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Mathematical Problem Perception

Abstract

Although it is commonly assumed that increases in mathematical

knowledge and problem-solving skill alter one's perception (i.e., under-

standing) of mathematical problems, little research exists to support this

assumption. The present study investigated the relationship between mathe-

matical background and problem perception in two experiments. Experiment 1

employed hierarchical clustering analysis to compare the way that experts

(mathematics professors) sorted 32 mathematics problems typical of college

mathematics courses with the way that novices (undergraduates) sorted the

same problems. The results indicated that the two groups use different criter-

ia for considering problems to be related. Experiment 2 compared changes in

the mathematics problem perception of students who took an intensive mathe-

matical problem-solving course with changes in students who took a computer

course during the same time period. Training in problem solving resulted in

the experimental group's problem perception being more differentiated and,

more like that of experts.
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Problem Perception and Knowledge Structure in

Expert and Novice Mathematical Problem Solvers

Problem-solving skill in mathematics rests in part on the ability to

accurately perceive or understand a problem. Accurate perception permits one

to identify the appropriate means to a solution, whereas inaccurate perception

precludes such identification and instead leads one on a wild goose chase."

Despite the importance of this phase of problem solving, little research has

been done on the acquisition of mathematical problem perception. The pur-

pose of our research was, to investigate how problem perception varies with

experience and training.

Outside of mathematics, problem perception has been found to develop

with experience and to be directly related to increased success at solving

problems. Expert chess players have been found to perceive board positions

in terms of patterns or board arrangements, whereas novices do not (de Groot,

1965; Chase & Simon, 1973). Success at solving physics problems covaries with

the relationships perceived among problems. Novices perceive similarities

among problems according to their surface structure, e.g., wording, whereas

experts perceive according to deep structure, e.g., the principles of physics

(Chi, Feltovich, & Glaser,Nete 1). Evidenc: that differences in problem per-

ception in physics contribute to the superior problem solving of experts over

novices has yet to be reported. However, when students were taught some prin-

ciples of elementary physics either in a hierarchical or non-hierarchical fa-

shion, those given the hierarchical organization exhibited superior problem-

solving performance (Reif and Eylon,Note 2). Finally, there is a body of
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research regarding problem perception which shows that the mental representa-

tion of a problem affects the processes directed towards its solution (Larkin,

McDermott, Simon, and Simon, 1980). Surprisingly, little work has been directed

to ascertaining how problem perception varies with the mathematical proficiency

of problem solvers. Moreover, to our knowledge there has been no research into

the changes in mathematical problem perception due to training in problem solv7-

g.

Research on problem perception in mathematics has shown, like that in

other disciplines, that subjects with similar backgrounds perceive problems in

ways. For example, high school students were asked (Hinsley, Hayes,

and Simon, 1977) examine a collection of algebra problems and to sort sim

lar problems (i.e , problems of a certain "type") into piles. Results from

such stiiiies reveal that students will cluster problems, often with substantial

agreement (HInsley, et al., 1977; Chartoff, 1977; and Silver, 1979)

Moreover, problem-solving performance was found to covary with the de-

gree to which a student's sorting data agreed with the experimenter's percep-

tions of problem structure (Chartoff, 1977; Silver, 1979). Unlike research on

problem solving tn other disciplines, however, research on problem solving in

mathematics has not examined how problem perception varies with experience

across the range from novice to expert.

The present research investigated mathematical problem perception as

a function of problem-solving expertise in two experiments. Experiment 1 -

vestigated the problem perception of experts and novices in a sorting task

comparable to that used in previous studies. Experiment 2 investigated whether
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problem perception of novices would come to resemble that of experts, after

the novices received intensive training in problem-solving techniques. Thus,

Experiment 1 attempted to extend findings regarding differences in problem percep-

tion between novices and experts to the domain of mathematics problems. Exper-

iment 2 also may be viewed as an extension of research investigating the vari-

ous effects of training on problem-solving ability (Lester, 1978; Schoenfeld,

1979, 1980). However, it should be noted that Experiment 2 differs from pre-

vious investigations of training effects in that it is the first to assess

whether problem-solving training will alter novices' perceptions to be more

like those of experts.

ally, it should be observed that the method of data analysis em-

ployed here, Johnson's (1967) hierarchical clustering method, is superior to

the methods used in the research cited above. In contrast to past studies,

which report subsets of problems sorted together, this method represents sort-

ing relationships for all problems simultaneously. Also the sorting results are

represented in a hierarchical arrangement that makes explicit how frequently

any particular pair of problems is perceived by subjects as related. Through the

use of more explicit analyses, the present study permits a richer interpreta-

tion of mathematical problem perception than has been previously obtained.

Experiment _I

Method

Subjects

Nine professors of mathematics from Hamilton College and Colgate

University (hereafter referred to as experts) participated in the study with-

out pay. A total of 19 undergraduates from Hamilton College (called novices),



Mathematical Problem Perception

5

all of whom had taken from 1 to 3 courses in college mathematics, also par-

ticipated. Eleven served without pay as a condition of enrollment in a problem-

solving course; eight were paid a total of $20 each for their participation.

Materials

Thirty-two problems were chosen for the study. Those problems were

chosen to be typical of those taught in mathematics courses prior to calculus.

Each is accessible to students with a high school background in mathematics;

none requires calculus for its solution. The experimenters assigned an a

arigri mathematical "surface structure" and a mathematical "deep structure"

characterizations to each problem. "Surface structure" refers to the items

described in the problems themselves. "Deep structure" refers to the mathe-

matical principles necessary for solution, as identified by the first author

who is a mathematician. The problems are listed in Appendix A. The characteri-

zations for the problems may be seen in the clustering diagrams (Figures 1, 2,

and 3).

Each of the 32 problems was typed on a "US" card. Each subject read

through the problems in a random order and decided which problems, if any,

were "similar mathematically in that they would be solved the same way." A

problem that was deemed dissimilar to others was to be placed in a "group"

containing one card. Subjects were told that they might return from 1 to 32

"groups" to the experimenter. Novices performed the sorting task as a group.

Due to insolvable scheduling problems, experts performed the task alone and

at their convenience. All subjects finished the task in approximately 20

minutes.

Analysis

Similarity matrices were derived, one for the novices and one for

the experts. Each matrix represented the 32 problems and contained as its
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i,j-th entry 1 the number of subjects who grouped together problems i

and ,.,. Thus, a similarity matrix consisted of 496 cells. First, a count

was made of the number of problem pairs in the matrix receiving prong agree-

ment, defined here as those pairs sorted by two-thirds or more of the sample.

Second, each matrix was subjected to a clustering analysis with Johnson's

(1967) hierarchical clustering routine.

Results

Initial inspection of the sorting data revealed that the experts sorted

--oplems more consistently than novices. One example of this consistency is evi-

dent in the number of cells in the similarity matrix that represented strong agree-

pent among subjects (at least 2/3 of those sorting the problems) about the stmilar-

_y of a oafr of problems. In the present study there were more strong agreement

cells for experts -(10)-than for novices (4 ), t(26) = 10.45, p.01.

A more detailed examination of differences between expert and novice

was obtained with clustering analysis (diameter method). The results

are shown in Figures 1 and 2, for experts and novices, respectively.

Insert Figures 1 and 2 about here

The number of large branches for experts is seven, that for novices, five;

tnis may indicate somewhat greater discrimination on the part of the experts.

ear more important, however, are the problems deemed to be closely related,

in this case those with a proximity level of at least 0.5. These

strong clusters are bracketed together in Figures 1 and 2. It is immediately

apparent from a comparison of the bracketed clusters that the experts sorted

the mathematics problems differently from the novices.

Discussion

The results of Experiment I showed clear differences in the sorting
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of mathematics problems by experts and novices. This finding reproduces

mathematics problems the findings obtained previously with physics

problems (Chi, et al., Note 1). Also ,onsistent with this previous re-

search, the sorting by novices appears to depend more on surface character-

istics of problems, while the sorting by experts depends on the deep mathe-

matical properties of the problems.

The different criteria for sorting by novices and experts may be dis-

cerned in Figures 1 and 2. For example, the first novice cluster in Figure 2,
fi

32,91 includes three problems which deal with whole numbers, even though

the means of solution for those problems (see the "deep structure" character-

izations) are radically different. In contrast, experts clustered only prob-

lem 3 with problem 1: the solutions to these two problems, by induction, are

almost identical. Similarly, three problems dealing with the roots of polynom-

ials 0,29,241 were clustered by the novices although their deep structure

characterizations were completely different and experts did not cluster them

together. In further contrast, consider problems 9, 15, and 17, all of which-

have a deep characterization as "contradiction" problems. These were clustered

9- her by experts and placed in three different clusters by novices.

In some cases, the same clusters were produced by novices and experts.

'fie maintain that these cases occurred for one of two possible reasons. First,

the a pribri knowledge of the students may have been sufficient to allow them

to perceive the problems like experts: consider for example the cluster of

problems (2,11,25, and 81. Second, the surface and deep structures in some

problem sets were coincident: for example, the pair (14,20) dealt with di-

vision (factors) and was solved by using number representations (modular

arithmetic).
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ascertain if our interpretations of sorting differences between

experts and novices were correct, we asked one of our experts (JTA) to give

the characterizations of problems that he sorted. Table 1 presents JTA's

characterizations of the problems in Experiment 1, along with the deep struc-

ture characterizations assigned by the first author.

Insert Table 1 about here

Inspection of Table 1 shows that of the 32 problems, there are only

discrepancies _problems 4,6,3,16,18,31) between tt a priori classification

of the problems and the classifications by J.T.A. Moreover, three of these dis-

crepancies ,5,31) appear to really involve surface characteristics of the prob-

lems. The expert's remarkably close agreement with the a_ priori characteri-

zations supports the claim that these a priori_ characterizations reflect the

deep structural properties of the problems. Given that the a priori charac-

terizations represent deep structure, we can assert with some confidence that

the problem perception of experts is far more determined by deep structure than

that of novices.

Experiment 2

The results of Experiment 1 indicate that experts perceive mathe-

matic problems differently from novices. Since experts are distinguished

from novices partly because of their problem-solving experience, it is reason -

Tole to hypothesize that appropriate training in problem solving would lead

the novices' problem perception to become more differentiated and more like

that perts. Experiment 2 tested this hypothesis in the following manner.

An experimental group was given an almost-month-long course in mathematical

problem solving. A control group, of comparable background, was given course

of sthiilar length in structured programming, studying nonmathematical problem
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solving techniques. Both groups sorted the problem set from Experiment 1

and took a mathematics test before and after their courses. We expected the

rarchical clustering analyses of the sorting data to i '.icate that problem-

solving training in mathematics alters problem perception, and that resulting

patterns of problem solving for the mathematics group would mimic those of ex-

oe

Sub'ects

The nineteen novices of Experiment 1 participated in the study. Eleven

these subjects served in an experimental group, explained below. These sub-

jects had previously studied from one to three courses in college mathematics,

including at least one course in calculus. The remaining eight subjects served

in a control group. These subjects had also studied from one to three courses

in college mathematics, including at least one course in calculus. Thus, at

the outset of the study, the subjects in the two groups were approximately equal

in experience to mathematical problem solving.

water lals

The deck of 32 problems from Experiment 1 was used also for this ex-

oeriment. Additionally, two forms of a mathematics test, each in two sections,

.vere constructed to assess mathematical problem-solving performance. One

form the first section is given in Appendix B. The second section was

part of a different_ study concerned with the teaching of problem-solving

strategies. (The results are reported in Schoenfeld, Note 3, and will not

be discussed here.)

cedu

The experiment was conducted during a three and one-half week "Winter
Term at Hamilton College. An experimental group (11 of he 19 subjects) took

! course in "Techniques of Problem Solving,
"" taught by the first author.

1
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The course met two and a half hours a day for 18 class days, with daily home-

work assignments. The class stressed specific mathematical problem-solving

strategies called "heuristics," and managerial techniques applicable to mathe-

matical problem solving in general. (See Schoenfeld (1979; 1980) for details.)

The control group (8 of the 19 subjects) took a course in "Structured

Programming" .4-hich made comparable demands on the time of its subjects. The

course taught a structured, hierarchical, and orderly way to solve problems in-

volving the computer. As such, these subjects served as a control to compare

with the experimental group in assessing the amount of math-specific knowledge

and skills that might be acquired by the latter.

Both the experimental and control groups followed an identical proce-

dure at the outset and end of the Winter Term. Within the first three days of

the term, subjects were given a three and a half hour exam consisting of the

mathematics tests described above and the card sort task described in Experi-

ment 1. Similarly, within the last three days of the term, the subjects took

an alternate form of the mathematics exam, and sorted the same set of prob-

lems they had used in the first card sort. The problems in the test and in

the card sort were diActly related to the content of the course, in the fol-

lowing-sense: the problems could be solved by heuristic strategies studied in

the course, which had been exemplified with problems of the same type (Schoen-

feld, Note 3). As in Experiment 1, the clustering data was analyzed with John-

son's (1967) hierarchical clustering routine.

Results

Each subject's performance on the mathematics tests was scored two ways.

Strict scoring required a flawless solution per problem, giving 20 points for

each of five problems solved correctly. Lenient scoring awarded 20 points for



Mathematical Problem Perception

11

each problem solved flawlessly, and partial credit (according to a predetermined

scheme) for solutions that were partially correct. Table 2 presents the mean

strict scores, and in parentheses the lenient scores, for experimental and con-

trol subjects before and after the term.

Insert Table 2 about here

Inspection of Table 2 reveals that scores on the'tests increased across

the term (with strict scoring F(1,17) = 32.2, p.001; with lenient scoring,

F(I,I7) = 47.5, p.001), and were greater for experimental than for control

subjects (with strict scoring, F(1,17) = 92.4, p.001; with lenient scoring,

F(1,17) = 130.6, p.001). The increase across the term was essentially only

evident in the scores of experimental subjects (strict scoring, F(1,17) = 67.2,

p.001; lenient scoring, F(1,17) = 48.2, p<.001). ,These measures indicate

strongly' that the experimental group's problem-solving performance was

significantly improved, tPe control group's more or less unchanged.

One means of monitoring change in the experimental and control groups'

performance is to correlate various of the novices' sorting matrices with the

experts' sorting matrix from Experiment 1. Table 3 presents the correlations

the experts' matrix with each of the four matrices from Experiment 2.

Insert Table 3 about here

Inspection of Table 3 indicates the dramatic shift in_ the nature of

the experimental group's problem perception, their post test sort correlating

more closely with the experts' sort than any of the others. The nature of
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that change also emerged from the clustering analysis.

Two other correlations should be noted here. The sorts of control

and experimental novices at the pretest were substantially correlated (r = .650,

df = 496, p4.001). This correlation shows that, as discussed earlier, both groups

began the term with a fair amount of knowledge about the kinds of problems studied

in the course. As expected, the correlation between experimental and control

groups dropped significantly after instruction (4 = .492, df = 496, p<.01)--a

consequence of the fact that the experimental group's sorts came to resembe

the experts'.

Finally, the post-instruction sorting data from the experimental sub-

jects were subjected to hierarchical clustering analysis. The results (dia-

meter method) are shown in Figure 3.

Insert Figure 3 about here

General Discussion

The correlations given in Table 3 demonstrate a substantial change

in the experimental group's perceptions of problem relatedness, in conjunction

with their improved problem-solving performance. A comparison of the bracketed

clusters in Figure 3 with those in Figure 1 (experts) and Figure 2 (combined

novices before instruction) indicates Clearly that novices sorted the problems

more like experts after the winter term more than they did initially. Further,

it substantiates the hypothesis that the students' perceptions of problem

To save space the cluster diagrams for the experimental and control groups'
sorts prior to instruction have not been included. The matrix from which Fig-
ure 2 was derived was strongly correlated with both the experimental pretest
matrix (r = %918, df = 496, p<.001) and the control pretest matrix (r = .889,
df = 496, p<.001)..
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relatedness were less based on surface structure, and more based on deep struc-

ture, after instruction.

Observe that of ten bracketed clusters, only five of the novices' clus-

ters (50%) were homogeneous with regard to their deep structure characterize-

don's. Six of eight (75 %) of the experimental group's clusters were homogen-

eous, as were eight of eleven (73%) of the experts' clusters. The experimental

group's cluster {9,17,10} illustrates the change in perception. These three

problems share the same deep structure (contradiction). However, as shown in

Figure 2, these problems had appeared in three distinct clusters prior to the

problem-solving instruction. Problem 10, moreover, appeared initially in a

cluster homogeneous with regard to surface structure (polynomials, roots).

The experimental group's post-instruction sorting,. while more closely

approximating the experts' sort, cannot be truly called "expert-like." The ex-
4)

perts' extended knowledge and experience allow them perCeptions inaccessible

to the novices. Consider, for example, the three: bracketed clusters including

problem 1: novice {1,32,9 }; experimental {1,3,21} expert {,1,3}. The experi-

mental group drops problems 32 and 9, which were similar to problem 1 only in

that they deal with whole numbers._ Problem 3, which shares the same deep struc-

ture as problem 1, is added. The mimicry-of expert perceptions is not exact,

however: problem 21 is added as well. The addition of problem 21 provides an

indication of the "intermediate" status of the experimental group. Problems 12

and-21 were included in the card sort to see if the experts would cluster them

together, Underlying the experts' perception of problem 21 is the observation

that multiples of 9 and multiples of 4 both include'multiples of 36 (their in

tersection), and that one must compensate for subtracting the first two sets by

adding the third. This is structurally similar to the rule N(Av13) = N(A)+N(B)

-N(AAB) upon which problem 12 is based. This is a rather subtle observation.
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While experts' experience with combinatorics problems might make such an ob-

servation readily accessible, novices even with training cannot be expected

to see such subtleties. In the absence of such knowledge, it is plausible to

think that "looking for patterns" will help to solve problem 21--and thus to

sort i t_with-Vmo_other..patterns"-problems.-

The results of Experiments 1 and 2 support and extend previous re-

search on problem perception. The novices' card sort indicated that, in the

broad domain of general mathematical problem solving, students with similar

backgrounds will perceive problems in similar ways. This is consistent with

previous research in mathematics, which had considered only word problems in

algebra (Hinsley, et al., 1977; Chartoff, 1977; Silver, )979). Like research

in physics (Chi, et al., Note 1), it suggests that surface structure is a pri-

mary criterion used by novices in determining problem relatedness. Moreover;

it makes the simple but important point that students' problem perceptions change

as the students acquire problem-solving expertise. Not only their perfdrmance,

but their perceptions, become more like experts'.

In general, questions regarding the deep structures in individual dis-

ciplines and the nature of experts' perceptions in thole disciplines are more.

complex than those regarding surface structures and novices' perceptions in

them. Physics, for example, is a strongly principle-driven domain; one can speak

of the principles which apply to a problem (e.g., "conservation of momentum" or

"F .ma") without difficulty. The research by Chi, et al. (1980) indicates that

experts' probleM perceptions and categorizations are strongly,consistent with

that structure. That is, the relevant principles of physics appear to form

the basis for experts' considering problems- to be related. In chess, it was

help- that both the deep structure of the discipline and experts' perceptions
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were largely principle - based (e.g., "protect the center"). However, research

on chess perception (de Groot, 1965; Chase and Simon, 1973) served to indicate

that experts' perceptions of routine problems (similar in a way to the routine

physics and mathematics problems discussed above) may be based on the acquisi-

tion of a "vocabulary" -of known situations .. which is not necessarily principle-

based. Mathematics does not appear to be as principle-driven as 0;sics. Yet,

the results described above indicate that deep structure may serve in large part

as the basis for experts' perceptions of problem relatedness. Further research

might profitably be directed towards the elucidation of deep structures in par-

ticular disciplines, towards the elucidation of the nature of experts' .percep-

tions in those disciplines, and of the relationthiOs between them.
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Table 1

Two Experts' Characterizations o1= the Problems

19

A Priori Characterization *

Patterns; induction

Linear diophantine equation

Expert's Characterization (JTA)

Induction

Diophantine equation
3. Patterns; induction Induction
4. Analogy (fewer variables) 1 a

Note x=y=z; use (x4.---

5. Diagram; analytic geometry Analytic geometry
6. Unclear; Herron's Formula or

analytic geometry

Analytic geometry

7. Special cases Factor out ab
8. Special diophantine equation Trial and errorc
9. Contradiction Contradiction

10. Contradiction Contradiction; x
2

11. Linear diophantine equation Diophantine equation
12. Patterns; DeMorgan's Law Iterate (patterns)
13. Special cases Cases; max 4 solutions
14. Patterns; number representations Mod a

d

15. Uniqueness; contradiction Contradiction
16. Special eases; diagram Symmetry; analytic geometry
1.7. Uniqueness; contradiction Contradiction
18. Auxiliary elements Analytic geometr-ye
19. Patterns; combinatorics Combinatorics
20. Number represeptations Modular arithmeticd
21. DeMorgan's Law Combinatorics
22. Easier related problem; patterns Iterate (patterns)
23. Diagram 1,2,3 collapses
24. Special cases Factor x

5

25. Linear diophantine equation Diophantine equation
26. Patterns; induction; number rep. Iterate (patterns)
27. Patterns;:indUction Combinatorics; induction
28. Diagram; analytic geometry Analytic geometry
29. Diagram Dumb problem (do it graphically)
30. Analogy Consider 2 dimensional case ( .e., analogy)
31. Analogy Contradictiong
32. Number representations Mod 10

d

Generated by the first autho AHS, who is a mathematician.
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NOTES FOR TABLE 1

a
the solution described by JTA is that suggested by the "fewer variables"

technique.

bJTA's suggestion reduces the problem to the "special case" suggested by

AHS.

here JTA discriminates between this and the other three diophantine equa-

tions. TA s a number theorist, and makes such distinctions.

what AHS ca "number representations" JTA calls "modular arithmetic."

implicit in 's assertion is a geometric approach.

AHS's suggestion was that upon drawing the 25,50,75 triangle, one realizes ,

that it- collapse's.

gaffer gaining inspiration from the 2-dimensional case, AHS makes his argu7

ment_ by contradiction.
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Table 2

Mean solution Scores on

Problems Before and After Term

Before After

0(14) 0(24)

2(21) 25(73)

Note: Parentheses contain scores obtained with a lenient

scoring procedure (see text).
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Table 3

Correlations Between Sorting Matrices

of Novices (Given at Left) with Expert Sort

Control, Pretest
.551

Experimental, Pretest .540

Control, Post Test .423

Experimental, Post Test .723.

Note: With cif 496, all correlations are significant. All pretest-cor-

relations and the control post test correlation -are significantly

less (p- 01) than the Experimental Novice Post Test correlation.
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APPENDIX A

PROBLEMS USED IN CARD SORT

1. Show that the sum of consecutive odd numbe
For example,

1+3+5+7 = 16 = 4
2

26

sting with 1, is always a square.

2. You have an unlimited supply of 7 pound weights, 11 pound weights, and a potato
which weighs 5 pounds. Can. you weigh the potato on a balance scale? A 9 pound
potato?

Find and verify the sum

1 + 2 +
1.2 1.2.3 1.2.3.4. 1.2.3...(n

4. Show that if x,y, and z are greater than 0,

'

(x
2
+1)1"

2
+1)_Sz

>B.xyz

Find the smallest positive number m such that the intersection of the set oall points {(x,mx)} in the plane, with the set of all points at distance 3
(0,6), is non-empty.

6. The lengths of the sides of a triangle form an arithmetic progression with dif-ference d. (That is, the sides are a, a+d, a+2d.) The area of the triangle-is
t. Find the sides and angles of this triangle. In particular, solve this prob-lem for the case d 1 and t = 6.

7. Given positive numbers a and b, what is
1/n

Lim (an I- b")

8. In a game of "simplified football," a team can score 3 points for a field goal
and 7 points for a touchdown. Notice a team can score 7 but not 8 points. Whatis the largest score a team cannot have?

9. Let n be a given whole number. Prove that if the number (2n- is a prime,then n is also a prime number.

10. Prove that there are no real solutions to the equation

10 8 6 4
x +x +x +x +x

2
+1 . 0

11. If Czech. currency consists of coins valued 13 cents and 17 cents, can you buy
a 20-cent newspaper and receive exact change?
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12. If N(A) means "The number of elemen A," then N(AuB) = N(A ) +N(B)- (AnB).
Find a formula for N(ALiBuC).

13. Construct, using straightedge and compass, a line tangent to two given circles.

14. Take any odd number; square it; divide by 8. Can the remainder be 3? or 7?

15. You are given the following assumptions:
i) Parallel lines do not intersect; non-parallel lines intersect.

ii) Any two points P and Q in the plane determine an unique line
which passes between them.

Prove: Any two distinct non-parallel lines L1 and L2 must intersect in an
unique point P.

16. Two squares "s" on a side overlap, with the corner of one on the center of
the other. What is the maximum area of possible overlap?

17. Show that if a function has an inverse, it has only one.

18. Let P be the center of the square constructed on the
hypotenuse AC of the right triangle ABC. Prove that
BP bisects angle ABC. [See figure at right.]

19. How many straight lines can be drawn through 37 points
in the plane, if no 3 of them lie on any one straight
line?

20. If you add any
suit have a fac

consecutive whole numbers, must the re-
r of 5?

21. What is the sum of all #'s from 1 to 200, which are not multiples of 4 and 9?
You may use the fact that

(1+2+.. n ) . 1/2 (n)(n+1)

22. Your goal is to convert figure 1 to figure 2 You may
move only one disk at a time from one spike to another,
and you may never put a larger disk on top of a smaller
one. How to?

23. Determine the area of a triangle whose sides are given as 25, 50, and 75.

24. If P(x) and Q(x) have "reversed" coefficients, for example

P(x) x
5
+ x

4
+9x +11x

2
+6x+2,

Q(x) 2x5+6x4+11x3+9x2+3x+1,

What can you say about the roots of P(x) and Q(x)?

25. You have 2 unmarked jugs, one whose capacity you know to be 5 quarts, the other
7 quarts, You walk down to the river and hope to come back with precisely 1
quart of water. Can you do it?

26. What is the last digit of ((77)7 where the 7th power is taken
1,000 times?

3,
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27. Consider the magical configuration show at right. A

In how many ways can you read the word "ABRACADABRA?" B

R R R
28. A circular table rests in a corner, touching both A A A A

walls of a room. A point on the rim of the table C C C C C
is eight inches from one wall, nine from.the other. A A A A A A
Find the diameter of the table. DODDD

AAAA
8 B B
R R

tion
2 A

ax -1-bx+c = 0

are both real, positive numbers. Present an argument to show that a must equal
zero.

29. Let a and b be given real numbers. Suppose that
for all positive values of c, the roots of the equa-

Describe how to construct a sphere which circumscribesa tetrahedron (the 4 corners
of the pyramid touch the sphere.)

31. Let S be a sphere of radius 1, A an arc of length less than 2 whose endpoints are
on the boundary of S. (The interior of A can be in the interior of S. ) Show there
is a hemisphere H which does not intersect A.

Show that a number is divisible by 9 if and only if the sum of its digits is di-
visible by 9. For example, consider 12345678: 1+2+3+4+5+6+7+8 . 36 = 4x9,

So 12345678 is divisible by 9.
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Appendix B

Mathematics Pretest

1. If S is any set, we define 0(S) be the number of subsets of Swhich contain an odd number of elements_ For example: the "odd"subsets of (A, B, Cl are (A}, (C}, and (A, B, Cl; thus 0((A,B,C1)= 4. Determine 0(S) if S is a set of 26 objects.

2. Suppose you are given the positive numbers p,q,r, and s.

Prove that'
pq rs :16-

Suppose.T is the triangle given in figure 1. Give a mathematicalargument to demonstrate that there is a square, S, such that the4 corners of S lie on the sides of T, as in figure 2.

4. Consider the set of equations

ax + y.=

x ay = 1

For what values of "a" does this system fail to have soluand for what values of "a" are there infinitely many solut

Let G be a (9 x 12) rectangular grid, as illustratedto the right. How many different rectangles can be
drawn on G, if the sides of the rectangles must begrid lines? (Squares are included, as are rectangles
whose sides are on the boundaries of G.)

ions,
ons?


