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PREFACE

The dimensional techniques discussed in this module are described

in terms of concepts of measurement, fundamental and derived units, check-

ing equations for dimensional consistency and the metric system, or Inter-

national System of Units (SI). Although this module offers examples from

algebraic, differential, partial differential and integral equations,

the concepts presented can be understood by anyone who has had algebra.
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1. INTRODUCTION. The common objective in scientific research,

whatever our particular field of interest, is to discover those exact

relationships that exist among the measurable quantities of nature.

And typically, when our perceptions of those relationships are confirmed

by experiment to have sufficient generality, we look upon our perceptions

as natural laws. Although we often accept apparent truths about the

natural universe that are difficult to quantify (Darwin's thesis of

evolution, for example), the absolutely necessary condition for "exactness"

in a scientific law is that its formulation consist of measurable

quantities whose definitions depend, in turn, entirely upon a set of

dimensions. In this formal sense, such classical sciences as physics and

chemistry--as well as much of modern biology--are said to be exact, but

obviously, some topics of natural science (such as Darwin's thesis of

evolution) are characteristically inexact.
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Dimensional formalities do not, of course, insure scientific

infallibility, and we sometimes originate dimensionally perfect formulae

that turn out to be irrelevent, inaccurate, or erroneous, but dimensional

completeness fulfills the necessary condition for exactness in a

scientific statement and we cannot proceed to the more practical concerns

of scientific sufficiency until we satisfy in our formulae the formalistic

requirements of dimensional exactitude--otherwise our formulae are

meaningless. We shall, in fact, be concerned here almost exclusively with

the dimensional necessities of scientific statements and only incidentally

with their sufficiencies. Unlike the self-consistent arguments of purely

mathematical demonstrations, scientific sufficiency rests instead with

empirical evidence. Although dimensional methods provide us with the

means for determining the obligatory (the formally necessary) relationships

among the quantities of a scientific formula, we should clearly understand

that experimentation, observation, and insight really determine just

which quantities go into the formula in the first place.

So as to distinguish between differing magnitudes of a

particular dimension, we must have access to a scale (or unit) of

comparison. In saying "the height of that tree is nine meters" we imply

that we have chosen length as the dimension of definition and the meter

as the corresponding scale unit of comparison. In making the observation

let us also note that "length" might have defined our concept of tallness

but not necessarily our whole notion of the tree itself. This is not a

trivial acknowledgement; it points up the fact that scientific definitions

describe attributes of natural entities or occurrences, not their

ontological meanings or their elemental reasons for existence. While we
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might employ the universal law of gravitation, let us say, to quantify

the attribute of attraction between bodies of mass, the law of gravitation

consists wholly of dimensional relationships and tells us nothing of the

"essense" of gravity, nor why every corporeal body in the universe should

have a gravitational fielo in the first place. Although we may share an

intense curiosity about such questions, their resolutions are usually

reserved to inquiries external to science proper. Should perplexity exist

over the sc:entif-,:c description of some natural quantity, its origin

should be sought not in some mysterious, hidden characteristic of the

natural quantity, but rather in the ambiguity of the quantity's dimensional

definition.

In view of these definitional objectives, we must accord to every

kind of natural quantity its defining dimension, but these defining

dimensions need not be wholly independent of one another. Since we desire

that differing natural quantities be related through natural laws, then

for simplicity and clarity of definition we should keep the number of

7:n.lependent dimensions to a minimum. This minimum set of independent

dimensions we shall call fundamental, and all other dimensions derived

from the fundamental set we shall call derived. Similarly, the magnitudes

(the scale units) corresponding to the fundamental dimensions are viewed

as fundamental magnitudes, and those corresponding to the derived

dimensions as derived magnitudes. An obvious example of a derived quantity

would be that of velocity--the velocity, say, of an aircraft whose pilot

reads derived units of velocity magnitude directly from the scale of

his airspeed indicator. Irrespective of the particular scale system

on the airspeed indicator, we perceive the velocity dimension to be

derived, in general, from the more fundamental set of dimensions, length
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and time, and with corresponding symbols V,L,T we can write that general

dimensional relationship as

[V] E. [LT-1],

read as "the dimension V is defined as the ratio of dimensions L and T."

The particular scale measurement of, say, 500 kilometers per hour would

correspond to 500 derived units of velocity magnitudeas derived from

the kilometer and the hour. We would write the scale relationship for

this particular example as

v = 500 kmhr-1

with an obvious correspondence between fundamental unit magnitudes "km"

and "hr" and the fundamental dimensions L and T. The unit symbol "kmhr-1"

is as much a part of the value of quantity v as is the numerical value

"500". The conventions (the symbolic styles) employed in this example

suggest the convenient fact that we can manipulate dimensional and scale

symbols as algebraic entities.

There is a certain arbitrariness of choice in the number and

nature of the "fundamental" dimensions, whether we are thinking of our

needs in choosing dimensions for actual measurement purposes or for the

more formalistic requirements of theoretical models (and there is also

considerable latitude in the selection of the scale units we might regard

as fundamental; those suited for one problem may not be suited for

another). Because of the strong historical precedent of Newtonian mechanics,

the three natural concepts of space, time, and mass are often regarded

as being fundamental in the absolute sense, but, in fact, more than three
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fundamental dimensions are sometimes desirable, and we shall see that

differing sets of fundamental dimensions can be selected, none of which

need be regarded as absolutely fundamental.

PROBLEM SET 1.

1. Employ the dimensional set M (mass), V (velocity), T (time), and do the

following exercise. The attached solutions may be consulted if necessary.

(a) The linear acceleration of a particle can be envisioned as the

increase or decrease in the velocity of the particle, measured over a

short time period. Write the dimensions of linear acceleration.

(b) The magnitude of force on a body wholly free to move can be

calculated as the product of the body's mass and its linear acceleration.

Write the dimensions of mechanical force.

(c) The instantaneous kinetic energy of a moving body is proportional

to the mass of the body and to the square of its linear speed. Write

the dimensional formula for kinetic energy.

2. Employ the dimensional set M (mass), L (length), T (time), and do (a),

(b), (c) of Exercise 1.

3. Employ the dimensional set F (force), L (length), T (time), and do the

following exercise.

(a) Problem (c) of Exercise 1.

(b) The work done in moving the body of Problem 1(c) is equivalent

to the product of the force acting on the body and the distance the

body moves while the force is being applied. Write the dimensional

10



formula for mechanical work.

(c) Power is defined as the time rate of energy expenditure (or,

equivalently, as the rate at which work is done). Write the

dimensional formula for the power of the agency that imparts the

motion to the body of Problem 3(b).

4. Employ the dimensional set M,L,T and do (b),(c) of Exercise 3.

5. In the mks system of measurement, the meter (m) is the unit standard

of length, the kilogram (kg) the unit standard of mass, and the second

(sec) the unit standard of time. The derived unit of force in the mks

system is called the "newton" (nt), the derived unit of energy is called

the "joule", and the derived unit of power is called the "watt". Employ

the mks system of measurement and write the unit magnitudes of the

corresponding quantities described in Exercises 2,3,4.

I 1
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2. SI UNITS. In the making of scientific syntheses, our mutual

needs for clear thinking and precision of meaning--as well as the need

for clarity in communications between us have an obvious dependence on

the exactness of our reference standards and the precision we choose to

employ.in the characterizing of those natural quantities that ultimately

enter our formulations as symbols. Our usages here shall conform, with

little revision, to the conventions and standards known as the International

System of Units (abbreviated SI for Systeme International), supplemented

where necessary by the practices of the National Bureau of Standards (NBS).

In the SI system, the fundamental metric units associated with dimensions

M,L,T are the kilogram, the meter, and the second (customarily called

the "mks system"). A variety of auxiliary metric units are employed in

practice (such as the kilometer, the angstrom, the gamma, and so on), but

the auxiliary or supplementary set of metric units most commonly

associated with dimensions M,L,T are the gram, the centimeter, and the

second (customarily called the "cgs system").

The following definitions for mechanical quantities have been

abstracted from publications of NBS (1964,1968) and Cray (1972). For

comprehensive tabulations of the quantities appropriate to optics, acoustics,

and electricity, see the Handbook of the American Institute of Physics,

a2
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the Handbook of Chemistry and Physics (Chemical Rubber Co.), or the

Handbook of the National Bureau of Standards, which is edited and published

annually.

FUNDAMENTAL MECHANICAL UNITS

Meter. Unit of length mks system. Symbol m, dimension L. By international

agreement (1960) defined to be 1,650,763.73 wavelengths of the orange-red

line of krypton 86, which replaces the length standard based on the

platinum-iridium meter bar in Paris.

Kilogram. Unit of mass mks system. Symbol kg, dimension M. Defined to be

the mass of a certain cylinder of platinum-iridium alloy, called the

International Prototype Kilogram, preserved at the International Bureau

of Weights and Measures in Paris.

Second. Unit of time mks system. Symbol sec, dimension T. By international

agreement (1960) defined to be 1/31,556,925.9747 of the tropical year

1900. (A "tropical year" is the interval of time between two successive

passages of the sun through the vernal equinox.) A more recent international

conference adopted provisionally a new definition of the second as the

time corresponding to 9,192,631,770 oscillations of the cesium atom in the

so-called atomic clock.

TEMPERATURE SCALES

In 1968 the International Committee on Weights and Measures officially

adopted the "International Practical Temperature Scale", which is based

on the concept of temperature (variable symbol 0, dimension 0) as being

that of thermodynamic temperature. The unit magnitude of the International

Scale is the degree Kelvin (symbol °K). The degree Kelvin is the fraction
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1/273.16 of the triple point of water. The Celsius temperature scale is

defined in terms of the Kelvin scale as

1°C
e.

[ek 6°)

where 6c is the temperature magnitude on the Celsius scale, Ak the

temperature magnitude on the Kelvin scale, and eo = 273.15°K (the ice

point of water). The scale unit of the Celsius temperature is the degree

Celsius (symbol °C), equal in magnitude to the degree Kelvin. Reference

point relationships between Kelvin, Celsius, and Fahrenheit scales are:

0°K = 273.15 °C = 459.67°F ("absolute" zero),

273.15°K = 0°C = 32°F (the ice point),

273.16°K = 0.01°C = 32.018°F (equilibrium between solid, liquid, and

vapor phases of water; the triple point),

373.15°K = 100°C = 212°F (the boiling point of water).

The relationships between the Kelvin, Celsius, and Fahrenheit scales are

linear and appear as straight lines when graphed.
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SUPPLEMENTARY MECHANICAL UNITS (cgs and English systems)

Centimeter. Unit of length cgs system. Symbol cm, dimension L. Defined

to be 1/100 meter.

Gram. Unit of mass cgs system. Symbol g, dimension M. Defined to be 1/1000

kilogram.

International Yard. Unit of length. Symbol yd, dimension L. Defined by

agreement between the United States and the British Commonwealth (1959)

to be 0.9144 meter.

International Pound. Unit of mass. Symbol lb, dimension M. Defined by

agreement between the United States and the British Commonwealth (1959)

to be 0.45359237 kilogram.

Angstrom. Unit of length. Symbol X, dimension L. Defined to be 10
8

cm.

Ganma. See microgram.

Microgram. Unit of mass. Symbol pg, dimension M. Defined to be 10-6 g.

Micrometer. Unit of length. Symbol pm, dimension L. Defined to be 10-6 m

(1/1000 cm). Equivalent to, but replaces, micron (symbol p).

Micron. See micrometer.

ANGULAR UNITS

Degree. Unit of angular measure. Symbol deg or ° (superscript), dimensio,less,

Defined as the angle subtended at the center by a circular arc 1/360 the

circumference.

Radian. Unit of angular measure. Symbol radian, dimensionless. Defined as

the angle subtended at the center by a circular arc equal in length to

the radius of the circle. 1 radian = 360/27r degrees angular measure.

DERIVED UNITS

Atmosphere. Unit of pressure. Symbol atm, dimension FL-2 or ML-1T-2.

Defined to be the pressure exerted by dry atmosphere, 0°C, at mean sea
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level. Equivalent to 1.013250 x106 dyncm-2 in cgs units.

Bar. Unit of pressure. Symbol bar, dimension FL-2 or ML-1T-2. Equal to

105 ntm-2 in mks units.

British Thermal Unit (Mean). Unit of energy or quantity of heat. Symbol

Btu, mechanical dimension ML2T-2, thermal dimension H. Originally defined

to be the quantity of heat energy required to raise the temperature of

1 lb mass of water 1°F (averaged from 32°F to 212°F). Equivalent to

252.16038 gram calories.

Calorie (lean). Unit of energy or quantity of heat. Symbol cal, mechanical

dimension ML2T-2, thermal dimension H. Originally defined to be the

quantity of heat energy required to raise the temperature of 1 g mass of

water 1°C (averaged from 0°C to 100°C). Equivalent to 4.1840 joules.

Dyne. Unit of force cgs system. Symbol dyn, dimension F or MLT-2, unit

gcmsec-2. Force required to give 1 g mass an acceleration of 1 cmsec-2.

Erg. Unit of work or energy cgs system. Symbol erg, dimension FL or ML2T-2,

unit dyncm or gcm2sec-2. Work done by a force of 1 dyne acting through

a distance of 1 cm (107 erg = 1 J).

Hertz. Unit of frequency. Symbol Hz, dimension T-1, unit sec-1. Equivalent

to, but replaces, unit cps (cycle per second).

Joule. Unit of work or energy mks system. Symbol J, dimension FL or ML2T-2,

unit ntm or kgm2sec-2. The work done by a force of 1 newton acting

through a distance of 1 meter.

Liter. Unit of volume (liquids and gases). Symbol 1, dimension L3.

Originally defined to be the volume of 1 kg airfree H2O at 4°C (the

maximum density temperature of water). Redefined by international agreement

(1964) to be 1/1000 cubic meter (10-3m3) exactly.

'6



Newton. Unit of force mks system. Symbol N (alternate symbol nt),

dimension F or MLT-2. Force required to give 1 kg mass an acceleration

of 1 msec-2.

Poise. Unit of viscosity cgs system. Symbol P, dimension FL-2T 'or ML-1T-1,

unit dyncm-2sec or gcm-1sec-1. Shear viscosity, or resistance to flow,

is defined as the ratio of shearing stress (tangential force per unit

area) in a moving fluid and its associated rate of area deformation

(dA/Adt). Shear viscosity is sometimes called the dynamic viscosity.

Poundal. Unit of force. Symbol lbf (pound force), dimension F or MLT-2.

Force required to give 1 lb mass an acceleration of 1 ftsec-2.

Stokes. Unit of kinematic viscosity cgs system. Symbol St, dimension L2T -1/

unit cmsec-1. Kinematic viscosity in units of Stokes is defined to be

the ratio of the dynamic viscosity (in poise) of a fluid to its cgs

density (gcm-3).

Torr. Unit of pressure. Symbol torr, dimension FL-2 or ML-1T-2. The

pressure exerted by a column of mercury 1 mm in height, 0°C. Equivalent

to 13.3322 dyncm-2 in cgs units.

Watt. Unit of power or rate of work mks system. Symbol W, dimension FLT-1

or ML2T-3, unit Jsec-1 or ntmsec-1 or kgm2sec-3. Work done or energy

expended at the rate of.l Jsec-1.

An appendix summarizing the SI units and dimensions is attached.
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AUXILIARY PREFIXES OF THE METRIC SYSTEM TO INDICATE DECIMAL MULTIPLES

AND SUBMULTIPLES

Multiples and
Prefix

1 submultiples

10-19 atto

10-16 femto

10-12 pico

10-9 nano

10-6 micro

10-3 milli

10-2 centi

10-1 deci

10 deka

102 , hecto

103 kilo

106 mega

109 giga

1012 tera

PROBLEM SET 2.

1. Determine the number of 24-hour days in the tropical year 1900.

2. Write algebraic formulae for the relationships between

(a) Kelvin and Fahrenheit temperature,

(b) Celsius and. Fahrenheit temperature.

3.4 molecule of water occupies a square cross-sectional area of about

10 X2. How many water molecules are needed to cover a square centimeter of

surface?

4. Determine the kinetic energy in ergs of a molecule having a mass of

2.0 x10 -22g and a velocity of 4.0 x104cmsec-1.

is
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5. A red blood cell has a diameter of 7.5. microns; express its diameter

in units of centimeter length.

6. Write as ordinary magnitudes of the units indicated:

(a) 3.5 milliliters of benzine

(b) 3.5 deciliters of seawater

(c) 1 kiloyear of Roman Empire

(d) 0.04 megawatts of electrical power

(e) 2 nanograms of a butterfly's breakfast

(f) 0.002 nanograms of proton mass

(g) 200.5 picograms of hydronium ion

(h) 1.099 micromoles of H2SO4

(i) 1 hectare of rice paddy

(j) 10 square dekacentimeters of contiguous quadrat

7. Express the following quantities with appropriate metric prefixes:

(a) 7.35 x109 liters

(b) 7.35 x10-9 liters

(c) 1,000,000 watts

(d) 0.20x 10-5 moles

(e) 8,575,000 microcuries

(f) 2.10 x103 calories per gram

(g) 10-3 photons/cm2
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3. DIMENSIONAL HOMOGENEITY. Should we reduce to its fundamental

dimensions each of the quantities occurring in a valid physical equation,

all terms of the equation must then consist of like fundamental dimensions

raised to like powers. The equation must be dimensionally homogeneous.

This is a truism for definitional equations, and for those equations of

empirical basis it expresses a condition of physical necessity. The

principle of dimensional homogeneity, or its equivalent, is the basic

axiom for the operational rules in the general method of dimensional

analysis.

THE DIMENSIONAL CONSTRAINTS ON DEFINITIONAL AND EMPIRICAL EQUATIONS

The principle of homogeneity applies to equations of purely dimensional

content, and it applies to equations that contain scale magnitudes and

quantities of measurement. It excludes any equation that might be

mathematically complete but physically meaningless. For example, the

equation

x + y =x + y,

where x + y sums to a quantity z, is mathematiu:lly correct for numbers.

But let x and y have dimensional content. Let x, say, be the displacement

of a uniformly accelerated body starting from rest, and let y be its

velocity over time. Accordingly,



1y = at, x =
2
at 2

,

16

a being the uniform acceleration and t the time variable. Our mathematically

complete equation becomes

a
1

=
2
at 2 + at,

which is physically meaningless since we have attempted to sum incompatable

natural quantities (displacement and velocity). By reducing each term on

the RHS to its fundamental dimensions, the violation of the homogeneity

principle becomes obvious. Since [a] = LT-2, then

1
ate] ] = LT-2T2 = L,

[at] = LT-2T = LT-1,

and obviously, the terms do not reduce to like dimensions.

Now let us suppose x and y to be some measured magnitudes of a body,

say its length x = 1 meter and its mass y = 3 kilograms. By the definitions

1 m = 100 cm and 3 kg = 3000 g, we can write, in good mathematical faith,

1 m + 3 kg = 100 cm + 3000 g,

or even

1 m 3000 g = 100 cm 3 kg.

Terms on opposing sides are nicely balanced in the algebraic sense, but

what does it mean to subtract 3000 grams of mass from 1 meter of length?

The dimensions of the terms in the equation are

[1 m] = [100 cm] = L,

[3 kg] = [3000 g] = M,

and the homogeneity principle is again violated; we must reject the

equation (and others like it) as having no physical significance. Common

sense, of course, would lead us to such distinctions in the first place.

21



Thy assignment of dimensions to the elements of integrals,

differential equations, difference equations, and integro-differential

equations is just as straightforward (but perhaps not so obvious) as

that of simple algebraic structures. For expositional purposes, let the

symbol "X" in the following examples be the dimension of the quantity x:

Differentials:

[dth] = X

[d2x] = X

[dth2] = X2

Differential operators:

[ ] x-i

[5-Mii ] = [M]X-1

[] = [did = XT-1

[

.L11 = X-n (n a positive integer)
dthn

rd-71± ] = [M]rn
thn

[ Y ] = [JL ] = XT- 2

dt2

an
= X-n

@xn

rnm
= [M]X-n

@xn

22
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Laplacian:

320 320 320

3x2 3y2 3z2 j

Difference operators:

[Ax] = X

[ex] = X

[Anx] = X

Indexed differences:

[x2.
+1

x.] = X

18

[0]L-2 (each term)

Indefinite integrals:

[P(x)cith = [f(x)]X

[fif(x,Y)dxdd = [f(x,Y)][dY] [dx] [f(x,Y)] [YiX

Definite integrals:

[kf(t)dt ] = nr)1X

[SIR f(siy) d x d y [ d yf (x ,y)dx] = [f (xi iy i)] [dY i][dx 1]

Let us use the following integro-differential equation to illustrate the

homogeneity of analytical equations that have physical meaning. The equation

arises from the principle of momentum conservation as applied to the

two-dimensional steady flow of a viscous fluid at a boundary. The quantities

u,U are velocities, while x,y are the two-dimensional space variables of

displacement, and v is the kinematic viscosity of the fluid:

a 2uu
ax

_ bul jrY du
ay ax u d = u

ay2

23



19

The terms of the equation separately reduce to fundamental dimensions

as follows. Note that the dimensional set {L,V} accomodates this equation

equally as well as the set {L,T}.

{u
OX

= V
L

= LT-1LT-1L-1 = LT- 2 .

[ u dy)]
[ TY-au I [ ax ][ u(Y)][

v
LVL

U
dU

= LT- 1LT- 1 L- 1 = LT-2.

a2uV- = L2T-1 LT-1

ay2 L2

LT-2.

LT-1L-1L-1LT-1 L = LT-2.

Hence, our equation is dimensionally homogeneous; its dimensions are those

of acceleration. We can also write the dimensions of any term as

LT
-2 MLT-2 F

M

which are the dimensions of force per unit mass (of fluid).

INTENSIVE AND EXTENSIVE PROPERTIES

Properties that depend on the total quantity of matter (or total effect)

being measured are called extensive properties. If we take twiceas much

matter of a given substance, for example, it will contain twice as much

volume and twice as much mass, implying that mass and volume are to be

regarded as extensive properties of a substance. Properties independent of

the quantity of matter or total effect being measured are called intensive

properties. The density of a substance and its temperature are examples

of the intensive properties of the substance. The density of water, say,

is the same--under similar conditions whether we measure one cupful or

24
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one cubic kilometer. Intensive properties are properties of the

substances themselves, and, like the density of water, can be used in

the identification of a substance, since, generally speaking, unlike

substances differ in their intensive properties. The name of an intensive

property will often bear the prefix "specific". Examples are specific

volume (the volume occupied by a unit mass of a substance) and specific

luminous intensity (the luminous intensity per unit area of source).

Physical equations often contain a mixture of intensive and

extensive quantities, but the principle of dimensional homogeneity still

holds. When multiplied by density p, for example, our last sample equation

becomes

JI
udy =

Y

Puau
Pu

dU p
57

au a

ax
0

ay2

where p is now the dynamic viscosity of the fluid [v E p/p being the

definition of kinematic viscosity). By dimensional reduction, the first

term becomes

{pu 32-1 = ML-3 LT-1 LT-1 = ML-21-2,
ax

which, of course, is typical of all the terms. We can also write the term

dimensions of each term as

mc2T-2 = MLL-3T-2
MLT-2

L3 L3'

which are the dimensions of force per unit volume (of fluid).

25
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CONVERSION FACTORS

Very often the magnitude of a quantity must be transformed from one set

of scale units to a different set of scale units (pounds to grams, miles

per hour to meters per second, and so on). Such a transformation is

commonly called a conversion of units, and conversions between two units

can be made whenever the two units have the same dimensions (pounds and

grams both have dimension M, miles per hour and meters per second both

have dimensions LT-1, and so on), and whenever we know the equation (the

identity) that relates the two units. To convert, say, the magnitude of

the mass of some object from units of pounds to units of kilograms, we

make use of the identity

1 lb = 0.45359237 kg,

or the identity

1 kg = 2.2046226 lb

(where the number of significant figures we actually choose to employ

depends, of course, on the accuracy appropriate to the application). From

the first identity we can write the conversion factor

0.45359237 kg
1 lb

and from the second we can write the conversion factor

2.2046226 lb
= 1.

1 kg

In either case, the factor is dimensionless and equal to unity. Any

conversion factor is a dimensionless ratio of scale units identically equal

to unity.

For the sake of illustration, let us transform 4.2 pounds scale

magnitude of mass to the equivalent magnitude in units of the kilogram.

We start by making the obvious statement

26
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4.2 lb = 4.2 lb

and then operate on the RHS with the appropriate conversion factor. Since

we want "lb" to cancel on the RHS (leaving "kg"), we choose the factor

that has "lb" in the denominator:

.,_

4.2 lb = 4.2 -.H5
0.454 kg

(
1,11f ).

Perform the necessary multiplication and get

4.2 lb = 1.907 kg.

We follow much the same procedure for conversions that require a

combination of conversion factors. Suppose we desire to have the scale
-.\

velocity of 30 miles per hour in units of the centimeter and the second.

Accordingly, we are concerned here with essentially two chains of

conversions, one for dimension L and one for dimension T.

L: mile .- foot -0. inch + centimeter,

T: hour -0. minute + second.

We write the required identities and apply them one by one.

For dimension L:

Identity: 1 mi = 5280 ft

1 m
Conversion factors: 5280 .ft=1 or

1 mi 5280
i

ft
= 1.

Identity: 1 ft = 12 in

in 1 ft
Conversion factors:

12

1 ft 12 in
1 or = 1.

Identity: 1 in = 2.54 cm

. i
Conversion factors:

21 5
= 1 or

21 54

n
cm

= 1.
i4n

cm
.

For dimension T:

Identity: 1 hr = 60 min

mi 1 hr
Conversion factors:

60

hr
n

60 min
1 or = 1.

1

tit



Identity: 1 min = 60 sec

23

min
sec 1

60 sec
min

Conversion factors:
60

or 1.
1

To proceed with the conversion we make the obvious statement

30 mi 30 mi
1 hr 1 hr

and convert the units for each dimension. Starting with L (as a matter of

choice; we could start with T just as legitimately), we follow the chain

mile foot and employ the conversion factor that cancels the

unit "mi":

30 mi 30 All 5280 ft
1 hr 1 hr 1 pi' )'

We continue the process and arrive at the unit "cm":

30 mi 30 Aktf 5280 [ 12 [ 2.54 cm
1 hr 1 hr 1 ;Er fet 1 jelf J

Now we complete the process for units of T. Again we follow the, appropriate

conversion chain (hour minute Since "hr" appears in a denominator,

we choose the hr -omin conversion that will cancel "hr", and so on:

hr
30 m 30 [521 80 ][12

1

1121 .54 ][

60
1 ill )( 1

1 r ill) sec).

And finally, we perform the necessary multiplication and get the desired

conversion

30 mi/hr = 1340 cm/sec.

The rational operations of algebra extend with great convenience

to the operations (and conversions) on scale units.

.Example. Convert the area magnitude of 1 square inch to units of

square centimeters:

The identity between the inch and the centimeter is

1 in = 2.54 cm,

and by squaring both sides of the identity we get
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(1 in)2 = (2.54 cm)2

= (2.54)2cm2

1 in2 = 6.4516 cm2.

Example. Convert 20 in2 to units of cm2:

Make the obvious statement

20 in2 = 20 in2.

From the previous example we can write the conversion factor

6.4516 cm2

and thus

1 in2
= 1,

20 in2 =
20

i
ier 6.4516 cm2

1 jx2"

20 in2 = 129.032 cm2.

Example. The density of CC14 at 0°C is 1.600 grams per cubic

centimeter. Convert this intensive property to units of the ounce

and the cubic inch:

The units to be converted have dimensions M and L3. The chains of

conversions are

M: gram + pound + ounce,

rl

L3: cm3 + in3.

Identities and conversion factors are

gram + pound:

1 lb = 453.6 g or 2.205 lb = 100 g (since 1 kg = 100 g),

453.6 g 1 lb 2.205 lb
=

_1Ei
1 lb 453.6 g 100 g

1 or 1 or 1 or
2.205 lb

pound + ounce:

16 oz = 1 lb
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16 oz
or

1 lb
1 lb 16 oz 1'

cm3 in3:

1 in = 2.54 cm

1 in3 = 16.387 cm3,

in316.387 cm3 1 in
= 1 or = 1.

1 in3 16.387 cm 3

25

Make the obvious statement

1.600 g 1.600 g

1 cm3 1 cm3

Apply the chain of conversion factors, choosing those that cancel

in succession:

1.600 g 1 _le 16 oz)

1 cm3
cara- 453.64r 1 AI)

1 in3

1.600 gcm-3 = 0.9248 ozin-3,

which is the desired conversion.

PROBLEM SET 3.

1. Determine the dimensions of the following:

fx2(a) mv(x)dv, where m is the mass of a body and v its velocity along
xi

a path from xi to x2.

(b) t-fm vdv

wf
(c) Given R = u f(t)dt, determine the dimensions of f(x) where RJ

stands for frictional resistance, p is dynamic viscosity, and x

is the Cartesian variable of location.
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2. Given the Poisson equation V24 = f(x,y), where f(x,y) describes the

distribution in a membrane of the ratio of load (force) per unit area to

the tension (force) per unit length, determine the dimensions of the

potential function q(x,y).

3. Given the equation of motion x + w2x = f(t), determine the dimensions

of w and f(t), where x is the measure of displacement.

4. Show that the equation

Dp a2w
P 5 1-1

az2

is not correctly formulated, irrespective of its intended meaning, where p

is fluid density, p is pressure, p is dynamic viscosity, w is fluid velocity,

and z is the Cartesian dimension of displacement.

5. Employ the dimensions H (quantity of heat), 0 (temperature), and M (mass).

(a) Write the dimensional formula for specific heat, which is defined

as the quantity of heat required to impart a unit increase in temperature

to a unit mass of substance.

(b) Formulate a scale unit of specific heat in terms of the gram, the

degree Kelvin, and the calorie.

6. In many circumstances, the transfer of heat by conduction can be described

by Fourier's law

- 0

q = k ve

where q is the vector of heat current density (quantity of heat per unit

area per unit time), ve the temperature gradient vector, and k the

coefficient of thermal conductivity (whose magnitude depends on the nature

of the conducting substance). Expand the equation into its component parts

and do the following problems.
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(a) Employ the dimensional set {H2O,L,T} and write the dimensional

formula for the coefficient of thermal conductivity. Define k in words.

(b) Employ the calorie, degree Celsius, centimeter, and second;

write a scale unit for k.

(c) Employ the joule, degree Kelvin, meter, and second; write a scale

unit for k.

(d) Employ the dimensional set {M,O,L,T} and write the dimensional

formula for the mechanical equivalent of k.

(e) Employ the gram, centimeter, degree Kelvin, and second; write a

scale unit for k.

(f) Employ the dimensional set {F,O,L,T} and write a dimensional

formula for k.

(g) Employ the newton, degree Kelvin, and second; write a scale unit

for k.

(h) Employ the watt, meter, and degree Kelvin; write a scale unit

for k.

(i) Write a conversion factor between your units of (b) and (c).

(j) Write a conversion factor between your units of (c) and (e).

7. Determine the volume in cubic centimeters of a sphere of radius 1.5 ft.

8. The density of grain alcohol at 20°C is 0.79 gcm-3. Determine the mass

of 30 mZ of alcohol.

9. The blade of an ice skate makes contact with the ice over a length of

about 15 cm and a width of 2.8 mm. Calculate the pressure on the ice produced

by an ice-skater of 150 lbs mass. [The acceleration of gravity at the earth's

surface is about 980 cmsec-2.]

10. A phonograph needle makes contact with a record surface over a circular

area of diameter 80 pm. Calculate the pressure on the record when the needle

arm weighs 2 ounces.
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ANSWERS AND SOLUTIONS

PROBLEM SET 1.

1(a) VT-1

(b) MVT-1

(c) MVZ

2(a) LT-2 (by substituting LT-1 for V).

(b) MLT-2

(c) ML2T-2

3(a) FL

(b) FL

(c) FLT-1

4(b) ML2T-2

(c) ML2T-3

5. 2(a) 1 sec-2

(b) 1 kgmsec-2

(c) 1 kgm2.sec-2

3(a) 1 ntin, or 1 joule

(b) 1 ntm, or 1 joule

(c) 1 ntmsec-1, or 1 joulesec-1, or 1 watt

4(b) 1 kg m2sec-2, or 1 ntin, or 1 joule

(c) 1 k1112sec
-3

, or 1 ntwsec- , or 1 joule.sec- , or 1 watt
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PROBLEM SET 2.

1. Given 1
1 sec =

31,556,925.9747
trop.yr

31 556 , 925 9747 sec = 1 trop.yr

and since 1 solar day (24 hrs) = 86400 sec, then

(31,556,925.9747 sec)
1 solar day

1 trop.yr
86400 sec

365.2422 solar days = 1 trop.yr

Note: The sidereal year is the time required for the sun to go once

around the ecliptic and resume its (apparent) original position among

the stars. The sidereal year is 365.2564 mean solar days. The tropical

and sidereal years would be of equal durations were it not for

precession of the equinoxes, an effect owed primarily to the moon.

2.(a) 5°K 255.37°K
Gk -§77 f

+

(b) Oc - g 9 17.78°C

3. By letting n be the number of molecules and a the area of each molecule,

we want na tc be 1 square cm of area:

na = 1 cm2

We are given a = 10 A2, and knowing that 1 A = 10-8cm, then

a= 10 A2

= 10(10-5CM)2

whence, by the first equation,

= 10 x10-16 CM 2

= 10-15 CM
2

1 cm2
n =

a

1 cm
2

10-15CM2

= 1015, a pure number since the

units (cm2/cm2) cancel.
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1
4. K.E. =

2
v
2

= 2(2.0 x 10-22g) (4.0 x 104cmsec-1)2

= (1.0 x 10-22g) (16.0 x 106cm2.sec-2)

= 1.0 x16.0 x10-22 X 108g.cm2-sec-2

= 1.6 x 10-13erg

5. 1 micron = 10-6m [but .1 m = 102cm]

= 10-6(102cm)

= 10-4cm

7.5 microns = 7.5 x 10-4CM

6. (a) 3.5 x10-3 I = 0.0035 I

(b) 3.5 x 10-1 Z = 0.35 I

(c) 103yr = 1000 yr

(d) 0.04 x 106W = 4 x 104W = 40000 W

(e) 2 x10-9g = 0.000000002 g

(f) 0.002 x 10-9g = 2 x 10-12g ,

(g) 200.5 x 10-12g = 2.005 x 10-16g

(h) 1.099 x 10-6mo1

(i) 102are = 100 are [1 are = 100 m2, hence 1 hectare = 10000 m2]

(j ) 10 (dekacm)2 = 10 (102cm2) = 103cm2 = 1000 cm2 , or, in meters

10 (dekacm)2 = 10(10.10 -2m)2 = 10(10-1m)2 = 10(10 -2m2) = 10-1m2 = 0.1 m2

7. (a) 7.35 gigaliters

(b) 7.35 nanoliters

(c) 1 megawatt

(d) 0.20 x 10-9mo1 = 2.0 x 10-6mol = 2.0 micromoles

(e) 8.575 megamicrocuries = 8.575 (106.10-6curies) = 8.575 curies

(f) 2.10 kilocalories per gram = 2.10 Kcalg-1

(g) 1 milliphoton/cm2 = 1 mphotcm-2
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PROBLEM SET 3.

1(a) [m][v(x)][dv] = MV2 (the dimensions of kinetic energy), or MV2 =

MILT-1)2 = FL (the dimensions of mechanical work).

(b )
mv2

[m] [v] [dv] = = MLT-2 = F

(c) [R] = [p][f(x)][dx], whence

[f(x)] = [p][[ and since frictional resistance has the dimensions

of force, then

[f(x)] = F = LT-1 = V (hence, the function f(x) is fluid velocity).
FL-2T L

2. Given [f(x,y)] =
FL-2

= L-1, then [321 L-1 or rt = L-1 (since the
FL-1 axe

3y2

terms of the Laplacian must have like dimensions). Therefore,

L-'

axe

at' = L-'
L2

[cP] = L

3. [x] = [w2x] = [f(t)] But = c2Z- ; therefore
dt2

[d2x] L
(the dimensions of acceleration). Consequently,

[dt2] T2

[f(t)] = LT-2, and [w2][x] = LT-2

[w2]
T-2

[w] = T-1

ap [P]iPi
ML-3

MLT-2/L
az []

M2L-5T-2,

32w
ML-1T -2 LT-1

= ML-2T-2
322 [22] L

2

and because the equation is not dimensionally homogeneous, we conclude

that it is not correctly formulated.
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5.(a) The concept of specific heat of a substance under conditions of

constant pressure (Cp) permits of volumetric change, while the concept

of specific heat of a substance under conditions of constant volume (Ca)

permits of pressure change. In either case,

[Cp] = [Cv] =
H
MO

(b) calg-1 °K-1. (calories per gram per degree Kelvin).

36 ^ ae

ax 1 + 5i 3 +
8z kJ

Because the equation must be dimensionally homogeneous in its terms, we

can resolve the dimensional problem from any component. By taking the

component in the x-direction,

[qx] = [k][g]

(signs have no influence on dimensions of terms)

L2T

0
- [k] T

[k] =
LOT

(the quantity of heat transferred

per unit thickness of substance

per unit temperature difference

per unit time).

(b) calcm-1 °C-1sec-1

(c) Jm-1 °K-1sec-1

2T-2
(d) Since heat is energy, then [k) =

ML
LOT

(e) gcm °K-1sec -3

(f) [k] -
FL

= F0-1T-1
LOT

(g) nt °K-1sec-1

(h) W'm1°K1
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(i) Units are calcm-1 °C-1sec-1, Jm" °K-'sec-'.

Conversion chains are

H: calorie 4- joule

L: centimeter 4- meter

0: degree Celsius 4- degree Kelvin

The identities are

1 cal = 4.1840 J

1 m = 100 cm

1°C temp. diff. = 1°K temp. cliff.

Make the obvious statement

cal cal

cm. Csec cm. Csec

pal [4.1840 J)
pa1

1 [4.1840 J][100 A41
or'. Csec 1 m

1
ca.

cm.°C.l =
41840

sec m. Ksec

(j) Units are Jm-1 °K-1sec-1, gcm °K-1sec-3.

Conversion chains are

H: joule erg gcm2sec -2

L: meter centimeter

Identities are

1 J = 107erg

1 erg = 1 gcm
2 sec-2

1 m = 100 cm

m. K.sec m. Ksec

J 1111E59 (z.cm2sec-2
.iF;TTiF( J f100 cm

38
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1 Jm-1 °K-1sec-1 = 105gcm °K-1sec-3.

7. 1 ft =
1
yd

=
1

(0.9144 m)

1
=

3
(0.9144)(100cm).

r = 1.5 ft = 1.5( 3(0.9144)(100cm)]

4
vol =

3
rr

3

=
4

3

71
(1.5) -

1
(0.9144) (100cm)]

3

= 400320 cm3.

8. The identities are 1 Z = 103cm3, 1 = 10-3 Z.

The dimensional concept of cubical density is

density =
mass

volume '

and for the problem

mass (of 30 ml alc.)
30 ml

Therefore,

mass (of 30 ml alc) = (0.79 cm-3)(30 ml)

-31[103,orr
.3 1

= 23.7 g

9. Pressure is force per unit area.

The area (L2) is 15 cm X 2.8 mm.

The force (4LT-2) is 150 lb x 980 cmsec-2.

If we employ the cgs system of units, the conversion identities are
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1 mm = 10-3 m

1 m = 102cm

1 lb = 0.4536 kg

1 kg = 103g

p = FA-1

{150 lb 980 1

1
sec 2 15 fOtt_ 2.8 ram)

150.1610.4536 kg][E1980 [ 1) 1 fix( Air

1 115 sec2
15 2.8 )10.1ff

10'AK 102cm

= 15,876,000 gcm-1 sec-2

In keeping with the concept of pressure as force per unit area, we can

also write the pressure unit gcm-lsec-2 as

g cm gcmsec-2 dyne
2cmsec cm

cm 2 CM 2

Hence the pressure on the ice can also be written

p = 15,876,000 dyncm-2

On the other hand, the mass concentration (mass per unit area) is simply

mass 150 lb
area 15 cm X 2.8 mm

= 230.4 lb/in2

= 16200 g/cm2

10. For pressure in cgs units, the needed conversion identities are

1 pm = 10-6m

1 pm2 10-12m2

1 m = 102cm

1 m2 = 104cm2

16 oz = 1 lb

1 lb = 0.4536 kg

1 kg = 103g 40
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A = Tr r2 = 71*(40 pm)2 = 7r 1600 pm2.

p = F11-1 = (2 oz)(980 cmsec-2)
7r 1600 Pm21

2 oi
16 pt.'b]

(0. J41(1012.){980 cml 1

1 jb"
sec` J 7r-1600 pie

= 1.105 x109 dyncm-2

me if ,r,z

10 -12,./[104cm2j
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DIMENSIONAL METHODS

APPENDIX I: SYMBOLS, UNITS AND DIMENSIONS

S.I.

Symbol Quantity Units Dimension Equivalent

5.I. Units:

m Meter 1 m L (length)

kg Kilogram 1 kg M (mass)

s,sec Second 1 s T (time)

N,nt Newton 1 kgms
-2

= 1N (Newton) MET
-2

J Joule 1 kgm2s-2 = 1J (Joule) ML2T-2 (or H)*

Watt 1 kgm2s -3 = IW (Watt) ML
2
T

3

K Kelvin K 0 (temperature)

Derived S.I. Units and Others used in the Units and Dimensions Module:

I Angstrom 1 °A

atm atmosphere 1 atm

bar bar 1 bar

BTU British Thermal Unit 1 BTU

L 10-10m

ML 1 T 2 1.01324 x 102 Nm-2

ML T
2

105 Nm-2

ML2T-2(H) 1,054,8 J

°C ° Celsius 1° Celsius 0

cal calorie 1 cal ML2T-2 (or H) 4.184 J

Ci Currie unit of activity T-1

1 Ci . 3,7 x 10"

disintegrations 8-1

*H is a symbol representing the dimensions of energy.
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Appendix I. Symbolst_Units, and Dimensions (Continued)

Symbol Quantity Units

2.

S.I.

Dimension Equivalent

,

cm centimeter cm L lirzni

deg or ° degree 1/360 of a circular arc

dyn Dyne 1 dyn MLT-2

erg erg 1 erg ML2T-2 (or H)

°F °Fahrenheit °F 0

ft foot 1 foot L

gm gram 1 g M

hec hectares h L2

Hz Hertz
s.'

T-I

in inch 1 in L

10

II, liter 1 i
L3

lb International pounds 1 lb M

lb
f

Poundal 1 lb
f

MLT-2

mi miles (statute) 1 mi L

min minutes 1 min T

moles moles 1 gm molecular weight

photons photons quanta of the electro- ML2T-2 (or H)

magnetic field

14
39

10-5 N

10-7 J

°F = 1.8C° +32

0.3048 m

10-5 kg

loy

2.540 x 10-2m

10-5m5

0.4536 Kg

4.448N

1,609 m

60 s

10 5kg molecular

weight
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Appendix I. Symbols, Units, and Dimensions (Continued)
3.

S.I.

Symbol Quantity Units Dimension Equivalent

P Poise licm-ls-1
riT_I

10
1 1

kgm s-1

360
radian radian 1 radian = --s- .....

St Stokes 1 cm2ism1 L2T-1
10...4 msmi

torr Torr 1 Torr

v,V Velocity Km hr-1

yd International yd yd

yr year yr

pg microgram pg

Pm micrometer, micron pm pm

A 6

a_IT.2
1.333 Nm-2

LT"' .2778 ms-1

L 0.9144 m

T 3.16 x 107 s

M 10-9 kg

L 10-6 m

1'


