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PREFACE

The Research on Evaluation Program is a Northwest Regicnal Educational
Laboratory project of research, development, testing, and training
designed to create new evaluatiom methodologies for use in education.
This document is one of a series of papers and reports produced by
program staff, visiting scheolars, adjunct schelars, and project
collaborators--all members ©f a cooperative network of colleagues working
on the development of new methodoleogies.

What is the distinction between qualitative and quantitative approaches
in the physical sciences? How are these approaches used in evaluation,
viewed here as a subsystem of the social sciences. This report addresses
these and other significant guestions in an extensive discussion of the
differences between gqualitative and guantitative concepts and measurement
strategies in the physical sciences. Alsoc included here is a discussion
of various number generating activities often grouped in the social
sciences under the label of "measurement.” Implications for the
redirectinn of evaluation practice are alsc considered.

Nick L. Smith, Editor
Paper and Report Series
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INTRODUCTION

Physics, followed by chemistry, is regarded as the most basic
physical sciences. There are no clear boundary lines between these two
sciences, Physics and astronomy have become highly intertwined and
chemistry is important to geclegy. There has arisen a number of hybrid
sciences such as biochemistry and psychophysics. The lines of
demarcation of the physical sciences are not clear. For the sake of
simplicity, the physical sciences will sometimes be referred to as
gcience. While most examples will be drawn from the physical sciences,
an occasicnal example will be drawn from other sciences.

Within evaluation there has been a certain amount of debate as to the
usefulness of quantitative versus qualitative data and the methodology
associated with the collection of this data (Parlett and Hamilton, 1972
Stake and Easley, 1978; Guba, 1978). One problem with this debate has
been the fact that it is not always clear what the difference is between
qualitative and quantitative data: this is the subject of Part I. Data
must be about something and one must have a concept about that something
in order for the data to be meaningful. Thus the approach of Part I is
to distinguish between different types of concepts and hence the data

associated with them. One important conclusion is that the initial

understanding of a phenomenon must be through qualitative concepts and

that, if quantitative concepts evolve, they do so out of these
gqualitative concepts.

Part II examines the various ways in which numbers are assigned. One
conclusion from this part is that number assignment is not synonymous
with quantification, since naming by numbers is not a form of

quantification. Another conclusion is that measurement is not synonymous




with quantification since there are four ways of assigning numbers which

are distinct from measurement, yet are forms of quantification.

pPart III examines the history of the quantitative and the qualitative
in the physical sciences and looks at the implications for evaluation. A
central idea of Part III is that large amounts of gualitative work have
usvally been preregquisite to fruitful quantification in the physical
sciences. Evaluation draws on the social sciences. Since the social
sclences are in the early stages of development, this suggests that
guantification in evaluation may not be as fruitful as qualitative

me thodoleogy.




PART 1: THE DIFFERENCE BETWEEN THE QUALITATIVE AND THE QUANTITATIVE

One obvious way of distinguishing between the gualitative and the
guantitative is to say that the gualitative does not invclve the
assignment of numbers. Kuhn (1961, p. 32) takes this point of view.

However, as will be shown below, numbers may be assigned to the

qualitative, but these numbers do not have any essential guantitative

meaning. The difference between the gualitative and quantitative can be

determined by examining the type of concepts involved.

Types of Concepts--An Introduction

There are five widely used types of concepts that are used in
agsociation with the assignment of numbers to the properties of objects
and phenomena--classificatory, comparative, interval, ratio, and
absclute. While Hempel (1952, p. 50) and Carnap (1962, p. 8) have
discussed the first two types, their discussion has been broadened
extensively in this discussion. The terms, "interval, ratic, and
absolute concepts" are new and were suggested by the notion of interval,

-

ratio, and absoclute scales.

To have a clagsificatory concept is to have a criterion or

criteria {which will be a property or properties)} which serve for the

classification ©of entities or phenomena into two or more mutually




exclusive kinds. Examples are: male and female: hot and cold; acids,
bases, and saltss intelligent and not intelligent.

To have a comparative concept of a property is to envision it as
existing in graduations of "more," "less," or "equal" in amounts. For
example, a classificatory concept of temperature as hot or cold can be
replaced by a comparative concept of temperature by saying that x is
warmer than y (or colder, or equally warm, as the case may be).

An interval or ratic concept of a property occurs when it is

poasible to specify amounts of the property in terms of units. When
temperature is specified in degrees centigrade, it is an interval
concept. The difference between interval and ratio concepts is that for
ratio concepts, there is a true zero point which is not arbitrary.
Examples of ratio concepts are length, time, velocity. volume, mass,
force, electric charge, and price. HNumbers are attached to interval and
ratio concepts by means ©f measurement. Measurement can also be used in
relation to undimensional comparative concepts but cannot be used in
relation to classificatory concepts, multidimensional comparative
concepts, or absolute concepts.

An absolute concept is one that does not involve an arbitrary unit
or zero point. Numbers are attached to an absolute concept by
enumeration {i.e., counting). wWhen numerosity is conceived as "many" or
“few," it is a classificatory concept. When humerosity is conceived as
"greater than. less than, or equal in number.®™ it is a comparative
concept. When the number of entities in a group are counted. then
numerosity is conceived as an absolute concept.

Comparative, interval, ratio. and absolute concepts are known

collectively as gquantitative concepts, whereas classificatory concepts

1]




are qualitative concepts. Whereas entities, phenomena, and prcperties*
can all be classified, only properties can be quantified. A property
that can be quantified is one for which it is possible to say that entity
or phenomenon A has more of the property, less of the property, or an
equal amount of the property, compared to entity or phenomenon B. A
quantitative concept refers to a property that can be quantified.

Concepts can also be ¢lassified according to whether they are
unidimensional or multidimensional. A multidimensional concept is cone
that can be broken down into subclassifications or is composed of parts.
For example, the concept of intelligence is commonly broken down into
verbal intelligence and numerical intelligence. Length, on the other
hand, cannot be broken down into subclassifications or parts. It is
unidimensional.

Because many of the quantities in the physical sciences are
calculated from other quantities, it might appear that they are.
therefore, multidimensional. For example, the average density of an
object is calculated by dividing the mass of the object by its volume.
However, density is not multidimensicnal in the sense that mass and
volume are not gsubclassifications of density. Density cannot be said to
be composed of two parts, mass and volume, In contrast, the concept of
the cephalic index used in anthropometry to indicate the shape of the

human skull is a multidimensional concept. 1t is composed of two parts,

*An entity refers to the existence of an object as contrasted with
its properties. A phenocmenon refers to an object or event known through
the senses rather than thought or nonsensucus intuition. A property is a
quality or trait belonging and especially peculiar to an object or event.




the length* and breadth* of the human skull. The rule for finding the
cephalic index is to divide the shorter of the two measurements by the
longer and multiply by 100. The index expresses what percentage the
shorter of the two measurements is of the longer measurement with which
it is compared. Thus the cephalic index is composed of two parts and is
a multidimensional concept.

This discussion has served as an intreduction to the various types

of concept. What follows is an expanded discussion ©of them.

Classificatory Concepts

One way developments in knowledge occur is by recognizing objects
or phenomena ag being essentially the same or different. This leads to
the classification of objects or phenomena. A classification of objects
or phenomena in a given domain D (such as chemical compounds, psychiatric
conditions, animals, plants, stars, etc.) is effected by laying down a
set of two or more criteria (attributes, properties) such that each
elemznt Oof D gatisfies exactly one ©of these criteria. Each criterion

determines a certain class. If each element in,D satisfies exactly one

of the criteria, then the classes thus determiﬁed are mutually exclusive,
~

and they- are jointly exhaustive of D.
The requirements of exclusiveness and exhaustiveness may be
satisfied as a logical consequence of the determining criteria or as

amatter of empirical fact. An example of the first alternative is the

*The length is measured from the glabella, that ig the convex part
of the forehead immediately above the root of the nose. The furtherest
point from this in the sagittal plane may be the inion, that is the
external occipital protuberance, or may lie above this on the
interparietal part of the occipital bone. The greatest width is
generally that between the two parietal eminences {Stibbe, 1930, p. 179).
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classification of human skulls into five classes according to the value

of the cephalic index

Class Name Value of Cephalic iIndex {cix))
Dolichocephaly c(x)~X 75
Subdelichocephaly . , 5V e(x)y 77.6
Mesa‘ticephaly - 77.65N cix)yg 80
Subbrachycephaly 80 c(x)x 83
Brachycephaly 83< cix)

The reguirements of exclusivenss and exhaustiveness are satisfied
as a lecgical conseguence of the determining criteria, gince any human
skull will fall intc one class only and every human skull will fall into
one of the five classes. This is true also for dichotomous
classifications which involve some property and its denial. Examples are
the division of integers into those which are and those which are not
integral multiples of 2; thg division of chemical compounds in;o organic
and inorganic; the division of bacteria into Gram-positive and
Gram-negative. The classification of humans into males and females on
the basis of primary sex characteristics, the clagsification of -animals
on the basis of their morphology, and the classification of c;ystals on
the basis of their structure, are examples which are exclusive ang'
exhaustive empirically and not logically.

The division into classes may be made on the basis of a single
critericn or the basis of many. In the above example involving the
classification of human skulls, the division intc classes was on the
basis of a single criterion, the value of the cephalic index. This is

irrespective of the fact that the cephalic index is, itselg. ,.a-._‘

-

multidimensional concept. On the other hand, the classific:atio;l of

-,




elements into groups in the periodic table by Mendeleev was based on two
properties of each element. That is, more than one criterion was used.
Group One of the periodic table contains the alkali metals—--lithium.
sodium, potassium, rubidium. caesium, and francium. MNo single criterion
determines the inclusion of any one of these metals under the category of
an alkali metal., The concept of an alkali metal is a multidimensional
classificatory concept.

A single property may be conceptualized in more than one of the
ways—-—classificatory, comparative, interval, ratio, and absoclute. The
classes, hot, warm, and cold involve conceptualizing temperature in a
classificatory way. A comparative concept of temperature is involved
when it is said that X is warmer than y (or colder, or equally warm., as
the case may be). When temperature is stated in degrees centigrade, it

is an interval concept because the zero point is arbitrary. Temperature

stated in degrees Kelvin is a ratio concept because the zero point is

nonarbitrary. As will be clear from later discussion., the cephalic index
is a comparative concept. If human skulls are classified as having a
low, average: or high cephalic index. then the cephalic index is being
used as a classificatory concept. There are concepts that can be
conceptualized only at the level of classificatory concepts. Examples
are metals and nonmetalss when animals and plants are divided into
classes and further divided into orders, families., genera. and, finally
species; when phenomena above the surface of the earth are divided into
meteorclogical phenomena and astronomical phenomena.

Classes may exhibit order according to some underlying property.
When objects are classified according to whether they are hot, warm, or
cold. these are classified according to the five classes given earlier.,

there is an order to the five classes according to the size of the




cephalic index. Rating scales are very commonly used in psychology and
education. The rater is required to ciassify behavior into two or more

ordered classes of behavior. A very common form of rating scale requires

the rater to indicate which of five classes his agreement-disagreement
falls into, as the following example illustrates:
The instructor was very helpful to me.
A B c D E

Strongly Agree Neutral Disagree Strongly

Agree Disagree
Usually for the purposes of mathematical manipulation, the numbers five
to one are attached to the categories A to E, respectively. &2nother
example is a rating scale for classifying a student's behavior according
to the extent that the student follows instructions:

A B C D E

Attends to Sometimes Pays little attention

written and lets his at- to instructions: follows

oral instruc- tention wander; directions reluctantly or

tions; follows usually follows not at all

directions directions

accurately
Here the cateqgories B and D are behaviorally undefined. However, it is
to be assumed that B contains behavior that falls in between A and C, and
D contains behavior that falls in between C and E. It should be clear

from these exampdes that a rating scale is a form of classifying behavior

intoc an ordered series of classes.

The literature on classification does not always make is clear
which is the classificatory concept--the concept referred toc by the class

name, or the criterion or criteria used for forming the classes. While




the class concept and <lass criteria are both properites, it is the class
concept that is the classificatory concept. Thus in the example above
relating to the classification of human skulls, each of the five classes
represented the classificatory concepts and not the cephalic index which
represented the criterion by which the classification was done. However,
the meaning of each of the five classes cannot be understood without
reference to the meaning of the cephalic index. Thus, while it is the
class concept and not the criterion which is the classificatory concept,
the class concept cannot be understood without reference to the criterion

or criteria involved.

Changing a Classificatory Concept into a Comparative Concept

The reason for attempting to change a classificatory concept into
a comparative concept is that measurement or some other way of assigning
numbers may be used. That is, a person wants to change from the
qualitative to the quantitative. Many tests are a way of changing a
classificatory concept into a comparative one.

There are two ways to change a classificatory concept into a
comparative concept, but there is no guarantee of the feasibility of
either way. The first way is to conceptualize the classificatory concept
in comparative terms, if possible. Carnap (1962, p. 12) describes the
process as follows:

The state of bodies with respect to heat can be described
in the simplest and crudest way with the help of
classificatory concepts like Hot, Warm, and Cold (and
perhaps a few more). We may imagine an early, not
recorded stage of the development of ocur language where
only these classificatory terms were available. Later,
an essential refinement of language took place by the
introduction of a comparative term like 'warmer.' In the

case of this example, as in many others, this second step
was already made in the prescientific language. Finally.

~y
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the corresponding guantitative* concept, that of
temperature, was introduced in the construction of the
scientific language.

Jones (1971, p. 340) makes a similar pcint as the following guote

illustrates:

Classification is, however, an essential prelude to
measurement. The first steps towards progress in any
science thus involve qualitative rather than guantitative
distinctions. Properties must be recognized and
classificatory procedures must be developed prior to the
establishment of techniques for measurement., After a
property has been successfully abstracted and similarity
classes for that property have been defined, it may be
discovered that succegsive classes lend themselves to
gquantitative interpretation; that is, the
attribute-values of objects assigned to different classes
may exhibit systematic differences in magnitude. If so,
the quantitative definition of the attribute beccmes
possible, and measurement procedures may be devised.
Measurement of an attribute, then, may evolve following
successful efforts to generate a classification system.

The second way to change a classificatory concept into a
comparative cbncept is somewhat artificial. It works with
multidimensional classificatory concepts—--that is, it works with those
classifications where the inclusion of an object or phenomena is on the
basis of multiple criteria. It also works with natural rather than
artificial classifications. Hempel (1952, p. 53) explains the
distinction:

The rational core of the distinction between natural and
artificial classifications is suggested by the
consideration that in so~called natural classifications
the determining characteristics are associated,
universally or in a high percentage of all cases, with
other characteristics, of which they are logically
independent. Thus, the two groups of primary sex
characteristics determining the division of humans into
male and female are each associated--by general law or by
statistical correlation--with a host of concomitant
characteristics; this makes it psychologically quite
understandable that the classification should have been
viewed as one "really existing in nature"--as contrasted

*Carnap does not regard comparative concepts as quantitative.

[ S
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with an "artificial® division of humans according to the
first letter in their given names, or even accerding to
whether their weight does or does not exceed fifty pounds.

The classification of crystals is an example of a natural
classification. The determining characteristics in the classification of
crystals according to the number, relative length, and angles of
inclination of their axes are expirically assoclated with a variety of
other physical and chemical characteristics. Mendeleev's classification
of elements in the pericdic table is a natural classification which
enabled him to predict the existence of several elements then missing in
the table and to anticipate with great accuracy a number of their
physical and chemical properties.

The taxcnomic categories of genus, species, etec., as used in
biclogy, determine classes whose elements share varicus biclogical
characteristics other than those defining the classes in question. The
classes may alsc reflect relations of phylogenetic descent. Thus the
classes are chosen with a view to attaining systematic, and not merely
descriptive, import. Mayr (1942, p. l0) states: "The devising of a
classification is, to some extent, as practical a task as the
identification of specimens, but at the same time it involves more
speculation and theorizing." Gilmore (1940, p. 468) states:

To sum up, . . - we are led tc the view that a natural
classification of living things ig one which groups
together individuals having a large number of attributes
in common, whereas an artificial classification is
composed of groups having only a small number of commen
attributes; further, that a natural classification can be
used for a wide range of purposes, whereas an artificial
classification is useful cnly for the limited purpose for
which it was constructed; and lastly that both types are

created by the classifier for the purpose of making
inductive generalizations regarding living things.

As an example of how to change a classificatory concept intc a

comparative concept, the class of animals known as mammals, which is a




natural class, has been chosen. The members of the class have a large
number of characteristics in common. Mammalinity, a comparative concept,
has been created. Mammalinity is the degree to which the animal
possesses characteristics which are typical of mammals. The following
mammalinity inventory (in the form of a test) is a procedure for

attaching numbers to indicate the degree of mammalinity. The items of

the inventory were derived primarily from the work of Cochrum (1962,

PP- 3, 4), and secondarily from Carrington (1963), Boorer (1971), DeBlase

and Martin (1974), Morris (1965), and Hoffmeister (1963).

Mammalinity Inventory

Instructions: Each of the following items describes a
characteristic which is typically possessed by mammals. Some of
these characteristics are possessed by non-mammals which also belong
to the phylum Chordata. All mammals will not possess each of the
characteristics. The scale is suitable for use with any animal
belonging to the phylum Chordata. To obtain a score for an animal,
place a ~heckmark beside any characteristic it possesses; then count
the number of checkmarks.

External Characteristics

1. Hair is present at some stage of the life cycle

2. An external ear opening, surrounded by a pinna
{ear flap)

3. Sweat glands

4. 0il (sebaceous) glands

Internal Characteristics

1. Features of the soft anatomy
5. Mammary glands (milk glands) are present in females
The young are born alive from inside the animal
The brain has large cerebral hemispheres

A muscular diaphraagm separates the lungs from
the posterior body cavity




15.

16.

Well-developed facial muscles

The red blood cells are non-nucleated when
fully developed

warm—-blooded

Muscles form a significant part of the body weight
A four-chambered heart

Large efficient (detection of minute concentations
of chemicals in the air} noses. Sense of smell is
most important sense of animal

Poor eyesight compared to birds

A valve, the epiglottis, at the opening to
the windpipe

Osteological features

Skull

17.

18.

19,

20.
2l.

22,

23.

24.

A double occipital condyle (formed by the
exoccipal bones)

The zygomatic arch is an appendage of the
skull instead of part of the skull

Each ramus of the mandible is composed of
a single bone, the dentary

The jaw articulates directly with the sJguamosal
Three ear ossicles are present

The typanic bone surrcunds and protects
the inner ear

A secondary hard palate is formed from the
premaxilla and maxilla

Teeth are present, different teeth having
different specialized functions

Postcranial elements

25.

26.

27.

Possess a backbone
Seven cervical or neck vertebrae

The limbs are rotated forward with marked
angulation

21




The ankle joint is between the tibia and
the tarsus

There are five metacarpal bones
Behavior

Female mammals care for their young

While growing into an adult, the animal

indulges in play

The basic principle behind the Mammalinity Inventory is that the

greater the number of mammalian characteristics an animal possesses, the

greater is its mammalinity. As far as is known, the concept of
mammalinity has no practical value and it has no theoretical import. The
concept of mamma}inity has little, if any, meaning. That is, it makes no
sense to say that being a mammal exists in degrees. A sufficient
condition for saying that an animal is a mammal is that it possesses
milk-producing pores or glands. Once this characteristic has been used
to identify an animal as a mammal, all other charactertistics are
unnecessary for identification.

This second way of transforming a classificatory concept jinto a
comparative concept does not require the concept to be conceptualized in
comparative terms first. As illustrated by the Mammalinity Inventory,
this procedure may result in a concept that has no real meaning in
comparative terms. The procedure used for the Mammalinity Inventory is
the very procedure that is used to turn educational and psychological
classificatory concepts into comparative concepts in the form of tests.
The danger of the procedure jis that it may result in comparative concepts
that are meaningless. Correspondingly the numbers that are attached by

means of tests may be meaningless.




Comparative Concepts

Comparative concepts can be classified according to whether they
are unidimensiocnal or multidimensional., Unidimensional comparative
concepts are weakly comparative,

Unidimensional Comparative Concepts. To establish a streong

comparative concept of a unidimensional property for a given class or
domain of objects or phenomena, D, is to specify criteria which determine
for any two objects or instances of the phenomena in D whether they have
the same amount of the property, and, if not, which of them has the
smaller amount. BY means of these criteria, it must be possible to

arrange the elements of the given domain in a serial kind of order, in

which an object or instance of the phenomena precedes another if it has a

smaller amount of the property than ancther., Objects or phencmena of
equal amounts of the property coincide, i.e., share the same place.

An example of a strong comparative concept is the mass of
ocbjects. It is possible to determine the comparative amounts of the mass
of any two objects, x and y, by placing the objects in opposite pans of a
beam balance. If x sinks and y rises, then y precedes x in mass. If x
balances y, then the mass of X is said to coincide with the mass of y.
To generalize, a comparative concept within the domain of application D
is introduced by specifying criteria of coincidence and precedence for
the elements of D in regard to the characteristic to be represented by
the concept. The criteria of conicidence and precedence must be so
chosen as to arrange the elements of D in a quasi-serial order, i.e., in
an order that is serial except that several elements may coincide in

order.
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Multidimensicnal Comparative Concepts. Multidimensional

comparative concepts are part of our everyday speech. The following are
some examples:
These two students are about egqually intelligent.

I would rank the College of Education at this University as
being the fifth best in the nation.

Peter knows more science than Mark.

I am happier today than I was yesterday.

Their ability at diving is much the same.

This is a more beautiful painting than that one.
His depression has become worse.

OQut of 10, I graded Bill's essay as 9 and John's essay as 8.

It should be obvious that each of the comparative concepts
mentioned in the above example are multidimensional--intelligence,
quality of a college of education, knowledge of science, happiness,
ability at diving, beauty, and quality of an essay. In other words, each
concept has a number of aspects, parts, or dimensions. For example, it
is common practice to divide intelligence into verbal intelligence and
numer ical intelligence. Alternately, one could say that there are a

large number of behaviors that could be classified as intelligent. On

the whole, multidimensiconal concepts are usually less explicit in their

meaning than are unidimensiocnal concepts. For example, happiness and
beauty are not highly explicit concepts and will vary with each pPerson's
perception of them. These concepts are often multidimensional
comparative concepts.

In the above examples, comparisons of coincidence and precedence
were given. Associated with the lack of explicitness of multidimensional

comparative concepts is a lack of explicitness in the criteria for




coincidence and precedence. One may have trouble expressing in words
what these c¢riteria are--a case of tacit knowledge (Polany, 1958). Take
one of the examples given above: "This is a more beautiful painting than
that ocne.” One may be able to specify some of the criteria for the
stated precedence, but overall one may justify one's preference by saying
"I just feel that this is a more beautiful painting than that one."

With unidimensional comparative concepts, one could state criteria
of coincidence and precedence in advance of giving a comparative
judgment, This’ is not always so with multidimensional comparative
concepts. Re;urning to the example of the paintings, one may be able to
give in advance only the most general criteria for the type of paintings
one likes. However, only when one sees two paintings gide by side may
one be able to give more specific criteria as to why he prefers one to
the other.

Numbers may be attached to multidimensional comparative concepts
to indicate coincidence and precedence. There are three somewhat
different ways of attaching numbers to multidimensiocnal comparative
concepts—--ranking, rating, and indices. These three ways will not be
discussed in detail in the next chapter, but a brief mention will be made
of them here. "I would rank the College of Education at this University
as being the fifth best in the nation" is an examéle of ranking. ™Out of
10 points, I graded Bill's essay as 9 and John's essay as 8" is an
example of rating. For a Grade 8 course in science, it might be decided
that certain behavioral attributes are required. For each attribute (or .
a sample of attributes), a multiple-choice item is constructed. A score
on the test is obtained by counting the number of attributes (i.e.,
items) that a student has, An index is an algebraic composite of a

number of parts. Thus counting (i.e., adding) the number of items

(> Dy
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correctly answered in a test results in an index. But not all indices
are of this mathematical form. For example, the cephalic index,
discussed in relation to classificatory concepts, is a percentage. The
concept of the cephalic index is itself a multidimensional comparative
concept.

The numbers attached to comparative concepts indicate coincidence
and precedence. But the criteria of coincidence and precedence are
weaker for pmpultidimensional concepts than in the case of unidimensiocnal
concepts. I shall take tests as examples. TwoO students may obtain
exactly the same score on a test, but it would be very unlikely that they
answered all the same items correctly. They will have answered different
items correctly, even though they both receive the same total score. So
numerically their performances coincide but in actuality they may be
quite different. If two objects balance each other on a beam balance,
there is no doubt (within limits of error) that they have the same mass.

To take another example, Bill may have obtained a score of four out of

ten on a test, while John obtained a score of five. However, Bill may

have answered correctly the four must difficult items while John answered
the five easiest items., Irrespective of the numbers, Bill's performance
is superior, or at least equal to, the performance of John. This is
further illustration that multidimensional comparative concepts are

weakly comparative.

Interval Concepts

Interval concepts are unidimensional concepts. They are an extension
of unidimensional comparative concepts. As for comparative concepts,
interval concepts also require criteria of coincidence and precedence.

However, interval concepts in addition require a unit. when numbers are

17 D (\
~ )




assigned to a property conceived in comparative terms, one cannot tell
how near to each other are different amounts of the property. As an
example, consider three persons, A, B, and C, having IQ0s of 80, 150, and
120, respectively. Intelligence is a comparative concept and is not
measured in units. We cannot tell from these numbers whether B is closer
to A in intelligence or closer to C. We certainly cannot infer that B is
equidistant from A and C in intelligence. By contrast, temperature can
be conceived as an interval concept as it is when measured in units of
degrees centigrade or degrees fahrenheit. Suppose we have three objects,
A, B, and C, with temperatures of 80, 100 and 120 degrees fahrenheit,
respectively. Then B can be said to be eguidistant in temperature
between A and C. That is, the temperature interval between A and B
equals the temperature interval between B and C.

With an interval concept of a property, the assignment of numbers to
the property of any two objects fixes the numbers for all the other
objects. The initial assignment corresponds to selecting both an origin
and a unit of measurement. Thus the centigrade scale of temperature is
an interval scale: 0 and 100 are arbitrarily assigned to the freezing
point and the boiling point of water. "The temperature range between
‘these is divided into a hundred equar intervals known as "degrees
centigrade.” The fahrenheit scale is also an interval scale, though with
different origin and unit. Thirty-two degrees and 212 degrees are taken
to be the freezing and boiling points of water,-.and zero degrees
fahrenheit is the temperature of an equal mi#ture by weight of salt and

Snow.
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Ratio Concepts

Ratio concepts are unidimensional concepts. 'They are extension of
interval concepts of property. As for interval concepts, equal intervals
of a property can be ascertained. The difference is that a zero point is
no longer arbitrary. Length, mass, time, and current electricity are
examples of ratio concepts. When temperature is measured in degrees
Kelvin, it is conceived as ratio concept, zero degrees Kelvin being the
lovest possible temperature: which occurs at minus 273 degrees centigrade.

As for interval concepts: the unit of measurement for ratio
concepts is still arbitrary. Units are laid down by international
agreement. For example, in 1960, the Eleventh General CogferenCe of
Weights and Measures: with 3B countries represented, sanctioned an
international meter at 1,650.763.73 vacuum wavelengths of monochromatic
orange light emitted by a krypton atom of mass 86. 'The number attached

to a ratio property is not unique since it depends on the unit used..

Absolute Concepts

An absolute concept is different from a ratio concept in' that

there is no arbitrary choice of unit. Numerosity: the number of entities
or attributes in a group, is an example of an absolute concept. When a
ratio concept is measured, the resulting number is dependent™on the
choice of unit. However, the number of entities in a group can be
determined uniguely. <Counting (or enumeration} is the name given to the
process by which numerosity is determined. In tests, the number of
attributes is counted, i.e., the number of correct behavioral responses
to a group of items is counted.

In summary, the difference between the gqualitative and

qguantitative rests on the conceptualization that is involved. The nature




of the concept determines whether it can be quantified. The nature of
the concept also determines the nature of the Quantification. The
following types of concepts were discussed: classificatory, comparative,
interval, ratio, and absolute. Comparative, interval, ratio, and
absolute concepts are known collectively as quantitative concepts,
whereas classificatory concepts are cualitative concepts. Whereas
entities, phenomena, and properties can all be classified, only

properties can be quantified. A property that can be quantified is one

for which it is possible to say that entity or phenomena A has more of

the propertyY, less of the property, or an equal amount ©f the property,
compared to entity or phenomena B. A quantitative concept refers to a

property that can be quantified.




PART II: THE WAYS OF ASSIGNING NUMBERS

The previous part emphasized the centrality of conceptuclization to
the process of quantification. The nature of a concept determines
whether or not it can be guantified. Comparative concepts can be
quantified but classificatory concepts cannot. If a concept can be
gquantified, its nature determines the way it can be quantified.
Comparative, interval, ratio, and absolute concepts are all guantified in
different ways. This part examines in detail different ways of
quantifying. However, this part is broader. It looks at the different
ways of assigning numbers, not all of which are forms of guantification
{(e.9., naming by numbers is not a form of quantification}.

The most common definition of measurement that is given in the
literature is that measurement is the assignment of numbers to the
properties of objects and events according to rules. It is the
contention of this part that measurement is only one of at least six
fairly distinct ways of assigning numbers.

l. Measurement

2. Counting

3. Naming by Numbers
4. HNumerical Judgment
5. Indices

6. Ranking

Beginning with measurement, each of the six different ways will be
discussed. By beginning with a description of measurement. it should be
clear how the other five ways are quite different and should not be

confused with measurement. Once the differences among these ways of

assigning numbers are understocd, it becomes clear that tests are not a

form of measurement, as measurement is understood in the physical and

biological sciences.




Measurement

The first four sections of this discussion of measurement detail the
nature of measurement and lead to a definition of measurement. The first
section gives an introduction to measurement using the notion of sets,
The next secticn explains what fundamental measurement is and indicates
that it is fundamental measurement that is being discussed in this part.
The third section discusses the three basic properties for determining
the empirical relations bhetween quantities of a property. The fourth
section deals with the representation problem and gives a formal
definition of measurement., The representation problem is concerned with
the justification of the assignment of numbers toc objects or phenomena.

The fifth section gives the many differing definitions of measurement
found in the literature, These definitions are compared tc the cne
developed in this part. The popular definition given by Stevens
{1951:22) is analyzed for its deficiencies.

The sixth section introduces the steps that lead to the measurement
of a property. This is done by looking at an historical example in the
physical sciences.

The final section answers the question of why we measure by looking
at how measurements are used. Constant reference is made toc tests and
test theory since tests are commonly used in evaluation. This section
shows that test theory has not explicitly examined the evolutionary steps

that lead to the measurement of a property and instead has concentrated

on the variocus aspects of using measurements.

Introduction to Measurement Via Sets

One way of understanding measurement is through the notion of a set,

A set is a collection of objects or elements. Measurement can be thought
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of as involving two sets--a set of objects or events and a set of
numbers. Figure 1 is a diagrammatic representation of the measurement
process. Set A represents a set of objects x, y, and z, whose properties
are to be measured. The objects x, y, and z have been assigned the
numbers 10, 4, and 6 respectively, which are denoted symbolically as
f(x), £(y), and £(z). This process of assigning numbers is called
mapping. It is said that the members of one set are mapped onto the
members of another set by means of a rule of correspondence. Another

name for a rule of correspondence is a function, symbolized as £.

A = a set of oblects Re = a set of numerals

Figure 1. A diagrammatic representation of the measurement process.

Set Re is said to be a homemorphic image of set A if the relations

that exist between x, Y, and z also exist between £(x), f(y), and £(z).

For example, suppose it can be determined empirically, independently of




the measurement process, that x is greater than z and z is greather than

Y, i.e., x>z and z>y. The numbers that have been assigned reflect
these relations, since 10> 6 and 6> 4, i.e., £{x)> £(z) and £(z)> £(v).

Furthermore, suppose it can be determined independently of the measuring

procedure that x = y + z. This relation also holds between the numbers,
since 10 =4 + 6, i.e., £(x) = £(y) + £(z). It should be clear that the
rules for assignment of numbers must be chosen with care. The rules must
be such that the relations that hold between the magnitudes of the
properties of the objects must also hold between the numbers that have

been assigned.

Fundamental Measurement

The measurement of the density of a cube depends on the measurement
of mass and volume. The mass can be measured directly by means of a beam
balance. The volume of the cube can be obtained as a result of measuring
the length of the side of the cube with a scale. In this example,
density and volume were measured indirectly by measuring other
quantities. This was not true for mass and length which were measured
directly. Measurement which is direct is known as fundamental
measurement*—-that is, a property is said to have a fundamental measure
when no prior measurement of other quantities is required {Krantz, Luce,
Suppes, and Tversky, 1971l:l).

Fundamental measurement does not apply only to the fundamental

quantities of physics, which include length, mass, time, and the flow of

*Different authors use different terminology. I shall use that of
Krantz, Luce, Suppes, and Tversky (1971). Ellis (1966:55-56) used the
term "direct" for fundamental measurement and "fundamental" to refer to
extensive measurement. Extensive measurement involves those attributes
which can be added. Campbell (1920:267-294) uses the term "fundamental"
to refer to both fundamental and extensive measurement.
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electricity. For example, the volume of liquids can be measured
fundamentally by means of a measuring cylinder. Electrical resistance
can be measured fundamentally using a Wheatstone's Bridge apparatus.

All of Part II is concerned with fundamental measurement.
Fundamental measurement is the most basic kind of measurement. Indirect
measurement inevitably depends on the fundamental measurement of other
quantities. In the density example above, the measurement of density
depended on the fundamental measurement of mass and length. In the
social scieqces, indirect measurement often involves measuring a
fundamental quantity from physics. For example, rate of learning may be
measured by the length of time required to learn a list of nonsense
syllables. ©On the whole, the social sciences have not developed the

fundamental measurement of social gcience concepts. Thus the examples of

measurement given in the discussicn of measurement are largely drawn from

the physical sciences.

Basic Procedures for Determining the Empirical
Relationships Between Quantities of a Property

In the section introducing measurement via sets, it was supposed that
empirical relationships could be determined independently of the
measuring process. This section examines the three bhasic procedures for
determining empirical relationships {Krantz, Luce, Suppes, and Tversky,
1971). Emphasis will be placed on the first two, since the occurrence of
the third is not so common.

The first procedure is the ordinal procedure. It is concerned with

the arrangement of a property p in order according to size. The
relationships "greater in p than,® "equal in p to," and "less in p than"
are determinable independently of any measuring procedure {(Ellis,

1966:74) . 1In the case of length, the procedure is to place pairs of
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cbjects side by side lengthwise. Thus if we place two rigid straight
rods x and y side by side and adjust them so that one is entirely beside
the other and they coincide at one end, then either x extends beyond y at
the other end, or y extends beyond x, or they appear to coincide at that
end. We say, respectively, that x is longer than y, y is longer than X,
or that x and y are equivalent in length. Symbolically, we write,
respectively, x5y, y> X, or Xasy. In the case of mass, pairs of objects
can be compared by using a beam balance. An object is placed in each of

the two pans. We observe which pan descends, and this will indicate

which object is heavier. 1If there is balance, then the two cbjects are

equivalent in mass. A numerical assignment can be checked by means of
this ordinal procedure. If f(x) > f£(y) or £E(y) > f(x) or £(x) = £(y), then
X>Y, Y>X, and X~y respectively. Properties for which this ordinal
procedure cannot be carried out cannot be measured. Examples of such
properties are odor, gaseous, quadruped, reversibility, and diatomic.

The second procedure is concerned with the counting of units using

standard sequences and involves the concatenation of objects so that the
property of interest is combined. For example, two or more straight
rigid rods can be concatenated by laying them end to end in a straight

line, and s¢ we can gqualitatively compare the length of one set of

concatenated rods with that of another by placing them side by side, just
as with single rods. The concatenation of x and y is denoted by xeo ¥y,
and the observation that z is equal tc xey is denoted z~Xxoy. We can
concatenate the mass of two objects by placing them together in a scale
pan 80 that their combined mass may be compared with a third object.
There are many properties which cannot be combined. Examples are
temperature, density, hardness, and most social science concepts. Two

volumes of liquid, both at the same temperature, when combined into one

L (-.
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body of liguid, will not have a temperature greater than that of the
(Y

original two. 1In fact, there will be no change in temperature. 1In the
same way two volumes of liquid, all of the same density, when combined,
will not have a density any different from the original two volumes.
Combining two people of equal intelligence to form a group, will not make
the group twice as intelligent as any one of its members. Properties
like temperature, density, hardness, and intelligence are said to be
"intensive" whereas properties that can be combined are said to be
"extensive.” 1t is possible that extensive properties may be discovered
in the social sciences.

On the basis of ordering and concatenation it is possible to set up a
scale for the measurement of a property. Suppose that x', x'', x''', ....
are perfect copies of x with regard to the property under consideration.
By the procedure of concatenation it is possible to construct what is
called a standard sequence, i.e.,

X

22X~ XoOX',
Ix~~2xex'',
XA IXox''’,
and so on.

In the case of length, a meter stick graded in millimeters provides,
in concenient form, the first 1,000 members of a standard sSequence

constructed from a one-millimeter rod. With the first procedure of

ordering and with the second procedure of counting using the standard

Sequence, it is possible to assign a number to the length of a rod y.
Rod y is placed beside the meter stick so that they coincide at one end.
1f we observe that rod y falls between nx and (n + l)x, say, between 325

and 326 mm, then we assign it a length between nf{x) and (n + 1l}f(x) (in
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the present example, between 325 f£(x) and 326 f(x) where f(x) is the
numnber assigned to a one-millimeter rod and its copies). The value of
f(x) depends on the selection of a particular rod, u, to have unit
length. If u~mx, then £(x) = l/m. Thus if the unit length, u, is the

meter, then m = 1,000 and the length assigned to Yy must be between 0.325

and 0.326 meters. 1f the unit of length is the centimeter, then m = 10

and £{y) must be between 32.5 and 32.6 centimeters.

Application of ordinary arithmetic to the numbers assigned is not
meaningfully possible when only the ordinal procedure (i.e., the first
procedure) can be carried out with a property. For example, if a child
is ranked second in class and another child is ranked seventh, it is not
meaningful to add two and seven. While addition is not meaningful,
neither is subtraction, multiplication, or division. However, if a
property can be concatenated and numbers are assigned using a standard
sequence, then arithmetical cperations can be carried out. As Hanson
{1969:50) emphasizes, what arithmetical relations hold between the
numbers must be checked out by experimentally determining what relations
hold between the magnitudes of the properties.

Thus, suppose that object A is regarded as having the ‘unit
weight. We can assign weights to other objects by the
process describeds such that A; will have weight 2, A4
will have weight 4 and Ag weight 6. Nowr can we be
certain, in advance of experiment that A, and A4 will,

if placed together in one pair of the beam balance, just
balance Ag placed in the other? No. It is very

important to note that we cannot be certain of this until
we actually perform the experiment. The emphasis of some
scientists, and the usual exaggeration of that emphasis by
philosopherss has sometimes been such as to minimize

this. That 2 + 4 = 6 can be demonstrated in pure
arithmetic without experiment--that's a matter of formal
prescription. But until we performed the proper
experiments we could not be sure that the physical
operation of addition of weights would exhibit the
familiar properties of purely arithmetical addition-—-for
physical propertiegs are a matter of how nature is put
together.
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Displacement, velocity, acceleration, and force are examples of
vector quantities to which ordinary {scalar) arithmetic does not apply.
As an example, suppose a force of one newton and a force of two newtons

act on a body, the angle between the two forces being 120 degrees. The

combined or resultant force is not three newtons, but “¥3 newtons in a

directiocn at right angles to the force of one newton. This illustrates
that what arithmetic can be applied to the assigned numbers must be
checked empirically.

For the sake of completeness, the third basic procedure for
determining the empirical relationghips between quantities of a property
will be mentioned. It involves solving inequalities. krantz, Luce,
Suppes, and Tversky {1971:5) describe the procedure as follows:

Suppose that five rods denoted a;, az, . . . ag,
are found to satisfy

Ao ag aze ag) aje azd agh agd azr azra)

Data such as these can arise whenever a limited set of
preselected objects and concatenations are compared and
where it is impractical to go through the elaborate
process of constructing standard sequences. Denote by
Xi the unknown value of the length of a; . . . . From
the above observations, the unknown lengths x; must
satisfy the following coystem of simultaneous linear
inequalities:

X) + x5 - x3 - x4> 90,
X3 + x4 - x3 - x>0,
X) + X3 - x5290,
Xg -~ x4> 0,
Xg - 13) Q,
Xy - x270r
Xq - x1» 0.

Any solution to this set of seven inequalities in five
unknowns gives a possible set of values for the lengths of

a3y « + « 4 ag. One can thus measure the five rods by
finding a solution, if one exists.




The Representation Problem

This section begins a more formal discussion of measurement than that
given in the previous sections. The representation problem is concerned
with the.justification of the assigrment of numbers to objects or
phenomena (Suppes and Zinnes, 1963:4).

Whenever we measure a property, a numerical model of the world is
constructed. A numerical model is regarded as a model of the world if it
reflects the structure of the world or presents its essential features.
To make the representation problem more precise, we introduce the notion
of a relational structure which leads to a way of characterizing the
nature of the correspondence between the world and its numerical model.

A relational structure is a collection of objects, phenomena, or
numbers along with one or more relations defined among them. Formally, a
relational structure is a sequence é, Rl' « e . ¢ RD where A i8 a
non-empty set and R;, . . . , R are relations defined on the
elements of A. Angle brackets,(( ‘>, rather than parentheses are used in
giving an explicit listing of a relational structure. A relational
structure is said to be empirical if A contains objects or phenomena and

it is said to be numerical if A contains numbers.

Consider a simple relational structure of the form<<a, R:>where R ia

a binary relation, that is, a relation between pairs of entities in A.
For example, A could be a set of objects and R could be the relation
"longer than." For any pair of objects x, y in A, we define:

x Ry if and only if x is longer than Y
An example of a numerical relational structure would be the case where A
is the set of all real numbers and R is the relation "greater than." 1In
this case, if X and Y represent real numbers, then:

X Ry if and only if x)y.




Measurement can be described as the representation of an empirical
(relational) structure by a numerical (relational) one (Coombs, Dawes,
and Tversky, 1970:10). In formal terms, an empirical structure
0(== <A, 19 is gaid to be represented by a numerical system
ﬂ3==<?e; é) * if there exists a function £ from A into Re (which assigns
to each x in A an f(x} in Re} such that for all x, y in A,

x Ry implies £(x)Sf(y).

Thus,('is represented byﬁg if there exists a correspondence £ that maps A
into Re in such a way that if the relation R holds between Some X and y
in A, then the relation S holds between f(x) and f(y) in Re, where f(x)
and f(y) are the images of x and y, respectively. If the function f is a
one-to-one correspondence;(i.e., f assigns to each x in A a unique f(x)
in Re), theno(‘ and,é are said to be isomorphic. However, in practice it
is too strict to require that the function £ be one-to—one, for it may be
necessary to assign the same number to two distinct objects, as when two
objects have the same length or weight, for example. We then say that;fg

is a homomorphic image oﬁp{f. Measurement can be defined as the

construction of homomorphisms (scales) from empirical relational

structures of interest into numerical relational structures that are

useful (Krantz, Luce, Suppes, and Tversky, 1971:9).
The measurement of length discussed in the previous section is a good

example of the definition. In terms of the representation problem,

let&{. =<A, >0 ,>where A denoteg a set of empirical objects,} denotes

the relation "longer than," and © denotes a physical concatenation. The

concatenation operation represents a ternary relation on A, holding among

*Re refers to the set of real numbers; 8 is a binary relation between
pairs of numbers.




X, ¥, and Zz.A X oY, whereas % is a binary relation on A. Letﬂ =ée,

7», + where Re denotes the positive real numbers, > denotes the usual
inequality between real numbers, and + denotes scalar addition between
real numbers. The measurement of length is esgentially a representation
og('byzs. It consists of mapping A into Re in such a way that the number
assigned to one object is greater than that assigned to a second object
whenever the first object is longer than qye second, and such that the
number assigned to the concatenation of tw; objects equals the sum of the
numbers assigned to the two separate objects. The numerical assignment f

is a homomorphism in the sense that it sends A into Re, > into > , and o

into + in such a way that> preserves the properties of }- and + the

properties of o.

After the representation problem has bheen solved and the scale is
constructed, the next problem to be solved is the unigqueness problem.
The unigueness problem poses the qusstion: given a particular
measurement procedure, how much freedom is there in assigning numbers to
objects or events? Answering this question leads to a discussion of
scale types {i.e., ordinal, interval, ration, etc.). Since such
discussions are commonly found in the literature, they will not be dealt
with here.

To summarize Part II thus far, the discussion has led to an
explanation of measurement in terms of relational structures.
Measurement can be defined as the construction of homomorphisms {scales)
from empirical relational structures of interest into numerical
relational structures that are useful. That is, we will know that we
have a scale of measurements when the numerical structure or model
represents the empirical structure or model. To check on this

representation, the relations that hold for the empirical structure must
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be determinable independently of the measuring procedure. For example,

if f(x);> £(y), £(y) > £(z), and f(x);> £(z), then it must be shown

independently of the measuring procedure, that x » ¥, Y 2z, and x z.

The Vérioug_Definitions of Measurement

This section presents the different definitions of measurement given
by a number of authors. These definitions are compared with the
definition of measurement developed in the previous section. The Qopular
definition of measurement given by Stevens (1951:22) is analyzed and
criticized.

In the preceding sections of this chapter, the view of meésﬁrement

subscribed to is that given by Krantz, Luce, Suppes, and Tversky

(1971:9). To them, . . . measurement may be regarded as tﬂﬁf;a :

construction of homomorphisms (scales) from empirical relational
structures of interest into numerical relational structures that &re
useful.” What makes this definition more restrictive than others is that
it requires the existence of an empirical relatiocnal structure
independent of the numerical relational structure.

Torgerscon (1958:14) presents a similar view in less precise but
simpler language:

Measurement of a property then involves the assignment of
numpbers to systems to represent that property. In order
to represent the property, an isomorphism, i.e., a
one~to-one relaticonship, must obtain between certain
characteristics of the number system involved and the
relations between variocus quantities (instances) of the
property to be measured.

The essence of the procedure is the assignment of numbers
in such a way as to reflect this one-to-one correspondence
between these characteristics of the numbers and the
corresponding relations between the quantities.




Lord and Novick {1968:17) and Stevens {1959:20) give definitions
similar to the previous two. Lord and Novick state:

We shall define measurement to mean a procedure for the
assignment of numbers (scores, measurements) to specified
properties of experimental units in such a way as to
characterize and preserve specified relationships in the
behavioral domain.

They refer to the behavioral domain singe this definition is taken from a
book on the statistical thecories of mental test scores. Stevens states
his view of measurement as follows:

Under the modern view, the process of measurement is the
process of mapping empirical properties or relations into
a formal model. Measurement is possible only because
there is a kind of isomorphism between (1) the empirical
relations among properties of objects and events and (2)
the properties of the formal game in which numerals are
the pawns and operators the moves.

Elsewhere in the same paper, Stevens {1959:18) takes a much less
restrictive view of measurement:

It is no new thing, of course, to find practice outrunning
legislation, for that is the nub of the story of
mathematics. The irrationals, the surds, the imaginaries,
and the negatives are numbers that still bear names
reminiscent of protest—-protest against outlandish
practice and against the writing of unauthorized
absurdities. But orthodoxy bent to accommodate practice.
Mathematicians staved off chaos by raticnalizing the use
of irrationals, and by imagining a broader domain in which
imaginaries and negatives could serve as proper elements.
An analogous story can be told of measurement. The reach
of this concept is becoming enlarged to include as
measurement the assignment of numerals to objects or
events according to rule--—any rule.

As shall shortly be discussed, this view is too unrestrictive,

because not just any rule will do. Other unrestrictive definitions of

measurement are as follows. Nagel (1960:121) states:

Measurement has been defined as the correlation with
numbers of entities which are not numbers




Siegel (1956:29) states:

Measurement is the process of mapping or assigning numbers
to objects or observations.

The most commonly reported definition is that of Stevens {(1951:22):

Measurement is the assignment of numerals to objects ot
events according to rules.

Ellis (1966:39) objects strongly to the notion that any rule will
do. He illustrates his point with an example. Suppose that on a table
there are a child's tractor, an empty coffee cup, an ink bottle, and an
empty packet of cigarettes. Now suppose that a person is instructed to
take these various objects in turn and assign to each a number—-—-the first
that comes into the person's head. Suppose that the numbers actually
assigned are 2, 2, 2, 3. There is no doubt that the person has followed
a rule, which was to assign the first numbers that came into his head.
However, it is doubtful whether anyone would say that measurement had
been carried out. One could easily think of other rules that would not
constitute measurement, such as assign numerals according to the throws
of a die, or assign telephone numbers according to the order in which

they are found in the telephone book. Ellis (1966:40) gives another

example of what he considers as the inadequacy of just any rules:

Again, suppose that I am instructed to take any monotonic
increasing sequence of rational numbers, and assign the
first number to the first book on the shelf in front of
me, the second number to the second book, and so on. Can
I then be said to have measured the books in any way?
Clearly, the numerical assignments have been made
according to a rule. But how should I exptess the results
of my "measurements"? Suppose that the second book is A
Textbook of General Botany and that the second number in
my seguence is 37.53. Shoulé I now say that A Textbook of
General Botany is 37.53? If so, what information does
this statement carry-—-even to someone who knows the rule
which led to this numerical assignment? It does not tell
him that it is the second book on the shelf in front of
me. For he has no way of knowing what sequence of
rational numbers I chose. Moreover, there is no question




of his being able to check the "measurement." If he too
follows the rule, and makes a numerical assignment to A
Textbook of General Botany, it is extremely unlikely that
he will make the same mumerical assignment. But clearly
his "measurement™ would not conflict with mine.

Ellis believes that a rule must lead to a scale of measurement
satisfying two conditions. PFirst, different measurements made on the
same scale on the same particular under the same conditions should not
conflict with one ancother. Second, when measurements are made ©oh a
particular scale, the statements of the results of these measurements
must be informative. Thus Ellis (1966:41) modifies Stevens' definition
of measurement to read:

(a) Measurement is the assignment of numerals to things
according to any determinative, non-degenerate rule.

(b) We hve a scale of measurement if and only if we have
such a rule.

By determinative, Ellis means that the same numerals would always be
assigned to the same things under the same conditions. A non—-degenerate
rule allows for the possibility of assigning different numerals to

different things, or to the same thing under different conditions. A

degenerate rule would be: "“Assign the number 3 to everything."

According to Ellis, the numerical assignments made accerding to a

determinative, non-degenerate rule will be informative.

Ellis‘’ criticism of Stevens’ definition that not just any rule will
do seems justified. However, it is possible to specify more clearly than
Ellis what is necessary for a rule to be informative. The purpose of
measurement is to inform one about the empirical relations that exist
between the various magnitudes of the quantitative property being
measured. In other words, the numerical relational structure that
results from the application of the rule must be such that it is

homomorphic with the empirical relational structure of interest.




Stevens' definition describes measurement as the assignment of

numerals to objects or events. This is too unrestrictive. Measurement

involves the assignment of numberals to the properties of objects or

events., To Russell (1938:176), “Measurement of magnitudes is, in its
most general sense, any method by which a unique and reciprocal
correspondence is established between all or some ©of the magnitudes of a
kind and all or some of the numbers, integral, rational, or real as the
case may be." To Campbell (1938:126), measurement is "the assignment of
numerals to represent properties of material systems other than number,
in virtue of the laws governing these properties.” For Russell, numbers
correspond to "magnitudes” and for Campbell, they represent "properties
of material systems." However for Stevens, numbers <re assigned "to
objects or events.” By "magnitude® Russell means an amount of a property
and thus Russell is in agreement with Campbell on this point. Stevens'
definition does not mention property. For him, if numerals are assigned
to objects according to rules, we have measurement. Apparently it is the
object that is measured, and not {at least not necessarily) a property of
the object. Torgerson {1958:14} states:

{Stevens] does not object toc the use of the term

measurement to denote, say, the sorting of sticks into

piles according to whether they grow on oak, elm, or pine

trees--as long as numerals are used for naming the piles

rather than words. According to this view, we have

measured or scaled a stick, though only at a primitive,

nominal level, when we determine that that particular

stick is a "two." Thus, for this approach,

classification, or even naming of individual instances,

becomes a kind of measurement.

We shall not use the term measurement in this way. We

shall rather retain the more traditional view, that

measurement pertains to proPeities of objects, and not to

the objects themselves. Thus, a stick is not measurable

in our use of the term, although its length, weight,
diameter, and hardness might well be.




Cohen and Nagel {1934:294) and Campbell {1938:122) put forward views
similar to those of Torgerson. Campbell argues: "hA street is not
measured when numerals are assigned to the houses in it; a dyer does not
measure his colours when he assigns numbers to them in his catalogue.®

Siegel (1956:22) goes so far as to suggest that the attachment of
names to classifications is a form of measurement:

Measurement at its weakest level exists when numbers or

other symbols are used simply to classify an object.

person, or characteristic. When numbers or other symbols

are used to identify the groups to which various cobjects

belong, these numbers or symbols constitute a nominal or

classificatory scale. ., . . The psychiatric system of

diagnostic groups constitutes a nominal scale. When a

diagnostician identifies a person as "schizophrenic.,®

"parancid,” "manic-depressive:" or "psychoneurotic,* he is

using a symbol to represent the class of persons to which

this person belongs, and thus he is using nominal scaling.
So, under a nominal scale of measurement, Siegel would include the case
where names are attached to classificatory categories. Both Siegel and
Stevens appear to view classification as a form of measurement. In Part
I classification was viewed as a form of conceptualization. The
attachment of numbers or names to categories is a labelling process quite
distinct from the way in which I have described the process of
measurement.

In summary. some authors present a definition of measurement which is
very similar to one developed in the previous section. Stevens gives a
very unrestricted definition of measurement. Ellis criticizes Stevens
since Ellis believes that the assignment of numerals cannot be according
to just any rule. Stevens does not specify that the assignment of
numerals is to the property of objects or events. Since he does not.

this allows the labelling of classes with numbers to be considered a form

of measurement. However, naming by numbers is quite distinct from

measurement. A~
- f




The Steps that Lead to the Measurement of a Property--—
An Historical Example

It is the view of this section that there are four steps that lead to
the measurement of a property.

Qualitative cbservation is reguired in order to understand
the property.

The property must be conceptualized in quantitative terms.
There must be the develcopment of a procedure for
determining the empirical relations between amounts of the
property.

A way of assigning numbers must be devised so that the
resulting numer ical relational structure is homomorphic
with the empirical relational structure.

These four steps will be illustrated by discussing an historical
example. A brief history of the development of some aspects of
kinematics based on the writings of Toulmin and Goodfield {1961) will be
given. Kinematics deals with the movements of bodies in terms of
distance, time, velocity {(speed), and acceleration. It is not concerned
with the forces and causes responsible, which form the subject-matter of
dynamics. However, in order to understand the relationship between force
and motion, it was necessary first to develop the concept of acceleration
which leads especially to Newton's second law of motion, that force is
equal to mass times acceleration. Velocity is the rate of change of
position over time. We commonly talk about velocity as the miles per
hour shown by the speedometer of a car. Velocity can be calculated by
dividing the change in position by the time taken. Acceleration is the

rate of change of velocity over time. For example, in free fall in a

vacuum at the surface of the earth, a body moves with an acceleration of

approximately 32 feet per second per second. That is, in every second of

its motion, the velocity increases by 32 feet per second. As conceived

from the seventeenth century, velocity and acceleration are guantitative
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concepts, and there are mathematical relations among velocity,
acceleration, distance, and time.

The first major figure in the study of kinematics was Aristotle. He
was a brilliant zoologist who was impressed with the complexity, variety,’
and vitality of Nature. Consequently, he was never convinced that one
either could or should reduce the workings of Nature to abstract,
mathematical terms. He was interested in movement as a qualitative
pehnomenon to be explained in the same sort of terms as are changes in
color, warmth, or health. In his discussion of movement, there is only a
minimum of quantification, such as simple numerical ratios, for example,
between one distance and another. A mathematical concept such as
velocity which is not a simple number but rather distance divided by
time, led to difficulty for him. How can you divide a length by a time
and get a "pure® ratio, he argued.

Like other Greeks, Aristotle used the words "faster" and "slower,*®
and always specified velocity in terms of actual distances travelled in
given times. Objects do not have a velocity of x m.p.h. but they are
shifted y miles in z hours. Even Archimedes expressed his kinematic

theories in the same terms: "If some point is moved with a uniform

velocity along [the whole length of] a given line, and if we mark out

upon this like two [shorter] lines, these will bear the same ratio to one
another [in length] as do the periods of time taken by the point in
tréversing them" (Toulmin and Goodfield, 1961:213).

The point that I want to make is that the ancient Greeks seemed to be

asking themselves basic questions: Is the property essentially a

gualitative or a gquantitative one? If the property is quantified in a

certain way, is this an adequate way to guantify it? In relation to test

concepts, these basic gquestions are rarely-—-if ever--asked. Just because
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numbers have been assigned to a property does not mean that
quantification has taken place. Numbers may be assigned to properties
that are essentially gqualitative ones.

It was the mediaeval mathematicians who recognized that a body's
velocity could be treated as a quantitative variable in its own
right--not just as a distance gone in a standard time. Their next
problem was to describe the motion of an accelerating body in terms of
this property, velocity, which might change continucusly from one instant
to the next. One important development was that of graphical technigques

to show logically the relationship among uniformly changing velocity,

distance, and time. (For these graphical techniques; see Toulmin and

Goodfield, 1961:215.) These graphical procedures encouraged them to look
for ways of replacing qualities, which Aristotle had regarded as
fundamental, by numer ical degrees of quantities. Mediaeval scholars such
as Heytesbury and Oresme were able to prove that, if a body were ever to
accelerate from rest uniformly, then its distance from the starting point

must by definition increase in proportion to the square of the time. It

was Galileo, with the use of measurements, who gave exper imental
demonstration in the real world, of these logical, abstract ideas. This

demonstration is described in a famous passage in his Discourses on Two

New Sciences:

A piece of wooden moulding or scantling, about 12 cubits
long, half a cubit wide, and three fingerbreadths thick,
was taken: on its edge was cut out a channel a little more
than one finger in breadth:; having made this groove very
straight, smooth, and polished, and having lined it with
parchment, also as smooth and polished as possible, we
rolled along it a hard, smooth, and very round bronze
ball. Having placed this board in a sloping position, by
lifting one end some one or two cubits above the other, we
rolled the ball, as I was just saying, along the channel,
noting, in a manner presently to be described, the time
required to make the descent. We repeated this experiment
more than once in order to measure the time with an

a
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accuracy such that the deviation between two cbservations
never exceeded cne~tenth of a pulse beat. Having
performed this operation and having assured ourselves of
its reliability, we now rolled the ball only cne-gquarter
the length of the channel; and having measured the time of
its descent, we found it precisely ocne-half of the

former. Next we tried other distances, comparing the time
for the whole length with that for the half, or with that
for two-thirds, or three-fourths, or indeed for any
fracticon; in such experiments, repeated a full hundred
times, we always found that the spaces traversed were to
each other as the squares of the times, and this was true
for all inclinations of the plane, i.e., of the channel,
along which we rolled the ball. We alsc observed that the
times of descent, for various inclinations of the plane,
bore tc one another precisely that ratic which, as we
shall see later, the Author had predicted and demcnstrated
for them.

For the measurement of time, we employed a large vessel of
water placed in an elevated position; to the bottom of
this vessel was scldered a pipe of small diameter giving a
thin jet of water, which we ccllected in a small glass
during the time of each descent, whether for the whole
length of the channel or for a part of its length; the
water thus collected was weighed, after each descent, on a
very accurate balance; the differences and ratios of these
weights gave us the differences and ratios of the times,
and this was with such accuracy that although the
operation was repeated many. many times, there was no
appreciable discrepancy in the results. (Toulmin and
Goodfield, 1961:219). :

In the measurement of time, Galileo uses the fact that the time of
descent (t) is proportional to the weight of the water collected (W).

Thus if the exﬁeriment is carried ocut on two different occasions, one and

t

two, for two different distances (g), then _l_= Y1 which follows
tz wo

mathematically from the fact that the time is proportiocnal tc the

weight. What is of concern in the experiment is the relations between
the amounts of time. The relations between the amounts of times ‘are
equal to the relations between the measured weights of water. Time is
not measured in the sense of assigning numbers, but it is the empirical
relational structure that is determined by measuring the weight of water

collected. A procedure for determining the empirical relational




structure is essential, because without it there cannot be a numerical

relational structure. What philosophical discussions of measurement

ignore is the importance of the procedure or instrument for determining

the empirical relational structure. It is the asgignment of the numbers

that ig the focug of the attention. Of course most instruments of

measurement serve both functions—-the determination of the empirical
relational structure and the assignment of numbers to repres2nt the
structure.

To return to Galileo's experimental demonstration, as for time, it is
the determination of the relative distances, and not the actual
distances, that is important. To demonstrate that distance travelled is

proportional to the square of the time, Galileo showed that

To gquote Galileo, ". . . we now rolled the ball only one-quarter the
length of the channel; and having measured the time of descent, we found

it precisely one-half of the former." That is,

2
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To summarize, the Steps in the process of measurement of a property

are as follows. These Steps are not necessarily distinct from one
another but may merge.

1. Qualitative observation is reqguired in order to understand
the property.

2, If the property is to be measured, it must be conceived in
guantitative terms. The property may be found to be a
qualitative one, and quantification is not then possible.

An instrument or procedure has to be devised for
determining the empirical relations between amounts of the
property.




4. A way of assigning numbers must be devised so that the
resulting numerical relational structure is homomorphic
with the empirical relaticnal structure.

Using Measurements

This section answers the qQuestion of why we measure by looking at how
measurements are used. Six broad Questions that may be asked in relation
to the use of measurement are identified and discussed. This section
makes constant reference to test theory. The conclusion is that test
theory has ignored the four steps {(discussed in the previous section)
that lead to the measurement of a property and instead has concentrated

on the various aspects of using measurements.

Within science and technolegy, measurement has high prestige. The

social sciences have attempted to capture some of this prestige by
assigning numbers wherever possible. Why should measuring have this
preferential status? What is it that measuring accomplishes that
nonmeasuring does not? One answer is that Quantitative information can
be more precise. There is no reason to be precise for precision's sake,
of course. Precise information is information that enables one to
distinguish objects, events, phenomena, and their properties to some
arbitrarily assigned degree of refinement. However, I do not want to
imply that qualitative information does not allow one to make
distinctions. One can distinguish between a shark and a whale, by saying
the former belongs to the fishes and the latter mammals, the essential
distinction lying in their reproductive systems. However, there are
certain distinctions that we want to make that require quantification.
For example, for building human shelters, primitive man found human
judgment of length sufficiently precise. However, today we ¢ould not

build our shelters without using measurements to make precise




distinctions about the length of objects. We make gquantitative

distinctions for a purpose and a use. Churchman (1959:84) proposes that

"the function of measurement is to develop a method for generating a

class of information that will be yseful in a wide variety of problems

and situations.” The following is a list of seven broad uses of

measurement:

1.

7.

Measurement has an important function in technology, crafts
of various kinds, and in practical affairs (e.q.,
carpentry, cooking, bhookkeeping).

In the application of established theories and quantitative
generalizations, measurements are made for insertion into
these theories and generalizations.

Measurement is used in the process of refining established
theories so that the agreement between measurements
predicted by theories and actual measurements is greater.

Measurement is carried out in the process of elaborating an
established thecry in order to increase its areas of

applicability.

The last three functions are all related to what Kuhn
{1970) has called normal science. The next three functions
are related to what Kuhn {(1970) calls revolutionary science:

Measurement can aid in the choice between competing
theories.

Measurement can display sericus anomaly between
measurements predicted by a theory and actual measures.

Measurement can aid in the confirmation of a theory.

Whenever data or information is gathered, whether it be qualitative

or quantitative, there are several broad Questions that may be asked in

relation to its use:

1.
2.
3.
4.
5.
6.

What data are needed?

How are the data to be used in various contexts?
How accurate are the data?

How should the data be expressed?

How are the data to be interpreted?

How are the data to be pysed in decision making?

Each of these shall be discussed in turn.




what data are needed?~-Specification. The problem of the

specification of measurement is the problem of deciding what is to be
measured and under what circumstances. This is dependent on what are the
concerns and questions of those who will be making the decisions based on
the measurements. The nature of the decisions to be made will determine
what measurement data will be collected. How extensive the collection of
measurement data will be will also depend on the resources available such
as money, time, and manpower.

An experimental design specifies the various treatment conditions
under which measurements are to be made. An experimental design will
also specify when measurements are to be made--pre-treatment,
post-treatment or at regular stages during the treatment. A sampling
design defines the population of objects or events whose property is to
be measured. A sampling design also details how the sample on which
measurements will be made is to be chosen from the population.

How are the data to be used in various contexts?--~Generalizability.

The question here is, if a certain measurement of a property is made
under certain conditions, how will this measurement be affected by

another set of conditions under which a decision has to be made?

The fact that we want to compare a measurement made under one set of

circumstances with that made under another set, has led to the notion of
standards. Churchman (1959:88) explains:

The necessity for standards of measurement is based, in
part, on an almost obvious aobservation that not all human
experience takes place at the same time or in the same
circumstance. Even if there were but one mind in all the
world, such a castaway would need to compare the
experience of one moment and place with that of another
moment and place. He would have to communicate with his
own past. The devices that men have used to make these
compar isons are many indeed. One of the most direct
methods consists of reconstructing each experience into an
experience of a given moment and a given time, i.e., the
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present experience is “adjusted" into the experience that
would have taken place under some standard set of
conditions. This is the only way in which experiences of
var ious moments can be communicated, but it is a very
powerful device for communication. Robinson Crusce cannot
bring along his hut as he searches for a flagstone for his
hearth. But he does need tc compare an experience on the
beach with a past experience in his hut. He does this
(say) by the uyse of a piece of string. He argues that if
the string length fits the flagstone, the flagstone will
fit the hearth. What he is really saying is that each
experience--of the hearth and the flagstone--can be
adjusted to 2z comparison with the string under "standard"
conditions.

The need for comparability from one situation to the next led to the
notion of units of measurements. For example, a basic unit of length,——
- widely used from earliest recorded history until the nineteenth century,
was the cubit--the length of the forearm from the point of the elbow to
the tip of the ocutstretched middle finger. This unit lacked high
precision since it clearly varied with the size of the person involved.
Fundamental units in the physical sciences include, besides the meter
{(length}, the kilogram (mass), the second (time), and the ampere
{electric current),.

Why are the "measurements"™ given by tests not expressed in terms of
units? The reason lies with the basic procedures for determining the
empirical relationships between gquantities of properties. The three

basic procedures were described earlier in this chapter. The first or

ordinal procedure is concerned with the arrangement of a property, p, in

order according to size. That is, the relationships "greater in p than,”

"equal in p to," and "less in p than" are determinable independently of
any measuring procedure. Educaticnal and psychological tests aim
{(whether they are successful is another question) to achieve this first

procedure. The second procedure is concerned with the counting of units

using standard sequences and involves the concatenation of objects so




that the property of interest is combined (see discussion earlier in this
chapter). It is not possible to carry out this concatenation process for
the properties assessed by tests. If concatenation is not possible, then
it is not possible to have units.

One aspect of how data are used in various contexts is
generalizability. Generalizability is made possible if there are laws or
known relationships between variables which allow one to adjust a
measurement made under one set of conditions to another set of
conditions. Laws typically exist in the natural sciences, whereas least
sguares estimates of the relationships between variables are typically
used in the social sciences. The gas laws are prime examples from the
natural sciences. For a given mass of gas, and as long as pressures are

not too low, then

where Pl‘ vl‘ and T

occasion one, and P

1 are the pressure, volume, and temperature on

« and T, are the pressure, volume, and

20 ¥y 2
temperature on occasion two. For example, if the temperature of a given
mass of gas is known when the Ppressure and volume are P1 and vl' then

the temperature can be calculated when the pressure and volume are P2

and Vz. In the social sciences, regression egquations are typically
ased to state the relationship between variables. For example, given a
measure or measures of a student's achievement in the high school
context, a regression equation is used to calculate an estimate of the
student’s achievement in the college context. Thus laws and regression

equations allow one to adjust a measurement made under one set of

conditions to another set of conditions.




Cronbach, Gleser, Nanda, and Rajaratnam (1972) discuss
generalizability theory in relation to test scores. Generalizability
theory examines how test scores vary under changing conditions.
Generalizability theory represents a marriag: between the factorial
experimental design first developed by R. A. Fisher and classical test
theory. 1In a generalizability study, one cbtains two or more scores for
a person by observing him under different conditions, and examines the
consistency of the scores. The analysis estimates components of
variance, each attributable to one condition or combination of conditions
represented in the experimental design. These estimates may show, for
example, that one form of a test elicits about the same behavior as
ancther parallel form of the test, but that variations in test behavior
from one testing to the next are substantial, Generalizability theory is
conceived in terms of the accuracy of tests under various conditions.
Consequently generalizability theory is also discussed in the next
section concerned with the accuracy of measurement.

How accurate are the data? "Accuracy is itself a measurement--the

measurement of the degree to which a given measurement may deviate from
the truth. HNo procedure can claim the name of measurement unless it
includes methods of estimating accuracy®™ (Churchman, 1959:92).

Accuracy is a highly relative term, from at least two perspectives.
One can look at accuracy in terms of the percentage error of
measurement. An error of six centimetres in measuring the width of a
desk 60 centimetres wide is a large error, being ten percent of the
total. However, the same error of six centimetres in neasuring the
distance between the earth and the moon is infinitesimal. A second way
of looking at accuracy is in terms of the decisions or actions that have

tc be made on the basis of the measurement. An error of six centimetres
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in the width of a desk can be important in deciding whether the desk can
be taken through a doorway, whereas an error of one millimeter is
inconsequential. However, this is a simple example where it is
relatively easy to decide how serious a certain size error will be for
the decision that has to be made. Often it is difficult to decide how
serious the size of the error is, especially if one is not very clear
about what decisions or actions have to be made on the basis of the
measurement. The problem of accuracy is made more difficult if a
measurement is to be used in different contexts. Churchman {(1959:92}
states:

In statistical literature, accuracy is szometimes defined
in terms of a “confidence interval." 1In so far as this
computed interval has any meaning, it tells us that a
certain range of numbers constructed out of observations
has a specific probablity of including the "true"
measurement. Each set of observations is the basis for
forming a net to "catch®™ the truth, and the confidence
interval tells us the probability of a successful catch.
But it is almost always difficult to determine how the
information supposedly contained inn a confidence interval
can be used; i,e,, what difference would it make if the
confidence interval were twice as large, or half as
large? Most statisticians seem to prefer to negotiate
this tricky question by urging the decision maker to set
his own size of confidence interval. 8Since most decision
makers honestly do not see the purpose of the interval in
the first place, the interval is set "arbitrarily.," i.e.,
pointlessly.

The decision problem of accuracy has not been solved. The problem of
accuracy is to develop measures that enable the measurement user to

evaluate the information contained in the measurements.

One approach to achieving accuracy of measurement is to carry out

measurements by standard procedures under standard conditions. For
example, for measuring the amount of a certain chemical present in a
sample, standard procedures of chemical analysis are laid down,

especially when such chemical measurements are io be reported




"officially,” such as in a court of law. Educational and psychological
tests are administered under standard procedures and conditions such as
time limit, oral instructions to subjects, preliminary demonstrations,
ways of handling queries from subjects, and every other detail of the
testing situation. This standardization is aimed at controlling the
conditions that could affect the measurement so that these conditions are
the same from one measurement to the next. This leads to the notion in
test theory of the reliability coefficient which is an indicator of
accuracy.

This section and the previous one look at many different aspects of
the measurement process. But of all these aspects, the one aspect that
psychometricians have chosen to focus most of their energies on is
accuracy. Cronbach et al. (1972:23) state that "the heart of traditional
measurement theory is the so-called reliability coefficient, the ratic of
'true score' variance to observed-score variance." As Lumsden (1976:251)
indicates, the most highly regarded notion in all test theory, and the
only one to be seriously developed, has been the venerable, observed
score equals true gcore plus error. The major purpose for this
decomposition is to provide a rationale for the reliability coefficient.

There are several different types of relaibility coefficients

corresponding to different types of possible error. One method for

finding the reliability of test scores is by repeating the identical test
on a second occasion. The reliability coefficient in this case is simply
the correlation between the scores obtained by the same persons on the
two administrations of the test. Retest reliability shows the extent to
which scores on a test can be generalized over different occasions. The

higher the reliability, the less susceptible the scores are to the random




daily changes in the condition of the subject or of the testing
environment.

Another reliability coefficient is the parallel-form type. The same
persons can be tested with cne form on the first occasicon and with a
paraliel form on a second occasion. The correlation between the two sets
of scores represents the reliability ccefficient. If the two forms are
given immediately following cne another, the major error will be due to
content sampling. "Everyone has probably had the experience of taking a
course examination in which he felt he had a 'lucky break®' because many
of the items covered the very topics he happened to have studied most
carefully. On another occasion, he may have had the opposite experience,
finding an unusually large number of items on areas he had failed to
review. This familiar situation illustrates error variance resulting
from content sampling® (Anastasi, 1976:113). If the parallel forms are
not given immediately following one ancther, then the reliability
coefficient indicates not only error due to content sampling but also
error due to sampling over occasions as for test-retest reliability.

Split-half reliability is obtained from the single administration of
a test. The test is split into halves so that the two resulting forms
are comparable. Two scores are thus obtained for each person and the
correlation is found between the resulting two sets of scores. The
split-half reliability coefficient (corrected by the Spearman-Brown
formula} is an indicator of error due to content sampling. A similar
type of reliability coefficient is the Kuder-Richardson reliability
coefficient, there being two versions, Formuia 20 and Formula 21. A test
can be split into half in a large ndmber of ways, and for each of these
splits, the split-half reliability coefficient can be calculated., The

mean of all such split-half coefficients would give the Kuder-Richardson
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reliability coefficient. The Kuder-Richardson reliability coefficient
applies only to tests whose items are scored "right" or “"wrong® and a
more general coefficient has been developed, known as ccefficient alpha.
How do reliability coefficients as indicators of accuracy aid

interpretations and decision making? Pirst, the reliability ccefficient
is one of the criteria used in guiding decisions about test selection.
Second, the reliability ccefficient can be used to make regression
estimates of true scores and the standard error of measurement.* Third,
the reliability coefficient can be used to correct a validity coefficient
such as the correlation between a test and the criterion it is designed
to predict. This is known as the correction for attenuation.** Lord and
Novick (1968:71) state:

The idea is that the correlation between cobserved scores

is less than the correlation between corresponding true

scores because the former correlation is attenuated by the

unreliability of the measurements. If the reliabilities

of the measurements are known, then . . . formulas may be

used to compute the disattenuated correlations, i.e., the

correlations between the corresponding true scores.

Attenuation theory is one important justification for the

emphasis that classical theory has placed on the concept
of reliability.

Generalizability theory, propcsed by Cronbach, Gleser, Nanda, and

Rajaratnam (1972), represents the culmination of a decade of work on

reliability seen as generalizability. Generalizability theory represents

a marriage between the notions of accuracy and generalizability. A

**Lumsden (1976:256) states, "The correction should never be used.
It too often produces corrected correlations which are greater than one,
and it is not sufficient to pass these occasions off with an embarrassed
smile and some mutterings about unreliability of estimates.”

*Linear regression estimates of true scores may be quite misleading
if regression is not linear. Setting up confidence limits using the
standard error of measurement will also be misleading since the standard
deviation of error scores is not independent of true scores (see Lumsden,
1976 :255).




behavioral measurement is seen as a Sample measurement from the
collection of measurements that might have been made. One could take an
average of the collection ©of measurements and this is terms the universe
score. The difference between the observed score and the universe score
is taken to be error. The universe score is taken to be analogous to
"the true score” of classical test theory.

There are many different universes one might generalize to. Any

person fits within many different populations. John Smith may be

considered as a sample from any of several sets: residents of Illinois,
plumbers, persons with a $30,000 income, Democrats, etc. Any measurement
likewise fits with a variety of universes of conditions. Any measurement
is carried out under a set of conditions: the time of day, in a
particular physical setting, with a particular observer, with a
particular set of stimuli, etc. The general term referring to conditions
of a certain kind if facet. Thus, observations may be classified with
respect to the facet of days of testing, the facet of settings, the facet
of observers, etc. A universe of observations will be characterized with
respect to one, two, or more facets.

Why would one want to generalize over a set of conditions? Would one
not be more interested in a measurement made under a particular set of
conditions? Why would one be interested in an average of measurements
made over sets of conditions? Why would the observed score under a
particular set of conditions be seen as in error from an average score
taken over a universe of conditions? Cronbach et al (1972121} claim
there is a need for a universe score and cite an example:

The universe to which an observation generalizes depends
on the practical or theoretical concern of the decision
maker. Consider a supervisor's rating of an employee.

This rating differs from what would be recorded on ancther
occasion, since the supervisor's mogd at the time of




rating and his recent experience with the employee have
some transient effect. The investigator concerned with
employee effectiveness surely wants to generalize over the
class of ratings the supervisor might have given at other
moments. The investigator will generalize over a time
period of perhaps a month if the rating is taken as an
end-of-year report of the employee's qualities. Any of
the moments within that month would presumably have been a
suitable time for the inguiry. In another study, where
the rating is a datum for an intensive study of
week-to-week changes in supervisor attitudes during a
human-relations course, the investigator will generalize
over only a single day. If the rating is a criterion
against which he will validate an ability test, he needs
to generalize over supervisors as well as occasions. But
if the sole concern is whether the employee is getting
along with this supervisor, the universe of possible
supervisors is irrelevant.

Within the natural sciences, there appears to be no corresponding
need for generalizability theory. In the natural sciences, the interest
is in an average of measurements made under a particular set of
conditions rather than in an average of measurements made over sets of
condi*ions. For example, in the practical science of engineering, which
is highly decision oriented, there is an interest in particular
conditions. What is the greatest weight this bridge will have to bear?
What is the highest wind this building will have to withstand? What are
the extremes of temperature this telephone wire will exist under? In
engineering, a measurement under a particular set of conditions is nct
viewed as in error from an average of measurements taken over a universe
of conditions. In fact, taking such a view in engineering would be
ridiculous. Cronbach et al. (1972:21) justify their view with the
example of a supervisor rating an employee over sets of conditions.

However it seems just as likely that there would be an interest in the

employee's performance under particular sets of conditions. It is

difficult to understand why the social sciences need generalizability

theory.




How should the data be expressed?--The language of communication.

Churchman (1959:85) states:
The measurer must develop a language which adequately
communicates to another person what the user must do to
utilize the information contained in the measurement. The
emphasis here is on the language of communication
One aim of the language of measurement is to communicate
to as many potential users as possible since this will
increase the scope of utilization. Another aim is to
enable the user to employ the information when there is
need for fine distinctions since this also will increase
the scope of utilization. These two aims are apparently
in conflict--the more common the language, the more
difficult it is to use the language for portraying fine
distinctions.

In the case of achievement tests, for example, various aids have been
developed to help the test user interpret test scores. By itself a test
score means very little. For norm-referenced tests, tables of norms are
supplied to give meaning to a test score and to aid the test user in
decision making. For a criterion-referenced test, a criterion or mastery
level score is given to which a test score can be compared. For a
domain-referenced test, the test score of a student can be interpreted in
terms of the percentage of the domain that has been achieved by the
student. However, communication of a test score in terms of some form of
norms is most common. Examples are grade equivalents, percentiles, and
standard scores f{e.g., z scores, T scores, stanines).

While a test score has a precision about it, it also represents a

loss of information since a test score involves data reduction. A test

score does not specify exactly what a student can do. A test score

results from summing the scores on a number of items. A test score does
not inform the test user about the student's performance on individual

items.




How are the data to be interpreted? As indicated in the previous

section, the way in which a measurement is communicated will determine
how it is interpreted. But interpretation of the measurement of a
variable is also dependent on how the measured variable is related to
other variables. For example, the ocutside temperature can be interpreted

in terms of what amount of clothes to wear in going outside. The weight

of an object is an indicator of how difficult it will be to move the

object from one place to another. The meaning and interpretation of a
variable is dependent on what other variables it is related to. The
relationship between variables is often expressed in terms of laws or
theoretical networks.

Test validity is the area of test theory that deals with the
interpretation of measurements. Cronbach (1971:447) states:

Validation examines the soundness of all the
interpretations of a test-~descriptive and explanatory
interpretations as well as situation-bound predictions.

To explain a test score, one must bring to bear gsome sort
of theory about the causes of the test performance and
about its implications. Validation of test
interpretations is similar, therefore, to the evaluation
of any scientific theory. . . .

One validates, not a test, but an interpretation of data
arising from a specified procedure. A single instrument
is used in many different ways~--Smith's reading test may
be used to screen applicants for professional training, to
Plan remedial instruction in reading, to measure the
effectiveness of an instructicnal program, etec, Since
each application is based on a different interpretation,
the evidence that justifies one application may have
little relevance to the next. Because every
interpretation has its own degree of validity, one can
never reach the simple conclusion that a particular test
"is valid."

Thus test validation is viewed as the validation of interpretations of

data arising from various test administrations.




How are the data to be used in decision making? Cronbach (1976:200)

views "improved decisions as the aim of measurement." Churchman
(1959:84) states:

Measurement is a decision making activity, and, as such,
is to be evaluated by decision making criteria.

In this sense, i.e., measurement taken as a decision
making activity designed to accomplish an objective, we
have as yet no theory of measurement. We do not even know
why we measure at all. It is costly to obtain
measurements. Is the effort worth the cost?

However, in relation to tests, Cronbach and Gleser (1965) have put

forward a theory of measurement as a decision making activity. The theme

of their book is that the practical uses to which a test.iS put and the

measurement procedure should not be separated. When decisions are based
on test scores, it is the accuracy of classification of a person which
matters s0 that precision of measurement is valuable only insofar as it
enhances the gquality of decision, i.e., reduces misclassification. Two
special cases of classification are important in relation to
tests—placement and selection. An example of a placement is dividing
students among sections to be taught at different rates and using a test
for coarse grouping of applicants. 1If the decision is acceptance or
rejection into a treatment, then this case is one of selection.

Cronbach and Gleser (1965) stress that information must be purchased
and that costs should be assessed as accurately as circumstances permit.
Cronbach and Gleser discuss the utility of information as a function of
the benefit of using the information as the basis for decisions minus the
cost of gathering the information. They also emphasize the
bandwidth-fidelity dilemma. The test designer and the user of tests
frequently have to choose between careful estimation of a single variable

and more cursory exploration of many separate variables. In any decision




gituation, there is some ideal compromise between variety of information

(bandwidth) and thoroughness of testing to obtain more certain
information (fidelity). For example, if a person is choosing published
tests for a testing program, he has to decide whether to use the
available time to measure one or two variables by means of long tests, or
employ a much larger number of short tests measuring a variety of
characteristics. 1In 1976, Cronbach (1976:200) reviewed the value of
decision theory (D theory).

We have had D *+theory for two decades; in that time, its
formulas have almost never been applied to actual data.

To apply D theory formally demands data that can rarely be
assembled. At best, the machinery yeilds precise analyses
of test efficiency that have little practical advantage
over rough estimates. The important aspect of D theory
has been the questions it put into our minds. I offer
several examples.

l. Formerly, measurers equated adequacy of measurement
with test length. D theory advised us to consider the
cost-effectiveness of the design for a measuring
instrument. It advised us to reduce our concern for
precision as such, and to ask, instead: To what degree if
any does collecting additional information improve a
decision?

2. When we began to see improved decisions as the aim of
measurement, that insight changed our view of other
matters. An evaluation, we now say, is a study in aid of
decisions. . . .

3. D theory led us to see that most decisions about
students are placement decisions, and that these can be
validated only by the study of Aptitude X Treatment
interaction. . . .
4. D theory's concept of utility of information continues
to prove its value. It has recently transformed the
discussion, among measurement specialists, about bias in
selecting students and employees.
To summarize this section, the first column of Table 1 shows the
various aspects of the measurement process. Section A refers to the four

Steps developed in the previous section, and Section B shows the six

aspects of using measurements. In the second column., the corresponding
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aspects of test theory are listed. Oppesite A3 and A4, the aspects of

test theory have been placed in parentheses, since these aspects of test

theory do not fully reflect A3 and A4. It is clear from Table 1 {p. 42)

that test theory has largely developed around the use of measurements.
There is nothing to correspond to Al and A2. The conclusion is that, if
tests are to result in measurement, there is need for a development in
test theory around the four aspects of obtaining measurements which are
associated with the nature of tests. This completes the discussion of

measurement. Other ways of assigning numbers will now be discussed.

Counting

If one had to choose the way numbers were historically first assigned
to objects and events, one would choose counting. Enumeration, that is
counting, is a very basic process and is something that we commonly carry
out in our everyday lives. It seems so simple that it is briefly and
rarely discussed in the literature as a method of guantification.

Numerosity, number and counting, though they are linked, can be
distinguished from one another. Numerosity, the property of a group of
entities or attributes, when it is conceived as ™many™ or “few,” is a
classificatory concept and is conceived without the use ©of number or
counting. This is also true when numercsity is a comparative concept, as
when it is conceived as "greater than, less than, or egual in manyness."
Nelson and Bartley {1961:179) argque that numerocsity can be discerned

without the use of number or counting:




TABLE 1

A SUMMARY OF THE VARIOUS ASPECTS OF THE MEASUREMENT PROCESS SHOWING THE
CPRRESPONDENCE WITH TEST THEORY

Aspects of Test Theory That Purport

Aspects of the Measurement Process To Correspond

Obtaining Measurements

Understanding the property in
gualitative terms.

Conceptualizing the property
in gqguantitativa terms.

Development of a procedure
for determining the empirical
relations between amounts of
the property.

Assignment of numbers so that
resulting numerical relational
structure is homomorphic with
empirical relational struc-
ture.

Using Measurements

Wwhat measurements are needed?

How are the measurements to
be used in various contexts?

How accurate are the
measurements?

How should the measure-
ments be expressed?

How are the data to be
interpreted?

How are the data to be used
in decision making?

(Test construction)

{Test scoring)
(Scaling theory)

Decision Theory (Cronbach and
Gleser, 1965)

Generalizability Theory (Cron-
bach et al., 1972)

Reliability ,
Classical Test Theory (Lord
and Novick, 1968)
Generalizability Theory (Cron-
bach et al., 1972)

Norm, criterion, and domain
referencing

Test validation

Decision Theory (Cronbach and
Gleger, 1965).




One might first ask whether there are conditions under
which discrimination of "number® can be made without
knowledge of systems of thought involving number. There
are. It is Kknown that youngsters are capable of
perceiving the "manyness" difference between 5 oranges and
20 marbles before formal indoctrination in arithmetic.
This testifies to the fact that there exist "natural
classes” of one, two, three, etc. objects, which, if they
are not too large, are something perceivable or directly
discriminable. Taves (1941) used exposure times too short
to permit counting and found adults able to compare the
"manyness” of dots accurately providing they did not
exceed ten in number. In addition, such natural classes
are items that are perceivable even by various sub-human
species. O. Roehler (1956) has shown this to be the case
in pigeons in which the experimental variable is actual
number of items, other stimulus factors varying at

random. Under these conditions his pigeons did
discriminate, and this discrimination had to be based upon
such natural classes. Let us say then that these natural
classes have numerosity. It is numerosity, not number,
that is discriminative in nature.

Numerosity, conceived as a comparative concept, can also be discerned
without the use of number or counting. Consider two boxes, each

containing prepared biclogical slides. It is possible to tell without

number or counting whether the two boxes "“have the same numerosity" of

slides, or whether one "has more than" and one “has less than."™ The
procedure would be to remove one slide from one box and at the same time
remove one from the other box. This double operation could be repeated
until one, or both, of the boxes were emptied of slides. If both boxes
are emptied of slides, then the boxes had the same numerosity
originally. However, if one of the boxes still contains slides after the
cther has been emptied, then that box had a greater numerosity of slides
to begin with.

Perception and comparison are not the only ways that numerosity may
be discriminated. When numbers are associated with numerosity,
numerosity is being conceived as an absolute concept. Numerosity and

number can be distinguished. Numerosity is a natural fact which has to
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do with perceived or inferred manyness. On the other hand, numbers,

while they may represent numerosity, differ. Numbers have an independent
existence, as, say, marks on paper, from events with numerosity. They
can be treated symbolically as though they are completely divorced from
natural numerosities. While number and numerosity differ, number is used
interchangeably with numerosity in everyday language. FPor example, Ellis
(1966:152) states, "The word 'number' is certainly used as a quantity
name. We talk of groups being equal in number, or of one group being
greater in number than another, just as we talk of objects being equal in
length, or of one object being longer than another.”

Counting is the process by which the number indicating numerosity is
arrived at. Counting provides an alternative to sensory discrimination
when the task is one ©of detecting numerosity. Nelson and Bartley
{1961:181) state:

In counting, the class ©f natural numbers beginning with
one and ordered in the usual way is used to interpret a
class of objects. Members of the class of objects taken
one by one in any order are put, one by one, in
correspondence with the ordering of numbers. The last
number of course names the class of objects, Counting,
insofar as it is a numbering device, is arbitrary in the
sense that it involves human convention.

Counting requires that a group of entities or attributes be formed
and that there must be at least implicit criteria why members belong to &
group. Members of a group need not be jidentical but they must be
equivalent in some way. Smith (1938:4) gives a clear example of what is
meant by eqguivalence. He also explains how counting (i.e., enumeration)
is different from measurement:

Suppose we have a pile of boards and we wish to know how
many boards there are in the pile. We enumerate them and
discover that there are thirty-two. Enumeration requires
that some class of objects be defined. The definition

does not require that the object have identical properties
nor that they possess the properties in the same degree.
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The poards in the pile may vary in coler, temperature,
length, weight, density, hardness, and so on, but they
must be chjects near enough te constitute a single class
of objects which we call boards. Thus by enumeration we
can answer the guestion: “How many boards?" If we ask,
however, whether cne board is longer or heavier than
ancther, cbvicusly we have raised a problem that
enumeration cannot anawer. To answer this dquestion
requires measurement, because enumeration cannct be used
to describe the different degrees of property such, for
example, as lengths and weights of boards. We can
enumerate the boards, but we cannot enumerate their
lengths and weights. It is precisely the variation of the
properties which, ignored by enumeration, constitutes the
area dealt with by measurement. Measurement is not
concerned with a class of objects nor with the questicon of
how many cbhjects of a particular class are present at a
given time and place.

Ellis (1966:153) agrees that counting is not the same as measurement:

It is clear that we should say that number is a guantity.
But on the cther hand, it seems to make nc sense to speak
of measuring the number of things in a group. We can
speak of counting, calculating, or guessing the number,
perhaps, but not of measuring it. . . . The verb "to
count™ can be used transitively or intransitively.
Intransitive counting, that is the idle recitaticn of the
numeral sequence, is admittedly not very like measuring.
If we are measuring, then we must always be measuring
something in some respect. We cannot simply be
measuring. But transitive counting has some of the
essential characteristics of a measuring procedure. For
it is an objective and determinative procedure for
assigning numerals to groups--({"cbjective™ in the sense
that any one who follows the same procedure with
sufficient care will be led to assign the same numerals to
the same groups). '

In an earlier example, two boxes of biclogical slides were compared
to one another. This procedure would have worked just as well were the
objects involved of a different kind. The biclogical slides could have
been compared toc the burners on the laboratory bench or the number of
bottles of chemicals on the shelves. This leads to the following two
rules that are soc cbviocus that they are seldom noticed.

l. If two sets of objects, when compared against a third set, are
found tc have the same number as the third set, then, when counted
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against each other, they likewise, will be found to have the same

number. This rule enables us to determine whether two sets of objects
have the é&melnumber without actually bringing them together at all. It
suggests the bossibility of portable standard collections which can be
counted, first against one collection then against another, in order to
tell us whether these have the same number (Hanson, 1969:45).

2. Hanson (1969:45) suggests another rule, ancillary to the first:
By starting with a single object and continually adding another object to
it, we can build a series of collectionsS, €.9.; oy coy ooy cocey ssseey
of which some one collection will have the same number as any other
collection whatever. This rule suggests the efficacy of counting
collections not against each other, but against some single standard
collection.

Counting differs from the measurement of both interval and ratio
concepts in that there is nothing corresponding to a standard unit. The
numer ical sequence itself plays a role similar to that of a standard. In
the process of counting, members of a group of entities are matched with
members of the numerical sequence. Thus, if a group of five entities is
counted, the subset of the numerical sequence, 1, 2, 3, 4, 5, serves as a
standard group of five. Ellis (1966:156) expresses it this way:

It is conceivable that we would use groups of stones Or
marbles as numerical standards, and that they should be
kept in special museums to protect them from destruction.
All nunber determination would then be done by matching
the group whose number is to be determined with one of the
standards, or its equivalent in number. We can imagine,
indeed, that we should all carry around little bags of
marbles labelled 2, 3, 4, and so on, and that when we wish
to find the number of things in a given group, we simply
find the bag which contains the same number of marbles.
This would be logically very similar to carrying around a

set of feeler gauges. 1In fact, of course, this would be
very cumbersome, and it is much easier to use subsets of




the numberical sequence as numerical standards. The
subset of numerals 1 tc 12 is a far more convenient
numerical standard than a bag of 12 marbles.
Primitive man probably used his fingers and toes as numerical
standards. According tc Hanson (1969:45), less primitive man used
standard collections ©f "counters,” small bead-like tokens, of which a

great many could be carried at once in a single bag. The beads of an

abacus serve as numerical standards. Parenthetically, it can be noted

that in shops we still say that we conduct business "over the counter.”

Numerals serve the purpose of ocur counting tokens. Numerals are just the
distinguishable "cbjects" cut of which we build cur standard series--by
adding them in turn to previcus members of the series: ™1," "1, 2," "1,
2, 3," "1, 2, 3, 4," and sc on, indefinitely. We count cther ccllecticns
against these members of the standard series. In this way, we can
ascertain whether or not two collections so counted have the same number.

In the measurement of interval or ratic concepts, the choice of unit
is arbitrary. For example, tc form a scale of length, all that is
necessary toc do is to select any object which bears a stable length
relationship to sufficiently many other objects. This object can serve
as the unit of length and be assigned a npumeral of one. All other
lengths will be some fracticn or multiple of this length. The unit must
be given a name. It is meaningless toc say, "This cbject has a length of
five." It is necessary to say that it is S meters or 5 feet, indicating
the name of the standard of length that has been chosen.

In contrast with enumeration, there are no such choices tc be made.
There is no arbitrary selection of a unit to act as standard. If cranges
are being counted, there is no arbitrary selection of a certain group of
oranges to act as a standard. Nor is the invention of a unit
meaningful. It is not meaningful or useful to say about a group of five
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oranges that, "This group contains five gronks,” where "gronks” is an
invented name. In order to carry out the process of counting, it is
necessary that the entities form a group because of their equivalence in
some respect. Because of their equivalence, any one of the entities in a
sense is a unit.

The number given by a measurement procedure is dependent upon the
scale of measurement used. Whether one counts by ones, twos, or threes,
the number of entities in a group is quite independen” of the counting
procedure used. The statement, "This group contains five entities,” has
a precise meaning which is independent of counting procedures.

Counting is the procesg of attaching a number to the numerosity of a
group of entities or attributeg. ¢Counting requires a classificatory

concept since one must be able to decide whether the entities or

attributes do or 4o not belong to the group. Thus a very important

gquestion to be asked is, "Are the entities or attributes eguivalent or
are they different?” The question appears quite trivial when apples or
orangss are being counted, but the guestion is guite a difficult one when
phenomena about which little is known are being studied. An example will
be taken from the history of science as illustration.

Astronomy was one of the earliest sciences. The heavens were rich in
phenomena. To the ai.cients the stars, planets, comets, meteors, thunder,
lightning, hail, clouds, and rain were more alike in their origin and
effects than they are to us today. They found what was in the sky as
inaccessible as we find aspects of the human mind today. The word
"meteorology” (the study of the-things-on-high) covered at first the
science of all those things which happened above the earth and so were
inaccessible to close inspection {Toulmin and Goodfield, 1961:17). Today

we restrict the same word to the science of the weather, knowing that
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climatic happenings have to be explained differently from astronomical
happenings. Thus part of saying things are different ig explaining them
in different terms.

Simple observation is not enough to say whether entitieg are the same
or different. Astronomy was rich in observation for thousands of years.
Theories and systematic investigation are needed to expl..n whether
phencmena belong to the same category or not. To the ancients it was not
clear that planets were essentially different objects from the stars even
though it was observed that the planets moved in relation to the fixed
stars. The sun appears so different from the stars, it was no wonder
that it took go long for it to be realized that the sun and the stars
belonged to the same nuclear phenomenon.

Thus the question of whether entities belong to the same category Or

different categories of phenomena is not necessarily an easy question to

ancwer. We countlup the items answered correctly on a test as if each
item required essentially the same type of mental process. We have no
theories to tell us if it jg essentially like regarding planets and stars
as belonging to the game phenomenon.

One limitation on counting is that it applies only to the discrete
(Hanson, 1969:46). We cannot count the drops in a beaker of alcoheol
unless we first introduce a convention as to what will be regarded as “a
drop." This agreed, we must then find a way of separating ocut these
drops from cne ancther in an invariant and uniform way. Similarly we
cannot count electromagnetic radiation though we may be able to obtain a
count on the number of wavelengths that pass a given point in a second.

It is common for the number cbtained by an enumeraticn procedure to
be uged as an indicant ¢f some property. A common example is that the

number of items correct on a test is used as an indicant of an




individual's ability to correctly answer the items. That is, the number
obtained by enumeration is regarded as a "measurement" of a property on
some scale. When a number obtained by enumeration is used as an indicant
of a property, it is still necessary for the enumeration process that the
entities counted still belong to the one class. That is, the entities
must still be eguivalent in some way.

In summary, counting is the process by which the number indicating
numerosity is arrived at. Counting regquires that a group of entities or
attributes be formed and that there must be at least implicit criteria
why members belong to a group. Members of a group need not be identical,
but they must be equivalent in some way. Counting differs from the
measurement of both'interval and ratio concepts in that there is nothing

corresponding to a standard unit. In order to be counted, entities must

belong to the one group. It is not always easy to decide whether

entities belong to a group or do not. We count up the items answered
correctly on a test as if each item required essentially the same type of
mental process. We have no theories to tell us if it is essentially like
regarding planets and stars as belonging to the same astronomical
phenomencn. The number obtained by enumeration is often used as an

indicant of some property, as is the case with tests.

Waming By Numbers

Naming by numbers does not constitute measurement or counting.
Examples of naming by numbers are telephone numbers, numbers on football
jerseys, or social security numbers. WNaming by numbers is sometimes
called nocminal measurement, but it is not intended that the numbers

indicate empirical relations as for measurement. For example, a football




player with the number 40 has not twice the ability of a player with the
number 20. Nor do the numbers have anything to do with counting, as for
example how many members are on the football team. Furthermore, the
numbers do not indicate any order or rank, such as the order of their
ability at football or the order‘in which they will play.

A set of words may have the same denotation as the numbers. For
example, a particular galaxy is identified as "M31" or "NGC224,"
according to its listing by Messier or in the New General Catalogue. It
is also known as "The Great Nebula in Andromeda.”

A number may be used as a label and at the same time indicate scme
kind of rank. Thus four courses in chemistry might be given the labels
Chemistry 100, Chemistry 200, Chemistry 300, and Chemistry 400. At the
same time the numbers are used to indicate rank in terms of level of
advancement in chemistry.

wWhen numbers are assigned as social security numbers, to licenses, or
to football players, no twe numbers are assigned to the same object, and
no two objects have the same number assigned to them. This does not hold
when numbers are used as labels to categories. For example, jin a
swimming class, the students were regularly divided intoc two groups,
Group One and Group Two. Group One swam across the pool first and Group
Two swam second. In this case two persons could have the same number
assigned to them. In addition, the labels alsc indicated the rank or
order in which the groups swam across the pool.

When classes are given a number label, the number will alsc indicate
some order according to whether the classes are ordered or not. For
example, for the purpose of statistical calculation, males are often

given the label One and females the label Zero. No order is intended in

these labels since there is no order in the categories, male and female.




One way of regarding a rating scale is as a set of ordered categories.
very common form of rating scale requires the rater to judge which of
five classes his agreement-disagreement falls into, as the following
example jllustrates.
The instructor was very helpful to me
5 4 3 2 1

Strongly Agree Neutral Disagree Strongly

Agree Disagree
The numbers can be regarded in two different ways. First, the numbers
could be regarded as indicating the classes of agreement-disagreement.

wWhen regarded in this way a frequency distribution showing the number of

people falling into each class could be given. Second,

agreement-disagreement could be regarded as a comparative concept, the

higher the number, the higher the amount of agreement. 1In this case, a
median or mean is commonly calculated. So with a rating scale which uses
numbers, the numbers may be regarded as classificatory labels or the
numbers may be regarded as indicating a comparative concept involving

human judgment of order.

Numerical Judgment

The methods of numerical judgment are very well covered by

Torgerson's book (1958), Theory and Methods of Scaling. They will not be

dealt with in detail here, but a brief summary of the major methods will
be provided.
Toregerson (1958:61) describes one set of methods as the ™subjective
estimate methods."
The rationale is basically the same regardless of the
subject-matter area in which the methods are used. The

procedures are as follows: a series of stimuli is
presented to a subject (judge, observer), who is
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instructed to render a direct, gquantitative judgment of
the amount of a specified attribute that is possessed by
each of the stimuli. FPFor example, the task set for the
subject might be to rate each of a group of essays on a
ten-point equal~-interval scale with respect to

excellence. It is assumed that the subject is capable of
carrying out this task. That is, if he rates three essays
as 4, 5, and 6, respectively, it is assumed that, except
for a certain amount of error, the difference in the
degree of excellence between the first and second essay is

equal to the difference between the second and third. He

is thus required to make his reports so that they may be

treated as scale values on a linear scale of the attribute

of interests.
Numer ical judgment is associated with comparative concepts. fThat is, in
contrast to Torgerson, who assumes judgments can be made on an interval
scale, a conservative view assumes that numer ical judgments can be made
only on an ordinal (comparative) scale. Judgments can be made of
unidimensional concepts or multidimensional concepts. BAs an example of a
unidimensional concept, consider the following experiment: The subjects
are presented with a series of objects differing only in weight. They
are instructed to rate these objects on a ten-point, subjective scale of
weight, with the higher digits corresponding to the heavy end of the
continuum, and the lower digits to the lighter end. The subjective
concept, weight, is unidimensional. However, grading essays involves
making a subjective estimate of a multidimensional concept, since many
different aspects--expression, grammar, punctuation, content, etc.--are

taken into account.

Numer ical judgements can also be obtained by fractionation methods

which assume that a subject is capable of directly perceiving and

reporting the ratio of two subjective magnitudes. Fractionation methods
exist in -two different forms. With direct-estimate methods, the subject
is presented with two stimuli and instructed to report the subjective

ratio between them with regpect co the designated attribute, for




example, two tones of the same pitch might be presented to the subject
with instructions to report the ratio of loudness of the first tone to
the second. With prescribed-ratio methods, one stimulus (the standard)
is kept fixed, and the other (the variable) is adjusted. The subject's
task is to report when the subjective ratio of the variable to the
standard is equal to some prescribed ratio, For example, the subject
might be instructed to adjust the variable stimulus until it is one half
as loud as the standard. Fractionation methods have been carried out
with the unidimensional concepts--loudness, pitch, numerosity, weight,
saltiness, sweetness, sourness, bitterness, brightness, and time
intervals. If it can be assumed that the subject is capable of carrying
out the instructions, then a ratioc scale is obtained. Torgerson
(1958:113) comments, "As was true of the subjective-estimate methods, we
have no basis for concluding that the scale actually possesses the
properties attributed to it from the data gathered in the scaling process
itself. scale values of the stimuli could always be computed, assuming
only that the subject could make valid ordinal judgments and that he
behaved more or less consistently."®

With equisection methods, the subject has available an unlimited
number ©f stimuli which are ordered with respect to the attribute. The
exper imenter designates the smallest and the largest as standards. The

task set for the subject is to select n-1 of the remaining stimuli so

that the n-1 stimuli divide the interval between the two standards into n

subjectively egqual intervals.

The differential-sensitivity methods are based on the concept of the
equality on the psychological continuum ©f just noticeable differences.
That is to say: If a stimulus B is "just noticeably greater” than

stimulus A, and stimulus C is "just noticeably greater®™ than stimulus B,




then the distance on the psychological continuum that separates A and B
is equal to the distance separating B and C. This notion may be taken as
an assumption, subject to further test, or as a definition of what is
meant by equality of intervals on the psychological continuum.

In the method of paired comparison, each stimulus is paired with each
other stimulus. Each pair is presented to the subject, whose task is to
indicate which member of the pair appears greater {(heavier, brighter,
louder) with respect to the attribute to be scaled. The subject must
designate cne of the pair as greater. No eguality judaments are
allowed, It is possible mathematically to calculate the scale value of
each of the stimuli.

There are at least three sets of procedures where stimuli are placed

into categories which are ordered with respect to the attribute being

investigated. The first set of procedures is sorting procedures. which
includes the method ©of successive intervals. The subject's task is to
sort the stimuli into piles so that the first pile contains those stimuli
that are most positive yith respect to the attribute; the second pile,
the stimuli next most positive, etc. It is only necessary that the piles
be in rank order with respect to the attribute. Often the piles may be
identified with adjectives which progress from extremely positive to zero
or extremely negative, depending on the particular attribute. The second
set of procedures is rating procedures. The stimuli are presented one at
a time, instead of presenting all stimuli to the subject at once. The
rating may be expressed un a numerical scale (e.g., rate on a scale from
1l to 5, 5 being most positive) or an adjective scale. The numerical
scale (not the actual rating) is an example of naming ordered categories
by numbers. The third set of procedures is ranking procec.ces. The

subject is required to place the stimuli in rank order with respect to
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the attribute. Each rank may be taken as a categoryr or several adjacent
ranks may be combined to make up each category.

This completes the brief description of the various methods of making
numerical judgments as described by Torgerson (1958). It is
conservatively assumed that numerical judgment can be made only on an
ordinal scaler i.e., numerical judgment is associated with comparative
concepts and not with interval or ratio concepts. In general, the
various methods described can be used for making numerical judgments of
unidimensional as well as multidimensional concepts. It should be clear
that numerical judgment is quite distinct from the other ways of
assigning numbers previously described--measurement, countingr and naming

by numbers.

Indices

At the outset, it is important to distinguish between an “indicator”

and an "index." For example, "the number of times a person attended

church in a year" is an indicator of his religiosity. &an indicator will
be taken as a unidimensional concept. On the other haad, if numbers are
assigned to religiosity by making an algebraic composite of church
attendance, number of other church-related activities, proportion of
income spent on religious matters, and fregquency of Bible reading, then
this is called an index. Following Lazarsfeld and Rosenberg {1955:16)
and Bojean, Hill, and McLemore {1967:2), an index is considered as an
algebraic composite of several indicators. Hence an indicator is taken
to be a unidimensional concept and an index to be a multidimensional

concept.




A feature of both an indicator and an index is their indirectness in

giving information about a characteristic. Thus the percentages of
illiterates in a series of demegraphic units may be used as negative
indicators of the general cultural level of the units which cannot be
ascertained directly. The number of rooms in the dwelling of a family
may be used as an indicator of the family's economic status.
Qccupational status, father's level of education, and number of books in
the home can be combined to form an index of socioeconomic status of a
family. In an intelligence test, each item correctly answered is taken
as an indicator of intelligence. The number ©of correct answers on the
test may be taken as an index of a person's intelligence. In physics,
indicators are common. For example, temperature is not measured
directly, but is indicated indirectly by the length of a mercury column,
the resistance of a platinum wire, or the pressure of a constant volume
of gas. Economigts typically use indices to characterize general
market-price movements. Perhaps the best known is the Dow-Jones
Industrial Average, which is the total market price of one share each of
30 representative stocks, divided by 1.661 (Christy and Clendenin,
1974:225). According to Hagood and Price (1952:138), the direct-indirect
division is not an absolute dichotomy and there are borderline cases
which would be difficult to classify.

According to Lazarsfeld (1958:101}, the process by which concepts are
translated into empirical indices has four steps: an initial imagery of
the concept, the specification of dimensions, the selection of observable

indicators, and the combination of ind. ators into indices.

l. Imagery. Lazarsfeld (1958:101) describes imagery as follows:




Out of the analyst's immersion in all the detail of a
thecretical problem, he creates a rather vague image or
construct. The creative act may begin with the perception
of many disparate phenomena as having some underlying
characteristic in common. Or the investigator may have
observed certain regularities and is trying to account for
them. In any case, the concept, when first created, is a
somewhat vaguely conceived entity that makes the observed
relations meaningful.

For example, the beginning idea of intelligence was cbservation and
involvement with children--some strike one as being alert and interesting
and others as dull and uninteresting. This kind of general impression
starts the wheels of conceptualization rolling. Observations ©f social
relationships might begin, for example, with reflecticns on cne's cwn *
perscnal experiences in relationships and,, on this basis, specificaticns
of the concept follow.

Beginning with imagery of a concept has linguistic problems
associated with it. Payne (1975:35) suggests that imagery of a concept
is of four types:

Concept A. The thing only I have in mind. =
Concept B. The thing we all have in mind for a word.
Concept C. The thing none of us may have in mind which
is really the phencmenon a word stands for.
Concept D. The unobservable phenomenocn known only through
its consequences which we all have in mind for a word.

An example of Concept A is when a person states an operaticnal
definition of what he alone means by a concept, "I cperationalize my
concept of 'naticnalism’ as follows . . ."

With Concept B there is an assumption that there is a shared meaning
for a concept. This assumption is an empirically testable one. Social

science concepts are often multidimensicnal complex concepts for which

there is no shared meaning. Consider as examples such concepts as

intelligence, nationalism, and alienation.




A typical example of Concept C is as follows: "Considerable
confusion exists over the concept of pelitical development. Although
there is a general acceptance of the importance of understanding the
nature of political development, there is still considerable ambiguity
and imprecision in the use of the term 'political development.'" The
writer is not claiming that the word refers to a phenomenon only he has
in mind and therefore this is not a Concept A. Concept B is not intended
since he explicitly states that there is not a shared meaning for the
term and everyone does not have the same phenomenon in mind. However,
the writer appears to believe that "political development®™ is a
phenomenon, the nature of which it is important to understand. Payne
(1975:36) writes:

Another example of the same problem would be the following
query:

How can we conceptualize personality integration in a
way which will permit us to understand it better?

Again notice how a word, "personality integration,® is
automatically supposed to imply a phencmenon, an “it,"
before any human being has seen, or defined, the
phenomenon.

Concept-C is the verbal reification fallacy: a word must
have one correct meaning which is independent of the
meaning human beings may have for it.

Concept D is used when we wish to postulate the existence of unobservable
phenomena known only through their consequences., Such concepts are of ten
called constructs. Payne (1975:37) gives "the force of gravity" as an
example of Concept D.

It differes from the Concept-B of "cat”" in this way. 1If
you ask me to show you what we all have in mind for "cat,”
I can produce the animal. If asked to produce the "force
of gravity,” 1 would say that I could not; I could produce
only consequences of this force, namely objects falling
down. . . . Are the two kinds of concepts, B and D,
significantly different? With Concept-B, 1 assert that my
measure identifies the phenomenon everyone has in mind for
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the word "cat." With Concept-D, I assert that my measure
identifies the phenomena everycne has in mind as
consequences of the unobservable "force of gravity."

In the social sciences, we noted that with a Concept B there is
usually not shared meaning. This is true also for a Concept D. Take as
an example, alienation, a force within the individual which has certain
behavioral consegquences. However, there is not agreement on the
behavioral consequences. Should an alienated individual join protest
mavements, refuse to vote, or commit suicide? Different persons may
select different behavioral consequences., Of course the phencmena can be
investigated. 1f strong dependable association is found among these
consequences, then there would be reason to account for these phencmena

by appealing to cur unocbservable concept, such as alienation.

2. Concept specification. The next step is to take the original

imagery and divide it intoc dimensions or components. The concept that
comes from the imagery consists of a complex combination of phénomena.

rather than a simple and directly observable item.

An example of concept specification is Guilford's model of the

structure of the intellect, which consists of 120 components. This model
was proposed on the basis of more than two decades of factor-analytic
research (Guilford, 1967). Guilford and his associates have identified
98 of the anticipated components (Guilford and Hoepfner, 1971). Another
example is that of Kuhn and McPartland (1954) who identified the
following dimensions of attitudes toward the self: favorableness,
salience, consensualiity, social locus, and preferences.

3. Selection of indicators. After deciding on the components or

dimensions, it is necessary to find indicators for the dimensions. Take
the dimension of prudence as an example. A prudent Persocn is probably

one who takes out insurance, hedges in betting, looks before he leaps,




and so on. We talk about the probability that a prudent person will
perform any one of these acts compared to a less prudent person. The
indicators of prudence will vary with the social setting of the
individual. Students in a college organized along strict religious lines
are unlikely to bet and would not have incomes that would allow them to
take out insurance, Indicators of prudence relevant to the setting would
be whether 2 student always makes a note before he lends a book, whether

he never leaves his dormitory room unlocked, etc. Lazarsfeld (1958:103)

states:

The fact that each indicator has not an absolute but only
a probability relation to our underlying concept requires
us to consider a great many possible indicators. The case
of intelligence tests furnishes an example, First,
intelligence is divided intoc dimensicns of manual
intelligence, verbal intelligence, and so on. But even
when there is not just one indicator by which
imaginativeness can be measured, we must use many
indicators to get at it,

There is hardly any observation which has not at cne time
or ancther been used as an indicator of something we want
to measure. We use a man's salary as cne of the
indicators of his ability; but we do not rely on it
exclusively, or we would have to consider most businessmen
more able than even top-ranking professors. We take the
number of patients a doctor has cured as another indicator
of ability in that setting: but we know that a good
surgeon is more likely to lose a patient than is a good
dermatologist. We take the number of books in a public
library as an indicator of the cultural level of the
community; but we know that quality of books matters as
much as quantity.

A property may be a necessary, sufficient, or relevant indicator of a
concept. The amount of summer rain would be a necessary but not
sufficient indicator of the size of the corn crop in the Midwest of the
United States. To be sufficient, other indicators would have to be taken
into account, such as the amount of spring rain during the planting
period. The size of the corn crop would be a sufficient but not a

necessary indicator of the amount of hay fever. This is because the size
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of the corn crop and the amount of ragweed:. the latter being the cause of
the amount of hay fever, both have common causes. The amount ©of ragweed
would be both a necessary and a sufficient indicator of the amount of hay
fever. The amount of rice eaten by a group of people is neither a
necessary nor a sufficient indicator that the group of people are or are
not Orientals, since people other than Orientals eat rice. Rather, the
amount of rice eaten is a relevant indicator, since Orientals usually eat
a lot of rice. That is, the relationship is a probability one. The most
preferable type of indicator is a sufficient one, since only one
indicator {(and no index) is required. A necessary indicator is
preferable to a relevant one, since the relationship to the concept
indicated is not a probability one. A number of necessary indicators
taken together may be sufficient for indicating a concept. In practice,
in forming an index, it is usually possible to find only relevant
indicators. In the physical sciences, in contrast to the social
sciencas, indices are not used because sufficient indicators of concepts
have been found.

With tests, the indicators are the items, and these are commonly
dichotomous. That is, if the item. is correctly answered, it indicates
the presence of the dimension or concept, and if not correctly answered,
it indicates the absence. With dichotomous items, the test concept is in
fact a classificatory concept and each item, besides being an indicator,
is also a classificatory criterion. As discussed in Part I, a criterion
can be related to its classificatory concept by necessity, sufficiency,
or relevance. In practice, with tests, indicators {(items, criteria) are
related by relevance, there being no necessary or sufficient indicators
of concepts, This is another way of stating "the fact that each

indicator has not an absolute but only a probability relation to our
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underlying concept” (Lazarsfeld, 1958:103), and consequently many
indicators (items, criteria) are necessary. Indicators (items, criteria)
of test concepts are chosen not only on the basis of their relevance to
the test concept, but also on the basis of item analysis. The power of
an indicator (item, criteria) is ascertained by correlating its value
with the total test score. The size of the correlation coefficient of an
indicator is greatest when subjects who obtain high total scores possess
the indicator and subjects who obtain low total scores do not possess the
indicator. Choosing indicators on the basis of correlation coefficients
tends to result in indicators which are homogeneous. This has to be
balanced against the fact that a certain degree of heterogeneity of
indicators is necessary in order to capture fully the many dimensions of
a test concept.

It is useful to distinguish those indicators that are part of a
concept from those external to it. External criteria can furnish useful
predictive criteria for the indicators which are central (most relevant)
to a concept. TLazarsfeld (1958:103, 194) offers the following example:

If we start listing indicators of the "integration"” of a
community, is the crime rate a part of the c¢onception of
integration, or is it an external factor which we might
try to predict from ocur measure of integration? Here
again, as with the problem of projective indices, knowing
the laws which relate indicators to one another is of
great importance. Even if we exclude crime rates from our
image of an "integrated" city, they might be so highly
correlated, as a matter of empirical generalization, that
we could use them as a measure of integration in
situations where we could not get data on the indicators
which we "really” want to call integration. 7To do this,
of course, we pmust first have "validating studies" where
we correlate crime rate with other indicators of
integration and establish that it is generally closely
related. We should alsc know there are other factors
besides integration influencing crime rate which might
confuse ocur measurements if we used it alone to measure
integration, so that we can check on these other factors,
or add enough other indicators so as to cancel out their
influence.

3
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It is clear from Lazarsfeld's preceding statement that the choice of
indicators may need to rest on rather extensive empirical knowledge of
the relationship between indicators. While the jinitial step in the
creation of our index may be some rather vague imagery, the development
of the index may require quite an amount of qualitative and gquantitative
investigation.

4. Formation of indices. If for a particular concept, six

dimensions have been identified, and ten indicators have been selected

for each dimension, then in order to create an index, somehow these have
to be all put together. It is somewhat like putting Humpty Dumpty
together again after his having been broken into lots of pieces.

According to Zeisel (1968:84) there are two quality criteria which
are pertinent to indices: accuracy and simplicity,.

By accuracy is meant the precision with which an index
measueres its object; and simplicity may refer either to
the ease with which the necessary data can be collected or
to the relative complexity of the index formula. &s a
rule, accuracy and simplicity compete with each other; the
more an index has of the one, the less it usually has of
the other, .

Since in general indicators have only a probability relation or
relevance to a concept, using many indicators is likely to produce a more
valid and reliable index. The more indicators that are used, the more
likely the different aspects of a concept are covered, thus increasing
the validity. Also, the more indicators there are, the less a random
fluctuation in one indicator is likely to affect the index and hence its
validity and reliability. Lazarsfeld (1958:106) describes the situation
as follows:

Each indicator has only a probability relation to what we
really want to know. A man might maintain his basic
position, but by chance shift on an individual indicator:

or he might change his basic pesition, but by chance
remain stable on a specific indicator. But if we have
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many such indicators in an index, it is highly unlikely
that a large number of them will all change in one
direction, if the man we are studying has in fact not
changed his basic position.

To put the matter in another way, we need a lot of
probings if we want to know what a man can really do or
where he really stands.

The number of probings and the extent to which they cover the various

aspects of a concept will affect the validity of an index. This is
commonly referred to as content validity.

If there is a theory associated with a concept, this would be useful
in deciding how to comgine indicators to form an index. 1In practice,
such theories do not appear to exist, and, as already discussed, the
development of an index starts from some rather vague imagery of the
meaning of a ccnept.

One class of indices is formed by the use of multiple regression
technigues. These are predictive indices, usually calculated from a
linear composite of a number of variables. A common example is predicted
grade point average for the first semester in college. This is taken as
an index of probable success in college and is used in deciding on the
entrance of students into college. Multiple regression technigues
determine the nature of the index by using a sample of data in which the
criterion or outcome is known. #Multiple regression is purely a
mathematical technique since no theory is required of how or what
indicators affect the cutcome. Any variable that is likely to be an
indicater is tried. Even clasgsificatory concepts such as maie and female
may be used by means of a technigue known as dummy coding. Stepwise
multiple regression technigues enable one to select a parsimonious set of
indicators. That is, a linear composite of a small set of indicators

which best predicts the criterion can be chosen. As might be expected




intuitively, such a set of indicators consists of indicators which have
high correlation with the criterion but have low correlation with one
another. The lower the correlation they have with one another, the more
likely are they to comprehensively cover the range of factors that affect
the outcome to be predicted. Multiple regression technigques are used
quite widely to form predictive indices.

There is the problem of what meaning to attach to an index. This can
be approached in two different ways. First, the composition and
construction of the index can be examined to discover its meaning.
Second, the index can be factor analyzed or correlated with other
variables in order to reveal its meaning. This second way, in test
theory, is termed construct validation and the reader is referred to the
excellent paper by Cronbach and Meehl {1955) on the subject. The first
way of attaching meaning to indices will be illustrated by indices of the
ability of baseball hitters.

The best known index Of a baseball player's nitting ability is his
batting average:

Humber of hits
Batting average = Times at bat

The batting average measures, by looking at the construction of the

formula, the ability to hit the ball as often as possible.* However,

frequency of hitting is not the only thing which makes for good batting.

A good batter is one who not only hits as often as possible, but who hits
well and when the bases are loaded. Thus, to be a good hitter, it is
necessary (a) to hit often, (b) to hit well, and {c) to hit at the right

time. The batting average indicates only the first of these qualities.

*This discussion of baseball is taken from Zeisel {1947).




An improved index would be:

Runs batted in
Times at bat

However, this new index contains a flaw. Batters appear usually in a

fixed order at bat throughout the season, and the ones who usually hit

first have, on the average, a poorer chance to bat runs in than do the
batters who go to bat later, when the bases are more likely to be
occupied.

A superior index is termed the slugging average. Suppose we give
each hitter four peints for each home run, three points for each
three-base hit, two points for a two-base hit, and one point for a
single, and find the total, termed "total bases.”

Total bases
Slugging average = Times at bat

This index indicates "the number of bases" the player hits for "per time
at bat." Zeisel {1968:86) comments on the meaning of slugging average:

Note that the slugging average, because it is a more
perfect measure of a batter's hitting abilty than the
batting average, is in other respects an inferior index.
For one thing, there are moments in a baseball game where
the crucial question is not "How well will he hit?" but
simply "Will he hit or will he be out?" In such
situations the batting average is the superior index. The
batting average has yet another advantage, namely, it is
easily understood. If a player has a batting average of
.333 and comes to bat, everybody knows what it means: The
odds are 1 in 3 that he will get a hit. The slugging
average has no such easily perceivable meaning: there is
no simple way of understanding the slugging average, or of
projecting it into some simple odds because it is a
combined measure of frequency and guality of hitting,
measuring the product of both. Hence, there is no way of
knowing whether .340 is the result of frequent but
relatively poor hitting, or of good but relatively
infrequent hitting.

Zeisel's discussion illustrates the point that, since the batting
average is a much simpler index than the slugging average, it is much

more meaningfully interpreted. Not only that, the slugging average is a




more complex composite and it is less meaningful to attach a single

number to it.

This raises the question of how valuable it is to attach a single
number to a complex concept. Tests of intelligence, creativity, and
scholastic aptitude are examples. Take the Wechsler Adult Intelligence
Scale which is comprised of eleven subtests. The following names of the
subtests indicate the host of abilities involved: information,
comprehension, arithmetic, similarities, digit span, vocabulary, digit
symbol, picture completion, block design, picture arrangement, and cbject
assembly. If the slugging average is difficult to interpret because it
is a combined indicator of frequency and gquality of hitting, how much
more difficult it is to interpret the single number of IQ based on all
these abilities! Furthermore, how productive for research is it to use a
single number to represent a composite of a number 0f such diverse
abilities? An example from demography illustrates that it was not
productive to attach a single value to a multidimensional variable.
Medawar (1977:13) states:

In the days when it was believed that the people of the
Western world were dying ocut through. infertility, it was
thought an obligation upon demographers to devise a single
value measure of a nation's reproductive prowess and
future population prospectus. Kuczynski accordingly
offered up his "net reproduction rate" and R. A. Fisher
and A. G. Lotka the "Malthusian Parameter"™ or "true rate
of natural increase." Both had their adherents and
confident predictions were based on both, but the
predictions were mistaken and today no serious demographer
believes that a single number valuation of reproductive
vitality is feasible: reproductive vitality depends on
altogether too many variables, not all of which are
"scalar" in character. Among them are the proportions of
married and of unmarried mothers, the prevailing fashions
relating to marriage ages, family numbers, and the pattern
of family building, the prevailing economic and fiscal
incentives or disincentives to procreation, and the
availability and social acceptability of methods ©of birth
control. It is no wonder that the single number
valuations of reproductive vitality have fallen out of




use. Modern demographers now 4o about their population
projections in a biolegically much more realistic way,
basing them essentially upon the sizes of completed
familes and the analysis of "cohorts"--groups of people
born or married in one specific year.

Philip {1974), in reviewing fifty years of progress in soil physics,
indicates that during the early years there was a search for a
single-valued physical characterization for scils. The physical
properties and field behavior of soil depend upon particle size and
shape, porosity, hydrogen ion concentration, material flora, water
content, and hygroscopy. No single figure can embody itself in a
constellation of values of all these variables in any single real
instance. Candidates in the ambition to attach a single number valuation
to complex variables were the hygroscopic coefficient, the wilting
coefficient, the moisture eguivalent, and the sticky point. The attempt
to form composite variables from the values of a number of variables did
not prove preductive.

Indicators used in forming an index may involve any ¢©f the ways of
assigning numbers. An indicator may be an index in its own right.
Naming by numbers can be included since classificatory concepts, if they

are named in a special way known as dummy coding, can be included in

predictive indices developed by multiple regression techniques.

Rank ing

Ranking is the last of the six different ways of assigning numbers to
be discussed. Examination of Table 2 shows that it is the most
widely-ranging way in that it can be applied in relation to all types of
concepts except unordered classificatory concepts. That is, wherever

there is some kind of order, ranking can be applied.
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In relational to multidimensional comparative concepts, ranking can
be done by the method of numerical judgment discussed in an earlier
section. Indices, which also apply tec multidimensicnal comparative
concepts, can be ranked on the basis of their numerical value.

Measurements, which can be carried out only in relation to
unidimensicnal concepts, can be ranked. Groups of entities or actributes
can also be ranked according to their numerosity determined by courting.
Ranking is such a straightforward process, little can be added that is
not already known about it, This, then, completes the discussion of the

six different ways of assigning numbers to objects and pheiiomena.

Number Assignment and Type of Concept

Table 2 (p. 72) summarizes Part II as well as showing that the way in

which numbers can be assigned is dependent on the type of c¢oncept

involved.

Naming by numbers can only be applied to classificatory concepts,
whether ordered or unordercd. An ordered classificatory concept involves
classes which have some order to them. Ranking can be applied to any
concept which hasg ordinal properties. Thus it can be applied to all the
concepts listed in Table 2 except for unordered classificatory concepts.
Comparative concepts are associated with ranking by numerical judgment in
which case ranking and numerical judgment coincide. A conservative view
of numerical judgment is taken by indicating that it can only be
associated with comparative concepts.

Indices are applied to multidimensional comparative concepts. An
index is an algebraic composite of a number of indicators. Numbers may

be assigned to indicators by any one of the six ways of assigning




numbers. This includes naming numbers, as when dummy coding is used in
multiple regreasion equations.

Measurement can only be applied to unidimensional concepts. This is
because multidimensional concgpts do not possess gtrict ordinal
properties. Measurement can only be applied to unidimensional
comparative, interval, and ratio concepts.

Either entities or attributes can be counted. An example of counting
attributes is counting items correctly answered on a test. How a person
performs on an item jig an attribute of that person. Counting is applied
in order to ascertain the numerosity of a group. Numerosity ig an
absolute concept and so counting applies to absolute concepts.

The six ways of assigning numbers are all distinctly different from
one another. Aan example of this difference is the fact that each way is

restricted in what concepts it can be applied to.

Comparison Between Physical and Social Sciences

As far ag is known the social sciences, including evaluation, use all
six ways of assigning numbers. This can be contrasted with the physical
sciences where only measurement and counting are used. The physical
sciences will occasionally use the word index to refer to some form of
measurement. An example is the refractive index which is the capacity of
the interface between two media to bend electromagnetic radiation.
However, this index is not like the indices which hLas been discussed in
this part, since the refractive index is not a multidimensional concept.
While the refractive index is found by dividing the sine of the angle of
incidence by the sine of the angle of refraction, the index could not be

said to be composed of these two dimensions. As far as is known, what




TABLE 2

THE WAYS OF ASSIGNING NUMBERS TO OBJECTS AND PHENOMENA, AND THE
CONCEPTS THEY ARE ASSOCIATED WITH

Types of Concepts

Ways of Classificatory Comparative
Assigning Un- Multidim- Unidim-
Numbers ordered Ordered ensional ensional Interval Ratio Absolute

Naming by
Nunbers X X

Ranking X x1 xl X X x

Numerical
Judgment
(e.9.,
rating) x x

Indices X

Measure-
ment x b 4 b 4

Counting:
i} entities x
ii} attri-
butes x

lRanking of comparative concepts could be included under
numerical judgment.
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are termed indices in the physical sciences, are some form of
measurement. Thus measurement and counting are the only two ways of
asgigning numbers which are found in the physical sciences.

The six ways of assigning numbers used in the social sciences are
frequently all termed "measurement” and no clear terminological
difference is made between them., It becomes clear that what is termed
quaétification in the social sciences is different frem that in the
physical sciences., However, many social scientists believe that the key
to success in the physical sciences is quantification and this is also

the key to the success of the social sciences. If the physical sciences

use only measurement and counting, then the additional four forms of

assigning numbers used by the social sciences may not be the key to

success,

In part I classificatory concepts were not regarded as quantitative
concepts. Thus from Table 2 it can be seen that naming by numbers is not
a form of quantification and this is also true when ranking is used with
classificatory concepts. Numerical judgment and indices can be regarded
as forms of quantification. While both of these are usefui, they do have
their limitations, Reliability and validity is a problem with numerical
judgment. A serious problem with indices is knowing how to interpret
them. Numerical judgments and indices are the two forms of
quantification most commonly used in the social sciences. Measurement,

in the physical science sense, is not common in the social sciences.




PART III: THE HISTORY OF THE QUANTITATIVE AND QUALITATIVE

IN THE pHYSICAL SCIENCES AND THE IMPLICATIONS

FOR EVALUATION

At the University of Chicago, the facade of the Social Science
Research Building bears the dictum,

If you canncot measure, your knowledge
is meager and unsatisfactory.

While one might expect that it was written by a social scientist, it was
not. The authorship bhelongs to one of the giants of the physical
sciences, Lord Kelvin. The placing of the dictum does illustrate that,
to social scientists in general, physical science is so often seen as the
paradigm of sound knowledge, and quantitative techniques seem to provide
an essential clue to its success. Unfortunately social scientists often
see the physical sciences as they are now, with their highly developed
conceptual networks. Quantitative technigques are extremely powerful
tools. But it was not always so. In the beginning and through the long
centuries, a base of gualitative knowledge had to be huilt up before
conceptual frameworks on which measurement rests could be developed.

Kuhn {1961, p. 31) feels that it has only been for the last century and a
half that guantitative methods have been central to the physical
sciences. The following discussion ©of gquantification in modern physical
science is based on the work of Kuhn (196l). His central thesis is that
large amounts of gualitative work have usually been preregquisite to
fruitful quantification in the physical sciences. Evaluation draws on
the gocial sciences. Since the social sciences are in the early stages
of development, this suggests that quantification in evaluation may not

be ag fruitful as qualitative methodology.
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The View of Quantification from Science Texts

For most of us, our view of physical science and quantification
comes from science textbooks. The view of theory and quantification

presented in the science textbooks can be summarized as follows.

Theory and > Logical and - Regults
Laws Mathematical Theory Experiment |
Manipulation 1.361 1.368
1.919 1.925
2.432 2.434
2.849 2.850

The left of the diagram represents a series of theoretical and lawlike
statements which together constitute the theory of the science being
described. The center of the diagram represents the logical and
mathematical equipment employed in manipulating the theory. The logical
and mathematicdl manipulations are carried out on the conditions of the
situvation to which the theory is applied. The result is a set of
nunerical predictions shown on the left-hand side of the table. The
right-hand side of the table shows the numerical results of actual
measurements, placed there so that they may be compared with the
predictions derived from theory. Many textbooks in physics, chemistry,
astronomy, etc., have data of this kind, though they are not always
presented in tabular form. Sometimes they are presented in graphical
form.

Evaluation draws on the social sciences. Social science textbooks
contain numerical tables which are of a different type. The numerical
tables are used to illustrate the relationship between a dependent
variable and one or more independent variables. To take a simple
example, there might be two columns of figures showing math achievement,
one column for Grade 12 boys and one for Grade 12 girls. The function of

the table is to compare the achievement of the boys and girls and to show
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that the achievement of the boys is significantly greater (statistically)
than for the girls. That is, math achievement is dependent on sex of the
student. This is quite different from the tables in the physical
sciences where a theory predicts numerical results and experimental
results are compared to them.

What is the function of such tables of numbers in the physical
sciences? There are at least three answers.

l. The most obvious answer is that the numbers in the table
function as a test of the theory. 1If the corresponding numbers in the
two columns agree, then the theory is accepted. If they do not agree,
then the theory is rejected. Thus, the function of quantification in the
physical sciences would appear to be one of confirmation. This might be
S0 in the practice of science but it is unlikely to be sc in a textbook
formulation. No textbook ever included a table that either intended ¢
managed to challenge the adequacy of the theory described by the text.
Readers of current science texts accept the theories there expounded on
the authority of the author and the scientific community, not because of
any tables that these texts contain. If the tables are read at all, as
they often are, they are read for another reason.

In contrast, in the social science textbooks, the tables are there
to illustrate confirmation of some hypothesis, a hypothesis being more
tentative than a theory. In order to back up the hypothesis, in addition
to the table,'it is common to quote a number ©f authors who have also
found evidence for the hypothesis.

2. A common belief is that the function of qQuantification in the
physical sciences is for exploration. Like the functiocn of confirmation,
Kuhn {1961, pp. 34, 35) is skeptical that exploration is a function of

the numerical tables of the textbooks. He states:

85

Loy




Numerical data like those collected in the right-hand
coclumn of our table can, it is often supposed, be useful
in suggesting new scientific theories or laws. Some
people seem to take for granted that numerical data are
more likely to be productive of new generalizations than
any other sort. It is that apecial productivity, rather
than measurement’s function in confirmation, that probably
accounts for Kelvin’s dictum being inscribed on the facade
at the University of Chicago. . . . We are, I suspect,
here confronted with a vestige of an admittedly outworn
belief that laws and theories can be arrived at by some
process like "running the machine backwards.® Given the
numerical data in the "Experiment®” column of the table,
logico-mathematical manipulation (aided, all would now
insist, by "intuition®) can proceed to the statement of
the laws that underlie the numbers. If any process even
remotely like this is inveolved in discovery--if, that is,
lawg and theories are forged directly from data by the
mind--then the superiority of numerical to gqualitative
data is immediately apparent. The results of measurement
are neutral and precise; they cannot mislead. Even more
important, numbers are subject to mathematical
manipulation; more than any other form of data, they can
be assimilated to the gemimechanical textbook schema.

An example of a data analysis technique in the soclal sciences

that attempts to move from numerical data to theory is factor analysis.
By analyzing a correlation matrix it is hoped to discover the theoretical
factors that are responsible for the data. However, factor analysis can
alsc be used in a confirmatory mode, i.e., to confirm Some postulated
factor structure.

Tukey (1976) has recently written a book systematizing statistical
techniques for exploratory data analysis in the social sciences. The aim
of the techniques appears to be to discover the regularity or
generalization that lies behind a set of data. Tukey is not rejecting
confirmatory statistical techniques, for he states that the exploratory
and the confirmatory can--and should--proceed side by side.

3. One cannot expect that theoretical results will agree with

.
experimental results. There are a number of reasons for this. One

reason is that there is always limitations to the accuracy of the

measuring instruments employed. In addition computation from theory can
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usually be carried out to any desired number of decimal places, and this
makes agreement between theoretical and experimental results impossible.
Another reason iz that the theory may make some simplifying assumptions
about the world. Almost always the application of a physical theory
involves some approximation {in fact, the plane is not "frictionless,”
the vacuum is not "perfect,”™ the atoms are not "unaffected" by
collisions), and the theory is not therefore expected to yield quite
precise results., Thusg, what scientists seek in numerical tables is not
usually "agreement" at all, but what they often call "reasonable
agreement.™ Kuhn (1961, p. 36) believes that, when they appear in a
text, tables of numbers drawn from theory and experiments define for the
reader what is reasonable agreement. Kuhn {1961, p. 36) states:

That, I think, is why the tables are there: they define

"reasonable agreement." By studying them, the reader

learns what can be expected of the theory. An

acquaintance with the tables is part of an acquaintance

with the theory itself, Without the tables, the theory

would be essentially incomplete. With respect to

measurement, it would be not so much untested as

untestable, Which brirgs us close to the conclusion that,

once it has been embodied in a text~-which for present

purposes means, once it has been adopted by the

profession--no theory is recognized to be testable by any

quantitative tests that it has not already passed.

This is different for the social sciences. The inclusion of

experimental data in a textbook to support some hypothesis does not mean

that the hypothesis has generally been adopted by the profession. The

experimental data is there to illustrate confirmation of the hypothesis

by a researcher or researchers. The theories of the social sciences are
not of the nature that they supply numerical predictions. So there are
no tables to illustrate what is "reasonable agreement" between

theoretical and experimental results,




Motives for Normal Measurement

In his most influential work, The Structure of Scientific

Revoiutions, Kuhn (1962} has as his basic problem the nature of
scientific change. 1In summary, his thesis is that “sgcientific
revolutions are . . . those non-cumulative developmental episodes in
which an older paradigm ig replaced in whole or in part by an
incompatible new one" (p. 91), where paradigms are defined to be
"accepted examples of actual scientific practice--examples which include
law, theory, application, and instrumentation togethef--[which] provide
models from which spring particular coherent traditions of scientific
research" (p. 10). The work of Einstein is a dramatic example of
revolutionary (or extraordinary) science. The new Einsteinian pParadigm
replaced the older Newtonian one. OQften during a revolutionary period
there is competition between paradigms or theories until one is finally
accepted.

If scientific change is fundamentally revolutionary, there must be
nonrevoluticonary periods as well and Kuhn calls this nonrevolutionary
science, normal science. During a period of normal science there is
fundamental agreement within the scientific community. What is
characteristic of normal science jg that it is carried out by a
scientific community which shares "firm answers to gquestions like the
following: what are the fundamental entities of which the universe is
composed? How do these interact with each other and with the senses?
What questions may be legitimately asked about such entities and what
techniques employed in seeking solutions?® (Kubhn. 1962, pp. 4-5). 1In
addition the members of such a gcientific community also share common

values. Revolutionary new theories are relatively rare and most of the

.1!};*
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science engaged in is$ normal science. Kuhn (1961, p. 38) explains how

normal science follows on from revolutionary science.
The new order provided by a revolutionary new theory in
the natural sciences is always overwhelmingly a potential
order. Much work and skill, together with occasional
genius, are required to make it actual. And actual it
must be made, for only through the process of actualiza-
tion can occasions for new theoretical reformulations be
discovered. The bulk of scientific practice is thus a
complex and consuming mopping-up operation that
consolidates the ground made available by the most recent
theoretical breakthrough and that provides essential
preparation for the breakthrough to follow. In such
mopping-up operations, measurement has its overwhelmingly
most common scientific function.

Quantification during a pericd of normal science involves
comparing the numerical predictiong of theory with the actual theoretical
measurements. The problem that engaged much of the best eighteenth-
century scientific thought was that of deriving numerical predictions
from Newton's three Laws of Motion and from his principle of universal
gravitation and comparing them with experimental meagurements. Again the
problem arose of what would be reasonable agreement, taking into account
one could not obtain perfect experimental conditions. As an example,
consider the application of Newtonian mechanics to the pendulum. The
suspensions of laboratory pendula are neither weightless nor perfectly
elastic; air resistance damps the motion of the bob; besides, the bob
itself is of finite size, and there is the question of which point of the
bob should be used in computing the pendumlum's length. If these three
aspects of the experimental situation are neglected, only the roughest
sort of quantitative agreement between theory and observation can be
expected. But determining how to reduce them (only the last is fully
eliminable) and what allowance to make for the residue are themselves of

the utmost difficulty. Since Newton's day much brilliant research has

been devoted to their challenge. XKuhn (1961, p., 41) states:
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This is the sort of work that most physical scientists do
most of the time insofar az their work is quantitative.
Its objective iz, on the one hand, to improve the measure
of "reasonable agreement® applicable to them. . . . If
measurement ever leds to discovery or to confirmation. it
does not do so in the most usual of all its applicationa.”

According to Kuhn theories are not tested during a period of
normal science. only during revolutionary science. During normal science
when a scientist finds agreement between theoretical and experimental
results this is not seen as a confirmation of the theory. The
scientist's success lies only in the explicit demonstration of a

previously implicit agreement between theory and the world. No novelty

in nature has been revealed. Failure to obtain agreement is seen 2s
counting against the scientist; his talents were not adequate to the task
of obtaining reasonable agreement.
Evaluation is different from the science Kuhn is talking about.

Evaluation is a practical activity whereas science aims to develop
theor ies of phenomena that aid understanding. Strike (1979, p. 13)
claims that there are practical theories corresponding to the explanatory
theories of science.

« « o research in practical areas is not atheoretical.

Practical and theoretical are not properly opposed terms.

Rather we need to distinguish between explanatory

theories--those concerned with understanding, and

practical theories--those concerned with action. The

latter are much like explanatory theories in that they can

guide practical inquiry as explanatory theories guide

their soit of research. In both cases they need to be

mapped onto experience. .Moreover, they exhibit similar

patterns of conceptual change.
Kuhn's theory of scientific revolutions is an example of a theory of

conceptual change. There is a possibility that measurement may function

h‘differently with an explanatory theory compared to a practical theory.

I3 evaluation in 1979 in a preparadigmatic stage, a normal stage or a

revolutionary stage? An argument can be made for each one of these
1 f';‘(}
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three positions. ¢he following is a brief summary of each of the three
positions.

The preparadigmatic stage occurs in the initial development of a
science before it acquires its first universally received paradigm (Kuhn,
1970, p. 13). 1In this stage there is a number of competing schools or
paradigms. Worthen and Sanders (1973), in giving a history of
educational program evaluation, seem to indicate that educational
evaluation did not begin in earnest till the advent of the Elementary and
Secondary Education Act of 1965 (ESEA). It was required that each
project under Titles I and III of the ESEA be evaluated. Educators were
unprepared to implement the new mandate effectively. Worthen and Sanders
{1973, p. 6) state:

Few scholars had turned their attention to the development
of generalizable evaluation plans which could be adopted
or adapted by local evaluators. Theoretical work in
evaluation was almost nonexistent. However,
scholars—--like nature~-abhor a vacuum, and it was not long
before several evaluation theoreticians began to develop
and test their notions about how one should conduct
educational evaluations. These efforts resulted in
several new evaluation models, strategies, and plans which
could be put into use by educationists.

Typically in the preparadigmatic stage there are a number of
paradigms or theories. Different writers list different numbers of
practical theories in evaluation. Stake (1976, p. 28) lists nine.
Worthen and Sanders {1973, pp. 210-215) indicate eight theories while
House (1978, p. 12) lists a different set of eight. It would appear that
evaluation has not stabilized by the acceptance of a single paradigm.

An argument could be put forward that evaluation is in a stage of
normal science. Kuhn (1970, p. 1ll) states:

The study of paradigms . . . is what mainly prepares the
. student for membership in the particular scientific

community with which he will later practice. Because he
there joins men who learned the bases of their field from
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the same concrete models, his subsequent practice will

seldom evoke overt disagreement over fundamentals. Men

whose research is based on shared paradigms are committed

to the same rules and standards for scientific practice.

That commitment and the apparent consensus it produces are

prerequisites for normal science, i.e., for the genesis

and continuation of a particular research tradition.
One place to look for evidence of a possible consensus is at graduate
training in evaluation. In 1976, 81 graduate schools of education that
offer degree programs above the masters level replied to a guestionnaire
requesting information on their evaluation training programs (Gephart and
Potter, 1976). This project was carried out for the Evaluation Network,
a professional society of evaluators. From school te school the course
offerings were consistently centered around statistical analysis,
research design and testing. There is clearly a dominant methodological
paradiam which is quantitative. The practical theory behind this
methodology is that a social action program is a form of treatment with
inputs and outputs. A research design is set up. The inputs and outputs
are measured often with the help of tests. Some form of comparison is
then made via statistical analysis of the measurements. It is clear that
the purpose of measurement in evaluation in a normal stage is quite
different from measurement in a period of normal science. The dominant
practical theory of evaluation, while it is quantitative, does not make
numerical predictions. It is not a matter of comparing experimental
results with theoretical predictions as it the case with normal science.

It could be argued that evaluation is moving into a revolutionary

stage. Within the last few years there has been advocacy and use of
qualitative methods for evaluation {e.g., Parlett and Hamilton, 1972;

Stake and Easley, 1978; Guba, 1978). The current quantitative paradigm

has been criticized as being inadequate. However, the number of
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adherents to the quantitative paradigm is still large and it is doubtful

if it will be replaced by a qualitative paradigm in the near future.

The Effects of Normal Measurement.

It is usually assumed that the physical scientist works by making

theories conform to the measurements obtained. 1In fact the reverse is

" the case. In a period of normal science the physical scientist works to

make his measurements conform to his theory. 1In other words, a theory is
not derived from a set of quantitative measurements. Unless the theory
is known beforehand, it is not obvious from a set of numbers what the
theory is. Kuhn (1961, pp. 45, 46) states:

Numbers gathered without some knowledge of the regularity
to be expected almost never speak for themselves. Almost
certainly they remain just numbers. This does not mean
that no cone has ever discovered a quantitative regularity
merely by measuring. . . . But, partly just because they
are so exceptional and partly because they never occur
until the scientist measuring knows everything but the
particular form of the quantitative result he will obtain,
these exceptions show just how improbably quantitative
discovery by quantitative measurement is. . . . [a large]
amount of theory is needed before the results of
measurement can be expected to make sense. But, and this
is perhaps the main peint, when that much theocry is
available, the law is very likely to have been guessed
without measurement.

If theory precedes quantitative measurements, then how is the
theory formad? A theory begins in a qualitative form and only later does
its quantitative implications become evident. The development of a
theory depends on qualitative data. It is qualitative experimentation
that dominates the earlier developmental stages of a physical science and
continues to play a role later on. Significant quantitative comparison
of a theory with nature comes at the late stage of the development of a
science. The early development of a theory is likely to require insight

and conceptualization.
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Evaluators draw on the theories and methodologies of the social
sciences. The social sciences, while they are in the early stages of
their development, have used quantitative experimentation extensively.
However, this has not led to quantitative theories. If the social
‘sciences in any way parallel the physical sciences, gquantitative theories
are only likely to arise out of a firm base of gualitative knowledge.
This suggests that at this early stage of their development, gualitative
rather than quantitative experimentation is likely to be more productive
in the social sciences. Correspondingly, this also suggests that
gualitative methods are likely to be more productive in evaluation. This

is especially so when an evaluator enters an unfamiliar situation which

an evaluator is attewpting to understand.

Revolutionary Science

During a period of revolutionary science one theory supersedes
ancther. According tc Kuohn {1961), measurement plays an important part
during this revolutionary stage. Though there are no apparent
implications for evaluation, measurement during a revolution stage will
be discussed for the sake of completeness.

In a revelutionary stage, science is in a state of crisis. There
is an unacceptable anomaly between established theory and experiment. A

state of dissatisfaction with established theory arises. According to

Kuhn (1961, p. 52), no crisis is so hard to suppress as one that derives

from a gquantitative anomaly that has resisted all the usual efforts at
reconciliation. That is, there is an unexplained discrepancy between a
measurement and the value predicted by theory. Kuhn (1961, pp. 53, 54)

gives a number of examples




"to illustrate how difficult it is to explain away
established guantitative ancmalies, and to show how much
more effective these are than qualitative anomalies in
establishing inevitable scientific crises. But the
examples alsc show something more. They indicate that
measurement can be an immensely powerful weapon in the
battle between two theories, and that, I think, is its
second particularly significant function. Furthermore, it
is for this function--aid in the choice between
theories-—and for it alone, that we must reserve the word
"confirmation.”

Measurement in the Development of Physical Science

The history of the physical sciences indicates that much
gualitative work, both empirical and theoretical, is necessary before
guantification proves to be productive. A good example is the field of
optics. The seventeenth century's Scientific Revoluticn's reformulation
of optical theory depended on Newton's prism experiments. These
experiments depended on much prior gualitative work. Newton's innovation
was the quantitative analysis of a well-known gualitative effect.

Another example is that of magnetism. The only significant
seventeenth-century measurements, those of declination and dip, were made
with one or another modified version of the traditional compass, and
these measurements did little to improve the understanding of magnetic
phencmena. For a more fundamental guantification, magnetism awaited the
work of Coulomb, Gauss, Poisson, and others in the late eighteenth and
early nineteenth centuries. Before that work could be done, a better
gualitative understanding of attraction, repulsion, conduction, and other
such phenomena was needed. The instruments which produced a lasting
guantification had then toc be designed with these initially gqualitative
cenceptions in mind. Kuhn (1961, pp. 55, 60) states:

« «» » much gqualitative research, both empirical and

theoretical, is normally prerequisite to fruitful

gquantification of a given research field. In the absence
of such prior work, the methodological directive, “Go ye
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forth and measure," may well prove only an invitation to
waste time. . . . I venture the following paradox: The
full and intimate quantification ot any science is a
consunmation devoutly to be wished. Nevertheless, it is
not a consummation that can effectively be sought by
measuring. As in individual development, so in the
scientific group, maturity comes most surely to those who
know how to wait.

Since the social sciences are in an early stage of development, it

could be expected that gualitative methods rather than quantification

would predominate. 1In reality, the reverse is true. Thus it can be
wondered to what extent quantification in the social sciences is a waste
of time.

One point to notice is that quantification in the social and
physical sciences are essentially different. Quantification in the
physical sciences is synonymous with measurement. In the social
sciencez. besides measurement, other forms of quantification are used
such as ranking, rating, indices and counting. In the social sciences,
the word "measurement” is used to cover these other forms of guantifi-
cation. As an example, tests do not measure in the physical science
sense but result in indices. Questionnaires commonly require respondents
to rate which is different from the process of measurement in the
physical science. In fact very little of the physical science type of
measurement occurs in the social sciences. Thus the social sciences may
not be wasting time as Kuhn's thesis would suggest. On the other hand,
the use of ranking, rating, indices and counting is not aimed at
qualitative understanding which, according to Kuhn, precedes fruitful

measurement {in the physical science sense).
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