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ABSTRACT

The Structure of Social Relationships: Cross-Classifications
o of Mobilicy, Kinship, and Friendship

The paper describes a multiplicative (Toglinear) model for square tables

(or other cross-classifications) which is helpful in locating cells where
counts are relatively dense or sparse. This specification eliminates fhe
confounding of prevalence and interaction effects, which has plagued other
schemes for interpret%ng such tables. The model yields a parsimonious set
of parameters which describe the table, and goodnéss of fit can bes assessed
with standard inferential procedures. A multiplicative specifiration which_
fits a particular cross-classification may be obtained in any of several ways.
For example, one may begin with a complete or partial theory aSout the cross-
classification, or one may begin without a theory. By examining residuals
fro. it under a given model,‘jt is possible to improve tﬁe specificaticn
in successive rounds of e§tima}ion. The counts may be smocthed or aggregated

. to minimize the chances of fitting and interpreting trivial or unreliable
fluctuations in them, Maximum-likelihood estimation is emphasized, but
diagnostic .information may be obtained using computationally simpler algorithms.
The model (and associated inferéntial methods) can also be used in the com- o
parison of two or more classifications. 7he exposition is illustrated using e

data on che occupational mobility of Ame-ican men, on the educational attain-

Smere s v e

ments of Wisconsin sibling-pairs, and on the occupations of male Detroit

friendship-pairs.
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1ne general prcblem may be stated as follows: Having given the number
of instances respectively in Which things are both thus and so, in they are
thus but not so. in which they are so but not thus, and in which they are

neither thus nor so, it is required to eliminate the general quantitative

“relativity inhering in the mere thingness of the things, ond to determine the

special quantitative relativity subSisting between the thusness and the soness

-of the things:

Doolittle (1888) as quoted by
Goodman end kruskal (1959:131)
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Social scientists often analyze square tables of couiis, where persons,
rehuonshi?s, gr other subjects of}interest have been classified twice
using the same set of categories. For exaq:le.nin studies of social mobility
persons are often classified by their own occupation {or educatjon or social
class) and by the occupation (¢.)r education or social class) of their fathers.
Marriages may be classified by the occupation,. education, ethnicity, or reli-
gion of each mate. Persons may be cross-class!f;ed by place of birth and
place of résidence, by political party preferencé before and after an elec-'
toral campaign, and so on.

Hhile‘these squ‘ar~e tables of counts may be interpreted and analyzed in
many ways, one plausible and traditional interpretation says that each
observed count has two components. First, there are effects of the prevalence
of observaticns within each category of the classifications taken singly.

For example, in a classification of American men by their own and by their
fathers’ jobs, one expects to find many blue-collar sons with blue-collar
fathers, simply because many men work at blue-collar jobs. Second, there
are greater or lesser tendencies for categories to interact, that is, to
occur jointly. To continue the example, one expects to find wany men in the
'sm occupations as -their fathers and few in vastly dissimilar occupations.
The verbal distinction between prevalence and interaction is easy to
maintain, but for many years a sound statistical representation of it tluded
the efforts of social scientists. The history of this pursuit and the common
faults of proﬁosed solutions have been reviewed by Hauser (1978; also, see
~Feathemn and Hauser 1978: Ch. 4). In the next section of this paper |

describe a class of multiplicative (*5gdinear) models whose parameters,corre-

spond exactly to the intuitive concepts of prevalence and interaction effects.
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tmpirically, the correspondence be*ween parameters and concepts only becomes
useful when a model of the desired form fits the data. Since one always
assumes the existence of prevalence effects for categories of the classifi-
catory variables, the empirical problem is to specify the form of the inter-
actions. Sometimes, scciological t‘~e?ry will provide sufficient guidance

1 model specificati;m (Goldthorpe and Payne 1978, lope 1980), but,often
theory will provide incorrect, incomplete, or contradictory directions. Ffor
these reasons I describe methuds for assessing gcodness of fit and for improv-
ihg specificaction through the examination of residvals. After illustrating
these ideas in an exploratory amalysis of an American father-son occupational
mobility table, 1 show how several conventional scatistical analyses of the

same table lead to )misleading conclusions. Users of empirically based
search strategies run the risk of overfitting data; that is, one loses
parsimony and relfability by seeking to fit every feature of a \sanple of
observztions. In order to minimize such misuses of empirically guided search
methods, | have elsewhere described methods of aggregating and smoothing data
prior to model sefection (Hauser [ 79). In the next se.tion of the paper |

give two ore empirical fllustrations of the model: an analysis of similarity

in the educaticnal attaimments of Wisconsin sibling ;)airs and an analysis of'
similarity in the occupational positions held by Detroit men and their friends.
The traditiona} distinction between prevalence and interaction effects is
motivated in part by an interest in cumparing these components across time

and place or between segments of a society. In the lastl section of the paper
I use American mobility data for several cohorts to show how mpdels ot the

present form may be used to measure and io intérpret diffcrences among

populatiw.
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A Hultiplicative Model of the Mobility Table .

‘ My model is a special cas;e of Goodman's (1972c) general multiplicative
wode) ,fog cross-classified data, but I take a slightly different approach
from him in developing mdel; of the mobility table. .Flrst. I Vimit my
attentjon to the class of models in which there is only one interaction

ﬁpiraléter for each cell %a the classification. Second, I do.not assume that

-the categories a're ordered. Third, | emphasize the use of exploratory methods

“ in nodel‘ specification. Elsewhere, these models and methods  have baen applied
in analyseé of the 1949 British mobility table {Hauser 1978), of several

MAerican mobility tables (Feathgmn and Hauser 1978: Ch. 4), of Regoff's

(1953) Jndianapolis mobility tables (Baron 1977, 1980), o a 1972 British

mobility table (Goldthorpe and Payne 1980), and of an American ethnic inter-

marriage table (Shavit 1978).

let x"; be the observed frequency in the ”th c'ell of a classification
.where i = 1,...,1 and § = V,...,J. In the present context the same categories
will appear in the same order in rows and columns, and the table will be -
square with I = 0. For k = 1,...,K, let'Mlt be a mutually exclusive and

exhaustive partition of the pairs (1,)) in which

E[xU] .y aByv g8y g L 4}

where 6” =68 for (1.4)c "k' subject to the normal fzation I'I:S' = ;VJ = lncu = ],

1
. The normalization of parameters {s a matter of convenience, and we choose the -

\

value of a so ft will hold. Note that in contrast o the conventional
* structural modei for counted data (Bishop, Fierberg and Holland 1975: Ch. 2),
the interaction effects in rquation 1 are not constrained within rows or
columns ev;n though t.be marginal frequencies are fltied e:mctly.2
. o
~ ERIC
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The model says the expected frequencies are a product of an overall
effect (a), a row effect (B'). a column effect ('j)’ and @n interaction effect

(6”). The row and column paf-ameters correspond to the ‘concept of prevalence. »

Fer example, in an occupational.mobility table they reflect oscupatipnal

- supply and demand, demographic replacemcat processes, and past and present

technologies and economic conditions. The certs (1, 3) are assigned to K
mitually exclusive and exhaustive subsets, and each of those sets shares a

common interaction parameter, 6k' Thus, aside from total, row, and column

a4

effects, each expected frequency is determined by only one interaction para+ B |

meter, which reflects the density of observations in that cell Yyelative to -

that ir;‘other cells in the table. That s, the {ateraction parameters of &

)

_the mode? correspdnd directly to the concept of the joint density of observa-
tions (White 1963:26), and they may be interoreted as indexes of Lhe sorial
distance between categories of the row and cclumn classifications (corpare .
Rogoff 1953:31-32).

While my model s a special case of Goodman's (1972c, sec. 3} general
"mltipllcatlve wodel, unlike several of the mdel‘s which Goodman (Table V)
applied to the British (and Danish) mobilir / tables, my model does not assume

3 Of course, the assumption of ordinality

ordinal measurement of occupations.
may help in interpreting results, or empirical findings may be used to explore
the metric properties of a .classlﬂcatton. The hierarchical dimension is
strong ir most occupational classifications, and the present appllcationse
are artificia) in ignoring that. -

For the n:\del to be informative, the distribution of levels across the
cells of the table must form a meaningful pattern, and one in nhich the
parameters are identified (Mason, Mason, Winsborough and Poole 1973; Haberman

1974:217).  Furthér, the number of levels (K) should be substantially less 10

-
v



thar the number of cells in the table. These latter properties acé partly
matters of substantive and statistical interpretation and Jqument. ratuer
than characteristics of the general model or of,the 22t). 1 have found it
difficult to interpret models where the number of levels is much greater
than the nuber cf categories recognized in the occupationa: classification.
It may be helpfulto present the model of equation 1 fn more than qne
way: There is a pronounced’}igﬁtward skew in muitiplicative effects because
decremental effects are bounded between O and !, while incremental effects
are unbounded. It is, for this reason, .useful to take logs of frequencies
and parameters aﬁd to write the-model in additive form; then’!Bcremeﬁtal and
decrene;tal effects may each ranée from zero to infinity in absolute value.
lit u‘ = log «, u;(‘i s log 8y ";(j) = log‘vj. u;z('J) * log 61)' and
U3(q) " jog L The model is . .

%
*

‘ 'og..i" z g + u;(i) + U;(:) + 0;2("’) (2)

* *
uhere Yatig) Y3k) for (i, J) ¢ H&. and “k ts defined as bef(}re.4 Here,

-

M . * * *
the normalization of paramelers is iyl(t) = juz(J) » i;u'?(‘J) = 0.
A slight variation of equaiion 1, which I present in sultiplicative form,

is more suggestive of the way in which | have manipulated empirical data for
purposes of estimaifon and testing. With “k defined cs before, lei
<

E[x'J] T oMt aB, 8 for (I; 3 ey (3)
and
mge * 0 for (1, 5) W, : ()
subject fo the normalization ?B' = :vj t :62* = ], where n Js the nueber of
Q ' ‘ ‘ )
11
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ells assigned to the kth level. This version of the model suggests 4
i-dir2nsional representation of the original 2-dimensional table in which>
J(K-1) oWathe {nterlor cells contain structural zeros; and the 6r|g|nal 1J
requencies are fittedrby‘row (B‘). cotumn (YJ) And.level (6k) paraneters, ?i
s under a model of quasi-independence (Gooduub 1972¢:689; Bishop, Fienberg

na Hoiland 1975:225-226). )

To estimate and test models of the present form | have represented crous-
ladsifications as incomplete multiway arrays, and 1 have used Fay and
oodman's (1973) computer pWagram, ECTA, to estimate frequercies by iteratlve.
escaling and €o run tests of goodness of fit (and other hypotheses). Under
he usua} sampling assuwntions, e.g., that the data were obtained by indepen-
ent Poiss&n or simple multinomial samplln;. maximum Vikelihood estimates are
btained in'ihis way (Goodman 1972c:663-667; Bishop, Flenberg and talland 1975:
06-298). The likelihood ratio test statistic (GZ) ;omputed by the program
s asymptotically distribuied as Xz with Hegrees af fregdom equal to IJ, the
umber -cf cel!s in the array which are not structural zeros, less the number
f indejiendent parameters which have been estimated. Often this wil) be IJ - 1

(1-1) - (J-1) - (K-1) = (1-1) (J-1} - (K-1), but it may he greater, depend-
ng on the arrangement of levels within the original’ 2-way array (Bishop,
ientery and Holland 1975: Ch 5, ep. 227; Béland and Fortier ia}ﬂ). Breat
are should be used tn computing degrees of freedom when the design specifies
eparabie subtables (Bishon, Fienberg and Holland 1975: Ch. 5).

£C7A does not estimate parameters for models of incomplete tables. I
ave estimated the (additive} parameters by regressing logs of estimated
requencies on duimy-variable representations of the rows, columns, and levels
of the design. That is, | created a dummy variable for each row (but one),

or each column (but one), and for each level (but one); then | regressed
h ]

12
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logs of estimated frequencies on these three sels of variables. By construc-
tion this regression completely accounted for the estimated rreauencies. |
used an auxiliary program to renormalize the parameter estimatos as deviations
from the grand mean and to compute and display residuals. Using cther
packaged programs for the analysis of categorical data, one can estimate the
models and obtain parameter estimates and measures of fit in a single pass
by the methods of maximum Vikelihood or weighted least-squares (Evers and
Namboodiri 1979; Goldthorpe and Payne 1980).

fh presenting goodness of fit tests and comparing alternative modelis.
it is convenicnt to vse a single letter to denote each variavle. Ffor
example, in the next section | let P = father's occupation, S = son's occu-
pation. and 4 = the lévels of interaction to which the several cells in
the n_oblilty table are assigned in the model. Following the conventional
notation, in which thé highest order marginal distributions fitted under a
given model are listed in a serfies of parentheses, | denote- the model by
(PY(S)(H). Mritten in this form it is clear that the wodel is one of stat-
istical independence, conditional on the assigmment of cells in the P by S
table td levels of N, 'Uncar the mode} the association between P and S is
spurious; no association (quasi-independence) hetwzen P and S occurs within
levels 3f H (Goodman 1272c:689). One could think of the sche- as a latent
factor or latent structure model in which the levels of H are latent classes
((3oodman 1974:1'231). However, the assignment of cells and hence, of observa-
tions to lewels of H, {s sirictly detev:mlnlstlc. so the term "manifest )

class” might be more fitting.

Mobitity to First Jobs of American Men

Table 1 gives frequencies in a classification of son's first, full-time

r'lvlﬂian occupation by father's (or other family head's) accupation at son's

B
16th birthday smong American mer, who were aged 20 to 64 in 1973 and were not
currently enrolled in school. The data were obtained in the Occupational
Char{ges in a Generation (OCG) s .pplement to the March 1973 Current Popula-

tion Survey (Featherman and Hauser 1975, 1978).5 Table 2 is a convenient

TABLE 1 ABOUT MERE

display of the final model for ihe data of -Table 1. Each ngmerlc entry in
the body of the tab'e gives the level of "k to which the coirespondlng entry
in the frequency tabl: was assigned; one may think of them as subscripts of
dummy variables pertaining to the density of interaction in the several
regions of the table. Formally, the entries are merely labels, but for
con.enfence in interpretation the numeric values are inverse to the estimated
density of mobility or immobility in the cells to which they refer. 1 offer

no a priori rationale for the specification of interaction effects in Table

2; 1t is the outcome of a search procedure that I describe later.

TABLE 2" ABOUT HERE

On this understanding the model says that, aside from conditions of
supply and demand, immobtlity is highest in farm occupaiions (revel 1) and
next highest in the upper nonmanual category (level 2). If one takes the
occupation groups as ranked from high to low in the order listed, one may
say there are zones of high and almost uniform density bordering the peaks
at either end of the stitus distribution. There is one zone of high density
that includes upward or downwar -vements oetween the two nonmanual gyroups
and immobility in the lower nonmanual group. Mobility from lower to upper
nonmenual occupations (level 3) is more Vikely than the opposite movement,

and the tatter is as Vikely as stability in the Jower nonmanual category l 4

ERIC o |
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(Yevel 4). Moreover, the densities of immobility in the lower nonmanual
category and of downward mobility to it are identical to those in the second
Lzone of relatively high density, which occurs near the lower end of the
occupational hierarchy. The s2cond zone includes movements from the farm
to the lowe: manual group and back as well as immobilily in the lower manual
group. Llast, ther= is a broad 'znne of relatively low density (level §) that
includes immobility in the upper manual category, upward and downward wobility
within the manval stratum, mobility between upper manual and farm 7. ups

and all movements between nonmanual and either manual or favm groups.

The design says that an upper manual worker's son is equally likely to be
immobi le or to meve to the bottom or top of the occupational hierarchy;
obversely, it says that an upper manual worker is equally likely to have been
vecruited from any location in the occupétloml hierarchy, including his own.
It is werth noting that four of the five interaction levels recognized
in the model occur along the main diagonal, and two of these (levels 4 and 5)
are assigned both to diagonal an¢é to off-diagonal cells. Thus, immobility
varies among occupational strata, and it is in some cases less: Hkely than
mability. Also, with a single exception the ‘ssign is symmetric. That is,
net of row and column effects upward mobility is more prevalent than downward
mubility within the nonmanual group. This asyswmetry in the design is striking
because i suggiests the powerabf upper white collar families t'o block at
least ore type of statuc loss and because it is the oply asymmetry in the
design. For cxample, Blau and Duncan (1967:58-67) suggest that there are
semi-permeable class boundaries separating white collar, bluve collar, and
‘farm occupations, which permit upward mobility but inhibit downward mobility.
The only asymmetry in the present design occurs within one of the broad

classes delineated by Blau and I)uﬂcan.6

ERIC 15 |
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Table 3 gives the row, coluam and interaction effects estimated in the
1973 OCG data under >he model of Table 2 for intergenerational mobility to

son's first Job. The estimates are expressed in adaitive form; that is, they

n

are effects on logs of frequencies under the. wodel of equation 2. The row
and coluan effects clearly show an intergenerational shift out of farming
and into white collar or lower blue cyllar occupations. These reflect temporal
shifts in the distribution of the labor force across occupatlons_. differential
fertility, and life-cycle differences in occupational posltions.' The inter-
action effects show very large differences in mobility and immobility across
the several cells of the classification, and these differences closely follow
my interpretation of the display in Table 2. Oifferences between interaction
effects may readily be interpreted as differences in the logs of the estimated
frequencies, net of row and column effects. For erample, the estimates say
that the immobility in farm occupations (at level 1) is 3.40 = 3.044 - (-.356)
greater (in the metric of logged frequencies) than the estimated mobility or

inmobility in eells assigned to interaction level 5 in Table 2. In multi-

plicative terms, immobility in farm occupations 15 e:"40

= 29.96 times greater
than mobility or fmmobility at level 5. It would be incorrect to attach too
much importance to the signs of the interaction effects reported in Table 3,
for they simply reflect our normalization rule that interaction effects sum

to zero {in the log-frequency metric) across the ce!ls of the table. Ffor
example, while the effects of levels 4 and 5 each reflect relatively low

densities, it is not clear that elther effect indicates “status disinheritance”

in the diagonal cells to which it pertains {compare Goodman 1969a. 1969b).
1n any event the effects do show a sharp density gradient across interaction

levels. The smallest difference, hetweer levels 3 and 4, lndlitg a relative




549, - 243 _ .306 _ § 36 times as great at level 3 than at level

* density e’
4. lamobility in farm occupations and in upper nonmanual occupations is
quite distinct from densities at other levels, but also ismobility in the
farm occupations is eJ'O“ gLEEZ A el.8|0 = 6.11 times as great as in the
upper nonmanual occupations.

Overall, the design resembles a valley in which two broad plains are
joined by a narrow strip of land between great peaks. The contours of the
peaks differ in that the one forming one side of the valley is both taller
and more nearly symmetric than that forming the other side.” Figure 1 is a
pictorial representation of the model.whose dimensions are based on my esti-
wates of the row, column, and interaction effects (in multiplicative form).
The base of the figure is a unit square; that is, ! have renormalized the
(multiplicative) row-and column effects so the sum of each set is one.
Further, the total volume under the surface is one. Thus, length and breadth
can be read as probabilities, and height is proportionate to probability.
Variations in interaction effects (the vertical dimension) are far larger than
those in the horizontal dimension. For this reason the vertical scale has

been compressed by a factor of 10, so vertical and horizontal distances are

not directly comparable.
FIGURE 1 ABOUT HERE

Evaluating the Hodel
7 The model of Table 2 provides less than a complete description of th~
wobi1fty data in Table 1. Under the model of statistical independence the
1ikel thood-rato statistic is G2 = 6167.7, which is asymptotically distributed
as XZ with 16 degrees of freedom. Witk the model of Table 2 as nuli hypothesis

° 12
create the five categories of H. By the usual inferential standards the wmodel
does not fit, for the probability associated with the test statistic is very
small. On the other hand the model does account for 98.9 percent of the
association in the data, that l‘s. of the value of G2 under independence.
Given the extraordinarily large sample size, small departures from froquencies
predicted by the wmodel are likely to be statistically significant.

Exact tests of the difference between any two interaction parameters can
be carrfed out in a straightforward way. Modify the model to combine the two
groups to be contrasted in a single interaction level, and fit the revised
model. Since the revised model is a special case of {nested within) the initial
model, the difference between the likelihood-ratio xZ statistics (Gz) of the
two models will be distributed as x2 with one degree of freedom. For example,
if I combine levels 1 and 2 of the present model, the revised .oodel yields

G2 = 676.3 with 13 df, so I reject the hypothesis ihat inmobility is the

same in the farm and upper white collar categories with G2 = 676.3 - 66.5 =
609.8 with 1 df.

By examining errors one can more fully evaluate the fit and perhaps see
how to improve the mode). Table 4 displays a measure of lack of fit for each

cell of the mobility classification. It expresses errors as natural logs of

*he ratios of observed frequencies to those estimated under the model:
!og(eu) = log (xU/mU) = log Xy log mu. (5)

where XU is the observed frequency and ';U fs the estimated frequency in the

ij”'

interpreted approximately as proportions. Thus, expressed in this way the

cell. As long as the errors are small, say, less than *.20, they can be

errors have a convenient interpretation, and positive and negative deviations

are expressed sysmetrically in the metric of the {1eglinear) model. for 1‘3

. 1(‘:"7- 66.5 with 12 degrees of freedom, since 4 degrees of freedom are used to

Aruitoxt provided by Eic:



1
example, the entry of .06 in the cell (3,1) says the observed mobility from
upper manual to upper nonmanual occupations is e'o6 = 1.06 times the mobility
estimated under the mdel.’ The entry of -.17 in the cell (2,3) says mobitity

A, .84 times the

from lower nonmanual to upper manual occupations is e
mobility estimeted under the model, {.e., 16 percent less. As suggested by

these two exasples, the approximatiun is better when the error is small,

TABLE 4 ABOUT HERE

. Under the model of Table 2 cells (1,1}, (2,1), and (5,5) are fitted
exactly, each by its own parameter. The fourth level--cells (1,2), (2,2),
(4,4), (4,5), and (5,4)--1s also fitted cinsely. The largest deviation is
the 4 percent underestimate of movement from lower manual to farm occupations.
€ach other deviation at level 4 is less than one percent. The lack of fit
in the model occurs primarily at level 5 of the design. There ts 8 positive
deviation of .10 in the one diagomal! cell {3,3) assigned to level 5, so
immobi1ity in the upper manual (skilled) occupations is not quite so iow as
tn sone other cells at the same level. At the same time the largest positive
error at level 5 is that for upward mobility from lower manual to lower noh-
manual occupations. The two largest negative errors at level 5 pertain to
the excheange between upper manuai and lower nonmanual occupations (cells (3,2)

and (2,3)). Even relative to the low density (presumed by the model) throuah-

“out level 5, there fs a blockace to movement between the skilled and lower

wMte--"'nlhr occupations. This is more striking because there is no similar
hindrance to exchange between the ski'led and upper white collar occupations
{cells (1,3) and (3,1)) or between the lower manual and lower nonmanual occu-
pations {cells (4,2) and (2,4)). From the entries in lable 4 one might argue
that the model and the fit could be improved by creating a sixth interaction
Q  to include cells (3,2) and (2,3) and, possibly, (1,5), which indicates
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a very low rate of mobility from upper nonmanval origins to firs: jubs in
farmln‘g.

The indexes of error in Table 4 are in a metric that facilitates {nter-
pretation and comparison, but they take no account of sampling variability,
which is inverse to expected frequency. Perhaps .the slmpiest way to take
account of sampling variability in the errors is to form the ratio

N
~

. -
2y = M. , ’ (6)

which s the square root of the component of the Pearson chi-square statistic
for each cell of the table. The llj are (roughly) interpretable as unit
normal devlates.a Since there are several more cells in the table (25) than
degrees of freedom under the model (12), the expected value of zfj is con-
siderably less than unity. illowever, | have not made 3 correction for that
here (see Bishop, Fienberg and Holland 1974:135-141).

‘;‘able 5 displays standardized errors from the mode! of Table 2. Again,
one 1s impressed with the close fit at level 4 and the heteroyeneity at level
5 of .the modrl. The interpretation of these errors must be tempered by the
results in Table 4, for the standardized errors are not in the metric of the
model . faken ia conjunction with earlier results, Table 5 also suggests a /
respeci fication of the model in which as a first step cells (2,3), (3,2) and
possibly other negative outliers would be assigned to a separate level.

Hoxever, because the sample is so large, | have not carried the analysis of

Table i beyond the mode! of Table 2.

TADBLE 5 ABOUT WFRE
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Moblitty Ratios
: One other index is particutarly useful in evaluating the specification
of interaction effects. From equation I, observed frequencies may be expressed

in terms of estimated parameters and errors:

Xy * a Byvybi ey - (7)

Divide both sides of equation 7 by the first three terms on the right-hand side

to obtain »
N JT) .
R, = - ¢ — = &, .e... (8)
i3 a8y 134

I call R,, the new mobility ratic, or, simply, the mobility ratio. In the

i
case of d;aqoml cells R:J is equivalent to the new immobility ratio proposed
by Goodwan (1969, 1969, 1972c; also, see Pullum 1975:7-8), but I suggest
the ratio be computed for ail cells of the table as an aid ‘n the avaluation
of model desion. 1f the model is specified correctly, the sstimated inter-
actlons (;U) wIl? be more useful in interpretation than the R;J. for the
Tatter wil) confound interaction effects with sampling errors (e”). On the

« other hand, when the model is not correctly specified, the errors (eu) will
reflect specification error as well as sampling variability. For this reason
the R:J can be useful In revising 3 model which does not Fit the data.

*

To illustrate the use o’ m_a”. Table 6 gives these indexes for the
counts of mobility to first jobs. Obviously, the pattern of the R:J conforms
te nur earlier description of the design. Morcover, as'uy not have been

< Obviuu® from the 3“ {Table 3) and the ey (Table 4) taken separately, the

fit is gord enough so there is no overlap ir interactions across levels

‘:l racognized in the design. For example, If immobility mm; skilled workers--

Q 1 (3,3)--1s Mgh relative to mobility in other ceiis at level 5 in

ERIC
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TABLE-6 ABOUT HERE

Table 2, the immobility in tnat category is still substantially less than
the frmobility in any other occupation group. Again, level 5 appears to be
heterogeneous, but | have not carried the analysis of Table 1 beyond the
model of Table 2,

, Conceptually, R:j s related to R”. Rogoff’s (1953) social distance
wmobil ity ratio ;nd Giass’s (1954) index of association:

X

iy ~ W“Y‘:fﬁ“ o &
where N s the fm of observed counts, and Xy, and l‘j are, respectively,
sums of counts in the I"' row and in the J"‘ column. Both RU and R;j may be
interpreted as ratios of observed counts to those estimated from a scale
factor and row and column effects under .a given statistical mode) (see Hauser
1978:927,-924). 1Indeed, RU = R;j in the special case of the model of simple
statistical iIndependence, which specifies no interaction effects. !n terms
of equation 1, Ry, becomes R, , when we specify 6, = | for all 1 and J.

As a measure of interaction, RU has several undesirable properties.
Althougn RU was supposed to be independent of prevalence (row and column)
effects (Rogoff 1953:32), it varh nversely 2s the marginal propertions in
the I"‘ row and jth column. iheme um of “U is the reciprocal of the
larger of the marginal proportions in the I"‘ row and th column. Also, the
set of RU for a square table determines the row and column marginal distri-
butions. This renders RU useless in comparing interaction effects across
tables with differing marginal distributions, for the multiple sets of “'.i

cannot take on values corresponding to the hypothesis of no chanye. Further,

the “U cannot be symmetric across the main diagonal (ll'J - R“)--showsng,

22
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for example, aquel vmpensltlgs tmrd upward and downward mobility<- unless
the o(tserved counts are symmetric (x'J . xj'). Thus, propensities toward
upward and downward mobility cannot appear to be the-same unless tha fre-
quencies of upward and dowward mobility are the ;m, and, lonsequently,
the two marginal distributions are the same (Blau and Duncan 1967:'9:'.*—97,
Tyree 1973). _.These um;eslrable properties all arise because, when the model
of simple statistical independence does nct fit the data, RU confounds
prevalence effects (of rows and columns) with interaction effects (Goodman
1969). That fs, the Important diiference between R,, and Ry, Is that the .
new mobility ratio is obtained from a model that fits the data, .so row and
column ef;ccts are not confounded with relative den;ltles (Interactions) in
the interfor of the table. For these reasons R;J does not have the undesir-
able properties of RU. In general, (1} R:J is not bounded; (g) in a square
table the set of R:J do not determine the marginal frequencies {nor the
* * »

marginal effects); and (2) the set of "J can be symmetric, {i.e., R” - R“,
‘ under any set of marginal frequencies (or effects) (compare Tyree 1973:
577-580). )

In this context it 1s instructive to show the relationship between u;er
parsmeters of the multiplicative model and the marginal frequencies of the
wobility table. The model fits the observed m;glml frequency distributions,

't!ut is, f‘” = x'J and }-” T L 1]

oy f aBpyysyy e 1‘3?'6” *x (10)
and
oy " §;‘;';Jau ELUTRE T "

J
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thus. the marginal frequency in a given column (or row) is the product of
the correspanding c.lumn (or row) effect, a scale factor, and a weighted
sum of the row (or colum) effetts, where the weights are the interaction
effe.cts for corresponding rows (or columns) within the given column (or row).

Similarly, from equations 7 and B we can write

PO a o s PO
: x'J F oo ij ol"JeU *a YJ,': B'R'J = X'J (‘2)
. o .. - e
and j TR B‘j 'J‘Ue'.l . G n,; yJR” "X (13)

<0 one may alternativaly think of the new mblllt;! ratios as weiahts in
the exoressions relating marginal frequencies to correspending riarginal
‘effects. There are expressions in the old mobility ratios, R”. which
are formally similar to equations 12 and 13; however, those expressions can
be simplified toiellulnate the R”. while equations ;2 and 13 cannot be

*

simplified to eliminate the R,y- For example, from the definition of RU.
X = ‘—x x . R
TR RN LT (14)
x ] ‘
o A THR R TR S (1)

for by definftion £ x; R, = M.
P

Suppose 1t were possible tc solve for the marginal effects by writing
*
linear equatfons in the R”. so {following Blay and Duncan 1967:93-94):

)'.‘ é' R:J = mfor al¥ § {16)
nd I ;J R:J = n for all {, o)

J

Inder these conditions equations 12 and 13, respectively, can he rewritten as

24
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xy o= a;jl : (18)

and L ﬁ‘n . . {(19)

That 1s, if the mobility ratios determine the marginal effects, ther x J is

Just a scalar multiple of Yy and Xy fs Just a scalar multiple of a'. which
is to imply the mode) is indistinguishable from the simple tndependence model
and R,

]
of simple independence; “;J is not equal to R”'. and th2 row and column para-

i s Indistinguishabic from Ryy- BUt in general-the model is not that

. meters are not scalar multiples of the marginal frequencies. This says that
the row and column effects under the model are not generally determined by

*
the RU'
make them useful in model specification.

In summary, the ... mobility ratios appear to have properties that

Mobility Ratfos and Other Measures of Interaction

Do the substantively novel# features of wy lnterpretat\ion of mcbility
,to first jobs merely reflect peculfarities of the 1973 0CG data? Obversely,
are those features a consequence of a different way of looking at the data?
If the old mobility ratios (Ru)°provlde mnisleading clues about the sgructure
of mobility tables, are there valid measures which are easier to cbtain than
the new mobiVity ratios (Ry;)?
in this section | attempt to answer these questions by subjecting the
‘ 1973 OCG data of Table 1 to a number of alternative analyses. In brief, the
snswers are as follows. The 1973 0CG tabie of mobility to first jobs is
gmuliy stmilar to other »mbility tables, and any novelty in my conclusions
t arises from the use of my structural llode! Moreover, 1 have directed
ny criticisms of mobility indexes pr‘urlly at the old mobility ratio, R”.
} q several other common measures of assoclatlon also fall to elucidate the
L E lC
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Pdil
pattern of assocfation in the mobility table for much the same reasons thav .
*
Fur ther, by obtaining new mobility ratios (R”) under

R,, is defective.

IR
relatively simple models of quasi-independence {which ave special cases of
the model of equatfon 1), | can diagr..e the pattern of association withrut
positing a model for the full table. In some cases oné can obtain sound
diagnostic lnfon;atlon without extensive calculation. .

Table 7 shows standard outflow ana inflow tables based on the data of
Table 1. The }973 0CG table of mh!lity to first jobs appears to re-
semble other mobility tables, such as the 1962 and 1973 0CG tables for
mobility to current jobs {Hauser anc Featherman 1976; U.S. Di.partment of
health, Fducation, and Welfare 1969). Thire §s evidence of status per-
sistence and self-recruitment; the latter is especially strong in the case of
farm occupations. There is alse substantial short-_distance mobility. Last,
ex. . t for the prevalence of lower manual first occ;:patlons—-whlch is greater
than the prevalence of lower manual fathers' occupations--the flow of man-
power is prinmarily from lower to higher levels of the occupational hierarchy,
and there is a marked decling in the proportion of men with farm occupations

relative to the proportion with farm uriglns.9

TABLE_ 7 ABOUT HERE

Again, Tanle 5 may be helpful in evalu;aung‘o;her measures of agsociatmn
when the latter are presented in mltlpl:cailvé form. Oné previously unmen-
tioned feature of the array of R;j is tilelr high degree of symmetry acruss
the main diagonal (with the marked exception ¢_)f the lnterchange‘ between upper
and lower nommanual occupations). This symmetry of upward’.and downward flows
is not apparsat in the inflow and outflow taBles. ;\or are many of the other

patterns of association in Table 6. One possible exception is tie rebatively

high degree of immobility in the upper nonmanual and farm occupations. In ~




2\
any event | shall nat pursue the comparisdh of Tables 6 and 7, for neither
the inflow ner outflow tables are purported to free the pattern of associa-
«Q

= tion from the influence of both margina! distributiens.

0id lobi)ity Ratios
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greater frequencies than expected, but none of tne R:J show greater fre-
quencies than expected. Last, with a single exception the RU are greater

l\n size in corresponding cells below than above the main diagonal, and this
Suggests a preponderance of upward relative to downward mobility. At the

same time, the R.. are roughly the same-size- h—eemsponding ceHsabo —

M Wﬂmmm Table |

under the Jodel of simple statistical independence. Clearly, one need not
resort to hypothetlcal data to show the differences between interpretatlons
based on the old and new mbllity,utios. The:n;rles in Table 8 are similar
to those which an experienced student of mobility has encountered on many
occas ons; for example, compare Pullum’s (1975:3-7) description of the 5 X 5
British mobility table. From the 1!” one would conclude (correctly) that
‘here is substantial ismobility at both the top and bottom of the occupation
Me;‘frc;y, but not nearly as such immobility as is indl‘cated‘by the‘R;J., The
l”’llso show status Immobility ir the three middle occupation groups, but
less In the lower manual than in the other two categories. In contrast the
I:j show aavery low level of ismobility in the upper manual group, and they _
show moderate and roughly equal levels of immobility in the lower nor:mvggal and
lower manual groups. Both scts of ratios show grester than expected inter-

. change between the upper and lower nonmanual groups with the upward flow

exceeding the downsard flow. The & Y show asymw.tric flows between the lower
martual and farm groups. both of which are below erpectatlons but between these
same two aroups the RU show roughly equal flows which are larger _than those
expected from row, column, and scale effects. With a single exception the
R” dacline reqularly as one moves awdy from the main diagonal in any row or
column, but the R:J lre‘low and fluc*ate irregularly outside the eight cells
in the .upper left and lower right corners of the table. Ouiside those same
@ s four of the Ry (in cells (3,2), (3,3), (3,4), and (4, 2)) show

ERIC
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and balow the main diagonal with the excepti.n of the one asymmetry in the
specificaticn of the model.

TABLE B ABOUT MERE

4
The relationshin between the R'J and R"U can be clarified by expressing

the former in terms of the latter. By definition

x, N
Xy
R, = (20)
i) x'.x‘J
Under the model of equation 1 and from equations 7 and 8 | write
- - - " -~
Xy " aB' Yy Rij . . (21)
- - - *
S0 H = zzx“ uwllgy '.lRiJ (22)
J i
. . ~
By substitution frow equations 21, 22, ¢, and 13 I rewrite equation
20 as
Ry, = - ' i - (23)

1

a 8' 3 YJ iJ)(° YJ L 5| iJ) (j YJ |’)(E aiR|J)

The double sum {n the numerator of equation 23 is a scale factor which dres

not vary with the indexes f and.j. Thus, the variabie parts of the expression
L]

say that Rij is related’ tg RU inversely as the product of weighted ayerages

of the column and of the row parameters, whose respective weights are the

28
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new mobility ratios in the i"‘ row and the J"‘ column. In general RU will

be low, relative to R
Jth

mobility ratios in the l row and the J coluln are small. For example,

1y when the mmbnity ratios in the I"’ row and the

columm are hrge. and RU will be Mgh. relative to RU' when the new

~ the relatively large value of “33' the old immobility ratio for upper non-
manual (skilled) occupations, is explained by the very low levels of associa-
tion throughout the third row and the third column of the table (when that
association is indexed b) R:J). in general a given row and column need not
contain only high or only low R:J. and the relationship of R, and R; (g Wi

vary among cells in the mobi’ity classification.

Standardized Deviates
Are other expressions of residuals under the model of simple independence
more instructive with regard to the structure of association in the mobility
table? The upper panel of Table 9 shows standardized deviates under the wodel
of statistical independence {recall equation 6 and Tzeble 5). In looking at
the standardized deviates we have left the (multiplicative) metric of the
model. That is, the standardized deviates are test statistics, and they
r;flect varfations in the standard errors of deviations of observed from
expected frequencies across cells of the table, as well as the pattern of the
residuals themselves. Thus, we would expect the standardized deviates to be
wore helpful to us in locating extreme outliers, as in cells (1,1) and (5,5),
than -in evaluating the pattern of associacion in the table. In any event
the pattern exhibited by the standardized dev’lates is rather close to that
of the old mobility r;tios. Similar results would be obtained had we chosen
to express the residuals as components of the likelihood-ratio statistic (62)
J)r as Fraoman-Tukey deviates (Bishop, Fienberg and Holland 1975:136-137; but
{ QO rtz T978).
>
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liaberman (1973) has suggested a transformation of the standardized .

feviates, which is in our notation
2
I | B
4y = 0= 'I.ﬂ‘“i - x_j7Ny ) (24)

{he adjusted-residual, dU' has better asymptotic distributional properties

than 240 and Brown (1974) has shown that d J is move effective than 2y in

i
identifying a small number of outliers. The adjusted standardized deviates
ire shown in the lowér panel of Table 9. As one might expect the adjusted
jeviates are not more instructive with regard to the overall pattern of asso-
:fation than are the unadjusted deviates or the old mobility ratios. At the
;ame time they do clearly identify three large positive deviates (in cells
L), (4,4), and (5,5)) whose elimination might elucldate‘the pattern of

1ssociation throughout the table; I shall elaborate this suggestion later.

‘arameters of the Saturated Loglinear Model

Like the specification of equation 2, the conventional parametric repre- -
.,entation of the loglinear model also uvescribes frequencies in terms of para-
weters for row effects, Eolun effects, and Interaction effects. Moreover,
ne can “saturate” the model by including all main effects and interactions,
.hus fitting observed counts perfectly. Critics have suggested to me that
interaction parameters under the saturated loglinvar model would yield, by
inspection alone, substantially the same interpretation as that obtained
1stng my model. llowever, the usual normelization of parameters of the l;g-
inear mdél gives priority tu row and column effects relative to interactions,
.hat is, relative to association in the interior cells of the table. Even JO’

:hough the saturated loglinear model fits a table completely, this conventional




norl;a_llutlon of pa'raneters has much the same effect on the pattern of
interaction parameters as the assumption of statistica) independence has
on the pat‘tern of old mobility rattos. Consequently, under the saturated
loglinear model the multipiicative parameters for the intersctions are no
more informative than the reiiduals from the siwmple independence model:
the marginal effects are too large in rows or columns where the interacttons
are strong, and the marginal ef(ects are too small where the interactions
are rgeal:. Obversely, the estimated interactions are deflated or inflated
relative to a model in which row, column, and interaction effects are given
equal priority.

An algebraic presentation of the conventional loylincar model may

clarify this argument. Let

'ij © logn”. (25)
where 'U is the expected count in the ij"' cell, and : j'U =K. The )
saturated loglinear model says that

Mg T Ut ) ) Y (26)
subject to the constraints

- - 0. (27)

A [TV {F ) IR A FI(T) I A H ()

Under these constraints the u-‘erms are obtained by a row and coluwn decom-
position of the logs of expected freyuencies paralleling that in a two-way
analysis of variance with one obsevvation per cell (Bishop, Fienberg and

Holland 1975:24):
I I”

u = !‘*‘J" . (28)

O
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| l'J
u‘(') = - “J"“" - u ' (29)
y Y
Upg) T ~ (30) -
and
Magig) T iy o ) g e (1)

Note that equation 26 and equation 2 are identical (excepting notation), and
the constraints on row ard column parameters are the same in the two models.
The important difference between the models of equations 2 and 26 lies in the
consitp':nt-s on the interaction parameters Lu;ﬁm aad- vy 44)) and in the
implications of those ccnstraints for the specification of equalities among
subsets of interaction parameters. The specification that the interaction
parameters. sum to zero within every row and within every colum of the table
(see equation 27) is equivalert to the model of simple independence in its
fﬂpllcatlons( for interpretirg the Jattern of association in the table. 8y
relaxing the normalization o7 the 2(1y) in equation 27 one can-oi-cain new
insiohts into the pattern of association in the tadple.

This observation can be elaborated by writing the main effects in the
saturated model (or equations 26 and Z7) as functions of the main effects and
and interactions in equation 2. 1In the loglinear metric | substitute equa-
tion 2 for ‘U in each of equations 28 to 31, recalling the constraints on
sw. s of the u’-tems:

*

v = u (32)

*

“) oYt j%uuVJ

(33)

32
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) T Y28 + f“l?(l])'ll (34)

wd 4
Mr2(15) T M201) ° (j R FITE ) ; a1 ' . (35)

The constaits in the two models are the same: the main effects of the yth
row differ by the average of the interaction effects in that row; the main
effects of the j"' column differ by the average of the interaction effects

in that column; the interaction effects of the U"' cell differ by a constant
less the averages of the interaction effects in the #'" row and the J"‘
column. Note that equations 33 and 34 are (additive) analogs of equations

10 and 11, respectively. Jus® as the msrginal sum of frequencies in any row
(or column} varies with the interaction effects in that row {or column). so
the main effect of any row {cr column) tn the saturated wodel varies with

the interaction effects in th:t row (or column). Similarly, equation 3.'; is
an (additive) amalog of cquation 23. Just as 'U varies {inversely) relative

th row and J"' column, so

to R;J as a function of the interactions in the i
Y12015) varies (inversely) relative to the ":Z(ij) as a function of the

wteractions in the l"' row and j"‘ column. If we regard equation 2 as the
structural model, then the conventional row by column deconposnlion of the

saturated model yields main effects and interactions which are mixtures of

parameters of the structural model (compare Goldberger 1973 or Duncan 1975:151).

For example, Table 10 presents the multiplicative parameters for a
seturated mode) which fits the data of Table 1. These tell essentially the
some story as the old mobility ratfos in Tabla 8, but they are a slight
improvement over the old mobilfty ratios. Hote that the parameters in cells

“‘4){."‘ (5.,5) are larger than the old mobility ratios in Table 8, and the
O
El{lCm in parametert. of the sparser cells is less than that among mobility

IText Provided by ERIC
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ratfos in the corresponding relis. 7lvbileﬁ!;i‘n):'ovenént occurs because the row
and column effects under statistical independence are based on sws of
frequencies, while they are based on sums of logs of frequencies in tne case
of the saturated loglinear mode!. The operation of taking 1ogs reduces the
effect of positive outliers on the v'ow and column sums, and so reduces (but
does not eliminate) the influence cf the small number of larae interactions,
t.e., of the positive skew of frequencies, on the row and column effects.
However, the array of parameters in Table 10 is still substantially misleading
in respect to the pattern of association in Table 1. for example, it shows
roughly equal ismobility in cells (2,2}, (3,3), and (4,4) and it does not
suggest the hom%nelty of densities in cells assigned to levels 40r5in

Table 2.

TASLE 10 ABOUT HERE

Adjustment to Uniform Marginals

1 shall consider one other method of inspecting the pattern of assocta-
tion in the full mobility table. Mosteller (1968‘) drew attention to Levine's
(1967) use of iterative profortional rescaling to adjust British and Danish
5 x 5 mobility tables to uniform marginal. dlﬂributlma This adjustment
facilitated Levine's interpretation of the mobility tables and exposed simi-
larities in the pattern of associaticn in the two tables. (For further
evidence and discussion of the simitarity of the British and Danish tables
see Goodman 1969a, 1969b and Bishop, Fienberg and Holland 1975:100.) The
iterative proportional rescaling procedure ic generally attributed to Deming.
who suggested it be used to adjust sample cross-classifications to known
marginal distributions (Scheuren and Oh 1975); the same procedure is used to
obtai, maximum-1ikel fhood estimates of frequencies in loglinear models of
cont ingency tables when no ..ased-form estimates exist (Bishop, Fienberg and 3
Holland 1975:83-87). The method has been applied frequently in recent years
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Nezelrigg 1974a, 1974b; Nlauser et al. 1975a; Pullum 197¢; Hauser, Featherman
‘and Hogan |971); '

The adiustment procedure {s straightforward. Each row entry is mlti-
plied by the ratio of the desired row sum to the actual row sum. Then each
column entry is multiplied hy the ratio of the desired column sum to the
actual column sum. By alternating row and column adjustments, convergence
of the adjusted cel) counts to both desir=d marginal totals is usually
obtained within a few ftcrations. Multiplicative adjustment preserves tie
inftia) pattern of association in a table because odds-ratios are invariant
to scalar transformations applied uniformly across rows and columns. for
exsmple, the upper panel of Table 11 gives hypothetical frequencies in a
2 x 2 wmobility table. The odds-ratio in this table is

oL dalY: W, 'nlta (36)
/2 2/%22 X9 %2

Suppose the fraquencies tn iaterior rows i and 2 of the table are multiplied
by arbitrary nomn-zero constants, say, a and b, respectively. Likewise, the
frequencies in the Intertor columns of the table are multiplied by non-zero
constants ¢ and d. The adjusted frequencies are shown in the Tower panel

of Table 11, Under this t:-ansfomtlon the margina) proportions will not
generally be preserved, but the odds-ratio will be unaffected, for

{ac x”)(bd "22)

n %22
1 11 % n Y2 (37
(ad %), ) (be x5,

12 %

As early as 1912 Yule recognized the desirability of constructing measures
of assoclation with this invariance property (Goodman and Kruska) 1954:747).
in fact both the oid (ﬂh) and the new (R:J) mobility ratios have this

ERIC 35

IToxt Provided by ERI

0

irvariance property, i.e., that they preserve the odds-ratios in the observed

frequencles; this is obvious from inspection of equations 20 and 21.

TABLE 1Y ABOUT TEAE

In recommending adjustment te uniform marginals Mosteller (1968:8)
imptied that the adjusted frequencies elucidi ted the pattern of association
in a table:

...we can interpret the resulting numbers as transitional or

conditional probabilities expressed in per cents--either son's

distribution given’ the father's category, or father's given

the son’s... In the sense cf having a common micleus of asso-

clation...it would be fair to say that the two occunational

tables are nearly equivalent.

Simtlarly, tn respect to the same example, Bishop, Fienberg and iolland
(|915‘:|(D) write

By comparing diagonal values we see thai, except for category

1, the tendency for fathers and sons to fall into the same

category I5 stronger in Denmark than Britain. By looking

across rows we can see, for fathers in each category, in which

country the sons are more mobiie.

Again, Fienberg (1971:308) suggests chat standardization to uniform marginals
permits one "to look at the asscciation or interaction, unconfounded by the
two sets of marginal allocations.” N

While It Is strictly correct that the original marginal frequencies of
a table cannot be deduced from the set of frequencies adjusted te uniform
marginals, nelther do the adjusted frequencies display the pattern of asso-
ciation in the sense intended here. For example, Table 12 gives the adjusted
frequencies of the data in Table 1. I chose uniform marginal suss of 5,
s0 the condition of timple independence would yield an entry of unity in
each cel) (compare Tyree and Treas 1974). The pa(tern of marginally adjusted
frequencies in Table 12 Is virtually identical to that of the old mobility

ratios in Table 8, and it is markedly different from the pattern of the new
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— wobility ratios in Table 6. _One improvement is that the ‘lclusted frequencies
are more nearly symmetric about the main diagonal than are the old wobility
ratios. 1f the marginal adjustment eliminates variat!dn in the marginal
distributions, why doesn't it uncover the underlying pattern of association
in the table? The prodblem Vies in the distinction between marginal distri-
but ions (x‘.. x'J) and marginal effects (51' VJ); recall equatfons 10 ard 11.
Fqualization of the marginal distributions does not equalize the marginal
effects; the forwer differ frowm the latter because they are confounded with
the underlying pattern of {nteraction in the table. for’ example, consider
agatn the third row or the third column of the mobility classification (upper
_ manual occupations). Because the interactions are weak in that row and
colum, the marginal proportions are relatively low. Consequently, the
adjustment procedure induces too large a relative increase in the marginal
frequencies in that row snd colwmn, Yeadirg to an excessively large adjusted

entry in the (3,3) celi.'

TRBLE 17 ABOUT HERE

“SimiTarly, in analyzing the British and Danish mobility tables Levine
(1967) adjusted the frequencies to uniform marginals, took logs of the
adjusted frequencies, and fitted smooth curves to the logs of adjusted fre-
quencies. Levine's model is flawed beceuse the intitial multiplicative
adjuslment did not reveal the pattern of association fn the British and-
Danish tables. However, if adjustment of the full table to uniform marginals
dges not yleld the interaction structure, neither is it valueless. The

procedure cen be used as a rough guide to similarity or dissimilarity in

tB ?«h-rnuo of the two or more tables, even though it does not provide

a satisfactory picture of the pattern of association in any one classification.

ERIC

.

¥

In susmary, 1 have evaluated several measures of association which
are based on the model of simple independence and other measures ‘uhic!y/are
based on the saturaied model. There are real differences among these
measures of assocfation. For example, Haberman's adjusted deviates are
useful in locating a small number of outlying frequencies. When the inter-
action structure is <ymmetric but the marginal distributions are no¢, the
marginal'y adjusted frequencies or the multiplicative parameters of the
saturated model will display the underlying sysmetry, but the old mobility
ratios will not., At the same time, each of the measures | have revlewe;l
suggests esserntially the same interpretation of the pattern of association
in the mobility table. This lnterpreutloniis in each case fundamentally
different from that suggested by the new mobility ratios (R;J). This differ-

ence occurs primarily because the other measures of association confound

main effects (of rows and columns) with interaction effects.

Model Specification Under Quasi-Independence

One can obtain superior insights into the structure of association in

—-a-table by temporarity tgnoring those cells of the classification which -~ -

contribute most to the confounding of interaction effects with row and
column effects. In Goodman's (1965, 1969a) terms one "blanks out” those cells
and fit models of quasi-independence to the remdining cells. Equivalently,
in my multiplicative models for the full tablie, 1 fit one parameter to
each cell which is to be ignored, and 1 assign the remaining cells to a
single level of the design matrix. Table 13 shows the equivalent design

matrices for three models of quasi-independence in the 5 x 5 table.

TABLE 13 ABOUT WERE
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Model Q) is the quasi-perfect mobility model. It ignores (or fits The first panel of Iab!e(lS presents ratios of observed frequencies

exactly) the frequencies on the main dianpnal, which represent occupational to those expected at level 1 of Model Q), i.e., within the zone of quast-

. 4
- inheritance relative to the five-caiegory ocrupational classification. Under independerce Specified In the design matrix. Although the diagonal ce'lls

the ull hypothests there is no association in the remainder of the table ar2 not assigned to level 1 of Model Q1, we have also shown ra&lo; c* observed'

which s coded at lavel 1 in the design matrix both for the full and the to expected frequencies in the diagonal cells. The diagonal entries are "%e

partial tables. Frequencies are estimated in those cells by, iteratively indexes of immobility proposed by Goodman (19692, 1969b);” they are ratios .

fitting a matrix containing ones at level 1 and zeros elsewhere, i.e the - of the observed frequencies to those frequencles which would have been

Q) design matrix In the lerf‘t-Mnd column of Table 13, to the observed estimited in the main diagonal 1f the quasi-independence hypothesis held in

marginal frequencies in the fitted cells. That is, the fitting procedure the main diagonal. Alternatively, we may say they are the frequencies

preserves both the observed marginal frequencies and the hypothesized lack predicted by the row, column, and scale effects at lever 1 of the deslg/
Ny

Those expected frequencies are not produt‘d directly by the computer

of association in the fitted portion of the table. While there are 25 .
: program (ECTA) used to estimate Models Q1, G2, and Q3, but with a simplt

degrees of freedom in the 5 x 5 table, we lose nine degrees of freedom in

»
fitting row, column, and scale effects, and we lose another five degrees of model in a small table it is convenient to estimate the expected frequevnclgs

freedom !# fitting the six-level QI wodel. Thus, under the null hypothesis in those cells from the expected frequencies in the level where quasi-

is no association off tbe main diagonal, there are 25 - 9 - § = 1| independence is presuwed to hold. Under the‘ nuil hypothesis all of the oda:-
ratis within the zone of quasi-independence ar¢ equal to unity (Goodwan
1968, 1969a). fhus.\lf we know only three expected frequencies ina 2 x 2

N\ . B
subtable of the full tab {wan soive for the fourth expected frequency
- . o T — e

by setting the odds-ratio in tmﬂm For example, Table

mobility to first jebs (Iable l) Clearly “ModeT 0 ‘accoiunts for much of e 3 ~——
16 shows th& expected frequencies in each cell of the mobil ity table undz/

the ass‘»clatlon in the table While 62 683.06 1s still very large relative

to its Idegrees of freedom, it is only sbout one-ninth the value of G under “Hodel Q1. To °b“,'" the expected frequency in cell (i.1), we could use jhe

stwple| independence. Further, whila the simple ndependence model wis- entries in cells (1.2). (3.1), and (3,2) to write

.t

'~a}lu es 20.1 percent of the joint distribution of fathers and sons (as ) 754.9 (344.1)
indicdted by the index of dissisilarity, a, in the fourth colusm of Table | e (20)
14), Model () misallocates only¥ 5.5 percent of the nhservations. . ) . . -

Other combinations of cells could be used to obtain the same estimate within

ABLE T4 ABDUT W §
1 ERE * the 1imits of rounding error. In models (1ike Q3) where a relatively large

number of cells has been ignored, It may take a certain amount of ingenuity

39 . 40
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" to fi)l in the expected frequencies for all of the blanked-out cells.
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TABLES V5 AND 16 ABOUT TERE 7 -

The ratios of observed to expected frequencies in Table 15 are not
new mobility ratios (R;)), but they differ from the Ryy 0nly by a scalar
muitiple. That is, I have expressed the R:j as deviations fros a scale
factor (or grand mean) for the full table, but the ratios in Table 15 are
expressed as deviations fr(;n expected frequencies at level 1 of the design.
The relationship between hose ratios an the R:J is like that between the

normalization of parameters in duwmy-wariable regression and in muitiple

" classification analysis. In the former case the reference point is the

effec.t of oné category of a qualitative regressor, and in the latter case
the reference point of effect measures is the grand mean of the dependent
viriable. With the understanding that a change in normalization has occurred,
I shall refer to the entries in Table 15 as mobility ratios.

Under Model Q! fm mobilfity ratios show a pattern of association which
{5 somewhere between that displayed by the Ry, (Table 8) and the Ry, (Table
6). Relative to the R”, the ratios in Tuble 15 are larger in cells (1,1)
and (5,5), and they are also r=latively larger in cells {4,5) and (5.4) and,
to a lower degree, in cells (1,2) and (2,1). The ratios for Model Q1 do
rot agpear to fall as rapidly as one mves sway from the main diagonal as

do the R‘ At the same tiwe there is still a relatively high ratio in the

I

© central diagonal cell, (3,3).

The fit of Mode) Q1 is not very closé, and there are relatively large

mb!"ty rat’os in four of the cells which were not fitted exactly under Model
"'(l’z)i ‘zll)v “vS). and (5.‘)-
13 4&

For these reasons | write the design
rix of Mode! Q2 to ignore those four c211s as well as the diagonal cells.

ERIC ©~
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Yhus, Mode! (2 has only seven degrees of freedom for error under the null
hypothesis. White (1963) and Pulh‘m (1975) advocate models of this foym;
also, see’ Fienberg (1976) for an evaluation of this specification as applied

The fit is much improved under Model Q2, so one would expect the -
2

by Pullum.
re.iduals to be more informative. Under Model Q2, G° = 50.05, which is only
0.8 perc>ent of its value under simple independence. The model misclassifies
only 1.4 percent Gf the joint frequency distribution of fathers' and sons'
occupations.

The mobility ratios for Model Q2 show a pattern which l; far more like
that of the R;j' One problem is the relatively high ratio in cell (3,3), but
there is otherwise little variation in the ratios outside the intersections
of rows 1 and 2 with columns 1 and 2 and of rows 4 and 5 with golumns 4 and
$. Moreover, the clhange in specification has again increased *he mobility
ratios in cells (1,1) and (5.5).\ .

I make one other effort to fit the data more closely without precluding
the estimation of al) of the rlow and coly m effects, that is, without making
it impossible to obtain mobility ratios for all of the cells in the table.

In Mode) .Q3 | idgnore all of the cells oa the main diagonal cnd o;\ the

2

adjacent minor diagonals. Here the fit 1s rather close with G~ = 15.7 with

three degicrs of freedom and A = 0.6. Of ccurse, in obtaining this fit |
ignore (or fit exactly) the cells containing about three-fourths of the
observations, but gy purpose is not to fit the data both closely and parsi-
' trying to explore association {n the table by

monfously. Rather, 1 am

ﬁttlng it closely in a way that permits me to- obtain dhgno;stic measures of
association.

Clearly, reiative to the standard set by the pattern of R;j in Table 6,
Model Q3 is very helpful in uncovering the pattern of association in Iable42
The mobility ratios in Panel Q3 of Table !5 show all of the major festures of




3
-

37
the display in Table 2 and of the R:j in Table 6. Taken in conjunction with
»v review of other residual messures, the !es;qp>inufp|§_lllpst(a@|ve
analysis should be clear. Diagnostic or exploratory analysis of a classifi-
cation will often be improved by ignoring large parts of the classification.
It may be better to ignore too much than tqo 1ittle of the classification,
provided one is left with enough information at the end to construct diagnestic
measures for the full table. In the present case, did 1 not wish to show
the evolution of the array of mobility ratios under successively improved
specifications, 1 would specify Models M, Q2, and Q3 in advance and ook at
the hobillty ratios only under Model Q3--because it fits well--as a guide to
;peclflcatlon of a more parsimonfous model. In fact, after nrouning cells with
similar mobility ratios under Model Q3, | wrote the specification in Table 2
by inspection.

In this context it is instructive to recall my earlier Comparl?on of
constraints on parameters of the saturated model with constraints on para-
meters in my multipticative modei. In the former case parameters for row-by-
column interaction ere constrained within each row and column of the table;

<
that is, the sum of interaction paraweters fs zero (in the loglinear model)

and the product ot inleraction parameters is unity (in the mltiplicative model)

within each row and within each column of the tabie. In the latter case a
similar corsiraint holds over all cells of the classification, but not within
each row and column. The quasi-independence model, Vike our multlpi[gatlve
model, provides superior diagnostic insights because it, too, does 1.2t con-
strain interaction parameters within rows or colums. This is easy to see

if we consider the array of expected frequencies under the quas i - independence
mode!, Within the zone of quasi-findependence there are no row-by-column

interactions. In the remainder of the table the observed frequencies are
)
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fitted exactly with multiplicative parameters defined by the ratio of observed
freguencles to those expected from row and column effects within the quasi-
independent zone of the table. Given any set of expected frequencle§ {and
row and column effects) in the quasi-independent zone of the table, the
remaining frequencies (and their corresponding interaction parameters) can
vary freely, so clearly there are no constraints on the interaction parameters
within rows or columns. .The absence of row and column constraints on inter-
action parameters, shared by iy ‘model and by quasi-independence models, leads
in both instances to improved diagnostic and interpretative insights into
the mobility table.

Model Specification by Median Fitting

Throughout this exposition 1 have relied on maximum-1ikelihood estimates
obtained by iterative proportional rescaling, but computationally simpler
nethods may suffice, especially in the analysis of small tablzs. To #1lus-
trate, | repeat the estimation of Model Q3 by median fitting. For a fuil
treatment of such methods, see Tukey {1977: Ch. 11). Panel A of Table 17 gives
the natural logs of observed frequencies in those cells of Table 1 which are
jasi-indevendent under Model Q3. In the last column | show row means oblained
15 the first step in the analysis. Peviations of the entries in Panel A from
the row means are carried forward to Panel B, and in the last row of Panel B
{ take column means. Pane! . shows deviations from the column means in Panel
3, and here | begin a similar analysis by medians. In Panels C though I, I
ilternate the extraction of row and column medians until, at Panel I, the row
sedians are each rather close to zero. In rows or colwins containine an even
wmber of cells ! take the midpoint of the two central observations as the

wedian. The solution requires minimal calculation because most of the medians

44
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can be ascertained by inspection; beyond the initial computation oi means

subtraction is the main arithmetic operation.

TABLE 17 ABOUT TiERE

In Table 18 1 cumulate the several row effects and the several column
effects ined in Table 17. The resultant row and column sums are the
estimates of main effects under Model Q3.

utely} than the column effects because they { :ijude the grand mein of the

The row effects are larger (absol-

observations. In Panel A of Table 19 | use the row and column effects to

estimate 109s of frequencies in the cells of Table | which were ignored in

fitting Model G3. For example, the estimate ‘n cell (1,1) 1s 5,219 + .337 =
5.556.
cells in Panel 1 of Table 17 together with the deviationc 7 observed from

In Panel B of Table 19 | assemble the residualc from the interior

expected log frequencies in the cells ignored in fitting the model. Panel
C shows the znt:logs of the entries in Panel B, which can be interpreted as
the mobility ratios in Table 15 under Mode) Q3. Obviously, my crude manuval

fit does not exactly reproduce the mobility ratios obtained from the maximum-

12

likelihood estimates, but the pattern is close enough for diagnostic purposes.

TABLES 18 AND Y9 ABOUT TERE

In using cxploratory methods, Htg those fllustrated here, one always
runs the risk of overfitting data; that is, one may model features of the
data which occur only as a result of sampling fluctuation. The surest
l protection against overfittine is independent validation, the test of a

model against indcpendent cbservations. It may also help to smooth the
ts statistically, e.q9., hy averaging across population subgroups or by

- 7777y "ing sor-e categories of the row and column classifications. | have

ERIC
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{1lustrated thes: methods elsewhere (Mauser 1979), and 1 shall not elaborate

them here. Rather, it may be more instructive to consider other data to

$ibling Resemblance in Educational Attainment

In the Wisconsin Longitudinal Study of Social and Psychological Factors
in Achievement (Sewel! and Hauser 1980) more than 9,000 male and female high
school graduates were interviewed in 1975--18 years after high school gradua-
tion--and tn roughly 2,000 cases a randomly se!ected sibling was interviewed
in 1977." Panel A of Table 20 gives the counts in a classification of self-
reports of educational attaimment by respondents {in the 1975 study) and
their siblings (in 1977). The association between these two variabies should
be indicative of the strength and manner in which so.ial, psychological, and
genetic factors in the family of orientation lead to similarity in the educa-
tional attaimments o1 siblings. There is an inherent symmetry in the way we
look at this table. Nefther sibling’'s education is causally prior to that
of the other; rather, we think of both as determined by exogeneous factors
in their families and in the larger society. In lookifh at these data, our
main interest lies in the joint occurrence of each pair of educational out-
comes, and we want to abstract the den'sity of each joint occurrence fyom the
widely varying relative frequencies of levels of schooling.

By inspection of Panel A of Table 20, it appears that the symmetry in
our interpretation of the table is reflected in the counts. Notice that
corresponding row and column sums are very similar, as are corresponding
entries, X4 and x“. acvoss the main diagonal. ﬂ:‘ls symmetry appears also
in corresponding row and column percentage distributions, shown in Panel 8
and Parel C of Tahie 20. Formally, the hypothesis of symmetry says “‘U = m“ 46

for all 1 £ J; the maximum-1ikelihood estimates of off-diagonal frequencies
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are just n” = u“ s (x” 4 x“)IZ. Diagonal frequencies are not constrained

by this ndel, so ;“ T for all 1. Under this hypothesis th. test statistic

62 is distributed as X2 with K{K-1)/2 df {8ishop, Fienberg and Holland 1975: Ch. 8).

1ABLE 20 ABOUT TiERE

Panel D of Table 20 gives the maximum-1ikelihood estimates; the model fits

2

= 11.59 with 15 df. Panel E gives the row percentage

rather well, for 6
distributions of the symmetric counts; these are of course the same as corre--
ponding column percentage distributions. Most persons complete only 12 years
of schooling, but there s a $2condary mode at 16 years--the completion of a
4-year college. Educationa) attainments of siblings are positively correlated,
but even among pairs where one sibling attended graduate school, the chances
were about equal--30 percent--that the other sibling only graduated from high
school or only graduated from college.
While the finding of symmetry greatly simplifies the interpretation of

the data, one might hope to find yet a more parsimonious pattern of interaction
underlying the observations. Panels F, 6, and H of Table 20 show the vslues
of threé of the indexes of interaction that were discussed above {computed
from counts in Pane) A). As shown in Panel F, the model of sirple independence
fits poorly. The ratios of observed to estimated frequencies suggest little
tendency for siblings to share in completion of grades 12 or 13, but there
is a stronger tendency toward joint completion of grades 14 and grades 16 or
17+. Further, the ratios are curiously high in cefls (13, 15) and (15, 13).
Panel G gives parameters of the saturated model. The parameter in cell (12,
12) is now the largest in the table; this shows how the corresponding entry
in Panel F was depressed by the large relative frequencies of high schoo)

graduation among respondents and siblings. There remain tendencies toward

RIC 47
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Joint completion of yrades 14 and 16 or i70. but these are not so large as
in Panel F. Again, the relatively large entries in cells (13, 15) and
(15. 13) are surprising; those two levels of schooling are neither adjacent,
nor are they typical points of termination in the educational process.
Panel H shows counts adjusted to uniform row and columm sums of six, and
these show substantially the same pattern as the par;uleters in Panel G.
A1) three of these sets of indices show & general tendency for the values
to fall as one moves away from the main diagonal (again, excepting cells
(13, 15) and {i5, 13).

Panel | specifies the interaction parameters in a very simple multipli-
cative mode) which is based upon some--but not all of our observations about
Panels F, G, and H. The model says that there are equal tendencies of
siblings to share in the completion of grades 12, 14, and 16 or 17+. lhese
are the major turmination points of schooiing in the United States. Other-
wise, the mode) says, there are no tendencies toward association or dissocia-
tion between the educational attaimments of siblings. This mode) fits the
dats of Panel A rather well, yielding 6% = 22.59 with 24 df; the mode) uses
only 1 df for interaction. As :Mwn beneath Panel J of Table 20, the estimates
say that stbling pairs are 2.84 times more likely to complete 12, 14, or 16
s to complete any other combination of years of
schooling. Panel J displays the products (R:J) of parameter estimates and
residuals under this model. These generally confins our infer2nce ahout the
fit of the model, but there may bz a slightly lower tendency than estimated
for siblings to cluster at grade 14 and a siightly higher tendency for them
to cluster zt grades 17+. In any event, the overriding feature of the data--
which is not accessible by inspection--is the tendency for siblings to share

in the completion of major segments of the educational process. Otherwise,

48
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there is 1ittle or no tendenc) toward similarity in their educational
attainments.
The data of Table 20 are fitted well, also, by a model that incorporates
two further simplifications: (1) that the main effects are identical in
~ corresponding rows and colums, and (2) that the joint density of siblings’
attainments at major educational transitions is precisely three times greater
than densities elsewhere in the table.
The first of these {wo hypotheses--marginal homogeneity--1s suggesied by
the earlier finding that the counts are symmetric. Symmetry incorporates two
distinct hypotheses. First, ft says that interaction effects are equal in
corresponding cells above and below the mein diagonal, so for example, a” . 6“
for all | and § in the moda) of equation | and "IZI(U) * Y2041) for all | and
J in the model of equation 26. This hypothesis--called quasi-symmetry--is
) already impiicit in the smiflcit'on of parameters in Panel | of Table 20.
Second, symmetry also implies that main effects are equal in corresponding rows

and column, that fs, row and column marginal distributions are homogeneous. As

noted earlier, the combination of quasi-sysmetry and marginal homogeneity implies

equality in population counts in corresponding cells above and helow the main

diagonal, that fis, LYY for all 1 and §.

Models of sy-etiy. qiasl-symtry. and marginal homogeneity can easily
be fitied and evaluated using a 2-way array composed of the original table
and {ts transpose. Let | = the original row variable, 2 = the original column
variable, and 3 = the transposition variable (whose values specify the original
table and its transpose). Symmetry is imp~sed by fitting the marginal config-
urations (12){3), leaving K{K-1)/Z degrees of freedom for error. Quasi-symmetry

is {mposed by fitting the marginal configurations (12)(13)(23), leaving

43!-!)((-2)/2 degrees of freedom for arror. The goodness-of-fit test statistics

Q
EMCM by this set-up should be divided by two because of the double entry

IText Provided by ERIC
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of each count; equivalently, each count in the array may be divided by two.
The difference between the test statistics under symmetry and quasi-symmetry
ylelds a test of the hypothesis of marginat homogeneity with X-1 degrees of

freedom, one for each distinct consiraint on row and column effects.

For example, iz the data of Panel A of Table 20 we have already noted

2 . 11.59 with 15 df.

that synmetry ylelds a 1ikelthood-ratio test statistic G
Under quasi-symmetry, we obtain G = 8.95 with 10 df, so the test of marginal
homogeneity ylelds G2 = 2.64 with 5 df. Thes, the data ar'e consistent with
both o‘f the hypotheses subsumed unde: >ymmetry.

The second simplific tion ts suggested by the model of Panels I and J of
Table 20; the joint density of observations is roughly three times greater in
cells (12,12), (14,14), (16,15), (16,17), (17,16), and {17,17) than elsewhere
in the classification. | specify a model in which the density is precisely
three tiwes greater l.n the selected cells by fitting only the row and column
mirginal configurations (as under simple statistical independence) to a table
of starting values in which 3s have been entered in the high density cells and
Is in all other cells. /ln order to estimate the sSimplified model--incorporating
sysmrtry and three-fold density--1 modified the starting values in the set-up
used to test sysmetry and quasi-symmetry and fitted just the univariate marginal
distributions for rows, columns, and transposition. This simplified sodel fits
the data very well; G2 = 25.99 with 30 df. That is, in the Simplified model
) estimate only six paramcters. one for the scale factor (total count) and
five for the row/column effects. Finally, on the basis of this analysis the
test statistic may be partitioned into four additive compunents: (1) departures
from quasi-symmetry (lIi2 » 8.95 with 10 df), (2) other departures from the model
of differential density at major schooling transitions (G2 2 13.64 with 14 gju

{3) departures from marginal homogeneity (G2 = 2.64 with 5 df), and (4)
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departures from three-fold density (Gz = .76 with i df). None of these

components of error approaches statistical significance. L

Occupational Similarity of Friends

In Table 21, Panel A shows counts in a classification of the occupa-
" The data were obtained
from a sample of 1,000 men who were asked to name and to describe the occu-
patfons of their three best friends. Since the sample clusters friends

within respondents, there are in effect fewer than the 2,873 nominal observ-

" ations suggested by the sum of counts, but I have made no correction for

<

this Tack of independence..
As shown in Panel B, respondents choose friends whose occupations
resemble their own. Between 41 and 48 percent of the nominations from each
occupational group fall within the same group. Panel C shows the ratios of
observed frequencies to those estimated under simple tndependence. In the
source, Jackson (1977:63) refers to the diagonal entries of Panel C as
TABLE 2V ABCAIT iERE E

G

sel f-selection ratios; he comments that self-selection is highest among
upper white collar men and least among blue collar men, while friendship
declines with social distance throughout the table. As shown in Panel C,
the model of simple independence fits these data very poorly (G2 2 778.17
with 9 df), and for this reason the ratios in Panel C are quite misleading.
One might expect to find a certain symmetry in the table, for it {s
difticult to see how affinity between occupational categories as such should
depend on the direction of choice. At the same time the counts {n Panel A
of Table 21 are clearly not symmetric, for men at the top of the occupational

O chy mist chaose friends of the same of Jower ;tatus. while those at

51
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th~ bottom must choose friends of the same or higher st§tus. The model of
symretry, which fit in the previous case, must be rejected here (G2 = 42.46
with 6 df). However, a weaker model, quasi-symmetry (iishop. Fienberg and
tiolland 1975: Ch. 8), does fit these data (G2 = 2,25 with 3 df). The model
of quasi-symmetry, like that of symmetry, says inter;ction effects are the
same in‘ corresponding cells above and below the diadonal. but it does not

add the corstraint of homogeneity in corresponding marginal effects. Thus,

under quasi-symmetry n” may differ from m“ because the i"‘ row and the i"‘
column effects may differ and because the j"‘ row and the jm column effects
may differ. Panel D of Table 21 gives the estimated frequencies under quasi-
symetry, and these were used in *he next stage of model selection.

Since theory and data suggest that observations cluster along the
-lagonal, 1 fitted a quasi-independence model that ignored those four cells.
The starting values for that model are shown in Panel £ and, following the
methods used in Table 15, ratios of observed to expected frequencies are
given in Panel F. The model does not fit well, but it is a great improvement
over simple independence. The new self-selection ratios suggest that wilhin-
group choice is high at either extreme of the status hierarchy. Moreover,
when out-group chofce occurs, white collar men choose other (higher or lower
status) white collar men, and to about the same degree blue co‘llar men choose
other (higher or lower status) blue collar men. White collar men are much
less 1ikely to choose blue collar friends, and vice versa. When the blue-
collar/white-collar line is crossed there is little status differentiation
in choice within the out-group.

Pa‘nel'.G of Table 21 specifies a model with the features which appeared

*
in the ratfios in Panel F, and Panel Il displays the relative densities (RU)
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under this model in the original table (Panel A). The model of Panel G

fits very well (G2 = 6.46 with 5 df); morvover, a very simple pattern appea>rs
in the parameter estimates und2r this model (shown beneath Panel H), namely,
that the estimates are in the mtlz;s 1:2:3:4:5. With this as a clue, in

the final medel, at relative densities would have the hypo-

“

I specl‘ﬂed_
. thesized values by fitting the row and column marginals of the observed
table to the starting values shown in Panel 1 of Table 21. Note that the
entries 'f‘ Panels G and | are identical, but the latter are hypoth;slzed -
?aremter values.'and the former are arbitrary subscripts of variables.
Since the parameters are specified as constants, the final model (nominally)
has 9 df, and the fit is very good (l’i2 = 7.63); little is lost b; imposing
the constraint of linearity on the paraceters. Plainly, my fina) model '
of the Detroit data differs substantially from Jacksun's analysis by inspec-
tion of departures from independence. There are different tendencies toward
self-selection in each ogcupatlonal gre 3, and these are greatest at the
extremes of the status hierarchy. Yhep sut-group friendship accurs, it tends
to be among whl{e collar men (for white-collar choosers) and among blue-collar
men (for blue collar choosers). White collar men rarely choose blue-collar
friends, and vice versa; when such cholce occurs, status distinctions within
the out-group are ignored. This final model is just as parsimcnious as that
in the source; it estimates no parameters for interaction. VYet, uniike

Jackson's analysis, it fits the data well.

Comparisons Between Classifications
In & series of analyses my colleagues and | were able to locate no
sociologically interpretable historical changes in the relative occupational
saﬂlty chances of American men when we used saturated models of the mobility
E ‘I)C«lcation (Hauser et al. 1975b, Featherman and Mauser 1978: Ch. 3).
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Reviewing these null findings we thought the lack of significant evidence

of c)hange might be the low statistical power of our models, rather than the

absence of change in mobility chances. A parsimonious mode} increases

statistical power in cou:)arlsonsd; the need for parslmon}. as much as the
issue of interpretation, motivates our efforts to apply models of the present
fom:. While other models may be even more parsimonious, my models do use
far fewer par?meters to fit a given table than does the saturated nodel .
ln\discussl'ng comparative methods, | start with general hypotheses about
the restrlctlons imposed by the model and later take up more specific
hypotheses about the values of parameters or sets of parameters.

If we borrow a model that fits one classification in order to fit a
:zcond classification, we readily obtaln'an explicit test of the partlt'lon

.

if cells in the initial mdgl. Recall, for example, that the mode) of Table
! fits the aggregate table of mobility from father's occupation to son's first
‘ 5

iccupation in the 1973 OCG survey with G2 = 66.5 on 12 df. To test the

issignment of cells to levels in this model, I use the same model in an
nalysis of mobility from father's occupation to son's first occupation by age

sing data from the 1962 0CG survey. That is, where P = father's occupationz)

tratum, W = occupational stratum of son's first job, A = age in 5-year
roups, and H = the model of Table 2, | fit the model (PA)(WA)(IA) to the
962 data and obtain a test statistic of G2 = 121.2 with 108 df, which is

ot statistically significant. That s, conditional on variation in occupa-
i

fonal origins and destiiations between cohorts, the same set of equality
=strlctions fits interactions between father's occupation and son's first

cupation in the 1962 0C6 survey as in the 1973 0CG survey. The lack of

-

o4

lgnificant devartures from this model does not indicate that mobility
1ances are numerically identical (or even remotely similar) in these two

1%
rveys. I have tested only the hypothesis that the restrictions on

..
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interactions across cell®s of the classification are met in both sets of
data, not the hypothesis that interaction parameters take on the same value.
In a straightforward way we may also test the equality of {nteraction
parameters among tv - more cross-classifications. For example, 1 compare
ml;ility from fzther's occupation to son’s first occupation across nine five-

year age cohorts covered in the 1973 OCG survey. Under the assymption that

. mortality ts negiigible during the prime working ages (20 to €4), while

first jobs periain to a fixed point in the Vife-cycle, these comparisons
reflect conditions of labor market entiy during the period from the late 1920s
to the early 1970s. As shown in the first column at the top of Table 22, 1
begin by i1t ing the model (PAY(WA)(H), in wilch occupational origins and
destinations vary across cohorts, but relative mobility chances do not vary.
1 have 9 mobility subtables, each with 16 Jdegrees of freedou't after condition-
" ing on the observed marginal distributions; since the five-level model of
Teble 4 yses just four degrees of freedom, there are 140 degrees ofl freedom
for ¢ ror. Unde: this specification 1 obtain the significant test statistic,
Qz = 235.3. At the same time the simple model of Table 2 is quite powertul;
it explains (.z 2 £567.7 with 4 df (Featherman and Hauser 79/8:20€¢). I also
fit the same table with the model (PA){WA)(HA), which fits or!, a and destina-
tion effects as in the initial model, but permits the parameters of the model

2 . 175.6 with 108 df;

to vary acruss cohorts. Under this mode) ! obtain G
relative to the inttial model, I it four more parameters for each of eight
subtables. Again, the test statistic is statistically significant, thowing
that there are non-chance departures from the specification within one or

more cohorts. More importent, since the model (PA)(WA)(HA) is obtained from
(PA)(WA)(R* “y relaxing restrictions on interactions in the latter, I may

test these restrictions by taking the difference between the two test stat-

E TC' I obtain 62 = 59.7 with 32 df (top Vine, third calum of Table 22),
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whose probability is ry small under the null hypothesis. Thus, there are

statistically significant intercohort variations in parameters of the model °
of Tabl; 2. _In'passing I note that the last tesi statistic is larger rela-
tive to its degrees of freedom than the test statistic for intercohort change
under the model (PA)(WA)(PW) in the same classification: e? - 16:6.6 with 128

df, for which a = .012.

To summarize, by cond'itioning on the marginal distributions and fitting
the models of constant ‘nteraction and of variable interaction, subject to
a given design matrix, we can test he fit of each of those two models;
further, a contrast between those two models ylelds a global test of change
in the parameters of the design matrix. Using a similar procedure we can

test hypotheses about change in each level parameter of a cross-classification,

and at the same time we can test hypotheses about the lack of fit within each — -

tevel of the design matrix. Again, we construct appropriate test statistics
by contrasting hiefarchical wodels and exploiting the additive properties of
Mmlﬂdﬂmmﬁnnotﬂtshtuuc(&);meauMp.HemmgaMImHmm
(1975:126-127).

Figure 2 defines and shows the relationships among four types of models
of the cress-classification from which we obtain the desired test statistics.
sonsider a four-way incorplete classification in vhich two factors wit.. 1
and J categories, respectivcly, represent the wobility t.ole (or other cross-
:lassification), a third factor with K categories specifies the ini action
affects, and a fourth factor with L categories represents the replicates of

the x J cross-classification which we wish to compare. Further, denote
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the number of (independently variable) cells within the kt' level of the

design matrix by "k‘

FIGURE_Z ABOUT HERE

As shown in the first row of Figure 2 | condition on the observed
marginal distributions of the i x J classification and fit models of constant
association and of variable association tc the entries in the feur-way classi-
fication. ’'vder the model of constant association, e.g., (PA)(WA)(H) in the
example of Table 22, | dencte the likelihood ratio test statistic by G:. and
under the -~del of vartable association, e.g., (PA)(WA)(HA) in the example
of Table 22, | denote the likelihoéd ratio test statistic by Gg. Then, as
shown in the second row of Figure 2, | blang out or ignore (by entering
structural zeros) each of the counts at the kth level of the design matrix,
and | fit the models of constant association and of variable association to
the counts in the truncated four-uay'classification. 1 repeat this proce-
dure for each of the K levels of the design matrix. Under the model of con-
stant assoctation in the truncated classification | denote the }ikelihood
ratio test statistic by GE, and under the mndel of variable assocfation in
the truncated classification | denote\the test statistic by G:. When |
blank out or ignore entries at the kth level of the I x J classifications |
am implicitiy fitting constants to each of those entries, so the degrees of
freedom under modeis of the truncated classification are reduced by the
number of (independently variable) counts at the kth level of each | x J

classtficatlon.'6

2 2 .2
a' Gb' Gc
hy@t"eses about change in interactions (level parameters) among the several

By comparing the terms G , and Gs. 1 can test a variety of

I x J classifications and about lack of fit within levels of the r~del.

ERIC
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These contrasts and the associated degrees of freedom are shown in Figure 3.
I have already pplied (in Table 22) a contrast like that on Line 1, which
gives an overall test of constancy in the level parameters across the several
1xJ classifications. Recall that the model of variable association relaxes
restrictions on paraneters of the model of constant association, so the
comparison, Gs - Gg. ylields a test of con<*ancy in all K level parameters
across the L mobility classifications. Since a K-level design has K - 1 df,
while the model of constant association specifies only one set of level
parameters, it takes (K - 1){L - 1) more degrees of freedom to specify the

model of variable association than to specify the model of constant associa-

tion.

FIGURE 3 ABOUT HERE

The contrasts on Lines 2 and 3 of Figure 3 are of lesser interest, but
I include them for the sake of completeness. The comparison on Line 2, Gi -
G:. is analogous to that on the {irst line, but the test ignores parameters
at the kth level, which have been excluded both from the medels of constant
and of variable association; thus, the test has (L - 1) fewer degrees of
freedom than the global test on Line 1. [In the model of constant association
the L sets of counts at the kth level of the I x J classification are fitted
b: a4 single parameter, but {implicitly) a parameter is fitted tc each of
these counts when entries at the kth level are blocked. Thus, the comparison
on Line 3 of Figure 3, Gg - G2

C
change and of lack of fit at the kth tevel of the design matrix, and this

, ylelds a test of the combined effects of

test has LHk - 1 degrees of freedown.

The comparison of Line 4 of Figure 3, Gg - Gg. ylields a test of fit aBO

th

the k™" level of the design matrix across the L mobility classifications.
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Gg is obtained under the model of variable association in the full classifi-
cation, so it reflects lack of fit at each of the K levels across the L
wobility classifications. [ obtain Gﬁ by relaxing the "k - 1 equality
restrictions on interactions at the kth level within each of the L mobility
classifications, so the test statistic has a total of I.(nk - 1) degrees of
freedom. Since the models used to generate this test condition both on the
marginal distributions and interaction parameters of the L distinct 1 x J
classtfications, the overall comparison, Gg - Gﬁ. may be regarded as the sum
of L independent test statistics, eac« with "k - 1 degrees of freedom, per-
tatning to lack of fit within the k‘h level of one of the L classifications.
Plainly, an analogous test may be obtained at the kth level of any | x J

classification mereiy by contrasting the fit of the full classification with

that of the classification from which counts at the kth level have been Yremoved.

fn the fifth Yine of Figure 3 | show a comparison of all four of the
test statistics from Figure 2 that tests the L - | equaiity restrictions
imposed by the model of conastant association at the kth level of the design.

One may think of this comparison as a contrast betwezn the models of Lines 1

and 2 of Figure 3, or alternatively, one may think of it as a contrast detween

the mode}s of Lines.3 and 4 of Figure 3. That s, the contrast in Line 2

differs from that in Line 1 only in permitting the k%"

across the L classifications, and the contrast in Line 4 differs from that {n

Line 3 only in permitting the kth level parameter to vary across the L classi-

fications.

I {1lustrate some of the contrasts in Figure 3 by continuing my analysis

of intercohort change in mobility to first occupations among American men.

In Lines 1 to 5 of the first panel of Table 22 I report test statistics and

degrees of freedom under the model of constant association as each level of
Q

s ES &’

level parameter to vary

the design (Table 2) is igncred in turn. Since levels 1, 2, and 3 each
include only 1 count per cohort, | use B df more than in the constant
association model for the full table when | fignore the entries at these
three levels. There are five entries in each of the nine cohort mobility
tables at level 4. When these 45 entries are ignored, the remaining row,
column, and level effects are each still identified, so | iose a total of
44 degrees of freedom relative to the model of constant association in the
full table.

If 1used the same rule to calculate the degrees of freedom lost in
ignoring level 5 as in ignoring level 4, | wou'd end up with a negative
number in Line 5, ratier than the 24 degrees of freedom reported there. That
is, there are 17 counts in each cohort mobility tablé at level 5 of the
design, so one might (incorrectly) say there are 140 - [(17)(9) - 1] - -12
degrees of freedom under the model of constant association when level § {s
fgnored. The errcr in this calculation hecomes obvious when we ‘acpect the
display in Table 2. First, since level 5 covers all of Row 3 and all ¢
Column 3 of the mobility classification, there are only four independent
entries in each of Row 3 and Column 3. Second, by the same token theve s
no effect of © « 3 nor of Column 3 when the fifth Tevel of the mobility
zlassification is ignored. Thus, the erroneous calculation has subtracted
four too many degrees of freedem for each of the nine intercohort tables.
dhen we add these back in, we obtain the correct 24 degrees of freedom under
:onstant association when level 5 i{s ignored.

Alternatively, we may obtain the correct degrees of freedom by enumer-
iting the nuFber of parameters fitted to the truncated classification.
tgnoring the cells at level 5, consider the design in Table 2. for each

:ohort there are two separate 2 x 2 subtables which have nelther rows nor

60
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columns in common. For each cohort it takes four degrees of freedom to fit
the Yower right hand 2 x 2 subtable, which has, of course, Just one degree of
freedom for interaction. We use four degrees of freedom, also, in fitting
the upper left hand 2 x 2 subtable. Since three level parameters appear in
the upper left hand subtable, it may appear that the mode! for that subtable
s underidentified. That is not the case because one of the interaction
'papneters (from level 4) is determined tn the lower right hand 2 x 2 sub-

1 fit each truncated cohor: table exactly (exhausting

table. In summary,

the ;ight degrees of freedom of the B counts) with a model in which four

7 fnteraction levels appear in the two 2 x 2 <ubtablec.

A

This explains why there
are no degrees of freedom for error when | fit the model of variable associa-
tion to the classification from which level 5 has been deleted. When ] fit
only one set of level parameters to the truncated classification under the

model of constant interaction, I have (4 - 1) x 8 = 24 degrees of freedom

for error, which is the same resuit asbtajned above by subtraction.
In the second part of Table 22 1 show values of G2 and degiecs - © freedom
under the model of variable association as each level of the design (Table 2)
is ignored in turn. In the full table the model of variable association
leaves 108 degrees of freedom for error. Since levels 1, 2, and 3 of tne
design each includes only | count per cohort, the fft does not improve, nor
do the degrees of freedom change, when [ lgnore the cells at those levels
under the mode} of varfadle association. Since level 4 has five (indepen-
dently variable) counts in each of the nine cohorts, and one degree of freedom
is used at this level for each cohort by the model of variable association,
I lose four degrees of freedom for each cohort when 1 ignore level 4 in
"tg'l the model of varizble association; this leave 72 degrees of freedom
for error. As explained above, the degrees of freedom are exhausted when

\‘ w
FRJCe tevel 5 in fitting the model of variable association.
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Recall from Figure 3 that the cuntrast between the test statistic for
the full table under the model of variahble association (62 = 175.6 with 108
df) and the test statistics balow it in the second panel) of Table 22 are of
the form, Gg - Gg. That is, they reflect lack of fit at each level of the
design. Since there is only one count at each of levels 1, 2, and 3, there
is no lack of fit at theseAlevels under the model of variable association;
this is, of course, a formal property of the*design in Table 2, and it has
no confirmatory value. When | compare the test statistics in Lines ) and 4,

1 obtatn G2 = 34.8 with 36 degrees of freedom. Since the test statistic is
less than its »xpected valve, 1 infer that the fit is satisfactory at level
4 of the design. There are no degrees of freedom for error when 1 ignore
level 5 ot the design, so | may attribute al) of the lack of fit (62 = 175.6
with 108 df) to level 5. Obviously, this test statistic is significant, and
the result suggests I might refine the present design hy splitting level 5
in Table 2 into two or more levels. Hote these tests for lack of fit (and
the companion tests for change reported jater; are nou independent; theiv is
no inconsistency between my use of the overill test statistic for errc: o
evaluate the fit at level 5 and a comporent of the same statistic to eval-
uate the fit at level 4.

In the third panel of Table 22 | report on each ﬂthe differences
between the entries on that line in the first and second panels. On the
first line the difference is a test statistic of the form, Gs - Gg. and on
the remaining lines the differences are test statistics of the form, Gg - Gd.
In the first line | obtain the overall test statistic for change in level
parameters, and the remaining lines give the test statistics for change at
111 but the specified level of the desin matrix. Since the full cross-

classification has K = 5 levels of interaction, and | compare L = 9 cohort

b
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tables, each of the latter test statistics has (L - 1){K - 2)=8x3=24
degrees of freedom. To obtain the test statistics for change at each level
of the design, | again take differences between the test statistic for the
full table and that on each line below it (recall Line 5 of Figure 3).
These are reported in the fourth panel of Table 22. Intercohort changes in
parameters at levels 1| and 3 are plainly not significant, while that at level
2 is (on my reading) of borderline statistical significance. At levels 4
and 5 there is statistically significant change in the parameters, whether

1 evaluate the nominal probabilities associated with th; values of Gz or

use an appropriate simultaneous inferential procedure (Goodman l969a).'7
Again, these test. for change are not statistically independent; note that
the sum of ihe test statistics for the five tests is larger than the test
statistic for the global contrast (59.7 with 32 df), and the sum of degrees
of freedom in the five tests is 40, rather than the 32 degrees of freedom for

change in the level parameters.

Q (5 E;
ERIC
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lI assume the familiarity of the reader with logiinear wodels for
frequency data. Fienberg (1970a, 1977), Goodman {1972a, 1972b) and Davis
(1974) give useful introductions, as does the comprehensive treatise by
Bishop, Fienberg and Holland (1975). | rely hzavily on methods for the
analysts of incomplete tables, which have been developed by Goodman (1963,
1965, 1968, 1969a, 1969b, 1971, 1972c), Bishop and F(enberg (1969), fFien-
berg‘(l970b, 1972), and Mantel (1970); again, Bishop, Fienberg and N;?land
(1975, especially pp. 206-21%, 225-228, 282-309, 320-324) s valuable.
Applications of loglinear models to occupational mobility data {nclude
several of the papers by Goodman just cited and, also, Hope (1974, 1980),
Hauser et al. (1975b). Pullum (1975), Iutaka et al. (1975), Featherman,
Jones and Hauser (1975), Ramsgy (1977), Hauser and Featherman (1977), Baron
(1980), Hauser (1978), Goldthorpe, Payne and Llewellyn (1978), soldthorpe
and Payne {1980), Duncan (1979), and Feathersan anu ilauser (1978).

zln the T x J cross-classification there are (I - 1) (J - 1) degrees

of freedom for two-way interaction. The conventional sicuctural model yields

two-way interaction effects for each of I x J counts by constrai;ing the
product of interactfon effects within each row and within each column of
the table; these constraints identify (1 - 1) (J - 1) independent inter-
action effects. Instead, the model of equatfon 1 identifies the two-way

interaction efrects by constraining some of them to be equal) across cells

of the classification.
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,thnx,o[ftb,eﬁsefmdgls--as well as problems in comparing their goodness
of fit--are reviewed by Bishop, Fienberg and‘ Holland (1975): Chs. 5, 8, 9),
and some of the same models are discussed by Haberman (1974: Ch. 6). Duncan
(1979) and Goodman (1979b) have recerily proposed additional models for

ciassificatfons of ordered categorical data.

al denote parametevs of the loglinear model in equation 2 by u*, u"“).
etc., in order to distinguish them from the u-terms of the conventional row-
by-column parameterization (Bishop, Fienberg, and Holland 1975: Ch. 2).

sthe reported frequencies are based on 2 complex saﬁpling design and
have been welghted to estimate population counts while compensating for
certain types of survey nonresponse. The estimated population counts have
been scaled down to reflect underlying sample freauencies, and a further
downward adjustment was made to compengate for departures of the sampling
de;lgn from a simpie random sampling. The frequenr: estimates in Table 1
have been rounded to the nearest integer, but my computations are based

on unrounded figures. | treat the adjusted frequencies as ii they had

been obtained under simple random sampling (Featherman and Hauser 1978:App.B).

: Occupation, industry and class of worker were coded in detail using
classification methods of the 1960 U.S. Census, and the detailed occu-

pation codes were aggregated to form the broad groups shown in the table.
The broad occupationAgroups have been defined in a s!ightly unconventional
way {on the basis of data on the schooling and incomes of current occupa-

tional incumbents). Sales workers other than retail sales workers have been

65
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1
alaced in the upper nonmanual group, while proprietors.have been placed
in the lower nonmanual qroup. This does not substantially affect t.e
findings relative to those based on a wore conventional classification of

spper and lower white-collar jobs (Featherman and Hauser, 1978:180-184) .
61his observation is elaborated by Featherman and Hauser (1978:177-160).

7Unsubscripted e is the base of natural logarithms and should not be

confused with the sample residuvals in the mltipli‘cauve model, ey =

xU/mU.

BLarntz (1978) has shown that zU has better small-sampie properties
than o components of Gz (the Vikelihood-ratio test statistic) or Freeman-
Tukey deviates. K

9See Featherman and Hauser (1978:66-67) for further discussion of these

- - .

patterns. -

mdust as | have shown *hat parameters of the saturated model are mixtures
of parameters of my model, it is also easy to show that the Mosteller ad-
justments yield indexes which are mixtures of the parameters of my model.

"ln more complex models other methods may be needed to esttmat;e
the missing frequencies, such as those used to estimate parameters for
models of the full table. The manval computaiions are often convenie.t,

and ECTA converges more rapidly when cells with unique parameters are

bu
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igngred than when the program is forced to fit them exactly.

.

} I o ’ .
ttlt took the author about an hour to prepare this i)lustration using a

small electronic calculator.
Yinis example was devéloped by Brian Clarridge. - Both the subsawless
of respondents and of their siblings were highly stratified by sex and

educational attainment, but | have treated the data as if they were ob-

tained by simple random sampling.

Mints exampie was developed with the assistance of Shu-ling Tsif.
The Detroit data were collected by Edward Laumann; | estimated the counts

from pe;-centages and warginal frequencies' in a secondary analysis,of these

-data by R. Jackson {1977). For this reason the counts in Panel A may differ

E

slightly from those in the original data.

"Sthere are methodological differences in the measurement of firsty
occupations ir. these two surveys, and for this reason it would not be sur-
pris.ing 1f the two models {or their parameters) differed substantially.
For more details about 'tMs compariSon see Featherman and Hauser (1978:
200-208). » '

16 2

d
to enumerate because they depepd on the pattern of the design matrix as

The degrees of freedom of-the statistics Gf and G, may be difficult

well 2s on the number of cells at the kth level. for example, when level

5 of the design in Table 2 §s blanked out, we delete only 4 independent en--
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tries in each of the third row and the third column, and we no longer neced
 to estimate marginal effects of the third row or the third colun of the
mbili;y classification. Thus, one isiwe!l-advised to apply the general
rule that the degrees of freedom for error ‘under a model is equa‘l to the
number of cells in the classification less the number of indepeniant

constants fitted to it.

L) ”See Featherman and Hauser (1978:200-208) for further discussion of

these results.
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mee 1

Counts in a classification of mobility from Father's {or Other Family
Wead's) Occupation to Son's First Full-time Civilian Occupation: J.C. Men
Aged 20-64 in 1973

Son's occupation

Father's Upper Lower Upper Lower
occupation Nonmanual lonmanual  Manual Manual Farm Total
Upper Nonmanual 1414 521 o2 643 40 292C
Lower Nonmanual 724 524 254 703 48 2253
Upper Manual 798 . 648 856 1676 108 4086
Lower Manual 156 914 m 3325 237 6003
Tarm 409 357 441 1611 1832 4650
Total 4101 2964 2624 7958 2265 19,912

NOTE:' Counts ara based on observations weighted to estimate
population counts and compensate for departuras of the
sampling design from simple random sampling. Broad occupa-
tion groups are upper nonmanual: profsssional and kindred
worksrs, managers and officials, and non-retail sales
workers! lower nonmanual: propristors, clsrical and Frindrsd
workevs., and retail salssworkers: upper manuals craftsmen,
foreman and kindred workers) lowsr manual: servics workers,
nperatives and kindred workers, and laborsrs, excspt farm)
fhrmt farmers and faxw managars, farm laborerns and foremen.
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TABLE 2

Asymmetric Five-level Model of Mobility from Father's Occupation
to First Full-time Civilian Occupation

Son's occupation

Father's

occupation 1 2 k} 4 S
1. Upper Nonmanual 2 4 S S 5
2. Lower Nonmanual 3 4 5 - 5
3. Upper Manual S S S 5 5
4. Lower Manual S S 5. 4 4
S. Farm 5 S S 4 1

NOTE: Broad occupation groups are upper nomanual:
professicnal and kindred workers, managers and
officlals, and non-retail salesz workers) lower
nonmanual: propristors, clerical and kindred
workers, and retail sales-workersi upper manuals
craftsmen, foremen and kindred workers; lower
manial: service workers, operatives and kindred
workers, and laboxsrs, except farm; farm: farmers
and farm managers, farm laborers and foremen.

-1



TAMLY, )

Estimated Parameters of the Model of Table 2:

Mobllity from Father's

(or Other Family llead’s) Occupation to Son's First Full-time Civilian

Occupation, U.5. Hen Aged 20-64 in 1973

<

Category of xow, colusn, or level

Desfign factor {1) {2) {3) (4) {5)
Rows (father’s occupation) -.466 ~.451 .495 .570 -.148
Columns (son's occupation) .209 . 190 .240 1.020 -1.660
Levels (density) 3.044 1.234 .549 «24) -.356

Grand mean = 6.277

78
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TABLE 4

Log of Ratio uf Observed to Expected Frequenclies in the Model of Table 2:
Mobility from Father's (or Other Family iicad’s) Occupation to Son's Flrst
Full-time Civilian Occupation, 0.S. Men Aged 20-64 in 1973

Son's occupation

Yathar's

occupation 1 2 k| 4 5
1. Upper Nonmanual .00* .01 .02 -.01 -.10
2. Lower Nonmanual .00* .00 -.17 .06 .06
3. Upper Manual .06 -.13 .10 ~.01 -.07
4. Lower Manual -.07 .14 -.08 .00 .04
5. Farm .03 ~.09 .08 -.01 .0n#

»
Fitted axactly under the model.

79



5

TABLE 3

Standardized. Residuals from the Model of Table 2: Hobiiity from rather's
" {or Othér Family liead’'s) Occipatiom to Son's First full-time Civilian
oOccupaticn, U.9. Men Aged 20-64 in 1973

T ¥

Son's occupation

TABLE ©

L[]
New Mobility Ratios (RH) Under the Model of Table 2: Mobility from

Father's (or Other Family llead’s) Occupation to Son's First Full-time
Civilian Occupation, U.S. Men Aged 20-64 in .197)
L I

“Yather's :

occupation 1 2 3 4 5

1. Upper Nonmanual  .00" .26 .29 -.24 -.60
3. Lower MNonmanua}l  .00* 04 -2.76 1.1 45
). Upper manwal  1.60 -3.38  2.80  -.51  -.74
4 Lover mesual . -1.39 .14 -2.28  -.05 .60
s. .65 -1.63 1.58 -.32, .00"

Farm
b

Son'a occupation
Father's
occupation 1 2 3 4 5
1. Upper Nonmahual .42 1.28 R .70 .64
2. Lower Nonmanual 1.73 1.28 .59 .75 .75
3. Upper Manual .74 .61 .77 .69 .65
4. Lower Manual .65 .80 .64 1.27 1.32
5. Parm .73 .64 .76 1.27 20.91

i) -
Fitted exactly under the model.

&)
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TABLE 7

Standard Outflow amd Infliw Tables:
Temily Hc:l'e) Occupation to ~on's First Full-time Civilian Occupation.
u.8. Men Aged 20-64 in 197)

Modility from Father's (or Other

8on's occupation

Pather's
occupat fon (1 (2 3 (ar (5!  Totar
Outt!low
1. Upper Nonmanual 48.4 17.8 10.3 22.0 1.4 100.0
2. Lower Monmanual 32.1 23.3 11.3 31.2 2.1 100.0
J. Upper Huaual  19.5 15.9 .0 41.0 2.6  '00.0
4. Lower Manual 12.6 15.2 12.8 55.4 4.0  100.0
5. rarm 8.9 7.1 9.5 34.6 39.4  100.0
Total 20.6 14.9 13.2 40.0 11.4  100.0.
. Inflow
). Upper Nonmanual  34.5 17.6¢ 1% 2.1 1.8 14.7
2. Lowei Nonwanual 17.7 17.7 9.7 8.8 2.1 11.3
3. Urper Manual 19.5 .9 32.6 21.1 4.9 20.5
A. Lower Hanual 18.4 0.8 23.4 4.6 10.5 0.1
S. Tarm 10.0 12.0 16.8 20.2 80.9 23.4
Total 100.0  100.0  100.0 100.0 100.0  10Q.0

facm
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- worhers) lowsr nonmanual:
wotksrs, and rstail salss-workers; Upp~r manuasl:
foremen and kindred workers; lowsr manual:
sperativea a:d kindred workers, and laboisxs, except farm;
farmary on” {arm manigers, farm lahorers and foraemen.

Broa4 cccupa-

professional indred

NOTE: Frequencies are based on observations weighted to e .imate
population counts and compensate for departures of the
sampling design from simple random sampling.
tion groups are upper nonmanual:
workers, managers and offfcials, and ncn-retail ..iea

propristors, clerical and kindred

craftsmen,:
service workers,

ABLE 8

nd Mobility Ratlos (R j) under the Model of Simple Independence:
fobility from Fatter's'’ (or Other ramily Head's) Occupation to Son's
‘{rst Full-time Civilian Occuprtion U.S. Men Aged 20-64 in 1973.

Son's occupation

Facher's
>ccupation

1. Upper Nonmanual
2. Lower Nonmanual
3. Upper hanual
4. Lower Manual

5. Fars




TABLE 9 TABLE 10
Multiplicative (1) Parameters in a Saturated Model of Mobility from
fFather's (or Other Family Head's) Occupation to Son's First Full-time
tivilian Occupation, U.S. Mcen Aged 20-64 in 1973

Raw and Adjusted Standardized Deviates Under the Hodel of Simple Independence:
Mobility from Father's (or Other Family ficad's) Occupation to Son's First
rull-time Civilian Occupation, U.S. Men Aged 20-64 in 197)

Son's occupation son's occupation

Tather's Father's
occupat ion (1) (2) (3) {4 (s) occupation 1 2 3 4 5

Standaxdized deviates- 1. Upper Honmanual 2.76 1.37 .96 .72 .38
1. Upper Nonmanual 33.13 4.14 -4.2) -15.3) -16.02 2. Lower Nonmanual 1.58 1.54 .90 .88 .52
2. Lower ! -manual 12.07 10.3t ~2.49 -6.60  -12.99 3. Upper Manual -92 1.00 1.60 .1 .61
3. Upper Manual -1.50 1.60 13.68 1.08 -16.56 4. Lower Manual .63 1.0 .04 I.53 .96
4. Lower Manua! ~13.65 .68 -.70 18.89  -17.07 5. Farm .40 -47 70 .90 8.67
. Fam ¥ -17.73 ~12.74 -6.94 -5.74 56.65

- Adjusted standardized deviates

1. Upper Nonmanual 48.89 5.70 =-5.71 ~-29.9) -21.18
2. Lower Nonmanual 17.14 13.66 ~3.24 ~12.39 ~16.52
3. Upper Manuel ~2.38 2.37 19.82 2.27 -23.52
4. Lower Manual -24.61 1.1% ~-1.15 45.05 -27.57
S. Ferm ~-29.1¢ -19.53 ~10.42 ~12.47 83.40 R

ERIC
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Table 11

Raw and Multiplicatively Adjusted Frequencies in a Hypothetical Tabie

€olumns

Rows 1 2 Total

A. Raw frequencies
1 1 *2 ot
2 1 *2 nt*a
Total 'll + le '12 + x22 N

B. Adjusted frequencies
1 acx ) ndxl2 n(cxn + dxlz)
2 bcx21 bdx22 b(cx21 + dxzz)

\ l N

Total ] c(axl1 + ble. d(axl2 + bx clax,, + bxzx)

)

+ d(axl2 + b?))

86

TABLE 12

Doubly Standardized Frequencies of Mobility from Father's (or Other Family
flead’'s) Occupation to Son's First full-time Civilian Occupation. #.S. Men
Aged 20-64 in 1973

Son's occupation

Father's
occupation 2 2 )} 4 S Total
1. Upper Nonmanual 2~ 1.18 .87 .66 .21 5.00
2. Lower donmanual 1.35 },50 .92 .91 .32 5.00
J. Upper Manual .80 1.00 1.66 1.16 .39 5.00
4. Lower Manual .56 1.0 1.10 1.69 .62 5.00
S. Farm .22 .29 .45 .59 3.46" 5.00
Total 5.00 5.00 5.00 5.00 5.00 25.00




TABLE 11} TABLE 14

Design Matrices for Three Models of puasi-Independence iu the 5 Ly 5

Summary of Fit of Selected Multiplicative Models:
Mobility Table (or Other Family llead's) Occupation to Son's First Full-time Civilian
Occupation, U.S. Men Aged 20-64 in 1373

Mobility from Father's

Sen's occupation

b 2 /e
Partial table Full table Hodel ne G af 8 GY/6%
Father s —_—
Mode? occupation 1 2 k] 4 S 1 2 3 4 S5
Independence 19,913 6167.69 16 20.1 100.0
n 1 o 1 1 1 1 2 1 1 1 1 Ql--main diagonal
2 1 0 1 1 1 1 3 1 1 1 blocked 11,961 6L3.06 11 5.% 11.1
3 1 1 0 1 1 1 1 4 1 1 Q2--diagonzl and .
4 1 1 1 0 1 1 1 1 5 L intra-stratum
moves blocked 8,909 50.05 7 1.4 0.8
s 1 1 1 1 o 1 1 1 1 &6
QJ3-~-diagonal and
ln’nor dianonals
'L blocked 5,520 15.67 3 0.6 0.3

under tha model.

(7 I S W R N
- = Q ©
- = QO Q
- o O e
© O e e e
© O o
- e e N
- e N W
Lo T - T I
O o~ e e

@ o e e
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Independent Level Under Three Hodels Of Quasli-Independence: Mobility Family Head’s) Occupation to Son's First Full-time Civilian Occupation.
from Father's (or Other Famlly Head's) Occupatlion to Son's Flrst U.S. Men Aged 20-64 in 1973
yull-ti “ivilian Occupation, U.S. Men Aged 20-64 in 1973

— Son'e occupation

“-n'es occupation Father'’s
- Father's —_— occupation 1 2 k] 4 5

Model occupation 1 2 k) 4 5

1. . Upper nonmanual 372.3* J44.1 285.6 811.5 60.1
Q1 1. Upper nonmanual 3.80* 1.51 1.06 .19 .62

2. Lower nonmanual .73 1.35¢ .73 17 -66 2. Lower nonsanual 319.5  387.7* 321.8  914.5 73.3
3. Upper manual 1.06 .93 1.48% 1,02 .82

4. Lower manusl .81 1.06 1.08 1.63* 1.45 3. Upper manual 754.9  687.7  579.0* 1645.5  131.9
S. ram .M .67 .99 1.28 1A.13*

-

4. Llower manual 934.8 864.0  717.0 2037.7% 163.3
@2 1. Upper nonmanual 4.94* 1.86* 1.08 .97 .93

2. Lowez nonmanual _ . 2.46% 1.84¢ .89 = 1:.04  1.10 5. fama $76.6  534.8  443.8  1261.2  101.1*

3. Upper manual N 1.10 .91 1.2i* 1.8 .98

4. Lower manual .91 1.13 .96 1.74* 1.90°* .
S, Farm T 1.00 .89 .11 1.70* 29.77* *Cells ignored (or fitted sxactly) undex the modal,

03 1. Upper nonmanual 5,33  1.81° .98 1.01  1.04
2. Lower nonmanuak ' 2.46*  l.64° % Il .89 1.13 ' .o
3. Upper manual 1.01 .76 .93 .88 .94

—— — As__Lcsier manual .9¢ 1.0% .82*  1,73*  2.03* .

i S. Pamm 1.10 .89 1.02 1.81* 33.92¢

r"_ — = - e - B - R

| .

TABLE 15 TALLE 16

Ratios of Observed Frequencies to Estimated Prequencies at Quasi- Expected Frequencles Under Model Q1: Mobility from Father's (or Other

*Cells ignored {(or fitted exactly) under the model.
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TARLE 17

“Manual Fit of Model 93 to Table 1

son’s occupation

ather's
occupation 1 2 3 4 ] EZffect
A. Log of fraquency in 1‘ted cells Row nean
1. Upper nonmanual - - $. 7110 6.46C 3.696 $.291
Z. Lower nonmanesl-. - - - 6. 555 3.882 5218~
3. Upper manual 6.682 - - - 4.630 $.681
4. Lower manual 6.6" 6.018 - - - $.724
$. Parm 6.uid 5.878 6.089 - - 5.994
B. Data less row means
1. Upper nonmanual - - .419 1.175 -1.59%
2. Lower nonmanual - - - 1.337 -1.337
J. Opper sanual 1.001 - - - «1.00)
4. Lower manual -.09% 094 - - - -
S. rarm .020 -.116 .06 - -
Column means .39 -.011 .2%7 1.256 -1.311 -
C. Data less colusn means Aow median
1. Upper nonmanual - - .162 -.081 -.284 =.08%
2. Lower nonmanual- - - - .00k -.026 028
J. Upper manual .692 - - - .310 .501
4. Lower sanval -, 404 .10% - - - 258
S. Parm -.289 -.108 -.162 - - «,162
. D. Data less row medians
1. Upper nonsanual - - .243° .000 -.203
2. Lover nonsanual - - - .083 -,054
3. Upper manual .191 - - - -, 191
4% lower manual -.254 +.255 - - -
S. Tarm -.127 .057 .000 - -
Colwn median =127 .158 .122 .027 191
8. Data less column sedians ! Rov median
1. Upper nonmanual - - 22 -.027 -.012 -.012
2. lowver nonmanual - - - .026 <137 .082
©3., Upper sanual .lla - - - 0 .159
4. Lower manual -.127 .099 - - ¢ - -.014
$. Yarm (4] . 099 -.122 - - -.09%
?. Data less Tow medians
1. Upper nonmanual - - .133 -.01% .000
2. Lower nonmanual - - - =056 058
3. Upper sanual .159 - - - -.1%9.
4. [ w~er sanual -.113 .113 - - -
S. Para 099 .000 -,023 - -
Column sedian 099 .056 .088 .06 .000
G. Data less colusn aedians Row median
1. Upper nonmanual - - .078 «021 .000 .021
2., Lower normanual - - - -,020 .088" .0187
3. Upper manusl .060 - - - -,159 -.0%
4. Lower manual -. 212 .087 - - - -,070
S. Pars Q00 ~«.05¢ -,078 - - -,056
M. Data less row madians
1. \': £ nonmanual - - .087 .000 -,021
2. Llower acnmanual - - - -.018 .037
3. Upper manual .110 - - - -,109
4. Lover manual -.134 133 - - - o
$S. Tarm -.0%6 «000 -.022 - -
Column redian -.0%6 068 .018 -.019 -.021
1. Data less column mediane Row nedian
1. Upper nonmanual - - .09 .019 .000 .019
2.. Lower ronmanual - - - -,019 .0%8 .020
3. Upper sanual .054 - - - -,088 -, 017
4. Lover sanual -, 190 .067 - - - -.062
$. Pamm 0 -. 068 -,040 - - -.040

NOTE: See text for Exmtt;u.




TABLE 18

Cumulation of Effects from Table 17

Panel of Table 17

Occupation A B Cc D E 4 Total
Row effects
1. Upper nonmanual 5.291 -.081 . -.012 5.219
2. Lower nonmanual -5.218 .028 .082 5.346
3. Upper manual 5.681 .501 .159 6.291
. 4. Lower manual 6.724 ~-.150 -.014 6.482
-fS. Farm ’ 5.994 -.162 ~.099 5.677
Column efiects
1. Upper nonmanual .309 -.127 .099 .337
2. Lower nonmanual -.011 .156 .056 .269
.3. Upper manual .257 .122 .055 .452"
4. Lower manual 1.256 .027 ~-.036 1.228
s. ~-1.523

Farm -1.311 ° -.191 .000

33




TABLE 19

Summary Analysis of Model Q3 Fitted by Medians

Father's
occupation b4 2 3 -4 5

Son's occupation

1.
2.
3.
4.
S.

1.
2.
3.
4.

.5.

1.
<.
3.
4.

5.

Ex. =2cted logs of frequencies in cells ignored in fitting-

Upper nonmanual 5.556 S.488 - - - .
Lower nonmanual 5.683 5.615 5.798 - -
Upp&r manual - 6.560 6.743 7.519 -
Lower manual -— - 6.934 7.7 4.959°
Farm - - - 6.905 4.154

. Obsexrved lessﬁaxpectedflnga of frequencies (/_
Upper nonmanual 1.698 768 .03 .09 .000
Lower nonmanuak .902 .647 -, 261 -.015 .058
Upper manual .054 —7.086- .009 -.095 -.088
Lower manual -=.190 .067 -.286 .399 .509
Farm .000 -.068 -.040 .480 3.359
Antilogs of entriés in panel B
Upper nonmanual * 5.46 2.16  1.04 1.02 1.00 )
Lovwer nonmanual 2.46 1.91 .77 .98 1.06
Upmr mu‘l’ * 1006 092 1.01 091 092
Lower manual +83 1.07 .75 - 1.49 1.66

Farm . : 1.00 .93 . ‘.96“ 1.62 28.76
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TABLE 20 h ?‘,\\ :

Respondent's Education (Years of School) by Sibling's Education:

Wisconsin Sample .

Respondent's > Sibling's Education .
- Education ~12 13 14 15 - 16 17+ Total

A. Frequencies
12 881 51 ° 53 27 109 58 1179

13 65 g+ 7 T B 6 111
~ 14 40 9 , 14 7 14 1 95
15 23 7 4 2 6 6 48
16 91 20 12 9 77 53 262
17+ § 57 14 13 4 59 51 198
Total | 1157 109 103 56 283 185 1893

B. - Row Pexcentages
i

S ) \y 74.7 4.3 4.5 2.3 9.2 4.9 100.0 S
13 58.6 7.2 6.3 6.3 16.2 5.4 100.0
14 42.1 S.5 14,7 7.4 14.7 i1.6 100.0
15 47.9 14.6 8.3 4.2 12.5 12.5 100.0
16 34.7 7.6 4.6 3.4 29.4 20.2 100.0
17+ 28.8 7.1 6.6 2.0 29.8 25.8 100.0
Total 6l.1 5.8 5.4 3.0 14.9 9.8 100.0
C. Column Percentages
12 76.1 46.8 51.4 48.2 38.5 31.4 62.3
13 5.6 7.3 6.8 12.5 6.4 3.2 5.9
14 3.5 8.3 13.6 12.5 4.9 5.9 5.0
15 2.0 6.4 3.9 3.6 2.1 3.2 2.5
16 7.9 186.3 11.7 16.1 27.2 28.6 13.8
17+ 4.9 12.8 12.6 ~7.1 - 20.8 27.¢ 10.5
Total . 106.0 100.0 100.0 100.0 100.0 100.0 100.0

¥
o

D. Estimated Freguencies Under Symmetry (G2 = 11.59 with 15 4f)

12 b3l -58 46.5 25 100 57.5 1168
13 ‘ 58 8 8 7 19 19 110
14 46.5 8 14 5.5 13 12 99
15 - 25 7 5.5 2 7.5 5 52
16 100 -~ 19 13 7.5 77 56 272.5
17+ ‘ 57.% 10 12 5 56 51 191.5
rotal 1168 110 39 52 272.5 191.5 1893
E. _ow (or Column) Percentages Under Symmetry
12 T 75.4 5.0 4.0 2.1 ¢ 8.6 4.9 10C.0
13 ' 52.7 7.3 7.3 ‘6.4 17.3 9.1 100.0
14 47.0 8.1  14.1 5.6 13.1 12.1 100.0
15 48.0 13.5 10.6 3.8 14. 9.6 100.0
16 36.7 7.0 4.8 2.8 28. 20.6 100.0
17+ 30.0 5.2 6.3 2.6 29. 26.6 100.0
- Total 61.7 5.8 5.2 2.7 10.1




TABLE 20 (<ontinued)

Respondent's

Sibling's Education

Education 12

13

14

15

16

17+ Total

F. Observed/Expected Frequencies Under Independence (G2 =

333.7 with 25 df)

12 1
S 13

14

15

16

17+

.22
.96
.69
.78
.57
.47

.75
1.25
1.64
2.53
1.33
1.23

[.S]

1.

.83
.16
.71
.53
.84
21

G. Multiplicative Parameters of the Saturated

.77
.13
.49
.41
.16
.68

NN

.62
1.08
.99
.84
1.97
1.99

.50
.55
.18
.28
.07
.64

NN -

Row X Column Model

) ) 12 . 2.48 .83 .99 .91
13 1.33 .95 .95 1.71

14 .73 .95 1.69 1.52

i5 .83 1.64 1.07 .96

16 .72 .92 .63 .85

17+ .62 .88 .93 .52

H. Mosteller's Adjustment to Uniform Marginal Sums
12 2.16 .79 .92 .82

13 1.19 .93 .92 1.59

14 .66 .93 1.63 1.42

*15 .86 1.64 1.06 .92

16 .65 .90 .61 .80

17+ .52 .81 .85 .45
Total 6.00 6.00 6.00 6.00

I. Parameter Labels Under Hultiplicative Model

12 1
13
14
15
16
17+

(LS I O T S i S N ]

[, S S I SR ST ]

2

NN N

[LS I S I S I S I S Y N

, . .y . 2
J. Relative Densities Under Multiplicative Model (G

.82
.98
.68
.65
1.64
1.71

.75
.93
.64
.63
1.54
1.51
6

.66
.50
.81
.98
1.70
2.24

.57
.44
.72
.89
1.51
1.86
6.00

NN NN

= 22.59 with 24 d4f)

6.N0
6.00
6.00
6.00
6.00
6.00
38.00

12 2
13
s 14

1
-

16
17+

.40
.97
.80
.79
.87
.72

.75
.64
.97
1.30
1.02
.95

1

1

.93
.67
.80
.89
.74
.05

.77
1.09
1.46

.72

.89

.53

.92
.81
.86
.64
2.26
2.29

.75
.42
1.04
.98
2.38
3.03

o0 c——
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Note: Parameter estimates under the model of Panel J are 51
.84; 61/52 = 2,85,

~

Z 2,40 and 52 =




TABLE 21

Respondent’'s Broad Ocrupation Group by Friend's Occupation: Detroit Men
(Laumann's Data from Jackson)

Friend's Respondent's Occupation

Cccupation 1 2 3 4 Totail

A. Frequencies

df)

l. Upper Vhite Collar 329 162 84 87 662
2. Lower White Collar 226 284 123 165 798
3. Upper Blue Collar 83 103 265 218 669
4. Lower Blue Collar 55 27 174 413 744
Total 693 646 €46 888 2873
B. Column Percentages ’
1. UWC 47.5 25.1 13.0 9.8 23.0
2. LWC 32.6 44.0 19.0 18.6 27.8
3. UBC 12.0 15.9 41.0 24.5 23.3
4. LBC 7.9 -15.0 26 9 47.1 25.9
Total 100.0 100.0 100.) 100.0 100.0
C. Observed/Expected Frequencies Under Indggghdence (62 = 778.17 with 9
1. UWC 2.06 1.09 .56 .43
2. LWC 1.17 1.58 .69 .67
3. UBC .51 .68 1.76 1.05
4. LBC .31 .58 1.04 1.82
D. Estimated Ffequencies Under Quasi-SymmetgyA(G2 = 2.25 with 3 4f)
1. UwWC 329.C 168.3 83.7 8l1.0 662
2. LWC 219.7 284.0 128.3 166.1 798
3. UBC 83.3 97.8 265.0 223.0 669
4. LBC 61.0 G5.9 169.0 418.0 744
Total 693 646 646 888 2873

E. Starting Values Under Quasi-Perfect Choice {Rlocked Diagonal)

1. UwcC 0 1 1 1
2. LWC 1 0 1 1
3. UBC 1 1 0 1
4. LAC 1 1 1 0
F. Observed/Expected Frequencies Under Quasi-Perfect Choice (62 = 18£.92
with 2 df)
1. UWC 3.57+ 1.55 .81 .67
2. LWC 1.47 1.61* .77 .84
3. uscC .72 .72 2.05¢* 1.47
4. LBC .62 .82 1.53 3.22*

*Cell ignored in estimating the model.
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TABLE .. ’‘continued)

Friend's Respondent's Occupation
Occupation ) 1 2 3 4 Total
G. Parameter Labels Under Multiplicative Model

1. UWC 5 2 1 1

2. LWC 2 2 1 1

3. UBC 1 1 3 2

4. LBC 1 1 2 4

H. Ralative Densities Under Multiplicative Model (G° = 6.46 with 5 df)

1. UWC 3.27 1.22 .67 .60

2. LWC 1.29 1.23 .57 .66

3. uBC .66 .62 1.71 1.21

4. LBC .50 .67 1.29 2.66

I. Starting Values Under Model of Linear Density Gradient (62 = 7,63

with 9 df)

1. UwC 5 2 1 1

2. LWC 2 2 1 1

3. UBC 1 1 3 2

4. LBC 1 1 2 4

Note: Parametgr estimates, under the model of Panel H are §, = .622, 5 =

1.245, 63 = 1.712, 54 = 2.664, 55 = 3.268.
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TABLE <

Tests for Change in Mobility from Father's (or Other Family Head's) Occupation
to Son's First Full-time Civilian Occupation, U.S. lien Aged 20~64 in 1973
by S-Year Age Cohorts

Model Change
Unblocked
Level (PA) (WA) (H) (PA) (WA} (HA) levels Blocked level
cve 2 2 2 2
blanked out G af G df G dt G df a
None 235.3 140 175.6- 108 59.7 32 - ~= =
1 229.2 132 175.6 108 53.6 24 6.10 8 >.500
2 216.6 132 175.6 108 41.0 24 18.7 8 <.025
3 233.3 132 175.6 108 57.7 24 2.0 8 >.501
4 165.0 96 140.8 72 24.2 24 3s.5" 8 <.001
5 11.9 24 0.0 © 11.9 24 47.8" 8 <.001

NOTES: P = father's occupation, W = son's first occupation, A = Age,
H = design matrix frcm Table 4.

*Significant at the a = .05 level in a simultaneous test;
critical xz = 20.09, Given the S tests reported here.
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.- FIGURE 1

ds Voiume of Mobility froum Father's (or Other
Family Head's) Ocrupation to Sor's First
Full-time Civilian Occupation, U.S. Men
Aced 20-64 in March 1973

NoTP: Sas taxtr faor sxvlanaticn. 1”0




FIGURE 2

. . ) . 2
Schematic Arrangement of Likelihood-Ratio Test Statistics (G°)
for Change in Interaction Farameters and Lack of Fit of

Multiplicative Models

Interaction parameters

Entires at

kth level Constant vVariable

Fitted under Gi: change and lack ng lack of fit at

the model of fit at all all levels of
levels of the the design
design

Blanked ocut Gg: change and lack Gé: *ack of fit at

of it at all but
the xth level of
the design

all but the kth
level of-the
design

1)1




FIGURE 3

Test Statistics for Selected Hypotheses About Interaction in Two or
More Classifications

Test Degrees of
Null hypothesis statistic freedom
. 2 2
1, No change in interaction Ga --Gb (L~1) (K-1)
parameters at any level
of the design
2. No change in interaction Gz - Gg (L-1}) {K-2)
parameters at any but the
kth level of the design
3. No change or lack of fit Gi - G: LMk-l
' at the k¥ level of the
design
4. No lack of fit at the kth Gg - GZ LM ~1)
level of the design
S. No change in int ti (G2 - 2) - (G2 - Gz) L-1
. ng nteraction a Gb o a

parameters at the k
level of the design

$
NOTE: See Figure 2 for definitions of G:. Gg, Gi. Gg.
L = number of cross-classifications compared,
K = number of levels of the design matrix,
Hk = number of independently variable cells
-~ at the xth level‘of the design matrix.

-~
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