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ABSTRACT
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and fuel burn-up_for both slow neutron and fast neutron fiSsion

'\ reactors. The diffusion approxiiation is used for .the calculation Of
neutron transport. Collision probabilities are used to calculate the
effect of heterogeneods lattices of ftel and moderator,onjresonance-
absorption and slog neutron disadvantage factors. In thiS module, the
three major problems of neutron diffusion in slow neutron fission
reactors are reviewed. An energy-dependent diffusion equation, steady
'state esiithermal multi-group equations, and a slow neutron diffusion
equation -are ,ntroduced. The structure and organization of the
remaining eight modules are outlined.. These modules are intended to
supplement textbooks and other lecture material generally available
to students in their course work. It is assumed, that students 0,06-
familiar with elementary nuclear structure, neutron-nuclei
interactions, and introductory material on fission chain reactors.
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INTRODUCTION TO REACTOR STATICS MODULES, RS-1

Preface

The development of reactor physics shortly. after the discovery of nuclear

fission in January 1939 is truly an elegant application of nuclear physics. and

-
. applied mathematics. The notion of a nuclear chain reaction wa4 intensively

pursued after the disdovery of fission.' Nuclear physicists at that time

that neutrons would be emitted in the fission process. since

neutrons have.no.electrical charge, they would easily penetr te the electric

field surrounding a nucleus to interact with it and thereby

carrier for a chain reaction..

ei-ve.as the,

During the early months of 1940 it was shown that fission of uranium w as

primarily induced by slo .neutron absorption in,the less abundant uranium -235

Isotope. With remarkable rapidity, the physical problems of constructing
0

a

self-sustaining chain reaction inlh.iatural uranium were identified and solved

. 4. t

leading to the-first nuclear fission chain reaction'at the University of

Chicago on December 12, 1942.

Reactor physics developed during the Manhattan Project2 as an inspired

combination of some elements of mathematical physics and the definition and

,measurement of certain nuclear cross-sections and integral quantities related'

to the mathematical models used in the design of the plutonium production

reactors built at Hanford, Washington during World-War II. The models and

analytical methods, which can be identified aS"Integral Reactor Theory," were'

devised to.minimize computations which were performed on desk calculator

Integral reactor theory is described in several textbooks,
3,4,5,6 which have

0.

s,
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been used in nuclear engineering education during the last two decades.

Two developments have led to a significant advance in the methods of

reactor physics analysis. The first is the more accurate measurement of a

large number of nuclear cross sections. The second is the development of high

spend and large capacity digital computers. The latter permits'the use of more

sophisticated mathematical models for computation; the former provides the data

required to make.the more sophisticated models useful in the design of nuclear

reactors. The use of digital computers also facilitates the exploration.,of

many core design variables and permits the solution of many problems which

simply could not be-solved otherwise.

The Reactor Statics Modules are designed.to introduce students to the use

ofnumerical methods and digital computers for calculation of neutron flux

distributions in spice and energy which are needed to calculate criticality,

power dist*ibution and fuel burnup for both slow neutron and fast neutron.

fission reactors. The diffusion approximation
c
is used for the calculation of

neutron transport. Collision probabilities are used to calculate the effect

of heterogeneous lattices of fuel and moderator on resonance absorption and

slow neutron disadvantage factors,

These Modules are intended to s pplement textbooks and'other lecture

material generally available to studel;tts in their course work. It is assumed.

that students are familiar with elementary nuclear structure, neutron-nuclei

interactions and introductory material on fission chain reactors at a level of

Nuclear Reactor Engineering, S. Glasstone and A. Sesonske, Van Nostrand

Reinhold Company, New York, N.Y. (1967).

6
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1.1 The Three Major Prdblems of Neutron Diffusion in Slow

\ Neutron Fission Reactors

There are three problem6 in diffusion theory, the solutions of,which are

'necessary for the calculation of the multiplication factor in slow neutron

reacioes. They are?

1) the slowing dad of fission neutrons to thermal energies.

withodt capture,

2) thermalization and diffusion'of slow neutrons and

3) the slowing down of 4ssion neutrons taking into account

the possibility of, their capture in the resonance region.

.tt+ The solution of these problems provides the neutron distribution in energy

and time throughout the .reactor ;.: The neutron distribution and the macroscopic

cross sections give'netitrOn-nuclei reaction rates, which are needed to calcu-

9 late the multiplication factor and power distributions. The neutron distribution
e

is the primary dependent variable required for the nuclear design of reactors.'

The slowing down of neutrons is due almost entirely to elastic scattering

with moderator nuclei. I
cn

night nUlei the first excited states lie about 1 Mev

abode ,the ground state, and henceaf e;as c collisions are relatively unim-
J

portant in the
I 1

modJiaeton process. -Particularly, since nuclei which are good

&

moderators by virtue of the elastic sca ring mechanism are of necessity light

elements. Inelastic scattering in the 1Lavy elements can reduce the energy of

fast neutrons Only downito about/ CI Mev, which is the excitation energy of the

;$1
first excited, state An heavy nuclei. T s-'process is important, however, An

determining the slowing down length in c -packed uranium oxide fueled light
1
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water reactors. It is less important in gas-cooled graphite Moderated reactors

and is a primary process in fast breeder reactors.

Every elastic collisioh of a neutron with a oderator nucleus will reduce

tne\energy of. the neutrons until the kinetioenergy of the netitron approaches

an energy on the order of the thermal energy of the moderator atoms. At this

stage, energy may be transferred from the moderator atoms to the neutron and

the neutron energy will approach."thermal energy" asymptotically..

Above about 1 ev the moderator atoms can be considered to_be at rest

compared to the motion of the neutrons and the calculation of the energy loss

per scattering collision is an elementary problem in particle mechanics.

Slowing'down above 1 ev is discussed. in Module RS-1.

4The last phase of the slowing down process, however, is quite difficult

to analyze. Strictly speaking, these are no therpal. neutrons in the sense of

neutrons being in thermal equilibrium with the moderator. Because' of the 1/v

law of neutron absotption, thet,absorption probability increases, at the end of

the slowing down process And neutrons are actually absorbed before attaining

the energy distribution which corresponds to thermal equilibrium., The diffusion

and energy distribution/of slow neutrons (below -1 ev) is further complicated

by the effect of chemical binding and, in, the case of crystal lattices such as-.

,graphite', the effect of coherent scattering of low energy neutrons by many

6).

nuclei in the crystal. This problem is discussed in Module RS-5.

The calculation of the capture of neutrons in the resonancts of nuclei is

complicated by the rapid variation of cross sections with energy. Nevertheless,.

the theory of this process is quite satisfactory and calculations of resonance

capture dap be made accurately and quickly with digital computers. This' problem

is discussed in Module RS-4.

4
3
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1.2 An Energy Dependent biffusion Equation

Diffusion theory is widely used to calculate the neutron distributions

needed for reactor design. The basic approximation of diffusion theory is

Fick's law, which states that the neutron current per unit energy is proportional

to the gradient of the neutron flux per unit energy; i.e.,

J(r, E, t) = - D(r, E) V 0(r, E, t).

The diffusion coefficient is.approximacely given b',

D(r, E) =
1

Et(r, B) _E pi(r, E) Esi(r, E)

(1.2.1)

(1.2.2)

E
t

is the total macroscopic cross section, Esi.is the scattering cross-section

and ui is the average cosine of the scattering angle for the i th isotope.

The summation is over all isotopes.

Both the current and the flux are distribution functions in space, r, and

energy, E. That is, the neutron current for neutrons in'the volume element dr

at and having kinetic energies in the range E-to E + dE at time, t, is,

J(r, E, t)dr dE.

Similarly, 0(r, E, t) dr dE gives the number of neutrons in dr at r with energies

in the range E/to E + dE at time, t, multiplied by their speed, v = 2 E/m.

Fick's law and the formula for the diffusion coefficient can be derived

7
as a first order approximatioh from the exact neutron transport theo The

approximation is suffici7ntly accurate kthose reactor design problems in

which the variation of the flux with ris small compared to a neutron mean free
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path and the vQriat ion of flux with energy at each poaition-is small over the

range of the average neutron energy change resulting from a scattering collision.

The diffusion approximation can be rationalized by noting that the simplest

relation between the vector field, J, and the scalar field, (p, which is in-

variant to rotation an4 translation of the coordinate system, is precisely

Equation (1.2.1). After all, the neutrons in a reactor don't "know" what

coordinate system is being used by the analyst!

Diffusion theory, however, is not sufficiently accurate for design re-

quirements in the calculation of neutron distributions within a single lattice

of fuel, clad and moderator. These distributions require more accurate neutron

transport models. On the other hand, the migration of neutrons over a number

of lattices can be treated by diffusion theory. The classical approach is to-

divide the neutron distributions into "macroscopic" and "microscopic" components

as illustrated in Figure 1.2.1.

Figure 1.2.1
I

Microscopic Slow Neutron Flux
in Lattice Cell

Macroscopic Slow Neutron Flux
over Several Lattice Cells

I

L Fuel Rods



. The microscopic distributions, these within a fuel lattice cell, are computed

using the more accurate transport models to obtain cell 4ivorAge maeroscopic

cross sections. These croSs sections are then used ln diffusion eiptatione to

calculate the average neutron distributions over a numbel of lattices; i.e.,

the "macroscopic" distributions. An introduction to the calculation of the

"microscopic" distributions is presented in Modules RS-4 and 6.

Returning to the "macroscopic" diffusion theory, the basic principle is

simply neutron conservation in an element dr dEiat r and E. To simplify the

presentation, consider a single fissionable isotope such as uranium -235 mixed

with a moderator consisting of a single isotope like graphite. Further, assume

a dilute system in which the critical concentration oil uranium -235 is so small

that scattering by the uranium can be neglected. The most important neutron-

nuclei interactions are fissions below about l'ev apd elastic scattering of

neutrons by moderator nuclei. The time rate of change of the number of neutrons

in dr dE is equal to the sum of

1) the rate at which neutrons are scattered into dE by

moderator nuclei

2) the rate of production of fission neutrons

3) the rate of leakage by diffusion

4) the rate of removal by all interactions with the

uranium and moderator.

and

minus

and



Tko number of-"oeatterIng volliatono iti ile dE' at

;tt(i','li't) 0 (V, .;',1;) 'dr (1E1

t, lto

El) to the maeroAopic scattering 40t111 sect ton of moderator. Let

.r
ti

P(El+E)dE

be the probability that neutrons scattered with initial energy, El, lave

final, energy in the range I to E + dE. The total number of neutrons scattered

into dE is obtained, fby integration with E' from 0 to 10 Mev
and gives the first

term in the neutron balance, which is

10 Mev

dr dE jr Es(cy,,El) 0 (r,E',t) P (E' E)dE'. (1.2,3)

0

The production rate of fission neutrons is

10 Mev

dr dE vg(E)J(' Efcr,E1) (r,E',t). (1.2.4)

0

X(E)dE is the fraction of fission neutrons emitted in the range E to E + dE,

v is the number of fission neutrons produced per fission and Ef(r,E1) is the'-.

macroscopic fission cross section.

The rate of leakage is

1

dr dE V D(r,E) V4 (r,E,t) (1.2.5)

and the rate,- at which neutrons are removed by all interactions is

where E
t
(r,E) is

dr dE
t
(LE) (I) (r,E,t),

e total macroscopic cross section.

(1.2.6)
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,--,

The time rate of change of the number of neutrons in dr dE is

I agr,- E,t)

dr 5,
_17 at

(1.2.7)

Neutron Conservation leads to an energy dependent diffusion equation for

the neutron flux per unit energy, which is
10-Nev

1 DO(E,E,t)
= V D(r,E)V0(r,E,t)-Et(r,E)0(r,E,O+ Es(r,E')0(x,E:OP'(E'÷E)dE1

at
0

10 Mev

+ vX(E)JI E
f

(
'

E')()(r,E',OdE'.
0

(1.2.7)

. This is the basic form of the diffusion equation used in the development of

the Reactor Statics and Reactcy.r Dynamics Modules. Scattering by more than one

isotope merely gives an additional term having the same form as the in-scattering

term in Equation (1.2.7) for each isotope. Similarly, fission of more than one

isotope yields additional fission neutron production terms.

1.3 Steady State Epithermal Multi-Group Equations

In the epithermal energy region, above -1 ev, the energy exchange with

moderator can be calculated as though the moderator nuclei are at rest relative

,sto neutrons. Also, the elastic scattering with low mass moderators is isotropic

foi energies up to the Mev region. The slight anistropy at higher energies will

be neglected. From elementary mechanics (cf., Glasstone and Sesonske, pp. 127-

132), the probability that neutrons scattered with initial energy, E', have

final energy in the range E to E + dE is

E)dE = (1)E1
dE

for E E' <
a

= 0 otherwise

(1.3.1)
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and
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a.
A =

Mass of scattering nucleus
Mass of'nearon

For example, if the moderator is carbon, a = 0.716 and neutrons can be scattered

into dE at E only if their initial energies are in the range of E to 1.40 E.

Note, also, that Equation (1.3.1) states that neutrons are uniformly scattered

over the range E' to aEl.

The epithermal energy region can be divided into a number of contiguous

energy groups. The g th group has the energy range, E
g.
- E8-1 , let,g = 1 denote

highest energy group, g = 2 the next highest etc. Generally, a reactor core and

reflector or blanket can be divided into a relatively small number of regions,

within each of which, the macroscopic cross sections are independent of r. Thus,
E.

setting 30/t = 0, using P(E' E) given by Equation (1.3.1) and integrating

Equation (1.2.7) with respect to E over the range, E - E
g-1'

gives for each such
g

reactor region,

E Eg E/a

D(E) 02 (r,E)dE E
t
(E) 0 (r,E)dE

Eg

dE Jr Es(E') 0 (r,E')
(1-da)E'

E1

fg
E
g-1

E
g- 1

Eg-1

10 Mev

+ vi g X(E)dE ji E
f
(E') 0 (r,E')dE' = 0. (1.3.2)

E 0
g-1

Next, assume that (1)(r,E) is separable over the range Eg - Eg throughout the

region; i.e., let

1 4
gr,E) = G(R) F(E).



Then

Defining

E
g

E

D(E)V
2
(1),(T,E)dE = V

2
G(r) D(E)F(E)dE.

Jr
(1.3.3)

E E
g-1 g-1

(g)
as the spectrum average value of D(E).; i.e.,

J

g
D(E)F(E)dE

D
(g) Eg

g

E
g -1

and noting that the group flux is

F(E}dE

0 (r) =f gr,E}CIE = G(r)
J

F(E)dE,

Eg
-1

Eg-1
-

the leakage term of the group equation becomes

Similarly,

fg D(E)V20(y,E)dE = D(g)020 (r).

g-1

E

E

t
g

(E)gr,E)dE = E
t

(g) (!),

Eg-1

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)



with

I

Also,

J

E (g)
E
g-1

t E
. (1.3.8)

i g
F dE ,,,.

E
g-1

-12--

E
t
(g) (E)F(E)dE

E
g

E/a

fjr dE E
s
(E') (I) (r,E') 0 (1-daE)E1 Er(i+g" (E). (1.3.9)

g_ i
E 1..1E ,

i

E
r
(j 4 g) is the transfer cross section f 9 roup j to group g, which when

multiplied by 4
J
(0 gives the rate at whi utrons are ,scattered from group

j to group g per unit volume at r. The transfer cross section is

E E
dE'

f g dEf g Es(E')F(E')
(1-a) E'

E E

Zr(i g) g-l. .4r1E

F(E) dE

E
g-1

(1.3.10)

In the transfer cross section, the upper limit of the integration over E' is

E /a, since P(E' E) vanishes for higher energies.

If inelastic scattering is important, Equation (1.2.7) will contain a term

of the form,

10 Mev

E
in

(E')F(E')K(E'
.

E)dE',

E _A_ .J
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where K(E' E) is the transfer pfobabiliy. for, inelastic scattering and-
_

4

E
in

(EI) is the tothl inelastic cross section fbr each inelastic scterer. The

inelastic transfer cross section is calculated in the same way,as the elastic

transfer cross section.

The fission neutron productiLn term in Equation (L.3.2) becomes
N

vX E .

(g) E
f

(

,13

)
0
g
(r)

The summation is over all groups including a thermal or slow neutron group.

The E
f
(g) is thd average value of E

f
(e)'over the spectrum F(E). and,. '

E

XC-g=f X(E)dE.

E
g-1

The epithermal multi-group equations, thus have the form,

N

D (g) VO (r)-Et(g)0(r) + Er(g)0 (1)+vr(g)E E
f (g) 0

g
(r) = 0. (1..12)

g
j

j=1 g=1

g = 1, 2 . . . N - 1.

N is the thermal or slow neutron group which is discussed in section 1.4.

Turning, now, to the calculation of the epithermal group constants, the

simplest approximation is to use an infinite medium spectrum. Equation (1.2.7)

reduces to
E/a

'

- E
t
(E)F(E) +

J
Es(E')F(E')

(1
+ X(E) = 0. (1.3.13)

-

dEa)E'

E

F(E) is the neutron spectrum normalized to one fission neutron produced per

unit volume and unit time; i.e.,



10 Mev

f
0

f(El)cp(E')dEt = 1.

The accuracy of this approximation for the flux spectrum within each group

increases with decreasing enere/width Of the group. Thus, for a-fairly large

number of groups, say 20 to 30, F(E) can be obtained by numerical solution of

Equation (1.3.13).

Another approximation which is widely used is based on asymptotic reactor

theory. If the cross sections are independent of r over a region which is

large compare

-

o a group diffusion'length, defined by,

L (1.3.15)

I

the neutron flux energy'distribution will assume an asymptotic distribution'

which is separable in spade and energy over a region which-is about L 'away

' from 10.6epf,aqs with other regiOns. , 7

As before% 4(r,E) = G(r) F(E). Furthermore, G(R) will satisfy the HelMholti

equation,

V
2
G(r) + B

2
G(r) = 0. (1.3.16)

The B2 is the material buckling (cf., Glasstone ini Sesonske, pp. 157-162).

It is a function of the macroscopic cross sections and multiplying and scattering

properties of the medium. If the infinite medium multiplication facto

greater than zero, B
2
will be positive. Conversely, if k < 0, B2 will be

negative.
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Asymptotic reactor theory can be used for the calculation of the critical

1/41.siz e of a etre gebine cally 'simple homogeneous reactor. The spatial distri-
,

bution of the flux per unit energy for all neutron energies satisfys the

Helmholtz equation,

V
2
G(r) + B

2
G(1) = 0,

where B
2

is the geometric buckling which is determined by setting G(r) = 0 one:;,.
g

.

the extrapolated surface of the reactor. For examille, a spherical reactor of:
4

(1.3.17)

extrapolated radius, R, would have the spatial distribution,

and

G(r) =

Trr
sin

R

r

Tr

Bg =

-,

If the material buckling is equal to the geometric buckling, the reaeOr-is
1

_
. N

3,critical. A'

The asymptotic reactor theory approximation for computing the neutron

spectrum yields the following equation for F(E),

E/a

E1
-11)(E)8 2 +Et(E)] F(E) + j(- Es(E')F(E1) (ld-a)E' + X(E) = 0. (1.3.18)

E

The group constants are computed using this solution for F(E).

The choice of the buckling to use in Equation (1.3.18) is made by trial

and error. A guess is made, the spectrum and multi-group constants calculated

whith are then used to calculate the spatial distribution of the group fluxes.
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Inspection of the group .flnXes

(g) 2
-D B 0g, over the region is

)

will indicate whether or not the average leakage,.

consistent with the value of BZ. If not, a

different value of B,2 can be selected and the process repeated.

and

This approximation is the diffusion theory analog of the
6

B-1 approximations used in reactor design codes
8

.

In the neutron slowing down module,

separately as di cusseeln Module RS-4.
\ a

smooth component Oich is averaged over

RS-3, resonance

Neutron absorpti

consistent P-1

absorption is treated

is diviOd into a

the calculated e, tra. and a resonance

or:ea01 group; ,are comcomponent. Res4nance escape probabilities

11.4
; 14

''5V.Slow Neutron Diffusion, Equation
?A'' n/;',

,

.':/,

.

_:.., 7f l':.ci h#:q),2
i t:

In the thermalization energy region belCiv(a-oilt l ev energy
,. :-:-/'

exchanges

between neutrons and moderator are quite complidated as discussed in section

1.1. However, because of the strong energy.coUtiling between the moderator and

neutrons, the medium imposes a definite energy distribution on
A the neutrons

which can be calculated by several more or less sophisticated models
9

. This

distribution is used to calculate the slow or "thermal" group constants for a

ohe group diffusion equation.

The steady state conservation equation is

D
s
V
2

s
(r,t) E

as
0
s
(r,t) q(r,t) = 0.

The slow group flux is the integral of the distributiop

energy of the thermalization region, Ec; i.e.,

E
c

s
(I,t) =r

s
(E,E,t)dE

0

2t

mf

(1.4.1)

from zero t99the maximum

(1.4.2)
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, 4 e
..,

1, ,.
q(r,t) is he' source pr.ne Ons4slowing down belbw Ec.and is given by 7

iF: i.
E Ja I

q(r,Ec-,t)- =
%- ' 1

E (E')gr-i-E1.0
s ,-- -----c

. - aE'

(1 - a)E'
dEt. (1.4.3)

. - -c
,

...

P

I:0-1 17

E

Thi's equation for q cane derived simply by inspection. Neutrons at V.are

scattered uniformly' over the energy interval, (1 - a)E'. The fraction that are

sc'ttered below E is (E
c

- aE')/(1 aE') .

The slow neutron diffusion coefficient and absorption cross section are

average values weiggtep by the slow neutron flux energy distribution and 4.
s

A

1.S\the total slow neutron flux.'

The calculatiOn-of sldw neutron spectra using then drogen gas model is
4

discussed ii Module; RS-5 and 6.

1.5 Structure and Organization of the Reactoz Statics Modules4

The following Reactor Statics Modules are:

RS Number Title

2 One Group Neutron Diffusion Theory

3 Neutron Slowing Down and Epithermal Group Constants

4 Resonance Absorption

5 Slow Neutron Disadvantage Factors

6 Slow Neutron Spectra and Group Constants

7 Three Group Criticality Program

8 Multi-Group Constants for Fast Reactors

7

2 1
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RS-2 introduces the student to the concept-of the critical eigenvalue, k,

the discretization of a one group diffusion equation and the numerical solution

of the one group reactor model for k and the. spatial neutron flux distribution.

For slow neutron reactor calculations, the neutron energy range is divided

into three groups, fast, resonance and slow. The division follows naturally

from the different neutron - nuclei interactions in each energy group. Thus, all

fission neutrons are produced with energies in the fast group. Also, neutrons

cannot be removed from the fast group by inelastic scattering. The resonance

group contains all resolved resonances and is sufficiently wide so that neutron

transfer by elastic scattering from the fagt group to the slow group can be

neglected. Finally, the entire thermalization process is confined to the slow

, group. Their energy-tangd and lethargy widths are given in Table 1.5.1. They

are called macro-groups to distinguish them from the micro-groups used in

neutron spectrum calculations.

Table 1.5.1

Slow Neutron Reactor Macro-Groups

Macro-Group Energy Range (ev) Lethargy Width

Fast

Resonance

Slow

5.531 x 103

0.640

0.000

- 1.000 x 10
7

- 5.531 x 103

- 0.64

7.50

9.06

The group constants can be calculated for each reactor region using RS-3

and 4 for the fast and resonance group and RS-5 and.6 for the slow group. One

dimensional criticality and neutron distribution problems can be solved using
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these group constants as input into the three-group criticality program

presented in RS-8.

The last module includes a separate. program for the calculations of

neutron spectra and group constants for use in fast breeder reactor calculations.

It can be used with the criticality programs in RS-2 and RS-8.

A typical criticality and power distribution calculation for a low enriched

uranium oxide slow neutron reactor using the three group model can be made using
ctt,

the following procedure. First, the reactor is divided into regions, within

which material properties are constant. Yor each region, the isotopic number

densities in the fuel, clad and moderator are calculated. The fuel lattice cell

geometry and the average temperature ofgthe fuel is calculated' using the

Thermal-Hydraulics Module, TH-1. This provides input data for each reactor

region for the following computer programs;

Module Program Name Output

RS-3 FARCON Fast and Resonance Group Constants

RS-6 SLOWCON Slow Group Constants

0
This output information is used as input data to the three group-one

dimensional code, ODMUG, presented in RS-7. ODMUG can be used to compute the

Ocritical eigenvalue, k, and the uniform slow neutron poison cross section

required to make the reactor critical. The output of ODMUG includes;

1) Critical eigenvalue of "unpoisoned" reactor,

2) Poison cross section needed for criticality,

3) Spatial flux distribution,
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4) Spatial power distribution and

5) Total power generated and power density in each region.

The sequence of calculations is shown in the following diagram.

Physical Input

UOt fuel rod radius

Fuel clad thickness

Fuel lattice cell dimension

Average fuel temperature

Isotopic number densities

Region size and geometry

FARCONL

ODMUG

Output

SLOWCON

THREE-GROUP CONSTANTS

\-

Fast reactor calculations can be made by using FASTCON to generate group

constants for either ODOG or ODMUG.

1
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