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matrix manipulations performed on the dominance matrix.
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Many paYthometrIclons have investigated the problem of extraction

of iactor s or dimensions from a data matrix. Ordering theory (Airasian

and Bart, 1972) is orwsuch method, Order analysis (Km's, Bart, &

Airasian, 1975) was developed to examine the logic-based dimensions In

binary data matrices. It makes use of the dominance relations (Coombs,

, 1964) in data to determine simple orders.

Cliff (197j) developed several order consistency indices from the
/

,dominance relation., He shows his indices to be comparable to Classical

measures of Internal consistency such as the Kuder-Richardson formula and

Loevinger's Index of homogeneity.'

Reynolds (1976) developectan order analysis procedure which uses

one of CI ff's consistency indices to recover all possible chains (i.e.,

all pass ble dimensions that maintain a given level of consi(stency). A

practical problem with this method is that the number of' computer
4.

caiculat ns needed for chain'extraction can easily become very high.

This article is concerned with presenting an efficient algorithm

to extract all possible chains using a peneral consistency Index. Our

extraction procedure is o4 InterOctive method using the PLATO computer

system at the University o1I1iinqls. The main algorithm uses graph

theory to extract n6nredundant chains efficiently, rather than

1

The'authors wish to acknowledge the contribution of Robert Balilie,
who Wrote computer programs for the routines developed in this paper.
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ORM ANALYSIS

The methode.deacribed In th Is paper are ballad on thA concepts a

order analysis (Krus. Mort. 6 Alrealen; f9151. Krus, 197). Ono

advantage of using order analyst% Is that It 1* more%oaally restated

In terms of graph theory concept* than are other multiveriata prol4oduros

such as factor analysis And.cluster analysis. In the following section,

we will explain the notation to be used In describing the extraction

algorithm.

Simple Orders

Mathematically, simple orders a a Aefined.es follows. Let R
,

denote a simple order relation be een ellements'ora'..set A. The

following three properties hold for all elements a, b, 'end c of set A:
.

1) Asymmetry property

aRb Implies bWa, where R means "not R".

2) Transitivity property

aRb and bRc implies aRo.

3) Connectedness property

either aRb or bRa.

An example of simple order ,is shown by the concept "less than". Let

A be the set {1,4, 3, 41. Then the set R of all ordered pairs of

elements from A which maintain the lielation "less than" is giveraby

R
1

{(l,2), (1,3), (1,4), (2,3), (2,4), (3,4)1.

Directed Graphs

Graph theory is a useful tool for helping one to better

understand complicated sets of relationships (particularly logical
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Figure I. Graph for GI

Notice that the three properties of simple orders ('asymmetry, transi-
t

tivity, and. connectedness) are shown graphically.

Matrix ReEresentatlon of Directed Graphs

'In order to represent a directed graph'G in a computer, one commonly

uses a V x V adjacency matrix (D 4) where g
ij

1 or 0 depending on

whether or not a directed edges exists between vertices
I and j in V. The

matrix representation for G1 is,shown in F)gure 2.
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In tasting, one Is typically daalinu with A porOUns-by Itwna

data MaltriA. Fivuro 3?ShOW% a A 4) data matrix. S.

items
in

1 1111
2 0111

Persons 3, 0 0 .1 1

CO

4 0 0 1

5 0 0 0 0
inn

Figure J. A Persons by Items Data Matrix

The element s
IJ

of 5 is equal to 1 if person 1 gets item j correct,

and 0 otherwise. In order analysts terms, it Is said that when s
ij

1,

person 1 dominates item] (Krus, 1975)-1. Conversely, when s.j 0, item

J Is said to dominate person I. The dat _matrIX 5 is representative of

a perfect Guttman scale. When the items are ord-, 1 in rb of difficulty,

0

each person will get each item correct up to a given diffiL.iiy leyel,

JO
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ti

However, we 41'0 ultimately colic rued precisely with the dominance

relations between ellements within sets. It we multiply A by It if, we

obtain the matrix A
2
, which contains the within-set dominance Information.

)
..)

The submatrix N is the it dominance matrix. Element nib of N is

equal to the number of persons for which Item ittdominati ,d item j (that is

,

item I was incorrect-and item j was correct). Correspondingly, the

submatrix X of A
2

is the person dominance matrix. Clement x
st

equals

the number of Items for which person s dominated person t (that is,

the number of items which person s got correct and t got incorrect),
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Figure 4a

Person 1 OomIndtes Item j

Item-item Dominance Relations

Consider a person X responding to two Items, and b. Since

person X can get each, item either right or wrong, there are four possible

Item )

person I

Flgt4r 4

It ees j Otxtyj dtes Perton

0

I 4)



response patterns.

Item'

a ,b

1

- 0

Only the (1,,0)'and-(0,-1) responSe patterns contain order information, as

sh9wn 4y the graphs in Figure 5. Paths of length 2 are, found only for

these two response patterns. ( A path of, length 2 means a succession

of two arrows, one starting at the other's endpoint.)

(1,0) X (30/7.1P

o b

a

(0,1) X o

%.%*."*"'"911,0

a

(0,0) X o

Figure 5. Possible Two Item.Response.
A\ Patterns and their Graphs

For an entire persons-by-items data matrix S, the item-person

idominances are easily represented using a bipartite graph. A bipartite

graph depicts the relations between the elements of one set and the
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elements of another set. Figure 6 shows a data matrix, its adjacency

matrix, and its corresponding bipartite graph:

A B C

1 0 1 1

2 1 0 1

3 0 1 0

4 0 0 1

, A B C 1 2 3 4

Person

1

2

4

A

B Item

C

Figure 6. A Data Matrix with its Adjacency

Matrix and Bipartite Graph
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The item dominance matrix for the datamatrix in Figure 6 can also,,

be shown by use of a labelled graph. Figures 7a and 7b show this

dominance matrix and. its graph. An element n
ij

represents the number

of ij dominances. An element nil represents the number/of ji dominances,

and can also be thought of as the number of ij counterdominances. In

the graph, the numerals in parentheses are related to.these dominances

and counterdominances as follows: The, second number 1$ the number of

dominances in the direction of the reference arrow, and the fir t

number is the sum of the dominances and counterdominances.

qt.

A

N = B

C

A B C

0 2 2

1 0 2

0 1 0

'Figure 7a. Item Dominance
Matrix for Data Matrix in
Figure 6.

(3,2) (2,2)

0
(3,2)

Figure 7b. Labelled Graph
for item Dominance Matrix 9

4



CONSISTENCY INDEX

We define a general. consistency index, as

«(Uan) -

where U - E E n'
k

.0

(the total number of item dominances)

10

U nJk (the number of dominances above the main diagonal)Ua
'

= E E

j k >J

a and a are parameters hich determine the scale and origin,,

re4Pectively, or C.

For a given data matrix, the total number of dominances-(U)

fUxed,..while,U,
a

is dependent on the'order of the items. When ttle,items

A
are ordered in terms of difficulty, Ua is maximized.

When a ='.2 and4, = I, C is equivalent ta the index used by .

Rey olds in -his exhause-71114ihod.. This, is also -equivalent to Co,

/-
c_aie of Cliff's consistency indices (Cliff, 1977), since

2U 2U 2U

a a ,a
-U U

a
- (U-U ) U -U ,v

C= . = = b = m
U U U U v

where Ub = E E

J k>j

v E (n,
m

j k>j

E
nJ

(the number of dominances below the main diagonal)

it is also easy to show that with a = 4 and 0 = 3, C becomes

Ct another index proposed by Cliff.
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Althought the above equation for 'C Involves two parameters,
,,

a ands , it is,seen that t3 is a function'of a by considering a dataset,

which forms aGuttman simplex so that U
a

= U and C = 1. Thus,

I A a(1)i or 13 MI ". 1. Hence

C =,a(Ua/U) (a -

Therefore, we- have only one parameter a, and its valtie is determiped
. .

, -
so that Ci(mill be approximately equal to. zero for a dominance matrix

/. /

/ S , ,

baSec/i on' a random set of dat'a.- With appropriate choices of a, C can
1 . t,.- , .

approximate Cliff's Co'
.

Ct4, or Ct5.
"' ,

*2 /

Then :' Let c' =.--j-
a
=

+ 0
.

a

C.'

.1

Ei E nUa
Ua k>j. k

U Ua + Ub E E n;,u + Z
j k >J j k<j

E d"
lk

j k> j,

(C + d
j k<j -1.15

a.
where d

jk is the number. of dominances from j to k.

c
jk

is the number Ofccounterdominances from j

Or we can say

E E
jk

k>j

E n
j

)
kj k

j k<j

C'

E E dtk

k >J

j

E d

i

.0
k<j "

where ajk = c
Jk

+ djk

E E dJk
,

E E au;
J k>j

kt (=n
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.

kruA (1975) showed that,dominance,matrices, can be split into

additive matrices aEcord ng to item or person subsets, From this,

letting each person be'trea ed as a subset, .wehave

at
n n N ' n . N '

(i)E E 7 E d
jk

V-
rt n N

J k>j 1 = 1 s jk
$
.M.'

'Illa in 1-rni .-18N1-

0.E E. E (s(0, s 4 s1.1 s
k J

) - E E E: a 0
k
)

ji
J k<J, 1=1 . j k<j- 1=1

-....-----

N n, n N '

E E E- d (i)
_

. E ,d (I
jk

1=1 J k >J
,=

1=1 ,

N n n N

E E E a
j \k
(1)

, ,E a (1)

i ®1 j k<j 1=1 \

This gene'rai consistency ,- the, advantage of

additiviiy-Over, the above-mentioned Pndites Cti, Col;, and Ct5, Each

item or person can be thought of a5- having an individual C value.
. ,

gro(Jps of-items or persons are combined, both the numerator and

When

denominator of the U
a
/U term-of C change by an additive amount. This is

*not the casemfor C
t3'

Ct4, or C
t5'

which are further influenced by

-"chance" consistency in a non - additive fashion.

thenext'bectionfwe utilize this additive property to extract

all posslble'.unidimensional chains in a more efficient fashion...!
'1

tr
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EXTRACTION PROCEDURE

Our extraction, procedure is an interactive method using the PLATO

computer system at the University of Illinois. The main algorithm uses

graph theory todextract nonredundant chains efficientlyvather than
A.

exhaustively generating,all chains, aswi Reynolds (1976) procedure.

At uses the consistency index C. as, a criterion for chain membership,

taking into account the fact that the numerator and denominator bath

maintain additivitNinder addition anii,deletion of elements in a chain.

The dominance matrix can be interpreted as a labelled digraph.

From this graph., all subgroups with perfect consistency aregenerated,

and these in turn are used as starting points in Oain.extraction.' Givgn

a criterion consistency valui-Co, the original dOminance digraph is then

reduced-until a chain is found from each subgraph, After extracting all

.'possible chains, redundant chains Can .be eliminated and Co can be.changed

to select more or fewer chains, as desired.

As a backdrop, we first briefly review Reynolds' (1976) method,

which extracts all possible chains which Satisfy the condition that

criterion C (whi-0 is equivalent to Cliff's consistency indexCti)

exceed some cutoff value. His approach is an iterative method seneeating

all chaind starting at each item.
r e
For each item,- k,st consistlency value C

p+k
is calculated for

. _

combining' the newitem with itemd'already in the chain. The item

which produces the smallest decrement in is 'added to the chain,

producinP :

C' magkp+k
'

19
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This proelss,of adding the "most consistentemsts 'repeate(d using

the remaining items until the overall chain consistency drops below

the criterion consistency value. At this point the procedure stops

and the chain is complete. Thi-s method is reapplied using each item

ag.41-starting point so that, for m items; m chains are extracted.

Dt1pl1 cate chains are deleted, leaving a unique set of Ghains that are

nterpreted as the dimensions of the,data matrix (Reynolds 1976).
t.

eynolds procedure tolerates.a lot of redundancy in,oder to

ensure that all chains are extracted. , That is, for each item in a:

given chain, .using it 'as a Starting point will frequently result in
.

the re-production of. an'already existing chain.

The total number of possible consistency calculations for a

k-item data matrix can be computed. Starting at each item there are

(k-1) + (k-2) + + (k-k-1) = k(k-1)
2

calculations. Summed across starting points (items), we have a'total of

k(k-1
2

2
k

2

calculations, which. is, of the order ofk3. As k increases the number

of calculatfOns needed goes uprapidlyi For instance, for a 20-item'
O

data matrix, as many as 3800 calculations may be needea. Many of:

these calculations are unnecessary.

,

Our:algorithm, on the other hand, begins by determining all

subaets.of items with perfect,consistency.(C=1.0); that is, subsets

20



which satisfy

= 1.0

15

where p denotes any chain of items with C = 1. (A chain consisting

of only one.item is permissible.) NOte that there will likely be

more than one starting item chain. At.this poiht, items are added

one,by one to a given* chairi in such a way that its-consistency stays

h

aS:high, as possible. When its Value diops to some predetermined t-,
o

we stop adding further items to this chain, but select another-chain

and repeat the procedure.

We have considered thi-ee different strategies for deciding. on

the successive items to add to a chain:,

(1) Take each one of the remaining,items in turn,-calculate the

new consistency index when each is" added to -the chain,"and select that'.

'item which yields the largest C This is essentially the same

as Reynolds' (1976)_ procedure, and ft is time consuming"beCause

repetitious calculations have to be done for each item in-turn.

.(2) Without taking the chain as a whole into considerail011,

look, at the "individual" consistency index

di

(i 1)61
ind. ,a

I

of each Temaining item, and choose the item with the largest
Cind

to add'to the chain. (Note, however, that each time an item is added

to a chain, the individual, consistency index for each of the remaining

Items has to be calculated anew.);
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(3) Out of the remaining items, take the three with the highest

individual consistency values, and add each one of 'these, in turn, to

the chain. Choose the one that.produces the smallest decrease in the

overall chain consistency to actuallfadd to the chain. (This

method is to'allow for the possibility -- whlCh we have not experienced

so far =- that the item with the highest individual consistency,

selected by method (2), may not necessarily produce 'the smallest

decrease in the chain consistency.)

Our computer algorithm can use any of the threestrategies just

described; moreover, even' when method (9 is used, we have made

arrangements to keep the repetitious calculationS at a minimum. We

shall noW describe our algorithm in detallgiving an example using

the second strategy.

Chain Extraction Algorithm

1. Start weth a persons x itemsdata'matrix.

1.1 Compute the dominance matrix.

N = nij ] k,j = 1,2,...,m

Note that this matrix is not a binary Matrix and that nil

Reorder the dominance matrix in terMs. of item difficulties.
6.*

1.2 Coostruct a matrix 0 such that each element'in its, ower

triangle is equal to the sum of the corresponding ent of N

plusthe syliatric element of N. The upper triangle el ents are

equal to the corresponding element of N and the main diagonal

elements are al 1 zero. Thtt is,

/ 22
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0 = oijj i,j 1,2,... A

where o
ij

= 0

1(11('-,

i = j

nij i j

2. 'Graph Initialization

nii + nj 1) >

2.1 Construct a labelled graph from matrix'0.

G = (V,E)

V = 1. (the total set of items)

E = f(r,j) 171,2,...,m; j=i+1,1+2,...,m }

2.2 Initialize labels for vertices and edges:

eij = (aji, di j) = (oiroii) for-i=1,2,...,m;

vi = [pi,q1], =[0,0] for 1=1,2,..:,m

The graph labels refer to the consistencies both between vertices

and pilthin" Verticet. As the algorithm proceeds, sohlte of the

vertices will be merged to form new vertices. Each.vi will referkto

the consistency of the set of items within vertex .1. Hence, each
/

pi is equal to the sum of the elements in the lower triangle of 0

that correspond to the flominances between elements contained in

vertex.i. Likewise qi is equal to the sum of the)corresponding

elements ofthe upper triangle of 0. Thus, each vi is initialized

at [0,0] .

2.3 Initialize a chain matrix (CH)

Thll will start out as an x m binary matrix that will contain

theliem chains. All elements of CH will be initialized at zero`.

except for the main diagonal elements, which are equal to one. When
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the algorithm is finished, ch
ij

will equal one if item J is a /,

member of chain li otherwise, 11,will be equal to zero. AlsO,.

redundant chains will 'be eliminated during the extraction prOcess,

so tha' the final number of chains (rows) in CH. will be less than m.

3. Extraction of maximal chain with a consistency greater than a

criterion, Co .

3.1 For a given chain L, merge the vertices and edges included, in

the chain. For vertices i and j (1<j) where ch =I and ch
Lj

=0,

merge-vertices 1 and J to form vertex ij with edges

(k,f;j) k < 1 ,

for all k s V-{1,j}.'
(1j,k) i < k

The new labels in the graph are:

vi.i = [pi + pj + aji, qi + qj +

ek,ij ( ik-+ ajk' dki dkj )
k <

e =(
+

d +
dkj

)
1.j,k ki Jk' ik kj

1 < k < j for all Ice V-{1,j }.

e1j,k = (
ki

+ a
kJ . '

d
ik

+ d
Jk

) k > j

3.2 Look for the candidate vertex (item) which should be merged next.

Find the item with the largest "Individual" consistency (strategy 2)

(Pk,i.J12
k < I

rek,ijli

C'

[ei. 1(12

k > 1

Eeij,k11

where [ea,b11 and [ea,b;]2 are the first and second components of
0

e
a,b'

and 1.1 represents. items already in the chain.

0 4
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3.3 Compute the new consistency (C') with the best ,iandidate item,

k, added to the chaln

or

4

3.4 if C'

C' pa I.]

+ d
' i.j,k
p
i.j

+ a
k,i j

1.1
C' k >

I.j,k pi.j

V

> C' then add vertex k to the chain and merge the graph.
0

+ d .

k,is i

+ a
1.j,k

k< I

Return to step 3.2 .

If C' < Co , the algorithm is finished.

41-

25
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AN ILLUSTRATIVE EXAMPLE

We will now illustrate the use of our algorithm using the example

given IA Reynolds (1976, p. 24). The consistency index he used is

equivalent to our general consistency index with parameters a = 2 and

0 = 1.

1. Data Matrix

1.1 The ordered item dominance matrix.eor the six items is:

F b C C A B

F 0 4 4 5

D l 1 4 3

0 ... Ar3 3: 4

C 1 0 2 0 4 -2

A .9 2 1 3 0 3

B. 0 0 1 0 2 0

1.2 The corresponding 0 matrix is:

F .D .0 A B

F 0 3 2 4 ,4 5

4 0 2 1 4 3

0- E 2 4 0 3 3 4

C 5 1 5 0 4 2

A 4 6 4 7 0 3

B 5 3 5 2 5 0

2. Graph Initialization

2,1, 2.2 The labelled graph corresponding. to matrix 0 is shown below,

In Figure 8.

2C
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I-

Figure 8. Labelled graph of matrix' 0.
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2.3 Initialize the chain matrix (CH).

FDECAB
1 1 0 0 0 0 0

2 0 1 0 0 0 0

CH 3

4

5

6

0 0 1 0 0 0

0 0 0

0 0 M 0 1 0

0 0 0 0 0 1

3, Extraction of Perfect Item Chains (C 1.0) .

3.1, 3.2 Select vertices with perfect consistency (C 1.0) for

each chain, and delete redundant chains.

FDECA B F D E C A B

1 -1 0. 1 0 0 0 1 1 0 1 0 0 0

2 0 1 0 1 0 1 reduce 2 0 1 0 1 0 1

CH'- 21 1 0 1 0 0 0 CH 5 1 0 0 0 .1 0

4 0 1 0 1 0 1. 6 1 0 0 0 Q 1

5 1 0 0 0 1 0

6. 1 0 0 0 0 1

A

Repeat step 3. for e lower criterion consistency.

4, ExtractionofMaximal Chain greater than a Criterion Consistency (C0...8).

4.1 Merge vertices and edges included in the chain.

We.get Figure 9. Note that chain 1 is being processed.

28
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(o,o]

Figure 9. Merging of Vertices for Chain 1

4.2 Determine the next candidate item.

Of these 5/8, 7/10, 7/8, and 9/10, the value 9/10 is the largest.

Therefore the vertex B Is the candidate.

4.3 ComputIC 2, if 1) for the chain with the candidate added.

,C '2(2+9)/(2+10)-1

4.4 If C > C then add candidate item to chain, merge the graph ando

return to. step 3.2. if C < Co, do not add candlidate item and chain

is complete. Cio.8939) > Co (...8) so we add the candidate, merge

the graph and get CH matrix and Figure 10.
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El 2

5

6

F0E)A8
1 0 1 0 0

1.

0 0 1 0 1

1 0 0 0 1 0

1 0 0 0 0

MN

Figure 10. Merging of Vertex F, E.and B

We repeat the 4.2 through 4.4. ThIS time vertex A incomes the

candidate because 10/13 is the largest value, but the new

C = 2(11+10)/(12+13)-1 = .68 < C(=.8), so the algorithm then stops.

Repealing the process for the other chains, we get the,final chain

'matrix (Co .8).

F .D E C A B

1 1 0 1 0 0 1

CH = 2 1 1 0 1 0

5 1 0'1 0 1 0

emb

5161

.8333

.8000

.8000

30
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The value In the upper right-hand corner (.5161) Is ,the C value for

a chain containing all of the Items. Note that each Individual

chain represents an Improvement over .5161.

The interactive procedure to extract chains Is summarized in

Figure 11. . Each block consists of one or more routines whfith are

implemented,on the PLATO system at the University of Illinois.

31



4

COMPUTE
S x

26'

START,

GENERATE
SCORES

SORT
DATA

4
TYPE 1*
IN CHAIN
MATRIX

COMPUTE
$x S

CONSTRUCT
O MATRIX 8

CHAIN MATRIXES
4

CALCULATE
C

I

LOOK FOR
A CHAIN

I

SEE CHAIN
MATRIk 8

C$..

( END

Figure 11. Extracting procedure on,PLATO. system.
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We introduced a general consistency imiax In this paper such that,

with parameters values a 2 and 0 1. It is equivalent to the index

which Reynolds (1976) used tn his article, and also to one of Cliff's

Indices, Cti (1977 With6a 4 and 0 3 it becomes Ct2, another index

by Cliff.' With appropriate choice of a (and 0 a-1) we can

approximate others of Cliff's Indices,'Co, Ct4. and Ct45.

One important feature of tne general consistency index Is that.

.idditivity holds in both namerator and denominator. It enables us
Ato

to ase a graphical merging technique. As a result we can give an

efficient algorithm to get 411 poisible chains, which were obtained

by Reynolds by his exhaustive method.

In the current paper we have picked up the items in order to get

item chains. But we can easily extend the technique described here to

a method that both picks up items and eliminates persons in order to

gat highl consistent item chains, because additivity in numerator and

denominator holds for persons as well as items. In some cases a

few persons "contaminate" our data, therefore elimination of these

persons is a good way to get good item chains. Our efficient algorithm

ensures the extracting of..16ains for a large number of items and

persons. We can also apply the same technique to get consistent

person chains, by picking up or eliminating items or persons.

33
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