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. 20. The results were based on a computer simulation for which the

model aud distributional assumptions were known to be correct. Fo-
real data, there is a question of appropriateness of the

~distributional assumptions--apart from the question of fit of the
" Rasch Model. The normality assumption can be tested by means of the

test of fit proposed by Andersen and Madsen. If the normality

assumption turns out to be inadequate, other distributions may be

fitted to *the da*ta using an approach similar to that proposed in this
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In a situation where the population distribution of latent trait scores
can be estimated, one may improve upon the ordinary maximum likelihood
estimator of latent trait scores by taking the estimated population
distribution into account. In the present paper empirical Bayes
estimators are compared with the likelihood estimator within the context
of the Rasch model. fhe data are simulated, with latent trait scores

genurated from a normal distribution.

Intrcduction

" In a latent trait model person parameters or atilities can be estimated

by the method of maximum likelihood, given the item parameters or
estimates of the item parameters. The ML-method has some disadvantages,
however. First, person parameters cannot be éstimated for persons with
a zero or perfect score, the estimates tending to minus and plus
infinity, respectively; in the three parameter legistic model also
other score patterns have no unique maximum of the .:kelihood equation
(Samejima, 1973). Secondly, in case the persons can be regarded as
randomly sampled from some population of persons, an empirical Bayes
estimate of persons' abilities can be obtained which has a smaller
expected mean squared error and is preferable for that reason; in

the same way interval estimates for abilities can be obtained which
compare favorably with intervals obtained through the information

function.

Paper presented at the European Meeting of the Psychometric e
Society, Groningen, June 19 thru 21, 1980. The author is indebted !
to Eric A. Bakker who wrote the computer programs.
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‘Bayesian and empirical Bayes procedures have been proposed betore within
the context of latent trait theory. Birnbaum (1969) and - in connection
with tailored testing - Owen (1969; see also Jensema, 1974) have
proposed a Bayesian analysis for the logistic and normal ogive latent
trait models. Leonard {1972) has presented a Bayesian analysis for the
binomial model using the 'log-odds' transformation; his model can be
regarded as a speCial case of the Rasch model with all item paramecters
equal to zero. An empirical Bayes point estimate of ability has been
derived by Meredith and Kearns (1973) for the multiplicative version
of the Rasch model; the advantage of their approach is that no specific
assumptions with respect to the population distribution have to be made
and that the estimation of the population distributioi can be bypassed.
Sanathanan and Blumenthal (1978) have presented an empirical Bayes
procedure for the additive Rasch model; they assume that the person
parameter density belongs to a specific family of demsities. In the
present paper an empirical Bayes proc:icure for the additive version

of the Rasch model is proposed, assuming normally distribution abilities.

The posterior dis-ribution in the Rasch model

_ The additive Rasch model reads
(1) P(u,=1]0)=exp (6=b,)/[ I+exp(6-b. )

where 6 is the parson parameter or ability, bi is the item parameter or
difficulty of item i and P(ui=1|9) is the probability of a correct
answer on item i, given ability 6. Given the item parameters
P=(b1’b2""’bn) or good item parameter estimates for the items of

a n-item test, the likelihood of having t items correct equals

n -1
(2) Lb(t|6)=Yc exp(tO) it [1+exp(9-bi)]

i=1
where Y, is the elementary symmetric function of order t of the n
factors exp(—bi).
Let us assume that the person parameters can be considered as randomly
sampled from a population distribution g(6), i.e., g{0) is the prior
distribution for the 8's. Using Bayes' rule we obtain the posterior

distribution of 6

!
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where

n

) £() = [y, exp(t) {T [l+exp(6-bi)] 'g(0)do .
im]

Equation (3) is similar to Birnbaum's (1969) Equation (4). In the present

paper it is assumed that g(8) is a normal distribution ¢(0|u,02).

The above model is not quite realistic in that a known population
distribution is assumed. The more general approach is to assume that
prior information on M and 02 is available and to combine this
information with data from the sample of persons in order to obtain
posterior estimates of Y and o2, In an empirical Bayes approach only
sample information is used in order to obtain the parameters of the

population distribution.

The normal population distribution

In the logistic and normal ogive models the ability scale has interval
characteristics, i.e. the models are invariant up to a linear transform-
ation. For this reason vne can choose the representation for which

9 is N(0,1). Item paraseters have to be estimated on this particular
scale. Bock and Lieberman (1970) present an estimation procedure for the
two-parameter normal ogive model, Bock (1972) presents one for the
logistic model without guessing parameter. An heuristic procedure for

the three-parameter ogive model has been proposed by Urry (1976).

The same could be done in connection with the Rasch model if one allows
the common discrimination parameter to be unequal to one. We will,
however, confine ourselves to the Rasch model proper in which only

translations of the ability scale are allowed.

For the Rasch model a procedure for the estimation of U and 0% of the
population distribution has been presented by Andersen and Madsen (1977).
They start with the marginal frequencies f(t), t=0,1,...,n, from (4)

assuming accurately estimated item parameters. The lilkelihood of

n
N scores t for t = 0,1,...,n in a sample of N= X Nt persons from the
population equals £=0
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where ¢ denotes the normal frequency distribution.

Estimates of 0 and u® are obtained by differentiating the logarithm of

likelihood (5) with respect to p and 0? and setting the results equal

to z2ero!
dlogly 4 N BE(E)

(6) — = [ - 0
ou f(t) U

and
9logLy 4 N 9E(e)

(7) = = I =0 .

30?2 £(t) 9302

The derivatives equal

of (t) ‘ n -1
(8) a = [(e-u)/oz] Y, exp(t8) (T [ l+eXP(9'bi)] $(6)ds
u i=1

and

of (t) n -1
(9) — = ![(e-u)z/o“-l/oz] Ye exp (t0) { I [ l+exp(6-bi)}} $(6)d6
o0 i=1

Ffom (4), (8) and (9) it is clear that the elementary symmetric functions
which do not contain 6, do not have to be computed. Equations (6) and
(7) can be solved iteratively for u and o? by the Newton-Raphson method;
in order to be able to compute the derivatives the integrals have to be
approximated by sums. Andersen and Madsen also presents a likelihood

ratio test for fit.

Point and interval estimates for the person parametets

The likelihood equation for the estimation of 6, given a score equal to

t, equals

Blong(tle)
~ -1
(10) h(B) = =t-3 exp(e-bi) [I+exp(9-bi) ] =0

26
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A person parameter estimate 6!: is obtained by solving (10) interatively
for 0. An interval estimate of 0 = under the assumption of approximate
normality of the distribution of the likelihood estimate 0 and the
agsumption that the information function is fairly constant in the
neighbourhood of the likelihood estimate - can be obtained from the

information function through

n cxp(g—bi) -

l+eXp(6—bi)

(an var &) = 1" (H)=

i=]
An empirical Bayes point estimate of 0 is the posterior mean

(12) 8 = E(8]t) = /9f(0|t)d0

where f(0|t) is obtained from (3) replacing g(€) by the estimated

population distribution., The posterior variance can be computed as

(13) var (8|t) = E(62|t)-E*(8]¢t) = ﬁz £(8]t)a0 - B2 .

Under the assumption that the posterior distribution can be approximated
by a normal distribution (12) and (13) can be used in order to obtain a
posterior confidence interval for 6,

Equations (12) and (13) also can be used for the estimation of uy and o2
by means of a procedure due to Sanathanan and Blumenthal (1978). From
the equation one obtains

~ n
a4y W=z ) @[

0

and

(15) 0% + n? = A E(0%(t).

Choosing initial values for u and 02, E(9|t) and E(92|t) can be computed
for t=0,...,n. Throigh Equations (14) and (15) one obtains new values

for u and o%. One can repeat the procedure until convergence is obtained.
As a by-pruduct one obtains the posterior means and variances. The
algorithm is simple in that no first and second order derivatives of

f(t) heve to be derived, but it also is computationally slow.

6



lnatoad of the posterior mean, the posterior mode E)t rould be used as a
point estimate of 0. The mode can be obtained by solving

(16) k(0) = t = Sfoxp 0-b,) [ 1+exp0v )™ - 07 ) = 0
1 1

for 8 ; the tirst part of Equation (16) cquals the likelihood equation, the
second part stems from the normal population distribution. The modal
estimate is obtained by iteratively solving (16) for 0. Onc may use the
maximum likelihood estimate 0 as a starting value. Using a two-term

Taylor expansion of (16) onc then obtains
a7) k() = k(dy+o-H) [ .
a0 / 0=9
A— A A 1
=- 5%}#il + (6-0) [ 1(6) + EF’] =0

due to the fact that h(8) (cf. Equation (10)) equals zero. Equation (17)

can be rewritten as
(18) 8 = p5 0 + (l-pg) u
where
oy = o? [02 + 170 (B) ]—l .

Equation (18) clearly indicates that the empirical Bayes estimates
are regressed to the mean; Equation (18) is a Kelley-formula for the
estimation of 6. Estimate (i8), being the estimated 6 after the first
iteration, may of course still differ to a certain extent from the

~

final modal estimate 9.

Also for the mhdal estimate O an interval estimate can be obtained
using

-1
(19) var (8|t) = [ 1(8) + 0—2]

A simulation

In order to demonstrate the feasibility and usefulness of empirical
Bayes estimation within the context of the Rasch model, a simulation
study was performed. It was assumed that the population distribution

) . .
v~ was N(0,1). Further, the hypothetical test was assumed to consist of
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twenty itema, with all {tem parameters equal to zero,

Three hundred person parameters were randomly generated from the
distribution N(O,1). Next, for g¢ach hypothetical peraon p a score pattern
was generated with a probability of a eorrect anawer éﬁp(ﬁp)[!+ﬁXp(6p)]—l
for each item, The 300 x 20 data matrix wan analyzed using the uncondi-
tional procedure for the estimation of person and item parameters from
BICAL, written by Wright and Mead (cf. Wright and Stone, 19/9). The
procedure contains a correction for bias in the item parametcer estimates
arising in the situation where both scts of parameters are estimated
simultancously; this bias was proved by Anderscen (1973) for the case of
two items,

The item parameter cstimates, based on the 293 cases with scores

1 & x £ 19, ranged from =,113 to .182. Clearly regressed item parameter
estimates have more optimal characteristics even if one does not invoke
the concept of a distribution from which items are randomly sampled
(Efron and Morris, 1975). 1ln this paper we will, however, make use of

the ordinary ma..’mum likelihood estimates of the item parameters. The
estimated population mean and variance, using the Andersen and Madsen
Procedure, are ﬁ = 0,047 and 6% = 1.108. The person parameter estimates
5, ® and 0 are given in Table |, The posterior means were also computed
by means of the Sanathanan and Blumenthal procedure; they are not
presented here while t.aey were virtually identical with the estimates
from the Andersen and Madsen procedure,

For x equal to zero or twenty no maximum likelihood estimate is possible.
In order to compare the maximum likelihood and the empirical Bayes
estimate, 'maximum likelihood' estimates for scores t = 0 and t = 20
were computed by substitution of scores t = 0.5 and t = 19.5 respectively

in the likelihood equation.



Tabel 1. Person parameter estimates

acore b (] 0

0 -3.67 =-2.29 =-2.21
1 =-2.79 -1.93 -1.87
2 ~2.08 -1.63 -1.58
k] -1.65 -1.37 -1.33
4 -1.32 -1.14 -1.10
5 -1.04 -0.92 =-0.90
6 -0.80 =-0.72 -0.70
7 -0.59 -0.53 =0.52
8 ~0.39 =0.35 -0.34
9 ~0.19 -0.17 -0.17
10 0 0.01 0.0

11 0.19 0.18 0.17
12 0.38 0.36 0.34
13 0.59 0.55 0.52
14 0.80 0.74 0.70
15 1.04 0.94 0.90
16 1.32 1.16 1.10
17 1.65 1.39 1.33
18 2,09 1.66 1.58
19 2.79 1.96 1.87
20 3.67 2.32 2,21




It ia clear from Table | that the empirical Bayes point estimates are
rogreascd to the mean, the posterior mode alightly more than the
posterior mean eatimates, Further, the regresanion is strongesat for
extreme obuserved scores. The confldence Intervals based on the empirical
Bayes approach, are smaller than the {ntervala based on the {ntformation
function, as can bo seen from Table 2. Again, the empirical Bayon

approach has the largeat effoect for extreme wcoren.

Table 2. Eatimated variances

score SG)) var (0]x)
0 2.05 0.38
] 0.91 0.32
2 0.51 0?28
3 0.37 0.25
4 0.30 0.22
5 0.26 0.21
6 0.23 0.19
7 0.22 0.19
8 W21 0.18
9 0.2 0.18
10 0.20 0.18
11 0.20 0.18
12 0.21 0.18
13 0.22 0.19
14 0.23 0.20
15 0.26 0.21
16 0.30 0.23
17 0.37 0.25
18 0.51 0.28
19 0.91 0.33
20 2.05 0.39

In order to compare the effectiveness of the three different point
estimates, the mean squared error loss in the sample was computed.
This was done for all 300 cases and for the subgroup with scores

1 thru 19. The results are given in Table 3. Between brackets the
results of two other simulations with 300 cases are presented. The

empirical Bayes estimators



Table 3. Mean squared error loss

eatimator all camen (N=100)
0 303 (250, . 286)
] W335 (. 180, . 209) .
0 227 (182, 21
caded with scores | thru 19
i $276 €221, L 244)
1) 226 (181, .196)
0 L2260 (L 184, L 200)

outweigh the maximum likeliheod entimator, with a slight advantapge for
the poaterior mean as oxpected with the critorion of mean nquared
error loss. It is clear that the advantage of the empirical Rayen
estimators is due in large part to the atrong regrossion for

extreme O,

Discusaion

Person parameter cstimates which are rogressed to the mean are on the
average more accurate than ordinary maximum likelihood estimates.

In this paper this is demonstrated for three samples of 300 cas»s within
the context of the Rasch model. The empirical Bayes estimates varied
more than the likelihood estimates, due to the fact that not only item
parameters, but also population distribution paramecters had to be
cstimated from the sample data, the largest difference being 0.C7 for a
score 2qual to 20, In applications of course new samples should be
combined with old samples in order to improve all parameter estimates.
The results were based on a computer simulation for which the model

and distributional assumptions were known to be correct. For real data
- apart from the question of fit of the Rasch medel - there is a
question of appropriateness of the distributional assumptions. It
remains to be examined how robust the results are when the normality
assumption is violated. The normality assumption can be tested by means
of the test of fit proposed by Andersen and Madsen. If the normality
assumption turns out to be inadequate, other distributions may be

fitted to the data using a similar approach as proposed in this paper.

Interestingly, the fact that regressed estimates of person parameters
are more efficient than the maximum likelihood estimator, is similar
to regression effects in classical test theory. Regression effects

will be larger with short tests and/or a small population variance

f a2



(an example of the latter case ls given by Wood, 1978). It is clear
that the emplirical Bayes estimates of person parameters are important
for many applications, In atudies of change, e.g,, where different
groupe of persons differ in Initial eatimated abilivles, {t is not
posaible teo obtaln sound concluslons {f one does not account for

regression offects.
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