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Canonical correlation is a sophisticated multivariate

technique which can be used to study relationships between

two variable sets which each contain more than one variable.

Although the procedure has been available for several

decades (Hotelling, 1935), relatively few researchers have

used the technique in published studies, despite the fact

that "some research problems almost demand canonical

analysis" (Kerlinger, 1973, p. 652). One reason why the

technique is rarely used involves the difficulties which can

be encountered in trying to interpret canonical results.

However, these difficulties can be greatly

procedure is correctly imp.?-mented.

reduced if the

In this chapter, canonical correlation analysis is

discussed with a view toward providing an intuitive

understanding of how the technique operates. Some

relatively new canonical coefficients will also be

discussed.

X.1: Overview of the Procedure

Canonical correlation analysis entails the calculation

of one or more sets of canorzicalvaiu:ate coefficients,

i.e.-- weights which can be applied to the variables in the

study. Each set of canonical variate coefficients

constitutes a canonical fiunct.on . Thus, each function

consists of v variate coefficients, where v is the total
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number of variables in the analysis. On a given canonical

function, the variate coefficients associated with the two

variable sets each constitute a canonical variate. Thus, a

canonical function always consists of exactly two canonical

variates.

The canonical variate coefficients are : 7culated so

that two criteria will both be met. For each :unction, the

variate coefficients are calculated so that the

product-moment correlation, i.e.-- the cammica coWtetation

(R
c '

) between the two sets of variables is maximized. In

fact, for any one function, no other canonical variate

coefficients which will result in a larger Rc can possibly

be identified. Thus, a squared canonical correlation

coefficient, Ec2 , indicates the proportion of variance

shared by two sets of variables which each have been

weighted by variate coefficients so that Rc will be as large

as possible. It is important to emphasize, however, that

2
c

does not represent the amount of variance which the

unweighted, i.e.-- the "original," variables shared. The

canonical correlation coefficient, like the multiple

correlation coefficient, can range in value between 0.0 and

+1.0 inclusive. A second restriction on the calculation of

the variate coefficients :s that the product-moment

correlations between all pairs of canonical functions must

be zero. In other words, each canonical function is always
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perfectly uncorrelated with every other function identified

in an analysis.

The number of canonical functions which can be derived

for a given data set is equal to the number of variables in

the smaller of the two variable sets. Of course, some or

all of the computed canonical functions may be statistically

non-significant.

Canonical correlation analysis actually involves

analysis of a matrix which is computed from the

inter-variable correlation matrix. Consequently, the

analysis typically begins with computation of the

correlation matrix, R. This matrix is symmetric, i.e.-- the

number of rows in the matrix equals the number of columns in

the matrix, and is of the order v by v. Because the

analysis actually operates by manipulating the correlation

matrix, if a researcher has access to a correlation matrix,

a canonical correlation analysis can be conducted without

access to the original data which were used to calculate R.

Canonical correlation analysis is appropriately applied

when three assumptions are met. First, a should now be

apparent, the technique requires that "true" correlations

among the original variables can indeed be computed. This

does not mean, however, that all the variable:3 in a study

must be measured at the interval level of scale. As noted
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earlier, several correlation coefficients have been shown to

be algebraically equivalent to the product-moment

formulation, and any of these indices may appropriately be

examined in a canonical analysis. Cooley and Lohnes (1976,

p. 209) have provided an exa ple application of . the

tecnhique in a situation where the variables in a study were

not all measured at the interval level of scale.

The second assumption of canonical correlation analysis

is that the magnitude of the coefficients in the correlation

matrix must not be attenuated by large differences in the

shapes of the variables' distributions. The impacts of

distribution shapes on correlation coefficients has been

discussed previously. It is important to remember, however,

that the entries in a correlation matrix can only approach

the extremes of the index (-1.0 to 1.0) when the variables

are similarly distributed. Of course, if the entries in the

correlation matrix have been attenuated by disparities in

the distributions of the original variables, this will

necessarily affect the canonical analysis of the matrix

which the procedure derives from R.

A third assumption must be met when the researcher

employs test statistics to determine the statistical

significance of results. As noted previously, multivariate

test statistics require an assumption that the variables
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have a multivariate normal distribution in the population.

This distribution is the multivariate analogue to the

bivariate normal distribution. The characteristics of the

multivariate normal distribution will not be discussed here.

One reason for limited discussion of the distribution

is that there is not an accepted test statistic which can be

applied to sample data to estimate the probability that any

deviations from multivariate normality may invol.e sampling

error. This suggests a paradox. If the researcher knows

that the population distributions are multivariate normal,

the researcher probably also knows the other population

parameters, and would not need to apply any test statistics

in the first place. Alternatively, if the researcher is not

certain that the population distributions are multivariate

normal, little can be done to resolve this uncertainty short

of gathering data from the entire population of interest.

Therefore, researchers will generally be uncertain as

to whether or not they have met the distribution assumption

of canonical correlation analysis. It is important to

emphasize, however, hat examining the univariate or

bivariate distributions of the sample data will not help --to

resolve this uncertainty. Multivariate distributions can be

nonnormal even when all subsets of univariate or bivariate

distributions are normally distributed. This was implied in
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the pre..iious demonstfation that a bivariate normal

distribution is not necessarily always created by joining

together two variables which both are individually

distributed in a univariate normal fashion.

A second reason for limited discussion of the

characteristics of the multivariate norm/11 distribution is

also noteworthy. There is a basic theorem in mathematical

statistics called the multivariate central limit theorem.

This theorem suggests tlAt when sample size is "large,"

certain indices derived Zrom original variables will tend to

be normally distributed, even when the original variables

were not themselves distributed in a multivariate normal

manner. This assurance pan be relied upon to justify the

application of test Statistics in a canonical correlation

analysis when the reseather's sample is large. Elowever,

there is no generally accepted rule for determing when a

sample is big enough to be considered "large." Consequently,

it is generally desirable to obtain the largest possible

sample size, since this tends to insure that the central

limit theorem can legitimately be invoked as a justification

for applying test statistics.

X.2: An 5euristic Application
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An heuristic application of canonical correlation

analysis may clarify how the procedure operates, and will

provide a framework for further discussion. A study by

Thompson (1979) will be discussed for these purposes.

The criterion variables in the study were teachers'

preferences for various models of teaching. The author

argued that it is important to understand teachers'

instructional method preferences, because these preferences

may ultimately affect teaching practices and the learning of

ch_liren. The predictor variables in the study were

teachers' preferences for various educational philosophies,

and the teachers' perceptions regarding which

characteristics distinguish "best" from other teachers.

This last variable was labelled "roleideals." In essence,

the author argued that the criterion and the predictor

variables should be relatad, because "educational procedures

are generated from general views about human nature and

about the kinds of goals and environments that enhance human

beings" (Joyce and Weil, 1972, p. 5). The null hypothesis

in the study was that there would be no statistically

significant canonical correlation between the two variable

sets (a =.05). The sample consisted of 235 teachers.
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The study examined relationships among 14 variables.

The variables were the scores of the 235 subjects on the

factors which are briefly described in Table X.1. The

role-ideals factors were dis.mssed in greater detail in the

chap +er about factor analysis.

Insert Table X.1 about here.

As noted previously, canonical correlation analysis

always begins with the computation of a correlation matrix.

The correlation matrix which was computed in the study is

presented in Table X.2. The reader may wonder why the

matrix is partitioned into different portions in the table.

Canonical correlation analysis actually requires that R be

partitioned just as it has been in Table X.2. The section

of the matrix which summarizes intra-domain relationships

involving only the criterion variables is denoted R11 , and

is of the order y by y, where y represents the number of the

criterion variables in the study. In this case, y equals 4.

The section of the matrix which summarizes intra-domain

relationships involving the predictor variables is denoted

R22, and is of the order x by x, where x represents the

number of the predictor variables in the study. In this

case, x equals 10. The remaining two matrix partitions are

denoted R12 and R21, and are respectively of the order y by

x and x byy.

Insert Table X.2 about here.
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After the matrix, R, has been partitioned, the

different partitions are then used to compute a new matrix.

The details of this operation will not be presented here

(see Cooley and Lohnes, 1971, pp. 176-179). Suffice it to

say that the required mathematics always produce results

which mee: the two previously specified criteria, i.e.- -

maximum canonical correlations and perfectly uncorrelated

canonical functions. In this case the analysis produced the

results presented in Table X.3.

Insert Table X.3 about here.

X.3: Four Additional Coefficients

Several computer statistics "packages" will compute the

coefficients presented in Table X.3. However, four

additional sets of canonical coefficients can greatly aide

interpretation efforts, and can either be calculated by hand

or with the assistance of non-commericial computer programs

(cf. Thompson and Frankiewicz, 1979).

A 4tmictune coeWcient (Cooley and Lohnes, 1971)

indicates the degree of correlation between an original

variable and the variate defined by the variate coefficients

of all the variables in the same domain. The square of a

structure coefficient is the proportion of variance that an

original variable linearly shared with a canonical variate.

For any one function, the structure coefficients for the
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criterion variate can be computed by multiplying the R11

matrix times the criterion variate coefficients. Similarly,

the predictor variable structure coefficients can be

computed by multipling the R22 matrix times the predictor

variate coefficients. This formula implies that variate and

structure coefficients for the variables in a domain will be

equivalent only when the originnl variables in the domain

are perfectly uncorrelated. Conceptually, structure

coefficients are bivariate correlation coefficients, and can

range in value between -1.0 and +1.0 inclusive.

Canonical vatiate adequacy coefficients indicate how

"adequately" a canonical variate represented the variance of

the original variables in a domain. When a variate captures

100% of the variance of the original variables, the adequacy

coefficient will equal 1.0. The smallest value which can be

attained by a variate adequacy coefficient is .0, although

this value would only be observed on a hypothetical function

for which Rc exactly equaled .0.

Canonical redundancy coeigaents (Stewart and Love,

1968) indicate the proportion of variance shared by two

variates (Rc
2
) which is contained in one variate and which

is linearly redundant to the variance in the original

variables of the other domain. Redundancy coefficients can

be important to the interpretation of canonical correlation

I ^.
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analysis results, but are especially important when the

number of variables studied is large relative to the number

of subjects in a study. In these instances the canonical

correlation coefficient has a strong positive bias.

Fortunately, the redundancy coefficient is less biased, and

Miller (1975) has developed a distribution theory which

enables the researcher to test the statistical significance

of these coefficients.

Mathematically, the redundancy coefficient for the

criterion variables, Rdy, equals the adequacy coefficient of

the predictor variate times Rc2 . Conversely, the redundancy

coefficient for the predictor variables, Rdx, equals the

adequacy coefficient for the criterion variate times Re2 .

This formula indicates that a redundancy coefficient can be

as large as 1.0, since Rc2 can theoretically be 1.0, and

since structure coefficients can also theoretically each

equal 1.0. Since adequacy coefficients and Rc
2

both can be

no smaller than 0.0, 0.0 is also the lower bound for

redundancy coefficients. The Mathematics of this

calculation may now be clear, but the psychometric

interpretation of the coefficient is complicated, and will

merit more complete discussion momentarily.

13
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Canonical index coeigici.vits were apparently first

discussed by Frankiewicz and Merrifield (1967). A canonical

index coefficient indicates the correlation between an

original variable and the variables in the other domain,

once the variables in the other domain have been weighted by

their canonical variate coefficients. The square of a

canonical index coefficient rerl-esents the proportion of

variance which an original variable linearly shared with the

variate in the other domain.

Index coefficients can be calculated in either of two

mathematically equivalent ways. The first method is

analagous to the computation of canonical structure

coefficients. The index coefficients for the criterion

variables equals the R12 inter-domain correlation matrix

times the variate coefficients for the predictor variables.

The index coefficients for the predictor variables equals

the R21 inter-domain correlation matrix times the variate

coefficients for the criterion variables. An equivalent

procedure can be performed more conveniently by hand, since

the second procedure does not entail matrix algebra. The

index coefficient for a variable is equal to the variable's

structure coefficient times Rc. Index coefficients are

similar to bivariate correlation coefficients, and can range

in value between -1.0 and +1.0 inclusive.

14
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Index coefficients have some noteworthy

interpretations. The sum of the squared index coefficients

for sll the variables in one domain, divided by the number

of variables in the domain, will equal the other domain's

redundancy coefficient. Thus, if all the index coefficients

for the variables in a set are squared and then divided by

the number of variables in the domain, and these results are

then each divided by the redundancy coefficient for the

other domain, the proportional contribution each original

variable toward creating redundancy can be determined.

Also, when the variables in a domain are perfectly

uncorrelated with each other, the sum of the squared index

coefficients for the variables in a domain will equal R 2
.

c

When the variables in a domain are correlated, the sum of

the squared index coefficients for a domain will be greater

than Rc2, because the original variables overlap and the

squared index coefficients in part make non-unique

contributions toward the definition of Rc2. However,

whether or not the original variables in a domain are

uncorrelated, the contribution which each original variable

made toward defining a canoaioal correlation can be directly

evaluated as a proportion, i.e.-- by dividing each squared

index coefficient by Rc2.

1.4 The Psychometrics of Rd
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The behavior and meaning of redundancy coefficients

warrant special attention. The first revelation in

particular will seem counterintuitive. The redundancy

coefficients for the two variable sets do not have to be

equal. In fact, they rarely will be equal. A figurative

analogy may

equal Rdx_

facilitate understanding of why Rdy need not

Suppose that a researcher wanted to explore the nature

of relationships between criterion variables involving human

behavior, and predictor variables which measure human

psychology. Assume-that the essence of human behavior could

be well represented by measuring four criterion variables:

caloric intake per day, dollars saved each week, dating

behavior, and the political behaviors involved in voting for

various candidates. Assume that the essence of human

psychology could be well represented by measuring three

predictor variables: strength of drive to satisfy hunger,

strength of drive to have shelter, and strength of the

desire for sex.

After the data were collected, the researcher might

conduct a canonical correlation analysis. As many as three

canonical functions might be isolated, since the smaller of

the two variable sets consisted of three variables.

Conceivably, one function might define a canonical

16
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relationship which involved the behavior variables primarily

represented by the dollars saved variable, as indicated by

the calculated structure coefficients. The psychology

variables may have been mainly represented by the hunger

drive variable.

Two additional assumptions are also required. Assume

the researcher knows that the dynamics of human behavior are

well represented by the dollars saved variable. However,

assume too that the researcher knows that the dynamics of

human psychology are not very adequately represented by the

hunger drive variable. In such a case, Rdx would be greater

than Rdy. In other words, the new variance gained by adding

the behavior variate's variance to the variance embedded in

an already available psychology variate would be greater

than the variance gained by adding the psychology variate's

variance to the variance embedded in an already available

behavior variate.

It is important to understand what causes redundancy

coefficients to not be equal. Canonical variate

coefficients, it should be remembered, are calculated both

to represent the variance of the original variables and to

maximize Rc. The second consideration will always outweight

the first consideration if this will serve to increase Rc.

When the first consideration is differentially met with
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respect to one of the two variable sets, in order that a

larger Rc can be computed, the redundancy coefficients will

not be equal.

This conclusion forces a closer examination of the

psychometric meaning of redundancy coefficients. A

redundancy coefficient can equal 1.0 only when two variates

share exactly 100% of their variance (Rc2=1.0) and a variate

perfectly represents the original variables in its domain,

i.e.-- all the squared structure coefficients for the domain

equal 1.0. This suggests that redundancy coefficients ccn

be interpreted as indices which assess how well intra-domain

relationships are represented by g-variates and how well

inter-domain relationships are represented by g-functions.

Canonical structure, adequacy, redundancy, and index

coefficients for the study are presented in Table X.4. The

tabled coefficients may be examined to verify computational

procedures, and to determine if the coefficients are

inter-related in the indicated manner.

Insert Table X.4 about here.

1.5 Interpreting Canonical Results

The neophyte student of canonical correlation analysis

may be overwhelmed by the myriad coefficients which the

procedure produces. This implies a strength of the

procedure. Canonical correlation analysis produces results

18
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which can be theoretically rich, and if properly implementd

the procedure can adequately capture some of the complex

dynamics involved in educational reality. Interpretation of

the results may clarify the manner in which canonical

correlation results can be interpreted. Interpretation can

be couched at each of three levels of specificity.

First, the results niay be examined at a global level.

For example, the magnitude of the observed variate overlaps

(Rc 2) may be tested for statistical significance, if the

researcher collected sample rather than population data, and

if the researcher has reason to believe that the sample was

representative of the population of interest. The

statistical significance of a canonical correlation can be

assessed by applying a chi-square test statistic. The

computation of the "calculated" chi-square will not be

presented here (see Tatsuoka, 1971, pp. 188-189), since the

computation is typically performed by computer statistics

packages and such a discussion would shed little light on

the meaning of R_c . It is important to understand how the

degrees of freedom for the test statistic are computed,

however, and these computations are illustrated in Table

X.5. Table X.5 also presents the
-?-c

's, the "calculated"

test statistics, the degrees of freedom for the "calculated"

test statistics, the "critical" test statistics, and the

decisions associated with each of the four calculated
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canonical functions. The test statistics evaluate the null

hypothesis that a given population Rc equals .0.

Insert Table X.5 about here.

The Table X.5 results indicate that, assuming the null

hypotheses to be true and the sample to be representative,

canonical correlations of the magnitude of the four obtained

correlations would have been obtained in less than 596 of the

random samples from a population in which the canonical

correlations were actually each equal to 0.0. Thus, all

foUr of the canonical ccrrelations were "statistically

significant." However, since the calculated probabilities

are sensitive to sample size, the researcher should be

particularly attentive to the "educational significance" of

obtained results. The educational significance of canonical

correlation results can partly be assessed by examining how

much variance the sets of weighted original variables shared

with each other. However, there is no absolute criterion

regarding when a R
c

2
suggests that a relationship is

educationally important. These decisions necessarily

involve professional judgment and will vary from one study

to another. In this study, the overlaps of the weighted

original variables ranged in value from 21.1% (RI X 100) to

9.4%.
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The results can also be interpreted at an aggregate

level by calculating communality coefficients for the

variables. A communality coefficient indicates the

proportion of an original variable's variance which can be

reproduced from the canonical variates calculated for its

domain, and is equal to the sum of all the variable's

squared structure coefficients. In this case, 100% of the

variance of each of the four criterion variables could be

reproduced from the four criterion variates.

Examination of the communalaties of the predictor

variables suggests another important conclusion. The

communalities for the Rationalism (h2=.19) and the humanism

(h2=.22) variables were not very large. This suggests that

a more parsimonious analysis could be achieved by deleting

at least these two variables from a re-analysis.

A third global interpretation of results can be

accomplished by examining the redundancy coefficients. In

this case, g-functions and g-variates were not anticipated.

Thus the fact that the redundancy coefficients suggest the

absence of g-functions and g-variates has little theoretical

meaning in this study.

A second level of interpretation involves examining the

results at their most specific level. This generally can

best be accomplished by examining the canonical structure

2-1
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coefficients. In this Study all the variables were scored

so that high scores were associated with preference for a

model of teaching, or agfement with a philoso_ y statement,

cr agreement that ideal -Oachers possess a characteristic.

Consequently, when a se-t of structure coefficients all were

positive this meant that preference for the involved model

of t.--ching, or agreett with a philosophy or an ideals

description, tended to go together. Alternatively, when a

set of structure coefficients all were negative, this meant

that dislike for the involved model of teaching, or

disagreement with the Philosophy or ideals description,

tended to go together.

Four distinct patterfis were identified in the study:

1. Teachers who ascribe characteristics of simpleness

to non-ideal teachers, agree with the tenets of

Progressivism, and are anti-Existentialist in

outlook, tend tO prefer to teach with models of

teaching which emphasize incisive understanding of a

discipline's content and methodology.

2. Teachers who ascrOe characteristics of simpleness

and warmth to -their role-ideals tend to prefer to

teach with models of teaching which are affectively

oriented and whicil emphasize inquiry methods.

3. Teachers who disagree with the tenets of

Essentialism tend to dislike highly structured

22
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models of teaching and prefer to teach with inquiry

strategies.

4. Teachers who ascribe characteristics of rigor to

their role-ideals, disagree with the tenets of

Progressivism, and agree with the tenets of

Perennialism, to Ai°141r° 'ff°ctively oriented

models of teaching, bUt prefer models of teaching

which are highly structured.

Of course, the four patterns are perfectly uncorrelated with

each other, since the functions which were interpreted to

produce them were perfectly uncorrelated with each other.

It is important to note, however, that the four patterns

were not equally strong, since the squared canonical

correlations associated with the functions were not

identical.

The results can also be interpreted at a third,

"moderate" level of specificity. This level of focus is

appropriate in this study, because the predictor variable

set itself included two conceptually different subsets of

variables. One might question whether either the philosophy

or the role-ideals variables accounted for a preponderant

proportion of the variance linearly shared across the twc

variable domains. Examination of the squared canonical

index coefficients could provide an answer to this question.
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As ncted earlier, squared canonical index coefficients

indicate the proportion of variance which an original

variable linearly shared with the linearly weighted

variables in the other domain. These values can be summed

within variable subsets, and then the sums can be compared

to determine if one of the subsets contained a preponderant

-proportion of the variance shared across the domains. In

this case, the ratios of the philosophy variable sums to the

roleideals variable sums were respectively: 1.3:1, 0.5:1,

2.0:1, and 1.1:1. These ratios suggest that the philosophy

variables may have accounted for somewhat more of the

variance which the weighted predictor variables shared with

the weighted criterion variables. However, this result must

be interpreted cautiously. Because the philosophy variables

were not perfectly uncorrelated with each other, their index

coefficients each contained some nonunique variance, and

therefore the sums of the squared index coefficients for the

philosophy variables were artificially inflated to some

extent. Nevertheless, the results suggest that

philosophical orientations may influence teachers more than

is commonly recognized.

Overall, the results suggest that the relationships

between the two domains are systematic, but the squared

canonical correlation coefficients indicate that the

relationships are of moderate magnitude. The criterion
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variables were adequately explained by the predictor

variables, as indicated by the adequacy coefficients for the

criterion variates. However, the predictor variates'

adequacy coefficients and the squared canonical correlation

coefficients suggest that other predictor variables might

share more of their variance with the criterion variables,

and provide a more parsimonious explanation of teachers'

preferences for models of teaching. Consequently, the

results represent only an initial first step, albeit an

apparently fruitful first step, toward achievi:.g a more

complete understanding of teachers' instructional method

preferences.

X.6 Summary

When certain assumptions are met, canonical correlation

analysis can provide a theoretically rich representation of

complex educational realities. .In general, it is important

to obtain large sample sizes when the technique is employed.

Several coefficients can provide the basis for

interpretation of the results. The coefficients which are

most appropriately examined in a given study will depend

upon the nature of the study's variables and the study's

theoretical framework.
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Exercises for Additional Insight

1. It was previously explained that the multiple

correlation coefficient, R, can be computed from the

correlation matrix, R. Using the matrix presented in

Table X.2 compute the R between each of the four

criterion variables (analyzed separately) and the 10

predictor variables. Add the four squared multiple

correlation coefficients together and compare the sum

with the squared canonical correlations. What does this

result suggest about the similarities between multiple

correlation regression analysis and canonical

correlation analysis? What are the necessary and

sufficient conditions for comparision results to be

identical to those obtained in this comparin?

2. Canonical correlation analysis is concepliy similar
to factor analysis. This suggests that canonical

functions could be rotated in order to improve their

interpretability. What aspect of canonical correlation

analysis differentiates it from factor analysis and

suggests that the decision to rotate, the functions

should be cautiously taken? (See R.M. Thorndike.

Strategies for rotating canonical components. Paper

presented at the annual meeting of the American

Educational Research Association, 1976. ED 123 259)

3. The similarities between, canonical correlation analysis
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and factor analysis may suggest that canonical function

scores might be computed izia manner analagous to the

computation of factor scores. How might the results of

the Thompson (1979) study have been altered if an

alternative analytic strategy had been followed? First,

the researcher performed a canonical correlation

analysis of the Table X.2 matrix. However, this time

the philosophy variables were treated as criterion

variables and the roleideals variables were treated as

predictor variables. After functions were computed,

canonical function scores were computed for the 235

subjects in the study. Of course, this last step would

require access to the original data; function scores

can not be computed if only R is available. Next, the

function scores were used in a second canonical

correlation analysis in which the predictor variables

were as before, but the criterion variables were the

canonical

canonical

4. Canonical

function scores derived from

analysis.

correlation

the preliminary

analysis may capitalize on

measurement error when attempting to maximize Rc. How

might the stability of canonical functions be estimated?

(Hint: How was the stability of a regression equation

equation estimated in the chapter on multiple

regression?)
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Example Applications of the Technique

Hopkins, G., Payne, D.A., & Ellett, C.D. Life history

antecedents of current personality traits of gifted

adolescents. Measurement and Evaluation in Guidance,

1975, 8, 29-36.

Thompson, B., & Rucker, R. Two-year college students' goals

and program preferences. Journal of College Student

Personnel, in press.

Walberg, H.J. Predictir.g class learning: An apprci.ch to

the class as a social system. American Educational

Research Journal, 1969, 4, 529-542.
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TABLE X.1
Variable Descriptions

Criterion Variables: Models of Teaching Factors
Inquiry Strategies Models which emphasize inquiry methods,

e.g.-- Thelen and Dewey's Group
Investigation model

Incisive Understanding Models which emphasize understanding of a
discipline's core concepts and methods

Affective Orientation Models which emphasize affect, e.g.-- the
Awareness Training model

Structured Environment Models which emphasize (or de-emphasize)
structure, e.g.-- the Behavior Modification
model

Predictor Variables: Educational Philosophy & Role-Ideals Factors
Essentialism There are are certain essential facts .which

education must emphasize.
Humanism People should be the focus of existence and

should be treated with dignity.
Perennialism Human nature is unchanging and is the same

everywhere.
Problem-solving skills are more i

than the inculcation of content.
Rationality distinguishes man from
and is the key to survival.
Each person, by choosing, creates
People must be allowed to choose.

Progressivism

Rationalism

Existentialism

Warm

Scholarly

Rigorous

Simple

mportant

animal

reality.

Role-ideals who display exceptional concern
or lack of concern for people as people.
Role-ideals who display exceptional
intellect or lack of intellect and
scholarliness.
Role-ideals who are especially exacting or
who are the antithesis of being exacting.
Role-ideals who are distinguished by being
simple and docile, or the opposite thereof.



TABLE 1.2

Correlation Matrix

Variable IS IU AO SE

Inquiry Strategies 1.00 .00 .00 .00

Incisive Understanding .00 1.00 .00 .00

Affective Orientation .00 .00 1.00 .00

Structured Environment .00 .00 .00 1.00

Essentialism

Humanism

Perennialism

Progressivism

Rationalism

Existentialism

Wars

Scholarly

Rigorous

Simple

Es H Pe Pr R Ex W Sc R Si
-.15 .16 .05 .09 .07 -.10 .03' .06 .22 .13
.05 .08 .08 .26 .15 -.13 .05 .20 .06 -.26

-.10 .08 -.13 .15 -.07 .16 .20 .01 -.09 .18
.17 -.02 .10 -.04 .04 .12 .12 .09 .10 .15

-.15 .05 -.10 .17

.16 .08 .08 -.02

.05 .08 -.13 .10

.09 .26 .15 -.04

.07 .15 -.07 .04

-.10 -.13 .16 .12

.03 .05 .20 .12

.06 .20 .01 .09

.22 .06 -.09 .10

.13 -.26 .18 .15

1.00 -.00 -.00 -.00 .00 -.00 -.01 .02 .08 .01

-.00 1.00 .00 .00 -.00 .00 .05 .10 .05 .04
-.00 .00 1.00 .00 .00 -.00 -.14 .14 .15 -.08
-.00 .00 .00 1.00 .00 .00 .13 .12 -.06 -.07
.00 -.00 .00 .00 1.00 -.00 -.04 .07 .07 -.06

-.00 .00 -.00 .00 -.00 1.00 -.14 -.14 -.01 .25
-.01 .05 -.14 .13 -.04 -.14 1.00 .00 .00 .00
.02 .10 .14 .12 .07 -.14 .00 1.00 .00 .00
.08 .05 .15 -.06 .07 -.01 .00 .00 1.00 .00
.01 .04 -.08 -.07 -.06 .25 .00 .00 .00 1.00

NOTE: "-.00" represents values which were less than 0.0 and did not round to at least -.01.



TABLE X.3
Canonical Variate Coefficients

Variable
Function

I II III IV
Inquiry Strategies -.38 -.66 .49 .43
Incisive Understanding -.87 .03 -.42 -.25
Affective Orientation .25 -.70 -.17 -.65
Structured Environment .18 -.28 -.75 .57

Essentialism .07 .32 -.62 .24
Humanism -.23 -.29 .20 -.10
Perennialism -.09 .03 -.21 .40
Progressivism -.48 -.32 -.05 -.41
Rationalism -.29 -.03 -.13 .19
Existentialism .35 -.13 -.50 -.25
Caring .12 -.41 -.49 -.11
Scholarly -.23 -.13 -.40 .02
Exacting -.30 -.29 .14 .52
Simple .40 -.60 .17 .38

34



TABLE X.4
Additional Canonical Coefficients

Variables S I S I S I S I
Inquiry Strategies -.38 -.17 -.66 -.28 .49 .16 .43 .13
Incisive Understanding -.87 -.40 .03 .01 -.42 -.14 -.25 -.08
Affective Orientation .25 .11 -.70 -.29 -.17 -.06 -.65 -.20
Structured Environment .18 .07 -.28 -.12 -.75 -.25 .57 .18

Essentialism .04 .00 .30 .12 -.61 -.20 .29 .09
Humanism -.25 -.11 -.36 -.15 .15 .05 -.06 -.02
Perennialism --22 -.10 .08 .03 -.19 -.06 .46 .14
Progressivism -.50 -.23 -.34 -.14 -.18 -.06 -.48 -.14
Rationalism -.36 -.16 -.01 -.00 -.14 -.05 .21 .06
Existentialism .47 .22 -.20 -.08 -.34 -.11 -.15 -.04
Warm .03 .00 -.46 -.19 -.38 -.13 -.20 -.06
Scholarly -.39 -.18 -.17 -.07 -.37 -.13 .07 .02
Rigorous -.31 -.14 -.26 -.11 .07 .02 .64 .19
Simple .54 .25 -.62 -.26 .07 .02 .30 .09

Criterion Adequacy .25 .25 .25 .25
Predictor Adequacy .13 .11 .08 .11

Redundancy of Criterion .05 .04 .03 .02
Redundancy of Predictor .03 .02 .01 .01

NOTE: "S"=structure coefficient; "I"=index coefficient.



TABLE X.5
Test Statistics

R
Chi-square
Calculated df

df
Calculation

Critical
Chi-square Decision

.46 147.38 40 (4+1-1)(10+1-1) 55.76 Reject

.42 93.61 27 (4+1-2)(10+1-2) 40.11 Reject

.34 49.68 16 (4+1-3)(10+1-3) 26.30 Reject

.31 22.35 7 (4+1-4)(10+1-4) 14.07 Reject

NOTE: df for ith Rr = (no. of criterion variables + 1 - i)
times (no. o predictor variables + 1 - i)
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