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INTRODUCTION

All living organisms interact with their enviromment through a
continuous exchange of matter and energy. . Conceptually, this can be
thought of as a consequence of the "openness" of the system in a thermo-
dynamic sense. For a complete understanding of the biology of an
organism, it is essential to determine the ways in which the organism
interacts with the biotic and abiotic factors present in the external
enviroument. To most biologists, the exchange of energy between an
organiscn and its environment in the form of radiatiosn is probably the
least well understood abiotic factor affecting the organism. As D. Gates
has pointed out,' this exchange is also the most difficult to measure.
However, its importance to the organism cannot be overemphasized.

There are two ways in whiﬁh the process of radiation exchange is
of biolcogical interest. The governing principles of this physical
process are different for the two distinct biological applications.

First, there is the dynamical balance of the radiation flow between
the organism and its environment, and its effect on the homeustasis of
the organism. This dynamical balance ié best described by the modern
form of radiation theory, which is based on Planck's theory of black

body radiation, and which is exemplified in the generally useful results

! [Gates, D. M. "Radiation incident on an organism'" 1978, p. 1]
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entailed in Wien's law of shift and the Stefan-Boltzmann law. Several
simple biological applications of this modern radiation theory are
developed in this module. YFurther applicationé are present- ! .l!uowhere
in this series (Gates 1977,19738; Hatheway 1977, Stevenso: 1" “

Second, there is the interpretation of the energy r+ . . '@ - he
organism, as a means of obtaining information about the env.ir. e
The selective advantage that results from improved information i .-:.aring
has led to the evolution of many épecialized sense orgaﬁs. The function
of these organs is beét described by the classical theory of radiation,
particularly as entailed in Rayleigh's criterion and the Doppler offect,
The balance of biological examples discussed here are of this second
type.

The nature of the physical processes of radiation exchange imposes
strong constraints on the evolution of biological systems. This module
presents some of the results of classical and modern radiation theory and
shows how they élucidate these physical constraints, It is demonstrated
that radiation theory is applicable to a wide range of sense organs
(eyes, ears, pits); radiation types (electromagnetic, sound), wavelengths

(optical, infrared), and organisms.
BLACK BODY RADIATION

In any discussion of radiative encrgy exchange, it is necessary to begin

with an idealization of this process, thich is described by the theory.of

black body radiation. This is rather awkward in the present instance
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since the biological. implications of this abstraction from the real
world are not immediately obvious. In fact, some of the most important
aspects of biological systems result from their deviatiops from the
idealizations of physics. For example, most organisms are not perfectly
"black" in the physical sense of the word; that is, they do not absorb

and emit radiation perfectly at all frequencies. The effect of the
coloration of organisms will be to vary the degree to which the black body
idealization can describe the syster. However, it is the nature of

science to explain in detail the simple system in the hope that the more

- complicated systems can be explained by small variations of the simple

theory, and the expectation that the major results will be carried over
to the more complicated systems. For radiative energy exchange this is
precisely the case, and thus there is sufficient justification for present-
ing a discussion of black body radiation which though not "simple" in the
copmon sense of the word, is essential for an understanding of the more
complicated systems which are the substance of biology.

. The theory of black body radiation had a lengthy and fascinatiﬁg
development during the 1800'c, culminating in the work of Planck at the
turn of the century. Many of the results discussed below were known at

varicus stages during this period of repeated empirical research and

hypothesis testing. However, the important results for biological

applications can be derived directly from the formula of Planck, which
mathematically (though not physically) culminated this field of experi-

mental physics. The physical explanation of Planck's formula awaited
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the work of Einstein, and ultimatély the early founders of Quantum
Mechanics.

Planck's problem was to specify the energy distribution of the
electromagnetic radiation within a cavity, the walls of which are at
thermal équilibrium at the temperatu;e T. That is, the problem is to
find the energy demnsity E(v) (J s m—3) of the radiation within the
cavity between the frequenciesVv and v + dv. The shape of the curve E(v)
ve. Vv had been determined experimentally at various temperatures

[Fig. 1 ] . Planck found a solution to this problem in the form:

where v is the frequenéy of the radiation, T is the absolute temperature
of the walls of the cavity, and h, k and c are physical constants [see
Appendix 1]. This energy distribution is called the black body energy
distribution because it is the same as the energydistribution of radiation
emitted by a perfectly black object which is at absolute temperature I.
For measurement purposes, it is more usefvl to express this energy density

in terms of the wavelength A,

Probiem 1

Show that the energy density per unit wavelength is given by:

he/AKT -1
BWE [e c/A¥ - 1]
A

EQ) =

. Hint: A = c/v

ot



FIGURE 1+ BLRCKBCDY RADIATION PLRNCKté LAW V5. OBSERVED
DATR FROM LUMMER AND PRINGSHEIM (1901)

2500

1

T

2000

1500

T

1000

ENERGY DENSITY PER WAVELENGTH

S00f
Ej"“_fﬁ \fg:]\}{{“
O 1
0 4 5 6 7

NRVELENGTH IN MICRONS
CURVES~ PLANCK:S LAW FOR T= 1646, 1449, 1259, 1095, 998, 904, 723




Wein's Law of Shift

It can be shown that the E(A) distribution can be described by the
wvavelength Am at which the distribution reaches its maximum. Qualitatively
increasing the temperature T shifts the maximum of the E(A)[E(V)] curve
to a smaller )\ (higher v).

Example 1
| The wavelength at which the energy density is a maximum at a givea
temperature T can be found as follows:

From problem 1:

- . -1
Q) = 8rhe [%hc/kkT 1 ] .

AS

Make the substitution u = hc/AKT:

8k>T w
ch e -1

&

From calculus, the maximum can be found by solving:

dE _ . -

o - 0, which gives

dE 81rk5T5 4 u ,.~-1 u, 5 u ,.=2 1

— = ——— | (5u ) (e ~1) - e (uU)(e -1) =0 or
du c4h4

-2
[(5u4(eu—1) - useu)(eu—l)]_ =0 ywhich implies

4 u 4 5u
e

5u -5 ~-ue =0 or finally:

e’ +1/5u0 - 1= 0.
This transcendental equation can be solved by numerical techniques (see

Appendix 2) to give:

u=4.9651l.v.0000..
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Thus
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h—‘f= 2.8978 x 10 "m K = b.

Amr = uk

b is called the Wien constant and the equation
AT=05D

m

is called Wien's law of shift (1896 Wilhelm Wien). Therefore, the

maximum of the black body curve E(\) at temperatures Tl’TZ’T3"" falls
at Al,lz,l3,... so that
AT, =T, =A,T, = b

_ [see Fig. 2].

The Wein law of shift is a very powerful result because it embodies
a single relation between wavelength and absolute temperature. This is

exemplified in the following problem.

Problem 2

Assuming the following objects radiate as black bodies, what is the

Am for:

a) the sun at: Ts 5700 K
b) a mammal with a surface temperature T = 37°C

c) a lizard with a surface temperature T = 10°C

d) the clear night sky, radiation temperature T = -33°C

Answers:

— o
a) 5.08 x 10 7m = 5080 A (yellow)

b) 9,66 x 10—4m (infrared)
c) 1.024 x 10—3m (infrared)
d) 1.21 % 10—3m (infrared) 10

BT
AN



FIGURE 2« WIEN:S LAWe OBSERVED VS. PREDICTED
SAME DATA AS IN FIG. 1.
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Stefan-Boltzmann Law

. -3
If E is the total energy density in all frequencies (J m 7):

o} o0 3
E =[ E@)av = &8 J e |
o c o e -1 : (1)

Making a change of variable,

X = hv /KT which implies dv =-%? dx.

Equation (1) becomes

_ 8rh (KT} 4 x3dx (2)
3 |hj X ‘
c e -1
The value of the integral in Equation (2)
[on]
3
I-= J X dx (3)
X
oe -1

can be obtained by numerical integration. This is a technique for
approximating a definite integral by a finite sum. The value of the
integral in Equation (3) is found in Appendix 2 to be:

| I:= 6.4983.

Equation (2) can be re-expressed as

4 4

4
8t (%) I| T = aT (4)

E=| —
3
c

where the constant a 1is equal to the value of the constants in the

square brackets in Equation (4). The value of a is found to be

_sm i
a=73
c h

(6.4983) = 7.5643 x 1020 3 n 3 x4

The energy radiated by a black body per unit area per unit time,

that is, the radiation emittance En’ can be shown to he

12
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E =0T _ “(5)

where E = radiation emittance and

-2 -4

(Pea = 5.6693 x 107°W n
Equation (5) is called the Stefan-Boltzmann law and the constant O is
called the Stefan-Boltzmann constant. Although Equation &5) is quéntit—
atively precise, the functional relationship of the variables is more
important than the exact numerical value of the constants. Of pérticular
interest is that the radiation emittance is propertional to the fourth
power of the absolute temperaturec.

The eqﬁation is of direct biological interest when it is realized
. that the Stefan-Boltzmann law governs the radiative energy exchange
between an organism and its environment. Although this ‘exchange of energy
is usually not considered when calculating the energy bﬁdget of an organism,
it can in some_circumsfances be a major factor affecting the heat balance
of an organism. The following example and problem constitute a brief
introduction o the application of this physical law to biclogy. For a
more detailed exploration of this relationship, see Gates (1978) and
Hatheway (1977).
Exa@ple 2

A bat with a surface temperature of 37°C is living in a cave which
has walls at a temperature of 12°C. What is the radiation emittance of
the bat? If the bat has a total surface area of 100 cmz, what is 1ts rate

of heat loss by this process of radiative exchange?

S
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Solution: Define

T
o

T
a

the bat's surface temperature (in K)

the ambient temperature (i.e., the temperature of the cave)
(in KX).

Clearly the bat is emitting radiant energy at the rate:

E = ¢oT 4
o o

and receiving radiant energy (from the walls) at the rate:
E = ¢oT 4.
a a

So the overall energy exchange by this process is given by:
4 4

E=0(T ~T

o(T Q)

with the convention that E is positive when the overall radiation balance
is such that the bat is emitting more than it absorbs; 1.e., it is losing
energy to the environment at the rate E.

For this example:

T
o

T
a

(273 + 37) K

310 K

285 K

(273 + 12} K

which gives an energy emittance of:

-2

E=5.67 x 100w a2 K% [(300 ©)% - (285 )4

-8 9 9 -2
5.67 x 10 [9.235 x 10° - 6.598 x 10°] W m

5.67 [92.35 - 65.93] W g2
2

149.5W m
The bat's total heat loss rate H, by this process is
H = E(SA)
where SA = surface area, so
H = 149.5 W m—_2 (100 cmz)

= 1.495 W.

14
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Although in this example the heat loss ;ate was relatively small,
when there are larger differences between the organism's temperature and
the (radiation) temperature of the enﬁironment, the heat loss rate can
be quite high. This situation pertains in the following problem.

Problem 3

a) The horns of a reindeer are at approximately internal body
temperature, though the rest of the deer's fody is well insulated. If
these horns are at a temperature (To) of 32°C, and they have a surface
area of 1000 cmz, what is the heat loss rate if the environment is at a
(radiation) témperature (Ta? of -10°C? Convert your answer to calories/
minute.

[See Gates 1968 for some actual organismal temperature méasurements.]
Answer: H® 22 W,

b) A bald mountaineer is outside on a clear night. Although he is

«  heavily bundled in his down parka, he has forgotten his hat. If his bald
pate has a surface area of 75 cm2 and is at a temperature of 32°C, what
is his heat loss rate to the night sky which is at a (radiation) temper-
ature of -45°C? [Is this why they say, "If your feet are cold, pat on
your bat."?] Convert to calories/minute.

Answer: HA 25.3 W =.362 cal/min.

The solar constant

A physical parameter which imposes a significant constraint upon
the evolution of terrestrial organisms is the amount of energy generated
by the sun which is iﬁtérc?pted at the earth's surface. Almost all of

the energy which drives the biological processes on the earth comes

» 0




O

ERIC

Aruitoxt provided by Eic:

13

directly or indirectly from the sun. Thus' the amount of the sun's energy
that the earth receives is of interest for at least two reasons: (1) This
is the upper limit to the amount of energy that,éould be absorbed by a
surface aﬁd turned into heat. (2) This is the upper limit to the amount
of energy that could be converted by a photosynthetic unit into chemical
energy. Since the actual amount of sunligﬁt available at the earth's
surface is dependent upon absorption by the atmosphere, and thus on such
variables as latitude, the sun'e altitude in the sky (see Gates 1978,
section on Direct Solar Radiation), or cloudiness, the measure of the
sun's energy available at the earth is determined instead for a unit area
just outside the earth's atmosphere. This measure of the sun's energy
(actually the raté of the available energy, i.e., power) is called the

solar constant.

The solar constant can be calculated theoretically from the
Stefan-Boltzmann law and conservation of energy. Assuming the sun to be
a black body with a surface temperature TS, by the Stefan-Boltzmann law,
its radiation emittance (energy radiated per unit area per unit time) is
given by:

E =0T ". - (5)
Thus the total power emitted by the sun can be found by integrating ES
over the sun's surface. Since TS is (assumed to be) constant, this is
equivalent to multiplying the constant ES by the surface area of a sphere
with the sun's radius (rs). The total power is given by:
E = 4ol E . | (6)
s s -

By conservation of energy, if no energy is lost in the intervening space,

all of the radiation emitted radially out from the sun will be intercepted

. 16
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by an (imaginary) sphere centered on the sun with a radius equal to the
mean distance from the sun to the earth (rE). The power flow per unit
area (EE) across this (imaginary) sphere will be equal to the total

power available (E), divided by the surface area of the sphere (Aﬂré).

That is,
E_ = E/4Trl. ) (7)
E E
Substituting Equation (6) in Equation (7) gives
4wr§ ES rz
EE = 4 r2 ) Es - (8)
LE2" o

The quantity E_ which is the power available (per unit area per unit

E
time) on a surface at the earth's distance from the sun, is the parameter,

of interest, the solar constant.

Inserting Equation (5) into Equation (8) gives immediately:

E.=| —5 | oT_". (9)

&

Problem 4
Use Equation (9) and the following physical parameters to calculate

the solar constant:

T = 5700 K
S
rS = 7.1 x 108m
rE = 1.49 x 1011m
G = 5.6693 x 1078y o2 g4
. -2 . -1
Convert your answer to cal cm min .

2 -1

Answer: Ep = 1.36 x 103 Wm s ~ & 1.95 cal cm—2 min~t

17




15
III. Resolution

" For most problems.of biological interest (e.é. the shape of the
lens of the eye), only the particulate nature of light, espacially its
rectilinear propagation, is important. This can be thought of as a
result of the large size of the elements of biological interest compared
to the wavelength of light. TFor example, for the sun: AmQ: 5 x 10—7m
[problem 2a), which is much smaller than the physical diﬁension of any
organism, or even any organ in any organism. .Only in certain specialized
biological research, for example the investigation of cell ultrastructure,
does the wavelength of light become a limiting factor. As the dimensions
of the cellular constituents approximate that of light, instruments
capable of observing at shorter wavelengths (e.g. elect?on microscopes)
are reguired.

There is at least one other area of biology where the physical
dimensions of the objects of interest are small enough that the wave
nature of light becomes an important consideration: the resolution of
incoming radiation by sense organs.

The term resolution is used here to denote the ability to
distinguish two objects. That is, how close together must two objects
be before they appear as a single object to the organism? Clearly,
this depends to some extent on the organism in question; eagles resolve
better than do moles. Also, the limit of resolution will be affected
by the experience of the observer. Nevertheless, it is useful to have

some rough comparison of the resolving ability of various systems, and

18
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for this purpose Rayleigh's criterion is most often employed.

Rayleigh's criterion is derived from the theory of Fresnel diffract-
ion by a circular opening (for a derivation.and detailed discussion, see
Elmore & Heald 1969). Qualitatively, this criterion is seen to be a
measure of the relative overlap of the diffraction patterns of the images
of objects on the focal plane of the observer. More specifically, it is

. @ measure of the displacement of the central maxima of these diffraction
‘patterns. Two images are said to be just resolved when the central
maximum of one diffraction pattern falls cm the first minimum of the
other (see Fig. 3). i
From Figure 3, it can be seen that the limit of resolution is some
distance §x between the two images on the focal plane, or alternatively
some angle §8 between the central axis of the lens and the ray connect-
ing the center point of the lens to the centers of the principal maxima
£  on the focal plane [pi,pé of Fig. 3]. Therefore, in comparing the
resolving power of different instruments the reciprocal of these quantities
should be used (i.e., 1/8x or 1/66), so that the 'hore powerful" instrument
is able to distinguish objects which are unresolved by the "less powerful"
instrument. For a distant object, the objective (lens) is the aperture
which creates the circular diffraction., The m?thematical details of
Fresnel diffraction lead to the result that the position of the first
minimum relative to the principal maximum will be:
sin g = 0.61 A/r ' _ (11)

where
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Figure 3: The Rayleigh criterion: Fresnel diffraction by circular
aperture.
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a) A simple diffraction apparatus. The lens L forms®the images of the point
sources Pl and P2 on the focal plane F. These images are not points but
disks centered at P! and P! whose intensity is greatest at the center as
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indicated by the "humps" behind the focal plane. [From Sears and Zemansky p. 619
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¢) Diffraction patterns with the first minimum of the image of object 2 falling on

the principal maximum of the image of object 1: just resolved. (This is the
Rayleigh limit.)

d) Fully resolved.
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A = the wavelength of radiation which forms the image,
r = the radius of the objective,
o = the angle between the images of the objects.

The limit to resolution given by Eq. (12) is known as Rayleigh's
criterion. Using the familiar (Taylor) expansion of the sine function

one finds that:

. 5
sin g o - q + a -0 F* s

Eor sina =oa + 0(&3).
Here O(a3) means terms of order (size) strictly less than a3. if
0 is small, then a3 1s very small and one can make the small angle
approximation
sin o &= o
which when substituted into Eq. (11) yields:
o = 0.61 A/r . (12)
£ Rayleigh's criterion in the simple form of Eq. (12) is a powerful
tool in an'analysis by the biologist of the evolution of sense organs.,
In particular, such questions as the scaling of eye size with organismal
size (e.g., why are a whale's eyes the same size as those of a cow?),
or the cellular organization of the organs themselves (e.g. the distri-
bution of cones on the retina) have relatively simplg answers when
analyzed in this way. The‘ramifications of this analysis are explored
in the following examples and problems.
Example 4.

From the Rayleigh criterion, the results of problem 2a, and the

fact that in bright daylight the diameter of the human pupil is #=2.0 mm,

21.. .
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determine the resolution of the human eye in minutes of arc. What does

this resolution limit correspond to at 10 m?

5.08 x 10 'm (from prob. 2a)

r =1.0mm = 1.0 x 10 °m.

Solution: )
m

Putting these parameters into the formula for the Rayleigh criterion,

Eq. (12), we get:

o 61 A/r

0.61(5.08 x 10‘7m)/(1.0 X 10’3m)

3.1 x 1073 radians.

Since 27 radians = 360° = 2,16 x 104 min, we know that

1 radian 4 3.43 x 103 min.

So a = (3.1 x 103 min/rad) (3.1 x 1073 rad)

21 min of arc.

At 10m this angle will correspond to an object separation of:

a8 o = SO/d
where S, = separation
d = distance
or So = aqd = (3.17 x 10—4)(10m) = 3,117 X 10_3m

3.17 mm.
Thus, in daylight the human eye can just barely resolve two objects which
are 3.17 mm apart from one another and 10m distant.

It should be noted at this point that the Rayleigh criterion is a
theoretical limit which is rarely approached in practice. For instance,
if one used this formula to calculate the separation resolvable by the
human eye at 20 ft., it would be smaller than the actual minimum separation

resolvable by a person with '"normal" (20:20) eyesight.

Q2
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Problem 5
The cones of the human eye happen to be maximally sensitive to the
wavelength lm which corresponds to the maximum of the sun's energy density
spectrum. Using Rayleigh's criterion and the fact that the'retina is
<= 17 mm behind the first nodal point (which acts as the circular aperture
in this case), compute the maximum resolution on the surface of the retina.

Answer: 6x = 5.4 x 10—6m.- (13)

Anatomists have determined that the diameter of a retinal cone cell
. . . . . ~6 .
(which mediates color vision) is about 3.0 x 10 m. The separation

. between densely packed cone cells is smaller than the limit in Eq. (13).

Thus thinner cones will not produce higher visual acuitf. The resolution

S B

is cohstrainéd By the physicéi parameters of the'optical system.

Since the eyes of'éll vertebrates are constructed from the same
design, the same physical dimensions that determine the resolution of the
human eye will determine resolution throughout the subphylum. It is the
absolute, not relative, size of the physical components of the optical
system which constrain resolution. If the diameters of cone cells are
at éresent at the minimum which is biologically feasible, then a slight
increase in the other dimensions of the human eye will give greater
resoiving power, but beyond a point (6x = 3.0 X 10—6m), there is no
payoff in visual acuity for larger eyes.

The eyes of birds of prey show structural alterations which are an
evolutionary response to the need for greater resolving power. The retinal

cone cells become rod~like, which decreases their diameter, increases
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their density on the retina and dec:e;ses their ability to discriminate
color. Furthermore, tﬁe retinae from these birds have several pits or
foveae. Although the density of light sensitive cells is the same in
the foveae as on the rest of the retina, the image is formed on a concave
rather than flat surface. Thus the "effective' cone density in the foveae
is higher than for the rest of the retina, and so is the resolving power.
The combination of these two changes results in increased visual acuity
for these avian eyecs.

'Rayleigh's criterion is also useful in elucidating the constraints
on the design of a quite different sort of eye, the compound eye found
in insects and certain crustacea. Each eye is composed cf many (up to

3 x 104) simple eyes, called ommatidia (See e.g. Bjorn 1976. p. 92). The

shape of the compound eye is roughly that of a half-sphere of radius R, with

the lenses of the ommatidia comprising its surface. An estimate of the

size of the opénings of the ommatidia is calculated in the following problem.
Problem 6

A simple model of an ommatidium is that of a cone with its apex at
the center of the half-sphere which forms the eye, and its opening ?t the
surface of the eye. Assume that the angle of the cone is equal to the limiting
anglerf the Rayleigh formula. Show that the calculated limiting size of the
opening to the ommatidié is given as:
a = (1.2280) /2

If A = 400 nm, which is the center of the spectrum to which a bee is

sensitive, and R is about 1 mm, what is the optimal-size of the ommatidial

opening?
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Answer:
d=2.2x%x10" m=22q.

The actual mean measured opening for a bee is 20.9 p (Barlow 1952, p. 671).
A diagram comparing the observed size of the ommatidia to the value predicted by
theory is presented in Fig. 4.

Rayleigh's criterion for the limit of resolution of an optical instrumént
can be extended to interferometers as well. Basically, an interferometer
consists of two detectors with the ability to detect phase information separated
by a distance D. When the phase information from the two detectors is compared,
the resolution of the total system is the same as that of a single detector
whose diameter is equal td D. Although a rigorous argument demonstrating this
result would not be appropriate here (it is essentially the same as the derivation
of Rayleigh's criterion), a qualitative argument may be useful, Basically, the
iffraction patterns illustrated in Fig; 3 are the result of the interference
between light waves of different phases, caused by passage of the light through
the aperture. The eye sees the interference caused by phase differences as
variations in intensity, as illustrated in Fig. 3 b, ¢, d. In an interferometer
the signals of the two detectors are compared to reveal phase diffepences and
so the identical resolution criterion applies.

Most vertebrates are able to detect phase differences beiween ears,
so that the interferometer is the correct model for calculating resolution.

A consideration of Rayleigh's criterion showslthat if all other parameters

remain constant, the greater the separation of the detectors, the greater
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4

the resolving power of the system. Many organisms have optimized their
ability to locate sound sources by maintaining a maximal separation
between the ears. Another biological application’of interferometers is

illustrated in the following problem.

‘Problem 7

Using the Rayleigh criterion and the solution to Prob. 2b, determine
the resolution of the infrared sensing system of a pit viper. Using
reasonable physical parameters (e.g. body size of prey, how close the
snake must be to strike, how accurate the strike has to be), determine
the minimum separation of the pits. Does this agree with your intuition
and/or experience?

Answer: d = separation of pits % 6 cm.
IV. The Doppler Effect

The discussion up to this point has implicitly assumed that the
source and detector of radiation are stationary relative to one another.
When the source and detector are in relative ﬁotion, an added complication,
the Doppler effect, is introduced. This phenomenon has been observed fqr
all types of radiation, though the theory is simplest for the ;Ebustic
situation. Since acoustic waves are longitudinal (compression) rather
than transverse as.ére electromagnetic waves, the mathematical form of the
effect is slightly different. Additionally, the acoustic'Doppler effect

has significant evolutionary implications. .

s

\
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Empirically, tﬂe Dopéler.effect is manifested in the difference
between the pitch (frequency) of the sound heard by a listener in motion
relative to a sound source and the pitch heard when the listener and source
are relatively stationary. A faﬁiliar example is the sudden drop:in pitch
one hears from an automobile horn as one meets and passes a car going in
the opposite direction. Alternatively, one might think of the changing
pitch heard by a listener standiug beside a-track.as a train.whistlé |
approaches, passes, and recedes.

The derivation presented below is for the Doppler effect as it applies
to the special case when the motion of the source and listener lies along
the line joining the two. The biological example considered later is of
precisely this type.

Let VL and VS denote the velocities of the listener and source
respectively. The positive direction for the velocities is taken to be from
the position of the observer to the position of the source.

An illustration of the situation when the listener L and the saurce
S are moving away from cach other is presented in Fig. 5. At time t = o,

the source is at point X The outermost circle is the representation

T
of the position of the wave frqnt at time t = T, caused by a disturbance
at the source at time t = 0. The speed of propagation Cs of a wave in a
nondispersive medium such as air is dependent only upon the characteristics
of the supporting medium and is independent of the motion of the source
relative to the medium. Thus the outermost circle in Fig. 5 represents a

sphere in 3 dimensions with center at X and radius CST.

The source has moved a distance VST in the time T so that



26

Figure 5: The Doppler Effect
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The source §, moving with velocity VS’ is emiﬁtinz sound at a constant freaduency,

fs. The wave fronts of thisﬁsound, which travel radially outward at velocity CS’
are compressed together (wavglength equals AF) in front of the source and spread

out (wavelength equals AB).behind the source. By the time the wavefront emitted

by the source at Xq at time t = 0 has reached a radius of CST, the source has moved
to a position X The listner L moving with velocity VL will hear the sound at a
different frequency than as actually emitted by the source because it encounters wave

fronts:which are AB apart. An exact’ derivation is given in the text. [Adapted from
Sears and Zemansky p. 327.]
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and the following equalities are true:

o
1
»
L}

(c +v)T
s s

"
1
"

(c, - V)T ’

where a and b are respectively the positions at the rear and front of the
outermost wave surface.

In the time interval between t = o and t = T, the séurce has emitted
a certain number of waves, fST, where fS is the frequency of the sound

emitted at the source. The waves are spread out into the distance (x. - b)

T

in front of the source.
: .
In front of the source the wavelength lf is given by

x. = b (cs'— V)T
Ae = £T = £T = (€, - VI/f .

Similarly behind the source the wavelength AB is

_ T _
Ap = £T  f1 = (g +V)/E.

a-x _ (CS + VS)T

The waves approaching the listener have a relative speed of CS + VL’
so the detected frequency is

CS + VL

L= Cg VI Ay = ©_ -+ V)IE,

Hh
il

or
CS + VL

-2 4
f.=¢ v L (14)
S S

When the source and listener are moving toward each other a frequency

+
- Cs vL
(c -Vv)/f
S s S

cC +V
¢ =-S L

L A

f
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or
£ = 2t £ ' (14a)
L Cs—— VS s *

is detected,

In order to help remember the direction coﬁvention estabiishedbin
this derivation, it is useful to notice that the frequency heard by the
listener will be less than that emitted by{ﬁhe source if they are moving
away from each other, and will be greater than that emitted by the source

if they are moving toward each other.

Exaﬁgle 5
The velocity of sound in still dry air is CS = 350 nls-l. For a
source emitting sound of frequency fS = 700 Hz the wavelength of the
sound emitted is
A=C_ /A = 0.5m.
s’ s
a) What are the wavelengths of the sound in front of and behind
this source moving at VS = 50 nxs-l?

b) If a listener is at rest and this source is moving away at

50 m s~{ what is the frequenéy of the sound heard?

vV =
s -
Solution:
a) AF = (CS - VS)/fS =0.429 m
AB = (CS + VS)/fS =0.571 m
c
b) f = = 612 Hz,

-—S5
L C.+v
s 's.

31
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€.

Now that a quantitative formulation of the Doppler effect has been
derived, it can be applied in the explanétion of echolocation in bats, a
sensory system which has only begun to be understood in the past several
decades.

The bats, members of the order Chiroptera within the class Mammalia,
have developed a system of echolocation which has been of immense
evolutionary significance. It has enabled them to exploit a resource
for which there are very few competitors, small night-flying insects
(see, é.g., Fenton 1974). The physical processes important in echo-
location have both enhanced and constrained the evolution of the
Chiroptera. Here it will suffice to show a few examples of the effect of
- these physical processes upon bat evolution and natural-history. For a
detailed and personable account of the actual experimentation that led
to the elucidation of the physical principles employed in echolocation,

see Griffen's Listening in the Dark.(Griffen 1958).

Almost all bats appear to be able to navigate in total darkness a
closely spaced grid of wires, where the spacings of the wires are
commensurate with the dimensions of the wingspread of the bats. Furthermore,
insgctivorous bats can pursue and capture flying insects on the wing in

total darkness.

The ability to carry out these activities is significant in two respects.
First, unlike the birds which are able to perform similar activities only in
the presence of light, bats cannot be dependent upon a highly developed
sense of sight for navigation. Second, no other animal can depend upon

catching flying insects in the dark and so there are few competitors

30
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for this food resource. Prior to the evolution of bats,-tﬁié resource
had not been exploited.

The experiments of Griffen demonstrate that bats share another
ability that sets them apart from most other animals. This is the ability
to produce and dgtect sound of frequer:ies between 20~100, kHz, It is this
attribute which is fundamental to the system of echolocation, as in the

next example.

Example 6

A flying bat emits a pulse of sound. What is the minimum frequency

and maximum length of a single frequency pulse, if the bat wants to use

the echo of the pulse to avoid an obstacle 1 meter ahead?

Solution: One first solves for the maximum pulse léngth. Clearly
the chief consideration is that the bat must not be producing the pulse
when the echo returns. Otherwise the fainter echo might be masked by the
bat's own cry. The time of the echo's return t dis dependent only on

the speed of sound CS and the distance of the object d. Specifically:
t = d/CS

which works out to be:

1

t=2m/350m s = 5,71 x 1075 s = 5.7] ms.

Shorter pulses will allow even closer objects to be avoided, although
the pulse length must have a lower limit of several wavelengths in order
to avoid problems in interpretation. If a reasonable number of waver in

the pulse is 100, the predicted minimum frequency would be:

33
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£ = 100/t = 100/4 x 10° s~! = 25 Luz.

In actual field measurements Griffen (EB_EEEP p. 191) has observed
pulse lengths from 1-15 ms , and pulse frequencies between 30-75 k! z
with about 50 kH; being most common. Therefore, bats should be several
times better at avoiding obstacles than one would expect from Example 6.
This is not too sufprising if the system is good enough to catch insects
on fhe wing, which the bats must approach much closer than 1 meter.

Interestingly, bats appear to be rather economical in their use of
pulses, using relatively long pulses (15 ms) at long repetition
intervals when they are cruising far dove the ground and relatively
short pulses (1 ms) at short repetition intervals only when they are
pursuing insect prey.

Many bther characteristics of the bat echolocation system can be
explained by an extension of the kinds of arguments given here. For
example, theoretically one expects that the intensity of the returning
echo from an object at a certain distance, should decrease with the size
of the object. The echolocation system provides information about the
size of objects in the environment from the intensity of the returning
echo, and irnformation about the distance of objects from the time delay
between the emission of the pulse and the reception of the echo. However,
the character of the echo should theoretically ge relatively insensitive
to the detailed nature of the object causing the echo, whigh perhaps
explains the interest exhibited by bats in pebbles tossed in the air by

small boys and naturalists.

3¢
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In certain bats, for example those of the genus Rhinoioghus, the
Doppler effect appears to be the physical phenomena which is the key to
an understanding of their system of echolocation (Schuller, et al. 1974).
Several of the important considerations involved in the application of

the Doppler effect to bats are developed in the following problen,

Problem 3

A bat is flying along at 5 m S—;- It emits a 50 KHZz gound pulse
which is reflected by an insect which is 5 meters diétant and is moving
away at 1m s—l. What is the frequenéy of the echo, and how long after
the pulse begins does the echo begin to return?

31.74 kHz

Answer: fL

t 28.6 ns

The outgoing and incoming frequencies in this example have a
difference of 1740 Hz, This difference may appear quite large when
compared to the difference between Concert A (440 Hz) and the A an
octave higher (380 Hz), However, in the detection of radiation phenomnena,
the important coumparison is the ratio, not the difference of two frequencies.
The bat in Problem 8 must be able to detect 1740 Hz in 50 kHz, a percentage
frequency change of 3.4%. This is not an unreasonable change to detect
since human musicians can quite commonly distinguish quarter tones which
represent a percentage frequency changé of 3%. One expects that bats which
depend upon the Doppler effect should have very acute pitch change detection
and a very stable emission frequency, to go along with the ability to

.

discriminate very small time intervals. Some of these predictions have
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been experimentally wverified (Schuller, et al. op cit.).

The thrust of the discussion presented in this section is perhaps
most ‘striking when viewed in terms of the advantages and constraints
that the utilization of echolocation has conferred on the evolution of
the Chiroptera. The development of echolocation has allowed the bat to
utilize a previously unexploited resource, night flying insects, but in
turn hasplaced a premium on those bats that are able to emit high
frequencies in short pulses, that can detect faint echoes, and that can
detect relatively small shifts in frequency between outgoing and. incoming
pulses. The selection pressure for these attributes is the force respons—
ible for numerous remarkable physical and behavioral adaptations. Our
understanding of this system is by no means complete; echolocation remains

a fertile territory for experiment and theory.
V. SUMMARY

The preceding discussion has presented some of the results from
classical and modern radiation theory and demonstrated how these physical
Principles can be applied to the analysis of biological systems. The
emphasis in these applications has been upon the evolutionary significance
of the physical processes. In the biological applications presented, the
physical processes are invelved in the following two types of explanations,

In the first type of explanation, physical theory is used to isolate
constant factors in the.environment to which all organisms must adjust

their evoiution. The most striking example of this is that the wavelength
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RADTATION

Appendix 1. Symbols, Units and Dimensions

Symbol  Quantity Units Dimension
[» I angle radians —
b Wien constant 2.8978 x 10—3m X . L6
. 8 -1 -1
c speed of light 2.998 x 10 m s LT
C. - speed of sound 3.50 x 102 m s.-1 LT-l
D distance : m L
d distance to an object  om X L
di ith difference term —— —
dX differential wavelength m L
dv - differential frequency s—1 ) T—l
&8 infinitesimal angle radians —_—
Sx infinitesimal distance m L
E« total power J s—1 M:[.Z'T-_3
EE power flow at -2 -1
earth's surface Jm s
. . -2 -1
En radiation emittance Jm
-3 -1
E power flow at J m s
s sun's surface
-4 -2, =2
E(QA) energy density as a J m ML °T
function of wavelength
. -3 ‘ -1, -1
E(V) encrgy density as a Jm™ s . ML T
function of frequency
e base of natural logarithms 2.171828... —
fL frequency at listener s-_1 T—1
fS frequency at source s-1 T-_l
-1 2, -3

H total heat loss rate : J 3 MLT

40
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Appendix I (cont'd)

Sywbol Quantity Units Dimension

Hz Hertz gL . | T"-1
h Planck constant 6.626 x 10 34J s ML:ZT'-1
k Boltzmann constant 1.381 x 10723 gkt 21272
A wavelength m L
AB wavelength behind source . m L
AF wayelength in front of m L
source
Am waveléngth at which black- m L

body spectrum has maximum
energy density

0 observer — —_—
: Ri 10 remainder term - —

r radius m L
EE mean distance from earth Y 1011m L

to sun
T radius of sun 7.1 % 108m L
S source —— ——
s, size of an object " m | L
SA - "surface area m2 L2
o] Stefan—Boltzménn constant 5.6696 x 10-'8

J s'_1 mfz Kf4 ML—ZT-le

T temperature K

a particular time s T
Ta ambient temperature K )
To temperature of organism K ’ )
T surface temperature of sun K 8
t time.variable s T

H
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Appendix 1 (cont'd)

Symbol  Quantity Units Dimension
u actual solution —_— _ —
Y frequency . s'--1 T-l
' - =1 -1
VL listener velocity m s , T L
VS source velocity m s"l T
x, ith trial solution — -—
X, ) point in space corres- m L
ponding to source position
at t =0
X point in space corres- m - L

ponding to source
position at t =T

L = length

M = mass

e

T = time

8 = temperature

12
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Appendix 2: I. Numerical Technidues

Introduction

In the discussion of black=body radiatioh there arose two equations
which could not be solved analytiéally. Since such equations arise not"
infrequently in a variety of argés, for example in mathematical modeling
of biological systems, it is wortﬁwhile to investigate methods by which
one can find solutions to éuch equations, One class of such methods, called
numerical techniques, utilize; the recursive applicatibn of the bagic,dper-
ations defined on the real number system (+, -; X, %), to find solutions
accurate to any desired accuracy. With the increased availability of .
machines which can carry out these techniques swiftiy and automatically,
‘the problem solving ébility of the s;ientist has increased enormously. In
this'appendix, two important numericalltechniques, successiﬁe approximation,
and the half increment method fbr definite integrals, will be presented and
their implementation on the increasingly ubiquitous. programmable pocket.

calculator will be demonstrated.

Successive Approximation
As an example of this technique, the solution of the transcendental

equation

e +gu-1=0 | (A-1)

which arose in' the discussion of Wien's Law will be discussed.
Here u is the unknown-to be calculated. Suppose one starts with a
trial solution X . If d1 is the difference between the first trial

solution X and the actual solution u, then

Q ‘ '45?
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X, =u-= dl.

Substituting x, for u in eq. (A-1) gives:

1

Ll (a-2)
e + gxl -1= R1 ‘ -2

where R; is the first remainder term. Clearly as R.n + 0 the nth trial

solut:ion'x.n will approach u.

Subtracting eq. (A-1) from eq. (A-2) one obtains:
X -,
[ e -e -'%-dl = R,
or

-X -d ]
1 1 1
e [l-e -§d1=R1. a-3)

The exponential in the unknown d, in eq. (A-3) can be expanded as an

infinite series (e.g., a Taylor series):

2 3 4
-d, 4,2 4,° 4,

e =1-d1+ 2! - 3! + [’! “ essse

If the first trial solution is a reasonable guess then |d1| will be
small.so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq. (A-3) becomes:
-x
1 1
€ (dl)--'§d1=R1

or

or finally:
-X
4, =8/ -1 | (a-4)

Clearly the second trial solution X, defined by



X, =u-= dl.

Substituting X,

for u in eq. (A-1) gives:

Tl (4-2)
e + gxl -1= R1 ‘ -2

where R; is the first remainder term. Clearly as R.n + 0 the nth trial

solut:ion'xn will approach u.

Subtracting eq. (A-1) from eq. (A-2) one obtains:
X -,
[ e -e -'%-dl = R,
or

-x -d ]
1 1 1
e [l-e -54d, =R, a-3)

The exponential in the unknown d, in eq. (A-3) can be expanded as an

infinite series (e.g., a Taylor series):
. 2 3 5
-d, 4,2 4 4,

e =1-d1+ 2! - 3! + [’! “ essse

If the first trial solution is a reasonable guess then |d1| will be
small .so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq. (A-3) becomes:
-x
1 1
€ (dl)--'§d1=R1

or

or finally:
-X
4, =8/ -1 | (a-4)

Clearly the second trial solution x, , defined by
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X, =u-= dl.

Substituting x, for u in eq. (A-1) gives:

1

Ll (a-2)
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2 3 4
-d, 4,2 4,° 4,

e =1-d1+ 2! - 3! + [’! “ essse

If the first trial solution is a reasonable guess then |d1| will be
small.so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq. (A-3) becomes:
-x
1 1
€ (dl)--'§d1=R1

or

or finally:
-X
4, =8/ -1 | (a-4)

Clearly the second trial solution X, defined by
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TABLE A-1 (SR-52) Solution to e + %«: -1=0

Register Contents:

00 01 02 - 03-18 19 .
- Xy R, - Used for calculation of Ri(SBR 1%)
Program:
Step Code Key Entry Comments
000 42 STO Xy in display
001 00 0
002 01 ' 1 : xg stored in registef'OI
003 51 : SBR |
004 87 1% Calculates Ri
005 42 STO
006 .00 0
007 02 2 R, stored in register 02
4608 Bi HLT Cease execution, display Ri
009 43 RCL -
010 00 0
011 01 1 Recall Xy
012 - 51 SBR '
-x.
013 23 f£nx Calculates e
014 75 : -
015 93 .
016 02 2
-X
017 95 = e 1 --% in display
S P .
018 20 1/x (e —-g) in display
019 65 x
(Continued)

‘Note 1* refers to 2nd 1. . 117
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TABLE A-1 (SR-52), Continued

§EEE' Code Key Entry Comments
020 43 . | RCL |
021 | | 00 0
022 02 2 Recall Ri |
023 % - = di = Ri(e-xi-%)—l in display
024 85 + | |
025 43 RCL
- 026 00 0
027 G1 - 1 . Recall Xy
028 95 = xi+; =‘xi:+ di in display
029 81 . HLT | Cease execution, display Xt
030 86 . rset Return to step 000
931 46 LBL
.032 23 fnx Subroutine 2nx
033 94 o o
034 22 INV
035 . 23 Lnx Carculate e 1
036 56 rtn
037 46 LBL
038 87 1* Suhrm:tinehl*
039 53 (
040 42 STO
041 01 1
042 09 9 Store Xy in register 19
(Continued) NOTE: 1* refers to 2nd 1.

¥

‘ | | 48
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TABLE A-1 (SR-52), Continued

Step Code Key Entry ' Comments
043 51 SBR .

044 23 Lnx . Calculate e 3.
045 T -

046 01 1 Calculate ¢ 1 - 1
047 85 +

048 53 (

049 43 RCL

050 01 1

051 09 9 Recall X,

052 55 %

053 05 5 Calculate § x,
054 54 )

055 54 ) Calculate Ry
056 56 rtn




B. The HP-25

Using the Program (Table A-2):
Switch the PGRM-RUN switch to PGRM. Clear by keying
£ PGRM. Theﬁ key steps 01 through 24 of the program. Switch PGRM~RUN
switch to RUN, and set the calculator to step 00 by keying f PGRM. Key
X, into the display. Run the pfogram by édshing.the R/S button. The

calculator will cease executing when R_. has been calculated. R1 will be

1
in the (x) display. Push R/S; after calculation x, will be displayed.
Push R/S; the display will show R,, etc. '

To try a different first trial solution, key £ PGRM and then

key in the new x Run the program as before.

1°

Theré-are two solutions to eq. (A-1): u = 0.0 and u = 4,9651...
1f X, is too small or negative, this program will converge to the .trivial
solution (u = 0.0). Try a larger x,; i.e., key f'PGRM, and then key in
the new X;. Run the program as before. If X, is too large, the diSplay'
will show OF when the calculator ceases execution. Start over again with
a smaller xl.

For troubleshooting and editing of a HP-25 program, see section

IV.B. of this appendix.
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07 0
Step  Loe Xy o _X Y 1 _T
09
0L B0l smL X,
02 3l ENTER X, X
03 N X, X,
04. 15 42 g & e X)
05 1 wm e el x,
06 1 B e L B
07 1 ' o g ) e™ %)
08 n o2 2 T
09 N -l T
10 51 4 el e Xy X,
1 oBR s e Ny g
12 N W e ™ E 3 ¢ 1m,2
13 A xiy X, el %y e 1,2
(Continued)

¥

ERIC

Full Tt Provided by ERIC.

TABLE A=2 (HP=25), Solution to Transcendental Equation

Register  Contents

Comment

x, in display

Start loop

i}’
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TABLE -2 (HP~25). Contimed

Step
14
15
16
17
18
19-
20
/Al
22
23
24
25
26

2]

Cote

il

05 -

1
E
01

i
51
T
24 02
n

24 (1

51

74

13 01

Key
ENTER

R/S

- RCL

ROLL

R/S

G0 01

-xl

Comment:

Calculate Ry

Display R,
Caleulate d,

Calculate X,

Display x,

ERIC
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C. Using Successive Approximation to Solve Other Problems

The method of successive approximation is a powerful technique for
finding the solution to certain equations quickly and easily, as illustrated
by the programmed solution to eq. (A-1). Besides transcendental equations
(viz. (A-1)), this technique is useful for solving:.

1) Polynomials with constant coefficients of any degree

2) Polynomials with variable coefficients of small degree.

The crux of the method 15 finding an explicit formula for a
correction term (di) so that from any trial solution (xi) one can calculate

a new solution (x,,.) which is a better approximation to the correct

i+l
solution than the original (xi). To find this corréct;pn formula often
strains the ingenuity of the problem solver, who may have to juggle
equations or approximate functions by series. A particularly useful method
for finding these correction formﬁlae, especially for the polynomial

problems listed above, is the Newton-Raplson method which is derived and

discussed in almost all introductory books on numerical imethods!.

Definite Integrals by the Half-Increment Method

In the derivation of the Stefan-Boltzmann law, it was necessary to

evaluate the indefinite integral:

I x? dx. | (A-5)

![see, e.g., Weeg & Reed 1966, p. 34.]
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This seemingly simple integral cannot be evaluated analytically: Unfortu-
nately, this is not an isolated example; That is, the majority of funétidﬁs,
including many important simple functions, cannot be integrated by'standard
analytical techniques. In such cases, one must resort to numerical m~thods
to obtain the desired integral. The particular numerical integratioq |
technique described in this appendix, the half-increment method, is simple
to understand and to implement dn a programmable pocket calculator, and has
the added advantage of (relatively) rapid convergence.
In elementary calculus,'one learns that an integral can be thought of

as a measure of an area. For a definite integral such as:
b
I f(x)dx . (a-6)
a

this area is defined by the curve of the function to be integrated, f(x),
the x-axis, aqd the vertical lines x = a and x = b. This area can be
approximated by the sum of the area of rectangles as illustrated in
Figure A-1. The thinner the rectangles and thus the greater the number
of rectangles, the more accurate the approximation. In fact, it can be
shown that in the limit as the width of the rectangles becomes infini-
tesimal (X + 0 in Fig. A-1), the value of the sum approaches the value
of the integral.

All numerical integration techniques are based on approximating an
integral by the sum of the areas of simple plane figures. This particular
method is calléd the half-increment method because the height of each
rectangle is determined by the value of the function at the x value which
is half-way between the two X values whieh define the vertical boundaries

of the rectangle. That is, for the ith‘rectangle, whose vertical

Q ES(;
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Figure A-1, Definite integral approximated by rectangles

S

feas) Lo - — — — — - = I —
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/.-/
Xea Xy ' X ' Xy g X '[ Xie) Xnel Xnsb
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The value of the integral, that is the area under the curve f(x) from x = a

to x = b, is approximated by the sum of the area of the rectangles illustrated
above. In this approximation, the height of each rectangle is taken to be the
value of the function at the x value halfway from the endpoints of the rectangle.
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and x = x, .0 = x, + Ax, the height of

Ax
—50.

In the programs that follow, the integral (A-6) is evaluated first as a

boundaries are determined by x = X,

Ax, _
the rectangle is given by f(xi + 2) = f(xi+1 -

sum of rectangles whose width, A,;x, is given by Alx =b - a. This sum,

L,, which is composed of only one term, is given by:

Alx
21 = f[a + } Al.

2
: . Ax.
Next the sum, Z,, is calculated for A x = - - At each succeeding
iteration, the width of the Trectangles is halved; that is:
_1
Bipg® = A%
and
221 [ A ix]
Z, = flx, + —[A.x
i j=1 j 2 i
where
&
x, =a and x i = b.

2
When the value of the sum as determined by two successive iterations is
the same, this sum is taken to be the value of the integral. Obviously,
eaéh iteration will require twice as many operations as the preceding,

and will take correspondingly longer.

The integral of interest, (A-5), is indefinite, although the method as

presented is only applicable to definite integrals. Fortunately, the sum
does not have to be evaluated for very large b (the upper limit in (A-6))
in order to be accurate to two decimal places. This is a result of the

following limits:

o8
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3

x3 X

lim = lim =0

0 =1 xm e'-1
(which can be calculated by L'Hospital's rule), and the fact that the
function approaches zero very Quickly (and monotonically) for sufficiently

large x.

A. The SR-52
Using the program (Table A-3):

With thg calculato; in the execute mode, key LRN to enter program-
ming mode. Key in steps 000-111. Key LRN to return to the execute mode.
Push rset to go to step 000. Load the value of a in régister 01 (i.e.,
key in the value of a, amd push STQ 01,), and the value of b in register b.
Push RUN. When the calculator ceases execution of the program, Z, will be
displayed. Push RUN. 22 will be displayed, and Zl will be in register 06.
Run the program until Zi =-Zi_l (Zi will be in register 05, 21-1 will be:
in register 06). Note that each iteration takes twice as long as the
prgceding one,

Clearly the lower limit of the sum should be taken as the same '
as the lower limit of the integral (A-5); that is, a'= 0.0. However, the
upper limit (b) is not as easy to choose. The larger the value oﬁ‘b,'fhe
better the approximation of the sum to the integral.. However, concomitant
witﬁ a larger b is a greater number of iterations required for convergence.
A good compromise yalue is b = 30, which will approximate the actual value

of the integral (I = 6.4938...) to 3 decimal places in 9 itrrations.  The
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program user should try other (larger and smaller) values of b in order
to get some feeling for these tradeoffs.

For troubleshooting and editing of an SR-52 program, see

Section IV.A of this appendix.
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TABLE A-3 (SR-52). Integral by Half-increment Method

Register Contents-
00 01 02 03 04 05 06 07 - 18 i9
- - a b Xy Ax Z Ii—l :— used for f(x)
preloaded
Program
Step Code Key Entry Comments
000 00 0
001 42 . STO
002 00 0
003 05 5 . Zero register 05
004 43 RCL
005 00 0
006 02 2 | Recall b
£07 75 - |
008 43 RCL
009 00 0
010 01 1 Recall a
011 42 STO
012 00 0
- 013 : a 03 3 Store x; = a in Register 03
014 95 = ' Calculate Alx = b-a
015 42 ' STO
016 00 0
017 04 4 Store Alx in Register 04
(Coﬁtinued)
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TABLE A-3 (SR-52), Continued

Step " Code Key Entry Comm_e_:__x‘g_s_
018 55 2
019 02 2
020 95 = Calculate %’-{-
021 85 +
022 ' 43 RCL
023 00 0
024 03 3 | Recall x,
Ax
025 95 = Calculate x, + =5
026 51 SBR
027 _ 00 0 This subroutine
028 _ 09 9 calculates
' . hx
029 05 5 £ (x, +30)
2030 65 X
031 43 RCL
032 00 : 0
033 04 4 Recall
034 . 95 - Caleulate f(x, + -45’5) A%
035 44 SUM Put
1 Ax
036 00 0 Df(x, + =) Ax in
' Xq=a * 2
037 05 5 Register 05
038 43 RCL
039 00 0

(Continued)




TABLE A-3 (SR-52), Continued

' 'Step Code
040 . 04
041 44
042 . 00
043 03
044 43
045 00
046 03
047 75
048 43
049 00
050 02
H51 95
052 80
053 32
054 43
055 00
056 04
057 41
058 00
659 ) 01
060 08

{Continued)

Key Entry

SuM

if pos
sin

RCL

(‘omments

‘Recall Ax

Calculate

X1 =¥ + Ax

Store in Register 03

Recall x1+l

Recall b

Calculate x1+1 -5b

If x > Db go to

i+l
step labeled sin
If x1+l <b
Recall

Ax
Continue

the sum
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TABLE A-3 (SR-52), Continued

Step
061

062
063
064
065
066
067
- 068
069
070
071
2

072
073
074
075
076
077
078
079
080
081
082

0s3

" continued

Code
46
32
3
00
05
81
43
00
05
42
00
06
00
42
00
05
02
22
49
00
04

43

00

Key Entry
LBL

sin
RCL
0

5

'HLT

RCL

INV

PROD

RCL

Comments

Recali X

Display X

Recall z

Store z in Register 06

Zero Register 05 (D

Aix
Put Ai+lx =5 in

Register 04
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TABLE A-3 (SR-52), Continued

Step
084

085
1086
087
088
089
090
091
092
093"
094
095
096
097
098
099
100
101
102
103
104
105

106

Code

01

42
00
03
43
00
04
41
00
01
08
42
01
09
45
03
55
53
43
01
09
22

23

Key Entry
1l

STO

STO

o]

INV

inx

65

Comments

Recall a

Store X, = a in Register 03
Recall Ai+1x

Return to Step 018
to recalculate
Intégral w/ Smaller
Ax . .

St§re
Ax

xi+-2— in

Register 19

Calculate {x. + AE]
i ‘2

Ax
Recall (xi 4-—54-

Calculate exp [xi + A)E]
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TABLE A-3 (SR-52), Continued

Step Code ’ Key Entry Comments
-107 . 75 -
108 01 1
) Ax
109 : 54 ) Calculate exp X, +5 - 1
110 95 = Calculate f[xi +-£§%
111 56 rtn
£

66
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B. The K" ..35
Using the program (Table A-4):
Switcin the PGRM=~RUN switch to?gggﬁ;, Clear program memory by pushing
f PGRM. Then key in steps 01 through 46 of the program. Switch PGRM-RUN
switch to RUN, and set the calculator to step 00 by keying f PGRM. Load a
in register 1 (i.e., key a into the display then push STO 1) and b in
register 2. Push R/S. The display will show Z. Push R/S. The display
will show I,. Zi will be in register 6. Run the program until Zi (in the
~display at the end of execution and in register 5) equals 21-1 (in register 6).
Note that each iteration takes about twice as long as the previous one.
Clearly the lower limit of the sum should be the same as the lower
1imit of the integral (A-5); i.e., a = 0.0. However, the upper limit of
the sum (b) is not as easy to choose. The larger the value of b, the
better the approximation of- the sum to the integral, but the longer it
takes for two successive iterations to converge. A good compromise‘valué
is b = 30, which will approximate the actual value of the integral
(I = 6.4938...) to three decimal places in nine iterations. The program
user should try other (larger and smaller) values of b in order to get
some feeling for the tradeoff between aCcuracy and time in using this
method on this integral.
For troubleshooting and editing of an HP-25 program see section IV,B

of this appendix,

67




63

b
1 5 '
TABLE A-4 (HP-25) : ‘=== (x by Half~Increment Method
' e =l
a

Register Contents

0 1. 2 ) ! 5 6 7
B S & 2 hy oo
preloaded
Program:

S Gl gy X v 2T s
01 00 0 0
02 30 805 0 Zero register 5
0 Ty b Recall b

04 40l Rl 2 b © Recall a

05 23.03 §10 3 a b |

06 | i - | A1x=b-a Caleulate 4 x=b-a
07 23 04 §T0 4 | Ax

08 02 2 2 | Ax Continue loop [from step 36)
09 n . Ax/2 Caleulate Ax/2

10 2% 03 RCL 3 L |

11 51 ' xtx/2 w Caleulate x /2
(Con;inued)

Aruitoxt provided by Eric:

ERIC S | L
U | L R )



BLE A-4 (HP-25), continued

ep -Code ‘

31

15 07
01
41
21
31
03
14 03

21

71

26 04

61

23 51 05

% 04

| 24 03

ontinued)

Key Entry

ENTER
X

ge

1

>
X<y

ENTER

RCL 4

STO+S5
RCL 4

RCL 3

X

xi+Ax/2

exp[xifoIZ]
1

exp(}-1

xi+Ax/2

xi+Ax/2

3

(x£+Ax/23?

exp(]-1
f(xi+Ax/2)

Ax

f(xi+As:/2)A::

f(xl+Ax/2)Ax

Ax

¥y

X
xi+Ax/2
xj+Ax/2

expfxi+Ax/2],
xi+Ax/2
exp(]-1
xi+Ax/2
xi+Ax/2
exp[]-1

(x +4x/2)*

f(xi+Ax/2)

f(xi+Ax/2)

Ax

xi+Ax/2

exp[]-1

exp[]«l

f(xi+Ax/2)

Comments

Calculate exp[xi+Ax/2]

Calculate exp[xi+Ax/2]

Calculate (xi+AX/3)3

| Gagtn/2)

f(xi+Ax/2) =

(xi+Ax/2)3 exp[xi+Ax/2]-1

Calculate f(xi+Ax/2)Ax

Sum cf areas in reg., 5 ~

71



Table A=4 (HP-25), Continued

- Step  Code Key Emtry X X € T Comments
/] 51+ xi+Ax f(xi+Ax/2) X4 ° xi+Ax
28 2303 STO‘3 | X4 f(xi+Ax/2) " in reg, 3
29 24 02 RCL 2 b - X f (xi+Ax/2) Test fo; X,y beyoud
30 14 41 fxy b X1 f (xi+Ax/2) range of integration
3 13 36 GT0 36 b X f (xi+Ax/2) of "1+1’b' leave loop,
go to step 36

LY 2, 04 RCL & Ax b X4 f(xi+Ax/2) 1f Xy € b
3 31 ENTER‘ | bx Ax b Xy

]

0 34 13 08 GIO 08 Ax Ax b X Continue loop at step 08
35 2405 RCL 3 ) b %41 f (xi+Ax/2)
36 7% 18 ) b Ky B(xaf2)  Cease execution, displey I,
3 2306 806 I b Xy f(xi+Ax/2) Ll Inreg, b
38 24 0L RCL 1 a ) b X4
39 23 03 ST0 3 a ) b X4 X =2 inreg 3
40 143 £SIK 0 0 0 0 Zero stack
41 2505 S70 5 0 Zero teg, 3
(continued)

¥
73

) "
e ™

Full Tt Provided by ERIC.
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TABLE A~ (RP-25), Contined -

Step  Code Key Entry X ! ) Comnents
§2 02 2 3 lower limit from reg 2
| . A X
4 237106 ST0% / 4 T e in reg, 4
W W0 L bx )
45 - x&y ) b
46 1309 61009 2 bx Recalculate sum with
| smaller rectangles
1
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C. Using the Half-Increment Method to Integrate Other Fuﬁctionsl.

The SR-52: |

The subroutine (095 calculates the value of f(xi +'%?). To integrate
any other function, define the function with suitable keystrokes starting
at program step 095 Be sure to end the functién definition subroutine
with rtn. |

If the program is already loaded into program memory it is péssiblé
to change only those statements involved in the functional definition
(subroutiﬁe 095), which is usually less trouble than wiping program memory
and starting anew. For appropriate editing instructions, see section II.A
of this appendix.

The HP-25:

The steps 12 through 22 are used to calculate the value of f(xi +-%§0.
To integrate any other function, define the function with suitable key strokes
starting at step 12. Be sure to end the seqﬁence with f(xi + %;D in the
X register. Follow the last step used to define the function with the step
numbered 23 in the present program (that is, the keystrokes RCL 4).

If the program is already loaded into program memory, it is péssible
to change only thos:- keystrokes involved in the functional definition |
(steps 12-22). This is usually less trouble than wiping program memory and
starting anew. For appropriate editing instructions see Section 1I.B of

this appendix.

![For alternative programs and more detailed discussion, see -
<

) L] s . 6.
[MC Eisberg, R. M. 1976.]
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Appendix 2: II.' Progran -Troubleshooting and Editing

It is frequently the case that after a program has been keyed into a
calculator, the program willAnbt berfdrm as -expected. This frustrating
state of affairs may be due to a logical error in the program or mistakes
made when keying in the program; e.g., leaving out steps, putting'in'extra
steps, or keying steps in the incorrect order. Since such mistakes are
relatively common, the design of programmable pocket caiculators is sucﬁ
that troubleshooting and editing programs is not diffiéult.

Mistakes involving logical errors, which are the most difficult to
detect, will not be present in the programs presented here. For such errors
in your own programs; I have found that "single-stepping” through the programmed
calculations (as described below) is the most efficient method of detecting
the error. For further information, refer to the owner's handbook supplied
with the calculator,

For nonlogical programming errors, there is always the option of wiping
the program memory-(usually by turning the machine off) and starting over.
This procedure, besides beingwtimeAconsuming, d§es not assure that additional
errors will not be made in loading the program the second time. 'Aiternatively,
one.can edit the program as described below. In the following discussioq, it

is assumed that the program is already loaded into program memory.,

A. The SR-52

Troubleshooting:~

Programming errors are indicated by any of three conditions following

a program RUN:
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1) The calculator does not cease execution in a "reasonébie" length
of time, This conditiop is due to a closed loop in the program insfructions.A
The calculator cannot exit the loop so as to reach a HLT inmstruction.

2) When the program ceases executing, the display is steady, but the
answer is clearly incorrect. This situation may be difficult to detect
unless one knows exactly what the program dées.

3) VUhen the program ceases executing, the disp}ay is fla#hing. This
condition signifies that during execution, a calculation was performed that
overflowed the capaéity of the calculator, or that an il;egal operation was
performed.

There ére two methods by which to pinpoint the source of an efror. One
can check the program in the memory against the program}listing, or one can
single-step manually through the éalculations that the calculator performs
automatically.

To check t;he program in the memory, pushrset. and then LRN to entexj.
programming mode. The display will show the key code and step humber of
step 000. Pushing SST will display the key code and step number of thg next
step. Pushing bst will display this information for the preceding step;
Compare the key codes displayed to those given in the program listing. If
there is some reason to believe that the error occurs at some particular
step, e.g., Step 099, one can go immediately tc this step. in the execute
mode by pushing GTO 099. Thep push LRN to enter the programming mode and
to display the key code and step number 099. Use SST and pbst as necessary.

Alternatively, one can single step through the pfogrammed calculation
manually. This is particularly useful for debugging your own'programs or when

a flashing display is encountered.. In the execute mode, push rget to get
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to step-000. Load the registers and display,as necessary. Continue in the
execute mode and push SST. The calculator will execute instruction 000 and
move on to the next step. Pushing SST repeatedly, one can observe the result
of each programmed instruction as it is performed. If at any step an error
condition results, push LRN to enter programming mode, and then push'kgé,

The step number and key code of the incorrect step will be displayed.

Editing:
Deleting instructions: fn the program mode, with the step number and
key code of the incorrect step displayed, press gg;, The incorrect instruction
will be deleted and the next instruction will be shifted down to this step.
" number, and all subsequent instructions will shift déwn'pne step number.
Changing instructions: In the program mode, with the step number and
key code of the incorrect step displaygd, press the correct key for that
stepnumber. The correct instruction will write over the previous one, and
the display will shift to the next step. |
Adding instructions: Ih the program mode with the step mumber and key
code of the step displayed, press INS. The display will change to ;he correct
step‘nﬁmber but the key code will be 00. The key code that was at this step.
will be.shifted to the next step number, as will all subsequent instructions.
Press the key for the missing instructions. The display yill now show the step

number and key code of the next step.

B . The }E-ZS..
Troubleshooting:
Programming errors are indicated by any of four cc¢.ditions following a

program rua:
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1) The calculator does not cease execution after a "reasonable"
length of time. This condition is due to a closed loop in the pfogram
instructions. The calculator cannot exit the ioop so as to reach a
gj_g instruction. |

2) VWhen the program ceases executing, the answer d;Splayeq is
clearly incorrect. This situation is difficult to detect.

3) When the program ceases executing ERROR is displayed. .This
results from attempting an illegal instruction. The program stops at the
incorrect instruction, which will be displayed by switching to PGRM mode.

4) Wﬁgn the brogram ceases execﬁting; OF is displayed. This results

.from an overflow in a storage fegister. Switch to PGRM mode to display the
key code and step number of the instruction that caused this condition.

To compare the program in memory to the program listing, in the RUN
mode push GTO 00 (or if there is reason to believe the error is at some
later step, e.g., step 16, push GTO 16. Pushing SST will display the step
number and key code of this step. When SST is released, the instruction
is executed, the result is displayed, and the calculator moves on to the
next step.

Editing:

bhénging an instruction. Once the error is located, use the GTO (in
RUN mode), the SST, or the pgr (in PGRM mode) ar nécessary so as to be at
the step preceding the step which is to be changed. In the PGRM mode, with
the key wnde and step number of the preceding step displayed push the key of
the correct instruction,

Deleting an instruction: Display the step preceding the step to be

deleted (using GTO, SST, or bSt as necessary). In the PGRM mode bress

- 80
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g NOP. When the calculator reaches this program step, it will skip it and
proceed to the next instruction.

Adding instructions: To add instructions, one uses the‘gzg instruction
to perform an unconditional branching. For example, suppose opé has left out
three steps between Step 08 and ‘09. Further, suppose the program ends &ith
Step 15. Then one replaces Step 08 with GTO 16. Then key in the instruction
whizh was replaced at Step 08 in Step 16, and the three missing instructions

as 17, 18, and 19. Then key in GTO 09 as Step 20.
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CALCULATOR PROBLEMS

1. Using black and white infrared film and a sgitable filter Ane can
photograph within the wavelength range 500-650 nm. If you were to.attempt
to photograph the reindeer in problem 3 (main text), how much power would
be reflected in these wgvelengths by a m2 of:
. a) The reindeer horn at T = 32°C?

b) The outside of the reindeer’s fur at T = SQC?

¢) The external environment at T = 5°C?

At present, inffared film is not "East" enough.to record thermal -
luminescence of an object at temperatures below 250°C.

d) How much power would be available in this wavelength range

from a black body at this temperature?

The solution to this problem will require the numerical integration of"

6.5x10"7
16 5 he/AKT _

7

I=3.74 x 10 17" ax
5%10

which can be derived in a manner analogous to the derivation of Eq. 1 but

beginning with the solution to problem 1 (main text), that is

8Ilhe
}\5

-1

h b
. c/AKT _ 117t

EQ) = [

2. The>sensitivity of the compound eye of a honeybee (worker) extends
further into the ultraviolet than does the sensitivity .of the human eye.
The bee eye is sensitive from about 300-650 nm, and thg human eye is sensitive
from about 400-700 nm. What is the difference in the powér available from the

sun in the wavelengths perceptible to these two organi;ms?
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The solution to this problem will require the numerical integration'of:

a

—6
- '7x 1’ -—

I=3.74 x 10°L )\

with the limits of integration chosen to crincide with the spectral ranges
provided above.

What is the biological significance of the greater ultraviolet sensitivity
of the bee eye?

3. Photosynthetic bacteria differ from most algae and higherlplants
‘in that they possess an auxiliary "electfon'pump" in their photosynthetic

~» wnich.allows them to utiliée radiation of longer wavelengths for
p ,;ntnesi§Q The absorption spectra fo¥ the photosynthetic organs of
these organisms reveal the following spectral ranges:

a)  400-700 nm _ green plants

b) 780-840 nm

c) 840-910 nm various purple bacteria

d)- 970-1050 nm

Using the integral in problem 2 above, calculate the power available
from the sun in each of these wavelength ranges.

For an énlightening diséussion of the evolutionéry significance of the

wavelength ranges utiljzed by these bacteria, see Bjorn 1976 (p. 235).
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CALCULATOR PROBLEM SOLUTIONS

1. The integrai to be evaluated is

6.5%10"7

6 =5, he/AKT
e

ATl
7

I=3.74 x 10°L - 177 1ax.
5%10

For the four parts of this problem the value of T differs, which means
tﬁat the exponent of the exponential of the integral will be different for
N . N

each part.

° . -ll_c_
305°K; =

°Kr. .II—C.
278°K; KT

or. he -
268°K; kT = 5.3688 x 10

5

a) T 4.718 x 10~

ft
f

5.1757 x 10>

b) T

c) T 5

1

°K . he
523°K; =

5

d T 2.751 x 10 °.

]
"

For the SR-52:

As explained in section C of Appendix 2.II, one must alter the prcgram
in Table A~3 at step 095 which is the function defining subroutinc. A suitable
program is given in Table A~5. ihe preloaded registers in Table A-5 are 01,
02, and 07. Registef 07 requires the values of hc/kT given above. Note that
the va.l.e of the integral calculated by the prograi. must be multiplied by
3.74 x 10—16 to give the correct value for the power.
For the HP-25:

As explained in section C of this appendix, one must alter the program_in
Table A-4 at step 12. A suitable program is given in Table A~6. The preloaded

registers are 1, 2 and 7. Register 7 requires the values of hc/kT given above.

Note that the value of the integral calculated by the program must be multiplied:

~16 .
by 3.74 x 10 to give the correct value.for the power.

@A‘ , ’ o 634




76

The values for the integral that I obtained were:

a) I=2.41% 10 )
b) I = 2.56 x 1072

¢) I=9.45x 10714 ‘
d) I=6.01x10"
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Table 4~5 (SR-52) Program Changes to Table A-3

00 01 02 03 04 05 06 07 o$~18 19
- \E;fof:za“fjffff:z/ *5 - Ax z Ii;l %%' ——— useq for
: + £ (x)
preloaded pralqaded '
- Step Code Key Entry ' "_Comments | '
095 47 ST0 " store |
096 oL 1 Ai in
097 09 9 Register 19
098 45 v
099 05 5
100 65 X Calculate Kis
101 53 (
102, 53 (
103 43 ROL
104 00 .0
105 07 F Recall hc/kT
106 . 55 £
107 45 ROL
108 ol 1
109 09 9 Recall A~
110 54 ) Calculate hc/AKT
22 NV
112 23 nx Calculate explhc/AKkT] ~ 1
113 75 - |
116 0l 1
115 54 3 . Calculate A[exp he/MKIv1]
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00 01 02
— (5.7%1077 6.5%107)
preloaded
Step Code
116 95
117 20
118 56
£

03 04
Xi Ax
Key Entry
1/x
rtn

78

05 06 07 08-18
he
z L1 KT -~
. 4
preloaded
Comments Comments

19

used for f£(x)

Calculate A—S[exp he/AkT-1] ~ 1

Calculate Ai-_s[e.xp(hc:/k’].’)-l]"l

87



79

Table A-6 (HP-25) Program Changeé to Table A~4

Register Contents

0 1 2 3 4 5 6 7
- '; | b x, b L I, he
preloaded preloaded .
Step " Code Key Entry X - Y _Z_ _T Commeﬁts
12 31 ENTER Ai Ai
13 31 ENTER £ Ay A
14 05 5 5 Ay Ay
i 103 £ 0’ A A Caleulate A,
1€ 21 xgy A 115 |
17 2407 KCL 7 he/kr A, A Recall hc/kT
1% 21 xsy A he/kT A Calculate be/AKT
i9 | 71 < b /AKT Ai kis Calculate hc/AKT
20 4‘15 07 gex explhe/2kT] kis Ais Calculate 2xp:nc/Ak
21 o1 1 1 - expl]) xis
22 41 - exp[]-1 - Ais Calculate explhc/Ak
23 61  x "
24 15 22 g%' [exp[--]]—1 Ai_s Calculate [exp(f%%
25 24 04  ECL 4 Bx £x, + £xy Step No. 23
| in Table A-4

Continue'ufrh steps 26-33 as in steps 23-30 in Table A-4

For this program, Step 31 Table A-4 must be changed to:

i 13 38  GTO 38.
Continue with steps 35-49 as in steps 32-46 in Table A-4.
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2. The integral to be evaluated is the same as in problem 1. Thus one
can use the programs given in Table A~-5 (or A-6) preloading registef 07

{or 7) with:

he - -_6
T - 2,52 x 107,

The value for the integral that I obtained was

6.38 x 1022
22

a. 300-650 nm: I

5.85 x 10

#

b. 400—700 nms: I

3. The integral tc be evaluated is the same as in problem 2. The values

that I obtained for the differeut ranges of integration were

2.  400-.700 nm: I = 5.85 X 1022
b. 780~ 810 rm: T = 8.02 x 1021
c.  840- 910 nm: I = 8.123 x 10°1
6.  970-1050 nm: I = 6.85 x 1021
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Appendix 3: SOLUTIONS TO PROBLEMS

Problem 1
Planck's formula in terms of ):
E(w) = 8nhv /e (e hu/kr - 7L,
So EQ\)d) = -E(v)dv (minus sign becapse d)\ and dy are of
. opposite sign).
Siace V = ¢/)\ for all wave.phenomené,
-dv/d) = —e/x%.

.. EQ) = E(v) dv/d\ = E(v) /3>

2 8nhv3

3
c

= ¢/2 [e ho/kT - 1771

he/AKT _ .,-1

/22 8nh/23) [e

1}

(8rhe/2>) [e2/aT - 1771,

Problem 2
The genéral formula is
AmT =b or Am = Lt/¥. So

: 2.8978 x 10 °m K
a) Am = 3
5.7 x 10° K

5.08 x 10 'm

b) Since 37°C = 300 K

_ 2,8978 x 10 °m K

5 = 9.659 x 10 'n
3 x 10" K

A

m

¢) Since 10°C = 283 X

_ 2.8978x10m K

m 2.83 x 10° K

3

A = 1,024 x 10 “m

9n

o
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min

Eg

1.95 cal m:ln'-l cm-z.

Problem 5

As in Example 4:

o = 0.61 \/r

7

A=5.08x 10 'm

4

r=10mm=10x10 m

d) Since -33°C = 240 K,
2.898 x 10 °m K -3
o= . = 1.207 x 10 m.
2.4 x 10° K
Problem 3
As in example 2
a) E= o[ro“ - 'ra“J ~ 5.67 x 10‘8[(273 +30)% - @713 - 10){' Wom 2
= 219.4 y o2
-2 2
H = E(SA) = 219.4 Wm 2(.1 m2) = 21.9
b) E= cI'ToA - T;‘J = 5.67 x 10’8[(305)“ - (zza)ﬂ —
= 337.4 W2
o= E(SA) = 337.4(7.5 x 1073) = 25.3 W.
Problem 4 :
. 4 8.2
Eg = oTurSZ/rcz = 5.67 x 1075(5.70 x 107) Le1X 1011 ) W2
(1.49x 10 ‘)
= 1.359 x 100 W w2,
Converting to calories
= 1.359 x 10° W m 2= 1.359 Wo 2 [.0239“‘1/{' I:ﬁo—sﬂ— 10”402

/cm%]
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Soa = 3,17 X 1074 rad.

Again as in Ex. 4,

6x = ad = (3.17 x 1074 rad) (17 mm)
§x = 5.4 x 107> m .
= 5.4 x 10°¢ .
Prbblem 6

From the geohgtry of.the situation it is obvious that
d =aR (i)
~e o is the angle of the cone which is the onomatadia. If this angle
is at the minimum given by Rayleigh's criterion:
@ = 0.61 A/r = 1.22 A\/d (ii)
Combining equations (i) and (ii) and solving for d, one gets

d = (.2280)1/2

Substituting in R = 1 mm and A = 400 nm gives

£ d = 2.2 » 10™m.
Problem 7
A = 9.67 x 10 %0
r = striking distance %= 1 m
s = accuracy of strike 2 2 cm
¢ = s/r =2 x 10-2 rad.
Using the Rayleigh criterion, the sep;ration of the pits, d, is given by
by ) x 10”4 -2
d=2.(0.60Ma =122 220210 B o ¢ 107
2 x 10 rad

% 6 cm.
This theoretical prediction corresponds very closely to the actual

observed separation of the infrared sensing organs of a pit viper.

92
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Problem 8
The echo will return after:
T=d/c_ =100/350 ns ' = 28.6 ms.
The insect detects a frequency:
fi = (CS + Vi)fS/(Cs - VL)

which is reflected to thelbat and detected at the frequency:

Hh
i

e e 350 + 5 [350 + 1
L= (€, + VI -V [

£ * 30 -1 350-51 >0 kiiz

51.74 kH z.

13




