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ABSTRACT

The paper eiscusses analysis strategies for the nonequivalent

control group design when models of natural growth are known. t,

Several models of continuous growth are shown,ro satisfy the fan

spread hypothesis. for these growth models it is also sh9wn "that

Analysis, of Covariance, ANOVA of Residualiied Gain Scores, and ANOVA

of Standardized Change Scores yield carrectly defined treatment

effects. On the one hand, these models are not restricted to linear

growth, as past literature would suggest. Orr the other hand, these'

are the only models of grOwth shown to fit the fan spread hypothesis

and for which the three analysis strategies yieliA correctly defined

effects. Consequently, mast growth models, and in particular most

linear growth models, do not conform to the fan spread hypothesis nor

are the usual analysis strategies correct for these models.
t
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ale

In litany educational settings, a trueexperimental design is not

poisible when a researcher wants to evaluate the effects of different

treatments. 'Thus, quasi - experimental designs are employed. One of

the more commonly used quasi-expetimentaltdesigtis is the nonequivalent
.

control group tedign (Campbell & Stanley, 1966; pp. 47-50, 55-57, 617

64; Campbell, 1969). For thisl design, prey and post-obsetyations on

1

4

the sang measure are available for Ohjecfs in two pon-randomly,

created comparison groups. The two.grougs

group and a contro] poupbr two different

may beei4er a treatment

trea.tmelt groups. 'While

the design*.ellows for several pretest an4 posttest observations on

each'individual, in this paper consiteratko is

"with a single pretest ancrpoettest;
0

estricted to 'designs

. t

'There has been much discussion in thelit rature ofthe analysis

strategies that are appropriate for use in,conection with non

equivalent,control.group designs. The basi problem is to identify

strategies'strategies which will TreA.,ide'Inb ased estimatesOE the
A-0

treatment effects. This problem has come to be known as the

prdblem of measuring change. Unless some assumptions are made, there

is no knowably correct analysis strategy for use with any particular

application of a nonequivalent control group design. A short and

4/'
excellent discussion of this is given by Lord (1967), One oar the

possible approaches is to make some assumptions about taNdata that

,would result under natural growth. It is only within the context

of,a particular set of assumptions that the appropriateness and non-

;

appropriateness of particular analysis strategies can be discussed.
4

One assumption frequently made In the literature is that data

conform to the fan spread kypothesis (see e.g., Campbell, 1971; Kenny

1
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MO). The an spread hypothesis states that the ratio of'

the difference of groupmeans to the standard deviation common to. the

two populations (from which the two groups are drawn) is constant over

- time. Without, loss ogenerality, throughout this paper it will be

assumed that the pretest, X, iF given at time t = 0. The posttest,

Y(t), is given at some time,.,t > 0. Symbolically, then the fan

'spread hypothesis can be expressed

ug,(t) IJ,(t) 7,ux
11 / 2

a (t).' a
X

(1)

;.

where 1J
X

=.popUlation mean for group i on the pretest; i = 1,2
i

0 (t) = population mean for group i on the posttest at time t;
i i = 1,2

ox = standayd deviation common to both populations on the pretest.

and = standard deViation common to both populations on the post-
test at time t.
.

Assuming the fan spre.bilhypothesis for natural growth; the
A .14

4

. appropriatdtess of some analysis strategies can be discussed. There 1

-.0.

is, however, a major problem with discussing analysis strategies for

'nonequivalent control group designs only in terms of the fan spread
. . .

hypothesis: Ai 1411be shown later in this paper, it is only in rare

cases,that'dita conform to the fan spread hypothesis. Hence, the

'lap spread hypothes-isishould not be the focus of attention when.

discussing the problem of measuring change.
. ,

.-..'17011OwiA the lead oi_Etryk and Weisberg (1977) and in contrast
4l

to.fhe fan spread hypothesis, this paper considers assumptions

l(moderb),about continuous natural growth. Even. though making

aslumptions about oonirinuous growth is furthdr removed thanthe

.4 4.
.44

;
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fan spread hypothesis from commonly employed analysis strategies, it

is closer,to the usual ways of thinking about growth and'so shopld

facilitate judgement about the reasonableness of the assumptions for

actual data. Another reason for considering continuous growthmodels

is that they reflect growth as,a dynamic process changing over time in

a iphtinuous manner. By employing Sssumptions such as the fan spread-

hypothesis, much of the lijrature on the problem of measuring change

has ignored this dynamic nature of growth, As will be

this paper, an analysis strategy may be appropriate at

points for the posttest but snot at other time points.

1

dencies on time must also, be considered..

shown later in

certain time

Thus, depen-

The approach to investigating the problem of measuring change

taken in this paper is to first posib, a particular model of natural

growth. The models of natural .growth posited will be representative

of glowth models that have been suggested for various. types of academii'.

and/or physical growth. Given a particulai model of natural' growth'..

a description can then be giv'en in terms of parameters estinableirom

a particular nonequivalent control group design. Against these

parameters, the appropriateness of analysis strategies On then be

investigated.

Analysis Strategies

Before proceeding further, it is convenient, to inxroduee:..tht

various anaTis strategies to be considered in this.pape d to

- . .

specify how treatment effects are defined under icA. ThTciughout

this paper, it is assumed that treatment efre s are additfVAhe,
o-

-

1
7

i,
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That is,, that a treatment causes an increase or decrfa,e of the

same amount for everyone from their scores under natural growth.

.

The null and alternate hypotheses for each analysis stra)tegy can

then be stated.

H a
0'

H1' a

analysis,

analysis

=strategy 0

strategy
# 0

were a defines the treatment effect under a
analysis strategy

particular analysis model.

The primary question investigated in this paper is which analysis

strategies yield null treatment effe under each natural growth

model considered. An,analysis strat y1 is to be considered a

potentially correct analysis strategy if under natural growth it

gives null treatment effects.' The reason for the word potential is'

that there remain questions of distrihutional assumptions and
I.

precision.

. ,

Analysis of Covariance

I

The linear model for ANC A can be stated as (Winer, 1971)

Yilt) 1JY(t) + AC)i + 8Y(0X.(Xij PX) + eAC)ij

where
1

Xij and Yi/t),are the prfst and 'posttest scores.

,respectively/for individual j in group i;'i = 1,2

u
X

and u
Y
(t) are the population grand means tr X and

Y(t) respectively

By(t).x is the slope of the regression line of

Y(t) X for each group :

AC denotes analysis of covariance

/

8



(6AC)i 4Y(t) ui(t) eY(t).X.(uX IJX)
i

is the treatment.effectIfor group i;.i = 1,2

(2)

and (e
AC

)
ij

= the error term for An individual.

In this paper, all designs considered are two group designs. For

two group designs
laAC)1.=

(aAC)2 because E (aAc)i = 0
i

For later convenience, let aAC symbolize the quantity' 2.(oAc)1 .

Hence

2(aAC)1 (aAC)1.+ (uAC)1

(aAC)1 -(UAC)2
since (a

AC
)
1
.= -(a

AC)
2

54/40 tiy(t) "" By(0.0111(1 tixT1

by (2)yo Hy(0.1c(ux
2

-.mx)3,

uY1t) AY1t) BY(t)-X.(1jX
) .

2

aAC [417(t) UY4)3
2

aY(t)-X.(uX /IX')
1 1 ,2

Analysis of Variance of Index of Response

4

ANOVA of Index of Response.(Cox,191p) is actuatly a set of

analysis strategies. ANOVA of Index of Response will first be

Oiscussed in general an then some specific cases will be discussed

(3)

in further detail. Let K be some rep. constant. An index of response

is then defined by Zii(t), where Zij(t) 7 Yii(t) KXij. An ANOVA
..

of Index of Response is nothing more than an ANOVA performed on the
"4

Z
ij
(0's. The linear model for ANOVA of Index of Response is then

as for ANOVA

9



where

and
: 1

L.

6

Or

A

Z (t) = 0z(t) (aIR) i
) (e )Zip

ij

uz(t) = population grand. mean for Z

uy (t) K-u

IR denotes Index of Response

(aIR)i uv(t) PY(t) K(uX
-.0x),is the treatment'

Li

effect for group i; i = 1,2

(e
IR

)
ij

=the error term for an ind).1100al.

Let a
IR

= 2(a
IR)1.

. By a derivation analogous to that for

aA
C

it can be shown that

aIR uY(t) -luY(t) K(uX --UX )
1 2

Assuming that ux f ux , notice that on = 0 if and only if

1 2
. 1'

ily (0 11 (0
1 . . 2

K = . Here, and throughout the rest of this paper,
0
, Xi uX

2
'.

the cases where u
X1

= 0
X2

will, be ignored. So, a proper index of

uy (t) - uY (t)

respodse, namely Zij(t)
2

= Yij(t) -
1

Xij , always exists
"X X

1 2

unless 1.1 = u . The problem is, of course, that the value of
X
1 2

uy (t) uy (t) .

1 2
is unknown An most situations. It should also be

0 U
X1 X

2

1!,1 (t) (t)

noted that
1 2'

is a function of time., hence the indices

uX
1

-
uX

2

of response will be differett for different values of t.

4 1.0



Same,specific values of K,which are of interest are

(1) K = 1. When K = 1, the analysis strategy, is more commonly.k .00

known as ANOVA of Gain Scores. In this case, equation (4) reduces to

CGS 0 (t) u (t) (0 uX ) (5)
.GS Y

1
Y
2

X
1 2

.

.

. /ay(t) ) .

(2) K = --vo-:-- . When K =
a
Y
(t)

the analysis strategy is.
X a

a

t X
.

sometimes called ANOVA of Standardized Change-Scores (Kenny & Cohen,

1980). In thisease, equation'(4) reduces to

a
SCS

= u
Y.
(t)

Y
(t)- GY(t) (u

X
u
X

)

1 aX 1 . .

(6)

'

(3) K m 8i(r).X
.

r (t) ,X
When K = the analysis ,strategy is

sometimes called ANOVA of Residualized Gain Scores. In,this case,

',equation (4) reduces to

am = 1.1yt) - u4(t) - 8,1(0.x (u
X

- u
X

) ,

. 2

. 641

1 ,2

Sometimes 8
Y(t).X

is estimated when setting a value for K. In

the literature on the problem of measuring change, the distinction

between knowing versus estimating 11,1(0.x for use in an.ANOVA-of;

Index of Response is not made clear. As will be seen, the distinction

. .

is not important for this paper which focus on null treatment effects ..

defined by each of several analysis strategies. Nevertheless, there
.../.

are important differences between these two piocedures when, the topics

, . i

of hypothesis testing or confidence interval estimation.are con- i

, .
. ;

f

sidered,(Olejnii & Porters 1981). , ,

4
.

iill
i

Ir

Some Particular Natural Growth Models
i

Three models of individual natural growth will be considered.
.

.1

e i:

1

i
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.MODELI:Y.3 (t) = g(t) .X + h(t)
2.

' -where g(t) and 1(t) axe continuous functions in t, g(0) =.1 and

4

hpys- o . Further
XieOt

snd g(t) > 0 for 0 t < to-, where

t
o

is a time past which, no observatibni:on Y(t) will betekep.

**.

MODEL II: Y" = i(t)X
lj

+ h
1
(tY

414

and
41.

Y
2j

(t) = g(t)X23 + h
2
(t)

where g(t), h(t), and h
2
(t) are-continuous functions in t, g(0) = 1,

= h2(0) = 0, Xi4.> 0, and g(t) > 0 for 0 < t < t73 ; i = 1,2 .P

MODEL IIIs Y (t) = g (t)X h
1j 1 lj 1

\\

Y
2j

(t) = g
2
(t)X2j + h2(t)

where g1(mg26), hi(t), a d h2(t) are continuous functions ingti

WO) = g2(0) =-1, h1(0) =.h2(0)= 0,,Xij >:0, and gilt) 0

for 0 < t < t
o

i = 1,2 .

-Model III is the functional representation of those growth

models where there is a perfect correlation between the pretest

and the posttest within,each group. Models I and II are special

.

iniportard sub - models .of Model III. In Model , if i(t) = 0 for

\* t

some time t, then the correlation is undefined tot that point in

time. If 8(0 is negative then the corre

correlations, and in particular corm

tion is -1. Negative

of -1. between the
a

weike.

pretest and posttest are not l'ice17 in actual situations. Hence,

the restrictiong(t) > 0 was 190e. The restriction X
ij

> 0 was made

'

12
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9

solely for convenience. en g(t) < 0,Or when Xij: < 0 for one or

more individuals the theory becomes muchmore complicated, "It was

decided that these complications were beyond the scope of this paper.
4

The-reason for the restrictions g(0) = 1 and h(0) = 0 in Model I Is

consistency. By definition.Yij(0)=Xii But under" Model I, Yid (0) =

g(0)xij +11(0).1.1m-me$x=.g(0)x.+11(0) for each individual.
, . ij

4. .

. 4
-.. 'Consequently,W) = 1 anal h(0) = 0. The restrictions for Mddels II

. . . , . I

6

7is

and III were plased.there for analogous. reasons.

Model I Results

Examples of Model I.Type Grath

(i) Tnrallel groWth.' Parallel growith is defined by g(t) E 1.

Thatis,.yi(0
i

= 4 + h(t), where h(t) is any continuous function%
j j

. .

See Figure'l for a pictorial representatiop of peeallel growth.

Y.

I.

41,

Person

Person 2

Person 1

Figure Art Example of Paralel Growth

r:

(2) Differential linear growth. Differential lineargroWth is

defined by g(E) t.+ Band h(t) E 0, wherem is some nonzero

13
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9

.r 10

t

constant. That 1.s, Yii(t) P (Mt + 1)Xija. See Figures 2 and 0 for

pidtorial representations of differential linear growth. The solid

portiOns of each curve in these figures ihd in all the remaining

figures indicate that part of the natural grMh curves under con-.

sideration in 'this.paper,

.f

O

,42

Figure 2: Differential Linear Growth
under Model I when m > 0

Person 1

I

/
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.141

.....: ... : i' * .
tLI \ N,' .... ...,

M \, ...." ' Person%1 ...
.

\ -Per n 1
. \

4 p

Figure 3: Differential Linear Growth
' under Model t when ri < 0

(3) Expone ntial type growth. Exponential.type growth is

defined by g(t) a ab
t
+ c and h(E),VO, where a, b, and cAte

constants with b > 0. The-reason for the restriction b > 0 As

to make b
t
veal Valued Fox .values of 0 < 0, bt takes on coliplex.

values: Hence, t
ij

= (a.bt + c).X
ij.

.See Figures 4 and 5

for pittorical reprdsentations of exponential type growth.

15
I

t
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Person 3

t

Person 2

Person 1
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Figure 4:' Exponential Type Growth

when a 1, b > 1, and c = 0
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1
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.
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4/ 4
Person 2
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Figure 5: Exponential. Type Growth

,

I

when a < 0, b > 1,, c > 1, and .a -I: c

- ,
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The inclusion of monotonedecregsing functions (seg e g.,..
.

$
.

Figures 3 and 5) as representatives of natural growth may eem stra ge.

One topiC.which has received.attentiort from learning theorists is

forgetting' curves.. Forgetting curves-aie, of 6ourse,.de

- ;

functions and hence the decision was made to include mo otbne
A

functions as representatives of natural growth. .

reasing, Y

..

decreasing

Some

(5)

other particular examples of Model I type tural'growth are:

Logarithmic type growth

Yi (t) = flog
j a

(bt + a)]txd,

where a and b are constants witha > 0 d a 0 1.:

Cumulative normal (Normal'Ogive) type .rowth

t

I (t):= 2 [f
2 exP (-31m

2
)dv

7
(6) Logistic type growth'

y
W1
)(, (1 C).dt

+ titsktit

where c and d are constants wit c > 0 and d > 1 .

defined in general 6y

Fan Spread Hypothesis Under Model I

Recall that Model I type growth

' 11.(t) 'Xij + h( t)

First, notice that

uy(t) = g(t) wi4(t) +
1 /.1

and

(t) ge g(t)/yr) h(t)
2 R / 2

/

18
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.

A

'Second, notice that

2 2 2

YI
= g (t)a

x
(t)

.and

2
0
2
(t) = g

2
(t)ex(t) .

2

15

er.

(9)

2 2

where -. a d a are'the variances on the pretest for group 1
-

X.
1

X
2

and group 2, respectively
Soo.

2
2

arand a
Y

qw(t) and (t) are the variances on ihe posttest for group 1
4 2.

i

.
and group 2, respectively.

Third, notice that while Y. (t) and t can take any one of an infinity

of possible relationships, some of which have just been illustrated,

for any time t, X and Y have linear 'relationship. Hence, pxut)
y

= 1

'for each of the two populations. '

For the remainder of the Model / results section it will be

assumed that there are equal variances across the two populations on

the pretest and consequently, by equation (9), on, the posttest.

Hence;

1.1.1r(,t) Py(2 t)

a (t)

[g(t) ox h(t)] [g(t) ux h(t)] 'by equations (8) and (9)
1 .. .2

0) ax

g(t) `(11' x
)

xi

g(t) ax

Xi 4*2
a

. X .

19
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,
.14

4

J.

(lb)

elgence the fan spread hypothesis holds when Yij(t) = g(t) h(t)
ij

under natural growth. Equation (10) can be rewritten in ihg form

ay(t)

0 = u(t) uy(t) (u
X

- u ) .

1 2 X 1 2

This form is mote convenient when.discussing potentially correct

analysis strategies.

Analysis of covariance. A treatment effect under ANCOVA is given

er
by equation (3)

aAC (Uy(t) u1(t))
aY(t).:( (uX /Ix) (3)

1 2 1 2

(t)
But, y

BY(t)X PXY(ty
Now (Ix

4

So,.

Px
under Model I type g4Owth because

PXY(t)
E 1 .

oy(t)

aAC t4I (t) aY (t) 17X

.(u
) . (12)

1 2 1
I/X
2

HencZ, by comparing equations (11) and 2), ANCOVA is always a

,

potentially correc analysis strategy under' Model'I type natural

growth.
o

ANOVA of Index of Response A treatment effect under ANOVA of

Index of Response is given by equation (4),\ ./

aIR ='(u
4

(t) uy 6)) Kqux - Ox
-1 2 1 2

20

(4)
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0$ #

Hence for ANOVA of Ind = of, ReSPOiise

analysis strategy it is necessary

to.be'a potentially

have Under natural

t) uv(t,- goo., - ulz Y.

f 12

»
.; A.1 2

But, by equatio (11), for MO I type natural groWth

. .

Hence, by

,(t)

0 (u..(t.). ii;r(t)) - -==--- (u.. u u.. )

correct

growth*

(13)

omparing equation's (13) and ANOVA of Index of

Respons- is a potentially correct analysis strategy, .if and only if

t) ay(t)

K = For ANOVA of Standardized Change Scores, K - ,For
o
X

4 o
Y
(t)

,

A, VA, of Residualized Gain Scores, K = P ButBy(t)x
XY(t) o

X
-

Y
under Model I type growth. Hence, K = for ANOVA of

aX
XY(4t)

- Residualized Gain Scores. Consequently, ANOVA of Standardj.zed.Change

Scores and ANOVA of Residualized Gain Scores are both potentially

correct analysis strategies fbr all Model I type natural growth

situations with the additional assumption that ax =

1 2

For ANOVAof Gain Scores, K = 1. Hence,. ANOVA of Gain Scores is

a, potentially correct analysib strategy only for any.time, t, when

a
Y
(t) e

.

1 . Recall that under parallel growth, g(t) E 1. Also,
a

x

t?

equation (9), ay(t) = (t) ax for all.Model I type natural growth.,

1
Hence, under parallel growth, ay(t) = ax . So, ANOVA of G- n Scores

is always a potentially correct analysis strategy under arallel

growth'.

21
t
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06del XI Re1ults 1

Recall that Model II type natural growth was defined by

,Ylj(t) = g(t) X
lj

h1(t)

and

Y2j(t) = g(t) X
2j

+ h
2
(t) '

, .

where g(t),
Z4

(t) and h
2
(t) are continuous functions in t, g(0) = 1,#i

h
1
(0) = h (0) = 0, X >,0, and g(t) > 0 fet,0 < t'< t

o
Hence,

uy (5) = g(9ux; h1(t)

1

/ uy (t) = g(t)-ux. .!1110.
2
(t)

2 :. 2

,/

Yurther,

and

a, .(t) = g(t)-c,
,1

. Al

= g(t).-c
X2

-.
Y
2

(14)

(15)

As was done in the Model I results section, assumefor the

remainder .of the Model II results section that c
X

= = c Hence,
1

X

by'the set of equations (15), oy (t) ='o =,oy(t) Further,
1 2

#

oxy
(t)

E 1 for each group. So, 8Y(t)X is the same for both groups

(t)

and this common value is . Thus, by the same derivations as

given in the Model I results section, ANCOVA, ANOVA of,Residualized-

Gain Scores, ind-ANOVA of Standardized Change Scores are all

potentially correct analysis strategies and the fan spreadAlypothesis

holds when

22
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a (t)
0 = .(t) -

Y2
(t) (IIX X )

Y
1

a
X 1 2

(16)

Plugging equations (14) and (15) into equation (16) yields

g(t)'x
0 = [g(t)u

X
-I: hi(t)] [g(t)I. +.h2(t). o )

2
ax X

1
X
2

This equation simplifies. to

0 = h
1
(t) h

2
(t) .

Hence, uRder Model II type, natural growth ANCOVA, ANOVA:of

Residu0ed Gain Scores, and ANOVA, of Standardized Change,Scores are

all potentially correct analysis strategies and the fan spread

hypothesis holds if and only if h1(t) h2(t) . Cons44ently, the .

'three analysis strategies are potentially co tett and the fan spread
.

hypothesis holds under Model I pe natural growth onlyNwhen it

reduces to Model I type natural growth.

Model III Results
1.

Recall that Model III type natural growth was defined by

't

'Y (t) = g
1
(t)-x + h

1
(t)

. Y2j( )t

g2(t)
X2j + 1'12(3) ''

. .
.

where g,(t), g2(t), hi(trand hi(t).are continuous functions in

1..

V, g..I(0). = .00) m 1, h, (0) = h2(0) 0, Xij > 0, and 4i(t) >40 for .

".1

'
1

i

0 <,t < to 4 i m 1,2 . All of the specific classes of natural growth
., 6 d

kr
curves fisted under Model I (e.g., linear, exponential, and logarithmic):

are also possible under Model III, but under Model III each groups

growth may be defined by a different set of values for the constants.

.
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k Even more generally, each gron/s natural growth may 'be from.a. . r

different class of growth curves. For example, grouO 1 may foltOw

logarithmic type growth while group 2 follows exponential type

growth.

As was done under the Model I results section, assume for the

remainder of this section that o = jo Then
X1 X2 X

oy (t) = gi(t)ox = gl(t)ox
1 1'

and (17)

a, (t7',=.g2(t)ox = g2(t)try

2 2

As seen earlier when 'oxy
(t)

E 1,
. .

(4(0
(t) try (t) (Ux )

1, 2 X 1 2

is the expression for a treatment effect for ANCOVA, ANOVA of

Standardized. Gain Scores, and ANOVA of Standaidized Change Sccires.

I '

Notice that the presence of (t) in.theexpression atiove implies that

a common variance is assumed for the two popUlationslwhich is, in

general, not the cage for Model LII type natural growth (Sae the set

of equatio ns (17)) . Nevertheless, any one -of the three. analysis

strategies can-be used with data from Model'III and so'yield estimated

,treatment effects. The question can'then be raised as to whether_

these estimated effects have an expected value of zero underModel III

type natural growth. This queition is!beyond the scope of the present

paper. Thus, we stop with the conclusion that Model III type growth

is inconsistent with the parametric definition for each of the -three

strategies. The fan spread hypothesis also makes the assumption of
-

a, 0

V

1
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common variances for' both groups atany time t. Hencedthe fah spread''

hypothesis is also inconsistent with Model III type growth.

Differential linear Growth

It seems that several authors have either believed or else have

by omission led their readers to believe that all (or at least,most)
. .

differential linear growth is equivalent to the fah spread hypothesis

(e.g., Bryk & Weisberg, 1977; Kenny, 1975; Olejnik, 1977). The

concepts of differential linear growth and of the'fan spread hypothesis

are however, distinct concepts, In the Model I results section.it,//
1.'

was shove that many forms of natural growth other than differential

linear growth conform to the fan spread hypothesis. Wence, differen-

tial linear growth that conforms to the fan spread hypothesis is a

subset of all natural growth that conforms to the tan spread

.1
hypothesis. Further, as will be shown beldw, differential linear

growth conforms to the fan spread hypothesis only in rare cases.

ss.

.Differential linear graWth under Model III is defined by

Y
ij
(t) = (b + 1).X

ij

That is, differential linear growth undeK Model III is Model III type

tatural,growth with

K
1
(t) = b

1t

g2(t) b2t

and h1(t) 5 112(t) 3 0 .

In the previous section it was shown that Model III type natural

growth is inconsistent with the, fart spread hypothesis unless it reduces

to M del I type growth. Differential linear growth under Model III

25
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reduces to Model, I type growth. if andonly if bl = b2. Hence,

.
differential linear growth under Model III conforms to the fan spread

hypothesis only in those rare cases wherb 151 b2 This same

argument also, shows thatANCOVA, ANOVA of Residuallied Gain Scores,,

and ANOVA of Standardized Change Scores are potentially correct

analysis strategies under Model III typedifferential linear growth

if and only if b1= b2.

summary

In this paper three models of continuous natural.growth Were

considered. For Model I type natural growth it wasshown that the

'fan spread hypothesis always holds. Additionally, foeModel I type

growth, it was shown that ANCOVA, ANOVA of Residualized Gain SCOres,

4

. .

and ANOVA,:of .Standardized Change Scores-all are potentially coftect ..

analysis,.trategies. For Model II andModel III type natural growth

it was shown that the fan spread hypothesis holds and that ANCOVA,

ANOVA of Residualized Cain Sco'res, and ANOVA of Standa"rdi)ed Change

Scores are potentially correct analysis strategies only when Model II

and Model III type natural growth reduce to Model I type natural

growth. Further, it was shown that given any'natural growth situation,
4

there is a value of K for which ANOVA'of Index of Response it a

potentially correct analysis strategy. But the efficacy of this

strategy is. more apparent than real. Ih order that an index of

response works, the exact form of natural growth must be known. :This

is, of course, rarely the case for 4irital-research.

4
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