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THEORETICAL AND PRACTICAL CONSEQUENCES OF THE USE OF

STANDARDIZED RESIDUALS AS RASCH MODEL FIT STATISTICS

Archie A. George

Rsearch and Development Center for Teacher Education
The University ot Texas at Austin

The standaz,L.7..!d teSidual is a statistic which has been used to assess

the congruence between_a sample of test'item responses and the one parameter

Latent trait (Ranch) item characteristic curve. HoWeVeti the central thesis

of this paper is that the statistic is not appropriate for this purpose; Its

theoretical distribution is based on the central limit theorem which; of

course, requires a large-sample size and yet its calculation involves very

small sample sizes. The practical consequences of the use-Of this statistic

are described and illustrated.

More specifically, this paper consists of five main seCtions. The first
.

section contains -a very brief review of latent trait theory and the models re-
.

ceiving.greatest attention at this time. The Second section contains a de-

.

scription of the standardized reSidual Statistic-and an explanation of its

theoreticar.basis. The apparent error in the Calculation of the expected

istribution of this statistic is pointed out; and the implications of the use

of the statistic for item analysis are described and justified on a theoretical

basis. In the third section, empirical results using actual data are presented

which support the theoretical analysis. In the fourth section, the practical

1--
The research described herein was conducted under contract With.the-

National Institute of Education; The opinions expressed -are those of the
author and do not' necessarily reflect the position or policy.of the National
Institute of Eddcation; and no endorsement by the National Institute of
EduCation should be inferred;
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implications of the failure Co reject items which do not fit the model are

demonstrated. Finally; am alternate model is described which may provide a

practical solution to problems encountered in the construction of item banks

and tailored testing

Part I. Latent Trait Theoiy

Latent trait theory has been proposed as an alternative to classical test

theory for the assessment of ability and educational achievement. A latent

trait model specifies a relatiOriShip betWeen observable performance and un-

observable traits (abilities) which are assumed to underlie performance._ The

latent trait models currently under study in educational measurement specify

mathematicaI.formulae which relate ability to probability of a correct response
_7

on specific test items. Figure 1 Shows a hypothetical relationship, between

ability and correct response; whichis called the item characteristic- curve.

P,(c)

Probability
of a correct
response

p

1.0

Figure -1.

Low PcBILITy High

Lord (1952, 1953) investigated the use of the normal ogive as a model for

perfotmance on mental test items. The mathematical complexity. of this model

did not encourage its full development; but the groundwork was-laid for later

work using simpler models. Currently; three latent trait models seem to be

receiving the most intense research; These models are very closely related.

mathematically even though they are the-result of different lines of development.
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The simplest is the Paszh model:

P(C) = X

-1 + X

where X = e 13-"6

In this model, 6 is the difficult-
2 the item and B is the ability of

the person. This model is often refec..ed to as the "one parameter" model,

because the item characteristic curve is completely determined by only one

parameter, the difficulty of the item.

A model of, intermediate complexity has been proposed:

P(c) =
1 + X

where X = ea .( B-6)_

This model is the same as the RASch model, except for the parameter a,

which is called the "item discrimination" parameter. This parameter' describes

the slope of the item 'characteristic curve. Thus, the two parameter model,

as this model is frequently referred to, has more flexibility. That is, a

wider variety of item characteristic curves can be described using this model.

A three parameter model has also been proposed:

P(C) = y +(1-Y)- X ;

'" + x

where X = ea0=6)

In this model, y is referred to as a "guessing" parameter. It functions

to modify the lower asymptote Of the item characteristic curve so that the pro-

bo.Thility of a correct response never reaches zero, no matter how low the ability
A

7

ofthe test taker.

The Rasch model is currently receiving a lot of attention from test users,

school dit-tricts, and others. Ibis is primarily due to the efforts of Ben

Wright and his colleagues at the University of Chicago. The simplicity of the



one parameter model has enabled statisticians to develop techniques of esti-

mating the item difficulty and person ability. What could be described as

cookbook procedures have been developed for the use of the RaSch model in many

testing situations (Cohen, 1976, in Wright, 1977). Estimation problems are

more difficult for the two and three parameter modeIs.

One advantage offered by use of latent trait models, is that different

tests can be used to measure students of different ability while maintaining

comparability of scores. That is; each student could receive a\different test

and the abilities of the students could still be placed on a single scale. Low

ability students can be tested using easy tests and high ability stu,.:ts tested

using more difficult tests, and the measurements reported on a single scale.

The Ra-sch: model offers one advantage over the other latent trait

the number of items correct on a test is all that is necessary to estimate a

person's ability. Correct responses to difficult items do not count any more

than correct responses to easy items. The Rasch model has been shown to be

the only logistic latent trait model which has this property (AnderSen, 1977).

According to the other logistic models, a person's ability is estimated as a

function of the difficulty of the items that person marked correctly, not merely

how many.

Part 11. A Theoretical Analysis_ of the Standardized
Residual Fit Statistic

According to Wright (1977), the two major advantages-of the Rasclimodel

are sample-free item calibration and test-free person measurement. Sample-free

item calibration refers to the concept that the difficulty of test items can be

estimated regardless of the abilitieS of the persons who respond to the items..
_

Test-free person measurement refers to the concept that the ability of persons
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can be estimated regardless of the particular items in the test to which they

they respond. Together, these prOpetties allow for the construction of_a

personalized testing program which measures high ability students using tests

containing difficult items and low ability studerits using tests containing easy

items. Scores on all tests can be converted (vertically equated) to measures

of ability on a common scale, and new test items can be calibrated without con-'

trolling fdt the ability of the sample.

Several investigators have examined the ability of the RASth model to live

up to these promises. Anderson,' Kearney and Evetett (1968) and Tinsley and

Dawis (1975) found Rasch item difficulties to be fairly invariant for particular

sets of items when based on different samples of test takers. Whitely and Dawis

(1974) and Slinde and Linn (1978) attempted to replicate Wright's (1968) e-

suits'for the problem of vertical etitiatitig. According to Slinde and Linn;

Whitely and Dawis' results were not.as good as those of Wright; but were judged

to "lend some support for the item-free person measurement claim of the Rasch

model" (1978, p. 26). However, Slinde and Linn found that for the-math data
gr

analyzed in their study, "the Ratch model did not provide a satisfactory means

of vertical equating" (1978, P. 34)._ -They went on to say that it may be nec-

etsary to more carefully select items that fit the model. {This is also the .

recommendation of Keats. and Boldt, as reported by Angoff (1971, pp; 529-530);]

Slinde and Linn did not test items for fit to the Rasch model; They acknowledged

.that this may have
o
been responsible fof the inadequate vertical equating results

they obtained.

While working with the Rasch tiodelDr. DOnald Veldman and I noted that

the test ofitem fit recommended by Wright (3977; p.-102) indicated that a

very large number of.items fit the Rasch model het-ter than could be expected

by chance. That is; the standardized residual fit statistics were very low
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as&.;

for many items. I found this to be true in published articleS, also (Perline,

Wright and Wainer; 1977; Wright-and Mead, 1977), and initiated this stddy. f

the fit staters ;

The tandarkz2d ReSidual statistic is computed as follows. For each

persp who attempts an item, a z-square is computed:

= (X-P)2 ,

P(1-1,)

where P = ex/(1+e ), x = b-d

and X = 1 if correct response

0 if incorrect.

where b = estimate of the person's ability

and d = estimate of the item's difficulty.

. This z
2

conveniently reduces to e
-x

for a correct response and e
x

fcr an

incorrect response. Clearly, when x is large (i.e., a person's ability is

much greater than the item's-difficulty), the predicted probability of a

,correct response is very high. For instance, if x = 4;

P(c) =-ex/(14ex) = 54.60/55.60 = .98.

If the person gets the item correct, a z
2 -4

of e (.02) is signed. If the

2 4 2person misses the item, a z of e (54.6) is assigned These z are summed

over persons and divided by the number of persons to obtain the value of the

. standardized residual.; This statistic has also been talled the mean squared

error, or fit mean square. Wright, Mead and Draba (Z9-76) claim that the sta-

tistic will be high for items with both high and low discriminations. This

.

statistic is supposedly distributed-as a chi square with'N-1 degrees of freedom.

(Pancfiapakesen;1969-; Wright and-Patichapaketaft, 1969)i or as a mean.square

with expected value 1.0 and variance.2L/(L=1)(N1), L = number of items; N =
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number of peons (Perline, Wright and Wainer; 1977).: Wright and hiS colleagues

2have recommended several modifications of this simple4z /N formula. These

adjustments were made because the distribution of the statistic does not

conform to theoretical expectation. However, there are fundamental problems
1 .

with the statistic which cannot be corrected by such adjustment.

The basic idea in the formulation of the mean z is that deviations of

-
Obtained scores from expected values can be converted to z- scores bydividing

the deviations by the standard deviation, squaring and averaging across per-

sons. Lower mean z
2

s ould indicate small deviation, in general, while large
/

mean z should indicate greater deviations. Table 1 shows how`h it y depen-,

dent the standard deviation of the binomial distribution is upon the sample '

size for several values of the probability of a correct response. In computing

the z
2

fit statistic, the sample size is always 1, since it is calculated for

each person -item encounter and averaged over persons to assess item fit, and

over items to assess person fit. From this point of view, the test should be

very conservative-(i.e., rarely reject items), because the.standard deviations

are large, which-makes z
2
values small.

A more serious problem is the use of a normal approximation to the bi-

nomial, which is-implicit ii''the expectation that the sum or mean z2 is chi

squared distributed. Table 2 shows the magnitude of errors which are intro-

2
duced when_ the z fit statistic is assumed to be sampled from,a normal dis-

tribution. Table 2 shows several actual probabilities of a correct response

to an item [P(c)], and the probabilities whlch would be inferred to exist if

the z were a normal deviate.

When the actual probability is .50; the inferred probability for bOth

correct and incorrect responses (1 and 0) is .32. When the actual,probabiAy

of a correct response is .80, a correct response is.inferred to have a

9



P(0)
(--

1 5

Sample Size

10 30

.50 ;50 ;22 .16 ;09

;60 -" ;49 i .22 .15 .09

.70 fib, .20 .14 .08

.80 .40 : . .18 .13 ;07

.90 ;30 ;13 o .09 .05

;95 .22 .10 .07 .04

.98 .14 .06 .04 -(1?.

.99 .10 .04 , .03 ;02

Table 1.

SD of binomial Distribution (-

I

4";

8



/
P(c)

Inferred Probability
of Correct- -Response

Inferred Probability
of !ncorrect_Respanse

.50 .32 .32

.60 ;41 .22

.70 .52 .13

.80 .61' .05

.90 .74 .0027

.95 .82 .0000

.98 .89 .0000

.99 .91 = .0000

Table 2.

Actual and inferred probabilities iSsunning the
standardized residual is a zscore sampled from a normal distribution.
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probability of ;61, and an incorrect response a probability of .05. These

errors are introduced because the calculated z is assumed to have been sampled

from a normal distribution, which would be appropriate only for large sample

sizes.

The values in Table 2 were calculated as follows. Since

_-
P(c) = e [1-Fe

=*.inP(c)

for?ny specified P(c).

_2 x
The z for a correct answer is e and for an incorrect-answer ex; ac-

cording to the formula presented earlier:

-2
z = [X - P(c)1

2
, which reduces

P(c)[1-P(c)]

algebraically to e7 when X = 1 and e when X = 0. The square root of each

2 , -x x
z (i.e., e , e ) was calculated and the corresponding value [P(c)] found in

a normal probability table. The inferred probabilities in Table 2 are 2[1-P(c)],

which represents the probability of obtaining a value as deviant or more deviant

than one with the z score with which the table was entered.

With a little reflection; these considerations reveal how very small fit

statistics come about for some items. Items which are easy are answered co:-

rectly more often than the Rasch model predicts. Each time this happens, a

2
very small z is added to the "sum of squared residuals," and the result is a

small mean squared residual -- which supposedly reflects good fit to the Rasch

curve! It is also possible to see how greatly this statistic can be affected

by a few students of low ability obtaining correct responses, perhaps by guess-

ing. For each unekpected correct answer; a very large z
2
is added to the sum

of squared residuals; producing a larger mean squared residual. Table 3 shows

the z
2
-values- for correct and incorrect responses at several values of P(c).
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_2. _Z ,_P--c--)- z for Correct Response z for Incorrect Response

.5a. 1.001
' 1._00

.60 .67 1.50

'.70 '.43 2.33

.80' .
.25 4.00"

.90 .11 9.00

.95 .
.05 19.00

;98 .02 49.00

.99 .01 99.00

Table 3.

Values of the squaiedstandatdized residual foe
several probabilities of a correct response.

I-3
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Notice the extremely high and low values of z for values of P(c) above .90.

A more direct illuStration might be*to consider the- implications of the

statistic for a number of persons of similar-ability whote proportion of-cer-

/.rect responses deviates from the theoretical proportion in.certain ways; For

example if 40 persons obtained a total score on a test ;to watch the Rasch

model assigns an ability rating of 1.386, the model predicts that 80-percent of

these should get an item with difficulty 0.0 correct. If exactly 32 (80%) do

indeed perform as predicted, the sum of squared residuals would be:

iz2 .2 (e=1.39) (eI.39)
= 4.0:00

and the mean squared residual = 1.00. There is, of course, no difference

between.obtained and expected proportion for this sample.

Let us suppose that'36 of the 40 individuals (90%) provided correct

responses:

.z2 =.36 (.250) 4,4 (4.00) = 25.00, and the mean squared residual =.625.

Thus, it can be seen that a deviation in thit direction might lead one to in-

fer that the data fit the model "better-than" *hen no deviation was present!

On the other hand, let us suppose that 28 of the 40 individuals (70%)

provided correct responses:

28 (.250)_ = 55.00, and the mean-squared residual = 1.375.

In this case, a person would be led. to the inference that the data did not fit

the model as well as the previous data, even though exactly the same deviation-

is present.

IE might be appropriate, since there is a fairly large group involved, to

use the normal approximation to the binomial totest for significance of.the

differences between hypothesized and expected frequencies of correct responses.'

That is, for each case:

F

4

11



..8 -= .8

(.8)(.2)
40.i

.9 - ;8 .* .1

.063 = 1.58
(.8) (.2)

40

7
,3) z =

.063
= -1.

11/41(.8) (.2)

40

What a difference grouping of Scores makes!

Items which are very difficult for the sample of students...gnywhich fit

statistics arebased often appear to fit the Rasch curve poorly because a few

Students do answer these correctly. Items which are verNeasy are usually in-
.

ferred to fit the RaSch curve very well, because even more students answer

13

them correctly than are predicted by the model. Items which have difficulties

near the ability -level of the sample usually appear to be a good fit because

of another factor-- the.Rasch curve is.flatter than most actual item tharac-
. .

teristic curves- ThiS reSUlts. in more incorrect responses than predicted when _

P(c) is less than".50 and more correct responses when P(c) is greater than .50.
2- 2Most z are less than 1.00; so.is the mean z . Figure 2 shows three item

characteristic curves: the Retch curve, one steeper curve and one flatter

-curve. The steeper and flatter curves have exactly the Same deviation from

the Rasch. The mean squared deviations were calculated for each curve and

are shown in Table 4. Theie values"indicate that the steeper curve fits the

model best -- even better than the Rasch curve itself! The flatter curve fits

the least well. It IS for this reason, in my opinion, that the mean squared

residual has become a widely used index of fit of data to the.Rasch model.

The steeper the item characteristic curve, the better the item is inferred to



1.0

;6

.5

6

;1

-Steeper

Rasch

-2

:.!

:Figure 2.

Three item characteristic curves:
thd Rasch, one slightly steeper,
and one slightly flatter.

Ability --Difficulty

0 +1 ,+2 +3
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x

Correct
-

e

Incorrect
x

e .

Steeper
Curve

-

Rasch
Curve

--- 15

Flatter
Curve_

-3.0 . 20.09 .05 0/100 * - 5/95 10/90

-2.5 - 12.18 .08 3/97 8/92 13/87

=2.0 7.39 .14 8/92 t 12/88 16/84

-1.5 4.48 .22 p, 15/85 18/82 21/79

-1.0 2.72 .37 25/75 27/73 29/71

-.5 1.65 .61 37/63 38/62 39/61

0.0_' 1.00 l.00 50/50 50/50 50/50

.5 .61 1.65 63/37 J 62/38 61/39

1.0 .37 2.72 , 75/25 . 73/27 71/29

1.5 .22 4.48 85/15 82/18 79/21/ .

2.0 -.14 7.39 92/8 88/12 84/16

2.5 .08 12.18 97/3 92/8 87/13

3.0 .05 20.09 100/0 95/5 - 90f10

855.56 1316.55 1737.74

Mean Squared
Residual'

Table_ 4_._

.66 1.01 1.34

Ca1CUlation of:mean squared residual for'three curves in
Figure 2.

*These ratios show the-proportion Correct to incorrect. To caIcuIate3ethe
mean squared_residuaI,.mpltiply the num7eraror b, the value in the e
column, multiply the denomenator by the value in the e column and add
these two values, then sum this result across the 13 intervals shown
and divide by 1300.
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fit the ReSch model. Thus, tests built using the mean squared residUal 'have,

for the most part, been as good as test's built using traditional test statistics.

However; such tests'are only believed to have, been constructed by selecting items

which fit the Rasch model. The selected items actually were those with the

highest d-itcrimination, just as in traditional analyses.



Part III. Examination of a Set of Actual Test Data
Which Illustrates the Problems Encountered When Using the

Standardized Residual as a Fit Statistic

Because of the inadequacies in the standardized residual fit statistic,

it was necessary to construct another procedure for testing the fit of the

Rasch model to actual = data. The procedure I devised is as follows. VeIdman's

(1978) version of the PROX procedure (Cohen, 1976, in Wright, 1977) was used

to estimate the item difficulties and Person abilities for each of the 1664'

students who responded to a 237 item.Englith achievement test. All 1664 stu=

dents had scores greater than .0 and less than 237, enabling them to have their a-..

bilitieS estimate =according to the model. Fit ofeach item to the lasch

curve was assessed by fitting a least squares line to the data in the range of

±2 units of the estimated ability-difficulty (b=d). A t=test was used to deter-

.

mine the probability that the. ata were sampled from a population in which the

slope Of the line Was the same as the slope-of the Rasch model between. these

two values.

Figure 3 shows the Rasch item characteristie curve between the values ±2.0:

$-6 and a line fitted by a least squares to a uniformly distributed set of data
°

points on the Rascb curve. The slope of this line is .2094, and seems to ap=

proximate the Rasch curve quite nicely. Table 5 shows the formulae for the

t-test which determined the significance of the difference between the` Rasch`_

'slope (.2094) and, the slope of each item's data in this range-

,

I have taken some care to investigate the adequacy of the linear model as

a substitute for the Rasch curve in the range ±2 (b-d). The -error introduced-

was calculate' y computing the gum of Squared deviations from the Rasch curie

2of data which conform exactly to the. Rasch model. That isli[kt)] [I-P(c)] +
2

[P(no)] [0=P(c)] where P(d) is the proportion of correct scores predicted by

the Rasch

;
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2

-2

I
SSx = g_

I= 1

SSxy = --=d)

B1 = ssicyiss.

SSE = SSy - (SSxy /SSx

(A ,;-= .2094)(1-1)t = SSx

bi = estimated ability of person

d- = estimated difficulty of item

Xi = 1 if.person i answered item correctly

= 0 otherWise

Table

Formulae used to assess the significance of the difference
between the slope of actual item characteristic

curves- and the slope of the Rasch curve.

9)
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1-P(c) is the distance from the Rasch curve to the correct score;

P(nc) is the proportion of incorrect scores; and

0-P(c) is the distance from the Ranch curve to the incorrect score.

A
Summing these value's across 41 intervals (-2.0 to +2.0 in .1 increment's,

See' Figure 3), assuming a uniform distribution of data throughout this in-

terval, results in an error sum of squares (ESS) of 7.719602. 'Using the

2 2linear' model; the formula islF[P(c)] r1=;(c)1.-+ [P(nc)] (0-P(c)1,- where

is thefproportion of correct scores predicted by the linear iodel. The error

sum of squares in this case is 7.733142, or an error increase of only .2%!

If one were to test for the adequacy of the linear model using an F-test

comparing the two models (see Ward and Jennings, 1973),

Y =
1
x(1)

a2%(3) (41) El
a1X (1)

where the X
(i)

are binary (0,I) vectors specifying membership n one of the

41 levels of b-d and Y is a vector cottaialtg.dbserved scores (1 = correct,.

0 = incorrect)'and

Y=bo U+bX+E
1

Where U,iS a unit vestor (all 1'0' and X contains the value of b-d for each

of the observed scores in Y,

the F wouId-be:

F =
(ESS - ESS )/(41=2)

-

ESSi / (41N - 41)

where N is.the number of data points at-each level of b-d. In order to obtain

a significant (p = ;05) F with 39 and 41N- 41- degrees of freedom (F =

approximately, 33,841'data points are necessary'.

For those who like to think in terms of multiple correlation coefficients

these are
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= 1

(ESS)

Na

N \I
(7,7196)I6ai

(N) (.25)

for the Rasch model and

R2 = 1 - (7.7331)141)
(N) (.25)

for the linear model-.

.2469

.2455

2i

Monte Carlo test of ihese calculations was performed. This involved cre-

ation of 33,625 data points which conformed exactly to the Rasch curve (825.

in each of the Ilevels of t-d), and analysis of these data using the two

models specified above using Veldmaes PRIME subroutine REGRAN. The computed
2
R were .2470 and .2457. The F was 1.513. Thus, for allpractical purposes

the linear model seems to be an acceptable approximation of the Rasch curve

is this range.

Table -6 shows the item numbers; standardized mean square reSiduals, pro-_

portion of the sample'obtaining correct responses, PearSon product moment cor-

relations of item-totaI test scores, least'squares slope of the actual item in
. .

the ±2 b=d range; the value-of the t statistic testing-for,sIope of .2094, and

the number of cases on which the't was calculated the number of data

points in the ±2 b=d range) for a selected set of items.

Table 6 is ordered according to decreasing slope of the least squares

lines. Some-interesting relationships among the statistics in this table are
_

apparent. Items with steep slopes tend to have low residual mean squares and

also have high item=teit correlations (CORR). In general; when the difficulty

of an item is about .5 (50% correct) and the slope was high(.244), the item-

total:correlation was ;45 or greater-; and the slope was significantly greater

thanthe Rasch_model ACC-Fit-ding to the slope test, only abodt one -third of
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Item II

Mean
Square

Residual
roportion
Correct

Rasch
Difficulty

Corre-
Iation Slope t Test=D7

156 -8.70 .03 5.33 .00 .42 .95 27

48 .75 .98 -3.38 631 .40 1.73 32

72 .62 .97 =9.78 -.A--37 .39 2.96 65 -

53 .69 .97
**.

-2.94 .35 .36 2.05 52

138*d '.74 .33 2.24 .51 . .36 10.45 1423

31 .62 .95 -2.16 .39 .35 3.45 141
.

136* .70 .28 2.50 _48 .:35 8.98 1351

29 .95 .97 -2.88 .33 .35 1.91 57

10 .54- .84 - -.64 .61. .34 7.11 759

*Fr
206 .64

.87
- -.88 .56 .34 6.16 612

17* .73 .38 1.97 .53, .34 9.63 1495

18* .74' .45 1.61 .57 .34 10.58 1558

107 .66 .12 3.75 .33 .33 3.62 659

34 .97
,

.97- -2.68 .30 .33 2.13 71

133* .73 .65 .64 .60 .33 10.07 1480

96* .76 .37 2.02 .50 .32 8.42- 1484

98 .63 .89 -1.14 .55 ,.32 4.67 481

97 .64 .90 -1.23 .54 .32 4.23 411,

202* .74 .65 .66 .59 .32 9.33 1479

12* .78 .48 1.48 .54 .32 9.07 1562

232*
A.

.70 . .70 .36 .60 .32 8.39 1370

131 .62 :84 -.63 .59 ...32 5.59 759

226. .59 .82 -.43 . .61 .32 6.09 878 .

207 .68 .87 -.92' .54 .32 4.97 599

208 .67 .80 -.24 .60 .32 6.62 993
.

59 .40 .97 -2.97 .38 .31 1.34 52_

14* .65 .77 -.04 .60 G. .31 7.15 1130

215* .85 .51 1.33 .53 .31 8.64 r 1566

205 .59 _ .87 =.914P. .57 .31 4.67 599

66 .78 .96 -2.40 .34- .31 1.91: . 97

13* .79 .57 1.03 .56 .31 8.07 1556

75 .42 .97 :=2.94 .42 .31 1.20 52
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Itei #.

Kean
Square
Residual

--"'\

iProportion
Correct

I
Rasch

Difficulty
dorre7
lation

.

Slope

.

t Test-N

- -8

5* .80 .50 1.38 .55 .30 7.78 1563
90* ..74

ut
.77 -.03 :57 .30 :6.29 1130

' 77 .24 .98 =3.00 .44 .30 1.14. 51
15* .78 .67 .54

,

.57 .30 7.28' 1448
152* .83 .38 1.99 .47 .36 6.60 1495
16* .77 .78 -.14 .55 ..30 5.95 1066

197* .69 .75 - .08 .59 .30 6.30 1218
166* . .88 .54 1.17. .53 .30' 7.13 1567

3* .76 .68
.

.5i
.

.58 .30 *6.76 1428
101 .67 .80 =.27 '41 .57 .30 5.29 972
236 .75 .68 -1.34 .56 .30 6.73 14284
137 .84 .49 1.41 .51 .30 6.89 1564
135 .85 .44 1.66 .49 ".29 -6.66 1551
20 .77 .24 2.76 .41 .29 4.79" 1249

228 .71 .75 .05 .57 .29 5.78 1200
37 1.03 ..57 1.04 .52 .29 6.81 1556

227 .71 .74 .16 .58 .29 5.95 1260
198 .70 .74 .16 .58 .29 - - 5.91 1260

(79 items
omitted)

92 .74 .94 =1.88 .41 .23 .44 201
83* .97 .62 .77 .46 .23 1.26 1506

114* 1.07 .58 .99 .40 .22 1.17 1550
87* 1.04 ..52 1.31 , .41 .22 - 1.12 1566
7* .98 .67 .53' .44 222 1.03 1428

108* 1.11 .42 1.74 . .38 .22. .93 1536
28'4 156 .92 =1.59 .46 .22 .38 285

210* 1.03 .56 2.14 .42 .22 .94 1564
32 .62 .91 / -1.35 .47 .22 .38 366

165* 1.01 .79 . =.23 . .43 .22 .58 1025
192* '.98 .64 , ..68 :45 ,22 .65 1479

26
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inp #

Heaa_
Squarg.

Residual
roportio.
Correct

RaSch ;-

4iffiCulty
Corre-
lAtioh Slope t Test-N'

229* 1.04 .61. .87 .43 .22 .63 1526

62 .87 :.85 =.65 ..44 ';2,V .36 759

214 1':22 .13 3.62 .24 .21 .18 753

231* .. .95 .64 .67 .44 .21 - :37. 1479

82 .87 .91_ -1.41 .40 .21 .13 143
79 .69 .93 =1.64 .42 .21 .09 .266

11 .80 .83 -.52 .48_ .21 .13 823

'19* .191 .22 2;9 .33 '.21 =.06 c 1167
7 . ..66':' ..94 =1.96 .38 .21 -.0.5 - 182

163* ,1;13 .75 .09 .39 .21 -.23 1218

17* .98 .67' .51 .43 .21
. _

-.26 1428
.

150 . .76 -94 =1.93 .36 .20 ,-=.19 186

42 . -.24 - .98 -3:42 ., .38 .20 -.06 31

151 .78 .89 -1.11 .44
--;

.20 =.44 481

217 1.19 .96 - 4.55 ;18 .20 ti...18 - 185

- :18 .80 .92 =1.52 .40 .19 -.48 311

172* 1.22 . .27. 2.59 .26 .19 =.98 '1118

551 .33 '.98 -3;03 ';37 -.19 =.18 - 44.1

140 .57 .94 =1.88 ..41 ..19 -.47 201

190* 1;11.13 .75 .09 .39 .19 -1.25 1218

47 *. .93 .74 -.54 1.04 .19 '=1.55 ; 1260

58 .1.93 .92 -1.51 .32 .19 . =.84, 311

132* -1.07 .56 1.10 -.37 .18 -1;87 1564

157 .82 ;88 -1.01, .42 .18 =1-16 548

141*, '1.40 .47 7.01 ;27' .18- --2.0q 1557

159* 1.06 .72 .28 .39 .18 -2.05 .1317

168* 1.35 .27 2.58 .21 18 -1.83 1318

153 .94 .82 -.39 -.41 ,i7 =1.95 901

. (15 items
Omitted)

-
124* 1.29 .72 .24 .29.: .15 =4.12 1302
171* 1.17 .53 1.24 .31 .15 -4.51 1568

2 7
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Item #

Mean
Square

Residual'
Proport n
Correct

Rasch

ID ifEictilty

Corte-
lation Slope -.t Test-N

.

.

182 1;46 --86 =.77 .25 .15- =3.15 677; ;

187*====- 1:12 .30' -2.37 .27 :15 -3.70 1387
112 1.67 .85 : ;-.68 .20 .15 -3.48 742
158 1:67 .81 =..36 .35 .15 =3.45 917
13*" 1.14 .54 -1.20 .32 ..15' -4.55 =1563
44. -..77 .85 -.67 .43 .15 -2.94 742
120* 1.05 .78 -.-40 .35 .14 =3.90 1083
141 .91 ..86 =.82 .36

.

.14- -347 644
105 1.47 :17- 3.30 ..15 :14 -3;02 940
142 .89

.

-.96. -2;34 .35 .14 =1.15 104
130* 1.09 .73 .19' .35 .14 -4.68 1284
123*, 1.27 .75 .04 .31 .14 -4.58 1200
23 .73 .90 -1;25 .42 .14 =2.46' 411

117 .97 .84 =.56 .37 .14 =3.60 801
26 :64 -94 -1.96 '.37 .14 -1.72 182

116 :54 I .98 73.60' .25 .14 -.58 28
.179

,--
1.64 .13 3.64 .13 .13 =2.67 737

71* 1;15. .64 .72 .30 .13 -5.32 1492
40 .69 .89 -1.14 .42

.T.,

. .13 -2;82 481
39* 1.03 .-; .75 .07' '.36_. . :13 , =4.85 1218'

115 .87' .93 =1.75 .33 .13 -2.23 - 233
33* 1.30 .73 :18 .30 . .13 -5;63 1259

. 194* 1.15 .59 .95 .32 .13 =5.69 1538:
36* 1.31. 75 .07 .27 .13 -5.12 1218

175* 1.61 .70 .34 .21 113 -5;58 1341 -
149*. 1.4 .78 --.10 .25 .13 -5.02 1083
119 1.08 .87 -.93 .31 .13 -3.60 55
113 .66 .98 -3.19 .24 .13 : -.94 38

- 161* .1.25' .70- .38 .29 .12 -5.59 1370
65* 1.44 .54 1.20: .20 .12 =6.20 1567
84* 1.30. ,.50 1.37 ..25 ..12 -6.38 1568
63 .97: .89 -1.10 .32 .11; -3.94 492

24



Item 11

Mean
Square

Residual
Proportip
Correct

Rasch
ifficulty

Corre=
lation'

,

SlOpe t Test-N

147 .98 .83- -.54 .36 .11 =4.95 801

30* 2.08 .21 3.00 .06 '.10 -5.56 1110

178* 2.01 .36 2.08. .06 .10 -7.29 1474

139* 1.55 ..36 2.08 .16 .10 =7.32 1475

181 1.50 .79 -.21 .19 .09 -7.65 1025

1765 -1 1.62 .66 .57 .17 .08 79.06 1448

25 .36 .98 -3.55 .31 ..08 -1.00 30

185 3.51. .15 3.46 .01 .08 =5.73 855

169 1.30 .48 1.45 .19 .06- -10'.02 1564

109 1.24 .16 3.39 .18 .06 -5.65. 880

180 2.31 ;33 2.21 .02 .05 =9.82 1445

177 1.45 .69 .44 .16 .05 -10.67 1414

155 1.51 .,70 .36 .15 .04- -11.26 1370

209 1.37 .22 2.89 .17 :03 .=8.60 -1167

52 1.51 .61 .87 .10 .02 -12.96 1526

184 2.24 '.31 2.34 .01 -.00 -12.64 1395

160 1.10 .03 5.42 :14 =.02 =.97 22

73 1.77 v .53 1.22' -.10 -.04 -17.18 1568

148 2.19 .41 1.82 -.01 -.06 -17.88 1521

146 - 2.13 .45 1.59 =.14 =.10 -21.75 1553.

Table 6.

Statistics on selected achievement test items based on
a sample of 1664 elemenlary Students.

*Items which were selected for further analyses -- see Section IV. '

2
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the items (78/237) fit the model (Iti>2.0 rejection value), and for many of

theSe (25) the test was based on less than 100 cases. .Thus, it could be

argued that only 53 items fit the Rasch model. -A common rule of thumb for

rejection of an item is RMSQ>3.0 (Wright and Mead, 1977, p. 51), which would

lead to rejection of y 2 items!

Some items in Table 6 are clearly very poor test items from a traditional
t

.point of view; and yet appear to be acceptable when the mean square residual

is examined. For example, item #73; near the bottom of the list, has a mean

square residual of 1.77 and an item-total correlation of -.01! Figure 4

shows the Rasch curve-and a plot of item #73. It would be-absurd to_incIude

this item in a test, at least from/any point of:view but the mean square resid-.

ual. Table 7 shows the calculatio-/ns Of the RMSQ for item #73.

From the data-in Table -6; /an interesting correlation can be caICuIated.

The residual mean square correlates .50 with the Rasch difficulty estimate.

This seems strange -- why should a fit statisticbe biased toward easy items?

This degree of correlation between the mean square reSidual and the proportibn

of correct responses is also seen in data which has been published. For the

,paroIe.data in Perline;'Wright and Wainer (1977, p. 13), the correlation is .55.

The exam data in Rasch (1960, p. 106) gives rise to a .26 correlation, using

Rasch's estimates of the difficulty and mean square residuals calculated by myself.

It might be pointed out that correlations between statistics can be mis-

leading. For example, Perline, Wright and Wainer (1977) attempt to demonstrate

that Rasch ability estimates are essentially identical with ability estimates ob-

tained using additive conjoint measurement. The correlations between ability

estimates based on two data sets are .997 and .990. However, correlations be-

tween Rasch ability estimates and the raw test scores to which they correspond

are .994 and .993 On these same data. From this point of view, there is no
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Figure 4.

A comparison of the Rasch and one obtained
item characteristic curve which fits accord-

, ing io the mean square_residual but does riot fit
using traditional test item statistics.
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1 0 180.33 1 .0055 .01

5 1 79.33 4 .0126 79.38

5 2 44.97' 3 .02 90.00

8 3 28.81 5 .03 86.58

11 5 19.80 6 .05 99.30

5 2 14.24 3 .07 28.69

' 17 10 10.56 7 .09
106.23

19 11 7.99 8 .13
88.93

25 10 6.13 15 .16
63.70

42 25 4.75 17 .21
122.32

54 37 3.70 17 .27
141.49

A
65 36 2.88 ? 29 .35

113.63

84 56 2.24 28 .45
138.04

122 70 1.73 52 .58
151.26

s

147 87 1.33 60 .75
160.71

4 181 98 1.00 83 1.00
180.00

202.83195 99 .73 96 1.36

252 108 .52 144 1.92
33.64

386.46222 = 98 .35 124 2.84

156 90 .22 66 4.56 320.76

44 33 .12 3.1 8.50 97.46

4 4 .04 0 22.23 .16

0

1664
2

z =2991.78

2
L zRMSQ -

166
= 1;.80

Table 7.

Calculation of the fit statistic for item #73 in Figure. ,
using data grouped into 10 point raw score intervals.
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difference between raw scores and Rasch ability estimates. The correlation

coefficient simply is not sensitive to the scale changes in the distance be-
.

tween ability estimates which.are introduced by.Rasch ability estimates-and

Multidimensional scaling. This scaling is an essential attribute of latent

trait modeling because it allows for tett-free person measurement, at least

in.theory.

The practical significance of the .55 correlation can be seen in-Table

,--- ,
8, which shows a cross-tabulation of mean square residualt with Rasch diffi-

culty estimates. Notice that virtually all the items Which have difficulty

estimates of -1.0 or lower (very easy items) also.heve a mean square residual

(RMSQ) of .9 or less which would indicate very good fit to the Rasch model.

Items of medium difficulty tend to have low RMSQ, while items of moderate to

high diffictilty tend to have high RMSQ. These figures indicate that the fit

statistic is very sample dependent, which Wright'and Mead (1977, p: 50) also

point out. I

The reason for this relationship between the RMSQ and item difficulty is

that many items are answered correctly more often than the Rasch model predicts.

This results in low RMSQ for easy items and high RMSQ for difficult items'.

How selective must one be in order to construct tests which can be used

in test-free person measurement ?. Thit is an empirical question that this

paper only begins to address. For example, Figure 5 shows close correspondence

between the responses to item #220 and the Rasch curve The slope of this item

characteristic.curnee is significantly steeper than the Ratth curve, but it may

not be deviant enough to warrant rejecting the item. That is, test -free person

'measurement may not 'be impaired by retaining item #220 as if it fit the model.'

However; more careful item selection is necessary than can be done using the

mean square retiddal. For example; Figure 6 shows an item which has an item



mean
square

residua'

.00 to .90

.90 to 1.1

1.1 to

60 53 9

6 31 15

.
_

...

.

1. 22 0

-co to -1.0 =1.0 to 1.0 I.

Rasch difficulty
estimate

Table 8.

Cross-tabulation othe mean square residuals with
Rasch difficulty estimates.
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Figure 5

This figure illustrates the power of the test for
eqUal slope. Item #220 has.a-slope significantly

steeper than the Rasch curve.
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Figure 6.

This figure shows an item that has a slope
much steeper than the Rasch curve;
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which has an item characteristic curve much steeper than the Rasch curve.

Inclusion-of items with widely varying slopes in a test violates the basic

assumption of Rasch modeling, that all items have the same discriminations

(Wright, 1977, p. 103).

Part IV. The Practical Implications of Failure to
Reject Items Which Do Not Fit the Ratch Model

From Table 6, it appears that the items on this test battery differ

greatly with respect to the slope of the item characteristic curves. Do _

these differences actually affect the properties of tests which might be

built using subsets of the items? Are these differences great eiough,to

impair the use of such tests in a testing program based on Rasch model theory ?.

The slope of the iteft characteristic curve is cne index of item discrimination,

- and the Rasch model assumes all items in a test have the same discrimination.

If one were to base judgements of acceptability of the items on the mean square

standardized residuals, only a few of the items would be unacceptable. that

practical consequences might arise if items with slopes as different as are

fodnd he are included in tests?

The Estimation of Item Difficulty_

In order to answer these questions, four tests of 20 items each were con-

"structed.Thefirs or Steep" test contained only items which had slopes o

.29 or greater based on a sample size of 1000 or more data points between ±2 b-d.

The second, or "Rasch" test contained only items which had slopes not signifi=

cantly different than .204, based on 1000 or more data points between ±2 b-d.

The third, or "Flat" test contained only items which had slopes less than .15,

based on 1000 or more data points between ±2 b-d. A fourth, or "Mixed" test

was composed of seven items from the Steep test, six from the Rasch test; and
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seven from the Flat test.

A sample of 1480 respOndents was selected from the 1664,,each of which

had a score between 0 and 20 on each of the four tests. When each of these

tests was analyzed separately, very intersting results were obtained. In both

the Steep and Flat tests, the slopes of the item characteristic curves suddenly

seemed to be very close to the sidpe of the Rasch curve. The Steep test no

longer seemed to contain items with steep slopes and the Flat test no longer

appeared to contain items with flat slopes. The Rasch test still contained

_items which -fit the Rasch curve. Only the Mixed test seemed to contain items

with divergent slopes.

Table 9 shows the slopes of the 20 items which were in the Mixed test as

they were computed in two contexts. First, in the context of the Mixed test

and, secondly, in the context of the tests containing only items with similar -

slopes. These statistics were based on the same sample of 1480 students-.

These results were very diSturbing. The Rasch model program apparently

adjusts the slope of the items in any given test to the best fit with the

Ratch curve. Looking at the output from program BICAL (Wright and Mead, 1977),

there Is little if any indication that the Flat test is any better or worse

than the. Basch and Steep tests. This adjusting of discrtminations is alluded

to in the manual for use of the BICAL computer program. The .program provides

,d "discrimination index," whidh "is in fact the linear trend across score

groups. Values larger than one indicate that the observed characteristic curve

k.4.1for an item is steeper than the average best fitting logistic ct ve for all

items; values less than one indicate the curve is flatter" (Wright and Mead,

1977, p. 53).

However, there are very substantial differences in the quality of the

38



Item #

133

96

202

12

232

14

215

'192

229

231

19

163

167

71

39

33

194

36

175

149

Context

Mixed-Test Homoaeneous Test

;30 .22

;27 .20

.28 .22

.30 .25

;31 .22

.31 .27

.27 .19

.21 . 5_

.22: :;20

;21 \.23

.18 ..15

.19 .25

.22 ;25

1.6 .32

.18 .29

.17 .26

.i3 .20

.14 .21

.14 .18

.14 ,18 .

Table 9.

Slopes of item characteristics curves for 20 items contained in
the-Mixed test as computed in that context and in the context

of items with similar slopes.

.3 3
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Steep; Rasch, Flat, and MiXed tests. Table 10 shows some traditional test

statistics On these four tests. The alpha coefficients readily indicate t:7.

tbe;_ltests whichcontain items with steeper slopes hai.te 'higher internal re-
.

liabi4ty; Item -total correlations; ahoWn in,the'lower portion of Table 10;

also indicate dramatic differences between the _items in these tests. The

changes in slope observed in Table 9 between the mixed and homogeneous con-
.

text do not appiar in Table 10. That is, the itettotal correlations in Table"

10 remain fairly constant regardless of the heterSieneity of the discriminations

Of the items in the test.

In'order toverify these results; which were computed using Veldmanig

PRIME library program RASCH, and to look for further information which might be

provided by Wright's program BICAL, similar runs were made using BICAL. Several

initial comparison runs verified that all but one: f the statistics which were

computed by VeIdman's RASCH program agreed to the third decimal with those pro-

vided by Wright's BICAL when the PROX procedure was specified. The single ex-

ception was the fit statistic, which was adjusted by very complex factors in

BICAL for reasons noted above. The BICAL program provides much more output,

however,,and also allows for a supposedly more accurate calibration yrocedure,

referred to as UCON, for "unconditional maximum likelihood estimation." [The

"unconditional" refers. to the notion that the exact probability of each response

vector given a particular total raw score is not computed in the process of'esti-

mating item parameters. ThPuncanditional pTocedure approximates the conditional

procedure;'and is reported to be less expensive and less subject to round off

errors (Wright and Head, 1977, ps 23).]

It was apparent from the output of these analyses that the procedure for i-

; adjusting the average slope of the item Characteristic curves to that specified

by the Rasch.model (regardless of the data fed into the program) involves



Steep Rasch Flat

Mean 31.68 31.45 31.95
Sigma 5.57 4.13 3.17
Alpha .91 .78 .61'

Item #

133

96

202

%. 12

.232

14

215

192

-229

231

19

163

167

71

39

Within Different Contexts

33
-w

194
C)

36.

175:

149

Mixed

32.59
4.32
.81 ,,

20' Item Mixed

TeSt
20 item Homo-1-

geueous Test

.63 .64

;54. .57

.60 ;64
-

.59 .64

.63

.61 ;65

.56 .59

.49. :50

_ ;43

".48 .49

;38 .37

.42 ;46

.45 ; .49

.38 ;47

.40

-.37 .41

.37

.34 ;36

.25 .26

; 3a\ .30.

Table_10_;_*
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Some traditional test statistics for the items in-the 20-item
Mixed test computed in that context and the context of the homogeneous tests;



adjustments of thg estimated abilities of the students and difficulties of the
.

items. Recall that Rasch model item characteristic curves use ability minus

difficulty (b-d) as the abscissa (X axis). Even minor tranformations of the

values of the abscissa can easily affect the calculated slope of a line. To

reduce the slopeof a line by one-haIf,-simply double the values of the abscissa.

The procedure used to adjust the. slope of an item characteristic cure to

that of the Rasch model does this by transforming the scale of the ability and

difficulty estimates. For Bxample, the range of ability in -the sample of 1480

students was estimated to be 7.43 units based on the Steep-test and 6.51 units_

based on the Mixed test. .t.emdifficulty estimates also vary systematically.

The distance between item #96 (the most difficult item common to the Steep and

imated to be 2.66Mixed testsrand item #14 (the-easiest item in common) was

x,units when difficulty estimates were obtained in the 20 tem Steep test and 2:22

-units when based on the 20-item Mixed test, using the same sample of 1480 stu-

dents' data. The differencecia the scale of ability estimates is combined tilith-

the difference in the scale of difficulty estimates when the ability = minus -

difficulty (b=d) scale is fornEd to produce a change-in the apparent slope of

an item characteiistic curve. Notice in Table 97that the slope of the item .

, -

:characteristic curvefor each item in the.Steep test is,Iess when bled on the
. '

homogeneous (Steep) test than when based on the Mixed'test.

41It haS been stated that "item discrimination cannot be estimated directly

or efficiently in the way Rasch item difficulty and person ability can" (Wright,

1977, p. 104). Wrightcriticized Lord (1975) for imposing arbitrary constraints

on his procedure for. estimating discrimination, but it seets that Wright's pro-

cedure also imposes a very rigid constraint -- that the "average best fitting
i

logistic curve for all items" (Wright end Mead 1977, p. 53) must be the same

as the Rasch model. The Rasch model does-not have,,a parameter for item
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diScrimination; this does not mean that the Rasch 'model does not specify what

the discrimination is -- it merely asserts that every item has the same dis-

crimination. In order to demionslrate that the items in a particular test fit

the Rasch models it is necessary to show that they have the particular dis-
.

crimination specified by that model. This is done by adjusting the ability

and difficulty estimates and using these'as the abscissa when plotting the

item characteristic curves.

Per son-Free_Test-calibration

What effect do variations in the slope ofothe item characteristic curve

have on person-free test calibration? In order to investigate this, three

ability groups were defined out of the sample of 1480. Wright and Mead.(1977,

p. 46) suggest.that extremely high and low scores should not be included in

item difficulty calibration attempts. Therefore, students with more than 49
.00

or less than 17 correct responses to the 60 items in the Steep, Rasch, and

Flat tests were excluded: The'low ability group contained 494 students with

scores of 17 through 31. The high ability group contained 494 students with
. -

scores of 40 through 49. A medium ability group contained 367 students with

scores of 32 through 39. A total of 1355 students thus remained; divided into

these three abilit37 groups.

A new Mixed test was also defined, containing 10 items from the Steep

test and 10 from the Flat test. This Mixed test was composed of items which

had very nearly the same level of difficulty in order to illustrate as clearly

as possible the Potential hazards of including items with different discrimi-.

nations in a single test. Between 25% and 68% of the 1355 students marked each

of these items correctly.

Difficulty estimates for the 20 items in this Mixed test were cglculated

using the high and low ability groups. Table 11 shows the estimated difficulties.
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Difficulty Estimates

Ability-Group

Item4 High Low

17 =.45 .23'

18 .37 1.58

133 -.08 1.18

'202 =1.75 -.16

12 -1.45 -.39

215 -.04'

13 = -.14 .39
o

5 =.74 .17

152 -.24 .64

166 .70 1.16

171 .33 =.33

173 .38 -.48

71 -.26 -.74

194 .16 -.78

175 =.14 -1;59'
5

161 =.61 -1;03

65 ..39 =.44

84 .:68 =.44

178 1.53 ;05

139 -1.37 .18

Table 11.

Difficulty estimates for a set of 20 items baied on
high and low ability groups.



of each item bdied on two ability groups. These difficulty estimates were

computed using Wright and. Mead's program -KCAL. The correlation between diffi-

culty estimates based on the high aad low ability groups is -.42. "If gross
. -

variation in item discrimination is tolerated in the final pool of test items,

then the possibility of person-free test calibration is lost (Wright, 1968, p; 100).

Table 12 shows the fit statistics for each of-these 20 items as reported

by program BICAL for the high and low ability groups and the total sample.

Notice that onIy,the "Between Group Fit Mean Square" based on the total sample

gives any indication that these items do not fit the Basch model." According
4

to Wright and Mead, "the between group mean square tests the agreement between

the observed item characteristic curve and the best'fitting Basch characteristic

curve as*estimated by the groups selected" (1977, p. 52). A non-significant

between groups mean square "indicates that statistically equivalent estimates

of difficulty would result fram using either the low scores or the high scores

for cailbration (Wright and Mead; 1977, p. 51). Even o, they do not recommend

.dropping items from a test if they have high between group fit mean Squares.

This statistic is apparently the only indication on the BICAL printouts that

there may be comething amiss with the Mixed test. Even so, it only .indicates

thiS when these items have been calibrated an a sample containing a wide dis=

tribution of'abiIity. When the calibrations and-fit statistics are based only

on the high or low ability groups, there is no way to tell from the BICAL print7

that the difficulty estimates would not be stable across ability groups.

The reason these difficulty estimates are so differentrwhen based on the

high and low ability groups-is .that the item characteristic curves cross.

Items from the Flat test are "more difficult" within the low ability group,

but "less difficult" within the high, ability group. Basch model proponents

have clearly recognized that items which have crossing characteristic curves



Between Group Fit
Mean Squares

Total'

7.41

15.72

20.69

15.55

9:62

14.89

4:48

13.86

10.30

3:50

2.13

6.87

1.83

6.80

19.02

2.13

7.18

10.42

28.54

11.78

Item # Bsgh Low

17 1.37 1.08

18 2.35 2.75.

133 1.58 2.15

202 1.68 3.67.,

12 .33 1.81

215 .90 3.50 .

13 2.39 2.94

5 1.82 2.43

152 ,.97 . 2.16

166 .43 1.57

171 2.02 1.12

173 .86 1.49

71 r.86 .32

194 .35 1.34

175 1.55 1.03

161 :82 1.18

65 .15 2.65

84 2.53 .67

178 3.31 4.90

139 .94. 1.91

Table 12.

Total Fit
/lean Squares

Hi h Low Total

1.03 .95 .92

1.02 .82 .83

.99 .84 .82

.84 .99 .82

.98 1.01 .87

.98 .85 .86

.95 1.01 .94

.89 .94 .85

1.02 .91 .90

1.07 .86 .93

.98 11.01 1.08

1.08 i;05 1.18

.99 q.11 1.10

1.05 i 1.08' 1.18'

.1.08 1.08 1.34

.98 1.12 1.09

1.05 1.13 1.19

1.05 1.08 1.22

1.12 1.15 1.40

1.06 1.06 1.22

Residual mean square fit statistics for the 20 items in the
Mixed test Compute ,by program BICAL using three

.es: high ability, low ability, and total group. .
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cannot be; allowed to remain in d test if Retch model procedures are to be

used (Wright, 1968). What I have demonttrated is that the standardized retid-

ual mean square fit statistic does not provide the information necessary to

select items with similar slopes.

Ltrer.

These differences in difficulty estimates affect the results of attempts

to link tests, also. For example; no items are common to both the Steep and

Flat tests, but:they can.be linked through the Mixed test. Ten items in the

MiXed test are common to the Flat test and ten to the Steep test. F011oWing

the procedure specified by Wright (1977, We.-can link the ,Flat and

Steep tests using the calibration of the MiXed test.

The constant necessary to translate all item difficulties in the call=

oration of the Miked test onto the scale of the. Flat test would be

10

t =
xt

-d -)/l0.mf i=1' if

The constant of the translation between the Steep test and the Mixed

test would be

= 1E- (d MO.t
sm 1=1 it

-
if

Table 13 shows the difficulties estimated for the linking items on

these three tests, with the high and low ability estimates for the Mixed test.

Uting the difficulty estimates,based on the low ability group, the two con-

stants are

t = ;830 and

=, ;404.
sm

Using the difficulty estimates based on the high ability group, the

4 7



Item #
N

45

Flat Mixed Steep
1355 '101w(494) high(494) 1355

17 .233

18 1.580

*

133 1;180

202 =.158

12 .=:393

215. .787

13 ;393

5 .172

152 .642

166 1.162

171 ;306

173 .312 =.478

71 =.074 -.735

194 .026 -:785-

175 -.660 -1.593

161 , =.450 =1.034

65 .377 -.436

84 .476 -.444

178 1.225 .055

139 . 1.160, .182

Table 13.

-.453 1.199

.371 .735

-.077 -.526

-1.750 -.549

-1.451 .590

-.035 .393

-.140 -.058

-.745 .389

1.238

:696 .159

.327

.380

-.261

. 161

=.140

-.613

. 389

.680

1.533

1.368

Linking the Flat and Steep tests through the Mixed test, using either
high or low ability groups to calibrate the difficulties

of items in the Mixed test.

48
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two constants are

t = -.117 and
mf

= -.739.

Thus, the difference between the difficulties of the Flat and Steep test is

estimated to be 1.2Z. units using the link based on low ability students and

-.856 units using the link based on the high ability studenta. The average

scarea of Oe 1355 students to these tests were 11.19 (Steep test) and 12.02

fFlat test), indicating that the Flat test is slightly easier than the Steep

test;

The ability estimate for a person with a score of 11 on the Steep test

is .24 according to the BICAL printout based on the 1355 students in the sample

and the 20 items in the test. However, translating to the scale of the Flat

test; a score of 11 on the Steep test would reflect anability of

b_ 1;234 + _

02.89 11
= 401-

1.960

using the low ability link and

1_;_960:].
in _

1-
28 (--1) = -.60= ==.856 + I: -1

using the high ability link. Such a great difference (2.09 units) would be

intolIerable in a testing situation. (In terms of a more familiar metric,

-.60 is roughly equivalent to the 25th percentile and 1.49 to the'76th per-

centild on the Steep test.)

To my knowledge; no other study has reported such unacceptable results

using the Rasch model. The Selection of items for this test of sample -free item

calibration and vertical equating was fate:I:Wet:1u) produce as dramatic results as

possible. The fact that many other studies have Obtained at least marginally

acceptable results using the:Rasch model indicates that the Rasth model is



fairly robust. That is, even though variation in item discrimination can have

dramatic, adverse effects on item calibration and test linking; in many situations

Such effects have not been observed. Future studies need to monitor item dis-

criminations more closely and thus determine the extent to which the assumption

of equal discrimination can be violated in practice.

Part V. conclusions and Suggestions for Further Research

This investigation has demonstrated two things. First, the discriminations

of al the items in a test must be very similar in order for Rasch model analyses

to work in practice. .Second, the standardized residual mean square fit statis-

tic does not detect unacceptable variation in discrimination. These findings

were used to construct tests in which item discriminations were dissimilar

enough to produce discrepancies in difficulty estimates based on high and loW

ability groups. TheSe discrepancies were then shoin to lead to serious errors

in test linking. The major implication is that item discrimination needs to

be monitored and controlled using more exact tests of fit than the residual

mean square. If item discrimination is carefully controlled, then vertical

equating, sample=free test calibration and test-free person measurement might

be possible.

The,successfuIuse of the linear model to determine the slope of item

characteristic curves may be indicative of its potential as a latent trait

model. If one were to restrict the range of specification of the model to,

say, .1 < F(c,,-.< .9, then the linear model is- practically equivalent to the

logistic model (see Figure 4).

The linear model has two parameters: the slope for discrimination) of

the item and the intercept (or difficulty) of the item. One might define the

difficulty of an item as the point at which the item characteristic curve

50
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indicates a .5 probability of success. Previously in this r, the linear

model was specified as P(c) = mx where m is the slope of the line; x

equals minus difficulty and b equals .5, the expected value of P(c)

when ability minus difficulty equals zero; The model could be reformulated

by-defining x as the ability of the person and b equal to (.5-m8), where m is

the slope of the line and 8 is the difficulty of the item. Least squares

ettiMators.ofin and b are available which are unbiased, efficient, and con=

tiStent. These estimators are very well suited to the problem at hand because

tests of hypotheses concerning m and b are very robust to violations of assump-

tions of equal variance and normality of the distributions of P(c) given x (George,

1977). These are exactly the type of distributions that occur in test item data.

Perhaps the major difficulty with estimating fit of items to any model is

that few models do well outside of the .1 < P(c) < .9 range. I suggest that

one doeS not need to model performance outside of this range. Indeed, a fully'

consistent program of individualized testing would not use items which are too

easy or difficult to estimate ability. Nor would data from persons with a-

bilities too far above or-below an item's difficulty be used to estimate that

difficulty. It-is likely that, regardless of which model one wishes to use,

data outside the,.I to .9 P(c) range adversely affects the estimates of the

parameters of the model. Thus, it should be possible to devise algorithms

which improve the estimates of ability and-difficuIty and discriminatAn by

eliminating items and persons which do not provide reliable information.

One example of the use of the linear model would be in Selection of a

set of items Which satisfies the assumption of the Rasch model that all items

in a test have the same slope. If we define this to mean that no two items

in a test have item characteristic curves which cross in the .1 < P(c) < .9 range,

the linear model can be used to select such items: In order to.deterMine whether.
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two item characteristic curves cross in this range, we;,specify their equations to

be P(c) = mIB + .5 -m161 and P(c) = m2B + .5-m262. The point of intersection is

pi = ml"-m2d2) m2"-midl ,

ml 2

where d
1

and d
2 are the estimated difficulties of the items. If pi is lest

than .1 or greater than .9, then both items would be included in the test.

If pi is greater than .1 and less than .9, then the item with the steeper slope

thould be retained and the item with the flatter slope dropped from the test.

This selection procedure was applied to the 237 item test discussed pre-

viously using Ranch-difficulty estimates provided by the PROX: procedure and

slope estimates based on the responses of individuals within ±2 (b-d) units

(see Table 6). Thirty items were retained, each of which did not cross any of

the others retained. Every other item in the test (i.e., 207 items) crossed

One or more of the retained items and had a flatter slope. Table 14 shows the

item numbers, slope and difficulty estimates of these 30 items. Other statis-

tics for most of these items are included in Table 6.,

This procedure should provide a very good method of building tests that

have all the properties desired by Rasch model proponents. The range of dif-

ficulty estimated by the PROX procedure for the 30 items is -2.16 to +4.81 in

the context of the 237 items. It may simply not be necessary to use any other

'items from the 237 to obtaia as accurate an estimate of ability as is possible.

The alpha coefficient for this 30 item test is .92, based-on the 1664 persons

described earlier. (Rasch model item difficulty estimates in thecontext of

the 30 item test ringe from -2.54 to 5:61, further illustrating the ccntext

specific nature of these estimates.)

Another aspect of latent trait modeling that is Very promising is the
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Iter14*#

Slope of Linear
_Model_

Rasch Difficulty
EstiMate

IO .342 -=.639

12, .320 1.482

13 .306 1.033
T....14 .315 -.042'

15 ..301 .539

17 .337 , 1.974

18 .336 1.608

20 .295 2.764

31 .348 .=2.159

35 .286 -1.907

96 .324 2.020

97 .322 =1.232

98 .323 -1.139

107 .333 3.755

126 .277 =1.338

127 .290 .223

133 .329 .644

1,36 .347 2:502
4.-138 .356 2.241

162 .264 4.813

166 .296 11.72

197 .299 .083

198 .293 .157

206 -.339 -.886

-207 .317
. =.918

208 .316
-.

-.244

215 .314; 1.327
I

226 .317 =.434

227 .293 .157
..

232 .318 - .356

Table 14.

Items retained by testing_for non-intersection of item characteristic
curves in the range of :1 to .9 probability of correct response.
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hopi of determining when items and tests are biased.for or against specific

individuals or groups of individuals. The Rasch model fit statistic discussed

earlier has been proposed as an index of such bias (Wright, Mead and Draba,

1976). However, it is clear from this paper how inadequate that statistic is.

The linear model might provide a practical means of detecting such bias by

letting x equal item difficulty instead of person ability. The slope (m)

might then be a good index of the extent to which each person brought the tar-.

get ability to bear on the items in the test. In addition, the standard error

of estimate can be calculated for each parameter in this modal. This statis-

tic provides an index of the accuracy of the estimate of each person's ability.

UltimatelY, the future of latent trait models depends upon-the acceptance

they receive from those who do testing on a.daily basis. It is important that

these people understand the models we propose and how they shouid be used.

Most practitioners ,have worked with linear models in other contexts. This is

one more reason I advocate a linear model over the logistic models currently

receiving the most intense analyses.
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