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MISSION STATEMENT
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The mission of the Wisconsin Research and Development Center
is to understand, and’ to help educators deal ‘with, diversity
among students. The Center pursues its mission by conducting
and synthe5121ng research, developing straiegles and materials
and disseminating knowledge bearing upon the 'education of
individuals and diverse groups of students in elementary and
- secondary schools. Specifically, the Center inveetigates

~
.

e diversity as a basic fact of human nature, through . °
studies of learning ahd develOpment

e dlver31ty as a central challenge for educatlonal
techniques, through studies of cladsréom
processes . S

S diversity as a key issue in relations between
individuals and 1nst1tut10n5, through studies of
sghool processes . . .

W . ' d .“ -

e diversity as a fundamental question in lmérlcan
social thought, through studies of soc;al pollcy
related- to education . .
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The Wisconsin Research and Development Center is’a noni%struc~
tional-department of the University of Hisconéin-MadisoT e
school of Education. The Center ig supported primarily with
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¢ The Development of an Idea PR : -
] =t - .

' ﬁ.i~ v In ‘the first part of this paper, I will describe the evolution

>

-:*:'oﬁ my ideas abOut childreh's cognitive development and mathematics

‘learning. 1 will trace the course of my thinking beginning with my

_days as a ciassroom teacher when amy task involved ‘a series of practical

problems;to.be solved,'through a-descriptive phase whefe I put the
" problens of‘mhthematics learning‘ihto‘a Piagetian deveinpmental
‘ framework to an explanatory phase in which 1 related the develoPmental

model to certain information processing concepts Recently, inl' -

attempting to address t.he eanlier/re earch more directly to the

curficulum designers, I «

+ . . +

. B. Biggs) haVe devised

practical problems fac by tiﬁshers
have turned to a/IESponse model and (with

. a taxonomg/nhich is concerned with the stru ture of learning outpomes.
* ¢
Dﬁring the’ L9§Os I tsught for five years in elementary sch

- _and five years in high shhoolsfin Queensland Australia and it was* .
. . /. - ? .
"4’/’ the experiences of those years which awakened my-intereat in making '

-

careful ftudies of .the 'way children think. 'Ituwas fascinating to ;

see the kinds of mistakes that children made and to see the same

-

mistakes repeated By different séts of children of about the same age,

. . in different schbols and in diﬂferent years1 The similarity between ’

+ ’

o the mistakes made in the same mathematical topic was not" longitudinal

’ ~

depending on who-was teaching, but was rather a cross-sectional, Beross~ y

* - e ¢

-

{ teacher variable. , This phenomenon was. particularly-noticeable,in

’ f/f;opics where children commonly had difficulty, for example, in-the @ -

4 . .
. . .

elementary school, in fractions, decimals, and long division: Thede

~
. ——r

3 [
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. _ .
all seemed to produce, year after year, thF same kinds of-er;hr.. In
the secondary school , }he solution of simple,.si@uktsnsous, quadratic,
and trigonometricél equations all sfoduceg,bﬁs;acteristic.misnakéé

year after year. What was even moye ‘remarkable for a young teacher

was that no matter how one changed one's teaching method or textbook,
w

the ;roblem continued?'ffeachers in those dsys often tried to shift
the responsibilicty for the mistakes to the children. The problem
existsd becsuss the children concerned were inatténtive, careless,

or dull and thus, apart from tinkering yith varihus ideas on.classtOm
motivation, nothing mush‘cohld be done. } ” .

This.fesolution of the problem was obviously unsatisfactory quite .

apart from the fact that some of the generalizations,‘suchlas careless-

_ ness,'were patently untrue. Even with my limired expsriénce at that

.~ - » L) -
time, it was clear that children werg very rarely careless. Indeed,

-

most seemed to take a great deal of trouble to try to follow the

. brocedures they wers taught. 1In ,80lving problems Zhildren appeared

v

to- work very ‘hard at thlnking them through if they found them meanlngful

Although nhelr solutions (or teacher—required answers) would be incorrect,.

J
there was little justificaclon for the label careless, ip the sense of

1

N
lacking care. | - L.

- -
. My interest in children s mistakes led towards the end of the !

T

19505, to an interest in teaching children~who, although not dull,
¢ i ~' -

.were not “succeeding at mathematics as taught in the classroom. This

1

experience deepened my conviction that the way children were belng °

i
LY

taught mathematics was the reason for the kinds of mistakes which they

were producing. " .
G
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. Talking with 1ﬁh;v1du;i hildren aboyt their matheématics made it *
’ * . ’ ) : ; ra

1

. * ) N . N r
having a misconception of the maghﬁmétical concept they were dealing

with. _This,miscoﬁceptioh was often‘ﬁasily derived “from a standard
‘ . N ! ¢ . :

classroom interchange. For example, E e child in thtearly s;ages'bf
learning the subtractioq algorithm might\be‘having trouble in getting

the numbers the right way around and the teacher says, ™Can’t ‘you see

v

that you always take .the smallest number f§oﬁ the biggest number ?"

' The child adopts this rule of thumb, Some time later the clild is

1

W . 1‘* - L
still -using the rule and getting into difficulties because he or she

B

. > L & - s f .
is unaware that the standard algorithm, involves subtracting the bottom

number from-the top number. A fqrthér source of ﬁisconcept;ons lay ..

“ +

in the way children were often taught'certain’topiés_ . For examéle,
- after a very‘Bifef”introduction to the concept of afﬁa and its measure-

t L . L .

* ment, tle children spent a lot of & multig}yiné two numbers together

to find the area of a variety of rectangles., When thiey regularly
./ ‘ ) .‘ '
succeeded In this taﬁk, it was assumed that they understogd the .

~ F ‘ - I

;
LN

+ .

- - ) ‘ .
~ concept of ar®a and its measuremente’ Only‘at a later stage when the

children were given non-rectangular figures did it become apparent P
. " " . - . : . .

that their understanding of what they were actually‘measuriqg in

terms of the prodhct of, the two numbers waé not at all clear (Collis,

1969) . R '
The kinds'of experiences described in the last paragraph, along
" with the arrival in the early 1960s of_thé "New Math". program,from

the United States, stimulated my interest in investigating the problem
T ! " "
much more closely. The Nﬁf Mathstexts from groups such as School

clear that a lot Tf the common Wistakes were dﬁg sipply‘to the children

.
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. v

Mathematics Stndy Group (SMSG), which presumably were to be used with

. w ¥ Y "
normal children of 13 or 14 years, had expectations quite beyond what .

.. ‘chilqren ueuld'heVe been able to handle at that age level, in my,
) expe iénce.. . | . | ’9

. Al’.‘ abou':l'..l'.he same time in}"the early 19603,.’1_ was %ortunate to

neet np.wirh G. L. Huebard who had the same kind of interest in the (

learning difficulties in nathematics that apparently average childrgk . *

were haviné. Mogeover, Hubbard had_the resources avallable to explore
.. - =
this intefest, A team was formed, consisting initially of Hubbard and

Cdllis and we arranged to teach experimental elasse§ in certain private '

¥

. schcols in’ Brlsbane Queensland Mos: of tﬁe classes consisted of 30-40

[

glrls.' The classes ranged in. level from the egarly prlmary school (most
- "
\ of the;girls were abOu: eight years old) to the middle secondary school‘

level (girls ebout 14 years old). A team teaching technique was used

in which one of the teams took the major resbonsibility for the class-
-
— -
room work for a particular lesson, or series of lessons, while the .
? L]
other observed. A person was also engaged as a recorder. This T
! ’ /"

person'§ task was to record significant events in the classroom and ‘
to make general notes on the r in which r.he lesson proceeded.
qithe initial étages ofl the work, we attempted to follow the '

children's reasoning wherever it led.quThus, we might introduce a. | ,

-

topi¢ with a particular plan of developmen: in mind but find Very

quickly that the children 8 in:erei}7was in another, non-trivial -

v -
-

”EBZEI'Bf the topic. Ins:ead«of persisting with the original plan,
we would switch to the line of :hought the children vere in:erested
- N r
in .and try to follor tt through with them. For example, matchboXes -
. l " . N

: e A A
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+
were introduced with a view to using them as informa} measuring units.

The children, however, became interested in the notation on the front

of the matchbox which said "Average codteats fifcy." They wondered

what this meant, so the succeeding lessons and experiences resulted '_ -

. - in the child¥en looking at the statistical aspects of "matchbox” mathe-

matics. It was some few lessons later before the matihpox came back to

-

be used for its original purpose of an informal measuring unic. The

4

kind of teaching approach outlined above félied heaviiy upon our
experience as fegchers and our abil}py to see the structure of elemen-
tary mathematics as a whole.,

- It became clear, as the experimental teaching progressed Qith the

various age groups, that primary school and eafly secondary-schoal d

mathematics had to be structured s0 that the children could see the
s -

interrelationships between the various parts of mathematics for them-
selves if they were to get educational and practical value out of

their eXxperiences. In addition, it became very obvious that the children.
were able to reason with quite rigofaus logic provided one did not
' .. .

, . sxceéd,the level of logical functipning of which th7y were capable,

This meant, in the case of the children in the.experimental classes, (j

~ . -
.

the concrete logic of‘cldssifipation, seriation, and equivalence as

that formal abstract logie¢ had to be avoided and réliance placed on

e - +

described. by Peel (1960) .

“ When the experimental’teaching first started, we did not have

any particular learning or develogmental theory [in mind. We were

. operating on ‘the basis of our own experience teaching chi%ijrn of -

these ages and our lnowledge of the structure ¢f elementary mathematics.

-

1:




However, it became clear after several months of experience with the

N , - .
children that this base was not sufficient, especially ag.the mathes

v

Y matical structure and the technique used to develop it seemed to

interact‘%ubstantially\w%th the children's cognitive functioning.
In'ﬁrder to know where the project was headed and what'peedhd to" be '
done hext, it was necessary to find ;Cme kind of theoretical frgmework
‘Fppon‘which to base decisions on both teaching technique and-.program ‘
components. ‘ :
After’considerable readiné, thoShht and debate on the matter, we
decided that the most satisfactory theory, agbfar as‘feaching was

concerned, was one based on the Piagetian model because it seemed

to take the most account of the children’s form of logical;}easoning.

For the structuring of the program, Ausubel's theory of the atguisition®

of meaningful verbal learning (Ausubel, 1963) was linked, with the

Piagetian model (Collis, 1970). This composite médel was.used to

ah the further teaching of mathematics to the experimentaleclasses.

vz From the work of thoge years, there were two main ‘outcomes.,

' . -
19 I céntributed a pumber o teachlng noteé for the teachers

-

editions’. of these texts.
LI

First, a series of texts was Qi:téen by Hubbard between 1963 and

Unfortunately, the tgxts (Hubbard, 1963),

1964, 1?65), which wére designed for ehe’ea;lylgecon@&ry school, are

-

. . ) - Lo 'r
now out of print but’they were used in a number of Queensland schools
« for some yéars after their production. The second significadt ojt_
come was a formulation of a general theory of teaching mathematics
1 ¥ ]

to children from about eight to fourteen years of age. This .

_formulation has been described in various places (e.g., Co;lis;

* 12' - \\ .' . [

~
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'

1969; Hubbard, 1971). In addition, the broad summary of the the;;;-‘\“\
. ' . A

. ‘is set out in Collisg\l9?53.

) LE] Vo ‘
By the mid lQ@Os,\Hubbard and I were beginning to find divergent

bl
b 1

interesgts. Hﬁbbaid wanted 'to’ continue-with the same _experimental
teaching technique'and u?e the ingights obtained to design_Curriculuﬁ'

materials and qulisﬁ texté. "1 had become more involved jn the ways

. . . . . ¢
in which children were thinking, particularly, with mathematics items.

In 1968 our team.splif up. I accepted a position at the
Univeréity of Newcastle {Néw South Wales) to do research in cognition

with the psychology depa}tmeh;; using mathematical items and the . °

Piagetian model as a theoretical:framewoik. This turned out to be
a happy combination. The mathematics edJEator§ saw 'the items'we had

developed in the course of solving the problems of teaching mgthematics

as having direct relevance to the classroom and the programming of

mathematics COUrses; the use of these kinds of items was pew t0o most-

Tu i >
of the psychologists I came in contact with and thus threw a different

-

light on their views of problems of cognition. i

. In the late 1960s and the early 1970s, I conducted a series of

expefiments with children between the aéés of seven and seventeen

v

years with the object ‘of teasing out the Piagetian developmental
stage levels, or the coastructs underlying these, using items involving

elementary mathematics. The tests were both group and individual.

The former were intended to provide-normative data on a cross .section

of children from Seven to seventeen years. The latter were more in-

. . .
depth clinical studies meant to track down the way the children

~— -

were‘arriviné at their results and what this imﬁlied about thelr

LY




level of logical funct;onipg. The resung of these studies are published

in a number of places'(Collis, 1969, 1970, 1971, 1972, 1973, 1974, 1975a).

-,

It seems appropriate to summarize the results of this part of the

-

work, however briefly, at this point. The series of studies clarified
- some of the basic Piagetian concepts-and defined the different Piagetian

\.
stages operationally iIn terms of mathematiqs items. The differences

-

between operating at different stage and sub-stage levels, it was found,

could be described in terms of the following constructs which obviouély

are not disjoint' but interact with one another:

1. Cogg}ekigx_of mental operatiow involved: This refers to what

the -.child has to retain in the working memory while he or she deals. with

. the problem to be solved. For example,':o solve 4 + 3 = [T] + 4 does not

rbquire as much ™mental effort" as 7 - 4 = [} -7. The former is most
frequently done correctly by the younger children by using a pattern

completion strategy which makes minimal cognitive demands; the latter:

- -

requires at least two closures and a dectsion to add where subtraction

1
'

is strongly suggested by the farm of the item.

2. Abstractness of elements involved: The increasingly abstract

nature of numbers as they become larger is a good ex ple of this notion.
Small numbers, less than 10 for example, are very é to the cltild »

"in the early elementary school, but large pumbers such as 289 afe quite
. . LY
abstract and hence without substantive meaning. The young child can
. ‘ .
not visualize what such a large number represents. Even further removed

from reality in the- abstraction process is the use of letters to represent

. Fo .
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variables; the ability to work meaningfully with this concept does not

appear until well into adolescence.

3. Ability to handle abstract systems: This refers to the %

ability of the chi"ld to solve problems given a set of rules and
-definitions; the defined elements of the problem together with the set
of rules have no necessary reference to tho child's physical world. -
Many topics in arithmetic where children are asked to deal with elements

tl:;at are not within their experience-are of this kind. The topic becomes

-
-

a set of arbitrary rules which are-applied to abstract elements. For

example, topics like stocks and shares, bank interest, profit and loss

.

commission and s0 on are almost custom—built for this kind of criticism

although’ our methods of teaching can arrange for any ma\thematical topic

L

to conform to thidf model. : ‘ -

4, Ability to operate on operations: The use of the inverse in

solving equations can be used to illustrate this .Ilotion. Prior-to the

'formal level the children do not use the inverse in a reciprocal manner,
-
controlling an operation and maintaining a balance in\_ the system

- i L3 r

at the same time. Instead they tend to ust a negating mechanism which
'is related only to that part of the system upon which they are present1y~

focusing. For example in solving the following equation, x + 4 = 9,

the child using the negating mechanism will reasom, "minussi‘ng 4" *

undoes "plussing 4" therefore, iIf x+4=9

LY
then xX=5 - . ‘

and will: not see any point in

using any intermediate st&ps.




e ‘. " 10-

- : ; -t
The child who uses a reciprocal strategy will, if pressed, see -

the value.of several intermediate steps, tife first on% ?con:riii:ng"
the operation while keeping the original statement in view and

balance, thus: Xx+4=9 oo

x + 4 -

4

X

9 -4

3.

5. Acceptance of lack cf closure: “This construct refers to the

level of the child's ability to work with operations without the %

necessity for closing the operation. In early primary schocl, this

ability is not very well developed at all. The child insists on closing

L]

an operation such as 2¢+ 3 immedi;\%;y before any further conéideraﬁion
is taken; at a slightly later stage the child is able to deal with the

. operations and reasogﬁwith them as long &s thereris a guarantee that
. . the doperation could be ¢losdd to a unique resuli at mny particular time.

-

. ,
At the ‘highest level of functioffing the adolescent is able to resist

closing the operatiggs and keeps them entirely open as long as necessary -/

*
L]

S o
to come to a logical-.conclusion,

. 6, Multiple interacting systems: This particular construct was

I

explicated by Lunzer (1973) when he was distinguishing between simpie
End.ébmplex systems. Lo the ﬁ}esenf context-it refers to the child's ™

> ahility to handle mathematical formulas at. different levels of sophisti~

cation. For example, at'the junior high’school level, most children can

use a formula such as A = L x W by real;zingithat, given the dimensions,
‘ .

. this formula will enable a measure to be made of the area of

[ L}

2y

-
s - -

~od
<D
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rectangle. This represents essentially a'simple system of covariation;
thnharea‘changes as the rectapgle-changes and "L x WY chaqges as the
rectangle chinges. What cannot be done at this étage is to‘relate

. o changeé in on;: or more of the variables A, L, and W to changeAin one
’ _ or more of the others. -(For example, "If A is to'gtay constant and
W is to be changed in some way--doubling, taking a fraction of tﬁe

hprfginal-nwhat must be done to the length L to satisfy these new
&, -
conditions?")

The research up to this point {the early 1970s) gave a useful

desctiption of the stages of cognitive development of the child using

=

items from elementary mathematics. However, no investigator could be
L »

.

satisfied with a mere description of how things worked, no matter how
useful the descriptions w&re—m tenmaj?f making curriculum and teaching

decisions. ‘My:next step (about 1974) was «to begin looking for an

‘explénatioﬁ of the stage- phenomenon.

An Explanation of the Stage Phenomenon

-, -

] ¥ ' . Vo

I
. During some early studies an interesting phenomenon appeared.
i - ’ .

: »
Early elementary school children .seemed capable of. working meaningfully

- " with mathematical items which” involved two elements and one operatipn

(for example, 3 + 4) but they seemed unable to work successfully

’ '

- W
when a further element and operation was Introduced (for example,
2 + 3+ 4), Success with this type of ‘item Egme a little later. l
When tested individually the younger children appeared gpable to }

retain all the necessary iInformation Tong enough to process it.
v

.. f
T B

b
£,
-y

b
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A typical interview with a seven year Q%:%went,like this: ’
R

Experimentef:- What number does 2 +.3 + 4 2qu£1? L.

Child: 2 + 3 = 5 and (pause) What was the other number?
Experimenter: I said what number does 2 + 3 + 4 equal? -

Chilq} Oh yes! Now, 2 + (pause) whaé;is'nhe sum again?

. A similar pattern of responses was obtained with more complex

exercises through the higher stages up as far as'formal operati&ﬁs.

For example, in anothér study an eleven year old girl was given the

information that y = 365 .

and that, y + 289 = 289 +:365,
' . : B
and is asked to say whether the last statement is true or false and to

-

give a reason. The child showed every sign of being confused by having
tOO.much information ho-iake into accounct. In the case in quéstion

" she decided to add up, the two mumbers on théiright hand side, 289 and
365. Having worked this out she then alternated her.attention between

 this calculacion and che left hand side of the equation muftering

&

over and over again the statgment, "y + 289 equals." She ignored
altogether the information, y = 365. She finally became completely .
confused and gave up. The same kinds of symptoms can be demonspratéd‘

. with-older children of fourceen or fifteen years 2? one makes the

'questions more complex still. The children in each case show signs
1 LI )
&f cognitive strain and repeat’barts-of the problem aloud. They

-

skem to indicate a dffficulcy in bringing toggfﬁer the relevant bits

-

of information long enough to allow them to-be processed., In all

.

>




cases, ptotocols for the ind1vidual students showing this problem in-
dicate thdg they are behaving as if they are exceeaing their particular

o
“

capacity to\process data.- - _‘“ . T ’ SR

a
L]

‘Let us e amine a possible model to explain this behavior Suppose

the circle beldw represents the actual space avallable for processing

- [}
x

data. Let us 1;&} at the child's problem at the early elemeptary ‘school

'“. —," [ Y ., . - - U - Tt
stage and see whaf may be happening. Tirst of all the child is askad .

L -

¢ ‘,—-. ‘\_‘.\
)

\to‘enter into the processing space the number 2; 2beingto the child not

an abstraction, a number that zxists in itself but two real things that <

\haﬁe*to be kept in the mind’a eye, as it were, to give.meaning to the

- tah

symbol "2." Likewise the next piece of inf_’//iion is an operation° plus

* which doesd*t have an existence.of its own but also has to represent some

-

physical act of putting togEther.

of three things and mﬁst bé treated’like the "2” already entered. These
{

three pieces gf data come toge%her and give us the :otal 5 whic¢h ‘the ~ -

child attempts to retain in the working space together with the "2” anﬂ

I.' -

the 3" and the "plus.” The diagram suggests that.the space is now fully

- " t

Any attempt to add further data results in what is called an

occupied.

"overload:in calculator terms. When -this overload ogeurs putting in furﬂ

ther information means that some information has to go out. . .t

-~

A year or 80 'later at the next substage of development—the child is

able’ to cope with 'this kind of problem: Why? Evidence from individual

interviews suggests- that the differeﬁée lies in the fact that,'by then,

Then _comes the B which also coﬁsists '

L

T e

s
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"Eheﬁsmali‘numhers,”like'the’ﬁz" and the. "3," and the operation of addi-

. -
‘—’ t s E 7

ﬁion‘have.become enttties in their own right. The child does not have

‘%Q'Eeep_them in the min&'%geye or relate them to some physical pheno-
;menon'-;;he§ can be treated as things in themselves and thus occupy

. very litrle worﬁing space. This means the child at this substage can

handle seyeral small numbers anﬂ a‘number of ‘'operations by closing in

‘9 - v, - . ]

sequence This kind of explanetlon fits all the aspects of the situa-

wion I have observed * the oral repetition of *the data, the continual

refocusing on dif?erent parts of the data, and the physiend ymptoms of

-strain and confusion

- ' . «
There ate several models di££Ering in detai but compatihle over-

L3

' all, whieh not only support these intuitions but also satisfactorily ex-

1 A
plain the stage development Phenomenon Two of these)models were pre-

sented by their authOrs Halford (1977) and ?ascual-Leone (1977) 'who par-

_tioipated with me in a symposium on stages,in thinking’held in Pavia- . Ti
(Italy) in 19?? .& third model, the_pne that I'wish to use‘in this .
~ paper, isrone.presented by Drf Roboie Case of the Ontario Institute for - .
Edutational Studies However we.will come back to the Case theory»a . e
}1tt1e later in the paper. fr . -:“" %’."- ‘ ’
. Lo e 'n Change of Focus ) .
’ A Response Model :f" . ;; .}:;'P L } -‘ e .

] .

So far. this paper has outlided the.genesis of my ideas from the
)

LR

time of typical claSsroom experiences through the development of con- .

structs which desCribed the phenomerion in terms of miathematical items

- ) o A
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on to a possiﬁle explanation for the phenomenon in terms of the informa-

-,

.tion processing model. I will now desdribe my more recent thinking in

the area.
’ “F .

‘About 1975 I set out with Professor J.B\ Bigga.of the University

‘of Newcastle (N S W.) to gather together the substantial amount of work
‘'wvhich had been done in the elassroom on ﬁpe Piagetian notion of stages

[

-

T of debelopment. In particular E.A. Peel and’ iis tudents at the Univer-
. sity Of Birmingham had done a lot of work in conten areas as diverse
as geography, history and Epglish literature\. Other Eriters such as

Shayer of the University of London had done-work in seience. Biggs and
%

. 1 set ott Basiﬂally to find examples bf‘le;e;s of eognit{ve_development

-

in the major teaching subject areas at'hiﬁh €chool and iaﬁe'primary school
. : | .

so that these examples could be made availagle to teachers: We hoped,

for example, to helb teachers regognize st;dent errors as d elopmental

phenomena rather than ‘merely as care;essnEssf

: ¥ A ) T
We also planned to produce some sort of a checklist for t

A

that thef could code their own students' responses in teyms' of

mental level, However,.as goon as the literature review had begun and,

_ more significantly, when we began giring aome tests¢of our own to \build

on the available data, s?veral problems surfaced, thrée,ofgnhich arne -out-
. .

+ b i
lined belaw.. v

a

1. The criteria uséd by»tﬁe various researchers for determinin

different developmental stages varied considérahly across content are

_" _ .
L bl

. Inverse operations and multiple, interacting systems, for instance, Jti

quite clearly useful in logico-mathematical tasks,.did not seem as significant




I

authors who were responsible for “the studies “ilkthese &reas did not seqm

-

in other areas of content, such as in English or ’history. is does not

mean to ssy that they could not\ge recognized there but rather that the

, -+
,‘,.
i

to take them into account 0n the other ha%d £ermin areas in English
such as "guality of expression seemed to»;{be org nized in terms of cri-
i % ¥

teria which would not readi.ly apply in science or ’mathematics.

2. When testing su‘bjects on items fréim, diff/ent content areas.we

2

found that the well known Piagetian c@cept of decalage was very much

the rule rather than. the exception.’ fl"é finditig seémed at odds with

-

both the developmental approach and the. idea Qf developmental Stages.

“the same stddent on ~differeht occasions would »vary three and four ges
in_ the same content area. Age ranges chr typicsl rﬁ‘qsponse’is seemed too
. 2
gross a measure to acconmodate the traditional «stage development scheme.’
3

" E
.u. . 3 - -

3 ~

3. Another puzzling feature which arose?was inconsistencies in the <,

v, .
te ‘,ﬁ

same student's response upon retesting 3!1 the sm ,iﬁe_lg. A student might R

-

t - j’
respond ‘at what would be’ termed a middle conc.rtt,e ];e;vel snd then, ‘when

\ L
4 ’ =

retested some time late‘r giwe responses one 01; tv?o le'vels higher (or

.a' f-, e [ .
\ - H .
. - h1 5

‘even lower) than the level at whigh the mater:ggl“had been p;evious‘ly en~

-
% ., - - !

2,F

" coded. e T ::f‘_T‘ .
. . - - N & . ;. Lt AR .
\ ' .
Considerations like these called _into tiuestion the fdeayof catego-
. sk
.rizing students into developmental levels on.ztha ~ba s of thair responses
o' 4¢"' N .

-to,.particular items in particular, content area,s. . Thus, the. s fad

I

tfo shift away from a response implying a stage o’f' development to onsid~ -

LILY

w1l
.

._‘.\

ereﬁ'on of the quality of eaéh indiv:laduaI ;response per se. It '1esred

Ll -
r * . - - ’

] » ¢ . L, '
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. not 6n1y{bf £he hypothetical cognitive structure but also of experiencé. N ”}}

.phrticular time. Although the two egnstructs are closely related, t‘
-

. .t
. . “ . - . .
N . . . ) oL '
- s 7 - ’ ! . ) - .
. . - ' . R . . .

e * . : . - 1? b
[ .

.

that. two phenomena werE'involved, ﬁof one as had been. supposed. The . ¢
r a L] ““'. .(

first,,underlying phenomenon which defines the individuai 8 cognitivel

limits migh: be tesmed the hypothetical cognitive structure (cf. Piaget s
- 3 / ”

Stgges of-Cognitive Development). The second, which would be a function -

L
~

in a content area, learning QPPhrtunitieé, and the person's present and * . \\\\

past-motivation might be termed the sfructure of. the learged outcow 0LO)
(Collis & Biggs, 19?9):- The former might be likened to the old {dea of) ~
- the I0Q which, ﬁas a meagure of intelligence and considered perman;ﬁtix*Thé

-~

latter'ﬁay be’ considgred to be like achievament on a particular test at a.\\\\

latter is flexible and measurable by the teacher. In fact, it can’ be

- I

used by che teadher to guide the ipsign of both lessons aﬁd programs. .

LS -
’

Let us look briefly'at the optimum achievement of the hypothetical

-
.

cognitive‘structure (HCS) at the different stages of development and then
- , . ?
relate these to the SOLO levels. - N

Pre~qpera§honal HCS Stage: This is the stage that in the Piagetian

model is ﬁonlogiéalaor prelogical. These children typically cannot con-
serve and so mgthematidé ag such is beyond'them but there appears to be

real v?lue in encouraging them to work at premathematical exercises. a&he

equivalent level in the SOLO Taxonomy.is called prestructural. Here the

\agiponses typically indicate {hat the child has no real feeling for what

.
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L -
- i

one would call mathematics; very oftenvthe responses they give to mathe-

-

matical tasks are irrelevant or tautological. -

The early concrete operational HCS: An elementary basis far a con-

[

* crete logjc of classes, differences and equivalences now exists. Con- =

servation, which' involves elementary use of the reversifilit& principle,

w
L]

seems to be well established and there is a basis upon which to develop

some sort of logical, even mathematical, structure. The equivalent level

-

in the S50L0O Taxonomy is terﬁed unistructu;al. "At this level children
asked to form a conﬁlusion on the baﬁis of given information will select -
one. piece frqﬁ all the.given data and immediat;}§\cg$e to a rapia concluxﬂ
sion., In ma;hematics they demonstrate a necessity to close any operation
quickly and they find -it difficult to find mean}ng in express{pns'thgt
have more than one 6peratloﬁ with small numbers:‘ In soiving“a;y problem
tbey‘tend to g0 forward irom“thé stért{ng point and then only one step. )

For examplé, in solving the equation y + § = 7 thef will give the re-

sponse 3; the reason involves some sort of counting on procedure. Typi-

cally they will not see that subtraction is a useful“procedure for solv-
ing the problem.
Middle concrete operational HCS: This is a period of well estab-

[ - {
lished concrete logic of differences, classes and equivalences. Chil-

dren at .this stage do not see interrelationships or, at least, do not
consider interrelationships’ in the data. Reversibility of operations

‘is available to them. However, they ‘demonstrate that their reasoning i
. ‘ ’ \'\‘ - -
is clearly copfined to the physical world of the "here and now,” despite

-




-

large numbers are involved the number of meanffigful relations or dpera-

19

indications of a raised level of abstractfon in that they can usL more
operations, larger numbers, and more propositions in verbal problems,
L

the equivalent S0LO level, the ﬁmlti-structural response, indicaqes that

the child comes to a conclusion on the basis of a sequerice of dierete *

»
-

pieces of information selected from the data. In mathematics, sequences

of closures are used meaningfully if the numbers are $mall, although if

- -

tions that can be handled is consequently reduced. The child seems to
. | | N
lack an overall view of the interrelationships between the operatipns -

7 . [ )

and elements in a Statement. It is as if the statement representsia -
= : .

series of instructions to pe performed in sequence. . R T

Y

Concretg_g;neralization HCS: ‘This is the high point of concrete

operatiohal logic, The most s@gnificant feature is perhaps an aBility

to géneralize from several contrete instances, although no abstrad; hy- - -

L}
»

potheses are considered and thus the generalizations are often inadequate,
* ' - hd ) *
The student indicates an ability to inte¥relate given data but not to 2o
- * .

outside it: The equivalent SOLO level is called relatiqnal. At this -

level thée child's response indidates an ability to relate one part of .
- ¥

o rr—
-

a system to another in a quite contrete Way. ‘For example, in terms of

numbers the ¢hild is able te deduce that 273 x 471

\ 471

is equivalent to 384 x 273

P y _— .
~/ . ' 384 but_dgpes not

T

realize that this is an examgi: of the abstracgiqn?ua 2b .3xm
N < b mw
L
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F

The line of redsoning can be easily verified by asking the child to

prove that one statement is equivalent to the other.

-
L

Typicsliy,.the

proof will involve working out the numerator and.dividing by the denonm-

.

which happens to be the same

inator in otder to achieve'a unique result

for both statements.

=

Responses at this level indicate that the chilgd

can keep track of-the key iuterrelationships within a given numerical

s‘tatement .

=

.

-

R

s
4
-

This is clearly associated with ma-

- Formal operstidnal st_ge RSC:

-

[

Pl

. abstract hypothests or generalization.

) as they are within 2 well defined system. This last is the hallmark .

processing paradigm which was earlfer hyﬁothesized to explain the stage

ture formal logic. The adolescent aq this level of functioning has the
ability to take all the data and ‘théir interrelstionships into account o -

aftei obtaining an overview of the problem and eonsiiering'an'apptopriate
This hypothesis or generalization
is tested against “the given data and against other cons}derstiors which

Y oa

may not be given but whichidre germane to the problem. The equivalent’

-

SOLO level involved is the extended abstractefesponse. This level of
t - : ) '
.response reveals an)ability to deal with complete abstractions so long

of.thiswlegel of response. Variables are no problem and do not need

reference to physical analogues; mathematical and 1ogical:operstions' s

take on & reality of their own; balanced systems such as gquations can . &

-
.

be overviewed and manipulated.so that the system remeins in balance.

Information Processing and the Response Model

.. Let us now consider how this response model gits the information

»
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R " development phenomena. We will use the Information Processing Model
;! * put forward by Dr. Robbie.Case (1978). ' . )

Case's theory fits the general Piagetian model with regard to both

x

iﬁiﬁ content and process of development. His major change concerns the
“way the general developmental factor is éonceptualized. It is conceived
as a quantifiable level of working memory rather than as a general no-

tion of "operativity"; even this change is not incompatible with the
. T
Piagetian model. Case's basic position can be summed up in the follow-

ing five  postulates:
~ 1. that children pass through a series of sub-stages within each
major stage {(of development) in which, their strategies or rﬁles
. " i

for approaching the problems characteristic of that stage become

~ increasingly complex; . ‘ >

: 07
2. that one nec%ssary condition for strategy evolution is exposure
.to information of relevance to the specific domain in question;

-
3. that a second necessary condition is the acquisition of suf-

ficient working memory to coordinate the information of relevance

x

to 'the ‘more advanced strategy; ‘
. 4, that wbrking memoTy capacity is constant but that there is a

gradual increase in functional working meﬁory within each stage,
due to the automatization-of the operations which are character-
istic of that stage;

5. that once this fqutional working memory reaches a critical

lgbel within each stage, the way is paved for the assembly of the

-




-

+

higher order operation which underlies the strateéies for. the

next stage. (Case, 1978) ~

These postulates clearly refer.to an individual's general level of
cognitive develdpm;qt, ;bt to the structure of a specific response in
a particular confent area at a cgrtain point iﬂ time. Equally clearly
the two domains are closely related. Especially-in relation to the
Jearning of'elementa}y mathematics, it would appeér‘ugefui at this stage
to link the Case postulates to level of response. In teaching mathemat-

»

ics or in organizing the mathematics curriculum one is dealing with the

.

" structure of the learned outcome rather than with the individual's gen-

L 4

’

-

o
o~

" »

eral cognitive functionﬁpg. One has to-assume that the basic substrate
strategies about qhich Case 1is concerned are developing and ;ge them to
determine the uppér level of the response expectations. One must be’
awvare, of couqée, Fhét what is being dqge_in mathematics is probably
affecting the bésic level of generai cognitive functionming. ;
Let us examine the pOStulgfes in relatiéﬁ go the réspdnse m?dé1/ : v
oytl&npd earlier, keeping in mind that one of the important functions

_of the teacher of elementary mathematics is to éncourége students to
reéponq at the highest p$ssible SbLb level. .

. Postulate 1 can be seen oﬁé:ating Eﬁrougﬁouv the increasing com-

N . +
plexity represented by the continuum from Unistructural to Relational

'reébonses.in the area of numbers and ope}gxions.- For example,

v '+

(a) each level of response relieg updn closure at some concrete

-

level ﬁut there is a steady increase in the comblexiﬁy of the way in

which the comcept is used; -

[ , ¢
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(b) the only mathematical operations which can be handled success-
fully are those which can be basqd on some concrete analogue such as the

four operations of elementary arithmetic;

(¢) there is(a'gradﬁLI increase both in the abstractness of the
elem?nts able to-be hsed‘with Pnderstanding and in the nﬁmber aqd inter-
T relatedness og the operations which can be meaningfully used with those
elements. h

The folloq}ng diagram may make our point more clearly:

2+ 3 Unistructural - one operation,
//// , . closed immediately ’
“ Multistructural - ﬁultiple op-
2+ 3+ 4 AEB + 576 ’ erations closed in sequence
‘ N \\\ /// o . Relational - multiple operations
ST 213 x 271 . and their interrelationships
. 473 . ) seen within an expression
- : ‘ The different levels of response ar%fcumulative. Each one adds

something to the previous one, until the greatest complexity attainable
at the particular stage of development is achieved. The developmental

staée spahned by the example given is the period of concrete operations

-

and covers the SOLO levels from unistructural through multistructural

r

# _ to relational.

1
- c

Postulate 2 bears on the fact- that to expect higher level responsés

in mathematics must'reduire that the individual has extensive experience

LtY

_ﬁith both the content and process of mathematics. ' The diagram above
illustrates this quite well., A child needs extensive experience in re- .
sponding at the unistructural level in order to ensure the numbers and

the basic operations become real (i.e. concrete) things in themselves.
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In other words, extensive practice is needed to achieve a‘degree of
automatization whi¢h will éllow movement to the next level of responding.
At this next level a number of operations can be closed in sequence and,
within limits, large numbers; those beyond the child’s immediate ability

-
to visualize the object involved, can be handled with understanding.

At this stage acadeﬁic subjects are usually tauglit ;ith two main
effects on the student in mind: the ass;milation and understanding oé
the content of the subject (the facts and concepts thét constitute know-
ledge of the subject), and the cognitive processes that are induced by

a proper understanding and applicatién of the subject (thé skills and

strategies that constitute the appropriate way of thinking for that sub-

. ject). Bruner (1960) strongly emphagized the interplay:of contént and
proces;'featureé in thg overall structure of a subjeét matter. He spoke
of .the "generic codes" of a subject. .These are the basic processes and
content structures that ma*e the subjecF. In the present cante;t this
me;ns that, gight from the beginning of their contact with mathematics
in school, children need to experien;e the structupé gpd rig;r of mathe-
matics*p?esented at a lével w@ich matches ;E?ir intellectual capaedty
by a teacher who has a feeliﬁg for both the "generic code" of mathematics
and ghe lével of functioning indicated-b§ a child’s responses.
Postulates 3 and 4 relate to the availabiiity of working memory,
space to permit more édvanced strategies within a particular stage. The
relevanée of this n;tion in the Present discussion can again best be geen

by referring to our diagram. If the working memory capacity is constant,

keeping track of the numbers and the operation involved occupies almost
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all the available space for a person confined to the unistructural re-
sponse level, The "2 and the "3" a*e not yet independentlentities..
As.described earlier the "2" for example must be\§18ualized as two

physically‘available objecés. ILikewise'the additioﬁ operation must be

related to some physical union. A child working at this level of respons

e

indicates cognitive overload by losing track of part of the question when

presented with an item involving multiple operations. As also mentioned

earlier, similar patterns of responsé are obtained with more complex ex-

ercises at higher levels of functioning.

Postulates 3 and 4 indicate that to produce a hnger level response
o

within the logical domain characteristic of the major stage level, there

. o
be an increase in functional .working memory which comes about through

automatization of the elements and operations involved. In the present
* 28

context this means that many experiences with small numbers in ‘conjunc-

tion with one operation (e.g., 2 ¥ 3 = 5) enable the individual to begin

to regard the numbers a:j/ggﬁrations ag entities in themselves without

immediate reference to Some physical component. The need to use some

of the wdrklng memory space to monitor this last component haviﬁé been
&ispensed'with, functionally there is more space available for addition—
al elements and oper;tions and thus multistructurai responses become
possible (e.g., 2 + 3 ; 4 = 9). Similar progress makes possible” the
development of relational responses. Referring again to the.diagram we
can see that the move to relgkional level responges depends upon having

automatized the concept of numbers and the ope;ations on them s0 that one
Y

e

must

=
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can regard big numbetrs as being as real as small numbers and see that

closure of the operations is available if necessary. Typically Telation-

L

al responses reveal an abiligy to stand off and have an overview of how

the operations within any given numysy statement might be interrelated.
Postulate 5 is concerned with the move between major stages or, in
terms ;f the regponse model described here, between responses at prestruc-
tural and unistructural levels and - again between relational and extended
abstract responses. If we ‘take the latter transition as an example, all

the literature points to a distinct shift in the quality of response.

The quality of the structure of the extended abstract responses makes

-
bl

it reasonable to suggest that the functional working memory is operating
at maximum capacity and that the underlying logical functioning has taken
a glant step forward. Examination of extended abstract responses shows

. -+ . .
that improveméhts which have previously taken pPlace within a& stage be-

.cause of automatization are now extended and articulated inte a compre—

hensive and highly efficient s&stem-which allows for ‘the appliﬁaffon of
wuch highel.‘ﬂe‘vel gtrategies. For example, the ability indicated in
relatio?alzrequnses to handle multiple familiar operations w;gh large
numbers a ﬁ to see relationships between the operatiohs within an ex-
Eression/phere closu?e is available -at any time iz extended and‘general-

ized to &n ability to handle defined operations with variables and to

see relationships between the operations within an equivalence statement.

i

The Response Model in Use

=

Elementa:y\hathematics
Ty

-

The diffikulty in making a direct aﬁplication of the response model

32
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in mathematics lies in the fact that the actual response made ﬂ} the

KT

child does not usually indicate the:complexity of the thought process
which gave rise to it. NFor,example; if,é child is asked to find tﬁe
value of "y" iﬁ "y + 5= 9,% and respon&é‘corr;ctly with the -answer

"4," one does not know whether this ﬁas been achieved b; the simple
unistructural *device of counting on or by an Fxtended abstract Qpproach
which would invélve géneral princiéles such as inverse operations, as-
sociativity, and so on. io find the complexity of the structure used

b; the child further probing 1s necessary. The summaries of the response
characteristics which follow assdme‘this~fuqther probing.

*

I. Préstructural Responses. A respomse at the prestructural level

Ll

shows that the respondent is not deploying the thought structures to
handle numbers-and their "mathematical" combinations meaningfully. ' That

4 .
is not to say that a child responding at the prestructufa{ level could

not answer the question: "What doés 2.and 2 giv??" However,-being';ble h
to respond "4"‘do§s not Bgcessarily mean that the individual possesses
‘the kpowledge or the experién&es to be suré that a group of two eléments
combined with a further group of two elements always gives a group of
four elements, represented symbolicall as

wft @ glves ' 1 1 )
Being able to respond corredtly to the task of matching a get of numer-
als with a set of four objects to be counted néed not imply that the child
understands the number idea four, wﬁhﬂnincorporates the notlons of in-

-

variance and conservation. For instance the child might well be able
4 ' X

I\
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to use the counting sequence accur&tely’ﬁp to,a certaln point buyx sfill'

L4
give nonconserving responses to some of the classical number conserva-

+

tion tasks. .
t .. ” )
Prestructural responses often indicate that the individuals con-
. ) -\f""m vo?
cerned are gé;eleying bases for operational thinking, but it is not

’

J TS
until the next response-level that one sees the thought structures nec-

essary to handle number Foncepts; groupings, palring corresponding ele-

4

ments, and so on.

+

2.. Unistructural Responses. Responses at this level show that the

respondent can only work with elements based in immediately observable
y L]

physical exp;rignce {(e.g., 7 but not ?59).5{Th2 éperations of ordinary

arithmetié’aé well are fblated”directly to verifiable expe}ience. \

>0(C) = n(A) +n(B) > 8 =3 +5

numbers or sgveral

Responses at this level to items using elther large
. ' x

qperations in sequ;nce Een& to indicate that the child does not find

. 1Y
the question meaningful. The respondent needs to see that a unique re-

sult exists, "real" in terms of the student's reality. This need may

~be tegmed a requirément fo} closure, and is related to a similar need

in other content areas to come to a quick firm decision on the basis of

x

Ay
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N .
.

one datum. The idea of ;invergg," if incorporated in responses aé this
levei, is‘physical. For exampie, sdbtractio& is seen as "what is put
down can be taken up.” No concept of the inverse as a process exists; -
tgé typical unistructural response to the question of why x = 3 in the
stétement’x + &4 = 7 is to‘use a couqting.on proceduré of some kind: If -
pressed further most respondents‘caafined to this level will deny that
"y = 7 - 4" is a legitimate methgd'ﬁf solving the problem.

- In summary ;hen uniscruccurh;,resépnses are marked by a single di-

-

rect relationship to criteria-that ate cqncretelx_availéble (either phys-

-

-

[

ically or iconically).:

3. Multistructural Responses. _Résponses in this category are

marked by a.student's apparenE ability to handle logical operatioms pro- N

-

vided-they can be applied direc;iy to particul&r experiences. Operations
are not related to one another no:ito abstrégf systems set up.independ-
ently of'jhysical experience. Thusi_in workiné with addition and suﬁ-‘
traction operations, the pupil responding at this‘level regards the re-

sult of each operation as unique, and can cope well with a statement

——

which involves a sequence of discrete closures as long as there is no
necessity to keep track of relatiohships among the operations in the

statement. The arithmetical operations gseem to be seen as reflections

+

of reality - the sums and Qiffe}enceé refer to actual sets of objects

whether present or not.

-

At this,level of response the'pdp;l still tends tc\york with qual-

t
itative comparisons like "the closer" or "the larger.” Thinking depends

pl

\

T
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A

< .on, and is bound by, the individual s perception of what is reai and -

a marked inability to set up an empirical system based on measurement.

* Childrkn responding at this level are beginning to perceive consistency -
~
’ o

between their qualitative comparisbns which at tiﬁbs.leads.(pem to con- 'ﬁ

sider quantitative cpmparisons, but using additigg procedures only.
LU * N .
" Thus their responses show that ordering elements by using direct ex-

"¢

cess comparisons is a common strategy, but “ordering or_ comparison by
R - [ .t 2 - L 4

ratio is not. ;
Meaningful use of the four operatiofis of ‘arithmetic shows up only

if the uniqueness of theé result is guaranteed_by previcus ekperience
i AN

with both the €lements and operations A number of elemeuts may be con-

-

sidered if they related 'to direct physical experience. However, if the
elements are mofe abstract, only a very limited number can be.- hgndled

This means that a pupil responding at this levbl will cope with items
!
like 3 + 7 + 4 because the elements are verifiable and.the 3+ 7 can

be closed 50 that it gives stili‘hnother-verifiablé,element, thus allow-

ing closure with 10 + 4 = 14. A second'tﬁpe oj-item;tnat‘éan be handled

- L

is 475 + 23& here the operation is familiar ahd thys thé process cau

. .. -

' e
be carried out because the pupil knows from previous experience ;hat a

"
» I

L
* “

. upique result will always be found.
Closure 18 still the ulrimate guarantee of un_gueness and the abil~

¥

ity'to handle multiple operatious with small numbers by a series of mean-

-
v

ingful closures may be seen as analogous tgQ using a séhuence of given

propositions to support .a'particular judgment in othér. codtent areag.,

4 T 5




The concept of inverse which comes through at this level of re- ‘
sponse %§ that it is a "destroying" process: Although, in the class-
room, this kind of thinking is difficult to distinguish from thinking . 1
where;: the inverse is seen as an "undoing” process, the student's con- l

cept of destroying possesses an irreversible quali;z,ﬂ_Egp’E?ﬁLple,

the student regards subtracting as destroying the effect of addition

without specifically relating to the operations themselves. To find

the value of "y" in "y + 4 = 7," "y" is regarded as a unique number to

which "4" has been added; subtracting "4" happens to destroy the effect ——
of the original addition. Probing usually reveals‘that the child ex- |
plains the correct response to the question, not by referring to the

addition and subtraction ;paratiggs, but by adopting a more primitive
strategy, counting or saying the equivalent,of, "that's how I was taught.” .

-

4. Relational Responses. Responses at this level seem ‘to rely up-
N k]

on the same basic skills at the multistructural response level; the ma-
jor advance appears to be less reliance on seeing uniquenessg in thg re-
sults of operations even though thgre ;s still a requirement for unique-
ness of outcome to.be"guaranteéd. This guarantee of closure is obtained
by making a generalizatiom from concrete\instances. The individual re-

sponse ig 8till bound fo empirical evi&ence but the respondent is now '

prepared to infer beyond what can be demonstrated by model, and to form
' o
a generalization frum a number of specific cases. Thus at this level,

where appropriate, the response. takes theffoym of a concrete generaliza-
=4 :
tion where a few specific positive instances guarantee the Peliability of

-

a rule. Typically the responses indicate that the student i? looking for .
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I

positive instances to }orq a generafization, but’ is unaware of the need
to check or'coﬁnterﬁexamples and constraining conditions. Moreover,
as the r;:;:;?a is based on thg immediately available empirical evidence
only, the student is unable to consider hypothetical instances.

The basie ability to handle a statement involving a series of clo-
sures is now generalized in two wgyé. First, the size pf the numbers

’used rafely causes problems; second, and more significantly, the child

.

now indicates an ability tx\keep track of the relationships within the
- given statement. >

Relationd]l responses show an ability to handle generalized (appar-

ently abstract) elEments based.on a few specific verifiable instances,

,

e.g-» 2a + 3a = 5a, Probing reveals, however, that the uniqueness of

the result (the requirement of closure at this level) must still be
\\“\u guaranteed. Ih the example just given, questioning reveals that the. -

truth of the statement most likely rests on some concgeté analogue such

¥+

.as."2 apples together with 3 appl?s gives 5 apples" rather thah on any

satisfactory abstract mathematical generalization. ; T

i . .
In responding to questions re . 0 statements such as the formula

- y=mx s x t these students’' responses show that they rely on the follow-
. . . * 7
U‘paing facts: (a) that each letter stands for-a unique number on any parti- °

. cular oCcasion, and (b) that each binary operation invo%ved can be closed

L}
o’

at any stage.

L]
-

At this level the following types of items will ‘elicit correct re-

¢  ._Bpofizes:




(a) if 9*4=5and 7% 2=35, .
what operation does * stand for?

(b) if 6* 2=12and 5 *3 =15 -

»

complete 4 * 5 = -

(c) decide whether the following pairs of expreqsions are

v

equivaleﬁ::

259 x 416 -, 376 x 416 :
. | 259 X 376 - '

- L]

(469 + 361) ~ 257 and (468 + 362) - 254 N

At this level of response the "inverse' process becomes an ."un-

doing" of an operation previouslx performed. Thus it possesseé a re-
L] + . .

versible quality, but is limited by the ¥agt that i:‘éﬁp only be applied
to familiar'opera:ions. For example, the student may solve simple equa~

tions by using the pfoger:y that ‘addition undoes subtraction, mﬁltiplica—
tion undoes division and vice versa, but is not flecessarily able to see

that squaring undoes the square root in a simple surdic equation,
-’ . . .
Individuals responding at this level appear able to use an abstract
"
rule that they have obtained from generalizing a number of specific in-

-

stances but they do not demonstrate the cognitive structures necessary

L]
-

to use the rule in a slightly different situation. To take an example
r"“;., ' "
used in an earlier section of this chapter, a student may derive the

formula for the area of a rectangle (A = L x W) by gen;ralizingiﬁrom

E number of particular examples, ahd then appear to use-the formula as

"

if it now formed part of an abstract sysﬁem; However, if a question is

given that requires seeingliqu’aud W a8 variables instead of allowing‘




-
L3

A, L, and W to be seen as unique, each representing a particular nung;;
on a particular occasion, then the typical response at this 1e§El“§ho
an inability to handle the problem. An example of this latter. type of

queEtion would be: "If a rectangle ha® length twice its breadth and its

areg. is 72 square units, find its dimensions.” The difficulty for the

E

student confined to the relational level is that in a formula such as

4 =L x W each element must represent a specific, unique number and a -

closed result must be guaranteed as soon as a substitution is made.
" ) +

This necessity for a guarantee of immediate closure which typifies re-~

sponses.at this level:inhibits,the ability to overview thaﬁgata and

°

comprehend the abstract relationships between variables. ) "

-
1y

In conclusion then résponses at the relational level are given on *

L

v " . .
the basis of concrete generalizations where a few specific instances sat-—

isfy the respondent of the reliability of a ryfe and where the result of

an operation, even though it be on apparent variables, is necessarily
& N " . '
‘considered to be unique. In other words, the individual relates elements

. . * - ’ . -
within the immedlately available cBncrete system and forms generalizations

on this basis. . .

5. Extended Abstract Responses. At this level responses show that

+ . . * .
4 students reason and consider ideas at the abstract level withQut having

to rely on experiences in the phygical world. Their answers are clearly

y L
based on deductive reasoning from carefully chosen hypotn/sis or premise,

Abstract variables which nay hfve a bearing on the"golution to the problem

W
are visualized and manipulated; responses are nollonger bound by coQﬁfeté
. N . ) s . Cr
experiences, Respoﬁdents“are no longeﬁ satisfied that one or two positive
£ L 4. o RN

&
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instarices are a sufficient basis from which to generalize; a compre-
hensive inductive procgedure is invoked. The gtudent responding at this.
level does not.require operations to be éctually closed; closure and

angueness are looked upon is ahstract properties that have certain im-
t

1 -’
- plications i1f they are available. The abiliry tf operate on operations

is in evidence (at the earlier levels the responses relate mainly to

- - " w . 3

operating on elements) showing that the student does not need to relate

either the elements or the operations to physical reality in order to

- ‘ work with them. This ability ;o work without the.requ;rement of unique-
ness of the elemgnts allows‘satisfactory responses to be made to items
such‘as the following where the prdhléﬁbis to decide onrthe équality 5: -

' “

otherwise of pairs of expressions such as: .

-

-’ ‘ (1) a+b‘angl @+1)+b+1) ¥ - '
(2):a+band (a+ 1)+ (b -1) - - -
‘ R -
(3) (a+1) x(b-.1) and (@ - 2) x (b + 1) e

(4) (@=b) x (a+hb) and (a - a) x (P x b)

The leyel of difficulty here is a function Aot only of the degree

. . of abstraction‘of the elements but_aléo of the structureof the operations
‘ themselves.

Typically responses at this level show that the students can accept .

*

lack of closure and are capable of dealing with variables as such because

they can hold back from drawing a final conclusion until they have consid:
v . ) .

ered varibus possibilitiles, an essﬁctial strategy for determining a re-

A

«7 ' latignship as dihtinct\from obtalnihg a unique result. For 1ns£ance,

Y

- . . o




. 4
given V= L x W x H they would not only be able to obtain unique re-

sults by appropriate substitutions in the formula b:%‘would also be

£ able to discuss mééningfully the effect of various transformationg on
the fotmula, e.g., what would you predict for "V" if "L" was increased,
"W decreased aﬁd "H" held constant?

The inverse process 1s gseen as an'operation which is used to balance
or compensate without necessarily affectiné thé existenc; of an earlier
operation. As such it pessesses a reciprocal quality. For example, an
item such as - 7 ‘

. , 1f(p*r)c*q=(a*b)*q* " "
- hen p * ; = akp
can be handled (the elements P, T, q, a, b and the operation "%, with
its inverse, being'sui;ably defined) . o
- - . Respouses at this level show that'the student is able to see meaﬁing

in, and éork’within, an arbitrary well-defined but unfamiliaf system.

4 ' This ability’allows the stidents.to look on the propeositions and condi-

t-- -""' [
. tions themselves as the reality, and not to require a link with the phys-
-~ ical world prior to working on a pr:?ﬂiihwzfiij:e system 1s defined. .
® They are_able to work within a simpYe mathematIcal system and are capable

-~

of seeing inconsistetncies in such a system.

In summary they, extended abstract respbnses have the following char-

écteristics: acceptsnce of lack of closure, the use of the reciprocal op-

! 4 eration, and the ability to work with multiple interacting aﬂd‘aﬁstract
‘ . [
* '. 'sxstem . All these characteristics invplve a comprehensive use of the

»

given data together with related hypothetical constructs. c

f =

L e
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.Examples of Students' Responses in Two Particular Mathematicalf Items

;n the previous subsection the general aspects of the SOLO character-
_istics for different leve%s of functioning with mat%ematigal matgriaf
have been, described. 1In é nuﬁber of topics and/or concepts wﬁich are
ineorporated in most mathematics curricula, either implicitly or ex-
plicitly, sufficient researg? hasﬁbgen done to f£111 out the general sum-
mary given above. 1 have produced three major reports (Collis, 1975a, -
< .

b; Collis & Biggs, 1979)' to which the interested reader mféhtbrefer.

In this section I will give examples of rggponses at each level for two
different elementary mathematical items, rgsponses were tlkaﬁ from pr;to-

. ]
cols obtained from children of various ages, interviewed individually.

A kgmmary of the first protocol has been referred to in exﬁiaining some

N

¥
i

concepts in earlier sections of this chapter. . 4

-

Example 1. ) -
Question: 'What is the value of [} in[]J+ 4 = 97"

Prestructural

(‘\‘
s; "10."
- . v
E: "Can you tell me how you got 107" )
S: "10 1s my favorite number?“ —

-

Comment: irrelevant Tesponse; refusal to get invdlved in data given.

hd ’

Unistructural

S1: llSJ!l - ! h -

E: “Can you tell me how you got 51" ' - R
S: "5 and 4 are 9." k

Co
} ' .

"Could yau do it another way?"

|m
LE
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‘§: "NOO" LI . . N -
E: "Would it help 1f T did this; )
R [] D. 9 - 42" -
” o §: "No - that's a different sum." .
Coment;: direct forward closure, using table facts or counting and .

refusal to accept that subtraction could be related in any
way to an addicion statement.

- 1

. | Mulcistructural . : .
( §: "s." , . -
% E: "Can you'tell me how you get 57"
8: "5 and 4' are 9." - , ’
E: "Could you do it an:ather» way?" - R
E“F: "Yes, take 4 from 9."

"You mean you can do it 1iXe this, D =g - 47"

jtm

o~
>
I

"Yeg,"

(‘ N
: "Why 'does that work?" . . . N

/
| et

Y X
: "Because it gives you the answer."

-
jen

. - £ / LS
{ Comment ; ees that subtraction is' a useful procedure for getting
. ghe answer buc ic is simply another way and has no re-

lacion to a reversible universe notion.

Relational ~
: g: "s.» . i
E: "Can you tell me how you get 57" _ j .
5 "9 s::)tacc 4 giw;es 5." .
E: "You mean you can do it like‘ﬁthis, D-\e - 41
’ $: "Yes." + |
/ ~£2 "Why does that work?" ' .
- % =




8: "Well, you've got this number,[:], which when you add it
to 4 gives you 9. Thus if you want to find the other num-
ber you take 4 from 9.

E: "You are telling me then that I can set out my working thus: <
. O+4=9 -Q
= - - Il N
. 5: '"Yes." <
E: ™Now (:) & don't look very much alike to me. Can you .
- L ’ help me with any other explanation?" 4

After some discussion which hinges on S giving his original
explanation in different ways, E makes a suggestion.

E: ~S"Pt.u:t::l.ng in another line might help me - would this help yob
+ 4 =9
[:l<+ 4 - 4 =9 - 47

-
-

5: (After a considerable pause and careful consideration.)
"No, you 're just going to do a lot of work for nothing;
it ain t going to get you nowhere!"

Comment: sees the inverse relationship existing between addition and

\d subtraction pnd justifies the response quite correctly with-
in the constraints of the closed system. Does not see _any

point. in the suggestion for balancing both sides of the equa-

tion.
L Extended Abstract .
R S: IIS.N
3 N
E: *"Can you tell me how you get 57"
8: "9 subtract 4 gives 5."
E: "You mean you can.do it like this; [J= 9 - 47"
- 5: "Yes." o .
E: "I do not see much connection between [ ] + 4 = 9 and
. [J = 9.- 4; they don't look at all slike. Can you )
4 ‘ give me an éxplanation?"
S: (Without hesitation and without previous instruction S .

proceeds as below explaining as he goes.)
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+4 =9 o
¢ |:]+|?-4=.9-4 .
T ro=5%4-4 '
. ] =5+0
J =5

Comment: When pfeased, sees the original statement as a balanéed
logical system and proceeds to operate by appeazling to
appropriate logico-mathematical principles.

In this first example I‘have‘given a;Poat verbatim the‘interchanges
befween Fhf’ffperimenter and the student. The game kindé\eflifterchanges
were involved in the next example but I have omitted the full.details and
only set forth the significant student responses at each.leveit Ittneeds
to Le borne in mind at this point that the level of response is not nec-
essarily age/grade related. Although the individual's stage of cogyitive
development'probabi; sets the upper limit to the level of response, it

certainly does not set the lower bound.

Example 2. |

i
L
Question: "What is the value of [J in the following statement:
(72 £ 36) x 9=(72x 9 * (Jx 9"
» Preatrugtﬁral
¢ s ;
88: (1) "cCan't do 1t";

(ii) "Haven't learnt those yet";
{111) "I don't like long sums."

Comment: Ss give'an irrelevant response or refuse to get engaged
in .the problem. .

Unistructural ’ ¢

Ss: (1) "36 - there's no 36 on the right hand side.”
(11) "72 + 36 = 2" - S gives up at this point.

Comment: Ss reghonees usﬁﬁlly indicate low level pattern seeking
or ‘one closure and then the task is given up. (/ﬁ

-

[99.9

<D

4.
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Multistructural
8s: (72 +36) x9=(712x9) +(Ox 9
2, x9 648 +(0x 9
18 648 + = 2 1.e. 324
18 ———'-;"j
Hence [J= 324 oo . .

Comment: S8 perform a series of closures but lose the thread of
what they are after and get mixed up. In the above ex-
ample S closed off the left hand side to "18" without any
trouble. The problem arogse on the right hand side - "18"
was required, "9" was available, where was a "2" to come
from? - hence the mix-up. N

Relational ¢ »
8s: (72 £ 36) x9=(72x9 = (Ox 9 -
2 X9 648 s (0x9

18 . 848 + 9 = 72 :
then 72 + 4 = 18
Hence [J = 4
g
Comment: Ss perform a series of closures but are able to keep the
overall picture before them so that they do not get mixed-
up at a cruclal stage in the process.

Extended Abstract

Ss: (72 +36) x 9= (72x9) + (

‘ (7277 36) x 9 x9N (0Ox9

T ) e - a _ay

thus:
(72 + 36) x 9
- = (72 x9) + 36 ‘ ¢
= (72 x9 + (4x9) )
Hence [J = 4 '
Comment: The initial thinking 13 in terms of examining the relatjdn-
ships. These suggest looking at some reassociation the

elements concerned. ‘ No-closures are undertaken; all‘the
work 1s done by focusing on the abstract logic of the op-
erations and a complete bverview of the problem.
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Conclusion
-

It should be clear that focusing th educator's attention on re-

‘ . .
gponse levels and their structure has major implications for the edu-
Y LY

cational process which takes place in the classroom (Collis & Biggs, 1379). . ~

*

First, it takes. the emphasis off the level of cognitive development: gnd/or
. -

1Q, about which thQ individual teaéher can do very little. Instead, at-
‘tention is drawn to the structure of the child's respohse which, if the
teacher 1Is able to reEognize it, enables a dialogue to begin with a view
to raising the child's levei of responding - surely a desirable classroom
aim regardless of the c&ntent thter involved.

- Apart from its use In formative evaluation as indicated, the response
model gives the teacher a rational basis for normal evaluation of the

child's level of functioning jin aw &Fea. It indicates clearly that in

mathematics the correct answer can be obtained in a number of ways and
y ,

is not in itself sufficient to tell the teacher how well the child under-
stands what he or she is‘'supposed to be doing.
Much work needs to be done in mathematics education before the full

benefits of focusing ‘attention on the structure of a child's responses

\f'

can be attained. One field_where the concept can be put to immediate

*

use with good effect would be curriculum development. A series of norma-
L] .

tive studies would indicate the expectatlons which ghe teacher might have

—

of a normal age/grade group in terms of responﬁe compiexity, npgethef

with specifying the structure of the next level of complexity. This

:M . L}

a
€,
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knowledge would be of enormous penefit to schools and teachers involved

-

in school-based curriculum development, @

Finally, the notions explicated above’would suggest that we investi-
gate closely the initial understanding of addition and subtraction which
the chi%d begins school. Children do a great deal of learning before
they come to school and indeed devélﬁp quite sound problem solving skills
appro?riate to their own level of cognitive functioning. It seems Quite
illogical to ignore this and begin by imposing a potentially more effici-
ent adult model on the children - a model wﬁich the children have not EPE
cognitive capacity td come to termslwith, as some of the research refeéred
to fn this paper shows.

Children might well see the structure of the féllowing problem as a
"take~away": ''Mary has 8 balloons and she gives 5 to Mark. How many has
she left?" On the other hand: childrgn might view the following problem
as some kind of "matching": 'Mary has 8 balloons, Mark has 3. How.many
more balloons has Mary than Mark?"_ For the teacher to categorize‘;hes;‘:
as both mere applications of the subtraction algoq;khm could well be one

of the first steps towards teaching children that mathematics is not some—

thing one does or thinks with but a sequence of unconnected school-valued

skills which, they are led to believe, will be of use later.




(T3
ta

."-'3

4 - C .{”

. . References .

i . ¢ -
Ausgubel, D.P. fhe psychology of meaningful verbsl .learning. New Yorks

. - I,
Grune & Stratton, 1963. : ™~ b e

]

Bruner, J.G. The Process of edupation. Ca@bridge,”HAs ‘Harvard Uni-

versity Press, 1960. ' E : ’

Cgae, R. Personal cnmmunicétion,'l9?8. - . .

-

9 - s ‘
Collis, K.F. Concrete operationdl and formal oﬁ@?ational thinking

in school mathematica. The Australian ﬂg;heQAtioa Teacher, 1969, 25,

1
-

77-84. ‘ . r

Collis, K.F. Relationship betweenﬂtexg book orientation and mathematics

° - » .
achievement and attitude. St. Lucia: University of Queensland Press,

1970. a s

»
b

Collis, K.¥. A study of concrete and formal regsoning'in gchool mathe- e

&

matics. Australian Journal of stcholoﬁx. 1971,:2;, 235-296.'F

+

Collia, K.F. A study of cqﬁbrete.agd formal‘operatipﬁs in school mathe-

matics. Unpublished Ph.D. Thesis, University of Newcastle, N.S.W.;‘ -
. ‘ * . r - .
1972. _ o .

Collis, K.F. A Qtudy of children's ability to work with,elementary mathe-
. L ’ . '

matical systems. Australian Journal of Psychology, 1973, 25, 121-130. -

Collis, K.F. ngniti§e dggelopnent and mathematics ledrning. London®

Chelsgea Coiiege University of Londpn, 1974, ‘ . «

Collis, K.F. A stud& of concrete and formal operations in school mathe-

matics: A Piagetian viewpoint. Melbourne: Australian Gouncil for

— . - -

Educational Research, 1975. (d)




45

Collis, K.F. The development of formal reasoning (a research repott).

N.S.W.: University of Newcastle, 1975. (b) \ ) v

Collis, K.F., & Biggs, J.B. C(Classroom examples of cognitive development

phenomena: The SOLO taxonomy. Hobart: University of Tasmania, 1979.

Wi

halford, G.S,
learning.
1977,

Hubbard. G.L.
1963.

‘Hubbard, G.L.
1964,

Hubbard, G.L.
1965.

Hubbard, G.L.

,;“‘.

Cognitive developmental stages emerging from levels of

Paper delivered at ISSBD Biennial Conference, Pavia (Italy),

-

-

Humbers in relationship Vol. 1. Brisbane: Academy Press,

A

3

Numbers in relationship Vol. 2. Brisbane: Academy Press,

. -

- Numbers in relationship Vol. 3. Brisbane: Academy Press,

-

Preparing the junior secondary student for formal mathematics.

The Australian Mathematics Teacher, 1971, 27, B81-87.

N *

Lunzer, E.A. Formal reasdning: A re-appraisal. Keynote paper delivered -

at the Jean Plaget Socilety Symposium, ?hfladelphia, spring 1973.

* Pascual-Leone, J.A. Stages andtdécalages: A neopiagetian view. Paper

. delivered at ISSBD Riennial Conferende, Pavia (Italy), 1977,

. Peel, E.A. The pupil's thinking. ~London: 0ldbéurne, 1960.

- -

-
r




ASSOCIATED FACULTY

S

Thomas P. Carpenter . Cora B. Marrett Barbara J. Shade

Professor’ Professor Assistant pProfessor
- Curriculum and Instruction Soclology and Afro-hnnrican Afro-American studies
' Studies .
W. Patrick Dickson . Marshall S. Smith
Assistant Professor Fred M. Newminn Center Director and Professor
Child and Family Studies Profesgsor . - Educational Policy Studies

Curriculum and Instruction and Educatiqnal Psychology
Fred N. Finley

Assistant Professor ’ Wayne Otto ol Aage B. Sfrensen
Curriculum and Instruction Profsssor ) Professor

. : . Curriculum and Instruction Sociology
Lloyd E. Frohreich

Professor ) " Penelope L. Peterson James H. Stewart
Educatipnal Administration Assoclate Professor Assistant Professor
Educational Psychology Curriculum and Instruction
Maureen T. Hani% Y
P;gfesaor * W. Charles Raad B. Robert Tabachnick
iology Professor Professor
, . English and Linguistics Curriculum and Instruction °
Dale D. Johnson and Bducational Policy
Professor Thamas A. Romberg ' Studies
Curriculum and lpstruction Professor ) ’
. ' Curriculum and Instruction .Gary G. Wehlage |,
Herbert J. Klausmeier Professor
V. A, C. Henmon Professor Richard A. Rossmiller dh:$1cu1un and Instruction -
Educational Psychology Professor - -
) Educational Administration KIax Cherry Wilkinson
Joel R, lLevin - Asgistant Professor
Professor . Peter A. Schreiber . Psychology
n Educational Psychology Assoclats Professor ,
English and Linguistics Louise Chsrrxy Wilkinson
James M. Lipham - e - ~ hesociate Ppofassor
Professor ) Ronald C. Serlin : " Bducational Psychology
Educational Administration "Assistant Profassor
. ) BEducational Psychology " steven R. Yussen
o, + Profassor
< ' ‘ Educational Psychology
) —_— . .
S .52 -




