ED 2C1 324

AGTHOR
TITLE

INGTITUTION
PUB DATE

NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS
IDENTIFIERS

ABSTRACT

quick reference

DOGCOMENT RESUHE

IR CO09 296

dvner, Elaine

Sunmary of TUTOR Commands and System %ariables. Nintt
Edition. '

Illinois fniv., Orbana. Computer-Based Education
Research Lab.

Sep 80

136p.; For related document, see ED 154 774.
University of Illinois, Computer-Based Education
Research Laboratory, Urbana, IL 61801 ($7.50).

MF01/PC0B Pius Postage. '

*Computer Assisted Instruction; Guides; Online
Systemss *Programings: *Programing Languages
*PLATQ; *TUTOR Prograuwing Languageée

Intended for the experienced TUTOR author who ne2ds a
for the form of a tag and for some of the

restrictions on commands, this summary does not discuss tha fine

details of the TUTOR language.

Brief descriptions of the purpose and

the tag are provided for each command. The commanis are grouped in
nine categories: calculating (C), data keeping (D), file operatidns
(F), judging (J), managing sites (M), presenting (P), routing (R),

sequencing (S), and terminal resident processing (T).

sk ate sk ok ke o 3o s ok i o ok ok o ok

(CHC)

=z s 3 o 38k e o 3ok o e 3 3 8¢ 2 e e 3k ke s e o ok ke ke ke ok ke e o dje e ok ke e e ol ¥ ok ok N e K K

* Reproductions :(wpplied by EDRS are the best that can be made *
* from the original document. *
ook Rk R ROk RooRAOES - seoRokooR s e ek ok e o o ok RoK 3k ok 3k SRk ekl K kKRR e ko ok ek

US DEFARTME T TF HEALTH,
EDUZATION & ¥ ZLFARE
NAT:ONALIKR™ T "UTE OF

EDUC: N

THIS OOCL*AENT »° BEEN REPRC
DUCED EX: ~LY -5 T=CEIVED FROA
THE PERSC* ~ROF LA IZATION ORIGIN
ATING IT P™ .15 T5C =W OR OPINION
STATEO OC '2T NZ(ELSARILY REPRE
SENTOFF! AL NATIOWRAL INSTITUTEQ
EOUCATIO* #O5IT:IN R POLICY

i o
od
M

D201

Lt

ITTRARY 0T "IITOR®'CC)I~*Z"‘;\.IFDS I \RTABLES

(r:=——==2 edi

Fli—ne Avnszr

PLATO Services O-ganizatic:

omputer~bass: E.¢.. ation Research Laboratory

N Fgg
W "PERMISSION TO REPRODUCE T- -
MATERIAL HAS BEEN GRANTED
tﬁ D, Bitzer
Q TO THE EDUCATIONAL RESOURCES:
INFORMATION CENTER (ERIC)."
Q ,
ERIC b N
] Ko

Copyrizat (C; 3ermember 19€C
by 3oard cI Irustees
University ©f Zllinois

irgt Lwition ¥ry 1974
Secrond n-dit_on e 1973
Trird Tition ‘Av-mzmber LT
For=th Edition .uzgust 197
F.Ivh Editiom nmy 1977
{Siwmeh Tolltion Sz:ptember 1°-
Sewent® IZdizior July 1978

E--1th Edition ~.gust 1979
Ni:th Ecition fzptember 1&.:0

PLATdD Aand TUTORE a2 service marks
of :zne
University o»f Illincis

Acknowledgment

Many PLATO users have made suggestions on the form and content of this book.
I am especially grateful to members of the systems staff, the evaluation group,
and the PLATO Services Organization for helpful comments. David Andersen,
Brand Fortner, Dirk Grunwald, and Bruce Szablak reviewed the section on pTUTOR
features.

Roy Lipschutz and Wayne Wilson assisted with final preparation of the
manuscript.

This su—mary 1s intended _ > the experienced authcz :ho nee. . quic
reference fo— the form of a tag and for some of the restr ctions =~ comme—:iv
It does not ciscuss fine detail: of the TUTOR language. “2r suc: .. -form: ==
zuthors should refer to "aids" and to The TUTCR Language ~— Bruc: S ez

Each command includes a brief description of its pur- 'se :m Gl
tion of the tag. The standard form 1is

command brief description

command DESCRIPTION OF TAG (any explanator: omm. =

or
command actual tag

Note: Additional comments about this comrar

NOTE: General comments about groups of commands.

The commands are grouped into nine categories: calculatin. ()
data keeping (D), file operations (F), judging (J), managing si: ,
presenting (P), routing (R), sequencing (S}, terminal resident : ‘ag T).
Commands which are difficult to classify are placed in categori :
describe their uamost probable use.

Modifications to this book required by changes in the TUTO¥ s are
contained in lesson "aids" (press DATA and type: changes toc summa. . ‘h=se
modifications, along with other notes of interest, may be inseraf r - ‘2 :3paces
which have been provided between entries and on the additional 5= - - =
of each section.

CONTENTS

Page
»oo»viations i
_~‘ication of comman: s and system var:ables if ey x
. ZATING
.izsic calculating Cl
Svstem operations and inctions c5
fzndom numbers c8
niormation (1]
2t and character manip._laticn Cl1
Opzrations on lists Clé4
"z ta manipulation Cl8
. stem variables for cal :ulating Cc22
-Za KEEPING
Requesting data Dl
Classifying data D2
Transferring data D3
Z:gning on and of: D5
T stem variables :>r dz : keeping D6
T JPERATIONS
=ztaching files Fl
Zstasets and namesets F2
Zzoup files F7
TTTOR files and code fi_: ' Fle
ivstem variables for fil : operations F18
LUIEING
Preparation for responding J1
Vocabulary lists Ja
‘ocification of judging zopy of response J5
Modification of judging -rocedure J6
Stcring judging copy of -esponse J8
Mazching judging copy of response J9
Information on specific ~ords in response J13
Unconditional judgment J15
Reference to other units which may contain ju: ing comc.nds J16
Alteration of judgment J17
Alteration of feedback Jig
Systen variables for judging J19
MASAGILNG SITES
Site commands ' M1 L A P
Station command s M3 . rﬁ "
PRESENTING
Basic display Pl
Graphics Pé
Relocatable graphics P§
Drawing graphs P1®
llon-screen P16
Special display P19
System variables for presenting . P21
ROUTIY
Router lesson Rl
Curriculum information RZ R m
System variables for routing K3
SEQUENCING
Basic sequencing S1
Automatic sequencing S2
Key~initiated sequencing S7
Timing S9
Lesson connections and sections S12 S ‘
Lesson lists . S15
Lesson annotation and debugging S17
System variables for sequencing S21
TERMINAL RESIDERT PROCESSING
load ing and running Tl
Calculating T3
File operations T8
Judging T9
Presenting T15 T n
Exchanging information with the central syster T2 h
Routing T21
Sequencing R T22
Running assembler programs T23
System variables for terminal resident procss=ing T25
Appendix
Some limits associated with commands Al
Keyset Ab A -
Keycodes, internal codes, alternate font meacry locations AS
Powers of two Al
. Alphabetrical index
O System variables ’ 11
EMC Command 8 ,')] 12 I m

cr,

Aruitoxt provided by Eic:

Abbreviation: and Notes

Below zre listecr ~1e abbreviations used in the cescript:z n.
atbreviati: - definitic:
irg argument - tag entry
b) vlank ta:
:oarse character :rid coordinates
M central msmory
ZPU central crocessing unit
iisk rotating magnetic disk storag= - -z
ECS extended conre storage
expr mathematical expression

finex,finey
nu.s

fine grid coordinates
number . f

(opt) optional argument

ppt programmable terminal (IST and P%7)
string character string

var variable

vars variabl.

conditional sta ats and In statements where a variabiz 1s set, suff :xes
#, 1, 2, etc., ;te the minus condition, @ condition, 1 condition,
tondition, etc., "Zey

R w

match VAR,WORD@,WORD1,WORD2
do EXPR, NAMEM, NAME@ ,NAME] , NAME?2

Ir. conditional stztements the conditional expression is rounded (not truncated)
tc the nearest intuzer. Thus, 2 value of ~.4 results in the @ condition »eing
selected rather ttan the minus condition.

Generally, wherevzr a tag entry may be a number; a mathematical expression
will also be accepted.

Command names are enclosed in dashes when they are referred to in descriptionms,
e.g+, —next-. Names of system veriables are enclosed in double quotes, e.g.,
"zreturn". Key names are capitalized, e.g., NEXT. A function key name followed
by "1", e.g., NEXT1l, indicates the SHIFT key is held while the key is pressed.

A word which is enclosed in single quotes designates information which is
stored left-justified in a variable, e.g., ‘student'.

Commands labeled 'mon-executable" are active only when the lesson is being
condeused and not during execution.

When variables are used in the tag of certain commands which require name.

in the tag, e.g., —area~, the variable must be enclosed in parentheses to
indicate that the information needed is the contents of the variable and not
a character string; e.g., -area (v3)- means the area whose name is contained
in variable v3, while -area v3~ meanus the area whose name is v3.

it

CALCULATING
Basic calculating Cli {pe—=t-ons on lists [l4
cefine sor.
ivars SOT—>
calc finc:
calce finc:e
caics ins<.
addl de:=: 3
subl fir:
Zero . fira: 1

set

Dai@ maripulation Cl3
Random numbers c8

t -ck
seed t :sir
randu C .mmcn
setperm ¢ ‘mleacd
randp c mret
remove ¢ sort
restore C SmMMOoTX
modperm Initisl

groragse

stolo=d
Information Cig@ reservs

release
clock backgn<
date foregnc
day
name :
group System variables for calculating C22
compute

lcommon

lstorag
Bit and character manipulation Cl1 =zbpc

zbpw
search zZCpw
pack zcusers
packc
move
itoa
otoa
htoa
clean
recname

ERIC

Aruitoxt provided by Eic:

Requ= =z -z data Dl
datzc.=

Cla==ziiring data D2
are=

outpiut

outrutl

setcat

Trznsferring data D3
re=dset

readd

Signing on and off D5
restart

finish
permit

DATA KEEPING

iii

System variables for datakeeping D6
collecting data

dataon

session data

zsesset
zsesspt
zsessda

area data

aarea
aarrows
ahelp
ahelpn
aok
aokist
asno
aterm
atermn
atime
auno

iv

FILE OPERATIONS

Attaching files F] TUTOR files and code files Fl4
attach setname
detach ' getname
names
iospecs
Datasets and namesets F2 getline
setline
datain parse
2 dataout .
reserve
release System variables for file operations F18
setname
getname zcheck
addname zfacc
rename zfile
addrecs zftype
delrecs zfusers
delname zinfo
names zline
znindex
znscpn
Group files F7 Znsmaxn
' Znsmaxr
records znsnams
checkpt znsrecs
zrecs
.zroff
zrstatn
zrtype
zrvars
zrvret
zsvars
zgvret
Zwpb
Zwpr
zxfile

—~

Preparation for
responding Jl

eraseu
force
edit
arrow
arrowa
arheada
long
Jkey
copy
endarrow

Vocabulary lists J4

list
endings
vocabs
vocab

Modification of judging
copy of response J5

bump
put
putd
putv
close
loada

Modifi._ustion of judging
procedure J6

specs

Storing judging copy of
response J8

store
storeu
storen
storea
open

JUDGING

Matching judging
copy of response J9

match
answer
wrong
answerc
wrongc
concept
miscon
exact
exactc
exactv
ansv
wrongv
ansu
wrongu
touch
touchw
or

ans

Information on specific
words in response J13

getword

getmark

getloc

compare

Unconditional judgment J15

ok
no
ignore

Reference to other units
which may contain
judging commands J16

join

larrow

larrowa

11

Alteration of
judgment J17

judge,

Alteration of
feedback J18

okword
noword
markup
markupy

System variables
for judging J19

judging in general

anscnt
ansok
jcount
judged
key
ntries
ztouchx
ztouchy

verbal responses

capital
entire
extra
order
phrase
spell
vocab
wcount

numerical responses
opcnt

varcnt
formok

vi

Site commands

site
site
site
~ite

set

info
active
stations

M1

MANAGING SITES

Station commands

station
station
station
station
station
station
station

info
status
send
logout
stopl
off

on

bt
3

M3

Basic display Pi

at
atnm
write
writec
show
showz
showt
showe
showo
showh
showa
hidden
text
erase
lang
mode
size
rotate
delay
inhibit
char
plot

Graphics P6

dot
draw
box
fill
vector
window
circle
circleb

PRESENT ING

Relocatable graphics

rorigin
rat
ratnm
rdot
rdraw
rbox
rvector
rcircle

Drawing graphs Pl¢

gorigin
axes
bounds
scalex
scaley
lscalex
lscaley
labelx
labely
markx
marky
polar
gat
gatnm
gdot
graph
gdraw
gbox
geircle
gvector
vbar
hbar
delta
funct

Q0

Non~screen P16

slide
audio
play
record
enable
disable
ext
extout
xout
xin
beep
saylang
say
sayc

Special display

tabset
micro
charset
chartst
lineset
altfont

System variables
for presenting

mode
size

“sizex

sizey
where
wherex
wherey
zlang

P19

P21

S ovii

viii

ROUTING

Router lesson Rl System variables for routing R3
route errtype
routvar ldone
allow 1score

lstatus

rcallow
Curriculum information R2 router

rstartl
lesson rstartu
score rvallow
status zleserr

14

SEQUENCING
Basic sequencing Sl Timing &9
unilt keylist
unitop pause
entry collect
getcode
keytype
Automatic sequencing S2 time
timel
jump timer
goto press
do catchup
join break
return cpulim
exit
iferror
imain Lesson connections
branch and sections
doto
if use
elseif jumpout
else args
endif from
loop lessin
endloop in
outloop notes
reloop cstart
cstop
cstop#*

Key-initiated sequencing S7

next, nextl
back, backl
stop

nextnow

nextop, nextlop
backop, backlop
help, helpl
data, datal
lab, labl
helpop, helplop
dataop, datalop
labop, lablop
term

termop

base

end

Lesson lists S15

leslist

addlist
removl
reserve
release
lnane
findl

Lesson annotation

and debugging S17

$$
change
step
*1ist

W |

System variables

for sequencing S21

args
backout
baseu
clock
fromnum
key
lessnum
lleslst
llesson
mainu
mal lot
muse
nhelpop
proctim
ptime
sitenam
station
tac tive
user
usersin
zaccnam
zcondok
zfroml
zf romu
zgroup
zid
zlesson
zpnfile
zpnotes
Zretrnu
zreturn
zsnfile
zsnotes
zgysid
zsystem
zterm
ztouchx
ztouchy
ztzone
zunit
zuser s

ix

Loading and running TI1

ptutor
unit
loadu
runu
haltu

Calculating T3

define
calc
calcc
calcs
zero
set
compute
randu
gsetperm
randp
remove
restore
block
find
paCk
gearch
searchf

File operations T8

attach
datain
dataout

Judging T9

éarrow
arrow
endarrow
long
force
Jkey
copy
putd
specs
keyword
answer
wrong

TERMINAL RESIDENT PROCESSING

Judging (cont.)

ansverc
wrongc
exact
exactw
ansv
wrongv
ok

no

or
ifmatch
iarrow.
ijudge
judge
getmark
getloc

Presenting TI15

write
writec
show
showt
showb
showo
showh
showa
erase
mode
gize
rotate
text
textn
charlim
charset
char
getchar
inhibit
allow
xout
xin
intrupt
trap

Exchanging information

with central system T2

xmit
receive

. gendkey

fraad

Routing T21

lesson
score

Sequencing T22

jumpn
jumpout
press
getkey
clrkey

Running assembler
programs T23

pptaddr
pptload
ppttest
pptclr
pptdata
pptout
pptrun

System variables for
terminal resident

processing T25

zanscnt zrouten
zcomm zscore
zdata zspell
zentire ztbase
zextra ztmem

Z jcount ztmemr
zjudged ztprog
zkey ztrap
zldone zttype
zntries zwcount
zorder zwherex
zreturn zwherey

CALCULATING Cl

Basic calculating

3

define (non-executable) permits an author to rename variables and to define
mathemratical functions, arrays, and constants for a lesson and to
specify those available for student use; defined variables must
physically precede any reference to the variables in the lesson

for example:

define DEFNAME
NAMEl=v]l,NAME2=n2,NAME 3=65,NAME4=2 (NAME1+NAME3), ...
FUNC(%X,y,+++)=some function of x, y, etc., where x, y, etc.
are not already defined, although the expression on the right
of the equal sign may contain previously defined names
(up to 6 arguments are permitted)

The following definitions allow use of segmented vari-~tlies.

segment ,NAME=STARTING VAR,NUM BITS PER BYTE,s (opt)
segmentv,NAME=STARTING VAR, STARTING BIT POSITION,
NUM BITS PER BYTE,s (opt)
(Starting variable address and byte size cannot be
variables. Byte size is from 1l to 59. If the last
argument 1s included, negative as well as positive integers
may be stored. In vertical segment, starting bit position
may be from 1 to 6@.)

The following definition sets up a field of less than 68 bits.

segmentf, NAME=VAR, STARTING BIT POSITION,NUM BITS,s (opt)
(Restrictions are those for segmented variables.
Field variables are not indexed.)

The following definitions allow use of arrays.

array,NAME (SIZE)=STARTING VAR (SIZE gives number of
variables required)
array,NAME (NUM ROWS,NUM COLUMNS)=STARTING VAR
(rmmber of variables equals rows X columns)
array,NAME (FIRST ELEMENT;LAST ELEMENT)=STARTING VAR
array,NAME (FIRST ROW ELEMENT,FIRST COLUMN ELEMENT ;LAST
ROW ELEMENT,LAST COLUMN ELEMENT)=STARTING VAR

Arrays may also be defined with segmented variables. The form is
that for vertical segments. For example:

arraysegv,NAME (SIZE)=STARTING VAR, STARTING BIT POSITION,
NOM BITS PER BYTE,s (opt)

Up to 255 elements are permitted in an array.

(~define- continued on next page.)

c2

define student
all defines necessary for student responses, including units

units,UNIT1,UNIT2,q.. (maximum of 1@ units, such as gram,
meter, second,s..)
(The define set "student" may also include abbreviationms
and equivalences involving these units. S#e -storeu-,
—-ansu-~, and -wrongu- for these applications.)

To merge a previous set of definitions (SETA) with a set being
defined at this point in the program (SETB):

define SETB,SETA
definitions in SETB

To purge previous define sets:

define purge,DEFNAME (discards define set named)
define purge (discards all define sets except "student'')

Note: Approximately 150¢ definitions are permitted in active define
sets, fewer 1f definitions are complicated. (Define set
"student" may contain approximately 5@@ definitions.) Defined
names and names of define sets cannot exceed 7 characters,
cannot contfin meothematical operators, and must start with a
letter. Up to > define sets may be referenced. When a 6th set
is activated, all earlier sets except "student" are discarded.

A local define set may be declared as a continuation of a -unit-
command. (The ~define~ command is omitted.) Features described
above are available. 1In addition, local variables may be dezlared.
Sample formats for local variables are: ' :

unit someu

' NAME1,NAME2,NAME3(SIZE)
NAME 4=CONSTANT
floating:NAMES5,NAME6,NAME7 (SIZE)
integer,NUM BITS:NAMES,NAME9
integer,NUM BITS,signed:NAME1{
infeger:NAMEll

To merge the local define set with the "global" define set:

unit gsomeu
merge ,DEFNAME (merges with the define set named)

unit someu
merge,previous (merges with the previous define set)

c3

lvars (non-executable) sets up a buffer in memory for local variables for
the lesson; required 1f the lesson uses local variables; must appear
in the ileu before any references to a unit

lvars SIZE OF BUFFER (maximum size of 128)

calc assigns the value of the expressior on the right side of the assign
arrow to the variable or array on the left side, or packs up to 1
characters into an integer variable

for example:

calc VAR< EXPR

calc VAR< "STRING" (right-justified, use n-variable)

calc VAR« 'STRING' (left-justified, use n-variable) :

calc ARRAYNAME < EXPR (includes standard arithmetic operations,
bit operations, and logical operations on entire arrays
and on array elements, and array functions operating on
entire arrays)

calc VAR <« ARRAYNAME]1 o ARRAYNAME2

calc ARRAYNAME]l ¢ ARRAYNAME2 X ARRAYNAME3

Note: See section on SEQUENCING, Automatic sequencing for -doto-,
~branch~-, -if-, -loop-, and related directives. These are
calc-type commands which allow branching withir a unit.

calcc does one of several calculations depending on the rounded value
of a conditional expression

calcc EXPR,VARl<« EXPRM,VAR2<« EXPR@,VAR3« EXPR1, ,VAR4<« EXPR3

calcs sets a 7ariable to one of several values depending on the rounded
value of a .conditional expression

calcs EXPR, VAR« EXPRM, EXPR@#,EXPR1,EXPR2, ,EXPR4

NOTE: Up to 61 calculations may be performed with -calcc- or -ca.:zs--
A blank tag entry (,,) means no calculation is done for ths=
corresponding value of the conditional expression.

addl adds 1 to the specified variable; can be used with array =lements
but not with entire arrays

addl VAR

C4

subl

zZero

set

subtracts 1 from the specified variable; can be used with array
elements but not with entire arrays

subl VAR

sets to zero a single variable or a set secu.ive variables;
can be used with array elements but not - atire arrays

zero VAR

zero STARTING VAR,NUM VARS (cannot be used with segmented
variables or segmented arrays)

sets values of consecutive variables starting at the specified
variable, or sets values of matrix elements starting at the
specified element (starts at the first element if no element is
specified); can be used to set segmented arrays but not segmented
variables

set STARTING VAR« VALUE], VALUE2, VALUE3,...
set ARRAYNAME« VALUEL,VALUEZ,VALUE3,...
set ARRAYNAME (ROW,COLUMN)<« VALUE1, VALUE2, VALUE3, ...

Note: Up to 61 values may be set with a single -set- command-

]

oo

C5

Operations and symbols used in calculations
addition +
subtraction -
multiplication x or * (implied multiplication is permitted, e.g., 5a)
division + or [/
dot product of two arrays °
cross product of two arrays X
parentheses, brackets () [}, {2
exponentiation *¥% or superscript or shift-superscript (e.g., a4)
assignment of a value to a variable %

L

pi = 3.14159...
° degree éign; indicates a number is interpreted in degrees, e.g., 3¢°;
number x 1° converts number to radians;
number : 1° converts number to degrees

Address of a variable may be an expression; i.e., V(EXPR) is permitted,
where EXPR is rounded to the nearest integer.
Frecedence of operaticns (in brief)
operations within parentheses
exponentiation
multiplication
division
addition and subtraction

In general with anything but very simple expressions, parentheses should
be used freely.

NOTE: The computer has approximately l4-digit accuracy-.
Values of floating~point numbers range from about $19-293 o 41g+322,
Values of integers range from about -108L7 to +1¢17.
However, multiplication and division of large integer values may give
erroneous results because of limitations on integer arithmetice.

Cé6

system functions

(argument may be an expression)

abs (X) absolutz value of X
arctan(X) inverse tangent, result in racians, range -7m/2 to +m/2;
for result in degrees, use arctan(X)/1°
cos (X) cosine of X, X in radians; use cos(X°) when X is in degrees
exp(X) eX
X ig first rounded to ihe nearest integer
frac(X) fractional part of X } 1f X is within 1§79 of the integer for
int (X) integer part of X IX|<19¢ or within (1¢-1 xIXI) of the
integer for |X|>10¢ (approximately)
log (X) common logarithm of X (base 10)
1n(X) natural logarithm of X (base e)
round (X) rounded value of X
sign(X) = -1 for X < -1¢79; =@ for -1¢"9 < X < 1¢~9; = +1 for X > 1979
sin(X) sine of X, X in radians, use 8in(X°) when X is in degrees
.8qrt(X) square root of X
varloc (X) address of variable X (X may be a student variable, central memory
variablz, router variable, or defined variable)
zfinex(X) fine-grid x location of character-grid location "X"
zfiney(X) fine-grid y location of character-grid location "X"

Logical operations and functions (logical "true" is -1; logical "false" is @)

X =Y equal to

X #Y not equal to equality i: "true" if

X <Y less than or equal to |X-Y]<194~9 for [X|<19¢ or

X>Y greater than or equal to if |X-Y|<(19~ 1x|X|) for IX!>1¢¢

X <Y less than (approximately)

X>Y greater than

XandY logical "and™; result is "true" only if both X and Y are "true"
XorY logical "or"; result is "true" if either ¥ or Y or both are "true"
not(X)

reverse of truth value of X: if X=§, not(X)=-1; if X=-1, not(X)=@

Bit operations and functions <{use with n-varizbles)

XarsyY shifts X to the right by Y bit positions

XclsY shifts X to the left (circularly) by Y bit positions
XSmask $§Y sets bits where bits are set in both X and Y

XSunion$Y sets bits where bits are set in either X or Y or both
XSdiff Sy sets bits where bits are set in either X or Y but not both
bitent (X) number of bits set in X

comp (X) one’s complement of X (bit reversal)

1mask (X) left-justified number with X bits set } X ranges from
rmask (X) right-justified number with X bits set ¢ to "zbpw"

System functions are continued on next page.

c7

Array functions
And (X) "true" (=-1) if all elements of array X are "true"
Max (X) largest element in array X
Min(X) smallest element in array X
or (X) "true" (=-~1) if any element of array X is 'true"
Prod (X) product of all elements in array X
Rev(X) reverse of array X; i.e., last element is now first, etc.
Sum (X) "sum of all elements in array X

Transp(X) transpose of array X; i.e., rows and columns are interchanged

NOTE:

Because of the finite accuracy of any computer, rounding occurs with
operations with fractional values (v-variables), giving results which
may be off by only one or two bits but which can lead to serious errors.
The tolerances indicated with certain functions and logical operations
are designed to avoid such problems by ignoring these least significant
bits. However, there is no general solution to this inherent problem,
and users must design checks for specific applications.

Some special numerical values:

1/@ = 03777 9000 0000 0090 0000
~1/¢ = o4P@@ 7777 7777 7777 7777

@/@ = ol777 PUGG 0P0Q G060 €000 ‘
-0/ =

o6@@@ 7777 7777 77771 77177

c8

Random numbers

seed specifies a seed for generation of random numbers with -randu- and
-randp-; remains in effect until execution of another -seed- command

seed VAR CONTAINING THE SEED VALUE
seed (B) (clears former value; specifies normal system seed)

randu selects a random number, sampled with replacement, and places it
in the specified variable

randu VAR, MAXIMUM (selects integer from 1 to MAXIMUM;
@ < MAXIMUM < 2%46)
randu VAR (selects 4 number from @ to 1; if the tag is an
n-variable, a value @# or 1 is returned)

NOTE: The next four commands are generally used together to provide
random numbers without replacement.

setperm single-argument -setperm- sets up two lists of integers from 1 to
the specified value for sampling without replacement, one a working
copy of the list (affected by -randp-) and the other an 1nactive
but alterable copy of the list (affected by -remove- and -restore-);
two-argument -sctperm- sets up one list only; a separate copy of the
list should be maintained for use with -remove- and -restore- ‘
setperm MAXIMUM INTEGER IN LIST (@ < MAXIMUM < 120)
setperm LIST LENGTH,STARTING VAR OF LIST (for 1list length > 12¢ and
for special purpose sampling; first variable of the list
contains the number of elements remaining in the list and
each succeeding variable contains 6@ elements in the list;
number of variables required is: 2+int[(length-1)/6@}; length
" of the list is from ¢ to 39¢%)

randp ‘selects a random integer without replacement from the working copy of
the list set up by -setperm- and places it in the specified variable
randp VAR (with l-argument -setperm-)
randp VAR FOR STORING VALUE,STARTING VAR OF LIST

(with 2-argument -setperm- or calculated list)

Note: With either form of -randp- the value returned is @ if the
working copy of the list is exhausted.

24

remove

restore

modperm

Cc9

removes the specifieéd value from the inactive copy of the list
set up by single-argument —setperm- or from the copy of the list
for two-argument -remove-

remove INTEGER TO BE REMOVED . (with l-argument -setperm-)
remove INTEGER TQ BE REMOVED, STARTING VAR OF COPY OF LIST
(with 2-argument -setperm-)

restores the specified value to the inactive copy of the list set
up by single-argument —setperm- or to the copy of the list for
two-argument -restore- ’
]
restore INTEGER BE RESTORED (with l-argument -Setperm-)
restore INTEGER TO BE RESTORED, STARTING VAR OF COPY OF LIST
(with 2-argument -setperm-)

(no.tag) replaces the working copy of the list with the current copy
of the inactive list, which may have been operated on by -remove- and
—restore-; paired with single-argument -setperm- only; to simulate
-modperm- with two-argument —Setperm- use -block~- or -transfr- to
replace the working list with the copy of the 1list

cl¢

Information

clock

date

day

name

.group

compute

puts a character string in the specified variable giving time on a
24-hour clock in the format (space)hour.minute.second- (see also
the system variable "eclock")

clock VAR WHERE STRING IS STORED (use -showa- to display)

puts a character string in the specified variable for the current date
in the format (space)month number/day/last two digits of year(space)

date VAR WHERE STRING IS STORED (use -showa- to display)

places in the specified‘variable the number of days elapsed since
midnight December 31, 1972 to the nearest 19~6 day (approximately
.1 second) : .

day VAR WHERE VALUE IS STORED (use a v-variable)

places the signon name of the user (up to 18 characéers) left-
justified in two consecutive variables starting at the specified
variable with octal zero £111 in unused positions

name STARTING VAR (requires two consecutive variables)

places the signon group of the user left-jusrified in the specified
variable, up to 8 characters with octal zero fill in unused positions

group VAR

compiles the specified character string into machine code, executes
the code, and stores the result in the gpecified variable; the end

of the character string is determined by the specified number of
characters, by six bits equal to ¢ (o@®), or by a comma in the string,
whichever is attained firsty the fourth argument is a pointer to the
compiled code and is required only if the-code is to be executed more
than once

compute VAR FOR STORING RESULT, STRING, NUM CHARACTERS IN STRING,
VAR FOR POINTER TO COMPILED CODE (opt)
(invalid expression does not compile; once compiled,
no recompilation is done unless pointer is zeroed)

Note: STRING may be a left-justified character string enclosed in
single quotes (<l¢ characters) or the starting variable of a
left-justified stored character stringe The string may contain
up to 1@¢ characterse. A "student” define set 1is required if
the string is to be created during execution of the program.

26

Cll

Bit and character manipulation

search scans a character buffer for a specified object character string
search ARG1,ARG2,ARG3,ARG4,ARGS,ARG6H

ARGl = object string (left-justified)

ARG2 = number of characters in string (<1@ characters)

ARG3 = starting variable of buffer to be searched

ARG4 = total number of characters in buffer

ARG5S = relative character position at which to start search
ARG6 = variable for storing relative character position of

first occurrence of object string

search ARG1,ARG2,ARG3,ARG4,ARG5,ARG6, ARG7

ARGl = object string (left-justified)
ARG2 = number of characters in string (1@ characters)

ARG3 = gtarting variable of buffer to be searched

ARG4 = total number of characters in buffer

ARG5 = relative character position at which to start search
ARG6 = variable for storing total found count

ARG7 = number of variables following ARG6 for storing
relative character positions of object string

Fe)

Note: 1In both versions of -search- the relative found location is
-1 if the object string is not found. In the second version
the count is @ if the string is not found. Relative position
of the first character is 1, of the second character, 2, etc.
If ARG4 (length of buffer) is negative, a backwards search
is done.

pack packs a character string starting in the specified variable; the string
’ will be left-justified with octal zero f£ill in unused positions; if the
character count 1s not desired, the field is left blank

pack STARTING VAR FOR STORING STRING:VAR FOR STORING
CHARACTER COUNT §STRING
pack STARTING VAR FOR STORING STRING‘tSTRING

Note: Use n-variable(s) for packing the string if subsequent
comparison for equality with another string is done. (If the
character string 1is packed for other purposes, v-variables
are acceptable.) Segmented variables cannot be used.
Embedded -show- (and related embeds) may be included in the
string. Up to 5@@ characters (including embedded -show-) may
be packed, but the tag is limited to one line of code.

¢ 2%

cl2

packce packs one of several character strings into a variable, depending
on the rounded value of a conditional expression; the string will
be left-~justified with octal zero fill in unused positions;
if the character count is not desired, the field may be left blank;
blank argument for the character string leaves the variable(s)
unchanged for that value of the conditional expression

packc EXPRYSTARTING VAR FOR STORING STRING}VAR FOR STORING
CHARACTER COUNTSTRINGMASTRING@SSTRINGL§JSTRING3. ..

Note: Up to 1@0 character strings may be listed. (See -pack- for
other options and restrictions.)

move moves character(s) from a specified charac* - position in a
character string to a specified position i another character string

move FROM STARTING VAR,FROM STARTING POSITION,TO STARTING
VAR, TO STARTING POSITION,NUM CHARACTERS (opt)

move 'STRING' ,FROM STARTING POSITION,TO STARTING VAR, TO
STARTING POSITION,NUM CHARACTERS (opt)

Note: If not specified, number of characters is l. Maximum
number of characters is 5@@@. Positions may be >1§.

itoa converts an integer to a character string, left-justified with
octal zero fill in unused positions

itoa NUMBER, STARTING VAR FOR STORING STRING, VAR FOR STORING
NUM CHARACTERS (opt)

Note: Non~integer values are rounded to the nearest integer before
conversion to a character string.

otoa converts a number from octal format to alphanumeric format (i.e.,
to a character string) for the number of octal digits, 1f given
(digits are counted from the right end of the number)

otoa NUMBER, STARTING VAR "OR STORING STRING,NUM DIGITS (opt)

Note: Number of digits, if omitted, is 20.
If number of digits 1@, 1 variable is used for storing the
string; otherwise 2 variables are used.

htoa similar to -otoa—~ but for hexadecimal to alphanumeric conversion
htoa NUMBER, STARTING VAR FOR STORING STRING,NUM DIGITS (opt)

Note: Number of digits, if omitted, is 15.
If number of digits S1@, 1 variable is used for storing the
string; otherwise 2 variables are used.

Ny
<8

clean

recname

C13

replaces the following character codes in a buffer with 055 (space):
o@@#, 066 (subscript), o067 (superscript), o7@ (shift),
071 (carriage return), o74 (backspace), 075 (font), 076 (access)

clean STARTING VARIABLE,NUM VARS (opt) (NUM VARS, if omitted, is 1)

takes the l8-character string specified by the first argument,
removes characters not allowed in signon names, and returns the
modified string in variables specified by the second argument; each
string requires two variables; characters allowed are: lower—case
letters, numérals, spostrophes, accent marks, asterisks, pluses,
minuses, and blanks (except in the first and last position and in
contiguous positions); end of the string is marked by of@

recname STARTING VAR OF STRING,STARTING VAR OF MODIFIED STRING
-1 if the string is modified successfully

1if there are no characters in the initial string
+1 1f there are no characters in the modified string

Note: zreturn

Note: A legal signon name must consist of at least one symbol which
is a letter or numeral.

Ccl4

Operations on lists

sort arranges a list of entries stored in consecutive variables in
ascending order according to the value of the specified sort field

sort ARG1;ARG2,ARG3,ARG4,ARG5,ARG6 (opt)
ARG1A ;ARG2A (optional line; allows simultaneous sorting
of an associated list of entries)

ARGl = starting location; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,ECS COMMON LOCATION or
8,ECS STORAGE LOCATION

ARG2 = number of entries in list

ARG3 = number of variables per entry (or increment between
entries); value from 1 to 20§

ARG4 = starting bit position of sort field

ARG5 = number of bits in sort field

ARG6 = mask on sort field (optional)

ARGIA = starting location (see ARGl for details) (optional)
ARG2A = number of variables per entry (optional)

Note: The field for numerical sorting may not extend across
boundaries of variables.

sorta arranges a list of entries stored-in consecutive variables in
alphabetical order according to the internal codes for the
characters in the specified sort field

sorta ARG13;ARG2,ARG3,ARG4,ARGS,ARGH (opt)
ARDIA «ARGZA {(optional line; allows simultaneous sorting
of an associated list of entries)

ARGL = gtarting location; may be:
STUDENT VAR (v or n) or
(M VAR (ve or ne) or
c, ECb COMMON LOCATION or
»ECS STORAGE LOCATION
ARGZ = number of entries in list
ARG3 = number of variables per entry (or increment between
) entries); value from 1 to 2¢¢
ARG4 = starting character position of sort field
ARG5 = number of characters in sort field
ARG6 = mask on gort field (optional)
ARGIA = starting location (see ARGl for details) (optional)
ARG2A = number of variables per entry (optional)

Note: The field for alphabetical sorting may extend across

boundaries of variables. However, the mask can affect only
one variable. '

30

C15

finds performs a binary chop search on a sorted numerical list

finds

ARG1,ARG2;ARG3,ARG4, #G5,ARG6, ARG7,ARG8 {opt)

ARGl

ARG2

ARG3
ARG4

ARG5S

ARG6
ARG7

ARGS

starting variable containing object of search

(the object must have the same length and relative
position as the list entry)

starting location of list; may be:

STUDENT VAR (v or n) or

CM VAR (vc or nc) or

c,ECS COMMON LOCATION or

s8,ECS STORAGE LOCATION

= number of entries in list
= number of variables per entry (or increment between

T nu

entries); value from l to 500

starting bit position of search field

number of bits in search field

variable for storing relative value of found location
(lst entry is 1, 2nd is 2, etc); 1f object is not
found, variable is set to negative of position where
object should have been found

mask on search field (optional)

findsa performs a binary chop search on a sorted alphabetical list

findsa

ARG1,ARG2;ARG3, ARG4,ARG5, ARG6,ARG7,ARG8 (opt)

ARG

ARG2

ARG3

ARG4

ARG5S
ARG6
ARG7

starting variable containing object of search

(the object must have the same length and relative
position as the list entry)

starting location of list; may be:

STUDENT VAR (v or n) or

CM VAR (vc or nc) or

c,ECS COMMON LOCATION or

s,ECS STORAGE LOCATION

number of entries in list

nunber of variables per entry (or increment between
entries); value from 1l to 500

starting character position of search field

number of characters in search field

variable for storing relative value of found location
(1st entry is 1, 2nd 1is 2, etc); 1if object is not
found, variable is set to negative of position where
object should have been found

mask on -search field (optional)

31

Clé6

inserts

deletes

NOTE:

inserts contents of specified buffer into a list of entries stored
in consecutive variables; shifts the remainder of the list down

inserts ARGl,ARG2;ARG3,ARG4,ARG5,ARG6 (opt)
ARGIA, ARG2A ;ARG3A (optional line; allows simultaneous
insertion into associated list)

ARGl = starting variable containing object to be inserted
(the object must have the same length as a list entry)
ARGZ = starting location of the 1list; may be:

STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,ECS COMMON LOCATION or
s,ECS STORAGE LOCATION

ARG3 = number of entries in the list

ARG4 = number of variables per entry (or increment between
entries); ARG4 x ARG6 = value from 1 to 5¢¢

ARG5 = relative position in list at which to insert object
(must be value from 1 to l+length of list)

ARG6 = number of entries to insert (optional; default is 1)

ARG1A = starting variable containing object to be inserted
(optional)

ARG2A = starting location (see ARG2 for details) (optional)

ARG3A = number of variables per entry (optional)

deletes the entries at the specified position in a list of entries
stored in consecutive variables; shifts the remainder of the list
up and fills the last entries with zeros

deletes ARG13;ARG2,ARG3,ARG4,ARG5 (opt)
ARG1A ;ARG2A (optional line; allows simultaneous deletion
from an associated list)

ARGl = starting location; may be:
STUDENT VAR (v or n) or
CM VAR (vc or nc) or
c,ECS COMMON LOCATION or
s,ECS STORAGE LOCATION

ARG2 = number of entries in the list -

ARG3 = number of variables per entry (or increment between
entries); value from ! to 500

ARG4 = relative position in the list of the entry to be

deleted (must be a value from 1l to length of list)
ARG5 = number of entries to delete (opti~nal; default is 1)
ARGIA = starting location (see ARGl for details) {optional)
ARG2A = number of variables per entry (optional)

Commands ~inserts— and -deletes~ may be used on sorted or unsorted lists.

Cl7

find scans each variable in a set of consecutive variables for the first
variable containing the specified bit pattern

find ARG1,ARG2,ARG3,ARG4,ARG5 (opt),ARG6 (opt)

ARGl = object bit pattern

ARG2 = starting variable in list

ARG3 = number of variables in 1list

ARG4 = variable for storing relative found location
ARG5S = increment between variables (optional)

ARG6 = mask (optional)

findall scans each variable in a sét of consecutive variables for all
variables containing the specified bit pattern

findall ARG, ARG2,ARG3,ARG4,ARG5,ARG6 (opt),ARG7 (opt)

ARGl = object bit pattern

ARG2 = gtarting variable in list

ARG3 = number of variables in list

ARG4 = variable for storing total found count

ARG5 = number of following variables for storing relative
found locations (may be less than total count)

ARG6 = increment between variables (optional)

ARG7 = mask (optional)

[

NOTE: Use n-variables with -find- and -findall-. Segmented variables may
not be used. Increment, if omitted, is l. Negative increment
causes a backward scan from the last variable in the list.
If the mask is omitted, the entire variable is compared with the
object bit pattern. If a mask is used, the increment must be given,
even 1if it is l.
Relative position of the first variable is @, of the second variable,
1, etce.
With -find-, 1if the bit pattern is not found, the found location is -l.
With -findall-, if the bit pattern is not found, the count is @ and
‘the first following variable is =l.

c18

Data manipulation

block

transfr

copies a set of consecutive student variables (v, n) or central
memory variables (vc, nc) into another set of consecutive variables

block FROM STARTING VAR,TO STARTING VAR,NUM VARS

transfers data between v- and n-variables (student variables),

ve- and nc~variables (central memory variables), ECS common,

ECS storage, or vr- and nr-variables (router variables) (-comload-
and/or -stoload- must be in effect with central memory variables)

transfr FROM STARTING LOCATION;TO STARTING LOCATION;NUM VARS
(general form)

Any of the following may be used in the first two arguments of the tag:

STUDENT VAR (v or n)

common,ECS COMMON LOCATION or c¢,ECS COMMON LOCATION

storage,ECS STORAGE LOCATION or s,ECS STORAGE LOCATION

CM VAR (vc or nc)

router,ECS ROUTER COMMON LOCATION (when placed in "from"
position, router lesson must contain -allow read-;
when placed in "to" position, router lesson must contain
-allow write-) ‘

routvars,ECS ROUTER VAR LOCATION (may be placed only in
"from" position; router lesson must contain
~allow read rvars-)

ROUTER VAR (legal only when -transfr- command is in the

router lesson)

for example:

transfr vl;c,23;10 (transfers variables vl through v1@ to ECS
common locations 23 through 32)
transfr véb3;ve51;S (transfers variables v6 through vlé4 to

variables vec51 through ve59)
transfr s,lljc,10@;21 (transfers ECS storage locations 11 through
31 to ECS common locations 1¢@ through 12)

Note: Limit to length (NUM VARS) which may be transferred 1s set by:
tag of —common- or -storage- (when referencing ECS) or
length of ~comload- or -stoload- (when referencing CM

. . variables) or
15¢ (when referencing student variables) or-
tag of -routvar- (when referencing router variables)

NOTE: For this type of operation, -~block— and ~-transfr- are very fast.

34

common

comload

comret

abort

Ci¢

(non~-executable) sets up storage space which is accessible -o all
students in a lesson; in central memory the vzriables are referenced
by vc and nc; common codewords must match when the common blocks are
in a different lesson from the ~common- command

common LENGTH OF TEMPORARY COMMON,OPTIONS (opt)
common ,COMMON NAME,LENGTH OF PERMANENT COMMON,OPTIONS (opt)
(~common~ and common blocks are in the same lesson)
common LESSON NAME,COMMON NAME,LENGTH OF PERMANENT COMMON,
OPTIONS (opt)
(LESSON NAME is the lesson containing the common blocks)

Note: Maximum length is 80@¢ words. For length < 15¢@, loading
and unloading are automatic unless altered by -comload-
or optional arguments ''no load" or "read only".

For length > 15@@, ~comload~ must be used for access to
central memory variables. Either or both of the following
OPTIONS may be added to the tag of -common-:

no load (cancels automatic loading of common from ECS to CM)
read only (prevents transfer of common from CM to ECS)

The following OPTION may be used only with permanent common:

checkpt (causes common to be returned to disk approximately
every 8 minutes)

provides automatic loading and unloading of common between central
memory and ECS during each time slice; required if common length
exceeds 150 and central memory variables must be accessed

comload STARTING CM VAR (vc or nc),ECS COMMON LOCATION,NUM VARS
(maximum of 15@@ variables) :
comload (B) (unloads’ CM variables and turns off further automatic
loading until another ~comload~ command 1s executed)

for example:
comload ve22,18,8 (transfers vc22 through ve29 from and to

ECS locations 1§ through 17)

(no tag) returns to disk the common specified by the lesson

Note: =zreturn =1 1f common is successfully returned
@ 1f no common is specified for this lesson

+]1 1if common cannot be returned

prevents return of information to disk

abort common
abort record (with student record; sets "user" to 'sabort')
abort autocheck (with student record; sets "user" to 'snockpt')
abort leslist

c2g@

commonx

initial

storage

similar to -ccmmon- except that —commonx- is executable; if the
-commonx~ command and common blocks are in different lessons, the
common codewords must match or the codeword argument must be given;
the codeword argument must match the common codeword on the lesson
containing the blocks; if any opticnal arguments are included, the
fields for intervening missing arguments must be present

commonx ,COMMON NAME,LENGTH (opt), 'CODEWORD' (opt),OPTIONS (opt)
(-commonx~ and common blocks are in the same lesson)
commonx LESSON NAME,COMMON NAME,LENGTH (opt), 'CODEWORD' (opt),
OPTIONS (opt)
commonx <LESLIST POSITION>,COMMON WAME,LENGTH (opt), 'CODEWORD' (opt)
OPTIONS (opt)
commonx (B) (disconnects current common, copies it to disk if no
other users are in the common, and turns off comloading)

Note: Variable arguments must be enclosed in parentheses. Quote
marks on the codeword are omitted for variable argument.
If LENGTH is omitted and common is in ECS, the ECS length is
used; i1f common 1is not in ECS, entire common 1s read from disk.
OPTIONS are the same as for ~common-.

1f execution is successful
if the common 1s not found or no common is in use

zreturn = -1
@
1 1if no codewords match
2
3

1f the lesson already has a common

1f the ECS version of the common has a
different length than the declared length
= 4 1if the declared length is illegal

specifies a unit to be executed by the first user to enccunter this
command when a lesson or common 1s first brought into ECS

initial common,UNIT NAME (not executed 1f common is in another
lesson which is already in ECS and in which
‘ -initial common- has already been executed)
initial lesson,UNIT NAME

(non-executable) sets up storage space which serves as a temporary
extension of student variables; in central memory the variables are
referenced by vc and nc; they are not saved in student records and
are zeroed during jumpout to another lesson (see ~inhibit dropstor-)

‘ storage LENGTH OF STORAGE (maximum length of 8¢@@)

storage LENGTH,exactly (lesson requires the exact amount of
storage specified) '

storage LENGTH,minimum (lesson requires the greater of the amount

of storage specified or the amount present when the lesson
is entered with -inhibit dropstor~ in effect)

36

€21

stoload similar to =comload- but refers to storage; required for any
length storage to access central memory variables

stoload STARTING CM VAR (vc or nc),ECS STORAGE LOCATION,NUM VARS
(maximum of 15¢@ variables)
gstoload (B) (turns off automatic loading and unloading of storage)

NOTE: When both -comload- and -stoload- are used, care must be taken that the
addresses of central memory variables into which common has been loaded
do not overlap with the addresses into which storage has been loaded.

reserve sets system variable "zreturn" in order to allow a user tc reserve
the common to prevent changes by more than one user at a time

reserve common

Note: =zreturn = -2 1if the common is already reserved by this user

=1 1f -reserve- is executed successfully by this
user

station number of user who has already reserved

the common

release sets system variable '"zreturn" to allow the common to be released
release common

Note: zreturn = =2 1if the common is not reserved by any user

-1 1f -release- is executed succestfully by this
user

station number of user who has reserved the common

backgnd (no tag) flags a lesson as a '"background" lesson so that it may use
large amounts of CPU time when the time 1s available; when CPU time
is scarce, the lesson is handled at lower priority than non-
background lessons

foregnd (no tag) switches the lesson to foreground processing; normal state
of execution

W

€22

System variables for

lcommon

lstorag

zbpc

szw

zZcpw

zcusers

length

length

number

number

number

number

of

of

of

of

of

of

calculating

common (set by tag of —common- command)

storage (set by tag of -storage- command)

bits per character (currently 6)

bits per computer word (currently 6)

characters per computer word (currently 1)

users signed into the current common

DATA XEEPING D1

Requesting data

dataon

dataoff

specifies that student data for the lesson is to be collected and
sent te a datafile if the student records have been set to allow
collection of data (see also system variable "dataon")

dataon (B) (turns on all data collection)
dataon TAG {TAG can be ok, no, unrec no, vocab, area, output,
help, help no, term, term no, errors, signin)

Note: Non-blank tag will temporarily override options set in
group records until turned off by -dataoff- with the
appropriate tag.

specifies termination of collection of data for that lesson

dataoff (B) '
dataoff TAG (TAG is same as that used in a preceding -dataon-)

Note: Non-blank tag of -dataoff- will turn off only options
turned on by a previous ~-dataon- with a non-blark tag;
-dataoff~ does not override options set in group records.

b2

Classifying data

area

output

outputl

getdat

specifies a section in the lesson (called an area) typically]
representing 5 to 15 minutes of student contact time for which
certain information is collected

area NAME (maximum of 19§ characters in NAME; cannot start with
a number; variable tag must be enclosed in parentheses)

Note: Information collected:

elapsed time in the area (in minutes; accurate to -1 minute)
number of arrows encountered

number of "ok'" judgments

number of responses judged tok" on lst attempt

number of anticipated "no" judgments, OT "yrong'" judgments
number of unanticipated '"mo" judgments

number of term requests satisfied

number of term requests not satisfied

number of help-type requests gatisfied

number of help-type requests not satisfied

whether the area has been completed '

area (B) (causes data for the preceding area to be placed in
the datafiles no further data is stored until -—-area-
with nonblank tag is executed)

area incomplete (terminates the current area and flags it as
incomplete)
area cancelled (cancels all data for the current area; does not

initiate a new area or produce any records in the datafile)

puts a comment and/or value of an expression into the datafile

output COMMENT AND/OR EXPR (formats for the expression are:
n, v, a, 0, h with embedded form, i.e., (FORMAT,EXPRY)

places labeled information from specified sgtudent variables in
the datafile ,

outputl LABEL (opt),STARTING VAR,NUM VARS (maximum of
1§ characters in LABEL and 2§ consecutive variables)

allows alteration of system variables containing area data

getdat SYSTEM VAR« EXPR

¢

Note: “atime" cannot be set to a value greater than the total time
signed on for that session. It is accurate to @#.1 second.
The remaining system variables (except for "garea') can be
get to values up to 51l.

40

D3

Transferring data

readset establishes a link between a datafile and the lesson which receives
the data

readset DATAFILE NAME, 'DATAFILE CHANGE OR INSPECT CODEWORD' (opt)
VAR FOR STORING NUM UNUSED BLOCKS (opt)

readset <LESLIST POSITION>, 'DATAFILE CHANGE OR INSPECT
CODEWORD' (opt),VAR FOR STORING NUM UNUSED BLOCKS (opt)

Note: The second argument is included if codewords on the lesson
and datafile or do not match. Variable arguments must be
enclosed in parentheses; if the codeword is a variable,
quote marks are omitted. The third argument is -1 if the
datafile is full.

-1 if the datafile exists and is not empty
@ if the name specified is not a datafile
1 if codewords on the lesson and datafile do not
match '
2 1if the datafile is empty ‘
3 if there is no room in ECS for the buffer
4 1if there is a disk error

zreturn =

readd transfers data from a datafile into student variables or central
memory variables (must be preceded by -readset-~ naming the datafile)

readd area,STARTING VAR,NUM VARS
Note: Area summary data .consists of the following information:
n(x) or nc(x) = starting variable

n(x) and n(x+l) contain the user’s name (up to 18 characters)
n(x+2) contains the lesson name

n (x+3) " the area name

n(x+4) " elapsed time for the area (in milliseconds)

n (x+5) " number of arrows for the area

n(x+6) " number ‘of "ok" judgments for the area

n(x+7) " number of "ok" judgments on the lst attempt

n (x+8) " number of anticipated "no" judgments (matched by

-wrong-, =-wrongc-, =wrongu-, -wrongv-, =-miscon-,
~touchw~, or =judge wrong-)

n(x+9) " number of unanticipated '"no" judgments
n(x+1@) " number of help-type requests satisfied
n(x+11) " number of help-type requests not satisfied
n(x+12) " number of term requests satisfied

n(x+13) " number of term requests not satisfied

n(x+14) = =1 if the area was completed, =@ if not
n(x+15) = =1 if the area is a continuation, =@ otherwise

(~readd- continued on next pagé)

——e—
et

41

D4

readd outputl,STARTING VAR,NUM VARS
Note: Data from -outputl- consists of the following information:

n(x) or nc(x) = starting variable

n(x) contains the length of -outputl- (number of variables)

n(x+l) and n(x+2) contain the user’s name (up to 18 characters)
n(x+3) contains the lesson name

n(x+4) the area name
n(:z45) " execution time of ~outputl~ in milliseconds
n(x+6) " ~outputl-~ label

n(x+7) to n(x + NUM VARS - 1) contain data in the tag of -outputl-
readd signoff,STARTING VAR,NUM VARS

Note: Signoff data consists of the following information:

n(x) or nc(x) = starting variable

n(x) and n(x+l) contain the user’s name (up to 18 characters)
n(x+2) contains the lesson name

n(x+3) " elapsed time (in minutes) spent in the lesson
during this session
n(x+4) " total time (in minutes) to complete the lesson

if the lesson is completed during this session or

~1 if the lesson is not completed during this session
n (x+5) " date of session
n(x+6) " time of signoff

Note: With all tags for -readd-,

zreturn = -1 1f there 1s more data in the datafile
= @ 1if the end of the datafile is reached

D5

Signing on and off

regtart

finish

permit

specifies unit (and lesson if given) where the student is to begin
at the next session '

restart (B) (start at the main unit containing this command)
restart UNIT NAME (start in this lesson at the specified unit)
restart LESSON NAME,UNIT NAME (start in the specified lesson at
A . the specified unit)
restart <LESLIST POSITION>,UNIT NAME (start in the lesson at the
specified leslist position, in the specified unit;
variable unit names must be enclosed in parentheses)
restart (¢¥),(@) or restart q (clears restart information;
no restart is in effect)

specifies the unit which will be executed upon exit from the lesson .
via STOP1 (but not via -end lesson- or -jumpout-)

finish UNIT NAME

finish (B) or finish ¢ (clears ~finish~ getting),

finish EXPR,NAMEM,NAME@,q,NAME2,x (example of conditional form;
maximum of 10¢ arguments in the conditional tag)

specifies whether ~-restart- commands (except those restarting to a
specific unit in another lesson) are obeyed for students in groups
with short records; has no effect for students with regular records

permit short recs (permits -restart- commands except to a specific

unit in another lesson)
permit (B) (permits only -restart- commands which do not specify
a unit; default condition)

D6

System variables for data keeping

collecting

dataon

data

-1 1if data collection is turned on
= @ 1if data collection 1is off
(see also command -dataon-)

session data

zsesset

zsesspt

zsessda

area data

-aarea

aarrows

ahelp

ahelpn

aok

ackist

asno

aterm

atermn

elapsed time since the beginning éf this session (in seconds, to the
nearest millisecond)

processing time during this session (in seconds, to the nearest
millisecond)

number of disk accesses since sign-on during this session

name of current area (left-justified; display with -showa-)
number of arrows encountered

number of help-type requests satisfied

number of help-type requests not satiéfied

number of "ok" judgments

number of "ok" judgments on the first attempt

number of specified (anticipated) "no" judgments; also referred to
as "wrong" judgments, where "judged" has been set to ¢

number of term requests satisfied

number of term requests not satisfied

44

D7

atime elapsed time in the area (in milliseconds)

auno number of unanticipated "no" judgments; "judged" has been set to +l

NOTE: The system variables containing area data are zeroed at the beginning
of each area. _
"atime" may have a value up to about 9 hours.
The remaining variables (except "aarea') may have values up to 5ll.

Additional notes »n DATA KEEPING

46

Attaching files

attach

detach

FILE OPERATIONS Fl

establishes connection with a file and permits access to disk records
or blocks for dataset, nameset, group, TUTOR (lesson), or code files;
with datasets.and namesets record size may be from 64 to 512 words

attach
attach
attach
attach
attach
attach

Note:

NAME (for read and write access)

<LESLIST POSITION>

NAME, rw, 'CODEWORD' (opt) (for read and write access)
<LESLIST POSTION>,rw, 'CODEWORD' . (opt)

NAME,ro, 'CODEWORD' (opt) (for read-only access)
<LESLIST POSITION>,ro, 'CODEWORD' (opt)

’

Codeword checks between lesson and file:

Codeword argument omitted, read and write access:

attach codeword on lesson must match change codeword (TUTOR file,
code file) or write records codeword (nameset, dataset,
group file); '
processor lesson--read/write or special write or dual access
(user’s editing codeword [or group or account] must match
the codeword for writing into the file)

Codeword argument omitted, read-only access:

attach codeword on lesson must match change or inspect codeword
(TUTOR file, code file) or write records or read records
codeword (nameset, dataset, group file);
processor lesson--read only, read/write, or dual access or
special read or special write (user’s editing codeword [or
group or account] must match codeword for reading the file)

Codeword argument included: both read/write and read only:
CODEWORD (typable) must make same match as attach codeword.

Variable first or third argument must be enclosed in
parentheses; quote marks on variable third argument are omitted.
"rw" may be replaced by an expression with value ~-l.

"ro" may be replaced by an expression with value .

TUTOR files and code files are always '"read only". When

the file is attached with "rw'", it cannot be edited by the
system editor or- attached with "rw" access at another station.

i1f connection to the file 1s successful

zreturn = =]
= @ 1if the file does not exist or is the wrong type

1

2

= if no codewords match

if a user at another station is editing the file
directory or has attached a TUTOR file or code
file with "rw" access (or is editing the file)

= 3 1f there is an error in the directory of the file
= 4 1if a disk error has occurred

disconnects a file from the lesson

detach

detach
detach

NAME (detaches and releases the sppcified file, whether

active or ilnactive)
<LESLIST POSITION>
(B) (detaches and relea2f§1the current active file)

{

F2

Datasets and namesets

NOTE: When -datain-, ~-dataout-, ~-reserve~, ~release- are used with namesets,
the record designations are relative to the selected named recordss

datain transfers data from disk to the desired buffer
datain STARTING RECORD NUMBER;TO STARTING LOCA[ION ;NUM
RECORDS (opt)
dataout transfers data from a buffer to disk
dataout STARTING RECORD NUMBER;FROM STARTING LOCATION ;NUM

RECORDS (opt)

NOTE: With ~datain- and -dataout- the second argument in the tag may be:
STUDENT VAR or c,ECS COMMON LOCATION or s,ECS STORAGE LOCATION
The number of records transferred cannot exceed the capacity of the
buffer. If omitted, the number of records transferred is 1.

zreturn ~1 1if -datain- or ~dataout- is executed successfully

= @ 1if there is a pack error or if the disk containing .the
file is not available

if the file has the wrong type, if no file is attached,
or if no name has been selected

if record numbers extend out of range

if the required buffer locations extend out of range
(-dataout~ only) if the user does not have write access
(~dataout- only) if record(s) is reserved by another user
if there 1s a disk error

L]]
—

[« S I R FURN)

v n o

reserve reserves file records or the directory to prevent changes by more
than one user at a time

reserve records,STARTING RECORD NUMBER,NUM RECORDS

reserve name (reserves all records in the currently selected name)
reserve file (reserves all records in the attached file)

reserve directory (reserves the file directory)

Note: zreturn = -2 if the records are already reserved by this user

= -1 1if ~reserve- is executed successfully by this
user ‘

= @ 1if no file is attached or if no name has been
selected '

= 1. 1f record numbers extend out of range

= 2 1if the user does not have write access

= 54n, where n=station number of the user who has

reserved these records

48

F3

release releases file records or the directory

release records,STARTING RECORD NUMBER,NUM RECORDS

release name (releases records in the currently selected name)
release file (releases all records in the attached file)
release directory (releases the file directory)

Note: zreturn = -2 1if the records are not reserved by any user

= -1 1if -release- is executed successfully by this
user ,

= @ if no file is attached or if no name has been
selected

= 1 1if record numbers extend out of range

= 5+n, where n=station number of the user who has

reserved these records

NOTE: With the following commands (-setname-, -getname-, -addname-, -rename-,
-addrecs-, -delrecs-, -delname-, -names-), the name can be up to 39
characters long (3 variables). The optional extra information for the
name is gtored in the right-most 24 bits of the specified variable.

gsetname selects a name (i.e., named set of records) in a nameset

setname 'NAME' (NAME can contain up to 1@ characters; if the name

length in the nameset is more than 1@ characters, the tag
. literal is filled out on the right with zeros)

setname STARTING VAR CONTAINING NAME

setname nextname (selects the next name in alphabetical order or
the first name if a name has not already been selected)

setname backname (selects the preceding name in alphabetical order
or the last name 1if a name has not already been selected)

setname (B) (clears the name currently selected)

Note: zreturn = -1 1f the specified name matches exactly a name

in the nameset

= @ if the specified name matches one name for the
glven number of characters; selects that name

= 1 1if the specified name matches more than one
name for the given number of characters;
selects the first of the names

= 2 1if the specified name does not match any name;
the name reference is cleared

= 3 41f no nameset is attached

(With tags "nextname" and "backname", "zreturn" can have only
values -1, 2, or 3.)

F4

getname stores the name currently selected and its associated extra
information, if specified; the name is left-justified and unused
character positions are filled with octal zeros; the extra information
is stored in the right-most 24 bits of the specified variable and
remaining bits are cleared

getname STARTING VAR FOR STORING NAME, VAR FOR STORING EXTRA
INFORMATION (opt)

Note: If no name has been selected, a value of @ is stored for both
the name and the extra information.

addname adds a new named set of records to a nameset file; selects that name

addname STARTING VAR CONTAINING NAME,NUM RECORDS (opt), VAR
CONTAINING EXTRA INFORMATION (opt)

Note: Number of records, if omitted, is l.
Extra information, if omitted, is @.

if the name 1is added successfully
if no nameset is attached
if the user does not have write access
if the new name duplicates an existing name or
has an illegal format

3 1if enough room is not available for new records
= 4 1if the nameset 1s reserved

zreturn = -

il
[Y

rename changes the name of the currently selected named set of records
and/or the associated extra information

rename STARTING VAR CONTAINING NEW NAME, VAR CONTAINING NEW
INFORMATION (opt)

Note: If the second ergument is omitted, information is unchanged.

zreturn = =1 1if the name is changed successfully
= @ 1if no nameset 1s attached .
= 1 1f the user does not have write access
= 2 1f no name has been selected
= 3 1if the new name duplicates an existing name or

has an illegal format
= 4 1if records in the selected name are reserved

7
O

F5

addrecs adds records to the selected name

addrecs NUM RECORDS TO ADD AT END
addrecs RECORD POSITION, NUM RECORDS TO ADD AT THAT FOSITION

Note: zreturn = -1 1if records are added successfully
= @ 1if no nameset 1s attached
=] 1f the user does not have write access
= 2 1f no name has been selected
= 3 1if the specified starting position is outside

the range of records in the named records
(2~argument form)
= 4 1if records in the selected name are reserved
5 1f enough room 1s not available for new records

delrecs deletes records from the selected name (but does not zero the records)

delrecs NUM RECORDS TO DELETE FROM END
delrecs STARTING RECORD POSITION,NUM RECORDS TO DELETE

Note: =zreturn = -1 1f records are deleted successfully

= @ 1if no nameset is attached

= 1 1f the user does.not have write access

= 2 1f no name has been selected

= 3 1f the specified starting position 1s outside
the range of records in the named records
(2~argument form)
if the specified records are reserved

1
&~

delname (no tag) deletes the currently selected name and all its records
(but does not zero the deleted records)

Note: =zreturn

i
!

if the name and records are deleted successfully
if no nameset 1s attached

if the user does not have write access

if no name has been selected

if the specified records are reserved

[
o R

F6

namnes

stores names from the nameset list (names are stored left-justified
with octal zeros in unused character positions); each name entry,
which may require from 1 to 3 variables, i1s followed by a variable
whose left-most 15 bits contain the number of records with the name
and whose right-most 24 bits contain the extra information :

names

Note:

ARG1 (opt),ARG2,ARG3, ARG4

ARG] =

ARG2
ARG3

ARGY =

Zreturn

starting position in list of nameset names (optional)
(1f omitted, starting position is the name currently
selected by -setname~ or at the beginning of the list
1if no name is selected)

= starting variable for storing names
= maximum number of variables for storing names (each

requires from 2 to 4 variables)
variable for storing actual number of names obtained

-1 1f names are stored successfully
@ 41if no nameset is attached
+1 1f the starting position is invalid

F7

Group files

The following commands for namesets may also be used with group files:
-setname-, -getname-, -names-, -addrecs-, -delrecs-, ~-reserve-, -release-,
-datain-, and -dataout-.

The -records— command provides information on a group file.

NOTE: - With -records- command, change access changes the parameter to the
information contained in the specified variable(s); read access stores
the parameter in the specified variable(s).

To change alphabetic information use a left-justified string (K10
characters) or n-type variable(s) containing a left-justified string.
To read (store) alphabetic information use n-type variables.
(Alphabetic information is stored left-justified.)

records change and records read allow parameters for the previously
selected name to be changed or read

records change;OPTION]1;OPTION2;0PTION3...
records readj;OPTION1;OPTION2;0PTION3...

OPTIONS:

name, STARTING VAR (name of the record; requires 2 variables)

user type,VAR (read only; stores user type, e.g., 'student')

of £, VAR (VAR is -1 for record turned off, @ otherwise)

info, VAR (the 24 bits of extra information)

options, 'TYPE',VAR (author and instructor options; VAR is -1 for
option turned on, @ for option turned off; 'TYPE' may be
'ifilecat', 'anyless', 'sitelist', 'userlist', 'notes',
'accounts', 'datafile', 'prints', 'editown', 'editothr')

svars, STARTING ADDRESS,STARTING VAR,NUM VARS (student variables)

rvars, STARTING ADDRESS, STARTING VAR,NUM VARS (router variables)

message,STARTING VAR (requires 31 variables)

lesson, VAR (name of the restart lessonj; change: lesson entry may
be a leslist position, e.g., change;lesson,<LESLIST POSITION>)
unit, VAR (name of the restart unit)
score, VAR (last value of "lscore')
completed, VAR (last value of "ldone")
. status, VAR (last value of "lstatus")

ldonelist,STARTING LESSON POSITION,STARTING VAR,NUM VARS (read only;
"ldone" information, in 3-bit signed segments; "mrouter' only)

lscorelist,STARTING LESSON POSITION,STARTING VAR,NUM VARS (read only
"lscore" informaticn, in 8-bit signed segments; '"mrouter" only)

data on,VAR (VAR is -1 for individual data collection on, @ for off)

(-records change- and -records read- continued on next page)

=
1
L)

F8

data opts, 'TYPE' ,VAR (individual data collection options; VAR is -1
for option turned on, @ for option turned off; 'TYPE' may be
'area', 'output', 'ok', 'no', 'unrec no', 'vocab', 'help',

'help no', 'term', 'term no', 'errors', 'signin')
password,TYPE, VAR (opt) (change: TYPE=~l, set password to string

in VAR; TYPE=@), zero password; TYPE=l, set password to none;

read: TYPE is a variable which stores the value for type of

password [~1, typable password; #, blank; 1, none required])
total time,VAR (read only; total hours on PLATO; use v-~variable)
total days,VAR (read only; total days on PLATO)

sessions, VAR (read only; total sessions on PLATO)

cpu time, VAR (read only; total cpu time in milliseconds)

disk count, VAR (read only; total disk accesses)

creation, VAR (read only; date of creation of the name)

last date,VAR (read only; date the name was last signed on)

last time,VAR (read only; time the name was last signed on)

station, VAR (read only; station number where name was last signed on)
id, VAR (read only; stores "zid" information)

Note: See "zreturn" on next page.

records add and records delete permit names to be added or deleted

records addjname,STARTING VAR;user type, 'USERTYPE' ;OPTIONL;OPTIONZ2...
records delete (deletes the selected name and its records; zeros
records with basic signon data but not extra records)

OPTIONS are those for previously selected name.

With ~records add- "name" and "user type'" are required; other
options are allowed for initializing values. If no options are
specified, the parameters are created with value of zero.
'USERTYPE' may be 'student', 'multiple', 'instructor', or ‘'data'.
(Type 'author' may be created in author group files which do not
contain University of Illinois authors.)

A 'data' user type may be used for storing data for the group as a
whole. A name with this user type cannot sign onto the system.

Note: See "zreturn" on next page.
records changedir and records readdir allow information in the group
directory to be changed or read

recori. changedir ;OPTION1;OPTION2;0PTION3...
records readdir ;OPTION1;OPTION2;0PTION3...

OPTIONS:
name, VAR (read only; name of last editor)
group, VAR (read only; group of last editor)

(-records changedir~ and ~records readdir- continued on next page)

Q 55{1

F9

station, VAR (read only; station where last editor worked)

lesson, VAR (read only; lesson which last edited the group)

date, VAR (read only; date the group was last edited)

time, VAR (read only; time the group was last edited)

short, VAR (read only; VAR is -1 if the group has short records,
@ 1f the group has regular-length records)

snotes, VAR (read only; name of student notes £file)

data file,VAR (read only; name of datafile)

processor, VAR (read only; name of processor lesson)

router, VAR (rame of student router; may not be set to a system lesson;
change: lesson entry may be a leslist position, e.g.,
changedir ;router,<LESLIST POSITION>)

irouter,VAR (name of instructor router; change: if VAR=({, router 1is
set to "imode"; may not be set to any other system lesson;
change: lesson entry may be a leslist positiom, e.g:,
changedirj;irouter,<LESLIST POSITION>)

group data, 'TYPE',VAR (group data collection options; VAR is -1 for
option turned on, @ for option turned off; 'TYPE' is same as
for individual data opts)

less data, 'TYPE',VAR (lesson data collection options; VAR is ~1 for
option turned on, @ for option turned off; 'TYPE' 1s same as
for individual data opts)

write code,TYPE,VAR (opt) (write records codeword; change: TYPE=-1,
set codeword to string in VAR; TYPE=l, set to unmatchable
codeword; TYPE=2, set codeword tu user’s group; TYPE=3, set
codeword to user’s account}
read: TYPE is a variable which stores the value for type of
codeword [-1, typable code; 1, unmatchable; 2, group; 3, accouit])

read code,TYPE,VAR (opt) (read records codeword; TYPE is same as for
write code)

message, 'TYPE' ; STARTING VAR, VAR FOR DATETIME (opt) (message requires
31 variables; 'TYPE'='all', 'student', 'multiple', Ynstructor',
or ‘author'; for read-only access, date and time the message
was written may be returned in the optional argument as a
character string in the form: yrmndyhrmt where yr 1is the
last 2 digits of the year; mn 1s month number; dy is the day
of the month; hr is the hour; mt is the minute)

NOTE: For all preceding forms of the -records- command:

if ~reccrds- is executed successfully

if no group is attached or if no name has been selected

if the user does not have write access

if the new name duplicates an existing name

if there 1s not enough disk space available

if the entire group or the name is reserved by another user
if there 1s a disk error

if there is an error in the (n=-5)th QPTION in the

-records~- tag, where n is the "zreturn" value

zreturn = =

|
o QN I - R PURN LR~ B

iv 1

Fl¢

records locate stores the station numbers where names in the group are
signed onj the search stops when the first name 1s found

records locate,STATION NUMBER TO START SEARCH (opt);VAR
(1f STATION NUMBER is omitted, search starts at station ¢;
VAR is set to the station number where the first name is

found or to -1 if no names in the group are signed on at
stations > STATION NUMBER)

L}

Note: zreturn 1f -records locate- is executed successfully
if no group is attached
if the station number is invalid

if there is a system error

Lo -~

records info stores information for the name signed on at the specified
station or for the previovusly selected name

records info,STATION NUMBER (opt);OPTION1;0PTION2;...
(1f STATION NUMBER is omitted, data is stored for the
selected name)

OPTIONS:

name, STARTING VAR (name of the record; requires 2 variables)

user type,VAR (type of record, e.g., 'student')

lesson, VAR (name of the lesson or type of activity)

main, VAR (name of the main unit) '

current, VAR (name of the current unit)

router, VAR (name of tne router lesson)

curriculum, VAR (name of the curriculum file or instructor file)

zxfile, VAR (name of the processor lesson database)

hours on, VAR (number of hcurs signed on for this session;
use v-variable)

cpu time,VAR (cpu time in milliseconds for this session)

disk count, VAR (number of disk accesses for this session)

router ecs, 'TYPE',VAR (router ecs charges; 'TYPE' is 'lesson',
: 'common', 'storage')

lesson ecs, '"TYPE',VAR (lesson ecs charges; 'TYPE' is 'lesson',
'common', 'storage')

area, VAR (name of the current area)

station, VAR ‘(number of the station where the name is signed on)
site, VAR (name of the site at which the name is signed on)
status, VAR (current value of "lstatus")

score, VAR (current value of "lscore")

completed, VAR (current value of "ldone")

Note: =zreturn = -1 1if -records 1info- is executed successfully
@ 1if no group is attached or if no name has been
selected
= 2 1if the selected name is not signed on or if no
name in the group is signed on at the specified

station
= 5 1f there is a system error
Qo 2 6 4if there is an error in the (n-5)th QPTION in the

F11

records send sends a message (up to 6@ characters) to the station or rings
the sound device oun the terminal (if programmable)

records send,STATION NUMBER (opt);message,SCREEN LOCATION, STARTING VAR
CONTAINING MESSAGE,NUM CHARACTERS IN MESSAGE
records send,STATION NUMBER (opt);beep
(1f STATION NUMBER is omitted, the message or signal is
sent to the selected name)

Note: =zreturn = -1
= §
= 1
= 2
= 4
=5

if the message or signal is sent successfully
if no group is attached or if no name has been
selected

if write access to the group 1s not allowed

if the selected name is not signed on or if no
name in the group is signed on at the specified
station

i1f the message or signal cannot be sent to the
specified station

if there is a system error

records backout backs out the specified station or the previously selected
name after erasing the screen and sending a message (sets
"backout" to -2)

records backout,STATION NUMBER (opt) (if STATION NUMBER is omitted,

Note: <return = =1

)

ll
N

nu
w oW

selected name 1s backed off)

if the backout is successful

if no group is attached or if no name has been
selected

if write access to the group is not allowed

if the selected name 1is not signed on or if no
name in the group is signed on at the specified
station ‘

if the station is not backed out because of error
if the specified station cannot be backed out

if there 1s a system error

Fl12

records update updates the disk copy of the records for this user (student
or instructor); the user’s group must be attached with
read/write privileges, and the user”s name must be selected
with ~setname-

Note: zreturn = -1 1f updating is successful
= @ 1if no group is attached or if no name has been

selected

if write access to the group is not allowed

= 2 1f the wrong group 1is attached cr the wrong
name has been selected

= 3 1if checkpointing has been turned off by
~checkpt off~ or -records save-

= 4 1f the selected name is not user type 'student'
or 'instructor'

= 5 1f there is a disk error or other system error

I
—

records save similar t» -records update~ except that the record is flagged
as "saved" and automatic checkpointing is turned off; can be
used only in a router lesson

Note: zreturn = -1 1f -records save- is successful
= @ 1if no group is attached or if no name has been

selected

if write access to the group 1s not allowed

= 2 1f the wrong group 1is attached or the wrong
name has been selected

= 3 1if -checkpt off- is in effect or 1if the record
has already been saved

= 4 1f the selected name is not user type 'student'
or 'instructor'

= 5 1f there is a disk error or other system error

]
—

records restore retrieves the saved record from disk; used with
~records save-; can be used only in a router lesson

Note: =zreturn = ~1 1f ~-records restore- 1s successful
= @ 41if no group is attached or if no name has been
selected
if write access to the group 1s not allowed
= 2 1if the wrong group is attached or the wrong
name has been selected
if the record has not been saved by -records save-
if the selected name is not user type 'student'
or 'instructor'
= 5 if there is a disk error or other system error

]
ot

S W

91
o

checkpt

F13

allows the program to control checkpointing of student and instructor
records; a =—checkpt- command executed in a router sets the default
for checkpointing for subsequent instructional lessons

checkpt on (allows automatic checkpointing; normal default for
students)

checkpt off (prevents automatic checkpointing; normal default for
instructors)

checkpt EXPR {(value=@ sets to "off"; value=-1 .sets to "on")
Note: =zreturn = ~1 if ~checkpt~ 1is successful

= @ if -checkpt~ cannot be used with this user type
('multiple', ‘author', 'sabort', 'snockpt')

o

Fl4

TUTOR files and code files

setname

getname

selects a block name from the attached file; contiguous blocks with
the same name are selected at the same time

setname 'NAME'

setname VAR CONTAINING NAME

setnameé nextname (selects the next name in sequence or the first
name if a name has not already been selected)

setname backname (selects the preceding name in sequence or the
last name if a name has not already been selected)

setname (B) (clears the name currently selected and selects source

blocks set to condense)

Note: zreturn = -1 1if the specified name matches exactly a block

name in the file

= @ 1if the specified name matches one name for the
‘given number of characters; selects that name

= 1 1f the specified name matches more than one
name for the given number of characters;
gelects the first of the names »

= 2 1if the specified name does not match any name;
the name reference is cleared

= 3 1if no TUTOR file or code file is attached

(With tags '"nextname" and "backname", "zreturn' can have only
values -1, 2, or 3.) :

stores the name currently selected and the associated information,
if specified; name is left-justified and unused character positions
are filled with octal zeros

getname VAR FOR STORING NAME,VAR FOR STORING INFORMATION (cpt)

format for the information (counting from the left end of
the variable): :

42 bits (7 characters): block type (left-justified)
binary, charset, common, leslist, lineset, listing,
micro, source, text, vocab
6 bits (1 character): condense flag [("-" (046) or " " (055)]
3 bits unused :
9 bits: block position in directory

Note: If no name has been selected, a value of @ is stored for both
the name and the information.

6o

names

iospecs

stores
in unus
first £

names

Note:

specifi
iospecs
options
mods
nomods
deleted
nodelet

truncat

notrunc

Note:

F15

names of blocks in the file (left-justified with octal zeros
ed character positions); each entry requires 2 variables, the
or the name and the second for the associated information

ARG1 (opt) ,ARG2,ARG3, ARG4

ARGl = starting postion in the directory of block names
(numbaring starts at 1 for block l-b)
(optional; if omitted, starting position is the name
currently selected by -setname- or the beginning of
the list if no name is selected)

ARG2 = starting variable for storing names

ARG3 = maximum number of variables for storing names (each
requires 2 variables)

ARG4 = variable for storing actual number of names obtained

format for the associated information (counting from the
left end of the variable):

6 bits (1l character): condense flag ["~" (046) or " " (055)]
6 bits (1l character): blank (055}
12 bits (2 characters): block type

"

" (05555) (source) "11" (ol4ld) (leslist)
"hbi" (o@211) (binary) """ (0l4l6) (lineset)
"eh" (o@319) (charset) "mi" (ol511) (micro)
“em™ (0@315) (common) "ex" (02430@) (text)
"14" (ol4ll) (listing) “ye" (026@3) (vocab)

27 bits unused (o@P@PRAGGEA)

9 bits: number of words of disk space used

= -] 1f names are stored successfully
= (B 1f no TUTOR file or code file is attached
= +] 1if the starting pcsition is invalid

zreturn

es parameters for subsequent -getline- commands
OPTION1,OPTION2,0PTION3
include:

mod words are included in the lines read
mod words are not included in the lines read
deleted lines are included in the lines read

ed deleted lines are not included in the lines read

e the line is truncated if it is too long for the buffer;
the line pointer moves to the next line

ate the line is truncated if it is too long for the buffer;
the line pointer stays at the truncated line

If the -iospecs- command is omitted, the default options are:
nomods ,nodeleted,truncate

Flé

getline

gsetline

reads a line from the selected block name in the attached file and
stores it (left-justified) in the specified variables

getline ARG1,ARG2,ARG3

/RG1
ARGZ
ARG3

starting variable of the buffer for storing the line
number of variables in the buffer
variable for storing the number of variables actually

required to store the line

Results depend on options

mods mod words are
buffer
nomods mod words are
deleted deleted lines
nodeleted deleted liies

set by previous -iospecs=-:
stored in the first 2 variables of the
not stored

are stored
are not stored

truncate a line which is too long for the buffer is truncated, and

the truncated
of # (oP@0P);

actually used

line is stored; all lines end with 12 bits
return length is the number of wvariables
to store the line

notruncate a line which is too long for the buffer is truncated and
stored (but the next -getline~ command will attempt to
store this line without truncation); lines so truncated
will not end in 12 bits of @#; return length is the true

length of the

line, i.e., the number of variables that

would be required to store it without truncation

if -getline~ 18 executed successfully

if no TUTOR file or code file is attached

if there are no lines left in the selected blocks
if the line length 1s greater than the buffer

length (the line is truncated)

Note: zreturn = -1
= @
= 1
= 2
= 3
= 4
> 5 if a

if this line 1s a deleted line
if this l1line 18 a truncated deleted line

system disk error has occurred

sets the pointer for the line to be read by the next -getline-
command; should be used in conjunction with "zline"

setline VAR CONTAINING VALUE OF DESIRED 'zline"

Note: =zreturn = -1 1f ~setline~- 1s executed successfully
= @ if no TUTOR file or code file is atiached
= +] 1f the pointer value is illegal

parse

Fl17

analyzes (or parses) a line of TUTOR code stored in a buffer

parse ARG1,ARG2,ARG3,ARG4,ARGS5, ARG6

ARGl =
ARG2 =

ARG3 =

ARG4 =

ARG5 =

ARG6 =

Note: =zreturn

starting variable containing the line of code

number of variables to examine (end of line also
terminates the search)

variable for storing indent level of code

(= @ if not indented)

variable for storing the command name, left~justified
and filled to character position 8 with spaces (055);
if the line is a comment, the first 8 characters of
the line are stored

variable for storing the relative character position
of the beginning of the tag

variable for storing the number of variables actually
required to store this line

= ~] 1if the line is a comment or a deleted line
= @ otherwise

F18

System variables for file operations

These system variables are set when the appropiate file is attached or when a
name has been selected (in the attached nameset or group file).

zcheck

zfacc

zfile

zf type

zfusers

zinfo

zline

znindex

znscpn

Zznsmaxn
znsmaxr

znsnams

current checkpointing status of records

= -1 1if checkpointing is allowed

@ 1if -checkpt off- is in effect

1 1if -records save~ is in effect

2 1f -abort record~ or =-abosrt autocheck- is in effect
3 1f the user 1s an author or a multiple

= -1 if the file is attached read/write
@ if the file is attached read only or if no file is attached

name of the file currently attached to the lesson
(left~justified; display with -showa-)

type of file which is attached to the lesson ('dataset', 'nameset',
'group', 'lesson', 'code') (left~justified; display with ~showa-)

number of users connected to the file currently attached

contains the 24 bits of information associated with the currently
selected name in a nameset or group; stored in the right-most 24 bits

value of the pointer to the next line to be read by -getline-

position of the currently selected name in the nameset or group
directory (= @ if no name has been selected or 1f no nameset or group
is attached)

number of characters per name for the attached file
(= 18 for TUTOR file and code file; = 18 for group file)

maximum number of names (or blocks) allowed in the attached file
maximum number ofbrecords‘(or blocks) allowed in the attached file

number of names in use in the attached nameset or group

0Nz

znsrecs

2recs

zroff

zrstatn

zrtype

zrvars

zrvret

zsvars

2svret

zwpb

Zwpr

zxfile

F19

number of records in use in the entire attached nameset or group

number of records in the selected name in the attached nameset or
number of extra vecords (i.e., records added with -addrecs-) in the
selected name in the attached group or

number of records in the attached dataset

= -1 1if the currently selected name in a group has been turned off
= @ otherwise

station number where the currently selected name in a group is signed
on (= -1 if the name is not signed on)

usar type of currently selected name in the attached group:
's.udent', 'multiple', ‘instructor', ‘'author', ‘'data'
(left-justified; display with -showa-)

maximum number of router variables (currently 64)

a -] 1if router variables are permanently stored on disk
= @ 1if router variables are not permanently stored

maximum number of student variables (currently 15@)

= -] 1f gtudent variables are permanently stored on disk
= @ 1if student variables are not permanently stored

number of computer words per block in the attached TUTOR file or

"code file (currently 32¢)

number of computer words per record in the attached file
(= 32@ for TUTOR file and code file; = 64 for group file)

contains the name of the file through which a processor lesson is
accessed (= @ if the processor lesson is entered directly)
(left-justified; display with -showa-)

Additional notes on FILE OPERATIONS

&

JUDGING Ji

Two types of commands are described in this section: Jjudging commands
and regular commands. (In all other sections of this book only regular
commands are described.) Regular commands are not executed during the
judging process, i.e., after the student has entered a response, nor are
judging commands executed before the student has entered a response or
in situations where no response is involved. (See "The TUTOR Language"
and lesson "aids" for extensive descriptions of the judging process.)

Regular commands in this section include: -eraseu-, =-force-, =-edit-,
-arrow-, —-arrowa-~, -arheada~-, -long-, -jkey~, =-copy-, -endarrow-, =-getword-,
-getmark-, -getloc-, -compare-, -iarrow-, -iarrowa-, =-judge-, -okword-, -noword-,
-markup-, -markupy-. Commands -list-, -endings=-, =-vocabs-, =vocab- are special
non-executable commands which establish lists of words for use with certain
response-matching commands. The -join- command is both regular and judging.

The remaining commands in this section are judging commands-.

Preparation for responding

eraseu (regular command) the specified unit is executed at all subsequent
arrows in the unit containing -eraseu-'when the student erases part
or all of a response after receiving judgment; useful for erasing
complicated displays which are not handled by the standard judging
process

eraseu UNIT MAME
eraseu (B) or eraseu q (clears -eraseu- setting for remainder
] of the unit)
eraseu EXPR,NAMEM,NAME®,q,NAME2,x (example of conditional form;
maximum of 1@@ arguments in the conditional tag)

force (regular command) alters the input of a response as specified;
setting is cleared at each main unit

"force firsterase (erases an incorrect response and contingent
message when the student presses any key, not just
NEXT, ERASE, etc.)
force font (inserts the font code before the first keypress)
force left (forces the response to be written from right to left)
force long (initiates judging when the character input reaches
the value of the tag of -long-; unnecessary with -long i-)
force micro (forces all keypresses through the microtable
conversion)
force (B) or force <clear (clears previous -force- settings
in that unit)
force clear,font,left (may combine tags)

~ ..

J2

edit

arrow

arrowa

arheada

long

jkey

(regular command) requifed for EDIT key to be active when the tag
of -long- exceeds 15@; specifies the starting variable of a buffer
for storing the characters in a response (up to 3@@ characters)

edit STARTING VAR (use student variable)
edit (B) (clears edit buffer; i1f placed after -arrow~, prevents
use of the EDIT key; see also =~inhibit edit-)

(regular command) plots the response arrow at the specified screen
location (see ~inhibit arrow-); sets defaults: -long 15@- and
-jkey (B)-

arrow COARSE
arrow FINEX,FINEY

(reguiar command) allows an alternative arrow associated with -iarrowa-
and -arheada~; follows same rules and restrictions as -arrow-~

arrowa COARSE
arrowa FIU'EX,FINEY

(regular command) specifies a symbol to be plotted with the
alternative arrow

arheada SYMBOL TO BE PLOTTED WITH ~arrowa-

Note: Up to five 6-~bit characters may be specified.

(regular command) sets the maximum number of characters in a response
(default is 150 characters); must follow ~arrow- (see NOTE)

long UM CHARACTERS (value of tag is from @ to 3¢@; -long 1-
causes automatic judging; tag > 15@ requires use of
-edit- for EDIT key to be active; ~long @- prevents
input from the keyset except for function keys)

(regular command) specifies the function kev(s) which will initiate
judging (in addition to the NEXT key); must follow -arrow- (see NOTE)

jkey KEYNAME (name of function key-is in lower case)

jkey KEYNAME,KEYNAME2,KEYNAME3, ...

jkey (B) (clears previous -jkey- settings so that only NEXT
initiates judging)

J3

copy (regular command) specifies the starting variable of the character
string which is to be copied on the screen at the arrow, one word at
a time, when the COPY key 1is pressed; the end of the character string
is indicated by the specified number of characters or by 12 bits equal
to @ (o99@¢@¥), whichever is attained first; loads the sting as it
appears on the screen into the response buffer; must follow -arrow-

(see NOTE)

copy STARTING VAR,NUM CHARACTERS (use student variable)

NOTE: To affect the first response, ~long-, =-jkey-, and -copy- must follow the
—-arrow- command but must precede any judging commands. However, after
the student enters a response (e.g., an incorrect response), these
commands can be executed among the regular commands following the
matched response in order to affect the next respoanse at the same arrow.

endarrow (regular command) (no tag) terminateg judging with an unanticipated
“no” judgmenc if the response has not been matched; after an "ok"
judgment, =—-endarrow- terminates the search for additional =-arrow-
commands and switches back to the pre-arrow state

J4

Vocabulary lists

list

endings

vocabs

vocab

NOTE:

(non-executable) sets up a list of synonyms for judging; used with
-answer-, ~wWrong-, —answerc-, -wrongc-, and -match-

list LISTNAME,WORD 1, PHRASE*CONSISTING*OF*SEVERAL*WORDS,
WORD2,WORD3, o (maximum of 7 characters in LISTNAME)

(non-executable) used with -vocabs- and -vocab- to add endings to
root words (must precede -vocabs- or -vocab-)

endings NUMBER,ENDINGl,ENDING2,... (NUMBER is an integer from @ to 9)

Note: In ~vocabs- or -vocab-,
WORD /NUMBER adds endings to the root word and includes all
words in the vocabulary
WORD//NUMBER adds only words with endings to the vocabulary;
the root word is not included
Up to 1# -endings- commands with up to 8 endings each may
be included. Apostrophe is legal in an ending.

(non-executable) sets up lists of ignorable words and synonymous
required words; used with -concept- and -miscon-; checks for.
capitalization and spelling; allows assignment of user information

numbers

vocabs NAME
<IGNORABLE WORDS SEPARATED BY COMMAS>
WORD 1, WORD 2, PHRASE*COMNSISTING*0F *SEVERAL *WORDS
{SYNONYMOUS WCRDS3 AND PHRASES SEPARATED BY COMMAS)
(WORD4 /s ,WORDS5 /ENDING1 /ENDING2,WORD6//ENDINGL)
WORD 7/NUMBER 1, WORD 8/ /NUMBER 2
(WORD9,WORD 1 =1 ,WORD11=2,SYNONYM11=2,...)

(non-executable) similar to -vocabs~ except does not check for
capitalization and spelling and does not allow phrases

vocab NAME
<IGNORABLE WORDS SEPARATED BY COMMAS>

WORD 1, WORD?2
(SYNONYMOUS WORDS3 SEPARATED BY COMMAS)

(WORD4 /s ,WORD 5 /ENDING 1 /ENDING2,WORD6//ENDING1)
WORD 7 /NUMBER 1, WORD8/ /NUMBER 2

Up to 7 characters are permitted in the name of the vocabulary.

When sets of endings are used repeatedly, =-endings- plus =vocab(s)=-
may be more convenient than -vocab(s)- with actual endings included.
With =vocabs-, user information numbers may have values from 1l to 5ll.

M~
J

J5

Modification of judging copy of response

bump removes the specified characters from the judging copy of the
response before judging

bump CHARACTERS - (maximum of 8 characters; use additional
=bump- commands for more than 8 characters)

+

put replaces a character string in the judging copy of the response
with another character string

put STRING1=STRING2 (replaces STRING1 with STRING2)

putd similar to -put- but uses the first character in the tag as the
separator between strings

putd /STRING1/STRING2/ (separator is /)
putd ,STRING1,STRING2, (separator is ,)

putv similar to -put- but works with stored strings
putv ARG1,ARG2,ARG3,ARG4

ARGl = starting variable of string (left-justified)

ARG2 = number of characters in string

ARG3 = starting variable of replacement string (left-justified)
ARG4 = number of characters in replacement string

NOTE: Maximum number of characters in a string for -put-, -putd-, and -putv-
is 5@. 1If replacement operations cause the judging copy of the response
to exceed 30@ characters, judging terminates with a "no" judgment.

close takes characters stored in the right-most six bits from successive
variables and makes a judging copy for use with judging commands;
often paired with -open-; the end of the character string is
indicated by the specified number of characters or by six bits
equal to zero (o@@), whichever is attained first

close STARTING VAR, NUM CHARACTERS (use n-variables)

loada takes the characters stored in the specified variable(s) by -pack-,
-gtorea~-, or -calc- and makes a judging copy; the end of the
character string is indicated by the specified number of characters
or by six bits equal to zero (o@#@), whichever is attained first

loada STARTING VAR,NUM CHARACTERS (opt) {number of characters,
if omitted, is 1{¥; maximum number of characters is 299)

]

Jé

Modification of juwdging procedure

NOTE: The various =-specs=- options do not affect &1l judging commands.
Commands affected by each =specs- option are indicated by number
from the following list.

judging commands affected by -specs-

l. -match-

2. =-angwer-, -wrong-, =—answerc-, -Wrongc-

3. -vocabs-, -concept-, -miscon-

4. -vocab-, -concept-, -miscon-

5. =-exact-, =-exactc-, =-exacty-

6. =-ansv-, -wrongv-, =-ansu-, -Wrongu-, -store-, -storeu-
7. =—-storen-

8. =-storea-

specs allows control over processing of responses; also serves as a marker
for execution of subsequent regular commands after judging is complete

specs allwords (treats integers like letters [rather than
numbers] so tl.at a number-letter boundary is not
like a word-word boundary or punctuation)
(with 1, 2, 3, 4, 7 above) '

specs alphxnum (treats a letter-number boundary like a
word-word boundary or like punctuation)
(with 1, 2, 3, 4, 7 above)

specs bumpshift (removes shift codes from the judging copy
of the response)
(with all commands above)

specs exorder (checks the. order of ignorable words)
(with 2 above)

specs holdmark (prevents markup of student response but stores
the markup information for later display)
(with all commands above where markup is done: 2, 3, 4)

specs nodiff (turns off the numeric difference judger,

: which treats a numerical response as a
"misspelling" 'if it is within 10Z of the
correct response; no spelling markup is done)

(with 2 above)

specs nomark . (turns off answer markup)
(with all commands above where markup is done: 2, 3, 4)

specs nookno (preﬁents appearance of "ok" and "no")
(with all commands above)

specs

specs

gpecs

specs

specs

specs

specs

specs

specs

specs

specs

Note:

J7

noops (prevents use of mathematical operations in a
numerical response)
(with 6 above)

noorder (turns off the order judger; allows any
word order; no order or keyword markup is done)
(with 2, 3, 4 above)

nospell (turns off the spelling judger; no spelling
markup is done)
(with 2 above)

novars (prevents use of variables defined in
define set "student")
(with 6 above)

okassign (allows assignment of a value to a variable
defined in define set "student")
(with 6 above)

okcap (allows a capitalized word in the response to
‘match a non-capitalized word in the tag of a
response~matching command or in the vocabulary)
(with 1, 2, 3 above)

okextra fallows extra words in the response;
caution~-words not in -~-vocabs~ may be
treated as spelling errors)

(with 2, 3, 4 above)

okspell (allows any reasonable spelling)
(with 1, 2, 3 above) .

toler (allows 1% tolerance in a numerical response)
(with 1, 2 abave)

(B) (acts only as a marker)
nookno,okspell,noorder (may combine tags)
The following system variables are set properly even if

use of the -specs~ tag causes the response to match the
tag of a response-matching command.

~specs= tag system varilable
okspell spell
okcap capital
okextra extra
noorder order

i
wJ

J8

Storing judging copy of response

NOTE:

gtore

storeu

storen

storea

open

Commands -store-, -storeu-, and -storen- terminate judging with a

no" judgment if an error is found in the form of the response.

calculates the numerical value of the response and stores it in
the variable specified in the tag

store VAR

similar to ~store- but also evaluates dimensionality of units

storeu VAR FOR STORING NUMBER, STARTING VAR FOR STORING POWERS
OF DIMENSTONS (see -define~: units; use v-variables to
store the powers of the dimensions; powers are stored

in the order in which the primary units are defined)

searches for and evaluates simple numerical expressions (without
variables) in the response, which may also contain non-numeric
characters; stores numerical results in the specified variables one
at a time; removes numerical parts of the response from the answer

- buffer and replaces them with blanks: numerical parts must be set off

from letterg by spaces or punctuation; if no numerical expression is
found, the variables are set to @ and judging ends with a "no"
judgment; each -storen- increments "anscnt"

storen VAR
storen VAR2

stores characters from the response, left~justified, in the specified
variable(s), 1@ characters per variable; unused character positioue
are filled with octal zeros

gtorea STARTING VAR,NUM CHARACTERS (opt) (number of characters,

if omitted, is 1)
Note: Use n-variable(s) for storing the string if subsequent
comparison for equality with another string is done. (If the

character string is stored for other purposes, v-variables are
acceptable.) Segmented variables cannot be used with ~storea-.

places the characters in the response, one-by-one, in the right-most
8ix bits of successive variables starting at the specified variable

open STARTING VAR (use n-variables)

74

Matching

NOTE:

NOTE:

match

answer

wrong

J9

judging copy of response

In this sub~section references to response mean judging copy of the
response. g

Up to 39 "words" (entries separated by space or punctuation) are
permitted in responses with -match-, ~answer-, -wrong-, -answerc-—,
-wrongc-, =concept~, and -miscon-. If the number of words exceeds 39,

udgment is '"mo" and "anscnt" is get to ~2.
g

chiecks the response against the arguments in the tag and sets a
variable to the relative nosition of the matched character string;
if no match is found, the variable is gset to -1 and judgment 1is
no" ("judged" set to +1); otherwise judgment is "ok" ("judged"
set to ~1); always ends judging

for example:

match VAR,WORD@ WORDI, PHRASE*WORDZ WORD3
match VAR, (WOKD@, SYNONYM@), (WORD1, (LISTNAMEL)), ((LISTNAMEZ))

compares the response with the tag; checks for word order, spelling,
capitalization, extra words, and numeric tolerance unless altered
by -specs-; sets '"judged" to ~l1 if response matches tag

for example:

answer WORDS AND PHRASE*WORDS (blank tag matches a response in
which nothing 1s entered or which contains only spaces
and punctuation)
answver <EXTRA WORDS>(SYNONYMOUS WORDSL AND PHRASE*WORDS!
SEPARATED BY COMMAS) (SYNONYMOUS WORDS2 and PHRASE*WORDS2
SEPARATED. BY COMMAS)WORD3
answer <<LISTNAMEl>>((LISTNAMEZ),WORD2) ']
answer RESPONSE]l;RESPONSE2;RESPONSE3 (each argument may have any
of the preceding forms for the tag of ~answer=-; synonymous
responses for the same argument are separated by commas)
Note: Tag must (.: contain punctuation (or symbols changed to '"punc"
in the ~change~ command), although the student’s response may.

compares the response with the tag; performs checks available with
~answer—; sets '""judged" to ¢ if response matches tag
wrong WORDS AND PHRASE*WORDS

Note: Options for the tag of -wrong-~ are the same as for the tag
of -answer- but for an incorrect student responsa.

J1¢

answerc

wrongc

concept

miscon

exact

exactc

compares the response with one of several arguments in the tag,
depending on the rounded value of the conditional expression;
performs the checks available with —-answer-; sets "judged" to -1
if response matches the required argument

answerc EXPRRESPONSEMJRESPONSE@$SRESPONSE2 (the arguments may
have any of the forms allowed in the tag of -answer=-;
a blank argument indicates no anticipated response for
that value of the conditional expression)

same options as for ~answerc- but for an incorrect response; sets
"judged" to @ if response matches the required argument

wronge EXPR{RESPONSEM}}IRESPONSE2)RESPONSES

compares the response with the tag; =vocab~ or -vocabs—- provides
synonyms; sets "judged" to ~1 if response matches tag

concept WORDS AND PHRASE WORDS (no asterisk in phrases; blank tag
matches a response which is blank or which contains only
ignorable words from the vocabulary)

concept WORD1 WORD2,VARl<« WORD1,VAR2< WORD2 {(detects which synonym
is entered if the vocabulary is appropriately set up)

same options as for =-concept~ but for an incorrect response; sets
"Judged" to @ if response matches tag

miscon WORDS AND PHRASE WORDS

compares the response with the tag for an exact character string
match; sets "judged" to -1 if response matches tag

exact STRING (blank tag matches a response in which nothing
is entered)

conpares the response for an exact character string match with one
of several arguméidts in the tag depending on the rounded value of a
conditional expression; sets "judged" to -1 if response matches the
required argument

exactc EXPR,ST:RINGM,STRING@,,STRING2 (blank argument matches a
response in which nothing is entered)

exactv

NOTE:

ansv

wrongv

ansu

wrongu

NOTE:

J11

compares the response with a stored character string for an exact
match; the end of the character string is indicated by the specified
number of chsracters or by six bits equal to zero (o@@), whichever
is attained first; sets "judged" to -1 if response matches tag

axactv STARTING VAR OF STORED STRING,NUM CHARACTERS (opt)
(number of characters, if omitted, is 1@; 1if the
number of characters is @, the response is judged
correct if nothing is entered)

With the following four commands (-ansv-~, -Wrongv-, ~-ansu-, -Wrongu-)
TOLERANCE is optional. When tolerance is omicted, the default is 1¢~
if the absolute value of the tag value is less than approximately 1§¢
or (1g-11 x |tag value|) 1f the absolute value of the tag value is
greater than approximately 1. These commands cannot judge values
smaller in absolute value than l¢'9 since any response less thlan 1¢-
will then match the tag. :
TOLERANCE may be absolute deviation or percent deviation.

checks a numerical response against the first argument in the tag,
with tolerance, if given, set by the second argument; sets
"judged" to -1 if. response matches tag (within the tolerance)

ansv CORRECT VALUE,TOLERANCE

similar to -ansv- but for the incorrect numerical response; sets
"judged" to @ if response matches tag (within the tolerance)

wrongv INCORRECT VALUE, TOLERANCE

similar to -ansv- but checks for correct units; sets "judged" to -1
if response matches tag (within the tolerance)

ansu NUMBER AND UNITS, TOLERANCE

aimi) sr to —-ansu- but for incorrect response; sets '"judged" to §
if response matches tag (within the tolerance)

wrongu NUMBER AND UNITS,TOLERANCE
wrongu NUMBER,TOLERANCE (may be used to indicate that units
are missing)

For applicaticns of —-ansu-~ and -wrongu~ see —-storeu- and -.efine-.
Commands -ansv- and -wrongv- accept defined units in the student’s
response -but do not compare with author’s units. -

roy

i

J12

touch specifies the location of a rectangle for a touch response; séts
"judged" to -1 if the specified rectangle is touched (see =enable-

and ~disable~)
touch AREA1;AREA2;AREA3;... (blank tag matches any touch input)

Note: AREA may be: COARSE,WIDTH IN CHARACTERS,HEIGHT IN LINES
or FINEX,FINEY,WIDTH IN DOTS,HEIGHT IN DOTS
COARSE or FINEX,FINEY is the screen location of the lower
left corner of a rectangle of specified width and height.
Width and height are optional and assumed to be 1 if omitted.

touchw same options as ~touch- but for an incorrect touch response; sets
"judged" to @ if the specified rectangle is touched

touchw AREA1;AREA2;AREA3;AREA4;...

NOTE: One touch square is 32 dots or each side (or 4 characters in width
and 2 lines in height).

or (no tag) placed on the line between response-matching commands
to provide alternative responses for the same value of "anscrnt"

ans (no tag) allows use of the ANS key; terminates judging only if
ANS is pressed; otherwise normal judging occurs; =—ans— must be
the first judging command following the =—-arrow— command unless
-jkey ans- is in effect

J13

Information on specific words in response

NOTE:

getword

getmark

A

In the following commands (-getword-, -getmark-, -getloc-, =compare-),
a "word" is an entry set off by spaces or punctuation from surrounding
characters., (See =-specs allwocds-, -specs =~-alphxnum~ and

~change symbol- for additional options in gpecifying word boundaries.)

(regular ccmmand) allows storage of individual words in a response

getword ARGl,ARG2,ARG3,ARG4 (opt)

ARG1

ARG2

ARG3

ARG4

relative position of the word in the response

(first word is 1, second word, 2, etc.)

starting variable for storing the word (up to

1¢ characters per variable)

variable for storing the actual numher of characters
in the word (=@ if ARG1>"wcount")

maximum number of characters to be stored in ARG2
{optional; if omitted, value is 1§)

Not.e: Words that are stored are not removed from the judge buffer.

(regular command) used after judging a response to give markup
information on

individual words in the response

getmark ARGl,ARG2

ARG1

RG2Z

A\

relative position of the word in the response
(first wnrd 1is 1, second word, 2, etc.)
variable containing markup information
-2 if the response is perfect or if no markup 1s done
with the response~matching command used
-1 1¢ the position of the word is out of bounds
(i.e., if ARGI>"wcount")’
¢ 1if there are no errors in the word
@ bits in ARG2 are set according to the eridi’ i),
starting at the right-most bit (subscript "2"
indicates the number is in binary notation):
(1) a werd preceding this word is missing
(17,) the word is out of order (too far right)
{19%,) there is a capitalization error
(1 ﬁ%¢2) the spelling is incorrect
(13 #9@,) the word is part of a broken phrase
(190 @0@,) the word is an extra word
(1 P9 ?¢d,) this word is the last word, and a
woxrd which should follow is missing

Jl4

getloc (regular command) gives the screen position of the beginning (and
end, if requested) of the specified word in the response

= getloc ARG1,ARG2,ARG3,ARG4 (opt),ARG5 (opt)

ARGl

relative position of the word in the response

(first word is 1, second word, 2, etc.)

ARG2 = variable for storing the finex screen position of
the beginning of the word (= -1 if ARGl > "wcount™)

ARG3 = variable for storing the finey screen position of
the beginning of the word

ARG4 = variable for storing the finex screen position of
the end of the word (optional) '

ARGS = variable for storing the finey screen position of

: the end of the word (optional)

compare (regular command) compares two words for spelling

compare AUTHOR WORD,STUDENT WORD, VAR FOR STORING RESULT CODE
= ~] 1f words are different
= (¢ if words are identical
>

i1if words are misspellings of each other
(smaller value indicates a closer match)

result

Note: The first two arguments may also be variables. The words must
be stored in the variables in the same manner, e.g., both
words left-justified or both right~justified. If the words are
stored with -storea- or -pack-, they will be left-justified.
If a word itself is given, rather than the variable(s), it
should be enclosed in single quotes for left-justification
or double quotes for right-justification.

System variables "spell" and "capital" are set appropriately
if result value 2 @:

"spell" is set to @ if result > §;

"capital" is set to # if only one word is capitalized

J15

Unconditional judgment
ok (no tag) judges any response '"ok"; sets "judged" to -1
no (no tag) judges any response "no"; sets "judged" to +1

ignore (no tag) erases and ignores any response; stops further
processing and waits for a new response

81

J16

Reference to other units which may contain judging commands

ioin

iarrow

iarvowa

causes execution of the specified unit without change of main

unit; commands following ~join- are executed; -join- 1is executed

in all states: regular, judging, and search (see also description
under SEQUENCING, Automatic sequencing)

join UNIT NAME
join NAME, VAR« INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR (opt)
jein EXPR,NAMEM, NAME@®,x ,NAME2, q (example of conditional form)

- (regular command) the specified unit is executed after each
" subsequent -arrow- in a unit just before the first judging command

is axecuted

iarrow UNIT NAME

iarrow (B) or iarrow q (clears the -iarrow- setting for
subsequent -arrow= corwaands in the unit)

iarrow EXPR,NAMEM,NAME@,q,NAME2,x (example of conditional form;
maximum of 1¢¢ arguments in the conditional tag)

Note: The -iarrow- setting is equivalent to -join~ after each

Juvsequent —arrow- (just before the first judging command);
the specified unit is er.2cuted in all states.

(regular command) similar to —iarrow- but is associated with
~arrowe—~; see -larrow- for restrictions

iarrova UNIT NAME

Q0
oo

Alteration of judgment

'

J17

judge (reguler command) alters the julgment rendered by judging commands

judge

judge
judge
judge
judge

judge

judge

Judg:
judge

judge

judge

ok

no

wrong

okquit

noquit

quit

ignore’

exit
continue

rejudge

(sets judgment to "ok"; sets '"judged" to -1;
continues processing regular commands)

(sets judgment to "no" [unanticipated]; sets
"judged" to +1; continues processing regular
commands)

(sets judgment to '"no" [anticipated]; sets
"judged" to @; continues processing regular
commands)

(sets judgment to "ok"; sets "judged" to ~1;
terminates processing at that arrow except for
regular commends fcllowing ~specs-)

(sets judgment to *..0"; sets "judged" to +1;
terminates processing at that arrow except for
regular commands following =-specs-)

(leaves judgment unchanged and terminates
processing at that arrow except for regular
commands following ~specs-; allows the student
to proceed to the next arrow even if judgment
on the current arrow is "no'')

(stops all processing, erases the response, and
waits for a new response)

(rescinds judgment and waits for additional keys)
(resumes judging using the modified response,
as altered by ~-bump-, ~put~, =-specs~, -match-,
~storen-, etc.; resumes processing judging
commands) A

(resumes judging using the original, unmodified
respsnge and clears the -specs— setting;
resumes processing judging commands)

EXPR,x,no,ignore,ok (example of conditional form;

argument x leaves judgment unchanged)

J18

Alteration of feedback

okword (regular command) permits “ok" message to be changed

okword NEW WORD FOR USE WITH "OK" JUDGMENT (may be blank)

noword (regular command) permits 'no'" message to be changed

noword NEW WORD FOR USE WITH "NO" JUDGMENT (may be blank)

NOTE: Tags of ~okword~ and ~-noword- may have up to 9 characters.
A space 1s automatically provided before the message.
Commands -okword~ and/or ~noword~ may be placed anywhere in the
lesson. Once they are executed, they are in effect until execution
of another -okword~ and/or -noword-~ command.

markup (regular command) (no tag) used with -specs holdmark~ to display
markup information that was inhibited with -specs holdmark-

markupy (regular command) specifies vertical displacement of markup
information in screen dots from the default position of 8 dots below
the response; tag is negative for new position below the default,
positive for above; new position is in effect until execution of
another -markupy- command

markupy DO?: FROM DEFAULT MARKUP POSITION
markupy @ (set to default pesition of 8 dots below response)

84

J19

D System vaiixbles for judging
judging in general

anscnt number of response-matching commands encountered at an arrow
before the response 1s matched; also set by =-storen-; otherwise,

-2 1if the student’s response contains more than 39 words

= =] 1f no tag is matched

= @ for a store error

zeroed for each -arrow- and each =-specs— command

ansok = =] 1f the response is a satisfactory match to the preceding
response-matching command
= (otherwise;
in particular, after -no-,
= -1 1f there 1s no match to a previous response-matching command
= @ 1if the match 1s poor

jcount number of internal 6-bit character codes in the response

’ judged = -1 for any "ok" judgment
= @ for any "wrong" judgment (anticipated "no")
= 1 for any "no" judgment (unanticipated 'no")
= 2 for response not yet judged
key
ztouchx [See descriptions under system variables for sequencing.]
ztouchy

ntries number of attempts on the current arrow

verbal responses

judging commands which affect system variables for verbal responses:
l. ~match- 3. -vocabs=-, =-concept-, ~miscon-

2. =-answer-, =wrong=-, —answerc-, -wWrongc- 4+ =vocab-, -concept~, -miscon-

capital = -1 if there are no capitalization errors, = {} otherwise
(with 1, 2, 3 above)

antire = -] 1f all required words are present, = { otherwise
b (with 2 above)

0%
ot

J2g

extra = -1 1if there are no extra words in the response, = @ otherwise
(with 2, 3, 4 above)

order = -1 1if word order is ok, = @ otherwise
(with 2 above)

phrase = -1 1if there are no phrase errors, = @ otherwise
(with 1, 2, 3 above)”

spell = -1 1if spelling is 6k, = @ otherwise
(with 1, 2, 3 above)

vocab = -] if all words in the response are in the vocabulary, = @ otherwise
(with 3, 4 above)

wcount number of words in the response (maximum of 39)
(with a1l above)
numerical responses
These systew variables are set with -ansv-, ~yrongv-, =-ansu-, =Wrongu-,

-store-, =-sioreu-, -compute-, and the -calc~ type commands.

opcnt number of arithmetic operations and functions in the response
(= -1 if there are no operations and the expression cannot be stored
with -store-)

varcnt number of defined variables and functions (define se: "student")

J21

formok gives diagnc~tics on errors in mathematiral expressions

= ~] 1f the expression is ok

= @ 1if there is a bad function argument cr index

= | 1f there is an illegal character

= 2 1if there are unbalanced parentheses

= 3 41f there are too many decimal points

= 4 1if there are variables not defined in define set '"student"
= 5 1f a symbol involving $ is not a logical or a bit operator.
= 6 1f the expression has bad form

= 7 1f a value is assigned to a non-variable

= B8 1f an octal constant contains digit 8 or 9

= 9 1if there is an error in an alpha string

= 1¢ 1if a number has too many digits

= |1 1if an array index is out of bounds

« 12 41if there are variables with ~specs novars-

= 13 1f there are operations with ~specs noops=-

= 14 if there are ussigmments without -specs okassign-
= 15 41if units in the response are used incorrectly

= 1 if too much computing 1is attempted

=]7 1f the expression 1s too deep in nested functions
= 18 1f a function has the wrong number of arguments

= 2@ if an array has the incorrect number of arguments

if an array is not permitted in this expression

if the array size is incorrect or operation is nonconformaZ

if there are too many arrays in the expression

if too many temporary variables are needed curing processing
if expression 1s tco complicated for temporary storage to hold
if there are too many literal numbers in the expression

if there 1is an error in a segment definition

if expression is too deep in indexes which are assigned values

NN
N -~

on #8858 0n
NN
*_Q W

ANV O
NN

O ‘ . 87’

Additional notes on JUDGING

MANAGING SITES Ml

Commands in this section are legal only in a site lesson.
Site -ommands

These commands, all of which have -site~ in the command field, give information
on the specified logical site.

site set specifies the logical site for subsequent -site- commands
and -station- commands; a later ~site set~ command
overrides an earlier one

gite set, 'SITENAME'
Note: 2zroturn = ~1 if -site set- is executed successfully

= @ if the lesson 1s not a site lesson for the
specified sitename

site info stores current site EC3 information for the sitz specified
by a preceding -~site set~
site info, STARTING VAR FOR STORING iNFORMATION
Note: Information consists of:

n{(x) or nc(x) = starting variable
n(x) contains the base ECS allotment

n (x+1) " the ECS currently a2llotted
n (x+2) " the ECS currently in use
n(x+3) " the number of active terminals at the site

zreturn = ~1 if -site 1info~ 18 executed successfully
= { 1if no site has been set by ~site set-

site = active stores the physical station numbers of the specified
number of active stations on the site

site active,STARTING STATION NUMBER,STARTING VAR FOR STORING
STATION NUMBERS,NUM ACTIVE STATIONS TO STORE

Note: =zreturn = -1 if -site active~ is executed successfully
= @ 1if no site has been set vy =-site set-
= 4] 1if the starting station number is invalid

M2

site

stations stores the physical station numbers of the specified
number of stations permanently on the site

site stations,STARTING STATION NUMBER, STARTING VAR FOR STORING
STATION NUMBERS,NUM STATIONS TO STOKZ

Note! zreturn -1 if -site stations~ 1is executed successfully
@ if no site has been set by -site set~

+1 1f the starting station number is invalid

M3

Station commands

These commands, all of which have ~station- in the command field, give
information on individual staticns on the specified logical site.
station info stores information on the specified physical station number
station info,STATION NUMBER,STARTING VAR FOR STORING DATA
Note: Information consists of:
n(x) or nc(x) = starting variable

n(x) and n(x+l) contain the user’s name (up to 18 characters)
n(x+2) contains the name of the user’s group

n(x+3) " the type of user
n(x+4) " the account name containing the user’s group
n(x+5) " session statistics (in 3 2¢-bit fields-~

disk accesses, seconds of CPU, elapsed time in seconds)
n (x+6) " the name of the user’s lesson or type of activity
n(x+7) " total ECS the lesson is using (in 3 15-bit fields--

storage ECS, common ECS, lesson ECS [left-most 15-bit
. field is emptyl)
n (x+8) " name of the user’s router

n(x+9) " ECS used by the router (same format as lesson ECS)
zreturn = -1 1f -station info- 18 executed successfully
= (1if no site has been set by -site set-
= 1 1f the starting station number is invalid
= 2 1f the specified station is not on the site
= 3 1f che station 1s inactive

station status sets ''zreturn" according to the status of the specified
physical station number
station status,STATION NUMBER
Note: zreturn -2 1if the station is in the process of signing on
-1 1f the station 1is active
if no site has been set by -site set-
if the starting station number is invalid
if the specified station is not on the site
if the station is inactive

if a backout of the station is in progress:
if the station is locked out

nHLwhhr—w

91

M4

station

station

station

station

send sends the specified message (in -mode rewtite-) to the
specified physical station number

station send,STATION NUMBER,SCREEN LOCATION,MESSAGE,NUM
CHARACTERS IN MESSAGE

]
W N~

Note: zreturn = if message 1s sent successfully

if no site has beea set by -site set-

if the starting station numper is invalid

if the specified station is not on the site
no message iz . ‘at (specified station is a
runner staticwu ov is the station sending the

message)

logout backs out the station (given by the physical station number)
(sets "backcut" to -2)

station logout,STATION NUMBER

if the backout is successful

if no site has been sec by -site set~

if the starting station number is invalid

if the specified station is .ot on the site
if the specified station cannot be backed out

Note: zreturn

W s -

stopl presses STOPl at the specified station (sets "backout" to
+1 until the station enters another instructional lesson)

station stopl,STATION NUMBER

Note: zreturn = -1 1if STOPl is pressed at the s‘*~tion
= @ i1if no site has been set by —-site set=~
= 1 1if the starting station number is invalid
= 2 1f the specified station is not on the site
= 3 4if STOP! cannot be pressed at the specified
station
off turns off the specified station and prevrats further use of

the terminal (sets "backout" to =-2)

station off,STATION NUMBER

if the station is turned off successfully

if no site has been set by -site set~-

if the starting station number is invalid

if the specified station is not on the site
if the specified station cannot be turned off

Note: zreturn

[CURN S Bl S W

3

O

M5

3tation " on turns on the specified station

station on,STATION NUMBER

if the station is turned on successfully

if no site has been set by -site set-

if the starting station number is invalid
if the specified station is not on :he site
the station is already active

Note: zreturn = =

LW -

Additional notes on MANAZING SITES

94

PRESENTING Pl

Basic display

at specifies starting position of disp’ay on the screen; sets left margin
at COARSE
at FINEX,FINEY

Note: The following formulas convert between character grid and
fine grid.

finex = 8@@xfrac(coarse/10@) ~ 3
finey = 512 - lé6xint(ccarse/1gg@)
coarse = 1@@x{l + int{(51l1 - finey)/16]} + int(finex/8) + 1

atnm like -at- but does not reset the left margin

atnm COARSE
atnm FINEX,FINEY

write displays text on the screen

: write ANY MESSAGE, WHICH MAY CONSIST OF SEVERAL LINES
AND INCLUDE EMBEDDED INFORMATION.

writec displays one of several messages depending on -the rounded value of
the conditional expression

writec EXPRIMESSAGEMIMESSAGE@IMESSAGEL§IMESSACE

NOTE: The embed feature is available. See descriptions of the individual
commands in this section for izformation on FORMAT, BMINIMUM, and
ASTERISK, which are optional.

embz2dded -show- q show, EXPR, FORMAT ,MINIMUM» or < s,EXPR,FORMAT,MINIMUMD
embedded ~showz~ < showz,EXPR,FORMAT» or <« z,EXPR,FORMAT)
embedded -showt- < showt,EXPR,FORMAT» or <« t,EXPR,FORMAT)
embedded ~showe- <« showe,EXPR,FORMAT,ASTERISK» or <« e,EXPR,FORMAT,ASTERISK)»
embedded ~showo- < showo,EXPR,FORMAT» or < o,EXPR,FORMAT)»
embedded -showh- < showh,EXPR,FORMAT» or < h,EXPR,FORMAT)
embedded -showa- < showa,STARTING VAR,FORMAT» or < a,STARTING VAR,FORMAT)>
embedded -at- { at ,COARSEY ; < a+,FINEX,FINEY)
embedded -atnm- “ ~tnm COARSE> 4 atnm,FINEX,FINEY)
' . size,EXPR GIVING SIZE OF WRITING)
embedded -size~ ¢ ' "c17E TN X DIRECTION,SIZE IN Y DIRECTION)
embedded -rotate- < rotate,EXPR GIVING ANGLE FOR WRITING)
< mywp (write mode)
embedded -mode- { m,e» (erase mode)
d m,cP» (rewrite mode)

P2

NOIE:

show

showz

showt

showe

In the show-type coumands /-show-, =-showz-, =showt-, -showe~, -showo-,
-showh-, -showa-), the general form is

shnwz EXPR, FORMAT

where FORMAT, which way be an expression, is optional.
If FORMAT equals ¥, nothing is displayed.

For dispiaying entire arrays, the general form is
shet ARRAYNAME, FORMAT (for arrays with number of rows <16,
number of columns £64; -showa-, -showh-, -showo-, =-showe-
may also be used to display entire arrays)

To display only the first element of an array, use
show ARRAYNAME, FORMAT or showz ARRAYNAME, rORMAT

displays th: value of a variable or an expression with the specified
number of significant digits but with suppression of trailing zeros
after the decimal point; exponential format is displayed if the
number of digits preceding the decimal point exceeds FORMAT by

more- than 4, or if the absolute value is less than 1¢'4;

MINIMJM is between ¢ and 1 and specifies the smallest ron-zero
value to be displayed (¢ is displayed il the absolute value of

the expression is lese than MINIMUM)

show EXPR,NUM DIGITS,MINTMUM (FORMAT, if omitted, is 4;
MINIMUM, if omitted, is 1¢79)

sizilar to —show- but displays all digits, including trailing zevos

ghowz EXPR,NUM DIGITS (FORMAT, if omitted, is 4)

displays the value of a varlable or &n expression in tha specified
format

showt EXPR,NUM DIGITS PRECEDING DECIMAL POINT,NUM DIGITS
FOLLOWING DECIMAL POINT (may be omitted if zero)
(FORMAT. 1f omitted, is 4,3 for v-variable, 8 for
n-variabie; if the number of decimal places 1s less
than 1@, FORMAT may also be exjressed as a single
decimgl number: e.g., #.3 is equivaleat to 4,3)

displays the value of a variashble or an expression in exponential
format with the specified number of significant digits, including
a leading blank or a minus sign; an optional third argument
specifies the format for the exponent

showe EZPR,NUM DIGITS,ASTERISK (FORMAT, if omitted, is 4y
ASTERISK is omitted or =@ for exponent expressed by
superscript, #@ for exponent ‘expressed by 2 asterisks and
multiplicatio: sign replaced by one asterisk)

36

Iz {122

a5
Laia
250

o

nr

w2 o2

[

L]
—— 3im
v 2%
= a0 “]”20
LI . "=

I
25 Lt e

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
STANDARD REFERENCE MATERIAL 1010a
(ANSI and ISO TEST CHART No. 2}

showo

showh

showa

hidden

text

erase

lang

P3

displays the value of a variable or an expression in octal notation

EXPR,NUM DIGITS DISPLAYED (FORMAT, if omitted, 1is 21;
in embedded -showo- default format is 20)

showo

displays the value of a variable or an expressicn in hexadecimal
notation

showh EXPR,NUM DIGITS DISPLAYED (FORMAT, if omitted, is 16;

in embedded =-showh- ¢2fault format 1is 15)

displays characters in the specifier variable(s) or specified string

STARTING VAR,NUM CHARACTERS (FORMAT, if omitted, is 19)
'STRING' (STRING may contaip up to 1@ characters)

showa
showa

displays hidden as well as visible characters; (special symbols are
used to display hidden characters); numbe: of characters includes
all 6-bit character codes

{NUM CHARACTERS,
if omitted, is 1§)

hidden STARTING VAR,NUM CHARACTERS (opt)

displays contents of an alphanumeric buffer, line by line; the end
of a line must be indicated by a variable endiug with 2 zero codes
(i.e., 12 bits equal to ¢¥: o@@¥@@¥) (embedded zero codes (o@¢) are
ignored); not affected by =-size-~ or =-rotate-

text STARTING VAR,NUM VARS

’

erases the screen, selectively or entirely

erase abort
erase (B) or

{causes a full-screen erase and aborts output)

erase NEGATIVE NUMBER (causes full-screen erase
v but does not abort output)

NUM CHARACTERS TO BE ERASED

erase
erase NUM CHARACTERS PER LINE,NUM LINES {(causes block erase)
Note: Selective erase is affected by preceding =~size-, -gorigin-

(and -scalex-, -scaley-), and =-rorigin-.

sets the system variable "zlang"

lang english (sets "zlang" to @)
lang french (sets "zlang'" to 1)
lang spanish (sets '"zlang" to 2)
lang german (sets "zlang" to 3)
lang EXPR,french,x,english,german (example of conditional form;

argument x leaves '"zlang'" unchanged)

B}
! Fes
94'

P4

mode specifies terminal writing mode (see also system variabls "mode™)

mode write (normal writing state; writes only sel:z:zted dc

mode erase (erases only selected dots)

mode rewrite (erases and rewrites in one step; does zot wor
with "size" # @)

mode inverse (only on programmable terminal; display: dark
writing on light background)

mode EXPR,erase,write,x,erase (example of conditiona’ form;

argument x leaves writing mode unchanged)
Note: The mode 1s reset to "write'" after any full-s-reer eras:z,

particular at a main unit not containing -inhibi- erasz-

size specifies the size of line~drawn characters; remains in =“fect
across main unit boundaries until turned off exilicitly ee
also system variahles "size", "sizex", "sizey")

size EXPR GIVING SIZE OF CHARACTERS

size SIZE IN X DIRECTION,SIZE IN Y DIRECTION (sers 1r . iengen-
sizes in x and y directions)
size @ or size (B) (restores standarc wri:zing)

Note: Negative "sizex" gives backwards characters anc writ-:.::
negative "sizey" gives upside down characters and wr:cing
Negative "size" behaves like simultaneous negative "sizex
and negative "sizey".

rotate causes line~drawn characters to be written at the =zngle specif.:
in the tag; remains in effect across main unit boar.daries un--__
turned off explicitly (must be used with ~size~ tzy # @)

rotate EXPR GIVING ANGLE IN DEGREES (omit degree symbol;
measured counter~clockwise from horizontal)
rotate @ or rotate (B) (restores horizontal writing)

delay permits short delays during output

delay DURATION OF OUTPUT DELAY IN FRACTIONS OF A SZCOND, UF ~o
1 SECOND (accurate to 1/6@ second)

Note: This command causes ''do~-nothing" output to be sent to
the terminal for the specified delay time.

inhi:it

plot

tewpora
all set

inhibit

inhibi:
inhibi-

inhibit
inhibit

inhibit

inhibhis
inkib iz

inhibit
Zrithibiz
“nhibi-
_nhibi-

~hibi

zermi- -
char

‘Tote

P5

rily :izables ce : _n normal actions of T_TOR —_n a unit}
t-age zre clear<’ -:. each main unit
inserese (p- - .ts automatic erasure of answazr-contingent
mes:. . Wwnen & response is erased,
iTTCW (pr ~:ts plotting of the responss :-row)
xlaniz (pr exzs judging if WEXT is press:z: before
any .nmracters are typed.
.haro_ear (pr =z=s clearing of the ciarset Z_ag)
iropiile (pr ts the attached fii: fr:m t=zing recleased
dur p . jampout)
cI e E tpr : “s5 storage from beingz dropra= durzng
a - . ut)
2. = wzs use of the EDIT key)
-z 2S¢ (z: zzts normal full-screen erase .Jnen
-7 ..2Zng to the next main unit)
f—m 1z =S return to the lesson cor :aining .
L.y tatement via -jumpput rerura- or
- -yt return,return-~)
Cjuapend o :nts ECS check before atts—: 1z a jumpout)
2o i -nzs nse of the TERM vev)
(2, ¢ it . :av (remcves effe ~ o :.rz-isue =-inhibit~
commands in ti=2 m: - unit)
_~ear,: "vcv . anks (may combine ts :s)
“wecifi :t: r o sTsoclally designed cha: wnter: fc= display
AME,AF ¢ 1,ARGZ ~i33, ARG4, ARG5,ARG6,ARG™ G8
“z character rzme ({YAME) may be a numbe- “ror . to 126
-zxcluding 63) or = defined name. Arguss-:zz 413 1 through
238 are numbers v -Ich specify which of ine 16 :ats are
fir 72 sach of the columns of the charz-ter =-:ce.

for zzample:

cefics

char

displ s

cTameaan:

~hi =8& 8$ load chi on X
=hi,04329,010040,06300,0160@,03140,04028,01 080~ _

a special character previously specified by a -char-

NAME
ZIXPR (EXPR may have value from @ to 126, exc :ding 63)

=pecial characters may also be displayed by prezu-n

che FONT key and then the key(s) where the charac::r(s)
zre loaded into the terminal memory. Built-in ciz:racters
zre displayed after FONT is pressed again.

Q3

1.

¢t

bec

With -c.

Screen

2raws o

0ot

arav -

[rae8s]

arav
draw

crey

drz=r

“re -

iot=:

draws
zfter

>f the ==t with thickness

box
box

box

EOX

Note-

-zztlon and oDay be COARSE
fine gr.-z zoordinate: may be mixed in tags with more ths - om:

-f111-, =-vector—, -window-, “CCAT_LN -5 the
or FIHEX,FINEY. Coz se =z-id and
arzument.

- ~draw-, -box~,

2ot at th:z specified screen location
JCATION
g aot, line, :- l_ae-drawn figurz; zfter execut—on, 'wherex”
Shzrey'" ars se: > the last point slotted
LOCATION (dzzws a dot; =-dot— ic faster if mzny dots are
plotted; — -aw- 1s faster :f >‘nez arz also being drawn)
LGTATION];LOCL. (ION2 (draws a 1. —e)
ZCATION1;I " £ "ON2;LOCATION: ;... iraws cornected lines}
sLOCCATION 17..98 2 continued 1..::
LOCATIONI:Z - 7 82;skip;LOCATIOl . L. SATION4
f"gkip' = --=: to a new positic ~thout -plcz:ing)
fuzizzum numbzsc 7 numbers in the t : is 63 ("skip" counts
53 numbar)
¢ *™-tangle wit: th: s=recified corne: locations and thickness;

“wherey" are se: to the lower left corner

‘acluded

evac.tion, "whe-ax"

TCRNER LOCATION;Or=3SITE CURNER LC..TION;DOTS THICK (opt)

;2ORNER LOCATION;LC"”S THICK (opt) opposite cormer at current
“wherex", "wherey")

topposite corner z: §,%; cannot specify

zmickness with this form of tag)

zquivalent -, -box @,@;5.1,511-)

CORNER Z.OCATION
3)
Thickness, 1f omitt:=d, @, 1, or =1 is 1 dot. Negative

thickness extends izward; positive thickness extends outward.
Maximum thickness iz 95 (or -95).

f11iz in a rectangular areaz on the screen on programmable terminals;
does not affect the setting of "wherex", "wherey"

fil1
fi11
fill

CORNER LOCATION;OPPCSITE CORNER LOCATIGN
;CORNER LOCATION (opposite corner at ''wherex", "wherey'")
(8) (f1lls in the entire screen, 1.e., corners §,@;511,511)

el
o
(S)

P7

vector draws a vector symbol with specified tail and head locations and
head size

vector TAIL LOCATION;HEAD LOCATION;SIZE (opt)

vector ;HEAD LOCATION;SIZE (opt) (tazil at "wherex', "wherey'")
vector HEAD LOCATION (tail at @,@ ; cannut specify head size)
vector @,@;HEAD LOCATION;SIZE (tail at @, ; head size specified)

Note: SIZE, if omitted, is 1@ or 11 dots for moderate-length vectors.
Negative size indicates open arrowhead.
|size]2l is absolute (in screen dots); |size|<l is relative
to the length of the vector.

window establishes a rectangular "window" on the screen outside of whickh
line~drawn display 1s not plotted; remains in effect across main
unit boundaries until turned off explicitly

window CORNER LOCATION;OPPOSITE CORNER LGCATION

window ;CORNER LOCATION (opposite corner at "wherex", "wherey"
window CORNER LOCATION (opposite cormer at @,@)

window (B) (clears previous -window- setfing)

circle draws a circle with the specified parame-ers; the center is at the
current 'wherex', "wherey"; after execution, "wherex", "wherey" are
set to the center for a one-argument tag and to the end of the last

line drawn for the three-—argument tag

circle RADIUS IN DOTS,START ANGLE {opt),END ANGLE (opt)
(second and third arguments are optional: if omitted,
START ANGLE is #° and END ANGLE is 36@°; angles
are measured in degrees counter-clockwise from
START ANGLE; degree sign is omitted)

wircleb same options as =-circle~ but draws a broken circle

circleb RADIUS IN DOTS,START ANGLE (opt),END ANGLE (opt)

o 101

P8

Relocatable graphics
rorigin estzi:iishes a "relccatable" origin fc .uav ~~draw~-, =rat-,
-rb-i~, ~rvector~, and ~reirc: e

ror-.zin COARSE
rorigzin FINEX,FINEY

rorigin (B) (sets relocatat.. origi: t- "wh=. °, "whzarey")
Note: Upon enterinz a lasson, ‘he Tel P gia is
automatically set to - srig-a i
NOTE: All subsequent relocatable comma:nds ace 2cz=: - preceding

-rorigin~, =-size-, ard -rotate-.

rat similar to =-at- but relative to the - ,1g: = l.:ation; affected
by preceding -size- and -rotate-

rat X-LOCATION, Y-LOCATION

rat (B) (equivalent to -rat ©.7-. ° ._,. 1e current
~rorigin- location)

ratnm similar to ~-rat- but does not reset : : margin (see -atnm-)
ratnm X~LOCATION,Y-LOCATION

rdot draws a dot at the specified position .. .: .2 —p the -rorigin-
location; position is affected by pr «e .n: <i::e— and -rotate-
rdot X~LOCATION, Y~LOCATION

rdraw similar to -draw- but figure is affe 'y oreceding -size~ and/or

~rotate-; the last point plotted se- z1e location for the next
screen activity

rdraw TAG LIKE ~draw~ EXZEPT WITH - <CT TO -rorigin~ LOCATION
(i.e., in screen dcts from t . ‘origin- location)
LDOX similar to -box- but draws a rectang_z - lative to the -rorigin-

location; affected by precezding -sizz- u: ! -rotate- (see -box-)

rbox CORNER X,CORNER Y;0PPOSITE CORNE ¥,0PPOSITE CORNER Y;
DOTS THICK (opt)
rbox ;CORNER X,CORNER Y;DOTS THICK (op:) (opposite corner at
. "wherex", "wherey")
rbox CORNER X,CORNZR Y (oppesite corzer at -rorigin- location;
cannot specify ttickness with this form of tag)

fread
-
%)

rvector 8imi.:r to —vect = b_: draws vector symbol relative to “he -r--izin-
locz-_on; affecte by preceding —size- and -rotate- (see -~vect:.r -1

rvectc- XTAIL.YTA_ _;. .0, HEAD “IZE (opt}

rvectc ;XTAI_,XHr:D _Z (opt} (tail at 'wherex', "wherey")

rvectc - XHEAD, YHE:D zail at -:origin- location}

rvectc - @,@;XHEAD, TIZ:iI:SIZF frail at -rorigin- location)
rcircle szme ¢ -tions as -czzz - - ~Efected by preceding -rotate- Z

-slize- gives an e’ 7! .u¢ li _:_zded by two-argumant -size- wit

uneque . arguments . s&= ~CLro o-

rcirci= RADIUS IN 0TS ATELE (opt),END ANGLE (opt)
(specifw bas—c :dii:s Hefore affected by —-size-)

103

Pi¢

Drawing graphs

ger.7t.a specifies _.czation of the origin s: :ze graph; all -ther display
with graph: -7 commands is relativ: - this origin

gorigin COs. 3E
gorigin FIV Z,FINEY
gorigin (B) (sets graph origin . “‘wherex", "wh=—-v")

iote: Upon entering a lesson, th:. ~miginm is »utom:zicaliy set
to =-gorigin @, @-.

axes specifies lengths of the axes and :raws the axes; - :zmains in effect
across main unit boundaries until r=set; x and y vziues are in dots
relative to the -gorigin- locatior ‘

axes NEGATIVE X,NEGATIVE Y,POSITIVE X,POSITIVE
axes PUSITIVE X,POSITIVE Y
axes (B) (draws axes specified by the last -z <es~ or —bounds-)

Note: To draw one-quadrant axes (other than both positive axes) with
labeling on the outside of the axes, use fcur-argument form of -
the tag with arguments corresponding to micsing axes set to #.

bour:: specifies lengths of the axes but does not draw th= axes (i.e., axes
are invisible); remains in effect across main unit boundaries until
reset; x and y values are in dots relative to the -gorigin- location

bounds NEGATIVE X,NEGATIVE Y,POSITIVE X,POSITIVE ©
bounds POSITIVE X,POSITIVE Y
bounds (B) (sets up bounds specified by the last -axes- or -bounds-)

Note: Upon entering a lesson the boundaries are automatically
.8et to -bounds 51!,511-.
scalex specifies the maximum value and the value at the origin on the
X axis; remains in effect across main unit boundaries until reset
scalex MAXIMUM VALUE OF X,VALUE OF X AT ORIGIN (opt)
(value at origin, if omitted, is @)
scaley same options as -scalex- but for the y axis

scaley MAXIMUM VALUE OF Y,VALUE OF Y AT ORIGIN (opt)
(value at origin, if omitted, is @)

104

P11

lscalex specifies the me—imzm value and thz value at the originm on the
x axis; the scai: bztween these pcints is proportional to the
logarithm of maz——mu=m x divided by the value at the origin; remains
in effect across mein unit bcundaz:ies until reset

lscalex MAXIMUM A_JE OF X,VALUE CZ X AT ORIGIN (opt)
(vali== .t origin, 1if cz-tzed, 1s 1, i.e., 1{¥)

lscaley same options as ~z2lex- but fo- 2y axis

lscaley MAXIMUM - LUZ OF Y,VALUE GF Y AT ORIGIN (opt)
(valze 1t origin, if omitted, is 1, i.e., 1¢¢)

NOTE: If any of the comrmazds -scalex~-, =-scaley-, ~lscalex-, ~lscaley- are
omitted, a linear scsls with length set by the preceding —-axes- or
~bounds~ 1s assuz2d.

NOTE: Subsequent grapr ng commands are - . appropriate scaled units.

labelx draws tick ms-ks szd labels the :x axis

labelx MAJOR INTEEZVAL,MINOR INTERVAL(opt),MARKSIZE (opt),FORMAT (opt)

labely draws tick marks and labels the y axis

labely MAJOR INTER AL,MTN.: .NTERVAL (opt),MARKSIZE (opt),FORMAT (opt)

markx draws tick marks on the » axis with no labels

markx MAJO)R INTERVAL,MINOR INTERVAL (opt),MARKSIZE (opt),FORMAT (opt)

1

marky drawe tick marks on the y axis with no labels

marky MAJOR INTERVAL,MINOR INTERVAL (opt),MARKSIZE (opt),FORMAT (opt)

NOTE: Coumands -labelx-, ~labely-, ~markx-, -marky- specify major and minor

mark intervals.

MARKSIZE = § or omitted for normal label marks

MARKSIZE = 1 for major marks extending to bounds of the graph

MARKSIZE = 2 for all marks extending to bounds of the graph

MINOR INTERVAL may be omitted. If MAJOR INTERVAL is set to ¢ with
linear scale, the computer chooses the "best' interval.

The total number of marks on an axls cannot exceed 1§@.

FORMAT gives the format for the labels and has the same form as that
for -showt-, e.g., 1.2 or 1,2. FORMAT is optional; 1f omitted, the
label format is selected automatically.

O “ : * =
« (NOTE continued on next page:) _I(JL) '

P12

NOTE: (continued from preceding page)

For labeling log scales:

MAJOR INTERVAL must be § (major marks are automatically plotted every
decade)

MINOR INTERVAL < @, minor marks are not plotted

MINOR INTERVAL = §§ or 3 (or omitted), minor marks are placed at values
of 1, 2, 5 within the decade

MINOR INTERVAL = 5, minor marks are placed at 1, 2, 3, 5, 7

MINOR INTERVAL = 10, minor marks are placed at 1, 2, 3, 4, 5, 6, 7, 8, 9

polar causes tags of graphing commands to be interrreted as polar
coordinates containing scaled radius and polar angle; may set scales
on X and y axes; remains in effect across main unit boundaries
until turned off explicitly; polar conversion and scaling must be
turned off independently

polar (B) (turns on polar conversion)
polar MAXIMUM VALUE OF X AND Y (turns on polar conversion
and scales both axes)
polar MAXIMUM VALUE OF X,MAXIMUM VALUE OF ¥ (turns on
polar conversion and scales axes indspendently)
polar NEGATIVE VALUE (turns off polar conversion but not scale)

NOTE: When the tag of subsequent commands is interpreted in polar
coordinates, the degree sign must be used if the angle is in degrees.
Without the degree sign, the angle is interpreted in radians.

gat similar to -at- but specifies the screen location relative to the
-gorigin- lecation and in scaled units

gat X-LOCATION, Y-LOCATION
gat DISTANCE, ANGLE (with -polar-~)
! gat (B) (equivalent to -gat @,%-, i.e., the current

-gorigin~ location)
gatnm similar to -gat- but does not reset the left margin (see -atnm-)

gatnm X-LOCATION, Y-LOCATION
gatnm DISTANCE, ANGLE (with -polar-)

105

gdot

graph

gdraw

gbox

gcircle

P13

draws a dot at the specified position relative to the -gorigin-
location and in scaled units

gdot X~LOCATIOi', Y=-LOCATION
gdot DISTANCE, ANGLE (with -polar=~)

places a dot or character string centered at the position indicated
relative to the -gorigin- location and in scaled units

graph X-LCCATION, Y-LOCATION, STRING (opt) {maximum of §
characters in string; if string 1s not specified, a
dot 1is plotted)

graph DISTANCE,ANGLE,STRING (with -polar-)

graph X-LOCATION,Y-LOCATION;VAR,NUM CHARACTERS (opt)
(1f number nf characters is omitted, 1§ characters
are plotted)

graph DISTANCE, ANGLE ; VAR, NUM CHARACTERS (with -polar-)

like =draw- but relative to the -gorigin- location and in scaled units;
after execution "wherex", "wherey" are set to the last point plotted

for example:

gdraw X1,Y1;X2,Y2 (draws a line on the graph)
gdraw DISTANCE],ANGLE1;DISTANCE2,ANGLE2 (with -polar-)

same options as -box~ but draws a rectangle relative to the -gorigin-
location; affected by preceding -scalex- and -scaley- (see -box-)

gbor CORNER X,CORNER Y;OPPOSITE CORNER X,0PPOSITE CORNER Y;
DOTS THICK (opt)

gbox DISTANCE CORNER,ANGLE CORNER;DISTANCE OPPOSITE CORNER,
ANGLE OPPOSITE CORNER;DOTS THICK (with =-polar-)

gbox ;sCORNER X,CORNER Y;DOTS THICK (opt) (draws a box

with opposite corner at current 'wherex", "wherey")
gbox ;DISTANCE CORNER,ANGLE CORNER;DOTS THICK (with -polar=~)
gbox CORNER X, CORNER Y (draws a box with opposite corner at
-gorigin— location; cannot specify thickness with this
form of tag)
gbox DISTANCE CORNER,ANGLE CORNER (with -polar-)
gbox (B) (draws a box set by a previous -axes-/-bounds- and
-gscalex-/-scaley~)

same options as —-circle~ but is affected by preceding -scalex- and
-gcaley~; draws an ellipse 1f the -gscalex~ and -scaley- settings are
different (see ~circle~)

gcircle RADIUS IN'DOTS,START ANGLE {opt),END ANGLE (opt)

(specify basic radius before affected by ~-scalex-, -scaley-)
~~

.

P14

gvector same options as -vector- except draws vector symboli relative to the
-gorigin~ location and in scaled units (see -vector-)

gvector XTAIL,YTAIL;XHEAD,YHEAD;SIZE (opt)

gvector DISTANCETAIL,ANGLETAIL;DISTANCEHEAD,ANGLEHEAD;SIZE (opt)
(with -polar-)

gvector ;XHEAD,YHEAD;SIZE (opt) (tail at "wherex", "wherey")

gvector ;DISTANCE HEAD,ANGLE HEAD;SIZE (opt) (with -polar-)

gvector XHEAD,YHEAD (tail at -~gorigin~ location)

gvector @,@;XHEAD,YHEAD;SIZE (tail at -gorigin- location)

gvector LENGTH,ANGLE (tail at -gorigin- location; with -polar-)

!

Note: Because of the default conditions of -gorigin @,%- and
-bounds 51:,511~, ~gvector- used without preceding -gorigin-
and -bounds- gives the same result as -vector- with fine-grid
coordinates.

vbar draws a vertical bar at the specified location relative to the
-gorigin- location and in scaled units

vbar X-LOCATION,HEIGHT,STRING (opt)

vbar DISTANCE BAR TOP,ANGLE BAR TOP, STRING (with -polar-)

vbar X-LOCATION,HEIGHT ;VAR, NUM CHARACTERS (opt)

vbar DISTANCE BAR TOP,ANGLE BAR TOP;VAR,NUM CHARACTERS
(with -polar-)

hbar draws a horizontal bar at the specified location relative to the
-gorigin- location and in scaled units

hbar LENGTH, Y-LOZATION, STRING (opt)

hbar DISTANCE BAR END,ANGLE BAR END, STRING (with -polar-)

hbar LENGTH, Y-LOCATION; VAR, NUM CHARACTERS (opt)

hbar DISTANCE BAR END,ANGLE BAR END;VAR,NUM CHARACTERS
(with -polar-)

NOTE: With -vbar- and -hbar-, STRING may have up to 9 characters. If STRING °
is omitted, a rectangle is drawn. If the character string 1s stored in
a variable and number of characters is omitted, 1@ characters are drawn.

P15

delta specifies stepsize for subsequent ~funct- commands
delta STEPSIZE
Note: If -delta- is omitted, the stepsize is set to 1.
funct plots the curve Spécified in the tag, with the stepsize given by a
preceding -delta~ or by the stepsize piven in the tag
funct FUNCTION EXPR, INDEPENDENT VAR

Note: Range of independent variable is set by boundaries of
-—-axes~ (or ~bounds=-) and ~scalex~ commands.

funct FUNCTION EXPR, INDEPENDENT VAR< INITIAL,FINAL,STEPSIZE

Note: If initial or final values of the independent variable are
beyond previously set boundaries, the latter are used.
For polar functions 1f initial or final value is omitted,
it 1s assumed to be @ or 27, respectively.

With either form of -funct-, & v~variable is recommended

for the independent variable.

NOTE: With ~delta- and ~funct-, select a stepsize that gives a smooth graph
but plots quickly. A reasonable lower limit to the stepsize for a
graph with linear x axis is:

|STEPSIZE| > @2 x |FINAL VALUE - INITIAL VALUE] .

103

P16

Non-screen

slide

audio

play

record

enable

disable

operates the slide projector and selects the specified slide

slide SLIDE NUMBER (value from # to 255)

slide ROW+1 6 xCOLUMN (ROW, COLUMN from @ to 15)

slide 512 (turns off lamp)

slide 256 (closes shutter)

slide 512+SLIDE NUMBER (selects slide with lamp off)

slide 256+SLIDE NUMBER {selects slide with shutter closed)
slide noslide (selects slide @, turns off lamp, closes shutter)

sends the value of the tag (truncated to 15 bits) to the external
device connected to the "audio" jack

audio EXPR

plays the audio device recording at the message location specified

play TRACK, SECTOR,NUM SECTORS (128 tracks, 32 sectors each)

records a message at the location specified

record TRACK,SECTOR,NUM SECTORS

allows input from the touch panel and from external devices

enable touch
enable ext
enable touch,ext (may combine tags)

Note: =-enable touch- must be reset for each ~arrow-~ command in a
unit and after any full-screen erase.
—-enable touch-~ in a unit with no ~arrow- allows any touch
on the screen to have the effect of 'pressing NEXT.
-enable ext- is turned off only by -disable ext-.

prevents input from any device except the keyset; this is the normal
state of the terminal

disable touch

disable ext
disable touch,ext

P17

ext sends the value of the tag (truncated to 15 bits) to an external
device (or to the device at another station if "ext'" option has
been turned on by the receiving user)

ext EXPR
ext EXPR, STATION

Note: zreturn = -1 if data is sent successfully
= (otharwise

extout sends the value of the right-most 16 bits of the specified variables
to an external device; the 16th bit from the right determines how the
information is interpreted: 1 for ext, @ for audio

extout STARTING VAR,NUM VARS (opt) (NUM VARS, if omitted, is 1)

xout sends data (in 8-bit bytes) contained in the specified variables to
an external device (available only on programmable terminals)

xout DEVICE ADDRESS (establishes an address for use by subsequent
' -extout- or ~-ext- commands) .
xout ADDRESS, STARTING VAR,NUM BYTES,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 6@; if SEGMENT SIZE > 8,
only the right-most 8 bits are sent)

Note: zreturn = -1 1if the data is sent successfully

= @ 1if STOP or STOPl is pressed during transmission

xin collects data (in 8-bit bytes) from an external device and stores it
in the specified variables (available only on programmable terminals)

xin DEVICE ADDRESS (establisheé an address to be read upon
subsequent external interrupt requests)
xin ADDRESS,STARTING VAR,NUM BYTES,SEGMENT SIZE (opt)

(SEGMENT SIZE, if omitted, is 6@; if SEGMENT SIZE > 8,
the right-mest 8 bits of "key'" are stored, right-justified,
in each segment)

Note: zreturn = -1 1if the data 1is received successfully
= @ 1if STOP or STOPl is pressed during transmission

beep (no tag) rings the sound device on programmable terminals

NOTE: Commands -xout-, -xin-, -beep—~ may be used only at a programmable
terminal. :
For current information on device addresses, see the descriptions of
~xin- or =-xout- in "aids". '

111

P18

saylang specifies the language to be spoken by a phonemic synthesizer which
is operated by the terminal (languages currently available: WES
[World English Spelling], ipa [International Phonetic Alphabet],
Esperanto, and Spanish); currently works only with Votrax model V3-6

saylang LANGUAGE

saylang (B) or saylang q (turns off subsequent ~say- commands)

saylang EXPR,LANGUAGEM,LANGUAGE®,q,LANGUAGE2,x (example of
conditional form)

say specifies the sentence to be spoken by the synthesizer
say SENTENCE OR PHRASE (may include embedded information)
sayc specifies the senten:e to be spoken by the synthesizer depending
on the value of a conditional expression
sayc EXPR} PHRASEM] PHRASEQ}PHRASEL . ..
11~
)

P19

Special display

tabset

micro

charset

sets tabs which are used by a student pressing the TAB ley

tabset OCTAL NUMBER CONTAINING 1@ PACKED TAB SETTINGS FROM
LEFT TO RIGHT (each setting is a 6-bit octal number giving
the horizontal character position; unused settings to
the right must be filled with octal zeros)

for example, to set tabs at horizontal character positions
8, 21, 3@, 48, 56, and 63, use:
tabset ol@ 25 36 6¢ 7¢ 77 @¢¢ ¢¢ ¢@ 9¢

Note: The tag may be an n-variable which contains the packed settings.

specifies microtable definitions used when the student presses the
MICRO key and then another key; unless specified, microtable and
-micro- command are in the same lesson

micro (¢¥),MICROTAELE NAME

micro . (zlesson),MICROTABLE NAME

micro ,MICROTABLE NAME

micro MICROTABLE NAME

micro LESSON NAME,MICROTABLE NAME (LESSON NAME contains the
microtable; enclose variable arguments in parentheses)

micro <LESLIST POSITION>,MICROTABLE NAME

micro (B) {(cancels microtable in effect and restores built-~in

microtable definitions)

Note: zreturn = =1 1f the microtablie is available
= @ if the microtable is not found

causes the specified character set to be loaded into the terminal
memory (see =inhibit charclear-); l-block charset may contain
up to 79 characters, 2~block charset up to 126 characters; unless
specified, the charset and -charset~ command are in the same lesson

charset (@#),CHARSET NAME

charset (zlesson),CHARSET NAME

charset ,CHARSET NAME

charset CHARSET NAME

charset LESSON NAME,CHARSET NAME (LESSON NAME contains the charset
blocks; enclose variable arguments in parentheses)

charset <LESLIST POSITION>,CHARSET NAME

charset (B) (clears charset flag)

1f the character set 1s loaded successfully
if the character set 1s not found

if the STOP key is pressed during loading

if there 1s an error in loading

1f there 1s a disk error

if the variable for the charset name equals §

113

Note: zreturn

g

non
W W N -~

P2¢

chezrtst allows check for presence of a character set in the terminal memory;
sets "zreturn" to -1 if the charset flag is set and to @ if not

chartst (@¥),CHARSET NAME

char+tst (zlesson),CHARSET NAME

chartst ,CHARSET NAME

chartst CHARSET NAME

chartst LESSON NAME,CHARSET NAME (LESSON NAME contains the
charset; enclose variable arguments in parentheses)

chartst <LESLIST POSITION>,CHARSET NAME '

lineset allows use of line-drawn characters, which are affected by preceding
-size- and -rotate~; "size'" must not be @; linechars are accessed by
the FONT key or by —-altfont on- ; a lineset may be up to 3 blocks
long; 1 block may contain up to 128 small linechars; unless specified,
lineset blocks and ~lineset- command are in the same lesson
lineset (@#),LINESET NAME
lineset (zlesson),LINESET NAME
lineset ,LINESET NAME
lineset LINESET NAME
lineset LESSON NAME,LINESET NAME (LESSON NAME contains the
lineset; enclose variable arguments in parentheses)
lineset <LESLIST POSITION>,LINESET NAME
lineset (B) (cancels lineset in effect and restores standard
sized writing)
Note: zreturn = =1 if the lineset 1s attached successfully
= @ 1if the lineset is not found
+1 if there 1is an error in the lineset

altfont changes font mode of the terminal; affects charsets and linesets

altfont on or altfont 1 or altfont alt (switches terminal
to alternate font)
aitfont off or altfont § or altfont normal (switches
terminal to normal font, which is the default state)

Note: Tag may be calculated, but it must be exactly @ or 1.
Altfont setting remains in effect across unit boundaries
until reset by another -altfont- command or until ~jumpout~-
is executed.

o
fes
H‘ ';?I

P21

) System variables for presenting

mode = -1 with -mode erase-

= ¢ with -mode rewrite- see —mode~ command

= 1 with -mode write-

= 2 with -mode inverse-
size current value of the tag of the single-argument ~size- command

(see -size~ command)
sizex current value of the "x" argument in the two-argument ~size- command
sizey current value of the "y" argument in the two~argument -size- command
W

where character-grid location fcr next display

See CALCULATING,

wherex fine-grid x location for next display % System functions,
' for zfinex(X), zfiney(X)

wherey fine-grid y location for next display

zlang useful for display of multi-lingual text; set by ~lang~ command
@ for -lang english-
1 for -lang french-
2 for -lang spanish-
3 for ~lang german-

A
—
bmd
Q1

Additional notes on PRESENTING

ROUTING R1

Router lesson

route used in a router lesso ccifr to which unit in the router
lesson the user 1s ser lea-ing the instructional lesson
route end lesson,UNZ" (exit via -end 1lesson~ or =juwpout q-)
route error, UNIT NAM xxit via execution error or condense error)

route finish,UNIT NAME (exit wvia STOP1)

route resignon,UNIT NAME (opt) (upon STOP1l exit from a lesson,
provides the user with a choice page offering the option
to sign cff completely or to continue working
[{i.2., to return to the router, to the specified unit,
if given, or to the first unit if UNIT NAME is omitted])

routvar (non-executable) sets up specilal variables in a router lesson which
can be used only in the router lesson; they are referenced by
vr and nr

routvar NUM VARS (maximum of 64 variables)

allow used in a router lesson to specify that router common and/or
router variables may be referenced in the instructional lesson

b allow read (read-only access to router common)
allow write (read and write access to router common)
allow read rvars (read-only access to router variables)
allow (B) (clears last setting of =-allow-)

R2

Curriculum information
NOTE: The following -ommands are used 1in instructional lessons.

lesson sets the system variable "ldone" to indicate whether a lesson is
considered complete

lesson complete (sets "ldone" to ~1)
lesson incomplete (sets "ldone" to @)
lesson no end (sets "ldone" to +1; may be used in lessons with
no logical end)
lesson EXPR,complete,incomplete,x,no end (example of conditional
form; argument x leaves "ldone" unchanged)

score places value of the tag, rounded to the nearest integer, into the
system variable "lscore"

score EXPR (value from ¢ to 10@)
score (B) (sets "lscore" to -1}

status places the value of the tag, rounded to the nearest integer, into
the system variable "lstatus"; allows a student to reestablish a
status (to some extent) upon returning to a lesson after having
enterzsd other lessons

status EXPR

R3

System variables for routing

errtype

ldone .

lscore

1status

rcallow

router

rstartl

rstartu

rvallow

= # for unknown error type
= 1 for execution error
= 2 for fatal condense error or for attempted jumpout to a router
not specified for the group
= 3 for memory exceeded
4 for error in the finish unit of the instructional lesson
= 5 for exit from the condense queue via STOPI
= -1 1if the user has encountered -lesson complete- or

-end lesson-

= @ 1if the user has encountered ~lesson incomplete~ or has never
entered the lesson or has entered but not completed the
lesson (-records 1ldonelist- returns a value of 2 for the
last case when "mrouter" is used)

= +1 1if the user has encountered -lesson no end-

rounded value of the tag of -score- (value from @ to 1¢@); initially
set to -1 for a student routed by "mrouter"; may also be set to -1
with -score (B)-; initially set to @ for a student not routed by
"mrouter"

rounded value of the tag of -status-

for no access to router common
for -allow read-
for -allow write-

|
N =™

name of the router lesson (left-justified; display with -showa-)

~

name of the lesson from the last -restart- command
(left-justified; display with -showa-)

name of the unit from the last -restart- command
(left-justified; display with -showa-)

= § for no access to router variables
= | for ~allow read rvars-

R4

zleserr

’

gives detailed information on fatal errors which can occur when
accessing a lesson (l.e., errors that give a student the message
"Call Your Instructor")

W onn

1]

i

1]

MO NE—®R

= 27

28

29
3¢
31
32

if there 1s no error or if the error is non-fatal

if the condensor 1is not available

If the lesson does not exist

if the lesson source code 1s too long

if ECS 1is not available (although the site ECS allocation is
not exceeded)

(system error)

if there is a disk error

if there 1s a unit which is too long

if the lesson has been deleted

(not used)

if there is no room in ECS for the lesson common

if the common is not found

1f there are not enough common blocks

(system error)

if there is a common codeword error

if there 1s a tag which 1s too long

if the lesson binary 1s too long

if the lesson 1s not a TUTOR lesson

if the lesson is temporarily unavailable

1f the site ECS allocation is exceeded

(system error)

(system error)

1f there 1s an error in specifying the router

if there i1s a jumpout codeword error

if the common in ECS has a different length from the length
specified in the ~common~ command

if a jumpout to the wrong router is attempted

if there is an error in the ~use~ command (other than
"block not found")

. (system error)

if the lesson is in the improper lesson access class

(not used on the CERL system)

(not used)

if the lesson 1s obsolete and must be converted

if there 1s an error in the ~use~ command: block not found
if the processor lesson 1s not a valid TUTOR file

SEQUENC ING s1

Basic sequencing

unit

unitop

NOTE:

entry

NOTE:

names and initiates a section of a lesson (called a unit) which may
be referenced by other sequencing commands

unit NAME (maximum of 8 characters in NAME)

similar to -unit- but without a full-screen erase when the unit is
entered (except upon initial entry into a lesson); ''mode" and "where"
are not altered

unitop NAME (maximum of 8 characters in NAME)

Initial entry unit (leu) refers to commands preceding the first -unit-
or -—unitop- command in a lessonj these are executed whenever and
wherever a lesson is entered (except when a lesson executes -jumpout-
to itself or when a router lesson 1is rdturned to during the sessiomn).

See -define- for formats for a local define set, which is declared as
a continuation of a =unit= command.

names a section of a lesson which may be referenced by other
sequencing commands; does not affect the flow of execution of the
unit in which the -entry- command is placed except that =—-entry- may
not be placed within the range of -branch-, -doto-, -if-, or -loop-;
no keypress is required to execute commands following -entry-;

no full-screen erase .or other main-unit initializations occur
following —entry- when it is executed withiin a unit

entry NAME {(maximum of 8 characters in NAME)

Commands -unit-, =-unitop-, and -entry- may have a form with arguments:
unit NAME (VAR1, VAR2, VAR3,...) (up to 1§ arguments)
A lesson may have up to 394 different units referenced by -unit-,

-unitop-, and -entry-. No unit may be named "q" or "x".
Maximum length of a unit is 5@@ condensed words.

s2

Automatic sequencing

NOTE:

Jump

goto

do

The following commands (-jump-, -goto~, ~do~, and -join~) may have a
conditional form, e.g.,

goto EXPR,NAMEM,NAME@,NAME1,x,NAME3,q
do EXPR, NAMEM, NAME@, x, NAME2, q , VAR« INITIAL, FINAL, STEP

Argument x is equivalent to absence of the command; argument q is
equivalent to a branch to an empty unit. Special case occurs with

~do ¢ (~join q-), which is equivalent to -goto q~. For iterative
-do=-, q ter. inates the ~do-, and X indicates no iteration is done for
that value o. the conditional expression. Argument q 1s not valid with
~jump~. Up to 10¢ arguments are permitted in the conditional tag.

These commands may pass up to 1§ arguments, e.g.,

goto NAME (VALUE1, VALUE2, ,VALUE4) (values may be expressions)

unit NAME (VAR1, VAR2,VAR3,VAR4) (VAR3 is unchanged)
or

do NAME (VALUE 1, VALUE2;VARL,VAR2, VAR3) (~return~ returns
values to VARI, VARI, VAR3)

causes execution of the unit named in the tag with a full~screen
erase (unless the erase is prevented: see ~inhibit erase~) and

change of main unit; initializations associated with entering a

main unit are performed

jump UNIT NAME

causes exXecution of the unit named in the tag without a screen erase,
without change of main unit, and without other main-unit
initializations; there is no further execution of commands in the
original unit except during the judging process

goto UNIT NAME

(insertion) causes execution of the unit named in the tag without
screen erase or change of main unit; returns to the original unit
to execute commands following =-do-

(iteration) causes repeated execution of unit(s) named in the tag while
changing a counter; otherwise same as insertion =do~

do UNIT NAME .

do NAME,VAR<« INITIAL EXPR,FINAL EXPR, STEPSIZE EXPR (opt)
(STEPSIZE, 1if omitted, is 4+l; STEPSIZE may be negative;
loop variable is undefined after completion of the loop)

Note: Nested ~do- and -join- levels may be up to 1@ deep.
129
iy

s3

join gimilar to -do- but is executed during judging and during search
for additional -arrow~ commands following an "ok" judgment

join UNIT NAME
join NAME, VAR« INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR (opt)

return returns values to variables specified in a -unit~ command with
arguments

return EXPR1,EXPR2,EXPR3 (maximum of 1@ arguments)
Note: -return- occurs in a unit executed via -do- or -join-.

do NAME (EXPR ;VAR1, VAR2)

unit NAME (VAR)

return EXPR1,EXPR2 {(returns values to VAR1, VAR2)

exit permits termination of =-do- or ~-join- sequences

exit (B) or exit NEGATIVE VALUE (exit from all levels
of -join- and -do-)

exit EXPR GIVING NUM LEVELS

exit @ (causes no exit)

iferror specifies the unit to execute via a -goto- if an error is found
in the execution of a subseguent calculation in a unit

iferror UNIT NAME
iferror (B) or 1iferror q (turns off -~iferror- setting for
remainder of unit)
iferror EXPR,NAMEM,NAME{,q,NAME2,x (example of conditional form;
maximum of 1¢¢@ arguments in conditional tag)

imain specifies the unit to execute at thz start of every main unit in the
lesson; later occurrence of the command overrides an earlier setting;
equivalent to ~do- at the beginning of each main unit

imain UNIT NAME
imain (B) or imain q (turns off -imain- setting for
: remainder of lesson or until reset)
imain EXPR, NAMEM,NAME@,q ,NAME2, x (example of conditional form;
maximum of 1@@ arguments in conditional tag)

S4

NOTE: The following two directives (-branch-, -doto-) are calc-type
directives which permit branching or looping within a unit. When the
directive is in the command field, it behaves like a -~calc~ command.
In the tag field, the directive 1s part of a continued =-calc-. 1In
both cases commands which do not perform calculatiors are permitted
within the -branch-~ or -doto- loop.

branch permits branching within a unit (the statement label must start
‘ with a number and may contain up to 7 characters)

for example:

5a VAR < EXPR

branch EXPR, 5a,x (argument x causes fall-through to the next
line in the unit)

calc VAR« EXPR
6test VAR<¢ EXPR
branch 6test

branch x (causes fall-through to next line in the -calc-)
branch EXPR,x,6test (example of conditional form)
doto permits looping within a unit (the statement label must start with

a number, may contain up to 7 characters, and must have a blank tag)
for example:

doto 2sync,VAR<« INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR

2sync (B)

calc VAR« EXPR
doto 4run,VAR< INITIAL EXPR,FINAL EXPR,STEPSIZE EXPR

4run (B)
Note: Stepsize, if omitted, is +1. Stepsize may be negative.

Value of the loop variable is undefined after completion
of the loop.

124

S5

’ NOTE: The following four commands (-if-, -elseif-, -else-, and -endif-)
permit branching within a unit. Logical value of an expression is "true
1f its rounded value is -1 and "false" if its rounded value is ¢.

if performs a branch based on the logical value of the tag expression;
value of "true" causes fall-through to the next line; value of '"false"
causes branch to the next -elseif-, -else~, or -endif- at the same
level; code following —if- must be indented (up to the next -elseif-,
-else~, or -endif- at the same level) and marked with the indent
symbol; range of -if- must be terminated by -endif- at the same level

if LOGICAL EXPR

elseif provides an alternative anch within the range of the preceding
-if~ at the same level; subsequent code follows same indenting
rules as -if-

elseif LOGICAL EXPR
else (no tag) provides a branch if the logical value of the tag of the

preceding -if- or -elseif- at the same level is "false"; subsequent
code follows same indenting rules as -if-

endif (no tag) marks the end of the range of the preceding —-if~ at the
same level

NOTE: Following is an example demonstrating placement of these commands.

if n8<4

. write first branch $$ executed if n8<4
. calc n9<¢ 34 $$ executed if n8<4
elseif n8=4 $$ executed if n834
. write second branch $$ executed if n8=4
. do someunit $$ executed if n8=4
else $$ executed if n8>4
. write default branch $$ executed if n8>4
. if n8>6 $$ executed if n8>4
. . write special branch $$ executed if n8>6
. endif $$ end of range of -if n8>6-
endif $$ end of range of -if n8<4-

12

oy

S6

NOTE: The following four commands (-loop-, -endloop-, -outloop-, and -reloop=~)
permit looping within a unit. Logical value of an expression is "true"
if its rounded value is -1 and "false" if its rounded value is g.

loop initiates a loop based on the logical value of the tag expression;
value of "true" causes execution of subsequent commands in the loop;
value of "false" causes execution of the first command after -endloop-
at the same level of indentation as -loop-; code following ~loop- must
be indented (up to the next -outloop-, -reloop-, or -endloop~ at the
same level) and marked with the indent symbol; range of -loop~ is
marked by —-endloop-~ at the same level

loop LOGICAL EXPR (blank tag is equivalent to "true'" value)

endloop (no tag) marks the end of a loop initiated by the previous -loop-
command at the same level of indentation; causes a branch back to
the previous -loop- command at the same level

outloop based on the logical value of the'tag, causes exit from the range of
-loop- at the same level of irdentation; value of "true" causes
execution of the first command after -endloop- at the same level;
value of "false" causes execution of subsequent commands within the
loop, which follow the same indenting rules as -loop-

outloop LOGICAL EXPR (blank tag is equivalent to "true'" value)

reloop based on the logical value of the tag expression, causes branch back
to the previous -loop- command at the same level of indentation
without terminating the loop; value of "true" causes branch to the
previous -loop- at the same level; value of "falge" causes execution
of subsequent commands within the loop, which follow the same
indenting rules as -~loop-

reloop LOGICAL EXPR (blank tag is equivalent to "true' value)
P

Note: Following is an example demonstrating placement of these commands.

loop n8<if

. write within loop $$ executed 1if n8<1@

. subl n8 _ $$ executed 1f n8<1f

reloop n825 $$ executed 1if n8<1l@

. write still within loop $$ executed if n8<5

. do . someunit $$ executed 1if n8<5

outloop n8<3 $$ executed if n8<5

. write 'still within loop $$ executed 1f 3gn8<5
endloop

write outside of loop $$ executed if n82l@ or n8<3

126

S7 .

Key-initiated sequencing

NOTE: The following commands (-next- through -lablop-) may have the
conditional form, -where argument x leaves the pointer unchanged, and
~argument q clears the pointer and renders the key inactive (except for
NEXT, which causes fall-through to the following unit). Argument q is
not valid with -nextnow-. Up to 10 arguments are permitted in the
conditional tag. The conditional expression is evaluated when the
command is executed, not when the key is pressed.

next, nextl, back, backl, stop specifies the unit executed when the student
presses the appropriate key (arrows must be satisfied before
sequencing on the NEXT key)

next UNIT NAME
backl . UNIT NAME
back (B) or back q (clears back pointer; disables BACK key)

nextnow terminates processing in the unit and makes only NEXT key active

nextnow UNIT NAME

nextop, nextlop, backop, backlop specifies the unit executed when the
student presses the appropriate key; there is uo full-screen erase
and new information is plotted on~the~page; the unit specified,
however, is a main unit

nextlop UNIT .NAME
backop {B) or backop gq (clears back pointer; disables BACK key)

help, helpl, data, datal, lab, 1labl initiates a help~type sequence by
gspecifying the unit to be executed if the student presses the
approprilate key; sets the base pointer for the unit to return to
unless the base pointer is already set; the unit executed is a
=main wnit b.f not a base unit (unless the base pointer is reset
£0 this unit); a help~type sequence may be terminated by the
—end- command

kelp UNIT NAME
lab (B) or 1lab q (clears lab pointer; disables LAB key)

Q ' : :1:2'7

S8

helpop, helplop, dataop, datalop, labop, lablop specifies the unit executed

term

termop

NOTE:

base

end

when the student presses the appropriate key; the unit executed is
not a main unit or a base unit and no full-screen erase is performed;
control is returned to the main unit after execution of the
helpop-type unit

helpop UNIT NAME
dataop (B) or dataop q (clears data pointer; disables DATA key)

permits use of the TERM key to initiate & help~type sequence starting
at the unit containing this command and the specified character
string; sequence can be terminated by -end~ (see -inhibit term-)

term STRING (maximum of 8 characters)

term (B) (provides match to any term request that does not
match an author-specified or system-specified term)

similar to -term- excépt initiates a helpop-type sequence

termop STRING (maximum of 8 characters)

termop (B) (provides match to any term request that does not
match an author-specified or system-specified term)

lesson may have up to 299 -term- and -termop- commands.

resets or clears the base pointer in order to alter help-type
sequencing

base (B) or base q (clears base pointer)
base UNIT NAME (sets base pointer to named unit)
base EXPR, q,NAME, x (example of conditional form;

argument x leaves base pointer unchanged; argument q
clears base pointer; maximum of 1@ arguments in
conditional tag)

terminates a help-type sequence or a lesson

end (B) or end help (ends a help~type sequence; may
occur anywhere in a unit; student is returned to the
base unit after pressing NEXT; -end- is ignored in a
non-help-type sequence)

end lesson (when NEXT 1s pressed after execution of this
statement, the student 1is returned to the router lesson
or to the "Press NEXT to Begin" page; finish unit is not
_executed; authors are returned to the author-mode page)

123

Timing

keylist

pause

collect

S9

(non-ekecutable) forms a set of keys with the specified name for use
with ~pause- and -~keytype- commands

keylist NAME,KEYI,KEYZ,KEY3,... (from 2 to 7 characters in NAME)
keylist NAME,NAMEl,NAME2, ... (keylists may be combined)

Note: System-defined keylists are:

alpha (letters: a to z and A to Z)

numeric (digits: @ to 9)

funct (function keys (["key" from 020@ to 0235])
keyset (any keyset input)

touch (input from touch panel)
ext (input from external device other than touch panel)
all (input from keyset, touch~panel, or external device)

delays execution of subsequent commands by the specified interval
or until the specified keys are pressed

pause EXPR GIVING NUM SECONDS (minimum of .75 second)

pause @ (causes no pause; exception to .75 second minimum)

pause (B) or pause NEGATIVE VALUE (interrupts processing

: until any keypress comes in)

pause keys=KEY1,KEY2,KEYLIST NAME,... (interrupts processing
until one of the specified keys comes in; all keynames
are typed without quote marks and function keys are
typed in lower case)

pause NUM SECONDS,keys=KEY1,KEY2,KEYLIST NAME,... (interrupts
processing for the specified time or until one of the
specified keys comes in)

Note: If a function key other than next, such as help, is specified
and there is a preceding -help- or ~helpop~ command specifying
a unit to execute, this unit is executed rather than the
command following the ~pause~. If next is specified, the NEXT
key just breaks the -pause-, even if there is a preceding
-next—- command.
The statements ~pause keys=touch- and —pause keys=ext- set

. the appropriate -enable-.

allows storage of keycodes from keyset, touch panel, or external
inputs in successive variables, starting at the specified variable;
collection terminates with receipt of the specified number of keys
or with receipt of the TIMEUP key, which is also stored

collect STARTING VAR,NUM KEYS (must use student variables)

123

S1¢

getcode

keytype

time

timel

timer

stores a user-generated string, left~justified, in the specified
variable and plots X’s; "endkeys" specifies function keys which
terminate the entry (in addition to NEXT, which is the default);
up to 1@ characters may be entered and stored

getcode VAR,endkeys=KEYNAME]l,KEYNAME2,... (opt) (names of keys are
in lower case)

'

sets a variable according to the position in a list of the input by
the user; if the input action is not listed, the variable is set to -1

keytype VAR,ARG®,ARG1,ARG2,...
arguments ARG@, ARGl, ARG2,... may be any of the following:

KEYNAME (any keyname; no quotation marks are used;
function keys are in lower case)
KEYLIST NAME (name of a system-defined keylist or of a list set up by
the ~keylist~ command)
(VAR) (value of "key" is compared with the value stored in VAR)
ext (VAR) (when the 1fth bit from the right of "key" equals 1,
indicating an external input, the right-most 9 bits
of "key" are compared with the value stored in VAR)
touch (COARSE,WIDTH IN CHARACTERS,HEIGHT IN LINES)
touch(FINEX, FINEY,WIDTH IN DOTS,HEIGHT IN DOTS)
(COARSE or FINEX,FINEY is the screen position of the lower left
corner of a rectangle with specified width and height; width
and height are optional and are assumed to be 1 if omitted)

Note: Up to 1¥@ kéys may be specified; keylists count as one key.

presses the TIMEUP key after the specified interval and sets "key" to
"timeup"; function keys can break through the timing and set "key" to
the key pressed

time EXPR GIVING NUM SECONDS (minimum of .75 second)
time (B) or time NEGATIVE VALUE (clears any ~time-~ in effect)

specifies a unit in the same lesson to execute (via helpop-type
sequence) when the indicated time has elapsed; remains im effect
across other timing commands and across unit boundaries

timel NUM SECONDS,UNIT NAME (minimum of .75 second)
timel (B) or timel NEGATIVE VALUE (clears any -timel~ in effect)

used in a router lesson to specify a unit in the router to which a
routed student is sent when the indicated time has elapsed

timer NUM SECONDS,UNIT NAME (minimum of 6@ seconds)
timer (B) or timer NEGATIVE VALUE (clears any -timer- in effect)

139

S11

press puts the specified key into the student input buffer for the
indicated station, 1if given; limited to one keypress per second

press KEYCODE

press VAR CONTAINING KEYCODE

press "KEYNAME" (for non-function keys; lower case only)

press KEYNAME (for function keys, e.g., =-press next-)

press KEYCODE, STATION (presses the key at another station if the
station 1is in the same lesson as the =-press- command)

Note: For 2-argument ~press-:
zreturn = -1 1f the station i1s in the lesson
= @ otherwise

catchup (no tag) causes a pause in execution while transmission of
accumulated output to the terminal is completed in order to
synchronize display and execution of commands

break (no tag) interrupts processing and returns with a new timeslice
for further processing when a complete timeslice 1s available

cpulim specifies the maximum CPU usage rate in thousand instructions per
second with a maximum of 1§ thousand instructions per second

cpulim EXPR GIVING MAXIMUM CPU USAGE RATE (maximum of 1)

S12

Lesson connections and sections

use (non~executable) inserts into the file being condensed the specified
block(s) from the file specified in the directory OR the file
specified in the tag of ~use~; all contiguous blocks with the same
name are taken; use codewords on the files must match

.use BLOCK NAME (file is specified in the directory)
use FILE NAME,BLOCK NAME (multi~file use flag is set in the
directory; up to 5 different files may be used)

jumpout causes execution of the specified lesson or of the processor lesson,
' if one 1s declared; up to 1@ arguments may be passed to the lesson
(see -inhibit jumpchk-, -inhibit from-, and -args~)

jumpout FILE NAME (goes to the first unit in the lesson;
jumpout codewords need not match)

jumpout FILE NAME(VALUE1,VALUE2) (example of form with arguments)

jumpout FILE NAME,UNIT NAME (goes to the specified unit in the
lesson; jumpout codewords must match)

jumpout FILE NAME,UNIT NAME(VALUE) (example of form with arguments)

jumpout return (returns to the first unit of the lesson from which
a jumpout was made to the present lesson)

jumpout return,return (returns to the lesson from which a jumpout
was made to the unit following the unit with the -~jumpout~)

jumpout (B) or jumpout q (causes a jumpout to the author-mode page
for authors or to "Press NEXT to begin' page or to a router
for students or instructors; similar to -end lesson-)

jumpout <LESLIST POSITION> (causes a jumpout to the first unit of
the lesson at the specified position in the leslist)

jumpout <LESLIST POSITION>,UNIT YAME fcauses a jumpout to the
specified unit in the lesson at the specified leslist
position; jumpout codewords must match)

jumpout EXPR;FILEM,UNITM;FILE@;FILE]l,UNIT];q;x (example of
conditional form; argument q causes jumpout as above;
argument X causes no jumpout)

jumpout resume (used in a router lesson to return the user to the
lesson and unit specified by the last -restart-~)

jumpout continue (used in a site lesson to send the user to a
router or lesson)

jampout NOTESFILE NAME (causes jumpout to the specified notes file;
return to lesson is automatic, via -~jumpout return,return-)

jumpout NOTESFILE NAME,datetime (causes jumpout to the specified
notes file with date and time set in n2 and n3, respectively)

jumpout notes,choice (causes jumpout with read and write access to
the student notes file attached to the user’s group)

jumpout notes,read (causes jumpout with read access to the student
notes file attached to the user’s group)

jumpout notes,write (causes jumpout with write access to the student
notes file attached to the user’s group)

jumpout notes,instruct (causes jumpout with read access as an
instructor to the student notes file attached to the group)

jumpout pnotes (causes jumpout to personal notes) '

[ERJ!:‘ : Note: Variable lesson and unit names must be enclosed in parentheses.

132

S13

args stores the values of arguments passed by -jumpout- to the lesson;
values are stored in the specified variables

args VARI1, VAR2, VAR3 (maximum of 1@ variables)

Note: zreturn = -1 1f arguments are passed successfully
@ 41if no jumpout arguments are present
1 if there are more jumpout arguments present than
variables in =~args-; as many values as can be
received are stored; "zreturn' value 1s the

actual number of arguments present

v i

Arguments passed by ~jumpout— may be picked up by a -unit~
command with arguments instead of by -args-.

from checks the lesson and main unit, 1if specified, from which a lesson is
entered against a list and sets a variable to the relative position
of the lesson and unit in the list; if no unit is specified, any unit
in the lesson qualifies; if the lesson (and unit) are not listed, the
variable is set to ~1; alternate form stores lesson name and unit name
in the specified variables

for example:

from VAR ;LESSON@, UNIT@; LESSON1 ; <LESLIST POSITION>,UNIT2
(variable lesson and unit names must be enclosed in

parentheses)
from VAR FOR LESSON NAME, VAR FOR UNIT NAME (opt)

lessin checks if the lesson specified is credited to the user’s logical site;
sets '"zreturn'" to ~1 if the lesson is in ECS and in use at the user’s
logical site and to @ otherwise

lessin 'LESSON NAME'
lessin (VAR CONTAINING LESSON NAME)
lessin <LESLIST POSITION OF LESSON>

in sets 'zreturn" to indicate whether a user at the specified station
number is in the lesson containing the -in~ command

in EXPR GIVING STATION NUMBER

Note: =zreturn = ~2 1if the ~in~ command is in a router lesson and a
routed user at the specified station is in an
instructional lesson

= ~] 1if the station 1s in the instructional lesson
containing the ~in~ command
= @ 1if the station is not in the lasson

135

Sl4

notes initiates TERM~comments automatically, or sends the specified text to
the lesson notes file or student notes file without user interaction;
the title, if included, must be left-justified, may contain up to
15 characters, and always requires two variables

notes STARTING VAR CONTAINING TITLE (opt) (initiates TERM-comments)
notes STARTING VAR CONTAINING TEXT,NUM VARS,STARTING VAR

CONTAINING TITLE (opt) (inserts text at front of note)
notes STARTING VAR CONTAINING TEXT,NUM VARS,STARTING VAR

CONTAINING TITLE (opt),send (sends the text automatically)

Note: Student variables must be used for the text and the title;
the format for the text is that for ~text- command.
After multi-argument -notes-, values of "zreturn" are:

zreturn = =1 1if the note is sent successfully
= @ 1f the user pressed BACKl and note was not sent
= 1 1if TERM-comments i1s not allowed in the lesson
= 2 1f the format of the text is incorrect or 1f the
text is too long (>111 6@-bit words or >16 lines)
= 3 1if the note cannot be stored (e.g., the notes file

does not exist or is full)

cstart (non-executable) (no tag) indicates subsequent code is to be
condensed (used after a preceding =~cstop-)

cstop (non-executatle) (no tag) indicates subsequent code is not to
be condensed; in effect up to the next -cstart-, 1f any

cstop* (non-executable) (no tag) indicates none of the subsequent code
is to be condensed, independent of subsequent -cstart- commands

NOTE: It is preferable to use the partial condense option of the editor
rather than -cstart-, =-cstop-, and ~cstop*-.

S15

Lesson lists .

leslist

addlst

removl

references special blocks containing a list of up to 24(¢ lessons
(numbered starting at @#); if the ~leslist- command and leslist blocks
are in different lessons, the common codewords must match or the
codeword argument must be included; codeword argument must match the
common codeword of the lesson containing the leslist blocks

leslist (@¥),LESLIST NAME

leslist (zlesson),LESLIST NAME

leslist ,LESLIST NAME

leslist LESLIST NAME

leslist LESSON NAME,LESLIST NAME, 'CODEWORD' (opt)
(LESSON NAME contains the leslist blocks)

leslist <LESLIST POSITION>,LESLIST NAMSZ, 'CODEWORD' (opt)

leslist (B) (disconnects the current leslist)

Note: Variable arguments must be enclosed in parentheses. Quote
marks on the codeword are omitted for variable argument.

~1 if the ~-leslist- command is executed successfully
@ if the leslist blocks are not found
41 if codewords do not match

zreturn

nm mwn

allows addition of a lesson name to a leslist, either in the specified
slot or in the first empty sleot if none is specified; the tag must be

a varlable; requires three consecutive variables (the name 1s stored -

with: -storea STARTING VAR, 3¢-)

addlst STARTING VAR,LESLIST POSITION (opt)

-1 1if the lesson name is added successfully
@ if there is no preceding successful -leslist-

command

= 1 41if the form of the lesson name is incorrect

2 1if the lesson name 18 already in the leslist
(with one-argument form only)

3 1if the leslist is full

= 4 1f the specified slot is occupled (with two-

argument form only)
= 5 if the leslist is reserved by another user

(]

Note: zreturn

allows deletion of a lesson at a specified leslist position; the
vacated position is left blank

removl LESLIST POSITION
Note: =zreturn = =1 1f the lesson 1s removed successfully
= @ 1if there 18 no preceding successful -leslist-

command
= 4] 1if the leslist is reserved by another user

135

516

reserve reserves the current leslist to prevent changes via -addlst- and
~removl~ by more than one user at a time

reserve leslist

[
I
N

Note: zreturn = if the leslist 1is already reserved by this user
= ~] if -reserve~ 1is executed successfully by this

user

if there is no preceding successful -leslist-

command '

54+n, where n=station number of the user who has

reserved the leslist

]
2

release releases the current leslist (if previously reserved)

release leslist

Note: zreturn ~2 1f the leslist 1s not reserved by any user

-1 1if -release- is executed successfully by this
user

@ 4if there 1s no preceding successful ~leslist-
command

5+n, where n=station number of the user who has

reserved the leslist

lname stores the lesson name at the specified leslist position in
three consecutive variables starting at the specified variable

lname STARTING VAR,LESLIST POSITION

Note: Use with -showa~ to display the lesson name; e.g.:
lname STARTING VAR,LESLIST POSITION
showa STARTING VAR, 39

zreturn = ~1 1f execution 1s successful

= @ 1if there is no preceding sucessful ~leslist~
command

findl gsearches the leglist for the lesson name stored iﬁ three
consecutive variables and returns the leslist position in the
specified variable
findl STARTING VAR FOR LESSON NAME,VAR FOR LESLIST POSITION

Note: If the lesson name is not found or 1if no leslist is used,
returned value for the leslist position is ~1.

135

Sl7

Lesson annotation and debugging

*
c (space)

$$

change

step

indicates the statement on that line is a comment only and is to
be ignored by the computer

*This 1s a comment.
c This is a comment.

(not a command) when placed on the same line with a TUTOR statement
indicates that subsequent material on that line is a comment

COMMAND TAG $Sthis is a comment

(non-executable) permits names of commands to be changed, e.g.,
to a language other than English; also permits symbols (e.g.,
punctuation) to be redefined in certain judging commands;
—change—- must be placed in the initial entry unit; all changes
are in effect for the entire lesson and cannot be altered

change command NORMAL TUTOR NAME to NEW NAME
change symbol SYMBOL]l to SYMBOLZ

for example:

change command at to wo

change symbol * to letter
change symbol ? to puncword
change symbol p to punc
change symbol 3 to vowel
change symbol a to b

change symbol space to letter

change symbol sup to null

change symbol / to diacrit
etc.

Note: The answer-matching commands affected by ~change symbol- are:
-answer-, =-wrong-, -answerc-, =-Wrongc-, -concept-, -miscon-,
-match-, -storen-. Other commands affected are: -getword-,
-getmark~, =-getloc-, and -compare-.

allows a user to step through a lesson command by command; an author
whose security code matches the lesson’s change code may use TERM-step
(TERM-step'is not available for other user types)

step on
step off
step EXPR (value= turns off step; value#¥ turns on step)

137

S18

x1ist (does not affect condensing or execution) specifies options for
printing a file; -*1ist- commands for printing special types of blocks
must precede those blocks in the program; source blocks and text
blocks are always printed unless specified otherwise

*1ist binary,BLOCK NAME,NUM WORDS, FORMAT (prints contents of
binary blocks; see page S2¢ for information on FORMAT)

*1ist charset (prints contents of all charsets in the lesson
with O for dots on and - for dots off)

*1ist charset, (DOTSBLANKS) (prints contents of charsets with
symbols specified for dots and blanks)

*1list commands , COMMAND1, COMMAND2, COMMAND3, «.. (up to 1¥ commands;
lists lines on print where specified commands appear)

*1list common ,COMMON NAME,NUM WORDS, FORMAT (prints contents of
common; see page S2@ for information on FORMAT)

*1ist deleted (prints deleted lines [with "mod words" option])

*1ist eject (causes page eject where command is located)
*1ist ignore (causes subsequent ~*list- commands to be ignored)
*1ist info (prints lesson information display)

*1ist label,YOUR LABEL INCLUDING SPACES (prints a label at
the location of the =*list~ command) ,

*list leslist (prints the contents of all leslists in the lesson)

*1ist - listing (prints the contents of listing blocks)

*list micro (prints the contents of all microtables in the lesson)

*1ist mods (prints "mod words'": first 5 characters of the name of
the last person to change each line and date of the change)

*1ist nosource (stops printing source blocks but not text blocks)

*1ist notext (stops printing text blocks but not source blocks)

*1ist off (stops printing blocks at the location of the command;
starts printing preceding =-*1ist- options and the unit
cross-reference table)

*1ist off ,BLOCKNAME1, BLOCKNAME2, BLOCKNAME 3-BLOCKNAME4
(specifies blocks that are not to be printed)

*1ist parts (prints only source blocks which are set to condense)

*list symbols (prints reference table of variables, defined
and primitive, used in the lesson)

*1ist text (prints only text of -write~ and —writec- commands)

*list title,YOUR TITLE (specifies subheading to be printed under
the lesson name on each subsequent page; causes page eject
when ~*1ist title~ is encountered)

*1ist vocab (prints contents of vocab blocks)

*1ist xref,on (turns on unit cross referencing [and symbol cross
referencing if requested] for all printed source blocks;
default case)

*1ist xref,all (same as ~*list xref,on~) \

*1ist xref,off (turns off cross referencing for all printed source
blocks)

*1igst xref,parts (turns on unit cross referencing [and symbol cross
referencing if requested] for all printed source blocks
which are set to condense)

*1ligt 1 space (prints blocks with single spacing; default case)

*lisgt 2 space (prints blocks with double spacing)

*list 3 space (prints blocks with triple spacing)

*1ist 4 gpace (prints blocks with quadruple spacing)

‘ - 138

S19

Instructions for printing datasets and namesets are specified in the directory
of the file. Page S2¢ has information on FORMAT.

datasets:

STARTING RECORD NUMBER,NUM RECORDS,FORMAT

STARTING RECORD, ,special

PAGE EJECTS ;STARTING RECORD, ,special

PAGE EJECTS ;special (prints entire dataset in special format with page
: ejects as specified)

special (prints entire dataset in special format)

STARTING RECORD, ,direct

PAGE EJECTS ;STARTING RECORD, ,direct

PAGE EJECTS ;jdirect (prints entire dataset in direct format with page

ejects as specified)
direct - (prints entire dataset in direct format)
INSTRUCTION1;INSTRUCTION2; etc. (way state several different instructions)

namesets:

NAMES ;STARTING RECORD NUMBER,NUM RECORDS, FORMAT

NAMES ;STARTING. RECORD, ,special

NAMES ;PAGE EJECTS ;STARTING RECORD, ,special

NAMES ;PAGE EJECTS ;special {prints all records of specified names in
special format with specified page ejects)
NAMES ;special , »
NAMES ;STARTING RECORD, ,direct

NAMES ;PAGE EJECTS ;STARTING RECORD, ,direct
NAMES ;PAGE EJECTS jdirect

NAMES jdirect »
INSTRUCTION1; INSTRUCTION2; etc. (may state several different instructions)

NOTE: PAGE EJECTS may be: pages and/or records (if both are given, the
entries must be separated by a semicolon, e.ge., pages;records).

With namesets, NAMES may be:

NAME1 (prints records only for NAMEl)

NAME1-NAME2 (prints records for names from NAMEl to NAME2)

NAME 1~ (prints records from NAMEl to the last name)

~NAME2 {(prints records from the first name to NAME2)

omitted {(prints records for all names in the nameset; preceding

semicolon must be included, e.g., jspecial or
$STARTING RECORD, ,direct)

s2¢

Note:

FORMAT for printing datasets, namesets, commons, and binary blocks:

integer or 1 (nc-variables; prints 1§ words per line)

exponential or e (vc-variables; prints 1@ words per line)

floating or £ (vc-variables; prints 1@ words per line)

octal or o (prints 5 words per line)

hexadecimal or h (prints 6 words per line)

alpha or a (prints 1@ words per line)

X (prints each word in o, e, i, and a formats;
prints 2 woxds per line) '

special @ or s (special format; specified number of words to be
printed is ignored but field must be present; »
details below) (not used with binary blocks) !

direct or d (like special format but carriage control is required)

(DESIGNED) (designed format; enclosed in parentheses; details below)

special format and direct format:

words are interpreted in alphaj;
words with all @ bits are ignored unless they are preceded by at least
one non-zero word on the same line;
a line (and a page) must always end with at least 12 zero bits (o@@@@)
up to 127 characters may be printed per line;
control characters for direct: " ", single space; "@'", double space;
"." triple space; "+'", overwrite; "1", page eject; '"2", bottom of page

the following print options are placed directly in the dataset,
nameset, or common; each requires two consecutive words:

*format eject (signals page eject at this location)

*format end (indicates the print of the file or of the name 1is
to end at this location)

*format pages (signals page eject after each printed page;
allows top and bottom margins)

*format records (signals page eject after each subsequent record)

*format blocks (signals page eject after each subsequent block)

designed format:

the format is for a line of print;
format must be enclosed in parentheses;
up to 135 characters may be printed per line

designed format may consist of:

(integer; nc-variables; prints 1@ characters per word)
(exponential; vc-variables; prints 1@ characters per word)
(floating point; vc-variables; prints 1§ characters per word)
(octal; prints 2@ characters per word)
(hexadecimal; prints 15 characters per word)
(alpha; prints 1@ characters per word)
X (space; preceding number indicates number of spaces)
1 (location of word; prints 4 or more characters)
p (skip to next word to be printed on the same line;
preceding number indicates how many words to go forward)
commas and spaces for readability
a4~
1"'1L

M IO FhD e

s21

System variables for sequencing

args

backout

baseu

clock

fromnum

key

lessnum

lieslst

ilesson

mainu

mallot

muse

number of arguments transferred at the previous execution of a unit
with arguments or -jumpout- with arguments

= -2 for a single-station backout
-1 for a general backout

@ for no backout (e.g. signoff via STOP1)
= +] after -station stopl-

name of the user’s current base unit (= @ if no base unit is
specified, indicating the user is not in a help-type sequence)

value of the system clock in seconds (to the nearest millisecond)
since the previous deadstart (see command -clock-)

leslist position of the lesson from which the user came via a jumpout
(= -1 if the lesson 1s not in the leslist or if no leslist is in use)

after a keyset input: contains the 7-bit keycode of the last keypress;
after a touch-panel input: contains a 9-bit number which gives the
location of the touch square (the binary form of this number is
lxxxxyyyy, where the 4 bits labeled "x" give the horizontal touch
location and the 4 bits labeled "y" give the vertical touch location--
coordinates for touch squares on the screen are: @,@ at lower left,
@,15 at upper left, 15,0 at lower right, 15,15 at upper right);

after an external input: contains a l@~bit number whcse left-most

2 bits are 1@, with the remaining 8 bits carrying information from

the external source

leslist position of the user’s current lesson (= -1 if the lesson
is not in the leslist or 1if no leslist is being used)

maximum number of lessons allowed in the leslist (= @ if no leslist
is in use)

condensed length of the lesson
name of the user’s current main unit
memory allotment for the logical site at which the user is working

total memory usage by users at the same logical site as the user

141

522

nhelpop number of times a help~type key is pressed for on~the~page help;
zeroed for each main unit and for each arrow in the unit

proctim processing time in the lesson (in seconds, to nearest millisecond)

ptime = =] 1if the current time 1is during prime-time hours
= @ otherwise

sitenam name of the user’s logical site >

station 1identification number assigned by the system to a terminal
physical site = gtation ars 5 = int(station/32)
site station # = station $mask$ 037 = 32 x frac(station/32)
station = 32 xphysical site + site station #

tactive number of currently active terminals

user user type: ‘'author', 'instructor', 'student', 'multiple',
'sabort' (if student records have been aborted), 'snockpt' (if
automatic checkpoint has been aborted)

usersin number of users in the lesson (routed users are counted as being in
the router as well as in the instructional lesson)

zaccnam name of the account which contains the user’s group

zcondok = -1 1f the lesson condenses without errors or warnings
= @ 1f the lesson has condense errors or warning messages

zfroml name of the lesson from which a jumpout was done
zfromu name of the unit from which a jumpout was done
zgroup name of the user‘s group

zid unique identification number for the user; information is in 3 fields
(counting from the left end of the word):
18 bits: system identifier
22 bits: group identifier
2@ bits: name identifier

142

zlesson

zpnfile

zpnotes

zretrnu

zreturn

zsnfile

zsnotes

zsysid

zsystem
zterm

ztouchx

ztouchy

23

name of user's current lesson

= =1 1if the user’s group has a personal notes file attached
= f otherwise (and for multiples and students without access to
personal notes)

= =1 1if the user has new, unread personzal notes
= @ otherwise

name of the unit to which -~jumpout return,return- will go

set by some commands according to the results of execution; set by:
TUTOR commands: -addlst-, -addname-, -addrecs-, =-attach-, -charset-,
-chartst-, -checkpt-, -commonx-, -comret-, =-datain-, -dataout-,
~delrecs-, -ext-, -in-, -getline-, -leslist-, -lessin-, -lineset-,
-lname-, ~micro-, -names-, -notes-, -parse-, ~press-, -readd-,
~readset-, -records-, -release~, -removl-, -rename-, -reserve-,
-getline-, -setname-, -site-, -station-, -xin-, -xmit-, =-xout-;
PTUTOR and related commands: -attach-, -charset~, ~-compute-, -datain-,
-dataout-, -loadu-, =-putd-, ~-runu-, -trap-, -pptdata-, -pptload-,
-pptout-, -pptrun-, ~ppttest-

= -1 if student user’s group has a student notes file attached
(TERM~comments sent to student notes file)

= @ otherwise (and for authors and instructors)
(TERM-comments sent to lesson notes file)

= +1 1if access to student notes and lesson notes is not allowed

= =1 1if the student has new, unread notes
= @ otherwise

6@-bit value which uniquely represents the user’s PLATO system; will
not change during lifetime of the system; not for display purposes

contains the name of the user’s PLATO system
contains the last term requested by the user

fine-grid x-location of the center of the touch box touched
(= -1 if last input was not a touch input)

fine-grid y-location of the center of the touch box touched
(= -1 if last input was not a touch input)

1435

S24

ztzone contains the three-letter abbreviation of the time zone of the
location of the central computer of the user’s PLATO system (e.g., CST)

zunit name of the user’s current unit

zusers number of users currently signed on

NOTE: The following system variables contain alphabetic information
(left~justified) and must be displayed with -showa-:
baseu, mainu, sitenam, user, zaccnam, zfroml, zfromu, zgroup, zlesson,
zretrnu, zsystem, zterm, ztzone, and zunit.

In addition to the system variables listed in this subsection, keynames of
function keys may be treated as system constants. These keynames are typed
in lower case (e.g., next, lab, term) and have the numerical values given in
the keycode table on page A5. The exception is the SQUARE key, which has the
keyname "microl". '

-y
[N
Ha

TERMINAL RESIDENT PROCESSING ' T1

This section presents commands and system variables available with the PLATO
Programmable Terminal (PPT) and the CDC Information Systems Terminal (IST).
Both types of terminals are referred to as "ppt". Details of assembly language
are offered in several manuals and are not included here. Features of the
TUTOR~-1like programming language (pTUTOR) and of central system TUTOR for
running assembly language programs are described.

The pTUTOR language is evolving rapidly, and users should check "aids'" for
current features.

Loading and running

ptutor (non-executable) (no tag) marks the beginning of a terminal resident
program written in uTUTOR; all subsequent commands are interpreted
as pTUTOR commands; must follow the TUTOR part of a program

unipf“" similar to the TUTOR -unit- but the contents of the pTUTOR unit are
. ‘executed inside the terminal and must fellow a -ptutor- command
form with arguments is not available

unit NAME (maximum of 8 characters in NAME)

' loadu loads units into the terminal’s memory so they can be executed with
~runu- or referenced by sequencing commands in pTUTOR; must be
placed in the TUTOR portion of a program

loadu NAME1l,NAME2,NAME3 (maximum of 2@ units can be loaded)

loadu »NAME1,NAME2,NAME3 (loads specified units without deleting
those already loaded)

loadu (B) (clears flags indicating units are loaded)

Note: =zreturn = =1 1if units are loaded successfully
= if the terminal is not programmable ’
if there is not enough memory in the terminal
if the units cannot be found
if STOP or STOPl is pressed during loading
if pTUTOR is not available
if there is a system error
if too many units are loaded

aanpLNO=S

funu causes execution of a unit which was previously loaded into the
memory of the terminal (with -loadu-); must be placed in the TUTOR
portion of a program

runu NAME

) : Note: zreturn = =1 1f the -runu- is executed successfully
= @ 1f the specified unit is not loaded

145

T2

haltu (no tag) terminates execution of the unit which is executing when
~haltu~ 18 executed; if no unit 1s running, -haltu~ is ignored; the
pTUTOR unit must contain a -pause- command in order to be halted;
~haltu— must be placed in the TUTOR portion of a program

T3

Calculating

3

define (non-executable) similar to TUTOR -define~ but primitives (n, v) are
not used; names of variables, constants, arrays, and functions are
listed, with the number of bits, if necessary; definitions are 16~bit
signed integer type unless type is specified as floating point or 8-bit
signed integer; all definitions following a specific type designation
follow that designation until a different designation is encountered

for example:

define NAME1,NAME2,NAME3
NAME4 (ARRAYSIZE)
i, 8:NAMES5,NAME6
FUNC (ARG 1,ARG2)=EXPR
f ,48:NAME7,NAMES (ARRAYSIZE)
1, 16:NAMEY
i, 8:NAME 1¢=NAME9, NAME1 1 sNAME9
NAME12=2(,NAME13=4.3

Note: Defined names may contain up to 7 characters and must start
with a letter. :
Up to 6 arguments are permitted in defined functions.
One~dimensional arrays are permitted.

calc gimilar to TUTOR =-calc- (available functions are listed on page T7)
calc VAR <« EXPR

calc VAR< "LETTER" (single character only; character code is
placed in the right-most 8 bits of VAR of integer type)

calcc similar to TUTOR -calcc~; the conditicnal expression must conform to
PTUTOR restrictions on calculations
calcc EXPR,VARl< EXPRM, VAR2<« EXPR@, VAR3<« EXPR1, ,VAR4< EXPR3

calcs similar to TUTOR =calcs—; the conditional expression must conform to
PTUTOR restrictions on calculations

cales EXPR, VAR« EXPRM, EXPR@, EXPR1,EXPR2, ,EXPR4

zero sets to zero a single variable or consecutive variables
zero VAR :
zero STARTING VAR,NUM VARS
zero (B) (sets all defined variables to @)

Note: In the 2-argument form, the number of bits zeroed is determined
by the type designation of STARTING VAR.

ERIC 147

T4

set

compute

randu

Setperm

randp

remove

restore

sete values of consecutive variables starting at the specified
variable, or sets values of consecutive array elements starting at
the specified element

set STARTING VAR< EXPR1,EXPR2,EXPR3,...

evaluates a character string containing a simple expression involving
constants and converts the string to a number

compute VAR FOR RESULT,STARTING VAR OF STRING,NUM CHARACTERS

Note: =zreturn if the string is converted successfully

if the string contains an invalid character
if there too many decimal points

if the expression is too complicated

if there is an unrecognized operator

if the expression has bad form

"1f there are unbalanced parentheses

=
=
=
=
=
=

N W

selects a random number, sampled with replacement, and places it in
the specified variable ’

randu VAR,MAXTMUM (selects integer from 1 to MAXIMUM;

@ < MAXIMUM g (215-1))

Note: If the number generated is larger than the specified variable
type can store, only the right-most bits are retained.

creates a permutation list of the specified length for sampling by
the -randp~ command (similar to the two-argument =-setperm- in TUTOR)

setperm LIST LENGTH,STARTING VAR OF LIST (first variable of the list

contains the number of integers remaining in the list; each
remaining variable contains one bit for each integer)

selects an integer from the list set up by -setperm~ and places it in
the specified variable; when the list is exhausted, the variable is
set to @

randp VAR FOR STORING VALUE,STARTING VAR OF PERMUTATION LIST

removes the specified value from the permutation list

remove INTEGER TO REMOVE,STARTING VAR OF PERMUTATION LIST

restores the specified value to the permutation list

restore INTEGER TO RESTORE,STARTING VAR OF PERMUTATION LIST

143

T5

block copies consecutive variables from one location to another (similar to
the TUTOR form of -block- except that there are no central memory
variables)

block FROM STARTING VAR,TO STARTING VAR,NUM VARS

Note: The number of 8-bit bytes copled is determined by the type
designation of the "from" variable.

find scans each variable in a 1list of consecutive variables for the first
occurrence of the specified object

find ARG1,ARG2,ARG3,ARG4

ARGl = variable containing the object bit pattern

ARG2 = starting variable of the list (variables in the list
must be the same type as the object)

ARG3 = number of variables in the list

ARG4 = variable for storing the location of the object
(¢ if found in first variable, 1 if found in second
variable, etc., -1 if the object is not found)

pack similar to TUTOR -pack- but packs each 6-bit character code into one
8-bit byte; string may contain embedded -show- and -showa-

pack STARTING VAR FOR STORING STRINGSVAR FOR STORING
CHARACTER COUNT (opt)$STRING

search searches a buffer for the first occurrence of the specified character
string (each character occupies an 8-bit byte)
search ARG1,ARG2,ARG3,ARG4,ARGS,ARG6

ARGl = starting variable containing the object string to be
searched for

ARG2 = number of 8-bit bytes in the object string

ARG3 = starting variable of the buffer to be searched

ARG4 = number of 8-bit bytes in the buffer to be searched
ARG5 = relative character position in the buffer at which to

start the search

ARG6 = variable for storing the relative location of the object
(@ if found in the first 8-bit byte, 1 if found in the
second 8-bit byte, etc., -1 if not found)

149

T6

searchf searches a buffer for the first occurrence of a character string in
a specific field within an object

searchf ARG1,ARG2,ARG3,ARG4,ARGS,ARG6,ARG7,ARGS

ARG1

ARG2
ARG3
ARG4
ARG5S
ARG6
ARG7

ARGS

variable which contains the first character of the
string to be found

number of 8-bit bytes in the string

starting variable of the buffer to be searched

number of entries in the buffer to be searched -

entry in the buffer at which to start searching

number of 8-bit bytes in each entry in the buffer
starting byte position within each entry for comparison
with the string

variable for storing the relative position of the object
(@ if found in the first entry, 1 if found in the second
entry, =1 if not found)

P
Y

T7

Operations, symbols, and functions used in calculations

addition +
subtraction -
multiplication X or *
division + or [/

exponentiation kk

parentheses and brackets (), [1, { }

assignment of a value to a variable <«

designation of an octal constant o}

° = degree sign; indicates a number is interpreted in degrees
7 =pl = 3.14159...

e = 2,71828...

bit operations: $mask$, Sunion$, $diff$, Sars$, Scls$
logical operations: <, >, & 2, =, #

abs (X) absolute value of X
“int (X) integer part of X
frac(X) fractional part of X
log (X) common logarithm of X (base 10)
s« alog(X) common antilogarithm of X (i.e., 1¢x)
In(X) natural logarithm of X (base e)
exp (X) eX
sin(X) sine of X, X in radians; use sin(X°) for X in degrees
cos (X) cosine of X, X in radians; use cos(X°) for X in degrees
comp (X) one’s complement of X (bit reversal) _
zvloc (X) absolute memory location in RAM of the variable X

zk (KEYNAME) returns keyset code for KEYNAME (e.g., zk(m), which has value 77;
KEYNAME must be specified; expression is not allowed; allowed
keynames are given in the appendix, in the keycode table for
programmable terminal)

Numbers are represented in "two’s complement' form; i.e., =X = comp(X)+l .
Since integers have at most 16 bits and the left-most bit is the sign bit, the
range of values for integers is -215 4o +(215 - 1), or -32768 to +32767 .
(The larger range for negative values results from two’s complement
representation.)

Floating point numbers contain 48 bits: 1 bit for the sign bit, 15 bits for

the exponent, and 32 bits for the coefficient. The range of values for

floating point numbers is 2~16383 ., 2+16383,

Numbers have up to 9 significant digits.

151

T8

File operations

attach establishes a connection between a PTUTOR lesson and a dataset which
is stored on a floppy disk which is connected to the terminal

attach NAME (variable tag must be an integer variable and must be
enclosed in parentheses)

= -] 1f'connectioh to the file is successful
= @ if the dataset is not found on the floppy disk
= 4] 1f there is a disk error

Not2: zreturn

datain transfers data from the dataset to the specified buffer

datain STARTING RECORD NUMBER,TO STARTING VAR,NUM RECORDS

dataout transfers data from the specified buffer to the dataset

dataout STARTING RECORD NUMBER,FROM STARTING VAR,NUM RECORDS

NOTE:. With -datain- and =dataout=:

zreturn = ~1 1f the transfer is successful
= @ 4if no dataset is attached
= 4] 1f there 1s a disk error

Each record of a pTUTOR dataset contains 128 8-bit bytes. With
~datain- and -dataout-, the receiving or sending buffer must
accommodate the records received or sent.

b
ot
)

T9

Judging

darrow (non-executzble) establishes a buffer (starting variable and length)
for all subsequent =-arrow- commands: if omitted, the buffer must be
specified with the -arrow- command

darrow STARTING VAR,NUM CHARACTERS ALLOWED

arrow places an arrow on the screen at the specified location and stores
characters in the specified buffer; indented commands which follow
. —arrow- are executed before processing stops to walt for student
input; non-indented commands which follow these indented commands but
which precede response-matching commands are executed each time a
judging key 1s pressed to initiate judging

arrow LOCATION;STARTING VAR,NUM CHARACTERS ALLOWED
(LOCATION may be COARSE or FINEX,FINEY)
arrow LOCATION (buffer establlshed by preceding -darrow-)

endarrow (no tag) must terminate response processing; if the response is
matched, indented commands following the matched response and indented
commands following -ifmatch~ are executed; if the "wrong' response is
matched or if the response is not matched, judgment is "no" and
processing stops until another response is entered; 1f judgment is
"ok'", response processing is complete and commands following =-endarrow-
are executed

long modifies the maximum number of characters allowed at an arrow set by
the —arrow- command or the ~darrow~ command; must follow -arrow-;
cleared at each -arrow-

long NUM CHARACTERS

force initiates judging when the number of characters entered reaches the
limit set by the most recent -long~ command executed; must appear as
an indented command following -arrow-; cleared at each —-arrow-
force long

jKey specifies keys (in addition to NEXT) which will initiate judging; must
follow —-arrow~; cleared at each —arrow-; if a non-function key is

specified, it appears as the last key in the response buffer

jkey KEY1,KEY2,KEY3 (e.g., jkey back,=,a)

T1¢

copy activates COPY key and specifies a buffer containing characters to be
written on the screen one word at a time when COPY is pressed; the
string is placed in the response buffer; must follow -arrow-;
cleared at each -arrow-

copy STARTING VAR,NUM CHARACTERS

putd replaces a character string in the response buffer with another
character string; the first character in the tag is interpreted as
the separator between strings; must follow -arrow~; cleared at each
-arrow-

putd /STRING1/STRING2/ (separator is /)
putd » STRING1,STRING2, (separator is ,)

Note: zreturn = -1 1f -putd- is executed successfully
= @ 1if the replacement string cautes the response to
be longer thsn the storage buffer

specs modifies standard judging procedures for all subsequent answer
processing at that arrow; cleared at each -arrow-; settings are
cumulative at an arrow; must follow —-arrow-; cleared at each ~arrow-~

specs nookno (prevents appearance of '"ok" and "no")
specs okcap (allows capitalized word in the response to match a
‘ non-capitalized word in the tag of a response-

matching command)

specs okextra (allows "extra" words in the response, i.e., words
not in the tag of the response-matching command)

specs okspell (allows any reasonable spelling of words in the
response)

specs punc (allows only punctuation specified in the response-
matching command; without -specs punc-, specified
punctuation must be present, but additional
punctuation may also be present)

specs (B) (clears previous settings at this arrow)

specs nookno,okcap,okspell (may combine tags)

NOTE: With the following response-matching commands (-keyword-, -answer-,
-wrong-, =-answerc-, =wyrongc-, —exact-—, -exactw~, =-ansv-, =wrongv-),
if the response matches the tag or the required argument, subsequent
indented commands are executed up to the next non-indented command.

keyword checks the response for words listed in the tag; if a word is matched,
the variable is set to the relative position of the matched word in
the tag and judgment is "ok" ("zjudged" set to -1); if no word is
matched, the variable is set to -1, judgment is not made, and judging
continues

keyword VAR§WORD@}[WORD] SYNONYM1]§wWORD2}$WORD4

)

ERIC | 154

T1l

answer compares the response with the ~answer~ tag; checks for spelling,
capitalization, extra words, and punctuation unless altered by -specs=-;
punctuation marks are treated as words; sets "zjudged" to -1 if the
response matches the tag

answer <EXTRA WORDS>[SYNONYMS SEPARATED BY SPACES] WORD2 WORD3
answer < a,STARTING VAR,NUM CHARACTERS) (maximum of 1@ words)

wrong similar to —-answer- but for an incorrect response; sets ''zjudged" to §
if the response matches the tag

wrong <EXTRA WORDS>[SYNONYMS SEPARATED BY SPACES] WORD2 WORD3
wrong qa, VAR,NUM CHARACTERS y (maximum of 1@ words)

answerc conditional form of -answer-; performs checks available with -answer-;
sets "zjudged" to -1 if the response matches the required argument

answerc EXPR@RESPONSEM‘RESPONSE¢3iRESPONSE2

wronge similar to —-answerc— but for an incorrect response; sets '"zjudged" to §
if the response matches the required argument

wronge EXPR§RESPONSEM}RESPONSE@JRESPONSEL}}RESPONSE3

exact compares the response with the tag for an exact character by character
match; sets "zjudged" to -1 if the response matches the tag

exact STRING

exactw similar to -exact=- but for an incorrect response; sets ''zjudged" to §
if the response matches the tag

exactw STRING

ansv checks a numerical response against the first argument in the tag,
with tolerance set by the optional second argument; sets
"zjudged'" to -1 if the response matches the tag within the tolerance;
tolerance may be stated as absolute deviation or percent deviation;
if tolerance is omitted, the response value must match the tag value

ansv VALUE, TOLERANCE (opt)
wrongv similar to -anév- but for an incorrect numerical response; sets
"zjudged" to @ if the response matches the tag within the tolerance

wrongv VALUE,TOLERANCE (opt)

Ut

5!

ERIC ' 1

T12

ok

no

or

ifmatch

larrow

1judge

judges a response "ok" and sets "zjudged" to -1 if the rounded value
of the tag 1s negative; if the judgment is ''ok", indented commands
following -ok- are executed

ok EXPR (blank tag is equivalent to negative value)

judges a response '"no" and sets "zjudged" to +1 if the rounded value
of the tag 18 negative; if the judgment is "no", indented commands
following —-no~ are executed

no EXPR (blank tag is equivalent to negative value)

(no tag) placed on the line between response-matching commands to
provide alternative responses for the same value of "zanscnt"; if any
tag of commands linked by =-or- is matched, indented command following
the last linked response-matching command are executed

(no tag) indented commands following —-ifmatch- are executed whenever
a response is matched, independent of judgment ("zjudged" equals -1,
@, or +1); only one ~ifmatch~ may occur for each -arrow-; -ifmatch-
must be the last non~indented command before -endarrow-

specifies the unit to be executed immediately after each subsequent
~arrow— in a main unit; equivalent to indented ~do- command after the
-arrow— command; cleared at each main unit; later occurrence in the
unit overrides an earlier setting in the unit

iarrow UNIT NAME
iarrow EXPR,UNITM,UNIT@,x,q,UNIT3 (example of conditional form)
izrrow q (clears previous setting in the unit)

specifies the unit to be executed each time the student presses a
judging key; equivalent to non-indented ~do- command after -arrow-—
following indented commands but preceding response-matching commards;
cleared at each main unit; later occurrence in the unit overrides an
earlier setting in the unit

ijudge UNIT NAME
ijudge EXPR,UNITM,UNIT@,q,UNIT2,x (example of conditional form)
1ijudge q (clears previous setting in the unit)

T13

judge alters the judgment rendered by judging commands

judge ok (sets judgment to "ok"; sets '"zjudged" to -1;
processes subsequent regular commands before
braaching to -ifmatch~ [or -endarrow-])

judge no (sets judgment to '"mo" [unanticipated]; sets
"zjudged" to +1; processes subsequent regular
commands before branching to -ifmatch- [or
~endarrow-])

judge wrong (sets judgment to "mo" [anticipated]; sets
"zjudged" to #; processes subsequent regular commands
before branching to ~ifmatch- [or —-endarrow-])

judge okquit (sets judgment to "ok'; sets '"zjudged" to -1;
does not process subsequent regular commands;
branches to ~ifmatch~ [or -endarrow-])

judge noquit (sets judgment to '"no"; sets '"zjudged" to +1;
does not process subsequent regular commands;
branches to ~ifmatch- [or -~endarrow-~])

judge quit (does not alter judgment or "zjudged'; does not
process subsequent regular commands; branches to
-ifmatch- [or ~endarrow-]; allows the student to
leave the arrow even if judgment is not 'ok")

judge continue (sets "zjudged" to 2; processes indented commands
and then resumes processing non~indented judging
commands)

judge exdent (sets "zjudged" to 2; does not process subsequent
indented commands; processes non-~indented judging
commands)

judge exit (returns to the arrow to wait for additional input)

judge ignore (stops processing, erases response, and returns to
the arrow to wait for additional input)

judge X (leaves judgment unchanged; used in conditional

' form)
judge EXPR,no,ok,x,wrong (example of conditional form)

157

Tl4

getmark used after judging a response to give markup information on
individual words in the response

getmark ARGl,ARG2

ARGI =

ARG2 =

relative position of the word in the response
(first word is 1, second word, 2, etc.)
variable containing markup information
~2 1f the response 1s perfect or if no markup is done
with the response~matching command used
~1 1if the position of the word is out of bounds
(L.e., if ARGIl>"zwcount")
@ 1if there are no errors in the word
@ bits in ARG2 are set according to the error(s),
starting at the right-most bit (subscript "2"
indicates the number is in binary notation):
(13) a word preceding this word is missing
(187) the word is out of order (too far right)
(1¢87) there is a capitalization error
(1 90@,) the spelling is incorrect
(19 @99,) [bit not currently set]
(149 ¢@@,) the word is an extra word
(1 ¢pg ¢6¢2) this word is the last word, and a
word which should follow is missing

~getloc gives the screen position of the beginning (and end, if requested) of
the specified word in the response

getloc ARGL,ARG2,ARG3,ARG4 (opt),ARG5 (opt)

ARGI =

ARG2 =

ARG3 =

ARG4

ARG5

relative position of the word in the response

(first word is 1, second word, 2, etc.)

variable for storing the finex screen position of
the beginning of the word (= -1 if ARGl > "wcount")
variable for storing the finey screen position of
the beginning of the word

variable for storing the finex screen position of
the end of the word (optional)

variable for storing the finey screen position of
the end of the word (optional)

T15

Presenting

write displays text, including embedded information

write MESSAGE, INCLUDING EMBEDDED INFORMATION

writec displays one of several messages, depending on the value of the
conditional expression; the conditional expression must conform to
restrictions on calculations

writec EXPRYMESSAGEMMESSAGEGIMESSAGEL}IMESSAGES

NOTE: The following embed features are available. See descriptions of the
individusal commands for definitions of the arguments.

q{show,EXPRy» or <s,EXPRp

4 showt ,EXPR,LEFT,RIGHT» or < t,EXPR,LEFT,RIGHT»

4 showb, EXPR,NUM BITS) or <b,EXPR,NUM BITS)»

q showo, EXPR,NUM PLACES» or <o,EXPR,NUM PLACES)»

q showh, EXPR,NUM PLACES)» or <h,EXPR,NUM PLACES)»

4 showa, STARTING VAR,COUNT» or <a,STARTING VAR,COUNT)»
4qat,COARSEY ; <« at,FINEX,FINEY) :

< atnm,COARSE Y ; < atnm,FINEX,FINEY)

show displays the value of an integer variable or expression

show EXPR

showt displays the value of a variable or an expression in the specified
format

showt EXPR,PLACES LEFT OF DECIMAL,PLACES RIGHT OF DECIMAL
(format, if omitted, is 4,3; if third argument is omitted,
no places are shown to the right of the decimal)

showb displays the value of an integer variable or expression in binary
notation; displays the specified number of bits, counting from the
right end of the value

showb EXPR,NUM BITS

showo displays the value of an integer variable or expression in octal
notaticn; displays the specified number of places, counting from the
right end of the value :

showo EXPR,NUM PLACES

T16

showh

showa

erase

mode

gsize

rotate

text

displays the value of an integer variable or expression in hexadecimal
notation; displays the specified number of places, counting from the
right end of the value

showh EXPR,NUM PLACES

displays characters in the specified integer variable(s), reading from

the left end of the buffer; each character is in an 8-~bit byte

showa STARTING VAR,NUM CHARACTERS

erases the screen, selectively or entirely
erase (B) (causes full-gcreen erase)

erase NUM CHARACTERS TO ERASE
erase NUM CHARACTERS PER LINE,NUM LINES

specifies terminal writing mode

mode write (normal writing state; writes selected dots)
mode erase (erases selected dots)

mode rewrite (erases and rewrites in one step)

mode inverse (displays dark characters on light background)
moée EXPR,erase,write,x,inverse (example of conditional form;

argument X leaves writing mode unchanged)

specifies size bold-face or normal writing or sets size for -rdraw-~

size SIZE (affects =-rdraw~ only)
size bold (specified bold~face writing)
size (8) (specifies normal writing; default condition)

specifjes vertical or normal writing or ssts angle for ~rdraw-
rotate ANGLE IN DEGREES (affects ~rdraw- only)

rotate vertical (writing plots from bottom to top of screen)
rotate (B) (writing plots from left to right; default condition)

displays contents of an alphanumeric buffer line by 1line; the end of
a line must be indicated by an 8-bit byte equal to @#; not atfected by
-gize- or -rotate-

text STARTING VAR,NUM 8-BIT BYTES

-—1€Lj

textn

T17

similar to -text~ except lines of text are numbered to the left of
each line; not affected by ~size~ or =-rotate-

textn ARG1,ARG2,ARG3,ARG4,ARG5,ARGE

ARGl = starting variable of the buffer

ARG2 = number of 8-bit bytes

ARG3 = variable for storing the position of the next character
to be plotted (1 + position of last character displayed)

ARG4 = number of the first line displayed (if equal to @, no
text is displayed) '
ARG5 = number of the last line displayed (maximum is 31)

ARG6 = maximum number of characters per line

charlim (non-executable) specifies the highest character number into which

charset

char

getchar

alternate font characters may be loaded by -char~ or —charset-; if
omitted, 128 slots are set aside in memory for storing characters

charlim NUMBER (values from § to 127)

loads a character set into the terminal’s memory from the floppy disk
connected to the terminal

charset LESSON NAME,BLOCK NAME (variable arguments must be enclosed
in parentheses)

~1 1if the charset is loaded successfully
§ 1if the charset is not found on the floppy disk
4+l if an error occurs in reading the floppy disk

Note: zreturn

L]

permits specification of specially designed characters for display

char NAME,ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARG8
char NAME,STARTING VAR

Note: 1In the 9-argument form, ARGl through ARG8 specify which of the
16 dots are lit in each of the 8 columns of the character. In
the 2-argument form, STARTING VAR is the first of & consecutive
16~bit variables, each specifying the dots in each of the
8 columns, as in the 9-argument form.

NAME may be a character number or a defined name.

copies the depiction of the specified character into the specified
buffer (8 consecutive 16-bit integer variables or 16 consecutive 8-bit
integer variables); one column of the character is in each 16 bits
getchar NAME,STARTING VAR

Note: NAME may be a character number or a defined nace.

161

T18

inhibit disables certain acti-s of PIUTIOR in a unit; settings are cleared
at each main unit anc Jefault settings are restored; effect within a
unit is cumulative, i.e., later occurrence of -inhibit- is added to
the effect of an earlier occurrence

inhibit arrow (prevents plotting of the response arrow)

inhibit blanks (prevents judging if a judging key is pressed before
a response 1is entered; default setting)

inhibit erase (prevents normal full-screen erase when proceeding to
a new main unit)

inhibit keys (prevents any keypress from breaking through -pause-)
inhibit plato (prevents processing of output from the central system)
inhibit (B) (establishes the default settings in this main unit;

equivalent to: -allow arrow,erase,keys,plato- and
-inhibit blanks-)

allow permits actions which have been inhibited in the unit by =inhibit-;
effect within a unit is cumulative, i.e., later occurrence of -allow-
is added to the effect of an earlier occurrence

allow arrow (allows the response arrow to be plotted)

allow ©blanks (allows null input at a response arrow; default is
~inhibit blanks-)

allow erase (allows a full-screen erase at a new main unit)

allow keys (allows input from the keyset to break through -pause-)
allow plato (allows processing of output from the central system)
allow (B) (establishes settings opposite to default settings;

equivalent to: -inhibit arrow,erase,keys,plato- and
-allow blanks-)

xout sends data (in 8-bi% bytes) contained in the specified variables to
an external device; data is read starting with the left-most byte
Xxout DEVICE ADDRESS,STARTING VAR,NUM 8-BIT BYTES TO SEND

Xin collects data (in 8-bit bytes) from an external device and stores it
in the specified variables; data is stored starting at the left-most
8-bit byte
xin DEVICE ADDRESS,STARTING VAR,NUM 8-BIT BYTES TO STGRE

NOTE: See descriptions in "aids" of TUTOR versions of ~xout~ and =-xin- for
current information on device addresses.

T19

intrupt specifies a unit to execute (via -do~) when an interrupt is received

trap

NOTE:

from an external device

intrupt UNIT NAME
intrupt EXPR,NAMEM,NAME®¥,x,NAME2,q (example of conditional form)

traps output from the central system in the specified buffer; executes
the trapped output; traps status of the terminal

trap save ;STARTING VAR,NUM 8-BIT BYTES (traps output)

trap play;STARTING VAR,NUM 8-BIT BYTES (executes trapped output)

trap status ;STARTING VAR,NUM 8-BIT BYTES (saves terminal status
seen by the central system; saves 27 bytes)

trap terminal; STARTING VAR,NUM 8-BIT BYTES (saves terminal status
seen by the pTUTOR executor; saves 27 bytes)

trap save,play;STARTING VAR,NUM 8-BIT BYTES
(saves and executes trapped output)

Note: zreturn = number of 8-bit bytes trapped in the buffer

The following commands have identicél forms to their TUTOR counterparts:
-at-, -atnm-, =-circle~-, -draw-, -dot-, -box-, -plot-, -fill-, =-vector-,
~enable-, ~disable-, ~play-, =-record-, =-slide~, =~beep-;

graphing commands: -gorigin-~-, ~axes-, =~-bounds~, -scalex-, =-scaley-,
-labelx, -labely~-, ~-markx-, -marky-, -gdot-, -gdraw-, =-gbox-, -gat-,
~gatnm-, -vbar-, -~hbar-, -gvector-.

With graphing commands these restrictions hold: -labelx- and -~labely-
require an explicit format for the labels in the format for =-showt-.
There are no default values for: =-gorigin-, -axes-, -bounds-, =-scalex-,
and ~scaley~. These parameters must be set explicitly.

relative commands: -rorigin-, -rat-, -ratnm-, ~rdot-, -rdraw-.

165

Exchanging information with the central system

xmit permits exchange of data between the terminal and the central system;
when ~xmit~- is in the TUTOR part of a program, data is sent to the
terminal for use in & puTUTOR pregram; when -xmit- is in the pTUTOR
part of a program, data is se~t to the central system for processing
in a TUTIOR program

PTUTOR form (sends an 8~bit value to the'central system, where it
is processed as an external key, i.e., a key from an
external device |to pick up data from a single —-xmit-,
-pause keys=ext~ and processing of "key" must follow the
-runu—- command; to pick up data from any number of -xmit-
commands, =—enable ext- and =-collect- must follow -runu-])

xmit EXPR

TUTOR form (data is in the form of horizontal segments; byte size of
data £ 163 number of 8-bit bytes received is in "zdata";

the data is plicked up by the puTUTOR program by the
~receive- command)

xmit STARTING VAR,NUM SEGMENTS,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 6@; if SEGMENT SIZE > 16,
only the right-most 16 bits are sent)

Note: After the TUTOR -xmit-,
~1 1if the data 1s transmitted successfully

= @ if no pTUTOR program is loaded
= 4] 1f the STOP key 13 pressed during transmission

zZreturn

receive collects data that is sent to the terminal from the cehtral system
(by -xmit-)

receive STARTING VAR,NUM 8-BIT BYTES
Note: If the byte size for data transmitted from the central system

is > 8, the byte size for the receiving buffer muszc be 16.

sendkey (no tag) sends the current keyset key to the central system

Routing

lesson

score

sets the system variable "zldome" to indicate. whether a lesson is
considered complete

lesson complete (sets "zldone" to -1)
lesson incomplete (sets "zldoune" to @) .
lesson no end (sets "zldone" to +1)

lesson EXPR,complete,incomplete,x,no end (example of conditional
form; argument x leaves ''zldone" unchanged)

places the value of the tag, rounded to the nearest integer, into the
system variable "zscore"

score EXPR (value from @ to 10¢)
score (B) (sets "zscore" to ~1)

165

T22

Sequenciﬁ

Jumpn

jumpout

press

getkey

clrkey

NOTE:

g
jumps to the specified unit but does not do any initializationms,
such as screen erasej clears the -do- stack
jumpn UNIT NAME "
causes immediate execution of the specified lesson on the floppy disk
connected to the terminal
jumpout LESSON NAME (variable tag must be an integer variable and
must be enclosed in parentheses)
jumpout (B) (returns to the router lesson on the floppy disk)
puts the specified key into the student input buffer
press (zk (LETTER))
press FUNCTION KEY (use lower case, e.g., -press next-)
press (EXPR)
(no tag) reads the next key from the key buffer and sets "zkey" to
the value of the next key (sets '"zkey" to =1 if the buffer is empty)
(no tag) clears the key buffer
The following commands have identical forms to their TUTOR counterparts:

~branch~, -if~, -elseif-, ~else-, -endif~, -loop-, -reloop-, =-outloop-,
~endloop-, -cstart-, -cstop-, -cstop*—~, -use-, -keytype~, =-keylist-,
-pause-.

The follewing commands have identical forms to their TUTOR counterparts
with restrictions as noted:

-next-, -nextl-, -back-, ~backl-, -help-, -helpl-, -data-, =-datal-,
-lab-, -labl-, =-stop-, -imain-, -goto-, =-do-, -jump-, -base-, ~doto-.

Argumented uaits are not availlable.

Conditional expressions must conform to restrictions on calculations.
There 1is no iterativ= -do-.

Tag "q" must be used to inactivate a key; blank tag is not available.
Explicit -next~ command is required to proceed. (Automatic sequencing
is not available.) ‘

There is no -end~ command; a help-typec sequence ends with a unit with
no -pnext- command.

Only the blank-tag form of -base- is available.

With -doto- all index values must be integers.

186

T23

s~
Running assembler programs

All commands in this subsection must be executed in a TUTOR program.

pptaddr establishes a base address or location in the read/write memory of
’ the terminal for subsequent loading, testing, running, and clearing
oi a program or for loading of data

pptaddr ADDRESS
sptaddr ADDRESS FOR LOADING,ADDRESS FOR RELOCATING
pptaddr (B) (sets base address to default, which is "ztbase"+2(48)

pptload loads and relocat:s, 1f required, the program in the specified
binary block at the location specified by the previous -pptaddr-;
if LESSON NAME is omitted, the current lesson 1s assumed

pptload LESSON NAME (opt),BLOCK NAME
pptload (B) = (clears all flags indicating that programs are loaded
into the terminal’s memory)

AU WNhEs

if program 1s loaded successfully

if the binary block is not found

if the STOP key is pressed during loading
if the terminal is not programmable

if the binary has a bad length

if there are too many programs in memory

if there is an error in the binary format
if there is a system disk error

Note: zreturn

o uu u i

ppttest sets "zreturn" to test whether the specified binary block is loaded
in the terminal’s memory at the address specified by a previous
-pptaddr-; if LESSON NAME is omitted, the current lesson 1s assumed

ppttest 'LESSON NAME (opt),BLOCK NAME

Note: =zreturn = ~1 1if the binary is loaded at the previously
specified address
= @ 1if the binary is not loaded at that address

pptclr clears the flag indicating that the specifiad binary block is loaded
in the terminal’s memory at the address specified by a previous
-pptaddr-, or clears flags for all binaries; if LESSON NAME is omitted,
the current lesson 1s assumed

pptclr LESSON NAME (opt),BLOCK NAME
pptelr (B) (clears all flags)

‘ 187

T24

pptdata

pptout

pptrun

loads data from student variables or central memory variables into
the terminal’s memory, starting at the address specified by a
previous -pptaddr-

pptdata STARTING VAR,NUM SEGMENTS,SEGMENT SIZE (opt)
(SEGMENT SIZE, if omitted, is 6@; if SEGMENT SIZE > 8,
only the right-most 8 bits are sent)

Note: zreturn = -1 1f data is sent successfully
= @ 1if the STOR key is pressed during transmission
= +1 1f the terminal is not programmable

sends data words and control words stored in student variables or
central memory variables to the terminal; each "package" of data
consists of a 19-bit word which specifies a terminal function;
(LDE, or load echo, is not permitted))

pptout STARTING VAR,NUM VARS (opt) (NUM VARS, if omitted, is 1)

Note: zreturn = ~1 1if data 18 sent successfully
= @ 1f the terminal is not programmable

Note: TFor a complete description of the data words and control words,
see "The PLATO V Terminal" by Jack Stifle.

causes execution of the program residing at the address specified by
a previous -pptaddr-, or specifies the entry to be executed in a
Jump table at the beginning of the program residing at the address
specified by a previous ~pptaddr- and sends an 18~bit data word, if
requested :

pptrun (B) (executes the program at the previously declared address)
pptrun JUMP TABLE ENTRY,DATAWORD (opt) (executes an instruction
in a jump table; DATAWORD, if omitted, is @)

Note: zreturn = =1 1if ~pptrun- is successful
§ 1if the terminal is not programmable

b
op;
Co

T25

| System varizbles for terminal resident processing

NOTE: System variables which appear only in a TUTIOR program are indicated.

zanscnt number of response-matching commands enicountered st an arrow
before the response is matched; = ~1 if no tag is matched

t

zcomm provides a counter for timing interrupts; incremented each time an
interrupt is received

zdata number of 8-bit bytes of data sent from the central system by -~xmit-
. zentire = -1 if all required words are present in the response, = @ otherwise
zextra = =1 if there are no extra words in the response, = @ otherwise

zjcount number of charact=rs entered at a ﬁTUTOR -arrow-

' zjudged = -1 for any "ok" judgment
= @ for any "wrong" judgment (anticipated "no")
= 1 for any "no" judgment (unanticipated "no")
= 2 for.a response which is not matched
zkey contains the keycode of the last input (updated after -arrow-, '

~-pause-, ~getkey-, and at the beginning of a main unit)

zldone = -1 if the user has encountered -lesson complete-
= @ if the user has encountered -lesson incomplete-
= +] 1f the user has encountered -lesson no end-

zntries number of attempts at the current arrow
zorder = =1 {if the word order is correct, = @ otherwise

zreturn set by some commands according to the results of execution; set by:
~-attach-, -charset-, -compute-, ~-datain-, -dataout-, -loadu-, =-putd-,
-loadu-, -trap-, -pptdata-, -pptload-, -pptout-, -pptrun-, -ppttest-

1869

T26

zrouten

zscore
zspell

ztbase

Ztmem

ztmemr

ztprog

-ztrap

zttype

zwcount

indicates entry conditions to the rcuter lesson:

= @ if this is the first entry to the router lesson

= | 1f this entry to the router is via ~jumpout-

= 2 1f the router is returned to when the end of the instructiocaul
lesson is reached

= 3 1f the router is re.arned to when the instructional lesson is
terminated by STOPl keypress

= 4 1if the router is returned to when an execution error occurs
in the instructional lesson

rounded value of the tag of pTUTOR =-gcore~ (value from @ to 1@)
= -1 1f spelling is correct, = @ otherwise

(TUTOR) address of the first available read/write memory byte in
the user’s terminal

(TUTOR) number of 8~bit bytes of memory for the user’s terminal

(TUTOR) number of available 8~bit bytes in the terminal’s memory
after a ~loadu- command

(TUTOR) = -2 1if the user’s terminal is programmable and pTUTOR is
available

= ~] 1if user’s terminal is programmable and mTUTOR is not available
§ 1if user’s terminal is not programmable

number of bytes of output pending from the central systemj each
terminal word is 3 bytes, so "ztrap" is a multiple of 3

gives information on the user’s terminal; counting from the left end
of the 8-~bit word:
1 bit: always @
3 bits: memory configuration (see "aids" for details)
4 bits: terminal type
=@ if the terminal is a PLATO IV
=] 4if the terminal is a PDP
= 2 through 7 1if the terminal is an IST (5 for IST2)
= 8 through 1§ if the terminal is a PPT
(these values are subject to change)

Note: The TUTOR version of "zttype" contains only the information
on terminal type.,
number of words in the response (maximum of 50)

Wr*‘
{v

T27

zwherex fine-grid x location for the next display in pTUTOR processing

zwherey fine-grid y location for the next display in uTUTOR processing

171

Additional notes on TERMINAL RESIDENT PROCESSING

e

¢ K

area

args
argumented unit

arheada
box
gbox
rbox
bﬁmp

calcc
calcs

charlin
common
comload

compute

conditional form
of commands which

reference unit

APPENDIX Al

Limits associated with commands (for TUTOR version unless specified otherwise)

1@ characters in name of area
1§ arguments

five 6~bit characters
95 dots thick

8 characters
61 calculations

value of tag from § to 127

80¢@ variables (>150@ variables requires ~comload-)
1508 variables

10@ characters in character string

18@ unit names (line containing 1@lst name is flagged
as a condense error)

names, €.ge., =~next-,

~help~, etc.
cpulim

gdefine

delay
deletes

b
gzin_f combined

draw
gdraw
rdraw

edit

value of tag from 1 to 16

7 éharacters in name of define set
7 characters in name of variable

1509 definitions (fewer if definitions are complicated)

50¢ definitions in define set "student"
6 arguments in defined function

"1¢ units (e.g., kg, m, sec, liter, etce)
255 elenents in an array

5 active define sets

1 second maximum

value of increment from 1 to S5@4
1@ levels
63 arguments

maximum of 3@@ characters in buffer

173

A2

endings 19 separate ~endings- co;mands, 8 endings in each tag
gizgza value of increment from 1l to 59¢

graph 9 characters in string to be plotted

group 8 characters in sign~on group name

2:::' 9 characters in string to be plotted

inserts ‘(Increment between entries)X(number of entries to add) < 5¢0
keylist from 2 to 7 characters in the name

keytype 1#8 keys in tag (keylists count as one key)

labelx |

labely

marky 1#¢ marks maximum plotted on an axis

marky

list 7 characters in name of list

loada- 30@ characters v

loadu 2@ units ‘

long : 3¢@ characters (>15@ requires ~edit~ for active EDIT key)
lvars - 128 local variables | .
move : 5@¢@@ characters mey be moved

name 18 characters 1n-sign—on name

gﬁxgzg 9 characters in word

outpu 1 1§ characters in label, 2@ consecutive variables
‘pack 5p@ characters in character string (with embeds)
packc 193¢ character strings

ﬁause .75 second minimum

press 1 keypress per second

put 5@ characters in strings; expansion due to string
gzzg replacement limited to 3@@ characters

™ 4
T

A3

randu integer from 1l to 246 (TUTOR)
' integer from 1l to (215 - 1) (pTUTOR)
return 1§ argumen.s
routvar 64 variables
score 'Qalue of tag from @ to 10@ (TUTOR and puTUTOR)
set up to 61 separate values
setdat value for "atime" less than elapsed time for the session

values for "eaarrows", "ahelp", etc. less than 512

setperm (one—-argument) integer from @ to 12§
(two-argument) integer from @ to 3@@p

sort value of increment from 1 to 209
sorta ,
_ storage 8P@#@ variables
term
8 characters in string, 299 terms in a lesson
termop
' time » 7% second minimum
timel +75 second minimum
timer 60 seconds minimum
transfr length is the smaller of:
size of common or storage (reference to ECS) or
. length of -comload- or -stoload- {reference to CM) or
15@ (reference to student variables) or
tag of ~routvar~ (refercnce to router variables)
unit 8 characters in name
unitop 5@¢ condensed words in a unit
entry 394 distinct condensed units in a lesson
vocab 7 characters in name of vocabulary
vocabs e,
*1ist commands 1§ commands

175

7Y

GUIDE

[)
Upper Access,

Standard PLATO Keyset (G U

Case

MICRO + plots period +:7 spaces
MICRO Q writes to left from current position Access,

MICRO R writes to right from current position Low
'
MICRO CR writes to left in elternate font from Cose ng;;
right edge of screen - J

HICRO T writes in boldface (thick) font (on ppt)
HICRO § writes in standard font (on ppt)

HEENERE0NDEERE
FORDDNDODGENRE

CoPY

SREEE AR

BEDERREEEN00EHR

BACKSPACE HALF-BACKSPACE
SPACE HALF SPACE

Y

w2y kaycode

a 1 = oft
b 2 = o@g2
< 3 = o83
<l 4 = of4
=] S = o@35
f 6 = ofgb
Z -7 = 087
h 3 = o1¥
1 7 = o1t
j 14 = »12
K 11 = ol13
1 12 = ol4
m 13 = olS
n 14 = ol15
"D 15 = o017
o) L6 = o2
g 17 = 021
- 18 = o22
3 19 = <23
t 29 = o024
83 21 = 025
K4 22 = 02h
W 23 = 227
P 24 = o328
W 25 = 031
= 26 = o032
9 27 = 033
1 23 = 034
z 29 = 435
3 39 = 0365
4 31 = o37
5 32 = 048
> 33 = o4t
7 34 = 042
2 3% = 043
9 36 = o044
+ 37 = o045
- 33 = =46
* 39 = 047
s 449 = <583
(41 = 51
1 42 = 052
2 43 = 053
44 = 054
space 45 = o562

3

ERIC

Aruitoxt provided by Eic:

key

° —d
& —

o

&~ =

3ub
3uper
shi ft¢
car ret

<

>
bkspace
font
access

MNM<XETCAWVMDBDO TOZINMNKRGAGHTO MO0 DD

KEYCODES®

keycoda

46

47 -
43

44
5@
51
52
53
S+
5%
56
57
58
52
5y
61
62
53
85
66
B7
63
52

71
72
73
74
75
76
77
3
79
38
31
82
83
84
85
35
a7
38
32
29

"key" cormtains the keycode

0 ouw a2 8
9 0 O 0
s - LY}

~ O

]
O
O
W) e

.L‘-;‘

u u
(V]
Ty O
EN

[
o 0 ¢
[= {3'w SR 0}
~ . W

u o
o ¢
~1 ~4
- Q

=]~ o~

]
o 0O
bR I ST T S S (N

" u
o 0 0 ¢
e I I |

[

OO0 0 O J
—_ e e
W o w1

& =) O

[}
O
£ e~

ke keyeoda
- 97 = o141
! 93 = o142
= 191 = o143
& 132 = ol46 -
? 134 = <159
! 119 = o156
! 111 = o157
Ll 112 = 2185
“ 116 = o184
lockauk 113 = ol6n
locksup 119 = o147
: 127 = ¢177
FUMKE™ 123 = o298
MEST 128 = <92
MEXT1 131 = 2283
cFrR3E 22 = o4
ERASEL 133 = o2®s
HELP 134 = 02106
HELP1 135 = o287
BACK 136 = 0219
BACK1 137 = o2t
LAB 133 = 0212
LARBI 139 = 0213
DATA 1490 = o214
DATA! 141 = 0215
TERM 142 = 0216
ANS 143 = 0217
COPY 144 = 0220
CCPRY1 145 = 0Z221
EDIT 145 = ¢222
EDIT! 147 = o223
MICRO 143 = 0224
SUUARRE 149 = o22%
STOP 159 = 226
STORP1 131 = 0227
TFB 182 = o238
TIMEUP 155 = o233
CATCAHUP 157 = o235
touch- 256 = o488
panel ! l
inputs Sl = o777
aexterral 512 = 01353
inputs i i
TR? .= 21377

A6

INTERNAL CORES

unshi fted shi fted access access-shiftad
ctar code char code char code char code
a odl A 07991 % 07691 - o7679F1
b od2 B o78%2 B o7682
e og3 C o7993 . o7683 () o©7679983
< o4 D o7994 3 o7694 -+ c7679894
a og5 E 07995 ‘ 07695
£ og6 F 07996 22 a6 TEFS
z @7] c7897
h o1y H o7y
i o111 I o7911 : | 0767911
j n12 J o7g12
k o173 K o7?813
1 <14 L o7814 A o7614
m S15 M 07915 B 07615
n olh N o7F18 ~ o7h1h
c o117 0O 07817 o 075617 o o787@17
o o8 P oig2g T <7629
q o2l 6] 7821 ' 7621
™ 022 F o7g22 o) o7H22
s 023 5 o7@23 T 07623
t cZ4 T 07924 =] O7624
u o235 J o7@2% " 07625
v 026 W o7926 ‘ 076248
uw ¢e7 W o7g27 W o7H27 t o767Q27
w <39 ® 07835 * 27234 + oTRTH3
W <3t Y 07831
z o32 Z o7832
g 033 | left64? 07933 { ©o7433
! 34 lef+? 07534 > o76i4
2 3¢
2 36
4 o37
5 o4 | right? o7g4g ® o7548
B 241 _ o741 > 57641
7 o542 ' oTH42
3 043 bold? 07543
9 o044 | unbold? o744
+ o045 z o7@45 & 075645
=45 & 07846
. * 047
/ oSy ? o7PS 3 Ay oTnREY
{ <51
) 252 = 27652 K
£ “33 * STHRII
= <54 = o7ARE4
scace <S58 Fepace o7HSS

Pt

INTERMAL CODES (cont.d

unshi fted 2 fted acosss access-shifted
<har code shar code char e shar it
s 256 ! o7858] oOTHEA
. o5 ! o7957
+ obg " Y2013
{ 261 { oThRB1
] 0B) o7Bel
% “h3
" op v o795 4 2 o7hA4 X N757HE4
& 65 cr #3171 w7865
=ub a6d | loecksub 27986 Anlin® 57856 | ldniin® o757g6s
zuper of7 | locksup o7H57 uplin® o76a7 | luplin® 76
=hi ft o)
car ret? o7t | ldnlin? 27871 | ertit? o767t
< 72 3 S7R7T2
> o735 = CTHTI
kkspace o7+ .Sbksp o7574
font ot s
ACCIDS o7 h
; o7 7 : o7877 ~ oTa?7?
*NOTE :
lefts4; write to left, starting at character position 54
lecft: write to laff, starting at "where” positicn
right: write fto right, starting at "where" pesition
beld: write in bold characters (pet onlw)
unkbold: write in standard characters fgopt onlw)
cr #1: zarriage return to next line, character position |
dnlin: write rext characher dowrt cne line down 16 dots)
lardin: =ame as <dnlin except locking
uplin: write next character up one line (up 15 dots)

luplin: =ame as uplin except leocking
car ret: standard carriage return to rext line, left margin
18t carriage return to scraen position 141

Thae fallowing characters, although produced with the shift
key, do not produce a shift code in the intermal code:

«, (), & [,1, % <, >, car ret, backspace, and {font,
In this takble these characters ars in the "unshiftad”’
catsgory,

ERIC

s :lég{}

A8

ALTERNATE FONT TERMIMAL MEMORY LOCHTIONS

(key associated with terminal memory location)

lec ke loc key loc key lec key los kew
g space 27 5 54 (k] 31 Q 143 J
1 a 25 1 55 (1) 32 = 133 (K
2 ko 29 2 56 (m) 53 = 115 iF)
3 I <jo) 3 57 (n) 34 T 111 (i5)
4 4 B 4 53 (o) 55 Ll 112 "
S = 32 5 59 5 56 W 113 (H)
5 £ 33) B 5 " 37 I tt4 (I
7 Z 34 7 51 . 35 115 (1)
3 h 35 3 B2 . 5 1146 Y
9 i 36 3 53 unav | Z 117)
18] 37 + 54 space 31 118 (k)
11 k 38 - 55 A 22 112 (L)
12 1 39 (&) 55 B 93 [128 M
13 m 45 s 67 i 94] 121 (M)
14 r 41 b 53 D 25 F 22 1)
15 & 2 (o) 59 £ T pt 123

15 = 43 () 7EF 97 - 124

17 b 44 = 71 i3 a5 ‘ tze ()
g r 45 (=) 72 H 99 126 1.
11 = 45] 73 I 1B i 127 umav
=l S 47 Izl T4 T 161 z

21 ul 43 + s k. 15E d

2z ; 43 {h) 75 L s IR

23w Sg (i) 77 M 154 7

24w 51 i) 783 M tgs (B

25 L 52 % 72 0 198 (C)

26 z 3 & 3 P 187 (DY

MOTE: unav: Location iz urnavailable on standard terminals.
(kaw) 1 Press MICRO followed by the indizated ke,

18]

KEYCODES?
‘programmalzle ferminall
key keycede| key keycode | key kayooda | kay
timeup -1
i g ‘ 32 space A4 Lksp
1 1 > 33 a A% H
2 2 { 34 b BA B
3 3] 35 < B7 2
4 + E3 25 s 5 D
5 c % 37 2 513 E
6" 3 - a3 £ 7H F
7 7 ' 39 z 71 i
3 3 % 45 h 72 H
3 £, M 41 1 73 I
« L y 42 j 74 I
+ 1 a 432 k TE K
tab tz er +4 l TH L
azzizn 13 2s5gignt 45 m 77 M
+ 14 z 45 n 73 N
- i5 A 47) 79 0
ZUP 1a supt =3 P 39 °
suk 17 stbl 49 3 31 o
ans 13 term s3 r 52 R
2rase 19 arasel Sl 3 273 =)
micro 2 fent 52 & 54 T
haip 21 help! 53 . L 3s J
rext 22 next! S4 w 35 Y
ecdit 23 editt 3% w 37 I
back 24 back! S5 X 22 4
dzta 2 datal c7 Y 34 7
step 25 stool €3 z el Z
copy 27 zopy ! 59 = 91)
square 23 aquar2l 57 ; 22 :
lab 29 lak 31 s 33 ?
. 24 !
s 35 "

% System variable "zkey" contains the ke,code of the

1t
Funztion "zk" returns keveset keypcode values.
Touch-pansl inout ccdes rang= frem 256 to St1.

- -

Eickernal i1nput codes range fram S12 €2 757,

O

ERIC | 182

Aruitoxt provided by Eic:

kaycode

26
-
23
L
154
151
182
193
134
1ac
1J5
147
1&3
193
11
111
112
113
114
i1z
114
117
1183

= o

s e e s b e
O Ul e L FY e

FEVIRN ES T SO U QUINN oF TN CFRRE (0 JEEES

S}

49

Al

Powers of 2

n e n on
P v =g 3g 1 973 741 824 =g'?
1 2 31 2 147 483 648

2 4] 32 4 294 967 296 1
3 8 =8 33 8 589 934 592 =8

4 16 34 17 17S 369 184

5 32 5 b 34 359 738 368 12
6 64 =8 36 - 68 719 475 736 =8

7 128 37 137 438 953 472

8 256 3 38 * 274 877 946 944 13
9 512 =8 39 549 755 813 888 =8~
1 1 g24 ag 1 #99 511 627 776

1 2 g4as8 4 41 2 199 @23 255 552 14
12 4 g9e6 =8 42 4 398 g46 511 194 =8
13 8 192 43 8 796 P93 g22 28

14 16 384 44 17 592 186 44 416

15 32 768 =8" 45 © 35 184 372 g88 832 —g'>
16 65 536 46 78 368 744 177 664

17 131 g72 6 47 149 737 488 355 328 16
18 262 144 =8 48 281 474 976 718 656 =8
19 524 288 . 49 562 949 953 421 312
28 1 948 576 - 7 58 1 125 899 9¢6 842 624 17
21 2 997 152 =8 51 2 251 799 813 685 248 =8
22 4 194 3p4 : 52 4 583 599 627 378 496
23 8 388 6¢8 8 53 9 FP7 199 254 74f 992 18
24 16 777 216 =8 54 18 #14 328 589 481 984 =3
25 33 554 432 55 36 @26 757 #18 963 968
26 67 198 864 9 56 72 @57 594 @37 927 936 19
27 134 217 728 =8 57 144 115 184 @75 855 872 =8
28 268 435 456 58 288 23@ 376 151 711 744
29 536 878 912 59 576 468 752 3@3 423 488

Given the byte size = n: range for unsigned integers is g to 2"

range for signed integers is —(2“'1_1) to +(2:1--1_1)

Given the maximum absolute valie such that 2" < Imaximuml < 2™
byte size for unsigned integers is n

byte size for signed integ<rs is n+1

ERIC | 183

IHDEX 1

Alphabetical index to system variables

System variables may be used wherever expressions are accepted, e.g., in tag

0of ~calc~, =~at-, etc. CH

Word Page Word Page Word Page Word Page

aarea D6 mallot §21 zcondok 522 zroff F19 D B

aarrows D6 mode P21 zcpw c22 zrouten T26

ahelp D6 muse S21 zcusers c22 zrstatn F19

ahelpn D6 nhelpop S22 zdata T25 zrtype F19

anscnt J19 ntries J19 zentire T25 zrvars F19

ansok J19 - copent J2¢ zextra T25 zrvret F19 F B

aok L6 order J2¢ zfacc F18 zscore T26

aokist D6 phrase J29 zfile F13 zsessda D6

args - S21 proctim S22 zfroml 5§22 zsesset Db

asno D6 ptime 522 zfromu S22 zsesspt -~ D6

atern D6 rcallow R3 cEgvpe F18 zsnfile 523

atermn) router R3 zfusers Fi8 zsnotes 523

atime D7 rstartl R3 zgroup 522 z spell T26 J B

auno D7 rstartu R3 zid S22 zsvar s F19

backout S21 rvallow R3 zinfo F18 z svret F19

baseu S21 sitenam 822 zjcount T25 zsysid 5§23

capirtal J19 size P21 zjudged T25 zsystem S23

clock s21 sizex P21 zkey T25 ztbas. T26

dataon D6 sizey p21 zlang P21 zterm S23 MR

entire J19 spall J2¢ zldone T2S zZ tmem T26

errtype R3 station S22 zleserr R4 ztmemr T26

extra J2@ tactive S22 zlesson S23 z touchx 323

formok J21 user 822 zline F18 ztouchy S23 P E

f romnun 21 usersin §22 znindex F18 ztprog T26

jcount J19 varcnt J2¢ znscpn F18 ztrap T26

judged J19 vocab J2¢ zZn smaxn F18 zttype T2§

key s21 wcount J2¢ znsuaxr F18 ztzone S24 RE

lcomann 822 where P21 znsnans F18 zunit S24

ldnre R3 wherex P21 znsrecs F19 zusers 824

lessnwr 821 wherey (21 zntries T25 zwcount T26

lleslst §21 zaccnam S22 zorder T25 zwherex T27

llesson 521 zanscnt T25 zpnfile 523 zwherey T27 S B

lscore R3 zbpc Cc22 zpnotes S23 zwpb Fl19

" lstatus R3 zbpw €22 zrecs F19 ZWpr F19

lstorag C22 zcheck F18 zretrnu 523 zzxfile F19

mainu s21 Zcomm T25 zreturn S23
TH
Al

184 18

1C

20

BF

aJ

EM

B P

BR

BS

arT

Alphabetical ind~2x to commands and related directives

Command Page

abort
addlst
addl
addname
addrecs
allow
allow
altfont
ans

an su
ansv

an swer
answerc
array
area
args
argument
arheada
arrow
arrowa
at

atnm
attach
audio
axes
back
backl
backgnd
backop
backlop
base
beep
block
bound s
be.

br nch
break
bump

c

calc
calcc
calcsg
catchup
change
char
charlim
charset
chartst
checkpt

circle

cl19
S15

c3

T4

F5

R1

T18
P2¢
J12

Ji1
J11,T11
J9,T11
J1¢,T11
cl

D2

S13
S1,82
J2
J2,T9
J2
P1,T19
P1,T19
F1,T8
P16
F1@,T:%
S7,T22
S7,T22
c21

S7

s7

38, T22
P17,T."
C18,T5
P1¢,T19
P6,T19
S4,T22
S11

J5

S17

c3, 13
c3,T3
€3,T3
g1l

S17
P5,T17
T17
P19.T17
P2¢

F13
P7,T1%

Command Page

circleb
clean
clock
close
clrkey
collect
comload
cemmon
commonx
compare
comret
compute
concept
copy
cpulim
cstart
c stop

c stop*
darrow
data
datal
datain
dataoff
dataon
dataop
datalop
d ataout
date
day
define
delay
deletes
delname
delrecs
delta
detach
disable
do '
dot
doto
draw
edit
else
elseif
embed
enable
end
endarrow
endif
endings

P7

cl3

c1¢

J5

T22

S9

Cl19

C19
c2p
J14

Cl19
Cl@, T4
J1¢
J3,T19
S11
S14,T22
S14,T22
S14,T22
T9
§7,T22
$7,T22
F2,T8
D1

D1

S8

S8
F2,T8
clg

clg
c1,T3
P4

Cl6

F5

F5

P15

Fi

P16, TG
€2,1%°
P6,T19
84, T2¢
?6,T1%
J2
S5,T22
S5, T22
P1,T15
16,719
.8
J3,T9
S5,T22
J4

Commandad

endloop
entry
erase
eraseu
exact
exacte
exactv
exac tw
exit
ext
extout
fill
find
findall
findl
finds
findsa
finish
force
foregnd
from
funct
gat
gatnm
gbox
gcircle
gdot
gdraw
getchar
getcode
getkey
getline
getloc
getmark
getname
getword
gorigin
goto
graph
group
gvector
naltu
hbar
help
helpl
helpop
helplop
hidden
htoa
larrow

183

Page

56,T22
S1
P3,T16
J1
J16,7T11
Jig

J11

T11

S3

P17

P17
P6,T19
c17,75
c17

S16

cl5

cl5

D5
J1,T9
c21

S13

P15
P12,T12
P12,T19
P13,119
P13
P13,T19
P13,T19
T17

S1¢

T22

F16
J14,Tl4
J13,Tl4
F4,Fl4
J13
P1¢,T19
$2,T22
P13

clg
P14,T19
T2
Pl4,T1S
S7,T22
S7,T22
58

S8 |
P3

C12
J16,T12

Command

iarrowa
leu

if
iferror
ifmatch
ignore
ijudge
imain
in
inhibit
initial
inserts
intrupt
iospecs
1toa
Jkey
join
judge
Jump
jumpn
Jjumpout
keylist
keytype
keyword
lab
labl
labelx
labely
labop
lablop
lang
leslist
lessin
lesson
lineset
list
lname
loada
loadu
long
loop
lscalex
lscaley
lvars

-markup
 mar kupy

markx
mar Xy
match
micro

Page

J16

S1
$5,T22
S3

T12

J15

T12
$3,T22
S13

PS5, T18
Cc2¢

Cl6

T19

F15
cl2
J2,T9
J16,S3
J17,T13
$2,T22
T22
S12,T22
$9,T22
S1¢,T22
T1¢
$7,T22
$7,T22
P11,T19
P11,T19
S8

S8

P3

S15

513
R2,T21
P2g

4

S16

J5

Tl
J2,T9
$6,T22
P11

P11

c3

J18
J18
P11,T19
P11, T19
J9

P19

Alphabetical index ro commauds and related directives (cont.)

Command

miscon
mode
mod perm
move
nane
names
next
nex:l
nextnow
nextop
nextlop
no
notes’
noword
ok
okword
open
or
0tla
outloop
output
outputl
pack
packc
parse
pause
permit
play
plot
polar
pptaddr
pptclr
. pptdata
pptload
pptout
pptrun
ppttest
press
put
putd
putv
randp
randu
rat
ratam
rbox
rcircle
rdot
rdraw
readd

Page

J1y
P4,Tl6
C9

cl12
clg
F6,F15
$7,T22
57,T22
S7

S7

s7
J15,T12
5i4
J18
J15,T12
J18

J8
J12,T12
cl12
$6,T22
D2

D2
Cl1,T5
cl2

F17
59,T22
D5
P16,T19
P5,T19
P12

T23

T23

T24

T23

T24

T24

723
S!1,T22
J5
J5,T19
J5

C8, T4
C8, T4
P8, T19
P8,T1¢
P3 |

P9

P8, T19
P8,T19
D3

Command

read set
receive
recname
record
reccrds
release
reloop
remove
removl
rename
reserve
restart
restere
return
rorigin
rotate
route
routvar
runu
rvector
say
sayc
saylang
scalex
scaley
score
search
searc hf
seed
segment
segmentf
sendkey ,
set
setdat
setline
setname
setperm
show
showa
showb
showe
showh
showo
showt
showz
site
size
slide
sort
sorta

Page

D3

20

Cl3

P16,T19
F7
21,F3,516
S6,T22
€9, T4
S15

F4

C21,F2,516
D5

C9,7T4
S3
P3,T19
P4,T16
Rl

R1

Tl

P9

P18

P18

P13
P1¢}, TL9
P1¢,T19
R2,T21
Cl1,TS
T6

c8

cl

Cl

20
Ch,Th
D2

Fl6
F3,Fl4
C8,T4
P2, T15
P3,T16
T15

P2
P3,T16
P3,T15
P2,T15
P2

Ml
n4,T16
P16,T19
Cl4

Cl4

188

Commaud Page

spec s
station
status
step
stolcad
stop
storage
store
storea
storen
storeu
subl
tabset
term
termop
text
textn
time
timel
timer
touch
couchw
transfr
trap
unit
unicop
use
vbar
vector
vocab
vocabs
wind ow
write
vwritec
wrong
wrongc
wrongu
wrongv
Xxin
xnit
xout

zZero
*

Sy
»format
*14ist
Ptutor

J6,T1{
43

R2

S17

c21

57, T22
c2¢

J8

J8

J8

J3

C4

P19

S8

S8
P3,T16
T17

519

S1¢

S19

J12

J12

Cl8

T19
S1,Tl
Sl
S12,T22
P14, T19
P7,T19
J4

J4

P7
P1,T15
P1,Ti5
Jg, 11
Jl¢,T11
J11
J11,TI1
P17,T18
T20
P17,718
C4, T3
S17

S17
sa¢’
S12

Tl

Cc =&

D =R

F .

J

‘M ER

P HE

S

T

A BE

I

