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THEORETICAL AND PRACTICAL CONSEQUENCES OF THE USE OF

] STANDARDIZED RESIDUALS AS RASCH MODEL FIT STATISTICS™
) Archie A. George
o, Research and Development Center for Teacher Education

The University of Texas at Austin

' The standarl.zud residual is a statistic which has been used to assess

the congruence between a sample of test'item responses and the one parameter

latent trait (Rasch) item characteristic curve. However, the centrdl thesis
of this paper is that the statistic is not appropriate for this purpose: Its
theoretical distribution is based on the central limit theorem which, of

course; requires a large~sample size and yet its calculatien involves very

are described and illustrated. )

More specifically, this paper conmsists of five main Sections. The first
2 ‘ O T T o
section contains -a very brief review of latent trait theotry and the nodels re-

. PR

ceiving greatest attention at this time. -The second section contains a de-

.

scription of the standardized residual statistic ‘and am explanation of its
e o g R
theoretical basis. The apparent error in the calculation of the expected

distribution of this statistic is pointed out, and the implications of the use

of the statistic for item analysis are described and justified on a theoreticai
< N . .

basis: -In the third section, empirical results using actual data are presented

which support the theoretical analysis. In the fourth section, the practical

-~ -
.

~_ "The research described herein was conducted under contract with .the -
National Institute of Education. The opinions expressed are thdse of the

author and do not ‘mecessarily reflect the position or policy of the National

Institute of Eddcation, and no endorsemént by the National Institute of -
Education should be inferred.: T . . '
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impiications of the failure to réject items which do not fit the model are

demonistrated. Finally, an alternate model is described which may provide a

practical solution to problems encountered in the construction of item banks

and tailored testing:
4 ' . N - _

. Part I. Latemt Trait Theoty

-~

Latent trait theory has been proposed as am alternative to classical test

theory for the assessment of ability and educational achievement. A latent

trdit model specifies a relationship between observable performance and un-

observable traits (abilities) which are assumed to underiie performance. The

L3

latent trait models currently under study in educational measurement specify

mathematical. formulae which relate ability to probability of a correct response

Figure 1. 7
P(c) | 1.0
Probability
of a correct
response -
“
= 0 = .
v I - s ; _—
ERN Low . ABILITY High

perfoimance on mental test items. The mathematical complexity of this model -

did not encourage its full development, but the groundwork was -laid for later

—~ )
work using simpler models. Currently, three latent trait models seefi to be

.

receiving the most intense research: These models are very closely related .

mathematically even though they are the result of different lines of development:

<

B
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The simplest is the Pasch modal:
P(c) = A

-1+ A

where X = eb °.

because the item characteristic curve is coupletely aecérminéd_by only one

- parameter; the difficulty of the item.

A model of intermediate compléxity has been proposed:

A
1+3

where x = &*(89),

P(c)

This model is the same as the Rasch model; except for the parameter u,

which is called the "item discriminatiom” parameter. This patameter describes
e ‘,,,,,,.,,.,,,;,_,,,_, - e . - e o
the slope of the item characteristic curve. Thus, the two parameter model,

J ;\ R e . ‘77'7 L _

as this model is frequently referred toy has more flexibility. That is; a
. < :

wider variety of item characteristic curves can be described using this model.

o

- '!' :‘ e
A three parameter model has also been proposed:

I+X
a(8-6)

Ple) =y +(I-v) _x

where X =_e
o
In this model, y is referred to as a "guessing" parameter. It functions
to modify the lower asymptote &f the item characteristic curve §o0 that the pro-—

bability of a correct response never reaches zero, fic matter how low the ability
X . ’ .
i T . .

of -the test taker: .

The Rasch model is currently receiving a lot of attention from test users,
A 33 a- 1”, S R ' - -~ - 7,,”f77-”, o
school districts; and others:. Fhis is primarily due to the efforts of Ben

Wright and his colleagues at the University of Chicago. The simplicity of the

NJi
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one parameter model has enabled statrstrclans to develop technlques of est1~

P ————

mating the 1tem difficulty and person ablllty What could be descrlbed as

cookbook procedures have been developed for the use of the Rasch model in many

Eesflng situations (Cohen, 1976, in Wright; 19° 7) Estimation ﬁfEBieﬁs are
;'/ . o o - - 7

mbre difficult for the two and three parameter modeis;

One -é&%'ra'niage offerea by use of latent trait mbaéi"s\. is that different

. \ _

: N
comparao;llty of scores. That IS each student could rece1ve a\glfferent test

,

and the abxlItIes of the students could still be placed on a slpgle scale- Low

ainlty students can be tested uslng easy tests and hlgh ability stui,l:s tEscnd

The Rascﬁ mbdel offers one advantaﬂe over the other latent trait mo&eis°
the number of items correct on a test Is all that is nécéssa’.ry to estimate a |
persom’s ability. Correct responses to difficult items do not count any Zore
than correct responses to easy items. The Rasch ﬁaaé; has been sgéwn;tb be
the only i"o'gi-'sti’c’- latent trait model wh-cb nas this property (Ana*erseii—, 1977).

Accordlng to the other logistic models, a person's ablllty is estimated as a

howAmany.

Part II: 4 Theoretical Analysis of the Standardlzea
Residual Fit Statistie

Accbrding to ﬁright (ié??i; the two major advantages cf the Rascﬁ‘model

are sample —free item ca11br3t10n and tesL -free person measurement. Sémple:free

estimated regardiess of the avilities of che persons who respond to the items:.

Test—free person measurement refers to the concept that t:hn ability of persons

™~
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they respond. Together, thesé properties allow for the comstruction of a
personalized testing program which measures high ability students using tests

containing difficult items and low ability studerts using tests containing easy .
g \4 g : g vy

items. Scores on all tests can be converted (vertically equated) to measures
of ability on a common scale, and new test items ééﬁ be caiibrgced without con—
trciiing for the aSiiity of the ééﬁﬁié;

Several iﬁﬁééfigéééié hé%é exanined the ability of the Rasch model to live
up to these promises: Anderson, Kearney and Everett (1968) and Tinsley and
Dawis (1975) found Rasch item &iffi@ﬁltiéé to be fairly ifvariant for particular

sets of items when based on different samples of test takers. Whitely and Dawis

'~ (1974) and Slinde ané Linn (1978) attempted to replicate Wright's (1968) re-
sults for the problem of vertical equating. 'Aécdfdiﬁg to Slinde and Limm;

Whitely and Dawis' results were not .as good as those of Wright, but were judged
- to "lend some support for the item-free person measurement claim of the Rasch

- s
- > 2

ﬁiédél;_' (1978; p- 26). However, Slinde and Linn founid that for the -math data
v,,, . & o S ' ) : o :
analyzed in their study, "the Rasch model did not provide a satisfactory means
of vertical equating" (1978; p. 545.At§§§§ wedt om to say that it may be nec—
' : J

essary to more carefully select items that fir the model. [This is also the

recommendation of Keats.and Boldt, as reported by Angoff (1971; pp. 529-530):]
.Siiﬁ&e and Linn did not test itéms fé%;fit to the Rasch model: They acknowledged '
that this may ﬁaVééBééﬁ responsible for the inédéqu;te vertical equating results
they obtained. : =
While working with the Rasch model, Dr. Donald Veldman and I moted that
the test of .item fit recommended by Wright é1977; p.-102) indicated that a
very lafge number of items fit the Rasch model better than could be expected

by chance. That is; the standardized residual fit statistics were very low
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for many items. I found this to be true in published artlclea, also (Der*lne,

Wright and Wainer, 1977; Wfight'aﬁd Mead, 1977), and initiated this scady of

_ A

he Standardized Residual statistic is computed as follows: For each

Yo d ] wbo attempgs aﬂ Item, a z- sqﬁare is computed

perso
(X-?) A . : . :
N ze= 0 : L 5
where P = ¢*/(1+e™), x = b-d .f; -

and X = 1 if cafféét response
O :

0 if fncorrect:

_where b = estimate of the person's ability
-

and d = estimate of the item's difficuity.

U , L x-
This 2z~ conveniently reduces to e = for a correct respornse and e for an
incorrect fééﬁéﬁéé; Clearly, when X is lérge (i.é., a péerﬁ's ability is

much greater than the item' s dlfflculty), the predlcted probabxixty of a

., COrrect response is very high. For instance; if x = 4,

P{c) = e /(l+e ) = 54:60/55:60 = :98: . -

.

If the person gets the item correct, a z of e -4 ( 02) is ;ééigﬁéa. If the
Sx T,

i~ S R
These z° are summed

person misses the 1tem, a z (54 6) is asslgned'

over perébné and di?idéd;by the numbe; of perspns to obtain the vaiue of the
standardized residual. fﬁié statistic has'aisafﬁéén gaiiéa this wgaH squared
erfor, or Fit mean square: liright, Mead and Draba’ (1976) claim that the sta-
iigiie wiil Bé'high for items'wiéh Satﬁ higﬁ aﬁa low discriminations. This

(Panchapakesan 1969" Wrzght and ‘Parnchapakesar, 1969) or as a ﬁééﬁ.édﬁété

with expected value 1:0 and variance. ZL/(L—l)(N-i)f L= number of Itens, N =

§
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adjustments were made because the distribution of tke étatiétié does not

‘conform to theoretical expectation. However; there are f&ﬁ&émeﬁtal problems

with the statlstlc which canrot be corrected by such adjustment.

2
The ba51c 1dea in the formulation of the mean z° is that- dev1at10ns of

obtained scores from expected values can be eonverted to z-scores by~di§iding

the deviations by the standard deviation, squariﬁg; and é%éféging across per-
N 2 B T
sons. Lower mean 2z should indicate small deviatiom; in general, while large
2. - (/
mean z“'ghpuld indicate gfeétef deviations. Table 1 shows how" heazlg{\eepen_
- . / N

size for several vaiués_cﬁ the ptbhéhiiity of a correct response: In computitg
the z” fit statistic, the sample size is always 1, since it is calculatéd for
each person-item encounter and averaged over peréeﬁé to assess item fit, and
over items to assess person fit. From this point of view; the test should be

very conservative- (i.e., rarely reject items), because the standard deviations
s -

are large, which ‘makes z2 vsiués,sﬁali; -
J

N

A more serious problem is the use of a normal approy1mat10n to the bi-

2 .
nom1al whlch is- impiicit 1% the exPectatlon ‘that the sum or mean z” is chi

squared distributed. Table 2 shows the magnitude of errors which are intro-
; e 22 g e =
duced when the z” fit statistic is assvmed to be sampled from.a normal dis-—
tributidn. Table 2 shows several actual prbhébilities of a correct fééﬁaﬁéé

to an item [P(c)]; and the probabllltles whlch wouid be Inferred to etlst if

\) |

the z” were a nbrmél devléte; ,
7When the éctﬁai probability is :50; the indferted probahiir'y fdf both

correct and incorrect responses (1 and 0) is .32. When the actual. probabxigt

of a correzt respomnse is .80, a correct respbﬁée is.inferred to have a

O ) ! . _

ERIC | | T -

Aruitoxt provided by Eic:



- ? N 8
o L R ) "* Sample Size -

P(c) 1 5 10 30

500 50 22 0 i16 -09

L60 Tt 49, .22 15 - .09

) 70 - - 46 .20 . .14 - .08
.80 40 .18 ;13 .07

90 30 7 213 ¢ 09 .05

- , N
95 22 10 07 04
.98 S A .06 .04 _ .03 _
.99 207 7 7 Le4 .03 .02
: I . ’
- =
Table i. o | g
SD of binomial Distribution (J7ht )
_ - : ‘N 5
) M ¢ N
. i
;
A 3 \;
7
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7 Inferred Probability . Inferred Probability

_Be) of Corzect Response .  “* of Tacorrect Respomse

.50 ‘ .32 ) ' .32

-60 41 .22

ot

:95 ) : 82 -00600

.98 -89 - -0000

Y
a
[}
Qo
(@}

.99 .91

Table 2.

Actual and inferred probabilities &ssuming the

standardized residual is a z-score sampled from a normal distribution.

¢

17



1¢
probability of :61; and an incorrect response a probability of :05. These
errors are intraduced because the calculated z is assumed to have been sampled
from a normal distribution; which would be appropriate only for large sampie
e £
sizes.
7 . 7 o - 7 7 - - o 7 )
The values in Table 2 were calculated as follows. Since *
ST R = e, .
N IO : ‘
* " ln[l.-P(c)] | -
for' any specirfied P(c).
e L2 o i =X _.i D i ... .x® . _
The z~ for a correct answer is e ; and for an incorrect answer e ; ac-
cording to the formula presented earlier:
- 2 2 , . ,
{ z- = [X - P(c)]” , which reduces R

P(c) [1-P(c}]

algebraically to & . when X = 1 and € when X = 0. The square root of each

22 e, &%, &) as calculated and the EBEEéé@BE&iﬁé.Géiﬁé [P(c)] found in
2 normal probabilicy table: The inferred probabilities in Table 2 are 2{1-B(c)];
vhich represents the probability of obtaining a value as deviant or more deviant e

_ than one with the z score with which the table was entered.
With a léttié reflection; these Eéﬁéi&éféiiéﬁé reveal how very small fit

éEéEi§Eiéé comé about for some items: Items wiich are aas§ are answered coi-

rectly more often than the Rasch model predicts. Each time this happens; a

very small z° is added to the "sum of squared residuzls,” and the resuit is a
small mean squared residual -- which supposedly reflects good fit to the Rasch
curve! It is also possible to see how greatly this statistic can be affected

by a few students of low ability obtaining correct responses; perhaps by guess-

T e S I
ing. For each unekpected correct amswer; a very large z~ is added to the sunm
of squared residuals; producing a larger mean squared residual. Table 3 shows -

- 2 . , ) DI
the z --values for correct and incorrect responses at several values of P(J).

= .
L
)
Q J




11

Ple) . for Correct Response for Incorrect Response -
.50 L 1:00: i 1:00
% .60 - .67 1.50
270 A 2.33
.80« 25 4.00
.90 i (11 9.00
.95 - .05 . '19.00
:98 .02 49.00
.99 ) .01 99:00
" Table 3.
7 Values of the squared :standardized re51dual foz’
- » several probabxixtles of a correct response.
- 7 , &
N r .S
- = <.
: ~ « ;N
); .
: t ‘ ’;
< |
s o ]
- (28 -~ 1 3 j
O » > > .
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 Notice the extremely high and low vaidés of 2> for values of P(c) above -90.
¢ - .
' k more direct illustration mlght bento consider thc-lmpllcatlons of the

A

" <
statistic for a fiumber of persons ‘of similar’ ablllty whose proportlon of~ cor-
. . \,

}rect responses deviates from the theoretical proportlon in certain ways; For -

example; if 40 persons obtained a total score 6n a test;té %ﬁi&h the Rasch

model ass{éns an abiiity.rating 6r 1.386; thé model predlcts that 80 percent of
these should - get an item with difficulty 0.0 correct. 1if exactly 32 (80/) do
1ndeed perrorm as. predicted the sum bf sqﬁaréa residnals would be:

éz =2 (e 1-3% (1739 '

and the fiedn squared residﬁal 1.66{ There is, of course, no dlfference

) + 8 ) = 40. 00

between - obtalned and expected proportion for th1s sample. »
Let us suppose that 36 of the 40 indiVidnals (90%)_§r6§ided correct
- ' : ) } A\
responses:

~ -

gz 2 36 (. 250) 4 (4 00) 25 00, and the mean squared residual = .625.

-

Thus, it can be seen that a deVIatlon in thls d1rect10n mrght lead one to in- 7

fer that the data fit the model "better than" when no deviation was present!

<. -

‘On the other hand let us suppose that 28 of ‘the 40 1nd1v1duals (702)

prov1ded correct responses:
-3

’ {;5: 28 ( 250) + 12 (4 00) = 66 and the meéan squared res1dual = }:375:;

In thls case; a person would be led- to "the 1nference that the data d1d not f1t

the model_as well as the previous datai even theugh exactly the same deviation-
is present. o
It might be appropriate, since there is a fairly large group imvolved; to

use the normal approx1mat10n to the binomial to ‘test for s1gn1frcance of the

- N .

differences between hypothes1zed and expected frequencles of correct responses. -

:.‘6" -

That is;, for each case: . : - : . o &

A

[ 4

1
bod |

[
2

L]
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-What a difference grouping

_ Yo 13
s 8 _ 0. _ . ) )
b © st 0 . .
2) z = :9 - -8 =W = 1258 )
S T - 063 i 7
n 40 .
\ _
3 &
° IS A _ -:i, — L
:.;3) Z = = .063 — —1.58

(.8)(:2)
40

N

'

of Scores makes! . , (-

Items which are very diffiéult for the sample of students_gn which fIt

statlstlcs are based often appear to fit the Rasch curve poorly because a few

students do answer these correctly. Items which are vern eas are usuall in-
y y y

- ~
-

 ferred tovfit the Rasch curve Véry well, because even more students answer

-

Ehém correctly thaﬁ are predicted by the model. Items whiéh have difficulties

near the ablllty level of the sample usually appear to be a good f1t because

oF another factor -- the Rasch

terrstIc curves. This résults

P(c) is_less than’ .50
oo L2
Most z© are less thau
characteristic curves:

and more

curve is.flatter than most actual item charac—

in more incorrect responses than preédicted when

B = ¢

correct responses whén P(c) is greater than .50:

L . 2
1.00; so-is the mean z~. Flgure 2 shows three item

the Rasch curve; one steeper curve and one flatter

the Rasch. The mean squared devratlons were calculated for each curve and

<.

are shown iﬁ Table 4.

These values 1nd1cate that the steeper curve fits the

“miodel best — even better than the Rasch curve itseifl The flatter curve fits

——

tﬁe least well: It is for this reason; in my 6piﬁi6n, that the mean-squared

<

re51dual has become a w1dely used index of flt of data to the Rasch model.

N

The steeper the 1tem characterlstlc curve, the better the«rtem is lnferred to

'
‘

o

<

3
»

Y
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- ‘Correct - Inicorrect o o _ o
e o . Steeper Rasch ~Flatter

. - X’ ot N A _
X ; e . —e - _Curve . _ Curve - _Curve

-3:6 ¢ - 2009 .05 . 0/106%* - 5/95 10790
-2:5 0 12.18 08 3797 8/92 - 13/87

=2.0 7.39 RS VR 8/92¢" 12788 16784

e,

:1.5 4.48 220, 15/85 - 18782 21779

0.0 1.00 15000 T 50750 56750 50/50

.5 61 1.65 63737 ) 6238 613

1.5 S .22 448 85/%5 82/18 79/21
2.0 x4 7 7:39
2:5 .08~ .12.18 .- §7/3 . 92/8° . 8113

L300 05 20.09 - 160/0 95/5 -. 90710

- T o - § 85556 1316:55 . 1737.74
Mean Squared - : . o
Residual : " 266 - 1.01 1.34

Table 4. . - -

Calcilation of mean squared residual for-thrée curves in -
. : - Figure 2. T ’

*These ratios show the proportion ‘correct to incorrect. To calculate the
mean squared, residual, mpltiply the numerator by the value in the e
column, muitiply the denomenator by the value in the e” columm and add - _
these two values; then sum this result across the 13 intewvals shown '

.and divide by 1300. - ~ ) -

3 ~ N (. c
17

Al
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L
fit the Rasch model. Thus; tests built using the mean squared residiial have,
- 7 S o T o < .
for the most part; beem as good as tests built using traditional test statistics.
However, such tests'are only believed to have been ‘constructed by selecting items -
which fit the Rasch model. The selected items actually were those with the
‘highest discrimination, just as in traditional analyses.
r .
- 4 ) N - - 3
s
. e ] .
_ e -
. - 13
O ) ? . ..
B <

Aruitoxt provided by Eic:
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Part III. Examination of a Set of Actual Test Data _:23_4 -
" Which Illustrates thie Problems Encountered When Using the e
Standardized Residual as a Fit Stat1st1c

Because of the inadequacies in the standatdized residual fit statistic,

it was necessary to construct another procedure for testlné the f1t of the
Rasch model to actual data. The procedure I dev1sed ls as fciiows. Veldman's
(1978) vers1on of the PROX procedure (Cohen, 19/6 in Wright 1977) was used
to estimate the item dlfflcuitles and person abrlltlesufor each of the 1554;
ééﬁ&éﬁEé whe fésponaea'tc a~237 item,inéiish;achfeVémént.tést. Al iéé& stu-

dents had scores greater than 0 aid less than 237, enabling them to have their a-

bilities estimaté “according to the model: 'Fit of each item to thekkasch
curve was assessed by f1ttIng a least squares llne to the data 1n the range of

*2 units of the estlmated ability-difficulty (b-d) A t-test was uséa'ta deter-
mine the prooablllty that the data were sampled from a popuiatlon in whlch the

'slope of the 1iné was the same as _the siope'of the Rasch model between these

two values.
Figure 3 shows the Rasch item characteristie curve between the values #2.0°
B-& and a line fitted by a least-squares to a uﬁifafﬁiy distributed set of data

points on the Rasch curve. The slope of this lime is. 2694 and seems to ap— 's

proximate the Rasch curve iﬁiEé.iiééii: Table 5 shows the formulae for thé

t-test which determined the signiflcance of the d1fference between the' Rasch e -

¢ N
-

siope ( 209&) and. the slope of each item's data in. th1s range.-_ .
I have taken some care to 1nz$strgate the adequacy of the linear model as

a substltute for the Rasch curve in the ratige +2 (b-d). The;error 1ntroduCédf

‘Gag,&aiéﬁiééé by computing the sum of squared dev1atlons from the Rasch curve
of data whlch conform exactly to the. Rasch mode1 That 1s,2 [P(c)] r3:—?((:)] -
';[P(nc)] [O—P(c)] where P(c) 1s the proportlon of correct ‘scores predlcted by

“the Rasch tiodels
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- SSx
: SSy =
- ) - -
: . L N ‘;B, & N X;
SSxy = ' igi (bi:d) Xi - -S ( i~ '.g' :
. N
Bl = SSxy/SSx . : _ - s
. L Be] 2 -
SSE = S§Sy - (SSxy)“/Ssx °

= ﬂ—ﬂ) -dss:-:) df = N=2 ) -

) b; E'Eétﬁﬁéfé& ability of persom i
- d- = estimated difficulty of item
‘X3 = 1 if person i answered item correctly
= 0 otherwise :
Tales.

P

between the s1ope of actual item characteristic

curves and the slope of the Rasch curve.

DD
Do

e .

“Un=2 : -
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1-P(c) is the distance from the Rasch curve to the correct score,
Plnc) is the proportion of incorrect scores, and

0-B(c) is the distance from the Rasch curve to the incorrect score.
RO T S Y
Summing these values across 41 intervals (-2.0 to +2.0 in 1 increments,

) : : . R _ . j \

see Figure 3), assuming a uniform distribution of data throughout this in4
teii'iéif zesults in an error sum of squares (ESS) of 7.7196C2. Usmg the ~\\\
1mear model, the formula is f[P(c)] E’l—P(c)] {P(nc)] [O—P(c)] s where P(c

is the. proportion of correct scores predicted by the linmear model:. The error
sum of §quares. in this case is 7.733142; or am error increase of only .2%!

S ' \

If one were to test for the adequacy of the linear model us:mg an F-test !

comparmg the two models (see Ward and Jennlugs, 1973),

Y= 1"(i) : *2"(2) s Fay x4 4 gl @ : ¢

. - . . . Y

where the X are binary (0;1) vectors specifying membership in one of the

41 levels of b-d and Y is a vector containing observed scores (1 = correct;

0 = incorrect)  and
Y= b U+ b Xy S @ . -
where U is a unit vegtor (all 1's) and X contains the vaiue of b-d for each

v

of the observed scores im Y; | .
the F would-be: . ]
_ (ESS - ESS,)/(41-2) ~ I
F= Ess /G- . |

whers N is. the number of data poiits at.each level of b-d. In order to obtaid
a significant (p = :05) F with 35 and &iﬁ-z';i; degrees of freedom (F = 1.51);"

&ﬁﬁiéiiﬁéiéiy .33,841 data p"t;i'nts éré:ﬁécéééér};i
For those who like to think in terms of multiple correlation coefficients -

| (®%), these aré BRI .



-

. 2%
i H E *
_ R°=1 ‘ESS) ;
Na . :
. Q. ﬁéé; o ST
=1~ SR 25} = L2469 A : '
. v N
for the Rasch model and RS
_ S ‘r’llé ’ : ' _ s :
CoR2 s (7.73313(41 = osee R T
R™ = l (N) (;ZS) = .2455 ) - ‘ R | _</

for the linear model.
A Monte Carlo test of these calcuiations was performéd; This involved cre-
Ip . '

ation of 33,825 data ﬁoiﬁts whlch conformed exactly to the Rasch curve (825;

in each of the 4% ievels of t-d), and analjs s of these data using the two

models specified above using Veldman's PRIME subroutine ﬁtéﬁéﬁ. The computed
Rz were .2470 and .2457. The F was 1.513; - Thus, for all practlcal purposes

_” - . - = .- -

_ the linear model seems to be an acceptable approx1matlon of the Rasch curve

-

in this range:

-y . 14
7

Table. 6 shows the item numbers, standardrzed mean square reslduals, pro-

Trelatidns of"iteﬁ:totai test éééfés, least squares slepe of the actual item in

\\‘ R

the number of cases on which -the' t was calculated (1 e., the number of data -

. Table 6 is ordered accordlng to decreas1ng slope of the least squares

;llnes. Some Interestlng relatlonshlps among the statistics in this table are
_apparent. Items with steep slopes tend to have low res1dual mean squares and

}aiso have hlgh item~test correiatrons (CORR) In general; when the drzfrcnlty

of an item is about .5 {50% correct) and tha slope was high (.24+); the item-
total correlation was -45 or greater, and the slope was siéﬁificanfiy greater
than the Rasch model: According to the stope test, only about one~third of

-



. Item #

Mean
_Square
Residual

_Correct

,,,,,

Rasch
Difficulty]

Corre-

lation

Slope

Test=N

156

202%
2%
232%

- 131
226,

207
" 208

3 59
15%

205
66 -
13%
75

T 215%

SR,

" =8.70

.75
.62
169
A
.62
.70
.95
.56
(64
.73
74"
.66
.97 J
.73
.76
.63
.64
.74
.78
6
59
67
240
.65 -
.85
:59
.78
.79
@

.03
:98
.97
.97
.33

.95

.28
:97
.84
.87
.38

© .45

12

97
.65 .

.35
.89

" .90

.65,
.48
270

184
.82

.87

.80

57
- 377

5.33
-3:38
=2.78
-2.94

2:.24
=2.16

.60
" .38

.60

:53
.57
.34
.56
.42

42

.39
.36

.35
=35
.35

.34

.32
.32
.32
.32
.32

232

.32
32
-32
.31
.31
.31
.31

.3t

;31
.31

27
32
65 -
52
1423
141
1351
57
759
612
1495
1558
659
71
1480
1484
481
411
1475
1562
1370
759
878
599
993
52

+1130
1566

- 599
. 97
1556
52
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N\

«{ | Square Proportionl Rasch Correr | . :
Item # |Residual | Correct Difficulty] lation Slope t Test-N

5% .80 :50 1.38 55T . .30 7.78 1568
90% SZA R —03 | as7 .30 :
' 77 26 | .08 =3.00 44 -30 T 1.14, 51
15% -78 .67 .54 7.7 ] .30 7:28. | 1448
152% .83 .28 1.99 | 47 ) .30 6.60 1495
- 16% .77 .78 -:14 255 | T30 5.95 1066
197% " <69 75 . .08 | .59 30 - | .| 1213
166% . .88 | .54 1:17. [ .53 | .30+ | 7.3 | o1ser
3 76 | .68 5t | .58 :30 %6.76 | 1428
101 67 | .80 | =.271 < .57 130 5.28 972
236 .75 68 | -1.3% .56 | .30 6:73 | 1428
137 84 | .49 1.41 - 5100 .30 | 6.89 | 1564
" 135 -85 44| 1.66 49 | 129 6.66 551
20 ~ .77 224 2.76 .41 .23 4:79 )
228 .71 .75 s | 57 |- .29 5.78 | 1200
37 1.03 .57 | 1.04- .52 29 6.81 1556
227 71 ] L74 .16 .58 .29 5:95 | 1260
158 . 700 | i7a .16 ©.58 29 - | -5.91 | 1260

(79 items
omitted)

52 76 | L9 -1.88 | .41 223 L4l 201
83* .97 :62 .77 46 |7 .23 1.26 |- 1506

t

114% - 1.07 .58 -99 40 22 | 1.17 | 1550
87 | 1.04 .52 1.31 |- .41 .22 - 1:12 1566

7% .98 .67 .53 .44 22 | 103 | 1428
108 | 1.11 .42 174 . .38 .22 n93 | 1536-

287 %56 | .92 -1.59 | .46 .22 .38 285
210% 1.03 56 2.14 .42 .22 -94 1564
|32 .62 L/ S13s | a7 | 220 |0 L3 366
iéé*i : 1.0z 7} .79 .f. =.23 . .43 .22 .58 1025
-] 192« " | " 98 64 =+ <168 45 ;227 .65 1479




:w\ ..

- - ‘ 24
. S -
Mean ,
_Squard  Proportion Rasch | Corre- |

Irem # |Residual | Correct pifficulty] lation Slope t Test-N *
229% 1.04 .61 .87 43 | .22 .63 1526
62 .87 .85 =65 |k 122 236 759
214 122 3. | 3.62 .24 .21 .18 753
231% . .95 .64 © 167 .44 .21 37 1479

© 82 .87 91 | -1.41 40 :21 .13 343 .
79 169 .93 | '-l.64 42 ¢ 2 209 266
1 - 80 | .83 |- -.52 48 | .2 13 823
19% 91 .22 2.9 33 f . =.06 1167
27 ;66_4 £.94 '21.96 | .38 .21 -05 ‘ iéé
Fo163% | 113 .75 .09 TR P S T e 1218
¢ 167 .98 670 .| 51 43} . =26 |- 1428
150 76 | .o | -1.93 36 20 | -19 [ 1se
42 ".24 .98 =3.42 .38 .20 -.06 - 31
151 g | .89 -1 | .k | .20 | .44 481
217 1.19 | .96 |- 4.55 18 | 20 | -.18 185
38 80 | .92 -1.52 407 .19 .48 311
" 172% 1.22 L2 2.59 .26 .19 -.98 1318

55" .~ .33 | .98 -3:03 1537 19 -.18 4 s
140 57 | .94 | -1.88 | .41 | 19 -247 201
190% | 1.13 - | .75 .09 .39, 19 | -1.25 1218
47 |7 93 | .7 =54 1.06 | T .19 | =1.55 1260
58 193 | .92 -1.51 .32 SR . 7Y 311
132% '1:07 |- .56 1.10 37 .18 -1:87 1564
-157 .82 .88 -1:03 42 18 | -1.16 548
163%, | -i.40 B R A 18- | -2.07 1557
159% 1.06 .72 .28 239 ) 18 -2:05 | 1317
168% 1:35 - .27 2.58 “| .21 \\\\18 -1.83 7| 1318
153 .94 .82 -39 b 17 =1.95 901

(15 items
: _ omitted) 7 ‘

C12ax |7 1.29 72 26 |0 a2en s | sk 1303

_17ix | 1.17 .53 Y 31 15 | 458 | 1568
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Al

- Hean | | " ) {
- Square Proportion - Rasch | Corre- .
Item # |Residual’ | Correct pifficulty lation |. Slope “t Test-N
182 7 1:46 - .86 =.77 25 - 150 | :§i§ 677,
e7ecbeamze |00 {237 o .27 | as | f30 | 1387
12 | 167 |. .85 |. .68 .20 15 | -3.48 742
158 1567 | .81 =36 | i35 A5 | =3.45 | 917
1 173% | 1.14 54 1.20 32 15 | -4.55 1563
&4 .77 85 .67 43 15 | -2.94 742
120% | .1.05 | .78 -.10 35 14 | =3.90 1083
1 L e 86 | -.82 36 7T i | o-3.07 | et
105 1.47 <l 170 | 3300 | .15 216 | -3.02° | 940 -
142 - .89 ] C..96 | -2:34 :35 14| =15 104
130 7100 | .73 A9+ | .35 | is | -s.e8 | 1284
123=. 127 ) G754 o6 |31 | x| ocaiss | o1s00
23 .73 | .90 | -1.25 42 | 1 | 226 | sn
17 | o7 .84 -.56 | .37 - 14 | -3.60 |- so1
26 |° 4 94 | -1.96 - | 37 | w0 | 1.7 182
116, .54 98 | -3:60° | .25 | 14 | -.sg 28
179 1.64 - | -- .13 3.64 :13 13| 2067 737
71% 1215, |0 w6 | .72 | 30 | a3 | -s.33 | - 1462
: 40 69 “I .89 | -i.14 | .42 13 | -2.82 481
39% 1.03 " . .75 07 | i36. . 213 | =4.85 | i2is
15 | .87 .93 | -1.75 :33 13 | -2.23 o 233
33 7l 130 [+ .73 18 | .30 .| 13 | -5.03 1259
- 194% 1.15 .59 95 | .32 | 13 | =s.69 | 1538
36% 1.31 |° .75 .07 .27 .13 -5.12 1218
175% .68 | .70 3| L2 13 | -siss | 1341 -
149% 1.46 .78 | . -:10 .25 13 | =5.02 1083
119 | 1.08 .| .87 - -.93 .31 213 | =3.60 | 585
13 - | .6 98 | 3019 | .2 SENN I T
- 161% | 1.25 76 | .38 | .29 .12 | -5.59 1370 |
65 | 144 | Cse | Lze | .20 | .12 | 6.20 1567
84% 136 |- .50 | 1.37 225 | 13 | -6.38 | 1568
63 | . .97 85 | -1.10 32 x| o-siss | N ez
&) -

‘ My




Item #

: 26
Mean X

|_Square

Residual

Proportion
Correct

‘Rasch

Corre-=
lation”

Slope

Difficulty

147
70% -
178%
.E39*
181
1765

.98
2.08
2.01
1:55
1.50
1.62
36

305t
1.30
1:24
2.31
1.45
1.51

. 1.37
1.51

2.24
1.10
1.77 =

. 2.19
2:13

.21
.36
.36

:83 -

-.54

J36
-06
.06

.16

-

.11

10

.10
.10

.09

:05

.04

.03

02
.00
.02
-04
.10

=4.95
~5.56
~7.20
~7.32
=7.65
-9.06
-1.90
=5.73
-16.02

=9.82
-10.67
~11.26
.=8.60

1-12.96

~12.64
=.97

~17.18
-17:88
-21.75

-5.65 .

*Items which were selected for further analyses == see Section IV. :

Statistics on selected achievement test items based on

»~

Table 6.

a sample of 1664 elementary students.

N
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the items (78/237) fit the model (|t|>2:0 rejection value), and for many of

these (25) the test was based on less than 100 cases. .ihus; it could be

argued that only 53 items fit the Rasch model. - A Eéﬁﬁdn rule of thumb for

re;ectlbn of an item is RMSQ>3 0 (Wrrght and Mead, 1977, p. 5i5, which would

lead to rejectlon of oéiy 2 items!

Some items in Table 6 are clearly very poor test Items from a traditional-
-1 -

~

pornt of view; and yet appear to be acceptabie when the mean square residual

_isvexamlned.' For example; item #73’ near the bottom of the list5 has a mean

quar(; ‘esidual of 1.77 and an item-total correlatlon of -.01! ?ig&éé 4

14

[/ 1

shows the Rasch curve ‘and a plot of item #73. It would be -absurd Ea,iﬁéiﬁdé
this item in a test, at least from,any pornt of view but the mean square resld—;

4
ual. Table 7 shows the calcalatiéns of the RMSQ for 1tem #73.

From the data ' in Tabie 6/_an 1nterest1ng correlation can be caicuiated.

The residual mean square correlates .50 with the Rasch difficulty estlmate.

This degréé of cdrrélatiaa.séEﬁééi'Eﬁé mean square rési&uéi and thé proportion

re

of correct responses is also seen in data wh1ch has been publxshed For the

,paroie data in Perline, erght and Wainer (1977 P- 13), the -correlation is .55

The exam data in Qasch (1960 p- 106) gives rise to a .26 correlatlon, us1ng
Rasch's estimates of the difficulty and mean square residuals calculated by myself:

It might be ﬁaiﬁéea out that correlations between statistics can be mis-

leadrng. For example Perllne erght and _Wainer (1977) attempt to demonstrate

that Rasch ab111ty estlmates are essentlaiiy identical with ablllty estimates ob-

[N

ta1ned using additive conJoint measurement. The correlations between ability

estimates based on two data sets are .997 and .990. However; correlations be—.

tween Rasch éBiiity estimatés aiid the raw test scores to which they correspond

are :994 and .993 on these same data. From this point of view, there is no
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1.0 .

'RMSQ = 1.77

[§

SLOPE = -:04 . r=-.01 . ' .

2
]

= 1568 (%2 b-d)

4
A

£ = -17.182 . | o |

o
A

.001L - ) , -
00 ; ’ - } :

¥ - Figure &.

AN , S /& comparison of the Rasch and one obtained
.3 , TN & of item characteristic curve which fits accord-

\os '§§9 / - ing to the mean square residual but does not fit
’ 7 . ' using traditional test item statistics.

A -3

o

Raw Score ‘

85 ‘095 105 "X15 125 135 145 . 155 165 1/5 185 195 205 215




0
=
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~
(S
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2
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B
i
[P

0 180.33 1 0055 61
;: 79.33 5 .0126 79.38
2 . 44977 - 3 . .02 90.00
3 28.81 5 . .03 86.58
5 19.80 6 .05 - 99.30
2 L Tis 3 07 28.69

7 10 . 1056 7 .09 106.23
19 11 7:99 8 .13 (8893
25 10 - 6.13 15’ .16 63.70

_ -z A o 122:32

SR 42 25 475 17 .21 Fase3s
O = LB A At

2 65 % 2.88 » 29 a5 11363

p s s w7 as 1800

s 122 70 173 52 .58 151.26

147 & . 13 e g5 1607

- 181 - 98 _1.00 - 8 " 1.00 . 180.00

e 195 R 1.36 202:83

Z 252 108 T - .52 14k 1.92 3326
2 l'é 222 T 98 N .35 124 2.8 s 386.46 *

156 %0 55 66 . 4.56 320.76

&4 ! . 33 o ;iz 11 BESG . ) '97.46

4 s .04 0 22.23 .16
2°22991.78

Table 7.

Calculation of the fit statistic for item #73 in Figure .4

using data grouped  into 10 .point raw score intervals:

: A , R o o E}g

Iy

b
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trait modeilng because 1t allows for test- -free person measurement at, least.

In,theory; _' N - , .

The practical significance of the :55 éafféiéiién'can be seed in'Table

~

P

8 which shows a cross—tabuiatlon of‘mean square residuals w1th Rasch diffi=

culty estimates:: Notlce that v1rtua11v all the items whlch have dlfflcuity

estimates of -1.0 or iower (very easy 1tems) also have a mean square residual
(RMSQ) of .9 or less which would indicate very good fit to the Rasch mbdel.

Items of medium difficulty tend to have 1cw RMSQ, while items of moderate to
ﬁiéﬁriiffiéuity tend to have ﬁign §ﬁ§é Theoe figures indicate that the it

point out. ';'3;f'* w:f' ‘

The reason for this relatlonshlp between the RMSQ and item difficulty is

that many items are answered cbrréétly more often than the Rasch model predicts:

This ré§uité in low RMSQ for easy 1tems and high RMSQ for difficult items.

How selective must one be in order to construct tests which can be used

in test-free person measurement?, This i§ an empirical question that this

paper only Beginé t6jé&dress. For example,ﬁvlgure 5 shows close correspondence

between the responscs to item #220 and the Rasch curve. The éibpe of tﬁié item

'ﬁeasurement may not be. rmpalred by retaining item #270 as if iE fit the model.’

However, more careful item selection is necessary than can be done using the
mean square residual. For example, Figure 6 shows an item which has an item

>
oo



.00 to .90 60 53 ‘19 -

" mean . , - - oy
square 90 tol:1 .| 6 |- 31 ° 15 %= 60.34

.vi.i to = .1 | 22 ) _ 30 s
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, = Table 8. - ‘
Cross-tabulation of the mean square residuals with
- Rasch difficulty estimates.
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) RMSQ = .983 - .
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.t.0 IR | | - B

RMSQ = .735

.9 SLOPE = .323 T = .600
N'= 1480
t = 10.067 S , ' -

-8 ‘ ap < .001

s

This figure shows an item that has a siope

much steeper than the Rasch curve:

s , - | | | !3(3\ﬂ;»..

Raw Score

95 105 115 125 135 145 155 165 175 185 195 205 215 °

41
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which has an item characteristic curve much steeper than the Rasch curve.

Iﬁélﬁéiﬁﬁ‘éf items with widely varying sicpes in a test violates thé basic

assumption of Rasch modeling, that all 1temb have the same discriminations

o

Part IV. The ?ractical Implicaflons of Fa.lure to
REJect I;ems Which Do Not Fit the Rasch Model

From Table 6, it ais;séafs that the items on this test battery differ
gféa;iy with }eéﬁeét éa the siope of the item characteristic curves. Do .
tﬁeée differénces actually affect the prbperties of ;esté which might be ;
built using sﬁSsets of the items? Are these differences great emough;to
impair the use of suck tests in a testing program based om Rasch model theory?:
The slopé of the iton characteristic curve is cae index of item discrimination,
and the Rasch model assumes all items in a test have the same discrimination.’
If one were to base judgements of acceptability of the items on the mean square
standardized ‘régiauéis; e’ﬁi}*;a few of the items would be unacceptable. What

found here are iﬁéiu&é& in tests?

The Estimation of Item BIfficulty_andeierscneAbll%gy

In order to answer thase questions, four tests of 20 1tems each were con-_

~

- ~/
structed. ~Ehé first, or "Steep” test contained only items which had slopes: of(

.29 or greater based on a sampie eize of 1000 or more data points between *2 b-d.
The second; or "Rasch" test contained only items which had §i6§é§ not éigﬁifi:
cantly different than 2094, Bagéa on 1000 or more data points between *2 b-d:

The third, or "Flat" test contained only items which had slopes less than .15
based on 1000 or more ‘data points between *2 b-d: A fourth, or "Mixed" test

<o

was composed of seven items from the Steep test, six from the Rasch test, and

37



seven from the Flat test.
A sample of 1480 respondents was selected from tne 1664, each of which

' * had a score between 0 and 20 6n each of the four tests. When each of these

tests was analyzed separately, very intersting results were obtained. In both
) 8 - . .
the Steep and Flat tests, the slopes of the item characteristic curves suddenly
. | ~
seemed to be very close to the siope of the Rasch curve. The Steep test no

longer seemed to contain items with steep slopes and the Flat test no longer

appeared to contain items with flat slopes. The Rasch test still contained

.items which-fit the Rasch curve: Only the Mixed test seemed to contain items
with divergent siopes. . -

table 9 shows the slopes of the 20 items which were in the Mixed test as
they were computed in two contexts. First, in the context of the Mixed test

aﬂé,AééC6ﬁdi§; in the context of the tests csntaining only items with similar .
slopes. %ﬁééé statistics were based on tﬁé same sample of l&éé students.
These results were very disturbing. The Rasch model program apparently
adjusts th® slope of the items in any given test to the best fit with the
there is tittle if any indicafion that the Flat test is any better or worse
than the. Rasch and Steep téété. This adjusting of discriminations is alluded

groups. Values larger than ome indicate that the observed characteristic curve

~



Tem
Item # . Mixed Test | Homogeneous Test
133 - .30 .22
96 . .27 . .20 .
202 4 2 .28 - ; 22
_ _ . - U PR - . - o
12 =3 .30 : .25
ééé L ) % . - ;31 . .éé
1% . f @< .31 _ : oL27
215 7 .27 ' C -19
. . ’ \T - .
-192 s .21 o .25,
229 g ) .22 o120
) R
23t =1 R 21 | V.23
19 s | ;18 .15
163 2 .19 e 225 -
167 ' .22 = .25
71 {16 T . .32
39 T T .18 ‘ © .29
33 g .17 L .26
194 A o130 : .20
36 ® .14 - .21
175 a .14 ) : .18
149 - 14 S .18 .
g L. o _ }
- Table 9. -
Slopes of item characteristic, curves for 20 items contained in
the-Mixed test as computed in that context and in the context
of items with similar slopes. g
0 .
o .

-a



Steep, Rasch, Flat, and ﬁixéd tests. Table 10 shows some traditional test

statist1ca on these four tests. The alpha coefficients. readlly indicate . -

thestests w iéﬁ;oontain itefns with steeper slopéé have ‘higher iﬁtérﬁal Te--

liability: i%emetotai correlations; shown in: the lowexr portlon of Table 10,

also iﬁdicaté dramatic differences between the items in these tests. The

text do no; appear in Table 10. That 1s, the 1tem-total correlatlons in Table"
10 remain fairly constant regardless of the hétéfbgéﬁéii§ of the &iééffhiﬁaiibns

of the items in the test.

In order to -verify these rééﬁiié; which were computed using Eéidmaﬁ;é
’-

PRIME 11brary program RASCH, and to lock for furtner 1nformatlon which might be

provided by erght S program BICAL, similar rums were made using BICAL. Several
lnltlal comparison runs verified that all but ome of the statistics which were
computed by Veldman's RASCH program agreed to the third decimal with those pPro-
vided by Wright s BICAL when the PROX procedure was specified. The single ex- *
ception was the fit statistic, wﬁiEH‘ﬁaé adjﬁéfédlﬁi very complex factors inf .

BICAL for reasons noted above: The BICAL program provides much more output
P -EoﬁeGer;;aﬁ& also allows for a supposedly more accurate calibration procedure;

referred to as UCON, for "unconditional maximum likelihood estimatiom.” [The

"unconditional” réfers. to the notion that the exact probability of each response
" - ”
ey P .
vector given a partlcular total raw score is not computed in the process of esti-
N

mating item parameters: Théiunconditlonal procedure approximates the condrtlonal

procedure and is reported to be less expensive and less subﬂect to round orf

errors (Wright and Mead, 1977, p- 23);] -
b} ' . .

t was apparent from the output of these analyses that the procedure for Ea

. adjusting the average slope of the item characteristic curves to that specified

by the Rasch .model fregardless of the data fed 1nto the program) involves

< : =

[~
v
(o l




Mean
Sigma

: . Alpha

S Item #

133 -
96

202

‘12

194

149

232 -

36
175

N

8

.Steep

V)
V-NV, 0. %
H < 100

31.45
4, 13
.78

L

31:95
3:17
.61

Mixed
32 59
4.32

Steep test

Rasch test

Flat test

———— e

20 Item Mixed -

_ _Test .

.63
54
'.69

.59

163

.61

.56

.49.
.48, .
.48
.38 -
42
45

.38
40
=37

237

%

.25
':30§

\ 3

| f&ﬁié::ﬁ;-

Item-Total Correlations Within Different €ontexts

20 item Homo-

~ geneous Test

.64
.57
.64
.64
.63
.65
59

50
243
.49
.37
246
.49

47
.45
41
.35
:36
.26
.30

38

.81 <

a

e

Some traditional test statlstlcs for the items in -the 20—1tem

Mixed test computed in that context and the context of the homogeneous tests.

3
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adjustments of the estlmated abilltles of the students and d1ff1cult1es of the

items Recall that Rasch model item characteristic curves use ablllty minus
d1ff1culty (b-d) as the abs’cissa_ x axis)._ Evéﬁvmin'ar tféﬁféﬁéﬁéﬁé of the
values of the azbscissa can easily affect the calculated slope of a line. To
re&ﬁéé the slope of a 1iré by one-half; simply double the values of the aBséisgaz
The procedure used to adJust the. slope of an item characterlstrc ctrve to_:

that of the Rasch model does this by transformlng the scale of the ablrlty and

— - <«

difficulty estimates.' For example the range of zbility in the sample of 1480

students was estlmated to be 7.43 umits based on the Steep test and 6.51 units .

o
v

Hbased on the Mixed test: .Item u1ff1culty estlmates aisc vary systematlczlly.

. The distanée

Mixed tests) ‘and item: #lﬁ (the eas1est item in tommon) was ;'7

dents' data. The difference”in the scale of ablllty estrmates is comblned with -

the dlfference in the scale of difrlculty estImates when the ablllty = mints -
d1ff1culty (b-d) scale is formea—f“ produce a change in the apparent siope ‘of

an 1tem characterIstlc curve: Notice in Table 9 that the slope of the item .

S

characterzstlc cnrve for each itefi in the_Steep test is less when ggied-oﬁ the

homogeneous (Steep) test ‘than when Eased on the Mlxed test.

7 It has been stated that "item dlscrlmlnatlon cannot be estimated directiy
.. e .

on his procedure ‘or estimatlng d1scrim*natlon, but it seems that erght S pro-
cedure also 1mposes a very rigid constralnt - that the average best fittrng
log1st1c curve for all 1tems" (erght and Mead 1977; p. 53) must be the same

&

as the Rasch model: The Rasch model does mot havega parameter for item

42

1\3

or eff1c1ently in the way Rasch item difficulty and person ability can" (¥Wright,

1977, p- 104): Wright' cr1t1c1zed Lord (1975) for rmposxng arhitrary constraints .-
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d1scr1m1natlon, this does not mean that the Rasch model does not spec1fy what
. the dlscrImInation 1s - it merely asserts that every item has the same dis= .

- crimination. 1In order to demonstrate that the_items in a partlcﬁlér test fit

7 the Rasch model, it is necessary to show that they have the particuiar dis-

-

crimlnatlon specified by that moder. This is done by adJusting the ability

d difficulty estimates" and uslng these as the abscissa when plottlng the

item- character1st1c curves.

N

Person—Freeelest—Cal1bratlon

What effect do varlations in the slope of the item characterrstxc curve

5;756) suggest -that éxtréﬁély high and low geéfés should not be included in

item difficulty calibration attempts. Therefore, students with more than 49
- ’ ’ - e Ny '. .y # 1

or less tham 17 correct responses to the 60 items in the Steep, Rasch, and

Flat tests were excluded. The 1low ability group contained 494 students with

scores of 17 through 31. The high ability group contained 494 students with

scores of 40 through 49. A medium §§iiity group contained 367 students with .

scores of 32 through 39. A total of 1355 students thus remaine®, divided into

.these three ablllty groups.

A tew Mixed test was also defined, contalnlng 10 items from the Steep

test and 10 from the Flat test. Thls Mixed test was composed of items which

had very neariy the same level of dlfflculty 1n order to iIlustrate as cleérly
as possible the potential hazards of including items with different discrimi-

nations in a sihgle test. Between 25% and 68% of the 1355 students marked each

of these items correctly:
Difficulty estimates for the 20 items in this Mixed test were cXlculated

L - *

using the high and low ability groups: Table 11 shows the estimated difficulties.

:ééi
R

-



K i ! ﬁ’ifﬁm’ iculty Eétiﬁéta:’s
© I R o Abzi:tygﬁroup
" 17 ) ':.45 . ;23'
18 Ty 1.58
LT 233 -;68_ 1.18
| 7 202 21.75 -:16
. @ ' . 12 ~1.45 ©-.39
215 -0 79
; 13 - -.1% .39 .
5 o = 7A .5 . .17
N
166 270 1.16
171 330 a0
173 .3 —y
Lo .2 7
p o B .
” 194 .16 . =78
) 175 .14 -1.59
161 61 -1.03 i
65 39 =.454
84 .68 -.44 -
178 1.53 T

1397 137 .18

| Table 11;

‘Difficulty eqtimates for a set of 20 items based on
hlgh and low ability groups. .

e 44
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" curve asiestiﬁatEd b§,tﬁe groups selected" (19777 pP: 52): & non—significant

42

«

_of each item based on two ability groups. These difficulty estimates were
: . : : - &

computed using Wright and Mead's program BICAL: The correiation between diffi-

culty estimates based'on the hIgh and low ability groups 1s -.42} "If gross <

variation in 1tem d1scriminatlon is tolerated In the final pool of test 1tems,

then the poss1bility of person—free test calibration is lost (erghtg 1968; P- 166):

Table 12 shows the fit statistics for each of these 20 items as reported

by program BICAL for the high and low ability groups and the total sample: .

Notice that only;the "ﬁétween uroup Fit Mean Squarer based on:the total sample
gives any indication that these 1tems do not fit the Rasch model.” According

to Wright .and Mead, ' therbetween _group mean square tests the. agreement between

the observed item characteristic curve add the best- fitting Rasch characteristic

between groups mean square "1nd1cates that statIstically equivalent estimates

of difficulty would result from t usIng e1ther the low scores orthe hIgh scores

for ca1ibration (erght and Mead; 1977, p. 51) Evén SO, . they do mot recommend

dropping items from a test if they have high between group fit mean squares.

o

there may be nomething amiss with the Mixed test. Even so; it only in&icates

this whén these items have been calibrated on a sample containing a wide dis=

/ .
triﬁution of ‘ability. When the calibrations and fit statistics are based 5ﬁ1y
. ‘ -~

oﬁ thefhigh or low ability groups, vthere is no way to tell from the BICAL print-

outs that the difficulty estimates would not be stable across abiiity groups |
The reason these di fficulty estimates are so different? when based on the

high and low abiiity groups: is that the item characteristicxcurvcs cross.

Items from the Flat test are "more diffrcuit" within the low abillty group,

but "1ess difficult" within the high abxilty group. Rasch model 5f6§6ﬁéﬁ£§"

have cieariy rEcopnized that items which have cros i ng characteristic curves

[
”
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Y NECE
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178
139

~
Betyggn Group Fit

77777 Mean Squares -
High . Low Total
1.37 1.08 7.41
'2.35 2.75  15.72
1.58  2:15  20.69
1.68 3.67.  15.55

233 1.81 9562

.90 3.50 :  14.89
2.39 " 2.9 4.48
1.82 2.43 13.85
397 . 2:16 - 10.30

.43 1.57 . 3:50 . -
2.02 1.12 -2.13.

.86  1.49 6.87

86 .32 1:83

.35 1.34 6.80
155  1.03 19.02 .

82 1.18 2'13.,ji? -

.15 2.85 7.18 T
2.53 - .67  10.42
3.31 4.90  28.54

.94 1.9 11.78

.Table 12.

Re51dual flean square Fit statistics for the 20 1tems in the

sa

Mixed test computed by program’ BICAL using three

es.

high ability, low ability, and total group. -

Wwa
SO

Total Fit

,Mean sgﬁéfes o

High Low Total
1.03 .95 .92
1.02 .82 .83
.99 .86 .82
.84 .99 .82
98 101 .87
.98 .85 .86
- .95 1.01 .94
.89 .54 .85
1.02 .91 .90
1.07 .86 - .93
.98 .01 1.08
1.08 %%;es 118
99 11 1.0
1.65 ; 1.08° 1.18
1.08 1.08 l;3tb
.98 112 1.09
1:05  1.13 1.19
105 1.08 1:22

1120 L35 1.40,

1.06 1.06 1.22

Fe)



select items with s1milar slopes._ . .

&4

cannot be allowed to remain in i/tést if Rasch model procedurss are to be

used (Wright, 1968). What I have demonstrated is that the standardized resid—

“ual ﬁéaﬁ square fit statistic does not provide the information flecessary to

VertIcaIAEguating

Thése differences in difficulty estimates affect the results of attempts

to link tésts, also: ?ai'éiampie; no items 5ré common to both the Steep ard

v

Flat tests; but: they can be linked through the Mixed test. Ten items in the
Mixed test are common to the Flat test and ten to the Steep test. Follow1ng
the procedure specified by Wright (1977, p- 107), we <an link the .Flat and

Steep tests using the calibration of the Mixed test.

The constant necessary to translate all item difficulties in the cali—

R mf 'W—dif)llo;
The constant of the translation between the Steep test and the Mixed

test would Be

*em = i=1 (dis d;¢)710-

Table 13 shows the difficulties estimated for the linklng items on

these three tests; with the hxgh and low ability estimates for the Mixea testsf

Using the difficulty estimates;based on the low ability group; the two con-

stants are
tﬁf =.;830‘ and
t = .404.
sm

Using the difficulty estimates based on the high zbility group, the

”~.

17




Item # Fiat . Mixed - steep
N - 1355 - low(49%) high(494) -~ = 1355

17 | - .233 -.453 1:199-
18 R 1.580 . . .3n - - 2735
IR ¢ f ,,,,, ___

133 o . 1:180 -.077 . =.526

T 202 T =158 -1.750 -.549

: iz ot © 20393 <1.451 . .580 :
215 - - 787 -.035 o .393
13 - . 2393 -0 -.058

5 7 172 =s . 389
152 I 642 5 .-.239 1.238
166 S naer - Jevs 159
171 a6 I £ 7S |
173 R T =418 L380
7 o S s Rt
194 e, 78S 161
175 o660  -1.593  suo
161 ;s =.450 . -1.034 . -.613 2

65 a7 .
o8 e - - 4kk. .680 ;
178 1.225 | 055 ©1.533
’ 139 | + 1.160. - | .182. . 1.388

g : , ' Table 13.
‘Linking the Flat and Steep tests through the Mixed test, using either
high or low. ability groups to calibrate the difficulties
of items in the Mixed test.

°©




two constants are . _ 7 o L

t:Ef = -,117 and

t = -.739.
sm ,

hThus, the difference between the difficulties of the Flat and Steep test is

~

-.856 units using the 1link based on the high ability students. The average
- sceres- of she 1355 students to these tests were 11.19 (Steep test) and 12:02

éflat test), indicating that the Flat test is slightly easier than the Steep

°

test. , “ . ‘ ;
- The ability estimate for a persom with a score af»ii on the ‘Steep test.
is .24 according to the BICAL printout based on the 1355 students in the sample

'aﬁa'the 20 itéms in the test. However, translating to the scale of the Flat

test; a score of 11 on the Steep test wouid reflect an ability of ..

bt = 1;23§ = 1.49 .
using the low agbility 1link and
RPN I -7 A 2T R
b = =.856 +fqll ¥ 2 | k20_11) -6

using the high ability link: Such a great difference (2.09 units) would be
intollerable in a testing situation. (In terms éf a more famiiiar iﬁatri’c:i
.60 is roughly equivalent to the 25th percentlle and é.59 to the 76th per—

centile on the Steep test:)

To my knowledge, no other study has reported such unacceptable results

using the Rasch model The selection of items for this test of sample—frée_itén

caiibration and vertical equating was intended to produce as dramatic results as

possible. The fact that many other studies have obtained at least marginally
acceptable results using the Rasch model indicates that the Rasch model is
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fairly robust. That is, even though variation in item discrimination can have

dramatic, adverse effects on item .calibration and test linking; in many situations
o . S 1 B o L 7 o . _

such effects have not.been observed. Future studies need to monitor item dis-

crimlnations more closely and thus determine the extent to which the assumption

of equal dtscrimination can ‘be violated in practice.

Part V. Conclusions and Suggestions for Further Research
° This investigation has demomstrated two things. First, the discriminations
of all the items in a test must be very similar in order for Rasch model analyses

to work in practice.-.Second, the standardized residual mean square fit statis-
tic does not detect unacceptable variation in discrimination. These findiﬁgs

were used to construct tests in which item discriminations were dissimilar

enough to produce discrepancies in difficulty estimates based on high and low

w‘~~ -
ability groups. These discrepancxes were then shown to lead to serious errors
. . E 4 ’
in test linking. The major implication is that item discrimination meeds to
be monitored and controlled using more exact tests qf fit than the residual

mean square. If item discriﬁiﬁétibﬁ is carefﬁili‘ESBEEBIIe&* then vertical

s

The successful use of the linear model.to determine the slope of item
o

‘characteristic curves may be inaicativé of its potential as a latent trait

-

 model: If one were to restrict the range of specificationm of the mbdei'tbr"

~.

logistic model (see Figure 4). >

The linear mbdel has two parameters: the slope (or aiééiiﬁiﬁééiah) of .

the item and the intercept (or difficuity) of the item. One might define the’

’ difficulcv of an item as the pornt at which the item characteristic curve

: .50
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5 _ o ~

_indicates a :5 probability of success. Previously in this éﬂ!ﬁf; the iinear

model was specified 4s P(c) = mx ¥ b; where m is the siope of the line, x

equals ability minus difricuity and b equals -5, the expected value of P(c)

when ability minus dif ficulty equals zero. The mbaei‘cbﬁid Bé réfarﬁuiatéé

by defining x as the ability of the person and b equal to (.5-m8); where m is

the slope of the iige and § is the difficulty of the item: Least squares

estimators of m and b are available which are unbiased; efficient, and con-

sistent.
tests of
tions of e

1977).

These estimators are very well suited to the problem at hand because .
hypotheses ea&&&;&&ag m and b are very rbbust to violations of assump-

These are exactly the type of aietriBﬁtiéﬁé that occur inm test item data.

Perhaps the major difficulty with estimating fit of items to any model is

o

that few models do well cutside of the .1 < P(c) < .9 ramge: I suggest that

one does not need to model performance outside of this range: Indeed, a fully"

consistent program of individualized testing would not usé items which are too

easy or

ks . 'if

difficult to estimate ability. Nor would data from persons with a-

"bilities too far above or below an item s difficulty be used to estimate that

diff*culty. It-1is likely that regardiess of which model one ﬁishes to use,

data outside the‘;l to .9 P(c) range adgersely affects the estimates of the

‘parameters of the model. Thus, it should be possible to devise algorithms |

which improve the estimates of ability and-difficulty and discriminat#n by

eliminating items and persoms which do mot provide reliable information.

One example 6f'thé use of the iinear ﬁbdéi-ﬁbﬁia be in éeiecti6ﬁ of a

in a test have the same slope. If we define this to mean that nc two items

in a test have item characteristic curves which cross in the .1 < P(c) < .9 range;

[y

the linear model can be used to select such items: In order to.determine whether .

e

S1



_ tICS for most of these items are included in Table 6: -
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two item cﬁiruCEeristic curves cross in this range; we xpeCLYy their equations to.

be P(c) m18 + 5 mi i - and 5éc§ m B + S-m 6 The point of intersection is

my T mz o B

~ where d; and d, are the estimated difficulties of the items. If pi is less

than .1 or greater than .9; then both items would be included in the test.

1f pi is greater than .1 and less than .9, then the itea with the steeper siope
should be retéiﬁed and the item with the fiattér,siapé afoﬁﬁe& from the test.

<

viously using Rasch: difficulty estimates provided by the PROX procedure and

. slope estimates based on the responses of indiv1duals within *2 (b—d) units

(see Table 6): Thirty items were reétained, each of which did not cross any of
the others retained. Every other item in the test (i:e.; 207 items) crossed
one or more of the retained items and had a flatter slope.’ Table 14 shows the
item numbers, siope and dIfficulty estimites of these 30 items. Other statis-
a

This procedure should provide a very good method of building tests that
have all the properties desired by Rasch model proponents. The range of dIf—
ficulty estimated by the PROX procedure for the 30 items is -2.16 to +4: 81 in
the %ontext of the 237 items. It may. simply not be neceSSary to use any other
items from the 237 to obtain as accurdte an estimate of ability as is possiblér

The alpha coefficiéut for this 30 item test is .92 based-on the 1664 persons

described earlier. (Rasch model item difficulty estimates in the, context of

the 30 item test .range from -2:56 to 5.61, further illustrating the ccntext
specific mature of these estimates.)
Another aspect of latent trait modeling that is very promising is the

Ut
{Kﬂ
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: Siope of Linear Rasch Difficiilty
Item # —_— Model  _ _ Eétiﬁéié-
10 B 7 o S1.639
. .12 o 320 . ‘ 1.482 7
13 - -306 . 1. 6§5 )
1 315 - L oY
15 T R T s3
17 _ .337 ; 1.97%
18 336 1.608
20 .295 : © 2.764
31 : 368 . . =2.159
35 - .286 . -1.907
96 . .324 : 2.020
.97 - 2322 - =1.232
98: ' -323 ) S =13y
107 - .333 3:755
126 T -277 -1.338
127 S 296 223
133 o .329 - 64k
136 347 - 2.%02
. +138 ©.356 ’ 25241 "
T 162 | 2646 4.813
166 . . .296 | 1172
197 - .299 - .083
198 © ¢ .93 1157
206 - I | -.886
s 207 ) -317 .. =.918
208 316 N ~. 244
215 ﬂ . T I 1:327
226 " 317 =434
ézj . : ;??§ , _ 157
232 , .318 - +356

Table 1%. .

Items retained by testlng for non-intersection of item characteristic

.curves in the range of .1 to .9 probability of correct response.
=
_ 53 q
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hopé of determining when items and tests are Biased-for or against specific
individuals or groups of individuais. The Rasch model fit statistic dlscusced'

earlier has been Proposed as an 1ndex of stch blas (Wright Mead and Draba

1976). However, it is clear from this paper how inadequate tbat stat1st1c is: © -

The llnear model mlght provide a practical means of detectlng such bias by

letting x equal item difficulty instead of person ability. The slope (m)
might then be a good index of the extent to which each person brought the tar-=
get ability to bear on the items in the test: In addition, the standard error -

.of estimate can be calculated for eaEE ﬁaraheter in this modal. Tnis =tat1s—

tic prov1des an index of the accuracy of the estlmate of each person s ablllty.

Ultimately, the future of latent trait models depends upont "the acceptance

they receive from those who do test1ng on a darly basis. It is important that

T

these peopie understand the models we propose and how they should be used-
Most practitioners have worked with linear models in other contexts. This is

one more reagon I advocate a iinear model over the logistic models currently

recelving the most intense analyses. _

-~
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