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Mental tests usually consist of items or stimuli with discrete response

categories such as correct and incorrect answers, true or false, strenght

of agreement in a number of categories and so on. In classical test theory

the item responses are scored and the item scores are combined in a total

test score. For example, in achievement tests the items are usually

scored zero or one and the total score equals the number correctly answered

items. In latent trait theory, however, the latent scale is constructed

taking account of the discrete nature of the responses.

Recently general methods for the analysis of multi-dimensional tables

have been developed (Bishop, Fienberg & Holland, 1975). It is hypothesized

that many psychometric models and methods can be translated into contingency

table methods. In this2/perfag[212RsaMALSC -

of item bias from a contingency table and second, the formulation of the

Rasch model as a loglinear model.

Assessing Item Bias

Seheuneman (1979) defined an unbiased item as one "for which the

probability of a correct response is the same for all persons of a given

ability level". To investigate item bias the data are summarized in a

Score x Group x Response frequency table. Constructing the table scores

with smallnumberof subjects must be combined. As an example consider

the frequencies in the three-dimensional table derived from Scheuneman's

Table 1:

en



Table

Frequencies in Score.. x. Group x Resoonse Table, Scheuneman 's Data

Response (m)

Correct (m211) Incorrect (m0) Total Total

Group (j ) Black 0 white (j r2) Total .. Black (j,=,1) white (j.1=2) Total Black ( j 10.) White (j 2) Subjects

Score (i)

13-14 . 22 300 322 3 15 18 25 315 340

(il)

12 . 18 49 117 11 17 24. 110 .134

10-11 23 93 116 25 25 50 48 118 166
(1=3)

1-9 I . 14 33 47 51 59 110 65 92 157
(1=4) \ k,



These data can arise from two different sampling models. First, multi--

normal sampling: A fixed sample size is used and the responses are cross-

classified according to Score, Group, and Response. Second, product-multi-

nomial sampling: Fcr each group a Axe(' sample size is used and the responses

are cross-classified 'according to Score and Reiponse (Fienberq, 1977, section

2.4). For both sampling model the data can be analyzed withloglinear

models.

For dichotomously scored items the Response variable has only two

categories, i.e. a correct and an incorrect response. The response ratio

is the ratio of the frequencies of the correct and the incorrect resnonses.

For example, the estimated response ratio for Blacks in Score category 10-11

in Table 1 is 23/25= .92.-For the special case of only two response cate-

gories loglinear models can be transformed to logit models for the' response-

ratio (Fienberg, 1977, section 6.2). In this paper logit models are described

to assess item bias and to investigate the nature of the bias.

A linear logit model for the response ratio in the ith Score

category (i= 1,2,..., r) and lth Group (5= 1,2,..., k) is:

ln(Fiii/Fijo) =S+ 21 21, (1)

with constraints:

r
E

1=1
S4 = 0 ,
-

1=1 -

(2)

and F are the population frequencies of the correct and incorrect
7L11

response in the ith Score category and jth Group; in means the natural

logarithm. The parameter C is a constant. The parameters Si and 2,1 can be

interpreted,similarly tathe_maim.effect parameters in an analysis-of variance

model: S is the effect of the ith Score category and G the effect of the

lth Group on the response ratio.



If this model does not fit the data a parameter for the interaction
,

of.the Score categories and the Group is needed. For example, if the

response ratio in the low Score categories is higher for. Blacks than

for Whites whereas the response ratio in the high Score categories is

lower for Blacks than for Whites, Score and Group interact,and the item is

biased. The nature of the bias is rather complicated. An item for

which the interaction betweenScore and Group is necessary to explain the

response ratios will be called not-uniformly biased.

If the model fits the data a second logit model is considered:

ln(EZEDL3) = Si, (4)

with constraint Formula 2. If this model does not fit the data the item

is also biased. This conclusion is strengthened by a significant difference

in fit of both models. In this case the bias is uniform: For all Score

categories the difference between the response ratios of Blacks and Whites

is constant. In this case the item will be called unifoimiy biased. Finally, if

model Formula 4 fits the data the item is not biased.

'Legit models are special cases ofloglinear models. The loglinear model

corresponding to the logit model Formula 1 is:

1nF =sui-u u + U +
-D112 -- -4 (i) (1) -a (m) 12 (a) -13 (im) 23 (jm) , (5)

with constraints

1

ill 1(i) ff1 kW mE0 23(m)

r k r 1

i &l 212(ij) Z 1 242(ij). i t 243(im)= j0 243(im)

k 1

111 11-23(jm) JO 223(jm)m

From these Formulas follows the linear logit model:

(6)

(1)



Im(F /F ) (u u ) (u uijo 3(i) -3(0) -43(i1) -43(i0) ) +

.(1423(j1)- 1123(j0)) 213(1) 2243(i1) 2i-12301)

In the same way setting the parameters u
23(jM)

in model Formula 5 equal

(8)

to zero yields the logit model Formula 4. Consequently, procedures used

for loglinear models can be applied to logit models.

For assessing the fit of a model Person's chi-square,_

r k 1 2 "
E (4.21 ijm f- -ijm

'i=1 1,1. m=0

and the likelihood ratio chi-square

r k 1

= 2 il; mE0 f in(fi.m./ flim) (10)

(9)

are used. In these Formulas f
jm

is the frequency obtained in a sample under
-i

the multinomial or product-multinomial sampling model. The f is the

estimate of the model expected frequency. Both statistics are asymptotically

chi-square distributed. The degrees of freedom for model Formula 4 are

(k-l)r and for model Formula 1 (k-1)(i-1) (Fienberg, 1977, p. 37). A

property of the G
2
-statistic is that the difference in G-

2
values of the nested models

Formula 4 and 1 is asymptotically chi-square distributed with

(k-1)r-(k-1)(r-1) = (k-1) degrees of freedom. The computations can be done

with computer programs such 'as ECTA (Goodman & Fay, 1974). and BMDP3F (Dixon &

Brown, 1977).

The results of the procedure applied to Seheunemaes data using the

program ECTA are reported in Table 2.



Table 2

MOdels Fitted to Scheuneman's Data

Model X2 G
2

Df Critical Chi-square
5% 1%

Score and Group Effect

(Formula 1)

Score Effect (Formula 4)

Difference G
2

1.74

25.63

1.72

23.93

22.21

3

4

I

7.81

9.49

3.84

11.34

13.28

6.63

Model Formula 1 yields a good fit, whereas model Formula 4 yields a poor

'fit. Moreover, the difference of G2-values of both models is significant

at the one percent level. The obvious conclusion is that the item is uniformly biasd.

Table 3 shows that in all score categories Whites perform better than Blacks.



Table 3

Natural Logarithm Response Ratio and Parameter Estimates model Formula 1, Scheuneman's

Data

Black White

-.534 .534

Score Si

13-14 :--1.526 1.992 2.996

12 .708 1.099 2.197

10-11 -.288 -.083 1.314

1-9 -1.946 1.293 -.581

Note. The estimate of the constant C is .946.



The Rash Model as a Loglinear Model

In the Rasch model for binary scored items the probability that

subject i gives a response scored one to item j is written as (Rasch, 1960):

P., = exp(A.
-a

- D.)/(1+ exp(A
i

-- D.)), (11)
. -2.

where A represents subjects ability and D. item's difficulty. From model

Formula 11 follows that the logarithm of the response ratio is:

i (12)

Suppose a test is administered to a group of subjects. After removing all

items that are scored zero or one by all subjects the test consists of n

binary items. Under the Rasch model a subject's score, i.e. the number of one's,

is the sufficient statistic for his or her ability (Fischer, 1974, p. 203).

Therefore the estimates of thepsrameters can be obtained as if every subject

with the same score has the same ability. The number of score groups is (n 4 1),

i.e. the scores run from 0 to n. In general of these score groups do not

yield any information. This is always Che case for the score groups 0 and n

because all subjects in these groups have obtained a zero, respectively,

one on all items. Moreover, it is possible that some score groups do not

contain subjects at all. Therefore, only (n 1 - p)

11
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score groups yield relevant information. The response variable has only

two categories, zero or one. The information can be summarized in a

n x(n + 1 - Ex 2 Item x Score x ;esponse table. As an example considei

the frequencey table derived from Table 2 of Perline, Wright and Wainer's

(1979) nine-item scale for parole decision data:

p.

Talde '4

Frequencies in Item x Score x Response Table for Parole bats

( Perline, Wright & Wainer, 1979)

Response (m)

noir: (j) 1

Score (i) Score (i)

1 2 3 4 5 6 7 8 1 2 3 4 6 7 8

6 0 3 4 15 11 11 10 8 15 44 57 69 71 75 50 39

1 0 2 9 20 27 24 28 40 15 45 52 64 55 62 32 7

8 0 2 5 10 25 55 51 47 15 45 56 74 57 31 9 0

7 0 9 24 34 42 50 49 46 15 38 37 50 40 36 11 1

4 0 3 11 44 60 82 60 47 15 44 50 40 22 4 0 0

9 0 11 20 43 56 78 56 47 15 36 41 41 26 8 4 0

2 4 24 37 54 56 66 54 47 11 23 24 30 26 20 6 0

3 0 10 32 57 69 83 58 47 15 37' 29 27 13 3 2 0

5 11 30 41 59 64 67 54 47 4 17 20 25 18 19 6 0



Comparing the linear lc. J.x model Formula 1 for this table with the

Rasch model Formula 12 show. that the models are equivalent. Consequently,

the loglinear model can be t; :ed for estimating the parameters and the

goodness of fit of the'llasch model. Using the program ECTA the model Formula 1

was fitted to Perline, Wrig:.'; and %ainei's data. The fit of the model is

rather poor:. .The values of Pearson's and likelihood ratio chi-squares

are, respectively, 285.54anzl 295.56 with 56 degrees of freedom. The

parameter estimates from the ECTA program were compared to the BICAL

program Rasch model estimat reported by Perline, Wright, and Wainer.

As Figure 1 shows the relatiw, of the ECTA and BICAL estimates is almost

perfectly linear.

H

Figure 1

Plot of Estimates Comp,..ted from BICAL (Perlin,:', Wright & Wainer,

1979) versus ECTA for 1, ;.=role Data

Subject Ability

-2 -1 1 2

ECTA

Item Difficulty

-2 -1 1 2



In the loglinear model the paramters are °estimated using the msximum

likelihood method. The question is whether the estimates are unconditional

(UML) or conditional maximum like] hood (CML) estimates.

CML estimates are obtained maximizing the like] hood function with

respect to a parameter vector e conditional on the minimal sufficient

statistics for, the remaining model parameters in the vector g2 (Andersen, 1973,

p. 37). The estimate for the vector 01 is a CML estimate with respect to 02.

But the estimates for the parameters in 01 are UML estimates with respect to

each other.

Using the linear logit model Formula 1 implies that the Item x Score

table is considered to be fixed by the design. The product multinomial sampling

is the only design in which conditioning on sufficient statistics is used

(Bishop, Fienberg & Holland, 1975, p. 63). The likelihood function is condi-

tional on the sufficient statistics for the parameters of the Item x Score

table, which are fixed by the design. However, this function contains all the

parameters of Formula f. The likelihood is maximized simultaneously with

respect to the parameters C, S and G.1 . Consequently the estimates for the

parameters in the log-linear model yield UML estimate.zi for the parameters in

the Rasch model.
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