
DOCUMENT RESUME

ED 201 661 TM 810 254

AUTHOR Davison, Mark L.
TITLE Loglinear Analysis of Learning Hierarchy and

Developmental Sequence Data.
SPONS AGENCY National Academy of Education, Washington. D.C.:

National Inst. of Education (ED), Washington, D.C.
REPORT NO NIE -C- 79-0021
PUB DATE 14 Apr B1
NOTE 23p.; Paper presented at the Annual Meeting of the

American Educational Research Association (65th, Los
Angeles, CA, April 13-17, 1981).

EDRS PRICE 21F01/PC01 Plus Postage.
DESCRIPTORS *Cognitive Crielopment: *Hypothesis Testing;

*Mathematical Models: *Probability; Tables (Data)
IDENTIFIERS Contingency Tables; *Hierarchical Learning; *Log

Linear Models

ABSTRACT
The int'rest in developmental sequences and learning

hierarchies is growing. One approach to the study of such sequences
is to gather data on several variables, each of which corresponds to
a stage, step, or phase in the sequence and to examine the
associations between the variables as displayed in a contingency
table. If the variables are associated in ways predicted'by the
hypothesized sequence, then the data lend support to the sequence.
Goodman's loglinear model for developmental or learning sequences is
presented and illustrated on number concept data gathered by Brainerd
and Fraser. Where its strong assumptions are satisfied, the model
provides a probabilistic framework within which to: (1) test the
plausibility of an hypothesized developmental sequence or learning
hierarchy; (2) compare several hypothesized sequences on the same
data; (3) estimate the proportion of subjects who do not c)nform to
the sequence; and (4) estimate the proportion of subjects-at each
step in the sequence. (Author/BL)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***********************************************************************



Loglinear Analysis of Learning Hierarchy

and Developmental Sequence Data

Mark L. Davison

University of Minnesota

U S DEPARTMENT OF HEALTH.
EOUCATION & WELFARE

NATIONAL INSTITUTE OF
EDUCATION

THIS DOCUMENT HAS ZEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

L.

TO THE EDUCATIONAL RESOURCES
'INFORMATION CENTER (ERIC)."

This research was supported by a National Academy of Education Spencer

Fellowship and a grant from the National Institute of Education (NIE=-C-79-0021)

Paper presented to the American Educational Research Association, Los Angeles,

California, April 14, 1981.



Goodman's loglinear ma_al f-- evelopmental or Laarnin5 saltancc

is presented and illus_rated :n number concept data geCt1=::': by

Brainerd and Fraser. Where strot ; assumptions are se.- fie

the model provides a probabilistl:_c f--amework within which zo

(a) test the plausibility of an YPc-zilesized developmenta-

or learning hierarchy, (b) ccmpare saveral hypothesizea (quences on

the same data, (c) estima-:a tc prc-nortion of subjects "i1C dr, `lot

conform to the sequence, and e-E...zimate the proportiotl

at each step in the sequence.
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Lc tear

and Develop=-..:-=c2.. Eetquence

The Thterest in -,!veloomen:al -ne7aatzes leap 'ng hierarchies is growing.

One approach to the Etud-77 of such aegLIaaces ts to gather data cL. several vari-

ables, each of which -7esn:ads tc a stage, step or phase in : :he sequence

and to examine the associatLon betwe.7. =tee -aria : :ie; as displayed in a con-

tingency table. If she variabl,.::7 _ated in WEVS predicted by the hy-

pothesized sequence, then the data land E7_::_crt to the sequence.

Our purpose is to describe and C7ir_L. _LLy evaluel_l a class _ _ 7Jinear

models for contingency table data wh-L_aa a used t- study a =ia,ri hypo-

theses about developmental sequences hierarchies. Intarested

readers can refer to earlier works Ls=7, Fienberg, and Hollanc (1975),

and Fienberg (1977) for more Latails= "inear models.

The Lc-3 ineal7Eodel

Although the model can be extmar.-- -.11y desired number of variables,

let us assume for convenience the= 7.1ha-_-_-i=a exactly three response variables;

A, B, and C; which can take on vaLl_L..s and c respectively. The three

response variables define a 3-way =mt===zy table. Each way of the table

corresponds to one of the three v_7=Lable_, Within a way, each level repre-

sents one value which can be taken by the corresponding variable. The fre-

quency in cell (a,b,c) of the table would represent the number of observations

scored at level a on A, b on B, and c on C.

The hypothesized sequence (or each sequence if there is more than one)

is presumed to divide the contingency table cells into two sets, a set of

inadmissible cells and a set of admissible cells. An admissible cell
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corresponds to a pattern of scores which might be expected for someone who

confc7ms to the hypothesized sequence. Each inadmissible cell represents a

patter. which violates the sequence. Deriving the admissible cells generated

_y a taeory is itself an important and sometimes difficult step in the ex-

plication of a theory. Davison (1979), Davison, King, Kitchener, and Parker

(1980) Froman and Hubert (1980) and Wohlwill (1973) enumerate the admissible

cells for various kinds of theories.

As Goodman (1975) develops the loglinear approach, subjects are divided

K + 1 classes. designates the population proportion of subjects in

the first class, which contains persons whose development does not conform to

the hypothesized sequence. This first class is called the unscaleable class.

Each of the remaining classes corresponds to one of the admissible cells.

For k = 1, . . K, w represents the proportion of subjects in the popula-

tion who have advanced along the sequence to the point where they should

exhibit the k
th

admissible score pattern.

For members of the unscaleable class, the response variables are presumed

to be independent. Within this class, Tqa,b,c) = w(e)w(b)w(c). Consequently,

the joint probability of observing an individual from the unscaleable popula-

tion with scores (a b c) is 1T 7r(e)N(b)N(c) The members of the k
th

scaleable

subpopulation are all assumed to exhibit the k
th admissible pattern. Conse-

quently, the joint probability of observing an individual from the k
th

scaleable

subpopulation who exhibits pattern (a,b,c) isffis. if (a,b,c) is the kth admis-

sible score pattern, and it is 0 otherwise. In the total population the

probability of observing pattern (a,b,c) is assumed to be the sum of joint

probabilities. That is, the probability of observing pattern (a,b,c) can be

obtained by summing the joint probability of observing (a,b,c) in each of

the (K + 1) subpopulations.
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This leads to the fundamental equation of the model:

u(A,B,C) = Tron(A)u(B)u(C) if (A,B,C) is inadmissible

= n +
ou

u(A)u(B)u(C) if (A,B,C) is admissible.

(1)

There are several algorithms for fitting the model of Equazion:1 (Goodman,

1975; Davison, 1980; Bishop, Fienberg, & Holland, 1975; Fienberg, 1977)

and several computer programs for implementing the algorithms (Davison &

Thoma, Note 1, 1980; Dixon & Brown, 1979; Larntz, Note 2, 1974). These pro-

grams provide estimates of expected cell frequencies under the model, Pearson

and likelihood ratio goodness-of-fit statistics, and estimates of quantities

from which the model parameters can be obtained. Davison (1980) shows how

to estimate model parameters from the output of the Davison and Thoma (Note 1,

1980) algorithm.

Given multinomial assumptions, the Pearson and likelihood ratio statistics

will be distributed as chi square variables under the null hypothesis repre-

sentedbyEquatienl.ThesestatisticswillhaveN-11,Lk -Na -N - K + NW - 1
--.-,_

degrees of freedom. Here N is the total number of cells; N N,, and N_
.' !° 1-f.

are the number of levels along each way of the contingency table, NW is the

number of ways in the table, and K is again defined as the number of admis-

sible cells. This brings us to a limitation of the loglinear approach as

developed in Goodman (1975). If we are not to run out of degrees of freedom,

then K must be smaller than (N -NA -N13 -N+ NW - 1). The example presented
C

below will illustrate a situation in which some of the hypothesized sequences

cannot be fitted to the data, because the loglinear model for those sequences

requires more degrees of freedom than the data can sustain.

Davison (1980) presents a more restricted variation of the Goodman (1975)

model, a variation which can sometimes be applied when Goodman's unrestricted
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formulation quir:_,.E too many .=ees of freedom. Davison (198C; -)ses

the constrain _ that the ratic
K -o
/ w(a)w(b)w(c)] must ecr____u consfs.:

for every a=nissible palfern. __:7_=rding to this constraint, the

probabi lity = observi:_; a __ =ale pattern in the scaleable

to the proba_Llity cf :Oservi7. Fiat same pattern in the unscalea-Lle s p-

ulation must rout_ __ the .7.7-= for every admissible pattern. By "::=- .ly'

the same, we mean tt . H:`_me :77: for the additive constant 1 contain :n

the restriction. S.:..=antive_. this means that those patterns whit mcst

commonly found in u=scalELile subpopulation are also those most: ommonl

found among those w: =form ...o the hypothesized sequence. While is co7.-

straint is highly r.L.. :=Lctive the example below illustrates data ich satisfy

the restricted form ,L7 Equation 1. Other examples can be found in Davison

(1979, 1980) and Da--son et (1980). No matter how many admissible cells

are generated by th lypothe:=,ed sequence, the Pearson and likelihoOd ratio

fit statistics wil: always have (N - NA.- - NC -I- NW - 2) degrees of freedom

If
k

= 0 for all of the admissible patterns, then the response variables

satisfy the independence model. In that case, there is no need to postulate

a developmental sequence to account for structure among response variables

because the data do not suggest that such structure exists. The data fully

support the developmental sequence model of Equation 1 only if the independence

model can be rejected, suggesting there is some structure to the data; and

the sequence model of Equation 1 fits the data.

If = 0, then Equation 1 is a deterministic model in which eery sub-
-o

ject's response pattern is admissible. Or in other words, the deterministic

form of the hypothesized developmental sequence is a limiting case of the sto-

chastic model in Equation 1.
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Statements of seques found ii. :he developmental and ins'Lructional

literatures are t7picaL, determinis=±c, ,rithout any suggestion as to how

measurement and =pli=, error shoul,:-: l.e -idled. Any probabilistic sequence

model, such as E cannot be ust straightforward restatement of

deterministic se=7 ,- hypothesized Aterature, because the stochastic

model must inco= augmenting assump=_-_-as about error to translate the

deterministic att--_iarc:. into probabilist:__: form. If the data satisfy the

probabilistic lc- A - an they lend sups both to the hypothesized de-

velopmental secztenc,L the augmenting v-nmptions. If, on the other hand,

the probabilist :L.:1 mc,d fails to fit t'Ll_ rata, the failure may be because

the developme=-___-:_. sequt=nce is incorrec_-., The augmenting assumptions are not

satisfied, or :h. The loglinear any- -sis itself does not diientangle the

possible sourc_ of poor fit.

6
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Comparisons Between Sequences

Rather than determining whether a given sequence can be sai to describe

the data, a researcher may be interested in comparing several s !uences to decide

which best describes a set of data. Within the loglinear frs=a- ark, there are

two possible approaches to comparing sequences. The first aT7r ach incorporates

the restricted model. After fitting the restricted model for each

the several sequences can be compared on the basis of their -sarspn or likelihood

ratio fit statistics. The several fit statistics will be c-mparable, because

they will all correspond to models having exactly the same - .umbel of degrees :f

freedom, and all will be based on the same data. To our knowledge, there is no

way to test the statistical significance of differences in fit for the several

models.

The second approach incorporates the unrestricted form of the model in

Equation 1. Within this approach, the goodness-of-fit statistics for two sequencea

can be directly compared only if the two sequences generate exactly the same

number of admissible cells. Only then will the two fit statistics have equal,

degrees of freedom. Two sequences with unequal numbers of admissible cells cannot

be compared directly on the basis of their fit statistics unless one sequence

constitutes a special case of the other.

To see how models can be compared if one is a special case of the other,

consider two sequences such that the admissible cells for Sequence I are a

proper subset of those for Sequence II. Let the subscript m = 1, ..., M

designate those cells which are, admissible according to Model II but not Model I.

Given the unrestricted form of Equation 1, Model I is a special case of Model II

in which T. m
= 0 for all m the difference between the two likelihood ratio fit
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_
statistics for Models I =1-1 ,

2
d - G

2
is itself approximately distributed as

a chi square statistic with :a Legrees o5 freedom under the null hypothesis

m
= 0 for all in and g±veL chat responses satisfy the more general model. If

the null hypothesis cannot be rejected, then the more general Model II cannot

be said to sigr;ificantl^ improve the fit. Parsimony would favor Model I.

In summary, comparisons between sequences based on goodness-of-fit statistics

and the unrestricted version of Equation 1 would be limited to those cases in

which the two models compared have equal degrees of freedom and those cases

in which one model is a special case of the other. If the restricted form of

Equation 1 is applied, any twc sequences can be compared regardless of how many

admissible cells each generates.
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Example

Our example is based on data from Brainerd and eraser's (1975) study of

number development. Brainerd and Fraser scored each subject at one of three

ordination levels and one of three cardination levels. Table 1 displays the

frequency with which subjects were jointly scored at each level of ordination

and cardination. Figure 1 depicts four developmental sequences which might

be used to explain their data; reciprocal priority with ordination preceding

cardination (A), reciprocal priority with cardination preceding ordination (B),

unilateral priority (C), and synchrony (D). Hatched cells are. inadmissible.

Numbered cells are admissible.

The unrestricted form of Equation 1 could be fitted only for sequence D.

After estimating the row and column marginals, the data in Table 1 contain

only four remaining degrees of freedom. Sequences A, B, and C have either

five or six admissible cells. Consequently, the unrestricted model for these

sequences requires at least six or seven remaining degrees of freedom. The

restricted version of Equation 1 can be and was applied to all four sequences.

Subject's level of ordination and cardination do not appear to be inde-

pendent. The Pearson and likelihood ratio statistics were both statistically

significant (X(4)
2
= 17.60, G(4)

2
..--. 19.99, .p. < .01) leading us to reject the

independence model.

For each sequence in Figure 1, we then fitted the restricted version of Equa-

tion 1 using the CONSCAL program of Davison and Thome (Note 1, 1980). Equations

11 and 13 in Davison (1980) were then used to estimate the probabilities in

Equation 1 from the parameters printed by CONSCAL. Only sequence C, unilateral

priority, would be rejected at any conventional significance level (X(3)
2
= 10.82,

G(3)
2
= 11.19, .2. < .05) irrespective of which fit measure is employed. The two
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reciprocal priority moiels fit equally well (X(3)
2

-., 4.26, G(3)
2
= 3.37, k > .05)

and better than the synchrony model. Using a .05 level of significance, the

Pearson statistic (X(3)
2
= 7.23) would lead to rejection of the synchrony model.

The likelihood ratio statistic would not (G
2

= 6.19).

For the two models which best fit the data, the reciprocal priority sequences,

Table 2 displays the estimates of model parameters. For sequence A, the.parameter

estimates. suggest that 51% of the subjects in the population are unscaleable;

that is, they are not confoming to the hypothesized sequence. Thirteen

percent are found at step 1 in the sequence, 11% at step 2, 3% at steps 3 and 4,

and 20% at step 5. For sequence B, parameter estimates suggest that 59% fail

to conform, 13% are found at step 1, 1% at step 2, 3% at step 3, 4% at step

4, and 20% at step 5.

The parameter estimates, Tv, strongly indicate that neither sequence A

nor B can be considered a "universal" sequence, because the majority of subjects

fail to conform to either sequence. Although the fit statistics for the two

models are identical, A might be preferred. If A rather than B is taken to be

the sequence accounting for dependencies in Table 1, then a slightly higher

proportion of subjects can be said to conform. Parameter estimates suggest that

very few subjects occupy intermediate steps 3 and 4 in sequence A or steps 2

through 4 in sequence B.

For any model that can be said to fit the data, the difference between the

likelihood ratio statistic for the independence model and the developmental

sequence model is itself approximately distributed as a chi square statistic

with une degree of freedom under the null hypothesis wl = Tr2 = r3 = TA = = 0.
1

If this conditional likelihood ratio difference statistic leads to rejection of

the null hypothesis at some chosen significance level, then the sequence model
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can be saV to tit the data significantly better than the independence model.

2
For both models A and B, the conditional likelihood ratio statistic (G .(4)

G(3)2 G(1)2 , 19.99 3.37 = 16.62, p < .01) suggests that the developmental

sequence model-significantly outperform. the independence moc'el.
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Discussion

The loglinear approach to the study of sequences offers several advantages

over alternative approaches. Unlike the Airasian and Bart (1975) and Cliff

(1979) models, the loglinear model is stochastic rather than deterministic.

Whereas Dayton and MacReady's (1976) method applies only to tables having exactly

two levels along each way, the present approach can be applied to tables having

any number of levels along each way. Furthermore, the loglinear analysis is

quite rich. It provides a basis for comparing hypothesized sequences; it pro-

vides tests of fit for each separate model; it provides estimates of the pro-

portion falling at each step along the sequence; and it provides estimates of

the proportion who fail to conform to the hypothesized sequence.

On the negative side, the assumptions of the model are strong, particularly

if the restricted form of Equation 1 is used. Because the analysis relies on

chi square goodness-of-fit statistics, it suffers from the problems associated

with such statistics. If the degrees of freedom are small, then the statistical

test has low power. Some cells may need to be collapsed if their frequencies

are too small.

There are two problems which will, we suspect, complicate the study of

developmental sequences via the loglinear or any other method cited above.

First, the admissible cells generated by two sequences can differ by as little

as one cell. When the choice of sequence depends so heavily on such a small

portion of the data, large sample sizes will be needed to reliably distinguish

between the sequences. When comparing sequences generating highly similar ad-

missible sets, the sequence .favored may vary inconsistently from one study to

the next.

Second, whether 34 step in an hypothesized sequence is needed to describe
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responses will depend, in part, on the developmental or instructional level

of persons studied. If the subjects are not advanced, then the highest steps

in a sequence may not be needed to account for the data simply because no

subjects have reached those steps. Similarly, in an advanced group, the lowest

steps may not be needed. Consequently, researchers investigating the same

hypothesized sequence in similar populations, but at different points of

instruction, may arrive at quite different conclusions, even if that sequence

provides a useful description of learning in both groups. If sequences con-

tain quite transitory steps, then at any given time, few people would be

found at that step. Consistent evidence for the transitory step would be

difficult to obtain.
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Footnote

1
If the unrestricted form of the model is applied, then the number of

degrees of freedOm for the likelihood ratio difference statistic equals the

number of admissible cells.

.16
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TABLE 1

Bivariate Frequency Distribution Between
Ordination and Number Conservation

Ordination Number Conservation Stage
Stage

I II III

I 16 3 1

II 15 3 3

III 23 4 27

2



Sequence
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TABLE 2

Model Parameters

3-4 E5

Loglinear

19

A .51 .13 .11 .03 .03 .20 .15 .12 .73 .65 .16 .19

B .59 .13 .01 .03 .04 .20 .11 .33 .56 .73 .05 .22

21
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Figure Caption

Figure 1. Admissible and inadmissible response patterns for four

developmental sequences. Hatched cells are inadmissible. Numbered cells

are admissible.
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