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It is a pleasure to address the 4th International Congress on Mathematical

Education, and I appreciate Jeremy Kilpatrick's inviting me to speak in the

Begle Series on Research in Mathematics Learning.

My assignment for this presentation is to review recent research on human

memory and cognition with particular emnhasis ou research that might have some

promise for education in mathematics. Trying to demonstrate the relevance of

memory research for real-world problems like mathematics learning is a rather

humbling experience. However, recent developments in the psychology of memory

are noteworthy for two reasons: (1) psychologists have developed analytic

tools for describing mental processes, structures and knowledge that may be

relevant to performance in mathematics, and (2) psychologists have begun to

apply these tools to real-world problems including mathematics.

Let's begin with an example of what has been called "one of those 20th

century fables", an algebra story problem:

A sleek new blue motorboat traveled downstream in;120 minutes
with an 8 km/h current. The return upstream trip against the
same current took 3 hours. Find t.10:: speed of the motorboat in
still water.

Take a minute and try to solve this problem. As you solve it, write down each

step you take, and write down each piece of your existing knowledge you needed

in order to solve the problem. Certainly, this problem is not meant to repre-

sent all of the many facets of mathmatics learning, but it 'does serve as an

example of a typical problem present in secondary school algebra textbooks.

The goal of this paper is to determine whether there is any useful information

from research on human memory and cognition that is relevant to understanding

how a student learns and solves problems like these.

The major contribution of modern research and theory in human memory and

cognition to date concerns techniques for analyzing human rental life. The most

relevant analytic techniques with respect to mathematics et-1 cation are:
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(1) Techniques for analyzing the architecture of the human memory system,

i.e., what are the characteristics of the basic memory stores and processes

that are available to the student? Subsequent sections refer to these tech-

niques as the information processing model.

(2) Techniques for analyzing acquired knowledge, i.e., what is the content

and structure of knowledge that a student brings to a problem? Subsequent

sections refer to comprehension models (based on linguistic and factual know-

ledge), schema models (based on knowledge of problem forms), process models

(based on knowledge of algorithms), and strategy models (based on knowledge of

heuristics).

Information Processing Model

What are the memory stores and processes that people use when solving the

motorboat problem? Although theorists disagree on many details, typical in-

formation processing models analyze human memory into separate stores, such as

sensory memory, short-term memory/working memory, long-term memory, and into

many control processes such as attention, rehearsal, search of long-term memory,

etc. (See Klatzky, 1980; Loftus & Loftus, 1976).

Analysis of individual differences in mathematics ability. Hunt, (Hunt,

1978; Hunt; Lunneborg & Lewis, 1975), has used the information processing model

in order to analyze differences between students who score high vs. low on

standardized tests of verbal ability. For example, high verbal students are

faster than low verbal students on retrieving a letter's name from long -torm

memory, high verbal students can hold more letters temporarily in working memory

than low verbal students, and high verbal students can make a mental decision

about whether two letters match fester than low verbal students. However, low

verbal students are no slower on reaction time tasks per se, and the differences

ti
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that are obtained are very small (e.g., 20 to 40'msec per letter). Although, the

differences in processing are small, they add up to a considerable effect when

you note that they must be performed thousands of times during the course of

reading. Thus, Hunt at.p were able 4R characterize differences in verbal1.

ability in terms of differences in the operating characteristics of the human

informaton processing system.

Analysis of individual differences in mathematical ability. Individual

differences in mathematical problem solving may be due to specific acquired

knowledge (Green°, 1980; Simon, 1980), as discussed in the subsequent four

sections. In addition, there may be individual differences in the character-

istics of the information processing system that are particularly "important for

mathematics:

(1) Holding capacity of working memory. People may differ with respect

to how much information they can handle at onetime. For example, the motorboat

problem requires that you hold the following facts: rate of current is 8 km/h;

time downstream is 120 minutes; time upstream is 3 hours; speed in still water is

unknown; distance upstream equals distance downstream. Case (1978) has shown

that young children may not be able to handle more than two or three items at a

time, and has provided instructional procedures that do not overload working

memory. In a recent experiment, we (Mayer, Larkin & Kadane, 1980) found some

evidence that writing in equation form (rather than words) may help reduce load

on working memory. For example, problems were presented in word form such as,

"Find a number such that 11 less than three times the number is the same as if 8

more than 3 times the number was divided by 2," or problems were presented in

equation form such as, (3X + 8)/2 = 3X - IL Although subjects were able to

solve both kinds of problems, the pattern of response times suggested that

subjects given equations were able to use a planning strategy--looking a few
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steps ahead--while subjects given word problems used a different strategy that

required much less memory and no planning.

(2) Type of code used in working memory. Subjects may differ with respect

to the mode of representation in working memory such as visual vs. verbal vs.

equation representation. For example, Hayes (1978) recently interviewed sub-

jects as they solved simple arithmetic and algebra problems. Subjects differed

greatly in their use of imagery; some reported heavy reliance on imagery, in-

eluding "counting points" in images for digits, while others rarely or never

used imagery. In addition, some problems elicited more imagery than others; for

example, few people reported imagery in solving 5 + 7 = but most subjects re-

ported that they visually moved symbols in their working memory to solve K + 13

8. Individual differences in'imagery are relevant to algebra story problems

such as the motorboat problem, as well. In a recent study,. we (Mayer & Bromage,

1980) asked subjects to either draw a picture, write an equation, or write in

.:Limple English as a translation for various story. problems. Some problems were

almost undrawable, such as, "Laura is 3 times as old as Maria was when Laura was

as old as Maria is now. In 2 years Laura will be twice as old as Maria was 2

years ago. Find their present ages." 0t1'r problems evoked consistent pictorial

representation, such as, "The area occupc'.2d by an unframed rectangular picture

is 64 square inches less than the area occupied by the picture mounted in a

frame 2 inches wide. What are the dithensiom. of the picture if it is 4 inches

longer than it is wide?

(3) Speed of mental operations in workirr, memory. People may also differ

with respect to how fast they can carry out at single mental operation in working

memory. For example, Groen & Parkman (1972) ane Resnick (1976) have developed

models of simple addition and subtraction, and subjects may differ in terms of

how long it takes. to perform one step. Recently, we measured response times for
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simple algebraic operations such as moving a number from one side to another;

this was accomplished, for example, by comparing time to solve, 3X - 8 = 22, to

time to solve 3X = 30. The difference between these two problems gives an

estimate of the time to move a number; there were large individual differences,

and time to move was faster for equation format as compared to word format.

(4) Speed of search for target in long-term memory. Suppose you learned

some formulas like: Driving time = arrival time - leaving time, Distance =

speed x driving time, Distance = gas mileage x gas used, Speed = wheel size x

wheel speed. Then suppose I ask, Arrival time = 6:00, Leaving time = 4:00,

Average speed = 25, Find distance. You have to search your memory for the re-

quired equation, determine a value for a variable in the equation, and search

for another equation, and so on. People differ with respect to how fast they

can search for and find target information in long-term memory. In our research

(Mayer & Green°, 1975; Mayer, 1978) search time varies greatly fron person to

person; also, search time for a new equation is faster when the material is

meaningful (as above) than when it is a set of corresponding nonsense equations.

Thus, equation format seems to slow down the speed of search in long-term memory

but is more efficient for temporarily holding information in working memory.

(5) Selective attention. When you read a problem like the riverboat

problem you need to key in on crucial facts such as time to go upstream is 3

hours, but you can ignore irrelevant information such as the type or color of

the boat. Recent research by Robinson & Hayes (1978) shows that sub-

jects are quite able to distinguish between what is "important" and what is

"garbage" in an algebra story problem, although there are certainly individual

differences in selective attention.

(6) Pattern matching. When you read a problem like the riverboat problem,

you may look at a few critical features and say, "That's a current problem."



-6-

You match some features of the problem to a set of features stored in memory.

Similarly, in solving an algebra equation such as, (8+3X)/2 = 3X - 11, you may

note that one side is divided by 2. This-pattern may alert you to the necessity

to multiply both sides by 2. Since pattern matching is an important component
.

of problem solving, individual differences in the speed and efficiency of the

matching process could influence performance.

Comprehension Models

According to most descriptions of mathematical problem solving, the first

step is to translate the words of the problem into an internal representation

such as going from the words of an algebra story problem to an equation. For

example, in order to solve the motorboat problem you need at least two kinds of

acquired knowledge-linguistic knowledge, such as "motorboat" is a noun, "travel"

is a verb; and factual knowledge, such as "120 minutes equals 2 hours" or rivers

haVe currents that run from upstream to downstream.

'Roie-Of linguistic and factual knowledge. Bobrow (1968) developed a

computer program called STUDENT which solves simple problems such AS.

If the number of customers Tom getr is twice the square of
20 percent of the number of advertisements he runs, and the
number of advertisements he runs is 45, what is the number
of customers Tom gets?

The translation phase of the program involves steps such as, (1) Copy the

problem word for word. (2) Substitute words like "two times" for twice.

(3) Locate each word or phrase that describes a variable, such as "the number of

customers Tom gets" and note if two or more phrases refer to the same variable.

(4) Break the problem into simple sentences. (5) Translate each simple sentence

into variables, numbers, and operators, such as, (NUMBER OF CUSTOMERS TOM GETS)

= 2[ -.20 (NUMBER OF ADVERTISEMENTS)12, (NUMBER OF ADVERTISEMENTS) = 45, (NUMBER

OF CUSTOMERS TOM GETS) = (X).
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As you can see, STUDENT performs avery literal translation of words into

equations. To do even this, however, requires that STUDENT have knowledge of

the English language such as the ability to distinguish between operators and

variables, and some factual knowledge such as knowing that a diva equals 10

cents or there are seven days in a week. More recently, Hayes & Simon (1974)

have developed a program called UNDERSTAND that translates problems into an

internal representation. In a recent study, we (Johnson, Ryan, Cook & Mayer,

1980) gave students'a 30 minute lesson on how to translate algebra story prob-

lems from words to equations using a modified version of Bobrow's procedure.

Results indicated that instruction on translation improved the performance of

low ability subjects on tests of writing equations. Further work is needed to

determine to what extent deficiencies in linguistic and factual knowledge in-

fluence students' problem solving performance, and to determine means of diag-

nosing and remediating the lack of knowledge.

Schema Models

Let's return for a moment to the motorboat problem. Is there anything else

you need to know beyond linguistic and factual knowledge? One basic idea you

need to know can be expressed as, distance = rate x time. Further, the specific

form of the motorboat problem is, (rate of powerboat + rate of current) x (time

downstream) = (rate of powerboat - rate of current) x (time downstream). This

equation represents the structure of the problem, and helps the student know

what to look for; we will refer to the student's knowledge of the form of the

problem as a "scheMa."

Understanding. You may have noticed that STUDENT does not really "under-

stand" what it is doing, and does not care whether the variables are related to,

another in a logical way. Is this the way hUmans solve problems? Paige &

Simon (1966) gave students problems such as:



-8-

The number of quarters a man has is seven times the number of
dimes he has. The value of the dimes exceeds the value of
quarters by two dollars and fifty cents. How many has he of
each coin?

Some subjects behaved like STUDENT by generating literal translations of the

sentences into equations. Other subjects recognized that something was wrong in

this problem and corrected it by assuming that the second sentence said, "The

value of the quarters exceeds the value of dimes by $2.50." Finally, some

students looked at the problem and said, "This is impossible." Thus, while some

students may use a literal translation, there is evidence that some students try

to "underltand" the problem.

How can people be encouraged to successfully "understand" a story problem?

Paige & Simon asked subjects to draw pictures.to represent each problem. When

subjects drew integrated pictures, containing all the information in one diagram,

they were much more likely to arrive at the correct answer. When students pro-

duced a series of sentence by sentence translations, they were more easily led

astray. Thus, in addition to linguistic and factual knowledge the student needs

knowledge about how to put the variable together in a coherent way.

Role of schemes. A further breakthrough concerning how people understand

story problems like the motorboat. problem comes from the work of Hinsley, Hayes

& Simon (1977). Subjectd were given a series of algebra probleins from standard

textbooks and were asked to arrange them into categories. Subjects were quite

able to perform this task with much agreement, yielding 18 different categories

such as river current (the category for the motorboat problem), DRT, work,

triangle, interest, etc. Hinsley, Hayes & Simon found that subjects were able

to categorize problems almost immediately. After hearing the first few words of

a problem such as, "A river steamer travels '36 miles downstream..." a subject

could say, "Hey, that's a river current problem." Hayes, Waterman & Robinson
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(1977) and Robinson & Hayes (1978) found that students use their schemas to make

highly.accurate judgments concerning what is important in a problem and what is

not.

Many of the difficulties people have in solving story problems can come

from using the wrong schema. For example, Hinsley, Hayes & Simon presented sub-

jects with a problem that could be interpreted as either a triangle problem or a

distance7rate-time problem. Subjects who opted for one interpretation paid

attention to different information than subjects who opted for the other inter-

pretation.--Early work by Luchins (1942) demonstrated that shifting from prob-

lems that require one schema to problems that require another can cause

"einstellung" (or "problem solving set"). For example, Loftus & Suppes (1972)

found that a word problem was much more difficult to solve if it was a different

type of problem from ones preceding it.

Greeno and his colleagues (Riley & Greeno, 1978; Heller & Greeno, 1978)

have located schemas for children's word problems such as "cause/change" (Joe

has 3 marbles. gives him 5 more marbles. How many does Joe have now?),

"combine" (Joe has 3 marbles. Tom has 5 marbles. How many do they have to-

gether?), and "compare" (Joe has 3 marbles. Tom has 5 more marbles than Joe.

HQw many marbles does Tom have?) Development of schemas seems to be in the

order above; for example, second graders perform fine on cause/change problems

but poorly on compare problems. When asked to repeat the compare problems,-One-

third of the children said" "Joe has 3 marbles. Tom has 5 marbles. How many

marbles does Tom have?". Failure to solve word problems may, thus, be due to

lack of appropriate schema rather than poor arithmetic or logical skills.

Can anything be done to'make subjects more readily "understand" problems,

i.e., help students find appropriate schema for problems? Our worKon -solving

algebra equations shows that subjects are much faster at making appropriate,
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deductions when the material is familiar (Mayer & Greeno, 1972; Mayer, 1975).

Further, when instruction emphasizes faw.liar experiences subjects are better

able to recognize unanswerable problems -1(1 engage in transfer; for example, in

teaching students to solve binomial probability problems instruction could

emphasize previous experience with batting averages, rainy days, and seating r

people at n spa4s at a dinner table (Mayer & Greeno, 1972; Mayer, 1975).

Indeed, further /research is needed to determine how to teach problem solvers to

effectively use the schemas they have.

In order to gain a broader perspective on the nature of schemas for algebra

story problems, I recently surveyed the exercise problems of major algebra

textbooks used in California secondary schools (Mayer, 1980). Of the approx-

imately 4000 problems collected, 25 general "families" of problems were located:

motion, current, age, coin, work, part, dry mixture wet mixture, percent,

ratio, unit, cost, markup/discount/profit, interest, direct variation, inverse

variation, digit, rectangle, circle, triangle, series, consecutive integer,

physics, probability, arithmetic, and word (no story). Each type of problem has

its own familiar plot line, but there is a major distinction between problems
e.

that require use of a formula (such as distance-rate-ttme for the motorboat

problem) and problems that do not (such as the advertising problem solved by

Bobrow's STUDENT). Also, for any major family, there are many distinct var-

iants--there were 14 different basic forms located for current problems, with

observed frequencies of from 3 to 14. As an example, some of the common "motion"

problems were: simple distance-rate-time, vehicles approaching from opposite

directions., vehicles starting from the same point and moving out in opposite

directions, one vehicle overtakes another, one vehicle makes a round trip, speed

changes during the trip, two vehicles take the same amount of time to travel,

two vehicles cover the same distance, etc. The procedure used for dr ribing

1 '7)ti
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the format of any particular problem is to list the key information; there were

four :Kajor types of statements: (1) assignment of a value to a variable, e.g.,

the time to travel downstream is 120 minutes, (2) designation of a relation be-

tween two variables, e.g., Laura's age is twice that of Anne, (3) assignment of

an unknown to a variable, e.g., what is the speed of the boat in still water,

(4) statement of fact, e.g., the cars took the same road. In a series of recall

studies (Mayer & Bromage, 1980) it is clear that subjects tend to focus on these

types of propositions when asked to remember a problem.

Process Models \

Let's consider the motorboat problem again. As.we have seen, in order to

translate and represent the problem, the student needs appropriate linguistic,

factual and schema knowledge. In order to solve the problem the student needs to

know: (1) the rules of arithmetic, and (2) the rules of algebra.

Role of arithmetic algorithms. Groen & Parkman (1972) and Resnick (1976)

have provided process models to represent the algorithms that children have for

simple addition and subtraction. These models can be represented as flow

charts, and can be fit to the reaction time data of children. One particulary

interesting (aspect of the process model work in arithmetic is that children tend

to develop more sophisticated (e.g., larger) models as they get older. More

recently, Brown & Burton (1978)-have been able to model the procedural bugs

students have for three digit subtraction problems. Bugs include borrowing from

zero (103 -34 = 158), subtracting the smaller from the larger number (258 -

118 1'145), and iret*ng a zero (203 - 192 = 19,1). This work builds on previous

analyses of error patterns, and allows for a precise description of the child's

algorithm for subtraction.

Role of algebraic algorithms. Mayer, Larkin & Kadan (1980) have described

a model for simple algebraic operations such as moving a variable from oneside
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to the other. The process involves creating nodes, deleting nodes, and forming

links among nodes. Simon (1980) has pointed out that alebra textbooks tend to

emphasize algebraic algorithms (such as adding equal qiantities to both sides of

an equation) but fail to emphasiZe the conditions under which an algorithm

should be applied.

Strategy Models

So far we have listed the types of knowledge needed to translate the motor-

boat problem (i.e., linguistic, factual, schema) and to solve the motorboat

problem (i.e., algorithms). In addition, this section explores one final type

of knowledge needed to control and use the knowledge at the right time--strategic

knowledge. For example, Polya (1968) has emphasized general strategies such as

working backwards or working forwards to solve mathematical problems, and more

recently Wickelgren (1974) has offered some general problem solving strategies,

some especially relevant to mathematics. Attempts to teach these strategies have

met with some limited success (Lochhead & Clement, 1979).

Means-ends analysis for algebra equations. Newell & Simon (1972) have pro-

vided a technique for representing problems as a problem space. The problem

space begins with a concrete description of the given (initial) state of the

problem, the goal state, and all intervening states that can lie generated by

applying allowable operators. For example, the problem (8 + 3X) = 2 * (3X - 11)

has the equation as its given state, X = some number as its goal state, and

intermediate states like 8 + 3X = 6e:12, etc. Newell &-Simon offer a powerful

strategy called "means-ends analysis" for 'guiding the problem solving process.

The procedure may be represented as a production system, a list of condition

action pairs. For example, typical productions could be: "If there is an X

term on both sides, move the one on the right to the left side of the equation."

Problem solving involves.. moving through the problem space by executing the
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relevant productions in the production system (see Mayer, Larkin & Kadone, 1980,

for an example). Recent work by Bundy (1965), Matz (1979), Davis & McKnight (1979),

and Carry, Lewis & Bernard (1980) is directed offering precis models of the

strategic knowledge required for solving algebra equations. Further work is

needed to provide models that are closer to the real-world performance of school

children.

Finallyj recent work by Larkin (197°' and by Simon & Simon (1978) has

compared the strategic knowledge of experts and novices concerning how to solve

physics problems. Experts tend to rely on better organized production systems

with more actions chunked into each production. Similarly, recent work by Mayer

& Bayman (1980) concerning students knowledge of how to use electronic calcu-

lators showed that experts relied on more sophisticated strategies than novices.

Further work should focus on the optimistic implication that expertness involves

the acquisition of great amounts of knowledge rather than special mental abilities,

Conclusion

To understand mathematics learning and problem solving, you must understand

the hardward (e.g., the information processing model) and software (e.g.,

comprehensiOn, schema, process, strategy models) that a student brings to a

task. There are promising signs that we will continue to sr.a what Larkin (1979)

calls a "fruitful interaction" between the needs of the mathematics classroom

and the development of analytic theories in cognitive psycholo

r'
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