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In a situation where the population distribution of latent trait scores

can be estimated, one may improve upon the ordinary maximum likelihood

estimator of latent trait scores by taking the estimated population

distribution into account. In the present paper empirical Bayes

estimators are compared with the likelihood estimator within the context

of the Rasch model. The data are simulated, With latent trait scores

gen,tvated from a normal distribution.

Introduction

In a latent trait model person. parameters or abilities can be estimated

by the method of maximum likelihood, given the item parameters or

estimates of the item parameters. The ML-method has some disadvantages,

however. First, person parameters cannot be estimated for persons with

a zero or perfect score, the estimates tending to minus and plus

infinity, respectively; in the three parameter logistic model also

other score patterns have no unique maximum of the ...kelihood equation

(Samejima, 1973). Secondly, in case the persons can be regarded as

randomly sampled from some population of persons, an empirical Bayes

estimate of persons' abilities can be obtained which has a smaller

expected mean squared error and is preferable for that reason; in

the same way interval estimates for abilities can be obtained which

compare favorably with intervals obtained through the information

function.

Paper presented at the European Meeting of the Psychometric
Society, Groningen, June 19 thru 21, 1980. The author is indebted
to Eric A. Bakker who wrote the computer programs.
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Bayesian and empirical Bayes procedures have been proposed betore within

the context of latent trait theory. Birnbaum (1969) and in connection

with tailored testing Owen (1969; see also Jensema, 1974) have

proposed a Bayesian analysis for the logistic and normal ogive latent

trait models. Leonard (1972) has presented a Bayesian analysis for the

binomial model using the 'logodds' transformation; his model can be

regarded as a special case of the Rasch model with all item parameters

equal to zero. An empirical Bayes point estimate of ability has been

derived by Meredith and Kearns (1973) for the multiplicative version

of the Rasch model; the advantage of their approach is that no specific

assumptions with respect to the population distribution have to be made

and that the estimation of the population distribution can be bypassed.

Sanathanan and Blumenthal (1978) have presented an empirical Bayes

procedure for the additive Rasch model; they assume that the person

parameter density belongs to a specific family of densities. In the

present paper an empirical Bayes proL.oure for the additive vers$.on

of the Rasch model is proposed, assuming normally distribution abilities.

The posterior dis-_ribution in the Rasch model

The additive Rasch model reads

(1) P(ui=110)=exp (0bi)/{ 1+exp(0bi),

whereOisthep.arsonparameterorability,b.is the item parameter or

difficulty of item i and P(u. =Ile) is the probability of a correct

answer on item i, given ability e. Given the item parameters

b=(bi,b2,...,b
n
) or good item parameter estimates for the items of

a nitem test, the likelihood of having t items correct equals

_1
(2) L (t10)=Yt exp(tO) 1I [1+exp(0bi)}1

i=1

where yt is the elementary symmetric function of order t of the n

factors exp(bi).

Let us assume that the person parameters can be considered as randomly

sampled from a population distribution g(e), i.e., g(0) is the prior

distribution for the (Ps. Using Bayes' rule we obtain the posterior

distribution of e
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(3) f(01t) -

whore

Ekcinntui

f(t)

1

. y
t
exp(tO) lI [ 1+exp(0-bi)] 1g(0)

f(t)

(4) f(t)
t
exp(tO) II [1+exp(0-bi),

-1
g(0)d0.i

iml

Equation (3) is similar to Birnbaum's (1969)Equation (4). In the present

paper it is assumed that g(0) is a normal distribution COlp,a2).

The above model is not quite realistic in that a known population

distribution is assumed. The more general approach is to assume that

prior information on p and a2 is available and to combine this

information with data from the sample of persons in order to obtain

posterior estimates of p and a2. In an empirical Bayes approach only

sample information is used in order to obtain the parameters of the

population distribution.

The normal population distribution

In the logistic and normal ogive models the ability scale has interval

characteristics, i.e. the models are invariant up to a linear transform-

ation. For this reason one can choose the representation for which

0 is N(0,1). Item parameters have to be estimated on this particular

scale. Bock and Lieberman (1970) present an estimation procedure for the

two-parameter normal ogive model, Bock (1972) presents one for the

logistic model without guessing parameter. An heuristic procedure for

the three-parameter ogive model has been proposed by Urry (1976).

The same could be done in connection with the Rasch model if one allows

the common discrimination parameter to be unequal to one. We will,

however, confine ourselves to the Rasch model proper in which only

translations of the ability scale are allowed.

For the Rasch model a procedure for the estimation of p and a2 of the

population distribution has been presented by Andersen and Madsen (1977).

They start with the marginal frequencies f(t), t=0,1,...,n, from (4)

assuming accurately estimated item parameters. The lilelihood of

N
t

scores t for t = 0,1,...,n in a sample of N= E N
t

persons from the
t=0

population equals
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(5) Lb

4
0

e)te[f(tIP,(12)]
t

-

where 0 denotes the normal frequency distribution.

Estimates of U and u2 aro obtained by differentiating the logarithm of

likelihood (5) with respect to p and a2 and setting the results equal

to zero:

DlogL
b,0 N Df(t)

(6)
t =0

Dv f(t) Dp

and

(7)

DlogLII,0
Df(t)

E 0 .

Da2
f(t) Da2

The derivatives equal

(8)

and

(9)

of (t)

au

of (t)

Da2

i[(e-P)/a2] Yt
exp(t6) fl [ 1+exp(6-bi)1} -10(6)d6

i =1

- [0_02/0.4_1/0.2]
lt

exp(t6) (11 [1+exp(6-bi)1,1-10(6)d6
i=1

From (4), (8) and (9) it is clear that the elementary symmetric functions

which do not contain 6, do not have to be computed. Equations (6) and

(7) can be solved iteratively for p and a2 by the Newton-Raphson method;

in order to be able to compute the derivatives the integrals have to be

approximated by sums. Andersen and Madsen also presents a likelihood

ratio test for fit.

Point and interval estimates for the person parameters

The likelihood equation for the estimation of 6, given a score equal to

t, equals

DlogLb(t16)

(10) h(6) - t - E exp(6-bi) i1 +exp(6-bi) I
-1

De
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A person parameter estimate Ut is obtained by solving (10) interatively

for O. An interval estimate of 0 - under the assumption of app:oximate

normality of the distribution of the likelihood estimate 0 and the

assumption that the information function is fairly constant in the

neighbourhood of the likelihood estimate - can be obtained from the

information function through

var (0) z I-1(6)°
exp(0-bi)

1+exp(8 -bi)

An empirical Bayes point estimate of 0 is the posterior mean

(12) Ert E(Olt) /Of(OIt)dO

where f(0 It) is obtained from (3) replacing g(C) by the estimated

population distribution. The posterior variance can be computed as

(13) var (Olt) . E0210-E2010 - 02 f(Olt)de -

Under the assumption that the posterior distribution can be approximated

by a normal distribution (12) and (13) can be used in order to obtain a

posterior confidence interval for 0.

Equations (12) and (13) also can be used for the estimation of 11 and 02

by means of a procedure due to Sanathanan and Blumenthal (1978). From

the equation one obtains

n

(14) 11 = E (N
t/

) E(Olt)
t=0

and

(15) 32 + f12 = Z(Nti E(0210.
'N'

Choosing initial values for 11 and 02, E(OIt) and E0210 can be computed

for t=0,...,n. Thro:gh Equations (14) and (15) one obtains new values

for 11 and a2. One can repeat the procedure until convergence is obtained.

As a by-pruduct one obtains the posterior means and variances. The

algorithm is simple in that no first and second order derivatives of

f(t) have to be derived, but it also is computationally slow.
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Instead of the posterior mean, the posterior mode Qt rlould be used an a

point estimate of O. The mode can he obtained by solving

(16) k(0) r - E ( exp (0 -b.) [ 1+exp(0-bi),-I - 02(0-0 e 0

for 0; the first part of Equation (16) equals the likelihood equation, the

second part stems from the normal population distribution. The modal

estimate is obtained by iteratively solving (16) for O. One may use the

maximum likelihood estimate 0 as a starting value. Using a two-term

Taylor expansion of (16) one then obtains

(17) k(0) k(6)+(0-6) (.3510 0.6

- S-:°;1-1) + (6 -0) 1(6) +
0

e 0

due to the fact that h(6) (cf. Equation (10)) equals zero. Equation (17)

can be rewritten as

(18) 6 . pg 6 + (1-06) 1.1

where

, = 02 [02 I-1 0) 1 -1

Equation (18) clearly indicates that the empirical Bayes estimates

are regressed to the mean; Equation (18) is a Kelley-formula for the

estimation of 0. Estimate (18), being the estimated 0 after the first

iteration, may of course still differ to a certain extent from the

final modal estimate 0.

Also for the nridal estimate 0 an interval estimate can be obtained

using

(19) v/'r (Olt) = [ 1(6) + 0-2] .

A simulation

In order to demonstrate the feasibility and usefulness 3f empirical

Bayes estimation within the context of the Rasch model, a simulation

study was performed. It was assumed that the population distribution

was N(0,1). Further, the hypothetical test was assumed to consist of
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twenty items, with nil item parameters equal to zero.

Three hundred person parameters were randomly generated from the

distribution N(0,1). Next, for each hypothetical person p a score pattern

was generated with a probability of d -correct answer exp(0 414-exp(0 )1-1

for each item. The 300 x 20 data matrix was analyzed using the uncondi-

tional procedure for the estimation of person and item parameters from

BICAL, written by Wright and Mend (cf. Wright and Stone, 19/9). The

procedure contains a correction for bias in the item parameter estimates

arising in the situation where both sets of parameters are estimated

simultaneously; this bins was proved by Andersen (1973) for the case of

two items.

The item parameter estimates, based on the 293 cases with scores

I x 45 19, ranged from -.113 to .182. Clearly tegressed item parameter

estimates have more optimal characteristics even if one does not invoke

the concept of a distribution from which items are randomly sampled

(Efron and Morris, 1975). In this paper we will, however, make use of

the ordinary ma..mum likelihood estimates of the item parameters. The

estimated population mean and variance, using the Andersen and Madsen

procedure, are p - 0.047 and 62 . 1.108. The person parameter estimates

8, 0 and 6 are given in Table I. The posterior means were also computed

by means of the Sanathanan and Blumenthal procedure; they are not

presented here while t.iey were virtually identical with the estimates

from the Andersen and Madsen procedure.

For x equal to zero or twenty no maximum likelihood estimate is possible.

In order to compare the maximum likelihood and the empirical Bayes

estimate, 'maximum likelihood' estimates for scores t = 0 and t = 20

were computed by substitution of scores t = 0.5 and t = 19.5 respectively

in the likelihood equation.



Tabel I.

score

Portion parameter eatimates

6 U t7

0 -3.67 -2.29 -2.21

1 -2.79 -1.93 -1.87

2 -2.08 -1.63 -1.58

3 -1.65 -1.37 -1.33

4 -1.32 -1.14 -1.10

5 -1.04 -0.92 -0.90

6 -0.80 -0.72 -0.70

7 -0.59 -0.53 -0.52

8 -0.39 -0.35 -0.34

9 -0.19 -0.17 -0.17

10 0 0.01 0.0

11 0.19 0.18 0.17

12 0.38 0.36 0.34

13 0.59 0.55 0.52

14 0.80 0.74 0.70

15 1.04 0.94 0.90

16 1.32 1.16 1.10

17 1.65 1.39 1.33

18 2.09 1.66 1.58

19 2.79 1.96 1.87

20 3.67 2.32 2.21



It is clear from Table 1 that the empirical neves point estimates aro

regressed to the mean, the posterior mode slightly more than tho

posterior mean estimates. Further, the regression is strongest for

extreme observed scores. The confidence intervals based on the empirical

Bayes approach, area smaller than the intervals based on the information

function, as can be seen from Table 2. Again, the empirical Dayes

approach hen the largest effect for extreme scores.

Table 2. Estimated variances

score 1-1((1) vnr (0(x)

0 2.05 0.38

1 0.91 0.32

2 0.51 0.28

3 0.37 0.25

4 0.30 0.22

5 0.26 0.21

6 0.23 0.19

7 0.22 0.19

8 0.21 0.18

9 0.20 0.18

10 0.20 0.18

II 0.20 0.18

12 0.21 0.18

13 0.22 0.19

14 0.23 0."..0

15 0.26 0.21

16 0.30 0.23

17 0.37 0.25

18 0.51 0.28

19 0.91 0.33

20 2.05 0.39

In order to compare the effectiveness of the three different point

estimates, the mean squared error loss in the sample was computed.

This was done for all 300 cases and for the subgroup with scores

1 thru 19. The results are given in Table 3. Between brackets the

results of two other simulations with 300 cases are presented. The

empirical Bayes estimators
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Table 1. M0411 squared error loss

estimator

0

all

.303

.225

.227

C4004 (N0300)

(.250, .286)

6180, .209)

(.182, .213)

CANO% with scores 1 thru I'3

6 .276 (.221, .244)

0 .224 (.181, .196)

6 .224 (.184, .200)

outweigh the maximum likelihood estimator, with a slight advantage for

the posterior moan as expected with the criterion of moan squared

error loss. It is clear that the aavqntne of the empirical Hayes

estimators is due in largo part to the strong regression for

extreme 0.

Discussion

Person parameter estimates which are regressed to the mean are on

average more accurate than ordinary maximum likelihood estimates.

In this paper this is demanstrlted for three samples of 300 caerm within

the context of the Reach model. The empirical Reyes estimates varied

more than the likelihood estimates, due to the fact that not only item

parameters, but also population distribution parameters had to be

estimated from the sample data, the largest difference being 0.C' for a

score ,,(.Nal to 20. In applications of course new samples should be

combined with old samples in order to improve all parameter estimates.

The results were based on a computer simulation for which the model

and distributional assumptions were known to be correct. For real darn

- apart from the question of fit of the Reach model - there is a

question of appropriateness of the distributional assumptions. It

remains to be examined how robust the results are when the normality

assumption is violated. The normality assumption can be tested by means

of the test of fit proposed by Andersen and Madsen. If the normality

assumption turns out to bt inadequate, other distributions may be

fitted to the data using a similar approach as proposed in this paper.

Interestingly, the fact that regressed estimates of person parameters

are more efficient than the maximum likelihood estimator, is similar

to regression effects in classical test theory. Regression effects

will be larger with short tests and/or a small population variance
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