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:

This paper is a revision of,an essay prepared fora.SeMinar on

:
Initial Learning.of'Addition and Subriaition held at the Wingspread

4

r,
Conference Center in Racine, Wisconsin, NoVember 1979. A brief

. ,

version containing some of the elments of this paper is Chapter 16,

"The Structure of Learned. Outcomes: A Refocusing for Mathematics_
e 1

'Learning"'In the book, Addition and,Subtraction: A Developmental
-

Perspective, 7. P. Carpenter, M. Moser,. and T. A.:Rombeg (E(11.),

Lawrence Erlbaum Associates, Hillsdale, New Jersey,.1981a
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The Development of an Idea

first :part of this paper, I will describe the evolution .

of.' my ideas about children's cognitive development and mathematics

learning. I will, trace thecourse of my thinking beginning with my

days as a classroom teacher, when My task involveio series of practical- .

. .

. , problems:to be solvedi'through idescriptive phase where I put the

0oblems ofmathematics learning4ihtoa Piagetian de4eippmental

framework, to an explanatory phase in which I related the developmental

. . .

model' to certaininformationlprocessing concepts. Recently, in

attempting to address the
:'

eaplier're earch more directly-to the
. . : i 0

0
r

practical-problems fac "by te/4hers curriculum designers; I
.

, .

have turned to o,response model and (with . B: Biggs) haVe devised

,.. axonomy,,Which is concerned with the stru ture of. learning out ones.
:. . f-

parngthe'1950s I taught for five y ars in elementary sch s
. /

, .. .

__:,,,and fivefive years in high sUiools,in Queensland, *tralia, and it was'
..,

.
-I. .

i/"- the e*periences of those years Which awakened.mynierest ins making
'A( . -

careful 4tudies of.the'way children think. At, was fascinating to

. .
.

.. .... . .

see the kinds of mistakes that children made and to see the same
.

.

mistakes' repeated by different sits of children of about the same age,
. , ,.

.

.

in different schbols, and in different years: The similarity between
. -

# ,,

the mistakes made in the same tathemItical topic was not` - longitudinal,
-..

depending on who-was' teaching, but was rather a cross-sectional,'Wom-
.

..,

teacher variable. ,This phelomenonwas:particulatly-noticeOle,in

topics where children commonly had difficulty, icor example, in-the &

elethentary school, it} fractions, decimals, and long division: Thee

1
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all seemed to produ.ce, year after year, the same kinds of-error. In

the secondary school, the solution of simple,.simultaneous, quadratic,

and trigonometricil equations all produce0.6aracteristic mistakes

year after year. What was even more-remarkable for a young teacher

wag .that no matter how one changed one's teaching method or textbook,

the problem continued..
<
Teachers in thosi dais often tried to shift

the responsibility for the mistakes to the children. The problem

existed because the children concerned were inattentive, careless,

or dull and thus, apart from tinkering with various ideas on classroom

motivation, nothing mach could be done.

Thig.tesolution of the problem was obviously unsatisfactory quite .

.r-
apart from the fact that some of the generalizations, such as careless-

.

ness,were patently untrue. Even with my limited experience at that

1

time, it was clear that children were very rarely careless. Indeed,

most seemed to take a great deal of trouble to try to follow the

procedUres they were taught. I childrenn solving problems ildren appeared

to, work very *lard at thinking them through if they found them meaningful.

4
.

Although their solutions (or teacher -requirei'answers), would be incorrect;

there was little justification for the label careless, in the sense of

lacking care.

,My Interest in children's mistakes led, towards the end of the

1950g, to an interest in teaching children who, althoUgh riot dull,

_were not.succeeding at mathemakicsas taught in the classroom. This

experience deepened my conviction that the way children were being

caught mathematics was the reason for the kinds of mistakes which they

were producing.

V
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Talki ,

ng with individu hildren about their mathematics made it
. .

clear i.hai'a lot the common istakes were due sipply to the children

having a misconception of the Matlmatical concept they were dealing

with. .This,misconception was often easily derived rod a standard
\

classroom interchange. Fo'r example, t e,child in the.early spges`Of.

learning the subtraction algorithm mightsbe having trouble in getting

the numbers the right way around and the iiacher says, '"Can't.,You see

that you always take .the smallest number ffom the biggest number?"

'The child adopts this rule of thumb. Some time later the child is

still-usiiig the rule and getting into difficulties because he or she

is unaware that the standard algorithm, involves `subtracting the bbttom
$

number fromthe top number. A fl.Irther source of misconceptions lay .,.
..

. P . 4

in the way children were often taught certaintopias. . For example,

.

after a very Wrief'introduction to the concept of *Oa and its measure-
,

, . -..

went, the children spent a lot of A multiplying two numbers together
.

,..

to find the area of a variety of rectangles. When they regularly

succeeded in Ehis task, it was assumed that they understo?d the.
. 4, .

$
.

;
.

concept of area and its measurement,',Only'at a later stage when the
1

,children were given non-rectangular figures did it become apparent -

. -..

4 that their' understanding of what they were actually 'measuring in

terms of the product of, the two numbers was not at all clear (Collis,

1969).,

The kinds-Of experiences described in the last paragraph, along

with the arrival in the early 1960s of the "New Math". program,from

the United States, stimulated Ix interest in investigating the problem

much more closely. The New Math texts from groups such as School



Mathematics Study Group

normal children bf 13 or

' children mould have been

expe tince.

(SMSG), whiCh presumably were to be used with

14 yearS, hadexpectations quite beyond what

able to handle at that age level, in my,

At about,the same time in'the early 1960s,) was fortunate to

meet up. with G. L. Hubbard who had the same kind of interest in the
,

.
.

learningilifficulties in mathematics that apparently average childr1/

..were having. Moreover, Hubbard had the resources available to explore

this intefest. A team was formed, consisting initially of Hubbard and

Calls, and we arranged to teach experimental classes iz certain private

schools in'BriSbant, Queenaland, *Most of the classes consisted of 30-40
.

`girls.' The classes ranged in-level from the early primary school (most
4

A

of the girls were about eight years old) to the middle secondary school'

level (gtrle about 14 years old). A team teaching technique was used

in which one of the teams took the major responsibility for the class-
.

room work for a particular lesson, or' series of lessons,' while the

other.observed. A person was also engaged as a recorder, This

person' task was to record significant events in the classroom and

to make general notes on the in which the'Iesson proceeded.

lithe initial stages of the w rk,we attempted to follow the

children's reasoning wherever it led Thus, we Might intr ce a,

topic with a particular plen.of development in mind but lind very
4 .

quickly that the children's interelwas in another, non -triv.ial
_

asp---Ztt-ifthe topic. InsteadvOf persisting with the original plan,

we would switch to the line of thought the children were interested

in and try to folio it through with them. For example, matchboXes

s
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were introduced with a view to using them as informaiii measuring units.

The children, however, became interested in the notation on the front

of the matchbox which said "Average contents fifty." They wondered

what this meant, so the succeeding lesions and experiences resulted

in the chilAen looking at the statistical aspects of "matchbox" mathe-

matics. It was some few lessons later before the matchhox came back eo

be used for its original purpose of an informal measuring unit. The

kind of teaching approach outlined above relied heavily upon our

experience as teachers and our ability to see the structure of elemen-

tary mathematiCs as a whole.

It became:clear, as the experimental teaching progressed with the

various age groups, that primary school and early secondaryschool

mathematics had to be structured so that the children could see the

interrelationships between the various parts of mathematios for them-

selves if they were to get educational and practical value out of

their experiences. In addition, it became very obvious that the children.

were able to reason with quite rigorous logic provided one did not

exceed -the level of logical functioning of which the were capable.

This meant, in the case of the children in the.experimental classes,

that formal abstract logic had to be avoided and reliance placed on

the concrete logic of classification, seriation, Ind equivalence as

described. by Peel (1960).

' When the experimentarteaching first start we did not have

any particular learning or developmental theory in mind. We were

operating on 'the basis of our-own experience teaching childrpn of

these ages and our knowledge of the structure 6f elementary mathematics.
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However, it became clear after several months of experience with the

children that this base was not sufficient, especially as.the mathe.

4 matical structure and the technique used to develop it seemed to

interact substantially:with the children's cognitive functioning.

In order to knOw %here the project ,was headed and what needee to' be

done next, it was necessary to find some kind of theoretical framework

lippon'which to base decisions on both teaching technique and program

components.

After'considerable reading, thoiht and debate on the matter, we

decided that themost satisfactory theory, abfar as teaching was

concerned, was one based on the Piagetian model because it seemed

to take the most account of the children's arm of logical.- reasoning.

For the structuring of the program, Ausubel's theory of the atquisitiOn'

of meaningful verbal learning (Ausubel, 1963) was linked, with the

. .

Piagetian model (Collis, 1970). This composite model was.used to

an the further teaching of mathedatics to the experimentaleclasses.

/' .

From the work of tbo e years, there were two main -Outcomes.

First: a series of texts was itten by Huard between 1963 and

I cOntributed a number o teaching noted for.the teachers' .

editione.of these texts. UnfortUnately, the .0.1cts (Hubbard, 1963),

1964, 1965), which wire designed for the'earlyisecondary school, are
.

now out of 'print but'they were used in a nuMbef of Queensland schools

for some year after their production. The second significant

come was a formulation of a general theory of teaching mathemAics

to children from'about eight to fourteen years of age. This .

formulatiod hai been described in various places (e.g., Collis,
.

1'1.
1 \
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1969; Hubbard, 1971). In addition, the broad summary of.the theOTTT--lb

-

Is'set out in Collit;\,\ 1975a.

By the mid 1960s,\Hubbard and I were beginning to find divergent

interests. Hubbard wan ed'to'continue-with the same,experimental

teaching technique and 'lir he insights obtained to design.curricului.

.

materials and publish texts. I had become more involved in the ways

e, .. ,

in which children were thinking; particularly, with mathematics items.

In 1968 our team-split up. I accepted a position at the

University of Newcastle (New South Wales) to do research in cognition

. .

with, he psychology department; using mathematical' items and the

Piagetian Model as a theoretical framework. This turned out to be

a happy combination. The mathematics educators saw'the items we had

developed in the course of solving the problems of teaching mathematics

as having direct relevance 5o the classroom and the programming of

mathematics courses; the use of these kinds of items was new to most

of the psychologists I came in contact with and thus threw a different

light on their views of problems of cognition.

In the late 1960s and the early 1970s, I conducted a series of

expeiiments with children between the ages of seven and seventeen

years with the object'of teasing out the Piagetian developmental

stage levels, or' he constructs underlying these, using items involving

elementary mathematics. The tests were both group and individual.

The former were intended to provide normative data on a croas.section-

of children from seven to seventeen years. The latter were more in-
,

depth clinical studies meant to track down the way the children

were arriving at their result's and what this implied about their

v
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level of logical functioning. The result of these studies are published

in a number of placest(Collis, 1969, 1970, 1971, 1972, 1973, 1974: 1975a).

It seems appropriate to summarize the results of this part of the

work, however briefly, at this point. The series of studies clarified

some of the basic Piagetian conceptsand defined the different Piagetian

stages operationally in terms of mathematics items. The differences

between operating at different stage and sub-stage levels, it was fOund,

could be described in terms of the following constructs which obviously

ale not disjoint' but interact with one another:

1.' Complexity of mental operatiotrinvolved; This refers to what

the child has to retain in the working memory while he or she deals with

.

the problem to be solved. For. example, to solve 4 + 3 = 0 + 4 does not

raquire as much "mental effpre as 7 - 4 . - 7. The former is most.

frequently done correctly by the younger children by using a pattern

completion strategy which makes minimal cognitive demands; the latter.

requires at least two closures and a decision to. add where subtraction

, .

is strongly suggested by the ford of the item.

2. Abstractness of elements,involved: The increasingly abstract

nature of numbers as they become larger is a good ex ple of this notion.

Small rigmbers, less than 10 for example, are very eel to the child AP

in the early elementary school, but large numbers such as 289 are quite

abstract and hence without substantive meaning. The. young child can

not visualize what such a large number represents. Even further removed

from reality in the'abstraCtion process is the use of letters to represent .

IL



variables; the ability to work meaningfully with this concept does not

appear until well into adolescence.

3. Ability to handle abstract systems: This refers to the

ability of the child to solve problems given a set of rules and

definitions; the defined elements of the problem together with the set

of rules have no necessary reference to the child's physical world..

Many topics in arithmetic where children are asked to deal with elements

that are not within their experience are of this kind. The topic becomes

a set of arbitrary rules which are-applied to abstract elements. For

example, topics like stocks and shares, bank interest, profit and loss;

commission and, so on are almost custom -built for this kind of criticism

although'our methods of teaching can arrange for any mathematical topic

4 N -

. to conform to dal model.

4. Ability to operate on operations: The.use of the inverse in

solving equations can be used to illustrate this notion. Prior to the

iormal-level the children donot use the inverse in a reciprocal manner,

controlling an operation and maintaining a balance 'irkthe system
,

at the same time. Instead they tend to ust a negating, mechanism which .

is related only to that part of the system upon which they are presently-

,

foCusing. For example, in solving the following equation, x + 4 = 9,

the child using the negating mechanism will reason, "Iiinussing 4"

undoes "plussing therefore, if x + 4 = 9

then x = 5

and will not see any point in

using any intermediate steps.

1 r-
-4. t..)
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The child who uses a reciprocal strategy will, if pressed, see

the value.of several intermediate steps, the first one t'contr cling"

the operation *tile keeping the original statement in view and

balance, thus: x + 4 = 9

x+ 4 - 4 = 9- 4

x = 5

5. Acceptance of lack of closure: This construct refers to the

level of the child's ability to work with operations without the

necessity for closing the operation. In early primary school, this

ability is 'got very well developed at all. The child insists on closing

an operation such as 2 + 3 inmedia ely before any further con ideralion

is taken; at a slightly later stage the child is able to dear with the

operationsand reason with them as long is there.is a guarantee that
-As«;

thp operation could be dlosid to a unique result at sn y particular time.

At the'highest level of functioding the adolescent is able to resist

closing the operations and keeps them entirely open as long as necessary
;.

to come to a logicalcociuSion.

6. Mul tiple interacting systems: This particular construct was

explicated by Lunzer (1973) when he was, distinguishing between simple

and complex systems. In the present context-it refers to the child'P's.

ability to handle satheinatical formulas at. different levels of sophisti-

cation. For example, atthe junior high school level, most children can

use a formula'such as A = if x W by realizing-that, given the dimensions,

this formula will enable a measure to be made of the area of !Et

4o
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rectangle. This represents essentially a'simple system of covariation;

4.
thm,area changes as the rectangle changes and "L x W" changes as the

rectangle chtnges. What cannot be done at this stage is to relate

changes in one or more of the variables A, L, and W to changes in one

or more of the others. (For example, "If A is to stay constant and

W is to be changed in some way--doubling, taking a fraction of the

orlginal--what must be done to the length L to satisfy these new

conditions?")

The research up to this point (the early 1970s) gave a useful

description of the stages of cognitive development of the child using

items from elementary mathematics. However, no investigator could be

satisfied with a mere description of how things worked, no matter how

useful the, descriptions wate-4n termsf making curriculum and teaching

decisions. My_ next step (about 1974) was .to begin looking for an

explanation of the stage. phenomenon.

An Explanation of the Stage Phenomenon
0

During some early studies an interesting phenomenon appeared.

111

Early,elementary school children eeemed capable of. working meaning ully

with mathematical items which'involved two elements and one operati n

(for example, 3 + 4) but they seemed unable to work successfully

when a further element and operation was introduced (for example,.

2 3 4). Success with this type oritem came a little later. 1

When tested individually the younger children appeared enable to

retain all the necessary information long enough to, process it.

1 rAr
-A. i

Rio.;
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A typical interview with a seven year ld went dike this:

Experimenter: What number does 2 + + 4 equal?

Child: 2 + 3 = 5 and (pause) What was the other number?

Experimenter: I said what number does 2 + 3 + 4 equal?

Child: Oh yes! Now, 2 + (petite) whai,ia the sum again?

A similar pattern of responses was obtained with more complex0
. .

exercises through the higher stages up as far awformal operatibhs.

For example, in another study an eleven year old girl was given the

information that y,= 365

and that, y + 289 = 289 +,365,

and is asked to say whether the last statement is true or false and to

give a reason. The child showed every ,sign of being confused by,halang

too much information to take into account. In the case in quhstiOn

she decided to and up. the twoViambers on the right hand side, 289 and

365. Having worked this out she then alternated her. attention between

this calculation and the left hand side of the equation mustering

over and over again the statement, "y + 289 equals." She ignored

altogether the information, y = 365. She finally became cokpletely

confused and gave'up. The same kinds of symptoms can be demonstrated

.with.older children of fourteen or fifteen years Sf one makes the

questions more complex still. The children in each case iholl signs

of cognitive strain and repeat/Partsf the problem aloud. They

s'eem to indicate a difficulty in bringing together the relevant bits

of information long enough to allow them tobe processed*. In all

1.

/ r.

1

4
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cases, pkotocols for the individual students showing this problem in-
. ,

dicate the$ they are behaving .as if-they are exceeding their particufar-

capacity to\process data. . .

., ,
.

.: ;'-
Let us examine a possible model tO eiplain this behavfor. .Suppose

, .

the circle bel represents the actual space available for processing .

/

data. Let us 19 k at the child's problem at the early elemeptaryechool
.

stage and see w haik may be happening. First of the child is telokd . ;-

\ 4 . .

,.
....1.

\\o enter into the prcicessing space the.number' 2..2 being to the child not
4. .

cA
.

.. .
an abitraction, a number that Axtsts in itself, but two real things that

.

have to be kept in the mind's eye,as it Were, to give meaning to the
. .. ... ., .

.

; .

symbol "2." likewise the next piece of informs is an operation "plus"
-

. ,.
. . .

' which doe4et have an existence.of its own but also has to represent some . .

,

"".. )

physical act of putting together. Then comes the "31 which also con' ists

of three things and mdst be treateelike the "2" already entered... These

three pieces 9f data
I

come together and give us the totpi5 which' he
- .

child attempts to retain in the working space"togetheryith the "2" and.

the ''3" and the "plus." The diagram suggests that, the space isnOut fully

-

occbpied. Any attempt to add further data results in what is called an

overload'in calculator terms. Whenhis overload occurs putting in for-

ther information means that some information has to go out:
---

A year or'sCi'later at the next substage of development..the child is

able to cope with'this kind of problem. Why? Evidepce from fadiviSual

interviews suggests. that the differeMee lies in the 'fact that,"by then,

1,9
.
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./
the small-nurberS,"like the-"2" and the "3," and the operation of addi-

,

,
'4%, giohave become entities in their own right. The child does not have

1
f

4.

10 keep.them in the mind' ,.eye or relate them to some physical pheno-

. . , .

,:manon -Ahey can be treated as things in themselves and thus occupy

y very little working space. This means the child at this substage can

handle several small numbers and ecaumber ofoperations ,y closing in

. .

sequence. This kind of explanation fits all the aspects of the situa-
.

ttfon.I have observed: = the oral repetition of tthe data,' the continual

refocusing on dinerent parts of the data, andthe physical symptoms of

/

* .

z.r

strain and confusion.
.s

There ata;leveralAsodels; ditiering,in detai but compatible over-

. '

r

e 4

whiCh,not only support these_intUitions but also satisfactorily ex-
.

plain the stage 4evelopment phenomenon. Two of these models were pre-.

sented' hy their.authors Wilford (1977) and Pascual-Leone (1977).who par-
.

ticipated with me in a symposium on stages, in thinking held in Pavia-
.,

(Italy) in1077 :A thirdmodel, the one that I'wish to use in th s
.

.

piper, is,otepresented by Dr., Robbie Case of the Ontario Institute for'

. - :
Educational Studies. Rowever, we will come back'to the Case theory-a

.

. -
A.,little later in -the paper. ,

,

. A Change of -Focus
. . s. ...

. . e.
1 ' .

A Response 14,64e1
-

)
'

4'
. .

So7farthis paper has outlined thegenesis,of my ideas from the
.

.. ...-

time -of typical clagaroom experiences thiOugh the development of con-

structs which described the phenomenon in terms of Mathematical items

r
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on to a possible explanation for the phenomenon in terms of the informa-

tion processing model. L will now desdribe my more recent thinking in

the area.
-7 t

About 1915 I set out with Professor J.B Biggs,, of the University

of Newcastle (N.S.W.) to gather. together the substantial amount of work

'which hid been done

' of deVelopment. In

in'the classroom on he.Piagetiannotion of stages

particular_EA. Peel and'Ilis students at the Univer-

sity of Birmingham had done a lot of work in conten areas as diverse .

as geography, history and English literature.. Other writers such as
\

Shayer of the University of London h4d done:-work in sCence. Biggs and

. I set out basically to find examples of levels of cogniTe development
re

Iin the major teaching subject areas at' high school and t primary school

so that these examples could be made available to teachers' Weoped,

for example, to help teachers resognite student errors as developmental

phenomena rather than merely as carelessreepa.

We also fIanned to produce some sort of a chgcklist for teachers so

that th could code their own students' responses in te meof .evelop-

mental level; However,:as anon as the literature review had beg n and,

more significantly, when we began giving some testsof our own to wild

on the available,data, several problems surfaced, threepf which a out-

4
lined below.

1. The criteria used by,tfie various researchers fox determinin

different developmental stages varied considerably across content are

Inverse operations and multiple, interacting systems, for instance, i

quite clearly Useful in logico-mathematical tasks,.did not seem as sign icant

I
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in other areas of content, such as in English or =history. his does not

mean to say that they could notlie recognized there but rather that the
. .

authors who were responsible for the studies ainathesejtreas did not seam

.
to take= them into.account.,On the other hjx4ernmin areas in English

,

such as "quality of expression" seemed to,,besorgSnIzed in terms ot

teria which would not readily apply in scienCeorloathematics.
f a .f r

.

2. When testing subjects on items frbikatrerent content areas.we

found that the well known Piagetian clricept-o' dicalage was very much ,

.`o

the rule rather than. the exception. finding seemed at odds with
, t

bo,th the developmental approach and ehesidea 04evelopmentaltstages.

Silhe same student on:differebt occasions woUld:mal-Y t4rie and tour Lige;

". in,the Same content area. 'Age ranges fqt typical responsel seemed too
\ . .4.

gross a measure to'accOMmodate the traditiOial, ,stage deyelopment scheme.'
-..%,, . '3-- -

3- Another puzzling featuriwhich aroSe:waOnconsOtencies in the (
> . . .

. >0 2 ..... ;P' E. i
same student's response upon retesting 'am thestme Atem,. A student might'

, A

$

respond'at what would be'termed a middleconcrIgta leiel and then,Ighen
i

_,..,,, ! . 4-- s '
. . .. , a . t V" e ' .

retested some time later, give'respOnsea'onen pOo Weis higher'(or
4 4 4 r

4 f.i 0
° °' . 1 4. Os

even lower) than the level at whigh;the mateitfl,had been previously en-
: .. .. g ' It : i"s .

, "4-,
coded. J 4.

4: ' .. l'' ..0 ..

. . k ,
. . v .

Considerations like these caliedinto 4uestioh .the./aealrok catego-
. ...,x. ,

.riztrig students into divelopmental levels on,Ithebals of th r respons es' st. 4 t"' ..
.

.5o,particular items in particular content areas. Thus, thef, fiad
,, . , i

ev
"go shift away from a response implying a stage Ordevelopmentto ondid-

t-

-'-'

%.*.eralon.of the quality of each indiviadual response per se: It ;geared
. -

. ....
.

1.. ' ;1/4. ,
. .

;
%

s. I
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..., . ., . -
that. two phenomena were involved, not one as- &een. The t'. .

\1 1. , . . t: 1. A

first, underlying phenomenon ilhich defines the_individual's cognitive(
. '

1.iiaits might be tesmed the hypothetical cogditive structure (cf. Tiaget's
.

4
.

.

A 0 /
Stfget of:Cognitive Development). The-second, which would be a function

.
-, .

.

not Only/of the hypothetical cognitive structute but also of experience ,

in a content area, learnini opportunititi, and the person's present and ' .

1!"-

past motivation might be termed the structure of. the learned outeom (ISOLO)

& Biggs, 1979).. The former might be likened to the old idea of>

the IQ which, was a measure of intelligence and considered permaneht, The

latterlay be'consldired to be like achievemenvon a particular test

.17,fticufar time.% . AfthOUgh the two constructs are closely related,
I

former is relatively fixed and is virtually immeasurable and presume
A

unalterabf (at least in the short term) by whet teachers do, while tfe
, .

latter is flexible and measurable by the teacher. In- fact, it can-be
.

used by the teadher to guide the design of both lessons arid programs.

,

Let us look briefly.at the optimum achievement of the hypothetical

cognitive structure (HCS) at the different stages of development and then

relate these .to the SOLO levels.
'..N,. r .

.

Pre-operat onal HCS Stage! This is the stage that in the Piagetian

model is nonlogical'or prelogical. These children typically cannot con-

serve and so mathematids at such is beyond them but there appears to be

real value in encouraging them to work at premathematical exercises. The

ecitivalent level in the SOLO Taxonomy. is called prestructural. Here the

,:r!sponses typically indicate that the child has no real feeling for what,
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one would call mathematics; very often the responses they give to mathe-
.

matical
)
tasks are irrelevant or tautological.

The early concrete operational HCS: An elementary basis for a con-

crete logic of classes, differences and equivalences now exists. Con-

servation, which'involves elementary use of the reversibility principle,

IOD

seems to be well established and there is a basis upon which to develop

some sort of logical, even mathematical, structure. The equivalent level

in the SOLO Taxonomy is termed unistructural. 'At this level children

asked to form a conclusion on the basis of given information will select

one. piece frail all the'given data and immediate'' come to a rapid conclir-,

sion. In mathematics they demonstrate a necessity to dose any operation

quickly and they find-it difficult to find meaning in expressions that

have more than one operation with small numbers. In solving any problem

they'tend to go forward from the starting point and then only one step.

For example, in solving the equation y + 4'= 7 they will give the re-

. sponse 3; the,reason involves some sort of counting on procedure. Typi-

cally they will not see that subtraction is a useful'-procedure for solv-

ing the problem.

Middle concrete operational HCS: This is a period of well estab-
, 4

lished concrete logic of diffeiences, classes and equivalences. Chil-

dren at.this stage do not see interrelationships or, at least, do not

consider ihterrelationshipsin the data. Reversibility of operations

is available to,them. However, they 'demonstrate that their reasoning
.

N."
. .

----- is clearly copfined to the physical world of the "here and now," despite
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indications of a raised level of abstractfon in that they can u4 more

19

operations, larger numbers, and more propositions in verbal prob ems,

the equivalent SOLO level, the multi-structural response, indicates that

the child comes to a conclusion on the basis of a sequedce of disrete "

pieces of information selected from the data. In mathematics, se uences

of closures are used meaningfully if the numbers Ape small, altho gh if

large numbers are involved the number of meaningful relations or pera-
I

tions that can be handled is consequently reduced. The child sees to

lack an overall view of the'interrelationships betweed the operatilans

and elements in a 'statement. It is as if the statement tepresentsta

series of instructions to be performed in sequence. .

Concrete generalization NCS: this is the high point of concrete

operational logic. The most significant feature is,perhaps an ability

to generalize from several concrete instances,, although no abstraLt hy-

I
potheses are considered and thus the generalizations are often inadequate.

The student indicates an ability to interrelate given data but not to go

outside it, The equivalent SOLO level is called relational. At this

level the child's response indidates an ability to relate one part of

a system to another in a quite concrete way. For example, in terms of

numbers the child is able to'deduce that 273 x 471

471

is equivalent to 384 x 273

384 butjpes not

realize that this is an example of the abstractiom,_a el, a x m.

b
.

awe
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The line of reasoning can be easily verified by asking the childto

prove that one statement is equivalent to the? other. Typically,wthe
#

proof will involve working out the numerator and.dividing by the denom-
,

inator in Ader to achieve'a unique result which happens to be the same

for both statements. Responses at this level indicate that the chili.
.

can keep track ofthe key interrelationships within a given numerical

statement.

FormaloperatiOnal stage HSC: This is clearly associated with ma-
,

ture formal logic. The adolescent at lyel:of functioning has the

ability to take all the data and their interrelitionshiis into account

after obtaining an overview of the problem and constiering.swappropriate

abitract hypothesis or generalization. This hypothesis or generalization

is tested against the given data and against other con4deratiots,which .

may not be given but whichiAle germane to the problem. The equivalent'

SOLO level involved is the extended abstract response. Thies level of

4
.response revealS aniability to deal with complete abstractions, so long

,

as they are within a yell defined system. This last is the hallmark

of this level of response. Variables are no problem and do not need

reference to physical analogues; mathematical and logical'operations' ,

take on a reality of their own; balanced systems such asipquations can

be overViewedand minipulatedso that the syptem remains in balance.

Information Processing and the Response Model

Let us now consider how this response model fits the information

processing paradigm which was earlier hypothesized to explAin the stage

N,
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development phenomena. We will use the Information Processing Model

put forward by Dr. Robbie.Case (1078).

Case's theory fits the general Piagetian model. with regard to both

like content and process of development. His major change concerns the

'way the general developmental factor is conceptualized. It is conceived

as a quantifiable level of working memory rather than as a general no-
.\

tion of "operativity"; even this change is not incompatible with the

Piagetian model. Case's basic position can be summed up in the follow-
,

ing five. postulates:

I. that children pass through a series of sub-stages within each

major stage (of development) in whiOhotheir strategies or rules

for approaching the problems charadteristic of that stage become

increasingly complex; >

2. that one necessary condition for strategy evolution is exposure

to information of relevance to the specific domain in question;

3. that a second necessary condition is the acquisition of suf-

ficient working memory to coordinate the information of relevance

to'themore advanced strategy;

4. that working memory capacity is Constant but that there is a

gradual increase in functional working memory within each stage,

due to the automatizationof the operations which are character-

istic of that stage;

5. that once this functional working memory reaches a critical

10e1 within each stage, the way is paved for the assembly of the
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higher order operation which underlies the strategies forthe

next stage. (Case, 1978)

These postulates clearly refer.to an individual's general level of

cognitive develOpment, not to the structure of a specific response in

a particular content area at a certain point in time. Equally clearly

the two domains are closely related. Especially in relation to the

learning of elementary mathematics, it would appeirsuseful at this stage

4
to link the Case postulates to level of response. In teaching mathemat-

ics or in organizing the mathematics curriculum one is dealing with the

structure of the learned outcome rather than with the individual's gen-

eral cognitive functionij. One has to assume that the basic substrate

strategies about which Case is concerned are developing and use them to

determine the uppir level' pf the response expectations. One must be

aware, of course, that what is being dope-in mathematics is probably

affecting the basic level of general cognitive functioning.

Let us examine the postulates in relation to the respOnse model

outlined earlier, keeping in mind that one of the important functions

of the teacher of elementary mathematics is to encourage students to

respond at the highest possible SOLO level.

Postulate 1 can be seen operating ttitroughouo the increasing con-

s
plexity represented by the continuum from Unistructural 'to Relational

responses in the area of numbers and operations. For example,

'

(a) each level of response relies upon closure at some concrete

level but there is a-steady increase in the complexity of the way in

which the concept is used;

A*
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(b) the only mathematical operations which can be handled success-

fully are those whfch can be based on some concrete analogue such as the

four operations of elementary arithmetic;

(c) there is a'gradual Increase both in the abstractness of the

elements able to,be 'used with understanding and in the number and inter-
.,

relatedness of the operations which can be meaningfully used with those

elements.

The follontng diagram may make our point more clearly:

2+ 3

2 + 3 + 4 478 + 576

273 x 2711
473

Unistructural - one operation,
closed immediately

Multistructural - multiple op-
erations closed in sequence

Relational - multiple operations
and their interrelationships
seen within an expression

The different levels of response arg cumulative. Each one adds
Ir,

something to the previous one, until the greatest complexity attainable

at the particular stage of development is achieved. The developmental

stage spahied by the example given is the period of concrete operations

and covers the SOLO levels from unistructural through multistructural

to relational. '

Postulate 2 bears on the fact that to expect higher level responses

in mathematics must require that the individual has extensive experience

with both the content and process of mathematics. The diagram above

illustrates this quite well. A child needs extensive experience in re-

sponding at the unistructural level in order to ensure the numbers and

the basic operations become real (i.e. concrete) things in themselves.

23
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In other words, extensive practice is needed to achieve a degree of

automatization which will allow movement to the next level of responding.

At this next level a number of operations can be closed in sequence and,

within limits, large numbers, those beyond the child's immediate ability

to visualize the object involved, can be handled with understanding.

At this stage academic subjects are usually taught with two main

effects on the student in mind: the assimilation and understanding of

the content of the subject (the facts and concepts that constitute know-

ledge of the subject), and the cognitive processes that are induced by

.

a proper understanding and application of the subject (the skills and

strategies that constitute the appropriate may of thinkinK for that sub-
,

ject). Bruner (1960) strongly emphasized the interplayof content and

process featurei in the overall structure of a subject matter. He spoke

of.the "generic codes" of a subject. _These are the basic processes and

content structureb that make the subject. In the present context this

-
means that, right from the beginning of their contact with mathematics

in school, children need to experience the structure and rigor of mathe-

matic presented at a level which matches their intellectual capacity

by a teacher who has a feeling for both the "generic code" of mathematics

and the level of functioning indicated by a child's responses.

Postulates 3 and 4 relate to the availability of working memory.

space to permit more advanced strategies within a particular stage. The

relevance of this notion in the present discussion can again beat be seen

by referring to our diagram. If the working memory capacity is constant,

keeping track of the numbers and the operation involved occupies almost
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all the available space for a'person confined to the unistructural re-
,

sponse level. The "2" and the "3" are not yet independent entities.

As described earlier the "2" for example must be i ualized as two

physically available objects. Likewise' the addition operation must be

related to some physical union. A child working at this level of response

indicates cognitive overload by losing track of part of the question when

presented with an item involving multiple operations. As also mentioned

earlier, similar patterns of response are obtained with more complex ex-

ercises at higher levels of functioning.

Postulates 3 and 4 indicate that to produce a higher level response
4'

within the logical domain characteristic of the major stage level, there must

./
be an increase in functionalmorking memory which comes about through

automatization of the elements and operations involved. In the present

context this means that many experiences with small numbers in 'conjunc-

tion with one operation (e.g., 2 4 3 = 5) enable the individual to begin

to regard the numbers and op ations as entities in themselves without

immediate reference to ome physical component. The need Co use some

of the working memory space to monitor this last component having been

dispenseewith, functionally there is more space available for addition-

al elements and operations and thus multistructural responses become

possible (e.g., 2 + 3 + 4 = 9). Similar progress makes possible-the

development of relational responses. Referring again to the diagram we

can see that the move to relational /evel.responses depends upon having

automatized the concept of numbtrs and the operations on them so that one

.3
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1

can regard big numbers as being as real as small numbers and see that

closure ofthe operations is available if necessary. Typically relationE-
0

al responses reveal an ability to stand off and have an overview of how

the operations within any given number statement might be interrelated.

Postulate 5 is concerned with the move between major stages or, in

terms 0 the response model described here, between responses at prestruc-

tural and unistructural levels and'again between relational and extended

abstract responses. If,we 'take the latter transition as an example, all

the literature points to a distinct shift in the quality of response.

The quality of the structure of the extended abstract responses makes

it reasonable to suggest that the functional working memory is operating

at maximum capacity and that the underlying logical functioning has taken

a giapt.stekforward. Examination of extended abstract responses shows

that improvemntt which have previously taken place within a stage be-

cause of automatization are now extended and articulated into a compre7

hensive and highly efficient system which allows for the application of

much higherslIel strategiep. FOr example, the ability indicated in

relational/responses to handle multiple familiar operations with large

numbers a d to see relationships between the operations within an ex-

pressiont.rhere closure is availableat any time is extended and general-

. ized to n ability to handle defined operations with variables and to

see relationships between the operations within an equivalence statement.

The Response Model in Use

Elementary Mhemetics

The diffibulty in making a direct application of the response model
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in mathematics lies in the fact that the actual response made b' the
p

child does not usually indicate the complexity of the thought process

which gave rise to it. For,example; if,e child is asked to find the

value of "y" in "y 5*.= 9," and responds correctly with theanswer

"4," one does not know whether this has been achieved by the &imple
..

unistructural device of counting on or by an extended abstract ap proach

which would involve general princiiles such as. inverse operations, as-

sociativity, and so on. To find the complexity of the structure used

by the child further probing is necessary. The summaries of the response

characteristics which follow assume this further probing.

I. Peistructural Responses. A response at the prestructural level

shows that the respondent is not deploying the thought structures to

handle numbers.and their "mathematical" combinations meaningfully. That
t

is not to say that a child responding at the prestructural level could
. °

not answer the question: "What does 2.and 2 give?" However, being able

to respond "4" does not necessarily mean that the individual possesses

the knowledge or the experienCes to be sure that a group of two elements

combined with, a further group of two elements always gives a group of

four elements,, represented symbolicall as

with gives E. 1 1 ])

Being axle to respond correctly to thd task of matching a set of numer-
,

als with a set of four objects to be counted need not inply that the child

.

understands the number idea four, whiligh incorporates the notions of in-

variance' nd conservation. For instance the child might well be able

4

4.1

.00
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to use the counting, sequence accurately lip to.a certain point but still"

give nonconservitig responses to some of the classical number conserve-
,

tion tasks.

Prestructural responses often indicate

cerned are developing bases for operational

until the next response-level that one sees

that the individuals con-

thinking, but it is not

the thought structures nec-

essary to handle number concepts, groupings, pairing corresponding ele-

ments, end so on.

2.. Unistructural Responses. Responses at this level show that the

respondent can only work with elements based in immediately observable

physical experience (e.g., 7 but not 759). (-The Operations of ordinary
0.

erithmeti9fas well are ielated directly to verifiable experience. ,

e.g., + n(C) = n(A) + n(B) 48 = 3 + 5

Responses at this level to items using either large numbers or several
*

operations in sequence tend to indicate that the child does not find

the question meaningful. The.respondent needs to see that a unique re-

sult exists, "real" in terms of the student's reality. This need may

be termed a requirement for closure, and is related po a similar need

in other content areas to come to a quick fircedecision on the basis of
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one datum. The idea of "inverse," if incorporated in responses at this

level, is physical. For example, subtraction is seen as "what is put

down can be taken up." No concept of the inverse as a process exists;

the typical unistructural.response to the question of why x = 3 in the

statement x + 4 = 7 is to use a couiting.on procedure of some kind. If

pressed further most respondents confined to this level will deny that

"x = 7 - jet is a legitimate method of solving the problem.

In summary then unistructural.resionses are marked by a single di-

rect relationship to criteria that ate concretely available (either phys-

ically or iconically):

3. Multistructural Response's. ,Responses in this category are

marked by a.student's apparent ability to handle logical operations pro-

vided they can be applied directly to particular experiences. Operations

Ore not related to one another nor- to abstract systems set up.independ-
.

ently of Ohysical experience. Thus, in working with addition and sub-,

traction operations, the pupil responding at this level regards the re-

sult of each operation as unique, and can cope well with a statement

which involves a sequence of discrete closures as long as there is no

necessity to keep track of relatiotships among the operations in the

statement. The arithmetical operations seem to be seen as reflections

of reality - the sums and differencei refer to actual sets of objects

whether present or not.

At this level of respon'Se the'pUpil still tends torrk with qual-

itative comparisons like "the closer" or "the larger." Thinking depends
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ion, and is bound by, the individual's perception of what is real and

a marked inability to set up an empirical system baked on measurement.

Childrtn responding at this level are beginning to perceive consistency -, .

;;;i,

between theii qualitative comparisons'which at tiees.leids.them to con- lir

sider quantitative comparisons, but using adOiti4fproCedUres only.
.

,

.. . .

Thus their responsei show that ordering-elements by using direct ex-
.

cess comparisons is a common strategy, butorderihg or.comparison by

ratio is not.

Meaningful use of the four operations ofarithmetic shows up only
.

if the uniqueness of the result is tUaranteed,by previdus experience
. k

with both the elements and operations. A namber elements may be con-
.

. .

sidered if they related'to direct physiCal experience.' However, if the

elements are mote abstract, only a very limitid number. can behtndled.

This means that a pupil responding at this level will cope with items

like 3 + 7 + 4 because the elements are verifiable and .the + 7 can _

sbe cloed so that it gives stiliknother-verifiable. element, thus allow-

.

.

f

,

ing closure with 10 + 4 = 14. A second type 0 itemthat can be handled

P'
is 475 +234; here the, operation is familiar and Oats the process can

4

be carried out because the pupil knows from previous experience Oat a

unique result will always be found.

,, Closure is still'the ultimate guarantee of uniqueness and the abil-
i.

, . . .
.

ityto handle multiple operations with' mall numbers by a series of mean-
. i .

. .

ingful closures may be seen as analogous tQ using, a saluence of given

propositions to support.a'parriculariudgment in othet. content areas.
.

:

, : '

'4)0%tit,

I
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The concept of inverse which comes through at this level of re-

sponse ie that it is a "destroying" process. Although, in the class-

room, this kind of thinking is difficult to distinguish from thinking

where the inverse is seen as an "undoing" process, the student's con-

cept of destroying possesses an irreversible quality. F ample,

the student regards subtracting as destroying the effect of addition

without specifically relating to the operations themselves. To find

the value of "y" in "y + 4 .= 7," "y" is regarded as a unique number to

which "4" has been added; subtracting "4" happens to destroy the effect ---

of the original addition. Probing usually reveals that the child ex-

plains the correct response to the question, not by referring to the

addition and subtraction opexatifts, but by adopting a more primitive

strategy, counting or saying the equivalent,of, "that''S show I was taught."

4. Relational Responses. Responses at this level seem *to rely up-

on the same basic skills at the multistructural response level; the ma-

jor advance appears to be less reliance on seeing uniqueness in the re-
.

sults of operations even though there is still a requirement for unique-

ness of outcome to be'guaranteed. This guarantee of closure is obtained

by making a generalization from concrete instances. The individual re-

sponse is kill bound Ap empirical evidence but the respondent is now

prepared to infer beyond,what can be demonstrated by model, aqd to form

a generalization fibli a number of specific cases. Thuii at this level,

where appropriate,, the.response.takes the'form of a concrete generiliza-.
$00

tion where a few specific positive instances guarantee the-tenability of

a rule. Typically the responses indicate that the student is looking for

f_) r
vs
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positive instances to form a generalization, burls unaware of the need

to check or counter-examples and constraining conditions. Moreover,

as the response is based on ths immediately available empirical evidence

only, the student is unable to consider hypothetical instances.

The bastp ability to handle a statement Involving a series of'clo-

sires is now generalized in two wayd. First, the size IA the numbers

used rarely causes problems; second, and more significantly, the child

now indicates an ability titteep track of the relationships within the

given statement.

Relationil responses show an ability to handle generalized (appar-

ently abstract) elements based.on a few specific verifiable instances,

e.g., 2a + 3a= 5a. Probing reveals, however, that the uniqueness of

the result (the requirement of closure at this level) must still be

guaranteed. In the example just given, questioning reveals that the.'

truth of the statement most likely rests on some concrete analogue such

,as. "-2 apples together with 3 apples gives 5 apples" rather than on any

satisfactory abstract mathematical generalization.

In responding to questions re o statements such as the formula

- y=mssstthese students' responses show that they rely on the follow- ,

111P--ing facts: (a) that each letter stands for-a unique number on any parti- '

cular occasion, and (b) that each binary operation involved can be closed

at any stage.
4

At this level the following types of items will' elicit correct re-'

,spohles:

1, A



(a) if 9 * 4 = 5 and 7 * 2

what operation does * stand fox?

(b) if 6 * 2 = 12 and 5 * 3 = 15,,

complete 4 * 5 =

(c) decide whether the following pairs of expressions are

O.

equIlilent:

259 x 416 376 x 416
259

and
376-

(469 + 361) - 257 and (468 + 362) - 254

433

At this level of response the "inverse" process becomes an !tun-

doing" of an operation previously performed. Thus it possessed a re-
,

411,

versible quality, but is limited by the at that it'Cap only be applied

to familiar operations. For example, the student may solve simplg equa-

tions by using the property that 'addition undoes subtraction, multiplica-

tion undoes division sand vice versa, but is not Aicessarily able to see

that'squaring undoei the square root in a simple surdic equation.

Individuals responding at this level appear able to use an abstract

rule that they have obtained from generalizing a number of specific in-

stances but they do not demonstrate the cognitive structures necessary

to use the rule in a slightly different situation. To take an example

used in an earlier section of this chapter, a student'may derive the

formu'a for the area of a rectangle (A = L x W) by generalizing :from

a number of particular examples, &hd then appeir to use-the formula as

if it now formed part of an abstract system. However, if a queition is

given that requires seeing,A,tWand W at variables instead of allowing,
.



A, L, and W to be seen as unique, each representing a particular nu er

4 on a particular occasion, then the typical response at this levei sho

an inability to handle the problem. An example of this latter, type of

queltion would be: "If a rectangle hat length twice its breadth and its
.1M1

aref.is 72 square units, find its dimensions." The difficulty for the

student confined to the relational level is that in a formula such'as

= L x'W each eletent must represent a specific, unique number and a

closed result must be guaranteed as soon as a substitution is made.
a

This necessity for a guarantee of immediate closure which typifies re-
,

sponses:at this lever inhibits the ability to overviewcthelata and
-

comprehend the abstract relationships between variables.

In conclusion then responses at the relational level are given on 0

the basis of concrete generalizations where a few specific, instances sat-

isfy.the.respOndent of the reliability of a rypre and where the result of

an operation, even though it be on apparent variables, is necessarily

considered to be unique. In other words, the individual relates elements

.

within the immediately available concrete system and forms generalizations

on this basis.

5. Extended Abstract Responses. At this level responses show that

4studetnts reason and consider ideas at the abstract level without having!

to rely on experiences in the phy4ical world. Their answers are clearly

based on deductive reasoning from c carefully chosen hypothyis or premise.

Abstract variables which may hive a bearing on the'saution to the problem
aft.

are visualized and manipulated; responses are no longer bound by co4Efete

' .
. al .

experiences. Resporidents are no longer satisfied that one or two positive
1, s.

4 r,

4

I,

.4

r

.
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instances are a sufficient basis from which to generalize; a compre-

hensive inductive procedure is invoked. The student responding at this.

level does not require operations to be actually closed; clOsure and
I

4niqueness are looked upon is abstract properties that have certain im-
t

plications if they are available. The ability ti operate on operations

is in evidence (at the earlier levels the responses relate mainly to

operating on elements) showing that the student does not need to relate

4.

either the elements or the operations to physical reality in order to

work.with them. This ability to work without the requirement of unique-

ness of the elements allows_ satisfactory responses to be made to items

such as the following where the prOblete-is to decide on the equality or

otherwise of pairs of expressions such as:

(1) a + b and (a + 1) + (b + L)

(2) a + b and (a + 1) + (b 1)

(3) (a + 1) x and (a ;) x (b 4:1)1

(4) (a b) x (a + b) and (a - a) x (b x b)

The leyel of difficulty here is a function not only of the degree

of abstraction of the elements but also of the structure of the operations

themselves.

Typically responses at this level show that the students can accept

lack of closure and are capable of dealing with variables as such because

(
they can hold back from drawing's final conclusion until they hive consid-:
#

ered various possibilities, an ess tial strategy for determining a re-

lationship as dietinct,from obtain' &a unique result. For instance,



jg

4

36

A

givenV=LxWxHthey would. not only be able to obtain unique re-

sults by appropriate substitutions in the formula bile' would also be

. .

able to discuss meaningfully the effect of various transformations on

the formula, e.g., what would you predict for "V" al." was increased,

"W" decreased and "R" held constant?

The inverse process is seen as an operation which is used to balance

or compensate without necessarily affecting the existence of an earlier

operation. As such it possesses a reciprocal quality. For example, an

item such as 4111

41.11

-C15gn p * r = a.A b

t
can be handled (the elements p, r, q, a, b and the operation "*," with

its inverse, being suitably defined).

Responses at this level show that the student is able to see meaning

in, and Work'within, an arbitrary well-defined but unfamiliar system.

This ability'allows the stddenis.to Zook on the propositions and condi-

tions themselves as the reality, and not to require a link th the phys-

-t 'cal world prior to working on a prob em here the system is defined..

Thex are, able to work within a situp e mathemat c =1 system and are capable

Of seeing inconsistencies in such a system.

In summary then, extended abstract responses have the following char-

acteristics: acceptsmne of lack of closure, the use'of the reciprocal op-
.

111' eration, and the ability to work with multiple interacting and'abstract

systems. All these characteristics involve a comprehensive use of the

Riven data together with related hypothetical constructs.
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Examples of Students' Responses in Two Particular Mathematical/Items

In the previous subsection the general aspects of the SOLO character-

istics for different levels of functioning with mathematical material'

have been, described. In a number of topics and/or concepts which are

ineorporated in most mathematics curricula, either implicitly or ex-
.

plicitly, sufficient research
V

has been done to fill out the general sum-
A , ,

wary given above. I have produced three major reports (Collis, 1975a,

b; Collis,& Biggs, 1979)' to which the interested reader tight refer.

In this section I will give examples of riaponses at each level for two

different elementary mathematical items. (esponses were t4ken from proto-
i

cols obtained from children of various ages, interviewed individually.

A .ammary of the first protocol has been referred to in explaining some

concepts in earlier sections of this chapter.

Example 1.

Question: "What is the value of 0 inD+ 4 12 9 ?"

Prestructural

S; "10."

E: "Can you tell me how you got 10 ?"

S: "10 is my favorite number!"

Comment: irrelevant "response; refusal to get involved in data given.

Unistructural

S: "5.r

E: "Can you 'tell me how you got 5 ?"

S: "5 and 4 are 9, "
1

E: "Could you do it another way?"

. A
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S: "No."

E: "Would it /help if. I did this,-

00 9 - 4?"

S: "No - that's a different sum."

Comment: direct forward closure, using table facts or counting and
refusal to accept that subtraction could be related in any
wa, to an addition statement;

Multistructural

S: "5."

E: "Can you'tell me how you get 5?"

S: "5 and 4 are 9." .

E: "Could you do it another. way?"

S' "Yes take 4 from 9."

E: "You mean you can do it like this,0 = 9 - 4?"

S: "Yes."

E: "Why'does that work?"

S: "Because it gives you the answer."

Comment: peek that subtraction is'a useful procedure for getting
the answer but it is simply another way and has no re-
lation to a reversible universe notion.

Relational

S: "5."

E: "Can you tell me how you get 5?"

S: "9 subtract 4 gives 5."

E: "You mean you can do it likethis, (:30\? 4?"

S: "Yee."

..my "Why does that work?"

4 ;

4,
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S: "Well, you'le got this number, 0, which when you add it
to 4 gives you 9. Thus if you want to find the other num-
be'i'you take 4 from 9.

.

E: "You are telling me then that I can set out my working thus:
(

E3 + 4 = 9 ..0
E3 - 9 - 4 - O."

v

S: "Yes."

E: "Now (I) & (2) 4on't look very much alike to me. Can you
help me with any other explanation?"

After some discussion which hinges on S giving his original
explanation in different ways, E makes a suggestion.

E:1114"1"utting in another line might help me - would this help yo
0+ 4 = 9

Dv+ 4 - 4 = 9 - 4?"

S: (After a considerable pause and careful consideration.)
"No, you're just going to do a lot of work for nothing;
it ain't going to get you nowhere!"

Comment: sees the inverse relationship existing between addition and
subtractiOnlind justifies the response quite correctly with-
in the constraints of the closed system. Does not 'seeany
point. in the suggestion for balancing both sides of the equa-
tion.

461 Extended Abstract

S: "5"

E: "Can you tell me how you get 5?"

S: "9 subtract 4 gives 5."

E: "You mean you can.dO it like this 0 9 -.4?"

S: "Yes."

E: "I do not see much connection between 0 + 4 ir 9 and
- 9.- 4; they don't look at all slike. Can you

give me an explanation?"

S: (Without hesitation and without previous instruction S
proceeds as below explaining as he goes.)

I

45
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01.

0+ 4 = 9 ,

+ 4 - 4 = 9 - 4
+ 0 = 5 4 - 4

0 .= 0
=5

Comment: When piessed, sees the original statement as a balanced
logical system and proceeds to operate by appealing to
appropriate logico-mathematical principles.

In this first example I'have given almost verbatim the interchanges

between tile experimenter and the student. The same kindNefinterchanges
4

were involved in the next example but I have omitted the full details and

only set forth the significant student responses at each level, It needs

to be bo ne in mind at this point that the level of response is not nec-

essaril age/grade related. Although the individual's stage of cognitive

development-probably sets the upper limit to the level of response, it

certainly does not set the lower bound.

Example 2.

Question: "What is the value of 0 in the following statement:
(72 4 36) x 9 = (72 x 9) 4 (fpx 9)?"

Prestructural

Ss: (i) "Can't do It";
(ii) "Haven't learnt those yet";

(iii) "I don't like long sums."

Comment: Ss give an irrelevant response or refuse to get engaged
in the problem.

Unisttuctural

Ss: (i) "36 - there's no 36 on the right hand side."
(ii) "72 + 36 =,2" S gives up at this point.

Comment: Ss re0onses usually indicate low level pattern seeking
orone closure and then the task is given up.

4 .3
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Multistructural

(72 x 9) ( x 9)

648 ( x 9)
648 ?=:...2)

18 ------gr--w
i.e. 324

Ss: (72 4 36) x 9 =
2 x 9

18

41

Hence 0=7324

Comment: Ss perform a series of closures but lose the thread of
what they are after and get mixed up. In the above ex-
ample S closed off the left hand side to "18" without any
trouble. The problem arose on the right hand side - "18"
was required, "9" was available, where was a "2" to come
from? - hence the mix-up.

Relational

Ss: (72 36) x 9 = (72 x 9) (0 x 9)
2 x9 648 (0 x 9)

18 648 4 9 = 72
then 72 .4 4 = 18

Hence . 4
ftp

Comment: Ss perform a series of closures but are able to keep the
overall picture before them so that they do not get mixed-
up at a crucial stage in the process.

Extended Abstract

IV (72 36) 9 = (72 x 9) ( 9)

.(72. 36) x 9 x9) (Cix 9)

lt

bxYm b

thus:

(72 36) x 9
= (72 x 9) 4 36

'r (72 x 9.) 4 (4 x'9)
Hence C3 = 4

Comment: The initial thinking is in terms of examining the rela n-

ships. These suggest looking at some reassociation the

elements concerned. Noclosures are undertaken; all the
work is done by focusing on the abstract logic of the op-
erations and a complete overview of the problem.
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Conclusion

It should be clear that focusing the educator's attention on re-

sponse levels and their structure has major implications for the edu-

cational process which takes place in the classroom (Collis & Biggs, 1979),

First, it takes.the emphasis off the level of cognitive dev lopmentand/or

IQ, about which the individual teacher can do very littl . Instead, at-

tention is drawn to the structure of the child's response which, if the

teacher is able to recognize it, enables a dialogue to begin with a view

to raising the child's level of responding - surely a desirable classroom

aim regardless of the content matter involved.

Apart from its use in formative evaluation as indicated, the response

model gives the teacher a rational basis for normal evaluation of the

child's level of functioning im an It indicates clearly that in
se

mathematics the correct answer can be obtained in a number of ways and

is not in itself sufficient to tell the teacher how well the child, under-

stand's what he or she is supposed to be doing.

Much work needs to be done. in mathematics education before the full

benefits of focusing on the structure of a child's responses

can be attained. One field, where the concept can be put to immediate

use with good effect would be curriculum developme:yt. A series of norma-
4

tive studies would indicate the expectations which he teacher might have

of a normal age/grade group in terms of response complexity, together

with specifying the structure of the next level of complexity. This
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knowledge would be of enormous benefit to schools and teachers involved

in school-based curriculum development.

Finally, the notions explicated above'would suggest that we investi-

gate closely the initial understanding of addition and subtraction which

the child begins school. Children do a great deal of learning before

they come to school and indeed develo p quite sound problem solving skills

appropriate to the r own level of cognitive functioning. It seems quite

illogical to ignore his and begin by imposing a potentially more effici-

ent adult model on th children - a model which the children have not he

cognitive capacity t come to terms with, as some of the research referred

to in this paper shows.

Children might well see the structure orthe following problem.as a

"take-away": "Mary has 8 balloons-and she gives 5 to Mark. How many has

she left?" On the other hand, children might view the,following problem

as some kind of "matching": 'Nary has 8 balloons, Mark has 5. How many

more balloons has Mary than Mark?" For the teacher to categorize `these

as both mere applications of the subtraction algorjhm could well be one

of the first steps towards teaching children that mathematics is not some-

thing one does or thinks with but a sequence of unconnected school,- valued

skills which, they are led to believe, will be of use later.
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