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ABSTRACT

The intzrest in developmental sequences and learning

hierarchies is growing. One approach to the study of such sequences
is tc gather data on several variables, each 0f which corresponds tc
a stage, step, or phase in the sequence and to examine the

_associations between the variables as displayed in a contingency

table. If the variables are associated in ways predicted by the
hypotheslized sequence, then the data lend support to the sequence.
Goodman®s loglinear wodel for developmental or learning segjuences is
presented and illustrated on number concept data gathered by Brainerd
and Fraser. Where its strong assumptions are satisfied, the model

provides a probabilistic framework within which to:

(1} test the

plausibility of an hypothesized developmental sequence or learning
hierarchy:; (2) compare several hypothesized sequences on the same
data: (3) estimate the proportion of sujects who do not conform to
the sequence; and {(4) estimate the proportion of subjects.at each
step in the seyuence. (Author/RL)
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Goodman's loglinear mcizl Z:° evelopmental or lzarning séQuafCo

is presented and illus ratec =n numbe: concept data gatnz’~. oy
Brainerd and Fraser. Where is Str0r 7 assulptions are sat~ciie

the model provides a prebebilistZc frzmework within which %o

(a) test the plausibility of an ypc:nesized developmenta> sgduenie
or learning hierarchy, (b} ccmpaze Szveral hypothesized s#queRCes On
the same data, (c) estima:z2 th= prc”ortien of subjecks wWht dc ot
conform to the sequence, and {.i) es“imate the proportion of o1:jects

at each step in the sequence.
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Lc . neer An:lvzo: ¢ _zzmning T.=zrmarchy

sné Develog=:irzz? zsguence o=

The “nterest in .2v=lopmer :zl ma-r-=nces nd lear—ing hierarchies is growing.

One apprecach to the =zzudr of such szgquz—cas Zs to gatner data cz several vari-

w

ables, ezzh of which —esprads te 2 stage, step. or phase in zhs seguence
and £o examine the associat-on:: berwe: - thz variz.lesz =5 displayed irn 2 con-
tingency table. If the variablizs z—= z::z- ated in wevs predicted by the hy-

pothesized sequence, then the data ~=nd =:. :-ort to the sequence.

Our purpose is to describz and c-iz: ._ly evaluaz. a class I ~ zlinear
models for contingency table dzta whozz .=z :e used t¢- study a =—Ticri hypo-
theses about development=l sequencez =z _:=——ing hierz-chies. Int=rested
readers can refer to earlier works t- ZZzzz= ., Fienberg, and Kollanc (1975),

and Fienberg (1977) for more c=tails.on i:-:inear models.

The Lczlinear— Model

Although the model can be exz==dei == zny desired number of variables,
let us assume for convenience thaz =he=: _.z== exactly three response variables;
A, B, and C; which can take on val==s > : and ¢ respectively. The three
response variables defime a 3-way .-at-—z=—cy table. Each way of the table
corresponds to one of the three vzo=Zabiss Within a way, each level repre-

sents one value which can be taken by the corresponding variable. The fre-
quency in cell (a,b,c) of the table would fepresent the'number of observations
scored at level.é on A, b on B, and ¢c on C. ‘

The hypothesized sequence (or each sequence if there is more than cne)

is presumed to divide the contingency table cells into two sets, a set of

inadmissible cells and a set of admissible cells. An admissible cell

ERIC | 4
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corresponds to a pattern of scores which might be expected for someone who
confor=s to the hypothesized sequence. Each inadmissible cell represents a
patterz. which violates the sequence. Derjiving the admissible cells generated
Ly a theory is itgelf an important and sometimes difficult step in the ex-
plication of a theory. Davison (1979), Davison, King, Kitchener, and Parker
(1980) Frgmgn and Hubert (1980) and Wohlwill (1973) enumerate the admissible
cells for various kinds of theories. .

As Goodman (1975) develops the loglinear approach, subjects are divided
inzo K + 1 classeg, “o designates the population proportion of subjects in
the first class, which contains persons whose development does not conform to -
the hypothesized gsequence. This first class is ‘called the unscaleable class.
Each of the remaiping classes corresponds to one of the admissible cells.

For k=1, . . ., K, Ik represents the proportion of subjects in the.popula—

tion who have advanced along the sequence to the point where they should
exhibit the th admissible score pattern,
For members of the unscaleable class, the response variables are presumed

et e Ve e M

to be independent, Within this class, T(a,b,c) = m(a)m{b)T(c). Consequently,
the joint probability of observing an individual from the unscaleable pcpula—
tion with scores (a,b,c) is T T(@)m(k)m(c). The members of the kfh scaleable
subpopulation are gll assumed to’ exhibit the.th admissible pattern. Conse~
quently, the joinf probability of observing an individual from the.EFh scaleable

subpopulation who exhibits pattern (g_,_li »e) is m if (a,b,c) 1is the A admis-
sible score pattern, and it 1is 0 otherwise. In—éhe total population the
probability of observing pattern (a,b,c) is assumed to be the sum of joint
probabilities. That is, the prqbability of observing pattern (a,b,c) can be

obtained by summing the joint probability of obsexving (a,b,e) in each of

the (K + 1) subpopulations.

J1
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This leads to the fundamental equation of the model:
w(A,B,C) = ECEKA)EKE)EﬁQ) if (A,B,C) is.inadmissible &)
=I

There are several algorithms for fitting the model of Equazion’l (Goodman,
1975; Davison, 1980; Bishop, Fienberg, & Hollahd, 1975; Fienberg, 1977)
and several computer programs for implementing the algorithms {Davison &
Thoma, Note 1, 1980; Dixon & Bfown, 1979; Larntz, Note 2, 1974). These pro-
grams provide estimates of expected cell frequenjés under the model, Pearson
and likelihood ratio goodness-of-fit statistics, and estimates of quantities
from which the ﬁodel parameters can be obtained. Davison (1980) shows how
to estimate model parameters from the output of the Davison and Thoma (Note 1,
1980) algorithm.

Given multinomial assumptions, thé Pearson and likelihood ratio statistics
will be distributed as chi square variables under the null hypothesis repre-

sented by Equation 1. These statisties will have N - EA - EB - HC -K+N -1

degrees of freedom. Here N is the total number of cells; HA’ EB’ and EC

are the number of levels along each way of the contingency table, NW is the
number of ways in the table, and K is again defined as the number of admis-
sible cells. This brings us to a limitation of the loglinear approach as
developed in Goodman (1975). If we are not to run out of degrees of freedom,

then K must be smaller than (N - N, - EB - EC + NW Z'1). The example presented

below will illustrate a situation in which some of the hypothesized sequences
cannot be fitted to the data, because the loglinear model for those sequences
requires more degrees of freedom than the data can sustain.

Davison (1980) presents a more restricted variation of the Goodman (1975)

model, a variation which can sometimes be applied when CGoodman's unrestricted
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formulatios quire:z too mznv . .—ees of freedom. Davisoz (1980, _ -~ oses
the constra:- . that the ratic / n Eﬂé)ﬂfh)lﬁﬁ)] must ecui_ . const::
for every a:r=issible pzaztera. ,;::Idlng to this constraint, the zz:zi~
probability  observii; an ez..z:ziible pattern iIn the scaleable zui! =7
to thg probz :lity oI :oservi- . :nat same pattern in the unscaleatle s... p-
ulation must .2 roug: - the s.== Ior évery admissible pattern. By "zc 1y
the same, we m2an th . szme ex:: for the additive constant 1 cont=zizz:. n
the restricticn. S. szantive -, this means that those patterns whizi .—2 mest

PR

commonly found in

found among those w:

straint is highly r:=

the restricted form
(1979, 1980) and Dz-
are generated by tt
fit statistics will

if Tk

satisfy the independence model.

.2 Eguat-on 1.

Lison et .

i—scale:- le subpopulation are also these most Zommonl

~znforr ~o the hypothesized sequence. While :.is coz-

=+etive the example below illustrates data . ich satisfy

Other examples can be found in Davison

(1980). No matter how many admissible cellis

.'ypothezzed sequence, the Pearson and likelihood ratio

N, - N

Always have (N - NA Ny - N

+ NW - 2) degrees of freedom

= ( for all of the admissible patterns, then the response variables

In that case, there is nc need to postulate

a developmental sequence to account for structure amcng response variables
because the data do not suggest that such structure exists. The data {ully

support the developmental sequence model ¢f Equation 1 only if the independence

model can be rejected, suggesting there is some structure to the data, -and

the sequence model of Equation 1 fits the data.

If T then Equation 1 is a deterministic model in which € ‘ery sub-
)

= 0,
ject's response pattern is admissible. Or in other words, the deterministic
form of the hypothesizéd deveiopmental éequence is a limiting case of the sto~

chastic model in Equation 1.

=3
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Statements of seccs-.zes found i:. :-he developmental and inszructional
iiteratures are tvpiczl. determinis=ic, without any sugzgestion as to how

neasurement and =-mpli-. 2rror shoul: =e »-ndled. Any probadilistic sequence

model, such as Ec= =zi.:-. 1, cannot be “ust straightforward restatement of tis
deterministic se-—:=< hvpothesized —= t* _iterature, because the stochastic
model must incor=z . augmenting assumr ==:21s about error to translate the

deterministic sm-_.am- into probabilist-: form. If the data satisfy the
probabilistic @ =1 _ 2n they lend sup~. =z~ both to the hypothesized de-
velopmental secuznce - = the augmenting .:: umptions. If, on the other hand,
the probabilistiz mod . fails to fit tiz lata, the failure may be because
the develbpmen:;; sequence 1s incorrec.. :the augmenting assumptions are not
satisfied, or =z ch. The loglinear anz. ‘sis itself does not diéentangie the

possible sourc. of poor fit.

ERIC - S

s : '



Logiinesr

7

Comparisons Between Sequences

Rather than determining whether a given sequence can be =ai ! te describe
the data, a researcher may be interested in comparing several s. juences to decicde
which best describes a set of data. Within fhe loglinear frz=s orik, there are
two possible approaches to comparing sequences. The firgt ar->T ach incerporates
the restricted model. After fitting the restricted model for =zch ~.:uence,
the several sequences can be compared on the basis of their “zzzson or likelihcod

‘ratio fit statistics. The several fit statistics will he c-mparzbie, because
they will all correspond to models having exactly the same ~umber of degrees :-f
freedom, and all will be based on the same data. fo our krowlecdge, there is no
way to test the statistical significance of differences in fit for the sever:zl
modéls.

The second approach incofporates the unrestricted form of the model in
Equation 1. Within this'approach, the goodness—of~fit statistics for two sequences
can be directly compared only if the two sequences generate exactly the same
number of admissible cells. O=niy ;hen will the two fit statistics have equal
degrees of freedom. Two Sequences with unequal numbers of admissible cells cannot
be compared directly on the basis of their fit statisties unless one sequence
constitutes a special case of the other.

To see how models can be compared if one is a special case of the other,
consider two sequences such that the admissible cells for Sequence I are a
proper subset of those for Sequence II. Let the subscriptm=1, ..., M
designate those cells which are admissible according to Model II.but not Model I.
Given the unrestricted form of Equation 1, @odel I is a special case of Model II

in which L 0 for all m, the difference between the two likelihood ratio. fit

[do




Loglinear
8

statistics for Modgls I =d - Gi - G%I’ is itself approximately distributed as
a chi square statistic with_;giagreeé of freedom under the null hypothesis

ﬁ-m = 0 for all m and gZver chat responses satisfy the more general model. If
the null hypotl.esis canmot be rejected, then the more general_godel II cannot
be said to sigrificantls improve the fit. Parsimony would favor ﬂodel I.

In summary,.comparisons beatween sequencés based on goodness-of-fit statistics
and the unrestricted version of Equation 1 would be limited to those c%ses in
wﬁich the two models compared have equal degrees of freedom and those cases
in which one model is a special case of the other. If the restricted form of

Equation 1 is applied, any twc sequences can be compared regardless of how many

admissible cells each generates. ‘ -
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Example

Our example is based on data from Brainerd and Fraser's (1975) study of
number development. Brainerd and Fraser scored each subject at one of three
ordination levels and one of three cardination levels. Table 1 displays the
frequency with which subjects were jointly scored at each level of ordination
and cardination. Figure 1 depicts four developmental éequences which might
be used to explain their data; reciprocal priority with ordination preceding
cardination (A), reciprocal priority with cardination preceding ordination (B),
unilateral priority (C), and synchrony (D). Hatched cells are inadmissible.
Numbexred cells are admissible.

The unrestricted form of Equation 1 could be fitted oniy for sequence D.
After estimating the row and column marginals, the data In Table 1 contain
only four remaining degrees of freedom. Sequences A, B, and C have either
five or six admissible cells. Consequently, the unrestricted model for these
sequénces requires at least six or seven remaining degrees ofvfreedom. The
resfricted version of Equation 1 can be and was applied to all four sequences.

Subject's level of ordination and cardinatiog do not appear to be inde-

pendent. The Pearson and likelihood ratio statistics were both statistically

[

significant (5(4)2 = 17.60,.§(4)2 : 19.9%, p < .01) leading us to reject the
independence model.

For each sequence in Figvre 1, we then fitted the restricted version of Equa-
tion 1 using the CONSCAL program of Davison and Thoma (Note 1, 1980). Equations
11 and 13 in Davison (1980) were then used to estimate the probabilities in
Equationll from the parameters printed by CONSCAL. Only sequence C, unilateral

L4 . (g 2
priority, would be rejected at any conventional significance level (X(3)” = 10.82,

§(3)2 = 11.19, p < .05) irrespective of which fit measure is employed. The two
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reciprocal priority mocels fit equally well (§(3)2 = 4,26, §ﬂ3)2 = 3.37, p > .05)
and better than the synchrony model. Using a .05 level of significance, the
Pearson statistic (3(3)2 = 7.23) would lead to fejection of the synchrony model.
The likeiihood.ratio'statistic would not (EZ = 6.19).

For the two models which besf fit the data, the reciprocal priority sequences,
Table 2 displays the estimates of model parameters. For sequencé A, the .parameter
estimates suggest that 1% of the subjects in the population are unscaleable;
that is, they are not confo 'ming to the hypothesized sequence. Thirteen
percent are found at step 1 in the sequence, 11% at step 2, 3% at steps 3 and 4,
and 20% at step 5. For sequence B, parameter estimates suggest that 597% fail
to conform, 13% are found at step 1, l% at step 2, 37 at step 3, 4% at step
4, and 207% at step 5.

The parameter estimates, Ty strongly indicate that neither sequence A
ox B can be considered a "universal" sequence, bécause the majority of subjects
faii to confo;m to either sequence. Although the fit statistics for the two
models are identical, A might be preferred. If A rather than B is taken to be
the sequence accounting for dependencies in Table 1, then a slightly higher
proportion of subjects can be said to conform. Parameter estimates suggest that
very few subjects occupy intermediate steps 3 and 4 in sequence A or steps 2
through 4 in sequence B.

For any model that can be said to fit the data, the difference between the
likelihood ratio statistic for the independence model and the developmental
sequence model is itself approximately distributed as a chi square statistic
with one.degree of freedom under the null hypothesis m, = W, = 7T, =17, = To = 0.
If this conditional likelihood ratio difference statistic leads to rejection of

the null hypothesis at some chosen significance level, then the sequence mddél

12



Loglinear
11
can be sai?l to fit the data significantly better than the independence modcl.
. ) ‘
For both models A and B, the conditional likelihood ratio statistic (G .(4) -
§ﬁ3)2 ~~“~_§_(l)2 = 19.99 - 3.37 = 16.62, p < .0l) suggests that the developmental

sequence model -Significantly outperform:. the independence mocel.
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Liscussion

The loglinear approach to the study of sequences offers several advantages
over alternative approaches. Unlike the Airasian and Bart (1975) and Cliff
(1979) models, the loglinear model is stochastic rather than deterministic.
Whereas Dayton and MacReady's (1976) method applies only to tables having exactly
twvo levels along each way, the present approach can be applied to tables having.
a;y number of levels along each way. Furthermore, the loglinear analysis is
quite rich. ’It‘provides a basis for comparing hypothesized sequences; it pro-
vidés tests of fit for each separate model; it provides estimates of the pro-
portion falling at each step aiong the sequence; and 1t provides estimates of
the proportion who fail to conform to the hypothesized sequence.

On the negative side, the assumptions of the model are strong, particularly
if the restricted form of Equation 1 is used. Because the analysis relies on
chi square goodness—of-fit statistics, it suffers from the problems associated
with such statistics. If the degrees of freedom are small, then the statistical
test has low power. Some cells may need to be collapsed if their frequencies
are too small.

There are two problems which will,bwe suspect, complicate the study of
developmental sequences via the loglinear or any other method cited above.
First, the admissible cells genefated by two sequences can differ by as little
as one céll. When the choice of sequence depends so heavily on such a small
portion of the data, large sample sizes will be needed to reliably distinguish
between the sequences. When comparing sequences generating highly similar ad-
missible sets, the sequence favored may vary inconsistently from one study to
the next.

Second, whether &« step in an hypothesized sequence is needed to describe

14
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responses will depend, in part, on the developmental or instructional level
of persons studied. If the subjects are not advanced, then the highest stens
in a sequence may not be needed to account for the data simply because no
subjects have reached those steps. Similarly, in an advanced group, the lowest
steps may not be needed. Consequently, resesrchers investigating the same
hypothesized sequence in similar populations, but at different points of
instruction, may arrive at quite different conclusions, even if that sequence
provides a useful description of.learning in bofh groups. If sequences con-
tain quite transitory steps, then at any given time, few pepple would be
found at that step. Consistent evidence for the transitory step would be

difficult to obtain.
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Footnote

1If the unrestricted form of the mecdel is applied, then the number of

degrees of freedom for the likelihood ratio difference statistic equals the

number of admissible cells.

16
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TABLE 1

Bivariate Frequency Distribution Between
Ordination and Number Conservation

Number Conservation Stage

I II I11
16 3 ‘ 1
15 3 3
23 4 ‘ 27

2u
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TABLE 2

Model Parameters

Sequence

A=I
I;
G
d;

7(0,) m(Qrp) m(0 1) 1(,0_1) 1(9*) 1<£_) .

o 5 =T 117 SIIT 11 111
A .51 .13 .11 .03 .03 .20 .15 .12 .73 .65 .16 .19

B .59 13 .01 .03 .04 .20 11 .33 .56 .73 .05 .22
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Figure Caption

Figure 1. Admissible and inadmissible response patterns for four
developmental sequences. Hatched cells are inadmissible. Numbered cells

are admissible.
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