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ABSTRACT

Pata are summarized in Scheuneman's Score x Group X
Respcnse fregquency table in order to investigate item Lias. The data

can arise frem two different sampling mwodelsi-Y—nuitinomial

- sampling in which a fixed sample size is used and the responses are
crosg-clacssified according to score, group, and response: and {(2)
product-multinomial sawmpling in which for each group a fixed sample
cize is uzed and the resrcenses are cross-classified according to
sccre and resronse: Data for both sampling models were analyzed using
tvo logit models, i.e. special cases ¢f log linear models, and
results cf the procedure were applied 0 Scheuneman's data using the
Fregram ECTA., The item was uniformly riased as shown by whites
performing retter thar tlack=s in all score categories. Using 2
frequency tatle derived from Table 2 of Perline, wWright, and wWainer's
nine-item scale for parole decision data, the linear lcgit model and
the Rasch Model were found to te equivalent. Consequently, the
estimates for the parameters in the lcg linear model yieid
uncenditional maximum likelihood estimates for the parazmeters in the
Rasch Model. (RL})
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Mental tests usually consist of items Or stimuli with discrete response
categories such as correct and incorrect answers, true or false, strenght

of agreement_in a number of categories and so on. In classical test theory

the item responses are scored and the item scores are combined in a total

test score. For example, in achievement tests the'items are usuvally

scored zero or one and the total score equals the number correctly answered
items. In latent trait theory, however, the latent scale is constructed
taking account of the discrete nature of the responses.

Recently general methods for the analysis of multi-~dimensional tables
have been developed (Bishop, Fienberg & Holland, 1975}. It is hypothesized

that many psychometric models and methods can be translated into contingency

table methods. In this paper two topics are discussed. First,—thezssesslient

of item bias from a contingency table and second: the formulation of the

Rasch model as a loglinear model.

Assessing Iten Bias

Schewneman (1979} defired an unbiased item as one "for which the
prébability of a correct response is the same for all persons of a given
ability level", To investigate item bias the data are summarized in a
Score x Group x Response fredguency table., Constructing the table scores
with small number of subjects must be combined. As an example consider
the frequencies in the three-dimensional table derived from Scheuneman's

Table I:




. .\.
o Table 1
Frequencies in Score.x. Group x Response Table, Scheuneman's Datai
Response {(m}
Correct (mal}' Incorrect (m=0) Total Total
Group (j) Black (j=1) White (j=2) Total:  Black (}=1} White (j=2)} Total Biack (j=1) White (§=2)  Subjects
Score (1) '
LX)
- X |
13-14 - 22 300 322 3 _ 15 18 25 315 340
(1=1) '
12 : 18 , oL ] 6 i1 17 24, 110 134
10-11 " 'g 23 23 116 25 25 S0 48 118 166
(1=3) _
1-9 o T 14 33 47 51 59 110 65 92 - 157
(1=4) N ' - :

o




These data can arise from two different sampling models. First, multi-~
nomial sampling: A fixed sanmple size is used and the responses are cross-
classified according to Scoré. Group, and Response. Second, product-multi-
nomial sampling: For each group a fixe@ sample size is used and the responées
are cross-classified according to Sc;re and Response (Fienberg, 1977, section

2.4). For both sampling model the data can be ahalyzed withloglinear

mnodels.

For dichotomously scored items the Respoﬂse variable has only two
categories, j.e. a correct anf an incorrect response. The response ratio
is the ratio of the freguencies of the correct and'the incorrect resnonses,
For examéle, the estimated rrsponse ratio for Blacks in Scsre category_10;11
in Tabie 1 is 23/25= .92. For the special case of only two response cate-
gories loglinear models can be transformed to iogit models for the response -
ratio (Fienberqg, 1977, section 6.2). In thls paper logit models are descxibed
to assess item bias and to investigate the nature bf the bias.
T "Hﬂilnear lodgit model for the response ratio in thé ith Score

category (i= 1,2,..., r) and jth Group (3= 1,24...4 k) 1is:

In(Fy5 /Fygp) =+ 8 + 850 3 | (1)

with constraints:

x . _ |
L, §i.= . : {2)
G, =0. - (3)
jﬁl =3 ' - - e
gi}l and Ei'o are the population frequencies of the Correct and incerrect

rezponse in the ith Score category and jth Group; 1n ma2ans the natural

logarithm. The parameter C is a constant. The parameters S, and ﬁj can be

interpreted.similarly to the main.effect parameters inan analysis.of variance

is the effect of the ith Score category and 95 the effect of the

— —

Jth Group on the response ratio.
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If this model does not fit the data a parameter for the interaction

of.the Score categories and the Group is reedsd. For example, if the

response ratlo in the low Score categories is highar for Blacks than
for Whites whereas the Qesponse ratio in the high Score categories is
‘lower for Blacks than for Whites, Score and Group interact and the item is
bliased., The nature of the bias is rather complicated. An jtem for
whicﬁ the interaction between. Score and-Groué is necessary to explain the
response ratiés wi}l be called notwuniformly ﬁiased.

If the model fits the data a second logit model is considered:
lnfféjjfféggf = §.+‘§;, (4)
with constraint Formula 2. if this model do2s not fit the data the item
is also biased. This conclusion is strethpened by a significant difference
in fit of both models. In this case the bias is uniform: For all Score

categorles the difference bhetween the response ratios of Blacks and Whites

model Formula 4 f£its the data the item is not biased.
"Yogit models are special cases of -loglinear models. The loglinear model
corresponding to the logit model Formula 1 iss

BEm "2 ) Y et B Y Seapt B3amt 2230m, (5)

with constraints

=

r 1
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From these Formulas follows the linear logit model:

-4

is constant. In this case the item will be called uniformly biased. Finally, if
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In(F /F ) = (u - -
S4317T530" = G500 = B30y * Crag) L3t *

3 a3y’ = M3y * WMy * 3y T
C+5, + Eﬂ' {8)

—

In thé same way setting the parameters EQ3(jm)

in model Formula 5 equal
to Zero yiélds the logit model Formula 4. ‘Consequently, procedures used
for loglinear medels can be applied to logit podels.

For assessing the fit of a model Pearson's chi-sjuare,

I~

) k 1 2

(£, - o (o)
X =£.§_1 j_-z-l 1350 —ijm —ijm —ijm

and the likelihood ratio chi-square

2 r k i ) -
G =2 igl '51550 fijm ln(fi.m./ £, jm) {10)

are used. In these Formulas E_i_._j_rg_ is the frequency obtained in a sample under
the multinomial or product-multinomial sampling model. ‘I‘hei_m is the
estimate of the model expected frequency. Both stativstics are asymptoticall:y
chi—squaré distributed. The degrees of freedom for model F;:rmula 4 are
(_15_—1)3_:. and for model Formulal (k~1) (3-1) (Fienberqg, 1977, p. 37). A
property of the _Gz—statistic is that the difference in 92_ values of the nested nodels
Pormula 4 and 1 is asymptotically chi-square d‘isltributed with
(_)_c.—l)‘f_- {}i—l) (r-1) = (kx~1) degrees of freedom. The computations can bLe done
with computer programs such as ECTA (Goodman“& Fay, 1974) and BMDP3F (Dixon &
Brown, 1977).

The results of the procedure appli.ed to Scheuneman”s c_lata using the

program ECTA are reported in Table 2. v .

&




Tablie 2

Models Fitted to Scheuneman's Data

Model . b 4 G Df Critical Chi-square
5% is

Score and Group Effect 1.74 1,72 3 7.31 11.34

{Formula 1)

Score Effect (Formula 4) 25.63 23.93 4 9.49 13.28

Difference 62 22,21 1 3.84 6.63

Mcdel Formula 1 ylelds a good fit, whereas model Formula 4 yiel@s a poor
‘fit., Morsover, the difference of Gz—values of both models is significant
at the one percent level. The obvious conclusion is that the item i3 un: formly blzased.

Table 3 shows that in all score categories Whites perform hetter than Blacks.

()




Table 3

Natural Logarithm Response Ratio and Parameter Estimates model Formula 1, Scheuneman's

Data
Black White
E';j -.534 .534

Score Si

13-14 1,526 1.992 2.996
12 .708 1.099 2.197
10-11 -.288 - =.083 1.314
1-9 . -1.946 1.293 ~.581

Note. The estimate of the constant C is .946.




The Rasch Model as @ Loglinear Model

In the Rasch model for binary scored items the pProbability that

subject 1 gives a response scored one to item J is written as (Rasch, 1960) ¢

.-131;;_ = exp(ﬂi - gi)/{n exp(ﬁi- gi)}, (11)

where éi represents subject's ability and Ei.item's aifficulty. From nodel

Formula 11 follows that the Llogarithm of the response ratio is:

)l =2 - (12)

m{gﬂ/(l - E'i_i g _Qj .

Suppose a test 15 administered to a group of subjects. After removing all
items that are scored zero or onelby all subjects the test consists of n
binary items. ynder the kasch model a subject's score, i.e. the numbher of one's,
is the sufficient statistic for his or her sbility (Fischer, 1974, p. 203}.

Thnerefore the estimates 0f the parameters can be obtained ac if every subject

with the same score has the same ability. The number of score groups is {n + 1),
i.e. the scores run from 0 to n. In gencral p of these score groups do not
vield any infoxmation. This is always the case for the score groups 0 and n
because all subjects in these groups have obtained a zero, respectively,

one on all itens. Moreover; it is possible th%t‘SOme score groups do not

contain subjects at all. Therefore, only n +1 - p}

11



‘score groups vield relevant information. The response variable has only
two categories, zero or one. The information can be summarized in a

n x(n+ 1 -plx 2 Item x Score x Rsponse table. As an example consider
the frequencey table defived from Table 2 of Perline, Wright and Wainer's

{1979} nine-item scale for parole decision data:

Tanle 4

Freguencies in ltem x Score x Response Table for parole Data

(Perline, Wright & Wainer, 1979)

Response  (m)

Item (3) i ‘ ¥
"
Score (i) Score (1)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2] 0 3 15 il 11 i0 8 i5 44 57 69 71 75 50 3¢
1 0 2 9 20 27 24 2 40 15 45 52 64 55 62 32 7
8 0 2 10 25 55 51 47 i5 45 56 74 57 31 o 0
7 8] 9 24 34 42 50 49 46 is 38 37 50 40 36 i1 i
4 0 3 i1 44 &0 82 60. 47 15 44 50 40 22 4 0 C
3] 0 11 20 43 56 78 56 47 15 36 41 41 26 8 4 0
2 4 24 37 54 56 66 54 47 11 23 24 30 26 20 6 0
3 o 10 32 57 89 83 58 47 15 370 24 27 i3 3 2 0
5 1i 30 41 59 64 67 54 47 4 17 20 25 i8 19 & 0
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Comparing the linear lczit model Formula 1 for this table with the
Rasch model Formula 12 showa that the models are equivalent. Consequently.
the loglinear model can be uzed for estimating the Parameters and the
goodness of fit of the Rasch model, Using the program ECTA the model Formulal
was fitted to Perline, Wrigh* and Wainer's data. The fit of the model is
rather poor :. .The values of Pcarson's and likelihood ratio'chi-squares
are, respectively, 285.54an 295.56 with 56 degreces of freedom. The
paraneter estimates from the ECTA pragram were compared to the BICAL
program Rasch model estimate: reported by Perline, Wright, and wWainer.

As Fiqure | shows the relatirn of the ECTA and BICAL estimates is almost

perfectly linear.

_Figure 1
Plot of Estimates Comj..ted from BICAL (Perline, Wright & wainer,

1979} versus ECTA for l-urole Duta

Subject Ability Item Difficulty
2 ] ¢ 2
1 7 1 1 .5
L . 9 2
W1 6 i !
g 0 - 5 ° 1 "
M . 7
m
-1 4 oS -1 1 8
2 1
-2 -2 ¢
1
¢
-3 : -t # 1 — “3 Pl 1 4
-2 -1 1 2 -2 -1 0 1 2
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In the loglinear model the paramcters are ‘estimated using the maxikum
likelihood method. The questioen is whether the estimates are unconditional
(UML) or conditicnal maxiwun rikelihood (CML) estimates,

CHL estimates are obtained maximixing the likelihooed funection with
respect to a parameter vector Ql conditional on £he minimal sufficient
statistics for the remaining mpodel parameters in the vector Qz (Andexrson, 1973,
p. 37). The éstimate for the vector Ql is a CML estimate with respect to 32'
But the estimates for the paramaters iﬁ Ql are UML cstimates with respect to
each other.

Using the linear loglt model Formula 1 implies that the Item x Score
table is considered to be fixed by the design. The product multinomial sampling
is the cnly design in which conditioning on sufficient statistics is used
(Bishop, Fienberg & Holland, 1975, p. 63). ‘The likelihood function is condi-
tional on the sufficient statistics for the parameters of the Item % Score

table, which are fixed by the design. However, this function contains all the

parameters of Formula I.. The likeliheod is maximized sjmpltaneouslv with

respect to the parameters C, and Eﬁ' Conseguently the estimates for the

=
parameters in the log~linear model yield UML estinate? for the parameters in

the Rasch model.




- i3 = r

hcknowledqement

The authors thank Fred N. Kerlinger for his comments.

References

Andersen, E.B. Conditional inference ond modals for moasuring. Copenhagén:

Denmark: Mentalhygienisi Forlag, 1973,

Bishop, Y.M.M., Pienberg, S.5., & Holland, P.¥., Discrete multivariate

analysis: Theovy and practice, Casbridge, Mass.: MLIT Press, 1975,

Dixon, W.J., & Browns M.D. Biomedical computer prograns, P-series 1977,

Berhkely; lmiversity of California Press, 1977.

Fienberg, S.E. The analysis of cross-classified data, Canbridge, Hass,:

MIT Press, 1977.

Fischer, G. Einflhrung in die Theorie psychologischer Tests. Bern: Huber,

1974.

Geodman, L.A., .& Pay, R, ECTA prcgram, descriptieon for users. Chicage:

Department of Statistics, University of Chicago, 1974,

Perline, R,, Wright, B.D., & Wainer, H. The Rasch model as additive conjoint

measurement. Applied Psychological Measurement, 1979, 3, 237-255,

Rasch, G. Probzbilistic models for scome intelligeonce and attainrent tests.

19¢0.

&l

Copenhagen, Denmark: The Denisch Institute for Educational Researchs

Schewneran, J. A method of assessing item bias. Journal of Educational

Measurement, 1979, 16, 143-152.

Q

ERIC

PAFulToxt Provided by ERIC




