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INTRODUCTION

All living organisms interact with their environment through a

continuous exchange of matter and energy. Conceptually, this can be

thought of as a consequence of the "openness" of the system in a thermo-

dynamic sense. For a complete understanding of the biology of an

organism, it is essential to determine the ways in which the organism

interacts with the biotic and abiotic factors present in the external

environment. To most biologists, the exchange of energy between an

organikn and its environment in. the form of radiation is probably the

least well understood abiotic factor affecting the organism. As D. Gates

has pointed out,F this exchange is also the most difficult to measure.

However, its importance to the organism cannot be overemphasized.

There are two ways in which the process of radiation exchange is

of biological interest. The governing principles of this physical

process are different for the two distinct biological applications.

First, there is the dynamical balance of the radiation flow between

the organism and its environment, and its effect on the homeostasis of

the organism. This dynamical balance is best described by the modern

form of radiation theory, which is based on Planck's theory of black

body radiation, and which is exemplified in the generally useful results

1 [Gates, D. M. "Radiation incident on an organism" 1978, p. 1]
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entailed in Wien's law of shift and the Stefan-Boltzmann law. Several

simple biological applications of this modern radiation theory are

developed in this module. Yurther applications are present. .!...7,where

in this series (Gates 1977,1973; Hatheway 1977, Stevenson

Second, there is the interpretation of the energy he

organism, as a means of obtaining information about the env.1

The selective advantage that results from improved information L ,aring

has led to the evolution of many specialized sense organs. The function

of these organs is best described by the classical theory of ra,'aation,

particularly as entailed in Rayleigh's criterion and the Doppler: affect.

The balance of biological examples discussed here are of this second

type.

The nature of the physical processes of radiation exchange imposes

strong constraints on the evolution of biological systems. This module

presents some of the results of classical and modern radiation theory and

shows how they elucidate these physical constraints. It is demonstrated

that radiation theory is applicable to a wide range of sense organs

(eyes, ears, pits); radiation types (electromagnetic, sound), wavelengths

(optical, infrared), and organisms.

BLACK BODY RADIATION

In any discussion of radiative energy exchange, it is necessary to begin

with an idealization of this process, thich is described by the theory of

black body radiation. This is rather awkward in the present instance

5
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since the biological.implications of this abstraction from the real

world are not immediately obvious. In fact, some of the most important

aspects of biological systems result from their deviatiops from the

idealizations of physics. For example, most organisms are not perfectly

"black" in the physical sense of the word; that is, they do not absorb

and emit radiation perfectly at all frequencies. The effect of the

coloration of organisms will be to vary the degree to which the black body

idealization can describe the system. However, it is the nature of

science to explain in detail the simple system in the hope that the more

complicated systems can be explained by small variations of the simple

theory, and the expectation that the major results will be carried over

to the more complicated systems. For radiative energy exchange this is

precisely the ease, and thus there is sufficient justification for present-

ing a discussion of black body radiation which, though not "simple" in the

common sense of the word, is essential for an understanding of the more

complicated systems which are the substance of biology.

The theory of black body radiation had a lengthy and fascinating

development during the 1800'E., culminating in the work of Planck at the

turn of the century. Many of the results discussed below were known at

varicus stages during this period of repeated empirical research and

hypothesis testing. However, the important results for biological

applications can be derived directly from the formula of. Planck, which

mathematically (though not physically) culminated this field of experi-

mental physics. The physical explanation of Planck's formula awaited
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the work of Einstein, and ultimately the early founders of Quantum

Mechanics.

Planck's problem was to specify the energy distribution of the

electromagnetic radiation within a cavity, the walls of which are at

thermal equilibrium at the temperature T. That is, the problem is to

find the energy density E(v) s m
-3

) of.the radiation within the

cavity between the frequencies v and v + dv. The shape of the curve E(v)

vs. v had been determined experimentally at various temperatures

[Fig. 1 ] . Planck found a solution to this problem in the form:

-1

c
3

fth v
3

rshv/kTE(v) = e

where v is the frequency of the radiation, T is the absolute temperature

of the walls of the cavity, and h, k and c are physical constants [see

Appendix 1]. This energy distribution is called the black body energy

distribution because it is the same as the energy distribution of radiation

emitted by a perfectly black object which is at absolute temperature T.

For measurement purposes, it is more useful to express this energy density

in terms of the wavelength A.

Problem 1

Show that the energy density per unit wavelength is given by:

-1

A5

&the hcakT
- 1]Ea) = - [e

Hint: A = c/v
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Wein's Law of Shift

It can be shown that the E(X) distribution can be described by the

wavelength Am at which the distribution reaches its maximum. Qualitatively

increasing the temperature T shifts the maximum of the E(A)[E(v)] curve

to a smaller X (higher v).

Example 1

The wavelength at which the energy density is a maximum at a given

temperature T can be found as follows:

From problem 1:

Ea) = STrhc hc/X kT
- 1

-1

X5

Make the substitution u = hc/AkT:

E a '

8trk
5
T
5

u
5

c4h4 eu - 1

4
From calculus, the maximum can be found by solving:

dE
0, which gives

du

dE STrk T
(5u

4
)(e

u
-1)

-1
- e

u
(u

5
)(e

u
-1)

-2]
= 0 or

du

5 5

c
4
h
4

(5u4(eu.)
-

[

-2
u5eu )(e u -1) = 0 which implies

4
5u e

u
- 5u

4
- u

5
e
u
= 0 or finally:

e
u
+ 1/5u - 1= 0.

This transcendental equation can be solved by numerical techniques (see

Appendix 2) to give:

u = 4.9651..
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A
m u

hc
T = = 28978 x 10

-3
m K = b.

k

b is called the Wien constant and the equation

AmT = b

is called Wien's law of shift (1896 Wilhelm Wien). Therefore, the

maximum of the black body curve E(A) at temperatures T1,T2,T3,... falls

at X 1' X
2'

X
3'

... so that

A1T
1

= X2T2 = A3T3 = b

[see Fig. 2].

The Wein law of shift is a very powerful result because it embodies

a single relation between wavelength and absolute temperature. This is

exemplified in the following problem.

Problem 2

Assuming the following objects radiate as black bodies, what is the

A
m

for:

a) the sun at T
s
= 5700 K

b) a mammal with a surface temperature T = 37°C

c) a lizard with a surface temperature T = 10°C

d) the clear night sky, radiation temperature T = -33 °C

Answers:

a) 5.08 x 10
7
m = 5080 A (yellow)

b) 9.66 x 10
4
m (infrared)

c) 1.024 x 10-3m (infrared)

d) 1.21 x 10
-3

m (infrared)

r

10
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Stefan-Boltzmann Law

If E is the total energy density in all frequencies (3 m
-3

):

/

co co

8ffh 1 v3dv
E = E(v)dv = Th

e o e
hv/kT

o - 1

Making a change of variable,

x = hvig which implies dv = /(1 dx.

Equation (1) becomes

CO

E =
87h 1.7) 4 x

3
dx

c e -1
0

The value of the integral in Equation (2)

co

x
3
dx

I

ex-1

(1)

(2).

(3)

can be obtained by numerical integration. This is a technique for

approximating a definite integral by a finite sum. The value of the

integral in Equation (3) is found in Appendix 2 to be:

I = 6.4983.

Equation (2) can be re-expressed as

[
387h

k 4
E = CFI) I T = aT

4
(4)

c

where the constant a is equal to the value of the constants in the

square brackets in Equation (4). The value of a is found to be

4

a- 87h k4
4983) = 7.5643 x 10-10 J m-3 K4.

C3 h4

The energy radiated by a black body per unit area per unit time,

that is, the radiation emittance E
n

, can be shown to he

12
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E = aT
4

where E E radiation emittance and

CY = (4)ca = 5.6693 x 108 W m-2 K4.

.(5)

Equation (5) is called the Stefan-Boltzmann law and the constant a is

called the Stefan-Boltzmann constant. Although Equation (5) is quantit-

atively precise, the functional relationship of the variables is more

important than the exact numerical value of the constants. Of particular

interest is that the radiation emittance is proportional to the fourth

power of the absolute temperature.

The equation is of direct biological interest when it is realized

that the Stefan-Boltzmann law governs the radiative energy exchange

between an organism and its environment. Although this exchange of energy

is usually not considered when calculating the energy budget of an organism,

it can in some circumstances be a major factor affecting the heat balance

of an organism. The following example and problem constitute a brief

introduction the application of this physical law to biology. For a

more detailed exploration of this relationship, see Gates (1978) and

Hathaway (1977).

Example 2

A bat with a surface temperature of 37°C is living in a cave which

has walls at a temperature of 12°C. What is the radiation emittance of

the bat? If the bat has a total surface area of 100 cm
2
, what is its rate

of heat loss by this process of radiative exchange?
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Solution: Define

T
o
E the bat's surface temperature (in K)

Tar the ambient temperature (i.e., the temperature of the cave)

(in K).

Clearly the bat is emitting radiant energy at the rate:

E
o

= 6T
0

4

and receiving radiant energy (from the walls) at the rate:

E
a

= aT
a

4
.

So the overall energy exchange by this process is given by:

E = a(T
o

4
- T

a

4
)

with the convention that E is positive when the overall radiation balance

is such that the bat is emitting more than it absorbs; i.e., it is losing

energy to the environment at the rate E.

For this example:

T
o

= (273 + 37) K = 310 K

T
a

= (273 + 12) K = 285 K

which gives an energy emittance of:

E =

=

=

5.67 x 10
8
(w m

2
K

4
)

5.67 x 10
-8

[9.235 x 10
9

5.67 [92.35 - 65.93] W

[(300 K)
4

- 6.598 x

m-2

- (285 K)
4

]

10
9 -2
] W m

= 149.5W m2

The bat's total heat loss rate H, by this process is

H = E(SA)

where SA - surface area, so

II = 149.5 W m
-2

(100 cm
2
)

= 1.495 W.

14
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Although in this example the heat loss rate was relatively small,

when there are larger differences between the organism's temperature and

the (radiation) temperature of the environment, the heat loss rate can

be quite high. This situation pertains in the following problem.

Problem 3

a) The horns of a reindeer are at approximately internal body

temperature, though the rest of the deer's body is well insulated. If

these horns are at a temperature (T
o
) of 32°C, and they have a surface

area of 1000 cm
2
, what is the heat loss rate if the environment is at a

(radiation) temperature (Ta) of -10°C? Convert your answer to calories/

minute.

[See Gates 1968 for some actual organismal temperature measurements.]

Answer: H. 22 W.

b) A bald mountaineer is outside on a clear night. Although he is

heavily bundled in his down parka, he has forgotten his hat. If his bald

pate has a surface area of 75 cm
2
and is at a temperature of 32°C, what

is his heat loss rate to the night sky which is at a (radiation) temper-

ature of -45°C? [Is this why they say, "If your feet are cold, plt on

your hat."?] Convert to calories/minute.

Answer: H'r 25.3 W = 362 cal/min.

The solar constant

A physical parameter which imposes a significant constraint upon

the evolution of terrestrial organisms is the amount of energy generated

by the sun which is intercepted at the earth's surface. Almost all of

the energy which drives the biological processes on the earth comes

15
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directly or indirectly from the sun. Thus the amount of the sun's energy

that the earth receives is of interest for at least two reasons: (1) This

is the upper limit to the amount of energy that, could be absorbed by a

surface and turned into heat. (2) This is the upper limit to the amount

of energy that could be converted by a photosynthetic unit into chemical

energy. Since the actual amount of sunlight available at the earth's

surface is dependent upon absorption by the atmosphere, and thus on such

variables as latitude, the sun's altitude in the sky (see Gates 1978,

section on Direct Solar Radiation), or cloudiness, the measure of the

sun's energy available at the earth is determined instead for a unit area

just outside the earth's atmosphere. This measure of the sun's energy

(actually the rate of the available energy, i.e., power) is called the

solar constant.

The solar constant can be calculated theoretically from the

Stefan-Boltzmann law and conservation of energy. Assuming the sun to be

a black body with a surface temperature Ts, by the Stefan-Boltzmann law,

its radiation emittance (energy radiated per unit area per unit time) is

given by:

E
s

= uT
s

4
. (5)

Thus the total power emitted by the sun can be found by integrating Es

over the sun's surface. Since T
s

is (assumed to be) constant, this is

equivalent to multiplying the constant Es by the surface area of a sphere

with the sun's radius (r
s
). The total power is given by:

E = 4nr
2

E .
s s

(6)

By conservation of energy, if no energy is lost in the intervening space,

all of the radiation emitted radially out from the sun will be intercepted

16
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by an (imaginary) sphere centered on the sun with a radius equal to the

mean distance from the sun to the earth (rE). The power flow per unit

area (E
E
) across this (imaginary) sphere will be equal to the total

power available (E), divided by the surface area of the sphere (4irr
E
).

That is,

EE = E/47rrE. (7)

Substituting Equation (6) in Equation (7) gives

4s
s

r
2

ur
2
E

E
E

47rr
E E

2
- E (8)

r
2 s

The quantity EE which is the power available (per unit area per unit

time) on a surface at the earth's distance from the sun, is the parameter.

of interest, the solar constant.

Inserting Equation (5) into Equation (8) gives immediately:

2

E
E
=

2
orT

s
4 (9)

.

rE

Problem 4

Use Equation (9) and the following physical parameters to calculate

the solar constant:

T
s
= 5700 K

r
s
= 7.1 x 10

8
m

rE = 1.49 x 10
11
m

= 5.6693 x 10
8
W m

2
K

4

Convert your answer to cal cm
2
min 1.

-1Answer: E
E
= 1.36 x 103 W 111-2 1.95 cal cm 2 mini.
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III. Resolution

For most problems of biological interest (e.g. the shape of the

lens of the eye), only the particulate nature of light, especially its

rectilinear propagation, is important. This can be thought of as a

result of the large size of the elements of biological interest compared

to the wavelength of light. For example, for the sun: amp 5 x 10 7
m

[problem 2a], which is much smaller than the physical dimension of any

organism, or even any organ in any organism. Only in certain specialized

biological research, for example the investigation of cell ultrastructure,

does the wavelength of light become a limiting factor. As the dimensions

of the cellular constituents approximate that of light, instruments

capable of observing at shorter wavelengths (e.g. electron microscopes)

are required.

There is at least one other area of biology where the physical

dimensions of the objects of interest are small enough that the wave

nature of light becomes an important consideration: the resolution of

incoming radiation by sense organs.

The term resolution is used here to denote the ability to

distinguish two objects. That is, how close together must two objects

be before they appear as a single object to the organism? Clearly,

this depends to some extent on the organism in question; eagles resolve

better than do moles. Also, the limit of resolution will be affected

by the experience of the observer. Nevertheless, it is useful to have

some rough comparison of the resolving ability of various systems, and

18



16

for this purpose Rayleigh's criterion is most often employed.

Rayleigh's criterion is derived from the theory of Fresnel diffract-

ion by a circular opening (for a derivationand detailed discussion, see

Elmore & Heald 1969). Qualitatively, this criterion is seen to be a

measure of the relative overlap of the diffraction patterns of the images

of objects on the focal plane of the observer. More specifically, it is

a measure of the displacement of the central maxima of these diffraction

'patterns. Two images are said to be just resolved when the central

maximum of one diffraction pattern falls on the first minimum of the

other (see Fig. 3).

From Figure 3, it can be seen that the limit of resolution is some

distance 6x between the two images on the focal plane, or alternatively

some angle 60 between the central axis of the lens and the ray connect-

ing the center point of the lens to the centers of the principal maxima

on the focal plane [pi,p2 of Fig. 3]. Therefore, in comparing the

resolving power of different instruments the reciprocal of these quantities

should be used (i.e., 1/6x or 1/60), so that thegnore powerful" instrument

is able to distinguish objects which are unresolved by the "less powerful"

instrument. For a distant object, the objectiVe (lens) is the aperture

which creates the circular diffraction. The mathematical details of

Fresnel diffraction lead to the result that the position of the first

minimum relative to the principal maximum will be:

sin a = 0.61 X/r (11)

where
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Figure 3: The Rayleigh criterion: Fresnel diffraction by circular

aperture.

P2

1111=110 1011.11:111 111110101.

P'
1

a) A simple diffraction apparatus. The lens L for -.the images of the point

sources P
1

and P
2
on the focal plane F. These images are not points but

disks centered at P' and P2 whose intensity is greatest at the center as
1

indicated by the "humps" behind the focal plane. [From Sears and Zemansky p. 619

dx

b) Diffraction patterns almost coincident: unresolved.

c) Diffraction patterns with the first minimum of the image of object 2 falling on
the principal maximum of the image of object 1: just resolved. (This is the

Rayleigh limit.)

d) Fully resolved.

dx

20
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A = the wavelength of radiation which forms the image,

r = the radius of the objective,

a = the angle between the images of the objects.

The limit to resolution given by Eq. (12) is known as Rayleigh's

criterion. Using the familiar (Taylor) expansion of the sine function

one finds that:

sin ei = (13 +a5 a7 + .

or sin a = a + 0(a
3
).

Here 0(a
3
) means terms of order (size) strictly less than a

3
. If

a is small, then a3 is very small and one can make the small angle

approximation

sin a ti a

which when substituted into Eq. (11) yields:

a = 0.61 Air . (12)

4 Rayleigh's criterion in the simple form of Eq. (12) is a powerful

tool in an analysis by the biologist of the evolution of sense organs.

In particular, such questions as the scaling of eye size with organismal

s-i.ze (e.g., why are a whale's eyes the same size as those of a cow?),

or the cellular organization of the organs themselves (e.g. the distri

bution of cones on the retina) have relatively simple answers when

analyzed in this way. The ramifications of this analysis are explored

in the following examples and problems.

Example 4

From the Rayleigh criterion, the results of problem 2a, and the

fact that in bright daylight the diameter of the human pupil is'e'.:2.0 ED,
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determine the resolution of the human eye in minutes of arc. What does

this resolution limit correspond to at 10 m?

Solution: X
m

= 5.08 x 10
7
m (from prob. 2a)

r = 1.0 mm = 1.0 x 10
3
m.

Putting these parameters into the formula for the Rayleigh criterion,

Eq. (12), we get:

a = .61 Air

= 0.61(5.08 x 10
7
m)/(1.0 x 10

3
m)

= 3.1
-3

x 10 radians.

Since 27r radians = 360° = 2.16 x 10
4
min, we know that

1 radian A., 3.43 x 10
3

min.

So a = (3.1 x 10
3
min/rad)(3.1 x 10

-3
rad)

;1..11 min of arc.

At 10m this angle will correspond to an object separation of:

a = S
o
/d

where S
o

= separation

d = distance

or S
o

= ad = (3.17 x 104)(100 = 3.117 x 10 3rn

= 3.17 mm.

Thus, in daylight the human eye canjust barely resolve two objects which

are 3.17 mm apart from one another and 10m distant.

It should be noted at this point that the Rayleigh criterion is a

theoretical limit which is rarely approached in practice. For instance,

if one used this formula to calculate the separation resolvable by the

human eye at 20 ft., it would be smaller than the actual minimum separation

resolvable by a person with "normal" (20:20) eyesight.

22
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Problem 5

The cones of the human eye happen to be maximally sensitive to the

wavelength Am which corresponds to the maximum of the sun's energy density

spectrum. Using Rayleigh's criterion and the fact that the retina is

17 mm behind the first nodal point (which acts as the circular aperture

in this case), compute the maximum resolution on the surface of the retina.

Answer: (Sx = 5.4 x 10
6
m. (13)

Anatomists have determined that the diameter of a retinal cone cell

(which mediates color vision) is about 3.0 x 10
6
m. The separation

.between densely packed cone cells is smaller than the limit in Eq. (13).

Thus thinner cones will not produce higher visual acuity. The resolution

is constrained by the physical parateters of the optical system.

Since the,eyes of all vertebrates are constructed from the same

design, the same physical dimensions that determine the resolution of the

human eye will determine resolution throughout the subphylum. It is the

absolute, not relative, size of the physical components of the optical

system which constrain resolution. If the diameters of cone cells are

at present at the minimum which is biologically feasible, then a slight

increase in the other dimensions of the human eye will give greater

resolving power, but beyond a point (6x = 3.0 x 1060, there is no

payoff in visual acuity for larger eyes.

The eyes of birds of prey show structural alterations which are an

evolutionary response to the need for greater resolving power. The retinal

cone cells become rod-like, which decreases their diameter, increases

23
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their density on the retina and decreases their ability to discriminate

color. Furthermore, the retinae from these birds have several pits or

foveae. Although the density of light sensitive cells is the same in

the foveae as on the rest of the retina, the image is formed on a concave

rather than flat surface. Thus the "effective" cone denity in the foveae

is higher than for the rest of the retina, and so is the resolving power.

The combination of these two changes results in increased visual acuity

for these avian eyes.

Rayleigh's criterion is also useful in elucidating the constraints

on the design of a quite different sort of eye, the compound eye found

in insects and certain crustacea. Each eye is composed of many (up to

3 x 10
4
) simple eyes, called ommatidia (See e.g. BjOrn 1976. p. 92). The

shape of the compound eye is roughly that of a half-sphere of radius R, with

the lenses of the ommatidia comprising its surface. An estimate of the

size of the openings of the ommatidia is calculated in the following problem.

Problem 6

A simple model of an ommatidium is that of a cone with its apex at

the center of the half-sphere which forms the eye, and its opening at the

surface of the eye. Assume that the angle of the cone is equal to the limiting

angle of the Rayleigh formula. Show that the calculated limiting size of the

opening to the ommatidia is given as:

d = (1.2210)1/2

If A = 400 nm, which is the center of the spectrum to which a bee is

sensitive, and R is about 1 nun, what is the optimal size of the ommatidial

opening?
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Answer:

d= 2.2 x 10-5 m = 22 p.

The actual mean measured opening for a bee is 20.9 p (Barlow 1952, p. 671).

A diagram comparing the observed size of the ommatidia to the value predicted by

theory is presented in Fig. 4.

Rayleigh's criterion for the limit of resolution of an optical instrument

can be extended to interferometers as well. Basically, an interferometer

consists of two detectors with the ability to detect phase information separated

by a distance D. When the phase information from the two detectors is compared,

the resolution of the total system is the same as that of a single detector

whose diameter is equal to D. Although a rigorous argument demonstrating this

result would not be appropriate here (it is essentially the save as the derivation

of Rayleigh's criterion), a qualitative argument may be useful. Basically, the

(diffraction patterns illustrated in Fig. 3 are the result of the interference

between light waves of different phases, caused by passage of the light through

the aperture. The eye sees the interference caused by phase differences as

variations in intensity, as illustrated in Fig. 3 b, c, d. to an interferometer

the signals of the two detectors are compared to reveal phase differences and

so the identical resolution criterion applies.

Most vertebrates are able to detect phase differences belveen ears,

so that the interferometer is the correct model for calculating resolution.

A consideration of Rayleigh's criterion shows that if all other parameters

remain constant, the greater the separation of the detectors, the greater

25
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the resolving power of the system. Many organisms have optimized their

ability to locate sound sources by maintaining a maximal separation

between the ears. Another biological application of interferometers is

illustrated in the following problem.

Problem 7

Using the Rayleigh criterion and the solution to Prob. 2b, determine

the resolution of the infrared sensing system of a pit viper. Using

reasonable physical parameters (e.g. body size of prey, how close the

snake must be to strike, how accurate the strike has to be), determine

the minimum separation of the pits. Does this agree with your intuition

and/or experience?

Answer: d = separation of pits 1...1 6 cm.

IV. The Doppler Effect

The discussion up to this point has implicitly assumed that the

source and detector of radiation are stationary relative to one another.

When the source and detector are in relative motion, an added complication,

the Doppler effect, is introduced. This phenomenon has been observed for

all types of radiation, though the theory is simplest for the acoustic

situation. Since acoustic waves are longitudinal (compression) rather

than transverse as are electromagnetic waves, the mathematical form of the

effect is slightly different. Additionally, the acoustic Doppler effect

has significant evolutionary implications.

7
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Empirically, the Doppler effect is manifested in the difference

between the pitch (frequency) of the sound heard by a listener in motion

relative to a sound source and the pitch heard when the listener and source

are relatively stationary. A familiar example is the sudden drop in pitch

one hears from an automobile horn as one meets and passes a car going in

the opposite direction. Alternatively, one might think of the changing

pitch heard by a listener standing beside a-track as a train whistle

approaches, passes, and recedes.

The derivation presented below is for the Doppler effect as it applies .

to the special case when the motion of the source and listener lies along

the line joining the two. The biological example considered later is of

precisely this type.

Let V
L

and V denote the velocities of the listener and source

respectively. The positive direction for the velocities is taken to be from

the position of the observer to the position of the source.

An illustration of the situation when the listener. L and the source

S are moving away from each other is presented in Fig. 5. At time t = o,

the source is at point XT. The outermost circle is the representation

of the position of the wave front at time t = T, caused by a disturbance

at the source at time t = 0. The speed of propagation C of a wave in a

nondispersive medium such as air is dependent only upon Lhe characteristics

of the supporting medium and is independent of the motion of the source

relative to the medium. Thus the outermost circle in Fig. 5 represents a

sphere in 3 dimensions with center at xo and radius CsT.

The source has moved a distance V
s
T in the time T so that

xo - xT = VsT

2.8
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Figure 5: The Doppler Effect

4 CST
0..

The source S, moving with velocity V
S'

is emitting sound at a constant frequency,

f5. The wave fronts of this sound, which travel radially outward at velocity C
S'

are compressed together (wavelength equals A
F
) in front of the source and spread

out (wavelength equals AB) behind the source. By the time the wavefront emitted

by the source at x
0
at time t = 0 has reached a radius of CST, the source has moved

to a position xT. The listner L moving with velocity VL will hear the sound at a

different frequency than as actually emitted by the source because it encounters wave

fronts which are A
B

apart. An exact derivation is given in the text. [Adapted from

Sears and Zemansky p. 327.]

29



27

and the following equalities are true:

a - x
T

= (C
s
+ V

s
)T

x
T

- b = (C
s

- V
s
)T

where a and b are respectively the positions at the rear and front of the

outermost wave surface.

In the time interval between t = o and t = T, the source has emitted

a certain number of waves, f
s
T, where f

s
is the frequency of the sound

emitted at the source. The waves are spread out into the distance (x
T

- b)

in front of the source.

4

In front of the source the wavelength Af is given by

x
T
-b (C - V )T

s s

f
-

f T f T
(Cs - V

s
)/f

s
.

s s

Similarly behind the source the wavelength AB is

a - xT (Cs + Vs)T
= (C + V )/f

B fsT f
s
T s s s

The waves approaching the listener have a relative speed of C
s
+ VL,

so the detected frequency is

or

Cs + VL
f
L

= (C
s
+ V

L
)/A

B
=

(Cs
V )/f

s s s

f

Cs + VL
f

L C
s
+V

s
s.

(14)

When the source and listener are moving toward each other a frequency

Cs + VL Cs + VL

f
L A

f
(C

s
- V

s
)/f

s

30
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C +V
Cs

sf

(14a)L C-Vs
S- S

is detected.

In order to help remember the direction convention established in

this derivation, it is useful to notice that the frequency heard by the

listener will be less than that emitted by the source if they are moving

away from each other, and will be greater than that emitted by the source

if they are moving toward each other.

Example 5

The velocity of sound in still dry air is C
s
= 350 ms 1

. For a

source emitting sound of frequency fs = 700 Hz the wavelength of the

sound emitted is

A = Cs /as = 0.5 m.

a) What are the wavelengths of the sound in front of and behind

this source moving at V
s

= 50 m.s
-1

?

b) If a listener is at rest and this source is moving away at

V = 50 m s
1

what is the frequency of the sound heard?s '

Solution:

a) AF = (Cs - Vs)/fs =0.429 m

AB = (Cs + Vs)/fs = 0.571 m

C
b) f = 612 Hz.L C. + V

s.

31
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Now that a quantitative formulation of the Doppler effect has been

derived, it can be applied in the explanation of echolocation in bats, a

sensory system which has only begun to be understood in the past several

decades.

The bats, members of the order Chiroptera within the class Mammalia,

have developed a system of echolocation which has been of immense

evolutionary significance. It has enabled them to exploit a resource

for which there are very few competitors, small nightflying insects

(see, e.g., Fenton 1974). The physical processes important in echo

location have both enhanced and constrained the evolution of the

Chiroptera. Here it will suffice to show a few examples of the effect of

-these physical processes upon bat evolution and natutal history. For a

detailed and personable account of the actual experimentation that led

to the elucidation of the physical principles employed in echolocation,

see Griffen's Listening in the Dark (Griffen 1953).

Almost all bats appear to be able to navigate in total darkness a

closely spaced grid of wires, where the spacings of the wires are

commensurate with the dimensions of the wingspread of the bats. Furthermore,

insectivorous bats can pursue and capture flying insects on the wing in

total darkness.

The ability to carry out these activities is significant in two respects.

First, unlike the birds which are able to perform similar activities only in

the presence of light, bats cannot be dependent upon a highly developed

sense of sight for navigation. Second, no other animal can depend upon

catching flying insects in the dark and so there are few competitors

32
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- --for this food resource. Prior to the evolution of bats, this resource

had not been exploited.

The experiments of Griffen demonstrate that bats share another

ability'that sets them apart from most other animals. This is the ability

to produce and detect sound of frequerLies between 20-100. kHz, It is this

attribute which is fundamental to the system of echolocation, as in the

next example.

Example 6

A flying bat emits a pulse of sound. What is the minimum frequency

and maximum length of a single frequency pulse, if the bat wants to use

the echo of the pulse to avoid an obstacle 1 meter ahead?

Solution: One first solves for the maximum pulse length. Clearly

the chief consideration is that the bat must not be producing the pulse

when the echo returns. Otherwise the fainter echo might be masked by the

bat's own cry. The time of the echo's return t is dependent only on

the speed of sound Cs and the distance of the object d. Specifically:

t = d/Cs

which works out to be:

t= 2 m/350 m s-1 = 5.71 X 10
3
s= 5.71 ms.

Shorter pulses will allow even closer objects to be avoided, although

the pulse length must have a lower limit of several wavelengths in order

to avoid problems in interpretation. If a reasonable number of waver, in

the pulse is 100, the predicted minimum frequency would be:
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f = 100/t = 100/4 x 103s-1 = 25 kHz.

In actual field measurements Griffen (2ff cit. p. 191) has observed

pulse lengths from 1-15 ms , and pulse frequencies between 30-75 kl z

with about 50 kHz being most common. Therefore, bats should be several

times better at avoiding obstacles than one would expect from Example 6.

This is not too surprising if the system is good enough to catch insects

on the wing, which the bats must approach much closer than 1 meter.

Interestingly, bats appear to be rather economical in their use of

pulses, using relatively long pulses (15 ms) at long repetition

intervals when they are cruising farzbove the ground and relatively

short pulses (1 ms) at short repetition intervals only when they are

pursuing insect prey.

Many other characteristics of the bat echolocation system can be

explained by an extension of the kinds of arguments given here. For

example, theoretically one expects that the intensity of the returning

echo from an object at a certain distance, should decrease with the size

of the object. The echolocation system provides information about the

size of objects in the environment from the intensity of the returning

echo, and information about the distance of objects from the time delay

between the emission of the pulse and the reception of the echo. However,

the character of the echo should theoretically be relatively insensitive

to the detailed nature of the object cal4sing the echo, which perhaps

explains the interest exhibited by bats in pebbles tossed in the air by

small boys and naturalists.

34
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In certain bats, for example those of the genus Rhinolophus, the

Doppler effect appears to be the physical phenomena which is the key to

an understanding of their system of echolocation tSchuller, et al. 1974).

Several of the important considerations involved in the application of

the Doppler effect to bats are developed in the following problem.

Problem 8

-1
A bat is flying along at 5 m s It emits a 50 kHz sound pulse

which is reflected by an insect which is 5 meters distant and is moving

away at lm s
-1

. What is the frequency of the echo, and how long after

the pulse begins does the echo begin to return?

Answer: f = 51.74 kHz

t = 28.6 ms

The outgoing and incoming frequencies in this example have a

difference of 1740 Hz. This difference may appear quite large when

compared to the difference between Concert A (440 Hz) and the A an

octave higher (830 Hz). However, in the detection of radiation phenomena,

the important comparison is the ratio, not the difference of two frequencies.

The bat in Problem 8. must be able to detect 1740 Hz in 50 kHz, a percentage

frequency change of 3.4%. This is not an unreasonable change to detect

since human musicians can quite commonly distinguish quarter tones which

represent a percentage frequency change of 3%:. One expects that bats which

depend upon the Doppler effect should have very acute pitch change detection

and a very stable emission frequency, to go along with the ability to

discriminate very small time intervals. Some of these predictions have

35
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been experimentally verified (Schuller, et al. 22. cit.). .

The thrust of the discussion presented in this section is perhaps

most striking when viewed in terms of the advantages and constraints

that the utilization of echolocation has conferred on the evolution of

the Chiroptera. The development of echolocation has allowed the bat to

utilize a previously unexploited. resource, night flying insects, but in

turn has placed a premium on those bats that are able to emit high

frequencies in short pulses, that cat detect faint echoes, and that can

detect relatively small shifts in frequency between outgoing and incoming

pulses. The selection pressure for these attributes is the force respons

ible for numerous remarkable physical and behavioral adaptations. Our

understanding of this system is by no means complete; echolocation remains

a fertile territory for experiment and theory.

V. SUM MARY

The preceding discussion has presented some of the results from

classical and modern radiation theory and demonstrated how these physical

principles can be applied to the analysis of biological systems. The

emphasis in these applications has been upon the evolutionary significance

of the physical processes. In the biological applications presented, the

physical processes are involved in the following two types of explanations.

In the first type of explanation; physical theory is used to isolate

constant factors in the environment to which all organisms must adjust

their evolution. The most striking example of this is that the wavelength

36
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RADIATION

Appendix 1. Symbols, Units and Dimensions

Symbol Quantity Units Dimension

a angle radians

b Wien constant

c speed of light

C_ speed of sound

D distance

d distance to an object

th.
d. difference term

dA

du

60

dx

E
E

E
n

E
s

sun's surface

2.8978 x 103m X

2.998 x 10
8
m s

-1

3.50 x 10
2
m s

-1

differential wavelength

differential frequency s
-1

infinitesimal angle radians

infinitesimal distance

-1
total power J s

-1

power flow at
earth's surface J m

-2
s
-1

radiation emittance J m
2

s
-1

power flow at J m
-3

s
-1 -3

Le

LT
1

LT
1

L

L

T1

- - _

E(A) energy density as a
function of wavelength

E(v) energy density as a
function of frequency

base of natural logarithms

J m
-4

J m 3 s

2.171828...

ML
-2
T

2

ML1T-1

_ -

f
L

frequency at listener s
-1

T
-1

f
s

frequency at source s
-1

T
-1

H
-1

total heat loss rate J 3 /IL
2
T
-3
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Appendix I (coned)

Symbol Quantity Units Dimension

-
Hz Hertz s

1
T
-1

h Planck constant 6.626 x 10- 34J s ML2T1

-k Boltzmann constant 1.381 x 10
-23

J K
1

ML
2
T
-2

0
-1

A wavelength m L

X
B

wavelength behind source m L

X
F

wavelength in front of m L
source

71m wavelength at which black-
body spectrum has maximum
energy density

0 observer

R
i

th
remainder term 111,11MANS,

r radius m L

r4
mean distance from earth =4 x 1011m L
to sun

r
s

radius of sun 7.1 x 108m L

S source -_-

S
o

size of an object

SA surface area m
2

L
2

a Stefan-Boltzmann constant 5.6696 x 10
8

T temperature K

a particular time s T

T
a

ambient temperature K 0

T
o

temperature of organism K 0

T
s

surface temperature of sun K 0

t time variable s T
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Appendik 1 (coned)

Symbol Quantity Units Dimension

u actual solution

frequency

V
L

listener velocity

V
s

source velocity

x
i

i
th

trial solution

x
o

point in space corres-
ponding to source position
at t = 0

point in space corres-
ponding to source
position at t = T

s
-1

m

m s
-1

m

T1

T1L

T-1L

L

L = length

M = mass

4
T = time

0 = temperature

12
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Appendix 2: I. Numerical Techniques

Introduction

In the discussion of black-body radiation there arose two equations

which could not be solved analytically. Since such equations arise not

infrequently in a variety of areas, for example in mathematical modeling

of biological systems, it is worthwhile to investigate methods by which

one can find solutions to such equations. One class of such methods, called

numerical techniques, utilizes the recursive application of the basic oper-

ations defined on the real number system ( +, x, -0, to find solutions

accurate to any desired accuracy. With the increased availability of

machines which can carry out these techniques swiftly and automatically,

the problem solving ability of the scientist has increased enormously. In

this appendix, two important numerical techniques, successive approximation,

and the half increment method for definite integrals, will be presented and

their implementation on the increasingly ubiquitous programmable pocket

calculator will be demonstrated.

Successive Approximation

As an example of this technique, the solution of the transcendental

equation

- 1
e
u

5
+-u-10 (A-1)

which arose in the discussion of Wien's Law will be discussed.

Here u is the unknown-to be calculated. Suppose one starts with a

trial solution xl. If ill is the difference between the first trial

solution xi and the actual solution u, then

13
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xi = u - dl.

Substituting xi for u in eq. (A-1) gives:

x
i

e + -x -1 =R1 (A -2)
5

where RI is the first remainder term. Clearly as R
h
+ 0 the nth trial

solution x will approach u.

Subtracting eq. (A-1) from eq. (A -2) one obtains:

(

e -e -5
-X -1.1 1) 1

d = R

or

-xi di

e (1 -e ) -i
"3-

d = R (A-3)

The exponential in the unknown d1 in eq.(A-3) can 1e expanded as an

infinite series (e.g., a Taylor series):

-dl d
1
2 d

1
3 d

/

4 e = 1 - d +
2 2! 3! 4!

If the first trial solution is a reasonable guess then 1d11 will be

small so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq.(A-3) becomes:

or

or finally:

1
6- x1(d1) - d = R

1 5 1 1

-xl

d (e - 1/5) = R1

-x,

d
1
= R

1
/(e - 1/5)

Clearly the second trial solution x2, defined by

(A-4)



xi = u - dl.

Substituting xi for u in eq. (A-1) gives:

-xi
1

e -x -1 =R1
5

where R1 is the first remainder term. Clearly as R
h
+ 0 the n

solution x will approach u.

Subtracting eq. (A-1) from eq. (A -2) one obtains:

{ -X
1 1

e - e 5- d = R

or

CA-2)

trial

-x2 di

e (1 -e -) - i d
1
= R (A -3)3

The exponential in the unknown d1 in eq.(A-3) can 1e expanded as an

infinite series (e.g., a Taylor series):

-d1 d1 d1 d 4
1 1 1 1

4 e = 1 - d1 +
2 2! 3! 4!

If the first trial solution is a reasonable guess then 1d11 will be

small so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq.(A-3) becomes:

or

or finally:

-
1

6

x
1
(d

1 5) - d
1
= R1

-xl
d (e - 1/5) = R

-x
d

1
= R

1
/(e(e 1 - 1/5)

Clearly the second trial solution x2, defined by

(A-4)
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xi = u - dl.
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-xi di

e (1 -e ) -i
"3-

d = R (A-3)
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-dl d
1
2 d

1
3 d

/

4 e = 1 - d +
2 2! 3! 4!

If the first trial solution is a reasonable guess then 1d11 will be

small so that the first few terms in the infinite series will dominate.

Using only the first two terms, eq.(A-3) becomes:
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1
6- x1(d1) - d = R

1 5 1 1

-xl

d (e - 1/5) = R1

-x,

d
1
= R

1
/(e - 1/5)

Clearly the second trial solution x2, defined by

(A-4)
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TABLE k-1 (SR-52)
u-

Solution to e + 1
--u - 1 = 0
5

00 01

-- x
i

Register Contents:

02 03-18

R
i

--

Program:

19

Used for calculation of R!(SBR 1*)

Step Code Key Entry Comments

000 42 STO x in display

001 00 0

002 01 1 x
i
stored in register 01

003 51 SBR

004 87 1* Calculates Ri

005 42 STO

006 00 0

007 02 2 R1 stored in register 02

'Dos 81 HLT Cease execution, display Ri

009 43 RCL

010 00 0

011 01 1 Recall xi

012 51 SBR
-x.

013 23 £nx Calculates e 1

014 75

015 93

016 02 2

017 95 =
1

e
x
i 3- in display

018 20 l/x (e

x
i 1

- ---,) in display

019 65

(Continued)

Note 1 *' refers to 2nd 1. 47



TABLE A-1 (SR-52), Continued

Step Code Key Entry Comments

020. 43 RCL

021 00 0 .

022 02 2 Recall Ri

023 95 = d
i
= R

i 5
(exi-21)- in display

024 85 +

025 43 RCL

026 00 0

027 01 1 Recall x1

028 95 = x.
3.+1

= x
i
+ d

i
in display

029 81 HLT Cease execution, display xi41

030 86 rset Return to step 000

4031 46 LBL

032 23 knx Subroutine knx

033 94 +1-

034 22 INV

035 23 knx Caculate exi

036 56 rtn

037 46 LBL

038 87 1* Sut,. :tine 1*

039 53 (

040 42 STO

041 01 1

042 09 9 Store x
i

in register 19

(Continued) NOTE: 1* refers to 2nd I.

4 8
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TABLE A-1 (SR-52), Continued

Step Code Key Entry Comments

043 51 SBR

044 23 knx Calculate exl

045 75 /M.

046 01 1 Calculate e
xi

- 1

047 85 +

048 53 (

049 43 RCL

050 01 1

051 09 9 Recall x
i

052 55

1053 05 5 Calculate -Exi

054 54 )

155 54 ) Calculate R
i

056 56 rtn



B. The HP-25

Using the Program (Table A-2):

Switch the PGRM-RUN switch to PGRM. Clear by keying

f PGRM. Then key steps 01 through 24 of the program. Switch PGRM-RUN

switch to RUN, and set the calculator to step 00 by keying f PGRM. Key

xl into the display. Run the program by pushing the R/S button. The

calculator will cease executing when Ri has been calculated. R1 will be

in the (x) display. Push R/S; after calculation x2 will be displayed.

Push R/S; the display will show R2, etc.

To try a different first trial solution, key f PGRM and then

key in the new x1. Run the program as before.

There are two solutions to eq. (A-1): u = 0.0 and u = 4.9651...

If x
1
is too small or negative, this program will converge to the trivial

4 solution (u = 0.0). Try a larger xl; i.e., key f PGRM, and then key in

the new x1. Run the program as before. If xl is too large, the display

will show OF when the calculator ceases execution. Start over again with

a smaller x .

For troubleshooting and editing of a HP-25 program, see section

IV.B. of this appendix.



TABLE A -2 (HP-25)'. Solution to Transcendental Equation

m
4

St.12

00

01

02

03

04

05

06

07

08

09

10

11

12

13

(Continued)

0

Code i(SX

Register

0-7

X

Contents

Y

0

Z

x1

e
"XI

e

.x

I

e
-x

1

e
-x

1

x1

x1

x1

T

.

23 01

31

32

15 42

31

31

73

02

32

51

23 02

22

21

STO1

ENTER

CHS

x
g e

ENTER

ENTER

.

2

CHS

4.

STO2

11

X y

xi

x1

-x1

e

-xi

eull

e

.xl

.

.2

-.2

e
x
-.2

e
-x

1-.2

e

.1

1

x1

x1

x1

x1

-

e

xi

e

-xi

e- xl

e
-x

1

e-x1

e
-x

1

e
-1

1

x
1

e

.x

1

x1

x
1

x1

xi

x1

x1

e

.x

1..2

a"x1,2

51

Comment

xl in display

Start loop
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TABLE A-i

it.g.

(HP-25) , Continued

Code lei. X Comment

14 31 ENTER xi xi e
xi

x1

15 05 5 5 x1 e
-x

1 x1

16 71
4
. 1/5 x1 e

x
I xi

xi

17 31 ENTER 1/5 x1 1/5 x1 e
-1(

1 x1

18 01 1 1 1/5 x1 e` x1 x1

19. 41 . 1-1/5 x1
.

e xl xi xi

20 51 + R1 x1 xi xi Calculate R1

01

..7

21 74 R/S R1 xi x1 xi Display R1

22 24 02 RCL2
e-xir.2

Ri x1 xi

23 71 + d1 xi xi xi Calculate d1

24 24 01 RCL1 xi di x1 xi

25 51 + x
2

X
1

x1 Calculate x2

26 74 R/S x2 xi x1 x1 Display x2

27 13 01 GTO 01 x
2

x1 X1 X1

..1111MwM1111.,

5

V
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C. Using Successive Approximation to Solve Other Problems

The method of successive approximation is a powerful technique far

finding the solution to certain equations quickly and easily, as illustrated

by the programmed solution to eq. (A-1). Besides transcendental equations

(viz. (A-1)), this technique is useful for solving:

1) Polynomials with constant coefficients of any degree

2) Polynomials with variable coefficients of small degree.

The crux of the method -5.3 finding an explicit formula for a

correction term (d
i
) so that from any trial solution (x

i
) one can calculate

a new soltition (x
1+1

) which is a better approximation to the correct

solution than the original (xi). To find this correction formula often

strains the ingenuity of the problem solver, who may have to juggle

equations or approximate functions by series. A particularly useful method

for finding these correction formulae, especially for the polynomial

problems listed above, is the Newton-Rapbson method which is derived and

discussed in almost all introductory books on numerical methods'.

Definite Integrals by the Half-Increment Method

In the derivation of the Stefan-Boltzmann law, it was necessary to

evaluate the indefinite integral:

X3 A
uX.

o e
x
-1

'[see, e.g., Weeg & Reed 1966, p. 34.]

55

(A-5)



This seemingly simple integral cannot be evaluated analytically; Unfortu-

nately, this is not an isolated example. That is, the majority of fundtions,

including many important simple functions, cannot be integrated by standard

analytical techniques. In such cases, one must resort to numerical rt,thods

to obtain the desired integral. The particular numerical integration

technique described in this appendix, the half-increment method, is simple

to understand and to implement on a programmable pocket calculator, and has

the added advantage of (relatively) rapid convergence.

In elementary calculus, one learns that an integral can be thought of

as a measure of an area. For a definite integral such as:

(A-6)

this area is defined by the curve of the function to be integrated, f(x),

the x-axis, and the vertical lines x = a and x = b. This area can be

approximated by the sum of the area of rectangles as illustrated in

Figure A-1. The thinner the rectangles and thus the greater the number

of rectangles, the more accurate the approximation. In fact, it can be

shown that in the limit as the width of the rectangles becomes infini-

tesimal (Ax + 0 in Fig. A-1), the value of the sum approaches the value

of the integral.

All numerical integration techniques are based on approximating an

integral by the sum of the areas of simple plane figures. This particular

method is called the half-increment method because the height of each

rectangle is determined by the value of the function at the x value which

is half-way between the two x values which define the vertical boundaries

of the rectangle. That is, for the i
tIL

rectangle, whose vertical

56
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Figure A-1. Definite integral approximated by rectangles

a .rma

+64

The value of the integral, that is the area under the curve f(x) from x = a
to x = b, is approximated by the sum of the area of the rectangles illustrated
above. In this approximation, the height of each rectangle is taken to be the
value of the function at the x value halfway from the endpoints of the rectangle.

57



boundaries are determined by x = xi and x = xi+, = xi + Ax, the height of

Ax
the rectangle is given by f(xi

Ax \

2) f(xi+1 2"
In the programs that follow, the integral (A -6) is evaluated first as a

sum of rectangles whose width, Aix, is given by Aix = b - a. This sum,

E l'
which is composed of only one term, is given by:

Aix
Ei = f(a +id Ai.

A2x

Next the sum, E2, is calculated for A2x = . At each succeeding

iteration, the width of the rectangles is halved; that is:

1
A x = x
i+1 2 i

and

where

Zi
A
i2E = f x

j
4- x

j=1

x =a and x
i
= b.

2

When the value of the sum as determined by two successive iterations is

the same, this sum is taken to be the value of the integral. Obviously,

each iteration will require twice as many operations as the preceding,

and will take correspondingly longer.

The integral of interest, (A-5), is indefinite, although the method as

presented is only applicable to definite integrals. Fortunately, the sum

does not have to be evaluated for very large b (the upper limit in (A-6))

in order to be accurate to two decimal places. This is a result of the

following limits:
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X3 X 3

lim ='lim = 0

x4-0 e
x
-1 x400 e

x
-1

(which can be calculated by L'Hospital's rule), and the fact that the

function approaches zero very quickly (and monotonically) for sufficiently

large x.

A. The SR-52

Using the program (Table A-3):

With the calculator in the execute mode, key LRN to enter program-

ming mode. Key in steps 000-111. Key LRN to return to the execute mode.

Push rset to go to step 000. Load the value of a in register 01 (i.e.,

key in the value of a, .and push STO 01,), and the value of b in register b.

Push RUN. When the calculator ceases execution of the program, E1 will be

displayed, Push RUN. E2 will be displayed, and El will be in register 06.

Run the program until El. (Ei will be in -register 05, Ei..1 will be

in register 06). Note that each iteration takes twice as long as the

preceding one.

Clearly the lower limit of the sum should be taken as the same

as the lower limit of the integral (A-5); that is, A= 0.0. However,. the

upper limit (b) is not as easy to choose. The larger the value oUb, the ..

better the approximation of the sum to the integral._ However, concomitant

with a larger b is a greater number of iterations required for convergence.

A good compromise value is b = 30, which will approximate the actual value

of the integral (I = 6.4938...) to 3 decimal places in 9 iterations. The
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program user should try other (larger and smaller) values of b in order

to get some feeling for these tradeoffs.

For troubleshooting and editing of an SR-52 program, see

Section IV.A of this appendix.
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TABLE A-3 (SR-52). Integral by Half-increment Method

Register Contents

00

--

01 02

a b

03

x
i

04 05

Ax E

06

I
3-1

07 - 18 19

used for f(x)

preloaded

Program

Step Code Key Entry Comments

000 00 0

001 42 STO

002 00 0

003 05 5 Zero register 05

004 43 RCL

005 00 0

006 02 2 Recall b

407 75

008 43 RCL

009 00 0

010 01 1 Recall a

011 42 STO

012 00 0

013 03 3 Store x
1
= a in Register 03

014 95 = Calculate A
1
x = b-a

015 42 STO

016 00 0

017 04 4 Store Aix in Register 04

(Continued)

61
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TABLE A-3 (SR -52), Continued

Step Code Key Entry

018 55 +

019 02 2

020 95

021 85 +

022 43 RCL

023 00 0

024 03 3

025 95 =,

026 51 SBR

027 00 0

028 09 9

029 05 5

4030 65 x

031 43 RCL

032 00 0

033 04 4

034 95

035 44 SUM

036 00 0

037 05 5

038 43 RCL

039 00 0

(Continued)

Comments

Calculate
Ax
2

Recall x

Calculate x

This subroutine

calculates

tac
f (xi

Recall

Ax
Calculate f (x

i 2
+ Ax

Put
xi

Ax
Ef(x

i 2
+ ) Lx in

xl=a
Register 05
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TABLE A-3 (SR-52), Continued

58

"Step Code Key Entry Comments

040 04 4 Recall Ax

041 44 SUM Calculate

042 00 0 x
i+1

= x
i
+ Ax

043 03 3 Store in Register 03

044 43 RCL

045 00 0

046 03 3 Recall x
i+1

047 75 -

048 43 RCL

049 00 0

050 02 2 Recall b

951 95 = Calculate x
i 1

- b

052 80 if pos If x
i+1

> b go to

053 32 sin step labeled sin

054 43 RCL If x < b
i+1

055 00 0 Recall

056 04 4 Ex

057 41 GTO Continue

058 00 0 the sum

059 01 1

060 08 8

(Continued)
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TABLE A-3 (SR-52), Continued

Step Code Key_Entry

061 46 LBL

062 32 sin

063 43 RCL

064 00 0

065 05 5

066 81 41LT

067 43 RCL

068 00 0

069 05 5

070 42 STO

071 00 0

072 06 6

073 00 0

074 42 STO

075 00 0

076 05 5

077 02 2

078 22 INV

079 49 PROD

080 00 . 0

On 04 4

082 43 RCL

083 00 0

continued

Comments

Recall 1

Display

Recall

Store / in Register 06

Zero Register 05 ()

Ajx
A
+1 2

Put x = l' in
i

Register 04

4
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TABLE A-3

Step

(SR-52), Continued

Code Key Entry

084 01 1

085 42 STO

086 00 0

087 03 3

088 43 RCL

089 00 0

090 04 4

091 41 GTO

092 00 0

093. 01 1

094 08 8

095 42 STO

096 01 1

097 09 9

098 45 Yx

099 03 3

100 55 +

101 53 (

102 43 RCL

103 01 1

104 09 9

105 22 INV

106 23 knx

continued

65

Comments

Recall a

Store x
1
= a in Register 03

Recall A
i+1

x

Return to Step 018

to recalculate

Integral w/ Smaller

Ax.

Store

Ax
xi 4--i- in

Register 19

Calculate
l

(x1.
A
2

Recall (..x

i

A
2

+ --]
x

Calculate expixi
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TABLE A-3 (SR-52), Continued

Step Code Key Entry

107 . 75 -

108 01 1

109 54 )

110 95 =

111 56 rtn

Comments

Axl
Calculate exp (xi + -i-

Ax
Calculate f [xi + A
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B. The }

Using the program (Table A-4):

Switch the PGRM-RUN switch to PGRM. Clear program memory by pushing

f PGRM. Then key in steps 01 through 46 of the program. Switch PGRM-RUN

switch to RUN, and set the calculator to step 00 by keying f PGRM. Load a

in register 1 (i.e., key a into the display then push STO 1) and b in

register 2. Push R/S. The display will show El. Push R/S. The display

will show E2. El will be in register 6. Run the program until Ei (in the

display at the end of execution and in register 5) equals (in register 6).

Note that each iteration takes about twice as long as the previous one.

Clearly the lower limit of the sum should be the same as the lower

limit of the integral (A-5); i.e., a = 0.0. However, the upper limit of

the sum (b) is not as easy to choose. The larger the value of b, the

better the approximation of the sum to the integral, but the longer it

takes for two successive iterations to converge. A good compromise value

is b = 30, which will approximate the actual value of the integral

(I = 6.4938...) to three decimal places in nine iterations. The program

user should try other (larger and smaller) values of b in order to get

some feeling for the tradeoff between arcuracy and time in using this

method on this integral.

For troubleshooting and editing of an HP-25 program see section IV.B

of this appendix.
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TABLE A-4 (HP-25)

.Miimmimb.1.1111

2

preloaded

x3
dx by Half-Increment Method

e
x
-1

a

Register Contents

3 4 5 6 7

x
i

Ax E E
i-1

Program:

Le2, Code 'Key EntryXYZTComments

0

0 Zero register 5

b Recall b

a b Recall a

a b

01 00 0

02 23 05 STO 5

03 24 02 RCL 2

04 24 01 RCL 1

05 23.03 STO 3

06 41 -

07 23 04 STO 4

08 02 2

09 71 1

10 24 03 RCL 3

11 51 +

(Continued)

68

A
1

x=b-a Calculate Alx=b-a

Ax

2 Ax Continue loop [from step 36)

Ax/2 Calculate Ax/2

xi 6x/2

x
i
+Ax/2 Calculate x

i
+Ax/2

V
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BLE A -4 (HP-25), Continued

,Code Key Entry X

x itx/2

exp[xi+Ax/2]

Y T Comments

31,

15 07

ENTER

ge
x

x +Ax/2

x +Ax/2

Calculate exp[xi+Ax/2]

01 1 1 exp[xi+Axi2] x.+Ax/2

41 exp[] -1 x +Ax/2 Calculate exp[xeAx/2)

21 x < y x +Ax/2 exp[] -1

31 ENTER x +Ax/2 x +Ax/2 exp[] -1

03 3 3 x -1-Ax/2 exp[]..1

14 03
fyx

(xitAx/2)7 exp[) -1 Calculate (xi+Ax/2)3

21 x y exp[]-1 (xi+Ax/2)3 (xi+Ax/2)3

71 f(xi+Ax/2) f(x +Ax/2) =

(xi+Ax/2)3 exp[xi+Ax/2) -1

24 04 RCL 4 Ax f(xi+Ax/2)

61 x f(xi+AX/2)An Calculate f(xi+Ax/2)Ax

23 51. 05 STD+5 f(xI+Ax/2)Ax Sum cf areas in reg. 5

24 04 RCL 4 Ax f(xi+Ax/2)

24 03 RCL 3 x Ax f(xi+Ax/2)

ontinued)
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Table A-4

S12.

27

28

(HP-25), Continued

Code Key Entry X

x
i

.1.Ax

x
i.1.1

Y

51 +

23 03 STO 3

f(xi+Ax/2)

f(xi.I.Ax/2)

29 24 02 RCL 2 b x
i.1.1

30 14 41 fx<y b x
i.1.1

31 13 36 GTO 36 b x
i.1.1

32 24 04 RCL 4 Ax b

33 31 ENTER Ax Ax

u.,

o
34 13 08 GTO 08 Ax Ax

35 24 05 RCL 5 E b

36 74 R1S E b

37 23 06 STO 6 E b

38 24 01 RCL 1 a E

39 23 03 STO 3 a E

40 14 34 f STK 0 0

41 25 05 STO 5 0

(continued)

Z T Comments

x
i.1.1

m x
i
.1.6x

x
i.1.1

in reg, 3

f(xi+Ax/2) Test for x
i+1

beyond

f(xi+Ax/2) range of integration

f(xi+Ax/2) of xi+1>b, leave loop,

go to step 36

x
i.1.1

f(xi.I.Ax/2) If xtil < b

b x
i.1.1

b x
i.1.1

Continue loop at step 08

xi+1 f(xi..6x/2)

x
i+1

f(xi+Ax/2) Cease execution, display Ei

x
i.1.1

f(xi+Ax/2) Zi4Ei1 in reg, 6

b x
i+1

b x
i.1.1

x14 a in reg. 3

0 0 Zero stack

Zero reg, 5



TABLE A-4 (HP-25), Continued

Step Code Key Entry X Y Z T Conments

42 02 2 a

43 23 71 04 ST0f4 2

44 24 04 RCL 4 Ax

45 21 x y 2

46 13 09 GTO 09 2

lower limit from rei 2

Aix.

A
1+1

x 2 in reg, 4

2

Ax

Ax Recalculate sum with

smaller rectangles

74

75
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C. Using the Half-Increment Method to Integrate Other Functionsl.

The SR-52:

AxThe subroutine 095 calculates the value of To integrate

any other function, define the function with suitable keystrokes starting

at program step 095. Be sure to end the function definition subroutine

with rtn.

If the program is already loaded into program memory It is possible

to change only those statements involved in the functional definition

(subroutine 095), which is usually less trouble than wiping program memory

and starting anew. For appropriate editing instructions, see section II.A

of this appendix.

The HP-25:

AxThe steps 12 through 22 are used to calculate the value of f(xi

To integrate any other function, define the function with suitable key strokes

Ax,starting at step 12. Be sure to end the sequence with f(xi 4-7p in the

X register. Follow the last step used to define the function with the step

numbered 23 in the present program (that is, the keystrokes RCL 4).

If the program is already loaded into program memory, it is possible

to change only thos keystrokes involved in the functional definition

(steps 12-22). This is usually less trouble than wiping prOgram memory and

starting anew. For appropriate editing instructions see Section II.B of

this appendix.

'[For alternative programs and more detailed discussion, see
Eisberg, R. M..1976.]
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Appendix 2: II. Program Troubleshooting and Editing

4

It is frequently the case that after a program has been keyed into a

calculator, the program will not perform as expected. This frustrating

state of affairs may be due to a logical error in the program or mistakes

made when keying in the program; e.g., leaving out steps, putting in extra

steps, or keying steps in the incorrect order. Since such mistakes are

relatively common, the design of programmable pocket calculators is such

that troubleshooting and editing programs is not difficult.

Mistakes involving logical errors which are the most difficult to

detect, will not be present in the programs presented here. For such errors

in your own programs, I have found that "single-stepping" through the programmed

calculations (as described below) is the most efficient method of detecting

the error. For further information, refer to the owner's handbook supplied

with the calculator.

For nonlogical programming errors, there is always the option of wiping

the program memory (usually by turning the machine off) and starting over.

This procedure, besides being time consuming, does not assure that additional

errors will not be made in loading the program the second time. Alternatively,

one can edit the program as described below. In the following discussion, it

is assumed that the program is already loaded into program memory.

A. The SR52

Troubleshooting:

Programming errors are indicated by any of three conditions following

a program RUN:
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1) The calculator does not cease execution in a "reasonable" length

of time. This condition is due to a closed loop in the program instructions.

The calculator cannot exit the loop so as to reach a HLT instruction.

2) When the program ceases executing, the display is steady, but the

answer is clearly incorrect. This situation may be difficult to detect

unless one knows exactly what the program does.

3) When the program ceases executing, the display is flashing. This

condition signifies that during execution, a calculation was performed that

overflowed the capacity of the calculator, or that an illegal operation was

performed.

There are two methods by which to pinpoint the source of an error. One

can check the program in the memory against the program listing, or one can

single-step manually through the calculations that the calculator performs

automatically.

To check the program in the memory, push rset. and then LRN to enter

programming mode. The display will show the key code and step number of

step 000. Pushing SST will display the key code and step number of the next

step. Pushing bst will display this information for the preceding step.

Compare the key codes displayed to those given in the program listing. If

there is some reason to believe that the error occurs at some particular

step, e.g., Step 099, one can go immediately to this step. in the execute

mode by pushing GTO 099. Then push LRN to enter the programming mode and

to display the key code and step number 099. Use SST and bst as necessary.

Alternatively, one can single step through the programmed calculation

manually. This is particularly useful for debugging your own programs or when

a flashing display is encountered.. In the execute mode, push rset to get
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to step 000. Load the registers and display.as necessary. Continue in the

execute mode and push'SST. The calculator will execute instruction 000 and

move on to the next step. Pushing SST repeatedly, one can observe the result

of each programmed instruction as it is performed. If at any step an error

condition results, push LRN to enter programming mode, and then push'bst.

The step number and key code of the incorrect step will be displayed.

Editing:

Deleting instructions: In the program mode, with the step number and

key code of the incorrect step displayed, press del. The incorrect instruction

will be deleted and the next instruction will be shifted down to this step

number, and all subsequent instructions will shift down one step number.

Changing instructions: In the program mode, with the step number and

key code of the incorrect step displayed, press the correct key for that

stepnumber. The correct instruction will write over the previous one, and

the display will shift to the next step.

Adding instructions: In the program mode with the step number and key

code of the step displayed, press INS. The display will change to the correct

step number but the key code will be 00. The key code that was at this step

will be shifted to the next step number, as will all subsequent instructions.

Press the key for the missing instructions. The display will now show the step

number and key code of the next step.

B. The HP-25.

Troubleshooting:

Programming errors are indicated by any of four cc ditions following a

program run:
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1) The calculator does not cease execution after a "reasonable"

length of time. This condition is due to a closed loop in the program

instructions. The calculator cannot exit the loop so as to reach a

RIS instruction.

2) When the program ceases executing, the answer displayed is

clearly incorrect. This situation is difficult to detect.

3) When the program ceases executing ERROR is displayed. This

results from attempting an illegal instruction. The program stops at the

incorrect instruction, which will be displayed by switching to PGRM mode.

4) When the program ceases executing, OF is displayed. This results

.from an overflow in a storage register. Switch to PGRM mode to display the

key code and step number of the instruction that caused this condition.

To compare the program in memory to the program listing, in the RUN

mode push GTO 00 (or if there is reason to believe the error is at some

later step, e.g., step 16, push GTO 16. Pushing SST will display the step

number and key code of this step. When SST is released, the instruction

is executed, the result is displayed, and the calculator moves on to the

next step.

Editing:

Changing an instruction. Once the error is located, use the GTO (in

RUN mode), the SST, or the bit.. (in PGRM mode) 2f necessary so as to be at

the step preceding the step which is to be changed. In the PGRM mode, with

the key tod,, and step number of the preceding step displayed push the key of

the correct instruction.

Deleting an instruction: Display the step preceding the step to be

deleted (using GTO, SST, or bst as necessary). In the PGRM mode press

80
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g NOP. When the calculator reaches this program step, it will skip it and

proceed to the next instruction.

Adding instructions: To add instructions, one uses the"GTO instruction

to perform an unconditional branching. For example, suppose one has left out

three steps between Step 08 and09. Further, suppose the program ends with

Step 15. Then one. replaces Step 08 with GTO 16. Then key in the instruction

which was replaced at Step 08 in Step 16, and the three missing instructions

as 17, 18, and 19. Then key in GTO 09 as Step 20.
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CALCULATOR PROBLEMS

1. Using black and white infrared film and a suitable filter one can

photograph within the wavelength range 500-650 nm. If you were to attempt

to photograph the reindeer in problem 3 (main text), how much power would

be reflected in these wavelengths by a m
2

of:

a) The reindeer horn at T = 32°C?

b) The outside of the reindeer's fur at T= 5°C?

c) The external environment at T 5°C?

At present, infrared film is not "fast" enough to record thermal

luminescence of an object at temperatures below 250°C.

d) How much power would be available in this wavelength range

from a black body at this temperature?

The solution to this problem will require the numerical integration of
7

-5
[e

hcAkT
- 1)

-1
dXI = 3.74 x 10

-16

5x10
-7

which can be derived in a manner analogous to the derivation of Eq. 1 but

beginning with the solution to problem 1 (main text), that is

E a) = fe - i]
8flhc hc/AkT -1

X5

2. The sensitivity of the Compound eye of a honeybee (worker) extends

further into the ultraviolet than does the sensitivity.of the human eye.

The bee eye is sensitive from about 300-650 nm, and the human eye is sensitive

from about 400-700 nm. What is the difference in the power available from the

sun in the wavelengths perceptible to these two organisms?
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The solution to this problem will require the numerical :ntegration of:

a

I = 3.74 x 10
16 -5

[e
2.52x10

6
/2

1)
-1

A

with the limits of integration chosen to crincide with the spectral ranges

provided above.

What is the biological significance of the greater ultraviolet sensitivity

of the bee eye?

3. Photosynthetic bacteria differ from most algae and higher plants

in that they possess an auxiliary "electron pump" in their photosynthetic

, which allows them to utilize radiation of longer wavelengths for

p :ntaesis. The absorption spectra for the photosynthetic organs of

these organisms reveal the following spectral ranges:

a) 400-700 nm green plants

b) 780-840 nm

c) 840-910 nm various purple bac'teria

d) 970-1050 nm

Using the integral in problem 2 above, calculate the power'available

from the sun in each of these wavelength ranges.

For an enlightening discussion of the evolutionary significance of the

wavelength ranges utilized by these bacteria, see BjOrn 1976 (p. 235).
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CALCULATOR PROBLEM SOLUTIONS

1. The integral to be evaluated is

16.5x10
7

I = 3.74 x 10
-16

A
-5

je
hc/AkT

- 13
-1

dA.

5x10
-7

For the four parts of this problem the value of T differs, which means

that the exponent of the exponential of the integral will be different for

each part.

a) T = 305°K;

b) T = 278°K;

c) T = 268°K;

d) T = 523°K;

kT 4.718 X 105
kT

hc
kT 5.1757 x 105

he
kT = 5.3688 x 105

hc
kT

2.751 x 105.

For the SR-52:

As explained in section C of Appendix 2.11, one must alter the program

in Table A-3 at step 095 which is the function defining subroutine. A suitable

program is given in Table A-5. The preloaded registers in Table A-5 are 01,

02, and 07. Register 07 requires the values of hc/kT given above. Note that

the vaL,:e of the integral calculated by the prograL must be multiplied by

3.74 x 10
16

to give the correct value for the power.

For the HP-25:

As explained in section C of this appendix, one must alter the program in

Table A-4 at step 12. A suitable program is given in Table A-6. The preloaded

registers are 1, 2 and 7. Register 7 requires the values of hc/kT given above.

Note that the value of the integral calculated by the program must be multiplied

by 3.74 x 10
-16

to give the correct value_for the power.
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The values for the integral that I obtained were:

a) I = 2.41 x 10
9

b) I = 2.56 10
-12

c) I = 9.45 10
-14

d) I = 6.01 x 10
4
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00 01

5.7x10-/
\--------"---.--,

preloaded

Table A-5 (SR-52)

02. 03 04

7
6.5x10 i x , Ax

---

Program Changes to Table A-3

05 06 07 08-18 19,

E I
he

i-1 kT ----- used for
+ f (x)

.

praloaded

Step Code 1S912EqLY Comments

095 0 SC0 Store

096 01. 1 A
i

In

097 09 9 Reglater 19

098 45 YX

099 05 5

100 65 x Calculate A 5

101 53 (

102 53 (

103 43 RGL

104 00 0

105 07 F Recall hc(kT

106 55 f

107 43 RGL

108 01 1

109 09 9 Recall A.
1

110 54 ) Calculate hcAkT

111 22 114V

112 23 Alix Calculate exp[hc /AkT] 1

113 75 -

114 01 1

115 54 ) Calcul
5

ate A [exp hcAkT,1]



00 01 02

Q7x10 7
6.5x10

-7
Xi
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03 04 05 06 07 08-18 19

4

preloaded

Code

95

20

56

Key Entry

1/x

rtn

he
Ax E I.

kT

Comments

Calculate

Calculate

87

preloaded

Comments

used for f(x)

A
-5

[exp hc/AkT-1] - 1

A
-5

[exp(hc/kT)-1]
-1
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Table A-6 (HP-25) Program Charigc:-. to Table A-4

Register Contents

3 4 5 6 7

x
i

E
i-1

hc/kT

preloaded

0

Ow

1 2

a b

preloaded

Step Code

31

31

05

14 03

21

24 07

21

71

1 5 07

01

41

61

15 22

24 04

Key Entry X Y Z T Comments

12

13

14

A
17

3:

19

20

21

22

23

24

25

ENTER

ENTER

5

fyx

x < y
>

RCL 7

x < y
>

+

ge
X

1

g

RCL 4

X
i

'X
i

5

(Xi)
5

X
i

hc/kT

X
i

bc/XkT

exp[hc/AkT]

1

exp[]-1

[exp[-]]-1

Lx

X
i

.

Xi

Aii

X
i

X
i

5

X
i

hc/kT

X.
1

X
5

exp[]

X.
5

1

-5

Ax
f(xl 4-7)

Ai

X
i

X
i

5

X
i

5

X
i

5

A
i
5

X
5

1

Calculate
.2t

i
5

Recall hc/kT

Calculate 1.c/XkT

Calculate hc/XkT

Calculate exphc/Ak

Calculate expLhLiAk

Calculate (exp(1&

Step No. 23

in Table A-4

Continue x,;',-;:t steps 26-33 as in steps 23-30 in Table A-4

For this program, Step. 31 Table A-4 must be changed to:

13 38 GTO 38.

Continue with steps 35-49 as in steps 32-46 in Table A-4.
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2. The integral to be evaluated is the same as in problem 1. Thus one

can use the programs given in Table A-5 (or A-6) preloading register 07

(or 7) with:

hc -6
. 2.52 x JO' .

The value for the integral that I obtained was

a. 300-650 nm: I = 6.38 X 10
22

b. 400-700 nm: I = 5.85 x 1022

3. The integral to be evaluated is the same as in problem 2. The values

that I obtained for the different ranges of integration were

a. 400-.700 nmt I = 5.85 x 10
22

b. 780- 810 nm: I = 8.02 x 10
21

c. 840- 910 nm: I= 8.123 x 10
21

d. 970-1050 nm: I = 6.85 x 10
21
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Appendix 3: SOLUTIONS TO PROBLEMS

Problem 1

Planck's formula in terms of A:

E(v) = 8nhv
3
/c

3
(e hv/kT - 1)

-1
.

So E(X)dX = -E(v)dv (minus sign because dA and dv are of

opposite sign).

Since V = c/a for all wave phenomena,

dv/dX = -c/X2.

E(A) = E(v) dv/dX = E(v) e/X2

2[8nhv3
= c/X

1 -1
[e hv/kT - 1]

c3

Problem 2

= c/X
2
(87rh/X

3
)[e

hc/AkT
- 1]

-1

= (81Thc/A5)[ ehc/AT 1]-1.

The general formula is

AmT = b or X
m

= b:r. So

a) am
2.8978 x 10

3
m K

= 5.08 x 10
7
m

5.7 x 10
3
K

b) Since 37°C = 300 K

2.8978 x 10
3
m K

Xm = 9.659 x 10
-4
m

3 x 10
2
K

c) Since 10°C = 283 K

A =2 8978 x 10
3mK

1.024 x 10
3
mm

2.83 x 10
2

K
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d) Since -33°C = 240 K,

2.898 x 10
3
m K

= 1.207 x 10
3
m.

2.4 x 10
2
K

Problem 3

As in example 2

a) E = ofT
o

4
- T

a

41
= 5.67 x 10-8 [(273 + 32)

4
- (273 - 10)1 W m-2

b)

= 219.4 W m-2

E(SA) = 219.4 W m
2
(.1 m

2
) = 21.9

E = afT
o

4
- T

a
4.1 = 5.67 x 10-1(305)4 (28)1 W m-2

= 337.4 TArra-2

H = E(SA) = 337.4(7.5 x 10
3
) = 25.3101.

Problem 4
2

E
E
= _,u- /r = 5.67 x 10

-s
(5.70 x 0

3 (7.1 x 108)
s c

4u 2 2 -2

(1.49 x 1011)
2 Wm

= 1.359 x 103W m2.

Converting to calories

EE = 1.359 x 10
3
W m

-2
= 1.359 Wm

-2 [0239 cal/][60
min
sec

10-4m2 /cml

= 1.95 cal min
-1

cm
-2

.

Problem 5

As in Example 4:

a = 0.61 X/r

X = 5.08 x 10
7m

= 1.0 mm = 1.0 x 10
4
m

91
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So a = 3.17 x 10
4

rad.

Again as in Ex. 4,

6x = ad = (3.17 x 104 rad)(17 mm)

dx = 5.4 x 10 .

3
mm

= 5.4 x 10
6

m.

Problem 6

From the geometry of the situation it is obvious that

d = aR (i)

-e a is the angle of the cone which is the onomatadia. If this angle

is at the minimum given by Rayleigh's criterion:

a = 0.61 X/r = 1.22 X/d (ii)

Combining equations (i) and (ii) and solving for d, one gets

d = (1.22RX)
1/2.

Substituting in R = 1 mm and A = 400 nm gives

4 d = 2.2 x 10
5
m.

Problem 7

A= 9.67 x 10
-4m

r = striking distance 4!-; 1 m

s = accuracy of strike e- 2 cm

( I ) = s/r = 2 x 10-2 rad.

Using the Rayleigh criterion, the separation of the pits, d, is given by

by
9.67 x 1-

d = 2.(0.61)A/a = 1.22
9. 6 x 10

2
m

2 x 10
-2

0
4
m

rad
er- 6 cm.

This theoretical prediction corresponds very closely to the actual

observed separation of the infrared sensing organs of a pit viper.
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Problem 8

The echo will return after:

T = d/c
s
= 10m/350 m s

-1
= 28.6 ms.

The insect detects a frequency:

f = (C
s
+ V

i
)f

s
/(C

s
- V

L
)

which is reflected to the bat and detected at the frequency:

350 + 5 [350 +
50 kHzf = (C

s
+ V

L
)f

i
/(C

s
- V

i
)

350 - 1 350 - 5

= 51.74 kH z.


