
DOCUMENT RESUME

ED 197 986. SE 034 161-

AUTHOR Anderson, Lougenie: Gales, Larry
TITLE Programmer's Guide for FFOPM. Physical Processes in

Terrestrial and Aquatic Ecosystems, Computer Programs
and Graphics Capabilities.

INSTITUTION Washington Univ., Seattle. Center for Quantitative
Science in Forestry, Fisheries and Wildlife.

SPONS'AGENCY National Science Foundation, Washington, D.C.
PUB DATE . Mav 79
GRANT NSF-G2-2980: NSF-SED74-17696
NOTE- 38p.: For related documents, see SE 03u 160-167 and

SE 033 581-597.

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Biological Sciences: *College Science: Computer

Assisted Instruction: *Computer Graphics: *Computer
PrOgrams: Display Systems: Ecology: Higher Education:
Interdisciplinary Approach: Mathematical
Applications:, Physics:'*Programing: Science
Education

ABSTRACT -

This module is patt of a series designed to be used
by life science students for instruction in the application of
physical theory,to edeSysteM oparatiOn. Most modules contain computer

_programs which are built around a particular application of a
physical procegS.; EFOPM\ is a port4ble format-free input subroutine'
package written in ANSI Fortran IV which permits users to a4rign
input values to program' \variT,i16-1by name. without regard to position
or order. It is especially,suitable fcr \the input of directives which
control the operation of \interactive programs. F70RM is similar to
the Namelist input/output\systems found in many implementations of
FORTRAN but features greatly superior error messages and error
recovery procedures, and_offers additional, capabilities such as I/O,
annotation of Input, and echoing of input: A more detailed
description of the purpose and use of FFORM is contained in i *ts
user's guide. fAuthor/CS1

***********#***
* Reproductions sun- plied by EDRS are the best that can be made .

from the original document.

I

PHYSICAL PROCESSES IN TERRESTRIAL AND AQUATIC ECOSYSTEMS

COMPUTER PROGRAMS AND GRAPHICS'CAPABILITIES

co

L j

PROGRAMMER'S GUIDE FOR SUBROUTINE. FFORM

SS"

by

Lougenia Anderson and Larry Gales

CENTER 'FOR QUANTITATIVE SCIENCE IN

FORESTRY, FISHERIES AND WILDLIFE _

University of Washington

r.

t.

PROGRAMMER'S GUIDE FOR FFORM

by

Lougenia Anderson and Larry Gales

This institional moduleis part of a seqes on Physical Processes in

Terrestrial and, Aquatic Ecosystems supported by National

Science Foundation Training Grant No. GZ-2980

MAY 1978

JANE 0 ")?

PROGRAMMU S GUIDE FOR FFORM: A FORMAT-FREE INPUT SYSTEM

Identification
cr.

FFORM - A Format-Free.Input Subutine Package

'Authors - Lougenia Andefson and Larry Gales -

Date - May 1978, Center for Quantitative.Science in Forestry, Fisheries

and Wildlife, University of Washington, Seattle, Washington 98195

Purpose

FFORM is a portable format-free input subroutine package written in ANSI

Fortran IV which permits users to assign input values to program variables by

name without regard to position or order. For example, FFORM processes the

following input card,-

VELOC = 25.2, ARRAY(1) = 10 * 0 $

by assigning the value 25.2 tl a program variable named VELOC'and by zeroing

out the first 10 elements .of -an array named ARRAY. FFORM is especially suitable

for the inpUt of directives which control the operation of interactive programs.

FFORM'is similar to the'Nemelist input/output (henceforth input/output is

abbreviated as I/O) systems found in many implementations of-Fortran, but features

greatly superior error Messages and error recovery procedures, and offers

additional capabilities such as text I/O, annotation of input, and echoing of

input. 'Unlike Namelis/-, however, FFORM cannot interrogate tables within the

Fortran compiler, and so rFguires auxiliary input information. This information

consists of: 1)' a restriction which limits input variables to a contiguous

block of locations in blank common; 2) the starting address of tLe input block in

blank common; and 3) a set of declarations which define the order, type, and

dimensionality of all input variables. The latter information, which duplicates

the input variable declarationS in the calling ptogram, is passed-to FFORM'via

a formatted file and provides the crucial link which enables it to construct

symbol tables which control the processing of user input directives.

The input to FFORM consists of a set of blocks each of which is terminated

by a dollar sign ($). Each block consists of one or. more input expressions

separated by commas and with blanks or comments freely interspersed. Each

expression controls the input of values to a variable which may be of type

integer, real, logical, text, double precision, or complex; and with zero, one,

two or three' dimensions. Repeated values are indicated.by the syntax "n *v" where

n is the repeat count and v is the value to be repeated, and comments are enclosed

within slashes (/.../).; The input is checked for, among other things, name and

subscript errors which are automatically flagged and underseored. FFORM output

is compatible with FFORM,input in that the former can be read directly by the

latter.

FFORM also permits a division of the input variable list into a number.of.

. .

named sublists, called io- lists, which limit I/O to variables in the sublist.

Sublists need not be disjoint. The io-lists are especially useful for limiting

FFORM output, blit may be used for controlling input as well.

For a more detailed description 'of the purpose and use of FFORM, refer to

its user's guide (Gales and Anderson 1978).

Us'age

FFORM communicates with the calling program via argument lists, blank

common, and files.

5

Argument lists:

FFORM containa three main entry points named QQINTL,.QQREAD,. and QQWRIT

whose arguments are unsubscripted integer variables or constants. QQINTL is

used to ilitialize the system and to select io-lists, and must be called with

a blank io-list before any other calls are tade to FFORM. A call with a blank

io-list name reads and processes the file which contains the declarations for

the input variables and builds a symbol table. Subsequent.calls to QQINTL with

nonblank i&-list names mark the symbol table to limit I/O to the variables -'

specified in, the io-list. Note that every call to QQINTL, with or without nonbaank,

/a.

io-lisi,names, re-reads the entire file which contains the declarations, hence the

declaratiOnfile must remain intact. QQINTL is invoked-by the following statement:

CALL QQINTL (WS, IOID, INFILE, ERFILE, ERROR)

where:

WS = the number of words occupied by the work space in blank common

before the beginning of the input/output variable area (which

is also in blank common);

IOID = a one-character identifier which Matches one of the io-lists. Only

those variables in the io-list so selected will be input when QQREAD

is called or output when QQWRIT is called. If IOID is the blank

character, then all variables specified in the declarations are
,

available for input/output;

INFILE = a file containing the declarations and io-list(s);
o

ERFILE = a file on which error messages are written;

ERROR = an error flag which is set if an error is encountered; ERROR = 0

if no error was encountered.

Subroutine QQREAD reads in the user's input directives under the control

of the io-list speciaed in the most recent call to QQINTL. If the io-list name

is blank, it reads the next input block until it detects a dollar sign ($). If

6
C.

the io-list name is-nonblank, QQREAD-first searches the input file for the

characters."(X)" where "X" is the name Of the sought for 1O-list. When found,

it accepts input:Until it detects a dollar sign or the next io -list name. QQREAD

is invoked by the following statement:

CALL Q01tEAD. (INFILE, ECTILE ERFILE, ERROR)

where:
e

INFILE = a file containing the user's free-form input directives;

EtFIa = a f ile on which input cards are echoed (printed out). If ECFILE \\

is 6the input is not echoed;

ERFILE = 'a file on which error messages are written;

ERROR = an error number which is set to a nonzero value if an error is detectdd;.

Q ERROR = 0 if no error was detected.

.Subroutine QQWRIT prints out the names and values of input variables undet

control of the io-list specified in the most recent call to QQINTL. If the

io-list name is,blank, then QQWRIT outputs all variables; otherwise it outputs

only thosevariablea'which belong to the current io-list. Output written by-

QQWRIT can be read by QQREAD. QQWRIT is invoked by the following statement:

CALL QQWRIT (OTFILE).

where:

OTFILE = a file on which output is to be written.

Common blocks:

The free-form input system uses blank common and five labeled common blocks

named /QQSCN/, /QQPARS/, /QQSYM/, /QQKHAR/, and /QQER/. All variables to he

input or output by FFORM must occupy a contiguous block of locations in blank

common. The displacement of the first input variable from the start of the blank

common must be passed as an argument to subroutine 'glum, when FFORM is initialized.

For example; suppose blank common is structured as follows:

5

' COMMON // WSPACE(5400), A(10),- V(2,5), WIND

where the variables A, V, and. WIND are to be input via the free-form input

- system. In this case, when QQINTL is called, the WS. argument must equal 5400

to indicate that the input/output .variable blOtk begins after the first 5400

words of blank common.* The five labeled coMmon:blocks /QQSCN/, /QQPARS/, /QQSYM/,

/QQKHAR/, and /QQERfare used only for. internal operations in.FFORM and can

be ignored by the calling program.

Files:

FFORM makes use of four filea named,INFILE, ERFILE, ECEIL6nd OTFILE.j

For a call) to subroutine QQINTL, INFILE leAhe unit number of a formatted file

which contains the declarations and io-lists. It may contain any number of

card images, each of which is. up to.72 characters long. The format for INFILE

when read by QQINTL is.formallydefined by the grammar in Appendix I And consists

essentially of a"set of data declarations which closely follow the declarations

for variables in the calling program, except -that: 1) continuation' cards are

not needed; 2) the declaraions can begin at, or anywhere after, column 1;

3) integer variables in the\calling,program which are to receive alphanumeric

text must be-declared as TEXT, not INTEGER; and 4) the block ot declarations is

terminated by "$ io-lists $."'.If no io-lists are present then the declaration

block is terminated by $$. Each io-list starts on a new card and is of the form

(X) v, v,...,v where X is a one-character io-list name and v, v,...,vare

the names of input variables. It is absolutely crucial that the

declarations on INFILE preserve the exact order, type, and dimensionality of the

-input variables as they occur in blank common in the calling program. However, .

variables mentioned in the-,io-lists may appear in any order:

*HoweVer, On'atany computer\ systems a single real number occupies' n computer words
where n is typically 2 or. 4: In this case WS must equal n*5400.

0 6

The,fokmat for INFILE is illustrated in the following example. Suppose that

CATCH, TITLE, ENERGY, and LIVE are input variables declared in the main program as

follows:

COMMON // WSPACE(5400), CATCH(10,5), TITLE(60)

ENERGY, LIVE

INTEGER CATCH, TITLE

REAL ENERGY

LOGICAL LIVE
-

SuppOse that TITLE'is to contain alphanumeric text, one character per word,;

and the the following io -lists are provided: , (A) TITLE, LIVE (B) ENERGY, CATCH

and'(C) CATCH, LIVE; then,INFILE must* be formatted as follows:

INTEGER CATCH(10,5)

TEXT TITLE(60)

REAL ENERGY

LOGICAL LIVE $

(A) TITLE, LIVE

(B) ENERGY, CATCH

(C) CATCH, LIVE $

INFILE is automatically rewound by QQINTL at the start of execution.

Fora call-to QQREAD, INFILE is the unit number (it may be a different

'number.than in the call. to QQINTL) of the file Ontaining the free-form input.

Again, it may contain any number of card images, each of which is up to 72

characters long. -The format of INFILE when read'by QQREAD is formally defined

in Appendix'ILarid essentially 'consists of-sets of, [name] =,Ivalue]:expressions,

where [name] is a simple or subscripted variable and [value] is a value or a list

of (possibly reneated) values. For example, the user input for the variables in

the above example might consigtof several input blocks on INFILE'formaited as

follows:

0

7

LIVE = T, CATCH(1, 10*3 $

TITLE = #-CAUCOF LOBSTER CATCH(1,6) =

ENERGY = 6.32E+02 $

(A) LIVE =77$,

(C) LIVE = T

INFILE is not rewound by.QQREAD. Note

sign, and that each input sublist must

ERFILE, ECFILE, and OTFILE are the
.

written* by the free-form input system,

generated during execution; ECFILE

,, 2 *0,

that text variables are delimited by the it

begin on a new card.-

unit numberS of ,formatted output files

ERFILE contains any error messages

if'nonzero, contains an echo o each input

card image read by QQREAD; OTFILE contains the card images of ouiPut for variables

generated by a call to QQWRIT. The output file OTFILE is in-a form compatible-
0

with free-form input specifications and can thus

(the file must first be rewound, however).

be reread by a call to QQREAD

The, characteristics of the files used by the free-form system are summarized

as follows:

FILE , AUTOMATIC READ BY READ BY WRITTEN BY UNIQUE
NAME ' REWIND QQINTL QQREAD FFORM SYSTEM UNIT NO.

INFILE (By QQINTL
only)

Yes, Yes No . Yes

ECFILE No No :go Yes

ERFILE No No Yes

OTFILE No No No Yes No

The column labeled "AUTOMATIC REWIND" Means that the file is rewound at the

beginning of execution. The column labeled "UNIQUE UNIT NO." specifies whether or

not different file names may reference the-same unit number. Only INFILE need,be

Unique in the free-form system. Thus, it may.be the case that' ECFILE = ERFILE = OTF:

10

8

*".

The free-form input system does-not check the files to see if file names
.

reference valid unit numbers. This type of error will ,generally trigger error

messages and,actions which are peculiar to a given computer-installation.

3
a

Structure

The structure for FFORM is shown by the parse tree in Appendix I.

Subroutines

The following is a list and brief, .description of all subroutines in FFORM

in alphabetical order:

.QQBLOK: Assigns constant values to all variables which appear in labeled

common; it is here that.the word size of all variable types must be
a0

set-or changed for different implementations ofthe-frea-form

,aystem.

QQCVAL: Called by QQVEXP to parse a single [complex- value] -from the

input and to.assignthe value parsed [repeat-value] number of

times to the-current (complex) variable.

QQCWRT: ' ailed by QQWRIT to output all the values associated with the

current (complex) variable; output is in a form compatible

with freerform input specifications.

QQDECL: Called by QQDELS to parsea singledeclaration]; determines the

QQDELS:

QQDGT:

type which is indicated by a reserved word and calls QQVLST to .

parse the [variable-list].

Called by QQINTL to parse. the '[declaration- list]; it calls QQDECL

repeatedly to parse all the [declaration]s until anAend-of-file]

is encountered.

Returns the real value associated with a given numeric character.

9

QQDVAL: Called by QQVEXP to parse a single [double--Precision-value] from

the input and to assign it [repeat-value] number of times to the

QQDWRT:

current (double precision) variable.

Called by .QQWRIT to output all the values associated with the'

current (double precision) variable; output is in a form

compatible with free -form input specifications.

QQERR:. Outputs an error message containing a giVen error number and

reads from the input f4g_until an [end -of-:file] is encountered._

WIND: Returns a pointer to'an item in the symbol table if the global

NAME array matches one of the variable names in the symbol table;

zero otherwise.

QQFIOL: Scans the input until the selected [io-name] is found.

.16QQGNAM: , Moves the variable name just scanned into the global' NAME'array.

QQIEXP: Called by QQINLS to parse a single [input-exp]; it calls QQNPAR

to parse the.[name-part], parses the equal sign, and then calls

QQVPAR to parse the [value-part].

QQINLS: Called by QQREAD to parse the [input-list]. It repeatedly calls

QQIEXP to parse each [input-exp] until an [end-of-file] is encountered.

QQINST,: Makes an entry in the symbol table for the variable.which has just

been parsed in thd declarations.

QQINTL: InitialiZes the free-form input package, calls QQDELS to parse the
o

declarations, and calls QQIOLS to'parse the [io-list]s.

QQIOLS: Called by QQINTL to parsethe [io-list] selebted; it calls QQFIOL

to find the [io-name] specified and then calls QQVFLG to parse

- and flag those variables which follow.

1.2.

QQIVAL:

QQIWRT:

QQKLS:

10

Called by QQVEXP to.parse a single [integer-value] from the

input and to assign it [repeat-value] number of times to the

current (integer) variable.

Called by QQWRIT to output all the values associated with the

current (integer) variab]e; output is in a form compatible

with free-form input specifications.

Returns the partition class (alpha, numeric, special character,

or other) associated with the k
th

character in the KHAR array.

,CJ

This function uses an algorithm for character comparison that is

machine-dependent. The ordering of the internal representation

of characters is used to establish the partition and must be

changed for different orderings of characters.

QQLEX: Lexical analyzer; acts on the KHAR array which contains the

current card image to determine the next syntactic symbol.

QQLVAL: Called by QQVEXP to parse a single [logical-value] from the

input and to assign it [repeat-value] number of times to the

current (logical) variable.

QQLWRT: Called by QQWRIT to output all the values associated with the

current (logical) variable; output is in a form compatible

with free-forM Input specifications.

QQNPAR: 'Called by QQIEXP to parse the [name-part] of a free-form [input-

/ expression].:

QQNUM: Converts numeric string contained in KHAR array into its numeric

value, either integer, real, or double p.ecision.

QQREAD: Parses free-form input, setting variables located in blank common

to the values specified; it is assumed that the symbol table has

C been filled with the necessary Information by a prior call to QQINTL.

,r

nQRVAL:

QQRWRT:

11

Called by QQVEXP to parse a single [real-value from the input

and to assign it [repeat-value] number of times to the current

(real) variable.

Called by QQWRIT to output all the values associated with the

current (real) variable; output is in a form compatible with

free-form input specifications.

QQSCAN: Free-form scanner; drives the lexical analyzer QQLEX and maintains

QQSLST:

QQTVAL:

QQTWRT:

the necessary information for the current and look-ahead syntactic

symbols.

Called by QQVAR and by QQNPAR to parse a [subscript-list].

Called by QQVEXP to parse a single [text-value] from the input

and to assign it [repeat-value] number of times to the current

(integer) variable.

Called by.QQWRIT to output all the values associated with the

current (text) variable; output is in a form compa0;le with

free-form input specifications.

QQVAR: Called by QQVLST to parse the [variable-part] of declarations.

QQVEXP: Called by QQVPAR to parse a single [value-exp]; it checks for a

[repeat-value] and calls the appropriate subroutine to parse'

the value itself.

QQVFLG: Called by QQIOLS to parse thes[var-part] of the selected [io-list]

and to set the symbol table flag associated with each variable

so named.

QQVLST: Called by QQDECL to parse a [variable-list].

QQVPAR: Called by QQIEXP to parse the [value-part] of an [input-exp].

QQVRW: Determines if a character string in KHAR array is a variable name or

a reserved word.

14

QQWRIT:

12

Driving routine to output all variables which appear in the current

[io-list] in a form compatible with free-form input.

Coding information
O

Literals and constants:

The literals used in the free-form system can be divided into the following

classes:

1) The integers 1-25 are used as error numbers;

2) the integers 0 and 1 are used as flags in the symbol table;

3) the integers 1 and 2 are used to indicate a reference to the-current

scanner token and look-ahead scanner token, respectively;

4) the integer 0 is used as a flag to indicate no error conditions exists;

5) the integers 1-72 are used as subscripts in referencing various arrays;

6) the integers 0 and 1, the real number 0., and the double precision

number 0.D0 are used in initialization;

7) the integer 1 is used as an increment/decrement;

8) the logical constants .TRUE. and .FALSE.;

9) the integer -1, the real number10. and the double precision numbers

1.D1 and -1.D0 are used in converting a string value to a numeric value.

Constants are divided into two classes:

1) those values that are assigned in the"CONSTANTS" section of each routine;

2) those values which, while assigned in the "INITIALIZATION" section of

each routine, usually remain constant throughout execution of the entire

free-form system (they can be changed during execution but are more

constant than most variables).

Thetwo classes of constants are described in the following tables:

.

NAME VALUE

RSWL(*,*) (see
description)

NRSW , 7

LRSW 9

NUM(*) 0,1,2,3,4,5,
6,7,8,9

ISIZE

RSIZE

LSIZE

CSIZE 2

. DSIZE 2

NLIM 6

NAME(*)
HT,1HC,1HD,

WAR 4

20

13

CONSTANTS (Class 1)

SUB.

QQVRW.

QQVRW

QQVRWI

QQDGT

QQBLOK

QQBLOK

QQBLOK',

QQBLOK.\

QQBLOK

QQBLOK

QQVRW

QQIWRT
QQLWRT
QQRWRT
QQCWRT

4 QQDWRT
QQTWRT

BLOCK

/QQSYM/

/QQSYM/

/QQSYM/

/QQSYM/

/QQSYM/

DESCRIPTION

Reserved word table; con-.
tains all reserved. words
recognized by FFORM
system.

Number of reserved words
contained in RSW:.

Length of longest reserved
word in RSWL.

Number table; contains all
digits as characters.

NuMber of words occupied
by an integer value.

Number of words occupied
by a real value.

Number of ,words occupied
by a logical value.

Number of words occupied
by a complex value.

Number of words occupied
by a double precision
value.

/QQSYM/ Maximum length of a variable
name, in characters.

AA,BB...ZZ 1HA,111 ..1HZ QQBLOK /QQKHAR/

Contains first letter of
reserved words in RSWL
array.

The number-of values to be
written on one line of.
output.

Contains all the letters
in the alphabet (A-Z).

NAME

PLUS,

MINUS

STAR

SLASH

LPAREN

RPAREN

EQUAL

BLANK

COMMA

PERIOD

POUND

EDFMK

ALPHA

NUMRL

SPCHR

OTHER

14

VALUE SUB. BLOCK DESCRIPTION

1H+ QQBLOK /QQKHAR/ Plus sign character.

1H- QQBLOK /QQKHAR/ Minus sign character.

1H* QQBLOK /QQKHAR/ Star Character.

1H/ QQBLOK /QQKHAR/ Slash character.

1H(QQBLOK /QQKHAR/ Left parenthesis character.

--- 1H) QQBLOK /QQKHAR/ Right parenthesis character.

1H= QQBLOK /QQKHAR/ Equal sign character.
. ,.

1H QQBLOK /QQKHAR/ Blank character.

1H, QQBLOK /QQKHAR/ Comma character.

.1H. QQBLOK /QQKHAR/ Period character.

1H# QQBLOK /QQKHAR/ Pound sign character.

1H$ QQBLOK /QQKHAR/ Dollar sign character/end-
of-file mark.

1HA f,IQBLOK /QQKHAR/ Signifies alphabetic
character partition class.

1H0 QQBLOK /QQKHAR/ Signifies numeric
character partition class.

1H+ QQBLOK _ /QQKHAR/ Signifies special
-character partition class.

1H' QQBLOK /QQKHAR/ Signifies unrecognizable
character partition class.

CONSTANTS (Class 2)

(Relatively constant constants)

SLIM. .50 QQINTL - /QQSYM/ Maximum number of entries
which can be made in symbol.
table -(at end of. execution
of QQINTL, SLIM isset,to-the
number of entries which Were.
made in the symbol'table).

KSTART 0 QQINTL /QQPARS/ The column number minus 1
QQP51AD at which scanning will commence

when a new.caid image is read .

by the scanner.,

15

NAME VALUE SUB.. BLOCK DESCRIPTION

KIND 72 QQINTL /QQPARS/ The last column on the card
QQREAD image that will be scanned by

the scanner before a new Card'
image is read.

Word lengths:

Six types of variables can be input or output by the. free7form system:

INTEGER, REAL, LOGICAL, TEXT, DOUBLE PRECISION, and COMPLEX. For a particular

implementation, the number of words occupied by a single value of each type

must be specified by setting the constants ISIZE, RSIZE, LSIZE, DSIZE, and

CSIZE to the number of words occupied by a single value of the corresponding

type (it is assumed that a single text character occupies the same amount of

storage as a single integer value--hence there is no need for a TSIZE constant).

The constants ISIZE...CSIZE are all of type integer themselves as the free-form

system will only handle values that occupy integer multiples of whole words of

storage. Thus it is possible for a double precision value to occupy four words

of storage (DSIZE must be set to four in this case) but it is not possible to

input a value for a variable that is declared to be a half-word integer variable.

This restriction is necessary so that, when storing input values or fetching

values to be output, blank common is addressed in a uniform manner which

maintains'ANSI standards-andothe transportability of the free-form package.
-

Nating conventions:

All subroutine, function, and common block names within FFORM start with

the letters Q0 in order to minimize conflict with user or system routines.

All common block location's which are unused in a given subroutine are

represented by dummy variables of, the form ZZZn or ZZnn where n is a digit.'

Each dummy variable may span the area occupied by a.number of variables or arrays.

i6-

. Machine dependencies occur in subroutines QQBLOK, QQKLS, QQINTL, QQVEXP,_and

QQWRIT as follows:

QQBLOK: This routine initializes the constants ISIZE, RSIZE, LSIZE; CSIZE,

.and DSIZE, which determine the number of words of,storage occupied

by a value of the corresponding type and must be set to match-a

particular implementation.

QQKLS: This function uses a machine-dependent algorithm for character

comparison.

QQINTL: These routine redefine blank common, which is allocated in the

QQVEXP
QQWRIT. calling (user) program, to be only one word long. This will cause

'a problem in computer systems which require all occurrences of

common to be of the same length.

Limitations

FFORM. is subject to the.following limitations: 1) all variable names must

start with a letter and are limited to six alphanumeric characters; 2) the

maximum number of inpUt variables which FFORM can handle at any one time is 50;

3) all text information isstored one,character per word; and 4)'no check is made

to see., if file unit numbers are.valid-such errors are left to thecomputer system.

Error Handling

FFORM checks for.25 error condftions. If any of these conditions occurs, it

outputs an appropriate error number, undersco:3s that part,of the input card in

error;.. skips down the input.file to the end of an input block, indicated by

dollar sign. ($),_and returns to the calling program with'ERROR set to_the appropriate

nonzero value. The error messages are listed in Appendix III.

a

17

Extensions.

Symbol table: the symbol table is currently' accessed by a simple linear

search. If its size is substantially increased, it tight be worthwhfle to use a-am

hashing algorithm instead. The only changes would involve subroutines QQINST

(symbol table insertion) and QQFIND (symbol table lookuP).

Octal values: the current implementation does not permit octal values as

input. It is only necessary. to change subroutine QQNUM in order to read octal

values.

Scanner extraction: the free-form scanner can be extracted and used in a

different environment. It includes the routines QQSCAN, QQLEX, QQERR, QQKLS,

QQNUM, and QQVRW.

ftomputer resources

Storage:

The objeci.deck for the free-form input system occupies 7124 (octal) words'

of storage when compiled under the,CDC 6400 Fortran Extended compiler, optimization

level 2.

Execution time:

/
The execution time for the free-form system depends-primarily on the number

//
: of tokens which must be parsed to interpret the declarations and the input directives

(examples of tokens: a reserved word, a variable name, 'a left parenthesis, a numeric

value, a text constant, a comma, etc.). It takes, on the average, approximately

2 x 10
3

CPU seconds,per token on the CDC 6400 computer. For example, a short

sample run using the free-form system contained about 100 "free-form input tokens"

and required 0.195 CPU seconds to execute. Hence, if the average input card

contains about 1S tokens, then FFORM will process about30 cards per second.

20

18

Sample runs.

The annotated listings on the next few pages illustrate the control, program,

and input data cards, plus the associated output generated by the programs, for

two sample runs.

i
9 19%

44'9
Ic. . II /

403 Iii0 6443 ' ANI 'd30
/ .0 I HI _10 /

-'.2i0d113 40.101 :fsm

. viva

viva

403 I410-I4213.IANI 'd30 -.213931NI
.,d06.113 faIpI. - d3531N1

V 3

3
HlOIM 'N31 IV3dV NOIS13321d"319n00

Z IX
.

X31d-W03
evfos 1v3i901
a 1V3d

V IX 113931N1
H10IM IN31 IV3dV

6Z 'X I(E)9V1A9 '9 .1(0Z)V.0(ZIZ4Z))i // NOWM03'
3

W31SAS kndNI Wd0A. 3343 3'H1. d0 3S11.3H1 AO 31dWVX3 31dWIS 3

3
cindin0.93dv1gindwi.53dv1 dI3.4v1iindin0tinomx3144 WYd9021d

2103*

'1N3WW03
. . ***INNWO0

* *.WVd90d.31dWVS 3H1 a163 *61N3WW0-3-
* .-3X3 ONVAV0f.S0dV3'3A09V 33dH1 3141 e1N3WW03

**********4****************************e1N3WW03

'IN3WW03
31I30 findin0tindNifx3IsAf3in33x3

ddegd-vo)
"09160V01
1143WW03
**'1N3WW03

W31SAS indNI WIMA 401N3WW03
332!3 3H1 S3H3V11V 021V3 3A013V 3H1 elN3WW03

**61N3WW03
'1N3WW03
'A3920IIAJ9'H3V11V
.'1N3WW03
**iN3WW03

* '31I3 NOI1VOV1030 4141 SONIA3M 01N3WW03
* Alivolivwoinv liNno-aNiinossns *1N3WW03
* 3H1 SV JAVSS333N Sr SIH1 "31140 101N3WW03
* 03WVN 31I3 1V31901 3H1'01 IWVd90dd 1N3WW03
* NIVW 3H1 SM0110A-H3IHA I3113 N0I1 *61N3WW03
* -V4V1030 3H1.S31d03.021V3 21eAd03 3141 .201N3WW03

***************************************01N3WW03
'1N3WW03
"3114011ndNIIdeAd03
"1N3WW03
*************************0*************61N3WW03

'WV219Old NOI.1 *1N3WW03
* noaxa 31dWVS 3H1 311AW03 01 d311d 1N3WM03
* -W03 lanai 3H1-S11V3 QdV3 ANW 3H1:*61N3WW03:

**61N3WM03
"1N3WW03
srfjNw
xxxxxxtxxxxxxxxliNnow-

31dAVX3 1ndNi-Wd0A 33214 ivws 0005'/w3totifsi4ix
,fit /-

CALL QQINTL(WSsIOIDiDCFsERFs ERROR.)
'WRITE(6,1) .

I FORMAT(42H1,7FREE FORM INPUT AS ECHOED BY QQREAD--- // 1H0)
/F(ERROR..E0. 0)CALL QQREAD(INFsECFsERFs ERPOR)-
WRITE(692) .

2 FORMAT(1Hbs/s34.H0---OUTPUT AS WRITTEN BY QOWRIT---
IF(ERROR 0)CALL QQWRIT(OTF
STOP
END

*EOR
INTEGER $(2,2s21
TEXT 4A(20).
REAL B
LOGICAL BFLAG(3)
COMPLEX U,YsZ
DOUBLE:PRECISION ARIA',
:LENS WIDTH S

*EOR
/ DATE: JUNE 9,
A s =AREA IN SQUARE MILES=, B 40E2,
K(lsisl) s 4 *3, 60,

755S
BFLAG(3) * *T.., X a (4.se975),
BFLAGG2) Fs Y (7E4,3.9),
BFLAG(1)' .TRUE., Z (99.65.1.),
K(2s2S2) 4522,
LEN s 65E6s , WIDTH
AREA = .1D -6 $

*EOR es

*EOF

\
"'FREE FORM INPUT AS ECHOED -BY GOREAD",...

/ DATE: JUNE 9, 1977
A . =AREA IN SQUARE MI LEM,
X(1,1,1)

BfLAeT
-8FLAGI Li) 4

4*3,
755,

F,
X

Y =
(4.0.975),'
(7E4,3.9),

0BFLA1) TRUE., t4.-65,1.1'S
K(2,2,2) 4522, -!

.

LEN a \ 65 E6 WIDTH = 44.3,
AREA .111r6'.

-.--OUiPUT:AS WRITTEN BY 00WRIT-!--

40E 2,

K

A

B
,

BFLAG
X

Y
Z" /
AREA .

L E-N -I

WIDTHSi

4

4

s

I
(
I

a

3, 3s
I 60, -9,

AREA IN SQUARE `'MILES'-,
.4000000E+04s ...

Ts FP Ts -,

4000000E +01, .9750000E400)s
.7000000E+05s 390000.0E+01),
.99650Q0E,+02, "4,1000000E+01);
.10000000 -06o
6-5-0000-0C+-08

.4430000D +02.,

3,
755s

3,
4522s

Y.

24

XFFIL10,CM47000: LARGE FREE FOPM TNDUT EXAMPLE
ACCOUNT,XXXXXXXX,XXXXXX.
ANC4.1*

,

CoAKENT.***********.*****************************
COMMENT:* THE MNF CARD' CALLS THEI FORTRAN COM- ,*

'COMMENT.* PILER'TO 'COMPILE THE SAMPLE EXECU-. *

COMMENT.* TION.PROGRAM. *
COMMENT.***************************************

;
COPYBRiINkiT,DFILE.
COMMENT.
COMMENT,****i***********************************
COMMENT.* 14E COPYBR CARD COPIES THE DECLARA-
COMMENT.*JION FILE,'WHICH FOLLOWS THE MAIN

. *
COMMENT.* PROGRAM, TO THE LOGICAL FILE'NAMFD
COMMENT.* DFILE. THIS IS NECESSAOY AS IHE
COMMENT.* SUaROUTINE OOINTL AUTOMATICALLY
COMMENT.* REWINDS THE DECLARATION FILE.
COMMENT.**
COMMENT*
ATTACH,BFFADIBBFF.
COMMENT. .

COMMENT;**
COMMENT.*.THE ABOVE CARD ATTACHES THE FREE
COMMENT** FORM INPUT SYSTEM.
COMMEN.**
COMMENT*

40$

LOADAGO.
LOAD,BFF.
EXECUTE,FFIEXPINPUT,OUTPUT,DTILE:
COMMENT. .

.

COMMENT,*****************************,***********
COMMENT.* THE THREE ABDVE CARDS'LOAD'AND.EXE *
COMMENT.* CUTE 'THE SAMPLE PRGGRAM.
COMMENT.**************,**** *********************
COMMENT.
*EOR

PROGRAM FFIX(INPUT,OUTPUTITAPEI,TAPE5=INPUT,TAPF6=OUTPUTI
C

C. LO NGER'EXAMPLE OF THE USE OF..THE'FREE\TORM INPUT SYSTEM
'C,., \

,:. \

COMMON //-K12-12,,214 4 1201,--Bi-A-PLA0(1), Yo-Y, -IP
. AREA, LEN, WICTH,:COM456'41,-SAVE(4,51,t),

OIST(3,3)i TIME(3,3), VEL(.3,3), DX, DY, .07,
xiirN, XMAX, YMIN, NMAX,' ZMI,No. ZMAX,

* - iRATE, YRATE, IRATE, MEAN(5), SDA5), AVG(5)

C.

INTEGER COM"
REAL
DOUBLE PRECISIONDISfo-TIME, VEL
COMPLEX :- DX, DY,

: INTEGER XMIN, XMAX, YMINi YMAX,..ZMINPZMAX
PEAL XRATE, IRATE, IRATE
'DOUBLE PRECISION MEAN, SD, AVG',
INTEGER K, A
REAL. B

LOGICAL' ' BFLAG
COMPLEX X, Yl- I

DOUBLE PRECISION
.

AREA, LEN, IrLDTH

23 ,

INTEGER ,' WS, VOID, IOIDAs 10IDB ERROR
INTEGER DCF, INF, ERE., CIF,' E.C.F ..

DATA WS, I0Ibi 10IDAI ..,- IOIDB ERROR
04 1H . 1HAs 1HB, 0 /

DATA DCF l'N'.4, ERE, .-.. OTF ECF .

/, 1,. 5, ?'- 6, 6, . 6 ,/

CALL QQINTL(WSPIOIDDCF,ERF, ERROR)
WRITE(OTF,1) '

1 FORMAT(42H1 -- -FREE FORM INPUT. AS ECHOED BY QQREAD--,--' I/ 1H0)
CALL QQREAD(IgFrECF,ERF, ERROR)
WRITEiOTF,2)

2 FORMAT(1H6/04H0-!..--OUTPUT, AS WRITTEN BY 00WRIT7-- If 1H0)
CALL QQWRIT(OTF) -

CALL QQINJL(WSPIOIDA,DCF,ERF, ERROR)
WRITE(OTP,12) IOIDA

12 FORMAT(23H0UTPUT FOR tUBLISTalAl,
24H.ASWR/TTEN BY QQWRIT- -- // 1HO)'

CALL QQWRIT(OTF) , a

CALL QPIHTL(WS,I0IDB,OCF,ERF, 'ERROR)
WRITE(OTF,i1) -

11 FORMAT(53H07-FREE FORM TNPUT-FOR SUBLIST.B AS ECHOED RY.QQREAD
3H - -- // 1HO)

'CALL QOREAD(INF,EtFvERF, ERROR)
WRITEtOTF',12YIOIDB
CALL 00WRITtOTF f

STOP'
.END

EOR .

.-PNTEGEk'K(2,2,2)
TEXT.,....A(20)

.

REAL.B
I .

LOGICAL' BFLAG(.3)
COMPLEX .XsYs Z
DOUBLE PRECISION AREA,
LEN, WIDTH
TEXT, COM(5014)
REAL SAVE(4st,6)
DOUBLE PRECISION. DIST(3i.3), TIME(3,3), VEL(3,3)
COMPLEX DX, DY. DZ ,

INTEGER -XMIN (MAX, YP!IN, YMAXs ZMIN, ZMAX
REAL ?CRATE,- YRATEs ZR ATE
DOUBLE PRECISION.MEANt51, S0(5), AVG15i.
S.
(A) IMINs ZMAX, YRATES BFLAG,
(B) DX0P. DY, AVG

*EOR
/.- DATE: JUNE 9, 1977. /

AVG 4 *3.E +2, MEAN 4 *65.6666, ;SO 4*0015,
XRATE 65.1, YRATE,4" 1v ,ZRATE, 99.676,
MEAN15) 4D4, SD(5) 5E5, AVG(5) 26001D-10o
COM(11) gi,EX'AXISTIME IN MICROSECONDS... :Ep

. COM(1,2) EY'AXISVELOCITY AS A FUNCTION. OF TIME
COM(1,3) =_IDATE ANM:TrME: JUNE 13s-1977 9:52A4,-M *fp
COM(1,4) 3Y AXISDISTANCE AS A FUNCTION OF TIME Ep

,

)(MAX = 500, YMAX.= 24s ZMAX = 27, .

XMIN = Os YMIN = 11P- ZMIN = 3i
DX = (40.0-36.), DV y(1.376, 99.000001), DZ a (- 676.1,93.2),
DIST(ls1) = 9*0., TIME = 9*0., VEL = 6*0., .

3*1.,
SAVE.* 40*999.999s
40 , 111.111; 40 *, 999.999,
A EAREA IN-SQUARE MILESE, B = 40E120,
K(1,1,1) 4,3s 60i 79P

- 735, .

BFLAG(3) = _X = (4.0.975)P.
'BFLAG(2) = f, Y = (7E4,3.9),

.

BFLAG(1) = .TRUE., Z 0 (99.6501.)P .

K(2,2,2) = 4522./
LEN is 6516, WIDTH 4 44.3P.
AREA = .11)76.: 'S
(B).DX ="(20.,-18.), DY = (2.752,198.000002),

*EOR
1440F

CI

AVG = 5*18.E+10P

4

0

V

'So

25

7...-FREE FORM INPUT AS'ECNOED BY CIOREAD-.....-

/. DATES JUNE 9s 1977
AVG a 4*301+2, MEAN 4*65.6666, SD m4*.0015p
'XRATE a'65Ap YRATE.41.1, ZRATE a.99.676,
MEAN('5) 404s SD(5) a 5E5, AVG(5), a 26.0010,40p
.COM(1,1) ,gX AXIS -TIME IN MICROSECONDS
COM(1p2) ,EY-AXIS7VELOCITY AS A FUNCTION OF TIME
COM(1P3) gDATE AND TIME: JUNE 13,.1977 9:52 A.M.
COM(1p4) = EY AXIS- DISTANCE AS A fUNCTION.OF TIM,F
XMAX a'500, YMAX 24,. ZMAX a,27,
XMIN = Op YMIN ss ZMIN -3P
DX (40.,-36.), DY-a (1.376, 99.000001), DZ 91_1-7.676.1,-93.21,

M :
lolt 1*0.s TIME,a 9*0., VEL 6*0.,

SAVE 40*99T.9990
40 * 40' * 999.999,
A =AREA. IN SOUARE.MILESgo, -B ,40E120,-

.

K(1,1,1) a 4.3o 60, -9, sv,

755S
BFLAG(3) X = (4.1.975),
BFLAG(2) mr:FP Y (7E4p3.9),
BFLAG(1) ..TRUE., Z (99.65,_1.),'
K(2,2,2) 4522,
LEN_ms 65E6, WIDTH a 44.3O
AREA'. .10-6 S

---OUTPUT AS WRITTEN BY O0WRIT---

B

BFLAG
X
Y

AREA
LEN
WIDTH
COM

SAVE
r

0

3s. 3, 3,
.452760, -9, 755p. 2

!AREA IN SOUARE-MILESgp
.4000000+122,

T, F, Ts
(.4000000E+01P .9750000E+00)P
(.7000000E +05, .3900000E+01),
(.9965060E+02P .1000000E+01)P

. 1000000D -06,

. 6500000D+08

.44300000+02P
XX AXIS-TIME IN MICROSECONDS Y AXIS!,
!- VELOCITY 'AS .A. OF TIME DATE .AND TIME,
gEs JUNE 13, 1977 9152 A.M. YAXIS-DISTANCE ASgp
E A FUNCTION OF TIME 1,
.9999990E +03, .9999990E+03p .9999990E+03p. 49949990E+C3p
.9999990E+031,_ .9999990E+03p .9999990E+03p .9999990E+C3p
.9999990E+03. .9999990E+03p .9999990E+03p .9999990E+C3,
9999990E+03p .9999990E+03P .9999990E+03p .9999990E+C3,
9999990E+03p .9999990E+03p .9999990E+03/ .9999990E+C3p
.9999990E+03P .9999990E+03p .9999990E+03p .9999990E+C3s
. 9999990E+03p .9999990E+03p .9999990E+03p .9999990E+C3,
. 9999990E+03p .9999990E+03p .9999990E +03, .9999990E+C3P
. 9999990E+03o .9999990E+03p", 4,9999990E+03p .9999990E+C3,
. 9999990E+03p .9999990E+03p .9999990E +03, .9999990E+C3,

8

F'

26

.91111110E+032 ,..1111110E+032 .1111110E+01, -.1111110E+032
-.1111110E+032 -.1111110E+032 ...1111110E+032' ...1111110E+C32
..1111110E+032 ...1111110E+03, --.1111110E+032. ..-.11111IrE+02
..1111110E+032 ..1111110E+032 ..1111110E+032 ..-.1111110E+03,'
..1111110E+032 ...1111110E+032 ...1111110E+032 ..-.1111110E+02
..1111110E+03.2' -.111111oE4.0.3, ..1111110E+032 ..-..1111110E+C32
.1111110E+03.2 ...111i110E+032 .1111110E+032 ...1111110E+C32
..1111110E+032 91111110E+032. ..1111110E+032 '.1111110E+032
.....1111110E+032..1111i10E+032 ..1111I10E4032 ..1111110E+C32
..1111110E+032 ..1111110E+.0321111110E+032 ..11111)0F+03, -
.9999990E403p .9999990E403,- 919999990E+032 .999-9990E+02
99999990E+032: .9999990E+032 99999990E4032 ..9999990E+C32
.9999990E+032 .9999990E4032 .9999990E+032 .9999990E4032
.9999990E+03p .9999990E 03i .9999990E+031 .9999990E+C3,
-99999990E403i -99999990E+03, -.9999990E+012 .9Q99990E+Oi
.1999990E+03,-: -99999990E+032 07999990E+032 .9949990E+02
69999990E+03P -99999990E+032 '4,9999990E+032 .9999990E+C3,
.9999990E+032 .9999990E+032. .9999990E+032- .9999990E+032
.9999990E+032 '9999.9990E+032 .9999990E+032 99999990E+032
.9999990E+032 .9999990E4012 .9999990E+032 .9,999990E+02

DIST

TIME

VEL
.0.

O. 9 0. p

09 P 0. 2

O. ,

O. P 0.: 2

O. JP 0. P

O.
O. P 0. s

jr 0. 2

0. . 2

C. 2

Oe 2

041 2

0. - 9

.10600000+.01,

04, 2

04, 2

04, 2

0.

0.
.10000000 +C.1,

.10000000+012
DX (.4000000E+022.3600000E+02)2
DY (.1374000E+012 .9900000E +02),
DZ (.6761000E+03i .9320000E+02)2
XMIN Op
XMAX 500,
YMIN 12
YMAX 24,
ZMIN ..32

ZMAX 272
XRATE .6510000E+022
YRATE .1000000E+012
IRATE .9967600E+02,
MEAN., .65666600+022 .65666600+022 .6566660D+022 .6566(-6CD+C2,

.40000000 +052
SD .1500000D-02p .15000000..-022 :1500000002, .1500000NC22

50000000 +062
AVG .30000000+03p .30000000+032 .30000000+032 .3000000C+C3,

.26001000082

.....OUTPUT FOR SUBLIST A AS WRITTEN BY QQWPIT

BFLAG T, F,
ZMIN
ZMAX
YRATE

3,
272

.1000000E+01,

FREE,FORM INPUT FOR SUBLIST B AS ECHOED BY OOREAD-..--

29

ZI

48) DX = (20.s -18.is DY' (4.752,198,000002),
AVG 's 5*18.E+10, 'S

--7. OUTPUT FOR SUBLIST B AS WRITTEN BY QOWRIT--

DX s I .2000000E+02,.1806000E+02),
DY e2752000E+01,,-.1980000E+03)
AVG at , 800000D+12, .1'8000000 +:12, ..18000000 +12, .18000000+12,

.1800000D+11,
$

References

Anderson, L., and L. E. Gales. 1978. User's guide for FFORM: a format-free

-input system. Center for Quantitative Science in Forestfy, Fisheries

and Wildlife, University of Washington; Seattle.

c)

. is

APPENDIX I g PARSE TREE

QQINTL
INITIALIZE FF1

'SYSTEM

QQDELS QQIOLS
PARSE
CIO -LIST]

QQDECL
PARSE

DECLARATION]

QQSCAN
FF1 SCANNER

QQFIOL
FIND SELECTED
10-UST

QQVLST
PARSE
[VARIABLE - UST]

QQERR
GENERATE
ERROR 'MESSAGE

QQVAR
PARSE
C VARIABLE-PART)

QQGNAM

GET VARIABLE
NAME

QQSLST
PARSE
[SUBSCRIPT-LIST

QQINSr
MAKE INSERTION.
IN SYMBOL TABLE

QQFIND .

LOOKUP VARIABLE
IN SYMBOL TABLE

32

QQVFLG
PARSE
[VAR-PART]

QQFIOL

FIND SELECTED
10 -LIST

OQG NAM

'ET VARIABLE
IAME

00 NPAR
PARSE
I NAME- PART)

QQFI ND
LOOKUP VARIABLE
IN SYMBOL TABLE

QQ IN LS

PARSE
7

INPUT-LIST)

001 EXP .

PARSE
INPUT-EXP3

00 SL ST
PARSE

SUBSCI PT - LIST)

QQVPAR
PARSE
I VALUE - PART)

00 VEXP

PARSE
I VALUE -E XP 3

QQSCAN1
FFI SCANNER

QC/ERR
GENERATE
ERROR MESSAGES

QQDVAL

PARSE
E DOUBLE -VALUE]

QQCVAL

PARSE
I COMPLEX - VALUE

COVAL Q0 RVAL QQLVAL QQT VAL

PARSE PARSE PARSE PARSE

(INTEGER- I REAL-VALUE) LOGICAL - (TEXT - VALUE.]
VALUE VALUE)

33

. QQKLS

DETERMINE
CHARACTER

CLASS

QQSCAN

FFI. SCANNER
\\.

QQLEX J QQERR.
FFI LEXICAL GENERATE
ANALYZER ERROR MESSAGE

QQNUM

CONVERT-
NUMERIC STRING

QQVRW

VARIABLE NAME
OR RESERVED
WORD ?

QQWRIT

FFI OUTPUT

QQIWRT QQLWRT QQRWRT QQTWRT QQCWRT QQDWRT

OUTPUT INTEGER OUTPUT OUTPUT REAL OUTPUT TEXT OUTPUT OUTPUT.
VARIABLE LOGICAL VARIABLE VARIABLE COMPLEX DOUBLE

VARIABLE VARIABLE PREC. VARIABLE

34

APPENDIX II

FFORM. GRAMMAR

Grammar for declarations

[deClaration-list]:.= [declaration] [end-of-file]

I [declaration] [end-Of-line] [end-of-file]

I [declaration] [end-of-line] [declarationL.liat]

[declaration]; [type] [variablelist]

[type]: ...INTEGER. REAL I LOGICAL-1 TEXT

'COMPLEX 1: DOUBLE PRECISION I DOUBLE

[variable list]: = [variable- part]., [variable-list]

I
[variable- part], [end-of-line] [variable-list]

[[variable- part.]

[variable- part]: =-[variable7name]

I
[variable-name]([Subscript-list])

[variable-name]: = any FORTRAN variable identifier'.of: length less than or equal

to six characters.

[subscript-list]: = [digit-list]

I [digit - list],. [digit-list]

I [digit-list],qdigit-list] [digit-list]

[digit-list]: = [digit] [digit] [digit-list]

[digit]: = 0111213141516171819

[end-of-file]: = $

Grammar for [io-lists]

[io-list]: = [end-of-file]

-I ([Jo-name]) [var-part] [end-of-line] [io-list]

I ([io-name]) [var-part] [end-of-line] [end-of-file]

I ([1.9-name]) [var-part] end-of-file]

[io-name]: = any single character alphanumeric identifier (nonblank)

35

33

[var-part]:.= [variable - name], [var -part]

1 [variable7name]

.. , A.

'[variable - name]: = any FORTRAN variable identifier of length less than or equal to

six characters ,

Grammar for input cards

[input1:2=ponamed-lists1 I [inpUt7list]

[ionamed-liat6]: = ([io-name])' [input -list]

1 ([io-name]) [input -list] [col-list] [ionamed-lists]

:1 [col -list] ([io-name]). [input -list]

[input-list]: = [input-exp] [end-of-file]

[input-exp] [input=list]

. 1 [col-list] [input-list]

[col 7list]:-= [end-Of-line]
1 [end-of=line].

[io- name]: =. any single character,alphanumeric Identifier(nonblank)

[end-of-file]: =$

finput-exp]: = [name-part] = [value-part]

[name-part]: = [variable-name]

:[variable -name] ([subscript - list])

[value-part]: = [value-exp], I [value-exp], [col-list]

1 [value-exp][col-list]

1 Evalue-expl,

1 [value-10],

[value-part]

[col-list] [value-part]

1
[value-exp] [col-list] [value-part]

[variable-name]: = any FORTRAN variable identifier of length less than or equal

to six characters

[subscript-list]: = [digit -list]

-I [digit-list], [digit -list]

(3
I [digit-list], [digit-list], [digit - list]

3

[value-exp]: = [value] 1 [repeat-value]*[value]

[digit-list]: = [digit] I:[digit] [digit-list]

[value] :' = 4integer-value] [real-yalue]

[logical-value] 1 [text - value] [complex- value]1

[doubleprecisionvalue]

repeat-value]_: = .[digit -list]

[digit]: = 0111.213141*1 71819

[integer=vlue]: = + [digit-list].

1 - [digit-list]

= [integer-yalue] 1 [integer- value].

I[integer-value]. .

r [integer-value] [exponent]

I [integer - value]. [digit-liSt].,[exporient]

1 linteger-valdel. [exponent]

[logical-Value]: =

[text-value]: #any alphinuieric character string#

[complex-value]: ([real-part], [imaginary-part])

Idouhle-precision-value]: =. [real-value]

1 [integer-valUe] [d-exponent]

[integer-value]. [d- exponent]

1 [integer-value]. [digit-list] [d-exponent]

[exponent]: = E'[integer-value]

[real-part]: =, [real-value]

[imaginary-part]: = [real-value]

[d-exponent]: = D [integer-value]

ERROR #

APPENDIX III

ERROR MESSAGES

1- .ILLEGAL CHARACTER

' 2, 'UNRECOGNIZABLE SYNTACTIC SYMBOL

3 ,END-OF-CARD EXPECTED

4. 'RESERVED WORD EXPECTED '

5 VARIABLE NAME EXPECTED

6 SYMBOL TABLE OVERFLOW

7 DUPLICATE DECLARATION

8 INTEGER SUBSCRIPT EXPECTED

9 PAREN EXPECTED'

.10 RPAREN EXPECTED

11 I0iTAME ARGUMENT TO SUBROUTINE.QQINTL DOES NOT MATCH ANY IO-LIST NAME

"12 UNDECLARED VARIABLE NAME

13 EQUAL SIGN EXPECTED

14 VARIABLE DOES NOT APPEAR ON CURRENT 10 -LIST

15 ONE OF-SUBSCRIPTS EXCEEDS DECLARED SUBSCRIPT

16 COMMA EXPECTED

17 REPEAT-VALUE MUST BE AN INTEGER

18 INTEGER VALUE EXPECTED

-19 ARRAY OUTOF BOUNDS

20 REAL VALUE EXPECTED

21 - TEXT VALUE EXPECTED

22 LOGICAL VALUE EXPECTED

23 DOUBLE PRECISION VALUE EXPECTED

24 COMPLEX VALUE EXPECTED

25 END-OF-FILE MARK EXPECTED 38

