manual 19.5 21.9 32.6 21.1 4.9 20.5

4. Lower Manual 18.4 j0.6 29.4 41.6 10.5 30.1

S. Farm 10.0 12.0 16.8 20.2 80.9 23.4

Total 100.0 100.0 100.0 100.0 100.0 100 -0

0011: Frequencies are based on observations weighted to a _!mate
population counts and compensate for departures of the
sampling design from simple random sampling. Brow' occupa-
tion groups are upper nonmanuali professional indred
workers, managers and offrtials, and mn-retail
workers, lower nonmanuals proprietors, clerical and kindred
workers, and retail seles-workerss upper manual, craftsmen,
foremen and kindred workers; lower manuals service workers,
Jperatives LA kindred workers, and leboaers, except farm,
feats farmers on term managers, farm laborers and foremen.

8 2

ABLE 8

fld Mobility Ratios (R 4) under the Model of Staple Independence:

kdallity from Father's '(or Other Family Head's) Occupation to Son's

'irst Civilian Occupation U.S. Men Aged 20-64 in 1973.

Father's
occupation

Sons occupation

1. 2 3 4 5

1. Upper Nonmanual 2.35 1.20 .78 .55 .12

2. Lower Nonisanual. 1.56 1.56 'C .78 -19

3. lIoper hanual .95 1.06 1.59 1.03 .23

e
4. Lower Manual .61 1.02 .98- 1.34 0.35

S. Farm .43 .52 .72 0.97 3.46

8 3



TABLE 9

Raw and Adjusted standardized Deviates under the Model of Simple independence:
Mobility from Father's (or Other 'Family Head's) Occupation to Son's First
Pull-time Civilian Occupation. U,S. Men Aged 20-64 in 1973

Son's occupation

Father's
occupation (1) (2) (3) (4) (5)

Standardised deviates-

1. Upper Nonmanual 33.13 4.14 -4.23 -15.33 -16.02

2. Lower P -:manual 12.07 10.31 -2.49 -6.60 -12.99

3. Upper Manual -1.50 1.60 13.68 1.08 -16-56

4. Lower Manual -13.65 .68 -.70 18.89 -17.07

S. Farm -17.73 -12.74 -6.94 -5.74 56.65

Adjusted standardised deviates

1. Upper Nonmanual 48.89 5.70 -5.71 -29.93 -21.18

2. Lower Nonmanual '7.14 13.66 -3.24 -12.39 -16.52

3. Upper Manual -2.38 2.37 19.82 2.27 -23.52

4. Lower Manual -24.61 1.15 -1.15 45.05 -27.57

S. Farm -29.14 -19.53 -10.42 -12.47 83.40

TABLE 10

Multiplicative (I) Parameters in a Saturated Model of Mobility from
Father's (or Other Family Head's) Occupation to Son's First Full-time
Civilian Occupation. U.S. Men Aged 20-64 in 1973

Father's
occupation

Son's occupation

1 2 3 4 5

1. Upper Nonmanual 2.76 1.37 .96 .72 .38

2- Lower Nonmanual 1.58 1.54 .90 .88 .52

3. Upper Manual .92 1.00 1.60 1.11 .61

4. Lower Manual .63 I.01 I.04" 1.53 .96

5. Farm .40 .47 70 .90 8.67

5)



Table 11

Raw and Multiplicatively Adjusted Frequencies in a Hypothetical Table

Columns

Rows 1 2 Total

A. Raw frequencies

1 x
11

x
12

x
11

4- x
12

2 x
21

x
22

it

21_
+ X

12

Total x
11

+ x
21

x
12

+ x
22

II

11. Adjusted ftequancias

1

2

Total

acx
11

bcx
21

o(ax
11

+ bx
21-

;

adx
12

bdx12

bx22)d(ax
12

+ bx
22

a(cx
11

+ dx
12

)

b(cx
21

+ dx
22

)

eta*
11

+ bx
21

)

+ d(ax
12

+ bx
22

)

rABLE 12

Doubly Standardized Frequencies of Mobility from Father's (or Other Family
Head's) Occupation to Son's First Full-time Civilian Occupation. J.S. Men
Aged 20-64 in 1973

Father's
occupation

Son's occupation

Total1. 2 3 4 5

1. Upper Nonmanual 2 -^ 1.18 '.87 .66 .21 5.00

2. Lower Nonmanual 1.35 1,50 .92 .91 .32 5.00

1. Upper Manual .80 1.00 1.66 1.16 .39 5.00

4. Lowe( Manual .56 1.03 1.10 1.64- .62 5.00

5. Farm .22 .29 .45 .59 3.46" 5.00

Total 5.00 5.00 5.00 5.00 5.00 25.00



TABLE 11

Design Matrices for Three Models of Quasi-Independence io the 5 by 5

Mobility Table

TABLE 14

Summary of Fit of Selected Multiplicative Models: Mobility from Father's

(or Other Family head's) Occupation to Son's First Full-time Civilian
Occupation, U.S. Men Aged 20-64 in 1973

Son's occupation

rather s

Partial tablit Pull table Model MC G
2 df a G2H/G2T

Model occupation 1 2 3 4 S 1 2 3 4 5
Independence 19,-913 6167.69 16 20.1 100.0

Q1 I 0 1 1 1 1 2 1 1 1 1 Q1--main diagonal

2 1 0 i 1 I 1 3 1 1 1
blocked 11,963 6L1.06 11 5.5 11.1

3 1 1 0 1 1 1 1 4 1 1 Q2--diagonal and

4 I 1 1 0 1 1 1151 intra-stratum
moves blocked 8,469 50.05 7 1.4 0.8

5 1 1 1 1 0 1 1 1 1 6

Q3--diagonal and
inner dia7onals

02 1 0 0 1 1 1 2 3 1 1 1 blocked 5,520 15.67 3 0.6 0.3

2 0 0 1 1 1 4 5 1 1 1

3 1 1 0 1 1 1 1 6 1 1
Sum of frequencies excluding those fitted exactly-

under tha model.
4 1 1 1 0 0 1 1 1 7 8

5 1 1 1 0 0 1 1 1 9 10

Q3 1 0 0 1 1 1 2 3 1 1 1

2 0 0 0 1 1 4 5 6 1 1

3 1 0 0 0 1 1 7 8 9 1

4 1 1 0 0 0 1 1 10 11 12

5 1 1 1 0 0 1 1 1 13 14



TABLE 15

Ratios of Observed Frequencies to Estimated Frequencies at Quasi-

Independent Level Under Three Models of Quasi-Independence: Mobility

from Father's for Other Family Head's) Occupation to Son's First

Full-t1 '704,1114n Occupation, U.S. Men Mod 20-64 in 1973

Model

Father's
occupation

'-n's occupation

1 2 3 4 5

QI 1. Upper nonmanual 3.80* 1.51 1.06 .79 .62

2. Lower nonmanual 1.73 1.35' .73 .77 .66

3. Upper manual 1.06 .9) 1.484- 1.02 .82-

4. Lower manual .81 1,06 1.08 1.63' 1.45

S. Farm .71 .67 .99 1.28 18.1*

Q2 1. Upper nonmanual 4.94* 1.86* 1.08 .97 .93

2. Lower nonmanual 2.48* 1.84* .89 1.04 1.10

3. Upper manual 1.10 .91 1.211' 1.00 .98

4. Lower manual .91 1.13 .96 1.74* 1.90*

S. Tara 1.00 .89 1.11 1.70* 29.77*

Q3 1. Upper nOnmanual S.33* 1.81* .98 1.01 1.04

2- Lower non anal 2.46' L64' .74* .99 1.13

3. Upper manual 1.01 .76' .93' .88' .94

4 -__Loweemanual .94 1.03 .82* 1.73* 2.03*

S. Fare 1.10 .89 1.02 1.81' 33.92*

*Cells ignored (or fitted exactly) under the model.

TABLE 16

Expected Frequencies Under Model Q1: Mobility from Father's (or Other

Family Head's) Occupation to Son's First Full-time Civilian Occupation.
U.S. Men Aged 20-64 in 1973

Father's
occupation

Som.'s occupation

1 2 3 4 5

1. Upper nonmanual 372.3* 344.1 285.6 811.5 60.1

2. Lower nonmanual 319.5 387.7' 321.8 914.5 73.3

3. Upper manual 754.9 697.7 579.0* 1645.5 131.9

4. Lower manual 934.8 864.0 717.0 2037.7' 163.3

S. Farm 578.6 534.8 443.8 1261.2 101.1*

'Cells ignored (or fitted exactly) under the modal.



TABLE 17

Manual Fit of Moael 93 to Table 1

Son's occupation

father's
occupation 1 2 3 4 S Effect

A. Log of frequency in Ikted cells 'tow mews.

6.460 3.696 5.291

6.51S- 3.881, 1.214t-

4.680 5.681

- 6.724

- - 5.994

I. Upper nonmanual.

Z.- Lower nommansal-

-

-
- 5.71a
-

3. Upper manual 6.682 - -

4. Lower manual 6.6' 6.818

S. farm 6.u14 5.478 6.089

8. Data less row means

1. Upper nonmanual - - .419

2. Lower nonmanual - -

3. Upper manual 1.001 -

4. Lower manual -.095 .094 -
S. ?arm .020 -.116 .095

Column semi .309 -.011 .257

1.175 -1.595
1.337 -1.337
- -1.001
-- - -

-

1.256 -L311 -

C. Data lees column means Mow median

1. Upper nonmanual - .162 -.081 -.284 -.081

2. Lower nonmanoal- - - - .001 -.026 .028

3. Upper manual .692 - - .310 .50I

4. Lower manual -.404 .101 . - - -..:ML

S. farm -.289 -.105 -.162 - - .162

, D. Data less row medians

1. Upper nonmanual - - .243 .000 -.203

2. Lower nonsanual - - - .053 -.054

I. Upper manual .191 - - --.191

4s. Lower manual -.214 .235 . - -

S. farm -.127 .057 .000 - -

Column median -.127 .156 .122 .027 -.191

I. Data less column medians Pow median

1. Upper nonmanual - - .:21 -.027 -.012 -.012

2. Lower nonmanual - - - .026 .137 .082

3. Upper manual .318 - . 0 .159

4. Lower manual -.127 .099 - . 04, - -.014

S. tams o -.099 -.122 - - -.099

t. Data less Tow medians

1. Upper nonnanual - - .133 -.015 .000

2. Lower nonmanual .. - -,456 .055

3. Upper manual .159 - - -.159,

4. Lower manual -.113 .113 - - -

S. ?arm .099 .000 -.023 -

Column median .099 .014 .055 -.036

1. Upper nonmanual

2. Lover 'Immanuel
3. Upper manual
A. Lower manual
S. tars

0. Data less colummwAians

- - .070

- - -
.060 - -

-.21: .057

.00 -.056 -.078

M. Data lees row medians

1. 1.:z-r nonmanual - - .057

2. Lower nonnanual - -

3. Upper manual .110 - -

4. Lower manual -.134 .133 -

S. Farm -.056 .000 -.022

Column median -.056 .060 .018

2. Data less column medians

1. Upper nonmanual - - .039

2.. Lower nonmanual - - -

3. Upper manual .054 -

4. Loves mutual -.190 .047

S. Farm 0 ,-.0168 -.040

.021

-.020
-

-

.000

-.0.38

-

-.019

-

.000

Mow median

.000 .021

.05S" .018-
-.159 -.050

- -.078

- -.054

-.021
.037

-.109

-

-.021

Row median

.000 .019

.058 .020
-.0118 -,017

-.062

- -.040

Offte Sae text for lanation.
J2

111=....



TABLE 18

Cumulation of effects from Table 17

Occupation

Panel of Table 17

TotalA B C D E F G H

Row effects

1. Upper nonmanual 5.291 -.081 -.012 .021 5.219

2. Lower nonmanual -5.218 .028 .082 .018 5.346
3. Upper manual 5.68.1 .501 .159 -.050 6.291

4. Lower manual 6.724 -.150 -.014 -.078 6.482
S. Farm 5.994 -.162 -.099 -.056 5.677

Column eflects

1. Upper nonmanual .309 -.127 .099 -.066 .337

2. Lower nonmanual -.011 .156 .056 .068 .269

3. Upper manual .257 .122 .055 .018- .452-

4. Lower manual 1.256 .027 -.036 -.019 1.228

5. Farm -1.311 -.191 .000 -.021 1.523

93



TABLE 19

Summary Analysis of Model Q3 Fitted by Medians

Son's occupation
Father's

occupation 1 2 3 4

A. Exicted logs of frequencies in cells ignored in fitting-

1. Uppeenonmanual 5.556 5.488 - -
2. Lower nonmanual 5.683 5.615 5.798 -

3. Upp4r manual 6.560 6.743 7.519
4. Lower manual - 6.934 7.710P

5. Farm - - 6.905

-

-

-

4.9597

4.154

8.. Observed less :expected Loge of frequencies

1. Upper nonmanual 1.698 .768 .039 .0:9 .000
2. Lower noTulanual :902 .647 -.261 -.01 .058
3. Upper manual .054 -.086- .009 -.095 -.088
4. Lower manual --.190 ..067 -.286 .399 .509
5. Farm .000 -.068 -.040 .480 3.359

C. Antilogs of entries in panel B

1. Upper nonmanual 5.46 2.16 1.04 1.02 1.00
2. Lower nonmanual 2.46 1.91 .77 .98 1.06
3. Upper manual 1.06 .92 1.01 .91 .92

4. Lower manual .83 1.07 .75 1.49 1.66
S. Farm 1.00 .93 . .96' 1.62 28.76

°94



TABLE 20

Respondent's Education (Years of School) by Sibling's Education:
Wisconsin Sample

Respondent's Sibling's Education
Education ,12 13 14 15 16 17+ Total

A. Frequencies

881 51 53 27 109 58 117912

13 65 8 ! -7 7 18 6 111

14 40 9 14 7 14 11 95

15 23 7 4 2 6 6 48

16 91 20 12 9 77 53 262
17+ r 57 14 13 4 59 51 198

Total 1157 109 103 56 283 185 1893

B. Row Percentages

t2 0 74.7 4.3 4.5 2.3 9.2 4.9 100.0

13 58.6 7.2 6.3 6.3 16.2 5.4 100.0

14 42.1 9.5 14.7 7.4 14.7 11.6 100.0

15 47.9 14.6 8.3 4.2 12.5 12.5 100.0

16 34.7 7.6 4.6 3.4 29.4 20.2 100.0

17+ 28.8 7.1 6.6 2.0 29.8 25.8 100.0

Total 61.1 5.8 5.4 3.0 14.9, 9.8 100.0

C. Column Percentages

2 76.1 46.8 51.4 48.2 38.5 31.4 62.3

13 5.6 7.3 6.8 12.5 6.4 3.2 5.9

14 3.5 8.3 13.6 12.5 4.9 5.9 5.0

15 2.0 6.4 3.9 3.6 2.1 3.2 2.5

16 7.9 18.3 11.7 16.1 27.2 28.6 13.8

17+ 4.9 12.8 12.6 -7.1 20.8 27.6 10.5

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0

D. Estimated Frequencies Under Symmetry (G
2

= 11.59 with 15 df)

1168
110

99

52

272.5
191.5

1893

12 b31 -58 46.5
13 58 8 8

14 46.5 8 14

15 25 7 5.5

16 100 19 13

17+ 57.5 10 12

rotal 1168 110 99

25
7

5.5

2

7.5

5

52

100
19

13

7.5
77

56

272.5

57.5
10

12

5

56

51

191.5

E. OW (or Column) Percentages Under Symmetry

12 75.4 5.0 4.0 2.1 e 8.6 4.9 100.0

13 52.7 7.3 7.3 6.4 17.3 9.1 100.0

14 47.0 8.1 14.1 5.6 13.1 12.1 100.0

15 48.0 13.5 10.6 3.8 14. 9.6 100.0

16 36.7 7.0 4.8 2.8 28. 20.6 100.0

17+ 30.0 5.2 6.3 2.6 29. 26.6 100.0

Total 61.7 5.8 5.2 2.7 14. 10.1 100.0
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TABLE 20 (continued)

Respondent's Sibling's Education
Education 12 13 14 15 16 17+ Total

F. Observed/Expected Frequencies Under Independence (G
2
= 333.7 with 23 df)

.83 .77 .62 .50

1.16 2.13 1.08 .55

2.71 2.49 .99 1.18
1.53 1.41 .84 1.28
.84 1.16 1.97 2.07

1.21 .68 1.99 2.64

12 1.22 .75

13 .96 1.25
14 .69 1.64
15 .78 2.53
16 .57 1.33
17+ .47 1.23

G. Multiplicative Parameters of the Saturated Row x Column Model

12 2.48 .83 .99 .91 .82 .66

13 1.33 .95 .95 1.71 .98 .50

14 .73 .95 1.69 1.52 .66 .81

15 .93 1.64 1.07 .96 .65 .98

16 .72 .92 .63 .85 1.64 1.70
17+ .62 .88 .93 .52 1.71 2.24

H Mosteller's Adjustment to Uniform Marginal Sums

12 2.16 .79 .92 .82 .75 .57 6.00
13 1.19 .93 .92 1.59 .93 .44 6.00
14 .66 .93 1.63 1.42 .64 .72 6.00.

`.15 .86 1.64 1.06 .92 .63 .89 6.00
16 .65 .90 .61 .80 1.54 1.51 6.00
17+ .52 .81 .85 .45 1.51 1.86 6.00
Total 6.00 6.00 6.00 6.00 6.00 6.00 3@.90

I. Parameter Labels Under Multiplicative Model

12 1 2 - 2 2 2 2

13 2 2 2 2 2 2

14 2 4 2 1 2 2 2

15 2 2 2 2 2 2

16 2 2 2 2 1 1

17+ 2 2 2 2 1 1

J. Relative Densities Under Multiplicative Model (G
2
= 22.59 with 24 df)

12 2.40 .75 .93 .77 .92 .75

13 .97 .64 .67 1.09 .81 .42

*. 14 .30 .97 1.80 1.46 .86 1.04
..le... .79 1.30 .89 .72 .64 .98

16 .87 1.02 .74 .89 2.26 2.38
17+ .72 .95 1.05 .53 2.29 3.03

Note: Parameter estimates under the model of Panel J are 61 .1 2.40 and d2 =
.84;

1

/6
2

w 2.85.
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TABLE 21

Respondent's Broad Occupation Group by Friend's Occupation: Detroit Men
(Laumann's Data from Jackson)

Friend's
Occupation 1

Respondent's Occupation
2 3 4 Total

A. Frequencies

1. Upper White Collar 329 162 84 87 662
2. Lower White Collar 226 284 123 165 798
3. Upper Blue Collar 83 103 265 218 669
4. Lower Blue Collar 55 97 174 418 744
Total 693 646 646 888 2873

B. Column Percentages

1. UWC 47.5 25.1 13.0 9.8 23.0
2. LWC 32.6 44.0 19.0 18.6 27.8
3. UBC 12.0 15.9 41.0 24.5 23.3
4. LBC 7.9 -15.0 26 9 47.1 25.9
Total 100.0 100.0 100.) 100.0 100.0

C. Observed/Expected Frequencies Under Independence (G
2
= 778.17 with 9 df)

1. UWC 2.06 1.09
2. LWC 1.17 1.58
3. UBC .51 .68

4. LBC .31 .58

D. Estimated Fre uencies Under uasi-Symmetry

.56

.69

1.76
1.04

(G
2

=

.43

.67

1.05

1.82

2.25 with 3 df)

1, UWC 329.0 168.3 83.7 81.0 662
2. LWC 219.7 284.0 128.3 166.1 798
3. UBC 83.3 97.8 265.0 223,0 669
4. LBC 61.0 95.9 169.0 418.0 744
Total 693 646 646 888 2873

E. Starting Values Under Quasi - Perfect Choice ;Blocked Diagonal)

1. UWC 0 1 1 1

2, LWC 1 0 1 1

3. UBC 1 1 0 1

4. LAC 1 1 1 0

F. Observed/Expected Frequencies Under Quasi-Perfect Choice (G
2
= 188.92

with 2 df)

1. UWC 3.57* 1.55 .81 .67

2. LWC 1.47 1.61* .77 .84

3. UBC .72 .72 2.05* 1.47
4. LBC .62 .82 1.53 3.22*

*Cell ignored in estimating the model.
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TABLE 21 'continued)

Friend's
Occupation

Respondent's Occupation
2 3 4 Total

G. Parameter Labels Under Multiplicative Model

1. UWC
2. LWC
3. UBC
4. LBC

5 2 1 1

2 2 ,. 1 1

I I 3 2

1 1 2 4

H. Relative Densities Under Multiplicative Model (G2 = 6.46 with 5 df)

1. UWC
2. LWC
3. UBC
4. LBC

3.27 1.22
1.29 1.23
.66 .62

.50 .67

.67 .60

.57 .66

1.71 1.21

1.29 2.66

I. Startin Values Under Model of Linear Densit Gradient (G
2
= 7.63

with 9 df)

1. UWC 5 2 1 1

2. LWC 2 2 1 1

3. UBC 1 1 3 2

4. LBC 1 1 2 4

Note: ParameW estimatesunder the model of Panel H are SI = .622, 62 =
1.245, 6

3
= 1.712, 6

4
= 2.664, 6

5
= 3.268.

9 s



TABLE

Tests for Change in Mobility from Father's (or Other Family Head's) Occupation
to Son's First Full-time Civilian Occupation, U.S. lien Aged 20-64 in 1973
by 5-Year Age Cohorts

Model Change

Level
blanked out

(PA ) ) (WA)(10 (PA ) ) (WA)(HA)

Unblocked
levels Blocked level

aG
2

df G
2

df G
2

df G
2

df

None 235.3 140 175.6- 108 59.7 32 al IM --

1 229.2 132 175.6 108 53.6 24 6.10 8 >.500

2 216.6 132 175.6 108 41,0 24 18.7- 8 <.025

3 233.3 132 175.6 108 57.7 24 2.0 8 >.501

4 165.0 96 140.8 72 24.2 24 35.5* 8 <.001

5 11.9 24 0.0 0 11.9 24 47.8* 8 6.001

NOTES: P = father's occupation, W = son's first occupation, A = Age,
H = design matrix from Table 4.

*Significant at the a = .05 level in a simultaneous test;
critical x2 es 20.09, given tha 5, testa reported here.
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Volume of Mobility from Father's (or Other
Family Head's) Occupation to Son's First
Full-time Civilian Occupation, U.S. Men
Aged 20-64 in March 1973
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FIGURE 2

Schematic Arrangement of Likelihood-Ratio Test Statistics (G
2

)

for Change in Interaction Parameters and Lack of Fit of
Multiplicative Models

Entires at
Interaction parameters

kth level Constant Variable

Fitted under
the model

Blanked out

Ga2 : change and lack Gb: lack of fit at
of fit at all all levels of
levels of the the design
design

Cc
2

: change and lack
of iit at all but
the kth level of
the design

,
Gd: ack of. fit at

but the kth`
level of-the
design
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FIGURE 3

Test Statistics for Selected Hypotheses About Interaction in Two or

More Classifications

Null hypothesis

1. No change in interaction
parameters at any level
of the design

2. No change in 'interaction

parameters at any but the
kth level of the design

3. No change or lack of fit
at the kth level of the
design

4. No lack of fit at the kth
level of the design

Test Degrees of
statistic freedom

G
2

- G
2

b
(L -1) (K -1)

e

G
2

- G
2

(L-1)(K-2)
c d

G
2

- G
c

Lbik-1
a

2 2
Gb - G

d
L(Mk-1)

2 2 2
5. No change in interaction (Ga - Gb) -

2
- Gd) L-1

parameters at the kth
level of the design

2
NOTE: See Figure 2 for definitions of G

2
, G.

2
, G2, G.

a

L number of cross-classifications compared,
K number of levels of the design matrix,
Mk number of independently variable cells

at the kth level of the design matrix.

.41
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