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ABSTRACT . '
Analysis strategles are discussed for the :

ronequivalent control group design when three models of continuous

n=tural agrowth are known. Por Nodel I t¥Ype natural growthk it was

shown tha* the fan spread hypothesis always holds, and Analysis of
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potentially correct analvsis strategies. For Hodel II and Model'III

tvpe natural growth it was shown that the fan spread hypothesis iwlds

afnd the ANCOVA, ANOVA of Residuvalized. Gain Scores, and ANOVA of .

Standardized Change Scores arefpotentially correct analysis

strateaies only when Model II and Model 'III type natural growth

reduce to Model T type natural growth., Purther, i1t was shown that .

aiveh any na%ural growth situation, there is a value.of K for which

ANOVA.of Tndex of Pegponse is a pdtentially correct analysis i

ibs&ratea?. In order tha* an index of response works, the exact form of

natural a-ow*h must be khown. Most growth models, and in particular
nost linear growth models, dp not conform to the fan spread
hvpothesis nor are the usual analysis strategies correct for these
nodels, fnuthor/RLi ’
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ABSTRACT ‘
, , o
;

The paper giscusses analysis strategies for the nonequivalent |
g
when models of natural érow;h are known, V.

%
control group design
. ., . A
Several models of continuous growth are shown to satisfy the fan

-

spread hypothesis. For these growth models it is also shown that
' N L4
Analysis of Covariance, ANOV% of Residualized Gain Scores, and ANOVA e

of Standardized Change Scores yield correctly defined treatment

I
effects, On the one hand, these models are not restricted to linear

-

growth, as past literature would suggest. Om the other hand, these’

It N

are the only-models of g;bwth shown to fit the fan spread hypothesis

and for which the gﬁree analysis strategies §iehﬂ correctly defined

effects. Consequently, ndst growth models, and in particular most
[ ' - ’
fan spread hypothgsis nor

—— .

linear greowth models, do not conform to the

are the usual analysis strategies correct for these models.
. -
. . J
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In many educational settings, a true-experimental design is not

possible when a researcher wants to evaluate the effects of different
. " e » [
treatments. " Thus, quasi-experimental designs'are émp}oyed. One of
the more commonly used quasi-experimentalqdesigns is the nonequivalent
4 s

control group dedign (Campbell & Stanley, 1966“ PP 4? 50, 55-57, 6L-

64; Campbell, 1969) For this;design, pre- and post-obsgrvations on |

Ny '

the samg measure are available\for wdbjects in two non—randomly

created compa;isQn groups.‘ The two - groups mqy be\gither a treatment
» . - { N .

: \ r o - .

group and a control group’or two different treapme@t groups. "While

the design“alIOwé for several pretest ang posttes observations on

eagh'inﬂividual, in this pépex consiﬁeraticn‘is estricted to designs

o

“with a single pretest éndipostiest; NS
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equivalent"control group designs. The basi problem is to identify

"4

analysis strategies which uill provide 36? ased estimates‘of the
I
treaument effects. this problem has come to be known as the

E]

prshblem of measuring change. Unless some assumptions are made, there

L

is no knowably correct analysis ;trategy for use yith any particulé{
‘{/ application of a'nonequivalent control group design. A short and i
excellent discussion of thié is given ﬁy yord (1967), One of the
poséiblc appr;aches is to m;ke some assumptions'about tke‘lata that:
would result under natural growth.’ It is ogly within the context

4 .
1 !
of a particular set of assumptions that‘thq appropriateness and non-

appropriateness of particular analysis ﬂtfategies can be discussed.
F I L]
One assumption fréquently made in the literature is that data

conform to the fan spread kypothesls (see a.g., Campbell, 1871; Kenny
1

1
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. o ‘&"Cohen, 1980). The fan spread hypothesis states that the ratio of °
X the diffehgnce of groupsmeans to the standard deviation common to. the

.

tﬁo‘populétions (from which the two groups are drawn) is constant over

\ { N 5
wy -+ - time. Without loss of generalfty, throughout this paper it will be

¥

, o assumed that the pretest, X, is given at time t = 0. The posttest,
: . . _ . !

X Y(t), is glven at some time,-t > 0. Symbolically, then, the fan

. C ) . ‘spread hypothesis can be expressed ' !
(t) (t) W -y w

. . . . Ny .YZ e W (1) .

v v " UY(t)' o3 .. .

~

: h . 4 . ‘
: . where ux =, population mean for group i on the pretest; 1 = 1,2
i

. ) ”Y(t) population mean for group i on tﬁe posttest at time t;
i = 1,2 S ,

\ .
»

£

9 = - standard devidfion common to both populations on the pretest

and GY(t) = standard deviation comwmon to both populations on the post-
- test at time t,

y Assuming'fhe fan spféad-hypotheSis for natural growtht the :
PR N * ' ’ ' }

- appropriatéhess of some analysis o;rategies can be discussed. There

is, however, a major problem with discussing analysis strategies for
LY ,.‘A-. ‘. . L
g . ‘gonequivalent control greup designs only in terms of the fan spread

o _ hypothesis: As will be shown later in this paper, it is only in rare
. L - n‘, '.',' . .

P "+ cases, %hat‘déta conform to the fan spread hypothesis. Hence, the

foP gpread hypothesis’ should not be the focus of attention when-

S discussiug the problem of measuring change.

T FollowidQ the lead of Bryk and Weisberg (19??) and {n contrast
[
I, ; tq‘fhe fan spread hypothesis, this paper considers assumptions

- . , . \

Wmodelé) _about continuous natural growth. Even.though making

as$umptioos about oonbinuous growth is further removed than-the
. £ ~
.‘& T . . - .
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fan spread hypothesis fiom commonly employed analy§is etrategies, it
1s closer .to the usual ways of thinking about growth afd so should
] facilitate judgement about the reasonableness of the assumptions for-

actual data. Another reason for considering céntinuous growth models

is that they refledt growth as,e dynamic process changing over rime in

a Qphtiﬁuous manner. By employing assumptions such as the fan spread

‘ ’

hypothesis, much of the libérature on the problem of measuring change
has Ignored this dynamic narvre of growth, As will be shown later im

this paper, an analysis strategy may be appropriate at certain time

-,

points for the posttest but*not at other time points. Thus, depen-
1 ) . .
dencies on time must alsoe. be considered. , "

[

The approaehbto investigating the problem of measuring change
. '
. . . = : o -
taken in this paper is to first posig a particular medel of mnatural

growth. The models of natural g;owth posited wiil be representative
of growth models that have been suggesteéd for various.types'of acade@ie‘:
and/or physica%-grooth. Gioen a particulaf‘model of netura;‘growthx-;
a description can thed be.given in terms of parameters esFimable,froml_
a-particular nonequivaleoé conorollgroup design. Agginst;these ,.-
parameters, the app}opriateness of analysis etrategies cqﬁ then oe
investigated. . ) ' C . L .
, Analysis Strategies' x5 Ce .

Before proceeding further, it 1s convenien; to in;roduee .tha

various anal?;is strategies to be considered in this papeﬁﬁhéﬁ to

. ¥
specify how treatment effects are defined under aqﬁ. Throughout

this paper, it is assumed that treatment effe slere additfve.




Y

3

That 1sﬂ that a treatment causes an in¢crease or decreage of the

same amount for everyone from their scores under natural growth. v
The null and alternate hypotheses for each analysis atraﬁegy can

. .- f

then be stated oo
t . : ;
, HO: @ anadlysis strategy 0 / ,
vs. _ . '
roa . ‘
Hl analysis strategy $0 / .
: where a b déf ines the treatment effect under a

. analysis strategy ’ ;

particular analysis model.

The primafy question investligated in this paper is which apalysis

strategies yield null treatment effezzg?under each natural growth
¥y

A model considered. An analysis strat is to be considered a _

v -

potentially correct amalysis strategy if under natural growth it

- [}

gives null treatment effects.” The reason for the word potential is

that there remain questions.of distributional assumptions and
's

e precision. . ' [ - "
Analysis of Covariance f
. The linear model for AN006a can be stated as (Winer, 1971)
] t = H (t - g -
, T§e) = myle) + AC)i Byceyox iy ~ ) Leyddyy
e ) ! .
, ' where ij and Y St) are the prefést and ‘posttest scores

' .respectively ‘for individual j in group 1371 = 1,2 :

»

uy and u (t) are the population grand means f%r X and
! e Y(t) respECtively )

BY(t)'X is the slope of the regression line of . S

Y(t) én X for each group , - - ,
AC denotes analysis of covariance . 1

.-" ]

/

/
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(GAC)i = uYit) - g (t) - BY(t) :X°(|.1X.i - “X) (2)
is the treatment. effect )for group i;. 1 =1,2
\__ ’ J’ ’ . ¢ ’ B

and ( ) = the error term for an 1nd1vigual.

€ac’ 1
In this paper, all designs considered are two group designs. For

two group desjgns, iaAC)l = - (QAC)2 beca€se Z(a ) =20 -

[ -ACi
For late? conveniﬁncé, let e éymbolize the quantity zfaAC)l .
2,y = (@, + (o)1
AC’Y1  ITac’l. AC’ ] , ‘
St re
= (oedy * ol since ()0)) = ~(a,0),

= [uygt) - (e - BY(t)-x't“xl = uJ]

r . = uYit) - uyét) - BY(t)-x°(“X - by )

1 2
Hence . )
a0, = [y (0) = uo(e)] - 8 YOI (3)
AC “31 Yz.h T() XKy 33 o

ks

. Analysis of Variance of Index of Response

4

. &+ F)
«  ANOVA of Index of Response‘(Cox,~19fﬁ) is actpaily a set of
analysis strategies. ANOVA of Index of Response will first bé

giscussed in general aqg then some specific cases will be discussed

L]

[y 0) = 50 = By oy =l by @

in further detail. Let K be some reagl constant. An index of response

-

is then defined by zij(t)’ where Zij(t) = Yij(t) -_K.xij' éf ANQYA

of Index of Response is nothing more than an ANOVA petformed on the
i ’ ’ . .

Zij(t)'s. The linear mod?l for ANOVA of Index of Response it then

"as for ANOVA




’

. .t s
6
: v
= +
/, %ij(t) uz(t) (am)i + (?IR)ij
where ~ 'uz(t) = population grand. mean for 2
= UY(t) - K:ux .
7 IR denotes Index of kesponsé
(GIR)f = DYit) ~ HY(t) - K(uxi -.ux)ﬂis the treatment:
effect for group i; 1 = 1,2 '
ang (eIR)ij ='the error term £3r an indivwal. :

. Let Orp = Z(QIR)-1 . By a der%vation ?nalogous to that for

' #

a it can be shown that '

AC ) . .
= -1 t) - K-(u - Uy, ) . ’
“r T Vy(® by {®) X, "%, Y
Assuming that p, 7 v , notice that a., = 0 if and only if
Xl XZ . IR
. o F ?
qu(t) y uYz(t) _ ‘"
K = — . Here, and throughout the rest of this paper, -
L‘}X DX - ‘ "
1 2 - Y . "
the. cages where Ug = My will be ignored. So, a proper index of
1 2 ‘ .
’ - t
, _ uxl(t) uYZ( )
: - S X, , al t
regponse, namely zij(t)‘ Yij(t) T gy > alwars exists
X X
- 1 2 r
'unless Uy = Uy - The problem is, of course, that the value of
1 ' 2 PR .
W, (8) = w, (£) .- , '
by (0 -y

0 _— is unknown .in most situations. It should alsc be .
LY F x . ] -
X )

A

(t)y - u, (t)
‘.‘Yl e

noted that

: is a function of time, hence the indices
. 1 2

of response will be different for different values of t.

¢

> . ' .

10 -
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Some specific valueé of Kewhich are of interest are

> (1) K=1. When K = 1, the analysis strategy is more commonly
oy . - .

known as ANOVA of Gain Scores. In thi; case, equation (4) reduces to

o

. ) . Qg = Hy(t) = uy(t) = (03 - ny ) . - (3
: ) . S & Y, /xl X, , o
' 1 GY(F) . ¢ (t) ' ! .
, (2) X = o When K = 'Y » the analysis strategy is. .
i R X ‘ . Oy - ' I

sometimes called ANOVA of Standardized Change.Scores (Kenny & Cohen,
1980¢). in thisjease, equation '(4) teduces to ' )
- a oy () by = uy ), (&) .
R SN 1 o
' Og ..
€3) K = SY(t)-X .  When g = SY(t)'X ;lthe an?lysis,stratfgy is

= p,(t) - uy(t) -
5CS Yi Y2

.

sometimes called ANOVA of Resldualized Gain Scores. Infthis case,

|
. ) ', equation (4) reduces to

-—

VS DU O3

GRG = uY](-t) - ].I.Yét) - BY(t)'x (l—lxl %,

T4

Sometimes BY(t)-Y 1s estimated when setting a value far K.- In

the literature on the problem of measuring change, the distinction

betweeﬁ knowiﬁg versus estimating 8 for use 1n an_ ANOVA.of:

Y(t) X

'Index‘of Resﬁonse iz nbt made clear. As will be seen, the ﬁistinction

.

1s not Important for this paper which focuéga on null treaPment effects

defined by each of several anaiygié strateg{es. Neverthele;;, there . -~
N _are important differenceg between‘these two pioced;¥e§ when the topical
| of hypotheqis FgPtiﬁg or confidence interval gstimation.afe qsn- ’
sidered, (Olejnik & Porcer, 1981). "y
‘ \ -
‘ Some Particular Natural Growth Models
_ }l Three models of individual natural érowth will be copsidereé.
‘ . O e ’ | %
) . . , Lo '
ERIC - | o e
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Y

' pretest and posttegt are not likely in actual situations.
' -~ "

-

.MODEP 1: Yij(t) = g(t)-xij + h(t)

'-where g(t) and @(t) are dbnt@nuous functions in t, é(O) = 1 and

. . LY ] . Tt .
h(0)$= 0".  Further Xig>0'qnd g(t) > 0 for 0 < t < t, s Where

t is a time past which no obsepyati@né:on Y(t) will be'tpkeﬁ.

.

: MODEL 11: ¥ (0) = g(t)x1j + b () CL
" . and ° ,
. . f ’ B
Yzj(t) g(t)x 23 + h (t)

where g(t),

hlﬂo) = h2(0) =0, Xij
Y

MODEL I11s Y, (t) = O

and | v \\

+ h (t) <

=

'i (t) = g, (t)X,

21 .

i
4

-> 0, and g(t) > 0 for 0 < ¢ < t; s 1=1,2 .

hf(t)’ and h2(t) are-continuous functions in t, g(0) =

A
)

-l'hl(tﬁ\,‘, . .

wﬁefe gl(gi“QZ(t) h (t), aﬁé hi(t) are continuous functions in't,

L 8,(0) % 5,(0) =1, hy(0) = hy(0) = >0, and g () $ o

. ij
for 0 <t<t ;'i=1,2. ’
- ({ ’ . * . .- *
-Model III is the functional representation of those growth

models where there 1is a perfect correlation Betweeﬁ the pretest
and the posttest within each group.

iﬁporfanf'sub-models of Model III. In Wodei'l. 1f g(t) = = 0 for

\' L]
some time t, then the correlation is undefined fot that point in

LI .4

‘time. If g(r) 1is negative then the corre tion is -1. : Negative

i
correlations, and in particular corrélalops of -1, between the

]

Hence,

The restriction X

-

the restriction.g(t) > 0 was wgge. 1

Models I and II are special -

-

-

> 0 was made

»

’

t
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L] * .o .

. . . .
*

\ - . 9 . . -
~ LA' Y N . . . i *
soleiy for convemience. When g{t) < O\dr'wheq X..'’< 0 for one or

ij
. -~
more individuals the theory becomes much.more complicated, 'It was

i ' . .
decided that these complications were beyond the scope of this paper.
4 ' \ ' '

The: reason for the restrictions g(®) = 1 and h(0) = 0 in Model I 1s

consistency. By defin;tion.Yij(O) = xij . But under Model I, ﬂij(O)
=.g(0)xi

g(Oinj + h(0) Hence, 31

i 3

+ h(0) for each individual.
' " . L1 . )
‘Consequéntly,ﬁg(O) = 1 and h(0) = 0. The restrictions for Models I1

[l
LS

and TI1 were plaged there for analogouS'reésons.
\Y

. Model I Results
géamples.of Model i-Typg G;owth. : ’ ,J _ . . v: ' ﬁ ) '
.(i) ?aéalleL groﬁéh.'(PA}allel.growEh is defined by g(F) = 1.
‘Thﬁt is;'Yij(t) = xij + h(r), where;th) is.any:contfhuous fgﬁction. “ﬁ_
See Figure'l for a pictorial gepresent;tion of par%l;gl‘growth.
. : -~ - D -
. : f ,-' - . R | .o :
- : gﬂ?ij(t)\ . - . )
. ' Person % N

s Person 2 - IR
. . L -+

Figure 1: -Ap Example of Parallel Growth
) - . ’ - . . . 3
. 5 . ) . ; i
(2) Differential linear growth. Differential linear’ growth is
defined by g(€) = m+t.+ lland hit) = 0, where'm is some-nonzcro' .

- ' LR . £




Lt N +

constant. That is, Yij(t) = (mt + 1)Xij'. See Figures 2 and O for
P pidtoridl representations of diffgrential linear growth. The solid
portions of each curve in these figures and in all the remaining *

figures fndicate that part of the natural gr&bth curves under con-_

sideration in this paper. ) ;o . -
3 ' " - .
. . Toos . o v Person 3 . SN . N
. ’ * [ .
L] / w } b ‘_l 2 . 1]
- - erson - '
Yij(t) | S . &=

Person 1 .

t /‘ /l ',
L] N / I/ l. i .‘(
e S
/7 Pad i
// -~ - "
N Al . > Tt
. - ’1 'i N Y - I =1
- - -1 1 - . : R
. 5 L ";f t = m .. ' . . )
. “ - . ‘ _ ,
Figure 2: Differential Linear Growth A
) under Model I when o > 0 ! )
~ N : .
¥ 1 N
s ' ¢ -
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- h 1 %"
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T
i Pérsbq;}_
*Peréin 1 '
Pe 2
v . "' .
Figure 3: Differgntial Linear Growth *
U ’ under Model I when m < O

L]

' - -
» - = v 1 -
: S0 A
. PR '1‘:{‘: ,
S . G

(3) Expoﬁentiél type growth. Exponential.type growth is

-

defined by'g(t)_n ab® + ¢ and h{t) = 0, where a, b, and ¢ .2re

congtantg with b » 0. The reason for the restriction b > 0 is |

to make b° real ‘valued, For .values of b < 0, b takes on coqpléx'

values. Hence, Yij(t) = (a"bt + c)*Xij. .Seé¢ Figures 4 and 5 K

for pittorical représentations of exponential type érowth.
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—_— e — —. L= g% Person 3

’ ) .,
' . _ Y= cX pPerson 2

*
_Y = c-X Person 1
[
’ -c,
F— [}
logb(_ a) Q‘; R
¢ -4 P t
)
. . _ ‘
. by
\
. v\ .
- Vi ‘
.. ) Person 3 | { ferson 1
. - . i 3 -
N Person 2
. ‘ o ~ j ;e
. - Figure 5; Exponential Type Growth
whena<0,b>1,c>1, anda+¢ = 1"
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R The inclusion of monotone decredsing functfong.(see efg.,.
[ 4 + . v ) . ’
Figures 3 and 5) as representatiives of natural growth mdy

One topic which has received. attention from legfning theodists iérj v

forgetting curves.. Forgetting curves -are, of éourse, .de reasing,?.* T
. i D L4 ’
t . functions and hence the decision was made to include mopotone
* . . o ; : :

decreasing functions as representatives of matural gropth. R *

*
L]

Some other particular examples of Model I typé

- (4) Logarighmic‘type growth

’ ) L 2 - -
' = . .

150 ;loga (bt + a)] Rig

where a and b are constants with'a > O

) (5) Cumulative normal (Normal'Ogivé) type
) . S

4 .
( ‘m '_!"_ 2 .
/ fy O 2L T e e

(6) Logistic type growth .-

£
+ ¢
v, (p = T od
) 1+ ond

*

where ¢ and d are constants wit

Fan Spreadlﬁypothesis Under'Model i

Recall that %odel 1 type growth

. Yij.(j) = g.(c)‘Xij + h(t) ’ £
First, notice tﬁét ]
mf‘—""‘:
uy (8} = g(t) ¥y(t) +
» Yl xl v . B
and (8) )

(t) = g(t)“L (t)
SN AR

r{:r. v . . / T, ’ ‘ \Jc
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' “Second, nétiée that ) .
T2 2 o i -
oy (t) = ¢ .(t)oi (t) . i
‘ 1 1 ' "\\\\‘ .
’ .
.and ’ ’ : ‘ (9) )
62(t) = gH(D)ap(D) - .
L 02 - 2.

*

-2 .
where ~. om_,%?d Iy are the variances on the pretegt for group 1
2 - .

1

and group 2, respectively

S

2 . .
and dy (t) and qé (t) are the variances on the posttest for group 1l

and group 2, respectively,
Third, notice that while Yij(:) and t can take any one of an infinity

of possible relationéhips,lsode of which have jpét been illuétrated,

»

for any time t, X and Y have a linear relationship. Hence, piI(t)‘E 1

"for each of the twp popu&ations.7
For the remainder of the Hodelll résults section it will be
assumed that there are equal variances across the two populations on

’

the pretest and coqgequently, by equation (9), on, the posttest.

*

Heﬂce; . » ) iy
(t) (r) ' :
M (® f by St
oY(t) '
= [g(t) by * n(r)] - fa(t) ugy ¥ h(t)] ‘By equations (8) and

, 1 . 2
g?t) Iy

9)
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1 s gﬁé.;he fan spread hypothesis holds when Y, (t) = g(t (
R rfﬁ;_ % sp ypo 33 (8) = 8(6) X, + hee)
: " under natural gréwph. Equation (10) can be rewritten in the form
o . o NG

o | o we) - ey - I -, ) (1)
quc) ", % (uxl Xy

——. -

This form is more convenient when discussing potentially correct

analysls strategies.

{ : .

Analysis of covariance. A treatment effect under ANCOVA 1s given

a

by egwation (3)
A _ #

-

GAC = (u-Y(t) = u-Y(t)) = &Y(‘t) X (Ux - Ux ;. (3)
1 2 1 2 i )
* - ;
g o, (t) .t /
p L { z
But, BY(t) .x = XY(t)' P ( “:,
- x - f," .
' ) Oy (£) k _
. = und2r Model I type g{;wth because
- Py _ .
' Pry(e) =1
So, . . ' . ;
‘ w, ( (0 )
. a,, = wm (t) - (t) - - g, ) .. o (12
. . % "Yl %, < L X,
L] ) ) N * /
Hence, by comparing equations (11) and -¢12), ANCOVA is alwa¥ys a
' ) potentially correct analysis ’Strategy under Model 1 type natural
/ . ' ) ™ . ) 9.
growth.

r

¢

A treatment effect under ANQOVA of

| . ANOVA of Index of Respomse

Index of Response is given by equation (&l\ A

a . :
IR = (p,(t) - (t)) - Ke(p, - 1,0 . (&)
e “Yz ' X UK, :

»

SN e Tl . _—W
oo ‘ T ,
] "i‘: - L] ¢
\.j.n . '?aﬂ' . d , - ' . by
. “‘ﬁ.l . 1, . 16 .
a-“‘ 0o lI ’
’ ‘ :‘% - . ! - ' 4
f“?l' * * # ) wt ' ?
fo. T 50, up(t) - wp(e) W - v
wogs " . X .
e R T W 3 (10)
.. -3' :-“t . - B UY(t) . ’ Ux - , .




F e ,
17 = -
1t : *
\ Hence for ANOVA of Ind of_RésééﬁSa to. be'a potentially correct .
. - ':';.‘ - - .
analysis strategy it /is necessaryétq have undet matural growth
, 0 = ( t) . uY(t)) »~;x (ux' - uxz)' : (13) ’
- But, by equatio (11), for M;}ht.l type natural growth
) %y (t) .
(uy (t.) (t)) - Gy Hyg ) o an

2\. X 1 2
Heﬂce, $y omparing eguatioﬁs (13) and (11), ANOVA of Index of

Response/1s a potentially correct analysis strategy if and only if

= : o, (£)
K= For ANOVA of Standardized Change Scores, K = UY . _ﬁbr
' : X
- ¢ Iy (t)
s A =
. Al V& of Residual}zed Gain Scores, X By (1) -x ‘pXY(t) 3y But,
3 (t) X ‘
XY(t) z l under Model I type growth. Hence, K = oy 'Eor AHOVA of

v

Resldualized Gailn Scores. Consequently, ANOVA of Standardized Change

Scores and ANOVA of Residualized Gain Scores are both potentially ;

] . " .
correct analysis strategies for all Model I type natural growth

situations with the additional assump¥ion thathcx = dx .
1 N - l 2 * . R

’

For ANOVA of Gain Scores, K = l.\ Hence,- ANOVA of Galn Scores 1s

a potentially correct analysig strategy on%y for any .time, t, when
oy (t) : f - X
= 1 . Recall that under parallel growth, g(t) = 1, Also,
X -t

9
‘E Hence, under parallel growth, OY(t) =g

' growth: ' _ - .
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‘%\.’ ,,{ ’ T ./1‘
Model II Reéhlts !
N 1 {.r . . L n +
Recadl that Model II type natural growth was defined by
‘Ylj(t) = g(t) le + hltt) v
and ' : V4

Yzj(t) = g(t) X5 * h, (t) -

where g(t), Pl(t) and hz(t) are continuwous functions in t, g(0) = 1,
/ .

: i \
hl(O) = hgﬁb) = 0,‘}[ij > 0, and g(t) > 0 far.0 < t'< t, - Hgncei
/vy (9 =@ F by * ’
ar:c} . (14)
b (8 = g(t) by B, (1) ¢
'.' * 2 H 2
f;rther,
oy (t) = g(t) o
. ! - K /
and ‘ ’ . (15)
éY (v) = g(t)mﬂx . . - R

2 2 : -

As was done in the Model I results section, assume -for the

remainder .of the Model II results section Ehat aq, ='c, =g ,
Xl Xz X

by-the set of equations (13), Oy (v) =0y (t) =.0,(¢t) . Further,
1 2 Y

Hence,

L

. .
2 1 for each group. So, is the same for both groups .

Pxy(t) By (e)-x

L -

cY(t)

d& |

g{ven in the Mo&el 1 results section, ANCOVA, ANOVA qf,ﬁesidualized«

and this common value is . Tﬁus, by the same derivations as

Gain Scores, and-ANOVA of Standardized Change Scoree are all

potentially correct analysis strategies and the fan spread-hypothesis

L ]
holds when




. J
Lo . 9, _
. . ) oY(t) _
0 f qu(t) - uYz(t) - o {uxl - uxz) . (16)
;lugging equetions (l&} and (lSl into equotion (153 yioIds.
) - ' | | 8(f)ox
0= Ig(t)uxl + hL(tl] - [3(t)ux2 +.hy(r)] - o (uxl - uxz)

This equation simplifies, to

0 ='h1(t) - hy() .
Hence,‘uHQer Model II type.natural growth ANCOVA; ANOVA of
.Residuiyéied Gain Scoree,‘and ANOVA. of Standardized Chonge,Scofes are
all potentially correot analysis strategies and tHe fan ooread
hypoth&sislholds if and only if h (t) = hy (%) . Conse\hently, the
‘three analysis strategies are potentially correct and the fan spread

N

hypothesis holds under Model 1 pe natural growth only. when it

reduces to Model I type natural growth.

’

Model III Résults M

\.
Recall that Model 1II type natural growth was defined by

b 't
(e} = gl(t) X, + hl(t)

Y13 1]

- _and ’

. L } : :
o Yzjft? = g,(6) Xy + (1) o .

) where gl(t), gz(t), h'(t)°and h'(t)°are continuous functions in

- z. 31(0) = 32(0) =1, h(0) = h2(0) = 0, X;, > 0, and g, () > 0 for -

jl
0 < t < €, 4 i-= l 2 . ALl of tle specific classes of natural growth

. v

curves fisted under Model I (e g., linear, exponential and logarithmic)

. ’

. are also possible under Model IIT, but under Model III each group. 's

gyowth may be defined by a different set of values for the constants.

'
1 . 4

Q . _ ' o312353

|

.
. W
. S

L]
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« Even more geneﬁflly, each grou#KS natural growth may‘be from.é. T r

different class of growth curves. .For example, grgﬁb 1 may follow

1

logarithmic type growth while group 2 follpws exponential type

[}

growth. . : . o
As was done under the Model I results section, assume for the
remaind?r of this section that ¢, =0, =¢

X X

Then
’ . 1 2 .

oy (t) = g 0oy = g (hoy ,
. 1 - 1 . .
and B , a”n

o °Y2(t"= 32(t)°x2 = gy(they . A

As seen earlier when b 1,

Lier when Pyy (o) °
L . © Ou(t)

by (0) # ug (8) = =%
1 YT %

is the expression for a treatment effect for ANCOVA, ANOVA of

Standardized Gain S¢ores, and ANOVA of Standardized Change. Scores.

. . - . P
. Notice that the presence of oY(t) in. the expressién above implies’'that

a coemon %ériahbe 14 assumed for the two popﬁlatians,'which is, in

L]

. general, not the cage for Model III type natural growth (see the set

P C}

of equatiﬁns (1?)): Nevertheless, any one -of the sthree. analysis
stratdgies can-be used with data from Model III and so'yield.estiﬁatéd
Ltreatment effects. The question tan then be raised as to whether.

these estimateéd effects have an expected value of zero under - Model TII
‘ }

type naturai growth. This question is'beyond the scope of the presen

+

paper. Thus, we stop with the cbnclusion that Model III type growth

n

’is inconsistent with the parametric definition for each of théuthree

atrategies. The fan spread hypothesis also makes the assuﬁption ofj

. %

Al




* -

L4
. N .

: . common var fances for both groups at: any time t. Hence,l/the fan spread ™
. . Y . . - .

hypothesis is also inconsiStent with Model III type growth..

2

Differential Linear Growth

It seems that several authors have either believed or else have

f '

' by omission led their readers to believe that all {or at least most)
T differential linear growth is equivalent to the fan spread hypothesis

L]

(e.g., Bryk & Weisberg, 1977; Kemny, 1975; Olejnik, 1977). The '

‘ concépts of differential linear gfbwth andlof the ‘fan spread hypothesls
are} however, distinct concepts.. In the deel I }gsults se:tion;iﬁ//
" was shown that many fé;ﬁs of naturagl growth other than differential
Iinear growth conform to the fan spreaﬁ ;ypothesig. Hence, differen-

n tial linear growth that conforms to the fan spread hypothesis is a

¥ N -

-

subset of all natural growth that.conforms to the fan spread

hypothesis. Further, h% will be shown bel;w, differential linear
growth conforms to‘thq fan spread hypothesis only in rare cases.

i N, .
Differential linear growth under Model III is defined by

Yij(t) = (bi.t + l)'Xij . ' . .

That is, differential linear growth unde{\Model 111 is Model ;II t¥pe

natupal\grOwtb with . X ;
. g (®) = byt ' . /4
gz(t) = b,-t ‘
{-‘ . ‘and .' : hl(t) = hg(t) 0. ;

In the previous gection it was shown that Model 1II type natural
growth is inconsisient with the fan spread hypotﬁesis uniess 1t'reduces
to Mgdel I type giowth. Differential linear growth under Model III

-, »

- ‘ v . ) . B
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1

.22 h : ,

reduces to Moder I type growthuif and only if bl b2' Hence,

differential linear growth under Hodel III conforms to the fan spread

-y

hypqthesis only in those rare casgses wherb Bl = b2' This same

. B
* . - .t

argument also_shows that ANGOVA, ANOVA of Residqaliéed Gain Scores;_

and iNéVA of Standardized Change Scores are potentially‘correct

ahalysis strategies'under Model III type differential linear growth' " _-‘
if and only if by = b, ‘ o * Co -
(e . ISR
Summar, . . oo, ' . -
N - ' .

In this paper three qodels of continuous naturaI~growth_dere

.

L
]

considered. For Model I type natural growth 1t was shown that the

/

' fan spread hybdthesis always holds. .Additionally, ﬁorfﬁgdel I rype

. ’

growth, it was "shown that ANCOVA, ‘%ROVA‘of Residualized Gain Seeres,
and ANOVA of Standardized Change Scores a11 are potentially cofrect |
analysisﬂstrategies For Model IT and Model III type natural growth
it was shown that the fan spread hypothesis holds and that ANOOVA, -
ANOVA of Residualized Gain Scores, and ANOVA of Standardz;ed Change

Scores are potentially correct analysis strategies only when Model IT

and Model III type natural growth reduce to Model I type natural

growth. Further, it was shown that given any'natural growth situation,

& IS

there is a value of K for which ANOVA of Index of Response 1¢ a

potentially correct analysis strategy. But the efficacy of this

strategy is'more apparent than real Ih order that an index of -

‘ response works, the exact form of natural growth must be kncwn , This - '

is, of course, rarely the case for egbirical-research. ’ .

f‘ v - ) L

P
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