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National Assessment’ Overview - ¢

The National Assessment o!’Educational Progress (NAEP) can be viewed
as‘an annual series of large-Scale sampie surveys designed to measure the
eduéational acnievements of four age gropps in 10 subject areas. The four
specific age groups include all 9-year-olds and lB-year-olds enrolled in

school at the time of assessment and all l7-year—olds and young adultg,

.ages 26-35. The first assessment of sciénce, wfiting, and citizenship

spanned the 1969-70 school year. Subsequentiassessments have been conddcted
during the 1970-71, 1971-72, and 1972-73 school years. At this writing:
the Year 05 assessment of Career and Occupational Development (COD) and
Writing is underway, and’ plannisig for tﬁé Year 06 assessment has begun.

» National Assessment respondents answar questions and perforn tasks
puch the same as they would on a typicalfachievement gest. One aspect of

]

Nationsl Assessment _that dﬂstinguishes t from the typical educational

teSting program is the way data are;repbrted Instead of calculating test

scores for each respondent and forming? ormative oistributions, results on
each released exerc{se are reported sjgarately. Unreleased exercises are
held back for reassessmeét in subseqfient years so that trend measurements

will not be biased by school systemd 'teaching to specific NAEP exercises.

" ‘The reporting of Separate exerciseJ takes the form of estimated proportions

responding correctly, within varioug suhszoqps of the’target population.
Group effects that contrast the proportion of correct ansvers for a specific,
subgroup dgainst the corresponding national propottion are used to detec.

variations in konowledge, understanding. skills, and attitudes among various
segments of the population. With this method "of reporting, it is not

Joecessary for each respondent to comolete the entire set of exercises.

Subsets of exercises, called packages, are formed which take approxichtely
50 minutes eaoh to complete. "If 10 such packagea are formed for a particular
age-class assessment, then 10 nonoverlapping sexples, each representative .
of the target population, are,apecified and assigned a particular.package
?eginning with the early planning stages of National AssesSment, careful

attention hasnbeen given to the design ¥nd implementation of efficient

>
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on of age~class respondents
methods, it 1is pdssible for

lation.ch;racteristics on the basis of fairly small samples, The purpose

—of this monograph s to describg what is cfeant by relatively precise state-
ments abo t population characteristics and to show how National Assessmeht
l sample data are being useg to gauge the accuracy of reported results. -

Fl

}: Population Characteristics and Samnle Statistics .
A " While statistlcians and other researchers familiar ﬁith survey methods

are well aware of the inferential “leap" that ds made when sample-based
results are taken to represent population facts, many users of sample data

, do not readily distinguish befireen population parameters and sample statistics
‘It is the researcher's obligaaion, therefore, to poiﬁt out that his survey

P

results are an imperfect approximation of the truth, an approximation whose

accuracy is limited by his financial resources and his sample survey skills.

* The sdurces of error that plague survey results are numerous. Many of -
these error sources-=-such as unuseable responses to vague or s;psitive A
questions; no response from particular sample members, and errors in coding,
scoring, and processing the data—-are beyond the control of the sampling
statistician. The nonsampling errors are also common to complete enumerations
of a target populatfbn, such as the U.S, Decimal Census. One advantage of a
small sacple surve} over a complgte enumeration, in addition to the obvious
cost savings, is that a smaller, ,pore highly trained, and supervised field
force followéd up by careful scoring and processing.of the small saople data
_may produce fewer nonsampling errors per respondent than the ‘large unwieldy
' census operation.- -
In additioﬁ to'poor response, nonresponse, scoring, and processing

T errors, sample survey results are innacourate Precisely because they are based
on a ssmple and niot on the, entire population Considerﬁ for example, the '
populatlon percentage of‘9—yeat-olds who can’ answer a particular science
exercise dorrectly.’ For a specified sample design and selection procedure,
a very large, number of possible.samples could be realized. Supose that ‘
sw» 1,2 ...85 indexes the totality‘of possible;samples that could be drawn

in accordante ith a spsoified procedure. & probabilitv sampling method is
i . .~ - * -
Y r - v
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d*stinguished'bv the fact that each sample-s nas a Xnown nonzero probab lity
of being selected. If we denote this nrobabil‘ty of seleotion by ‘(s) and’

- lat P(s) denote the sample-s estimate for the peroen_age of 9-ve=r—olds who

can answer oorreotly, then : ' . )
FS ' S FS ) ‘ . *
s E{P(s)} = "L =(s) P(sh ' . (1.1)
/ .
* » L s‘l :

» R | . -
is the expectation, or expected value, of the sample stiatistic P(s).  Tnis
expectation represen.s the average value of the ‘estimates P(s) over a con-

ceptually infinite sequence of'repeated sample drdws with ﬁ(s)‘denOting .

the frequency, of occurrence for sample-s. 1f this expected value does not
equal the population parameter of interest, say P; then P(s) 15 said to ve
a biased estimpate ¢f P. The magnitude of this bias is speoified by

-
.

I - ~ - - , b -

> Bias {P(s)} = [E{?(s)} - P}, - < (X.2

- - .

(o

-

Bias in a sample statistic may be attributed to nonsampling as well as
th sampling sourZES>,£E§E\is, statistics that would otherwise average out
to the true population vafhe can niss the mark-if nonresponse,.neaSureme.t,
or processing errors ‘are mide. In the absence of nonsampling errors,

probabilitv samples provide {Qr unbilased estimat ion of population totals «

like the numerators and denouminators of NAEP P—values, On, the otner .hand,

strictly unbiased estimates for ratios of population totals are often unavail~ "’
sble. The sampling “blases associated with, ratio estimates are generally
negligible when large-soale probabil*ty samples are involved., Scrme egpirsgal
evidence for this oontention is presented in chanter 4, where the.samplingc

blases of VAEP P-valnes are studied.
Besides the systematic errors that cause the sacple estimate to miss

-

the mark on the a@erage one must. also recognize that itvis'possible to
hit the target on the average whfie missing the bull's-ey bsténtially
in some sanples. To quantify these random sampling fluotuaﬁions,,

[

statisticians, have defined the sampling vaéianoe of b(s) as

¢ oA 5. "o Toa : v - ,!
TINE  ar ()} = 1 ale) [3(a) - S(3(e)})2. , (1.3)
s-l . .
R I v i
. ; Ty k .
. P . ’ .
’ - 3' e @ * IIZ "" -
* . i\’l.-'i ’
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\\ This quantity represents the squared distante between the samplevvalues . -
‘ . and their expectation or centroid averaged over an infinite sequence of
samﬁle draws. A more appropriate Deasure of sample dispersion for a . -

e
biased estimator is the mean squared error, Y weighted average of squared

\differences between sample values and,the true populatipp value P: . ) " v
- \ "A S ¢ 2 ’ ' v f ‘ .,
. n- t MSE {P(s)} = [ =(s) [P(s) ~. P} (1.4) .
' * ‘\‘ . - . 8-1 ° .l . i - ?
- ‘\ * » ) N 1 .
Th@\mean squared error of a sample statistic has an obvious relationship . .
: to irs bias and variance, namely, ' ' ’ ’ .
.‘. . . -
- \ . - =
\ usr-: {P(s)} - Bias {P(s)} + Var {P(s)} - (1. 5)

~

The quantity most commoply’ used to characterize the sampling variation of

»
]

a statistic is called the standard error or SE{P(s)}, where

S
P -
.

| SE (P(s)} = (Var {p(s)}}1/2 . ' (1.6 :
y AR analogous. quantity for biased statiStics is ) .
: ) - ] i .. "~ L]
. e TE {P(s)} - [MSE {P(s)}]1/2 T an .
~ - » .
~ often called the "total error" or root mean squared error.

s it is apparent from the definitions in equations 1.3 through 1.7 that

' the true value of these sampling error measures £annot be determined from
a single sample. It is possible, however, to produce valid estimates of .
these quantities using the data obtained from a well-designed probability

' ,sample. Probability samples which provide gor estimat*ng the sampling

~variability, ordinarily the standard errors, of sample statistics have been

- called measurable {ref. 1}. Examples of nonmeasurable probability samples
include syszematic random selections from lists exhibiting periodicity and
~stratified random samples with a single uynit selected per stratum.
\ National Assessment i3 committed to the designh of méasurable samples,

. samples which provide for reasonably valid estimates of st¥i®ard errors.
These stﬂhdard errors, us'ed in ,connection with respected statistical con- )
vencions, Jmake it possible to bridge tlie gap betweer/ gample estimates and
population facts. A statistical framework for inferring pPopulation P-values

and fpr inferring group éffects fron sample effects 1is outlined in the -

fblloding section. . . .
o . . M 4
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L are cotzhonly called '$onfidence intervals" in the statistical literature;

" [ ” - .
e e - \ ' ‘ * . <~ ' - y
- -*-«---‘-"z" ’ ’ ! * . :- - .
*
” 'Y - 1] - »
«  Statistical Inference - Y . ) . . ,
- e ————— * P .
6 fidenge Intervals. ( . . . s, . .0 ..
'\ «

- When one makes inference from a samnle aoout the magnitude of a popu- - -~
la:ion paraneter, like<P, by quoting a sample estizator ?(s) it is cozmon'
St tical practice to include a range or interwval of values about P(s) -
uhich D¢ likely #o contain the true population value P. "~ Such intervals

the) requently take the form  « s

: . L] ) .

, . » S .t
LT L(e) = B(s) kK se {Ple)) L . o we
where kis a constant and se i’(s)} is the estimated standard error for '
the sample statistic P(s) The "confidence coefficient" associated with .
_ such an interval "is the probability that a randomlv selected sampla.will
yield an interval I?(S) tiet includes the true “population value P,
Recalling that we have $ possible samples which are realized\bith p*ob-

abilities v(s), this confidence coefficient can be specified by def ning

~
.

A(P) ag the set of samples where the interval IP(S) contains P aqd lett-ng_ 7

S ¥(® = 'z sy e
oo N * SEA(P) [ '

[

-

denote the probability that thE‘interval associated with a randonly selected
’ sample will tontain P. Notice that the summation in eque;ion 1.9 ertends
over all samples-s'which belong to the set A(P) [scA(P) denotes s belonging
to A(P)]. In empirical terms, this probability statement means that, in
a conceptually infinite sequence “of repeated sample draws, a fract ion v (P).
, of the cnrresponding intervals will contain P. ", .
In order to specify g value of k in equation 1.8 that will yield'an
interval with given confidence coefficient v{P), one must know the sampl*ng

distribution of the standardized variable R K

- . . L3 v a *

‘ - t(s) = [B(s) - P)/se {P(s)} . .-.,/ " (1.10),
\ ’ '
]
- Notice'that the set A{P) of samples with; IP(s)eP [IP(s) containing P] is )
equivalent «to the set/of samples with [t(s)l<k. It is clear that the
sampling distribution of t(s) cannot be apecified exactly without a complete

enumeration of the target population. To!pursue this line of in:erence, ‘
, " . 7 . L

Il * ’
"
. h . *
L]
. ¥
v "
. .

-

.
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samplinh statistfcians commonly assume that the sampling distribution of "o,
t(s) can be approximated by Stugeﬂt's T distribution #ith (df) "degrees of

freedom"‘or by, the standard normal distribution when &f exceeds 60. The

— ————— —n
i — - ——

rationale for tﬁi“”assumption rests on the tendency of statistics Tike “(s) ) {
fxom }arge probability samples to have normalqlike sampling distributions.
‘With P(s) approximately normal, the sampling.distribution of t(s) will .
resemble Student's T with the approfriate degrees of freedom. . .
For a stratified multistaée sample with a total of n primary sampling
: wnits (PSUs) selected from B primary strata, the degreés of freedom
* - agsociated with t(s) can be approximated by df = (n-H). Some authors have ‘
recommended a more sophisticated approximation for df attributed to '
Satterthwaite [ref. 2]. Satterthwaite 8 approximation attempts to account for
wmequal within~gstratum Yariance components and,gg;ying sttatum sample siZes.
The results of some recent empirical studies summarized in chapter 4 of this
. monograph seem to indicave that'the naive approxiﬁation for d%, namei§

df = (n-H),'is to be preferred. :’ ' . : . .o
A further characteriza'ion of a y(P) confidence iftervdl can be made
in terms Bf its so-called Operating Characteristic (oc) curve. . KEE~ oc

curve summarizes the probabilit*es that pfnts P* other than the true value 1

P will be includéd in thp interval corresponding to a randomly selected

sample. If Fe let Y(P*) = Pr {Iv(s)eP*} where IP(s) has the form in-r ';

.equation” 1 8 then . . )

" [ .
. ©oa@h) =P {fees,an] gk} . (1.11) '

where ) . o .- / ' : ,
‘ - . t(s,0%) = [B(s) ~.P*]/se {P(s))

PR 7R t(s) + (P¥)/se (B(s

-~ - t(s) + d*/se {P(s)) :

dﬁ}s the form of Student's noncentral T statistic ith df degrees of freedom
. and noncentrality pafametex &* = A*/SE{P(Q'G Far values of P* deviating -
considerably from the true value P, one would hope that v(P*) would be small.

' ) v It is 1mportant to note at this point thac, 'for a giveh.sagple design ' .
. and an estimation scheme characterized by SE{P(s)} and .the degrees of _
freedom~df associated“with se{P(s)}, the encire OC curve is gpecified once
- . N O . . ) .
~ov , B y 1o ... ' :
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k 1is set. With this in mind,.it:is‘clear fromf%éuation 1,11 that, while' .
“an increase in k will raise the confidence level, y(P), ot the associated .
interval .it will also.infXate the probability of including unwanted valuesé# -
Another way of viewipg 'this relationshio betwee" increasing con:idenceuand
the inclusion of more unwanted vdlues (P* P P) is gained by observing that
the expected leng:h of a random interval such as l?(a) in equation 1.8 is
directly proportional to k, Hende, the greater “the confidence coezficient
the wider the interval. The value Jf—ﬁ is most comzonly set to yield
confidence coefficients in thj-neighborhood of .95 or-.99, . L

Significance Tests _ ' .

Wnen a si;eable group effect is obqer;ed in the sample, cne can ask if
it is likely that duch an effect could be due s0lély to sampling variations. .
To answer such questions, statisticians have devised an inferential 'structure’
known as the test of significance. We will describe this structure in fhe

context of Iational Assessment "grouo effects" . t

eP ols) -~ [” (s) - P(S)] oo ’ (1.122)°

y \

where.P (s) denotes the samole-s estimate, of the proportion of group G
nedbers who can’ answer:a particular exercise corrcctly and P(s) ‘depicts "
the corresponding proportion fo. the entire population. Group G could,
for example, denote the 9ryear—olds residinﬁ in NAEP's Northeast reg;on,ﬁ_‘
in which case 65 () would compare the perfoimance of the Northeast
9-year-olds against the' overall national pqpfoﬁnance ‘of 9=-vear-olds. '
An, observed group effect APG(s) is judged to be significantly different
from zero if its abqolute value exceeds a,critical vhlue C.- The critical
value is determined so that the probabilitj of observing an absolute efrect
AP (s) in_excess of C>when the true population effect 4P, is zero is less <
than some arbitrarily small probability «. This probability a.of declaring
ay observed sample effect significant when in: fact the true populatio. effect
is zeroﬁ called the signiffcance level of the test. Commonly used .
significance levels are a = 0L and a = ,05. The critical value C frequeng;y
takes the form e ‘ » .

4

Co Gl mkse a2()) (2.13)

/ ' ' )

L]
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where k is a constant and se{AP(sD} is the estimated standard error for the

v group effect AP(s) The subscript G designating a particular subgroup has
'been dropped from the group effeot‘sngol in equation 1. 13 to sdmplify our -
notation. It we let A(AP) denote‘;he set of samples for which AP(s) exceeds |

k se{dP(s)} in absolute value and use™

. A

: a(a®) = I u(s) L@y
. . scA(AP) : - - -

-

) [ ’

to denote the probability‘that an observed group effect AP(s) will be
judged significant, then a(AP) can be expressed as follows:

L ]

- a(AP_) “ Pri|c(s,ap) >k} ’ _(1.15)
where ‘ : I ’ . . ,
t(s,AP) = AP(s)/se(AP(s)‘ ’ e 4 . '
RN ‘ - [AP(s) - AP]/se{AP(é)} + AP/Se{AP(s)} . “ . '

= t(sy + AP/se{AP(s)} )
NotiCe that, as w;th the ‘oc curve presented in equation 1.11 for od; confidence .
interval, e(d”) can 'be specified in terms of ' the. sampling distribution of a
statistic t(s,AP) whidh has the form of Student's aoncentral T statistic.
If AP,,the true population group effect, were zero, then.a(O) = 2r{|t(s)|> k}
represents the significance level of the test with t£(s) taLing the forn ofn ’ *
\ Student's central' T statistic. For populations with AP#0, a(sP) gives the
) probability of declaring significance when the true group effect is aP. “Taken
as a function of 4P, the curve a(AB) described in equation 1.15 43 called
. the power function of ghe significance test. As AP deviates increasingly

from zero, one would hope\that a(AP), the probability of declarihg signifi—

+

L »

| cance, would rise sharply. | . . . . . .
, While .the OC curve: for our confidence interval could be completely ’ A
determined if the population was fully specified, onlv one point of the
power curve can be determined: namely, that point corresponding to the true
*group effegt aP°. The other points are concgptual in ‘the_sense that they -

" specify what’ the probability of declaring significanue wouwld be for a similar

’
population whe:¥ the true group effect was AP*#sP°. T, . e
. ,bh *
, . L) . .12 A} ‘ : . o
8 v
\ - . . \ » - .
) s L . ) A v
! » * ] v
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- ‘Eégescribing a c‘itical valué for ; test of signifitance that will yield . . T

; T oa predetermined significance level o presumes, knowledge of the sampling ] .

. "':distribution of t{s, AP) - A“(s)/sef&?(s)‘ for 2 concegtdal populption which *

o is ‘1ike the oopulation of interest and is: characterized 4 negﬁ igible ' '

. group effect AP = 0. At this pointy asnwas the pase wit#¥confidence

, intervals, sampling sta.istiqiana comnonly aSSume that Student s central .

- T ‘distribution vould be a reasonable approximation for the sampling distqi- -

. butiod of t(s,4P) from a population with 4P = 0, 1If the dqarees of freedomr

; 'aasociated with se{AP(s)}‘exceeds 60,.one can effectiver use fhe standard ]
normal distribution to determine k such,;hat Pr{It(s 0)|> k} = 3 Typical o .

*

values of kﬁtrom the Standard normal distribution .are k = 1.96 for a -
sign Ificance level 1 =05 and k =« 2,58 for a significance level of ~éa .Ol
‘ “anining the fora of rhe 'power function" in equationm 1.15 nakes it clear
y}at vhile one.na? reduce the risk of falsely declaring significance (tHat
_is reduce a) by incre%sing k, there will%e a corresponding-reduction in

from zero. This same relationdhip was

—,

oted between increas_ng confidence

the power to ‘declare significance wheq>:ﬂe true group effect AP deviates N

-

coef‘icients and lengthening intervals!
+ 'In additdon. to . the direct comparisons between-subgroup\}nd natioaal
N proportions of co-rect answers which we have called group effects, atioqal . -
Assessuent raports adjusted or balancéd effects which attempt to correct
for the masqueradin§ of one characteristic®as the effect of another. While -
- the unadjusted ‘group effects properly reflect the differenqes in achievement,
‘ between specific groups of children, much of. the observed difﬂbrence mav

’ ’

well be attributable to otjer facto;s on which the-compared groups differ, R

For'example, part qf"tHb‘deficit in achievetent observed in the direct ; >
compariéon of Black students with non-Blacks may be artribuged to the fact
o that -Black students tend, more than non-Black students, to have %ess ;
’ ' educated parencs. In the £ollowing §ection, the adjustment methodologv >’ ~‘“

used by Nati%,al Asseaament to compensate for sqme of thislmasquérading is

. 3 ) , -
. ‘Presented. . . . . L - 5
F] a“ ' . . . 1 - o~ . .

Balanced Effects . T, ', 4 Ve L

o e major popuiation subgroupings useo in National Assessment repo*ts

are: Age’ Regipn, Size and Type of Community (SIOC) ng, Color, and
. * 9‘ [} " ] \"' ‘ N . '|
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= . Parents Educatiod Within the four age classes, group®effects contrasting .
N levels of’ the other £ive factors are preiented As we have indicated, s
these direct comparisons cross the levels of a single factor are subject ‘ .

"to masquerading inflpenc £ the other four factors. This confusion is
partially due to the unbalhbiced mix of these other charactbristics across
'the levels of any single factor being examined. To balance out this dis-
proportionality, National Assessment forms adjusted group effects (expressed
in percentages) that, whep combined by addition with each other and with -
the overalI "national" percentage of success, give figted pe:centages of

. 8uccess (P-values) that correspond with the actual sawple data in the -

. following way: oW
L 1f we._ﬂf kny lcvel of a single characteristic, say Blacks}
and use fitted P~value ang estimated population size to

calculate the number of "successés for each Reglon % STOC x SEX x

Parents Education subclass of Blacks, and then add these predicteq

% . numbers of successes, the predicted numper of successeg”oveyp all
these subclasses will be the same as the total number of Black -,
successes estimated from the” saxple data.

"1f we let 4 = 1(1)4 dindex NAEP,s fou; regions; J = 1(1)7 the seven . . £
STOC categories,—‘~>\l\ 2 the two sexes; L = 1(1)3 the three. color ciasses, . _!*
atd m= 1(1)5 NAEP's five levels of Parengs' Education, then the fittad -

4]

P-value for subclass (13k2m) has the form . < .
* s . LY A, ! / ’ )
A
; Pajkzm) - P-+ AR( (,1 (3) + AS(k) + AC(.%) + AE(m‘} ©(2.16) N
. f\ Bal . .\ ‘ ” “ -

' L where P is the overall (ndtional) percent.fcorrect and.tre A terms represent
) the *Balanced' group effects for Region-i, STOC-~35 Sex—k, Color-£ and

Parents’ Education clasg-m. With H(ijkimﬁ*ﬁsng;i:g the. estimated population
én

size for subcllss (£jkem) and Y(ijkzm) repres 8 the estimated number of i
correct responses from this subclass, the balancing condition verbalized i

" ' above translates, 4dnto the following fitting equations. ¥ )
. . ., d v
L7 273 5, o , .

- I I I T M(ijkim) P(ijkim) ' Y (iﬁ+++) for 1=20004 ;(1.17a)
J=1 kel =) pel Bal . N
. ) 2 c. ’ "A ,2 3 5 A * . -~ . o
o3 _ S S S S X H(ijkzm) "P'(ijkzm) - Y(+j+++) for J=1)7 . (@Q.am). -
. g A=2-Wgl 2=l w2 - . Bal” /\

. P , .
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f N « v
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. Si:i‘ar,gets of equations are produced for the other three classifications’
by su:ning ovey all the subg*oups wi ain a parf*c-la‘ factor. level and

equatigg to the estimated total correct for thar factor leve‘. ‘Votice that

we ave useq a plus sizan to anote a suamed over CH bsc’ip Supstituting
the linzdr main effects model in (1.16) for P(ij.hn) the Iiiting equationms
become: . ~ Bal il .
~ A’ ’ 7 - 2 PS a * »
. M(L)P + “(i)hR(‘) + L M(i3) AT(4) + T M(dik) as(k) (1.18a)
‘ =1 . k=l
, .
3 L] -~ 5 ~
+ z M(L)Ac(i) + T M2 )bE(m) - Y(‘) for & = 1(1)4
im]1 sl .
. v ") .
aad“ . ) » , L] .l
) ;: - 6 -~ s A - -~ -~ ' ?f -~ -~ " !
MR+ L MENLR(L) S MENATE) + I RIS (R) (1.185)
) ' v I=l . © Kmd o . . , C
'3 - -~ 5 -~ - -
. T M(IDAC(L) ® T O M(SmyaE(m) = Y(3) for i = 1(1)7 - .t
, i=l T oml ’ h

The other three sets of ficting equaticns are arrived at s-_ilarly. Yotice
taa. we have supprassed the surmed-over s;bscriats to make the expressions

no:e‘pompact. A '
) Siﬁce each of the sets oI fi:ting equations correspondihg to a-oar'*cula*

T

classification factor sums to the same quantity, namely ’
Y A -~ -~ 7\ -~ -n 2 - a‘ ‘ ¥ ‘

MP+ ZoMLAR(L) + T OM()AT(Y) + £ M(k)aS(k) (2.19)
iml b =1 k=1 - .

3 (D -~ ;\" A ) . ’ * - r‘

. .+ I Hac) &+ ¥ H(2)IE(m) = ¥ . - ,
i=1 o=l - L -

cne of the equations in each ser is. reéunda1t. Ihat is, of the 4 + 7+ 2 -
345 =21 balancing équat ons produced iﬁ this fasnnon, only 16 a» e i“ceperuent.
.o solve :o“ our 21 balancad eflects we need five ad@i onal equaticns.

Requ*r ng that the overall 2 in our model (equﬁj;on -.15) be egudl Valeﬁt to ‘
the unadjus:eu national E-val'e (= = ” / 1) -:plies in -qnat on 1,19 tna:
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S MR = amm = 2424 () 25 (i) (1.20) =
. {=] 371 T _ kel oo
'I. Y. =" ’ ' *~ x ' * Pl °

; ' ~ 42 ~ . A-.. 4 A : - r‘ ’ - Y ~ »
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Setting each of these’ suns eqnal xo zero y‘elds five independent equations,
whith can be qpoa;ituted respectivelﬁeﬁor the last equation in each of the

- original five sets. This yieids 21 1ndependent equations, which cam be

solved to yield t:f;FAIf s€t of balanced effects. ;
" While this b
principle in find, cne can view{the resul s ds a sannle estizate of the

cing,soiu;ion was not uerived with the least squares

~feast squares solution” thdt would,be obtained 1§ the entire population of

. gor ecc-incor*ec' (1Fb) respopsgs were pred*cted by a linear =odel with an
intercept and 21 duzmy variao e .nh ca*ing membersndy in the 21 factor
level subg-oups. The weignte& rest'ict‘ons in equation (1.29), with the

" "yaps" renoved frem thé pooulat.on sizes (Ms), are com:onlﬁ applied to . '
unbalanced data sets. This dummyvvariaole regress-on ‘view of NAZP's oalaaced ]
figting olaéés the resilrts in_a fami{liar E:atis -caI'setting where the ) i

‘. aajusr:ent of reg-ession coefficients .or unba_anced rﬂofesé;:a.ion across '_
categories is a well-known' ;éé;éizy. - ' .
While balancing helps to co:rac for. dispropSE'ionate nu:b;'s, this . ., *

'adjust.ent is obviously li_ited-to the vat‘aoies hnat are used in the °’
analysig Ocher uzzeasured vi&*ables such as “fams 1; incexe zay also de -
causing _anueréd ng proolens. Some variables used in the adjustzent, such
as color, mqy classify reSpondants too coarsely; while other factors, such
as parent s e acﬁoa, give’ onlv an indirect indication of the oareats . i
a::itude toward educacion,or ;he_r inclination to. assist the. s.udenc with |
honework. Anothar po:ential problem With dirett comparisons betreen sub- s

'grouos is the fact flat the‘ge ormance of a given Subgroup nay d‘ffer from IR f
one subg'ouoing to anotﬁar in’ xhe ocner variaoles. That is, the e::ec,s

’ assogiated with Bfack stn&ents say be dif:ereno in the Wes: than in the

‘Sou.heas:. Such iqte-ac:ioﬂ ef‘ec:s are not accounted for in vaz?'s. salaneing

model Ia spics’ of :hese de‘icienc.es, ba;anei1g represents a Y ig soeo Zrom

X
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the oum:ar:d appearances of unadjust:ed group effects toward the 1m:ard
reglities of cause and effect. : ‘ B
\ : LA ) -
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Design Description - . - ~ * - N

of 208 R
primary units. These primary units .consisted of clusters of schools formed

' and 17) began with a highlv strati‘ied, sinple random selectio

The NAEP Year 01 sample lor the three in- school age class;f (9, 13,

within selected‘liSting\units. The listing units were counties or parts

o{ counties. Variable§>used”to stratify these listing units included (1) :
Region (4 Geographic Regions), (2) SOC (4 'Size of Community' Classes),’
and (3) SES (2 Socio-Econcmic*Status Categories) Within each selected .
listing unit a separate set of schools was selected for each of three age
. groups: 9:year-olds, lB-year-olds, and l7-yearrolds For each of these
aée groups, schools were grouped such that every set would contain a mix
of high and low SES students. Portions of some large schools were allowed
to belong to more than one group. The number cf schools’ in each of these
clusters wvas based on the numbers of packages or questionnaires required

from each PSF. The l7-year-old, assessment, fq. example,*?mployed 11 separate -

group-administéred packages and 2 individuully admindstered packages. Group |
adninistrations consisted of 12 scudents, while each individual package was . '\ft
given separately to 9 students in each PSU 7 " P ,

The sample was.designed to yield two primary units from each of 104 stra-
ta, Fbr the l7-year old asseaahent, (ll x12) + (2 x 9) - 150 students wete
required from each PSU. The groups of l7-year-old scHools were constructed
to, contdif approximately 300 l?-yéhr-olds eacr ' Once a cluster of schaols
uas selected via sinple randon sanpling §$5§) from £hose constructed, the
g:oup packages were allocated go scnools. Each school in the cluster was ) - .
assigned a nurber of group, administrations roughly proportional to its en- 7
rollment of l”-year-olds. Sixteen students were selected for each group ses-
sion assigned to a particular achoﬁl 12 td’oarticipate and é to be alterhates.
The two individual packases wére allocated to schools sueh that for
eath group package fro; 1 through,9.assigned to a gdhool, an adzinistration - ToE
of individhal package 13 was also planned ‘individual package l&.adminis.ra-‘ +
tions were similarly linked to aaginistrations of groupqpackages 3 through .

1. For each indi\idual packase administration planned for a school Lo
. L[] \ . )
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stpdents were selected, one to parcicipaCe and one alternate.. This
design ylelds a planned sample size of 2,448 students for each group-
administered package and i,836 gor each individual package. | -
The Year 01 out-of-school saﬁple of young adults 26-35 and out-of=-
school 17—year—olés used the' same basic primary sample'desisn'as the ’
"in-school sample, The same random draw was used to select PSUs “fn both
samples; however, the out-offschool PSUs were definef in‘terms of a set . .
of area segments or,clusters containing an iyerage of 35 to 40 hnusing .
units. Each of these PSUs was constructed so as to contajn about 16,000
persons. The second-stage sample was a stracified randon cluster sample

with two clusters selected without replacenent from each of five strata.

The stratification was based on an ordering of segménts in terms of the
. .*precent of families earning less than $3, 000. The high poverty (low SES)
quarter of the list was assigned two strata for a two-to-one oversampling
Qf the low SES quarter Each household cluster was expected to yleld 12.5
eligible adult respondeuts. Ten packages of exercises were ‘administered
to young aduIts with each respondent andomly assigned a single package.
Out-of-school 17-year-o1ds encounteyed in the household sample were asked
to respona to a set of four or five of the I7-year-o1d in-school packases." H

Recall that there were 13 such packases. An incentive payment of 10 dollars

.. ~x was given for compléting the set of packages.
v . . v o )
C ° " Parametérs of Interest
. -———_——h_ : —y .

. i Proportions Correct (P—Yalues) - ¢

“The purpose of Na:iohal.Assessment ear‘gi).was to produce baseline
estimates of the propo:tions df potential r spbndents who would answer a,
certain exercise An a particular way " Restri cing:our attention to a° ,
particular in-school‘ase,gfdhp (say 17-year-olds) and a particulax exsrcise

within one of the packages, Iﬁt L . ‘ . \
T : . A Ce \ !
’ : C e« { 14f thé :ka-t:h student 4in.school (3) of~PSU €1) in

Y, ., =
v o~ hijk - '"stracum-h Rnswers correctly; 0 othervwise o *
I a A ﬁ ———

The poulation means of these 0, 1 variables are the populatibn”pxoportions
. , of ° interest, that is ) . " *
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where ' ' -

+ H =.the number of “strata (104 planned)
Nh = the number of PSUs in stfhtum (h)

r

-~ Spg ™ fhe number of schools in PSU (hi)
v Hhi} the number of “students in school (hij)
and * ’ . y y N
H N _Shi - ,
' . h{l {=1 5-1 Ty
Qur sample estizates for these proporcions are ofsthe forz
)
LY ] t - L]
- ~ H -
Pe % gh ghi ghij whijk hfj‘/h ]
- . hwl im] =] k=l ;s .
where . . . )
n, - the number of PSUs s@lec:ed for the samp;e from stratum
< (h) (generally ny ‘u 2) , :
Spq ™ the number of scHools in-2SY (hi) in whidh the particu;ar
package of interest was adninistered '
. mhij - thgﬂnumbgr of students from school (hij) who respond to the
) package of inkerest; ’ " ‘
and, asid®e from nonresponse adjuscments, .
hijk 1/Pr {psy (h.{)} x Pr4Sch (3)](n)} x Pr {K1d (k)[(-hij)}
with . iy T . ¢ .
Pr {PSU (h1)}+ = nh/Nh . C L o
o TR BSR@) ) | owm, : N
_ ( .
, Pr {K1d (ﬁ)l(hij)} mhijmhi:} . . T
- \ l , 2 - . .
‘ - ! :
s ! . _ ﬁ‘
‘:;' . L] . :
* / ! .
. . . 17 .
- . 23() ) _
I - - M/u"‘) . b ah‘ .
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For group-administered packages the number of _sample schools per PSU (s
was alvays 1'in Year O1. Individual patkages were "administered in more
than one school; that is, shi > 1 for Year 01 individual package exercises.
- . The estimation of out~of-school, young adult, P~values parallels the
)proced:re presented “for the Year 01 in-scl;:ool sample.. Jlf we let j subscript
area segments instead of schools and k young adults instead of students, the
‘expressions in equations 2.1 and 2.2 are interchangeable. To complete the
'« " switch, we let’ S;4 denote the number of segments in the PSU~hi frame and
t’he nuxber.of sample segments in PSU-hi (usually. $py ™ 10).. Also, let
e M'hij denote the number of eligible young adults in segment-hij and mhij
the number of young adults in segment-hij re/ponding to a particular package.
The out-of-school sample weights reflect the selection probabilities for

-

- young adults plus adjustments for nonresponse.
‘ C o OQut~of-school 17-year-olds Jlocated and tested in the household survey
_were combined with iu-school reSpondent,s to estimate a single P-value for
all l7-};ear-olds The total nunber, of out-of~school 1l7-year-olds and the .
number that could respond correctly were estimated for e'ach l7—year-old
package using weight sums for all package responden andfor all respondents
answeri':g correctly. ‘rhese estimated totals vere tin added to the

-~ _ denominator sand numerat;or of the in*‘S'chool pacEage P-Valug ' , ‘ -

Sub 0 ulatibn P-Values ‘and AP Values
In addition to the national PaValues discussed in the prQVious sectian,
T certain subpopulation breakdowns were of Interest. For example, P=-Valyes
* | have been presented bf Region, STOC{ Sex,. Color, and Parents' Education.
These snbpopulation ?- Valua,s were produced by including only those observations
. ’bel nging to the suhpOpulation of intet¥¥t in the numerator and denominator
) . \ of iquation 2.2, DiffErences betwien subpopulation and national P-Values
wiré stud,ied to assess the main effects of Region, STOC, Col%r Sex, and

Parents Education. These direct compa.risons Were introduced as group effects

. or AP-values in chapter 1. T, . - .
™\ . Balanced Effects . - - . .
. In chapneé 1 we intyoduced NAEP' s algoritho for adjusting ](o)up affects.
This adjustment was designed to correct for the masquerading efifect of 9
o ‘\ . - . &
! . . ] . . 21 P ’ ' .
- - 4 . . - . ., . - . . »
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ancillary variables when their distributigns vary across the levels of the *

, factor being examined. The adfustment or balancing algorithm used amounts

TE——

4

to a set of linear equations‘which can be viewed as a sampie approximation
to the normal eduations that would regult from a Jleast-squares fit to, the
population of 1-0 (correct-incorrect) responses based on'hn intercept and
duzmy variables indicating the levels of NAEP's five reporting categories.

A set of restrictions are imposed on the balanced effects, which force 7
the linear codel intercept to equal the onserved national P-Value,

The }ef?-hhnq_sides of-the-balancing equations involve weighted sample
estizhtes of pophlation counts in the onezway and tﬁn-way marging bf

NAEP's Region by STOC, by Sex, by Color, and b; Parents' Education'tlassi‘i-
cation. The right-hand sides of the balancing equations involve estinmated
countS’o. correct responses from the five one-way margins. Suppose we let
xhijk denote g 1 x 22 row vector for student-k (adult or out-ot-scHObl 17)
in schooz-j (segment) 'of PSU-i in stratum-h with the first element equal 1
for all respondents~hijk and the remaining 21 elezents takiﬁg values 1 or
0 depending on the respondent’'s membership in the 21, subgroups formed by -
NAEP's reporting categories (4 Regions' + 7 SIOCs # 2 Sexes + 3 Colorsl+

B Parents Education classes). Recalling that Y, niik is 1 if ¢ 4}spondent
(hijk) answers correctly and 0 otherwise, e can specify the balancing

equations prior .to substitution pith tbe restrictions as : .

- ” . . ’ - =
: (x X)8 = (x Y) b (2.4)

where . ' ) < ", -

Boomy, Spy @ hij/v

T a
X‘gb 5nn.™ L S DA o ) .
L- 22x22 hel i=1 j1 kfl hij \hij hijk )

. N . N .. :
. CE e ey : L
KW ppey ™ L 0L LD W KugWiig) ,

« he=l gl j=1 k=l L )
and ' d o _ N ,

Ty B, an(m . AR(4), AT(l) vo. &TC7), AS(1) as(z), *
- C ot BC(D). L6(3), AE(1) ... '\-'(5) >0 ,
., T * P
’ " / .
* ' LIS ]22 ~ ::
S T S » :
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As ‘we. have noted (; chapter 1, the balancing equati;ns in equation 2.5:
are not linearly independent since,the sum, of the 2nd through e.5th
equations equals the 1st ag do the 6th through the 12th, the l h and l4th,
15th through 17th, and the 18th through 22nd. To provide for a unique
. solytion and ad the same time force\‘he intercept P to equal the observed
national P~value the final equation in each of the five blpcks, which -
correspond $o the five reporting variables, are replaced b a linear ‘
restriction on that yariable’ 5 balanced effects. TFor example, the fifth | .

. equation in equation 2 ) is replaced by

. SR ARQ) + M(Z-lﬁi-)AR(Z) + M(3-HIH-)AR(;)

. + M(4++++)AR(4) =@, (2.5)

£
L]

This substitution can be accoumplished by replacing the fifth row in
(xhijkxhijk) with &8 (1 x 22) row vector with all elements except the second
through the £fifth get to zero. The.four elemegts in columns two through
iive of the new £ifth row_take the values one or zero to indicate membership
in regions l,through 4 successively. The fifth.row of tx hijk hijk) is : -
: set to zero for every respondent—(hijk) When properly deighted and ,
’Eummed it is clear that .the new fifeh row of our individual balancing '~'
o eqoations will yield the restriction eqoation 2.5. Similar substitutions .o
- of rows 12,- 14, 17, agd 22 with the lihear equations in equation 1.20 .
A produces NAEP's restricted set of balancing equations. In bur further - M
treatment of balancing, (x x)hijk and (X Y)hijk 11 represent the nescric:ed
. respondeqt (hijk9 contriﬁrtions to the left-,and right-hand sides of the .
’ balancing equatiops. Substituting these independent l,pear restrictions ] -
for the redundent rows of (X X} and setting the corresponding tows of (x Y) . 4
to zero &llows one to specify the balanced fit uniquely as

’ +

- . 3.éxx) (xY),\ A (2:6)

' T ‘\ H nh hi ml}':lf Yo | y -
BB = BB 32,1 1 Thagn SN .
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. ariance Estimators for'P-galuee and AP-Values
"To suppost the prhsentation of P-Values and hP-g;lues, measures of the

sagpling variability of these statistics-were needed A jackknife replica-

‘tfo ocedure for estimating the sampling variance of nonlinear statistics

from complex multistage_samples was tallored to’ our design. This technique
is easily applied to highly stratified designs with only two primary units
(PSUs) selected with replacement or without replacement from strata where
the fpc (n /N ) can be ignored (refs. ,2] The Year 01 prizary sample -
fits .this descriptioq except for a few strata containing single primary

, units. These singleton PSUs are accounted for in the following section. .

/

To demonstrate the computational aspects of this technique, we can

consider estimating the varlance of a national P-Value. - First we define

erpanded-up PsU titals ’ . 2
. : - Spq mhij , h
Y, =L I W Y . (2.7
hi " ) a1 i3K Thigk -
and Lt o
) P . -
hi hij . ; .
’ Z HJ < oo . (2.8)

iecalliqg equation 2.2, we see that the total Mhi represents the Psu-hi

contribution to our sample estimate oé the nuzber of 171yeat-olds in

stratum-h while Yhi 1s the PSU-hi contribution to the estimated nunber of

17~year-olds in stratym~h who could answer the question .cérrectlv. 1In

terms of these expanded PSU totals, the P~Value becones

‘e - , ) . H ) nh-- H ﬁh‘ h b
CL Pz £ ¥ } = . L. (2.9
LA pwl 4=1 B h-l {=1 \Ih"
* n B * ’ . ) ¢
T N \ ’ ) .
' - % ‘, ’a‘
: . 21 24 “
s | ‘Fv‘i r i r s ? ‘ ‘
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The jackknife estimate of P, say P:IK’ and its variance estimator are specisl #
applications of the following general résult for a sample of H strata with -
By primary seleccioné per strata [ref. 3] (with rep}acemenc ar without f?om, J'

-

strata s%fh that nh/N is negligible). ' '
Let @° depict a statistic based on data from all n BPSUs in each

stratum. Define the replication escimaca 3] -hi constructed from all the
PSUs excluding PSU-i in scraCum-h.‘ These replicacion estimates should be
produced as 1£ chis cenSored PSU had noc reSponded' chac is, reasonable
nonrespouse, adjus:men:s should be used in estimating © wiqhoug.PSU (hi).
The jackk?}fe pseudo-values ehi are then formed where

.: ' ehi -

» . -

30 -1} N ’ K
n 2] Enh l)_@_hi . K (2.19) ..
.The jackknifed alternative for 8° is

¢ ‘ ,ixx' )4 nﬁﬂ’ﬂ , ' T C B \
o ‘ , @2 = T L O /un_. IR ¢35 3 B
" R g ge M Hn? r e

[

A consistent estimate of the variance oﬁ @JK is -, S ’ ot
. i . ;

. varJK(éJK) -z 32(§h )y ' C(2.12),
' ) h=1 )

N 2,, . .
_ s ®,) = hfl {ghi eh:} /(ng1) -

L] - i -

Commenting on an earlier drafg of this report, Dr. David R: Brillinger

» - .

[ref. 4] has pointed out that a pseudo-value, of the form ;-
-~ Ao -~ , ~ * )
Gﬁi - th 8" - (H-l)e - H(nh-l)e hi

would be more appropriate for a scracified sample [ref 4} This result

no

was obcained by approximating the expeccacions of 0 S hi? gnd 9 h; qi;h‘
S i

Taylor series of the forn® ’ o

- 25
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COME(ET) v+ aH/n. # second-order terms . °
Y B
LIS . » h.‘ .
L A . °e ! . - ’ " e
3' 3 . v o3 - : [T b
: ) ( -nil 9. ¥ ‘-_.J(Tlh 1) + . azl'lM * second_orq&
. - - &* h. AN
a Na . . )} . .‘o-
3?.!.": ‘s > N e ) ) .
g B, ~ e+ ah/(n.ﬁl) .‘. ai/a, * secorid order.
. . . ‘. N
Using the series approximations above, one ;ftes that S y
R " . / .
\:_ . (D.n-l‘) E(‘:} - S ) ah/n + se,cond order. ' -
. se -, J . T

"‘herefore, for _Brilliager s al terati‘:e Jeckinife estinator °

. . A E :‘..n ~ . \
S Sha= I INar/na _ .
. od i ..-1 i-l aX. 0
K’ - * v ~
» N - ng B . " .
. - mEl T (nh-l)(s = 2T)
- Dl =1

¢ + seqpnd-order :erﬂs.

L) ./
- " :
|
>
d“
. ~
/

: - -t
" .
it 1s cleay that’ . , \\\
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~
O
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L
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Applying a similar argunment, one can demonstrate :hq; the jackxnife

estinator préposed insequatiom (2.11) contains firs:t-orier bias

-

4 ‘n

Apol}ing ﬂrillinge"s result :o produce a jack&ni.ed assimate q-

A,

P'= -°, we Zirst consider the case where all n, = 2, If thi s were _1e

«case then ’ . .

ter=s; nacely, : ' : .
- " H
B0 v s Y - r secor ., 2
() v 3 .( ERAR 2, /o, + second ordes .
- ., , ] \%
'Tﬁe variance approximaction proposed for ‘* by 3rillinger mas the form
v 3 ) (:* ) g ‘;2(:\ ) ‘{2 -
var th,) = ik . . _
: oL BRI e o {
. . Wk L .
.The variance expression above s equivalent £0 the estinater in\\qua:ion
L ® "
(2.12). . ; )
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The replicate P-¥alues become ., - - N < .7 ) .
. : N [ S ~ 2 A . o *
~ . - (Y. - ¥ o =
R |Y, ( nl hZ) . ‘a® ’
- --hl : M \A . G"ﬁ " ' -
( - \ s [+ . Al v (,q - . 2)‘.
& oy . P R /r jhl‘ '.h N ‘ (2.14
' N "Y*'T(a* L) ]
. e . P h’2 - — . . - . T N
. - - M ) . . '
- ‘ < . . + (‘!ﬁl ‘ . . < ) ,
E 4 ! 3 - .

The first P-Value is fotmed by disca:dmg PSU 1 in stratum=h and re-

placing its contributiOn to the numerator and denominator of 5 with the
data from its companion PSU.(h2). The second P-Valué is forzed by dis- . "
carding PSU 2 in stfatum-h and replacing its concribution with that )

from PSU (hl). The jackknife pseudo-values becone 6 )
‘ - 2w (H+1)P 2 Yo e (2.15y ¢
. ng T @DE - B2, = *
.. - * ~ 2 )
and the jackknife P=Value is - G . .
\ ¥ .
. 2 '
e P Y P /2H. = (B+1)P - BE<, . . 16)
’ v - peyge B . ’ g
* o o 2 -
Equation 2.16 snows thac the jackknife P-Value j.s @& 1) times ‘the standard
,coz:bined ratio e.stimate minus H cines the sinple average of the replicate
?-Values. The var‘ance esti..,at:e for PJK .18 : - L Lo
- ~ - *
) . * ‘ h y\\. -4 2 . A ~ 2 ”
] - var,, (P.,) = Do -2 ). 2.17a)
3. R IK ;ﬁfi-l 3t 'h ,'
\ AR | , . e ° C >
Consid}mg \r (p...- P, ) 72 aqd/‘:;calling that '
o 4wl ot , ' o
)13,VHP e Ve need not bother with the pseudo-values; t:"zar. 1s, . L
LGl 2512 2 & 272 coisy
-z ‘(P bl ) ZH - E + (P-.' - P‘- . s we dC@ *
i-l bi éhl - 1’1 ﬂi N h'lg .
Ll ' » 1 -
£ r/"‘"-'--- B A.
»

% - U N .
v 2 2& '5: . . .
~ . "
> [ {‘\ ’ 3
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For n h = 2a convenient simplificat::lon for the expression in equation

2.18a is - . - .
- . . 2 R " 2 . . A, 2 . “ - .
( - k 151 (_r_hi AN E I R S I LR (2.18b) .
. Y . . . v

The simplified fornm for the jackknn:lfe var:la&c_e estimator in equation
2.17a becomes ’

¥

.

H ' . - .
- p - 2 2
C B, I R Gam

_An aﬁaloéous application 'of.:h:ls technique produces AP-Values from
replicat:es formed by successively delet::lng PSUs and replacing their con-
tr:lbu::lons with data from She:lr companion PSU. If these replicate AP-
Values are denoted by AP_ then the jackknife AP-Value is AP where

H 2 .
4P, = (H—!—l)AP -BZ [ AP_hiIZH . . e

J h=l =1 ‘ . ,

with variance estimator . ‘ * . e g

: C "k : 1
b @) = I (@ k. any o
" JK " h=l t"hl -hz ” ) :
" . |

. For those .uné:a'mil:l'ar with the jackknife linearization technique
des:ribed above, it may f:.e of intérest to note the rela:ionshi;_: batween
‘var (P ) in qlxa.c:fon 2.17 ané the standard Taylor s;er:lef variince
approxim.ation‘%or a combined ratio [refw 5}. If we let GY.h (Y Yhz)
and Mh ('th MhZ)’ the, Taylor ‘series variance approxima::lon fdr

. var {B} 1s . e .
T. K ﬁ A H - ] _;_ -
~— ~ R LR L n
. e _van B s - B TR (2.20a)
. TS, h
¢ . - n-l — L]
- N e ’ ‘Q
' Y T e .
* - ] _ v
A9 ‘ -
» . . , " 28 ‘
Lz T 25 .
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4 s . ; varso(P) = h}: 2 . (2.20b)
" 1 .
vith - T -
. - % . 3
> - " zhi - (Yhi Pm) /M [
N and . . )
; . 63h - (3h1 - Ehz)- - . -
Examining the form of the jackknife renlicate P-Values’ 1A equation 2, 14
it is nét di}:icult to see that .
- S
N . - 6§ 2) . .
| T g -
- 252 o/ (1 - 658 /) (2.21)
ar " which leads to ~ - “ur ,
-~ a -~ ° £
- ) 4 . '
. var {PJ'K}, hE]_ ) .h/4 %,

- *

E . .
o= I s~ ADHY L oo o

h=l
‘ ,
Ccmparison of the Taylor series.and jackknife variance estizators inm

eauatibns 2,20 and 2.22 points ou:‘che close analytic re-acionshib be-

tWeen the two. The quantity GZMhIH in the dencnina:or of the jackknife

. variance expression in equation 2. 22 is the stratuzs-h, cont*ibution to
o the escimaced relative variance of H where- , )

~ B :. ~ >
rel-var {4} = I 33N ..

" v —
|
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. Since relfvar (M } is positive 20d, generally fuch sugller than 1, ve can
expect tne jackknife variance egtimator to be slight iy 1a:ger than the

corresponding Tnylor seriés variance approximation One would also ’ ‘

eﬁpect the differénce betWeen the two es:ina.qrs to d*aiﬁisn as the nun-
-

ber of strata increase si“ca each stratum's contribution would represent
a smaller fraction of rel-Jir (H) Some-numerical comparisoms of the .

Taylgr deries anf jackknixg»variance approximaiions will be presented in —
N ’ L - s - e ' “'—-\
. ” . - » s / ) .

Variance Estimators ‘for 'Balanced Effects .

N

, the restricted .

- T
Recalling the definitioms of (Y x)hijk and (X Y)hijk
respondent-(hijk) contriaut}dns.to the left- and rish:-hand sides of of) .
balancing equations, we begin by &orming the | expanoea PSU-hi totals .
4 0 * " t
T_.. Sti mhij < . . ’
* (\ X) I L W, &%
. Mo e BN
and . n . - ""‘ ¥ . ' : A ’ i
L s T !
- ¥ gr. °hi Phig z
* : X Y)hi = I DA AN 6.6 Y)hiik (2.24b)
=1l k=1 I R .
4 "4 ]
These ‘definitions allow d@s o specify the quantities (\ 1) and (n ¥) as '
stratum suns of thQ“w}:m ’ ’ .
' B T .
X x) = I [XX), + (XX),.1] . (2.252) .
» hl » h2 -
- > h=1l . ) N
and ‘ - "
kY .H T
. KY) = [(Y Y) 4;(3 Y)hZ]'. . (2.255) .
A h-l

The jackkni:e replicane estimator for the vector Bofb lanced effec
which is obtained by deleting the contribution from PSU-nl and repliacing
M 1]

. -
s - - . »
. . — R
. p

-
.,




B o B - - .

] -y LA . s i ~ . '

. .u - - . i 13 /‘ a

. _:g\ . . . A .

- - 1]
< r) - 2 - -
v . . ]

. —

it with the contribution from, PSU-hZ can be specified as the unique solu-

¢ tion to the follewing se: of normal equations i
[ » ~ *
. o S, U TTY: SRR, SR U, .
, . b [(X,x) - S@W, 1 B85, (V) - 8§77, ] (2.?2 ,
* where - , ' . Do
- ’- .
1 ' . ‘r S
;s s(x'x), "= (£ x) - &), ,) ~ ° '
- \‘ hz . L »
. and . ‘ - )
- R _ , ' . ) \ S
T JT . » \ bl L]
SED = (@D = @D, . ‘
' Deleting the con:ri%u:ion from PSU-h2 and replgcing it with the PSU-hl )
contribution results in the set of normel equationg " * |
] ‘- /1 » L. a - ,l ’. ‘
‘A 1@ # 8@, B, » (&™) + 8@ L (@2t .

-
——

-
-

which can be solved for the replilate estimate B-h2' ’Jackknife ﬁs )

Wi gy g oy vu
3

values
O 1 3 . . - N . - ~
., = - ~ Fy - ’ .. * . > .
X Bpg ™ (HLB - H8_ (2.28) = = 7
' . - .x g v L ~ ? - S » ‘
are then formed from the repl;catg estimators where 8 represents the
estima:ed vector of balanced effec:s based on data from all PSUs‘ The .
jackknifed estimator for B is then ) 1 ., oo,
g . . L .. . . e
- ] ' e . h - 2 >
. . . BJK = 7 (Bhl + th)IZH — { .29).
. . }}-1 . i
.o . .om @B -uB_ .

R
' L] ¢ -
To estimate the variance-covariance matrix of the jackknifed ‘Le:% of
. [ 4 .
,balanced effects, we use . : . .




- b uli .| b ; " ‘ ‘ &
\ . \
¢ . - * 4:. - - ¢ ’ ) * -
- H ~ 7-.-1\ *',
t ‘ e B 3a¢ L° 8, &8 /u’, . 230), - T
.o ’ . hel , ' R ,
;e ’ é " ' ? * - N .
/ nere, 88, = (5, = 5,1 = (3, - 3 : T N
vhere, 83, = {8, h2 -H( -1 -'B-HZ] . . o

o ‘\lo:ice that °"h "is a (22 x 1) coluwn vector and 6 Bh’ the transpose of "
- GB. » is a (1 x 22) row vector, The Tesulting quantity in equation 2.3

- :[s :hefe‘ore a (22 x 22) mat:rix of estimated variances and covariances
" ¢+ azmong the 21 balanced effects and ths corresponding nat:;onal P-Value, P.

In appendix ‘A the corresponding Taylor series approximation for the

»

i . variakce—covariance ::at:rix “of 8 i3 derived. ahis method yields the .
) L , estimator .o . '
{ . ’ ‘ (g ) 2 B T -
;. o vargo {8} = I 62 &' o (2.31) K
- h=1 .
whege v, \ .0
’ . \ . o !
. : 5 SR S S SR ) . L
" :{lthOugh it is not imzmediately apparent, there is again a close relation- \ .
‘ ship between the form of the jackknifefand Taylor series variance-cova:z- .®
g iance estimators. Subtracting matrix-equation 2.27 from 2.26 and rear-
N ranging .terms, one finds that >
- \ . .
o. L] N . A, ﬁ . & ’

"%y 88 =" 288, - 6 (xT n, E

(2.32))

h-J
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' adjustment amounts to replacing‘stratum-z s contribution to 2 with

-
* " -

,
. . r - N

In solving the set of equations in equhpiun 2.32 for GBh the difference
between our two jackknife paehdo values fronm stratun—h, yields / '
% - L
' o, = 0 s (M, - s, B, 1. (2.33) *
- . _) . _ “ \
Using che eﬁggpssion for GBh presented in equacipn 2. 33 shows that the

‘
s -

jackknife variance-covariance estimator in equation 2.30 differs frum
the corresponding Taylor series estimator only to the extent that B .

the average of our two replicate estimators frgm stratum=h, differs from
the estimate B bagsed on all the data. As the nunher of strata increases, - *
pne would expect the difference betwéen B and B to get small., For ’
Nationa}pdssessment 8 Year 01 sample design with’ iO& primary strata, .

there should be little difference between the two methods. . - -

. »

-

Comnutational Considerations . - . )

The major conplication that afose applying the procedures intro-
duced in the previous séctions to Nationpl Assessment data was strata uith
onlygpne PSU. To allowdgneee strata to ltontribute to variance, psuedo .
strata containing two or three.of these singleton PSUs were formed/” This
collapsing of strata was done within regions and as nuch 5? ‘possible . .
within SOC (Size of Cozzunity) superstrata. State and county-names for
these PéUs were also used ih the.nagching. When two PSUE from different’
strata are collapsed, some adjustment should be made for the fact that
the stratun sizes (N;ﬁﬁ ©ay be Quiteldifferent. One such adjustmeént is

to replace the stratum expansiun factprs (Nél) and (Ni}) for the two

singles with a cozmon expansion appropriate for a design with two kSUs_

selected.from the union of strata=h and ~%; that is, usc the comman expan- .
sion factor (N' ¥, H,’)IZ. When applied to our jackknife nechodolosy. this

.

‘. s . . )
' _ o - ' 2.34
- N (Fp/Ng) = BTy (2.34a) ‘
'.-K. . . . . L ~‘ q ) F) * 'l
and . e : ’ N
.‘ ~ - - ‘
Lo _ N, (M /N,) = NB, . \/ (2.366)
- ' e
. » . 30 33 Sy X
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We have "borroweg" Fhe data from stratum-£ in terzs of estimated numbers

a_——

of, 17-year—olds per PSU (n ) and estinated nuzbers of co*rect respondents

——"? .
(}z), but have retained the number of PSbs appropriate for stratum-h,

_The contribution from stratum~2 is similarly repldced by stratum-h data,

; but its number of PSUs (HZ) is retained., The adjusted replicate P-Values

- -

_ for collapsing singleton strata-h and -£ are therefore:

M

N L p (T3, AN, 5) [E-N G- Ty
. - P_z bl T 2 h} * h h X (203"53)

M- +N B - § (@ - o)

P-

.

oy <>

-few ) Liow @ -5
. The resulting squared diffeébnce between P ") and S -h divided by four is,
& conservative estizate (overegtimate) of the variance contribution fgom
- strata h and -%. When an odd nunber of singleton PSUs was availahle within

\ a major region, by SOC str?tum, the last three singletons were used to form
three pseudo strata, each comprising one of the possible pairings amon3 the

* .

-

three units., The vardance concribution from three sing‘etons was estizated
- by adding the three squared differences divided bv eight. 7The division by
eisht results from_the foct that each of the tnfee PSUs is accounted for
in two of the squared differences. ,, ? \
» An alternative strdtua size adjustmdnt, which requires no knowledge
of the separate sfratum sizes, Nh, uses the estimated student'population

]\ fron tf sinéleton:at%ata in the adjustment. Assuzming that the PSUs in

/ ‘say ¥, then the sum of weights for a singleton strata~h estimates
: ' ;} RN u-wni " G.36)
RN oy Tt h '

. L)

. L] L]

wWhen the h~th stratum is discarded in.the :epliggte P-Value estization, its
- contribution to the sunmerator is replaced by its estimated population sizes

L

. . (Mh) tipes ﬁhe estigated propértion correct from stratum-i; that is

hd .

- . .

o .- ! - 31" 34‘. . " L

¥3.35b)~ *

the two collapsed strata all contain approximately the same nuzber of students,




" *lh (Y ‘ e 0(2.35)4—‘-

-

X No change 1s nade to, the denomiﬁa:or with this adjustment. Such gn adjust- e
‘ ' ment fdrces- an equality of PSU sizes;_which is not achieVed for two 1egicima:e
- selec:ibns from the same gtratun, and therefore would seem™ to upderes:ma‘e
‘.;‘ . the variance in l:hés respect. As long as collapsing is not extensive, the
. - coliffegen,::l.al effect of the two alternatives is probably negligible. -
Aside from the problems surrounding stratum collapsing, the application .
of the jackknife technique to National Assessment data was s:raigh:forward. _
In one pass through the data tape, ‘Z;s of wglghl:s for correct respoﬁses and
total sims of weights were computed within each PSU “for a specified cross‘_-
clasgificatidn of subpopulations. Consider for example, :he. cross-classifi- |
‘ cation of Region, STOC, Sex, Color, "and Parents' Educal::l.on, gielding a f:l.ve -
dimenkiona’! table (6x7x2x3 x &), each cell of which geta, a ‘sum of
. + weights correc: Yh:l. (r, 8, t, u, v) and a8 total sum of we:l.gh:s Hhi (rs:uv) —
\ £for each PSU (hi). jAll of the P-Values, AE—Values, and their variance "_‘
estimators can be easily computed fron sums and differences of these stored .
/a .quanl::l.l::l.es. ’Ihe ba]:ancad effects are functions olone-— and two-way Earg:l.nal z
sums from the M and ¥ :ables. The vaqiances and ariances of the 8s are ,
formed from with!.n-s:ra:un,PSU diffarencas mong\g_x_ese one=- anc.I two-way .

marginal totals. : ~ . ) .

= ’ {fh:l.le the jackknife repl:l.cal::l.on procedure was firsl: introduced by
* ) ngnOuille [ref. 1], as a :echnique. for reducing smpl:l.ng blas in nonlinear ) .
~ saacisl::l.cs, this feature 1s probably not: of primary importance in 1arse
sanples such as National Assessment, s:l.nce combined-ratio type es:m:ors
like RAEP's P-Values, AP-Values, and Balanced Effec:s should be relatively
free of smpling 'b:l.ae& ome e:np:l.r:l.cal justification for :h:l.s oontention
_ can be gained by contrmasting :he jackknifed versions of :hese statistics . |
" with the oris:l.?al estima:es. For most of NAEP's repor:ed s:gciscics, these -
di!ferences'mu'& negligible. For these reasons, Nal:ional'. A‘ssessmen: reports "

[

unjackknifed statistics along vith the assoiiated jackkn:l.fe variance‘

-~

TYee . es:imal:or. ) <, . ’ ~ ~
. In the following section a summary analysis of Year 01 sampling errors
isjpresen:eg. These results are extracted f_rom a8 paper by Chromy, Moore,

B .
’ - . -

' t
L] 3" ¥ - N
\ . - D -
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and Clecmer [ref. 6J. .The results are presented in terms of design effecss

or the aiiq of NAEP variance e g@s to simple random sampling varilances.

-

" Suzmary Analvsis of Year 01 Saﬂ‘bling Errors o8

.. Nativnal design effects were estinated §v Chromy et al, for 149 science
anq writing/P-values. The nedian design effecc estimate for :ne 149 exercises . ' T .
ejamined was 2.38, with ths.majority falling between 1.50 and 3.00. Table
#‘?Tl shows that 82 perdent were 3350 or less, and 94 percent were 4.00, or
less. Table 2-2 presents median pational design tffects and ranges in ,
national des‘gn effects for various Subgroups of exqrcises classified by
.  age group, administration mode, and subject matter a,rea.

Design effects for 3rodp-administered exercises were highgt chaﬁ”‘lose .
for individually administered exercises due to more sluste);ng ﬁf the sacple )
respopdents. Each gfouP package was adsingstered once in each PSU to a
sroup of 12 students selected from a single school.” For individual packages,

' the 9 respondents:selected from each PSU were spread across several schools.,

* The estimated design eifpets for 13-year-olds were szaller than these g
for G-year-olds, while the 17-vear-cld exercise e‘fécts were smaller than C =
jL;hose for either 9:m5r 13year-olds. A plausid ¥planation for such a i
trend is thatz high schools are more hete:ogeneoizifz-terms of ééudenrs than :
are junior high schools, and junior high schools.are.more hetgrogeneous than
the elzgentary schools., ¢ . i | :. ’
Medianedesign effects for size of community (SHC).subpopulations
- J .defined by poststratification are shown in taole Z-é. As with national .
’ ;gesfén effects, the median effects for SOC subpopulations .are higher for
gno%p-adminiscered exercises thang fqr individually adninis:ered exercises. ‘
There is possibly a :endency for metropolitan and urban area nedian design \
effects to be smaller than those for more sparsely pOpulated‘mediun eity
and rural (small place) subpopulations. - f - .
The.design effects discussed in ‘tHe Chromy papér reflect the combined
i effects of clustering of the sample, un?qual weighting oﬁ—samp%e-resoondancsr
s:ratification, and ocher sample desigrn and estiﬂatio factors. The elffect :

of unequal weighting of sample respondents was estima:ea to be from 1.3 o

1.6, depending upon the exercise. '
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hd Tab]:e 2-1. Dpistribution of national desigx; effects ] r
- ‘ = - . : Y i 2 /
> - R Design Effect -. - Number Per!ént T ‘ .
" . ~ . ] - . ¢ a . T
" ) < 1.00 f 1 \ - u
P . I 1.00~- 1.50 \'16 . ) llz " " ~
-0 1.51 - 2.00 .29 192
' 2.01 - 2.50 AT 08
. 2.51 - 3-00 - '“_.' o 32 21z ) f
3.01 - 3.50 e g 1 5%
3.51 = 4.00 ‘o 72 .
" 4.01 - 4.50 ) 5. - S
/ 4.51 -5.00 - 3 2%
© >+ 5,00 2 1% )
Total 149 100% '
. - . . }
Table 2-2. Median design effects for national P~value estimates.
’ . e : - e o ' -
Administration Subject | Numbexr of | Median Range of Mean
Mode - Area Exercides | Design *| Design | Number of
Age ‘ Effects | Effects |Respondents ’
9 Group ‘Setence 30 2,68 - '1,92-4.94 2,442°
13 Group Science 27 v 2.26 1.31-6.01 2,415
.17 Group «  Science 10 ., - 1l.81 , «90-2.51. 2,122
17  Individual \Sedemce 1 Y13 * 579
26 to 35 . ) Coe .
_~ Individual ‘Seience 16 + 2,57 1.38-4.08- 878
Y - ey \ - j I N
9 . Group ° Writing 24 2.81 1.51-3.80 2,426 :
13 _ Group _, _  Writing 5 4.36 3 1.93-10.88 2,416 _ . . .
' \‘ -
9 Individual Writing 1 . 2.21 1.45-2.68 1,817
13 Individual . Writing . °23 1.89 ~ 1.24-2.88 1,863
4 .
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Table 215. “Median design effggts for size of comrunity (50C)
. *~

.

subpopulation P-valué estimates ¢

b
. »

. M PR T , “ Median Design Effects
: h - . for SOC CateSories
: Administration Subject Numbetr of Urban Medium Small .

Age € Mode Area - Exercises Big City Fringe City  Pladé

« b

-—\’ - = g n . .
9 Group . Science 30 2.26 2.01 2.56 - 3.38 .

‘13 Group Science 27 2.43 2.20 2.14 1.90

« 26 to : ] . .
35 Individual . Science 16- 1.91 ° 2.25 1.47 1.86

-9 Group Writing 24 . 2.06 ° 2.18 2.4 2.86 : .

13 Group Writing 5° 3,79 ° 2.95 3.82  3.69
9 Individual  Mriting . 13 ¢ 1,75 1.97 2.66  1.91 N
13 Individual Writing ‘23 1,22 1.37 . 1.75  2.38

r
-
r - .

Design effects for adults 26 to 35 years of age were about equal to :
éhOSe for 9~year-olds, possibly refiecting a similar intracluster correlation } .
for the household sample dué'ﬁg snall, compact clusters and variable hoaq}ng ’{
;atCerns within PSiUs. ) e .

S L] v
No apparent difference was observed between design effects for science

and ﬁ!lting exercises., This comparison is tenuous because of the smal

Tables 2-3, 2-4, and 2-5 presentsmedian design effects for subpopulations
defined by regional strata, and for sex and size of cormunity subpopulations
defined by poststratification. Median design effects for subpopulation

! estimates are of aSout thie same magnitude or slightly smaller than the
median effects for national escimqtes.. " o
_ - The largest median design effects for 9- and 13Jyear-o}d writing -
exercises seem to occur in the Southeast regidn (table 2-3).
No consistent trend was noted among. the median design effects for N

wales and females (see table 2-4). )




Table_ZTé Median design effects for regidnal subpopulatiOn P-value estimates

(9- and 13-year-olds only) =~ —

r "
Zz - ' ]
oy . ] : .
. v " * +Median Design Effects by Region
Administration Subject N 4 . ’
Age Mode Area Exerciseg WNortheast Southeast Central West
.9 Group ‘Writing %%,a/j 1,89 2,93 2,32 . 2.65
13 Group Writing 3.05 3.65 3,50 2.65
9  Individual  Wricting 13 2,34 1.30  1.85 2.17 -
13 Individual Writing 23 . .64 . 2.1 1.61 1.35 i

L)
'

- \ ‘ . ,.

-, o \
Table 2-5, Median design effects for sex subpopulation P-valuelestimates .

- -

»

Median Design Effects bv Sex

Administration Subject Number of .
Age Meode Area , Exerciges Males Females "
.13 Group ,  Science 20 | 2,57 2,25 i
A * » :
26 to . ¥ e ” ’
35 Individual Science 15 2.08 2,20
9 Group  Writing-, 24 2,74 2.54 .
13 , Group Weiting 5 2.95 4.38 ;
9 " * Individual HNriting 13 ] 5.27- 2.03 v
13 Individual Writing, 23 1,80 . 1.84
- N ) P

o
L]
-

Some major revisions in the Natioaal Assessment sample design occurred
in Year 02. The first principal change involved dOubgiag the within~PSU

sample size and halving ‘the aumber of primary units. The planned number of

administrations per individual package was increased to 20 per PSU., .,

The second major change involved the use of controlled selection of
the primary sample to permit scracification by Scace as well as by the
previously discussed set of scracificacion variables. The implicacioas of
this second change for variance estinmation in Year 02 are explored in the

»next two chapters. s -

e

» -
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Chapté?'a

‘ COWTRE!QED SELECTION: IHPLICAIIO)S ?dR YEAR 02 VARIANCES

[ ]

A

-

»

ﬂ_';//,lntroductiog to CGngrolled Selection

.
2

—1

-

Ld

. Controllad selection can be viewed ag, a prsgability proportional to
size (2¥8), withoug-réplhcement’ sappling séheme for selscting primary .
sarcpling unitys Q;J:ﬂ("F

stratified random samplin Stratified random samples, where the sample
sizes in the warious stréi& dre required to be proportional to corre-
Sponding strata sizes, aré generally ‘more efficient, than purely random
samples.
number of st ata increases.

The effectiveness of such stratification is increased as the

SUs) subject to ¢ontrols beyond what is possible with °. |

-

To take full advantage of the potential gain

~ from stratification and to guarantee representation for various subpopu~
lations ({domains) of interest, Goods¥n and Kish [ref, 1] deyeloped con~ .
trolied selecticn as @ means of allocating primarv units fo strata pro-
portional to size wnen the nuzber of units waf smaller than the number

Uf stbstrata geﬂerated. Jessen [ref. 2] in his recent paper on "Proba-

bi}*tv Sa*pli*g with ‘larginal Constraints" presents aJ'algorithn for
selecting primarv unics wish 5tra ification. in geveral directions,
“ st Hess an¢ Srikantan {ref. 3] considered conarolled select;%n designs

'.-

with' equal probability selection of PSUs within control cells (cells of

, the ;wo~wav stratification array)., In-a Wontc Carlo samnl‘ng experiment

. 4they cotibared variance approxizations for an estimated ratio using the

methods of successive diflerences, paired differences, and balamced half
samples,' It was found that thesé apprdximations substantiaily bver-
estimated the variance fog.three of the four statistics studied.

“The Tésults presented in the following secfions relaté to variance
.estimation fdr a design utiliz_ng a controlled selection algorithm to
construct allocation patterns. After one of“?hese patterns is chosen,
the réq ireJ"nUmber.pf first-stage wits is selected from each control
cell with PPS and withqut reﬁlacement. The geneéral population structurc
.and sample design a:eApresented in the following section. Sectign 3
‘nevelops the familifr Horvitz‘Thompson [2ef., 4] type estimator:for a
«opulati oﬁ toral‘apd derives an anal;tic expression for the variance

of such a linea;-statistic. Section 4 nges conditichs on the set of

* L}
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- aliocatica patterns and the su;sequent PSU gelection scheme: which pro~
vide for unbiased variance estimation. The appropriate Yates-Grundy

(Y-G) [zef. 5) type vardiance estimator is shown tp be unbiased when the
aforementioned conditions are met. Chapter 4 describes a computer simu~
lation model used to genqute data for a Monte Carlo sampling experiment
patterned after the Research Triangle Institute's survey design for Year
02 of National Asse;q'ent. Three variance approximitions :are proposed
in chapter 4 as alternatives to the (Y-G) estimator. Empirical results
of the Monte Carlo’ study are presented. The bias, mean &quare etror,
and distributional properties of four alternatibe variance estimators

. for a ratio statistic are studied..

[ e
General Population Structure and the Sample Pesign

-

-

Consider a population of first‘stage listing units, which have been
stratified 4n two directions. If r = 1(1)R and ¢ = 1(1)C denoté levels
of .the row and column Btratification variables, then N
-the ,pumber of listing units in cell (rc) of this two-way stratification
array. Let Y cek be a characteristic of interest possessed by the k-th
lising* unit in cell (re).

g unit ( cED, that is, X

will represent

Suppose that Xick is a size measure for list~
rok represents & variable that*is kaown for

l) ¢ 1isting units ip cell ‘(rc) and is assudied to have posi~
tive - correlation with tHe unknown variable of interest YrcE' The rela=-
tive size of cell (rc) is, therefore, &

¢ ! LI * +

4 . -

. DA e R XD, (3.1)

where a "plus” replacing a subscript 1hdicates summation over the levels
of that subscript. An allocation stxictly proportional to X of n primary
sampling units (PSUs) to the RC cella{of our two-way array would yield a
fractional sample size i = nA 'control céll"*(rc)
‘Various' algorithms, which will be collectively referred to as con-
- trolled selection schemes, yield  samples with an expected allocation of
BSUs to ldsﬁstrictly proportional to their measures of size. These \
algorithji>produce a set of S allocation patterps with the s=th pa ern

~ consisting of a get of integer allocations fn(s); for r = 1(1)R and
re

c = 1(1)C}. Each of the S patterns Qfs a seiection probability (c )

for

—at

L

"~
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aééigned to iz, such that the expéctgd sazple size for any'cell over all

. . ¢

patterns. is

/

S ot d : : 3
. % a_n(s) = n_ e ° nArc, . (3.2)
. - - S-l e \4 .’

the strictly proportional'allocacion. Additional cell and marginal con-
straints are usually imposed upon the allocation patterns; for example,

the cell allocatioms n(s), are required to satisfy the following sets of

rc
inequalitiest ° ' ’ 1
» ) a . - ) 1 .
| nsz) n., <l (3.3a)
. $ . K
. . I n.Es) -n,, | < 1L, *(3.3t)
. o . . . e ¥ . \73
. , . R né;? ~n, | f 1. g * €3.3c)_

¥

-"-‘

ihesé inequalities regdire that the integer allocations’to cells, column

* -~ -
margins, ‘and row margins deviate from the strictly provortional alloca-
tions by. less than one PSU.

We will consider sanoles with n(s) primary sampling units selected
™ re

without replacement and with probabilities strictly proportional to size.-

That is, if the s-th pattern is chosén, then n(s) ?SUs are selected from
- rc -

control cell (rc) with probapilities,

- - LY
- e

r(s) = n(s) (X, /X D=n(s) A o, . (3.8

' « rek re rC

— -
L
-

and without replacement, ,The unconditional probability over all pa:terhs

for selecting first-stage listing unit (rck) is, therefore,
f o '
S S ) .
T, = L o as) = L & n(s)+A =n_ A L. (3.5)
. Tek g s rck =1 5 pe TFoK re Trek : '

- . -

With Yrck denoting,ché vag;ate value dof#interesh.associated with listing
Unit {rck), we will be concerned with estimation for the population total

- R”C‘N“ .
T =Y - L .3 % ' ' . (3.62)

a , Feleml kel Trek’ L .

. AL - 43
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. The following Sorviti‘-"!hompsou estimator for the population total °
< "« (Y) will be consid ed dn eubsequent sections,’ ”, e -
" - . . - . ’
' ‘ 5 . . + 'z . n(s) . y R ] .
L B \N*' -~ -R C zxe ne e ( )
© Y= § 3 £ ¥ . . 3.7a)
L mlelikel rek"rek ,
Notice that the sumation in k 1is over those n(s)’ (possibly zero) 1isting .
’ . , L re
, units sﬂ.ected‘,/c-;ll (r‘c) The over variate value Y indicates

rck L0
an est{mate’ based on subsequent stages of sampling. Recall that # rek is
the unconditional probability of selecting the listing unit {rek) as

" .defined inaquation (3.5). ‘ L "

in part “of the discuSsion that foliaws, 1t will be convenieyi to use

. @ s:l.ngle. subscript.,:,say % = 1(1)L to, index 'the two-way array of control
cells, ’ ‘Ihis a.llws one to write ) . * e

3o ) . L5 0w "" ’ .' v . ) ‘
i u . ' . .“
. RN ‘I }. DTN
" T . o -.&‘Y:- z *szk’ (3.6b) -

“»
*

..
-

in place of equation (3."35) and ,.' -:_;. ‘“

. o@D . .
W g H

o - als) v -~
. ¥ - - .‘A ."’ 2 A’ .
. o AEWCEITEN Y /n, o (3.7b)
\r L . p .'. }_1 k=1 2k’ 2k . .

»

. in place. of equar\ion (3 7a)‘~ '

”~

)
Assuming, that the within-PSU stages of sampling lead to unbiased estimates

7 of the PSy totals, it is easy to show that Y is unbiased. Notice first

. o~
that Y can be rewr'ltten gs, . ’ .
. »» .
- B - L A
‘ Y-= T n(S) Y /n ’
iy v =l g .
" -
where ud % . .
,\ N " o. v
i . n(s) . ! . s
- ) PP s
- ~ - Yi - E /ﬂ(;)
o amy h :o k‘l " £ '
- Y 44
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allé%a:ions n(s) irom pattern (s) we find, eﬁi;?

ol

L] & %
. ,. Co L . . }
" E{Y¥|n(s)} = I n(s) Y, /n,. (3.8) |
) =1 2 - .
. . |
o s - . . . 1
Recalling the definition of n, 2 I o_n(s) = Es(n(s)}, one sees that |
‘ s=1 5. 2 2, }
Y is indeed unbiased.- . v |
. To derive the variance of ¥, the following partitioning will be \
useful: . 1 ) .
Var(y)-= Var[E{Yinz(s)}} + E[Vaé{{‘[nz(s)}]. (3.9)

. 2 ‘. | . ."
Vi s Con

The iirst tera in equation (3.9) is Var{ I =a(s)¥,/n,} from equation (3.7). I
} SRSy Ry O SARERAOR Al
. =] ¢ *
s . . .t !
i.

« » . 1]
Theréfore, o i N ' p
. . " . - ‘ ) L - 2 2 - )
.. « Var[E{Y|n (s)}] = I Var{n(s): Y /nl +
) . ’ o 2=l £ 2 '
\ . ] e . L . '. . . . 4" .
o I " I Covin(s),n(s)t Yf;Yi,'/ﬁz.nz' . (3.10) *
2=1 %'¥#2 -2 ] . . ) -
Letting; "
"8
] E{n(s) n(s)} = I as'n(s) n(s) E3n,,,, °
A s=1 2! i .
L L , & . '
and recalling that L n(s) » I n, =1, ve find that -
i=]l iz =3 } .
2 Covin(s), n(s): =, - (m,,, - §.n.,) = -Var{a(s)} . (3.1
1 ] A VYafos 2'2' F 2
£'=2 % 2 L 2 .
{?"." - [T " .o ‘
1 18 f . \-\ '
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. The result in equation (3.11) allows ong to write the between-contrql-cell
contribution to equation (3.9) in a form reminiscent of the familiar Yates- -
Grundy variance expression; namely,” '

" Al o
. _..—...—_-‘_.. - e - .

. : ~ . . L-l L 2 ’
Var{E{Y|n(s)}] = £ L (n, 2' - . (3.12)
2 . =1 z'sz+1
The variance form in equation (3 hown clearly that the betwcen—cell )

source of variation in Y is minigized when n, (the expected sample size
for cell@!f'id'strictly proportional to ¥, (the cell total)
Returning to the second tern in our partitioning £ Var(Y), _equation
. (3.9) we see that, .

-~ ) L -~ '
. Var{¥|n(s)} = & {n\(s)ln‘?‘}2 Var{Y2|n(s)} . !’3-13)
* ’ 20 2-1 z - 2 . . [l
This result is en izmediate consequence of equation (3.8), and the fact ~
that PSUs from a particulaz control cell, (2), are selected independently '

N of those- fron any other cell, (2') If w(s) denotes the joint inclusion
" - '} £kk' 4

. probability for listing units j/and'k‘ from cell (2) when n(s) PStis are . _l
. % T
. . HH

~ selected, then

. L 2 , T T
Var{YIn(s)} = L {n_(s)/nz} z E “{a(s)r(s)-m(s) } ) - 7(a)
) 2=l - 2 k=l k'wktl gk 2k' ogkk! |\ B0 TS
. . - . f ‘,“‘ L]
L N, " ‘
+ E {n, (s)ln } z °zk/’(3) ‘ (3.14)
~ =1 k=1 2 ‘

me -

where ozk denotes the conditio?al varizance of the estimated PSU total \

sz given that listing uwit (2k) belongs to the first-stage saople. -

Since the conditional inclusion probability n(s) # {n(s)/n }wﬁk where v '
Lk 2
"ok is the corresponding unconditional inclusion probability, one can ™ !

L recast equation (3.14) as ) . . - \
* " - . i - -‘ ’ T




o ' ~ . . . -~ .-. - \
e g N ‘ B ’ [ hd
. 1 """
’ L3 v ' ) » ' - - -
2 Var{Y,n(z)} = < z - L4 fa(e)n(s)-= )} | T - I
i g i=1l kel k'sk+l 2k Zk' ikk' -\ "%k T Uik'
- J ,"' « = s * .
- 1 xz_ 2 - ) . . ’ -
.o + I {a@/m,} I oy ln,, . (3.15) ..
=1 k=1 T - .
. - .'J - . ) 1P
~ .
Letting ” -
. L ’ ' -
. Eg f1(8) } 2 £ a_ 7(8) T 7., .
: - ikk' ssl S gk KK :
_ A &
4 ! - “. .
dencte the uncondicional joint inclusion probability for liscing unics k . *
and k' from c:o:xt:r:c:1 cell (1) and defining ; ; T _ c
) - "‘- {\—/ ]
3V, = Rel-Var {n(s)} = Var{p(s)}i/n, , o ,
FA £ - * +
. : . 2 ’ - '
:che expectaffgn of equation (3.15) becomes ’ ’ l
——— .—- —_——— - . -rg: - ‘ . 2 ‘f
.. r W g Yy Yy ;
" +E[vari¥in(s)}} = I ¢ z {(RV $1)= " et kk.} == . ==
T i 2=l kSl k's=kHl ik k! .
- € . ) h ‘
LY o S (3.16) R
+ 2 E¢° . : .
2=l kel . .
’ P~ . ‘ - ]

Finally, combining the results in equations (3.12) and (3 15), we can specify

the variance of Y as follows: s

. L1 1 Y, Y, 2 , Y e

Var(¥) = 2 Z {n,n.,~m,,,)|—=~— ' . ‘ > :

mlytmpt] ¢4 R p My -t ‘
. “- . bl . . v £
: \ - ‘L Sl
_*h‘ . “ [
’ | -
. - ,45 47 ) - = v ’ ."'
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L Mt N : sz, T\
+ Z - E {(rRV +1)1r£ 2k’ -x kk'}
T ekl Kkl % S/
. ( .
- LN . d
SR VST L S . (3.17) ¢
S el kel L -

’
-
L)

- Qoush the elpression in equacion (3 17) ne?,pmu:\i:ns the variance
“of Y int cozponents due to bgtwaen—cell, between-PSU-within-cell, and
within-PSU variability, a nore compact form, which cotbines the first two
terms above, provides more Jdnsight into how this variance might be esti-

nated, *If t"k <t denotes the uncondicional probability that PSU (k)
of cell (2) and PSU (k') of. czll (') both belong to the sample where

e w - . . . ]
- . e . [ ]
.S
F,o.otpt ™ I O w(s)ﬂ(s) , .
£k,£ k 8-1 8 2k £ k' ‘ -
- s
= ¥ an(s) A n(S)A., .
gl 5% ik FAS L
3 . !
—~~~ . .
nzz' A.?.k A£|k' L) (3018)
” }

Having defined this between-cell joint inclusion pXobability, one can view
the first two stages of sampling (paccerns and PSUs given the paccern) as

-\L -~ f
a uichonc-replacemenc seleccion of n= I n, PSUs with v”arying inclusion
. =1 .
Probabilicies ok and'with joint inclusion probdbilities %k 1! whe:se,
- mp! '
B - ’t‘?"kkf 1f"z £ ' .o
- Lkiotk!
- ' )
. \\Azk Ayipe 1E 2827, (3.19)
This leads one to the variance expression, vt :
. . -’\' -' . ' , . 33.-




- L “2' - ' ’ Yl! t ]
: 1'%
Var(y) = 142 = £ z T e N L e e
- a1 kel (4'k)FGR), HFFRD HGTRTATh o
\’
- . L ::1 . .
. Py + I /-., .o, - (3.20
. a AR *
-1 k‘l § 7

b -

Using zhe definition in equation (3.19) it is.not difficult to show
that the first term in equgtj.on (3.20) expands into the between-cell and
between-PSU-ﬂwithin-cell contributions of equation (3:17). In the following

; section, the familiar Ya.r.es-Grundy variance form in &uation (3. 20) will
be exploited to produce an estinator for “ar(Y) ]
Variance Estimation *© - oL - :

— If an unbiased estimate; ?w*m—,of the v:tt:h:i.jn-PSU yarii‘nce'ts —_—— -3
* it
availablifron each sazpled PSU, then, .- .
! - ’ ,
) , n(s) . - - 2
~ . L 2 LTV E T Tt P TP PY Yot Y,
« Dvar () 2 1/2 I I L ( i 2k kil k )(_f“ - 2k
(21 k=1 (2'k')¥(2K) "1k, 2k "k T2k
t, n(s) * . *
. o s L 22 . ’
. + T I ¢, /7 - " (3.21)
* - gl kw1 KRR :

. .

L] - ey

is an uqbiased estimator fo-: VYar (';) when :i-‘.:;z'k' > 0 .‘.'o: ftil! p;irs
(2k; 2'k') of listing units in the frame. This last condition requi:.'és
that each pair of list.ing uits itf?j_hg frame has a cha;xcg of being in

" the sample and 1is the downfall of most'cOntroIIed-sglectidn designs when
it comes to variance estimation. To satisfy this condition, the set of '

»

allocation patterns wmust be such that:

’ N = .

1. n,,, > 0 for all pairs of momempty cells (21') in the .
t.:o-way stratif.icatd.on array. This ioplies thag e€ach pair

» of control cells is represented iz at least one of the

» - >
allocation'patterns. L .
\nj v . Y
- " ~on ;. L ., = = *

".
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2. 1If H (the number of listing unigs in cell 2) exceeds one, then

- ‘ we require that Pr{n(s) 22} > 0. That is, if a cell contains
- “ ] 2 N
¢ ' two or nore.listing units, then at 1east one_pattern must assign
s tWo PSUS to the ceII. Lt L <
A »4 o ’

Heeting the first of these two conditions presents no major difficulty.
Algorithms 1ike Jegsen's fxef. 3] "Hetngd'3" geperate an enlarged set of
. allocation patterns, which satisfy the inequality constraints in equs}ibn .
- (3 1) and at the same time giVe all pairs of nonempty cells a positive

probability of being in the ssmple. The second requirement for unbiased,a
variance estimation”is more severe, since it runs contrary to the basic
advantage of controlled selection designs; that is, having more control

2
althodgh it contains two or more listing uni s_sz-z,Z), then the cell

enuql_tri n(sJ_ntM[_L_in_e_w_tinn_(:z,_l.)_égee_not allox,nis) to be two .

wr cells than PSUs. If a cel¥'s expected alloqition n, is than one,

. or more. One way of solving this problem.woulé‘be to restrict our atten-
tion to designs with n, 2 1 for all cells with.W ZJ’but this would elimi-

'

nate most of the situations where control beyond stratification is desired.

2
Although the cell inequality is viplated for c61ls with eXpected alloca-
tions less than 1, our experiencé“yndicates that %4t should stil] be possible
to satisfy the margidal copstraintg, as long as the expecked marginal

]
A more acceptable solution allows some patterns with n{s) = 2 yhen n, < 1. . !

* -

-

e

., allocations exceed two PSUs. g ,
Hhen some of the'pairs'(lk L'k') of lis Q units have no chance of
appearing in the sample, the estimator in equation (3.21) wil1 underestimate

7he true yvariance by an amount, .

. 2 .2 2
. ) Y Y, 0t o Oarre
z‘f"' LA -——:k -ﬁ———’;'k’ +‘-—§k + ——% k s . (3.22)
(k;2'k") . y le . {k v ﬂlk‘ HZ.'IC' :
. - » - .'.“‘. . .
| . where 2° denotes summation over those pairs of listing units
* (Zk 2'1{') Lo -
- (3k;2'k") such that Takstk! 0. The portion of this downward bias due o
to singleton cells (cells with NL > 2 but Pr{n(s) > 2} = 0) ctn be expressed
z -
o as,- - : “. “’ > -
= . i ) v -
* - ,J * 48 ‘50 * . - ) ‘
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(o ‘ ;.sz . 2 (s) 3 2 L
TR L M (q{ ") TR kzl(n:z-ﬁik').?ﬁk/ Tk <3‘23.) .
wnhere z(s) represents sue;ation over all singleton ceiis. That part°of )
e .

equation (3.22) due fo pairs.of cells having no chance of being in the sample

is, . P
- »
" ‘ }: x 2 " - }1 r
PR Y Y, ., ) 2 .
= ommy BBy Ay, '-rz_k'-z‘.'k £ 2 oy 2 ik/ Tk ;
: (%,2") k=1 k'=1 VA 3 (2,2") k=1 .
- ~
- N-| . N
A 2 ’»
+n, .2 /= ' (3.24)
1 1. .ﬂ k' z k' ] A
k=1 . v
= -
) vwhere Ié denotes surmation over those pairs of control cells with no

" involving successive differences, takes the following form:

a(s) . ‘ .
C e * 2., .
A o, te Yeel ™ "Mpa1,e Vesrzer’ /20 (3.25) .,
e c=1 t=1 ,
. withn(s) +1 =21, . .

ﬁzhnnce(:f&bgiﬁg in the sanple, As suggested eérlier,'this source of bias
can be elininated by adopting .an algarithm like Jesson's "Wet;Ld 3," which
guarantees ehat all nonenpt} pairs of cells have a c¢hance of appearing in
the sample. - ™

. , + -
The underestimation that occurs as a result é’hsiugle:on cells, eguation
(3.23), can be compensated for by a procedure analogous to collapsing strata

ﬁhen a sinéle PSU is selected per stratum. One such tollapsing scheme, 'S

- -

- c ' _g—

-
.

where t = 1(1)m(s) indexes the singletdn cells from column {c) represented .
¢ - '

in pattern (s), and.y:cl = (vcclj 1) denotes ‘the expanded PSU total fzom
single:qn cell (tc)}. This scheme presumes that the Coluzn classification
represents the more importaat stratification dimenston, and that fne zow

. . \ !
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categories can be arranged in a tircular array with adjacent categories
assumed to be mare alike than nonadjacent categories. Adding this term

to equation (3.21) and assuming for the moment that n > 0 for all pairs of

Lt .
cells, the bias becomes, - \ - .
. 4
"2 C N,
I Y £ ’ L}
. el ) 245901 2 - G,
g=] #Bt+l cl L k=1 .

.
tracting, \ . . S
é n(s) * .', - .
) ¢ 22 e .
< z I lﬂzk s (3.27) .
" > * ) 2’ k'l
from‘equdtioﬁ (3.21). If Z(s) denotes summatipn over nonsingleton cells, then .t
F. . 2'. - * i . * *
i equation (3.21) becomes with the bias adjustments in equatiomns (3.25) and~(3.27),
1 & - Y hd
. - . - E
. var(¥);, = . Ay, =Y 27 L
143 (s 2D 2k 'kt ek £'k\'k
. . i} - .
. m(s) * '. . N .
C .
e — 2 .
cfl t.fl Un e Year ™ M Yen a2 (3.28)
. | n(s) ’ S |
. 'éd' - - 2 " . . R |
‘ (s) : |
+ I z oy /ﬂ s |
) 2 k=1 £k o

where wzk Ot represents the Yates-Grundy 'variance weight in eqﬁgtion (3 21) ‘
and Yok is the expanded PSU (£k) total. The bias-adjusted estimator in
equation (3 28) overestimates the true variance of Y by the first term of .

equatiomw (3.26). If som irs of cells have no chance of being in the sample,
Q—R§ : € have

then the quantity in ehuation (3.24) makes a négative contribution to the bias
. of equation (3.28). ‘ ;

' . 50 52 , : : .
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rinal&y, iz the-within PSU variatjon is not es:imable, as whengonlf

_ one second stage unit ‘s selected per PSU, an additional negative bias is

incurred; narcely
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. ..Y  Chapter 4: SIMULATION STUDY OF ALTERNATIVE YEAR 02 )
: _VARIANCE- ESTIMATORS =, ‘
[ . . . : . i ’ ’ . . - "
Sinulation Model \{ . 4 &

In the following settion, the design of a Monte Carlo samoiing experi- -
ment is presented. Modeled after the Résearch Triangle Institute 5 (RTI*s) o~
sample design for Year 02 of ﬁé;ional Assessnent, 1,000 samples of 31 PSUs
(cougties or groups of counties) were selected frof the” rwo-way state by-
"major strata" grid shown in tgble 4-1. Table 4-1 shows "the expected PSU ' .

-allocations (n ) and numbers‘%? first-stage units in the frame (Y )

the 15 States conprising NAEP's western region. The seven majox strata
L J

represent a combination of size of community and socioeconomic status

In order to distribute the .Sample proportionally across the major

strata and at the same_tiqe guarantee that each State would be represented

- —— _ " - r —————e e

by at least one PSU (a NAEP requirement), controlled selection was ssed
to generate 33 PSU alloca*ion patterns that met these requirements. The :
33 pattern probabilities for our design were converted into infeger allo- ;
cations by multaplying each by 1,000. 1In this fashion, the aumber of tinmes ;
a pattern was represented in the 1,000 samples was made strictly proporticnal - |
to its selection probability. For each of the 221 first-stage listing’units ¢ ¥ u
in the West, an estiqate of 1its population of l?-}ear-olos was produced ©
using 1960 census projections These estimates were used as size Rmeasures “
in connection with a PPS without replacement scheme to select PSUs from fhe .
cells of table 4-1. ° 3 ' . " '
A data vector consist ng of the actual number of l?—year-olds and the -

'numeer responding correctly ;o several NAEP test exzercises was “generated .

for each of our 221 first-stage listing uniis Tnls data set was based on E
1970 census figures for.numbers of ,17-year-olds and on estimated P-valués
(proportions correct) by State and major stratum margins for the selec;ed -’,
NAEP exercises. "To® proddte P-yalue (P ) congistent with:actual census ) .
totals and the observed-State and “SOC marginal P-values for Selected }AEP - ' .
Xear 02 erercises, an iterati ve proportionai fitting technique was empl oyed , '

[ref. 1]. These fitted cell F-values were used along with tne listing unit . , /k
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L. v ST ' Table 6-1,. Lr::lmary {ampnhqllocation eummary for .the West ¢ B Y
S M* S ) e . ' — M P, Total  ° Total
¥ -State” ‘ ‘. Expected Sample Sizes by Hujor Stratum Rumber . PSU's PSU's
‘, 'Stratum ° "1 2 . .3 A 5 6 7 Allocated In Frame .
v A R o D T v ()
LT s, y L 372 (1) . 628 @) 1 @
3 Az. o L C.16 (2) N " W50 (1) L3 (4) 1 FQ) N
7 calif, "L 4.000 (4) 2.189 (5) 567 (2) .090 (1),  2.601 (16) T .553 (13) 10 41y °
St colde e L2030 (S 7L () 096 (D) .09 (2) S1131,05) 1 an- “
. Tavaid . .868 (1) 132 (1) - ) o 1 (2) ‘
Fdaho CoT ' 406 (D) L .596 (6) 1 (9) '
" Hont. . e v 482 (4) ‘ 518 (5) . . 1 (%)
‘g'"-' New. . ' SR : . . .806 (2) ] 194 (ﬁ 1 (3)
gt - —J ~.268 () T ..zzs @ .46 () .148 ' lazw 1 (10)
. oka. TN w1352 . z.so RO 070 1) L) - 256 (8)° 2 a9
Oreg. .o .363 (2) - o < oniss () ¢ . “4350 (9) 1 (14) ’
S Texas e " 2.400 (6) € 1.106 (13) 530 18)  1.341 (14)  .398 (200 6 (64)
* Utah | 3 447 (1) L . 215 (2) : 189 (3) ¥ 1 -
P 831 () L e .392 (4) . 413 8 2 Ji16)
« < Mg, . oo +568 (2) 432 (2) 1 @ '
.. fotal_ ;@ #i 000 W) 9. .000 (23) nz 000 (13) . ‘2, ouo (21) 7.000 (50)  2.000 (20) ,5.000, (CONNE S "(221)
Cow IEERN s~ ‘ - 8T,
> . a , v . . ) P . v &:;" .
v _— N . a Lo # ~ AR
o . . 5@ ‘ ! o
S5 ", ‘ . . " -
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i, * totals .o product-a variate value Yrck corresponding td the number of

- ., . ta - ’ >
. * correct responses from listing unit (rck).

. L - . .
- The following model was used to gemeratt a new value for Yooy each -

-4
time listing Ytdit (rck) appeared in one of our .replicated samples:’ -

s *

Y

- - ¢+ Yrek 7 F

M

rck rek * ek L (4.1)

where the erfors e for different 1isting units kk) from control cell \

rck
{rc) are uncorrelated with zero expectation and variance . , ’

- o (egcklﬁrck):- ciclugck' ’ L@ o
. Modéls similar to equation (4.1) have been used by J. Durbin [réf. 2],.
- :J. N. K. Rao [ref. 3}- and nusierous others to study ‘the properties of ratio
essimators for Prc' We wil} restric; our attention to modgls with g=1 anc s
proceed to motivate a particular choice for the va}ue of o_.. Our method .
of choosing a vafug for czc ?111 be tq propose anplausable model for the , y‘é
,sampi.ing variance of the estimated cell P-value‘?rc and then find & value ‘ [
of G;c consistent with such % wodel. - i
. Suppose for the moment that listirng units were selected witb replace- .« .

ment and with probﬁiélities sgrictly pro?&rtional to known sizes Mrck' Then

the unbiased estimatbr -

L] A Lad nrc‘(S) *

) . T~ P = £ ° P I a_ (s8) (4
i rc‘__k_l rck‘ e .
with N

3

g

"

(2]

.y
H
4

"

(2]

o
\
Hl-
(2]
-

L4
LS
\

>
]
>
n
P
L+
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]
(o
"N
(2]
\
o
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. If, in addition, we ‘define _ .
N, ) _ I
Rl 2 ‘
z(:':‘c)k - E Hrc:k rck @1- Prck) / rc+ (‘F-S')
LY - .J .

- . . . o v

g2 252 ap a ). (4.6)

. rc {re)k rc re’ * .
- . . " - Y - ° \ . f L3
Now, we define - . ~

\ ) . > , , . . - a
T 2 2 2 N
. _Grc ® cre ](Z + z(‘r:r:)k) . (4.72)
or . ’ ’
K ~ s =2 [p @ ) E % 71:5 :
re rcf| rc- re ; ‘

ds the within-listing unit vzllriance component., then it :l.,s easy to see that

- . T .
(] v

as the within-1istihg unit correlation coefficient, These definitions .
allow us to write N . :

”~ ‘ L] » .

var, . = ® (;fp :c./“ (s) . ! ()

-

With r.he variance formula in 4.8 representing a plausable mdeﬂ for
the bet:ween-listing unit variatiog in P c? the, estimated proportion correct
from cell (rc), our goal is to specify a value ,for 02 in the data genera-
.tion model equation (4.1) such that the average sampling variance of the .

ratio estimator - P ° i . . <
‘: * ’ rl rFJ i‘
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. . -~ § A * ' - ’1.
with ’ . v . “
¢ T ; -7 . A
4 Py Y7.'c:+ riczs Yrcls/Trck(s) i
and i . _ - - ' P
p— .. C My T kis M;:c:k/ Trek S‘ , . ‘
I N\ . . ) -
.. \ » )
is approximately equal to equation (4.8). Recalling the form of our model for
. o )
Yrck. we noteJthat‘ ] . « .
’ Y =P M __+e (4.10)
. et rc red - ret . \ et
. s .
Since F(erck!ﬂrc’k) = 0, it s clear that -
( x ‘ " : ‘
‘L 2 A . . N Lt 0
T = ¥ .
_ £ \ars (Yrcﬁ'r) Prc ‘.ars (Mrc +). + a‘Vars(erd_), ) " (4.11a) &
and , 4 - .
» A\ ~ . A - » ‘ .
. € Fov§ (,Yrc-!-’ Mrc-i-) - Prc Vars (Mrc-i-) . . {4.110) !

€

L]

Using these two re.Sults‘and the Taylor series approximation fé} the varlance

~ |

of a ratio; nanely, X . - v ' |
. ) . .
LY . - 2 R 2 . N .
] Va;s (Prc) ':Mrc+ £ Vag:S (:Iré+)-+ Prc' Vars (Mr.c-i-) (4.12)
v ‘ . CTRy 8Covg (3rc+’ Mrc—f-)}," , .
* ' - '__:\ 9 . ! ———
we find that X .o '
: . v . N "i - -y
. s A . _2 -~ ‘.
. . ’ . € Var, (P ) =M ., € Var (erc-i-) . ’ ] (4.13) .




Now we can evalwate the expressidﬁ in equation (4.13) ip r.e;m; of the dar.a

generation model equation (4. l) anc} compare the results to our variance
- nodel in equation (4.8).

First we re.call the Ya:e;-Grundy version of
ar_ (arc ; ‘that is,
N N T
n + Tre . \' N .
~ Vars (erc+) = 7 ’E l{ Tfrck(S) w Ck'(s) “rckkl(s) ‘}' X, d .
’ k=1 k“7$k - . .
\' » ¢2
e e » . PR
’ -~ . rck rek ’
’ 2. : (4.14)
' . 1"'::c.kfs) 1"'rr:k'(s) ) ’
"ﬂq{ : -, ',a Y - - [ — N | - | . PR LU 1 : - E] ../
, - Using the independence of €_, and € cx” aldng with the. re.sulr. tha::
L “ ~ ‘_- .
L] N " . . ) ‘ )
re .
b _ kg"k {a g (8) 1 2 a(s) = a(e) }xm (s)\[ O (4257~ __
" we have " .., .
"N ' .
n Ic
€Var_ (e .= I [1-m k(s)]s»(emkl ) ] Ao (s) - (4.16)
N k=l i} -
Recalling our spécification of the error model in equation (4.1), we have -
agsumed that with g=1 ot " ~
~ »
’ N ’ . 0 " .. .
_ - 2 . - 2 ) . ' , [}
' \ . Y A [ (eerIHer) Gr‘c Hrck " _‘ . (l‘ '17)
Wicth the addicional assumption that the size. measures A rck entering into .
the inclusion probabilities, 1t ck(s) are rOughly proportional to the actual
’ listing umit totals M_ . (or¥ B A ok Vhere B represents the ratio .
M / A +) the average var.iance expression in equation (4. 16) reducesg to
act pof . , , _
* % o» - .. ’ > zr . L —— ' -
_ . EVar (s ) * [l—nrc(s)/ o Ve Moy orcln (s) . . (419

)
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1

f . ._i-—. o _ . ; ‘
v d c i ’/}Tm_ 2 Prgf x 015 M_ . (4.23)

From equation 4.13 w& have - T . ? ® >
f,’ , . . [ : 2 7 . -
£ V?-S(Prc) "[1-nrc£s)/ hrjzfirc ?rcl nrc(s) Hrc+ . - (4.192
]
Recognizing the term in parentheses above as the finite population=- B

correction term from a simple random sample and recalling our variance

A
. models in equations (;éii’éyd 4£4.8), we are lead to

<

2 2 g '
. l’ %c = M. 2rc =Mool Prc (I-Prc) 6rc ’ n 14.20)

>
L]

»
where H = Mrc+ / Nrc This value of 62 yiElds the following approximate
&xpressipn for «he _average variance of P 4:= ',-‘ ’ é~ -

. IN
. A . }:2 - (s)
s B & L, (]Z / n_ (s

Lo g MR AR) & [EORRI T

with f (s) denoting tﬁe sampling firaction for cell (rc) in pattern (54.
of NAEP Year 01 in-school data suggests

A variance cOmpo:ents analys
an average value for the within-listing unit correlation cpefiicient Drc

of around .015. Substituting this value for src into our expression for’

Uﬁc,‘we have arrived at the followimg computer simulation model for the )
num?fg‘gj,corFﬁFt responsas ck“from listing unit (xck):
* ~ ) Yrck - Prc H':cck + drck s . (3.22)

rd

~

where § is a standard normal error and

. - . -~ . ’
N . P
¢ . R . - /
a L .

rck rce rck

-
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To further assure, that Yrck is an acceptable estimate of the nuzber of

. correct r*eSponses from listing untt rck, we have required that .

b mke fO M k]. This was accomplished by censSoring values of £, which
F

cause Yrck co exceed these limits. In order to preserve the symmetry of
our error distribution, which assures that € (Yrcklurck) =P, _Mrck’ we

have censored values of § in. a symetric fashion. -The/rules for rejécting
£ are, therefore: . . b

¥ L. » 1- FO! P > 05= ' = ' [}
. g = - o . A -

Refect § 1f |g]>C-p_ ) u_ l d_y - . (4.23a)

. - ‘4

2. For P < .5: .
rc

Reject £ if |e;|>pm L / d g+ , . * (4.¢23b)

- " . A - !

I~

LR

/ Only for values of P close to 0 or'l wi.ll any censoring be required. '
) If for example, we make the simplifying assumption that Mrck = Mrc. for

all k, then with P .95 or .05 the limits are approximately +1.87.
Values of £ would be expected to exceed these limits abou: 6 percent- of the
time. " For P-values P..=.90o0rx .10 the limits become 12.72; these limits
would be exceeded abouc .7 percent of the time.

) ;,: The model for Y cek described above deviates in twq essentiel reSpects
from the model used 1n the first version of these results presenr.ed at che
ASA neetings in Montreal in August D72, The first and probably most critical

rckxMrck In
the Montreal model, we let ek ™ d ck £ gith £ a stdndard normal error and
. - vt

difference was in the gspecification of_ thé error variance e(e

= i ' drck - ‘erc. Pr,c (I-Prc) ﬁrck(s) ll-nrck(s)]’ . _“:'L)

® « "

- —_—

"I‘he average variance of e .4 under tt:is model_is k_’

L]
- " *

” Al -

T € Vd‘rs’ (erc-!-) = MIC'!' rc (l-P ) ! €4.25) ;

Ll

o

» .

L)
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—:n_—‘”‘_’-:--d“‘.—: o ﬁ—*-i:u R ’ T = - i o o o B ’ ’ d -
’ " L]
-~~—ﬁ»—~wnich'leaae\so the admit:edly'unappealing-re§u1: ) )
. re* " .. ~ 4 ’
- = 2 - - b3 2
. £ Vars (?ra) Prc (1 PrEJ / Jrc+ . . (4.26)

' This unfortunate choice of error variance should have seriously under-
estipated thé’between-listing.unit within control Ce11'variation. The

P il
-~

second change in the new model was to regenerate the value for ¥ rck each

time that listing unit C&ck) appeared in one of our replicated samples.

expected level of ﬁetWeendlisting unit variqtion. ’ '

[

|
i
|
This change should cause the simulation to approximate more closely the ‘
I
I
|

X To build within-listing unit variation into our simulation, we first
take note of the two stages of sampling within NAEP PSUs. The. typical NAEP ’
in-school PSL has two,schools represénting a pafticu_ar group package with
t12 itudents setected £rom each school. Suppose we let M ck and ¥ rck
denote estimates of the total nuzber of l7-year-olds and the corresponding
number of eorrect responses from listing unit (rck) based on our sample.of
schools and studants. If we assume that schools arg selected with replace- .
zmepr and with probabilities propontional to. known nuzbers of l?-vear-olds,. ‘ g )
N say 1 H for the 2 = 1(1) S rck schools in the listing unit (rck) frace,
then with sinple randoz sampling o{ students wiinin schools (igporing the

lagt stage finire population correction);™we have . - ™ . T
[ B . . . :

~ a A A 2
\ Vars (Pfck - Yrck/-Hrck) = ( k)zl 2+ E(rcki):a /2& sﬁa'27) .

v‘}lere . \ ) " . . A * ” -
* 2 Srck ﬁi,lfﬁ ' . oo
z = I (P ) .
(rck)2 v rckz rckd .xek rck*
L=] . '

L]

répredents the betwegg-school, within-listing unit varlance component. Ihe
= w . ‘

between-students, within-school component takes the form ] )
Co SLet . ~ )
. ‘ = - M . : -7
T . z(rcki)m El Mecid Prekn PProxs? [Mrcus S 2§>’ ‘
. . r T I'; L. 3 — . ) . . ”
. ' . “61- - .

Q- K 63 ’ ) e




L

»

¢ With thedé definitionid of the within—PSU variance components, it is
* not difficult to 3ee that :
g2 42 -2 . (4.29)
(xeR) 2 o (rck.Q,), ;'ck rck ) *
This result allows us to define the ;Jithin-schoo], correlation coefficient
4 . ’ Co
a .
L4 Pre (rck)&/ [z(r k)2.’+ z(rck.Q,)::t] = (4.30)
J N\
. .
* and to write .
\‘ ‘ iy . / . N .
: ‘J'a\r:s ( Prck) = Prck(]'-Prck) Q+ Ilprck)/24_ " (4.31)

The fdllouing computer simulation model was built in accordance with

the variance podel in equation (4.31):

/

[~

<

u Ap -

~ ~ - .

' \ l‘!::ck k¥ E';:ck — {4.32a)

- with - »
- € Gpop F M) =0 (4.32b)
* .( .
and ° ﬁ
€ (E,cg I rck> lé;fm: t=1or2 —(4.32c) _
also v ! , . .
\:1 Y:tcl': - Prck Hrck + nrc}'c (4.33a)
th- . .
s K _
. * ] € (ﬂrck' I lf!:ck) 0 (4-33’13)
" and ‘ L
e (n: TH ) - w¥ P (1-P.) x 081 (4.33¢)
4 . rck rek’- rek “rek rek . . .
y ‘ : ~
\ - )
1! 64
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where the constant .081 ‘Teprésents an. average value for the gquantity
+ 1+ 1lp ck)'/ 24 with ,crck.ser. to .0864 The erro s...n the models above

were again obtained from a censored, error generatory

In the I-ft;ntreal ‘simulation, we ;Jsed erro that .
’ B
‘ / g Var (M k) = Mz ck . T (4.352)
and . ) * » X .
% PO I . .

. , - p2 ° _ .
« € “E'rs (Yrck) P:r:ck € Va?r (Mrck) Mr<:k “rek & P7r:ck)’ (4.34b)
which leads to ' ~ -

. ¢ “eVar (2 ) 2P, (17 Prck) [ My - . o (6N
" a . . “ ‘ * o
; Compared to'the variance modell in equation (4.31), this formulation would ?
appear co-ux}deérepresenc the within-PStU variation. .

Variance Acproximations . . .

In addition.to estizated totals of the numbers of 17-year:'olds
M—-—H- andnchehnu:nber’s\ of correat responses Y:H_b, four variance e;qina::qrs
for’Var(P -~Y-H+ / M_’_H_) were conputed from each sample. The first of
these variance estimators (V1) uses the first two terms of the bias-adjusted
Yates-Grundy type estimator in equation (3.29) with a jackkﬁife pseudo value

~ ‘ - hh" Pl - -
< '.. - . . Y - y'" - i -
.. p. =315 - 30 |—2k © (4.36)
, Lk - . ﬁ - oy, .

L]
/ L 4

\I\cing the place of 31 Yok the corresponding pseudo value for §
The form of the jackknife linearization, which uses Lo

-
L]

~ o § - (yik - yﬁ'k') -

. M -'(mZ'& - m£1k1>
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- Tt gy = Tpuper) .
P 7 28 A Y 5%
M+ (m% - mzlkl) .

migh:, seen more appropriate for vatriance estima;:o.rs involving squared -
differences. .Reeall that this was thé form used with the Year 01 Design, 0‘
where there were two PSUs selected per primary stratum. To simplify -our
caleulations, we decided to use the linearization ir; equatioft (4.36) for
all four of our variance estimators. While we intend to present a comparison
of alternative jac,kknife and Taylor-Series linearizations in a subsequent
sectlon, at this point we felt that the form of our estimation equations
was more crucial to the cofiparison than the type of linearization.

The second variance estimator (V2) studie in the simulation would be

‘ appropriate if the_PSU allocation to cells was £ixled‘ and. PSUs were selected

with rel;lacement. A circular successive differencir;g'scheme was used
within najor strata to coll%se cells where bnly one PSU’ was selected. For

this purposey the S:ates in table 4-1 were arranged in the following

» -

ciz:cular array : . .

,

” (lAlas -#Wash.+0reg.+Calif -‘*Nev.-:g;iz.-tﬂ.n.-*’rexas
Hawai1+ Mont « Idaho+ Wyo,« Utahe Colo + Okla. )

*

o

This particula:: ordering is baeed on geographical proximity and represents a
trude jttempt to make adjacen: States in the. array more alike than nonadjacem:
States. If uwl(l) T, (s) represents the ordered array of single PSU cells

in~ a pattern(s) sample fron colmnn ¢ and E( +) denotes sutmmation over control
7ee‘lls with n,(s) 2 2, we.have ’ - -
e 2, . a2
v2(s) = 2% () T (o - 2y )%/ Imgle) - 11 (3D)
% k=1 * , .
- 7 rc(s‘) o * 5 2 ! "o . ]
. + I I (p,,. = P )® [ 2(31) (4.38)
: . cwl usl ue 'L'l"‘, N -
o 66
-~ ’ - ~ “ r
J. L L) - -

-
- - ~— - e o A - J—— A 5 -

I3




';“ - ) . rc(s? + ;_E

Notice that Eié second terz‘in edﬁation (ﬁ.?s)‘includes all cells vith

nz(s) = 1 vhereas the singleton’cells‘in the coxresponding term of Vi(s) _

(the Yagés—Grundy estimator)’ must hav Nz > 2. .
Our third estimator (v3) ignores any contro) in the.State dimension

and computes the variance as if PSUs had been sei

ected with replacement

from ghe seven major strata, Suppose.w = l(l)n “(s) indexes all the PSUs .
in pajor stratum ¢. Then . w © . - -t
. . . )
7 - nc(s) i 2. . 2 .
© . W) = Eoa(se) I (p -9 )%/ Ings) - 13 3D .39 ")
- c=1 w=l '
P ‘ - * «

The zinal.estinator (v4) ignores all controls, using the formula that would

a

be aopropriate,if the 31 PSUs were an unstratified selection witn replace— .
ment from the entire list of 221 first-stage listing units. Ihis estimator -

2
L §
.
. .
I M‘nr‘“’

is computed as follows:

- ; 7 C(S) .-& ' . h " +?
. W= I I (p mp )P /31x30. o~ (40)
- . i =l | . . . - &
Empirical Results T ) . ok ‘

3

Table 4-2 presents the sampling expectations, EP, and varfances, VP,
for nine estimated P-values when the Montreal modelYs app%&ed. Ihe
quantities (EY/EM) representing the rauio of numerator and denomina.or
sampling expectations show that there is very little bias due to ratlo
estimation of the P-values. Unfortunately, this is npot the case with the
four variance estimators.  THe bias-adjusted Yates-Grundy estimator tends

-, to underestimate VP, whefeas the other three approxiaations tend serious-y
to overestimate VP. The nagnitude of the various estimators tends to .

increasevfroquI through V4 as one might expectj V1 makes an attempt to
account for the between-PSU variability properly while underestimating ’ ‘
the within-PSU variability. The other three estimators, while accounting
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Table 4-2. Bias comparisons for four variance estimatbrs (Montreal model)

. r

AN
for the within-PSU variation properly, tend to ovérestimate the between-PSU
variation by ignoring apy finite population corredtions and overlooking
various levels of control beyond stratification ) t .

Table 4-3 shows that in terms of least total error,'root mean sduared
error, Vi is superibr to V2, which has a slight edge over V3. The o
uns!&atified estimator'vﬁ performs poozly for all except the two lafgest
P-values. The average performance of the, four estima;aas\bver all nine

'P-values-is summarized fm table 4-4. In terms of absqlute relative bias,
the Yates—Grundy ;ype estimator looks better than the ther three When ‘

one looks at relative total error, or root mean squgred error divided by

the advantage for Vi is not as great. The,stability figures in tabliwe
4=4 T esent averages of estimated degrees of freedom Whé&e, for the. i-th

variance estiqator, . e L
d£1) = 2[EV(1)1%/Var(V(1)] for 1 = 1, ...,4. (4.41)

~ EYS *
. d

distributions summarized in table 4-5. ,
. The_~3traged frequency distributions presented in table 4=5 show the
proportfbn of £imes that ¥ . '

- P-(EYIE!{) “ep TR B -1 Ev2 ZEV3 - EVA
- 10.16 10.17 " 3.63  2.97 . 5.43 n5.50 5.92
38.12 38.09 4.17 2.70 - "6.14 »52‘ 7.63 7
40.39 14045 424, 2.9,  .6.41 685, 7. 73 ]
62.42 62.93 5.34 4.29 8.09" 8.75 9.52
|91\ 69.14 4.6 3.95 7.26° . .7.32 0 7.95
7292 72.85 . 3.7] ° 421 6166  6.49 7.2
: 77.52 77.46 3,540\ . 3.55 5.20 5.42 ' 7 6.08
Yooz, sl oz0s ) 263 L 2.4 2.32 2.64
93.55 93.53 3.19 pio - 236, 2,56 3.08 -
T N

. - i - Fa . - ' .
These stability measures reiate directly to the ehfye of the T-like gampling -




Table

-

[ 4

4-3: Root zean squared error of Ga*ianoe estimators (Montreal nodel)

*,

3
3.63 " 2.95 4.70
417 3.0% 4.58
\ 426 . 2.89 - '4.55
5.3 1 '3.65 6.48
4,26 " *2.56 5.41
A 3775 . ' 9.35 | 5.98
AN 266 - 357
‘ 3.05% 1.64 .18
3.194 _1.58 . ‘5;95'
- 3 "}
TT) = ?-m)f/Fu)ﬂi

and Z—like statistics

fall within the stated limits.

»

< ) ?

L aad

PR

-

2= (p < EF) | /T3,

- Y .
e \SVL ___._.,,,,\f:vi‘i"" —

-

-

)

&

4.85

- 4.69

4.80

"6.65
N

. 5.37
5361

3 35 .

2.14
1.79

for 'i = l;z,...-{},

s

-~

\sva (\\/l . s
4.8 -

5.35
5.65
7.12
5.66.
"5.95,

.

.t3.9s

2.03 -
N\
¥1.68

(4.42)

(4.43)

Notice that the T-like statistics have : !

been corrected for bias in V(il_by apéiying the factor F(i) = VP/EV(iJ

P
Comparing 7 to the 'normal frequencles in the last row of table 4-5, one

" notes that the sypmetric intervals are reasonably close, especially for

the larger, more critical intervals.
in the asymmetric intervals.
closest. to Student's T with 30 d.f.

Some positive skewness i observed

table 4~4, one can see that the distributions T(l).through T(&) become

more like Z as the stability of V(i) inoreases., ﬁs estimates of approxi-

mat

"degrees of freedom" these stability measures &afe grods underestimates.

naive appyxir'ation based on the number of P3Us sele;.'.teﬂ is on the

r hand reasonablyaaccurate.

Before we conclude that V(2) is superior

to the other estimators wnen it comes to magking inference about P it is

Rt

important to reoa}} that the results in table 4=5 are corrected ror bilas.

1t thgae -corrections had not been made, none

’ anythiné resembiing a T distribution.

3 %
< "89

‘\\\

of the estimators would vield |

0f the T-like distributions, T2 appears \m_:

Recalling the: atability measures in

-
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.Table 4-4. Average performance of variance estimators (Montrea‘l model)

M i, 2k ne A & —

. . L .
; - . R vl v2 v3 v4
. " Rel-Bias (%) ;13 . 50 53 63 i
Stability (df) 3.52 T 4.7 4.64 5.51
v : Rel-Error (%) 72 . 101 101 108 .
; : ’ .
s * hd B ’ .
- ™ ~ ., " ‘ .. . I’ ’ —— . . o _: ) '. - . y
. Table 4-5. Sampling distributions for normal and T-like3’statistics .-
n -
" Proportfon w/in  $2.576 1960 $1.645 $1.282 ° £1.036 (-1.960,0) (0,1.960) (-1.036,0)  (0,1.036)
Student's T(IIE) . L9848 L0407  .BB96  .7903  .6915  AT0% 4703 3458 o 3458
1 .9367  .8041  .B522  .7662  .6829 - ,4379 4562 L3323 .3506 .
. ‘ . w
T2 ¥.9816 913 .8967  .BO74  .7158 | °.4587 .4827 -3473 .3684
. T3 ;9861 9480 . .9064  .B142 (),\.bzu 4628 . 4852 .3500 .3
% .9859° ’.9516  .9088  .8204 1217 L4632 . .4883 . .3507 ".3770
‘3. .9906 - .9505  .9246  .8423° .7509  .4756 4849 3702 .380%
. - » R , i - [
Norm. Deviate . .~ 9900 .95.0’(:‘ .9000 .8000, .7500 4750 .1?0 .3750. .3750
» ‘? . . N o 71 ‘,. [
. _ ,
Q' ~ . \
. 70 . L] . L] -‘_u__- - [ » L el . \———
A r ~ L mm— N " "
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80
7.0
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5.0
4.0
30
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1.0
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. t .
against their corresponding P-values) The curious relationship (or lack

In figure 4-1 we have presented 2 plot of true and estimated variances
of any).betwébn the true variances aj;/P-values is symptomatic 0f the
problems inherent in the Montreal model. We shoauld expect a strong guadratic
relatiofiship between P and VP modeled after the simple random sampling

case where VP.= P {100 - P)/rr. Tables 4-6 and 4-7.display results based

on the new model where the within-PSU variation in the esc*gg:ed nunber of
o

L ~ . 2 \ t - '
17-year-olds, say Mrck-is sg:hfo Mrck (or Ht:iv:i:? t=2).
notice immediately about ,these tables is tha the bias-adjusted Ya:eéz

Grundy_essimator, lfas béen eliminated from consideration.  The reasgns we

have excYuded V1 from further consideration at this time—ére two. The

e thing we

principal reason is’the excessive cost of computing V1 relative to the

~ ’/ 4
. : \'.-.'—V2 . °
, Evl 2 2 -
" ' VP e s o
/‘
/
5 )
I -
’.,___ p— 1 9
s . I 2
. . LY - 4 -
L \ — N
L h . o ’ __,—"'.\\ 2
’ ‘,- - \\" -
» ' - —-.—-—-—"'." N 3 a\ 3
L s . ' . ) \ : -."""-0-3'
" a . o . r - 5 .
-. : \ ’ Q.’
Q 1 H 1 ' 1 4‘1 1 [ 1 * ]
" 100 20.0 20.0 40.0 50.0 0.0 _\ 700 = 20.0 $0.0
[ ] . ¥ P—Valqe ‘ “;
L} .
. * » .
_ Figure 4-1. Montreal model (true variance vs. estizated variances).
. v ) L .* )
. 69 72 .
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Table 4-6. Bias comparisons for three variance
estimators under the new model with t=2

EP ,

+10.15
- 38.34
40.41
62.51

\

69.06
72,94

77.53°

>»91,71
93.47

vP Ev2
3.21 '5.01
8.29 ' - 13\;3
8,72 1 10.84
9.30 - (11.56
8.08 110,23
7.06 9,38
6.22 7.3
3,73 2.81

3:17 2.29

"

EV3 EV4

4.9 " 5.46
% -

© 10,97 12.12
11.18 12,01
12.25 . 12.81
10.27 { 10.25

9.15  § 9.82
7.53 .0 ¥ 8.20
2.95 ¥ . 3.27

2.51 ’ 3.03

-
-

Table 4-7, Mesign effects with N=744 for new model with t=2

-EP

10.15

38,34
40.41
62,51
69.06
729
77.53

91.71 °

‘93,47

DEFT D2

N e
2.62 4.09 ‘-
2.61 ./// 3.38
2,69 3.3
2.95., = 3.67
2,81 - 3.56
2.65 3.54
2.66 314
3.65 2,75
3.86 2.79

.
]
&-
/ 70

hEY

D3 Db
4.07 . " 4.45,
at .
3.45 3.81
3.45 3.7« .
3.89 4,07
3.58 ¢+ 3,81
. 3.45 3:70
3.22 - 3.50
2.89 3.20
I's
3.06 .\ 3689
L . - J .
¢
13
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920
. 80
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4.0

30

_o:hef'escimﬁtors.

'cqncerting.

-
¢ o

This cost is on :he average 16 times greater ;ﬁan the

cost of V2, the cheapes: es:imacor anally, 2ls nougn Y1l has :he smallest
bias, the fact that it tends :o underestimate the true variance is dis-

If an unbiased vayiance estipator is not available, one generally
preiers an overestizate which results in conservative inferential -*a*ements:
Alchougn it may be hard to judge the dollar value of a %ood' variance
escimacor, exééssive conmputing cost would seem to conscicuce a reasonable
excuse for eliminaxing one of several medioccre escimanes.

Figure .4-2 plots the true variance and ,the expec:eu value of V2 (the
least biased of the conservative estimates) against e corresponding
P-value. The pew model with t = 2 exhibits the desired quadratic relation-
ship between VP and_}. It is interestang to note that VP does 1ot decline

for large values of P as fast as ome night expect. This is demonstratad

4 - ’
L. . . PN
- ' ' ¢ 'EV: - | n
] ’ .. e VP . .
a3 .
T oa .
" ———
» ' '/ /// \\\. b | __*l
i "
7 N .
- 7’ Y :
. /" A \
/7 N 3
1 .1 / AN
7 N\ |
e * / , - .\ " "
¥ . / . \
VR N :
- : / . » ,\ -
A - -/ \ .
/7 ) A" ,
- ./ ’—-- \
— / n L] ! \\
. . S —_— .
3 /- , 4 . —w -
ad * I
[ . g »
: o = , - : s L
s 100 204 200 0.0 500 600 700 . 800 . 900 ‘
. , P—Value - L.
\ . ' L
'Figur 4=2. New model with =2 (true veriance vs. estimated variance).
, ’ ' _, . . . ‘ #
S 71 74 ,

L) ¥ -
.
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clearly by~the jump observed in design effects or DEFF vatues for the two
P-valuetﬁ(in table 4-7) exceeding 90 percent. The three variance estimators
behave more symmetrically dropping below VP for P §r90 percent. The median
differences between those design effects estimated by V2 and the true design
effects based on VP is (+) .66, ' .

Figure 4-3 shows a plot of true variance VP and expected values of V2
(EV2) for 20 P~values, using the new model where the within-PSU variation
. in the estimated number of 17-year-olds H ck 18 equal to M. (or Mtck with
t=1). This model yields a surprisingly smooth parabolic relationship
betweé/.P and VP, Tﬁe slow asymnetric decline in VP for large vdlues of

P is again apparent with V2 dropping below VP near the point p = 87.5

!

Y
+

[ ] [ ]
* . » VP [ " * -
_ ' &
B
B
. ™ a% ‘ =
. . ’.”‘.-‘---‘}\\ .
/7 -
¢ ‘ // .- gn L,

;w3 S 4

. 7 . h l

o "\
/ i N ¥
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e R N ‘ }

. ] . \ L] - }
. .// 4 - a , - \} |

/ ~ -
I, { T ‘.\‘ “—M
y *: . ' "~
¥ , |

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0

Figu&e 4-3, New model with t-l.(true variance vs. estimated variance).

[N
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percent. Table 4-8 shows the relationship between YP and the éxpected
valugg of V-2, V~3, and V-4.fo: the 20 new wmodel P-Yalues with t=1. Desigh
effects D-2, D=3, and D-4, based on the three conservative variance
estizators, are compared to the true design effects (DZFT) in .table 4-9.
The median differeaces between the e;tinated DIFT sesed on VI and tre true )
DEEF is, for this case, (+).64. Tadles 4-10 and 4-~11 show the-everage
performance of our three conservative estimators for the new mode? with
t=2, 1 respectively. A}though.V5 is consistently the most séab;e,of the
"threeﬁestimators, v2/ends to have the smallest bias and smallest root mean

square error as reflected in the average Rel-8ias and Rel-Error terms.

Table 4-8. Bias comparisoné for the new model witn t=1 ’

£P VP 4 EV2 £V3 Vh .
.. 425 .48 .56 .60 S
7.50 1.41 2,00\ " 3.22 ~3.62
" 10,18 " 2.36 3.79 5.82 am
15.00 '+ 3.92 .29 7.37 8.46
T 20.00 4551 6.76 7303, 7.36
26.00 6.23 . 10,02 10.30 . 10.82
32.00 7.0, 8.76 8.95 9.8
38.18. 8.40 10.00 10.37 11.65
. 40.32 8.61 10.28 10. 64 11.47
47.50 8.80 10.47 10.83 14.06
55.00 8.54 12.40 | 12094 | 135
62.43 . 8.04 10.70 11.43 12.05
69.04 '6.89 10.05 10.02" 10.72
L7295 6.20 - , .8.75 8.51 9.24
-77.51 ‘5,67 6.66 ° 6.88 7.58
82.00 4.87 6.10 6.78 7.5
87.47 3.77 - - 3.60 4.09 4.6
91.69" 3.06 . 1.99 ‘a1 3.3
Ce3sy T .0 152 175, 2.2
96,00 2.33° 73 .79 ‘118
g , !

- ‘ L] 73 76 - 7




-
%

*

-
ar

Table 4-9. Deéign'effec:s for the new model with t=1 (N=744) '

P -

EP “DEFT D2
4.25 .88 1.02
7.50 1.51 2.16

""10.18 - ~1,92 3.08

15.00 2.29 4.25.
20. 00 2.10 3.4
26.00 2.41 3.87
32.00. " 2.46 3.007
38.18 2.65 3.15
40.32 2,66 3.18
47.;@ 2.63 3.12
55.00 ° 2.57 3.73 -
62.43 2.55 3,39
69.04 2.40 3.50
72.95 2.34 30
77.51 . 2.42(\\ 2184 ~
82.00 2.45 3.07
87.47 2.56 2.44
91.69 . 2,99 *o1.94"

» 93.53° 3.32 1.87

96.00 4,51 1.41
- )
Table 4-10.

D3
1.10

A4S,
3.4

- 3911

4.30 «
3.27
3.98
3.06
3.27
3.29
3.23
3.89
3.63
3.49
3.21
2.94
3:42
2.78
2:06
2.15

" 1,53

D4

1.15

" 3.88
3.51
4.94
3.42
4.38
3.35
3.67
3.55
4.19
4.07
3.82 ,
3.73
3.48°
3.24
3.79
3.17
2.37
2.77
2.29

*

ce of variante estimates ,

~- ander the new-modbl‘with.t-z

L4 .

— 1 .

Rel-Bias (%)
Rel=Error (%)
Stability

V2

29,41

*

67.64
8.40

29,72

V4
35.02

70.59

u. 21

<

-
~

»
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Table 4-11.

Average performance of variance 2stimates

‘ under the new model with t=l

v2

- i ‘s

v3

—

55.08

Rel-3ias (%) 37.69 46.70

- gel-Error (%) " 6805 71.28 79.33

« _ Eabaa

The histograms :Ln $ables 4-12 and 4-13 are averaged over nine datz sets
for the first two nodels (Wontreal and new t=2).
both tables is based on 20 data sets.
butions ‘agree rather well, at least over the larger symnetric inteiyals wit1

The thnird histogranm in
The nor:al or Gaus;an—type distri-

-1

Curiously enough, the I- like distributions pased‘on,

the standard normal.
v2 hégﬁ;;ligh:ly fatter tails for the new —odel runs, while at tne same time
. the sgability measu.es'for v2 increase from «.47 for the ‘«Eon:rea1 oodel to
8.40 and 10.46 for the new nodel. i11

considerable underestimates when viewed as approximaticns for tae degrees

These stasilicy measures are st

oi freedom associated with the corresponding T-like distraibutions in tabie
4-13. ) v '

Conparison of Tavlor Series and Jackknife Linearizatioas

In chapter.2 the Taylor series (T5) va:iance'app;gximation Zermula

for a WAEP P-value equation (2.20) was presented. Lxuyas shown thage for

a deeply stfatified sample with two primary selections per stratim, the
TS variance estinator was smaller than the correspcnding jackknize (oK) .
To compare the TS linearization o

,variance approximation. our jackzniifed

A " !
_ variance estimators in the context of the sizulation study presented in
. {

:i ﬁﬁé;previoué sections, ; Taylorized deviation -
[] —_— * - 3 - .
q,' - m - 6 ~ : )
) Zpr ™ 310y = F By /Y i (4-442)
- == . DY X -— ‘ .,
¢ ? -

/ j:t}uny 10.46 < . 12.75 15.32° * . g,
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Tablg 4-12. Sampling distributions for Gausian type statistics

— PR s .
Ptoportion w/in 32.576 $1.960.- 11.645 Thk;EBZ %1.036 (-1;960,0) (0,1.960) (~1.036,0) (0,1.036)
Gausian .9900' .9300 .9090 .BdbO .7500 L4750 .4750 .3750 .3750

‘Hontreal Hodel .9906  .9605 ~  .9246  .B423 ' .7509  .4756 .4849 .3702 +.3807
ew Model: t=2 .9916 #3572 9173 .8307 . 7406 L4672 *.4900 . 3564 .3841
New Model: t=L = .9915  .9612° .9188  .8326 . .7386 ~ .4774 4838 _.3662 €a3725
LY 3 . \‘\ -
4 A
! -

—

. Hew Model:

Prqﬁortion w/in

\ Table 4-13. Sampling distributions'for students T-like statistics using Yz

- . . . * ' s
$2.576 , 31.960 t1.645 $1.282 $1.036 (71.960,0) (0,1.960) (-1.036,0) (0,1.036)

Studenth T(%Qdf) .

Montreal Model
New Model: "t=2
t=1

-

o

.9848
.9816
.9792
.9787-

*

F 4

9407

.9413

.9358
.+939

- .B8896
+8967
8878
.8958

-

.7903 °
.8074
.8024
.8054

.6915
. 7158
.7100
«7146

-

.4703
4587
.4583

4644

Q‘!O

.4703
24827
4774
4754

-

.3458
.3473
.3510
, 3563

. 3458
. 3684

. +3590

23584
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waé used in place of the jackknife pseudo value . ' .
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.when forming the estimators V2, V3 and V4 as specified in equations *4.38,
* 4.39; and 4.40 respectively. T

+
-~

Table 4-14 shows the results from an independent set of 1,000 samples’
generated according to thg previously described simulation model with e=1.
Contrasting the first two coluzns of table 4-14 with the corresponding
columns of table 4~8 shows good agreement between the oo independent -
(1,000 samples) replicates. "The maximum standard deviation for the sampling

expectation of P is .05 percent with an average across the 20 exercises of

.01 percent. The simulation estimates of VP,_the sarmpling variance of 5,

exnibit a maximun standard vafation of .12 perczent ané an average deviatiom,

",across exercises of .04 pertent. While it would nave been desirable to make

the Taylor series versus jackknife comparison on the same s&t of 1,000

samplcs, our software .design was such that 4f was more economical to make.
incependent runs tian to incorporate both calculations in the same Tun. .

Table 4-15 presents the average performance of the three 1ayior series

variance estimators. Compared with the jackknife resdlts in table 4-11,

(4.44b)

we see a reduction of 3.3 to 4.5 percent in relative bias. The corresponding

reductions in relative total error range from 4.2 pergent to 8.3 percent.
The stability measures for the three Taylor series estid!!srs show a
general fncrease of one unit over the correspondi g jackknife estimators.

This indication of a slight increase in stability for the TS estimators

' does not show up in the T-like distributions prEsented in taole 4-16. N

¥hile the tails of the TS distributions are more symmetrical than their

JK counterparts, they are also fatter. The percentage of statistics out- "

side the + 1.960 interval is about 1 _percent greater for the IS statistiCS.
While some consideration was given to developing a2 bias-correction
factor for. the V2 estimator based on these simulatfon results, it was ,

felt that thfs would-be necéssary only fff actual Year 02 sampling errors‘\

based on VI were ‘consideraoly larger ,than Year Cl sampling exrrcrs. Wwhile
£ v

N

a L]
‘ Y

.
- . ¢

. . 77 .- 81 . )
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. Table 4-14. Bias comparisons for the new model with t=l
T _and a Taylor-series linearization
'EP VP y ET2  ° ET3- ET4
~ - : Lo e
) 4.25 . 0.48 0.56 0. 60 0.64
. 7.505 . 1.43 1.97 , 311 "3.49
10.1% 2.34 = 3.69 . 3.75° 4,22
15.00 3.90_ 7,11 7.16. 8.25
420,00 4,57 - 6.5 6.78 7.13
26.00 .6.24 9.51. ©~ 7 9,87 10.46
2.700 .7.36 8.30 8.57 9.39
. - 3817 8.44 9.68 10.05 11.26
40,30 8.73 10.07 10.38 11.26
L -<47,50 , 8.92 - 10.05 ° 10,52 * 13.66
55.00 8.56 12.24 12.72 18.26
' 62.41 C  d.04 ™~ 10.57 . 11.32 ‘11.85
69.01 6.85: 9.75 -» 9.68 ) 10.41
72.88 . 6:36 0~ ' 8,51 8.28 9.01
77.50° 5,50 _ 6.60 6.72% 7.43
.17 82,00 - 4.79 5.89 6.60 ~ 7.33
~~ ' . 87.50 " '3.81 3.51 ° 3.98 4.51
-91.68 "3.10 o 195 2.08 ‘2,42
93.50 "2.74 ¢ 1.53 .1.76 s 2,26
96,00 ° 231 0.69 - 0.74+ 1.16
y P i
. .
- Tai:le 4-15. Average perfor?na‘rxce of Tayllr-series
: estimates under the new model with t:-l\ “
. . - - h . 4 ” . . .
e ey G -?»&’?;2 T aduse S0.58
Rel-Error (%) 63.44 + _ 66.48 + 71,0} '
Stabilicy 11.23 - 13.60 " 16.31
: 82 v @
¢ s
Vo - . ) v
B} yo . 78 e

*e
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. " Table 4-16,

Joportion ulin U 2.576 ;!;_1.960
Student's T(30df)- ‘. .9848 .9407

" taylor-Sertes ¥ .9766  .9282
Jackknife VZ . . 9787 .9398
Taylor-Sexies V3 .9788  .9307
Jackknife V3 ’ N ) .'9802-.. - .9418 -,
Taylor—-Series V4 .9802 4. .9337
Jackknife VA,. .9786 .3618‘

F)
3

Sampllng di\trlbutlons for T-1like stntistf‘s'

. 900" 4

e M D d kil e st e i T D S il il Tiadol o woe v S-Sl s i ol Benide

. H1.645  41.282
.8896 *,.7903
8732 .7738.
.8958  .8054
8770 .77
.897 .8090

' .88{: 7824
. .8150

’

+1.036
.6915 4703
67507 .4620
7146 4644
6788 * -.4626
L7192 - < *™.4650
.6857 4652
.7287 4632

s el ol el i i i i e e e Rt ey

(:1.960,9)  {0,1.960)

0403

4662

4754

4. 468%

L4763

4684

.4786

(-1.036,0)

L

.3458
.3351
.3563
.3366
.3590
.3403 .
.3613

L4

P L R )

(0,1.036)
.3452
- 3399,
.3584

>.3422
.3602
3454
3024




the simulation indicates scrongly that ehch variance approximaciona
consigerably overestimate the variability of, 'controlied seleccions,

the estimated level of precision “could still jbe adequate for National
Assessment reporting purposes. In order, co :esolve this issue, sampling
errors were calculated for 131 Year 02 nacional P-values using a version
of V2 with the squared difference jackknife linearization employed in
ﬁ’ar 0l and reia;roduced in equation (4.37). Lecﬁing h = 1(1)4 index
NAEP's four regional strata, this variance estimator took the form

s v ® : ¢
Cof (28) "ne” -1 my” 2} ; C et
‘var® (P} = T I .1 I, “(k, k')ﬂa{ I
02" pdy g — puf kel PE “nd -
. 5 ' i T '
‘__Amfx "7 _k_ _7_ Tne 2___~_:*;;___;“ e
’ - + I L 48%p (uwD]E, (4.45a)
~ ¢ hel. c=l u=l  °C . .
¥ - '
Wit‘.h . . ~ - .
< = 4’ . .
. rhc+l =1 " o )
" - D SR T -
and ' - o ‘ : [4 ) -~
. . R " 2 ' :
Y = by, ,(k,k") ¥+ 87, (kK1) )
' PRe (K5k') = 4H= bt * - 1= hi (4.45b)
LY - ' )
M Amhsz,g ) M+ Amhl(k,k )
s L] - * ) “—
- re L) ! ‘ ’ ’
‘ _ . . ' .
1y = ;o :é?
Ayhl(klk ) =F(Y}l2k&yh£kl) 'x:': L] . -
‘ 1 - hd ) ‘.. ¢ “‘. w
8 bty (ke k). = (%Qk " Tnge) o~ ‘
. < 'I ’ > , - - * ‘ * - 'f ¢

-~

\Ln equation 4.373 9@d'B 'E(2+) dethes sumuation ové& State by major
L.
calls-?. with daia from two or ‘more PSUs (nh,?. 2) The second <

+in equation & %5 involves succéssive/s uared differences jmong
single ;EU,cells.in ma}or §cracum—g “of region~h. Recall that the : >

oo L 4 A? “ .
. A Y . .
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indexing u = 1(1)\rht

of the States in region-h based on geographic proxinity.

Thé 131 resulting variance, estimates
design effects. This analysis paralleled
presented in the Chéomy et al. summary of
chapter
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of single PSU cells follows a particular oxdering °*

“

were simparized in terms of |

etails this comparison of Year 81 and Year 02 sampling errors.

wherever possible tae breakaowns
.
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: ‘' Chapter 3: [LOMPARISON OF YZAR 01 AND YEAR UR SAMPLING ERRORS -

introduction .ot AT LT
The-cem utetﬁsipalation study df Nanlona§:22sessment's Year 02 sagrle
described 12 ;w ppeceding chaptpr saggests\that the standard variance '
approximatiots recornmended for a controlled selection of primarydaits
seriousl} undﬁreStimate the pyecision of NAEP P-values. To assess Yne over-

.all impaet o‘ Year 02 sample‘hesign changes coupled with sibni‘icant positive

bi;s in the associated sampling errdr estimates, 60 9-year-old and 71 13-
vear-old reading exercises from the Year ‘02 Assessnent were eiamineu.,

;;ed sample design ¢ffeats (DEFFs) for the 131 national ‘x?-—:x.a};uéSk'..zrere“‘:‘r )
calcuiaﬁe

sets of 131

sing the variance estimator described ia.equation 4,45, Similar’

LFTs were computed for NAEPs four reglons, two sex categories,
b A}
and four SCC subpopulations. ' . - - - -

Stem and lea: displays of Mhese design effec t dzstributions were forneds\
to ‘ac1l*tate the calculation of med{an effects and_ntﬁg._samnle percentiles
. [ref 1], Table 5-1 illustrates the disnlav of national design effects ior

tHe two age classes represented The left most colaan ind}cat-s the first .

*1 two significant digits of our national d‘fﬂgn effects., ﬁssoc1ege6*tn::c

digits arg agzregated in ‘!jcining roWs. Tor exazple, the ggbregate o the

] right of 1.2 represents tﬂree, nine-vear-old DE?Fs.taking valued 1.26, 1.25

. and 1.22. The third cblumn is a running count from the low aad high ends

. of the distribdtion toward the center.’ This tally facilitates location q; .
the median DEFT and the two quartileseﬁ These are grouped pelow eacn d_sgla",
along with the starred extrexze values, In add*tion to these sunnarv :e*-
centiles, the display provides an accn:ate vie¥ of tHe shaoe,qi ouT desizn

' t
effect distributions. .

I

-

» a . :
Comparative Analysis b - . . v
The 131 Year 02 de ects summarized in table 5-1 range frop .94 ' :

to, 3 93 with a median ~value of _.00. This compawes fo a fange of .90 to

10. 88 and a ped*aﬁ of 2.38 for the 149 Year 01 exercises egamined b» Chromv

et Al. iaole ‘5-—" conpares:the distribution of Year 01 and,‘earv 2 nazional
. DEFFs, v .

' -

9 N
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" Table 5-1. Stem and leaf display of Year 02-ational design'effects \

£

/ Nineg Thirteens . Total , '
-~ .5 o .
b .6 ' -
.9 54 2 45 : 2 .
1.0 - 635 5 356 5 —
1.1 9 1 3 6 39 7" '
1.2 662 A 4592 . 10 2245669 * 14
1.3 7 - ‘ . . \
> 1.6 66793 .9 50 12— 0356679 ° .21
- 1,5° 27298 - 14 6 o 13 226789 27.
1.6 ° 0138, 18 99 .+ 15 013899 33 . ’
1.7 " 1651 22 . 5629, 19, 11755669 ¢ 41
1.8 8 23 . 0518214 26 01124583 ‘ 49
1.9 067778 29 . . 2738118 33 0112367777888 62 .
2.0 04 -2- 907930052 ~9- 00002345799 -13~ o,
- 2.1 15951 29 - - 37 - 299 1135579 - ¢ sg—
2.2 021 .24 53 27 01235 51
2.3 73 21 . 470804 25 . 003447738 46
o 24 TN 19 564 19 & 134567 38 .
2.5 12 16 503 * 16 01235 32
2.6 3472 %, 45 . 13 234457 27
2.7 019 10 5 019 21
265 7 4390 13 03459 18
2.9 4. 6 68453 s 344568 N 13
3.0 ' A . . 5 « . . 4 . “7
3.1 ¢ \ .
3,2 729 A 8 2 2789 6
3.5 : ) et |
% 3.4 5 1 5 2 |
35, . » . i
- 3.6 - . , . .
3.7 ) R
3.8 -
4 ! v ’ 3
3.9 1 3 1
4.0 ‘ - .
. L. .
*1,19 * 0,94 - * 0,9 :
Ql1.60 Q11,76 Ql1.69 [ .
4 M 2,02 M 2,00 ¥ 2.00 2
Q32.52 ' Q32.45 . ) Q32.47
* 3,45 + % 3,93 . * 3,93 ° )
ﬁ . , ." g7
. 83
’ . . [y
’ ) ’ 84 . v .?
. s ) b - » -
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Table 5~2. Distriburions of Year 01 and O rational DEFFSs

L T - Year_Oll Year 62 .
Design Effect Number Perkent sumber ?grcent
T et 100, X 1 2 2
1,00 - 1.50 is - 11 - 19 14
151 - 2.00 ° 29 - 19 5 3
2,01 ~ 2.50 T4 30 . ) 3 26N
2.51.~ 3.00 32 21 24 18
3.01 - 3.50 s . s % 5
- 3.51 ~ 4.00 10 7 1 -1 ‘
T LRI T s T R R E - T
4,51 - 5.00 3 2 - - .
C > 5.0 2 _L -~ =
L /' .. 4 . -
 Total . Gy 100% g i I ‘"”"’"‘“"
) - £ f -

| e Tear 01 distribution includes 37 individually aéqinisée:ad ina-school
erxercises and 16 out-of~school young adult exercises, while the Year 3:
distributien includes only in-schogl group administéred exercises. ‘lhile
~ this lack of éiversitp-in the‘mode of admi%iisjation may explain scme of 55;
. increased stabilify shown by the Year 02 "DEffs, we suspect that reduced
variability ia ‘the Year 02 weight discripbutions had a more pronounéq& elfiect.
It 15 also expegted that the inclusion of individually administered exercises
in the Year 02 distribution would enrich the lower end of the distribution .
+ and shifc,cﬁé pedién farther below‘qpe Year 01 Qalue:
“hile there appéaréﬁ to be a rendency for Year 01 Yn-school DEFTs o

decline as the age -of respondents increased, no coasistent trend was cb-

13
.

served in the ,Year 02 datay at least, not between the 2ges of-nlne and

thirceen. The regional trend observed in the Yeat 01 data is alsc coscured

iq the Tear 02 tabulations. Table 5-~3 snows .that while the supremac: of

r . !

".*‘. A »

N ]

.
. T *

Q . . 85 435) . .
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Table 5-3. Comparisp@regional DEFFs :

- ! Median-DEFTs by Region

. Mode of Subject .\_Number of' - i
Year Age Administration Area Exercises 'NE  SE [ H
“01 9 Group Writing - 24 1.89  2.93 2.32  2.65
"1 Grewp Writing © 5 3.05 3.65 3.50 2.65
02 9  Group Reading 60  1.53 2.52 ,1.73 1..71
13 Group  _ Reading 71 2.04° 1.66 1.77 1.75 -

’ ‘ - ( ‘ ) " ;“l

. southeastern DEFFs is wmaintained at age nine, at age thirteen. the trend is
reversed with southeast low and northeast high, As in Year 01, there was _. .
little difference beu}een the sexes with males registering a pedian DEFT

of 1.72 and females 1.66 ) . :

, Chromy et al. also reported a possible tendency for big -tity and urban
fringe areads to yield smaller DEFFs than the more sparsely populatE!i medi
city and small place-subpopuiziions. Thiz tendency 16 not apparent in the T
Year 02 DEFFs Tdisplayed in tdble 5-4. . ’ ’ 3:‘ -

In summary, one &an state that Year 02 design ef'fectsfare somewhat v
smaller and less variable’ than the Year 01 effects. ﬂhi‘le it can be said :

that the Year 02 effects varied by region and SOC, there were no con.sistent
trends. 'I‘hese factors interacted in curi‘us ways with the age class effects. =~

.
»
- ]

Con clusions '

~, .

\Comparing the iﬂdicated level of precision for Year 01. and Year» o .
NAEP exercises, it was apparent that in spite of the suspected positivé‘ l .
bias in Year 02 sampling errors, the overall level of precision was improved
_somewhat in Year 02.' In lighit of this result, no bias correct'ion cwas
attempted for. the Year 02 variances. The sampling error approximation which
uses squared differences of jackknife pseudo-values within control cells anq )
squared huccessive differences Wetween single PSU cells within major size
of co:mmmity by -SES substrata (V2} 'was judged to be the least biased of the

computationally feasible estimatofs. The jackknife nnearigation was
4 » -

Z\_' % . P .
Fy i 86 & 2 a0 ¢‘. N Y
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. Taple 3-4. Year 02 DEFFs by size oﬁ cozzunicy ‘. .
w o, o .
- . . : ) b Tz
y Mode oZ subject umber of dedian DETYs bv SOC ~
Age Admiaistration Arez  Exercises 3,C. U.FT. M.C. .S5.2. ’
AV * - Y
9 . Group Reading 60 2.38 1.64 2:29 ¥2.04 °
o 13 "Group ¥ Reading 71,  -=2.05 1.66 1.5% 2.05 '
. ’ 5 . :
- \" . - ! 1
Total Group R‘e.ading 131 - 2.16 1.55 \l.73 2.05 -~ :
v - . .. .
Lo . o - . . )
* rTetained since tae inprovement dezonstrated for :ae Zaylor serzss ;:;:a ozs

did not justafiy the added éost of redesizning NAL? s sazplinz error

. National Assesszents in-sc¢hcol and cut-oi-schcol

desizns Ior agsess=
- ~
zent Yeais.02\th~mu§i\ Q4. xemained basically the sanpe

.
w

ta controiie
selection used at the primary stege to 2llocate PSug 2o Srate by = ot

stratua control cells within regions.” The sampling error’ mechodology

sty to caleul

developed for' the Year 02 szmple has been apnlled directls

Year 03 and Year 04 sampling errors.

iz\fit:ul ties associated with producing reasonadly
o

TIn view of ‘ﬁlé é

unbiased sanpling errordestimates for controlled selections, a major re-

design of XiZPs prizary sazple was initiated £5Tr the Year 03 assesszent.

o

The Year 03 (197317A) prizary $azple idcluded thes 15 largest

as self-ren*esaﬁtlng PSUs. Sempled Bsus were stratified by zez

and s8i3e of co:manitw

aom, Staue

-

- e

NAEP's requirement that all Sta es be Teprese

.

not alreadv coverad by d-sel’-rep*esent-ng SMSA, These State strata were

oo

-

ssignel two primary selections wheréver size pexcitted.
Listins
Ae and thos2 not cont 1red witﬁin the

Scze single

strata were carved out in small States.

T

Iy I~

covered by self-representing s
: o
State supstrata were placed i n a2 2831013- 001.

Jbool was strat

"carved out™-
'3
tTvo OF
ary

-
L]

ified a'lqng sizg of co:::num.:y lines «&¢%

.

)

P |
tions per stratum.

s - LI | )

onal, to tazil

wade of

'Samp led PSUs were selec.ad with p .oabi‘*:ies vrooo

-

£
l4-year-old populatipn in 19?0 with sé¢ze anustnent to effect’ an oversampiin:
e - B
. :
* L] 87 9 . ! ’ L] -
(€) \ - . . Lo
ERIC S - 91 R
P e J - . . . .

-

'-r; 1570
d Ll
in the sample was rcet bv carving out a stratuz within ecch State which as

TS ‘rvm‘Staées alread;:

three selec-

oZr.are.’
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-
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primary units® éo serve for four years.

-

.. ‘ '
s ’f . N . -
& ’ - .
<

of lfSUs Eontaining low income inner city areas or highly rural counties, '
Sa;pford s rejective PPS vithout ut replacement selection pethod was used. .
Aside from the, 15 self-representing SMSA%, N.AEP s Year 03 p:ipary sample c.an
be descrlbed as a deeply stratified PPS selection of two or thret primary

v
units pefr strata.

The fe.w singbe PSU strata carved out of small States w
‘were paired within regions for ywariarce estimation. In order to account -
for the within-PSU variability of the self-representers., replicated school
saxples were drawan. With the plsmned collapsing of single PSU strata and

the replicated schiool samples within se’lf-representers, a varianée approx-

"ination based on squared differences between expanded-up PSC contributions

(or replicate cogtributions) within strara shouldsbe rpasonehly unbiased, *
Some ovérestimation could be expected due to igﬂd:ing the effect of without-
replacement selection of PSUs and replicates. A detailed desctiption of the
Year 05 NAEP sanples can be found in RII's final report for assessment Year 05
[ref. 2]. - . "t \ - » ..
The Year 06 (1974-75) MAEP in-school primary.sample was. essentially an
1ndependent replicate of the Year 05 sample selected from the déeply strati-
fied primary pnit framq\/evelopqd for theq;QZEQ;: survey. Variance estimates
for Year 06 statistice were aghin obtained fro quared differences of PSU
(or replicate) level jackknife pseudo-values surmed over primary strata.
For the Year 07 NAEP saople, a decision was mide to draw four non-overlapping

sacples to be used successively for Years 07 through 10. This Has accom-

L4

plished by adapting the deeply atratified Year 05 design strategy to select
enough PSUs and replicated school sanples within the. self-representing

‘I:he combined sanple wag then parti-

tiorned at r»andon into four equal sized yegrly sacples. To tbreserve valid

PSU repiication, primary strata in the master sample were copbined and the

assoclated primarys were randomly parti_ti_or'led into four sets each— containing

two or,occ:asional'ly three units. By relaxing the all-state reqtrirement to

L)

assure complete state coverage over, the four year sample, it was possible to:

assure that no school would be visited more than .once during the Year 07

’ LI

through Year 10 assessments. L * .
& .
. h .

_ o . 92 - .7 *.
] - - ~ —ay '

, - » »
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The variaqpe estimation methodolggy adapted\for th; Year 05 and 06
samples was modified to'sup sgfared differences ;L

psuedo-values and the corresponding primejy stratum mean. ‘#ich more
pramary strata congaininz three units, this modi ication was made xo
bring NAEP's variande est-mation in line wlth “he general jackkniT

approxﬁnatio.‘recomdbndei in chapter 2, equa:icn 2.12. A detai

description of the nonoverlapping Year 07 through Year 10 NAZP-Sen

can be found im RTI's final_repo}t for assessment Year 07 [ref 37.

. 1
c : * ' REFERENCES =

a

Preliminary Edic-oEEj.ﬁew York: 'Addisop~Wesliey.

i
2.* Chromy, J. R. et. 2l. (1975). Final Repdrt on National AsseSSmenL
of E Educational Progress Sampling and heigg;ing Activicies for
Assessment Year 05. Prepared for NASP by*RII's Sampling Research
\\ and Design Center. $ o

LY
] . [ .
3enrud, C H. e:z. al. (1977). Final Revor:t on National Assessment
of Educarional P ngress Sampling and Weighting Activities for

and Design Center.

14

r

twgen PSU {(or replicate)

’ “ f:’ . - . . A
1. TTukey, J. W. (3970 £zbloratorv Data dAnalvsis: irblu,me, I.. Dimiped,
* - LI )

ASsessment Year 07. Prepared for NAE? by RTI's Sampling Research .,

™

L1




~f
! *

"

iopendix A: TAYLOR SERIZS L.‘.\?EARI‘zA'rIO\ FOR RECRESSION COEFFICIENTS
, - ’ . ' ’

Povrulazfon Definitrions

&

-

-

Ccnside*' a finite universe U with“i uni&s U(i), a Associate with thé

i-th unit a variate value Y(i) ‘and a row vector of (p-l) ragressors

X(4) = <:{°'(i) xl(:.) ...-xp(i) >, , (A.l)‘
LY
> S, . "
The linear predictiom equation for Y("i) of the fom )
y(i) = X (4) 8 (A22)

nhich rinim*zes the, sum o:: squared dev:.ations

r«-* 'x.'r( ‘. LIV 3

; ieU
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" is tne familiar least-sm.ares regression equat:.on where. 2 is 2 splution to
. b ,

tne so~called 'norma quations' .

. T - 3 (. ’ s' .
‘ (X')8 = X°Y : ‘ (4.3)
whera * . . ;
- .T - - T 4 . 4 *
‘ XXE T X)X , - {
. ict
d ‘ > .
an . . < .
. b Ty = = oToey wes ; '
» . X'vE 2 XN(® v). |
isl - - -
- - 1]
If XX has rank p-l, there is a unique sclution for 2 in (4.4) ; namely
o : . -1.T, :

inacependent, red...ndanr. eguationsg can b,& replaced b independent 1:.'1ea—

full rank case 1t is not di‘f1cult t('i:tend“t'ne results dlrectly to a

N -~
» - -

fstimation . : . ™

aupoos° that a sazple Sof n units is'selected from tﬁe u’xivers° v.
‘( ) donote the probabilizy that unit U{i) will be included iz suca a
¥ \(nbiased Horvitz-Thompson estizatofs for 1'% and YV ave
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w on the “is. ‘wnile the following development ig iaed to the

. Grxm T XN R(R) 7R (a-ba)
L 3

« - g = (*-*-{) S _ (2.5) . ,

Zf the v+l eguations zepresented by the matrix equation (A.4); are not linearl:

particular, rgi'c..ed solution. LT ’ . '
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o= Fe W .. (a.6b)
kes -
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Using these estimators,we solve for b in the estimated set of normal

equations ; . .
} . ’ T ., T 4
- . ~) AxTx)b = (x7y). (a.7)
' As an estimator of 8 the population vector of regression coeffictents
b = (x %) (x ¥) can be viewed as a matrix version of the combined ratio i

' estimator R - (%" ( ). This analogy will be strengthened by :ﬂe form of ™

‘the Tayloz series approximation for (b-8).. s ' '
A\

’
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Taylor Series Variance Avproximation . Co e

fos . . To genera;e the first order Taylor series approximationafor b, we

iy ~begin by evaluating the partial-derivatives ‘

4
:"‘ . (.
L) I

= - b3 (< 2y for § =0, 1, .... p 7 (A.8a)
t . A N I
‘ '&nd > . ' . :
- B - T\ ' P .
i ' %/a (_x x)jj"' fér j = 0, 1, sees P - ‘(A.Sb) i

- ' . .‘jl-j’j"'l,oo:p."’_ f
1,/’ where {xFy)j represents the j-th element in the (P+1) x 1 column vector

(x y) and (x x)jj' is thé (jj )-th element of the (p+l) x (p+l) svmmetric

matrix (x x) . ’ .o .
% First, we notice that )
- ©T L aETbaGT Y = T (378 ) ) 7V S
N ~ - - 2% 730 ; > .
-' Therefore ) . )
- ("x) {2b/3(x"y),} -5, (4.10)
: : where, N ' ’ . - : ’
* * ' - f j =T '
v . * - ‘ Gj(r) .0 otherwise ' ¢ ’
- o ! *
. This ‘allows us to write ~ . . . .
o PR T [\ B /3G"y) ) = (o7l , (a1
~ ,‘— : -~ * . y* ' * ) - " '
- * \ - N . i} , 1“
ot } Yo 92 53 . ¢
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X:ice that ":‘j is a (p*1) x 1 column vector with a I in row 4 and zeros
el

ewnere. 'I'o eviluate the partial derivative of b with respect to the

.
-

elements of (\ {) we note that.

Y

”r

ang (5' j) and zeros elfevhere.
“valu,acmg t:be pa s3al de*-*\.a..ives in equat:*ons (4.11) and (5.13) at

poiat <(~< X)) = X2 "{ (\Tv) = \ { > e can apo oyimate o with the firsg orce

e ———

which becomes

/.chere D 5 is a ("-!-l) X (ch matri:\ having 1s in aos*cions U-")

~725 e L

+

hd ~ T
15 (x %)b/3 (:-:‘x),j.: = 3 (xT'}"J;’c'(:< x)jj' = 0 (A.12)
o ~-
ence W. o . . . . 3
(%) (abla(xTx)jj-,} + {a(i‘x)la(x‘::)jj,}.b =0 (3.13).
“Recalling that (XTX) is symmetric, we see that - \
. . »
. 3 Y- . {B(xTx)IS(a_ch)jj.} = Djj' o N * (A.15),
. . . C - ! d . M o
] P - where the (r,c)-t_h Llemenc oL Djj' "is o .
a -. (
- ) . . (
. : d, = [1-8(33D)- 8 & le 3 & (e
ij(rc.). f (i3] j(r) 5 3 'r.j'(r) 3 )
with (33') = § 22 § =.3" and zevo otherwise. 'rhis leads to
. ) - _{3'0;’3 (:{Tx)jj|} - .— ({ :':) jj' (A'ls)

The
-»

* Taylor series linearization ~~ ' .
§ T, ? . .
v i o [, - (YDA (ae16)
\ . = j-o j j' ,“': - j ' .
PP o '
- T I ER) e (:{Tx) RREYLICROMD: e
30 g1z5 4 H - B

b-3+(h\) . t-(xy) (\")]5 N
R 3 / j
v o P P . . .
N S e A T QGO P Ry < ,}D“.e R
‘ q=0 §'=j ‘\ .3 S .
- * ’ \ lc‘. * !
Pl ; l . . :'
i~
’ - ' ~ ’ » ‘/ ‘t



Recalling the definitions of Bj- and Djj' it is easy to sée’ that

Y
.o P T o T, ¢ e
oo B Ly, - @) & = [ (xy) - X)) (A.18a) .
3=0 o - e
and P P L L, ‘ |
IOD (W, - (X0, 000 = (G0 - @RI, (als)
o gy H 337033 )
§=0 §'=3 RS .
I ‘.
This allovs us td revrite (A17) a8 . §° ’ ' o
& lgy Tt {[<x » - (D)= (o - (X x)]B}  (A.19) toy
Finally, observing that (x X)B = (x Y) we have ) - )
b2 g+ @D (G - M08l T (4.20)

To exploit the result in (A.20) in order to, approximate ‘the sanpling

. variance of ¥, we can define . “‘
50 = (4% (o o 9 - 0, 8) . (aa2D)
. vhere ('y), = X () YO . y ‘
gad B T N
. . [ 3 x)k = X" (k) X(k)» . ‘
- ’ . - !
The corresponding Horvitz-Thompson estimator‘i's : y

: A z(k')/m) ... )
oo ! ked | ) )
. =@y - sl T aa
. ‘ . . . LA .
Combini.ng (A. 2(2 and (A 22) we see thaq- ’ ’
. T . z = (b- B). \ ' ‘. ] (A 23) |

The result in (A.22) leads one to fhe following approximationwfor the
- generalized mesarn~squared-error of b, our vector of p + 1 estimated

regression t:oeff.j.t:j:em:s.l . . -
.d . ¥ . LY
. LQBE {8} ¥ E_ {(b-p)(>-H)T) .
. . R E, (3 25
= VAR {2} - » L
& L ’\
L] ’ ) “’ .. * [
: 94 & ] =t




-&ince E {2} = = 0, the (p+l) ¥ 1 null vecto..
;

V%RD (L) is the sampling variance formufa for an est izated total T -

"from a oartiCJla~ sampling design (D), then ehe generalized nean-saua-ed*

™

¢ A'i error for a vector of (p+l) regression coeificients. b estimated frem U 1s

[}
-

* “approxinately . . . . )
GMSE {o} & vAR - {8} - - (a.2%). f -
_where Z is the lfnearized Statistic " B
- Cooe s T\ oy :
. Fo ool 2 160, - G B sw . L L
: er «
-~ . - ..
. In the following section, we will exploit eguation (A.ZBQ to,predhce the '

- . [ * -
'Taylor Series' variance estimator ox more precisely, the generalized mean-

Ld

, Squared-error estimator’for b. . ’ /

Tavlor Series Variance Estimator . ) ,

4 *

. Recalling the Taylor serids approximatzon for GISE'{b, develodec in
the previous section, it is‘clear that if var, (L) IEDZESEHtS an appropriate,

”~

va“§a1ce estima:or :or the sanple total T fro" desizn D, then va.D(E) is

the assoqiated estinator for' GISE {b,._ Since the linearized variate vaIue
(k) 1n/2A 21) is a ﬁunction ‘of the unknown population-quantiti es (KT: -1

.and 2, qu is obliged to inpose another LEVEl of approximation at this

point. ~ Instead of (A), we use !

- 20 = GTo™h oy - G, 4

2

4.26)
~1 (

substitutinz pur sample esticates for the unﬁnown_population parameters.

It is interesting to note at this'point that (A.26), 43 a matrix analogue of
the 'Taylorized' variate used to appreximate the variance of the ratio

R = (f/ﬁ). Expressing this ratio as R = (ﬁ) 89 and making the associafions
-1

) <> (xTx)-l and {§) <=> (xTx), the relationship‘betw
} the familiar 1. ’ o
za(k) = [¥(6) - R X () /%
. . / ¢ .

= G - xw &

1s ‘obvious. "% 2 :

To illustrate the metnod we can consider a stfati:ied si le randcn
cluster

en (A.26) .and ‘




[ T s - §
If y(hik) 41s the variate value associated with the
k-th unit.[k-i(l) M(hi)] ih cluster-i of stratum-it and X(hik) is the

corresponding 1 » '(p+l) row vector .of regressors,‘we use the expanded

withbut.replacément.

cluster totals ’

)

P M(hi) o
. C(xy), =N X (htk) Y(hik) /n(h) (A.28a) -
: . h=1l - N
and T T (O : .
. o Ry =N I XT(hik) X (hik)/n(h) (A.28) -
. s k=l _
to form ' " ‘4 ’
oL TEGD = [y - g ) a.29)
where S . . .
‘ : Cbm 0T ()
:><\ . .
B ' I SRS '
. XX) = R X
' h=l im1 hi .
v ’ H n(h) )
T T
- xy)= I ¥ (xy) . P
, hel 4ml hi ' s
Then, we calculate - . .- '
y H
- ghse {b} = oot ’{I'- f(h)} n(h) s (h)} (x7x) (A.30)
. h=1 -

» .

"~
Y

where £(h) = n(h)/N(h) and

4

b

-

. n(h) . "
’ 95(},) = 51 A7) - 2.1 EMD) - 2.3 )/ [nth)-1] N
z i= . . ]
v .° "~ ™ e
" n(h) y . . " /.\ .
"withaz(h.) =.v T Z(hi)/n(h). x .
‘ =1

Statistical Inference

Researchers are often interested in testing hypotheses abuut relatidh-
ships among population regzessfon coefficients. While there is no ri%orous
sulution to the.general linear hypothesis problem in a finite populatiip
context, we suggest a heuristic appruach which relies on the ceptral limiting
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tendency of estimated

* variate norﬂal sampling -distriburion with mean B

L

-
-

7, . '

coefficient ve'cLors b to have epproxiﬁately the multi-

and variance-cOVariance

matrix, Var {8} 2s specified in (A.25). To the extent that this approxima=
tion for :he sampling dfstribution of b ho’ds, one can justify the following
agproach for testing : v, . : g , .
-1 . N . . AN T -
[ Bz CB .o versus'#,: © BF% ' (4.31)
Form the test statzstic . — ) -
- - . ’ \
: 12 - (™ = 5) l,C varp(® ©1° el - 8 (A:32)
and feject H if‘Tz exceeds‘the upper & percen:age point of the Chi-Square

éistrfbution with

c = rank. (C) degrees of freeﬂom.

Tﬁis test is the mulci-

variate analogu

e of the common large s

amole nornal theory test.

then the
covariance matrix

variate znalogue Of

student's T}

degrees of ffeedbm (4f) ‘agsociated
VarD(E) drops below 60, (A.32) may
Ho:elling s '1‘2

statistic.

F—transforned vevsion of B
Iy

¢ L.

. -

wnere df is the degrees of
example in the previous
af # n(+)-H where ni+) is

section we uould

nanely, The “-
otelling s 13 is expressed as ’
df +1-¢ "2
er F - - = .
- { (@ c ') 'Tc " (A4.33)
freedon aSSOciateo with var (2), For our

~‘e.cor':.."te.nd the . apor0\1mation

-

the total number oi clcsters in the sample and

with the estimate& variance~

be vieweo 2g the Tulti-

“ 3 4{s the number of sgrata..

The transformed statistic F is compared to the

upper percentage,

point "of Tisher's

F distribution with’c .22

.(df +1- c)

. deg.ees of freedon.

-
. - . 2 "
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