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Mathematical Problem Perception
Abstract

Aithough it is commonly assumed that increases in mathematical
knowledge and problem-solving skill alter one's perception (i.e., under-
standing) of mathematical problems, little research exists to support this
assumption. The present study investigated the relationship bétwééﬁ mathe-
matical background and problem perception in two experiments. Experiment 1
employed hierarchical clustering analysis to compare the way that experts
(mathematics professors) sorted 32 mathematics problems typical of college
mathematics courses with the way that novices (undergraduates) sorted the
same problems. The results indicated that the two groups use different criter-
ia for considering problems to be related. Experiment 2 compared changes in
the mathematics problem perception of students who took an intensive mathe-
matical problem-soiving course with changes in students who took a computer
course during the same time period. Training in problem solving resulted in
the experimental group's problem perception being more differentiated and.

more like that of experts.
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Problem Perception and Knowledge Structure in

Expert and Novice Mathematical Problem Solvers

Problem-solving skill in mathematics rests in part on the ability to
accurately perceive or understand a problem. Accurate perception permits one
to identify the appropriate means to a solution, whereas inaccurate perception
precludes such identification and instead leads one on a "wild goose chase."
Despite the importance of this phase of problem solving, little research has
been done on the acquisition of mathematical probiém perception. The pur-
pose of our research was to investigate how problem perception varies with
experience and training.

Outside of mathematics, problem perception has been found to develop
with experience and to be directly related to increased success at solving
problems. Expert chess players have been found to perceive board positions
in terms of patterns or board arrangements, whereas novices do not (de Groot,
19€5; Chase & Simon, 1973). Success at solving physics problems covaries with
the relationships perceived among problems. Novices perceive similarities
among problems according to their surface structure, e.g., wording, whereas
experts perceive according to deep structure, e.g., the principles of physics
(Chi, Feltovich, & Glaser, Note 1). Evidenc: that differences in problem per-
ception in physics contribute to the superior problem solving of experts over
novices has yet to be reported. However, when students were taught some prin-
ciples of elementary physics either in a hierarchical or non-hierarchical fa-
shion, those given the hierarchical organization exhibited superior problem-

solving performance (Reif and Evlon,Note 2). Finally, there is a body of
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research regarding probiem percaption which shows that the mental representa-
tion of a problem affects the processes directad towards its solution (Larkin,
McDermott, 3imon, and Simon, 1980). Surprisingly, Tittle work has been directed
Lo ascertaining how problem perception varies with the mathematical proficiency
of problem solvers. Moreover, to our knowledge there has been no research into
ine changes in mathematical problem perception due to training in problem solv-
ing.

Research on problem perception in mathematics has shown, 1ike that in
other disciplines, that subjects with similar backgrounds perceive problems in
similar ways. For example, high schcol students were asked (Hinsley, Hayes,
and Simon, 1977) to examine a collection of algebra problems and to sort simi-
lar problems (i.e., problems of a certain "type") into piles. Results from
such stuiies reveal that students will cluster problems, often with substantial

agreement (Hinsley, et al., 1977; Chartoff, 1977, and Silver, 1979).

Moreover, problem-solving performance was found tg covary with the de-
gree to which a student's sorting data agreed with the experimenter's percep-
tions of prablem structure (Chartoff, 1977; Silver, 1979). Unlike research on
problem solving in other disciplines, however, research on problem solving in
mathematics has not examined how problem perception varies with experience
dcross the range from novice to expert.

The present research investigated mathematical problem perception as
a function of problem-solving expertise in two experiments. Experiment 1 in-
vastigated the problem perceptisn of experts and novices in a sorting task

comparable to that used in pravious studies. Experiment 2 investigated whether
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problem perception of novices would come to resemble that of experts, after
the novices received intensive training in problem-solving techniques. Thus,
Experiment 1 attempted to extend findings regarding differences in problem percep-
tion between novices and experts to the domain of mathematics problems. Exper=
iment 2 also may be viewed as an extens‘on of research investigating the vari-
ous effects of training on problem-solving ability (Lester, 1978; S:h2§nfeid,
1979, 1980). Hawever, it should be noted that Experiment 2 differs from pre-
vious investigations of training effects in that it is the first to assess
whether problem-solving training will alter novices' perceptions to be more
like those of experts.

Finally, it should be observed that the method of data analysis em-
played here, Johnson's (1967) hierarchical clustering method, is superior to
the methods used in the research cited above. In contrast to past studies,
which report subsets of problems sorted together, this method represents sort-
ing relationships for all problems simultaneously, ATgo the sorting results are
represented in a hierarchical arrangement that makes explicit how frequent1y
any particular pair of problems is perceived by subjects as related. Through the
use of more explicit analvses, the present study permits a richer interpreta-

tion of mathematical problem perception than has been previousiy obtained.

Experiment I

Method

Nine professors of ma.hematics from HamiTton College and Colgate
University (hereafter referred to as experts) participated in the study with-

out pay. A total of 19 undergraduates from Hamilton College (called novices),

[
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all cf whom had taken from 1 to 3 courses in college mathematics, also par-
ticipated. Eleven served without pay as a condition of enrollment in a problem-

solving course; efght were paid a total of $20 each for their participation.

Materials

Thirty-two problems were chosen for the study. Those problems were
chosen to be typical of those taught in mathematics courses prior to calculus.
Each is accessible to students witﬁ a high school background in mathematics;
none requires calculus for its solution. The experimenters assigned an a

priori mathematical "surface structure" and a mathematical “deep structure"

characterizations to each problem. "Surface structure" refers to the items
described in the problems themselves. "Deep structure" refers to the mathe-
matical principles necessary for solution, as identified by the first author
who is a mathematician. The problems are listed in Appendix A. The characteri-
zations for the problems may be seen in the clustering diagrams (Figures 1, 2,
and 3).

Each of the 32 problems was typed on a "3x5" card. Each subject read
through the problems in a random order and decided which problems, if any,
were "similar mathematically in that they would be solved the same way." A
problem that was deemed dissimilar to others was to be placed in a "group"
containing one card. Subjects were told that they .might return from 1 to 32
"groups" to the experimenter. Novices performed the sorting task as a group.
Due to insolvable scheduling problems, experts performed the task alone and
at their convenience. Al1 subjects finished the task in approximately 20

minutes. -

Analysis

Similarity matrices were derived, one for the novices and one for

the experts. Each matrix represented the 32 prébTems and contained as its
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i,J-th antry (i<j) the number of subjects who grouped together problems i
and i. Thus, a similarity matrix consistad of 496 cells. First, a count
~¥as made of the number of problem pairs in the matrix receiving strong agree-
ment, defined here as those pairs sorted by two-thirds or more of the sample.
Second, each matrix was subjected to a clustering analysis with Johnson's

{1367} aierarchical clustering routine.

Aesults

initial inspection of the sorting data revealed that the experts sorted
sroplems more consistently tham novices. One example of this consistency is evi-
dent in the number of cells in the similarity matrix that represented strong agree-

Tent among subjects (at Jeast 2/3 of those sorttng the problems) about the simijar-

Lo

izy a oafr of oroblems. In the oresent study there were more strong agreement

;ﬁg’lﬂ
z i

cr experts {10)- than for novices (4], t(26) = 10.45, p<.01.

L1

A more detziled examination of differences between expert and novice
50rts was obtained with clustering analysis (diameter method). The results

ire shown in Figures 1 and 2, for experts and novices, respectively.

Insert Figures 1 and 2 about here

The number of large branches for experts is seven, that for novices, five;
tnis may indicate somewhat greater discrimination on the part of the experts.
Far more important, however, are the problems deemed to be closely related,
in this case those with a éroximity Tevel of a1t least 0.5. These

strong c1uster§-are bracketed together in Figures 1 and 2. It is immediately
apparent from a comparison of the bracketed clusters that the experts sorted

tne mathematics proolems differently from the novices.

.
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oF mathematics problems by experts and novices. This finding reproduces
Wwith mathematics problems the findings obtained previously with physics
probiems (Chi, et al., Note 1). Also <onsistent with this previous re-
search, the sorting by novicas appears to depend more on surface character-
istics of problems, while the sorting by experts depends on the deep mathe-
matical propertiss of the problems.

The different criteria for sorting by novices and experts may be dis-
cerned in Figures 1 and 2. For example, the first novice clustar in Figure 2,
<1,32,9} includes three pr@éiems which deal with whole numbers, even though -
the means of solution for those problems (sea the "deep structure" character-
izations) are radically different. In contrast, experts clustered only prob-
Tem 3 with problem 1: the solutions to these two problems, by induction, are
almost identical. Similarly, three problems dealing with the roots of polynom-
ials 110,29,24} were clustered by the novices although their deep structure
charactarizations were completely different and experts did not cluster them
together. In further contrastiucsnsider problems 9, 15, and 17, all of which
nave a deep charaéterigaticﬁ as "contradiction" problems. These were clustered
together by experts aﬁdag7aced in three different clusters by novices.

[n some cases, the same clustars were produced by novices and experts.
de maintain that these cases oaccurred for one of two possible reasons. First,
the a priori knowledge of the students may have been sufficient to allow them
to perceive the problems 1ike experts: consider for example the cluster of
problems {2,11,25, and 8}. Second, the surface and deep structures in some
problem sets were coincident: for example, the pair (14,20} dealt with di-
vision (factors) and was solved by using number representations (modular

arithmetic).

vy
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70 ascertain if our interpretations of sorting differences between
2xperts and novices were correct, we asked one of our experts (JTA) to give
the characterizations of problems that he sorted. Table 1 presents JTA's
characterizations of the problems in Zxperiment 1, along with the deep struc-

ture cnaractarizations assigned by the first author.

Insert Table 1 about here

Inspection of Table 1 shows that of the 32 problems, there are only
six discrepancies /problems 4,6,8,16,18,31) between t! a priori classification
of the problems and the classifications by J.T.A. Mareover, three of these dis-
crecancies (4,5,31) appear to really involve surface characteristics of the prob-
tems. The expert's remarkably close agreement with the a priori characteri-
zations supports the claim that these a priori characterizations reflect the
deep structural properties of the problems. Given that the a priori charac-
terizations represent deep structure, we can assert with some confidence that
the problem perception of experts is far more determined by deep structure than
that of novices.

Experiment 2

The results of Experiment 1 indicate that experts perceive mathe-
matics problems differently from novices. Since experts are distinguished
from novices partly because of their problem-solving experience, it is reason-
a0le to nypothesize that appropriate training in problem solving would lead
the novices' problem perception to become more differentiated and more Tike
that of experts. Experiment 2 tested this hypothesis in the following manner.

An experimental group was given an almost-month-long course in mathematical

of similar length in structured programming, studying nonmathematical problem
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snlviné techniques. Both groups sorted the problem set from Experiment 1
and took a mathematics test before and after their courses. We expected the
nierarchical clustering analyses of the sorting data to 1 .icate that problem-
solving training in matheratics alters probiem perception, and that resulting
patterns of problem solving for the mathematics group would mimic those of ex-

Jar<s

-

Subjects

The nineteen novices of Experiment I participated in the study. Eleven
3/ these subjects served in an axperimental group, explained beiow. These sub-
jects nad previously studied from one to three courses in college mathematics,
including at least one course in calculus. The remaining eight subjects served
in a control group. These subjects had also studied from one to three courses
in college mathematics, including at least one course in calculus. Thus, at

=

in experience tn mathematical problem solving.

Materials
The deck of 32 problems from Experiment 1 was used also for this ax-
periment. Additionally, two forms of a mathematics test, each in two sections,

ware constructed to assess mathematical problem-solving performance. One

form of the first section is given in Appendix B. The second section was
e

part of a different study concerned with the teaching of problem-solving

strategies. (The results are reported in Schoenfeld, Note 3, and will not

be discussed here.)

Procedure

The experiment was conducted during a three and one-half week "Winter
T2rm" at Hamilton College. An experimental group (11 of the 1¢ subjects) took

2 ccurse in "Techniques of Proplem Solving,” taught by the first author.



Mathematicai Problem Perception

10
The course met two and a half hours a day for 18 class days, with daily home-
work assignments. The class stressed specific mathematical problem-selving
strategies called "heuristics," and managerial techniques applicable to mathe-
matical problem solving in general. (See Schoenfeld (1979; 1980) for details.)

The control group (8 of the 19 Subjects)‘took a course in "Structured
Programming" hich made comparable demands on the time of its subjects. The
course taugnt a structured, hierarchical, and orderly way to solve problems in-
valving the computer. As such, these subjects served as a contro] to compare
with the éxperiment§1 group in asséssing the amount of math-specific knowledge
and skills that might be acquired by the latter.

Both the experimental and control groups followed an identical proce-
dure at the outset and end of the Winter Term. Within the first three days of
the term, subjects were given a three and a half hour exam consisting of the
mathematics tests described above and the card sort task described in Experi-
ment 1. Similarly, within the last three days of the term, the subjects took
an alternate form of the mathematics exam, and sorted the same set of prob-
lems they had used in the first card sort. The problems in the test and in
the card sort were directly related to the content of the course, in the fol-
Towing sense: the problems could be solved by heuristic strategies studied in
the course, which had been exemplified with problems of the same type (Schoen-
feld, Note 3). As in Experiment 1, the clustering data was analyzed with John-

son's (1967) hierarchical clustering routine.

ol

esults

Each subject's performance on the mathematics tests was scored two ways.
Strict scoring required a 7lawless solution per problem, giving 20 points for

each of five problems solved correctly. Lenient scoring awarded 20 points for

R .
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each problem solved flawlessly, and partial credit (according to a predetermined
scheme) for solutions that were partially correct. Table 2 presents the mean
strict scores, and in parentheses the lenient scores, for experimental and con-

trol subjects before and after the term.

Insert Table 2 about here

Inspection of Table 2 reveals that scores on the ‘tests increased acfcss
the term (with strict scoring F(1,17) = 32.2, p<.001; with lenient scoring,
F(1,17) = 47.5, p<.001), and were greater for experimental than for control
subjects (with strict scoring, F(1,17) = 92.4, p<.001; with lenient scoring,

F(1,17) = 130.6, p<.001). The increase across the term was essentially only
evident in the sca?es of experimental subjects (strict scoring, F(1,17) = 67.2,
p<.001; lenient scoring, F(1,17) = 48.2, P<.001). These measures indicate
strongly that the experimental] group's prab1§mssg1ving performance was
sigﬁi?itanﬁ?y improved, the contro] group's more or less unchanged.

, \Dne means of manitﬁr%ng change 1in the experimental and control groups’
performance is to correlate various of the novices' sorting matrices with the
éxﬂerts‘ sorting matrix from Experiment 1. TabiE-B pfesénts’the éorreiatiéhs

of the experts' matrix with each of the four matf?;es from Experiment 2.

;
Insert Table 3 about here’

Inspection of Table 3 indicates the dramatic shift in the nature of
the experimental group's problem perception, their post test sort correlating

more closely with the experts' sort than any of the others. The nature of
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that change also emerged from the clustering analysis.

Two other correlations should be noted here. The sorﬁs of control
and experimental novices at the pretesﬁ were substantially correlated (r = .650,
df = 496, p<.001). This correlation shows éhat, as discussed earlier, both groups
began the term with a fair amount of knowledge about the kinds of problems studied
in the course. As expected, the correlation between experimental and control
groups dropped significantly after'inst?ucticﬁ (4 = ,492, df = 496, p<.01)--a
consequence of the fact that the experimental group's sorts came to resemble
the experts’.

Finally, the post-instruction sorting data from the experimental sub-
jects were subjected to hierarchical clustering analysis. The results (dia-

meter method) are shown in Figure 3.

Insert Figure 3 about here

General Discussion

-The correlations given in Table 3 demonstrate a substantial change

#

in the experimental greup’s’perceptians of problem re1atedﬁess, in conjunction
with their improved prab1em§SO1ving performance. A comparison of the bracketed
clusters in Figure 3 with those in Figure 1 (experts) and Figure 2 (combined

’ *
novices before instruction) indicates c¢learly that neviﬁe; sorted the problems

more like experts after the winter term more than they did initially. Further,

it substantiates the hypothesis that the students' perceptions of problem

To save space the cluster diagrams for the experimental and control groups'
sorts prior to instruction have not been included. The matrix from which Fig-
ure 2 was derived was strongly correlated with both the experimental pretest
matrix (r = 918, df = 496, p<.0Q1) and the contro! pretest matrix (r = .889,
df = 496, p<.001).. ' o

BE ]

1y
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relatedness were less based on surface structure, and more based on deep struc-
ture, after instruction.

- Observe that of ten bracketed clusters, only five of the novices' clus-
ters (50%) were homogeneous with regafd to their deep structure characterizaéa
tions, Six of eight (75%) of the experimental group's cIuéters were homogen-
eous, as were eight of eleven (73%) of the experts' clusters. The experimental
group's cluster {9,17,10} illustrates the change in perception. These three
problems share the same deep structure (contradiction). However, as shown in
Figure 2, these problems had appeared in three distinct clusters prior to the™
problem-solving instruction. Problem 10, moreover, appeared initially in a
cluster homogeneous with regard to surface structure (paiynomiaisg roots).

The_exper1menta1 group's post-instruction sorting, while more closely
approximating the experts' sort, cannot be trqjy called “expei}—iike_“ The ex-
perts'’ extended knowledge and experience allow them peréeptions inaccessible
to the novices. Cons1der, for examp?e, the three bracketed clusters 1nc1ud1ng
prob1em 1: novice {1,32,9}; experimentai {1?3,21}; expert {1,3}. The experi-
mental group.drops problems 32 and 9, which weré similar to problem 1_an1y in
that they deal with whole nﬁmbers., Problem 3, which shares the same deep struc-
ture as problem 1, is added. The mimicry of expert perceptions is not exact,
hawevér:- probTem 21 is §dded as well, _Theraddition of'prablem 21 provides an”
indication of the "intermediate" status of the experimental grcuég Problems 12 -
and -21 were included in the card sort to see if the experts would cluster them
together. Underlying the experts' pEFceLtinn of problem 21 is the observation
that multiples of 9 and mu1t1ples of 4 both include multiples of 36 (their in-
tersectipn), and that one must compensate for subtracting the first two sets by
adding the third. This is’ structurally similar to the rule N(AuB) = N(A)+N(B) -

-N(AnB) upon which problem 12 is based. This is a rather subtle observation.
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While experts' experience with combinatorics problems migﬁt’make'such-gn ob-
servation readily accessible, novices even with training?:annat be expected
to see such subtleties. In the absence of such knowledge, it is piausibie to

think that "looking for patterns“ will he]p tu solve problem 21--and thus to

I

— .. - sort itwith tuaauther "pattEﬁns pﬁabiemSWJWJVVﬂ e
‘ The results of Experiments 1 and 2 support and extend previous re-
search on problem per:eption.‘ The novices' card sort indicated that, in the
broad domain of general mathematical problem solving, students with similar
backgrounds will perceive problems in similar ways. This\is consistent with
previous research in mathematics, which had considered only word problems in
- algebra (Hinsley, et al., 1977; Chartoff, 1977; Silver, 1979). Like research

in physics (Chi, et ai.; Note 1), it suggests that surface structure is a pri-
mary critev%on used by novices in determiﬁing problem re1atedness, Moreover,
it makes: the simpie but important point that students " prcb]em percept1ons change
as the students acquire prub]emssaiving expertise. ‘th only the1r perfnrmance,
but their perceptions, become more like experts'. »

In genekai quest1ans regard1ng the deep structures in individual dis-
c1p]1nes and the nature of experts' percept1nns in thoze disciplines are more.
complex than those regarding surface structures and novices' perCEpt1nns in
them. Phys1cs, for examp1e, is a strongly pn1n¢1p1e§dr1ven domain; one can speak
of'the pr1n§1p1es which apply to a problem (E g., "conservation of momenium" or
"F = ma") without difficﬁTty. The research by Chi, et al_ (1980) indicates that’
experts' problem perceptions and categgriiatians are strong]yigangistént with
ﬁhat structu%e. That is, the ;e1evant pr?nciplesADf %hys%cs appear to form
the basis for experts' cénsidering problems to be related. In chess, it was

helc that both the deep structure of the discipline and experts' perceptions -

| 5
c
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were largely principle-basad (e.g., "protect the center"). However, research
on chess perception (de Groot, 1965; Chase and Simon, 1973) served to indicate
that experts' perceptions of routine problems (similar in a way to the routine
physics and mathematics problems discussed above) may be based on the acquisi-
tion of a “voéabu1ary" of known situatiaﬁs.whicﬁ is not necessarily principle-
based. Mathematics does not appear to be as principle~driven as qh;si:sg Yet,
the results described above indicate that deep structure may serve in large part
as the basis for experts' perceptions of problem relatedness. Further research
might profitably be directed towards the elucidation of deep structures in péra
EticuIar disciplines, towards the elucidation of the nature of experts‘.peﬁceps

tions in those disciplines, and of the re]atiQEShips between them.

Sevad,
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Two Experts' Characterizations of the Problems

' = = ~ i = = *
A Priori Characterization

Patterns; induction

Linear diophantine equation

Patterns; induction

Analogy (Feher variables)

Diagram; analytic geometry

Unclear; Herron's Formula or
analytic geometry

Special cases

Special diophantine equation

Contradiction

Contradiction

Linear diophantine equation

Patterns; DeMorgan's Law

Special cases -

Patterns; number representations

Uniqueness; contradiction
Spe:ia1 cases; diagram
Unidueness;vcontradiction
Auxiliary elements

Patterns; combinatorics

Number representations
DeMorgan's Law

Easier related problem; patterns

¥

Diagram .

Special cases

Linear diophantine equation
Patterns; induction; numéer rep.
Paéterﬂs; induction

Diagram; analytic geometry
Diagram

Analogy

Analogy

. + Number representations

Expert's Characterization (JTA)

Induction

Diophantine equation
Induction )

Note x=y=z; use (x+% 52)2

. Analytic geometry

Analytic geometry

Factor out ab
Trial and error®

Contradiction

250.

Contradiction; x
Diophantine equation
Iterate (patterns)

Cases; max 4 solutions

Mod 89

Centradiction

Symmetry; analytic geometry

- Contradiction

Analytic geometry® -
Combinatorics
Modular arithmetic
Combinatorics
Iterate (patterns)

1,2,3 co]]apseéf
5

d =

Factor x
Diophantine equation

I[terate (patterns)
Combinatorics; induction
Analytic geometry

Dumb problem (do it graphically)

Consider 2 dimensional case (i.e., analogy)

Contradictiond
Mod 1Dd

* . T . | = 5
Generated by the first author, AHS, who is a mathematician.

!
i

Qi
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NOTES FOR TABLE 1

8the solution described by JTA is that suggested by the "fewer variables"

techniqué.

4

T
AHS. |

here JTA dqscr1m1nates between this and the other three diophantine equa-

tions. JTA\15 a number theorist, and makes such distinctions.
_what AHS cai\s "number represéntaticns" JTA calls "mnduiar arithmetic."

®implicit in AHS's assertion is a geometric approach. -

FAHS'S suggest1an was that upon draw1ng the 25,50,75 tr1angTE one rea11zes .

that it cc11apses.

Jafter gaining 1nsp1rat1an from the 2- dimens1ona1 case, AH: makes his argu-

*

ment. by contrad1ct1en
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Table 2
Mean Solution Scores on

Problems Before and After Term

Before After
Control 0(14) 0(24)
Experimental -2(21) 25(73)
Note: Parentheses contain scores obtained with a lenient

scoring procedure (see text).

S
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Table 3
Correlations Between Sorting Matrices

of Novices (Given at Left) with Expert Sort

Control, Pretest . 551
Experimental, Pretest .540
Control, Post Test .423
Experimental, Post Test ‘ .723-

Note: With df = 496, all correlations are significant. A1l pretest:cor-
relations and the control post test correlation-are significantly

Tess (p<.01) than the Experimental Novice Post Test correlation.
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APPENDIX A
PROBLEMS USED IN CARD SORT

1. Show that the sum of consecutive odd numbers, starting with 1, is always a square.
_For example, '
1+3+5+7 = 16 = 42i
2. You have an unlimited supply of 7 pound weights, 11 pound weights, and a potato
which weighs 5 pounds. Can. you weigh the potato on a balance scale? A 9 pound
potato? _

3. Find and verify the sum

1+ 2 + 3 + ...+ n

1.2 7.2.3 T1.2.3.4. 1.2.3...(n 1),
4. Show that if x,y, and z are greater than 0,

) (P (25)
Xyz

28,

5. Find the smallest positive number m such that the intersection of the set of
all points {(x,mx)} in the plane, with the set of all points at distance 3 from
(0,6), is non-empty.

6. The lengths of the sides of a triangle form an arithmetic progression with dif-
ference d. (That is, the sides are a, a+d, at2d.) The area of thé triangle is
t. Find the sides and angles of this triangle. In particular, solve this prob-
Tem for the case d = 1 and t = 6. '
7. Given positive numbers a and b, what is
, 1/n
Lim (a" + b") ?
Now

co

In a_game of "simplified football," a team can score 3 points for a field goal
and 7 points for a touchdown. Notice a team can'score / but not 8 points. What

Is the largest score a team cannot have?

9. Let n be a given whole number. Prove that if the number (2"-1) s a prime,
then n 1s also a prime number.
10. Prove that there are no real solutions to the equation
x1g+xa+x6+x4+xz+1 =0

11. "If Czech. currency consists of coins valued 13 cents and 17 cents, can you buy
a 20-cent newspaper and receive exact change?
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12. If N(A) means "The number of elements in A," then N(AuB) = N(A)+N(B)-N(AnB).
Find a formula for N(AuBuC). .
13. Construct, using straightedge and compass, a line tangent to two given circles.
13, Take any odd number; square it; divide by 8. Can the remainder be 3? or 77

15. You are given the following assumptiorns:
,j) Parallel ]jngs do not intersect; non-parallel lines intersect.
ii) Any two points P and Q in the plane determine an unique line
which passes between them. '

Prove: Any two distinct non-parallel lines L, and L, must intersect in an
unique point P. 2

16. Two squares "s" on a side overlap, with the corner of one on the center of
the other. What is the maximum area of possible overlap?

A

17, Show that if a function has an inverse, it has only one.

18. Let P be the center of the square constructed on the
hypotenuse AC of the right triangle ABC. Prove that
BP bisects angle ABC. [See figure at right.]

19. How many straight lines can be drawn through 37 points
in the plane, if no 3 of them lie on any one straight
line?

20. If you add any 5 consecutive whole numbers, must the re-
sult have a factor of 57

21. What is the sum of all #'s from 1 to 200, which are not multiples of 4 and 9?
fou may use the fact that

(1#2+...4n) = 1/2 (n)(n+1).

22. Your goal is to convert figure 1 to figure 2. You may

move only one disk at a time from one spike to another,
and you may never put a larger disk on top of a smaller
one. How to?

23. Determine the area of a triangle whose sides are given as 25, 50, and 75.

24. If P(x) and Q(x) have "reversed" coefficients, for example

P(x) = xs+3x4+9x3+11x2+63+2,

2

Q(x) = 235+6x4+11x3+9x'+3x+1;

~What can you say about the roots of P(x) and Q(x)?
25. You have 2 unmarked jugs, one whose capacity you know to be 5 quarts, the other
7 quarts. You walk down to the river and hope to come back with precisely 1
- quart of water. Can you do it? _

26. What is the last digit of (.ii((77}7)7__§)7, where the 7th power is taken
O 1,000 times? . 3, ,
' : L}




27.

29.

30.

31.

32.
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Consider the magical configuration show at right,
In how many ways can you read the word "ABRACADABRA?"

A circular table rests in a corner, touching both
walls of a room. A point on the rim of the table
is eight inches from one wall, nine from the other.
Find the diameter of the table.

Let a and b be given real numbers. Suppose that
for all positive values of c, the roots of the equa-
tion R -

ax2+bx+c a

28
A
B B
RRR
AAAA
ccccc
AAAAAA
DDDDOD
AAAA
BBB
RR
A

02

are both real, positive numbers. Present an arqument to show that a must equal

Z8ro.

Describe how to construct a sphere which circumscribes a tetra

of the pyramid touch the sphere.)

hedron (the 4 corners

Let S be a sphere of radius 1, A an arc of length less than 2 whose endpoints are

on the boundary of S. (T
is a hemisphere H which does not intersect A.

(The interior of A can be in the interior of 5.)

Show there

Show that a number is divisible by 9 if and only if the sum of its digits is di-

visible by 9. For example, consider 12345678:
So 12345678 is divisible by 9. |

1+2+43+4+5+6+7+8 = 36 = 4x9,
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Appendix B

Mathematics Pretest

1. If S 1s any set, we define 0(S) to be the number of subsats of S
which.contain an odd number of elements. For example: the "odd* )
subsets of (A, B, C} are {A}, (B}, (C}, and (&, B, C}; thus 0((A,B,C})
= 4. Determine O(S) if S is a set oT 26 objects.

2. §uppaserycu ars given the positive numbers p,q,r, and s.
Frove that- . (%+1) (a2+1) (r2+1) (5241

; pqars
3. Suppose.T is the triangle given in figure 1. Give a mathematical

- argument to demonstrate that thers is a square, S, such that the
4 corners of S lie on the sides of T, as in figure 2. '

21

oy

4. Consider the set of equations

”~

"ax t y- i}_
X +ay =1,

1]
A7)

1]

For what values of "a" does this system fail to have solutions,
and for what values of "a" are there infinitely many solutions?

5. Let G be a (9 x 12) rectangular grid, as illustratad =rf—t-—
to the right. How many different rectangles can be Lt T
drawn on G, if the sides of the rectangies must he TR S A S

grid lines? (Squares are included, as are rectangles [t —
whose sides are on the boundaries of G.) T

- ‘_xr.“;




