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Abstract

The issue of treatment assignment is ordinarily dealt with within the

framework of testing Aptitude Treatment Interaction hypotheses ATI research

mostly uses linear regression techniques, and an ATI exist when the AT

regression lines cross each other within the relevant interval of the ap-

titude variable. Consistent with this approach is the use of the points of

interaction of AT regression lines as treatment-assignment rule; In this

paper, it is proposed to replace such rules by monotone; nonrandomized

(Bayes) rules. Both continuous and dichotomous criteria for treatment success

are considered. An example of the latter can be found in individualized in-

struction when learning success is evaluated using a mastery test; The

solutions given in this paper are based on linear; normal ogive, and thresh-

old utility functions. Finally; some modifications of these functions are

discussed which are believed to be more realistic in the context of individ-

ualized instruction but for which no optimal monotone assignment ruleS are

available yet.

Keywords: Aptitude Treatment Interaction, Decision Theory, Mastery Testing.



Statistical Aspects of Optimal Treatment Assignment

The problem we will consider in this paper is the following: Suppose

we have a population of subjects and a number of different treatments to

which subjects of this population are to be assigned. Furthermore, it is

supposed that a criterion variable is available measuring the effect of

the treatment. Finally, there is a predictor variable which can be used

for predicting the criterion scores of the subjects for each of the treat-

ments. The problem now consists of choosing a decision rule that assigns

Subjects to treatments on the basis of their predictor scores such that the

assignment procedure is optimal in some sense.

An example of this problem can be found in individualized instructional

systems. In these systems students are required to reach the same learning

objectives but different instructional programs or treatments are available.

Typically, the assignment of students to these treatments is based on their

scores on an aptitude test administered previous to the instructional unit,

while at the end of the unit a mastery test is administered to determine

whether the student has reached the learning objectives and may proceed with

the next unit or has to receive additional instruction. Individualized in-

struction has mainly been motivated by the view-point underlying Aptitude

Treatment Interaction (ATI) research (Cronbach & Snow, 1977), namely that

subjects can react differently to treatments and that treatments which are

best on the average may therefore be worst inindividual cases.

Other examples of situations to which the problem of this paper applies

can be found, e.g., in psychotherapy, management sciences, medicine, and

agricultural sciences.



Let X and Y denote the predictor and criterion variable measured before

and after the treatment, respectiVely. Since educational and psychological

measurement instruments are mostly tests, X and Y will be assumed to be

integer-valued variables ranging from 0, ..., m and 0, n, respectively.

The possible treatments will be indexed by j = 0, t. Furthermore; for

each treatment j a probability function ni(x,y) will be adopted representing

the relation between X and Y under treatment j. To select optimal decision

rules, an evaluation of the decision outcomes or utility function is needed.

For the present paper it is sufficiently general to consider the utility,

U say, as a function of the criterion Y, which is allowed to assume a

different shape for each treatment: U = u(Y).

We shall first restrict the treatment-assignment problem to the case of

two treatments. Moreover; it will be assumed that the optimal assignment

rules we will be looking for can be found in the subclass of rules known as

monotone rules (Ferguson, 1967; sect. .6.1). For the case of two treatments

this means that the optimal rule has the form of a cutting score b on the

predictor X such that for predictor scores X < b one of the treatments and

for X b the other treatment is assigned. The conditions which must be

imposed on the utility and probability functions to arrive at optimal rules

of a monotone form are discussed in van der Linden (1980a).

For each possible monotone assignment rule, the expected utility is

given by

b-1
(1) B(b) =

x=0 y=0
Y)no(x.y ) + 1 ui(y)ni(x,y).

x =b y=0



We shall use (1) as our optimization criterion and look for cutting scores

for which (1) is maximal. In doing so, we may use the important fact that,

although the bivariate distributions ni(x,y) can be expected to assume a

different shape for each treatment, this does not apply to the marginal

distributions of the predictor scores inasmuch as these are measured pre-

vious to the treatments. Thus, denoting the probability function of X by

A(x), it holds that (1) may be optimized using the fact that

( )
X.(x) = X(x)

for all values of j.

In this paper we will show some results for linear, normal ogive, and

threshold utility functions. No derivations will be given; these can be

found in van der Linden (1980a). The threshold utility function seems real-

istic when the criterion is a dichotomy, as is the case, for example, in

individualized instruction when the criterion is a test used for mastery

decisions (van der Linden, 1980b). We will also discuss other utility

functions suited for the case of a ditheitOmous criterion, which are believed

to be more realistic in the context of individualized instruction than this

threshold utility function but ftir which no solutions are available yet.

Before proceeding, hoWeVeri we observe that, although in part based on

different assumptions, the:approach taken in this paper comes close to the

one chosen by Crohbath and Gleser (1965, Appendix 1) in their model for

placement deCitiOnS. Another approach to the present problem has been used

by Vijn (198D).



Linear Utility

For the case of two treatments (t=1) with utility and probability

functions obeying the conditions leading to solutions in the subclass of

monotone rules, it holdS that the optimal cutting score, b, on the predictor

is equal to the smallest value of x for Whith

(3) i(Y)Ix] = E (Y)lx]

is positive. This Solution, which involves a simple comparison between two

conditional expected utilities, follows in a few steps from (1) and (2). It

should be noted, however, that (3) is no closed-form solution and that

further restrictions are required to arrive at such solutions.

We next suppose that the utility functions uj(Y) have a linear shape:

(4) u3 (Y)
3

(Y) = f.Y + g..

The parameter gj can; for instance; be a nonpositive constant representing

the costs of treatment j. The relation between utility and criterion score

is also determined by the (treatment-dependent) parameter fj.

If the regression functions of Y on X may be assumed to be linear, it

follows from (3) that for utility function (4) the treatment assignments

are optimal for that value of b equal to

(5) entier + I,
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where the entier function replaces the value of its argument by the greatest

integer not greater than this value and a and 0- are the regression para-

meters given by Ei(Y1x) = ai + Six.

Note that in applications the regression parameters in (5) must be

estimated and that this solution can therefore be unstable when f000 = f1

Normal _OgiveLlt_avt

As an alternative to linear utility function (4), we next consider the

following normal ogive utility function

(6)

Y

-0') = 4)

J

( 0- .

where cl) is the standard normal c.d.f. and the (treatment-dependent) para-

meters Pj and govern the location and slope of (6). The use of cumulative

distribution functions as utility function has been plead by Berhold (1973),

Lindley (1976), and Novick and Lindley (1978). An attractive feature of (6)

is that it can readily be combined with the model of a normal distribution

for Y given X = x. Assuming such a model along with linear regression

functions of Y on X and homoscedasticity, it can be shown that the following

optimal assignment rule is obtained.

(7) = entier +1



with

and

Var

1/2

[Var. Y + 0.2 ]

fl - Nori(X,Y)] JVari(Y),

V II .0 V .0.

where Cor (X,Y) and Var.(Y) are the linear correlation coefficient between

X and Y and the variance of Y under treatment j, respectively.

Threshold Utility

Next; we suppose that criterion Y has a threshold value c so that Y

means success and Y < c failure. An example of this arises in individualized

instruction when the criterion is a mastery .::E.st with mastery score c.

A utility function fitting this situation can be the following threshold

utility function with parameter c

w + ai for c

(8) u.(Y)

v + a. for Y < c,

in which w and represent the treatment-independent and aj the treatment-

dependent part (e.g., treatment costs) of the utility structure. For utility

function (8), it appears that the optimal treatment-assignment rule is the



smallest.value of x for which

(9) Q(Cox) = Q(tlx)
0 I

is positive, Qj being the c.d.f. of Ylx. It also appears that when ao

and the conditional distributions of Y given x are normal with linear

regression functions and homoscedasticity, the optimal assignment rule is

given by

(10) b* = entier

KVaro

Var- .X ] - a [Var (Y.X.)]
1/2/2

- a)[Vari Y.X)] 2

+

.x)31/2

0 1

Note that this solution is a function not only of the regression parameters,

cx: and 13 and the "unexplained" variances, Var j (YJO, but also of the

threshold value c.

In all. three utility functions considered so far; utility is a function

Of the observed criterion scores. In the event of unreliable criterion scores

or criterion Stores that are inefficient estimators of an underlying, latent

parameter, it seems better to revise the utility functions and to define

them as functions of the true criterion score T. As haS been indicated in

Van dei- Linden (1980a), th'.s does not change the solUtiont given above for

the linear and normal ogive utility function but has consequences for (10).

NOt only must c be replaced by the true threshOld value d on T but also

Var:(Y.X) by Var.(T.X), while in the more general solution in (9) the c.d.f

Of Ylx must be replaced by the c.d.f. of Tlx;
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Treatment Assignment andAdastery Testing

AS noted earlier; an example Of a treatment-assignment prObleM with

a dithetoMized criterion can be feUnd in individualized instruction when

learning success is evaluated by the adMiniStration of a mastery test at the

end of the instructional unit. Mastery testing has also been approached from

a decisiOn=theoretic point of view (e.g. Hambleton & Novick, 1973? for a

review, see van der Linden, 1980b). In Short; the mastery testing problem

consists Of two possible states Obtained by dichotomizing the true-score

scale, T, Underlying the test by den-citing a mastery score d. StUdents

exceeding this store (T 3 d) are considered masters, the others (T < d)

nonmasters. The problem is how to find a cutting score c on the observed-

score variable, X, Such that students are optimally classified as masters

(X c) and nonmasters (X < c).

It is interesting to note that this problem fits the treatment=

assignment problem with an unreliable, dithotomized criterion, which SUg--

gests a further integration of treatment assignment and mastery testing. A

fruitful approach seems to adapt the utility functions in use for mastery

testing to the fact that in individualized
instruction mastery deciSiOnt

are preceded by treatment-assignment decisiont and to optimize both decitions

simultaneously.

Three examples of utility functions suited for this purpose will be

shoWn. The first example is
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(11) ui(T) =

u + a .
10 j

uoi + aj

aJ

for T ,

for T < d, Y

otherwise,

c

c

which is the threshold utility function in use in mastery testing (Hamble-

ton & Novick, 1973; Huynh, 1976; Mellenbergh; Koppelaar, and van der Linden,

1977) extended with a treatment-dependent parameter aj to represent, e.g.,

treatment costs.

The next example is an adaptation of the linear utility function in-

troouced in mastery testing to remove the unrealistic discontinuity at

T = d in (11) (van der Linden & Mellenbergh, 1976):

d - aoj for Y < c

(12) u3( T) _

-b1 (T d) + a1 for Y 3 c.

The adaption is that the parameters aoi, ali, boj, and bij have been made

treatment dependent to be able to account for possible differences in

utility and costs between treatments.

The final example is an adaptation of the normal ogive utility function,

which has been introduction in mastery testing by Novick and Lindley (1978)

as an illustration of the use of cumulative distribution functions for

representing utility structures:

I cc



(13) uj(T) ;

0(

aoj tor Y < c

Pi)alj for ?.
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The parameters pej, ply aoj, and alj have; just as in the preceding example

of the linear utility function, been made treatment dependent. Besides, the

parameters aoj and alj have been added to allow for treatment costs.

In principle; solutions for these three utility functions must be ob-

tained by defining the expected utility using the trivariate distribution

of (X;Y;T) and optimizing the resulting expression simultaneously to the

cutting scores b on the predictor X and c on the criterion Y. Although

it is believed that these can lead to an improvement on existing treatment-

assignment and mastery decisions in individualized instruction, no closed-

form solutions are available yet. This has to do with the fact that the

optimization involved in this procedure is rather involved and that the

conditions under which monotone solutions can be expected are not yet clear.

Concluding Remark

For a fuller discussion of the treatment-assignment problem in the

first part of this paper, a generalization thereof to more than two treat-

ments, a procedure for combining qualitative information with predictor
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scores to improve treatment assignment, and an "empirical" procedure to be

used when the conditions leading to monotone rules are not met, we refer

to van der Linden (1980b).
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