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It is a pleasure to address the 4th Internmational Congress on Mathematical
Education, and I appreciate Jeremy Kilpatrick's inviting me to speak in the
Begle Series on Research in Mathematics Learming. -

My assignment for this presentation is to review recent research on human
memory and cognition with particular emphasis on researcﬁ that might have some
promise for education in mathematics. Trying to demonstrate the relevance of
memory research for real-world probléms like mathematics learning is a rather
humbling experiencé. However, recent d;velopments in the psychology of'memory
are notewcrthy for two reasons: (1) psychologists have de§e10ped analytic
tools for describing mental processes, structures and knowledge that may be
relevant to performance in mathematics, and (2) psychologists gave begun to
apply these tools to real-world p}obiems including mathematics.

Let's begin with an example of what has been called "one of those 20th
century fables'", an algebra.story problemf

A sleek new blue motorboat traveled downstream in:120 minutes

with an 8 km/h current. The return upstream trip against the

same current took 3 hours. Find thr« speed of the motorboat in

still water.
Take a minute and try to solve this problem. As you solve it, write down each
step you take, and write down each piece of your existing knowledge you needed
in order to solve the problem. Certainly, this problem is not meant to repfe-
sent all of the ﬁany facets of mathwmatics learning, but it does serve as an
example of a typical problém present iﬁ secondary school algebra textbooks.
The goal of this paﬁer is to determine whether there is any useful'informétion
ifrom research on human memory and cognition that is relevanf to Lnderstanding
how a student learns and solveg problems like these.

The major cont&ibution of modern reseérch and theory iﬁ human memory and

cognition to date concerns techniques for analyzing human mental life. The most

relevant analytic techniques with respect to mathematics e[ﬁcation are:
. ‘\’/




-2-
(1) Techniques for analyzing the architecture of the human memory system,
i.e., what are the characteristics of.the basic memory stores and processes
that are available to the student? Subsequent sections refer to these tech-

niques as the information processing model.

(2) Techniques for analyzing acquired knowledge, i.g., what is the content
and structure of knowledge that a student brings to a problem? Subsequent

sections refer to comprehension models (based cn linguistic and factual know-

ledge), schema models (based on knowledge of problem forms), process models

(based on knowledge of algorithms), and strategy models (based on knowledge of

heuristics).

Information Processing Model

What are the memory stores and processes that people use when solving the
motorboat problem? Although theoristé disagree on many details, typical in-
formation processing modéls analyze human memory into separate stores, such as
Sensory memory, short-term memory/worklng memory, long-term memory, and into
many control processes such as attention, rehearsal, search of long~term memory, -

etc. (See Kiatzky, 1980; Loftus & Loftus, 1976).

Analysis of individual differences in mathematics ability. Hunt, (Hunt,

1978; Hunt? Lunneborg & Lewis, 19755, has used the information processing model
in order to analyze differences between students who score high vs. low on

;' standardized tests of verbal ability. For example, higﬁ verbal students are
faster than low verbal studeats on retrieving a letter's name from long-teorm
memsry, high verbal students can hold more‘letters temporarily in working memory
than low verbal students, and high verbal students can make a mental decision
absut whether two Jetters match faster than low verbal students. However, low

verbal students are no slower on reaction time tasks per se, and the differences
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that are obtained are very small (e.g., 20 to 40 ‘msec per letter). Although, the
differences in processing are small, they add up to a considerable effecf when
you note that they must be performed thousands of times during the course of '
reading. Thus, Hunt et.tﬂﬂ'were able & characterize differences in verbal
ability in terms of differences in the operating characteristics of the human

informaton processing system.

Analysis of individual differences in mathematical ability. Individual

differences in mathematical probiem solving may be due to specific acquired
knowledge (Greeno, 1980; Simon, 1980), as discussed in the subsequent four
sections. In addition, there may be individqal differencgs in the character-
istics of the information processing system that are particularly ‘important for
mathematics:

| (1) Holding capacity of working memory. People may differ with respect
-to how much inforﬁafion they can handle at one time. Fo; example, the moforboat
probiem requires that you hold the following facts: rate of current is 8 km/h;
time downstream is 120 minuﬁes; time upstream is 3 hours; speed in still water is

unknown; distance.upstream 2quals distance downstream. Case (1978) has shown
that young childreﬁ may not be able to handle more than two or three ;tems'at a
time, and has provided instructional procedures that do not overload woréing
memory . In a recent experiment, we (Mayer; Larkin & Kadane, 1980) found some
evidence that writing in equation form (rather than words) may help feduce load
on wofking memory. For example, problems were presented in/word form such as,
"Find a number such that 11 less than three times the number is the same as’if 8
more than 3 times the number was divided by 2,“ or problems were presented in
equation form such as; (3Xx + 8)/2 = 3X - 11. Although subjects were able to

solve both kinds of problems, the pattern of response times suggested that

subjects given equations were able to use a planning strategy--looking é few
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steps ahead--while subjects given word problems used a different strategy that
required much less memory and no planning.
| (2) Type of code used in working memory. Subjecte may differ with respect
to the mode of representation in working memory such as visual vs. verbal vs.
equation representation. For exemple, Hayes (1978) fecently interviewed sub-
jects as they solved simple arithmetic and aigebra problems. Subjetts differed
greatly in their use of imagery; some reported neavy reliance on imagery, In-
cluding "counting points'" in images for digits, wnile others rarely or never
used imagery. In addition, some problems elicited more imagery than others; for
example, few people reported imagery in solving 5 + i = but most 5utjects fe;
perted that they visually moved symbols in their working memory to solve K + 13
= 8. Individual diffetehtes in'imagery are releyant to algebra story problems
. such as the motorboat problem, as well. In a recent study, we (Mayer & Bromage,
© 1980) asked snbjects to either draw a picture,_write an equation, or write in
esimnle English as a translation for various story.problems. ' Some problems were
almost undrawable,‘such as, "Laura is 3 times as old as Maria was when Laura was
as old as Maria is now. In 2 years Lauva will be rwice as old as Maria was 2
years ago. Find their present ages.” Other problems evoked consistent pictorial
. representation, such as, "The area occnpﬁed by an unframed rectanguler picture
is 64 square inches less than the area occupied by the picture mounted‘in a
‘frame 2 inches wide. What are the dimeneioms of the picture if it is 4 inches
longer than it is wide?

(3) Speed of mental operations in workirs; memory. People may also differ
with respect to how fast they can carry out a single mental operation in working
memory. For example, Groen & Parkman (1972) ana Resnick (1976) have developed

models of simple addition and subtraction, and cubjects may differ in terms of

how long it takes to perform one step. Recently, we measured response times for

ty




—5-
simple algebraic operations such as_moving a number from one side td another;
this was accomplished, for example, by comparing time to solve, 3X - 8 = 225 to
‘time to solve 3X = 30. The difference bLetween these two_problems gives an
estimate of the time to move a number; there were large individual differences,
and time to move was faster for equation format as compared to word format.

(4) Speed of search for target lu long~term memory. Suppose you learned
some formulas 1like: Driving time = arrival time -~ leaving time, Distance =
speed x driving time, Distance = gas mileage x gas use&, Speedv= wheel size x -
wheel speed. Then suppose I ask, Arrival time = 6:00, Leaving time = 4:00,
Average speed = 25, Find distance. You have to seareh your memory for the re-
quired equation, determine a value for a variable in the equation, and search
“for another equation, and so on. People differ with respect to how fast they
can search for and find target information in long-term memory. In our research
(Mayer & Greeno, 1975, Mayer, 1978) search time varies greatly. from person to
' person, also, search time for a new equation is faster when the material is
meaningful (as above) than-when it is a set of corresponding nonsense equations.
Thus, equation format seems to slow down the speed of search in long-~term memory
but is more efficient for temporarily holding information in working memory

(5) Selective attention. ‘When you read a problem like .the riverboat
problem you need to key in on crucial facts such as time to go upstream 15'3
hours, but you can ignore irrelevant information such as the type or color of
the boat. Recent research by Robinson'&“Hayes (1978) shows that sub;
jects are‘quite able to distinguish between what is "important" and what is
"garbage".in an algebra story problem, although there are certainly innividual
differences in selective attention.

(6) Pattern matching. When you read a problem like the riverboatbproblem,

you may look at a few critical features and say, "That's a current problem."

€9)
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You match some features of the problem to a set of features stored in memory.
Similarly, in solving an algebra equation such as, (8+3X)/2 = 3X - 11, you may
note that one side is divided by 2. This-pattern may alert you to the necessity

to multiply both sides by 2. Since pattern matching is an important component

of problem solving, individual differences-in the speed and efficiency of the

matching process could influence performance.:

Comprehension Models

According to most descriptions of mathematical problem solving, the first
step is to translate the words of the problem into an internal representation
such as going from the words of an algebra'storv problem to an equation. For
example, in order to solve the motorboat problem you need at least two kinds of
acquired knowledgef-linguistic kpowledge, such as "motorboat” is a noun, "travel"
is a verb; and factual knowledge, such as "120 minutes equals 2 hours“ or rivers
have currents that run from upstream to downstream.

‘Rolé"of linguistic and factual knowledge. Bobrow (1968) developed a

computer program called STUDENT which solves simple problems such as.

If the number of customers Tom getr is twice the square of
20) percent of the number of advertisements he runs, and the
number of advertisements he runs is 45, what is the number
of customers Tom gets?

The translation phase‘of the program involves steps such as, (1) Copy the

problem word for word. (2) Substitute words like "two times" for twice. |

(3) Locate each word or»phrase that describes a variable, such as "the number of

customers Tom gets' and note if two'or more phraseS‘refer to the same variable.u

(4)'Breakithe problem into simple sentences. (5) Translate each simple sentence
N into variables, numbers, and operators, such as, (NUMBER OF CUSTOMERS TOM GETS)

= 2[ 20 (NUMBER OF ADVERTISEMENTS)] (NUMBER OF ADVERTISEMENTS) = 45, (NUMBER

-OF CUSTOMERS TOM GETS) = (X).
\

(D
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As you can see, STUDENT performs a very literal translation of words into
equations. To do even this, however, requires that STUDENT have knowledge of
the English language such as the ability to distinguish between operators and
Yariables, and some factual knowledge such as knowing that a dime equals 10
cents or there are seven days in a week. More recently, Hayes & Simon (1974)
have deyeloped a program called UNDERSTAND that translates probiems into an
internal representation. In a recent study, we (Johnson, Ryan, Cook & Mayer,
1980) gave students a 30 minute lesson on how to translate aiéebra story prob-
lems from words to equations using a modified.version of Bobrow's procedure.
Results ‘indicated that instruction on translation improved the performance of
low ability subjects on tests of writing equations. Further work is needed to
determine to what extent deficiencies in linguistic and factual knowledge in-
fluence students' problem solving performance, and to determine means of diag-
nosing and remediating the lack of knowledge.

Schema Models

Let's return for a moment to the motorboat problem. Is there anything else
you need to know beyond linguistic and factual knowledge? One basic idea you
need to know can be expressed as, distance = rate x time. Further, thevspecific
form of the motorboat problem is, (rate of powerboat + rate of current) X (time
'downstream) (rate of powerboat -~ rate of current) X (time downstream) This
equation represents the structure of the problem, and helps the student know
what to look for; we will. refer to the student's knowledge of the form of the

.

problem as a "schema."

:Understanding. You may have noticed that STUDENT does not really "under-
stand" what it is doing, and does not care whether the variables are related to.
a'another in a logical way. 1Is this the way humans solve problems? Paige &

Simon (1966) gave students problems such as:

'E('\.
F
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The number of quarters a man has is seven times the number of
dimes he has. The value of the dimes exceeds the value of

quarters by twu dollars and fifty cents. How many has he of
each coin? :

[\

- Some subjects behaved 1like STUDENT by generating literal translations of the
sentences into equations. Other subjects recogﬂized that something was wrong in
this problem and corrected it by assuming that the second sentence said, '"The
value of the quarters exceeds the-value of dimes by $2.50." Finaily, some
students looked at the probleﬁ.and said, "This is impoééible." Thush while some
students may use a literal translation, there ié evidence that some students try
‘to “underéfand" the problem. |

How ;an people beﬂencouraged to successfully "understand" a story problem?
Paige & Simon asked subjects to draw pictures'tq represent each problem. When
subjects drew intégrated pictures,‘containing';iiAthe information in one diagram,
they were much more likely to arrive ﬁt‘the correct answer. .When students pro-
duced a series of sentence by-sentence translations, they were more e;sily led
astray. Ihus, in addition to linguistié and factual knowledge the student needs

kno&ledge about how to put the variable together in a coherent way.

Role of schemas. A further breakthrough concerning how. people ﬁnderstand

story problems like the motorboat problem comes from the wo;k of Hinéley, Hayes
& Simon (1977). . Subjects wefe given a series of algebra prébléﬁs from standard
textbooks and were asked';o arrange them into cétegories. Subjects weré quite
able to perform this task with much ag?eement, yielding 18 different categaries
such as river cufient (the cateéory for the motorboat problem), DRT, work,
triaﬁgle, interest, etc. Hinsley, Hayes & Simon found that subjects were able
to‘categorize problehs almost immediately. Afﬁer hearing the first few words of

'a problem such as, "A river steamer travels 36 miles downstream..." a subject

could say, 'Hey, that's a river current problem." Hayes, Waterﬁan & Robinson
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(1977) and Robinson & Hayes (1978) found that students use theilr schemas to make

highly accurate judgments concerning what is important in a problem and what is

not.,

Many of the difficulties people have in‘solving story problems can come
from using the wrong schema. For example, Hinsley, Hayes & Simon presented sub-
jects with a problem that could'be interpreted as either a triangle problem or a
distance-rate-time problem. Subjects who opted for one interpretation paid
attention to different information than subjects who opted for the other inter-
pretation.«ﬂEarly work by Luchins (1942) demonstrated that shifting from prob-
leme that require one schema to problems that require another can cause
“einstellung" (or "problem solving set"). For example, Loftus & Suppes (l972f
fonnd that a word problem was much more difficult to solye if-it was a different ’
type‘of problem from ones-preceding it.

- Greeno and his colleagues (Riley & Greeno, 1978; Heller & Greeno, 1978)
have located schemas for children's word problems such as "cause/change" (Joe
has 3 marbles. Tom gives Him 5 more marbles. How many does Joe have now?),
"combine" (Joe has 3 marbles. Tom hae 5 marbles. How many do they have to-
‘gether?), ani "compare" (Joe has 3 marblesf Tom has 5 more marbles than Joe.
How many marbles does Tom have?) Development of schemas seems to be in the
order above, for example, second graders perform fine on cause/change problems
but poorly on compare problems. _When asked to repeat the compare problems,”one-
third of the children said" '"Joe has 3 maroles. Tom has 5 marbles. How many
marbles dces Tom have?". Failure to solve word problems may, thus be due to
lack of appropriate schema rather-than poor Arithmetic or logical skills.

Can anything be done to make subjects more readily "understandf problems,

s

i.e., help studente find appropriate schema for problems? Our work’ on 'solving

S

algebralequations shows that subjects are much faster at making appropriate.

’/_"r//\
10 at
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deductions when the material {s familiar (Mavyer & Creeno, 1972; Mayer, 1975).
Further, when instruction emphaslzes fam'ilar experiences subjects are better
able to recognize unanswerable problems :z:nd engage in transfer; for example, in
teaching students to sclve binomial probability problems instruction could
emphaéize prev}?us experience with batting averages, rainy days, and seating r
people at n spag S at a dinner table (Mayer & Greeno, 1972; Mayer, 1975).
Indeed, further Eesearch is needed to determine how to teach.problem solvgrs to
effectively use the schemgs they have.

In order to gain a broader perspective on the nature of schemas for algebra
story problems, I recently surveyed the exercise problems of major‘algebra
textbooks used in California secondary schools (Mayer, 1980). Of the approx-
imately 4000 problems collected, 25 general 'families" of problems were located:
motion, current, age, coin, work, part, dry mixture, wet mixture, percent,
ratio, unit, cost, markup/discount/profit, interest, direct variation, inversz -
variation, digit, rectangle, circle, triangle, series, gsnsegutive integer,
physics, probability, arithmgtic, and wérd (nokstory). Each type of problem has

its own familiar plot line, but there is a major distinction between problems
Q. ’

that require use of a formula (such as disﬁénce-rate—time for the motorboat

problem) and problems that do not (such as the advertising problem solved by

Bobrow's STUDENT). Also, for any major fémily, thére are many distinct var-
iants--there were 14 different basic forms located for current prbblems, with
obéerved frequencies of from 3 to 1l4. As an example, some of the common "motion"
problems were: simple dlstance-rate-time vehicles approaching from opp051te
directions. vehicles starting from the same point and moving out in opposite
di;ectibns, one vehicle overtakes another, one vehicle makes a round trip, speed
changes. during the trip, two vehicles take the same amount of time to travel,

two vehicles cover the same distance, etc. The procedure used for dr~ ribing R

v
//ﬂ

ko



~11-
the format of anv particular problem is to list the key Information; there were
four major types of statements: (1) assignment of a value to a variable, e.g.,
the time to travel downstream is 120 minutes, (2) designation of a relation be-
tween two variables, e.g., Laura's age is twice that of Anne, (3) assignment of
an unkncwn to a variable, e.g., what is the speed of the boat in still water,
(4) statement of fact; e.g., the cars took the same road. In a series of recall

studies (Mayer & Bromage, 1980) it is clear that subjects tend to focus on these

types of propositions when asked to remember a problem.

~

Process Models P

ol

Let's consider the moto;boat problem ag;in. As.we have séen, in order to
translate and represent the problem, the student négds appropriaté linguistic,
factual and schema knowledge. In order to solve the péoblem the student needs to
know: (1) the rules of arithmetic, and (2).the rules of algebraz

Role of arithmetic algorithms. Groen & Parkman (1972) and Resnick (1976)

have provided process models to represent the algorithms that children have for
simpie addition and subtraction. These models can be represented as flow
charts, and can be fit to the reaction time dataz of children. One particulary
interesting{éspect of the process model work in arithme;ic is that children tend

\v - ) .
to develop more sophisticated (e.g., larger) models as they get older. More .

‘recently, Brown & Burton (1978) -have been able to model the procedural bugs

students have for three digit subtraction p;obléms. Bugs include borrowing from
zero (103 -34 = 158), subtracting the smaller from the larger number (258 -

118 =145), and.{ﬁpe&{ﬁg a zero (203 - 192 = 191). This work builds on pfevious
analyses of error patgérné, and allows for a precise descriptip; of the child's

algorithm for subtraction.

Role of algebraic algorithms. Mayer, Larkin & Kadan (1980)7have described

- ‘X )
a model for simple algebraic operatiovns such as moving a variagyé from one ‘side

|
[N

Cx
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to the other. The process involves creating nodes, deleting nodes, and forming
links among nodes. Simon (1980) has pointed out that algebra textbooks tend to
emphasize algebraic algorithms (such as adding equal qiantities to both sides of
an equation) but fail to emphasize the conditions undier which an algorithm
should be applied.

Strategy Models

So far we have listed ;he types of knowledge needed to translate the motor-
boat problem (i.e., linguistic, factual, schema) and to solve the motorboat
problem (i.e., algorithms). In addition, thisAéection explores one final type
of knowledge needed to control andause the knowledge at the right time--strategic
knowledge. For example, Polya (1968) has emphasized general strategies such as
working backwards or working forwards to solve.méthematical problems, and more
recently Wickelgren (1974) has offered some general problem solving strategies,
some especially relevant to mathematics. Attempts to teach these stragegies have
met with some limited success (Lochhead & Clement, 1979). | |

Means-ends analysis for algebra equations. Newell & Simon (1972) have pro-

vided a technique for representing problems as a problem space. The problem
space begins with a concrete description of the given (initial) state of the
problem, the goal state; and all interveniag states that can e generated by
applying allowable operators. For example, the problem (8 + 3X) = 2 % (3X - 11)
has the equation as its given state,lX = some number as its goal state, and
intermediate states like 8 + 3X = 6 Z 22, etc.ﬁ4Newe11 &/éimon offer a powerful '

strategy called "means-ends analysis™ for guiding the problem solving process.

" The procedure may be represented as a production system, a list of condition

action pairs. TFor example, Eypical productions could be: "If there is an X
term on both sides, move the one on the right to the left side of the equation."

Problem solving involves"moviﬁg throqgh the problem space by executing the
A
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relevant productions in the production system (see Mayer, Larkin & Kadone, 1980,
for an example). Recent work by Bundy (1965), Matz (1979), Davis & McKnight (1979),
and Carry, Lewis & Bernard (1980) is directed offering preci: models of the
strategic kncwledge required for solving algebra equations. Further work is
needed to provide models that are closer to the real~world performance of school
children.

Finally, recent work by Larkin (197°) and by Simon & Simon (1978) has
compared the strategic knowledge of experts‘and novices concerning how to solve
physics‘gfoblems: Experts tend to reiy on better organized production systems
with mor% éctions chunked into each production. Simiiarly, recent work by Mayer
& Bayman (1980) concerning'students knowledge of how to use electronic calcu-
lators showed that.experts relied on more.sophisticatEd-stratEgies than novices.,
Further work should focus on the optimistic implication that expertness involves
the ae;uisition of great amounts of knowledge rather than special mental abilities.
Conclusion |

To understand mathematics learning and problem solving, you must understand
the hardwerd (e.g., the information processing model) and software (e.g.,
comprehensien, schema, process, strategy models) that a student brings to a
task. There are promising eigns that we will continue to see what Larkin (1979)

calls a "fruitful interaction” between the needs of the mathematics classroom

and the development of analytic theories in cogn‘tiv» psychology.

N
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