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Foreword

14

In these days characterized by great emphasis pn the so-called basic skills,
it is important that we look at where we have been, where we are today,
and-where it is possible to go in mathematics instru-tion.

This research-oriented publication is to serve just such purpose. Not
that these research reports and. their interpretations will give teachers
prescriptions for teaching students, but they do give insights into many
of the causes of instructional problems in mathematics, thus enabling
teachers to plan instruction more responsive to identified needs.

The authors of these chapters have synthesized mathematics research
findings for busy teachers. Their realistic observations cover both sexes’
feelings about mathematics, the problem-solving processes learners most
often use, and the charactegistics of interactiors between teachers and
pupils in the instructional process. For ipstance, Cooney reports on some °
interesting research showing that the warm, caring teacher has a positive
i! effect in lov- socioeconomic status clas-rooms, but often a negative effect
: in high SES classes. Nevertheless, overall research findings indicate the
;( effectiveness of a supportive teacher. .

i The summaries by DeVauit and Weaver relative to the uses of com-
puters and calculators, respectively, are particularly timely. Not many edu-
cators have dealt effectively with the technology explosion to ensure its
contribution to the delivery of instruction.

Dr. Izaak Wirszup, following his comparative study of science and
mathematics education in Russia and America, recommended sweeping
changes in U.S. education, involving mathematics instruction throughout
the K-12 sequence, and in both undergraduate and graduate curriculums.!

11zaak Wirszup, “The Soviet Challenge,” Educational Leadership 38 (February
1981): 358-360. ;
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vi MATHEMATICS EDUCATION RESEARCH

Neither he nor the authors of this book have reported research regarding
the effectiveness of the use of textbooks in mathematics instruction. Since
a large number of teachers rely on texts for direction, it is reasonable
to expect that they are an imgortant variable in the quality of mathe-
matics instruction.

Research as interestingly presented as in this booklet goes a long way
toward dispelling myths and stereotypes too often retained by most of us.
Our theories and beliefs are revised or changed in the light of new per-
ceptions and experiences. We hope that this much-requested publication
will serve to enlighten us and motivate each of us to commit ourselves to
recast mathematics education, as we take leadership in developing the
curriculums that will educate the citizenry of the new century.

LucitLE G. JORDAN

President, 1981-82

Association for Supervision and
Curriculum Development




Introduction:

The Vaiue of Mathematics
Education Research

Elizabeth Fennema

A president of the National Council of Teachers of Mathematics (NCTM)
once said he had never learned anything from research that was of use in
teaching. He also quoted a nonreferenced source as saying that “Evalua-
tion in a great number of countries shows that educational research and
research into the field of the pedagogy of mathematics have virtually no in-
fluence on school practice” (Egsgard, 1978, p. 554). While some mathe-
matics educators share this strongly negative opinion, others feel just the
opposite. Begle and Gibb (another NCTM president) wrote that “research
in mathematics education generates an improvement in the teaching of
mathematics, 7 ad direction for the development of mathematics curricula
. . . Research .2 mathematics education has provided bricks for edifices of
cognitive development, skill learning, concept and principle learning, prob-
lem solving, individual difference, attitudes, curriculum, instruction, teach-
ing, and teacher education . . . Every mathematics educator (teacher, and
teacher of teachers of mathematics) can benefit from these edifices” (Begle
and Gibb, 1980, p. 15).

Egsgard, Begle, and Gibb are (or were) highly respected and active
participants in the teaching cf mathematics. How could they come to such
widely divergert beliefs, and which, if either, describes the contribution of
research to mathematics education? In all honesty, I believe that neither of
these extreme positions is valid. The first underestimates what research can
contribute while the other overestimates what is possible at this time.

This chapter, aiong with the other chapters in this book, is an attempt
to realistically show how knowledge of research can contribute to improve-
ment in mathematics education.

Mathematics education research can make contributions to the teach-

vii
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ing of mathematics in at least three areas: (1) description of what has
been, (2) description of what is, and (3) description of what is possible.
In addition, by building theories, research aids in putting the world of
mathematics education in broad perspective.

' One imporiant contribution of educational research is to describe what
has been, and to trace the influence of the past on current educational prac-
tice. While using different methodologies than experimental or status
,research, historical study is an important type of educational research. Al-
though it often indicates that we have failed to learn fromn previous ex-
perience, it provides part of the knowledge necessary to make important
curricular decisions. Dessart’s chapter on curriculum inclndes research of
this type. . ‘

Another important role of research is to find out what exists. Research
provides systematic description of specific situations to see what an objec-
tive examination of reality reveals. Surveys, ethnographic, and observa-
tional studies are examples of this type of research. Results from such
status studies are often surprising and in conflict with widely held beliefs.
For example, many people believe that chitdren today are not learning
computational skills. The results from the National Assessment of Educa-
tional Progress (see Carpenter and others in this book) give information
about changes in and the status of children’s computational skills. These
results indicate that cn a nationwide basis, children are doing quite well in
computational activities. While many teachers believe they accurately know
how they interact with the learners in their classrooms, some studies indi-
cate that teachers are not totally aware of their interaction patterns. What
actually occurs in teacher-pupil interactions is reported in the teaching
chapter by Grouws and Good. Some processes learners use to solve prob-
lems are reported in the problem solving chapter by Kantowski. The chap-
ter on sex-related differences reports girls’ and boys’ feelings about mathe-
matics.

One specific type of status ‘research is that which deals with evalua-
tion. Such studies can serve a variety of purposes. Formative evaluation is
a continuous process enabling changes to be made in instructional pro-
grams Summative evaluation determines whether learning has occurred
and can be used for a range of programs, from the spscific to those that are
statewide or nationwide. The chapter by Carpenter and others is an inter-
pretive-report of a summative evaluation.

Status research studies are extremely valuable to all who are con-
cerned with mathematics education. They help us do away with faulty
thinking based on myths and inaccurate perceptions of reality They help
us know what is possible, and how changes can be made in instruction in
_ order to achieve certain goals.
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] Another contribution of education research is to find out what is pOs-
sible. Traditional experimental research, which involves precise design and
analyses, is carried out in this type of study. For example, conditions of
instruction are manipulated in fairly well-defihed ways to see if improved
learning by specifically described groups of learners follows. The chapters
by DeVault and Weaver describe studies in which computers or hand-held
calculators were used in a variety of ways in teaching mathematics. Many -
of these studies were experimental, involving direct comparison of learning
by students involved in different types of instruction.

Human beings like to understand what goes on in the world and to

put that perceived world into some kind of order. When educational re-
searchers attempt to put an order on what they see happening in relation
to education, they ate building theorizs, another contribution of educa-
tional research. These theories attempt to explain why something has hap-
pened and to predict future events. Sometimes they have direct implica-
tions for mathematics classrooms. However, many times while a theory
might help in understanding the variables at work in a classroom, it has no'
direct implications for instruction. Perhaps, the best known theory that
many believed had direct implications for the planning of curriculum is
that of cognitive development explicated by Piaget. Hiebert’s chapter dis-
cusses his perceptions of how at leas: one portion of this theory has not
been particularly helpful in planning mathematics curriculum. He talks
about how conservation is apparently a component of some major mathe-
matical ideas, but does not appear to be essential in the learning of these
ideas. The chapter by Cooney is an attempt to build a theory about teacher
behavior. .
. Missing from this list of contributions of mathematics education re-
s€arch is any mention of providing i~formation that will tell 2 mathematics
teacher, at any level, what to do in her or his classroom. This is a deliber-
ate omission because I firmly believe research cannot give precise direction
to what a specific teacher should do in a particular classroom. This is not
to say that research is not helpful to classroom teachers. It is only that
research cannot, nor should it even if it cotd, tell teachers exactly what
they should be doing as they plan, conduct, and evaluate instruction.

Research is but one of many ways knowledge js gained by educators
(DeVault, in press). Scholarly writing is another way. No one would ever
doubt that John Dewey has had a major impact on classrooms and Cer-
tainly his writing would not be describedvas research. Teachers also can
and must depend on their own experience for knowledge. The wisdom of
the classroom teacher sho' 1d not be negated.

What, then, can research contribute to mathematics education? Re-
search can give us new insight into solution of old and new problems; it

ERIC T
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X MATHEMATICS EDUCATION RESEARCH

can suggest improved classroom procedures; it can make us more objective
in our perceptions; and it can make us more thoughtful in all ways as we
go about the teaching of mathematics. Research cannot tell us what should
be done. Only values determine questions of this type. Research alone can-
not determine what a teacher should do on Monday, or on any day of the
week, But thoughtful educators will continue to use results of research as
one Yaechanism for the improvement of education for all people.

n the past, many have held unrealistically high expectations of the
kind of knowledge research can provide. Researchers may have inad-
vertently contributed to these high expectations by how they reported and
interpreted specific studies. The purpose of this book is to ‘put implications
from research in a realistic framework which also considers knowledge
gained from other sources. :

" This book is an attempt to put research in such a form that fi:.dings
can be readily assimilated by practitioners. The authors were selected be-
cause they had worked for a long time in the area in which they were writ-
ing. Their task was not to report oi. individudl studies but to synthesize
research findings and put them in the context of scholarly writings and
classroom teacher wisdom. Each author reported that the task was difficult,
but the results reflect their commitment to making research available to
nonresearchers in a form that can be used to improve the learning of mathe-
matics by all,

13
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. Curriculum

‘Donald J. Dessart

In the late 1940s, a professor at the University of Wisconsin complained
that it was far easier to move a cemetery in mid-January that it was to
change the curriculum. Althcugh such a statement may have been true of
the curriculum in mathematics before 1950, it certainly is not true of the
activity-related to the mathematics curriculum after 1950. Since that time,
a veritable revolution has taken place.

- In this chapter we will review events in fesearch related to this revolu-
tion that hold lessons for the curriculum of the future:~The next 30 years
will offer challenges related to many problems—energy, inflation, declin-
ing economics, and internatidlal problems of an explosive nature. The role
of the mathematics curriculum in this maelstrom will provide demands of
monumental proportions for teachers, researchers, and other professionals
in mathematics education.

The terms “curriculum” and “mathematics -urriculum” é;'e widely
uced and subject to many different interpretations. For our putgoses, the
mathematics curriculum will mean the mathematical content that is to be
mastered by the learner and the instructional policies and procedures that
are used to organize this content with the intention of promoting effective
learning. “

+

Mathematical Content

The selection of mathematical content for instruction in the schools
is subject to many demands and pressures. These demands fall into three
categories: psychological, sociological, and structural. In an ideal situa-
tion, they play equal and complementary roles in the curricular process;

1
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2  MATHEMATICS EDUCATION RESEARCH

but in reality there is a tendency to stress one demand over another, de-
pending on the pressures of society.

Psychological Demands

From time to time, the selection of mather: -tical content appears to
fall under the influence of two broad psychological theories: (a) the be-
havonstic, mechanistic, theories that view the learner as mastering pieces
of mathematical content that collectively produce a whole of learning; and
(b) the holistic or field theories that view the learner as comprehending
the entirety or gestalt of learning, usually through insight or sudden inspira-
tion. -

If we subscribe to the behavioristic point of view, then the goal of
instruction is to subdivide the mathematical content into objectives or bits
of mathematical knowledge that must be mastered in a “best” sequential
order for the learner to succeed. The recent emphasis on behavioral objec-
tives is an example of the results of such an influence.

On the other hand, if we subscribe to the holistic or field theories,
then we attempt to provide the fabric that pervades learning and provides
a cognitive structure. The more recent emphasis on problem solving as a
broad task of understanding the problem, developing a plan and recon-
sidering the plan, fits into that theory. In the problem-solving process,
emphasis is on instilling in the '+arner the tolerance for manipulating the
pieces of the problem in an orderly but not necessarily sequential manner
so the lea.ner may arrive at an insight or solution to the problem.

Most teachers subscribe to an eclectic point of view, believing that
certain kinds of math aatical content, such as addition or subtraction
algorithms, should be organized with a behavioristic theory as the guiding
influence; whereas other matkematical content, such as in understanding
or finding a geometrical proof, are guided by a holistic theory. In teaching
an algorithm, it is important to identify the sequential steps of the process
and to have students master these steps. In teaching a geometrical proof,
it is more important to provide a varied selection of viewpoints for exam-
ining the problem, with the goal that perhaps one of these viewpoints will
lead‘to a solution.

Most teachers are comfortable with a selective point of view that
allows one or the other theory to dominate, depending on the content to
be leaxrned. But there are “purists” who simply feel that all mathematical
.learning can be described by behavioral objectives or mechanistic descrip-
tions; and there are other purists who feel that all mathematical learning
should be mastered by a random or incidental organization that leads to
insight and solution.

13




CURRICULUM 3

Research studies conducted during the 1930s and 40s attempted to
test the effectiveness of these two theories. For example, many studies com-
pared drill instruction with meaningful instruction. In drill instruction the
goal was to subdivide the learning experience into parts in which drill or
practice was provided for each subdivision. In meaningful instruction an
attempt was made to provide a fabric of understanding—a varied set of
experiences that would provide a variety of insights into the mathematical
content to be mastered. At first it seemed that drill and meaningful instruc-
tion were antithetical, but later it became apparent that the two were com-
plementary and that, normally, drill should be preceded by meaningful
instruction.

Soclological Demands

Sociological demands for curriculum organization stress individuals’
needs for certain mathematical content in order to serve themselves and
sotiety. A student must learn arithmetic, algebra, and geometry to tatisfy
certain vocational demands such as those required of an electricia:, an
accountant, or an engineer. Consequently, the selection of content must
recognize and satisfy these needs. Psychological theories involve academic
questions that teachers and curriculum workers can address in the labora-
tory, while sociological demands are more diverse to identify and to pro-
vide for in the curriculum.

There have been various attempts to identify sociological needs. The
Commission on Post-War Plans of the National Council of Teachers of
Mathematics, meeting after World War II, pointed out the inadequacies of
the mathematics curriculum and identified 29 mathematical competencies
that should form the minimal or core curriculum. (For instance: can
measuring devices be used? Are students skillful in the use of interest
tables, income tax tables? Can they construct scale drawings? and so on.)
As one reviews these 29 competencies, it is clear that they are socially
oriented.

Curriculum ma* , - -~ alert to the sociological needs of students, and
teachers certainly Z¢.. - .emands, particularly from students who ask,
“What is this good for? such a question may more truly indicate psycho-
logical problems, rather than sonciological problems, with the ‘curriculum.
Nevettheless, providing for the needs of society 1s a valid demand placed
on teachers and curriculum makers.

J

Structural Demands

The structure of the discipline of mathematics is often the primary
criterion guiding the organization of the curriculum. Certainly, during the A

Q
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modern mathematics movement in tne United States, the structure of
mathematics was the major force influencing the design of the curriculum.
Most modern mathematics projects were concerned with structural ques-
tions such as: What is a number? What is the difference between a number
and a numeral? What are the laws of arithmetic; such as, the commutative
law, the associative law, and so on? What is a variable? What is a function?
What is an equation? What is a group? What is a field? All of these ques-
tions were aimed at understanding the structure of the discipline.

Interplay of Psychological, Sociological, and Structural Demands

From time to time, one of the three demands seems to influence cur-
riculum makers in mathematics to a greater extent than the others. During
times of economic pressures, as during the Great Depression, mathematics
teachers lean toward sociological demands as a means of justifying the
mathematics curriculum. At other times, such as during the modern mathe-
matics movement, the structural demands seem to be the major factor in
designing the curriculum, and yet at other times the psychological demands
seem more prevalent, for example, during the recent competency and ac-
countability movements. Obviously, teachers and curriculum makers must
attempt to satisfy the current demands of society; but, on the other hand,
we would hope that the curriculum would be-of a nature that it could
satisfy all of the needs of society. Research in this direction or efforts to
find swtable models of curriculum design have not been highly successful
in the past. Obviously, the complexities of such a model are mind-boggling,
and we can readily appreciate that viable models will not be developed
quickly or easily. In the meantime, teachers and curriculum makers must
be aware of the psychological, sociolngical, and structural demands, and
attempt to provide an amalgamation of the three whenever possible.

Instructional Procedures

The organization of the curriculum depends on the instructional pro-
cedures that are to be employed in the classroom. Obviously, the curricu-
lum used in a classroom in which the teacher plays a highly directive role
is quite different from a curriculum in which the teacher plays a less direc-
tive role. Consequently, curricular organization can be viewed as a func-
tion of teacher intervention in the classroom. Three kinds of teacher con-
trol will be considered: {(a) lecturing or underlining, (b) guided learning,
and (c) pure student learning.

15
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Lecturing or Underlining

In lecturing or underlining, the teacher is exerting maximum control
of the class activities and the sequencing of events in the classroom. A pro-
gram designed for this kind of teacher intervention provides a structure or
outline of topics to be covered, but leaves the mar.ner of preseatation and
class activities largely to the discretion of the teacher. Problem sets and
exercises are also provided, but the selection of these are left to the discre-
tion of the teacher. This pattern of curricular organization is probably the
most predominant pattern used in American schools and colleges and is
undoubtedly viewed as the most efficient and practical curricular organiza-
tion.

Guided Leaming

Guided learning may play a significant role in a classroom in which
the teacher attempts to engage students in the learning activities. It may
also play a large role in programmed instruction or various kinds of indi-
vidualized instruction. In these procedures, the curriculum must play a
more definitive guiding role than in a class in which the teacher lectures.
The sequence of events and the manner of presentation must be developed
by the curriculum maker rather than solely by the teacher.

Although guided learning is used less frequently in schools than stand-
ard lecturing, it does have a more significant role in elementary than in
second: .y schools. There was a period in the late 1950s and 60s when it
appeared that programmed learning would make inroads in the American
classroom. But its vitality was short-lived and gave way to more conven-
tional teaching procedures.

Pure Student Learning

The school in which the student develops a curriculum according to
his or hei own needs is Utopian. Very few elementary or secondary schools
employ such procedurss, although a few college classes, primarily at the
graduate level, have used pure learning methods. In such a procedure, the
teacher’s role is one of counselor and provider of initial directions. The
curriculum, as such, is highly flexible, undeveloped to a large extent prior
to the class meeting. Individual freedom and creativity are highly empha-
sized, and a teacher of extremely mature and learned judgment is needed
to function in such a structure.
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The Evolving Mathematics Curriculum

The Elementary School Curriculum

Prior to the 1950s, the elementary school curriculum was concerned
primarily with developing computational skills with whole numbers, frac-
tions, and decimals. Thorndike dominated much of the thinking. His view
was summarized in The Psychology of Arithmetic (1924): “We now un-
derstand that learning is essentially the formation of connections or bonds
‘between situations and responses . . . and that habit rules in the realm of
thought as truly and as fully in the realm of action” (p. vi). The elemen-
tary school curriculum under Thorndike’s influence consisted largely of
identifying specific stimuli (for example, 3 + 4 =) and specific responses
(7) for the skills of computation. Attempt. to provide more than develop-
ing the “bonds” or “connections” for specific stimuli and their responses
were regarded as not vnly superfluous but a detraction from the main goal
of learning.

Reactions to this theory came from mathematics educators like
Brownell and Chazal (1935) who wrote an exposition of the drill theory.
Brownell, Chazal, and others of this time advocated a “meaning theory”
which emphasized the inner relationships of the number system as well as
the social uses of arithmetic. Several decades later the curriculum devel-
opers of the School Mathematics 3tudy Group (SMSG) relied on the
theories of Brownell for justification of their interpretation of “meaning”
as understanding the st, ucture of mathematical systems.

Searches for meaning in the elementary school curriculum led natur-
ally to the consideration of other topics. Geometry, which was primarily
a domain of the secondary schools, began to make its appearance in the
elementary schools largely through the efforts of the modern m:thematics
innovators. The geometry of the elementary school dealt primarily with
informal understandings of concepts to be taught with more precision in
later years. For example, points, lines, rays, half-planes, angles, triangles
were treated irformally in anticipation of more formal definitions in the
high school curriculum.

The modern mathematics movement of the 1950s and 1960s empha-
sized “meaning” also, but primarily from a content point of view. Empha-
sis was placed on understanding non-decimal numeration systems, the laws
of number systems, and the more formalized rules of arithmetic. Drill of
computational skills was emphiasized to a far lesser degree than in former
years and the goal of instruction was to develop an understanding of the
number system and its properties. This philosophy held that such formsl

17
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understandings would make students more flexible and able to apply
mathematics to a variety of situations.

The enchantment with modern mathematics began to wane when
mathematicians and educators criticized the emphasis on formalism as
being too artificial and not consistent with usage in modern life. The de-
cline of students’ computational skills was blamed on the rodern mathe-
matics curriculums, and the emphasis on skill development under the guise
of “basic skills” made its reappearance during the 1970s. By now,_the
meaning theory was still popular but was coupled with drill as a viable
-means of developing computational skills.

The basic skills movement led to a concern that today’s children were
able to compute better than children of former years but were not capable
of applying these skills to soiving problems. A reaction to this concern was
expressed by the NCTM, which recommended that problem solving should
be the focus of the curriculum of the 1980s and that basic skills should be
broaden=d to encompass more than merely computational facility.

The Middie and Junior High School Curriculum

Prior to the modern mathematics movement, the middle grades (six,
seven, eight) were devoted largely to consolidating computational skills
learned in earlier years as well as broadly emphasizing social applications.
Students of these years were exposed to applications of arithmetic in bank-
ing, installment plan- buying, homemaking, and other social uses. This
emphasis prompted modern mathematics proponenis to regard the junior
high school years as a “wasteland” of mathematics education. Beberman
was reported to have stated that children of these years were more inter-
ested in “the numiber of ange]s that danced on the head of a pin” than in
social applications.

This opinion motivated modern mathematics curriculum developers
to replace social applications with topics of a more highly abstract mathe-
matical nature. The formalism begun in the elementary curriculum was
extended to the junior high school years. Understanding equation solving
and “proofs” for arithmetic rules were stressed. Greater emphasis on in-
formal geometry and the introductior of new topics, such as probability
and statistics, were promoted. During these years, programmed instruc-
tion, individualized instruction, and mathematical laboratories were also
recommended for the middle years. Many a junior high school housed a
special classroom-laboratory where children could pursue special projects
related to paper folding, string art, games, and other special topics. One
sometimes wonders if these laboratories were actually an “escape” from
the more formai material of the modern mathematics programs.
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Two events during the 1970s modified the curriculum of those years.
The hand-held calculator was becoming more readily available and the
metric system was being promoted. Although some teachers deplored the
calculator as detracting from students’ acquisition of computational skills,
the National Advisory Committee on Mathematical Education recom-
mended that a hand-held calculator be made available to each scwudent by
the end of the eighth grade. The need for the nation to implement the
metric system was recognized, and the junior high school years were seen
as an appropriate time to introduce students to this system.

The High School Curriculom

Teaching algebra in grade nine to 15-year-olds had been traditional
for many, many years dating bagk to the late 1800s. Although algebra
became somewhat more formal during the modern mathematics movement,
its nature did not change radically. Traditional teachers who had empha-
sized skill development prior to the modern mathenatics years were able
(o continue this emphasis with the modern -textbooks by merely ignoring
the text material between problem sets.

On the other hand, the geometiy curnculum was subject to greater
change. Birkoft devised a set of postulates for geometry, making greater
use of those properties of the real number system which were unavailable
to Euclid. These postulates, published in the Annals of Mathematics of
April 1932, became the basis for a “new” geometry textbook by Birkhoff
and Beatley (1940) of the inauspicious title, Basic Geometry.

The influence of Birkhoff’s work and that of Hilbert on the SMSG
approach to geometry is clearly shown by Brumfiel (1973). In 1980, the
SMSG approach dominated the secondary school geometry curriculum in
the United States. It is one of the few innovations of SMSG that has avoided
most successfully the criticisms leveled at other modern mathematics pro-
grams. The major centribution of the SMSG approach was to introduce
postulates concerning abstract rulers and protractors into high school
geometry. These postulates, which capitalize on properties of the real num-
ber system, filled the logical gaps of the Euclidean geometry previously
taught in high school. .

. Although this approach to geometry is the predominant one, it is
certainly not the only geometry curriculum used in the United States.
NCTM'’s 36th yearbook, Geometry in the Mathematics Curriculum (Hen-
derson, 1973), identifies no less than seven approaches to formal geometry
in the senior high school. These approaches include the conventional syn-
thetic Euclidean geometry, approaches using coordinates, a transforma-
‘tional approach, an affine approach, a vector approach, and an ‘approach
to satisfy all teachers: an eclectic program in geometry. ~
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Before the 1950s, the high school curriculum beyond geometry usually
consisted of a second year of algebra followed by a semester of solid
geometry and a sernester of trigonometry. This program has been replaced
by a urified approach that includes topics from traditional advanced alge-
bra, theory of equations, linear algebra, probability and statistics, and the
calculus. The calculus as a separate subject is studied by relatively few
students; in 1977-78, only 4 percent of the 17-year-olds in the United
States gected it (National Science Foundatiqn, 1980).

Evaluation of Programs

As the modern mathematics programs made inroads into the schools

~ of the United States, administrators, teachers, and parents warnted to know

- which of the programs—the modern or the traditional—was better for their

children. Early attempts at such evaluations might be termed macro-evalu-

ations since they made broad comparisons of classes using traditional cur-
riculums and those using modern programs.

Minnesota National Laboratory Evaluations

In the spring of 1964, the Minnesota National Laboratory reported
receiving a grant of $249,000 from the National Science Foundation. The
general purpose of the grant was to study the effectiveness of various kinds
of mathematics courses, including both conventional courses and new
courses dev.loped by the School Mathematics Study Group, the University

. of Illinois Committee on School Mathematics, the Ball State Teachers Col-
lege,.and the University of Maryland Mathematics Project.

The study was designed to determine differences in achievement be-
tween pupils instructed with conventional materials and those instructed
with one of the modern programs. Volunteer teachers from a five-statc
area were invited to participate for a two-year period, teaching a class with
conventionai materials during the first year, and two classes, one with con-
ventional and one with modern materials, during the second year. Students
were tested to determine initial measures of achievement, final achieve-
ment, and retention.

In 1968 the results nf the evaluations (Rosenbloom and Ryan, 1968)
did not show that the modern programs had stfongly increased or decreased
achievements. There were some exceptions to the overall findings, but even
those did not strongly favor the modern curriculums. In subsequent inves-
igations on attitudes, interests, and perceptions of proficiency, no un-
equivocal differences were found. Dessart and Frandsen (1973, p. 1178
commented on these yesults:
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A conclusion which might have been drawn from thesz projects was that
the experimental materials tested were not worth the vast resources that
had gone into their development. The project reporters suggested that such
a conclusion should be tempered because of possible lack of validity of the
achievement tests for measuring significant objectives of the experimental
programs or because of possible lost impact due to poor teacher per-
formance with experimental materials.

New Hampshire Studies

Studies of a smaller scope were also conducted to ascertain advan-
tages or disadvantages of the modern programs. Typical of these was a
study performed in New Hampshire which compared groups of students °
studying from modern, transitional, and traditional materials during 1963-
1967 (Austin and Prevost, 1972). In 1965, the pupils studying the modern
materials outdistanced the other two groups on the Otis Mental Abilities
Test but performed lower on computation testing. By 1967, the modern
group scored higher on computation, concepts, and applications tests.
Throughout all of these testings, students’ abilities to perform arithmetic
computations declined.

A pattern was emerging from these evaluations: students in the
modern programs seemed to achieve somewhat higher in comprehension
of mathematical concept measures but scored lower in measures of com-
putational ability than their counterparts in conventional programs. This
led to the humorous comment attributed to Beberman that a modern
schoolboy knows that the sum of two natural numbers is a unique natural
number, but he doesn’t know which one! '

National Longitudinal Study of Mathematical Abilities (NLSMA)

The NLSMA was a five-year study that attempted to compare the
effectiveness of conventional and modern textbooks as well as the effects
of student attitudes and backgrounds of teachers (Begle and Wilson, 1970).
Three populations designated X, Y, and Z were studied in the fall and
spring of each year. The X population, fourth-grade students in 1962, and
the Y population, seventh-graders, were tested for the full five years. The
Z population, consisting of tenth-graders, was examined during a three-
year period.

The data assembled were enormous. The results related to textbooks
indicated that: (1) the variability of means associated with textbook groups
decreased as grade levels increased: (2) the SMSG textbook groups per-
formed better than conventional groups on cumprehension, analysis, and
application levels, but not on the computational level; and (3) some of the
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modern textbooks produced poor results on all levels from analysis through
computation.

The NLSMA revealed that comparing textbooks is at best exceedingly.. . -
difficult and complex, leading to very few clear generalizations. Many
variables must be examined to provide a broad view of the comparisons;
otherwise, one may be in the position of comparing textbooks on a single
criterion which may not be significant. This lesson was costly to learn as
evaluation projects, such as NLSMA, enjoyed the era of federal funding
that may never be matched in the future.

Curricular Variable Identification and Study

As we have seen from the evaluations of programs that were con-
ducted during the 1960s and 1970s, the results were not clear-cut and
generalizations were very difficult to make. The major obstacle to arrivifg
at meaningful evaluations was the large number of variables that needed
consideration. Merely identifying these variables was not sufficient because,
in most cases, the variables were not well understood and were not easily
measured. During the 1980s, more intensive efforts in variable identification
and study seem to be a natural consequence of the research of the previous
two decades.

Adjonct Queitions snda Teaching Problem Solving

One of the difficulties faced by nearly every mathematics teacher is
that of teaching “word” problems. An often used but questionable instruc-
tional procedure consists of the teacher presenting a model problem to
the class and leaving the model on the chalkboard as a pattern for working
other problems. Successful students learn to select numbers from the
textbook problems to fit the chalkboard model and perform similar opera-
tions. Doing enough problems of this kind, students memorize a pattern or
algorithm for solving a particular pioblem. Later, when they meet this
type of problem again, it is hoped they will apply the same pattern or
algorithm.

Although this instructional procedure has some merit, it probably
suffers from two weaknesses: (1) the student is not really “thinking
through” the problem but rather is engaging in a “matching-analysis”
procedure; and (2) the pattern or algorithm may be forgotten by the
student when he or she meets this particular problem in isolation of other
similar problems. This instructional procedure does, however, represent
an atterapt to guide the student through a problem-solving process. Meth-
"ods of motivating or leading students to engage in problem solving are
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needed by teachers at nearly ull levels. One method that may hold promise
is to guide the students by key questions designed to highlight or emphasize
the essential elements of a problem and encourage the student to consider
these elements. Little research has been done with the usefulness of such
questions in mathematics education, but research in other areas may
provide some clues for us.

For example, Rothkopf (1966) reported a research study with 159
college students who ‘studied a written passage and were given questions
cither before or after reading the material. Rothkopf concluded that ques-
tions given after peading the material, called “adjurct questions,” have
both specific and general facilitative effects on post-reading performance.

Mathematics educators have given insufficient attention to the possible
uses of adjunct questions—that is, questions that would follow a written
paragraph and would be designed to focus the attention of the student on
the salient features of that paragraphi. For example, if word prob.ems were
followed with specific, written questions that would focus the attention of
students on the elements of the problem and thus force them to “think
throug ” the problem, would we be more successful in motivating students?

It seems clear that during the 1980s efforis to improve the teaching
of word problems will be a priority if the disturbing evidence of the latest
NAERP resulis concerning the success of our students in dealing with word
problems influences the directions of teaching (see Chapter II). In
such efforts, the usefulness of adjunct questions seems to be an attractive
. possibility. Furthermore, such questions could be designed to acconimodzie
the Polya (1945) model of understanding the problem, devising a plan,
carrying out the plan, and looking back at the problem.

A serious question that arises in the use of adjunct questions is their
value in facilitating the questioning abilities of students; that is, will students
exposed to adjunct questions initiate questions of their own in attacking
word problems or, even further, in a given cultural situation, would stu-
dents be able to formulate (identify) the problem to be solved? We can
hope that such would be the case, but there is a danger that students would
become far too dependent on the adjunct questions. Research could pro-
vide further insights.

Advance Organizers

Experienced teachers know that before beginning a new topic with
a class they must provide an introduction. This introduction probably
consists of two phases: (a) a review in which the teacher helps students
recall relevant facts, concepts, and principles; and (b) an overview in
which the teacher attempts to provide students with general and over-
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arching insights concerning the new material to be studied. This bit of
conventional wisdom was given a more precise and theoretical foundation
through the work of Ausubel (1968) 'an‘others working in the area of
advance organizers.

Ausubel pointed out’ that advance organizers facilitated meaningful
learning in three ways: (4) they mobilize relevant anchoring concepts
already established in the learner’s cognitive structure; (b) at an app:o-
priate level of inclusiveness they provide optional anchorage which pro-
motes initial learning and resistance to later loss, and (c) they render
unnecessary much rote memorization students often resort to because they
lack sufficient numbers of key-anchoring ideas. Ausubel (1968, p. 148)
succinctly summarized the characteristics of advance organizers: “In short,
the principal function of the organizer is to bridge the gap between what
the icamner already knows and what he needs to know before he can

" successfully leamn the task at hand.”

Since a good introduction is important to a learning task, it would
seem that research on advance organizers should be a productive area for
improving teaching. It appears that a relevant question is not whether
advance organizers should or should not be used but rather in what ways
can advance organizers be constructed to be most effective. Consequently,
it seems cogent that any future work on advance organizers should con-
centrate on their useful characteristics rather than on a testing of their
use or disuse.

One of the central issues related to advance organizers is the “good-
ness of fit” among the elements of the advance organizer, the new material
to be learned, and the characteristics of the cognitive structure of the stu-
dent. The first step in establishing a “good fit” is a matter of identifying
the central mathematical concepts and principles of the new material and
providing for generalizations of these in the organizer. As difficult as this
may be, it is not an insurmountable task. The next step, that of designing
the organizer to complement the existing cognitive structure of the student,
is an extremely complex task. What is an effective organizer for one student
may be utter confusion for another because of the differences in their
cognitive structures.

Work by Bloom and his associates is related to the question of de-
signing an organizer to complement the cognitive structure of the student.
Bloom (1980, p. 383) identifies “cognitive entry characteristics” as the
specific knowledge, abilities, or skills that are necessary prerequisites for a
particular learning task. He points out that such pre.equisites correlate .70
or greater with measures of achievement of the task.

The critical problem, then, is one of designing effective advance or-
ganizers or providing for appropriate cognitive entry characteristics to fit
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the cognitive structures of thz student. But isn’t this the crucial problem
in teaching? The solution to this problem necessitates studies designed to
ascertain the nature of the existing cognitive structure of the student and
" providing for the further development of these structures; an exercise
similar to the one a conscientious teacher employs in tutoring a student
over a learning difficulty. The initial step is usually one of attempting to
determine the nature of the existing knowledge of the student before be-
ginniug the remediation or, in this case, the design of the advance organizer.

Behavioral Objectives

The use of behavioral objectives made a significant contribution to
mathematics education because it sharpened the focus upon describing the
desired student behavior at the conclusion of a learning experience. As
with advanced organizers, the use of behavioral objectives made “pedagogi-
cal sense” and they became popular. Research related to the use of
behavioral objectives for the most part supported them. As Begle (1979)
observed, in over 30 studies completed to determine if the use of behavioral
objectives could lead to greater student achievement, half of these studies
indicated that student achievement was improved or speeded up. In perhaps
. only one case did the use of behavioral objectives have a negative effect.
In cach study the question was essentially one of testing whether students
who were exposed to behavioral objectivgs before a learning experience
would achieve higher than those who were not so exposed. The evidence
seemed to suppont their use.

In spite of a promising beginning, the interest in baghavioral objectives
seemed to decline. As with most “bandwagon” movements, teachers are
led initially into the movement by advocates who preach a panacea is at
hand. Such was the case with the behavioral objective movement; but when
- teachers were required to take hours from their busy teaching days not
only to write lengthy behavioral objectives for the mathematical topics of
the curriculum, but also to monitor their attainn ent with a class, fatigue
soon took its toll. What had initially been regarded as a panacea became a
terrific demand on teachers’ time.

It soon became evident that the higher cognitive goals of instruction—
critical thinking, creating, problem solving—were elusive of capture in
the behavioral objective mold. Many of the advocates of the movement
recognized :his deficiency but felt that, given sufficient time ‘and energy,
these goals could be described by behavioral objectives. After all, if we
really understand the behavior we desire, then surely we should be capable
of describing it.
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Learning Hierarchies

Closely related to the notions of advance organizers and behavioral
objectives is that of the learning hierarchy. Whereas the advance organizer
intends to provide an introduction to the learning experience, and the be-
havioral objective focuses on the final behavior exhibited by the student
at the conclusion of a leaining experience, the learning hierarchy is a means
of organizing learning tasks to achieve a final goal-objective. The process
requires describing the mathematical objective and asking what the student
should be able to do in order to achieve that objective. Answering such a
question raises the necessity of defining subtasks that should be achieved
and subtasks of these subtasks so that a network of tasks is generated. In -
this network, achieving the final task is dependent on achieving all of the
subtasks. ]

Much of the research conducted with learning hierarchies has been
in the form of validation studies. Phillips and Kane (1973) constructed
seven different orderings -of 11 subtasks for rational number addition. A
test was designed to assess mastery at each of the 11 subtasks of the
hierarchy. One hundred forty-two students were assigned randoml), to the
seven treatments corresponding to the sevan different orderings of the
hierarchy. No particular sequence was found to be consistently superior
on achievement transfer, retention, and time to complete the sequence.

Some Lemns Learned from Research on Advance Organizers,

As we contemplate the efforts that have been expended in research
related to advance organizers, behavioral objectives, and learning hier-
archies, we quite naturally ask, “What have we learned?” The lessons have
been modest, but valuable.

First, one “of the most valuable lessons is that there is an organization
of the objects of the curriculum called its “psychological organization™;
that is, an organization that arises from an analysis and study of the mathe-
matical understandmgs of children. This organization may be quite different
from its axiomatic, logical, mathematical organization. The )mphcatlon
of this lesson is that teachers must understand the psychological organiza-
tion 'of the curriculum as well as its mathematical organization. The latter
has had the benefit of centuries of the aziomatic method since the time of
Euclid, whereas the psychological organization has only been given serious
consideration in the: last 50 to 100 years. One intuitively feels that all of
the psychological research findings related to learning mathematics is wait-
ing for a Euclid to organize them into a viable theory of mathematical
learning.
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Second, we have learned that there is a danger of attempting to fit all
mathematical leaming into cr.. model which may:turn out to be an in-
adequate mndel. The use of the behavioral objective model is ain example
of this inadequacy. Some view stch a shortcoming with alarm when, in fact,
it is the natural evolution in any theory; that is, when the theory is in-
adequate, it must be revised.

Third, it is undoubtedly true that good teachers have known from
conventional wisdom the necessity of including in their instructional tech-
niques the basic ideas embodied in advance organizers, behavioral objec-
tives, and learning hierzrchies. Researchers have made the vz!uable con-
tribution of organizing this wisdom into carefully devised theories. Although
these theories are often incomplete and inadequate, they do represent a
serious beginning of a theory of mathematical learning.

Meaniqgful Instruction and Drill

Van Engen (1949) discussed three particular theories of meaning:
(1) social meaning in which the child understands the mathematics that he
or she can observe and use in social situations, (2) .tructural meaning in
which the mathematics becomes meaningful when the child understands
the structure of the subject, and (3) the nihilistic theory of meaning which
denies meaning to.symbols. Brownell (1945) made a statement which is
typical of those often quoted, that is, that “Me#hing is to be sought in the
structure, the organization, and the inner relationships of the subject itself”
(p. 481). - .

In contras.. we might conclude that rote instruction neglects to em-
phasize the structure, the organizatior, and the inner relationships of the
subject of mathematics and puts emphasis on repetition and fixation of
concepts, principles, procedures, or algorithms. In  considering a definition.

for the term *drill,” we turn to Sueltz (1953), who discussed drill in the

following way: “. . . the words ‘drill,” ‘practice,” and ‘recurring experience’

- are used to indicate those aspects of learning and teaching that possess

elements of similarity and sameness which repeat or recur” (p. 192).

In conclusion, it seems clear that since the research of Brownell and
Moser (1949) on meaningful versus mechanical learning, and probably
earlier, many mathematics educators subscribed to a statement similar to
one by Gibb (1975, p. 59):

The controversy of drill and practice versus understanding (including the
use of hands-on and laborabory types of learning experience) is a long-
standing, but unnecessary one. I believe that neither can be considered in
isolation from the other. A lot of rote drill and practice in the absence of
understanding or useful application does little to promote computational
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efficiency. Likewise efforts for developing understanding alone are not
effective unless they are tempered with drill and practice to build pro-
ficiency in computation, in problem solving, and in thinking logically.

Consequently, it seems reasonable to state that nearly all mathematics -
educators agree that meanipgful instruction and drill go hand in hand, with
meaningful instruction simply preceding drill or practice, ‘but that both are
necessary for an efficient and profitable learaing experience. Willoughby
(1970, p. 263) echoed a similar <entiment:

Virtually everyone who consciously addresses himself to the question of
whether it is better for a child to understand mathematical concepts or to
commit verbalization of the concepts to memory agrees that understanding
is important and desirable. During the recent “revolution” in school mathe-
matics, this point of view became so prevalent that, in some instances,
textbooks provided substantial material to help children understand a
concept, but virtually no practice or drill work to help them become adept
at using it. Available evidence suggests that a child can understand with-
out becoming adept in using the particular skill involved (addition or
fractions, for example), but if the skill is one in which he ought to become
proficient, practice or drill will be needed. On the other hand, if drill is
used without understanding, retention does not seem to be as great, and,
of course, the learning.of a skill involving the same understanding but
different sorts of symbols will be more difficult if the understanding has
not been developed.

As noted from Willoughby's comments, drill and practice became
unpopular during the modern mathematics movement. The disenchantment
with drill actually preceded the modern mathematics revolutios. Sueltz
(1953, p. 192) observed:

Twenty-five years ago (about 1928), drill was the common method of
learning applied to such school subjects as arithmetic, writing, and spelling.
Children were required to write a word 50 times to learn to spell it and
the present generation of middle-aged people spent countless minutes in
winding up ovals in one direc’ion and then unwinding them in the opposite
direction in order to train the muscles to follow the sweeping curve of
penmanship. This was drill; it was carried to extremes and became so
sterile that during \he 10-year period of approximately 1935 to 1945 drill,
as a learning procedure, was frowned upon and ridiculed in many edu-
cational circles. However, during the same period it remained the dominant
pattern employed by many teachers.

The comment by Sueltz that drill remained the dominant pattern
employed by many teachers was borne out by research. Milgram (1969)
investigated the ways in which elementary teachers used class time in
mathematics. A team of observers making twice-weekly observations of 46
intermediate grude teachers in Pennsylvania found the following use of
time: (a) going over previous assignment, 25 percent; (b) oral or written
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drill, 51 percent; (c) introducing new mathematical concepts or develop-
mental activities, 23 percent; and (d) unrelated interruption, 1 percent.
This pattern of instruction has not changed drastically as can be seen
from the words of Fey (1979), who analyzed three studies completed by
the National Science Foundation (p. 494): '

Despite the difficulty of knowing what teachers understood by the terms

“lecture,” “discussion,” and “individual assignments,” the profile of mathe-

matics classes emerging from the survey data is a pattern in which extensive

teacher-directed explanation and questioning ‘s followed by student seat-
work on paper and pencil assignments. This pattern has been observed in

many other recent studies of classtoom activity. . .

Fey cites Welch, one of the NSF investigators, who wrote that the
pattern of instruction in all mathematics classes he observed was the same,
that is, discussion of the previous assignment, discussion of the new ma-
terial, followed by seatwork for the students in which they worked the
next day’s assignment with help from the teacher.

The Texthook

Since the textbook plays such a highly significant role in the life of
the student and the teacher, it is surprising th-t there hasn't been more
research related to its effectiveness. Begle (1979, p. 73) summarized the
reason for this dearth of research:

Any two textbooks differ on so many variables that it would be almost

impossible to trace the specific variables which cause a specific difference,

and without knowing which variables make a difference, we do not know
where to start to improve textbooks.

The textbook in many schools is the mathematics curriculum for that
grade level. If a topic does not appear in the textbook, it is not taught.
This fact of life was certainly used by the curriculum developers of the
1950s and 60s. They knew that in order to change the curriculum, the most
effective and efficient method is by changing the contents of textbooks.
Since this state of affairs probably will not change in the future, more effort
should be expended in research on textbooks. Millions of dollars each
year are spent on textbooks, so one can hardly argue the desirability and
practicality of such research.

For example, does color make a difference in the effectiveness of
learning by children? Most publishers must have concluded that it does
make a difference (in sales, at least) as they use color lavishly. Do illustra-
tions, pictures, type style, or the size of the page make a difference? If
not, we might question whether funds to develop these features in books
could be diverted to other more productive educational us-s.
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Reseai .h on textbooks appears to be a fruitful area of investigation.
Some feel that the number of variables is too large; others, on the other
hand, feel that research is manag: xble. For example, Walbesser (1973,
p. 76) offered the opinion that all textbooks should contain “(1) per-
formance descriptions of objectives, (2) data on the acquisition of the
behaviors described as objectives, and (3) a statemer. of where the per-
formance list and data arc available.” He felt so ..rongly about this view-
point that he urged a moratorium on the pu’chase of all textbooks until
the author and/or the publisi.. r provided suci: information!

Walbesser noted that the selection of textbooks is done in a haphazard
manner by most selection committees. They depend very heavily on such
criteria as endorsement by authorities, bandwagon effects, high identifica-
tion quotients, little change from previous textbooks the use of illustra-
tiv's, the skili of the sales representatives, and the reputations of the
authors. Walbesser presented a plan for selecting textbooks that was highly
dependent on the use of behavioral objectives and learning hierarchies. This
procedure represents a well-defined and rigorous method and provides a
promising direction deserving greater attention.

The values of the textbook will probably remain unchanged in the
future. Corporations such as IBM, which is a high-technology company at
the forefront of innovations, seem to prefer conventional educational
practices. Peter Dean (1980), program manager of IBM's Education
Developer Services, cited among identifiable trends that “Most managers
and employees perceive conventional stand-up classroom instruction as the
only ‘true’ education. Telling tends to be equated with education.” Fur-
thermore, he noted that “Most of the self-study material is printed; a
modicum of videotape is used” (p. 317).

It seems reasonable for one to conclude that the textbook will continue
to be an important tool in the mathematics classroom. More research on its
effectiveness and use is certainly in order for the 1980s; in fact, one might
place its research in a high priority category.

Summary

In isolating and studying carefully the variables of the curriculum, we
may gain a better understanding of the influence of curriculum on learning.
Adjunct questions, advance organizers, behavioral objectives, and learning
hierarchies offer fruitful areas for investigations. While research on the
textbook’s effectiveness is difficult, its significance as a learning tool de-
mands that it be studied more carefully and researched more fully.

The late A. S. Barr, a well-known researcher at The University of
Wisconsin, often remarked that research is very similar to mining in that
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much shoveling is required before hitting paydirt! This analogy is so appro-
priate for research on the mathematics curriculum. Much work lies ahead,
but the rewards of a better and more effective education for our children
is a reward well worth the efforts.
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In the last two decades there has been ‘tonsiderable unrest in mathematics
education. The modern mathematics reforms of the 1960s were followed
by the back-to-basics movement of the 1970s, leaving the mathematics
curriculum with many characteristics of two decades earlier. As the 1980s
begin, new recommendations for school mathematics are being proposed
(NCTM, 1980).

The earlier reforms in- the mathematics curriculum have been based
on some general principles of learning or student achievement. The modern
mathematics movement embraced principles of meaningful learning and
discovery learning (Bruner, 1960); and the back-to-basics movement was,
in part, a reaction to a perceived decline in achievement test scores (Ad-
visory Panel, 1977). Progress in improving mathematics learning, how-
ever, is going to require a much more careful analysis of students’ learning
and achievement than accompanied previous reforms.

One of the best measures of the achievement of American students is
provided by the mathematics assessment of the National Assessment of
Educational Progress (NAEP). The second NAEP mathematics assess-
ment was conducted during the 1977-1978 school year. Exercises covering
a wide range of objectives were administered to a carefully selected na-
tional representative sample of over 70,000 students at ages 9, 13, and 17.
Ttem sampling procedures were used so that between 250 and 450 exercises
were administered to each age group with approximately 2,400 students
responding to each exercise. Consequently, the results provide an accurate
sampling of the knowledge of elementary and secondary students over a
broad range of objectives. The assessment also has the advantage of pro-
viding analysis of performance on specific exercises. Data ?n each exerg'u
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were analyzed separately to provide a description of students’ performance
on specific tasks. .

The obijectives that guided ‘the development of exercises for the as-
sessment were selected by panels of mathematicians, mathematics educa-
tors, classroom teachers, and interested lay citizens to reflect important
goals of the mathematics curriculum. These groups concluded that the
mathematics curriculum shculd be concerned with a broad range of objec-
tives. Accordingly, the assessment focused on five major content areas:
(1) numbers and numeration; (2) variables and relationships; (3) geom-
etry (size, shape, and position); (4) measurement; and (5) other topics,
which included probability and statistics, and graphs and tables.

Each content area was assessed at four levels: knowledge, skill, un-
derstanding, and application. Knovwledge level exercises involved recall of
facts and definitions. This included such tasks as ordering numbers; recall-
ing basic addition, subtraction, multiplicaticn, and division facts; identify-
ing geometric figures; and identifying basic measurement units. Skiil exer-
cises involved various mathematical manipulations including computation
with whole numbers, fractions, decimals, and percents. Also included were
making measurements, converting measurement units, reading graphs and
tables, and manipulating algebraic expressions. Understanding exercises
tested students’ knowledge of basic underlying principles such as the con-
cept of a unit -overing in measurement. These exercises were constructed
so that students could not simply apply a Toutine algorithm. Application
exercises required students to use their own knowledge or skills. to solve
problems. Both routine textbook problems and nonroutine problems were
included in this category.

In addition to these cognitive areas, a number of affective variables
were assessed, as well as students’ self-reports of the types of activities they
engage in during mathematics class. Also, a special set of exercises assessed
students’ ability to use a calculator to solve various kinds of problems.

The results of the assessment have been summarized elsewhere (Car-
penter and others, 1980b, 1980c, 1981b; NAEP, 19794, b, ¢, d). Going
beyond these results, we have idemified several areas in which the Na-
tional Assessment has provided information about students’ knowledge of
mathematics that relates directly to the NCTM recommendations for the
mathematics curriculum of the 80s. These aieas are: (1) the need for a
broader definition of basic mathematical skills, (2) the importance of stu-
dents’ understanding of mathematical concepts and processes, (3) the im-
portance of problem solving as the focus of the mathematics curriculum,
(4) documentation of the continued development of mathematical skills,
(5) implications of calculators for teaching computational skills, (6) the
need to increase and extend students’ enrollment in mathematics courses,
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and (7) students’ perceptions of thzir involvement in mathematics class-
room activities.

Caution must be observed in interpreting the results from the NAEP
mathematics assessment, which was not designed to identify causes of stu-
dent performance. We have frequently extrapolated beyond the data in
drawing conclusions; other authors would possibly reach different con-
clusions. However, the conclusions presented here are generally supported
by a wide range of exercises in addition to the illustrative exercises re-
ported.

A Broader Definition of Basic Skills

The National Council of Teachers of Mathematics (1980) recom-
mendations for school mathematics for the 1980s include the recommenda-
tion that basic skills in mathematics should be defined to encompass more
than computational facility. Geometry, mcasurement, probability, and sta-
tistics are recognizzd as important areas of basic skills (National Council
of Supervisors of Mathematics, 1978; NCTM, 1980). If students’ perform-
ance on the second mathematics assessment is a measure of instructional
emphasis in the United States, we must conclude that the focus of most
mathematics programs is on the development of routine computational
skills since studgnts demonstrated a high level of mastery of computational
skills, especially those involving whole numbers.

Almost all students demonstrated mastery of basic number facts
" About two-thirds of the 9-year-olds could perform simple addition and
subtraction computation using algorithms for regrouping. By age 13, almost
all students could perform simple computations involving addition, sub-
traction, and multiplication. Most of the older students were successful
with thé more difficult calculations such as those summarized in Figure
II-1. Students encountered greater difficulty with whole number division
and operations with fractions and decimals.

Performance was significantly lower, however, on exercises assessing
basic noncomputational skills. In general, the only noncomputational skills
for which students demonstrated a high level of mastery were those in-
volving simple intuitive concepts or those concepts or skills they were
likely to have encountered and practiced outside of school. This is reflected
in students’ knowledge of geometric terms. Students were familiar with
common everyday terms like square or parallel, but not with terms like
tangent and hypotenuse that are used less commonly in everyday vernacu-
lar. Over 95 percent of the 13-year-olds could identify squares and parallel
lines; but even by age 17, fewer than 60 percent of the students were
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Figure li-1. Whole Number Computation

E ; Percent Correct
xercise Age 13 | Age 17
a) 4285 85 90
3273 i
35125
? - ~
b) Subtract 237 from 504 73 84
c) 671 66 77
"X 402
?

familiar with terms like tangent and hypotenuse. The failure of students to
learn basic geometric concepts is illustrated by the fact that only about a
fifth of the 13-year-olds and a third of the 17- -year-olds could solve a prob-
lem involving a simple application of the Pythagorean Theorem.

Perfofmance on measurement exercises generally followed the same
pattern as the geometry results. Most students were familiar with measure-
ment concepts and skills that would likely be encountered and practiced
outside of school, such as recognizing common units of measure, making
simple linear measurements, and telling time. They had a great deal of
difficulty, however, with many other basic measurement concepts and
skills, especially those involving perimeter, area, and volume. Another
basic-skill area in which performance was generally low was probability
and statistics. Fewer than half the students at any age level demonstrated
even a tentative understanding of most basic probability concepts.

The Importance of Understanding

As results in the previous section showed, students failed to master a
broad range of basic skills. Further, many of the skills appear to have been
learned at a rote, superficial level. Students’ performance showed a lack of
understanding of basic concepts and processes in many content areas, such
as measurement and computation with fractions. For example, almost all
students could make simple linear measurements. Over 80 percent of the
9-year-olds and 90 percent of the 13-year-olds could measure the length

.of a segment to the nearest inch. However, when students were presented
with a problem similar to the one illustrated jn Figure II-2, 77 percent of
the 9-year-olds and 40 percent of the 13-year-olds gave an answer of 5.
Thus, although most students would line up the end of the segment when -
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Figure I1-2. How long is this line segment?
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they were measuring it, this change in problem context demonstrated that
many of them did not understand the consequences of not doing so.

This superficial understanding was also apparent in many computa-
tion exercises. For example, studenfs were relatively successful in multi-
plying two common fractions, perhaps because multiplying numerators and
denominators seems to be a natural way to approach the problem. How-
ever, the results from the simple verbal problem shown in Figure II-3 indi-
cate that students had no clear conception of the meaning of fraction
multiplication and, therefore, could not apply their skills to solve even a
simple problem. . .

Figure I! 3. Fraction Multiplication

Percent Correct

Exercise*
Age 13 Age 17
a) 2/3x 2/5=1 70 - 74
b) Jane lives2/3 mile from school. When she 20 21
has walked 2/5 of the way, how far has
she walked?
* Both are similar to unreleased exercises. i

Students’ failure to learn basic fraction concepts is also illustrated by
performance on several estimation exercises. For example, although 39
percent of the 13-year-olds and 54 percent of the 17-year-olds could calcu-

late the answer to —IZS- +§, only 24 and 37 percent, respectively, could

make even a reasonable estimate of—:—i- +g— Over half of the 13-year-
olds and over a third of the 17-year-olds simply tried to add either the
nurherators or denominators. This response suggests that many students
looked for some rote computation rule to apply without even considering
the reasonableness of their result. -

The importance of understanding may, in part, account for the differ-
ence in the level of performance for whole number operations and opera-
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tions involving fractions and decimals. Most assessment exercises indicate
that students had learned the basic concepts underlying whole number
computation, and had some notion of the place value concepts involved
in the computation algorithms. As a consequence, performance on whole
number computation exercises was generally good. As the above examples
suggest, however, most students did not have a clear understanding of
fraction operations and appear to have operated at a mechanical level.
This lack of understanding resulted in relatively poor performance on some
fraction computation, and is further highlighted by the serious difficulties
encountered in solving simple problems involving fraction operations.

The consequence of focusing on a mechanical application of basic
skills is that students become totally dependent on a mechanical algorithm,
which is easily forgotten. If students cannot remember a step in the algo-
rithm, they cannot solve even simple problems that might be solved
intuitively. For example, the complexity of problems (a) and (b) below
appears to have had relatively little effect on their difficulty.

) 1 1 b 7 4

(a) b (b) 2

2 3

In problem (a), students should have been able to find a common de-
nominator almost intuitively. In problem (b), the denominators are not
relatively prime and the least eommon denominator is 45. In spite of the
difference in the apparent difficulty levels of the two problems, there was
little difference in students’ performance on them. Apparently, if students
have learned an algorithm, they can apply it successfully in most situations.
However, if they have not mastered an algorithm or have forgotten one
step, they have difficulty wnth even simple problems that might be solved
intuitively. -

The results reported in this section suggest that many students have
at best a superficial understanding of many mathematical concepts and
processes. Yet around 90 percent of the 13- and 17-year-olds felt that
developing understanding was an integral part of mathematics learning, as
evidenced by their agreement with the statement “Knowing why an answer
is correct is as important as getting the correct answer.” Their responses
may reflect their actual beliefs, or it may be that the statement was one
they had heard from their mathematics teachers and was perceived as the
expected response. The second alternative gains credence when considered
in contrast to the fact that around 90 percent of both older age groups
agreed that “There is always a rule to follow in solving mathematics prob-
lems.” The students may be concentrating on mastering rules to the extent
of ignoring concomitant understanding,
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Problem Solving

One of the consequences of learning mathematical skills rotely is that
students often cannot apply the learned skills to solve problems. In general,
NAERP results show that the majority of students at all age levels had diffi-
culty with any nonroutine problem that required some analysis. It appeared
that most students had not learned basic problem-solving skills, and at-
tempted instead to mechanically apply some mathematical calculation to’
whatever numbers were given in a problem.

A marked discrepancy was found between the results of solution of
routine and nonroutine problems. Students generally were successful in
solving routine ofie-step verbal problems such as those often found in text-
books. The results summarized in Figure II-4 are representative of student
performance on one-step verbal problems in which the main steps were
deciding whether to add, subtract, multiply, or divide and then performing
the calculation.

The verbal problem in Figure 4 was presented to 9- and 13-year-old
respondents without a calculator and to another group of 9-year-olds who
had a calculator available. A third set of respondents was presented the

Figure li-4. Multipte-Choice Subtraction Exercises

Exelrcise' Percent Responding
) Age 9 Age 13
/ Without With
< calculator | calculator
a) George has 352 anthmetic problems
to do for homework. !f he has done
178 problems; how many problems
does he have|left to do?
174 (corre¢t response) 38 70 82
530 6 8 1
) 6 0 1
Other sub{raction error 10 0 4
b) 352 |
-178 i
?
174 (corrLct response) 50 — 85
530 1 —_ 0
228 15 — 2
* Both are simllar to unreleased exercises.
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same subtraction calculation as a straight computation exercise. As with
all exercises on the assessment that required reading, the v rbal problems
were presented on an audiotape as well as written'in the exercise booklet.
By age 13, there was very littie differernce in students’ ability to solve the
verbal problem and their ability to perform the required calculation. Fur-
thermore, few students a#ither age level chose the wrong operation.

Although students could successfully solve most simple one-step
problems, they had a great deal of difficulty solving nonroutine or multi-
step problems. In fact, given a problem that required several steps or con-
tained extraneous information, students frequently attempted to apply a
single operation to the numbers given in the problem. Students’ difficulty
with problems that could not be solved with a single operation is illustrated
by the results summarized in Figure II-5. In spite of the fact that the prob-
lems involved calculations that were well within the students’ range of com-
putational skill, many were unable to solve either problem. In both prob-
lems, many students simply added or multiplied the numbers without
analyzing the problem. .

Students have not developed good problem-solving strategies. A basic
strategy that helps in analyzing certain types of problems is to draw a pic-

Figure 11-5. Multi-Step Problems

Percent Responding
Age 9 Age 13 Age 17

Exercise

a) Lemonade costs 95¢ for one 56 ounce
bottle. At the schoo! fair, Bob sold
cups holding 8 ounces for 20¢ each.
How much money did the school
make on each bottle?*

Correct response —_ 11 29

-§ Students added, subtracted, or
multiplied two of the numbers
given in the problem. — 40 25

b) Mr. Jones put a rectangular fence
all the way around his rectangular
garder.. The garden is ten feet long
and six feet wide. How many feet of
fencing did he use?

32 teet (correct response) 9 31 —-.
16 feet 59 38 —
60 feet 14 21 —

* Similar to an unreleased exercise.
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ture. A problem related to the second exercise in Figure II-5 was given to
another set of respondents. In this version, they were given a picture of the
rectangle and asked to find the distance around it. This variation in the
problem produced a difference of over 30 percentage points in the percent
of correct responses for both 9- and 13-year-olds. Since most students

_ could identify a rectangie as shown by results on a simple recognition ex-

ercise, many of them apparently did not apply their know!edge by drawing
a figure to help them solve the verbal problem. Instead, many of them
simply added or multiplied the two numbers given in the problem.

Another basic problem-solving strategy is to look for related prob-
I’ s that one knows how to solve to provide a method for solving the
given problem. The results for two closely related problems suggest that
students have difficulty transferring a solution method from one problem

" to even a closely related problem. Although most students could calculate

the area ot a rectangle, they were unable to recognize that a square simply
represented a special case of the rectangle. About half of the 13-year-olds

- and three-fourths of the 17-year-olds could calculate the area of a rec-

tangle, but only about 10-percent and 40 percent, respectively, could find
the area of a square.

NCTM recommends that the development of the ability to solve prob-
lems be a_major goal of school mathematics in the 1980s. The results of
the second NAEP mathematics assessment suggest that we are a long way
from achieving that goal. They also suggest a note of warning of how we
should not approach that goal. Providing more experience ‘with typical
textbook verbal problems, while helpful, it not an adequate response to the
recommendation. The assessment results indicate that in addition to teach-
ing how to solve simple one-step verbal problems, more emphasis should
be placed on nonroutine problems that require more than a simple applica- .
tion of a single arithmetic operayjon. Part of the cause of students’ difficulty
with nonroutine problems may Yesult from the fact, thak theig problem-
solving experience in school hag/been limited to: one-step jprablems that
can be solved by simply adding¢ subtracting, multiplying, or dividing. The
assessment results indicate that students have refatively “little difficulty
solving problems that only require them to choose the correct operation.
In fact, their difficulties wi... nonroutine problems seem to result from their
interpretation that problem solving simply involves thoosing the appro-
priate arithmetic operauon and applying it to the numbers given m the
problem.

Instruction that reinforces this simplistic approach to problem solv-
ing may contribute to students’ difficulty in solving unfamiliar problems.

" Although it may be argued that children must learn to solve simple one-

step problems before they can have any hope of solving more complex
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problems, an overemphasis on one-step problems may only teach children
how to routinely solve this type of problem. It may aiso teach them that
they do not have to think about problems or analyze them in any detail.

Techniques designed to give children success with simple one-step
problems that do not generalize to more complex problems may be
counter-productive. For example, focusing on key words that are generally
associated with a given operation provides a crutch upon which children
may corr * to rely. Such an approach provides no foundation for develnp-
ing skills for solving unfamiliar problems. Simple one-step probléms may
provide a basis for developing problem-solving skills, but only if they
are approached as true problem-solving situations in which students are
asked to think about the problem and develop a plan for solving it based
upon the data given in the problem and the unknown they are asked to
find.

Students need to learn howtq analyze problem situations through

. instruction that encourages them to tﬁig(kabout problems and helps them

to develop good problem-solving strategies. Students need ample oppor-

tunity to engage in problem-solving activity. If problem solving is re-

garded as secondary to learning certain basic computational skills, many

- students are going to be poor problem solvers. Additional discussion of

implications of the NAEP results for problem solving at the elementary

and secondary levels can be found in Carpenter and others (1980a,
1980d). )

Continued Development of Mathematical Skills

Although problem solving and many noncomputztional skills clearly
require an increased emphasis in the curriculum, we do not deny the
importance of computational skills. A reasonable level of computational
skill is required for problem sblving. We are Suggesting, however, that
problem solving not be deférred unfil computational skills are mastered.
Problem solving and the learning of more advanced skills reinforce the
learning of computational skills and provide meaning for their application.

It is important to recognize that most computational skills are learned
over an extended period of time. The results summarized in Figure II-6
suggest that most skil¥s are mastered after their period of primary emphasis
- in the curriculum. For example, even though a goal of most mathematics
problems is that students learn to subtract by age 9, there was signifi-
cant improvement in performance on subtraction exercises from age 9
to 13 and there was even some improvement between ages 13 and 17.
Furthermore, many fundamental errors also disappe r as students pro-
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gress in school. Although over 30 percent of the 9-year-olds subtracted
the smaller digit from the larger in a subtraction exercise that required
regrouping, only 5 percent of the 13-year-olds and 1 percent of the
17-year-olds committed this error.

Figure 11-6. Improvement in Performance by Age

Probl Percent Correct
roblem Age 9 Age 13 Age 17
a) Basic subtraction facts 79 93 95
b) Three-digit subtraction 50 85 92
c) 4/12+3/12=17 - 74 90
d 1/2+1/3=17 _ 33 66

These results have profound implications for minimum competency
programs. Rigid minimum competency programs which hold children
back until they have demonstrated mastery of a given set of skills may,
in fact, be depriving them of the very experiences that would lead to
mastery of the particular skills.

Although some skills will continue to develop through use in other
contexts, this is not always the case. The current high school curriculum
does not take into account that many basic skills are not well-developed
by the time students begin instruction in algebra and geometry. For
example, very few 13- and 17-year-olds_have mastered percent concepts
or skills, but outside of general mathematics classes, there is very little
opportunity for high school students to extend or maintain their knowl-
edge of percent.

Implications of Calculators for Téaching Computational Skills

Over 85 percent of the 17-year-olds in the assessment indicated that
they had access to a caiculator. This availability of calculators would seem
to have profound * aplications for the appropriate level of emphasis that
computation should receive and the types of algorithms we should teach.

In spite of the extensive instruction provided on whole number
division, only half of the students assessed were reasonably proficient in
division by the time they were ready to graduate from high school. With a
calculator, however, over 50 percent of the 9-year-olds and over 90
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percent of the 17-year-olds could divide accurately. This raises some
serious questions as to whether the time spent drilling on division is a
productive use of time and effort that might otherwise be devoted to other
topics. Certainly, it is clear that our current approach to teaching division
is not effective for a substantial number of students.

The division algorithm as well as most of the other algorithms that
we teach in school are designed to produce rapid, accurate calculation
procedures. Given the widespread availability of hand calculators, it would
seem that the continued emphasis on developing facility with computation
algorithms should not be as high a priority as it was formerly. Certainly,
computation is importani; but what is needed are algorithms that students
will remember and will be able to generalize to new situations. This brings
as back to the issue of understanding. Students are more likely to remem-
ber and be able to generalize and apply algorithms if they understand how
the algorithms work. Thus, it may be appropriate to begin to shift to
computational algorithms that can be more easily understood than the
ones currently faught, even if they are less efficient.

The results for the following problem illustrate the potential impact
of calculators on our thinking about computation:

A man has 1,310 baseballs to pack in boxes which hold 24 baseballs each.
How many|baseballs ~ ;' be left over after the man has filled as many boxes

Students had ore difficulty solving this problem with a calculator than
without usifig a calculator. Twenty-nine percent of the 13-year-olds
correctly sdived this problem without a calculator whi'e only 6 percent
of the 13-ypar-olds -vho had a calculator were successful. Students also
had more fifficulty co ~paring and ordering 2 set of fractions with a
calculator than th=v Aid without one They apparently did not understand
iohs can also be thought of as quotients, which allows one to
em as decimals that are relatively easy to order. These results
t students have rigid ways of thinking about numbers and
rations. Calculators sometimes require alternative mterpretatnons and
equire that students have a deeper understanding of numbers and how
the operations work.

Calculators also place an increased importance on estimation skills
and alertness to reasonableness of results. The results of one exercise
given to 13- and 17-year-olds illustrate the importance of this skill and
the gross errors that can occur when students using a calculator are oblivi-
ous to the reasonableness of a result. Students were asked to divide
7 by 13 using a calculator. About 20 percent of the 13- and 17-year-olds
chose the response 5384615 rather than 0.5384615.
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Participation in Mathematics Courses

MatF+matics learning is a continuous process that encompasses the
entire 12 years of elementary and secondary school. Many, if not most,
basic skills are not mastered by age 13 and must be reinforced and
developed as part of tae high school curriculum. Consequently, if we are
going to significantly iinprove the mathematics performance of high school
graduates, we must ensure that they coatinue tc take mathematics through-
out their high school program. The NCTM (1980) has proposed that at
least three years of mathematics should be required of all students in
grades 9 through 12, The assessment background data summarized in

Figure II-7 indicate that we are currently far short of that goal.

Figure I1-7. Mathematics Courses Taken by 17-Year-Oids

Percent having completed at

Course loast V2 yoar
General or Business Mathematics 48
Pre-Aigebra 46
Algebra | 72
Geometry 51
Algebra i 37
Trigonometry 13
Pre-Caiculus/Calculus 4
Computer Programming 5

Student Perceptions of Mathematics Classes

Among the recommendations of NCTM for the curriculum of the
1980s are several statements that indicate a need for teachers to encourage
experimentation and exploration by students as part of the requisite
atmosphere that encourages problem solving. Included is a call for
teachers to “provide ample opportunities for students to learn communi-
cation skills in mathematics” (NCTM, 1980, p. 8) in both reading and
talking about mathematics, and a recommendation to teachers to incor-
porate “diverse instructional strategies, materials, and resources, such as—
individual or small group work as wel: as large group work; . . . the use
of manipulatives (where appropriate); . . . the use of materials and refer-
ences outside the classroom™ (pp. 12-13). The implication from these
recommendations is that mathematics teachers should provide opportuni-
ties for their students to be actively involved in learning and communicat-
ing mathematics.
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One set of exercises attemptec to assess how often students engage
in different activities in mathematics classes. Students were presented
with a list of classroom activiies and asked to rate them in terms of how
often they thought the activities occurred in their mathematics class. The
activities may be described as student-centered, teacher-centered, class-
mate-centered, and “other,” which included activities requiring active stu-
dent involvement such as using manipulative objects.

Figure iI-8. Ratings of Frequency of Selected Classroom Activities

Activity Percent Responding
Age Often | Sometimes | Never
Student-centered
9 44 46 9
Mathematics tests 13 61 37 1
17 63 33 3
9 43 45 12
Mathematics homework 13 87 29 3
17 57 38 6
Worked mathematics 1: ;} sg ;
probiems alone 17 80 19 1
- Worked mathematics 1: gg ; ;
. ‘ probiems on the board 17 27 0 13
Used a mathematics 1;9; ;‘:’ }2 g
textbook
17 87 11 3
Worksheets 9 71 27 2
Teacher-centered -
Listened to the teacher 9 85 11 3
explain a mathematics 13 81 16 2
lesson 17 78 19 2
Watched the teacher work 9 78 19 4
mathematics problems on 13 76 21 2
- the board 17 79 18 3
Received individua! help 9 21 87 1",
from the teacher on 13 17 71 10
mathematics 17 18 70 11
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Figure 1I-8 lists the frequency ratings on the student- and teacher-
centered activities. Table headings represent fesponse options for 13- and
17-year-olds to the question “How often have you done these activities
in your mathematics classes?”; options for the 9-year-olds were “‘a lot,”
“a little,” and “never.” As the table shows, most students reported that
they spent a lot of time listening to and watching the teacher work and
explain mathematics problems. They also reported that they spent a lot
of time working alone on mathematics problems from the textbook and,
for the 9-year-olds, also from worksheets. The percentages of frequency
assigned to these activities were the highest for any of the group of
activities. ’

As a group, the classmate-centered and “oiher” activities received
the highest percentages of *“never” ratings for all age groups. Among the
classmate-centered activities, around half of all age groups said that
discussing mathematics in class occurred often; around 60 percent of the
9-year olds and 75 percent of the 13- and 17-year-olds said they some-
times gave help to or received help from their classmates in mathematics.
Thirty-five, 44, and 28 percent of the 9-, 13-, and 17-year-olds, respec-
tively, said they never worked mathematics problems with small groups
of students.

Most of the older students said they had never made reports or done
projects in mathematics classes, and over two-thirds of the 9-year-olds
and three-fourths of the older respondents said they .had never done
mathematics laboratory activities. Further, over half of the 9-year-olds
said they had never used objects like counters, rods, or scales in mathe-
matics classes.

These National Assessment results show that students perceive their
role in the mathematics classroom to be primarily passive. They are to
sit and listen and watch the teackier do the problems; the rest of the time
is to be spent working on an individual basis on problems from the text
or from worksheets. They feel they have little opportunity to interact with -
their classmatés about the mathematics being studied, to work on explora-
tory activities, or to work with manipulatives.

An attempt to evaluate the implications of these results for the
curriculum of the 1980s leads directly to the issue of the extent of student
involvement in the learning process. The results suggest that the current
situation, at least from the students’ point of view, is one in which mathe-
matics instruction is “show and tell” on the teacher’s part, “listen and do”
for the students. Students’ perception of their involvement is in direct
contrast to the recommendations of NCTM. If active student involve-
ment in mathematics learning is as desirable and sought after as the NCTM
recommendations imply, then changes in approaches to teaching mathe-
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matics that will foster and encoura'ge that involvement must be imple-

Closing Thoughts -

Undoubtedly, it will take at least the entire decade to make signifi-
cant progress in fully implementing NCTM's recommendations for the
80s. Thus, these recommendations represent goals to strive to achieve
by the end of the decade.

The National Assessment results provide one measure of where we
are at the beginning of the decade. They also suggest that the develop-
ment of routine computational skills has been the dominant focus of the
school mathematics curriculum, and that the development of problem-
- solving skills has been inadequate.

Although we are a long way from the kind of program envisioned
in the NCTM recommendations, the assessment results provide some
basis for cautious optimism. It is probably fair to say that the focus of
mathematics instruction has been on computation. There is evidence that
students are learning what they are being taught. There is also evidence
that curricular reforms can have some impact. On exercises that measured
change in performance from the first assessment, there were significant
gains of 10 to 20 percentage points on exercises that dealt with metric
measurement. These results appear to reflect the increased emphasis on
metric measurement in the curriculum over that period of time.

Improved student performance in mathematics is a goal that demands
the combined efforts of many people. The results presented here have
shown that there is room for much improvement, but there is hope that if
we can reorganize the mathematics curriculum to address the NCTM
recommendations, students’ performance will respond accordingly.
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Response

Diana Wearne

The National Assessment of Edu-
tional Progress has provided a
wealth of information about the
mathematics achievement of ele-
mentary and secondary students.
Carpenter and his colleagues de-
rived a number of significant con-
clusions from the NAEP data about
studenty’ current level of achieve-
ment and have offered several note-
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worthy suggestions for improving
school mathematics programs.
Interpreting the results of any
test is difficult, particularly when
the test is of the magnitude of
National Assessment. Several cau-
tions must be exercised in reading
reports, some of which are: (1)
selections of specific items to inter-
pret may affect the conclusions; (2)




.

items may not assess the stated ob-
jectives; and (3) implications of
results may depend on value judg-
ments about the educational impor-
tance of individual items.

Whenever sets of items are dis-

_cussed and it is not possible for the
reader to see all of the items (the
NAEP tests had between 250 and
430 items at any age level), there
exists the possibility that analyzing
different sets of items may le
different conclusions. The authors
of the chapter were careful to cau-
ticn readers as to this possibility.

It is difficult to err in constructing
items that assess computation; how-
ever, assessing less specific and de-
finable objectives can be difficult. In
an effort to assess teaching methods,
students were asked to indicate how
often they had participated in spe-
cific categories of activities, but not
the nature or characteristics of the
activities. Some 43 percent of the
%year-olds indicated they often had
homework. The homework could
have consisted of a page of compu-
tation or it could have involved

_searching for information to record,
" organize, and use the following day
in graphing activities. These are
distinctly different types of home-
work and it is impossible to deter-
mine what percentage was of each
type.

It also is possible the students’
perceptions of how rauch time was
devoted to a given topic or activity
were confounded by their attitudes.
‘A 13-year-old who, is assigned
homework once a week but dislikes
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it may feel he or she is always hav-
ing to do homework. A student who
has not been in a mathematics
course for a year or more may
remember only the activities that
were especially pleasant or distaste-
ful.

Two-thirds of the 9-year-olds re-
ported they had never participated
in mathematics laboratory activities.
Some students may have been in-
volved in such activities but did not
alize it. For instance, children in-
voNgd in measurement activities de-
to yield numbers for com-
may not have considered
laboratory activity. Half of
ar-olds indicated they had

nipulative$“out called them by other
names, such as “‘popsicle sticks.” A
child who was involved in an ac-

. tivity for only a portion of the class

time and who also completed a
workbook page may have responded
that textbooks were used always or
ofter. :
Another possible misinterpreta-
tion of the test results relates to the
time at which the tests were admin-
istered. Carpenter and others cite
the data in Table 20 as evidence
that “we are currently far short” of
the goal of three years of mathe-
matics for all students in grades
9-12. When the tests were admin-
istered in March or April, 72 per-
cent of the 17-year-olds were in the
eleventh grade. Somne of those stu-
dents undoubtedly enrolled in a
mathemativs course in their senior
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year, increasing the actual percent-
age of students who took more
advanced courses durmg their high
school career.

On another topic, the authors
caution against giving too much em-
phasis to one-step application prob-
lems. That may be good advice
from a problem-solving point of
view, but one-step problems give

- meaning to mathematical opera-
tions where it may otherwise be
lacking, as apparently is the case
with fractions. ¥oung children un-
derstand addition and subtraction
within 2 verbal, one-step problem
context before they develop mean-
ing for the symbolic representation.!
Perhaps a similar link between ver-
bal problem situations and their
symbolic representations would help
children develop meaning for other
operations (multiplication and divi-
sion) and other kinds of numbers
fractions, negative numbers). The
one-step problems should force chil-
dren to think about the meaning of
the operations in the verbal context
and should not be solved as a series
of routine calculations.

} Carpenter, T. P. “The Effect of In-
struction on First-Grade Children’s Initial
Solution Processes fur Basic Addition
and Subtraction Problems.” Paper pre-
sented at the annyal meeting of the
American Educational Research Associa-
tion, Boston, April 1980.
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Carpenter and others have
_painted both a pessimistic and an
“optimistic picture of mathematics
learning in the United States. It is
pessimistic because it shows what
students are not learning but opti-
mistic because it shows that positive
changes have taken place. Citing im-
proved performance in metric meas-
urement because of added emphasis
to this topic since the previous as-
sessment, the authors say that pin-
pointing deficiencies may result in
further improvement in student per-
formance. I am not as optimistic.

The pressure to include metric
m:asurement in textbooks came -
both from inside and outside the
mathematics community and change
was relatively easy to affect. Im-
proving problem-solving skills is
much more complex. Redesigning
textbooks so they develop under-
standing and involve students in
problem-solving activities is more
than a cosmetic change of including
a few additional pages in a book.
And needed changes on the part of
teachers and administrators are even
more difficult to achieve.

One reason for cautious optimism
may be the number of well-attended
sessionis on problem solving at re-
gional and national meetings. Per-
haps teachers’ interest and continu-
ing emphasis on this important topic
by-organizations will bring improved
problem-solving performance on the
next National Assessment.



I Children’s
- Thinking

e James Hiebert

Educators and psychologists have long been interested in children’s ability
to deal with mathematical tasks. Since the traditional research approach
has focused on the outcomes of children’s performance, investigations are
often designed to determine the effects of certain external conditions on
these outcomes. For example, a typical research study might investigate
the effects of two different methods of instruction on whole number addi-

. tion by comparing the number of correct responses on an addition test after
instruction. The answers children give are used to infer something about
the effectiveness of the external conditions under which the concepts were
learned.

In contrast to the concern with conditions outside of the learner and
the focus on performance outcomes, several lines of current research are
looking directly at the processes children use to solve mathematical prob-
lems. Consistent with current trends in cognitive psychology, this research
focuses on the things that occur inside the child’s head. Of course, we can- .
not actually see inside the mind, so many of the conclusions are based on
inference. But the strategies or processes children use provide a window on
their thinking. In some areas, where research efforts have been quite inten-
sive in recent years, it is possible to paint a reasonably good picture of
children’s thinking.

There are two levels at which this type of research on children’s
mathematical thinking has been carried out. One is an underlying, funda-

Preparation of this chapter was supported in part by a Summer Faculty Research
Fellowship, Graduate School, University of Kentucky. The author thanks Thomas
P. Carpenter, Elizabeth Fennema, and Thomas A. Romberg for their comments on
an earlier draft.
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mental level concerned wifh general principles of thinking and iearning.
At this level, research focuses on basic cognitive processes that potentially
are involved in dealing with a-wide range of mathematical situations.
Piaget’s work is of this kind. The second level deals with processes that are
specific to similar types of mathematical problems. Of primary interest are
the strategies that children use to-solve a given class of problems. Detailed
descriptions are given of what childrer. do when they solve lincar measure-
ment problems, when they add two whole numbers, when they reduce
fractions, or when they solve any other specific typs of mathematical prob-
lem.

In this chapter we will review and synthesize some of the research at
each of these two levels, and look at how the research findings might be
used in the design of better instructional programs. Piaget’s work and some
recent developments in information processing theory provide the basis for
the review of zeneral cognitive processes. Several areas of résearch could
be used as example . of the work on more specific mathematical processes.
Research on early number concepts and initial arithmetic operations was
selected for this review. Children’s thinking in this area has received much
attention in recent years and the work nicely illustrates this research per-
spective. It is important to note that this chapter will only saniple from the
existing research on children’s thinking. Readers may also wish to consult
other reviews of children’s mathematical thinking that are either more
extensive, focus on other content, or have been written from a different
perspective (for example, Brainerd, 1979; Carpenter, 1976, 1979; Lesh
and Mierkiewicz, 1978; Shumway, 1980).

General Cognitive Processes “ )

An abundance of research has been carried out within the past decade
in an attempt to uncover relationships between various cognitive processes
and performance on mathematical tasks. Two types of cognitive processes
have appeared to be most closely related to mathematics learning and have
dominated the research in. this area. These are the logical reasoning abili-
ties described by Piaget, and information processing capacity, as character-
ized by recent work in cognitive psychology (Campione and Brown, 1979;
Case, 19782, 978b). - :

Logical Reasoning Abilities

In siudying how children aEquire knowledge and learn about the
world, Piaget and associates (Piaget, 1952; Piaget, Inhelder, and Szemin-
ska, 1960) looked very closely at children’s thinking. They found many
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things that surprised them. If they laid out one row of candies and the
child laid out a secoad row with the same number of candies, and then
they spread the candies in one of the rows, the child would respond that
now the longer row had more candies. Through continued observations of
children, Piaget discovered that this response was typical of all young
children. Before a certain age (usually around five or six years)- children
do not conserve number, that is, they do not recognize that moving the
objects in a set has no effect on the number of objects the set contains.
After finding similar nonconservation responses on tasks with other quan-
tities, such as length and area, Piaget concluded that conservation is a hall-
mark in the development of logical reasoning. It represents a fundamenal
difference between children’s thinking and adults’ thinking.

- Educators and psychologists have pointed out that the logical reason-
ing abilities identified by Piaget, such as conservation, may be essential for
solving a variety of mathematical problems (Elkind, 1976; Lesh, 1973).
An analysis of many mathematical tasks shows that these abilities seem to
be logical prerequisities. For example, solving a simple addition or sub-
traction problem using concrete objects involves moving the objects about
and regrouping thiem in various ways. Many of the strategies involve trans-
formations on objects that logically presuppose the ability to conserve
number. A similar analysis, applied to a variety of measurement tasks, sug-
gests that conservation of length may be required to learn foundational
concepts of measurement. -

While the prerequisite relationships between conservation and learn- -

ing related mathematical concepts seem quite logical from an adult per-
spective, they have been difficult to document with children. Recent history
has recorded a continuing debate among researchers about the importance
of conservation for.learning mathematics. Many of the early studies found
a general relationship between passing conservation tasks and scoring well
on mathematics achievement tests, but some conflicting evidence was also
xeported. In many ways this early research raised as many questions as it
answered (Carpenter, 1980). Recently, investigators have become’ more
sophisticated in their approach to this problem and have resolved many of
the previous questions. The success of these studies is due in part to the
fact that most of them have focused on specific mathematical concepts
rather than on general achievement; some have followed children’s prog-

. ress over a carefully designed instructional sequence; and many have con-

sidered the processes childrer use to solve problems rather than looking
only at correct and incorrect responses. These methodological improve-
ments have helped to illuminate the role of conservation in children’s abil-
ity to learn mathematics.
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Arithmetic and measurement have provided the arena for much of
the retent research on the relationship between conservation and mathe-
matics learning. Several initial studies reported a significant rulationship
between number conservation and periormance on certain kinds of addi-
tion and subtraction problems (LeBlanc, 1971; Sohns, 1974; Steffe, 1970,
Stefle and Johnson, 1971). But no clear pattern emerged that might sug-
zest which arithmetic problems depend on conservation and which do not.
More recent studies have provided at least a partial answer to this ques-
tion. Mpiangu and Gentile (1975) taught kindergarten children a variety
~ simple counting and number skills, and found that nonconservers gained
as much from the instruction as conservers. Although the conservers per-
formed moré¢ successfully than nonconservers, both before and after in-
struction, their equal gains led to the conclusion that conservation is not
needed {0 learn arithmetic skills.

A later study by Steffe and others (1976) confirmed that noncon-
servers can learn simple skills but their results suggest that conservation
may be important for solving more complex arithmetic problems. After
several months of instruction on various counting strategies, nonconservers
had trouble applying them to solve missing addend problems, while con-
servers were.quite successful. Steffe and others argue that conservation is
ot needed to complete addition and. subtraction problems that can be
solved with simple counting skills, but it is important for understanding
the more complex problems, like those with missing addends.

A study with first-grade children by Hiebert and others (1980) pro-
vides further evidence that nonconservers can solve a variety of verbal
arithmetic problems. While there were significant differences in the ac-
curacy with which conservers and nonconservers solved some of the prob-
lems, there were, for each problem type (addition, subtraction, and missing
addend), a number of nonconservers who responded correctly. Further-
more, each kind of solution strategy was used by at least some noncon-
serving children. In fact, the frequency with which nonconservers applied
the more advanced stratcgies did not differ significantly from their con-
serving peers. The picture that emerges from these results, along with those
of previous studies, is that conservation is not needed to learn elementary
counting skills nor to solve simple verbal or symbolic iddition and sub-
traction problems. While it may facilitate performance on missing addend
problems there is good reason to believe that it is not a prerequisite.

. Research on children’s learning of measurement yields results that are
similar to those for arithmetic. Several studies nave investigated the se-
quence in which a variety of measurement concepts are acquired. If the
ability to conserve is needed to learn certain concepts or skills, then one
would expect successful performance on a conservation task to precede
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mastery of the concept or skill tasks. Apparently this sequen.c does occur
for measurement tasks that assess children’s understanding of the inverse
relationship between unit size and unit number, that is, the fact that more
units are needed to measure a given quantity if they are small than if they
are large (Bradbard, 1978; Carpenter, 1975; Hatano and Ito, 1965; Wohl-

" will, 1970). However, there are many measurement skilis that precede the
appearance of conservation. This group included: (1) the ability to iterate
units, ¢.g., move a single. unit across a surface to measure its length (Brad-
bard, 1978); (2) proficiency in applying standard measurement tech-
niques, such as using a ruler to measure length (Hatano and Ito, 1965);
and (3) the ability to attend to the number of units measured and infer
that the quantity which measured the most units is the largest (Carpenter,
1975, Wagman, 1975).

» The results of these studies show that nonconservers learn a variety
of measurement skills, but they do not indicate what the limits of this
learning might be. To obtain this information, Hiebert (1981) instructed
length conserving and nonconserving first-grade children on several basic
concepts of linear measurement. At least some nonconservers learned each

- of the concepts and skills except one—using the inverse relationship be-
tween unit number and unit size to construct a length. On all tasks but this
one, nonconservers used the same kind of solution strategies as their de-
velopmentally advanced peers—Apparently conservation is a true prereq-
uisite for this one concept of measurement, but is not needed to master
many other measurement concepts.

The argument for using conservation as a readiness measure for in-
struction is based on the assumption that conservation is a prerequisite for
learning various mathematical concepts or skills. Since conservation is not
easily taught, and since it presumably represents a fundamental logical
reasoning ability, it may be better to postpone instruction on these con-
cepts until the reasoning ability develops. That’s the logical argument. Its
validity obviously rests with being able to establish empirically that certain
mathematical tasks do, in fact, require conservation to solve them.

The research reviewed here focused on the role of conservation in
learning initial arithmetic and measurement concepts. The evidence sug-
gests that conservation tasks are of limited value as readiness measures for
instruction on these concepts. Except for the concept of the inverse rela-
tionship between unit number and unit size in measurement situations,
conservation does not seem to be essential for learning to solve school
mathematics tasks. There are simply too many children who fail the con-
servation tasks and perform successfully on the mathc matics tasks.

The problem is that even though conservation is a logical prerequisite
for completing many arithmetic and measurement tasks, children do not
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seem to use conservation knowledge when they solve the tasks. Children’s
solution procedures are different than the structural logic of the problem.
They move and regroup objects to solve a simple addition problem and do
not think to ask the conservation question; they simply count the objects
to find the answer. They move a unit to measure the length of an object
and do not worry abouc whether the length of the unit is being conserved.
Children seem to focus only on the question at hand and do not recognize
that conservation provides an essential logical foundatlon for the task.
Simple skills, such as counting, apparently allow children to bypass the
logical structure of many mathematical tasks.

Conservation is not the only reasoning process described by Piaget
that potentially affects mathematics learning. Transitive inference and var-
ious classification skills are also believed to be fundamental thought proc-
esscs that support the acquisition of many mathematical concepts (Piaget,
1952; Piaget and others, 1960). However, here too the available research
evidence suggests that these abilities are not prerequisites for dealing suc-
cessfully with logically related mathematics tasks (Hiebert, 1981; Hiebert
and others, 1980; Sohns, 1974; Steffe and others, 1976). Researchers may
be more successful in establishing relationships between the more ad-
vanced, formal reasoning processes in Piaget's theory and the mathematics
learning of adolescents (Adi, 1978; Carpenter, 1980). Many of the school
mathematics tasks at this level seem to involve directly the abstract reason-
ing skills measured by the formal reasoning Piagetian tasks. However, so
little research has been done at this level that it would be inappropriate to
speculate on the nature of these relationships.

Information Processing

The basic notions of information processing theory grew out of a con-
certed attempt to describe what the learner actually does when solving a
problem or acquiring a new skill. The objective is to describe how the
learner processes information, and then to use these descriptions to build
models of the human information processing system. Many times these
models are precise enough so that they can be written in computer lan-
guage. In this case the validity of the model can be checked by giving the
computer and a student the same problem and observing how closely the
computer simulates the performance of the student. The value of building
these models is that a great deal of thought must be given to detail the
processes that are used to solve a particular problem. Computers don’t
work well unless they are programmed with precision. Consequently, the
models help to identify some of the critical points in the thinking process.
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Most information processing models include three important features.
One is a component labeled working or short-term memory. This is the
center of all thinking or information processing. It has a limited capacity,
which is usually described in terms of the number of separate pieces of
information that can be processed at the same time. A second feature of
most models is a description of the processes that could be used to solve
a given class of problems. If computer simulations arc developed, these
processes are described in great detail. A third feature of recent models is
a planning and organizing function which serves to oversee the actual
processing of information. The so-called meta-cognitive -processes include
plans and strategies to decide what pieces of information to focus on at
any one time, how to organize the information so that it can be processed
most efficiently, and which of all available strategies can best solve the
problem. While the first feature of the model is concerned primarily with
the limits of the system, the second and third have focused more on its
capabilities. ’

Capacity Limitations on Learning. Short-term memory is a critical part
of the information processing system because there is a definite limit on the
number of information bits that can be handled simultaneously. Try adding
275 and 468 in your head without referring back to the numbers. Even
though you krow ail the rules for completing this simple problem it prob-
ably puts some strain on your information processing system. If you made
a mistake in computing the answer you can probably put the blame on
insufficient short-term memory capacity. Children experience even greater
difficulty with these kinds of problems because they have a more restricted
capacity. Young children can process only about one-fourth to one-half
the number of information pieces that adults can handle.

Some researchers have suggested that children’s restricted processing
capacity has considerable consequences for the curriculum because it may
place severe constraints on children’s ability to profit from instruction.
Instructional tasks require children to receive, encode, and integrate infor-
mation. In many cases, children may possess all of the necessary skills for
a particular task and still fail the task. The reason for this failure may be
children’s restricted capacity to deal with all of the information needed to
complete the task (Case, 1975).

The research to date has shown that information processing capacity

_ does constrain children’s learning to a predictable degree on specially-
designed laboratory tasks (Case, 1974). However, it has been more diffi-
cult to isolate the effects of this capacity on school mathematics tasks (Hie-
bert, 1981; Hiebert and others, 1980). Recent work in this area suggests
that part of the problem in identifying capacity constraints lies in develop-
ing valid and reliable measures of processing capacity (Romberg and Col-
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. lis, 1980a, 1980b). Some progress is being made in constructing measures
but their application to instructional settings is still far from being realized.

Processes and Mets-Processes. Although it is reasonable to think that
certain underlying cognitive capacities are needed to learn mathematics,
and that an insufficient capacity would limit children’s learning, the re-
search on what children cannor learn has not been very productive. Re-
cently, a number of investigators have begun looking at the general cogni-
tive processes children do have, and the ones they are capable of learning.
These include both the processes. that are used to solve problems, and the
meta-processes that serve to select and monitor the execution of specific
procedures. While short-term memory capacity develops with maturity and
cannot be readily improved by specific training, the processes of the system
are influenced by instruction. Individuals can be taught strategies that
process information more efficiently and push back the limits that might
otherwise be imposed by their restricted processing capacity (Brown, 1978;
Brown and others, 1981}, .

It is too early to tell what implications the research in this area might
have for the mathematics curriculum. However, several characteristics of
this approach are already being used with impressive success to study chil-
dren’s thinking in mathematical situations. One important characteristic of
this approach is the emphasis on the proficiencies children have. Children
are viewed as capable thinkers who have at least the rudiments of effective
problem solving. The assumption is that the things children do make sense
to them, and attempts are made to describe in detail, from the children’s
perspective, the processes they use to deal with information.

A second important characteristic of the recent infc:maticn process-
ing approach is the concern with careful task analyses. Children may per-
form quite differently on several tasks measuring the same concept because
of differences in task format, the type of response required, or other task
variables. Children’s real competencies may be hidden by irrelevant task
variables. Understanding the task is essential for understanding the proc-
esses children use to solve the task. Therefore, a variety of task analysis
procedures are used to describe the underlying structure of tasks as well as
surface characteristics that may affect performance.

A third significant characteristic of recent rescarch in information
processing is the focus on local, rather than global, processes. It has been
very difficult to find generai principles of learning and thinking that apply
to a wide variety of situations. Recognizing this problem, researchers are
turning their attention to specific processes that are used on a well-defined
set of similar tasks. They believe that it is more productive at this point to
describe in detail the particular strategies that are used to solve a homo-



CHILDREN'S THINKING 49

geneous class of problems than to continue searching for general processes
that are involved in a wide range of problems.

Children’s Thinking About Number and Arithmetic Concepts

One line of research within the mathematics education community
that has successfully applied the general research perspective arising from
the information processmg approach’is the study of number and arithmetic
concepts. Recent work in this area has been directed toward describing
what young children know about number and arithmetic operations, even
before they receive formal instruction; how task variables affect their per-
formance; and what strategies they use to solve different types of arithmetic
problems. Although the picture is not yet complete, we are able to describe
some important pieces of children’s thinking in this area. Consequently,
this line of research was selected as an example of current research on chil-
dren’s mathematical thinking. For discussions of research in other.areas of
mathematics learning and thinking see recent reviews edited by Shumway
(1980), Lesh and Mierkiewicz (1978), and Lesh and others (1979).

Development of Early Number Concepts

Children achieve an initial concept of number through counting. Al-
though this conclusion may seem obvious to those who have observed
young children answer questions of sow many?, a series of recent studies
has shown how important, and how complex, the counting process is.
* Fuson (1979, 1980; Fuson and Mierkiewicz, 1980) and Stefle (Steffe and
others, 1976; Steffe and Thompson, 1979) trace the development of chil-
dren’s ability to count from when they first verbalize a string of number
words {0 the point where they can use efficient counting techniques to solve
a variety of arithmeti¢ problems. An analysis of the counting act shows
that a process as simple as finding “how many” objects there are in a set
involves the dordination of several separate actions: saying the number
word string beginning with one, and pointing to a different object as each
number word is spoken.

As children’s counting proficiencies continue to develop, two major
breakthroughs can be identified. The first occurs when children begin to
establish relations among the counting words rather than producing the

. number word string as a single unit. A symptom of this new facility is that

children can now count forward from a number other than one, or count
back from a given number. They can give the number that comes just
before, or just after, a number witkout counting from one. A second sig-
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-~

nificant advance occurs when children recognize that the number words
themseives can be used as the objects of counting. This new realization
substantially increases the power of the counting process in salving prob-
lems. For example, children can now count on to find the number that is
5 more than 8 by counting the number words after 8 and stopping at the
fifth one. This represents a change in what is counted. Concrete objects are
no longer needed as coupters; number words can serve as the unit items.
The act of counting rests upon several important principles. Described
in detail by Gelman and Gallistel (1978), they include the fact that each
object to be counted must be assigned one and only one number word, that
the same number list must be used every time a set of objects is counted,
that the last number word gives the numerosity of the set, and that the
order in which the objects are counted does not matter. Gelman (1977,
1978; Gelman and Gallistel, 1978) argues that counting is a natural proc-
ess for young children, and that before entering school they already under-
stand these principles. According to Gelman, learning how to count is
primarily a matter of learning the standard number words (one, two,
three . . .) and applying the principles to larger and larger numbers.

Development of Addition and Subtraction Concepts

Along with their counting skills, many preschool children develop
some sound, intuitive ideas about arithmetic operations. For example, by
four years of age, most children understand that addition increases numer-
osity and subtraction decreases numerosity, even though they may have
trouble calculating the numerical outcome of the increase or decrease
(Brush, 1978). If the sets are small enough so young children can count
them, many children also seem to recognize that addition and subtraction
are inverse operations in the serise that the effect of one ‘cancels the effect
of the other, and that, if trying to keep two sets equivalent, adding objects
to one set can be compensated for by adding objects to the other set (Gel-
man and Gallistel, 1978; Gelman and Starkey, 1979). These intuitive
notions, together with effective counting skills, provide children with a
significant fund of knowledge with which to begin school.

Children’s interpretations of arithmetic progress as they receive in-
struction, but in the first few years this progress appears to be closely tied
to the development of their counting abijities. Ginsburg (1977b) believes
that counting is so important for children that even after formal instruc-
tion “‘the great majority of young children interpret arithmetic as count-
ing” (p. 13). It is certainly true that before children learn basic addition
and subtraction facts they solve arithmetic problems by counting. A series
of studies at the Wisconsin Research and Development Center for Indi-
vidualized Schooling (Carpenter and others, 1981; Carpenter and Moser,
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1979) and at the Pittsburgh Learning Research and Development Center
(Heller and Greeno, 1979; Riley and Greeno, 1978) have shown that first-
grade children, even before receiving instruction, can solve verbal addition
and subtraction problems by applying appropriate counting strategies. Fur-
thermore, they do not use the same strategy to solve every problem, but
have available a rich repertoire of strategies and use different strategies to
solve different types of problems.

One objective of this research has been to determine what factors
affect the kinds of strategies that children use to solve different types of
verbal addition and subtraction problems. The one factor that consistently
stands out as the most significant in this regard is the type of action or
relationship between the sets described in the problem (Carpenter and
others, 1981a; Riley and Greeno, 1978). The importance of this “semantic
structure” is best explained by considering several sample problems. The
following problems are all solvable by subtracting the smaller number from
the larger: (1) John has 8 apples. He gave 5 apples to Mary. How many
apples does John have left? (2) John has 5 apples. Mary gave him some
more apples and now he has 8 apples..How many apples did Mary give to
John? (3) John has 8 apples. Mary has 5 apples. How many more apples
does John have than Mary? If first-grade children are provided with physi-
cal objects to be used as counters, and are read these three stories, the
majority of children will solve each problem using a different counting
strategy. Almost all children who use the counters will solve the first prob-
lem by making a set of eight, removing five, and counting the rest. Most
children will solve the second problem by making a set of five, adding on
additional markers by counting “six, seven, eight,” and then counting the
number of markers added on. While there is more variation on the third
problem, many children will count out a set of five and a set of eight, match
the two sets using a one-to-one correspondence, and then count the un-
matched markers in the larger set.

It is clear from these examples that many children solve the problems
directly by carrying out the action or representing the situation that is
described. Alinough at first glance this may not appear to be a particularly
proiound conclusion, it carries with it at least two potentially important
implications. First, it means that even before receiving instruction, children
are sensitive to the critical verbal cues in a story that indicate what action
is appropriate to solve the problem. At this point in the learning prccess,
very few children apply the wrong operation to solve a problem. That is,
in general they do not add when they should subtract, or subtract when
they should add. Not only do they carry out the correct operation, they
often match their strategy to the context or semantic structure of the
problem.
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The fact that initially children use different strategies to solve different
types of subtraction problems leads to the second important point. Ap-
parently children perceive these different subtraction situations to be
genuinely different problems. Although adults can see the commonality in
these problems, and recognize that they can all be solved using the same
“subtraction” procedure, it seems that many young children do not possess
such a general subtraction concept. They see these as different problems
that are solvable by different methods.

Development of an Arithmetic Symbol System

As children proceed in school, they receive instruction in the formal
symbolism of arithmetic. They are taught to represent the verbal problems
presented earlier as 8 — 5 = . It is at this point that many children ex-
perience difficulty. Writing the same number sentence for these three differ-
ent problems requires children to see them~as mathematically similar, an
expectation which may go bevond the knowledge and capabilities of first-
and second-graders (Gibb, 1956; Vergnaud, 1979).

In addition to the problems children may have with collapsing their
many different interpretations of arithmetic situations into a single addition
category and a single subtraction category, they also seem to experience
difficulty in relating the verbal problem to a symbolic equation, of what-
ever kind. At the end of first grade, many children can solve verbal addi-
tion and subtraction problems, and some can write number sentences
which represent these problems. But Carpenter and others (1981b) found
that many children view these two processes as being independent. Chil-
dren in this study often wrote the symbolic equation after, rather than
before, finding the solution. The act of writing a number sentence racely
influenced the choice of a solution strategy.

At the heart of this problem is the fact that young children are not
always able to give meaning to the formal, arbitrary symbolism of mathe-
matics. Lindvall and Ibarra (1980) report that first- and second-graders
have a difficult time demonstrating with concrete objects the meaning of a
simple addition or subtraction equation. Grouws (1972) found that even
in the third grade, many children did not solve addition and subtraction
number sentences when the position of the unknown was somewhere other
than by itself, on the right side of the equal sign. The errors were largely
noncomputational and indicated that many children did not understand
the meaning of the equation. The difficulty with symbolism seems to be
pervasive and fundamental.

What happens when primary school children lack the understanding
necessary to deal with arithmetic symbols in a meaningful way? The avail-
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able research suggests that they begin developing their own system of rules
to manipulate the symbols and generate answers. Many times they memor-
ize fragments of algorithms or rules and recombine these in unique ways
(Davis and McKnight, 1979). Lankford (1972) and Erlwanger (1975)
have shown how intricate and “creative” some of these idiosyncratic sys-
tems can be. On occasion children’s invented, incorrect algorithms are
more complex than the correct ones. Apparently children are not incapable
of learning complex algorithms and executing them consistently. In fact,
Brown and Burton (1978) conclude that even when making errors, ele-
mentary school children are generally consistent and systematic. Frequently
their errors are the result of methodically following the wrong procedure
rather than making random mistakes.

What seems to be missing is a link with reality which might serve as
a validating or correcting mechanism. Unable to make sense of the symbol
system, many children appear to have no way of knowing whether the
processes they are using are correct. While they may be convinced that the
procedures they apply are the right ones, this confidence often comes from
the belief that they have mastered the rules and tricks of the system, rather
than a feeling that the procedures reflect reality (Erlwanger, 1975). A
symptom of this proble.n is the periodic unreasonable responses provided
by many elementary school children (see the report of the National Assess-
ment of Educational Progress (NAEP) in Chapter 11). Apparently, the
formal symbolism of mathematics moves children from their natural, intui-
tive problem-solving skills that were anchored in real world experiences to
rules of symbol manipulation, some of which have lost touch with their
reality. ) .

To reiterate using Ginsburg’s (1977a) terms, children experience
great difficulty translating their informal, experience-rich system into the
formal, symbols-and-rules system of school arithmetic. Gaps between these
systems begin.to develop. Young children often are unable to establish
meaningful links between what they know when they get to school and
what they soon are asked to do-—formalize this knowledge using mathe-
matical symbols. As children lose their intuitive understanding of mathe-
matical probl-ms, or are asked to do mathematics in situations in which
they cannot access these intuitive understandings, they begin developing
their own unique systems of symbol manipulation, some of which are filled
with misconceptions and faulty procedures.

Implications for the Curriculum

The basic assumption of this chapter is that the way in which children
think about mathematics and the processes they use to solve mathematical
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problems must be understood and taken into account by teachers and cur-
riculum builders who design instruction. If instruction is going to build on
children’s existing knowledge and the problem-solving strategies they have
already developed, teachers must be aware of how childrer think about
mathematics. However, an important note of caution should be inserted
before discussing the implications of this research for mathematics cur-
riculum and instruction. Research on children’s thinking is necessarily
descriptive; it describes children’s behavior in learning or problem-solving
situations. Instruction programs are essentially prescriptive; they prescribe
the conditions that should be set up to facilitate learning. The prescription
of programs does not immediately follow from the description of children’s
thinking (Bruner, 1966; Rohwer, 1970). Children’s perfoirmnance is the
outgrowth of their learning experiences, and it is not always clear how a
change in these experiences (through a change in curriculum) would in-
fluence this performance. Therefore, it is not always possible to prescribe
the “best” curriculum from information on children’s thinking. But it is
possible to suggest several features that can be part of any instructional
program.

Although there are many implications that might be drawn from the
preceding review of research, two major implications stand out from the
rest. One is suggested initially by Piaget’s work and deals with the im-
portance of observing children and looking at the world through their eyes.
The second grows out of the recent work on children’s mathematical think-
ing and centers on the importance of maintaining a link between children’s
natural base of experience and the mathematical concepts and symbols
they are attempting to learn.

Listening to Children

Children do not think like adults. They view the world from a differ-
ent perspective; they solve problems by applying qualitatively different
forms of thought. A striking example of this is young children’s failure on
conservation tasks, tasks that seem so “logical” to adults. But the differ-
ence in logic dces not stop here. The research just reviewed suggests that
the failure to understand conservation does not interfere with children’s
performance on mathematical tasks which, from an adult perspective,
seem to depend upon this ability. Nonconservers successfully complete
tasks for which conservation seems to be a logical prerequisite. It is clear
that children think differently than adults.

Many researchers have pointed out the differences between children
and adults, but it was Piaget who most clearly and profoundly demon-
strated the nature of these differences. The success of Piaget’s work can be
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attributed in part to his method of research. Piaget observed children as
they were solving tasks, questioned them about the reasons for their re-
sponses, and tried to understand how they were thinking about the prob-
lems. Piaget’s work, together with most of the research reviewed in this
chapter, makes it clear that children’s thinking can only be described by
observing children as they are solving tasks. It is difficult, if not impossible,
to describe or predict children’s thinking by carrying out a rational, adult
analysis of the task to be solved. The individual interview used by Piaget
(Opper, 1977) suggests itself as a productive way to find out how well
children understand basic mathematical concepts and to 1denufy the proc-
esses they use to solve mathematical tasks.

The importance of this for instruction is that classroom teachers could
- apply these individual interview techniques with great benefit. Rather than
administering only written tasks, teachers could schedule brief interviews
with individual children and observe their performances on a few well-
chosen problems. Questions can be asked in an accepting, nonevaluative
way to uncover the processes used to solve problems. After identifying
these processes, teachers can provide feedback on the appropriateness of
solution strategies as well as the correctness of responses. Often children’s
existing strategies can be modified and built upon to create meaningful,
appropriate strategies. Case (1978a) has described the importance of
demonstrating to children any inadequacies of their current strategies and
guiding them in acquiring more appropriate and efficient ones. In addition,
information on children’s processes provides teachers with a more funda-
mental understanding of children’s errors.

Research has shown that children’s errors are often the result of basic
misconceptions rather than random carelessness. The nature of these mis-
conceptions are difficult to diagnose by studying the responses on a paper-
and-pencll test. Knowledge of the processes children use provides a deeper
level diagnosis of their errors and provides a sound basis from which to
prescribe appropriate instructional activities (Romberg, 1977).

Developing Meaning for Mathematical Concepts 2nd Symbols

In 1949, Van Engen pointed out the impcrtance of relating the mean-
ing of real world experiences with the arithmetic concepts and symbols
that represent those actions or events. Instruction that emphasizes building
these relationships is needed just as much today as it was three decades
ago. The only difference is that a little more is known today about the
informal knowledge upon which these relationships must be based, and the
types of errers which result when the relationships are not built success-
fully. The implications described below emerge from this recent research

Q
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base, but their intention could still be summarized by Van Engen's (1949)
now-classic call for meaningful arithmetic instruction.

Initial Instruction on Arithmetic Operations. The research on early
number and arithmetic concepts indicates that counting processes are criti-
cal in children’s initial learning. Although all children enter school with
some counting skills, not all of them are aware of the more advanced and
efficient forms of counting. Rather than having children abandon their
natural counting strategies, which have meaning for them, it may be bene-
ficial to include material at the first-grade level directed toward improving
these strategies. Children might be shown how to count forward from a
given number, count back, and use various heuristic strategies to solve
addition and subtraction problems. Two kinds of heuristic strategies that
good counters seem to acquire naturally are those which use 10 as an
intermediate number fact and those which use doubles (Carpenter and
others, 1981a). For example, to sol* e the problem represented by 6 + 7 =

" 0, some children will reason “6 4+ 4 is 10, and 3 more is 13" other chil-

dren will say “6 + 6 is 12, so 6 + 7 is 13.” These strategies suggest them-
selves as likely candidates for instructional content on counting.

An alternative to direct instruction on specific strategies is to provide
opportunities for children to develop their own solution processes. Resnick
(1980) proposes that instruction should be designed to put learners in the
best position to invent or discover appropriate strategies for themselves.
There is some evidence that even young children can invent strategies that
are more sophisticated than those being taught if they understand the prob-
lems and are provided with appropriate aids for solving them (Groen and
Resnick, 1977). Therefore, it appears that children may benefit from in-
structional methods that provide opportunities for them to develop and
apply a variety of soluticn strategies. Strategies that children invent are
likely to be strategies that have meaning for them.

Regardless of which approach is used for helping children develop
efficient processes for solving addition and subtraction problems, it appears
that verbal problems may be a good context in which to introduce these
operations. It is frequently assumed that children must first master com-
putational skills before they can apply them to solve problems. However,
children develop a variety of counting strategies for soiving verbal arith-
metic problems before they receive instruction. This suggests that, rather
than depending on prior knowledge of computation skills, these problem
situations may give meaning to the basic arithmetic operations. In fact,
verbal problems may be the most appropriate context in which to intro-
duce addition and subtraction operations. Verbal problems also provide
for different interpretations of addition and subtraction, interpretations

-
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which children bring with them to the school setting, and which must be
eventually integrated for a full understanding of the basic operations.

Initial Instruction on Symbolic Representations. While many first-
grade children are quite proficient at solving verbal problems, they often ex-
perience substantial difficulty dealing with symbolic expressions. It may be
better to postpone formal symbolization until children. have had a wide
range of experiences with verbal problems and concrete arithmetic situa-
tions. There is some evidence which suggests that young children are able
to use informal symbol systems (Tor example, tally marks, pictorial repre-
sentations) to help them solve problems (Allardice, 1977; Kennedy,
1977). Perhaps these kinds of symbols would provide 'a more meaningful
transition than now exists between children’s intuitive understandings of -
the operations and arithmetic number sentences like 5 — 3 =0.

It is clear that when children first encounter the formal symbols of
arithmetic, they have a difficult time developing meaning for the symbolic
expressions. The emphasis during this instructional period should be on
establishing, and maintaining a link between the concepts children have
already acquired and the symbols that are being introduced. Because of
children’s well-developed informal knowledge of verbal problem situations,
these may provide the best context in which to introduce arithmetic sym-
bols. The meaning children associate with_verbal problems could- be re-
lated to thé number sentences that most directly represent the problem
situation. To be successful, teachers -will need to do more than simply
present a related verbal problem’alongside the number sentence (Grouws,

-1972). Children need a variety of experiences in writing number sentences

that represent verbal problems, and writing verbal problems which give
meaning to number sentences.

Concrete materials can bg used to represent arithmetic concepts and
symbols physically. However, to help children see the connection between
the physical representation and the symbolic representation, teachers need
to structure the concrete activities so that frequent links are made between
the physical and symbolic representations. For example, when using base
ten blocks in the addition algorithm, symbols should be recordeg imme-
intely after the objects have been manipulated in each column (Bell and
others, 1976; Merseth, 1978); otherwise the concrete procedure functions
as a calculating device which provides the correct>answer but which does
not facilitate a bettér understanding of the symbolic process. It is not just
the use of concréte materials that improves mathematical understanding,
but the explicit construction of a link between meaningful actions on the
ob nd the related symbol procedures.

In conclusion, the study of children’s thifking providdq some valuable

insights into the processes children use to deal with mathymatical situa-,
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tions, and generates some important suggestions for improving instruction.
- While the focus of this chapter has been on young children’s thinking, the
implications derived from research are equally appropriate for older chil-
dren. Understanding what students are thinking as they solve long-division
problems, or add two fractions with unlike denominators, is essential for
developing instructional activities to help correct students’ difficulties. Indi-
vidual interviews, in which the student is asked to solve a few key tasks,
and the teacher asks questions in a noninstructive, nonevaluative manner
to clarify the soiution procedures, could be employed to uncover the stu-
dent’s processes. Developing meaning for symbols is another instructional
task that is equally important at all Jevels of mathematics learning. For
example, teachers might help other children undc:stand the difficult notion
that two different fractional symbols can be equivalent (such as 1/2 and
2/4) by tying the symbols directly to their concrete and pictorial repre-
sentations (Ellerbruch and Payne, 1978). Listening to students, and help-
. ing them to connect their meaningful base of experience to the symbols of
mathematics are critical instructional strategies that can be used with bene-
fit throughout the mathematics curriculum.
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Response

Karen C. Fuson

The Hiebert chapter has identified °
and described a number of areas of -

current research on children’s think-
ing. The short space available here
permits the discussion of only two
of the issues raised in the paper:
first, a brief comment on the com-
plex relationship between under-
standing and skill, and, second,
some additional current research
findings on ways in which the think-
ing of young children differs from
that of adults and some suggestions
to teachers about how to deal with
these differences.

Gelman's proposal that preschool
children come to understand count-
ing principles and then gradually
eliminate their execution errors in
counting raises an old educational
debate: whether understanding or
rote perfurmance comes first. In
counting, as probably in other areas,
the resolution: of this debate is that
each comes first in different aspects
of counting. For example, the com-
bined research findings of Gelman
and Gallistel (1978), Fuson and
Mierkiewicz (1980), and Mierkie-
wicz and Siegler (1980) suggest
that children recognize that skipping
an object in counting is an error be-
fore they are able to eliminate all of
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their own object skipping (that is,
understanding precedes correct per-
formance). On the other hand,
while they rarely say an extra word
when pointing to an object, many
children do not think that doing so
is a counting error (correct per-
formance precedes understanding).
Thus, there may be some things that
are easier for children to under-
stand than to do and others that are
easier simply to do than to under-
stand.

One of the differcnces between
the thinking of children in kinder-
garten through second (and even
perhaps third) grade and that of
adults is that children are not nearly
as capable as adults are of planning
and organizing their activities. That
is, there are not only cognitive dif-
terences between children and
adults; there are also meta-cogni-
tive ones. Children’s actions are
much more dictated by things or
people perceptually present in their
immediate environment than by
specific goals acting over a relatively
long period of time. Children of this
age are capable of goal-directed ac-
tivity, but they also tend to spend
much of their time reacting to im-
mediate stimuli in their environment




rather than enacting pre-set plans.

Thus, two major functions of a
teacher of young children are (1)
to provide activities with goals of
relatively short duration so that
children can maintain their activity
in a goal-directed way, and (2) to
construct a learning environment
containing stimuli to which children
can react. The latter suggests the
use of concrete objects and concrete
situations. Such use has long been
proposed for cognitive reasons:
Piaget's legacy has been to help us
realize not only how concretely
bound children’s thinking is, but
also what capable thinkers young
children can be when they are pro-
vided with the concrete tools they
require for thinking. However, an-
other benefit of the use of concrete
objects and situations with children
is ‘now evident: a meta-cognitive
one. Such perceptually present stim-
uli in the immediate environment
will serve to organize children’s be-
havior and keep it focused on the
desired stimuli for learning.

The theoretical work of Vygotsky
(1962, 1978; Fuson, 1980) has
focused renewed interest on adult-
child ‘or teacher-learner) interac-
tion i1 learning. This interaction in
the learning process can be viewed
as cae in which the adult and the
child engage in a common goal-
directed activity with th: adult at first
carrying out many of the parts of
this activity. Gradually the child
learns to do these parts and the
adult becomes less active, limited
to organizing, monitoring, and sup-
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porting functions. Finally even these
functions are eliminated, and the
child takes over the whole cycle of
behavior. The Soviets call this the
movement from the inter-psycho-
logical to the intra-psychological
plane.

I have outlined and discussed an
application of this notion to the
mathematics classroom  (Fuson,
1979). One of the purposes of such
a model is to create a meta-cogni-
tive change in the teacher: to help
the teacher step back from the busy
acting and reacting that occurs from
minute t0 minute in the classroom
and to reflect on these meta-proc-
esses inherent in the teaching-learn-
ing process. In particular, the goal
is to help the teacher think about
how to help move children from
being nonplanning reactors to ac-
tors actively involved in reflecting
on and organizing their own learn-
ing. Young children do not spon-
taneously reflect upon their actions
and thoughts. They can do so, how-
ever, with the help or suggestion of
the teacher. Repeated help and sug-
gestion will then serve to increase
spontaneous reflection.

One way to accomplish this trans-
fer of organization is by using ver-
balization. Procedures can be vet-
balized by the teacher; students can
then use these verbalizations to regu-
late their own behavior when they
are carrying out the same procedure.
This occurs spontaneously in the
classroom now: one sees lips mov-
ing as a child verbalizes his or her
way through an addition solution.
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("Wr'te down the four and carry
over the one to the tens place.”)
However, such verbalizations could
be used deliberately by teachers.

Children’s thinking also differs
from that of adults because there is
a great deal of information children
simply do not know. Thus, one of
the primary and obvious functions
of a teacher is to help children learn
some of the many facts about their
world that can then also enhance
their reasoning processes.

A related teaching function that
is less obvious is to help children
recall relevant information they may
possess but may not recognize is
relevant. Children’s knowledge is
initially quite context-bound: what
they learn is related to the specific
context in which they learned it.
This is further complicated by the
fact that children often notice, en-
code, and remember surface fea-
tures of a problem situation rather
than the underlying structural di-
mensions that would be processed
by older children and adults. For
example, the Soviet researcher
Krutetskii (1976) discovered that
when children who were very good
at mathematics were asked about
some story problems they had
solved on an earlier occasion, they
had encoded and remembered the
operation involved in the story.
(For example, “Oh, there was one
about a boy having some things and
another boy giving him some more
of them.”) Children who were not
so good at matheématics had en-
coded and remembered mathemati-
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cally irrelevant features of the
stories. (“There was one about
trains.”)

This difference in the encoding
of a situation has now also been
found by Americs . researchers,
who consider it to be one of the
major differences distinguishing ex-
perts from novices in a field. Expert
chess players, physicists, and so
forth notice underlying structural
features of situations that novices
do not notice. Because primary
school children tend to be novices
at practically everything, teachers
should keep in mind the fact that
children are likely to focus on at-
tributes of a situation different from
those noted by the expert teacher.

A very important part of the
teacher’s role, then, is to help chil-
dren begin to notice structurally im-
portant features of a situation (such
as numbers of obijects) rather than
more obvious surface features (such
as the color of the objects). Simi-
larly, teachers will explicitly need to
point out (or help children discover
for themselves) how certain con-
texts are similar to other contexts
the children have experienced, but
which they may not recognize are
“the same” in some important way.
(For instance, 5 + 2 yields the same
result as 2 + 5, though the person
who started with 2 and got 5 may
be much happier than the one who
started with 5 and got 2.)

A final difference between the
thinking of young school children
and adults is that children do not
have the same mental operating
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capacity that adults have, and they
cannot assess information as quickly
as adults can. For example, in a
task in which one is supposed to
count the number of objects on a
card while remembering the number
of objects on previously counted
cards, four-year-olds cannot re-
member the previous count, six-
year-olds can remember the count
of two cards, and adults can re-
member the counts of four cards
(Case and others, 1979). This
means that teachers have to figure
out ways to help children use exter-
nai memory (things written on
paper, for instance) rather than
overoad their mental processes.
One example of such an overload
involves regrouping in the usual
addition algorithm. In the problem
47 + 38, after the 1 is carried over
to the tens column, the child must
do two mental addition problems,
holding the sum for the first one in
mind as an addend for the second
(1 plus 4 is five, five plus 3 is 8).
An alternative procedure (Ames,
1975) using external memory is to
add in the 1 to the 4, crossing cut
the 4 and writing 5 above it. The
child.then is presented with only the
second of the two addition prob-
lems (5 plus 3) and does not have
to remember anything.

The current overemphasis by re-
searchers on counting to the ex-
clusion of other sources of arith-
metic ideas should not be emulated
by teachers. The use of measure no-
tions embodied by Cuisenaire rods
(seven is a certain length) and of

certain figural patterns that can be
combined and separated to form
sums and differences are also very
important, especially for certain
children. Providing a rich range
of mathematical experiences from
which children can choose those
most consistent with their particular
pattern of thinking is critical.! The
mathematical world models many
kinds of external realities, and the
paths to understanding this world
are themselves many and varied.

1See, for example, Baratta-Lorton
(1976); the Nuffield project books for
carly grades: and Bell, Fuson, and Lesh
(1976) for both counting and measure
materials for the later grades.
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IV. Teachers’
Decision Making

Thomas J. Cooney

Teachers are sometimes likened to actors 7n stage: they emote and enthuse
in order to capture the imagination of the audience. While teachers may
need to be good actors, the process of teaching also includes reacting.
Teaching is an ihteractive process, one in which the teacher plays off the
students and the students play off the teacher. It is a process of gathering
information, making a diagnosis, and constructing a response based on
that diagnosis. While much of this process may be quite automatic, some
situations require conscious decision making. The act of generating and
considering alternatives in constructing a response—that is, making an
instructional decision—is of paramount importance in teaching.

Shroyer (1978) used the term ‘“critical moments” to denote those
moments of classroom teaching when there is an occlusion in the instruc-
tional flow. Perhaps a student demonstrates an unanticipated learning prob-
lem or gives a particularly insightful response. Such unexpected events
cause the teacher to reflect on the interaction and to process certain infor-
mation in order to construct a reaction. Episodes that depict critical mo-
ments are presented later in this chapter to provide a context for consider-
ing teaching as a process of decision making.

The Decision-Making Process

Various researchers have studied teachers’ decision-making processes
(Shavelson, 1976; Peterson and Clark, 1978). Regardless of the theoretical

The author would like to express his appreciation to Dr. Stephen I. Brown of the
Univensity of Buffalo for his helpful comments in writing this chapter.
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prism through which the processes are viewed and studied, several aspects
remain constant: teachers gather and encode information, generate alterna-
tives, and select a course of action.

In Peterson and Clark’s study (1978), a scheme consisting of four

- paths was developed for describing teachers’ decision-making processes.

The investigators found that Path 1 was most frequently traversed; Part 4
was the second most traversed; student achievement was negatively corre-
lated with Path 3; and Path 4 was positively related to higher learning
outcomes. Peterson and Clark’s study emphasizes two aspects of teaching
central to decision making: (1) the decision-making process is related to
educational outcomes, and (2) a critical part of the decision-making
process is the generation of alternatives. The generation of alternatives is
considered central to vjewing the teacher as a decision maker and is deemed
essential for a flexible and creative teacher. Peterson and Clark’s analysis
helps provide a means by which we can consider the role alternatives play
in the decision-making process.

Types of Decisions

Teachers make different types of decisions. Some are related to the
content, including its selection, and the selection of teaching methods.
Other decisions relate to the mor. interpersonal aspects of teaching, that is,
affective voncerns. Still other decisions involve management considerations,
including the allocation of time. I will use this triadic scheme of classifying
decisions as cognitive, affective, or managerial to focus on the various types
of decisions that teachers make. I must emphasize, liowever, that these
three categories are not in any way mutually exclusive. Teaching is too
complex to permit such a simplistic view. In the real world of the class-
room, classification schemes are seldom clearly exhibited. Nevertheless, the
classification seems appropriate at least for the purpose of examining fac-
tors that influence decisions.

Cognitive Decisions

There are two phases of teaching. The preactive phase is what trans-
pires before the teacher begins interacting with students. It typically in-
volves lesson planning. The interactive phase involves the classroom inter-
action between students and the teacher. Content related dcisions, as well
as other types of decisions, are made in both the preactive and interactive
phases.
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Figure IV-1. Scheme for Analyzing Decision Making by Teachers

. Teacher
————— | Classroom g
behavior
Cue
&4 observation
Decision
Point 1 Cue lovels
within
tolerance?
Yes No
. Decision Alternatives
Continue Point 2 available?
No
Yes
Decision
Point 3
Behave No
differently? Continue
Yos
New teacher
=1 classroom
behavior
Paths identified From the Scheme
Decision Points Path 1 Path 2 Path 3 Path 4
Student Behavior Within
Tolerance? Yes ' No No No
Alternatives Available? — No Yes Yes
Behave Differently? —_ —_— No Yes
O
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A content decision that occurs in the preactive phase is deciding which
content to present and which to exclude from the instructional program.
Cooney, Davis, and Henderson (1975) identified the following factors that
affect teachers’ decisions in sclecting content: (a) requirements or regula-
tions from governing bodies, such as statc departments of education, (b)
objectives developed by a teacher, department, or a more inclusive group,
(c) the expected use of the content to be taught, (d) the student’s interest
in the content as well as the teacher's interest in teaching it, (e) the pre-
dicted difficulty of the content, and (f) authoritative judgments cxpressed
by professional groups or prestigious individauls within the field. In many
cascs decisions related to topic selection are passive and based primarily
on what appears in textbooks. Nevertheless, a decision is made.

Another type of content decision concerns how the content within a
topic will be interpreted or presented. Consider the concept of fraction.
One can conceive of at least ten different interpretations of fraction: parts
of a region, parts of a collection, points on the number line, fractions as
quotients, fractions as decimals, repeated addition of a unit fraction, ratios,
measurement, operators, and segments. Decisions must be made on which
one or which combination of interpretations to use in teaching fractions.
Similarly, there are various means of interpreting other mathematical
topics. Such interpretations provide a variety of alternatives to consider
when presenting content. '

Decisions are also made with respect to strategies of presentation. A
variety of materials, such as rods or paper folding, can be used to present
different interpretations of the content. Another strategy decision has to do
with the use of examples and nonexamples. Suppose the teacher wants to
develop the concept of lire symmetry for the class. A matrix similar to the
one below could be constructed with students providing the samples.

Mathematicyr Real World Applications

Example rectangle a human face
Nonexample parallelogram a human hand

Such an activity can provide a mixture of examples and nonexamples
and relate the concept to life-like situations. Other cognitive decisions
include deciding how to justify theorems, what prerequisite knowledge
should be reviewed, or whether to use an expository or a discovery ap-
proach.

Cognitive decisions are also made in th~ interactive phase of teaching.
Several classroom episodes are posed below to highlight the nature of
these types of decisions,
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Episode 1 .

M. Smith’s class is learning the Pythagorean Theorem. Students had’
used unit squares to construct larger squares on the legs of right triangles
ABC and DEF. - J .

]

7
¢

-
a
v

These unit squares were then rearranged to form a larger square of unit
squares on the hypotenuse. The following dialogue between the teacher
and two students, Billy and Chuck, ther ‘renspired. -

Teacher: Now consider the right triangle with legs of length a and b
and hypotenuse c. (He draws triangle ABC on the board.) What does the
theorem say about this triangle? :

Billy: a® 4 b =cb. ‘ J

Teacher: Okay. Very good. Now suppose we have a different right

; triangle with légs of length a and ¢ and hypotenuse b. (He draws this tri-
angle on the board.) Now what does the theorem say?

IToxt Provided by ERI
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Chuck: The theorem won't work for that triangle. It doesn’t apply.

Apparently, Chuck had not grasped the meaning of the theorem. Per-
haps he thought of mathematics only in terms of symbols and not in terms
of meanings behind the symbols. What alternative actions exist? Possibil-
ities include the following:

a. Call on another student to state a relationship.

b. Tell Chuck the theorem does apply and state the correct response.

c. AskChuck to clarify what “doesn’t apply” means.

d. Ask him to state the conditions under which the theorem does or
does not apply. - -

e. Ask another student if he or she agrees.
The issue is not which alternative is necessarily bettér for all situations.
Rather, the focus should b: on the identification of possible alternatives
and the decision as to which one seems best suited in a particular coatext.
The making of a wise decision requires the consideration of various alter-
natives in light of what is known about a particular student in specific

-situations.

Episode 2

Ms. Jones was reviewing linear functions when the following dialogue
occurred.

Teacher: What do we mean, class, by linear function? How would we
define it. Mary?

M  -1don’t know. I forgot.

Tea.nersCarla?

Carla: Well, it has something fo do v'ith a straight line.

Teacher: That's true, but we need more.

Evidently Ms. Jones perceived that students were siruggling with the
apparent goal of stating a definition. At this point. several alternatives
could be considered, including the following:

a. Call on another stud ad press for a correct definition.

b. Provide some sort ur a hirt on how to “start” the definition and
give Carla or another student a chance to state the definition.

. ¢. Abandon the instructional goal and identify a new goal.
The dlalogue continued.

Teacher: Jan? ‘

Jan: Things like f(x) = 2x + 3 and f(x) = 4x —10. These a. - linear’
functions, area’t they?

Teacher: Yes. That's good. Okay, now let’s see how we can graph
some lincar functions.
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The teacher seemed satisfied with the two examples. Was she unclear
about the content being taught or at least unclear over the distinction be-
tween definitions and examples? Did the teacher make a conscious decision
to accept examples rather than a definition? If so, what factors influenced
her decision? What was the likely impact of the discussion on the students?
Were they confused about what constitutes a definition?

We cannot be sure what cues Ms. Jones attended to when she made
her decision to accep: the answer, or if she considered any other alterna-
tives. In short, we do not know what information this teacker processed in
making the decision. But we do know that for whatever reason a response
which was not an answer to the teacher’s question was finally accepted.
The response may have been accepted as a compromise if Ms. Jones per-
ceived that the task was harder than anticipated (and thus the goal was
changed). Or it may have been accepted without Ms. Jones reflecting on
the nature of the instructional request. .

Consider another situation observed in an elementary school class-
room.

Episode 3

Mr. Costa’s class was discussing the addition of whole numbers. At
one point the discussion focused on a word problem that entailed finding
the sum of 1970, 330, and 31. The following dialogue occurred.

Teacher: So what numbers do we need to add?

Sonya: 1970, 330, and 331.

Teacher: Okay. Albert, why don’t you show us on the board how to
add those numbers? (Albert goes to the board and writes th- following.)

1970
330
| 31
' 8370

Albert: The answer is 8370.

Albert’s difficulty and misconception are clearly evident. What alter-
" natives exist for the teacher?

a. Ask anc:her student to come to the board and find the sum.

b. Show Albert and the class how the numerals should be arranged.

c. Use the idca of place value to explain briefly how the numbers

should be added.
d. Stop the lesson to review in some detail the process of adding
whole numbers. )
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In this particular case, the teacher decided on option b. The effect
seemed to be a continuation of the class discussion in a fairly uninterrupted
manner, although an observer might wonder if Albert’s confusion had really
been resolved.

The following episode highlights the importance of generating alter-
natives when a lesson goes poorly, and the importance of generating alter-
native strategies when planning a lesson.

Episode 4

Mrs. Lincoln, a seventh-grade mathematics teacher, was teaching her
class how to factor whole numbers into their prime factors. She began by
12=4x%3 quickly stating the definition of prime number and giving
g—54+3 o examples of prime numbers. No nonexamples were
40=4x10 8&VeM She the'n presented two demonstrations of how to
24=16 + 8 obtain the prime factorization of a whole number. Stu-
dents had obvious difficulties, including the above mis-

takes, as alleged by prime factorizations of the numbers on the left.

Mrs. Lincoln recognized there was a problem; she repeated the defini-
tion, and gave one more demonstration. Students returned to their work-
sheets, but few corrections were made as they were still quite confused.

Several comments are relevant. First, the students lacked basic nre-
requisite knowledge with respect to the concepts of prime number and
factor. Had the teacher placed greater emphasis on teaching these con-
cepts, particularly through the use of exzinples and nonexamples of prime
numbers and by comparing factors with addends, students would likely
have done better.

Second, it seems clear that Mrs. Lincoln had few instructional alter-
natives to draw on. The roiz examples and nonexamples can play in
designing instructional strategies was mentioned earlier. Kolb (1977)
developed a model for predicting the effect of various strategies, including
the use of examples and nonexamples for teaching mathematical concepts.

Basically, Kolb’s mcdel suggests that examples and nonexamples of
concepts produce more learning than presenting characteristics of concepts
when students have little prerequisite knowledge. For students with a higher
degree of prerequisite knowledge, discussions that focus more on the attri-
butes of a concept, for example, necessary and/or sufficient conditions for
concepts, are more effective than focusing on specific examples and non-
efamples. The model is complex and involves considerable detail. However,
it does highlight the importance of using examples and nonexamples,
particularly for students with poor conceptual backgrounds.
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In Episode 4, it was clear that many students did not understa1d the
concept of prime number nor of factor. For them an instructional a: erna-
tive should have been generated which entailed extensive use of examples
and nonexamples. Interation of the strategy “define and give one or two
examples” was not productive.

Afective Decisions

Teachers need to be sensitive to students and provide ample affective
support for them. Instructional decisions involving affective considerations
are sometimes based on the teacher’s pesception of how students are inter-
acting with the content. Comments like “Why do I have to learn this?" are
not atypical in mathematics classrooms. The way in which such questions
are handled depends on what the teacher perceives to be the reason for
such a comment. If the student is asking “How does this content fit with
other topics that we have studied or will study?” or “How can the content
be applied to help me solve problems in the real world?” then a responsc
dealing with the substance of the discipline is appropriate and, hence, is
primarily cognitive in nature. But if the student is really asking “Why am I
not doing better in learning this?” then a response oriented toward building
the student’s confidence appears more appropriate. Thus a teacher is faced
with an instructional decision. Within the affective domain in particular,
hidden meanings must be attended to as well as the overt context of the
remark in order to generate viable alternatives.

*  Bishop and Whitfield (1972, p. 35) offered the following situation,
which suggests the need for an “affective™ response:

If a man can run a mile in four minutes, how far can he run in an hour?
A 12-year-old pupil answers: “Fifteen miles.” On being questioned about
the reasonableness of the answer, he replies: “Well, math is nothing to do
with real life, is it?”

Should one expect that a substantive discussion on the relationship or
applicability of mathematics to the “real world” would resolve the problem?
Perhaps, but it is also conceivable that the student’s response has less to do
with mathematics per se than it does with an affective problem associated
wm; {earnirfg mathematics.

“Consider the following two episodes.

Episode 5

Donald has considerable trouble learning mathematics. The current
lesson is on solving linear equations of the form ax + b = ¢. Donald is
doing rather poorly. The teacher has emphasized that it is important in
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solving equations to have only one equal sign (=) per line. Donald, along
with other students, is sent to the chalkboard to practice solving equations.
Donald typically does not do well when performing at the board. The
equation to be solved is 2x + 4 = 7. Donald's solution is:

2Xx+4=7=2x+4—-4=7—4=2x=3=x=1W

Episode 6

Pat is a C student in geometry. The class has been studying construc-
tions using a compass and a straightedge. Most students are quite proficient
in bisecting a line segment as shown on the left. However, Pat persists in
bisecting a segment in the manner indicated on the right.

The teacher has continually emphasized to Pat that while her procedure is
mathematically correct, it is not the most efficient way and not the method
to be used in class. Nevertheless, when asked to find the midpoints of the
sides of a triangle, Pat resorts to the second method.

If one were to consider only affective concerns to the exclusion of
cognitive ones, then decisions would be easier. But often affective decisions
must be tempered with cognitive concerns, as evidenced in Episodes 5
and 6.

In Episode 5, the teacher reinforced Donald with considerable praise
for obtaining the correct answer. As a result, Donald felt proud but other
students asked if they could solve equations using only “one” line. The
teacher seemed intent on emphasizing affective outcomes; desirable affec-
tive outcomes were paramount to the teacher. In Pat’s case, the teacher was
very sharp and critical. Pat probably wouldn’t make the same “mistake”
again, but at the expense of a loss of enthusiasm for the subject. For this
teacher and this situation, cognitive outcomes were evidently of higher
priority than affective outcomes.

Many decisionr involve striking a balance betwecn cognitive and affec-
tive outcomes. Recall Chuck’s response concerning the Pythagorean
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theorem. Chuck had a misconception regarding the theorem. But the
teacher might select an alternative action having considerable affective
overtones. That is, an alternative might be selected which best ensures
Chuck’s feelings would not be hurt or best ensures Chuck’s continued par-
ticipation in class discussions. This situation highlights the necessity of
considering a number of factors, both cognitive and affective in nature,
when making instructional decisions. Artistic teachers are often able to
promote both desirable cognitive and affective outcomes. One type of out-
come need not be sacrificed for another. But the task of striking a balance
is not always easy; it requires careful consideration of several alternatives
of action.

Research generally indicates that the warm, supportive teacher is
more effective than the critical teacher. Tikunoff and others (1975) con-
ducted an ethnographic study of second- and fifth-grade teachers teaching
reading and mathematics in which many teaching variables, affective in-
nature, were found to be related to achievement. The investigators charac-
terized the significant variables as being related to “those familial interac-
tions in the home which have been attributed traditionally to the successful

rearing of children” (p. 22).

Rosenshine and Furst (1971) also suggest that the warm, supportive
teacher is more effective than the critical teacher. However, Brophy and
Evertson (1976) found that in high socioeconomic status (SES) class-
rooms praise was negatively related to student learning gains, whereas
students in low SES classrooms prospered in warm, supportive classroom
atmospheres. This suggests that affective variables may be contextual in
nature in terms of how they relate to achievement.

Teachers make continual assessments of students’ affective status in
the classroom. Although universal quantification is difficult to justify, gen-
erally the “familial” variables identified by Tikunoff and others (1975)
seem to characterize the effective teacher. But individual instructional de-
cisions may not be unidimensional in value. That is, one may have to strike
a balance between cognitive concerns and affective ones when assessing
expected payoffs of various teaching behaviors.

Mansgerial Decisions

Managerial decisions relate to time allocation, organization of class-
room activities, and control of disruptive behavior. Some of these decisions
can be made in the preactive phase of teaching while others, especially
those related to “control” problems, are more specific to the interactive
phase of teaching.
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Consider Episodes 7 and 8, which involve decisions related to how
time is allocated.

Episode 7

A student is subtracting fractions and keeps making mistakes similar
to the one below.

41/8=311/8
-17/8=1 7/8
2 4/8=2%

After the teacher poses several questions, it is clear the student is quite
confused.

Episode 8

A geometry teacher is discussing the importance of the parallel postu-
late in Euclidean geometry. The teacher has emphasized that many
theorems in_thieir geometry books are based on the parallel postulate. As
an illustration, the teacher argues that the theorem, “The sum of the
measurcs of the angles of a triangle is 180 degrees,” follows from the
parallel postulate. A bright student asks, “If we didn’t have the parallel
postulate, does that mean the measures of the angles of a triangle would
be different than 180 degrees?”

In Episode 7, should content be reviewed for a single student or for
a few students at the risk of “wasting” the time of other students? In
Episode 8, should class time be taken to pursue the thought initiated by
the bright student? Or should the student be informed that the question
was a good one and it would be followed up sometime after class? What
are the expected results of ths twe, alternatives? The decisions will clearly
affect how time is allocated. What is not so clear and is quite value laden
is deciding how to strike a balance between discussions of a tangential
point for a few students compared with discussions that benefit the re-
maining students. Given that instructional time is a scarce commodity,
allocation of that commodity is critical to determining what is learned.

Some decisions on time allocation occur in the preactive phase of
teaching. Ebmeier and Good (1979) found that fourth-grade mathematics
teachers could improve achievement by emphasizing six aspects of in-
struction with tentative time allocations: development (about 20 minutes),
homework, emphasis on product questions, seatwork (10 to 15 minutes
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per day for practice), review/maintenance, and pace (consider the rate
of instruction and increase if possible).
Berliner (1978) reported a great deal of variance among teachers in
how they allocate time for mathematics instruction, particularly for spe-
cific topics, such as fr. tions, measurement, decimals, or geometry. At
the clementary level, the time allocated for mathematics instruction varies
considerably from one day to the next because of contextual situations,
| for instance, if students come back late from a music class or a social
studies project takes longer .than expected. At the secondary level, the
allocated time is more constant; but-éven within that allocation, a teacher
may decide to take care of administrative tasks or attend to other non-
mathematical activities. Thus, a decision of one sort or another may sig-
nificantly affect the amount of time devoted to the study of mathematics.

. . Another type of decision, which occurs in the interactive phase of
teaching, is the decision on how long to wait for students to respond to a
question. Rowe (1978) defined two kinds of wait time: (1) the pause
following a question by the teacher and (2) the pause following a stu-
dent’s response (usually measured in terms of seconds).

Rowe (1978) found that elementary science teachers typically wait
less than one second before commenting on an answer or before asking
an additional question. When the two types of wait time were increased,
Rowe reported that the length of student responses increased, failures to
respond decreased, students’ confidence increased. disciplinary problems
decreased, slower students participated more and, in general, students
were more reflective in their responses.

Consider the likely payoff if wait time of Icss than one second pre-
dominates. Can problem-solving abilities be nurtured and promoted when
wait time is consistently less than one second? Not likely. It seems highly
desirable for teachers to be explicitly aware of concepts such as “wait
time” in order that alternatives can be generated which are consistent with
their instructional goals. This is not to claim that awareness of such con-
cepts will yield completely “rational” decisions in the sense that an ex-
plicit and highly recognizable decision-making strategy can be readily
identified. But it is the belief here that whatever commonsensical decisions
are made in the classroom, they can be enhanced by an explicit awareness
of alternatives and by having a variety of pedagogical concepts, of which
wait time is one, on tap.

Another aspect of managerial decisions involves the ever-present
problem of discipline. To deny that teachers are concerned and conscious
of potential and actual classroom disruptions is to be oblivious to the
realities of classroom teaching. Consider the following episode.
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Episode 9

A first-year geometry teacher was discussing the proof of a theorem
with the class. In the back of the room a student who was the band's drum
major was twirling her baton. After a minute or so, the young teacher
noticcJ her behavior. The teacher’s confusion about alternatives was mir-
rored on his face. Apparently alternatives did not exist since the teacher
avoided the situation. But th- impact on the class of the indecisiveness
could not be discounted.

Perhaps the response of “do nothing” was the best alternative. But
consider an alternative prior to the specific incident. Could the teacher
have moved about the room (as was not the actual case) and, as a result,
increased his awareness of any potential problems? Did not the decision,
determined consciously or unconsciously, to stay in front of the class in a
small area inhibit his ability to monitor the student’s behavior in the back
of the class? Had he decided to move around the room and consciously
monitor student behavioi, could the embarrassing incident have been
avoided? Probably so.

The ability of a teacher *o monitor classroom events has been the
focus of various investigations. For example, Kounin (1970) studied a
number of variables with respect to classroom management and their
relationship to achievement. One of the variables identified was called
“withitness.” This variable dealt with teachers communicating that they
know what is going on regarding children’s behavior and with their ability
to attend to two issues simultaneously. Kounin found withitness to be a
strong correlate of achievement. Brophy and Evertson (1976) also found
that more successful teachers were more “withit™ than less effective teach-
ers. Thus it appears that a teacher’s ability to monitor simultaneous class-
room events is an important factor in maintaining control and in positively
affecting achievement.

There are no explicit directions for solving management problems.
But alternatives can be identified for preventing and coping with situations.
Perhaps an explicit awareness of possible alternatives can assist teachers
in making those difficult decisions and provide greater confidence in them-
selves for believing they can control classroom events.

Conclusion

Teachers have an immense amount of common sense and good judg-
ment. Many creative teachers have a wealth of alternative methods for
dealing with a wide variety of classroom situations. But common sense
can be enhanced by an explicit awareness of the importance of generating
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alternatives and by an explicit knowledge of various pedagogical concepts
and principles. Practitioners’ maxims and research in concert can play an
important role in the generation of alternatives. The art of teaching can be
improved by consciously considering alternatives and by expanding the
knowledge base for generating alternatives.

Another aspect of improvement can arise from reflecting on why
certain alternatives are selected. Value judgments, perceptions about what
constitutes the teacher’s role, and what constitutes mathematics all pro-
vide a sort of filter through which some alternatives pass and others do
not. Perhaps a realization of what factors contribute to the selection of
alternatives as well as an awareness of the decision-making process itself
can provide a basis for several outcomes: additional insights into the teach-
ing process, a richer use of the teacher's knowledge base, and an avenue for
teachers’ further professional development.
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V. Process-Product
Research

Thomas L Good and Douglas A Grouws

The 1970s produced a considerable amount of substantive research on the
teaching of mathematics. Different researchers chose to study the complex
processes and interactions associatcd with mathematics teaching using
varied methods. These resecarch approaches may be broadly classified as
either qualitative or quantitative. Qualitative approaches include ethno-
graphic studies that draw heavily on the methods typically used by an-
thropologists and focus on questions concerning what 1s happening in a
classroom and why it is happening. The research on general mathematics
teaching by Confrey and Lanier (1n press) as well as the research by
Easley and his associates (1977) have profitably employed qualitative
methodology. Studying mathematics teaching via information-processing
approaches also seems to hold potential. Resnick is doing some¢ promis-
ing work using this methodology (Resnick and Ford, 1980).

The quantitative approach to studying the teaching of mathematics
includes aptitude-treatment interaction studies (Which instructional trcat-
ment is best for which student?), process-product studies, and the more
traditional treatment-control group type studies (where usually only a few
instructional variables are manipulated). The goal of the quantitative
studies is to identify what works for specific groups of teachers or specific
groups of learners (see, for example, Janicki and Peterson, in press). There
is less focus on an individual student or teacher, and more emphasis on
groups of learners or teachers.

Both qualitative and quantitative research endeavors are beginning to
provide some clear implications for in§truction in mathematics. These
imphcations are clear in the sense that they scem logically sound and have
also withstood the test of replication or identification in more than one

82

93




PROCESS-PRODUCT RESEARCH 83

setting. In writing this chapter, we have been asked to focus on the process-
product approach to mathematics research and the recent experimental
work it has stimulated. This is only a small part of the research being done
on the teaching of mathematics, and we are aware of the valuable insights
that are being produced by other approaches (see, for example, Davis and
McKnight, 1979).

Proccss-Product Studies

An area that has shown considerable promise in recent years is the
study of teacher behaviors. Many of the behaviors that have been associated
with effective teaching have been identified from what are commonly called
process-product studies. In this type of research, a set of teacher behaviors’
that seems to hold potential for producing student learning are identified
and defined. The frequency and extent of their occurrence are then deter-
mined in many classrooms over a fixed period of time. Finally, the correla-
tion between the frequency of occurrence of these teacher behaviors and
the average class achievement scores (adjusted for initial differences) dur-
ing the observation period is computed. A high positive correlation be-
tween one of the behaviors and mathematics achievement suggests that
effective teachers use this instructional strategy or behavior more often.
Replication of the teacher behavior-pupil achievement relationship in sub-
sequent naturalistic studies gives credibility to the finding and suggests the
need to examine the variable in field-based experimental studies where
cause and effect relationships can be assessed more adequately.

During the past few years a large number of process-product studies
of teaching have been conducted (for review, see Brophy, 1979; Good,
1979; Peterson and Walberg, 1979). Several of these studies have specifi-
cally examined the teaching of mathematics. In a study of fourth-grade
mathematics instruction, Good and Grouws (1977) identified nine effective
and nine less effective teachers from a sample of over 100 teachers. Over
a three-year period the effective teachers consistently produced better-than-
expected mathematics achievement results (residualized gain scores), while
the less effective teachers consistently produced lower-than-predicted
achievement gains. These differences in outcomes occurred despite the
fact that the students taught by relatively effective and ineffective teachers
were comparable in ability.

Observational data were collected in 41 classrooms to protect the
identity of the relatively effective and ineffective teachers. Approximately
equal numbers of obser ations were made in all classrooms (6-7). Data
were collected by two traincd observers (both certified teachers) who
worked full-time and lived in the target city. Each coder visited all 41
teachers and made about half of the observations obtained in a given
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classroom. Furthermore, all observations were made without knowledge
of the teacher’s level of effectiveness.

The data from this study deinonstrate an important fact, that patterns
of consistent behavior can be identified for both high-effective and less-
effective mathematics teachers. Further, there are differences in the patterns
for the two groups and these differences suggest behaviors associated with
effective and less effective instruction in mathematics, as measured by
standardized achievement tests.

Before examining these differential behaviors, two points need to be
made. First, many of the teachers in the study did not perform in a con-
sistant fashion. One year they might obtain very good results, and the
next year their students might achieve far less than expected. The reasons
for these fluctuations are not known and have not been studied. They do
suggest, however, that subtle context factors may influence teacher effec-
tiveness (Good, 1979). For example, it may be that if the variability of
student ability within a class exceeds a critical point, then the teacher is
not successful, even though he or she is behaving and interacting in exactly
the ways that had previously produced good resuits. However, teachers
who have inconsistent effects might also vary their behavior from year 9
year as events in their personal lives allow them more or less time for
teaching.

It is highly unlikely that any given behavior in isolation is going to
profoundly affect achievement or determine who is an effective teacher.
It is far more likely that a number of interrelat=d behaviors simultaneously
(probably under specific conditions) stimulate and enhance student learn-
ing in mathematics. Because of the large number of correlations examined
in process-product studies, it is also possible that some of the behaviors
identified as being associated with effective teaching are not valid. For
these reasons it is particularly important in analyzing and interpreting
process-product data to look for clusters of related behaviors that seem to
be associated with effective teaching. With this perspective in mind, let us
examine some results. .

In the study of fourth-grade mathematics, teacher effectiveness was
found to be strongly associated with the following behavioral clusters:
(1) general clarity of instruction; (2) task-focused environment; (3)
nonevaluative (comparatively little use of praise and criticism) and rela-
tively relaxed learning environinent; (4) higher achievement expectations
(more homework, faster pace); (5) relatively few behavioral problems;
and (6) the class taught as a unit. Teachers who obtained good results
were very active (that is, they demonstrated alternative approaches for
responding to problems), emphasized the meaning of qlathematical cul-
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cepts, and built systematic review procedures into their instructional plans.

In another process-product study focusing on mathematics, Evertson
and others (1980) carefully selected a small sample of effective and less
effective seventh- and eighth-grade teachers and then systematically ob-
served their teaching. They found that more effective teachers, in contrast
to less effective teachers: (1) spent more time on content presentations
and discussions and less time on individual seatwork; (2) held higher
expectations for their students (assigned homework more frequently, stated
concern for academic achievement, and gave academic encouragement
more often); and (3) exhibited stronger management skills (minimized
inappropriate behavior, made more efficient transitions, and had more
student attentiveness).

A number of important relationships exist between the findings of
these two studies and earlier research. The conclusion regarding the value
of time spent on content presentations coincides very closely with the re-
sults of a large number of experimental studies in mathematics (for ex-
ample, Schuster and Pigge, 1965; Shipp and Deer, 1960; Zahn, 1966; and
Dubriel, 1977). These studies have specifically examined the developrnent-
practice variable and found without exception that spending more than
half of the class period on developing skills and ideas results in higher
student achievement. The importance of teacher behaviors that communi-
cate high-achievement expectations in several studies is significant. Simi-
larly, the finding that strong managerial skills and few behavioral problems
are positively associated with student achievement seems to be a significant
link between the two studies and earlier research (Kounin, 1970).

In a process-product study of the teaching of ninth-grade algebra,
Smith (1977) found three interrelated teacher behaviors associated with
pupil achievement gains. Smith concluded that these behaviors could
probably be associated with a more global variable “involving organiza-
tion, structuring and clarity of lessons.” Here again are findings very
similar to those of the studies discussed previously.

Two issues must be kept in mind as generalizations are drawn from
process-product studies. First, behaviors identified with effective instruction
may not generalize across settings. For example, Evertson and others
(1978) found that behaviors that were highly corrclated with teacher
effectiveness in mathematics were different from teacher behaviors that
were associated with the effective teaching of English. No doubt this dif-
ference typically is less of a concern when considering teacher behaviors
within a subject matter area than when one attempts to generalize across
disciplines. Still, the importance of context variables other than subject
matter has been illustrated in comparisons of the association between
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teaching behavior and student achievement in middle-class and working-
class schpols (Good and others, 1978).

A second caution to be applied when examining specific behaviors
associated with effective teaching is that cause and effect conclusions should
not be stated or implied. Such conclusions a.e important, but they must be
determined by experimental studies.

Experimental Work

A great number of experimental studies have focused on instructional
methods in mathematics. Unfcrtunately, many of them have been isolated
studies focusing on only one or two variables, using very small samples.
Few have been based on previous process-product research that has com-
prehensively attempted to determine how more- and less-effective teachers
vary in their behaviors.

An exception jis the Missouri Mathematics Effectiveness Program
(Good and Grouws, 15/9a), an experimental study we conducted in
fourth-grade classrooms, in which the treatment teachers taught using a
system of instruction based on the results of a process-product paradigm
and the research work of others. The system of instruction involved the
following aspects:

1. Instructional activity was initiated and reviewed in the context of
meaning,

2. A substantial portion of each lesson was devoted to content de-
velopment (the focus was on the teachcr actively developing ideas, con-
veying meaning, giving examples, and so on). '

3. Students were prepared for each lesson stage to enhance involve-
ment.

4. The principles of distributed and successful practices were used.

Pre- and post-testing with a standardized achievement test indicated
that the performance of students in the experimental group was substan-
tially better than performance of students in control classrooms. End-of-
year achievement testing by the school district indicated that experimental
classes coatinued to perform better than control classes three mouths after
the post-testing on the mathematics subtests of a standardized achievement
test. Also, experimental students ha- significantly better attiudes toward
mathematics than did control students at the end of the treatment period,
as measured on a ten-item attitude scale.

In a follow-up study in sixth-grade classrooms, we experimentally
tested a revised and expauded instructional system (Good and Grouws,
1979b). In the fourth-grade study we observed that more learning gains
were made in the knowledge and skill areas than in the problem-solving
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area. Thus the adjusted treatment was designed to improve verbal prob-
lem-solving performance without making excessive demands on teachers
and without adversely affecting achievement gains in other areas. The
additional teaching requests involved teachers daily giving attention to
verbal problem solving by using several teaching techniques related to a
given problem, such as estimating the answer and writing an open sentence.
We also asked teachers to implement the regular instructional prcgram
(Cod and others, 1977).

The results of ine second experimental study showed that the prob-
lem-solving performance of students i» the treatment group was signifi-
cantly better than that of students in the control group. However, the
achievement gains in other areas (knowledge and skill) were comparable.

* Although the raw gains of treatment students ex¢eeded those of controi

students on the general achievement test, these differences were not sta-
tistically significant. .

These data can be interpreted in two ways. First, it could be that
implementing a general instructional program and using explicit strategies
for :mproving verbal problem solving are too much for teachers to do in
too short a period of time. An alternative explanation is that control

_ teachers were using many of-the strategies called for in the general instruc-

tional program. In the previous year teachers in the school district had
been ¢xposed to the general instructional program; thus, the information
in the general instrictional program was not unique, as was the emphasis
on verbal problem solving (Grouws and Good, 1978).

. Still, in separate field experiments it was possible to affect students’
knowledge of mathematics, mathematical skills, and problem-solving
abilities. What is less clear is whetner or not these three aspects of mathe-
matics instruction can be improved simultaneously or whether better train-
ing models would call for teachers to adapt their instruction progressively
over time rather than attempting'to make comprehensive changes at one
point in time. Teachers who are asked to make several complex changes
may find the accommodations so major that their instructional system is
temporarily disrupted. Much more: research is need=d along these lines.

We have recently experimented with the instructional model in junior
high school settings. Junior high teachers helped modify the program that
we used in previous research in elementary schools. Essentially, the in-
structional program tested in junior high classrooms was very comparable
to the one used in the elementary school research. Preliminary analyses
suggest that the treatment classrooms out-performed control classrooms,
especially in the area of performance on verbal problem solving items.
Hence, it seems possible to intervene successfully in both elementary and
secondary mathematics classrooms.
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Importantly, teachers’ reactions to the program have been very posi-
tive. This attitude has been reflected in anonymous data that we have
collected (Good and Grouws, 1979b) and data that have been produced
elsewhere (Keziah, 1980). Apparentiy, teachers find the requests pre-
sented understandable and sufficiently plausible that they are willing to
try the program (our implementation data indicate that most teachers
who participate in the experiment do use the program as indicated by their
classroom behavior), and arc willing to continue using the program after
the experimental study has been terminated.

" Teacher and Student Effects

Peterson (1979) advocates the examination of instructional systems
to determine which teaching behaviors best foster‘the achievement of par-
ticular types of students. It also secems reasonable to raise questions about
the desirability of a given instructional program for use in changing the
particular attitudes and skills of individual teachers. The instructional
treatment program that we have been examining in the Missouri Mathe-
matics Effectiveness Project can be described as focusing heavily on
active teaching. When the effects of the program have been examined in
terms of particular student types and particular teacher types (Ebmeier
and Good, 1979), 1t is clear that certain students and certain teachers
tend to do better using the treatment than do other combinations of stu-
dents and teachers. Interestingly, the effects of the program on some of
these corabinations of student and teacher characteristics have been repli-
cated by Janicki and Peterson (in przss). It also seems that the classroom

organizational structure (for instance, open-space plans vs. self-contained)

also interacts with the treatment program (see, for example, Ebemeier
and others, 1980). Without going into a detailed discussion of how student
and teacher characteristics interact with the program, it should be noted
that in our research context, all experimental groups have done better
than all related control groups. However, the magnitude and importance
of the differenices are more evident for some teacher and student combl-
nations than for others.

It should be evident that there is no single system for presenting
mathematics concepts effectively. For example, some of the control
teachers in our studies have obtained high levels of student achievement
using instructional systems that differ from those presented in the program
we have developed. Thus, there are many ways to effectively present
mathematics.

Howev.r, the instructional program we have developed does seem
to be a viable system that teachers are willing to implement. Also, it would
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seem to be an interesting alternative especially for those teachers who
teach in self-contained classrooms and who enjoy an organized approach
to instrugbtion. One of the reasons that the program appears to be readily
implementable probably is that the teaching strategies were derived from
ongeing instructional programs. That is, the program was based upon
what relatively effeciive teachers were already doing in the classroom.
Hence, the program appears to have ecological validity and does not
demand excessive amounts of teacher time and energy.

Directions For Future Research

Our research approach is only one methodology for attempting to
understand, describe, and improve mathematics instruction. One of the
chief limitations to this method of studying mathematics is that one can
only study teaching practice as it presently exists. Clearly, many exciting
ideas for improving mathematics instruction are techniques that have yet
to be implemented, and there is much room for creative theorizing about
instructional strategies. However, as has been noted elsewhere (Good,
1980), there is considerable variation in teaching behavior in American
classrooms. Indeed, one can view the abundant variztion in instructional
strategies as a rich source of nzturally-occurring experiments. The process-
produci paradigm represents an important research methodology to the
extent that teachers’ instructional behavior and their effects on students
vary in important ways. . .

At present, most of the process-product research has focused on an
examination of teachers who consistently obtain more and less student
achievement than do other teachers teaching comparable students. In
general, teachers have been selected on the basis of their ability to affect
student scores on standardized achievement tests. However, there are many
problems with standardized achievemeit tests—they must be relevant to
the instructional goals that teachers are actually pursuing in their class-
room instruction. To the extent that this criterion is met, standardized
achievement tests represeut a reasonable proxy.

. It would seem that further use of the process-product paradigm in
the study of mathematics instruction should be accompanied by the use
of outcome measures otlfer than standardized achievement tests. For ex-
ample, Confrey (1978) has argued that an important outcome of instruc-
tion in mathematics is the conceptual system that students derive from
the study of mathematics. It would seem instructive to determine if some
teachers consistently help students to develop a more adequate concep-
tualization of mathematics than do other teachers. Erlwanger (1975)
argued that children develop a personal system of beliefs and emotions
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ut mathematics that presumably controls their mathematical beh.vior
the future. It is important to study how teachers affect students’ beiief
ystems, ana one potential way to explore this topic is through process-
roduct research. That is, we could attempt to identify teachers who have
a distinct impact upon students’ beliefs about mathematics. Although the
process-product paradigm has been used to explore teaching behavior in
terms of its effects on student achievement, we see no reason why the
model could not be used to profitably explore students’ performance in
other areas (pmblem solving) or other alternative outcomes of mathe-
matics instruction.

We want to emphasize that a process-product approach to the study
of mathematics is not the only method appropriate for studying teacher
effects, for it has a number of limitations as well as advantages. Our pur-
pose has been to identify some of the useful aspects of this approach and
to call for its continued use, along with other methodological strategies,
for exploring mathematics instruction. However, if the model is to con-
tinue producing positive contributions to theory and research, it would
appear necessary to explore other dependent/outcome measures and to
integrate the focus on teaching behavior with analyses of student behavior
and perceptions (for example, clinical interview strategies). The study of
teacher and -student variables could be profitably combined with an active
examination of the mathematics content being presented. It is likely that
different types of instructional and leaming strategies would be more or
less effective for instruction in particular mathematical concepts or beliefs.
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Vi. The Sex
Factor

Elizabeth Fennema

At the 1978 Annual Meeting of the National Council of Teachers of
Mathematics, I concluded a presentation entitled “Sex-Related Differences
in Mathematics Achievement: Where and Why” with the following re-
marks (Fennema, 1978):

What, then, can be said that is known about sex-related differences in
mathematics and factors related to such differences? Certainly when both
females and males study the same amount of mathematics, differences
in learning mathematics are minimal and perhaps decreasing. Many fewer
females elect to study mathematics and therein lies the problem. Factors
which appear to contribute to this non-election are females’ lesser con-
fidence in learning mathematics and belief that mathematics is a male
domain. In addition, differential teacher treatment of males and females
is important.

There is nothing inherent which keeps females from learning mathe-
matics at the same level as do males. Intervention programs can and must
be designed and implemented within schools which will increase females’
participation in mathematics. Such programs must include male students,
female students, and their teachers. Only when such intervention programs
become effective can true equity in mathematics education be accomplished.

In addition, I had discussed spatial visualization and concluded that it was
the only cognitive variable which might be helpful in understanding sex-
related differences in mathematics. Most of those statements I still believe.
Others I am not so sure about.

Sex-Related Differences in Mathemaiics

There is a great deal of new information about women and mathe- °
matics, plus increasing concern at the action leve'—the schools. In 1978,
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the National Institute of Education funded ten major research projects
that investigated a number of factors related to the issue. The Women's
Educational Equity Act has funded many product development projects,
which can be used at all levels of education, to increase fernales’ partici-
pation in mathematics. Information about the issue has appeared in a wide
variety of publications ranging from the American Educational Research
Journal to Chronicle of Higher Education to Ms. magazine. NCTM has
had a major task force charged with making recommendations to its Board
of Directors. Lead articles about the status of women and mathematics
have been in the Mathematics Teacher ana the Arithmetic Teacher. The
Journal for Research in Mathematics Education has recently published
three articles and the editor reports an increasing number of submissions
about the topic. Inservice programs designed to iacrease teachers’ aware-
ness are being held nationwide. A major strand at thé Fourth International
Congress on Mathematics Education was about women and mathematics.
The issue is one of the most widely talked about in the mathematics edu-
cation community since the “New Math.” In short, knowledge about the
importance of mathematics to females and the inequitable education in
mathematics that females have received is easily found. Also available are
some intervention programs that have demonstrated effectiveness. What
has been the result of this? Is the problem solved? Let's take a look.

The most importaut place to look to see if change is taking place is
in schools themselves. Here exists a major problem. For a number of
years, I have been convinced that we cannot talk about what is going on
in high schools on a nationwide or statewide basis, or even on a system-
wide basis. The analysis of all data I have ever collected, as well as other
analyses that I have seen, has led me to the conclusion that sex-related
differences in mathema s must be examined on a school-specific basis.
Some school: have been remarkably successful in helping females learn
mathematics and to feel good about themselves as learners of mathematics.
Other schoo. have not. Some schools have more females than males en-
rolled in advanced mathematics classes. In many schools, the reverse is
true.

Because of the discrepancies which exist among schools in enroll-
meiit patterns and also in feelings toward mathematics by females and
males, it is somewhat hazardous to generalize. Nevertheless, an examina-
tion of the data that do exist is interesting.

Enrollment Patterns

Armstrong (1979) reported a major study whose purpose was to
determine the relziive importance of selected factors affecting women's
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participation in mathematics. She collected data from a stratified, random
sample of the entire United States. One factor on which she collected data
was partieipation in mathematics classes. She asked twelfth-grade students
to check the appropriate boxes if they had taken or were currently en-
rolled ir courses with specific titles. She concluded that few differences
exist in course-taking patterns for males and females in the twelfth grade.
Her data are shown in Figure VI-1.

Figure VI-1. Sex Differences in Participation in High School Mathematics*

Fall 1978
Percentages

Female Male Differences
General Math . 88.77 90.12 1.35
Accounting/Business Math 40.21 32.62 —7.59
Consumer Math 25.32 28.78 3.46
Pre-Algebra 64.98 65.08 10
Algebra | 78.49 81.06 2.57
Geometry 55.29 59.36 4.07
Algebra I! 42.15 53.72 11.57
Trigonometry 27.14 30.96 3.82
Probability/ Statistics 4.86 9.48 4,62
Computer Programming 13.28 18.16 488
Pre-Calculus 18.00 21.49 3.49
Calculus 7.23 8.20 .97 N

* Armstrong, J., “Women and Mathematics: An Overview of Factors Affecting
Women's Participation (Table 3),” paper presented at Research on Women and
Education Conference, Washington, D.C., November 1979. (Available from Edu-
cation Commission of the States, 1860 Lincoln.Street, Denver, Colorado 80295.)

More females than males take accounting. In every other category, more
males have taken or are taking the class. There appears to be no dra-
matic difference in course taking. The Second National Assessment of
Educational Progress collected data in a manner similar to Armstrong
(Fennema and Carpenter, in press). These data indicate approximately
the same trend as does the Armstrong sample.

Is the same trend evident when we look at data from a state sample?
Wyoming recently completed such a survey, in which mathematics’ prepa-
ration was classified on six levels. Level 6, the least prepared, means
students have had only general mathematics. Kevel 1, the highest level,
means students have studied algebra I and II; synthetic and analytic
geometry; trigonometry; logarithmic functions (commor -and natural)




=
THE SEX FACTUR 95

and their graphs; mathematical induction; algebra of functions; basic
operations on matrices; and limits, continuity, and differentiatioh of poly-
nomial functions. Figure VI-2 shows the seniors who had attained each
level in 1978. At only the two lowest levels did females and males have
the same preparation.

California also reports that a greater percentage of boys than girls
take four years of mathematics (24 percent male vs. 17 percent female),

Figure VI-2. Perc;nl of College-Bound Seniors Attaining Each of
Six Levels of Mathematical Preparedness*

Percent
Level Female Male
i 15 30
2 21 36
3 54 64
4 71 78
5 93 94
6 100 4 100

* Kansky, B., and Olson, M., Mathematical Preparation Versus Career Aspira-
tions: Study of Wyoming 1978 High School Senjors (The Science and Mathematics
Teaching Center, Box 3992 University Station, Laramie, Wyoming 82071), p. 13.

** Level 1 is the highest level of mathematical preparedness.

PN

while Wisconsin reports a 6:4 ratio of male : female in their most ad-
vaaced course (Perl, 1980). Overall, these enrol:ment data are moderately
encouraging.

What happens when we look at individual schools rather than com-
piling across the nation or a state? In 1977, my colleagues and I began
developing an intervention program designed to increase high school girls’
enrollment in mathematics classes. This project was funded by the Women’s
Educational Equity Act Program and included a major evaluation com-
ponent. In order to carry out this evaluation, wa-’wanted to use the pro-
gram in schools liaving an imbalance in enrollment by scx in ad“anced
mathematics courses. I assured my colleagues that finding such schools
would be no problem since all the literature (including some written by
me) said such an imbalance almost always existed. Imagine my surprise~
(and embarassment) to find that in about one-third of the schools either
an equivalent number of females and males or more females than males
were enrolled in advanced math classes. I must add that in most of these
schools there were not many advanced classes and there were few students
of either sex enrolled in them. However, I am convinced now that while

Q
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enrollment trends may be encouraging on a broad scale, it is only by
looking at individual schools that meaningful assessment of females’ en-
rollment in advanced math courses can be made.

Mathematics Achievement

A m@n critical issue is what current data tell us about whether sex-
related difféfences in achievement exist when the number of .nathematics
courses boys and girls have studied is held constant. In other words, do
girls and boys who report that they are currently enrotled in or have been
enrolled ir the same mathematics courses achieve equally in mathematics?
If these differences in achievement exist, are they large enough so that we
should be concerned? .

Studies which shed light on mathematics learning by fema'=s and
males are becoming increasingly sophisticated in at least two ways: (1)
mathematics course taking is being considered an important variable to
control, and (2) the cognitive complexity of the items used to measure
learning is being included. Prior to 1978 studies which considered both of
these were basically not available. Now there are four such studies that deal
with relatively current data. Two of them reflect information gathered from
nationwide samples. The California State Assessment of Mathematics
was done in 1978. Students in Grades 6 and 12 were tested on a variety
of content areas with items of differing cognitive Ievels. Comparisons in
achievement level were made among groups who reported studying the

, - same number of mathematics courscs. A committee was named to evaluate
the results and concluded the following about sex-related difierences:

An analysis of the results by sex showed that girls do consistently better
than boys in computations with whole numbers, fractions, and decimals.
The girls also outperformed boys in simple one-step word problems. How-
ever, the committee found that boys typically scored higher on word pro-
blems that were either multiple-step problems or required more reasoning
ability. "

In geometry, the girls scored higher than boys on questions involvingex
recall and identification of ceometric shapes, while boys achieved higher
than girls on items dealing with spatial relationships and reasoning ability.
In measurement, the girls generally scored higher than boys on problems

ling with money; however, boys generally performed better than girls

the other questions. .

At the twelfth grade, the relative performance of boys and girls was com-
pared taking into consideration the amount of mathematical preparation
of the particular courses that students had completed. The committee noted
that the girls continue to outperform boys at the twelfth grade in whole
number and decimal computations. However, the girls do not keep up
their relative achievement level in fraction computation at the twelfth
grade. The committee observed that girls were considerably lower in the
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-skill areas of measurement, geometry applications, and probability and
statistics. !

Females tended to achieve higher than maSs on lower level cognitive
tasks, while males scored higher on more comple cognitive tasks.

Armstrong also investigated achievement- Gifferences. She compared
iemales and males who had takea the same math courses and concluded:
“Twelfth gradé males sccred significantly higher than females on the prob-
le:n solving subtest. Thirteen-year-old females scored significantly higher
on the lower level mathematical skill of computation.” Tic mathematics
- -Assessment of the Second National Assessment of Educational Progress
indicated also that fcmales were somewhat better in computational tasks
than were males. Males out-achieved females in higher level cogmtlve tasks
(Fennema and Carpenter, in press).

These four major studies have made me somewhat uncomfortable
with the idea that the only thing we have to do is to ensure that females
continue to enroll in mathematics during high school. T am still convinced
that the majority of females will achieve at the same level as the majgnty
of males if they elect to study the same amount of mathematics. However,
differences in achievement on high level cogmtlve tasks deserve more direct
investigation both with large samples and at the individual school level.

Related Variables

In 1978 1 reported that females felt less confident in leathing mathe- -
matics than did males, and they, ended to believe that mathematics was
less useful to them than to males. These are still two major variables that
explain sex-related differences. My colleagues and 1 are currently involved
in a longitucinal study attempting to identify influences on the development
of feelings of confidence. Other than to re-emphasize its importance, ¥ have
nothing new to report. Belief in the usefulness of mathematics can be
changed and later I will talk about how and why. B

-One major variable that might help explain females’ falling behind in
learning higher level skills has to do with the practice of such skills.
Enrollment in both mathematics-related courses (such as computer science,
probability and statistics) and in science courses which use a great deal of
mathematics such as chemis% and physics may contribute to the differ-
ence. The female : male ratio- in such classes is much higher than in
traditional mathematics classes. In these related classes, mathematics is
used or applied at the®-ame cognitive level at which males are out-
achieving females. We learn what we practice; if males tend to participate

) in higher level skills in other classes, then they will undoubtedly learn them
better.

wll Toxt Provided by ERIC
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It has Jong been a hypothesis of mine that teachers expect males to
be better problem-solvers than are females and that boys, more than girls,
are encouraged to engage in problem-solving activities. If this hypothesis
is true, girls would tend to engage in lower level cognitive activities more
than do boys. A result of such differential practice would be the different
achievement by cognitive level that has been observed.

- We do know that teachers are the most important educational influ-

ence on students’ learning of mathematics. Fromn entry to graduation from
school, learners spend thousands of hours in direct contact “»ith teachers.

While other educational agents may have influence on euucational de-
cisions, it is the day-by-day contact with teachers that is the main influence
of the formal educational ingfitution. Part of the teachers’ infiuence is the
learners’ development of s2x role standards. These sex role standards in-
clude defiritions of acceptable achievement in the various subjects. The

di ferential standards for mathematics achievement is communicated to
boys and girls through differential treatment as well as differential expecta-
tions of success.

Many studies have indicated teachers treat female and male students
differently. In general, males appear to be more salient in the teachers’
frame of refeience. Teachers interact with males more than with ferzies
in both blamt and praise contacts (Becker, 1979). More questions are
asked of male; by teachers. Males are given the opportunity to respond to
, more high levcl cogaitive questions than are females (Fennema and others,

1980a).

' High achieving girls seem particularly vulnerable to teachers’ influ-
ence. One major study “(Good and dther 1973) indicated that high
achieving girls received significantly less attention in mathematics classes
than high achieving br ys. On the other hand, many girls who have been
accelerated in mathematics report positive teacher influence (Casserly,
1980) as a cause of their success. T is influence was manifest by teachers
being ‘sex-blind’ in the treatment of girls. Teachers treated males and fe-
males just alike and had high expectations for females, as well as males.

Another theory that might help in understanding the sex-related dit-
ferences in mathematics is attribution theory, although I must urge caution
in accepting this theory in a simplistic way. Attribution theory has to do
with the perceived causes of snccess and failure experiences. The model
that appears to be the most useful to educators as an aid te understanding
achicvement-related behavior is the one proposed by Weiner (1974). In
this model, attributions of success and failure are categorized into the
magrix shown in Figure VI-3, with locus of control being one dimension
an¥'stability the other. ‘ '
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Figure ViI-3. Locus of Causation

INTERNAL EXTERNAL
STABLE Abllity Task
STABILITY
UNSTABLE Effort Luck

Attributions of past successes and failures to certain of the Weiner
categories have been shown to be related both to task persistence and task
choice (Bar-Tal, 1978). If one attributes success to inteinal causes, par-
ticularly the internal stable cause of ability, then one can expect success in
the future and will be more apt to approach or persist at certain tasks. If,
however, success is attributed to an external cause, success in the future is
not assured and one will avoid the task. A somewhat different situation is
true of failure attributions. If one attributes failure to unstable causes,
failure can be avoided in the future so the tendency to approach or persist
at tasks will be encouraged. Attribution of failure to a stable cause, on the
other hand, will lead one to believe that failure can’t be avoided.

Although we should be extremely careful of overgeneralizing data and
concluding that all males behave one way and all females anothe:r way,
many studies have reported that females and males tend to exhibit different
attributional patterns (Deaux, 1976; Bar-Tal and Frieze, 1977). In'a some-
what simplistic summary, males tend to attribute successes to internal
causes and failure to external or unstable causes. Females tend to attribute
successes to external or unstable causes and failure to internal causes.

These attributional patterns have also been linked to a pattern of be-
havior called “learned helplessness”—the condition in which failure is
viewed as.inevitable and insurmountable. This condition results in lowered
motivation to persist. Females are more likely than males to display learned
helplessness (Dweck and others, 1978).

The principles of attributioa theory and learned helplessness can be
applied to the problem of math avoidance—the lack of persistence in
mathematics related activities. it appears reasonable to hypothesize that if
a student attributes successful pe-* rmance in mathematics to ability, the
ielihood of persisting in math - - s higher than if that success were
attributed to an unstable cause . - . effort or luck. Conversely, when
failure is attributed to ability, lowered persistence will result. The differ-
ential in male/female enrollment in mathematics—the lack of persistence
among females—might be partiaily explained by the {act that females, more
than males, attribute successful performance to unstable causes and un-
successful performance to stable ones. A recent study by Wolleat and
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others (1980} indicated that this is true. Females, when compared to
males, exhibited more of the learned helplessness pattern in their attribu-
tion of success and failure in mathematics. They were more likely than
males to use effort (unstablc) and less likely than males to use ability
(stabl*) to explain their successes. When explaining mathematics failures,
females invoked thc attributions of ability and task difficulty (both stable)

"more strongly than did males.

Another variable which many believe might help explain both diffe=-
ential course taking and differences in achievement is spatial visualization.
Spatial visualization involves visual imagery of objects, movement of the
objects or changes in their properties. In other words, objects or their
properties must be manipulated ia one’s ‘mind’s eye,’ or mentally. The
relationship between mathematics and spatial visualization is logically evi-
dent. Starting at about adolescence, male superiority on tasks involving
spatial visualization is found. Many are finding that spatial visualization is
related to mathematics achievement differently for males and females
(Sherman, 1979).

Currently, my colleagues arnd I are engaged in gathering data about
how mathematics learning is dependent upon spatial visualization. It ap-
pears evident that tasks which measure spatial visualization skills have
components that can be mathematically analyzed or described. From such
an examination, we could hypothesize a direct relationship between mathe-
matics and spatial visualization. An item from the space relations portion
of the Differential Aptitude Test (Bennett and others, 1973) requires that
a 2-dimensional figure be folded mentally into a 3-dimensional figure.
Another spatial visualization test requires that 2- or 3-dimensional rigid
figures be rotated and translated to specified locations. The activities re-
quired by those tests can be described as mathematical operations. Yet this
set of operations is only a minute subset of mathematical ideas which must
be learned and, indeed, one could go a long way in the study of mathe-
matics without these specific ideas.

The hypothesis that my colleagues and I are currently investigating is
that the critical relationship between mathematics and spatial visualization
is not d.rect, but quite indirect. It involves the translation of words and/or
mathematical symbols into a form where spatial visualization skills can be
used. For instance, consider the following problem:

A pole 12 feet long has been erected near the bank of a lake. Two and
a half feet of the pole have been hammered down into the bottom of the
lake; one half foot is above the surface of the water. How deep is the lake?

For children of 11 and 12 years of age, this is a moderately difficult prob-
lem. You must add the lengths of two pieces of the post and then subtract
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that length from the total length, that is, 2% + % =3 and 12 - 3 = 9.
Keeping track of the steps and sequencing them accurately is not easy.
Consider the problem from a spatial visualization perspective. If you can
visualize in your mind what is involved. the solution of the problem then
becomes simpler. An image would enable a person to move the pieces
above and below the water together. Then that length could be subtracted
from the total length in order to get the correct answer.

Consider a symbolic problem met by children of the same age: %2 + =
14. While it can be solved totally with symbols, children of this age, be- -
cause of their developmental level, often have trouble really understanding
the symbolic process involved. If it could be visualized in the mind, spatial
visualization skills could be used and the answer found more easily.

We know that females tend to score lower than males on spatial
visualization tests. What we do not know is whether females differ from
males in their ability to visualize mathematics, that is, in the translation of
mathematical ideas and problems into pictures. Neither do we know if good
spatial visualizers are better at these translations than are poor spatial
visualizers. However, I am increasingly convinced that there is no direct
causal relationship between spatial visualization skills and the learning of
mathematics in a broad general sense. While I am continuing to investigate
the impact of spatial visualization skills, I am less convinced than I once
was that spatial visualization is important in helping understand sex-related
differences in the studying and learning of mathematics.

In American schoois, classrooms don’t appear to use mathematical -
representations which either encourage or require the use of spatial vnsuah-—vr
zation skills. While some primary mathematics programs encourage the use -
of concrete anu pictorial representations of mathematical ideas, by the
time children are 10 or 11 years old, symbolic representations are used
almost exclusively. Perhaps boys, more than girls, use the concrete repre- _
sentations during primary years and, thus, develop higher skills in using
spatial visualization in learning mathematics. As far as I know, however,
no one is investigating such a hypothesis.

Interventions

Can schools be changed so that females elect to study more mathe-
matics and learn mathematics as well as do males? All too often, comments
are addressed to me that imply that schools alone can’t do much. The
argument goes like this. Because the studying of mathematics is stereo-
typed male, and because stereotyping of sex roles is so deeply embedded
in society, schools are powerless to improve females’ studying of mathe-
matics until society changes. Let me say as etaphatically as I can that that
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"102 MATHEMATICS EDUCATION RESEARCH

argument is fallacious. Schools can increase females’ studying of mathe-
matics. Let me cite some evidence that shows strongly that schools can be
effective.

. Two intervention programs in particular have been intensively evalu-
ated. The first program is called Multiplying Options and Subtracting Bias.
The rationale used in its development is that merely telling high school
temales about the importance of mathematics is insufficient. Forces that
influence these girls to make their decisions are comglex and deeply em-
bedded in societal beliefs about the roles of males and females. Asking
females to*change their behavior without changing the forces operating on
them would place a very heavy burden on their shoulders. What should
be done is to change the educational environment of these females so that
they are enabled to continue their study of mathematics beyond minimal
requirements. This environment is composed of several significant groups
of neople: mathematics teachers, counselors, parents, male students, and
the female students themselves. Multiplying Options and Subtracting Bias
was designed to change these significant groups’ beliets about women and
mathematics“gs well as to change each group’s behavior.

Multiplying Options and Subtracting Bias is composed of four work-
shops: one each for students, teachers, counselors, and parents. Each work-
shop is built around a unique version of a videotape designed explicitly for
the target audience. Narrated by Marlo Thomas, the tapes use a variety of
formats, candid interviews, dramatic vignettes, and expert testimony. to
describe the problem of mathematics avoidance and some possible solu-
tions. The videotapes and accompanying workshop activities make the
target audience aware of the stereotyping of mathematics as a male domain
which currently exists, females’ feelings of confidence toward mathematics,
the usefulness of mathematics for u:d people, and differential treatment of
females as learners of mathematics. Discussed specifically are plans for
action by each group. These two-hour workshops are designed to have an
impact on a total school. X

The program has been evaluated extensively and its use has signifi-
cantly increased females’ enrollment in mathematics courses (Fenniema
and others, 1980a). Exposure of Multiplying Options and Subtracting Bias
can substantially influence students’ attitudes about mathematics, the :
stereotyping of mathematics, and students’ willingness to take more mathe-
matics courses.

The other intervention program was developed, planned, and imple-
mented by the San Francisco Bay Arca Network for Woinen in Science
(now called the Math/Science Network). The Network is a unique co-
operative effort of scientists, mathematicians, teclinicians, and educators
from 30 colleges and universities, 15 school districts, and a number of
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corporations, government agencies, and foundations. The goal of the Net-
work is to increase young women’s participation in mathematical studies
.and to motivate them to enter careers in science and technology.

Seven conferences developed by this network were held in the spring
of 1977 and 1978 to increase the entry of women into mathematics- and
science-oriented careers. These one-day conferences consisted of a general
session with a panel or niain speaker, one or two science/math workshops,
and one or more carcer workshops that provided junior and senior high
school girls opportunities to interact with women working in: math/scnence-
related fields.

The conferences were evaluated in a study involving 2,215 females
who had volunteered to attend. Pre- and post-conference questionnaires
were administered and responses analyzed. The evaluators concluded that
- "“the conferences (1) increased p»7ucipants’ exposure to women in a variety
of technical and scientific fields, (2) “ircreased participants’ awareness of
the importance of taking mathém#tee and science-related courses, and
(3) increased participants’ plans to take more than two years of high school
mathematics” (Cronkite and Perl, 1979).

Evaluations of these intervention programs indicate quite clearly that
it is possible to change females’ mathematics behavior, and to do so in |
relatively short periods of time.

Some 3chools are remarkably more effective than others in persuading
females to attempt high achievement in mathematics. Cassetly (1980)
identified 13 high schools which had an unusually high percentage of fe-
males in advanced placement mathematics and science classes. She con-
cluded that the schools had identified these girls as early as fourth grade
and the school teachers and peers were suppomve of high achievement by
the females.

Questions

I would like to conclude with the following questions and answers.
Perhaps your answers would be different, but I challenge you to at least
think about mine.

Q: Is the sex factor a reality in mathematics education?

A: Yes. Females are receiying an inequitable education in mathe-
matics in many schools. Not only do they elect to study mathematics less
than males do, there -is'some evidence that in a very important part of
mathematics learning, they learn less than do males.

Q: Can schools do anything about improving the mathematics educa-
tion of females?

Y
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104 MATHEMATICS EDUCATION RESEARCH

A: Yes, a great deal. Each school must first find out what its situation
is with respect to enrollinent and achievement and then plan interventions
which specifically address that unique situation.

Q: Can individual teachers do anything?

A: Yes. By becoming truly sex-blind in expectations—by increasing
their awareness of all students as individuals who have unique needs which
must be met in order to help students achieve at their highest level.

Q: What are the implications of research on sex-related differences
for the curriculum of the 80s?

A: Sex-related differences in mathematics can, and should, be elimi-
nated. Equity in mathematics education for females and males is an
achievable goal. In order to achieve this goal, each and every school must
consider its own specific situation. Much help is available, but the motiva-
tion and direction must come from within each school.
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Response

Grace M. Burton

At NCTM’s 1978 annual meeting, ability, from sexism in mathematics
the strand “Women and Mathemat- textbooks to the distribution of fe-
ics” attracted a large cross section males in leadership roles. Like Fen-
of the inathematics education com- nema, I concluded my presentation
munity. Topics ranged from mathe- With a call for commitment: .

matics anxiety to problem-solving The inability of women to succeed

~
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at mathematical endeavors is a bit
of hallowed mythology in our folk-
lore, but there are those who seek
to change that. Join us. Encourage
each mathematically talented Susie
you know to excel in mathematical
endeavors and t0 be proud of her
ability.

I believe we are presently seeing
the fruition of that interest in sex-
related differences whic!. had re-
surfaced in the mid-70s. We are
beginning to have the hard data to
support—or refute—some of our
hunches. Our openness to the find-
ings of research may be tested as
some of what we “know” turns out
to be not so at all. It is important
that we both evaluate the new find-
ings and re-evaluate our beliefs in
the light of those findings deemed
valid.

One difficulty in evaluating re-

search in the area of sex-related dii-

ferences is the sheer quantity of the
material currently appearing in pro-
fessional journals. Relevant infor-
mation is scattered across many
discipiines including economics, so-
ciology, neurology, developmental
psychology, anthropology, linguis-
tics, philosophy, and biology. Defi-
nitions vary from one study to an-
other, even in such basic terms as
“feminine,” “problem solving,” and
“spatial ability.” Nonsignificant dif-
ferences tend to be under-reported
while differences tend to be over-
reporied. Much of the data have
been collected. by self-report. Birth
order, race, and socioeconomic
class, all of which may be significant
factors, ave confounded with sex.
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Population equivalence cannot be
relied upon. Drawing conclusions
from older studies presents other
difficulties. Extrapolations from ani-
mal research, generalizations from
the pbservations of one sex to both
sexes, misinterpretations in second-
ary sources, and societal changes—
all have contributed to the present
state of the art. At bzse, though, is
the point raised by Fennema—all
we can learn from these studies are
generalities about males as a group
or femaies as a group. Traditional
research can tell us nothing about
what a particular male or female
can or will choose to do or be.

It may be that the very vigor of
this research activity has given rise
to what Fennema calls the new
mythology: that #, males and fe-
males are basicallyl different in cog-
nitive and psychojogical make-up.
There is now a rea] danger that this
mythology will play a part in edu-
cational decision rhaking. Luckily,
at least in those institutions receiv-
ing federal financial assistance,
schools are prohibited from offering
single-sex courses or extracurricular
activities. Were this not the case,
we might see a rash of “Trig for
Girls” or “Calculus for Girls”
classes. Such effarts to accommodate
group differences are shortsighted
and inappropriate at best. More
often, they are both ineffective and
deprecating. As we look back with
humor on the 19th century asser-
tiors that women actually had sig-
nificantly different breathing appar-
atus or nervous sy.iems, we must




be careful that we do not subscribe
to more modern but possibly
equally Judicrous beliefs.

Eurollment Patterns

The study cf mathematics is vital
to the intellectual development and
career progress of both male and
female students. I would be among
the first to deny that all female stu-
dents are less likely than all male
students to elect to study mathe-
matics when it is no longer a re-
quired subject. In some schools, the
number of each sex in advanced
_courses is about equal. I would sus-
pect, although I have no data to
back me up, that in those schools
where large numbers of young
women are continuing to study
mathematics beyond the required
courses, someone (or more than one
someone) is consciously doing
something to help this change along.

I firmly believe in the power of
the individual to effect change. Each
individual has the opportunity to
alter the status quo in the direction
of greater good. And of course I
believe that encouraging each stu-
dent to actualize his or her intel-

lectual potential to the fullest pos-

sible degree is a “good.” I repeat
without apology, “The place to im-
prove the world is first in one’s own
heart and head and hands and then
to work outward from there” (Pir-
sig, 1975). Each of us have the
obligation to do just that. To accept
“More males than females take up-
per math courses” as an unchalleng-
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able assumption is to abdicate that
responsibility. Those schools in
which female enrollment patterns
are different from the norm should
be studied, the contributing factors
identified and promulgated, and,
where possible, modeled in other
schools.

Mathematics Achievement

It is hard to accept the result that
females tend to achieve higher than
males on lower cognitive skills, yet
lower than males on higher cogni-
tive skills. Here again, however, we
must be cautious about translating
that finding into “Girls can’t do as
well as boys on complex cognitive
tasks.” I concur with Fennema’s
statement that the probable causes
underlying the reported differences
require direct investigation. We
must not lose sight of the individual
student who has the potential to
perform differently from what group
norms would lead us to expect. Re-
gardless of the social convention,
there have always been women who
have delighted in the study of
mathematics and who have achieved
success despite the fact that cogni-
tive activity was not considered the
province of “the gentle sex.” Fe-
maleness must not be taken as pre-
sumptive evidence of inability to
achieve at high mathematical levels.

Related Variables

The strength of variables related
to mathematics ggume-taking such
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as confidence and belief in the use-
fulness of mathematics is evident
both from. research and- less struc-
tured observation. These factors
each school can and should address.
Attribution patterns are a newer
focus. Building on this current re-
search, those teachers who have
long believed in the power of an
“Of course you can!” philosophy
for themselves and tHeir students
may be able to refine their thinking
and apply it more effectively.

Interventions

In the concern for well-designed
st~dies and carefully-written re-
ports, it is easy to underestimate the
role of the educational practitioner
who has the power to speed or re-
tard change in the educational sys-
tem. If only teachers could be con-
vinced of their power for good!
They are the powerful influence in
the lives of their students for
the successful (or unsuccessful)
achievement of academic goals, for
the development of positive (or
negative) attitudes, and for the em-
bracing of (or the escape from)
further exploration of mathematics.

Teachers become even more
powerful when they know the result
of research.

Teachers familiar with research
on “wait time” (Rowe, 1978) are
unlikely to transmit an “I know
your kind can’t do it” message by
not allowing time for students to
answer questions. Teachers who
know the Good, Sikes, and Brophy
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(1973) findings are more likely to
monitor their attending behavior.
Teachers who have learned of at-
tribution research will perhaps rec-
ognize the subtle differences in those
students who blame study patterns
for their failure and those who say,
“I don’t have a math mind.” Teach-
ers who have studied the efiect of
spatial visualization may take spe-
cial pains to incorporate appealing
activities in this dimension in their
classes.

I certainly agree that spatial abil-
ity~is_not crucial to the pursuit of
mathematics. Now that their diplc-
mas and/or careers are relatively
secure, several students and col-
leagues have told me they never
could see those rotating shapes in
calculus, and that they analyzed
their way through projective geom-
etry. On the other hand, certain
tasks are facilitated by the ability to
mentally rotate ‘or translate figures.
If an individual’s spatial ability can
be developed, develop it we should
—not because it will eliminate a sex
difference but because it will expand
that individual’s problem-solving
repertoire and enrich his or her life.

Effective intervention programs
on all educational levels are needed,
and it is heartening that they are
being developed, tested, and dis-
seminated. Each and every teacher
of mathematics within a school must
make a concentrated effort to help
each and :very student make what-
ever cognitive and affective strides
he or she can. Enlisting the support
of counselors, teachers and parents




as well as both male and female
students is a most promising direc-
tion for such programs to take. It
recognizes the basic fact that each
of us is part of a system, and change
. in one part of the system effects all
the rest of it. It is only when many
individuals each make a conscious
decision for positive change that
such change will occur. Those many
individuals must be informed of the
existence, extent, and impact of the
traditionax mythology that women
neither can nor should do mathe-
matics.

There are many successful strat-
egies (Menard, 1979). Some ap-
propriate to the local conditions
should be chosen, modified to meet
the needs of the individual schools,
and implemented. Gaining suppo
at the administrative level for thése
new directions will facilitate the
achievement of the desired goals, if
only because administrators have
the resources to help things happen
once they are committed to the value
of an idea. Ir this case, that valuable
basic idea is faimess.

Of course, what I am suggesting
invBlves seeing each student as a
person first and accepting him or
her without comfortable prejudg-
ment and ready-made expectation
due to sex, race, social class, sibling
performance, or any other factor. It
means throwing off any precon-
ceived notion that individuals in any
group are by nature logical or il-
logical, excited or bored by mathe-
matics, ambitious or passive with
respect to career. It means remem-
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bering theie is a .vast amount of
variation in any group, and that it
is an intellectually incefensible act
to ascribe characteristics to an indi-
vidual solely‘ on the basis of group
membership.

Ii each of us in our own spheres
of influence demonstrate firm com-
mitment to the importance of the
individual, and translate our knowl-
edge from research into action,
there may be 1o need in the future
to consider the question, “Is there a
sex factor in mathematics educa-
tion?”” We will have provided the
best learning environment possible
for each s:udent—regardless of sex.
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VIl. Problem
- Solving

Mary Grace Kantowski

The first of NCTM’s Recommendations for School Mathematics of the
1980s (1980) states, “Problem solving must be the focus of school mathe-
matics in the 1980s.” This recommendation not only indicates the impor-
tance of problem solving, it also implies that a concerted effort is needed -
in order to establish problem solving as an integral part of the mathematics

- cyrriculum. Before we look ahead to what the 80s hold for problem solv-

ing, let us look back to where we were at the beginning of the last decade
to see what we pave learned about problem solving and where w2 stand
today. ‘ )

In a comprehensive review of problem-solving research written just
orior to the beginning of tiie 70s, Kilpatrick (1969) noted that “Since the
solution of a problem—a mathematics problem in particular—is typically
a poor index of the processes used to arrive at the solution, problem-solving
processes must be studied by getting subjects to generate observable se-
quences of behavior.” He noted-that psychélogists had deviséd numerous
techniques for studying problem solving, buf’that mathematical problems
were seldom used in such research. Furthermore, he noted that the larger
question of how subjects adapt various heuristic methods to different kinds
of problems remains virtually. unexplored. The situation described by Kil-
patrick a decade ago no longer exists. Mathematics educators have been
studying problem solving using mathematical problems, and a great deal of
effort has been expended in the research community in the study of prob-
lem-solving processes.

Until the Kilpatrick report, much of the research and development in
problem solving focused on the actual solution to the problems or the
answers o the exercises. Researchers looked at how many problems were
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solved correctly, without regard for how the sol: tion was attained ov how
close a student may have come to a correct soiution. More recently, re-
search has begun to examine processes or the set oy steps students use to
find a solution. In this form of research, the pretncols (everything a stu-
dent says or does as he or she solves a problem) are collected during indi-
vidual interviews. Although difficult ar.c. time consuming, this emphasis on
studying how solutions are arrived at has uncovered some interesting regu-
larities common to correct solutions. It has been found, for example, that
correct solutions to problems involve setting up a plan, however brief, for
the so! “ion (Kantowski, 1977, 1980). Another finding ‘is that different
studen . approach the same problem in a variety of ways, indicating the
existence of a style or preference. This would suggest that curriculum de-
velopers and textbook authors should consider instruction in problem
solving that includes a variety of approaches.

Another change since 1970 has been in the expansion of the meaning
of problem solving. At the beginning of the last decade, problem solving
to most people meant the solving of verbal or word problems. Although
verbal problems remains an area of great interest in the mathematics edu-
cation community, the term problem solving now includes other problem
types such as nonroutine mathematics problems and real {application)
problems,

To many classroom teachers and other educators a problem is simply
a word problem or an exercise stated in verbal form. Word problems found
at the ends of chapters in mathematics books fallsinto this category. An
example of such a verbal problem might be the following:

Maria bought a hamburger for $.90 and a coke for $.30. If the local sales
tax is 5%, how much change should she receive if she gives the cl_k
$2.00?

Such problems are easity .olved by application of algorithms that are a
part of standzcd instruction, . ‘ ¢

Tn other educators a problem exists if a situation is nonroutine, that
is, if the person attempting the problem has no algorithm at hand that will
guarantee a solution. He or she must put together the available knowledge
in-a new way.to find a solution to the problem. Such problems arg subjec-
tive, that is, what is a nonroutine problem for one person is actually an
exercise or a routine problem for another. For most middle school stu-
dents, the following would be a nonroutine problem:

Maria has exactly $3.00 and would like to spend it all on her tunch. The
menu includes hamburgers at $.90, hot dogs at $.80, onion rings at $.60,
french fries @ $.50, and colas @ $.30, $.40, or $.50. The sales tax is 5%
What could Maria have for lunch? .
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In solving this problem a student has no simple calculation algorithm
to follow. The possibilities must be tabulated and some trial and error
attempted. Moreover, more than one solution is possible. .

In general, a nonroutine problem may be defined as a question which
cannot be answered or a situation that cannot be resolved with the knowl-
edge immediately availablé to a problem solver. In effect, a problem is a
situation which differs from an exercise in that the problem solver does not
have a procedure or algorithm which will certainly lead to a solution (Kan-
towski, 1974). That is not to say that such an algorithm does not exist,
simply that it is not known to the problem solver at a given point in time.
In fact, the solution to a problem may provide a problem solver with
algorithms for future exercises.

A third type of problem can be called applications or “real problems.”
Projects such es Unified Science and Mathematics for the Elcmentary
Schoots (USMES) deal with real problems, and several curriculum proj-
ects, notably Usiskin’s Algebra Through Applications, have emphasized
applications.

Verbal Problems

A comprehensive 1eview of research related to verbal problem solv-
ing was undertaken by Sowder and others (1978) Most children in the
elementary school are introduced to problem solving through verbal prob-
lems. After having been introduced to algorithms in some content area, the
next logical step in instruction is to introduce the student to a problem in
which the algorithm is being used or applied, to observe if a student is able
to use the algorithm correctly, and more importantly, whether he or she
is able to select the correct algorithm to use.

If we look at the first verbal problem stated above we see that in

- this case a student needs to select from and apply several algorithms:

Maria bgught a hamburger and cola:

Purchasés’ must be totaled 90

(Addition must be selected and applied) 30
' $1.20

Sales tax percent must be changed to a decimal .

Amount of sales tax must be found $ .06

(decimal multiplication must be

selected and applied)
Sales tax must be added to price $1.20
(addition must be selected and applied) .06
$1.26
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Finally, the total cost must be $2.00
subtracted from amount given clerk 1.26

(subtraction must be selected and $ .74
applied)

This kind of problem-solving activity is at a much higher cognitive
level than simply performing a computation. There are three steps in the
problem-solving sequence for each part of the problem. The student must
recognize the structure of-the verbal problem, select an appropriate
algorithm, then correctly apply the algorithm. Studies give clear evidence
that all three steps are necessary for successful problem solving in some
measure and that instruction must place emphasis on each of these steps.

Skill in computational processes is necessary for solving problems -
(Knifong and Holton, 1976; Meyer, 1978). However, having these skills
does not guarantee successful problem solving. Results from the second
assessment of the Nati}inal Assessment of Educational Progress support
this idea. Although 76 percent of the 9-year-olds and 96 percent of the
13-year-olds could subtract a two-digit number from a two-digit number,
only 59 and 87 percent, respectively, could solve a simple application
problem using the same subtraction exercise. The results were even more
dramatic when the operation was multiplication of fractions. In the case
of the 13-year-olds, the percentage of correct responses dropped from 69
on the computation exercise to 20 on the related application problem.
Clearly, a factor other than computational skill is involved in solving
verbal problems. Results of studies such as those cited po.at to a need
for instructional methods that emphasize something in addition to com-
putation. \

Nonroutine Mathematics Problems

In general, nonroutine problems are problems for which a problem
solver knows. no clear path to the solution and has no algorithm which
can be directly applied-to guarantee a solution. In the case of the problem
stated above, it is not clear from the statement of the problem what the
selection of lunch items should be. The student must either use some
trial and error to put items together to sum to a given total or organize
the data into a table of possible combinations that would give the desired
result. Such problems are at a higher cognitive level than simply selection
and application of algorithm. .

Nonroutine problems are important for several reasons. Experience
in solving nonroutine problems can help students transfer methods of
. problem solving to new Situations. Such experiences can also help students
grasp the meaning of mathematical structure and develop the ability to
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see the mathematics in a given situation. Several recent studies give us
a good deal of inform '+ On the status of solving nonroutine problems.
First, it has been foun. at the elementary, secondary, and postsecondary
levels that without specfic instruction in techniques for solving non-
routine problems, most students do not know how to approach such
problems and do not appear to use strategies .a their solution (Lester,
1975; Kantowski, 1974, 1980; Schoenfeld, 1979). In a finding similar
to that of Meyer (1978) cited above, Webb (1979) found that conceptual
knowledge and heuristic strategy components, among other factors, inter-
act in successful problem solving. This means that it is not simply com-
putational skill and the knowledge of how to apply algorithms that are
important in problem solving; it is also important for a student to be able
to plan effectively and to use other heuristics such as organizing data into
tables and drawing effective diagrams.

Several processes appear to be important in solving nonroutine prob-
lems. The solution set-up is the most difficult of the problem solving stages
and the most cr. -ial part of the soluti»n (Kulm and Days 1979). Solution

set-up refers to a variety of manii '~ itions of data that could lead to a
solution such as organizing data into a table, grouping data into similar
sets, or formulating an algebraic equation which would be useful in solving
the problem. The ability to set up the problem is related to its successful
solution.

Another process, which is closely related to solution set-up and has
been emphasized in research dealing with nonroutine problems, is that of
planning. In deciding on a plan for solution, a problem solver tries to find
a relation to other problems solved previously and decides on a method
of solution to try to follow. Plans often precede the solution set-up.
Although planning does not always ensure a correct solution, psychologists
(for instance, Greeno, Anderson, Rissland), as well as mathematics edu-
cators (Webb, 1979; Kantowski, 1977) have found that planning is
related to successful problem solving and that most successful solutions
of nonroutine problems show some evidence of planning.

Another variable studied in research dealing with the solution of
nonroutine problems is that of transfer—memory for and application of
methods used in previously solved related problems. Kulm and Days
(1979) found that a general-specific sequence of problem presentation—
that 1s, a sequence of problems in which a2 more general problem is pre-
sented initially and followed by a specific case and a similar problem—
produced significant transfer of information and that content played a
significant role. Both equivalent and similar problems resulted in transfer,
akhough for different type problems. Kantowski, too, in a study of non-
routine problems (1980), found that some reference to related problems
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existed in a significant number of correct solutions. For example, in one

of the instructional sessions, the solution to a problem used in instruction

generated the pattern of triangular numbers (1, 3,6,10...). Lat.r in

the study, many students refer.ed to the pattern of triangular numbers
that they had seen generat.d as they tried to solve problems that looked

unrelated on the surface. Some. students remembered the pattern; others

remembered how the pattern was generated (by adding successive natural

numbers to the previous element of the set).

. Real Problems

A real problem involves a complex real-life situation that must some-
how be resolved. Often there is not an exact solution, but one that is
determined to be optimal to fit the conditions. Real problems include
traffic flow problems, and problems dealing with financing school functions
and effectively utilizing available space. In arriving at a solution to a real
problem, students often solve a variety of brief application problems that
include substantial computation.

Perhaps the best known study of real problem solving is that done
by the evaluators of the USMES program (Shann, Unified Science and
Mathematics for the Elementary School, 1976). In this program, students
in a class work together in small groups in an effort to solve a “real
problem” such as the design of a soft drink that could be served at a
party or event that would satisfy most of the group. In solving such
problems, students become involved in collecting and compiling data in
making decisions about what and how much to purchase and what to
charge if the soft drink is to bc sold. Computational skills are used in
application situations so that the use of the skill becomes meaningful to
the student. Among the significant results of the program were the wider
repertoire of successful problem-solving behaviors exhibited; larger
amounts of time spent in more active, self-directed, and creative behavior:
overall higher (although not statistically significant) means on basic skill
tests; and significant positive attitudes toward mathematics.

Research on Instruction and Development

Ideas for Instruction
Problem-solving ability develops slowly over a long period (Wilson,

1967; Kantowski; 1974) and grows with experience in solving problems.
Therefore, for most students, except perhaps the most gifted in mathe-
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matics, systematically planned instruction is an essential factor in the de-
velopment of problem-solving ability.

A variety of factors seem to affect the ability to be a successful prob-
lem solver. In all types of problems with whick rescarch has been con-
cemed, the three variables of understanding the problem, planning, and
computational skill are importan’. These three variables constitute the first
three phases of Polya’s (1973) four phases in the solution of a problem.
These phases, as well as Polya’s fourth phase, Looking Back, will serve as
the basis for the suggestions for instruction in problém solving that will
follow.

Imstruction Must Emphasize Understanding the Problem

One of the most neglected aspects of problem solving is that of under-
standing the problem. As Polya (1973) noted, this aspect of problem
solving deals with far more than simply comprehending what is read. Un-
derstanding the problem implies grasping the relationships among the
conditions of the problem and perceiving what is given mathematically. If
a student truly understands a problem, he or she will not only be able to
determine what is being sought, but will also recognize if the information
given is reasonable or if a solution is impossible with the conditions as
given. Reports of many studies indicate that much of the difficulty students
have with problem solving stems from their failure to understand the
protlem. -

In reporting the results and implications of the second National
Assessment in Mathematics, Carpenter and others (1980b) noted that the
multi-step and nonroutine word problems were difficult for all age groups.
They noted that “the high levels of incorrect responses seen to indicate
that there was little attempt to think through a problem in order to arrive
at a reasonable answer” (p. 44). Moreover, in studi¢s undertaken in con-
nection with the Mathematical Problem Solving Project (Lester, 1975) it
was found that many students often misread and misinterpreted problems
and had difficulty in retaining and coordinating multiple conditions in a
problem.

Several examples from the second National Ass ~“ment of Educa-
tional Progress (Carpenter and others, 1980a) furthe ~ate the diffi-
culty students have with understanding the problem. O: ._..:cise on the
assessment required finding the number of buses, each holding a certain
number of passengers, that would be needed to carry a given number of
people. Thirty-nine percent of the 13-year-olds gave responses indicating
they ignored the fact that the number of buses must be a whole nu.nber.

In another exercise students were asked how many baseballs would be
left over if a given number of balls were packed 24 to a box. A large per-
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centage of students gave the quotient rather than the remainder as their
response. As the authors of the interpretive report note, “Performance on
these and many other exercises indicates that for too many students, prob-
lem solving involves little beyond choosing an operation, ca' ilating an
answer and reporting an answer” (p. 428). This comment is substantiated
by the results of exercises in which extraneous information was given in the
problem statements. Large percentages of students simply used all num-
bers given in some way, indicating a lack of understanding of the problem.
When exercises with missing information were given, students also had a
great deal of difficulty. In one such exercise, students were asked what else
one would need to know in order to solve the problem. Fifty-six percent of
the 13-year-olds and 32 percent of the 17-year-olds responded, “I don’t
know.” °

As was noted, the assessment results and the results of other studies
indicate that many students read a problem and begin to manipulate the
numbers in some way—often irrationally. Instruction should include slow-
down mechanisms to motivate students to make a concerted effort to un-
derstand what is being asked. One such procedure is reported by Kalmy-
kova (1975). Students read problems with in:flection and try to convey
meaning to one another. Then, students set up very simple problems to
develop early habits of trying to understand a problem being presented.

Understanding a problem often involves translating it into some other
form—a diagram, an equation, a matrix or a model. The important empha-
sis in instruction should be that the translation follows understanding, or
leads to deeper understanding of the problem and not simply be a rote
behavior. M .

Students in the elementary school are often taught to change “word
sentences” into “number sentences.” For example, in the problem

The two fourth-grade classes at Longwood School are saving boxtops for
athletic equipment. The need 10,000 boxtops to get a jungle-gym set. One
class has collected 3,871 tops and the other class has 4,106 tops. How
many more tops do they need?

One possible translation might be:

- 10w

3,871
7977

10,000 7,977 tops
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To be able to make the translation, the student must first understand that
what is needed is the difference between the total both classes have and the
number needed, and will set up the translation accordingly. Students who
do translations for problems such as this one by rote will often focus on
the words “how many mcre” and set up a translation such as 4,106 —
3871 =0. ' -

Students should also be aware of the importance of understanding. In
another of the Soviet studies, Gurova (1969) found that pupils’ awareness
of their own processes while solving problems had a positive effect on
problem solving. One technique, which could be used in instruction to help
students understand a problem, is to pose problems with missing informa-
tion. This makes the problem imr ossible to solve. Another technique i is to
assign problems with redundant ¢ r contradictory information.

Instruction in Planning

A second suggestion for instruction deals with helping students to
construct plans for approaching problems before they begin to “attack” a
problem. It is becoming increasingly clear that planning strategies are
essential to arriving at correct solutions. Many rescarchers (such as Lester,
1975; Kantowski, 1975) have found that prior to instruction, many stu-
dents do-not appear to use any strategies in problem solving Or use some
form of random trial and error. However, instruction in planning tech-
niques appears to have positive effect on the use of planning strategies and,
consequently, on improvement in problem solving. Moreover, a variety of
plans for the same problem should be suggested to emphasize to students
that there is more than one way to solve a problem.

Emphasis on a Varlety of Solutions

Several studies, on both the elementary and secondary levels, indicate
that students exhibit a great variety of problem-solving styles and prefer-
ences for certain ways to go about solving a problem. Moser (1979) stud-
ied children’s representations of certain addition and subtraction problems
with some emphasis on the students’ interpretation of the problem struc-
ture and their imposition of structure or the given prcblems. One of the
interesting features of the research findings was that even children in the
first grade have a rich repertoire of strategies that they apply to a problem
basad on their interpretation of its meaning to the~1. For example, children
who have not yet been taught an algorithm for subtraction approach simple
“take away” problems in a variety of ways. Some count to the higher num-
ber on their fingers, then move backwards the desired number of places to
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get the result; others use a “counting up” procedure, beginning with the
smaller given number. If concrete aids are available, some children set up
a1 : 1 correspondence and count the unmatched items to find the answer,
while others use an “add on” model, starting with the smaller given num-
ber and finding the number needed to be added on to give the desired
result. -
In a study of nonroutine problem solving among secondary school
students, Kantowski (1980) found evidence of a variety of styles in a
given group. In the instruction used in the study, several solutions were
given for each problem, some more elegant and efficient than others. The
solution paths selected by the students varied widely. They did not always
seleci what would be considered efficient solution paths, but those they
followed suited their styles. Often, as problem-solving ability developed,
students moved to more elegant solutions for problems similar to those
they had solved earlier. Instruction should include a variety of solutions to
problems to appeal to the variety of styles that might be present in a given
group.

Hints or Cues for Solution

One of the most frustrating aspects of problem solving for teachers
and students alike is its all-or-nothing aspect. There is nothing more annoy-
ing than being unable to find the one step, formula, or piece of information
that would unlock the $olution to a problem. Students cah be helped to
move closer to a solution even when they are unable to find one piece of
information. The Soviets have an interesting concept in the “zone of proxi-
mal development.” It is a zon® in which a student is able to operate with
assistance, but in which he or she is not able to operate alone. The applica-
tion of this concept to instruction in problem solving could be valuable.
Students can be provided with hints or cues that could be used or ignored
during the solution of a problem. Such cues could be useful to students
who are at a dead end and for whom the solution would “open up” if a
cue or hint were provided. In the problem involving boxtops stated above
one ‘““cue’’ might be the question:

What is the total number of boxtops both fourth grades have?

Another ““cue” could be the first translation:

10,000—[ HAVE ]=LNEED I

and the question:

What is the value of ?
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For more complex problems, hints might include formulas (such as
those for area or perimeter) or strategies that might be useful (such as
guessing using a small number).-Such “cues” or “hints” can also aid the
students in understanding the problem. Students might be motivated to
persevere, which could also result in more positive attitudes.

Relationship of P’rgll}em Solving to Proficiency in Basic Computational Skill

In recent testimony before the U.S. House of Representatives, Ed
Esty observed that “in general, it appears that what is being taught is being
learned. We see this on the satisfactory performance on the lower level
skills and, unfortunately, in the drop in performance on the high level
problem solving skills” (NAEP Newsletter, February 1980). Furthermore,
'too much emphasis on computational drill may be counterproductive to
development of the flexibility needed for problem solving. How can this
demand for emphasis on basic skills be reconciled with the need for de-
velopment of problem-solving ability in the limited time available for
mathematics instruction? Results from the USMES evaluation indicate that
students who engage in problem-solving experiences do not suffer in basic
skill development. Students in experimental groups did at least as well on
tests of basic skill (Shann, 1976). The Dutch look at basic skill from an
interesting point of view. They distinguish between skill and mechanical
practice and contend that “anyone who can execute standard routines but
is incapable of solving a new problem has no skill” (Van Dormolen 1976).
Problem solving is a basic skill.

Applications for use of algorithms must be incfuded when the algo-
rithms are taught. Selection of an algorithm is one of the difficulties hamp-
ering effective problem solving (Kulm and Days, 1979). If applications
were taught along with algorithms, this difficulty might be alieviated.

Need for Chanyes in Evaluation Practices

Students are very product-oriented as is obvious from many of.the
studies reviewed. They are concerned with the answer and whether that
answer is right or wrong. In several cases, it was seen that understanding,
setting up the problem, and planning were factors in successful problem
solving. Evaluation procedures should take jnto account these processes in
order to motivate students to develop them. The curriculum must include
some emphasis on understanding and planning. Exercises should reflect
these emphases and teacher-made tests and grading procedures should give
credit for using these processes. Questions such as “What do you need to
be able to continue to solve this problem?” would make students think
about what to do next and would assure students partial credit for under-
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standing what to do instead of not giving them any credit at all if a com-,
putational error was made somewhere along the. way. Students often work
for grades, therefore grading practices should reflect all aspects of problem
solving, including use of correct processes during solution.

What the Curriculum Holds for the 80s in Problem Solving -~

Thus far, we have iooked at some implications of research in problem
solving for the teacher who is trying to translate some of what has been
found to classroom practice. But research, both educational and techno-
logical, has far-reaching implications for curriculum developers in addition
to the suggestions for instruction cited.

Conspicuous by its absence in the discussion to this point has been
the role of the calculator and, more dramatically perhaps, the role of the
microcomputer in the problem-solving curriculum of the 80s. One reason
for this, of course, is that it is too soon to see many published research
studies dealing with the microcomputer. That does not, however, mean
that work is not being done in problem solving using the computer. Of
those 61 presentations in problem solving at NCTM’s 1979 National Con-
vention, several included instructional t- “hniques using the microcomputer.

Teaching for problem solving is 0. f the’most difficult tasks facing
the teacher at any level. Let us consider for a moment some reasons for
this difficulty, )

(1) Often there are no new concepts to introduce or algorithimic skills
to teach—the object of the instruction is to have students put together
knowledge they have already acquired to solve the given problems, and
techniques to do this are not readily available. . )

(2) All students in a given group are not familiar with the necessary
content or the algorithms needed to solve some of the problems encoun-
tered, and the teacher is then faced with the problem of how to handle the
diversity of backgrounds. P

(3) That students work at different rates is especially true in the case
of problem solving. Some students need much more time than others to
understand a problem and to find what is being sought.

(4) There are many problem-solving styles resulting in different paths
to the solution of problems, particularly those that are nonroutine (Moser,
1979; Kantowski, 1980). It is difficult for a single teacher to take into
account the variety of styles that occur.

(5) Teachers are faced with increasing requirements in the curricu-
lum and are pressured to emphasize computational skills and so have little
time to assist students who are having difficulty in problem solving ex-
periences.
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(6) There is a lack of good sequences of relateéd problems to use in

= instruction. :

IToxt Provided by ERI

Many of these problems can be partially resolved through the use of
eomputers. The computer brings the potential for radical change in the
mathematics curriculum and for great support for teachers, bringing some
relief in overcoming the difficulties in problem solving instruction outlined
above. The microcompujer is hot a panacea. It cannot resolve all the diffi-
culties encountered in an effort to teach for problem solving, but it can
definitely provide support in many of the problem areas. Specifically, a
student interacting with a microcomputer can work at his or her own pace
and take as little or as much time as .needed on a given problem. The
branching capability of the computer is perhaps the single aspect of this
machine that makes it such an invaluable tool in'teaching for problem
solving. It canygnable a student to request hints or cues or other informa-
tion such as an algorithm that may have been forgotten or some instruction
in content that was, perhaps, never learned. More important, possibly, this
branching capability can take into account the many preferences or styles
encountered in any group, by permitting a student to select a desired path
to solution and to request cues to aid in finding a solution in his or her own
preferred style. The capacity of the computer to provide for differences in
educational backgrounds and preferred styles enables the teacher to deal
effectively with what could otherwise be an unmanageable situation. More-
over, the capability of the computer to collect and process data can be used
to provide feedback to a teacher on_many aspects of a student’s problem-
solving experience. For example, a record of paths followed, hints or cues
selected, as well as information needed (algorithms, instruction in content)
can give a teacher a valuable profile of a student. Software to handle such
demands of instruction for problem solving will be an important demand
in curriculum development for the 80s.

The graphics mode of the computer cannot only provide excellent
color diagrams related to problems, it can also simulate motion in a way
not possible on the printed page or even in other media. This capability of
the computer has implications for curriculum development as well as for
further research related to spatial abilities. It has been observed in work-
ing with students (Kantowski, 1980) that the complexity of a figure will
often keep a student from finding a solution to a problem. If the figures
can®be seen as they are generated, perhaps their complexity will be less
overwhelming, and a solution more readily found.

The availability of the calculator mode of the computer also makes it
an invaluable tool in teaching for problem solving. Conceptually simple
problems previously unsuitable for widespread use because of tedious and
time-consuming calculatiqns may now be included at relatively low levels
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of instruction. Moreover, real problems that could often not be studied
because of the tedious calculations required can and should be included in
the curriculum at all levels. For example, in a recent exploratory study, I
found that students were able to solve very complex problems in number
theory with the aid of a microcomputer. In subsequent interviews with
students after the problem-solving sessions, many admitted that they never
would have attempted to solve some of the problems without the aid of the
computer (Kantowski, 1980).

Need for Problems to Use in Instruction

Because students learn by solving similar kinds of problems (Polya,
1973; Cambridge Conference, 1963) sets of related problems need to be
developed. Such sets could include problems of similar mathematical
structure,” problems involving similar content, or problems for which
similar solution techniques would be useful. This reiterates the call for
sequences of problems made by the partic‘pants of the Cambridge Con-
ference. Although almost two decades have passed since the publication of
their report, their belief that “the composition of problem sequences is one
of the largest and one of the most urgent tasks of curricular development”
(p. 28) is still relevant today. :

In summary, the future looks very bright for the teaching of problem
solving in the curriculum of the 80s. During the last decade, we have begun
to_see new trends for further research and directions for curriculum de-
velopment suggested by tHe studies of the last few years. The curriculum
promises to be more child-centered if ngw technology can be used to ad-
vantage in dealing with tHe diversity’ of problem solving styles. And, after
all, the learner is what we are all about. Success in problem solving is a
very rewarding experience—finding clues to so much lack of success in the
past could be the breakthrough we've been seeking. The hope for the cur-_

riculum ot the 80s is that the problem-solving component will present f;
i1

new perspective to teachers and students alike. The prospect of new an
more challenging problems and the applications promised by the advent of

computer technology givll: us assurances of an exciting decade.
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Response

Larry K. Sowder

Kantowski's chapter is especially riculum. She has done an excellent
important beeause of ‘the likely job of clarifying how researchers
forthcoming re-emphasis on prob- use the term “problem,” of describ-
lem solving in the mathematics cur- ing research trends, of identifying
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problem-solving components, and
of -suggesting some research imp!i-
cations for instruction and curricu-
lum development. I heartily endorse
the spirit of her remarks.

The Problem-Solviag Components
Understanding the Problem, Dur-
ing this first phase of solving a
problem, a student should be able
to call on a firm conceptual basis.
For example, consic . a student
whose “understanding” of fractions
is confined to rules of computation.
The student is certain to be hand:
capped in dealing with a verbal
problem in which a fraction ap-
pears, unless s...< rotely-learned
procedure happens to fit the con-
text of the problem. Studies which
have' manipulated the amount of
time devoted to concept develop-
ment have found that at least 50
percent of class time should be
spent on concept development
(Shipp and Deer, 1960; Shuster
and Pigge, 1965; Zahn, 1966). In
our example, a fraction should not
be allowed to be only two numerals
separated by a bar. Nor should a
student’s concept be limited to only
one kind of model, like pie shapes.
Fractional number concepts must
be firmly founded in several models
like folded papers, pieces of string,
colored rods or strips, and sets of
objects, for example, as well as
work with circular and rectangular
regions and number lines. The stu-
dent would then have a richer con-
ceptual basis from which to draw
when confronted with “3% “of the
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distance” or “¥% of the children”
or “% of the amount” in a verbal
prceblem,

In addition to the anecdotal evi-
dence cited by Kantowski, some re-
search studies suggest that students
can profit from reflecting about
problems. For example, middle
schoolers perform better on prob-
lem solving if allowed to suggest
possible ways to solve a problem,
to discuss these ways, and then to
arrive at a consensus (Blomstedt;:
1974). Such a procedure contrasts
sharply with the common modeling
practice in which the teacher
“shows” the students how to solve
a problem. In the same vein, Rowe -
(1969) reported that teachers wait
only about one second after asking
a question before calling on a stu-
dent, and then again only about one
second after the student response
before proceeding to the next ques-
tion or remark. How much time
does that allow for reflection? She
found that the quality and quantity
of student responses increased sig-
nificantly when teachers sought to
lengthen their wait-times to five
seconds. Surely such results have
implications for our questioning
during problem solving! Finally, at
least two studies (Graham, 1978;
Keil, 1964) suggest ihat students
can profit from making up their
own problems and solving them. It
seems clear that teaching procedures
other than “monkey see, monkey
do” are called for if our students
are to develop a deeper understand-
ing of a problem.
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Planaing. For the routine elemen-
tary school verbal problem, plan-
ning often comes down to the selec-
tion of the proper operation(s). The
points in the previous section, espe-
<cially the desirability of a strong
conceptual basis, are directly re-
lated to one’s ability to decide
whether to ad@, subtract, multiply,
or divide.

Kantowski mentions the use of
cues or hints for solution of a prob-
lem, but this advice may be misin-
terpreted. For example, some
teachers tell students to look for
“key” or “clue” words which can
suggest what operation to perform.
Such .advice is well-intended and
sound insofar as the student then
thinks about how the variables in
the problem are related. The gdvice,
however, can be misappled by
children. Consider a student who
has been told that the word “gave”
signals subtraction. If the student
thoughtlessly applies that “rule” to
this problem: “Pat had 50¢. Then
Grandma gave Pat 35¢. How much
did Pat have then?”—the student
will not get the correct solution.
Note that this thoughtless applica-
tion is possible if the understanding-
the-problem component is ty-
passed. Cues and hints for solution
must not be used to circumvent
thinking about the problem. Even
first-graders blindly apply the key-
word approach if they have be~-
taught it (Nesher and Teubal,
1975).
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Carrying Out the Plan. The solu-
tions of most routine verbal prob-
lems and of many nonroutine prob- -
lems involve computations. A quote
from the NCTM agenda for the
1980s is appropriate:

It is recognized that a significant

poriion of instruction in the early

grades must be devoted to the direct
acquisition of number concepts and

skills without the use of calcul .

However, when the burde® of

lengthy computations outweighs the

educational contribution of the proc-
ess, the calculator should become

readily available (p. 8).

We must not delude ourselves by
thinking that inserting longer or
more frequent lists of story prob-
lems into a textbook is in itself
the way to insure a focus on prob-
lem solving, if the lists do not re-
quire understanding the problem
ard planning. If problem solving is
to be the focus, then these compo-
nents, iather than computation,
should receive the emphasis during
work on story problems. It is con-
sistent with such an emphasis to
leave at Ieast some of the computa-
tion connected with verbal prob-
lems to calculators.

Looking Back, Looking back—
reviewing the solution of a prob-
lem just solved, seeking other pos-
sible solutions, and thinking of
other problems that could be solved
in the same way—is a component
of problem solving that has not
been subjected to much research
even though it often appears in lists
of problem-solving advice (Polya,




1971). Looking back would offer
another chance for students to re-
flect on the problem and its solu-
tion. Despite the urgency often felt
in the classroom to move on to the
next problem immediately after
solving one, a minute or two spent
on looking back could allow attend-
ing to the processes involved rather
than leaving the impression that the
sole concern is the answer.

Research and Development

The NCTM agenda at least re-
minds us that the horse belongs be-
fore the curt. Whether the horse
remains obscured by the cart re-
mains to be seen. A great challenge
to curriculum developers will be to
make it possible for busy teachers
of the 1980s to focus on problem
solving. Supemsors will also have
a great challenge: convincing some
teachers that such a hard-to-teach
emphasis is the proper focus. Kan-
towski has been perhaps too san-
guine in making a case for micro-
computers as a prime problem-solv-
ing vehicle. Certainly microcom-
puters in the schools are easily

" justified on a computer literacy .

basis; software to accomplish the
many things that Kantowski envi-
sions, however, is in an infant state.
(Indeed, Kantowski is engaged in

pioneering work using the micro- °

computer as an aid in problem-
solving instruction.)

One difficult area of research de-
serves more attention: affective
factors in problem solving. We have
all observed even young children
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work concentratedly on an occa-
sional task which has intrigued
them. Ii would seem natural, then,
to try to identify intriguing tasks
and to isolate what makes them in-
triguing. Researchers have tried to
tie verbal problems to student in-
terests but by-and-large have not
found that approach to yield better
performance (Cohen, 1976;
Travers, 1967). Perhaps having
students write their own problems
gave the better results (cited above)
because of some affective-cognitive
interplay.

It is encouraging that so many
researchers are giving attention to
problem solving, routine and non-
routine. With one and a half million
“mini-laboratories” in ojperation
every school day, with teachers try-
ing diferent things, often on a
hunch basis, one can still wish for
s coherent, concerted research ap-
proach. If every school district
were to seek out or develop a study
of some aspect of problem solving,
perhaps our teaching of problem
solving could proceed on a ;nore
scientific basis.
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Viil. Comiputers

M. Vere DeVvault

Mathematics instructior: in elementary and secondary schools is frequently
perceived to be more amenable to the use of computers than are other
areas of the school curriculum. This is based on the perception of mathe-
matics as a subject with clearly defined objectives and outcomes that can
be reliably measured by devices readily at hand or easily constructed by
teachers or researchers.

Because the purpose of this book is to provide implications of re-
search evidence rather than a historical review of research, the studies
include those that have been undertaken, completed, or published during
the decade of the 70s. Vinsonhaler and Boss (1972) summarize ten major
studies of CAI drill and practice that were completed prior to those re-
viewed in this chapter.

As with other chapters in this book, the literature reviewed here is
limited to that which is clearly research. Some-related topics otherwise of
much interest to teachers and curriculum developers are omitted. Incladed,
for instance, are few descriptions of current CA) programs, little identifica-
tion of problem-solving modes for which computers are being used, and no
descriptions of individualized instruction programs that are being managed
by computers. A number of resources are available elsewhere for #he
interested reader.’ Wang (1978) tists nearly 3,000 programs being used
throughout the United States. Bukoshi and Korotkin (1976), reporting on
computer activities in secondary education, indicate that in 1975, 58~
percent of secondary schools used computers for administrative or instruc-
tional purpose . This is an increase of 34 percent since 1970. Forty-three
percent of the {,459 computer-based courses were in mathematics.

Even though schools seem to be organized as though learning occurs
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in compartmentalized fashion, we know that even with mathematics, a
learner’s self-concept, ability to read, and interest and functioning in the
social and scientific world that surrounds us not only influence learning,
but provide an integral part of growing up during the elementary and
secondary school years. Much of what we continue to learn about reading,
for instance, has implications for mathematics instruction; what we know
about the use of computers with adults, as in military research, must have
implications for mathematics; and the vast literature on-the technology of
mass media must also have implications for mathematics. Yet all of these
sources of information are to go untapped in this chapter.

Computers

Computer technology used in mathematics education can be divided
into two categories. The first of these is computer-assisted instruction
(CAI), which, in turn, can be divided into drill-and-practice programs,
instruction in mathematical concepts, problem solving, and computer pro-
gramming. The second use of computer technology is in computer-managed
instruction (CMI).

Computer-Assisted Instruction

The Computer Curriculum Corporation (CCC), under the direction
of Patrick Suppes, and the mathematics instruction program included in
Programmed Logic for Automated Teaching Operations (PLATO), under
the direction of Robart Davis, represent the most extensive CAI program-
ming and research efforts in mathematics education underway during the
70s. There are some interesting and significant common characteristics of
these two comprehensive and visible programs. Both programs represent
long-term developmental efforts by their respective directors. Suppes
and Davis were mathematicians who turned their attention t6 school
mathematics instruction early in the 60s; they were heavily involved in
tae development, implementation, and dissemination of mathematics pro-
grams for the schools during the period of the new math. Both worked
extensively with the schools and directly-with children within those schools.
Both developed school program materials that were supported initially
by research and development funds, with later editions of the materials
made available to schools through commercial publishers. Suppes and
Davis drew heavily on these earlier experiences and materials in the de-
velopment of the courseware that has become central to their CAI efforts.
A central point that must be made about these two programs, then, is that
the content or substance of these CAI efforts has a substantial develop-
_mental history. ’
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There are a number of other important points to be made about the
two programs. They function on two of the largest computer systems
committed to instructional use. Suppes kas made interactive satellite trans-
missions of programs to South America and to Eastern states of the U.S.A.
from his center in Palo Alto, California. The work Davis has done at
Hlinois uses only a small portion of the PLATO system for his elementary
mathematics program. Suppes and Davis have both accompanied their
instructional efforts with research efforts designed to monitor the effective-
ness of their programs. Suppes has been at work with computers longer
than Davis and, therefore, has a much larger body of research support
for his efforts. In addition, Suppes' evidence includes data from a wider
“variety of populations than does the Davis research. Although both pro-
grams are intended to supplement the work of the regular classroom
teacher, Suppes has focused largely on drill and practice, whereas Davis
has included drill and practice along with other CAI instruction.

The Computer Curriculum Corporation (CCC)

Suppes (1979) has reported that CCC courses include the largest
number of students using CAI in this country. By 1978, that number was
in excess of 150,000 students in 24 states. Most of these students were
disadvantaged or handicapped. A description of these courses and the
strands strategy they represent is contained in Suppes (1979) and in
Macken and Suppes (1976). The content strands include number concepts,
horizontal addition, horizontal subtraction, vertica! addition, vertical sub-
traction, equations, measurement, horizontal multiplication, laws of arith-
metic, vertical multiplication, division, fractions, decimals, and negative,
numbers.

The evaluation. of the effectiveness of CCC mathematics instruction as
implemented in 21 different sites is reported by Macken and Suppes (1976)
and by Poulsen and Macken (1978). Most populations were iargely dis-
advantaged or handicapped youth. Many were Title I students. Others
were either deaf, low TQ, or minority students whose opportunities for
previous schooling had been severely limited.

In general, the data in these several studies were analyzed to answer
three questions: (1) How was time on the CAI terminal related to achieve-
ment gains? (2) How was gain in achievement related to expected gains?
(3) How was CAI placement related to standardized test placement of
students? Additionally, there was considerable evidence gathered concern-
ing the satisfaction of parents, teachers, and students with their work in
CAL

’ There is consistent evidence to support the claim that achievement
gainis are related to the amount of time students spend in CAI. (Program
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developers insist that ten minutes per day,.five days per week, for a total
of 1,500 minutes per year is the optimum time students should spend in
CAL Thecugh planning for that amount of time is part of the conditions
for participation in the CCC program, there is much evidence that it is a
seldom-achieved goal.)

The most extensive CCC study concerning e relation of time at
the CAI terminal to achievement (Poulsen and Macken, 1978) included
data from a number of schools throughout the southern half of California.
The subjects were largely disadvantaged students in grades three through
nine. The authors report that “. . . no group received more than 75% of
the recommended time, and most groups received considerably less, even
though most students were scheduled to receive *en minutes of CAI per
day ... " (p. 3). The school day schedule is continuously altered with
extra activities that occupy children’s time and interests. Time taken away
from regularly scheduled class activities is as likely to be taken from CAI
as it is from any other scheduled activities in the school day. The propor-
. tion of the 1,500 recommended minutes per year actually spent in CAI
ranged from 23 to 75 percent among the 20 groups reported. Within
- grade groups from three through nine in each of seven schools, the correla-
tions between time in CAI and grade placement gain ranged from .53 to
.99. The average correlation for all schools was .86. Such a correlation
suggests a very strong relationship between time in CAI and grade-place-
ment or achievement in mathematics.

The ratio of actual to expected gain in mathematics achievement as
measured by the standardized test then in use in each district was consis-
tently high throughout the several studies reported (Poulsen and Macken,

L§Z8). In Freeport, New York, the ratic of actual gain to expected gain
was 1.54 for 142 students who were initially one year below grade level
and 191 fci 29 Hispanic students who had experienced little previous
schooling. In a study in Isleta, New Mexico, 96 students were in CAI for
a period of seven months. In each of the four classes, the average gain
was more than one month for each month in CAI; and the average growth
rate was 1.33 months per month. The mean gains for the year made by
Title I students in CAI ,at Shawnee Mission, Kansas, as measured by pre-
tests and post-tests with the Key Math Diagnostic Arithmetic Test, ranged
from .99 in grade two to 1.77 in grade five, with an average gain of 1.41
across grades one to six. There is, then, in these and other reperted studies
(Macken and Sappes, 1976; Poulsen and Macken, 1978), ample evidence
that the CAI program developed and implemented through CCC consis-
tently obtained results that surpassed expected gains for students least ex-
pected to succeed in mathematics as a result of regular. classroom instruc-
tion.
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Of specific relevance to the CCC mathematics curriculum is the ques-
tion of the relationship between CAI placement, as determined by the stu-
dent’s performence in the instructional program, and standardized test
placement. These studies reported consistently high correlations between
these two measures. Among the 20 groups reported in the southern Cali-
foria study, the correlations between CALI final grade placement and the

California Test of Basic Skills (CTBS), placement ranged from .28 to .87.

It should be noted, however, that the next lowest correlation after .28 was
.53 and the average of all correlations was .74. In the Ft. Worth study,
correlations between CAI placement and the Stanford Achievement Test
(SAT) mathematics computation giade placement were .62, .51, and .56,
respectively, for grades three, four, and five (Macken and Suppes, 1976).
The correlations between CAI placement and SAT mathematics applica-
iions grade placements were .35, .52, #nd .59 for grades three, four, and
five. There does, then, seem to be a relatively high corrzlation between
CAI placement and placement on standardized measures. These findings
indicate that achievement on CAI mathematics as defined anc developed
by CCC is an appropriate curriculum for the development of skills and
concepts measured by standardized instruments such as the Stanford and
California achievement tests. s

Though there has been a less direct attempt to measure the affective
impact of CAI in the CCC program, a number of reported comments seem
pertinent. Crandall (1977) reports that the CCC program in Los Nietos,
California seemed to reduce truancy and vandalism in his school. St
Aubin, reporting on the Dolton, Illinois CAI program for the hgndicapped
(see Macken and Suppes, 1976), claims that using the computer for indi-
vidual work resulted in students’ improved perceptions of themselves and
their school. He reports that after some initial hesitancy, teacher response
to CAI was positive and exciting as they saw improvement in the children’s
self-image.

To gummarize the research findings of the CCC program, we have
positive results for each of the questions for which answers were sought.

(1) Time children spent at CAI terminals was positively related to
their achievement. i

(2) There was substantial evidence that actual achievement gains
exceeded expected gains based on previous experience of the subjects.

(3) There was evidence that grade placement as determined by the
CAI program was highly correlated with grade placement on standardized
tests.

(4) There was much subjective evidence to support the claiin that
attitudes of students and teachess toward CAI were positive.
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PLATO and Elementary School Mathematics

, Another CAI program designed for use in the elementary school
(grades four through six) is the elementary mathematics program devel-
oped over a number of years by Davis and modified for use with the
PLATO computer on the University of Illinois campus at Champaign-
Urbana. Sixty interactive PLATO terminals are dedicated to clementary
school mathematics. Four of these terminals are present in each partici-
‘pating classroem. “Each student received % hour of mathematics lessons,
via computer, each school day, plus whatever instruction the teacher chose
to provide. In fact, each teacher continued the ‘regular’ math curriculum
from pre-PLATO years, except that a few teachers made adjustments to
help refate the ‘regular’ curriculum to the PLATO curriculum” (Davis,
1980b). . )

The four content strands of the PLATO program were derived from
Davis’ earlier work. The first three strands afe=viewed by Davis as repr
senting, respectively, content that is usually taught successfully ]p/thz
schools (whole numbers); content that is not so successfully taught in the
schools (fractions); and content that is not usually taught in grades four
through six (graphs and functions). The fourth strand, concerned with
programming computers, provides an option for children as a fringe bene-
fit, but is not viewed as a part of the demonstration-research project.

It should be recognized that the PLATO project is not one that fol-
lows a.typical programmed instruction format. Rather, I LATO mathe-
mgtics is presented via terminals that include both the .cletype and an
audiovisual interface between computer and student, making it possible to
follow the general instructional formats used in the earlier Madison Project
materials. Davis calls the Madison Project strategy paradigmatic learning
experiences. -~

The major research to determine the effectiveness of this instruction
was undertaken during the 1975-76 school year by Swinton, Amarel, and
Morgan (1978). Students in a dozen classrooms using the computer pro-
gram were matched with students in classrooms that did not use the com-
puter. At every grade level, children using the computer made significantly
greater achievement gains than children in the control group on measures
associated with the program as well as on computation and applications
subtests of the California Test of Basic Skills. Of importance also were the
positive attitudes exhibited by children.

Paraphrasing the final report to NSF (Slottow and others, 1977),
Davis (1980b, p. 9) speaks of the strongly ppsitive reactions of students
and teachers to the PLATO mathematics program:
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On every single attitude question used, differences strongly favorable to
PLATO were observed. Pupils were enthusiastic about the mathematics

. lessons which the computer presented on the TV-like screens, may students
sought extra sessions, their attitudes toward mathematics improved (as
measured by a questionnaire), and so did theif*attitudes toward their own
ability to deal with mathematics. Teacher assessmeits, though inevitably

. subjective, were very strongly positive, including even reports that PLATO
had decreased anti-social behavior.

A few children’s quotes taken from Stake's report (1978) of PLATO
~and fourth-grade mathematics illustrate the informal relationship children

have with their computer teacher: @
Dear Plato, - )
Why does PLATO get messed up a lot?
o From Cool Cat
Dear Plato,

This was a very nice session. Not too hard of too easy.
1 am glad someone was able to invent you

Sally R. .
Dear Plato, .
I like the games you play. But now I have to go.
Kitty N,

Swinton, Amarel, and Morgan (1978, p. 24) report:

ﬁ} particularly important outcome was revealed in positive effects on in-

gruments designed to measure students’ understandings of any ability to

present concepts and operations, beyond mere facility in manipulation

*  of symbols. The PLATO system here demonstrated that it was capable

of teaching, as well as of providing drill and practice of concepts already
introduced by classroom teachers.

That teachers and the PLATO program are ‘important complements
to one another cannot be denied. Swinton and others (1978, p. 25) con-
‘clude that “Teacher effects are real, large,-and idiosyncratic.” The PLATO
mathematics progran is not teacher proof; it is not independent of the
decisions and actions of individual teachers. Rather, the PLATO system
is experienced differently by children in classrooms of ditferent teachers.
The authors report that teachers perform most effectively when they are
given control over the curriculum. Though this is the case in many uses of N
computers in mathematics instruction, it is moré apparent in PLATO than
in Suppes’ CCC program, where children are scheduled at CAI terminals
out of the classroom.and management diagnosis and prescription decisions
are designed in the program.

PLATO mathematics was being developed in a number of dimen-
sions at the same time, and Swinton and others (1978, p. 25) warn that
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“. .. simultaneous system and curriculum development is hazardous. . . .”
They make a point of suggesting that more attention needs to be given to
the development of courseware prior to research efforts than is frequently
the case, and that it probably does make a difference who is involved in
the development work. These researchers express a preference for those
persons deeply involved in the subject matter, with extensive teaching ex-
perience and with » proven track record in curriculim development work,
over those persons whose first interest is in the computer and who then
seck a subject matter in which to make an application of computer exper-
tise. The authors conclude with ag expression of support for continued
developmental efforts in the PLATO project and describe the system as

having “. . . demonstrated its potential as a curriculum test bed . . .*
(p. 26). :
Comparative Research Studics

In addition to the major research and development efforts of Suppes
and Davis, there are a number of other projects that have been reported in °
the literature during the 70s.

Nine studies comparing achievement and attitudes of students using
computers with noncomputer students are summarized in Figure VIII-1.
No researcher is represented more than once in this list, indicating that ~
research efforts app=ar to be isolated. A study of student attitudes by Hess
and Tenezakis (1973) is an interesting example included among these
studies. In the study, there were 189 seventh to ninth grade subjects, 50 o
whom had taken the CAI drill-and-practice program with the Suppes CCC (
materials for a period of one or two years. The 139 non-CAI comparison
students were, on the average, performing better than the 50 CAI subjects,
though among the CAl students were several who had been in the program
because of their need for remediation. )

Subjects were asked tg.comparé their perceptions of computers with
their perceptions of teachers and of textbooks. The CAI group indicated
t-at computers had some real advantages'over the classroom teacher. They
viewed computers as fairer, easier, clearer, bigger, more likeable, and bet-
ter than the teacher. fghe CAI group perceived the computer as having
more information and making fewer mistakes than the teacher. According
to the authors, students perceived computers as being more ‘“charismatic”
than teachers, with greater endurance of work, greater infallibility, and
greater capability to help a student improve grades in mathematics. Non.-.
CAT students viewed the computer even more favorably, perhaps reflecting
the mystique of the computer that is so prevalent in society. In a further
discussion of the effects of CAI instruction on students’ perceptions of

ERIC 149




COMPUTERS 139 -

Figure Viii-1. Studies Comparing Achisvemerit and/or Attitudes of
Students ssing Computers with Nontomputer Students

Name of Year of |Grade|  Program Achieve-
researchers Report | level type ment | Attitude
Crawfo? 1970 | 7 Drill & ns
’ Practics
Hatfield and Kiergn 1972 | 7,11 | Programming | + +
Street 1972 | 37 Drill & ns —s
: Practice
Martin 1973 | 34 Drill & +* +
’ -, Practice
Hess and Tenezakis 1973 | 7-9 Drill & +
.- Practice
Milner ) 1973 | 5. Programming | ns +
Smith 1973 | 7-8 Drill & +
- ) Practice
Robitaille and Sherrill 1977 | 9 | Programming| -—s +
Morgan | - 1977 1 38 Drill & s +
? Practice .
s = differances significantly In favor of computer students
—8 = differences significantly in favor of noncomputer students
+ =, differences in favor of computer students
— = differences in fa%or of noncomputer students
n! = differences not significant

fourth-grade boys and iow-ability students achieved more than others

teachers, Brod (1972) reports that especially during the first year of CAI
instruction, involvement reduced students’ dependence on the teacher for
task-specific resources. This undermining of the teacher’s authority, he
suggests, represents an unanticipated and undesirable consequence of CAI
instruction.

. Thirty-two dissertation shidies (1969-1979) reporting on the com-
parative effectiveness of CAI and regular classroom instruction in changing
achievement and attitudes of students were reviewed, In most of the stud-
ies, CAI was used for drill and practice, although in five, the computer
served as tutor; in seven, the asis was on programming; and in two,
problem solving. In comparisgn with the research studies reported in
Figure VIII-1, results among the dissertation stdies appear to be less con-
sistently positive both for achievement and for attitudes. Of the 30 studies
_ that compared achievement differences, 18 reported no significant differ-
ences, whereas 12 did report some significant differences that favored the
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CALI groups. Of the 13 studies that com; ared attitudes, eight reported no
significant differences and five reported significant differences (four for the
CAI group and one for the non-CAI group). These dissertation studies as
a group fail to generate support for a relationship between computer-
assisted instruction 2nd the attitudes of students. Though the achievement
pictire was varied, nonsignificant studies outnumbered those that signifi-
cantiy favored the computer group by 18 to 12.

Clearly, there are many problems with any attempt to summarize the
findings of comparative studies of CAIL The unknown quality of the CAI
instructional components (courseware) and the certain unevenness of that
quality raises many questions about individual studies and about the re-
sults as a group. The hardware/software configurations are also varied
from study to study. Indeed, theve are a number of instances in which the
still-developing state of either the hardware, the software, or both created
problems that clearly had an impact on. the results of these studies. The
nature and extent of teacher involvement in planning for the supplemen-
tary CAl instruction differed from study to study and may have been quite
minimal in most or all of the studies in this group. The lack of teacher-
involvement early in planning and implementation of computer use in class-
rooms would seem to be a major problem in many current computer appli-
cations. Nonetheless, there seems to be only minimal evidence from these
studies that one could confidently proceed with such CAI programs in
contexts, such as those used for these students with the expectation that
achievement will be improved. ¢

Additional Studies of CAI

A few studies have been reported that have investigated specific: as-
pects of CAIL but have not been concerned with the comparative results
between students with and without CAI iastruction as in the case of studies
included in the previous section.

Taylor (1975) reports on adaptive mastery, typical mastery, and
traditional nonmastery models which employed different criteria for ter-
minating CAI practice. All seveath-grade subjects received instruction in
basic arithmetic skills. The adaptive mastery model differed from the typi-
cal mastery model in that it provided variable amounts of practice depend-
ing on feedback rather than a fixed amount of practice. Though the adap-
tive mastery model required less time, fewer practice items, and minimized

- overpractice, students in this group reached the same level of performance
on post-tests and on delayed retention tests as did students in the othe: two
models. \ ’

Keats and Hansen (1972) report a study in which they investigated

the effectiveness of different kinds of CAI feedback. The area of study
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for 45 ninth-graders was proofs in mathematics. Feedback for the three
groups of 15 students each included verbal definitions, numerical examples,
or a combination of both types. The latter was thought to be more like that
of typical classroom instruction. Though there were no significant differ-
ences in post-test scores, error analysis by zroups over the 11 exercises’
revealed that feedback in the form of verbal definifion was more helpful
than providing the learners with numerical examples or with a combination
of the two. The authors conclude that this finding supports previous re-
search, and especially is in keeping with Ausubel's (1961) support for
providing the learner with a verbal explanation of underlying principles.

In a study by Herceg (1973), top track and middle track algebra II
students were assigned to three computer treatment groups: individual
rate setting with formally presented objectives, traditional classroom setting
with formally presented objectives, and traditional classroom setting with-
out formally presented objectives. Top track students did not achieve
significantly higher when they were provided objectives for the unit.
Middle track students, however, did achieve significantly higher when they
were made gware of the objectives of the unit, although those in the indi-
vidual rate setting_treatment achieved significantly lower than students in
the traditional classroom setting. -

Dienes (1972) investigated the pacing question as it relates to drill-
and-practice computer applications with sixth—grade students. His study
was divided into two parts. In the first part, all 167 students completed a
part of the computer program at their own pace. On the basis of this self-
paced experience, students were assigned to treatment groups for which
the pacc of inaccurate students was decreased while it was increased for
slow and accurate students. Fast and accurate responders were assigned to
a “task-mean” treatment. Control groups continued to proceed at ‘their
own pace. There were significant differences in the achievement of treat-
ment and control groups. Such external pacing assistance was beneficial
to those students who did not adopt appropriate pacing habits.

Alspaugh (1971) reports that high school students learned FOR-
TRAN programming language as we!l as college students, although they
required twice the’ number of hours of instruction. It was suggested that
“the grade placement for beginning FORTRAN courses can be lowered
from grades 15-16 to grades 11-12 with comparable achievement . . .”
(p. 47).

The computer has been used frequently as a tool to investigate learn-
ing and teaching strategies. Such a study is that by Kraus (1980) in which
he investigated the heuristics of problem solving as subjects played a
computer version of the game of NIM.

ERIC
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Computer-Managdi Instruction

The 70s witnessed considerable activity in the development of com-
puter-managed instruction (CMI) programs, though little research has
come from those cfforts. CMI systems provide a means for keeping in-
formation concerning available learning resources and the learning pro-
gress of individual students. In individualized instruction programs, CMI
systems assist with the diagnosis and prescription of learning activities.
Baker (1978) has provided an excellent review of such systems and the
status of CMI by the mid-70s. :

Several dissertation studies have compared the achievement and/or
the attitudes of students who have experiericed CMI with students in tradi-
tional classrooms. Of the six studies reported in Figure VIII-2, most report
positive results that favor computer students over non-CMI students,
though these differences are seldoin significant.

Figure Viii-2.: Dissertation Studies Comparing Achievement and/or
Attitudes of CMI Students with Non-CM! Students

:.:Tr.c::r Y:t:'d:' G'.r::'o Achisvement Attitude
Miller, Danie! 1970 6 s
Miller, Donald 1970 6 s .
Lee 1972 5 +
Akkerhuis 1972 6 s ns
Wilkins - 1975 8 +
Chanoine 1977 4-6 +

+ = differences in tavor of computer students
s = differences significantly in favor of computer students
ns = differences not significant

Implications from Research in Computer Applications

The research of the past decade has been conducted on programs
using the facilities of large-scale computers. As a new decade begins, the
uﬁcmﬁomputer is clearly seen as the way of the future. The flexibility of
these computers, the control of these microcomputers at the local level
(even at the classroom level), and the potential for involving students
and teachers in a wider range of computer problems and technologies place
issues raised during the past decade into new contexts. In these new
contexts, new questions will be asked, many of which differ substantially
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from those raised in the immediate past. Nonetheless, a number of im-
plications can be drawn for the future from the research that has been
“identified here. On (he one hand, it appears that studies investigating
computer technologies in mathematics instruction are too few, too piece-
meal, and too unclear in their results to provide certain direction for
elementary and secondary education. On the other hand, however, there
does seem to be evidence emanating from specific centers that provides
positive expectation from technology for the decade of the 80s.

Consistently positive results appear to come from centers that have
a long, dedicated history of effort directed toward mathematics instruction.
Results from the Stanford work of Suppes and that of Davis with PLATO
at Illinois provide substantial evidence that CAI can be consistently effec-
tive in mathematics instruction and that such instruction even now is within
reasonable cost bounds. During the 80s application of microcomputers ‘o
instructional tasks may be expected to greatly reduce costs compared to
those incurred by the use of larger system computers that have been avail-
able during the 70s, and on which most or all research reported here was
conducted.

Inconclusive results tend to accompany those projects which are as-
sociated with short-term efforts or are in their first two to four years of
operation. Most of the dissertation studies appear to be a part of this set of
short-term effort. No doubt many of these dissertation studies will provide
the experience and insights on which the trends in the late 80s will be based,
but few are sources of research evidence that can be used to support tech-
nological applications in mathematics instruction at the current time.

Mathematics learning by disadvantaged youth can be improved
through certain computer applications of CAI. Studies that have investi-
gated the impact of CAI on the mathematics learning of Native Americans,
the deaf, inner-city Blacks, and bilingual Spanish-speaking youth have
shown that mathematics achievement can substantially exceed expectations
based on previous experiences. There is currently less evidence that
“average” or “above average” learners can be helped as much. Federal,
state, and foundation funding has been much more available for disad-
vantaged subgroups of children than for the general population. This has
encouraged researchers to seek funding for hardware, software, and course-
ware development for applications to these special groups; hence, our
current evidence provides more information about such learners than we
have for others.

The history of educational innovation during the past two decades
has been one that has taught us the importance of homegrown products.
However, with the cost and time required for technological innovation,
we may be at a time when local districts will find it necessary to draw more
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heavily on the successful products developed and demonstrated effective
elsewhere. N ’

Clearly, the development of computer-assisted instruction programs
for use in the schools is in its infancy. The integration of computer activity
with other activities underway in the classroom or with other activities that
are particularly feasible because of the computer technology is only now
beginning to be developed. Needed are CAI programs that lead learners
away from the computer and make it possible because of the computer to
explore the world in ways not otherwise possible. The addiction that accom-
panies those who pursue computer programming professionally must not
be encouraged by the manner in which computers are used for instruction
in the decade of the 80s.

There is some evidence that students and teachers react favorably to
the use of CAI or CMI. Attitudes can appear positive even in instances
where the results of achievement data are indifferent. It would seem, there-
fore, a fair warning that attitudes alone may not be an adequate measure of
the effectiveness of computerized classroom instruction. The minimal evi-
dence suggesting that the introduction of computers in the classroom, at
least initially, reduces students’ perceptions of the teacher’s authority has
considerable implication for the preservice and inservice preparation of
teachers. High technology introduced into the classroom must be brought
by the teacher, not by an outsider to whom the teacher must turn each
time a question arises concerning the use of that technology. With the
advent of microcomputers, teachers need relatively minimal preparation to

. take charge of those computers in the classroom. As an extension of the

teacher who is competent to operate the computer and who understands
how it may be best integrated into the classroom curriculum, technology
can be used to sustain or boost the authority of and respect for the teacher
in the classroom. When teacher and technology are seén as separate com-
ponents of the classroom environment, humanism and technology also
become separate environments. DeVault and Chapin (1980) have pointed
to the need for a balance between supply and demand as the supply of
microcomputer technology becomes more readily available through tech-
nical advances and cost reductions. The demand side of the supply and
demand equation rests in the hands of the teacher, and technology must
respond to teachers’ perceptions of classroom instruction. Throughout
development and implementation efforts, teachers must have roles that are
comparable in importance and impact with those of the technologists if
the introduction of this technology is to succeed in the classroom.
Certainly much of the adverse criticism of technology in the schools
comes from fear that many humanistic characteristics of elementary and"
secondary schools will be sacrificed for the perceived or actual efficiency
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and effectiveness of technology. Much of our concern for humanism is
centered around the search for better ways to meet individual differences
and to assist students in reaching their full potentials.

Suppes (1979) alluded to these humanistic values:

We do not yet realize the full potential of each iudividual in our society,
but it is my own firm conviction that one of the best uses we can make
of high technology in the coming decades is to reduce the personal tyranny
of one individual over another, especially wherever that tyranny depends
upon ignorance.

His own research and that of others investigating the effectiveness of his
CAI programs indicate that those learners who may be expected to be low
achievers in terms of their past histories can be helped through CAI Are
there values that one must sacrifice to attain these levels of achievement?
What are they? How can we protect these values in the schools as tech-
nology becomes increasingly prevalent in the next decades?

Hoban (1977) placed the highest priority on human values over
technology:

Explicity, the major theme is that a symbiotic relat:Onshnp exists between
educational technology and human values and that in this symbiosis, human
values are or should be invariantly transcendent.

These positions may represent extremes among the many currently in
the literature expressing concern about the relationship between human
values and the role of technology. Though much has been written about
this concern, less has been done to clarify what these concerns mean for

* classroom practice. In the decades immediately ahead, teachers and others

responsible for classroom environments must address these complex ques-
tions. The answers such practitioners provnde will do much to shape the
~ature of instruction in the 21st century.
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Response

Robert B. Davis

How we use computers in education

may well shape the future of educa-
tion. Though it won’t be the only

‘influence, it is likely to be an im-

portant one. This is alarming be-
cause decisions about the educa-
tional uses of computers are not
being made in the thoughtful, careful
wiy that is called for. DeVault's
excellent review is entirely correct
(and stands virtually alone!) in
looking at the pre-computer prac-
tices from which computer uses
have grown. From the use of flash
cards to teach “addition f-ts” like
3+ 2 = 7 there have grown com-
puter programs that ask “3 + 2 =
7" From memorizing verbal defini-
tions in pre-computer mathematics
lessons, there have grown computer

programs that ask one to type in (or
select) verbal definitions.
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In the case of our own Madison
Project work, in pre-computer days
wé.became convinced (from obsery-
ing students) that verbal definitions
don’t work well with most children.
They know a cat when they see one,
but they cannot give you a verbal
definition of “cat,” and they can’t
learn from verbal definitions of this
type. Hence, we developed the
paradigm teaching strategy (Davis
and others, 1978; Davis 19804,
1980b, 1981) to give children ex-
perience with a mathematical con-
cept without trying to use words to
tell them about it. (Would you like
to use words to tell children about -
an elephant if they had never seen
one? Or would you rather take them
to the zoo and show them an ele-
phant?) We have created mathe-
matics lessons for computer delivery
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built'on this idea of paradigm teach-
ing strategy: the computer program
gives children experience with frac-
tions, functiors, and negative num-
bers, and does not try-to introduce
these ideas by purely verbal state-
ments.

Now, the Madison Project ap-
proach here may be wise, or it may
be foolish. In this short note one
cannot 'arguc the ultimate merits of
any particular approach, But De-
Vault’s point—a major one!—is that
the Madison Project computer les-
sons grew out of the pre-computer
Madison Project teaching practices.
This is not peculiar to the Madison
Project. The same situation exists
for all computer-delivered - lessons
(so-called “courseware”). What-
ever teacher or other specialist de-
veloped the lessons, he or she was
building on pre-computer practices
and expectations. I do not deplore
this—on the contrary, it is inevit-
~ able, at least at first. But it mears we
must ask: how good were the
pre-computer lessons from which
the computer-administered versions
have growa?

Computers Sharpen Choices

There is a reason why this has
suddenly become critical. Perhaps
above all else, computers compel us
to make commitments. When a stu-
dent is practicing, say, factoring
polynomials under the guidance of
a sympathetic teacher, there can be
so much going on—so many trans-
actions between the participants—
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that it may be hard to say exactly
what is happening. Sometimes for
better, and-'sometimes for worse,
subtlety and ambiguity rule the day.
But put that same activity on a
computer-administered lesson (“CAl
mode™), and it quickly takes a more
definite shape. On the computer, it
becomes definitely drill, or definitely
a game, or definitely a demanding
lesson in reading comprehension, or
definitely some other thing. Much
of the ambiguity is gone, and we
are faced with questions such as:
Do we really want this much drill?
Do we really want this many games?
Should factoring polynomials be
presented in a game-like atmos-
phere, anyhow? For that matter,
should factoring polynomials be
treated like drill? Before computers,
these choices were less sharp. (One
of my teachers in junior high argued
that because of typewriters, spelling
had become more important—one -
could not hide misspelling under a
cloak of illegibility. Similarly, the
definiteness of computer lessons pre-
cludes hiding uncertainty under a
clozk of ambiguity and subtlety.)

Bases for Decisions

Hew, then, is one to choose
among different possibilities for
computer CAI lessons? At least four
methods must be considered: (a)
use of paper-and-pencil tests (espe-
cially multiple-choice tests), (b)
use of methods for revealing the per-
formance and present status of
individual students, (¢) use of task-




based interviews, (d) direct ex-
amination of the computer lessons
themselves.

There is abundant evidence that
method (a), €espite its unfortunate
appeal (and its resultant popular-
ity) is in fact the least satisfactory.
Multiple-choice tests appear to pro-
duce “hard data.” This appearance
is deceiving. Such . tests produce
numbers. kut do not give adequate
descriptions of how students are
thinking about mathematical prob-
lems. Erlwanger (1973) found stu-
dents who seemed, on test scores,
to be making satisfactory progress,
but for whom-many mathematical
symbols were meaningless—for ex-
ample, students who had no idea of
the size of decimals and fractions,
who did not know whether .7 was
larger than 6 or smaller than 1.
Alderman and others (1979) con-
firmed this, finding students who be-
lieved that 3/10 was equal to 3.10.
Alderman and others also found
that 50 percent of the advantage of
one curriculum over another in one
comparison study was due to the
specific formpt.in which questions
were posed.”Change the format, but
not the content, of the questions,
and half the advantage of the curri-
culum disappeared. Porter (1980)
and his colleagues, in a group of
careful studies, found very little
commonality between what was pre-
sented in textbooks, what was taught
in class, and what was covered on
the best-selling tests (at the level
of fourth-grade mathematics). We
have not been testing what we have
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thought we were teaching. Other
fundamental reasons for fearing that
test results can lead us in wrong
directions are presented in Houts
(1977), Tyler and White (1979),
and elsewhere.

Indeed, my own main concern
about computers is not about com-
puters themselves. It is that test
scores, because they are easily ob-
tained and erroneously believed to
be “scientifi¢,” will lead us into mak-
ing incorrect choices, and thus into
aisapplying the promise of compu-
ters. -

Measurements cannot, by their
nature, resolve fundamental ques-
tions (see, for example, Kuhn,
1962). Results can always be inter-
preted in different ways, if really
fundamental uncertainties ‘are in-
volved. Suppose we suspectzd that
Curriculum A was sexist. Would we
be satisfied by comparing tést or
questionnaire- results of students in
Curriculum A with those of students
in a control group? Surely not; if
no differences were found, there’
would remain the possibilities that
our test or questionnaire was not
sensitive enough, that the effect on
students developed slowly and re-
quired a longer .period of time to
produce effects, or that the control
curriculum itself was sexist. (This
is not fanciful. Alderman and.others
found that students in a CAI cur-
riculym had serious misconceptions
about mathematics, but so did the
students in the control group. One
cannot defend ineffective curricu-
lums by arguing that they are no
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worse than other ineffective cur-
riculums!)

The large-scale introduction of
computers into education is likely
to be comparable to the large-scale
introduqtjon of ; gasoline-powered
vehicles. Automobiles (which were
not our only possible choice!) have
facilitated suburban living (which
can be pleasant) and thus contrib-

_uted to the decline of ou:- central
_cities (whieh had been based on

. proximity). They made the United -

States vulnerable to the political de-

mands, of the OPEC nations; they-

have contributed to our unfavorable
balance of payments in international
_trade; they played a role in the de-
struction of the urban transit system
in Los Angeles; and they have
proved severely harmful to the en-
vironment. Had we based our early
decisions’ about motor vehicles- on
an unthinking reliance on measure-
ments, would we have measured the
. right things?
In the crucial decisions concern-
. ing computers, there can be no sub-
stitute for careful analytical thought,
especially thought about our funda-
mental goals and fundamental val-
ues. This kind of analysis is NO
presently taking place. -

The references listed below pur-
sue further the problem of making
wise decisions about the use-of com-
puters, and suggest a variety of al-
ternative ways of using computers
in education, some of which have
not yet.received the attention they
deserve. ’
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 IX. Calculators

J. Fred Weaver

Rarsly, if ever before, has there been as much exploration and investigation
‘regarding a particular aspect of mathematics instruction, over so wide an
educational range, within so short a period of time, as has been the case
concerning use of the clectronic calculator. In the second of her state-of-
the-art reviews, Suydam (1979a) asserted that “Almost 100 studies on the
effect of calculator use have been conducted during the past four or five
years. This is more investigations than on almost any other topic or tonl or
technique for mathematics instruction during this century” (p. 3). Reports
of calculator use in school settings continued to be released, more or less
unabated, during 1979 and 1980. In this chapter attention is given only to
studies at the precoliege level, grades K-12 (although many postsecondary
investigations have been conducted and reported).

Delienitation by Exclusion

There are several things this chapter does not purport to be. It is not
a comprehensive or definitive listing of research on calculator use in school
scttings. Such a listing would do no more than duplicate material found
elsewhere (for example, Suydam, 1979b). This chapter will not summarize
extensively and review critically any particular collection of investigations
on cakulator use in school settings. Such summaries and reviews also are
readily available elsewhere (Suydam, 1979¢, 1979d; Roberts, 1980). And
ti . chapter makes no attempt to systematically and formally integrate or
synthesize research on calculator use, whether by the commonly used
voting method or by a more sophisticated meta-analysis.
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What follows is a somewhat subjective distillation of the essence of
consequential research findings to date on calculator use in school settings,
the implications of such findings for classroom instruction, and some in-
dication of research directions that need to be taken during the 1980s.

A Diverse Domain

The domain of research pertaining to calculator use in school settings
has diversity as one of its principal attributes. Consider these illustrations.

At one extreme we find reports of things that may be terméd “informal
explorations” or “feasibility studies,” which were limited in one way or
another. For instance: in one case a sample of only three pupils was in-
volved; in another case the exploration time consisted of two class periods;
and some published reports described or illustrated ways in which calcula-
tors were used, and identified certain findings or conclusions, but without
any supporting objective evidence or data.

At the other extreme we find reports of experimental investigations
that were substantial in scope: in some instances the treatments extended
over an entire school year; and in one instance the sample involved pupils
from SO classes, grades two through six, from five Midwestern states.

Between the two extremes we find a broad spectrum of investigations
that vary markedly: in quality; in the ways iu which, and the extent to
which, calculators were used; in the class environments in which calcula-
tors were used; in the nature and scope of content involved; and in the
effects considered (cognitive and affective). Typically included in these
investigations were the following:

e drill on basic multiplication facts having factors of 7, 8 or 9;
o development of the “concept and skill of long division” at the fifth-

grade level;

o a potpourri of work with rational .numbers (in common- and/or
decimal-fraction form), with percents, and with ratios and/or proportions;

¢ work within algebraic and trigonometric contexts, with varying de-
grees of content coverage as in other instances that follow;

o classes in general mathematics and consumer mathematics;

e work with remed;al and/or low-achieving students, including the
mildly handicapped;

o specialized-content classes or courses such as business arithmetic
and chemistry;

o work that focused on particular properties such as *“doing/undo-
ing,” and on problem-solving processes and strategies;

\
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e consideration of student performance associated with a particular
calculator type (for example, RPN—reverse Polish notation); and

e surveys pertaining to opinions and practices regarding calculator
use in school settings.

The preceding categories are illustrative rather than cxhaustive or
definitive. Suydam’s (1979b) listing should be consulted for more extensive
classifications and for explicit references.

Freedom from Fear

There is no doubt that many calculator investigations have been
prompted by a frequently expressed fear on the part of those persons who
believe that “The principal objectives of mathematics instruction (at least
in K-9) are that children learn the basic facts and pencil-and-paper
algorithms. Such learning will not occur if hand-held calculators are made
available in the schools™ (Shumway, 1976, p. 572).!

Based on research evidence, is there valid cause for such fear (which
is more intense the lower the grade level)? In seeking to answer that ques-
tion I have drawn heavily on conclusions from several research reviews,
each of which was fully cognizant of limitations inherent in certain of the
investigations involved. .

First, Suydam (1977) summarized 40 findings from 21 experimental
and several action or preliminary investigations in which instructional
effects of one kind or another were compared for calculator and noncalcu-
lator groups: “In 19 cases the Calculator group -achieved significantly
higher on pencil-and-paper tests (with which the calculator was not used).
No significant differences were found in 18 instances. In only three in-
stances was achievement significantly higher for the Noncalculator group.”
Suydam concluded, “Such gross tabulations provide some support for the
belief that calculators can be used to promote achievement” (p. 1, italics
added).

Next, in a subsequent review involving a more extensive research
base, Suydam (1978) indicated that “In most of the studies at the elemen-
tary school level, the data were collected to provide an answer (to parents
and school boards, as well as to teachers) to the question, ‘Wil the use of
calculators hurt mathematical achievement?” The answer appears (o be

~
3

! This quotation was Shumway's way of summarizing the argument of those
opposed 1o calculator use in schools. The statement should not be construed to reflect
Shumway’s own view, or mine, regarding “the principal objectives of mathematics
instruction™ and the role of calculator use in relation thereto.
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‘No. . . . What we do know is that the calculator, in general, facilitates
mathematical achievement across a wide variety of topics, and this finding
is verified at both elementary and secondary levels” (p. 7, italics added).

And a year later, in discussing the investigations upon which her
second state-of-the-art review was based, Suydam (1979a) stated, “Many
of these studies had one goal: to ascertain whether or not the use of cal-
culators would harm students’ mathematical achievement. The answer
continues to be ‘No.’ The calculator does not appear to affect achievement
adversely. In all but a few instances, achievement scores are as high or
higher when calculators are used for mathematics instruction (but not on
tests) than when they are not used for iristruction” (p. 3).

Roberts (1980) reached similar conclusions, along with some addi-
tional ones also cited by Suydam, in his critical review of 11 elementary-
and 13 secondary-level investigations:

The majority of the studies completed at the elementary level showed
computational advantages (6 of the 11) from the introduction of calculator
usage into the mathematics instruction, . . . However, in only one study
of the five investigating concepts were there conceptual benefits due to
calculator usage and in only one study of the four investigating attitudes
were there attitudinal benefits (p. 76).

A majority of the secondary-level studies (6 of the 11 computation
studies) found computational benefits due to calculator use. However, as
was the case in the elementary studies, very little support was found for
the hypothesis that calculator benefits transfer to the more conceptual (I

- of the 8 concept studies) and affective areas (2 of the 9 attitudinal studies)
(pp. 79-80).

There seems to be little coubt about the computational value associated
with calculator use. . . . However, [with respect to] conceptual and attitu-
dinal impacts due to calculator use, there is less consensus as to what facts
can be gleaned from the research literature (p. 94).

Since the review by Roberts and those by Suydam, two additional
comprehensive investigations regarding the effects of calculator use vs.
nonuse at the elementary-school level have been reported.?

Findings from a year-long investigation involving two different in-
structional programs led Moser (1979) to conclude that “Use of calcula-
tors with ongoing curricula at the second- and thir*-grade levels had no
harmful effect upon arithmetic achievement” (p. xiii).

Two reports of a study—funded by the National Science Foundation
and conducted in grades two through six (50 classes from five Midwestern

2 These two additional investigations were included in Suydam’s most recent
state-of-the-art review (August 1980) which had not been released at the time this
chapter was prepared.
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states, with treatments that were in effect for 67 school days within an
18-week period)—cited these observations:

“The results ... . show no evidence of a decline in mathematics learning

in classes that used calculators and there was some evidence that children

in the primary grades benefit from using calculators in the study of mathe-
matics” (Wheatley and others, 1979, p. 21).

“Children grow significantly on basic fact and mathematics achieve-
ment tests taken without the use of calculators regardless of whether or not
calculators were used during instruction. . . . Children . . . did not develop
any of the feared debilitations when tested without calculators because of
calculator use for instruction” (Shumway and others, 1981, pp. 139, 140).

What, then, can be concluded about the fear that calculators may in-
hibit mathematics learning in schools? All in all, when calculators were
used in the variety of ways investigated to date across a rather wide range
of grade levels and content areas, evidence suggests that we have no cause
for alarm or concern about potentially harmful effects associated with
calculator use. This is particularly true with respect to computational per-
formance, for which a nontrivial amount of evidence of facilitating effects
has been reported. Even in the case of conceptual and affective aspects of
mathematical learning, there is no extensive or strong body of evidence
that suggests any pronounced inhibitory effects associated with calculator
use. Seldom is the research literature so clear as it is in this respect.

An Implication for Classrooms st the Outset of the 1980s

. T'am convinced that we can embark on school mathematics instruction
at the outset of the 80s with freedom from fear—freedom from fear that
calculator use will have harmful or debilitating effects on students’ mathe-
matical achicvement. Fear that calculator use will have marked negative
cognitive or affective influences on students can no longer be used as a
reason, or an excuse, for not welcoming and including calculators among
the instructional aids and materials that have potential contributions to
make in connection with school mathematics programs. The extent or full-
ness of that potential, however, remains to be ascertained.

How Calculators Are Used

Several survcys have been conducted to find out how calculators are
used by classroom teachers in connection with their mathematics instruc-
tion. Suydam (1978) indicated:
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At the elementary school level, four types of uses are predominant:

(1) Checking computational work done with pencil and paper.

(2) Games, which may or may not have much to do with furthering
the mathematical content, but do provide motivation.

(3) Calculation: when numbers are to be operated with, the calculator
is used with the regular textbooks or program.

(4) Exploratory activitics, leading to the development of calculator-
specific activities where the calculator is used to teach mathematical ideas.

At the secondary school level, the emphasis varies:

(1) Calculation, used whenever numbers must be operated with.

(2) Recreations and games.

(3) Exploration: because secondary school mathematics teachers’ back-
grounds are generally good, there is much more Uf this type of activity than
at the elementary school level. In addition, the students who continue in
higher-level cosirses are often intrigued to explore.

(4) Use of calculator-specific materials. There is at least one text in-
tegrating the use of calculators, with several others being field-tested (p. 4).

And from their survey of calculator use in grades 1, 3, 5, and 7,
Graeber and others (1977) reported, “In the first grade, calculators were
used most frequently for drill; the next three most frequent usages were for
checking, motivation, and remediation. Use of the calculator for drill
decreased with. grade level. Above first grade the most frequent usage was
for checking. Motivation and word problems were the next most fre-
quently reported uses for calculators at the higher grade levels” (quoted
by Suydam, 1978, p. 5). :

, It really is not surprising to find that the most common uses of cal-
culators are relatively pedestrian ones. This should change as teachers
learn about and personally explore more significant roles for calculators. '

Looking Abead

Although I can safely conclude that students’ use of calculators will
not inhibit their mathematical learning, new research directions and imagi-
native curriculum development are pre-eminent among things that are
needed during th+ 1980s. The close relationship between them has been
emphasized in : National Institute of Education and National Science
Foundation (. "TB/NSF) document (n.d.), Report of the Conference on
Needed Reseaich and Development on Hand-Held Calculators in School
Mathematics: “Research must g0 hand in hand with development. . . .
Developers should review relevan. research in designing their curriculums,
and researchers should investigate existing curriculum materials in choosing
suitable contexts for their investigations” (p. 9).

Q
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In view of this reciprocating relationship between research and de-
velopment, one is not necessarily distinguished from the other in some of
the material that follows.

A Broad Research Need

Begle’s examination of reports of calculator investigations fed him to
conclude that “In almost all these studies, the calculator was used merely
as a supplement.to a regular course. We have yet to see the results of
evaluation of instructional programs which explicitly make use of the
special capabilities of calculators” ( p. 114).

In a similar vein, Roberts (1980), for instance, contended that a
“crucial” consideration of future research “will be the necessity to develop
treatments that utilize unique capabilities inherent to calculators. So far,
most studies have not adequately integrated calculator use into the instruc-
tional process” (p. 95).

In Defense of the Past

I certainly concur with Begle and Roberts in their needs assessment.
But it is important to recognize that calculator research to date has been
essentially the first phase of an evolutionary process that is more or less
natural, and not at all undesirable.

For one thing, some feasibility investigations—limited in scope, dura-
tion, and control—were necessary. We had to know whether certain things
were even plausible—whether certain expectations were at all realistic—
before more substantive studies could be considered at all sensibly. If
young children, for instance, were prone to make many errors in using a
calculator keyboard and in reading a calculator display (which we now
know is not commonly the case), certain subsequent investigations involv-
ing young children would have been pointless. And knowledge of whether
pupils are sufficiently sensitive o0 the use of various technical features of a
calculator (such as automatic constants, memories of one kind or another,

* and logic systems involved) would be essential to deciding whether to even

attempt to investigate certain calculator uses, treatments, or algorithms.
For another thing, it is not at all surprising or undesirable that many
studies have been tied rather closely to existing curriculums. rked
changes in curriculums cannot be effected suddenly, desirable though some
changes may be. If teachers and students were to use calculators at all,
such use had to be first within the context of present curricular content.
Moser (1979) was of the conviction that “research with an existing curric-
ulum is judged to be a necessary prerequisite for future research” (p. 14).
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The extensive suggestions he gave to second- and third-grade teachers in
detailed day-by-day written form, and the ways in which researchers were
available daily to consult with teachers and pupils in the “five-states study”
(Wheatley and others, 1979; Shuway and others, 1981) represent ex-
emplary efforts to effect calculator-assisted instruction within existing cur-
riculums at the elementary-school level. In instances in which similar efforts
were undertaken at middle- and secondary-school levels, work generally
. was of shorter durations of time with selected topics or pieces of content.

Curricular Changes

If programs of school mathematics instruction (and research pertain-
ing to it) are to take full advantage of the “special” and “unique capabili-
ties” associated with calculators, some curricular changes—substantial
ongs, in certain respects—=must be effected. One view of this at the pre-
algebra level has been suggested by the National Advisory Committee on
Mathematical Education (1975):

The challenge to traditional instructional priorities is clear and present.
. . . First, the elementary school curriculum will be restructured to include
much earlier introduction and greater emphasis on decimal fractions, with
corresponding delay and de-emphasis on common fraction notation and
algorithms. . . .

Second, while students will quickly discover decimals as they experiment
with calculators, they will also encounter concepts and operations involving
negative intégers, exponents, square roots, scientific Notation and large
numbers—all commonly topics of junior high school instruction. . . .

Third, arithmetic proficiency has commonly been assumed as an un-
avoidable prerequisite to conceptual study and application of mathematical
ideas. This practice has condemned many low achieving students to a
succession of general mathematics courses that begin with and seldom
progress beyond drill in arithmetic skills. Providing these students with
calculators has the potential to open a rich new supply of important mathe-
matical ideas for these students—including prohability, statistics, functions,
graphs, and co-ordinate geometry—at the same time breaking down self-
defeating negative attitudes acquired through years of arithmetic failure
(pp. 41, 42).

Less marked chanses at higher instructional levels have been pro-
posed. For instance, the NIE/NSF document (n.d.) suggested that *“Use
of calculators will require less revision of some current courses, such as
high school algebra, geometry, and elementary functions and analysis. In
all these courses, however, some parts need to be revised to include more
applications that exploit the full potential of calculators” (pp. 11-12).
Jewell's (1979) textbook analyses led him to conclude that approximately
one-half of the content of algebra, geometry, and elementary functions
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texts and one-cighth of an algebra-trigonometry text could be appropriate
for meaningful calculator application.

These illustrations indicate that across grades K-12 high priority
must be given to research and development efforts that will (1) generate
and evaluate instructional programs that make explicit use of special
capabilities of calculators, (2) generate and evaluate treatments that use
unique capabilities inherent in calculators, and (3) adequately integrate
calculator use into the instructional process so that the calculator’s pre-
sumed potential to facilitate and enhance the teaching and learning of
school mathematics may be suitably assessed. Such assessment should
give particular attention to the development and acquisition of problem-
solving skills, mathematical concepts, and algorithmic processes.? I share
Moser’s (1979) belief that “the full benefit of calculator use in schools will
never be realized until existing curricula are modified or new ones are
developed that take advantage of a calculator's distinct features” (p. 14).

More than Mathematical Content

Research and development efforts associated with curricular change
should involve more than content considerations per se. I wish to illustrate
this by citing the possibility of a somewhat unconventional instructional
sequence that would seriously challenge a position commonly held by a
good many persons—a position expressed in the following way by Judd
(1975):

“Students must have a good background in manipulative math ex-
periences before they can understand the inputs and outputs of the cal-
culator. . . . Don't in short, put a calculator in the hands of a student before
he . . .. understands the nature of the processes basic to arithmetic. Only
after the students understand the meaning of the function they are perform-
ing should they be given a magic box to carsy them to completion™ (p. 48).

Now consider examples of the fornis:

a+b=n axXb=n
a—b=n a+b=n

3In relation to both classroom instruction and research, calculators give rise
{0 2 massive set of issues and problems associated with festing—a veritable “can of
worms” much 100 intertwined to be considered within the space limitations imposed
upon this chapter. One inkling of this is glimpsed in the NACOME Report (1975):
“Present standards of mathematical achievement will most certainly be invalidated
in ‘calculator ciasses.’ An exploratory study in the Berkeley, California public schools
{Kelley and Lansing, 1975] indicated that performance of low achieving junior high
school students on the Comprehensive Tests of Basic Skills improved by 1.6 grade
levels simply by permitting use of calculators” (p. 42).
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where a and b are particular integers that are given, and n is to be calcu-
lated. It is assumed that students have been introduced to the integer con-
cept {and referents for it), but nct to operations on integers. Very deliver-
ately let the calculator play a “magic box" role. For each operation in turn,
let students select particular integers a and b (with some possible teacher
guidance or suggestion in order to sample the domain fully) and use
calculators to generate corresponding sums, or differences, or products,
or quotients;* and then use a particular set of assignments as the basis for
intuiting the assignment or operational rule. Only after that would attention
be directed to uses for and applications of an operation on integers and
the calculation rule associated therewith—along with instructional activities
that provide justification for a rule and its “sensibleness.”

Such a procedure is not at all out of line with Wittrock's (1974)
hypothesis which may be *“succinctly, but abstractly stated, . . . that human
learning with understanding is a generative process invo'ving the construc-
tion of (a) organizational structures for storing and retneving information,
and (b) processes for relating new information to the stored information.
Stated more directly, all learning that involves understanding is discovery
learning” (p. 182).

It was reccommended in the NIE/NSF (n.d.) document that due con-
sideration be given to “current psychological, hehavioral,~and learning
theory models” (p. 19). Not only is the suggested approach to operations
on integers in keeping with that recommendation, but early in the last
decade Fennema's (1972) research raised some serious questions about
the commonly held belief that children’s learning should invariably proceed
from the concrete/manipulative to the abstract/symbolic. Her finding, that
in second-graders’ introductory work with whole-number multiplication
certain advantages accrued from using a symbolic referent in contrast with
a concrete referent, is of considerable potential significance and import.
Calculators provide an excellent means of investigating this phenomenon
further and in a wide variety of mathematical contexts.

And when such investigations also take intc consideration work
being done in areas such as information processing and cognitive psy-
chology, in cognitive or leaming styles, and in “right brain” vs. “left brain”
functions, we very well may find that a concrete/manipulative-to-abstract/
symbolic instructional sequence is not as sacrosanct as we seem to believe
it to be. For some students at certain times it may be desirable, even pre-
ferable, to introduce new mathematical content in a symbolic rather than

4The fact that the set of integers is not closed under division poses problem:.
in the selection of values for a and b when working with examples of the form
‘a+b=n.
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a concrete mode; and to change, even reverse, other facets of instructional
sequences. During the 1980s our research and development efforts per-
taining to calculators certainly should be planned to include specific tests
of some of our cherished tenets regarding mathematics learning and
teaching.

Other “Time-ly” Issues

There is a sense in which the immediately preceding consideration
involved a time factor—the time when certain things occur in an instruc-
tional sequence. 1 now wish to direct attention briefly to three other issues
in which time is of consequence.

First: Although far from easy to implement and control, longitudinal
studies of effects of calculator use are essential. It is far from sufficient
to know what may, or may not, be expected from relatively short-term
uses of calculators, even over an entire school year. Effects over time,
over a period of several school years, must be assessed before we have
sufficient knowledge to answer some of the questions that have arisen,
and will arise, regarding the use of calculators. Often it is not simply time
per se that is of consequence, but the cumulative effects over time. Cross-
sectional investigations have a contribution to make, but they cannot give
us precisely the same kind of information to be gleaned from longitudinal
studies.

Second: We already know that calculators make it possible for stu-
-dents to work more exercises and to deal witi more applications and
problem situations (in which computations are necessary) within a given
unit of time. But is “do more of the same thing,” particularly in the case
of exercises, using time to best advantage? Likely not, and we should assess
the cumulative effects of introducing and extending additional content
within the time “gained,” as opposed to doing more of the same exercises
or whatever. It is rather commonly believed that much is to be gained by
expanding curricular content; but will that in reality be the case—and if so,
in what way(s)?

As we seek to broaden the scope of curricular content (presumably
through time to be gained by calculator use for routine computations),
it is my hope that we will not repeat a serious mistake reflected in the
report of the Cambridge Conference on School Mathematics (1963) in
which some wholly unrealistic content expansions were suggested, espe-

~cially for grades K-8. It is easy to become literally “too mathematical” for
the rank and file of students within those grades, and it behooves us to be
realistic and sensible regarding the development of a broader content base
for calculator use and exploitation in grades K-8, and the planning of
investigations related thereto.
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Third: As | suggested in an earlier source (Weaver, 1976), we need
to investigate the long-term effects of (1) introducing certain pencil-and-
paper algorithms after rather than before students have worked with num-
bers of certain magnitudes and domains using calculators, and (2) then
emphasizing acquaintance amd reasonable skill with such algorithms,
rather than the attainment of a high degree of mastery coupled with a
highly efficient level of performance.

Research and development activity should go even further and direct
attention to the feasibility of an organizational pattern shown in Figure
IX-1 for suitable phases of mathematics programs at elementary- and
middle- or junior high-school levels.

A student's progress along each pathway is relatively independent
of progress along the other. Calculators are used principally in connection
with A; and when used in connection with B, their role is a different one
than when used in connection with 4. As computational proficiency is
attained in an area within B, it may be used as needed 2nd desired within
A. But lack of computational proficiency would never impede a student’s
progress in connection with A.

The reorganized pattern suggested by Figure IX-1 rightfully makes A
(rather than B) the principal focus of instruction.

Figure IX-1. Calculator-influenced Reorganized instructionai Pattern

~ —
A.  Development of ideas, applications, and
problem-solving skills associated with
numbers and number operations.

} calcuiators 3

\J

B. Development of computational proficiency
involving paper-and-pencil algorithms.

\j

Using Research-Based Information in t’ e Classroom

I am confident that during the early years of the 1980s we will sce
evidence of much-needed efforts to implement'the NIE/NSF (n.d.) rec-
ommendation that “New means should be explored to rapidly communicate
results of experiments with calculators and proposals for their use to the
teaching profession, especially at the elementary school level” (p. 20).
But it is not sufficient simply to disseminate information, regardless of how
widely and innovatively that may be done. It is essential that disseminated
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information be used, in one way or another, in connection with classroom
instruction.

Within a broader context Suydam and Weaver (1975) made the fol-
lowing suggestions which are fully applicable within the present context of
calculator-research concerns:

Teachers should test research findings [and treatments] in their own
classrooms. Remember that just because research says something was best
for a group of teachers in a variety of classrooms, doesn't necessarily mean
that it would be best for you as an individual teacher in your particular
classroom. . . . Teachers have individual differences as well as pupils! . . .

Teachers must be careful not to let prior judgments influence their will-
ingness to try out and explore: open-mindedness is important. . . . Be will-
ing to investigate. . . -

Research is not an end in itself—it should lead to some kind of action.
You decide to change, or not to change; you will- accept something, you
will reject something. . .. Do something as a result of research: incorporate
the conclusions of research [as tempered by unique attributes of your own
situation and circumstances) into your daily teaching (p. 6).

In Conclusion

NCTM (1980) has recommended that “mathematics programs take
full advantage of the power of calculators and computers at all grade
levels” (p. 1), and has made the following related recommendations for
action: '

All students should have access to caiculators and increasingly to com-
puters throughout their school mathematics program.

Schools should provide calculators and computers for use in elementary
and secondary school classrooms.

Schools shouid provide budgets sufficient for calculator and computer
maintenance and replacement costs.

The use of electronic 1o0ls suck as calculalor{;nd computers should be
integrated into the core mathematics curriculum. .

Calculators should be available for appropriate use in all mathematics
classrooms, and instructional objectives should include the ability to deter-
mine sensible and appropriate uses.

Calculators and computers should be used in imaginative ways for ex-
plorir.g, discovering, and developing mathematical concepts and not merely
for checking computational values or for drill and practice.

Curriculum materials that integrate and require the use of the calculator
and computer in diverse and imaginative ways should be developed and
made available.

Schools should insist that materials truly take full advantage of the im-
mense and vastly diverse potential of the new media (p. 9).

Let us not only begin the 1980s with freedom from fear, but also
progress through the 1980s with ever-increasing assurance of ways in which
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calculator use can facilitate school mathematics instruction, K-12, and
enhance its quality. Forty-five years ago W. A. Brownell (1935) cham-
opioned a change in school mathematics programs, formulating that which
he termed the “meaning theory” in which “The basic tenet in the proposed
instructional reorganization is to make arithmetic less a challenge to the
. pupil’'s memory and more a challenge to his intelligence” (p. 32).

Now, as we enter the 1980s, we are in a position to reformulate
- school mathematics programs in a manner that will free them from the
shackles of the attainment of computational skills with pencil-and-paper
algorithms as the basis upon which instruction is initiated, organized, and
sequenced at the’pre-secondary level; and will have analogous reorganiza-
tional implications for pragrams at the secondary level. The calculator is
the key. Now is the time ‘o0 turn that key in all earnestness.
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Response

Richard J. Shumway

In order to facilitate the reader’s
interpretation of my remarks, I will
attempt to summarize Weaver’s
major points as I see them:

1. The research on calculators
and school mathematics is very
diverse in scope and content.

2. We need not fear debilitating
effects from student use of calcula-
tors.

3. We need to begin research ef-
forts which explicitly study and
make use of the special capabilities
of calculators.

4. Could there be a substantial
impact on school mathematics pro-
grams for student calculator use?

5. Can the calculator greatly fa-
cilitate exploratory approaches to
mathematics?

6. Calculator research efforts
should be quickly and effectively
communicated.

7. Calculator research findings
should be tested by classroom teacP-
ers in their own classrooms. ,

8. All students should have ac-
cgss to calculators.

9. “We are in a position to re-
formulate school mathematics pro-
grams in a manner that will fre.
them from the shackles of the at-
tainment of prncil-and-paper com-

putational algorithms and skills as
the basis upon which instruction is
initiated, organized, and sequenced.”
In spite of Weaver’s warnings
that he would not provide an exten-
sive review of the research on cal-
culators, I find his major points
follow with scholarly care from cur-
rent work and his own thoughtful
experiences and deliberations. My
own experiences and knowledge of
the literature causes me to resonate
fully with these points and add my
wholehearted endorsement.
However, as a co-conspirator in
the calculator revolution, I find
Weaver strangely mute on several
important points and school strate-
gies for implementation of calcula-
tor use for mathematics instruction.

Attitude

One of the most powerful and
consistently reported effects of stu-
dent use of calculators is the high
enthusiasm and valuing students
have for calculator-aided mathema-
tics activities. Any device which
causes so much pleasure to be as-

sociated with mathematics and in-

creases the probability appropriate
mathematics strategies will be cho-
sen for problem solving deserves
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special note. I also believe parental
openness to calculator use can be
influenced significantly by the en-
thusiastic response children exhibit
for calculator-aided matheniatics.
So in the pragmatic real-world prob-
lems of making calculators available
to all children, such attitude results
are most important.

Computation

It would be well to note, obvious
as it is, that calculators are the
quickest, most accurate computa-
tional algorithms available to chil-
dren today. In fact, the primary
function of a calculator is to com-
pute, and in the hands of children,
the calculator serves the computa-
tional fuaction better than any other
technique «r device in existence.

The effect of calculator use
on measurement of mathematics
achievement is important for two
primary reasons. First, students’
ability to perform computations is
significantly improved through the
use of a calculator. Seccadly, few
teachers see the logic of training stu-
dents with calculators and then test-
ing students and evaluating teachers
without student use of calculators.
For these reasons, I believe it is of
the highest priority that all testing,
classroom and standardized, should
be done with student use of calcula-
tors immediately. Few teachers are
going to make significant use of cal-
culators, nor are tests and textbooks
likely to be designed for calculator
use until cflculators are actually
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used for testing. Consequently, the
first needed step is to use calculators
for all testing. The inconveniences
of such a plan are minor compared
to the significant delays failure to
take such action will cause.

In my view, mathematics cur-
riculum is most properly influenced
by three factors: mathematical
structure, learning theories, and
societal needs. Weaver asserts
mathematical structure can be sup-
ported by calculator use, calls for
more research on learning and cal-
culators, but is unfortunately mute
on societal needs. It would seem
societal needs might provide signifi-
cant support for the use of calcula-
tors by all children. A recent sur-
vey ! of 100 “random” occupations
reports that fully 98 percent of those
persons involved used a calculator.
How many company presidents
would support a personnel man-
ager's recommendation that all new
employees spend 120 hours learning
skills by hand which are currently
done by machines in the plant? Is
our current :ducation program
guilty of such an error today? The
argument seems strong that, based
on societal needs, calculators should
be used for mathematics instruction.

Communication

Weaver’s points about the quick
communication of results and the

1Saunders, H. “When Are We Ever
Gonna Have to Use This?* Mathematics
Teacher 73 (1980): 7-16.
’




testing of the ideas with teachers’
own students are excellent. No re-
search ideas should be introduced
without careful, local evaluation.
Such evaluation can do wonders for
parent, teacher, and administrator
receptivity to the use of calculators,

I was most excited by the quote
near the end that Weaver cites ad-
monishing one to “do something as
a result of research.” Sword in hand,
I look for suggestions for what to
do and all I find is “at the outset of
the 1980’s” I can embark on calcu-
lator use “with freedom from fear.”
In conclusion, however, Weaver
supports the recommendations for
action made by NCTM which sug-
gest basically that all students
should have access to calculators,
they should be supported by budget,
and integrated into the core mathe-
matics curriculums. Weaver's citing
of the NCTM 2genda for Action
Recommendations is most appro-
priate and provides the best national
endorsement for calculator use cur-
rently available. But here is what I
wish he had said:

1. Calculators should be avail-
able for use at all times by all stu-
dents.

2. All standardized testing should
be done with calculators available.
(Right now, do not wait for tests to
be rewritten. Start with your school.)

3. Paper-and-pencil  algorithms
should only be taught to enhance
and enrich mathematical thinking
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and not used or practiced as a com-
putational tool.

4. Teachers should ask for, de-
velop, and use supplementary ma-
terials that support students’ ability
to learn mathematics and solve
problems. Dramatic changes ought
to occur in mathematics curricu-
lums. Material, trivially done with
calculators, should be thrown out.
The focus should be on activities
that teach children mathematical
thinking while using a calculator.

5. Programs should be evaluated
carefully.

6. Expectations that children en-
joy mathematics should be present.

Are these recommendations un-
supported by research? Maybe; but
as Weaver himself states, there is
more research on calculators than
on any other topic. Can researchers,
teachers, and administrators not “‘do
something” now? Assuming careful
testing, are we not better prepared
than ever before to take such a
strong stand regarding the use of
calculators? When I think of my
own children, I want to say: “Don’t
waste their time doing trivia! Give
them a calculator and get on to
teaching them the mathematics they
cannot now do.” I was hoping
Weaver would close with strong ac-
tion items. Perhaps his quiet, rea-
soned approach is best, but I'm for
a little dramatic action with careful
testing.
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