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I INTRODUCTION

The technical quality of behavioral measurements is-generally evaluated in
terms of two properties, reliability and validity. Reliability is associated
with the precision okf measurement, and reflects the degree of consistency among
independent observations. Validity is concernedwith the "meaning" of
measurement - that is; with the interpretation to.be given to the observations.

The aim of this paper rs to provide an analysis of*the measUrementof-
dispositional attributes. , A iampling model for the relationship between-a_
measurement procedure and a dispositional attribute_is.developed from an
analysis of _how dispositional terms are used and interpreted in science. The
model- provides &basis for analyzing the_concept of an error of mealurementi
the distinction between random errors and systematic errors; standardization
of measurement procedures; the distinction between reliability and validity;
and convergent and discriminant:validity; Within sampling model the .

concepts of reliability and validity arise naturallytecessary requirements
for-the results of measurement to be meaningful:

-All reliability indices_. describe_ agreeMent among repeated measurements
on the same individuals. The separate measurements. for each_individual must
differ -in some of -their conditions_of observation, and the different
reliability coefficients allow differentconditions to vary from one set of
observations to another. Although:they differ in their definitions of error,
the different reliability indices all assume that there is a single
undifferentiated source of errors;

Generilizability theory (Cronbach, Gleseri_Nanda, and Rajaratnim, 1972)
Provides a multifaceted_analysis_Of_the consistency of measurement by relating
thervariance in_observed scores to_the'sampling of_different kinds of
conditions of observation, and estimates the_relative impact of themarious
sources of inconsistency. Therefore; generalizability theory provides a
general framework in which to examine the dependability of measurements, and
it is this framework which is used throughout this paper;

Such a general framework does not exist for the validity of measurement;
Criterion validity examines the agreement between observed scores and some-
external criterion, and typically uses correlation coefficients to yield a
single numerical estimate of validity. Content validity examines how_well the
opdrations employed in a measurement procedure match the tharacteristic.being

_measured, and the results of a study of content validity are usually stated as
qualitative judgements.; rather than as a numerical coeffiCient.

Construct validity is more 'general than either content validity or
criterion validity: emphasizes the legitimacy witiiwhich various inferences
can be drawn on the batis of observed scores, and allows for-a wide range of
techniques, corresponding to the range of inferences to be drawn. -Construct
validity may employ thei.rethods of criterion validity or of content validity,
but may also use a variety of other techniques.

Un.like reliability; which is defined tri terms agreeMent among observed
scores, validity involves the interpretation of an o served score as __ _

representative of some quantity which is not directly observable; .Validity-
requires the assignment of meaning to observed scores.

In introductory textbooks, Validity isoften equated with the extent to
Which an observed score measures, "what it is intended to measure." Although
this 5atepent is too vague to provide an adequate definition, it does
emphasize two important points about validity. First, the looseness of the
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statement allows-for a very wide range of_procedures for evaluating the
validity of.a.meaSdement procedure.; and this :consistent with practice.
Sec6nd;_it. suggests the existence -of value for an attribute, without
specifying what this "real" valuerepretents; It is often implicitly assumed
that_the "real" value of the attribute exits somewhere; and that validation
requires a cOmparison; dirett or indirect; between_this real value and the
observed score; Criterion validity tends to encourage this,_orocess of
reification by introducing the notion of the criterion, which is easily ti

confused' with.the "real" value of the attribute; A

Reliability involves comparisOns,among observed scores_and is intended to
indicate the_ consistency of- measurements. Validity seeks to establish -an
,appropriate _interpretation for observed scores. Since_a high degree of -

consistency n- measuring the_wrong_attribute is generally spen asbein-g less
useful than a lower degree of consistency in measuring the intended attribute;
validity is generally considered tc)be more important than reliability;

Given the great importance assigned to validity, it is surprising:thatthe
evidence for the validity of most:behavioral measurements is less adequate'
than the evidence for their reliability. In many cases;_ evidence for validity
is_prattically nonexistent. Ebel(1961) has aptly described this.dilemma:

"Validity has long been one of the major deities in the
pantheon of:the psychometrician. Itis universally praised;
but the:goodWorks done in.-its name are remarkably few.
Test validation, in fact, is widely. regarded as the least
satisfactory aspect of test development."

This situation has not improved markedly since 1961.

Ebel(1961)- -also points out that physics, which Campbell(1957 has called,
"the science of measurement";Aoes_not seem to encounter_Troblems_of -

validation. One reason for this difference between the behavioral sciences
and the physical sciences is that much'of psychometric theory gives more
attention to statistical procedures and assumptions than it gives-to the
analy.§is of hoW measurements are used (Construct validity; as developed by
Cronbach and Meehl; 1955, and Cronbach, 1971, is a clear exception to this
generalization). In the physical sciences, this situation is reversed; there;
the statistical methods_used to_ evaluate measurement procedures are relatively
simple, but these methods are: closely related to the practice of measurement
and its interpretation.

The next two sections are devoted to a discussion of howattributes and.
measurements of attributes are interpreted. Several simple examples of
physical measurement will be introduced -in this discussion; -These examples
are used because the connection between the interpretation ofAasurements and
the indices used to evaluate the accuracy of these measurements is
particuJarly.clear in physics:

.

_ Generalizability theory (Crortach et al, 1972) provides the framework and_
methodology for this paper; and most of the results derived will be statedyin

- terms of variance components.' However; the emphasis throughout the paper is
on the issues that can be'addressed in generalizability theory; rather than on
the statistical models; Except for an occassional remark about the_severity
of -some estimation problems, there is no discussion of the comple5i estimation
issuesassociated with generalizability theory.

OVERVIEW
The analysis_presented in this paper_is quite longi_and; in some ways

relatively convoluted; An overview of the main points in the development may-
therefore provide a useful roadmap.
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Section Il examines the;interpretation given to-djspositional Atrvb7ates;r.
Dispositions can be operationally defined in terms or:classes, or utiiVer5es;.

of possible ohserVations. The numerical value to be assigned 'two acattribut

is defined as the expected value over this universe, and measureMRS- -are
4O

interpreted as estimates of this'expected value.

Section III analyzes_the process of measurement and':detive0Me':
assumptions that are implicit inIhe.ordinary interpretationobseR4V
scores; The estimates generated bia measurement procedure are basec'40P
samples from the universe;--consequently; the model fOr measurementsja.
sampling::- model. Estimates of the expected value over a universe;,-barSed
different samples, will not generally be equal; and; in'ordO'to mOlFtgn
consistency in the interpretation of measurements, an explicit:theory. 07-':.4"
errors must be introduced. Thereforei_the definition of ertotbasen
_interpretation given to the measurements, and_errors_of measureMent'ailrid.

"'by Substantive considerations. rather than statistical assumptions.

Section IV outlines the terminology and notation of generalizability theory
and introOuces_a sampling model for validity. The validity of measUremehtsof
a dispositional attribute is Oefined in terms of_ the accuracy with which the
Observed scores estimate the expected_value for the appropriate universe;
Where the obServedscores areobtained,by drawing simple_random_saliple from

the_ appropriate universe; -an index1ofvalidity can be obtained directly by
estimating a generalizability coeffiCient. -In.pradfice; the sampling model
for validity becomes quite complicated when it is modified to take account of
the sampling designs actually used in measurement procedures.

Section V examines the effects of he standardization of measurement
procedures. Standardized measurements,nvolve two kinds of errors: random
errors,. which vary from one observation( to another; and systematic errors;
which are constant for a series of measurements.. Random errors are related to
reliability; and systematic errors_ re elated_to.validity;_this analysis
makes it possible to draw a clear disti ction between reliability and validity.

Section,VI discusses the relationshi
the definition of dispositional attribut
is introduced by defining:the concept of
inferences that can.be drawn froM an ohs
potentially powerful techniques fordY
measurement.

between,the development of theory_and
s;: A third property of measurements
import in terms of all of-the
rved score. .This section reviews some
loping theory and controlling errors:of

Many Of the,results derived in thisipaper_arq_based on_rather strong.
sampling assumptions.

used

particular; theunbiased estimation of variance
components; which are used extensively in -this paper; requires random' sampling.
assumptions; In most cases of p'ractical,interest; these assumptions are likely-
to be:violated; In:section VII; these assumptions, and the robustness of the'.

results derived from these.asiimptions; are examined; Section VII 'also

presents some concluding comments:

J



II The InterOretation of Measurable 'Attributes..

Lord and Novick(1968, p.17) define measurement as "a procedure for the
assignment -of numbers ... to specified properties of experimental.uniti in

such a way as to characterize and pvserve_specified relationships in the
tehaviaral:domain"0 In discussing the methodology of physics.; campbell(1957,

p;267) defines measurement as the process of assigning, numbers to represent
,qualities";

.

. .

According to Nunally(1967; p;2 if Measurement consists of_rules for

assigning-numbers to objects to represent quantities of attributes." if the
word "objects" is interpreted broadly to include persons- and groups of persohs,
as well as_physical objects and systems; Nunally's definition applies to

measurement in both the physical.and the behavioral sciences
.

.

Measurement Consists of -the mapping of objects into real numbers, end
7r

establishes a functional relationship between real numbers and-the members of

some class_of objects; Depending on the' attribute being _consideredi_the_
object of measurement may take a variety of forms; including physical_objects;
persons; pairs of objects or persons; groups; and various complex systems..1.3-;

The rules used to assign the numbers may al'to vary considerably. Jtoweveri the...

process of measurement always involves a mapping of the form:

= A(0) . (24)

,

where o is an object; A represents the rules _usedto assign numbers-for the '

attribae; and u6 is the real number assigned to o for theattrjbute, A.

Note that Eq(2.1) makes a fundamental theoretical commitmentin-thatjt.
implies that the attribute depends only on the object of measurement and does
not depend on any of the conditions that may prevail when the observations_ar

made. For example, the statement that the length of a particular rod isI0
inches can be represented as:

10 = L(r)

where L represents the procedures used to_measure_01ength in_inches_and r
represents the rod. This formulation implies. that the length of the'rOd does

-not depend, for example, on the location; Orientation; tr temperature Of Oe7
u.
rod. The,length is also assumed to be independent of the-.personwh8'..carries'.

out the operations represented by
_ _ ._ _

Eq2.1) provides a very general syMbtlic representation of the process of
measurement; However; this_ definition 45 not very informative or.veryusefUl:
unless the nature of the.objects o and the. functions; Ai_ that are involved are

well understood0 praptice;.bcfh the function; A, and the "object; 0; may be

'quite-complex; .

--ATTRIBUTES - ,

'Ameasurable attribute can be viewed,as a. disposition; or -a'tendency to
react_in_a certain way to some kind of conditions0' Dispositions may be

qualitative orquantitative. For a qualitative disposition_;:the object is --

said to have the attribute if a:specific reaction occurs; and is said not to;

have the_attribute_if the specific reaction does not occur. A clas=sic example

of a qualitative disposition islthe property of being a magnet. ffie'typical

test condition would consist of placing a small_ piece_of iron near the object

being tested: If the iron tends to move toward the object, the_objectis said
to:be a magnet;. ant if the iron showsno tendenty to move toward the object,
the object is said to be nonmagnetic.

6
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FoF.a quantitative disfposition','a number ;Zs assigned _to the object on the ,

basis of the:strength of the reaction to the 'Lestoonditions. The magnitude.

of the attribute of being magnetic, for the 5.;reiigtf-iof a magnet; .could be

defined by how far it moves a piece of.iron;''

There are basically two ways measurable attributes are introduced

into science. In the=earlyslages of,,any science,-attributes are developed by
quantifying ordinal'relatioiiShips. Subsequentiv-,other -f.,tributes can be ,

derived from,empirical laws,.

The- process of quantifying orenal proPertie'S is one ofexplication,_the
transformation of subjective observations into_a rc4tively well defined
meaSureableattribute; Attributes that are defined in this way will be called

basic attributes. I is' noticed, for example, that some objects are easier to
moive that others.

I i
is also noticed that this, ordering of-objects remains

the same regardless f where the object; are located,' who attempts to move
them, or whenthey are moved. It is convenient,, therefore, to think-of
"resistance to movement" as a prOperty,-or-attribute, ofthe .objects, and a
large class of solid- objects can be rank-ordered in terms of this property,
Where such an- ordinal property exists for_a_class of:objects, numbers-can be
assigned to all objects -in the class,_suchthat the ordering of'he_numbers

,corresponds to the ordering of the objects. This assignment of numbers
*defineS-an ordinal scale for the attribute; .

, .

After some basic attributes are developed, empirical laws that state
relationship§ among those attributes can be developed, andthese laws often
involve constants that can also be treated a5 measitrable attributes; For

examplei_the_measured.length, lr, of a metal rod is found 6 'vary

systematically;with the.temReratUrei_tri_of the rod. If,dtr is a change--
in the temperature of a rod-and dir is the corresponding change in length,

dl-
r r

k- dt- 1-

-//

where_-kr is a Constant; called the' Coefficient of thermal expansion of the
rod, Estimates of kr are obtained by changing:the temperature of the rod,
andmeasuring this change in temperature-and the corresponding change in
length. An estimate of kr is then giyeh by the ratio of the change in length
to the change in temperature. The operational definition of kr depegds on

the_definition of length and temperature two basic attributes,'and on the
empirical law in-Eq(2.2)_ which statesa relation§hipbetween the two basic
attributes; .Therefore the interpretation of.the coeffitient of thermal
expansion as a measurable attribute_is derived from the interpretation of two
basic attributes, and the law relating these two-attributes.

The value of kr arlei from one-rod to another but remains relatively
constant from-o observation:to another on a given rod. It is convenient;

therefore, to interpret kr as a property of the rod by assuming that kr
depends on the rod but not on the cpndition's- prevailing when the rod is
obsevied:

(2.2)

(2.3)
A,

The assumption that kr doesn't depend on the conditions of observation'is a
good approximation over a wide class of observations which is taken to be the

universe of generalization. Any observation from this universe of .'

generalization could be used to estimate kr.-

The interpretation of numbers,a§ the values 'of an attribute' depends on
empirical laws that state that different observations on any pair of objects

generally rank-order the objects in the-same way. Therefore the results of
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any set of observations provide information about a much wider clas of
observations that could have been made. It is this generalization from
particular observations to a universe of observations that provides the
meaning of an attribute and that makes measurements of.the attribute useful.

.

OPERATIONAL DEFINITIONS -

The rules-that are used to assign.a value to an attribute are usually_
called operational definitions(Bridgman; 1927). i; The rules re in

thesense that they are stated in terms of the operations perforMed in
'measuring the attribute. The rules are said ta be definitiOnsbecause,they
provide most of the meaning of the attribute; that is;they:provide-abasis%
for interpreting the numbers assigned as values of the-attribute. (Ennis,
1973;._Hempel; 19604_and Carnal), 1953; provide analyses of the use of
operational definitions :in-science)

Operational definitiOns generally include two. of rules, structural
rules and selection rules; The structural rules specify the kind of
observations thatare7tO be used;.and the way in whith.numbersare to be
derived from these observatidn. Thus, ptychologists arrange stimulus
situations that are likely to elicit the.type of:behviOr that they wish to
study: IntKe_absence of-Such standardization of some characteristics of the
obserWfons; it would-be very_difficulttoprovide rules_for_the assignment
of nuMbers. . The structura.Lrdles may be- more -or lesS elaborate. A_rdle for
measuring the length.of-a-n'od;:for example; might require that an observer

align the zero me( of a tape measure:with:one end of-the rod; and record the
number on the tape measure that coincides With the other end of the rod; More
detailed rules for measyring)ength are discUssed by Campbell(1957); and
others, but all of these rules leave- some issues open.. For example; what kind
oftapepeasure is to be used? Could a slightly bent metal. tape Measure be
used,' and would an observer with astigmatism-be acceptable?

SuCh questions lead to the development of SeleCtion'rules. The selection
rules specify the range of conditions-that ma51761-&Fated for the various
Characteristics of the observations.! Some of these characteristics may be
fixed; in the example above; one end of the rod mustsbe aligned -with the zero

: mark of the tape measure; Other characteristics arespetified in terms of
ranges for continuous variables; for -example; the temperature is to be between
150C and 250C. It is assumed that the characteristics not mentioned in
the structural rules need not be controlled at ell.

As ti?e. example_of length indicates; operational definitioris do not specify
particular_observations; they specify classes of observations. The rules for
measuring length that were sketched above could be made bore precise and more
'complete by specifying a particular tape measure,_a particular temperature;
etc;; but it would be impossible to specify all of the'characteristics that
might influence an observation; Furthermore; it would be self-defeating to
make the rulet too specific because this would limit the usefulness :of the
concept of length. Ceteris paribus, scientists prefer to use concepts which

`are as general as possible.

Operational definitions are designed to_achieve this generality of
aOplication;'while providing a clear specification of the claSs of_
observations:allowed; The fact that operational definitions specify - classes
of observations rather than specific observationsIdoes not necessarily imply
any lack of precision in the definition since classes can be defined .

precisely. -In practice, howeverthese classes are always defined somewhat :

ambiguously. If the lighting in the room and .the visionpf the observer are
discussed at all for_ measurements of lengih;_the requIrement is likely to be.
that theY be "normal' or "within normal. limits." Most of the characteristicS
of An observation are ignored unless there is some reason to believe that a
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'particular characteristic is extreme enough to have a serious effect on the
Qservation. This ambiguity is recognized and tolerated because it makes
general laws possible (Toulmin,1953).

THE OBJECT OF MEASUREMENT
The object, or unit, to whith a number itattigned by measurement it called

the object of measurement. The number representing the.attribute is not
:...aSsigned to an observation.. The. operational definition of an attribute
specifies a class of observations and no one of these observations has special
significance.

A' measurObent assigns a number td some object of measurement which is
.1nyolved'in,,and partially defines a number of observations. The_purpose of
measurement is'fb map objects of%measurement into real numbers. The number
assigned tp aach object is intended to- represent the magnitude of -the attribute.
for the objetit ;of measurement. A particular observation can provide
information about different kinds' of objects of measurement; and if the
_measurement is to be interpreted. unambiguously; it is necessary to clearly
itientify the object of measurement. Cardinet, Tourneu, and Allal(1976) have
discussed the .kinds of units which may serve as objects of measurement.

In a Study of-anxiety an observation might_consist of theresponse of_a
person to some stimulUs in a- particular context. For-such Observations; the
person js-usually_taken as the object of measurement. However; for researchers
seeking to determine how anxiety provoking stimuli or contexts are; the objects
of measurement would be stimuli or contexts, respectively, instead of the
person;

More complicated objects of measurement can also be considered. The
differential impact'of stimuli on different persons could be investigated by
taking person-stimulus pairs as the objects of measurement. A researcher who
is investigating the Interactions_between persons -and contexts might take
person-context pairs a'S the objects of measurement.

Although the observation has a single assigned value; this value may be,
given various interpretations depending on the definition of the object'-of
measurement. The specification of the object of"measurement is a conceptual
issue; and is-not uniquely determined by the nature of the obServations that
are made As the examples above illustrate, a single. observation can provide
information about a variety_of objects of measurement. Similarly, many
different observations may be used to measure a particular attribute for an
object of measurement.

The distinction that is often drawn in psychology, between a state-and a
trait depends on a distinction between different kinds of objects of measure-
ment; If the object of measurement..is taken to be a person in a particular
Context; then the attribute being measured is a state variable which is
assumed to be a function of both the person, and the context or-time. It is,

therefore, expected -that the value associated with a:state variable will
change as the 'context changes oye Fora trait; however; the object of
measurement is the person; and the value of -the trait variable is assumed to
be independent of time. It-is recOgnized of course that the behaviors
associated with the trait variable will be exhibited to different degrees An
different contexts; but this is true of all okispositionai variables. For a.

trait variable; changes in-the observed variable overtime.are taken as errors
of measurement; for a state variable such differenc re accounted. for by
differencesin the value of the state variable

.



__A similar distinction is tade in physics between mass and weight; Mass is
defined to be an attribute of a physical object; -while weight -is defined to
depend on the physical object and the location of the object ihz
graiitational field;

In the physical sciences; the object of measurement to which attrj=butes
are assigned are,specified explicitly. In their introductory treatment of
mechanics, Corben & Stehl(1960) state the following assumptions:

A particle_is described when_its position in.space is, given
and when the values of certain parameters such as -mass,
electric charge; and magnetic moment are given. By. dur

definition of a particle, these parameters must have constant
values because they describe the internal constitution of the
particle; If these parameters do vary with time, we are not
'dealing with a simple particle. The position ,of a particle
may, of course, vary with time.(p.6)

Therefore the mass, charge; and magnetic moment are to be treated as trait
variables, with particles'as their objects of measurement. Position; however;
is to be treated -as a state variable with particle-time'combinations as its
objects of measurement.

It is sometimes claimed that operationally defined attributes are valid by
definition. It is maintained that the operatidns used to measure the
attribute define the attributei and_the,results_of these - operations are; by
definition; the values of the attribute. According to this view no
interpretation is to be given to-the numbers assigned to objects-beyond the
fact that they result'from the particular set of operations; Therefore there
is no inference from the results of the operations to a wider class of
observations and no need to check on the accuracy of inference;

However, in practice, the operational definitions of even the most narrowly
de'finsd attributes. involve classes of observations_ rather thatparticular
'observations. No operational definition that is of any significance in'science
specifies a. particular observer - (John- Jones); particular equipment .(voltmeter

#0_and_particular time and place. Although restrictions may be placed on the
qualifications of observers and on the type of equipment used; these
restrictions define clasSes of observa \ions rather than particular
observations. If the results of a part lar observation could not be used to
draw inferences about similar observe ns, these results would be of little
interest;

Unlike observations, attributes are not unique to a particular combination--
of time, placei,observer, etc. Attributes have a generality that is not
associated with observations; and to assign a value to an attribute is to make
a claim aboUt an_infinite class of observations. Since few of these-
observatiOns will. actually be made for_any Object of measurement; all
attributes are; in a sense; theoretical constructs.

Attributes'are "constructed" by specifying classes of observations.
Measurements of attributes are based on samples from these universes; in

order to interpret the results of_measurement as the--valueof_an attribute for
the object of measurement, we must generalize_ from a sample of observations to
a universe of observations; and these generalizations are_inductive_inferenceS'.
A central concern of a theory of measurement is the justification of such
inferences.



ILI Measurement of Disp Attributes

The measurement of -a dispositional attribute nvOlvesa generalization, or
an inductive inferencefrom a particular observation to the universe of
observations defining the attribute;- These inductive- inferences require
justification; and it is the task of measurement theory to provide an analysis
Of the kind of justification that is'requiTed. .

THE USE OF INVARIANCE PROPERTIESAS INFERENCE TICKETS .

The justification for scientific itiferehte-vit generally- provided by appeal
to scientific laws; Hempel(1965) has discusse the.#se of laws as:a basis for
scientific inference in obnsiderable detail, an ToulMin(1953), whQ.;Sees the
inferences derivable from a set of laws as defini the content of tint laws,'
has suggested the term "inference tickets" for sci- tific laws when they are
used in this way.

The type of law that is needed to justify the-inte retation of

obserations as measurements is.an_invarianCe property. An invariance property
states that_the reSUltS Of a certain kind of Observatio do ha depend on some
of the particular conditions of observation. Invariance properties are
necessarily involved An measurement because measurement assigns 'a value to an
attribute of some object of measurement on the basis of some' set of
observations;

Aoomplete description of an observation would:require exhaustive:
specifiCation of,all.of the conditions under whichthe observation-is made.
Since the operational definition'of an attrIbutespecifies only some::of:_the_
conditions of the observati-ons, thereby allowing the other_cti(aracteristics.,tb
vary; it describes a class of otiervatioffs rather than a single observation;
The :attribute is identified.with this_claSs.of observations and not with any-
particular observation. For any attribute ,. the conditions of observation are
limitedby the selection.rules but are not uniquely specified: Anyone of
this_class.of observations could be used:to assign a value for the attribute

to the object of measurement; The observed scoreiX0iOr an ob ervatiOn
is the real..hUtbeiattighetto.the bnei-Vatabh by the structural les=for the'

attribute.

A diffe
obtaine
selec = on

. ,

hen an':bbserved score is interpreted-as a measurement;- it.is assumed, --

implicity or explicitly that this observed score cantle taken as the value of
the attribute. for the OM._ Since the observed_scores for different observations
may bgassigned to the valueof the same attribUtefor an OM, the following
relat'fbnshApmust hold..at least'approximately in order.to maintain consistency:

but equallylegitimit&observed score; Xbi.. could. 'be .
.

ging the conditions' of.observation in accordance with the

X- - X
of

where i and i' reOreSent any two observations for the object, 0, tha-meet-the
spedifications of theqoperational definition for the attribute. That the

observed scores must4Onvariant over the universe of observations "defining
the attribute. -Since V$;,-two quantities in Eq(3.1) are based on observatidns,
this assertion is testOlor,any pairflof observations, and fq(3.1) is an -

empirical law. .

E0.(3.1) is an invarianCe propetyst'ating_that the observed scores_are
invariant over the, universe definin,-the attribute. _For.a given_ object of
measurement;d; all observations included in the definition of;the attribute
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should assign the same value to the object of measurement. If_all observations
do assign the same value.to the OM, this value.ts taken to be the value of the
attribute, u- for the object of measurement; o.

. note that the invariance prpperties_required for the measurement of an.
attribute-depend on the definition of the universe for the attribute being-.
Measured:_If_the two quantitiesJin-E(3.1) were not taken as measurements of
the same attribute_for the same OM;. there would beno reason. to require that
they should have the same value.

ConSidering again the example discussed earlier, if anxiety is interpreted
as a trait; the situations in which observations are made are conditions of .

Observation, and invariance over these situationSis assumed. If anxiety is
interpreted as a state, the objects of measurement are persons.-in situations;
and changes in the value of the observed score as ajunction of the situation
are consistent with this interpretation.

Invariance pr'perties are involved in:Measurement because they justify
inferences from. samples of, observations to a universe of /observations. If
of the observations in the universe give the. same resultrfor any-object of
measurement; then. any one of these observations provides complete informatiOn
about the universe. If Eq(3.1) holds for all pairs of observations defining .

an attribute, it provides the necessary,justification for inferences from
obserVed scores to:uhiverSe scores. T6 the extent that observationsfail to
.satisfy -Eq(.3.:11;' sudh inferences are not justified. Theref=e, the invariance
-property in Eq(3.1)TS necessary for the interpretation of observations as
measurements of dispositional attributes.

If the observatiahsjn the UG for each object of measurementdo not all
yield the same obserVed scores a variety of values are assigned to a single
.quantity, the universe score. Therefore; violations of the invariance property
in Eq(3.1) imply inconsistewy in_inferences from observed scores to universe
scores. .If the magnitude pfthe'discrepancies is generally-small, it may be
possible to ignore_them, andLto treat 5q(3.1) as an approximation; resulting
in what Suppes(1974) has called a deterministic theory without.a.theoryof

-error.. -The alternative is to introduce an explicit theory of errors:

FRRORSAY MEASUREMENT
,

_

lh order to develop an index for the accuracy-of this approximation, and
therefore of-the dependability of_ihferences from observed scores to universe
stores, the concept of an error of measurement-iS introduced. The result of _

any observation on an object, 0; is taken to be the sum of the,"true" value of
the attribute, uo, plusan error of measurement; eoi.

X- = u- + 6-
poi eoi (3.2)

Since neither-the "true" value nor the error of measurement is directly
observable, Eq(3.2) is not a testable hypothesis; rather, it is a definition
of the variable, eui.

. For any observation and any_value of uo;_the value
for eoi can be chosen sothat the two sides of Eq(3.2) are equal; and
:thereforeEq(3.2) is a tautology. '

However theValues,assigned to the error term in the formulation presented.
above arehot arbitrary. Given the UG for an attribute and'any'value for
uo, the magnitudes of the.errors are.deterMinedempirically. If.tpe .

observations on a given object of measurement vary. widely, the-,magnitudes
-.assigned tothe errors must be Targe; and if obserVations have
approximately the same value,..the errors Can_be taken to be small. .

Beasurements with smarr errors of Measurement are,- of Course; generally
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preferred to measurements iqvolving large errors of measurement, and Eq(3.2)
proVides the basis for .a relative criterion for. the depehdability of
measurement.

Although this development hat assumed thai:u0 is a constant for any
object of measurement, the value of_this constant has not been spetified. In

both the physical and behavioral sciences, u-bis_generally equated -with the
mean over all observations allowed by the. operational deffnitiipn of the '

attribute:

= E (X-) (3.3)

Eq(3.3)-determines a unique value of the attribute for each OM.' This Choice is
a convention, which is both convenient and plausible; but'it is a convention.
The most-compelling reason for this convention_is-that it minimizes the
mean-square error.

With the value of an -attribute defined by Eq(3.3), it is easy to show that
the expected value of the errors of measurement, as definedby Eq(3 :2)4is zero
for each object of measurement,'

E (e =.EX01 - u
o

The error variance for each object of measu rement is given by:

-jo(eoi
)

= E (41)

(3.4)

The ,error variance in Eq(3.5)_is'a measure Of the dispersion in estimates of
the universe score for each-object of_meaturement Since ub is a constant
for_each OM, the error variance in Eq(3.5) is equal to the observed score
variance for the OM. Where they can:be estimated; the'error variances in
Eq(3.5) Are very useful.because they provide;an indication of the accuracy of
inferences from observed scores to universe-_scores, for:each OM. In the
physical sciences, the ,precision of measUrtimnt is often'reported for each OM
in terms of the square root ofEq(3.5). However, thedirect_estimation of

`.this error variance requires repeated obServations on each OM, and thit is
often not practical for behaviorAl'measurements.

A more easily estimated parameter .is the expected error variance over the
population; as given by:

_.,

4i(e
oi

) = E .(6oi -r= E j(e-
oi

) (3.6)o
oi o

Eq(3.6) provides an indication of the accuracy_of inferences from .observed
_

scores to universe scores,' averaged over all objects of:measurement. Althoi;10-

Eq(3.6)- doesn't, provide seperate_indices_of the accuracy -of measurement fOr
each_OM; it does provide a useful-overall index of accuracy for the f'

population. The averageserror variance can be estimated with.pairs of
observations on-Objects of measurement.

Utifig-Eq(3.4), the covariance between Universe scores and errors of
measurement; can be shown to be equal,to zero:

u)(e ) -; E(U 0)E(e 01)
bi b
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where u is the expected universe score over.the population, and the covariance
is taken over the population and over the UG. Since the errors of measurement
are independent of the universe scores, the observed score variance can be
partitioned as:

-2- =2
CX) = (01 .+ (e )oi o oi

(3.8)

where_02(u6)is the variance in the universe stores:over the population
and -02(ebi) is the error variance taken over the population and the-ti

Although scientists- would_Orefer to_recognize the presence of.some error
of measurement rather than add complexity_to theoriesi-they still seek-t0
minimize the magnitude of_such errors. This_is usually done by_ standardizing
the conditions of observations in measurement and-by baSing each measurement'
on more than one observation. The choice of the mean over the universe of
generalization as the value of the attribute is consistent with-this tendency,
to try to.minimize errors of measurement;

. ERRORS-OFMEASUFfEMENT AS CONSTRUCTS _

In the absence of any assumptions about the d'rmeasiireMent,--the

Concept-Of an error'of-measurement.is unnecessary. If we_restrict-our _

attention to observations, there is no reason to reject the hypothesis that
every observation is perfectly accurate'. :If measurement assigned numbers to
observations; therefore, it would not be necessary to introduce-the:concept of
an error of measurement.

SUppose, for example, that two observers. put mercury thermometers into the
same glass of water, at the sane time., Suppose-further that' one of the
observers records that the mercury rises to mark labeled 60 and the other

,observer_ records that the mercury rises to a mark labeled 58. These two
observitions_differ in several_ways._ If the two numbers, 60_and 58, are
asslgned_to the observations;there_is no reason to assume that either
observation should be said to contain any error. The two observations 'occurred
as they occurred; The concept of an'error of measurementarlsetonly,when

..attention is shifted from observation to measurement. The assumptiOnSabout
invariance properties that are involVed in the measurement of any attribute
force us to introduce the concept of-an error of measurement.

_The'usual analysis of the example given_abovetakes_temperature_to_be_the.
attribute,_ and_ the 'glass of water at a particular time_to be the object of
measurement. The temperature is assumed to be_a functionof the water and the
time, This implies that the two observations described-above should agree

-.

with each other, as' indicated in Eq(3-.1). -That is; temperatureis assumed to
be invariant over thermometers and over observers;

HOwever, any two observations-on the same object of measurement will, in
general, produce different numerical results- Since measurement is *Vended
to map each object.into_one real number,_theory mpst.be adjusted im one of two
ways. One apProach_is to redefine the objects of measurement so that the
measurements which disagree with each other involve different objects of
measurement. In the example given above the object of measurement could.be; _

redefined to be a small volume'of-water_inAhe glass,_at a given 'time as would
be the case in investigations of thermal diffusion. Since the two thermometers
must be at different positions in the water.; the differences between the two
measurements can be explained by the fact that they apply to different OMs.
This approach resolves the inconsistency between assumptions and observations;
but it does so at the cost of greatly increasing the number of OMs to be
considered

14
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An alternative approach. leaves the_definition of the objectiof measurement
.unchangedi but introduces .an_explicit theory of errors. It is thereby_ .

recognized tKathe'Observations used in measurement depend on the conditions
.of observation as well as the object of measurement.

.RELIABILITY COEFFICIENTS
For many_applications; the.expected error variance iti-Eq.(3.6) is not a

very good index for_the dependability of'measurement. The magnitude of the
errorvariance_can be_changed simply by changing the scale (e.g. inches to
feet or meters),,andthe evaluation of a measurement procedure should.not
depend on such an arbitrary choice. Therefore, it_is_not_the'absoluie
magnitude of the error variance that is significant; but the magnitude
relative to the degree of precision needed for some purpose.'

=

The degree of precision, or olerance, required of measurements varies :

from one area of science to another. 'The astronomer who is measuring the
distances_between. start_can tolerate errors df thousands_of_kilometers, while
a crystallographer_might consider an error of a thousanth_of-a centimeter to.
be unacceptable. Between thete two extremesi_liet a continuum of possible .

tolerances; including those of the engineer: who- wants -the separate parts of a :.
bridge to fit together. If the error ::variance-.in Eq(3.6)'is basedon'the -sattfe

scale_as-the tolerante; the dependability of measurement can be evaluated
directly_by comparing the estimated nagnitude'of the error to thetolerance..
This_is thejisual-methodfor evaluating the precision of measurement in-
physics; and since the. tolerances in a particular area of investigation are
usually well known, _it is commo practice to report the square root of Eq(3.5)
or Eq(3.6) as an index of the precision of measurement.

The practice of reporting the relative magnitude of errors of measurement
is sufficiently general. in the physical sciences, as to_be introduced in the

-first.chapter of al) introductory textbook (PSC,1968,p14):.

"If a surveyor measures a distance with great care he might get
100.132'meters + 0.3 cm. His work is a great deal-more accurate
than_that-done .When the width-of-a book page it_measuredto the
nearest millimeter with a ruler, even though his .error is
something like three times as_bigas_what_anyone would perhaps
make on_thepage in ten seconds'_Work._Th.issoMetimes finds
expression in another way when the estimated spread of_
measureMents, the tolerancR,.is stated, using decimal fractions;

or percentage. Thus the surveyor would: say his length was
100.132 meters + 0.003 %, while the page is utt 20.1 cm. ± 0.5%."

The emphaAit on stating the magnitude ofothe errors of measurement in.relative

-terms has_been even more pronounced in thesocial.scientes (Lord and Novick,
1968i: p.252):

"...the effectiveness of a test as. a measdring_instrument usually-
doet not depend merely on' the standard error of measurement; butrather
on the ratio of the standard error of measurement to the-standard r_

deviation of-observed scores in the group. The more discriminating the
test items, the larger will be the standard deviation of observed scores;
other things being equal; and'hence;_the less will be the danger.that
true_differencet will be swamped by random errors of measurement and lost

to view."

A. suitable index'for the relative magnitude of errors of.measurement is

suggested by the relationship between dispoSitionallattributes_and the rank
ordering of the properties of observations.,_ As-a minimal requirement,_the

errors should not be so large as to cause significant fluctuations in the



ranks assigned to 0Ms.frOm one set of observations to another. If the universe
scores for two objects of measurement are uo and uol, errors of measurement
which are less than the absolute value of (uo-u01)/2 will not distort the
ordering of the observed scores for these two. objects. In comparing these two
-objects of measurement,.therefore, an error variance which is smaller than
(ucruol)2 can be considered a relatively small error variance._(see
Cronbach and Gleser, 1964, for more detailed' analysis of signal-to-nOise
ratios)

A more direct way of,evaluating the consistency of the ranking of objects
of measurement from one set of observations to another is to estimate the
correlation between observed scores based on independently sampled
observatiOns. Correlations indicate the degree of linear, relationship between
two variables, but, in the absence of very serious departures from linearity,
a-correlation,coefficient depends mostly on the consistency of the rankings
from one variable to the other. Therefore, correlations are useful statistics
for evaluating the consistency of the rankings of observed scores.

If the only purpose of measurement were to reflect the rank ordering of
objects on some attribute, rank order statistics'woua be more appropriate
tItm,correlation coefficients' in evaluating measuremensr However,
measurement provides an explication of ordinal relationships rather than just
representing this ordinal relationship. Measurements are intended to assign a
number on an interval scale to each OM to represent the value of an
attribute. Correlation coefficients are-appropriate indices for the precision
of such numerical assignments, while_rank-order statistics would not be
appropriate fayhis purpo'se. Therefore correlation coefficient& and indices
that are closely mated to correlation coefficients (i.e. generalizability
coefficients) have been widely used in evaluating the dependability of
measurements.. In particular, correlation coefficents constitute the basic
mathematical machinery in classiCal test theory.

THE ROLE OF THEORY
This analysis of measurement errors depends on_the fact that certain .

assumptions are made about measurable attribute. In particular it is assumed
that attributes are to be applied to specific kinds of objects of measurement,
and that certain'invariance-properties will-hold. These assumptions 'are
theoretical in the,sense that they form a connected body, or network, -of
general laWs. -The criterion in Eq(3.3) is a theoretical ideal which is never
achieved in practice. Errors of measurement may be viewed as concessions to
the brute fact that the world of observations is .not as neat and orderly as we
might like it to be.

.

Postulating the existence of errors of measurement makes it possible to
minimize the number of objects of measurement that need to be considered, and

therefore to simplify both descriptions Of phenomena'and the theories designed
to explain_ phenomena. The resulting gain-in conceptual clarity is usually
worth the loss of precision involved in relegating the effects of some
conditions of observation to error.

The introduction of an explicit theory of errors represents a decision
not to study some kinds of phenomena. Inthe examples discussed above, the
decision to attribute the difference between the-two thermometer readings, .58
and 60, to errors of measurement is essentially a decision not to investigate
temperature variations within-the liquid; this decision, which is not dictated'
by empirical findings, reflects a. choice among several possible research
strategies.

The designation of certain sources of variance as errors of measurement
is .a conceptual choice rather than an empirical finding. Errors of

measurements provide a way of handling observational variations that-are not



to be given an explicit description or explanation at a particular stage 'in
the development of a science; In order.to make its task more Managable, every
sciOce,tends to restrict the phenomena that it treats explicitly; As the
science develops; it may be able to analyze-phenomena that had_earlier been -

relegated to error variance; this decreases the error variance, .and enlarges
the spherejff phenomena treated by the science, but there is always some ,

variation which is intentionally left unexplained.

The specification of the attributes in an area of science and of objects
andof measurement determine how observations are.described and organized, and

this influences the kinds of questions addressed by the science; i.e., the
paradigm for the science. A change in the definitions of attributes and
objects: of measurement; which is equivalent to a change in the definition
error, represents a shift in the way that phenomena are perceived and
described. If the attributes that are redefined are fundamental,' the
resulting changes may be significant enough to be called a scientific
revolution (Kuhn, 1970).

. For example, the ch-anges.introduced intwhysics by the special theory of__
relativity are basically changes in the concepts of length and time;
specifically,,they_are changes in the set of invariance properties associated
:with length and time, In classical mechanics, ;length and time' are assumed to.--
be invariant with respect to the observer; in the theory of relativity, this
invariance property is rejected, and the object of_measurement is redefined: to
include the observer (more precisely, the observer's frame of:reference)._
Special-relativity had_a revolutionary impact on_physics because it modified
the:fundamental concepts of length and time;_analagous changes_ln less
important concepts would have'had a much. smaller impatt..(See Frank, 1953, for
a very lucid discussion of this point) .

Although the formulation presented'here assumes the existence of some. set
of basic assumptions, these assumptions-do-not necessarily include'imodel
underlying constructs or processes. Attributes#e treated as dispoSitiOns
(see Carnap, 1953), and there is no ontological commitment to attributes as
things,_ Attributes are defined in rms of universes of'observations,\and the
assumptionsIspecify the syntax and se ntics of the descriptive language of
some part of science.

The existence of errors of measurement, therefore,' depends on theoretical
assumptions abbut attributes, and the operational definition of errcirS of
measurement depends on the definit1'S of the attributes_ and objects of
measurement. In particular, the deffnition.;of the'objects of measurement.
determines_ whether the observed differences among observations are to be
inferpreted_as errors of. measurementi,:or as differences in the attribute for
different objects of measurement.

of
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IV Generalizabdlity Theory Is the. Basis for a
Sampling. Model:for Validity

This discuSsion,Of generalizability-theory is necessarily,only.a brief

outline; A thbrough presentatipn of generalizabUity theory can be found in

The 1-.-,d aviorar.MeaSUreMeaS(ronbach et.al.; 1972).-a

Introductions to some of the basic ideas in generali±ability thebty are found =
in Lindquist"(1953) and in Brennan and°Kane (1979).-

.

GENERALZAB ILITY THEORY 2

The purpose of both reliability theory and generalizability theory is to
charatteriZethe dependability of measurements. Unlike reliability theory,
Which_treats errors Of 'meaSurement as arising from a sill'glesource and uses
covelation coefficients as indices of-reliability, .generalizability theOry.
recognizes the existence of_multiple sources of error, and:uses a variety of
Altifaceted designs to estimate the variance components for different sources
of error

In genera inability theory; any observation on an objects of measurement_
js_assumed to be sampled from a-universe of observations.. The observations:in
thiS:UniVerse are_chattactorized by the conditton,s under which they are -made,

and; the set &FAIT conditions of a particular type iscalleda facet;. For

example; if per'ns are the_objectSof measurements and the 'disPaTfTonat-."

attribute is a state variable; the universe could include an item facet, an

occasion facet; and'perhaps a. rater facet.

Cronbach et$al.(1972, p.20) draw a diStinctiOn betWeen G studies, or
generalizability'studies; which examine the dependability of measurement
procedures, and D studies, or decision.studies; which `provide the data for. __

subStantiVe decisions. In this. paper, the term; "measurement prOcedure"; will
.often be -used in place of the term "D study". kmeasurement procedure
incorporates a tamplit4:design;for obtaining observations an objqts of

measurement that is. used over a number of separate studies. Thp term

"D study"; suggests that the saMlingdetign for_Measurements of an.attribute

is likely to change from one study to an-Other. Although the possibility of

such changes in D-study design is explicitly COns.idPred4at several places in

'this paper; much ofethe discussion.wilitemphasize the effects of

Standar dization of the conditions of observations. Measurement procedure ls_a.

more deStriptiVe term than D study, When some facets are standardized over all

observations.

The distinction_ drawn between a unfverse of Admisible.obiervations and.a

universe of generalization_{Cronbach et_a , 1972; p:20) is based on the

distinction between G studies and7D. StUdi S. In conducting a G study, certain

facets are investigated, and a ceetainr ge bf Conditions is considered with

respect to each facet. ..The facets inVes iOted in_theG study define a

universe of admissible observations: I interpreting the observations jn a D

study as measurements.o-fan.attribute;. nferenees are drawn.to_the universe'of

ObServations'that.provides an operation 1-definitiOnaf_the attribute... In

efteralizability thpory;'this universe i c lled the universe 'of generalization

for the attribute, - =

The universe of admissible ob,serv'ations is associated with estimation, and

;in icates the facets for which variance components have been estimated in G-

stu les.. ,Since estimation issues are generally not addressed in this paper;l'.

few \references. will be Made'tb the oniverse,of admissible observations: The

Concept of a universe pf§enerali±atiOn; WhiCfi defines an attribute will be.

used:extensively in:paper; -In addition; another universe, not discussed by
Cronbach et.al,(1972) will later be intraddted in/order to describe a

measurement procedure."
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The purpose of the G study is to estimate components of variance, which-may
than be.used to evaluate the dependability of inferences to the universe of
generalization. If_the components of variance estimated in a-G study are to
provide the information needed for-evaluating_the D study, they must proVide
estimated variances -for sources -of error in the D study'. Therefore, the
universe of admissable observations- must include -the universe of

generalization; -6 studies are most useful 1,,I;Jen they employ crossed designs

and large sample sizes to provide stable estimAes'of as -many variance
omponents as possible. For any measurement procedure; -there are -many facets

th tmight be considered, but=variance.components for only a few of these -can,

be dependently estimated in any G study. 'Therefore; several G studies may
ber quired to adequately evaluate the dependability of'a measurement
proce ure.;

The universe score; the expected value over the universe of generaliZation,
is stipulated to be the value of the attribute for any objects of measurement.

.Universe=scores are not directly observable; but can be estimated by the mean
over a.sample of observations; that is, fer each objects of measurement,
observed. score is used as an estimate of the universe score. In generaliz-
ability theory;then, questions about the reliability of a measurement
procedure are replaced by:questions'about the generaTizabilityof.obsrved
scores, and the dependability of such generalizations is described byka
generalizability coefficient..

_. _

Cronbach et.al..(3972;3.97) define the coefficient of generalizability for
an attribute and a D.study as the_ratib of the_UniVerte score variance to the
expected observed -score variance for the.D study design. The universe -store
variance in a generaFizability Coefficient replac4s the true score Variance of
classical test theory, and the expected. observed score variance replaces the 4.

4 observedsCore variance of classical test theoryi =

rronbach et-al:(1972,-p.98) discuss two interpretations of the
generalizabjlity coefficient for a D study which samples frail the 'intended

universe of_generalization. First;thegeneralizability coefficient
approximately equal to-the cbrrelation_between observed scores for two
independent random samples of Observations from-the universe of generalization,
Second; the generalizability coefficient is approximately equal to theexpected
value-of the squared correlation between the observed score and theuniverse
score.

A LINEAR MODEL
Generalizabiity theory allows-forythe'use of a variety of linear models in-

interpreting the results of'bOth G studies:and D studies; depending on.the
Hdesign of the study. 2

_ _

The universe of generalization typically involves a large- number of facets;
and in principle the model for observed$scores could explicitly include any
number of these facets: .For the sake.of simplicity; however; a simple
-one-facet model with replications will be used as a basis for discussion
throughout this paPer. In this simple model,-one fatet is considered As'

explicitly; all other facets in the dniverse of generalization are assumed to
be sampled randomly and independently; and are subsumed under a single
Ireplication facet. 'The observed_scores for. atl obseryatiohs in the universe
of generalization are represented by the linear model:

X
oir u +ao +ai +a6i +ara 4.1).



where

u is the grand mean

ao is the main effect for the object of measurement, o

a, is the main-effect for the- i facet
*t,

a
oi

is he of interaction

a
r

is the replication effect

The linear model in Eq(4.1) reprfesents the observed scores in the universe

of generalization; it is not intendki to represent.the sampling,design for any
particular G. study or D study; The universe of generalization defines an
attribute for a population.

It is assumed that the i facet is crossed with 'objects of measurement in
the universe of generalizatiOn; that is, in the universe of generalization,
'there is an observed score for each possible combination of anObject:
measurement and a condition from the t facet. This does pot necessarily imply
that 0 studies or G studies associate with measurements of the attribute will
employ crossed designs. Each effect in the model is assumed to be uncorrelated 3.

.with every other effect. In addition; in order to make the estimates of
effects unique, the expected value of eachTffect over any of its subscripts is
set equal to zero.

Eq(4.1) is essentially a generalization of Eq(3.2). The main difference

. between the classical test theory model in Eq(3.2) and the linear model' in
Eq(4.1) is that the classical test theory.model assumes the existence of only
two sources of variance in.the obserVed score, while the model in Eq(4.1)
explicitly considers_four sources of variance. The general linear model can ,

be formulated to include as many sources of variance as necessary, and can be
made to reflect the design under which the obs- vations are made.

Tpe Model in Eq(4.1) includes two facets; labeled i and r, -and for each .of

these facets, there is a universe of conditions from which Fe conditions in a
particular study may be drawn. These universes may be_eitherfinite or
infinite. Although the consideration of finite universes does not pose a
fundamental problem for generalizability theory, it would complicate the '..

discussion, and for the sake-of simplicity, it is assumed in thils paper that
the universe of conditions for each facet is infinite.

From a G study in which conditions of the i facet are crossed with objects
of measurement, o and replications are nested within these of Combinations,
four components of variance can be independentlyestimated. The variance for

ti the four random effects in Eq(4.1) are designated as e2(o),.62(i),
152(r)

In a D study, the obsei-ved scores for objects of measurements are usUaLly
. based on the sum or average taken over a sample of observations, and capital
letters will be used to designate the-average value ofan effect overa sample
of obseryations. Thevariance component for -the average value of the main'
effect,. ai," over a sample of ni conditions of the i :facet is given by

52(i) = 020)/nj, (4.2a)

Similarly,:the variance component for the average value of the oi interaCtion,
over samples of ni. conditions of the i facet, is

62(bni= d2( iyhA, (4.2b)
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and the variance component for the average value of the replication effect over
samples of nr replications on each of ni conditions of the i facet, is

e2(R) = d2(r)/ninr

The fact that the variance components in Eq(4.2) are divided by sample
sizes is a_reflection of the general statistical principle that sampling
variances for means over random samples are equal to the sampling variances'for
single observations, divided by the number of obsevations in the sample. The
relationships listed in Eq(4.2) can be used to estimate variance components for
D studies' involving any -'number of conditions of the i facet and any number of
replications; once the required random effects variance components are
estimated in G studies.

General procedures for the_estimation of variance components-from computed
mean-squares are discussed_Ely_Cronfield and Tukey.(1956); Cronbach et at.
(1972); Millman and_Glass(f967), Brennan(1977),and by most standard textbooks
on experimental desi,g0e.g.; Kirk; 1968; Winer; 1971); .

.

MEASUREMENT_PROCEDURESBASED_DN RANDOM SAMPLING-FROMME UG
Although measurement procedures-that use random sampling from t0e,pni'verse

of generalization are seldom used in practice, it_is convenient to.s.tart with
this oversimplified assumption. Letting capital letters designate effects for
samples of conditions, the observed scores for a D study with i nested within
o (a separate sample of conditions of the i facet is drawn for each objects of
measurement) can be represented as:

oIR
= u + eo + a + a- +

al
aRi (4;3)

where o represents the object of measurement, I indicates a sample of ni
conditions from the _i facet, and _R indicates i7sample of nr replications. for
each condition of ttie'fficet. Again, the replication index- represents the
effect of all facets other than the.i facet; and conditions from these facets
are assumed_to be sampled randomly_aTid independently for each observation.
Since the effects in Eq(4.3) are assumed roi.be independent of each other; the
expected oaserved:score variance over the-Population and over theuniverse of
generdlization is:

e?(X) = o.?(o) j(ol) + e2(I) + -&?(
A

=
2
(o) + e (oi)/ni + e 0 /ni

)

(r)/nin-
. r

(4.4)

The universe score uo, for the object of measurement, o, is given, by

o
= EE(X,IR) = u + aa

IR w-

The universe score variance is given b- variance of the'lmain effect for
objects of measurement; ao:

;(4:5)

E(u_
o.

- u)
2

=
2
(0) 41(4.

i

Where.observations.are randomly sampled fromthe_univers of genera'l'ization
for'each objects_of measurement; the expected.value of t e observed score over
repeated applications of the measurement procedure is eq al to the universe
score, and the observed score is an unbiased estimate of the universe score.



In analyzing errors of Measurement, Cronbach et.a1;(1972,-p.76).
distinguishes between the-error in point estimates of universe scores (which
they designate by a capital'delta and is represented hereby the.symbol,D) and.
the error in estimates of the universe score expressed in deviation form:.
(which they designate by a small delta and is represented here by.the symbol
d); Cronbach et,a1.(1972) aTsodiscusses a third kind of error, which is
based on regression estimatesi.but is ,not used in this paper.'

The error of measurement for a point estimate of u-, based

DOIR = X IR

= a + a- + a
1 oI R

oIR'

Since I and R_ are randomly sampled for each observation on the objects of
measurement, the expected value of Dom over the universe of generalization
is zero, and the observed score is an unbiased-estimate of the -,universe score
for o. The expected value of the squared-error; taken over all instances of
the procedure is equal to the average error variance within the objects of
meesurement4 and is given by:

EE(0
oIR .

)'= e (I) + eg(oI) + eg(R)
-

IR

(4.8)

_ If conditions of the i faCet are sampled independently for each
obS6r-tion; the evected mvalue of XQIR over an infinite population of
objects-of measureffient is also -an expected value over the universe of
generalization andfis equal to the grand mean, u. Therefore; if both I and R
are nested within o; the error in estimating universe scores relative to the
population mean is:

r dOIR = (XOIR (U0 -

+ a
ol

+ a (4.9)

Since I and R are independently sampled for each observation of -o, the-
. expected value of dom over the universe of generalization also zero..
The expected value of the squared error, dgm, is equal to the expected
value of the squared error, Dgm,,as given in E9(4.8).

EE(dg ) er2(ry-i- e;-2(011

IR

(4.10)

''

.' The covariance, taken.over the oopulation, of the errors, DoIR, on two
administrations of the measurement procedure is given by:

=

,

cov(DoIR,00I,R,)
l

='E(
a . 4- a0I 4- aR)( ii 4- Pa0 R')

(4.11)

0

Since the i and r facets are nested Within o for the measurement proCedure,-
taking an_pectjd value overo automatically involves taking expected values
over I, l'i and R'. __Therefore, the expected value over each of the
crossTrolicts in Eqr4.11) is zero and the errors,- --.0IRi are uncoirelated.
Similarly; the covariance of the errors, doM; fortwo administrations of
the measurement procedure is also equal to zero.



In clas]cal test theory, errors of measurement are assuMed.to have an
expected value of _zero,, to be pcorrelated across pairs. of observations,: and
to be uncorrelated with the universe score. Errors of measurement that satisfy

these requirements will be referred to as random errors. It is clear from_the

discussion just presented that.ameasurement procedure -based on independent
random samples from the universe of generalizationsatisfies these three
requirements. Therefore, as long as an instance of the measurement procedure

is defined as a randomly sampled observatiOn from the universe of
generalization, all of the effects contributing.to the error of measurement for

a dispbsitional attribute. are random errors. . (.

Cronbath et al.(1972) define_a_generalizability coefficient as the ratio

of universe score variancei which -is given in,Eq(4.6); to the observed - score

Variance, which is given inEq(4.4).

,

-2

2
e (o) (4.12)

0IR' 0 o,u- J(oi)/n
i
+ 2 (i)/n1 + W(r)/ni n

r

: .

-

where n1 is the numberOf-conditions of the -i facet sampledfor'each meaSure-

ment, and nr is the number of replications for eachbfthese conditions,

The coefficient in Eq(-4:12) incorporates tests of two_separate:inVariance
prOperties, one forthe i facet andlthe other forthe replication facet:_ Since,'
the replication facet represents -the effects of all but one of the faceti in

the universe of 9eneralization; the second of the invariance properties is very

general. If the observations in each objects of measurement are invariant over

the i fateti. the variance cod5.pnents forthei mean effect and the of inter
action must be small. Similarly, if observations_are to_ be_imvariant over all

Other facets in the universe of generalization, the 'replication variance
component must small. In general, all of the:variance components that
appear as part of error variance in generalizability coefficients are
associated with invarlence properties-. Ta:the'extent that these variance

components are close to zero, the invar-lAnce.properties are-good
approximations.

.

Note that no assumptions need to be made about how'the.errors are
distributed. In parttpUlar, it isn't necessary_ to assume a nol-mal distribution

for the errors' ,in-ordrto estimate generalizability coefficients. Assumptions

about the distribution of errors are used inconstruCting confidence intervals,

but confidence intervals will not :be ditussed in this paper.

:THE-INFLUENCE OF SAMPLE SIZEAN_GENERALIZABILITY
'In classital test theory,-the error'yAriante is undifferentiated, and

increasing the number of observations averaged to Obtain'a-M observed score

leaves the_true score variance unchanged and decreases the error variance.
Where an observed -score is defined as the mean over a sample of observations_

for the objects of measurement, increasing the size of this sample deceases
the sampling variance of the_ mean. This regularity. is the basis forthe_

.
Spearman-Brown formula for changes in the length of a test.

For the coeff?iciehein . Eq(4;12), the relationship between the error
'-

variance and the-number of conditions sampled for A'facet is not so simple.

.However, by using Eq(4.12), it is,possible to predict the generalizabilitY

coefficient for any number of conditions of the facet and any number of_ _

replications. The fact that the_generalizabiritT, coefficient can be predicted-
for various combinations of sample sizes for the d.iferent facetS makes it

sible_to maximize the dependability of measurement,for a fixed number Of

Aservations; In general; this is accomplished by sampling most thoroughly.

those facets that make the largest contribution to the error variance'.



The fact that it facilitates the design of efficient measurement procedures
is one important _advantage of generalizability theory. However, an equally
important. point for the. purposes of -this paper-' is . the fact that the total

error variance forameaSurement procedure can be made arbitrarily small_ by

increasing .the sample sizes. Therefore.;_ if the variance component; 1-6(0) -,:

is greater than zero, the generalizability coeffitient in Eq(4.12) aoproaches
a liMit of 1.0,_ as the sample_si±es for _al 1:..fatets approach infinity (For

facets with .afinite number, N'-i; _of _conditions, the variance components for
the facet go to zero as_the- sample size,Eni,. approaches Ni), Therefore

increasing the sample sizes for various facets provides a simple way of
improving the dependability of any'meurement procedure. ,. ; '

: .,.

as

.

__..

However, there are.. practjeal- limits on _how far this method can:be purSued,

and for important attributes; it is often impractical to achieve sStisfattory'
dependability-of .measUremept 'by -ncreasIng_ sample sizes; . Later in- this paper,

more sophisticated approaches _to the problem of measurement errors will be::

discussed. Although these techniques make it possible to coigtroi:errors of

measurement wi hoUt inordinately large sample sizes; they aTigo7take it'

necessary to re lace -the. simple universe sampl.irrg model 'discussed in this

section by more omplicated models ;_ ,.. , :.

.. . .

A UNIVERSE__.SMPLOREL_F_OR VPLIDITY .==: :.:-' ._ _.,

Numerical ,estimates of .-generalizabil ity coefficients ire _developed in' two

stepS.'_First,'_components of variance-are estimated in G studies. Second,

general i zabi 1 ity. cdeff itients are calEulated 'using '_t-tie* estimated 7.varian ter

components and the sample sizes for: the. D study. -,

;
Since the universe score for each objects of. measurement has been

tipuletedto.be the value.df the attribute for the'objetts of measurement, a
.measurement procedure is valid 'to the' extent.that_ it accurately estimates the ;

universe store, -.= For a measurement procedure: consisting ofirandom- sampling

fr.om the universe of generalization, the observed score is an unbiased

estimate of the universe score; and the random errors assumed in Eq(4.7) are

.the only sources of error"In-the measurement procedure; Since the

genertlizabiIity toeffitient _provides an index of how accurately universe (j

scores can be_inferred from observed scores, it can be interpreted as a

validity coefficient. .;
.

By definition, therefore, the value of the attribute 'for an object' of

meaturement, is the .univer4e score; or _the:. mean overa4 observations in the

universe Of gener lization for the Object ,of measurement.- If this universe

score- Were' avail le; it would be a perfectly valid Measure.of the
tr'iSpOsitional at ribute. However, the universe score.jstgen4rally not

available and samples of obserations must be- used to- estiimate'it. The

primary requirement for measurement of an attribute is therefore that it

provide accurate estimation; of universe score -for the attribute, This leads_

to'Ahe following definition of dispositional validity. ..

A

A measurement procedure is: said to be_val id for a AdisPositionalZ
attribute to. the'.extent that. it provides dependable estimates of
,the universe score:fOr,the universe of generalization defining

the attribute., .-

.

The validity a measurement procedure is an index of the accuracy of

ifferinces' from a ample mean to the mean over the universe of generalization,

where accuracY is fined by the expected squared error or by a7coefficient of

general izabi lity. lidity is a'matter of degree; rather than an all-ornon

property; and depends on both the measurement procedure and the attribute.
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The value of the.generalizability coefficientdepends on how thoroughly
,the. measurement procedure samples the universe of generalization, and thisis
determined by the design of the measurement procedure and by the definition of

theattribute-being measured. In particular, the more narrowly the universe.
Ofgeneralizatiomis tonceived the more dependable the measurements will be.
ronbach, et. al (1972,_p..352) point out that, "investigators_often choose
Procedures for evaluating the reliability that implicitly:define.a universe
narrower than their substantive theory calls for: When they do_so, they
underestimate the 'error' of measurements; that is,- the error of
generalization ":

In a sense, the.deffnition of validity_given above is similar to the
classical notionof criterion validity,with the_universescore being taken as
the criterion. .However, this similarity is_relativelySuperfidial. Unlike
most of the criteria used with criterion validity,.the universe score is an
abstraction; a parameter defined on a universe of observations:, Sibtethe
.universe score is_not directly observable; it isn't possible to estimate the
'validity by correlating observed scores with universe scores.

Although the universe score is an abstraction; and therefore not directly.
observable, it -can.be a relatively well-defined abstraction. To the extent
that the universe of generalization Is clearly .defined, the accuracy:achieved
In estimating universe scbres'can be estimated by a generalizability
coefficient,. and therefore the_%Widity_of_the measurementi)roceddre can .be
represented by this coefficient. The clarity of definition of the universe of
generalization is -an issure_that would be considered under the heading of
content validity (Cronbach;1971).

Therefore, if the operational definition of a dispositional term were
clearly specified, and if random samples could be drawn from the universe of
generalization associated with this definition, validation would be relatively
straightforward: Unfortunately the universe of generalization is usually not
so clearly defined. .This does not detract from the appropriateness of the
definition of_ validity given above, but it_does_impose_some limitation's on the
application of this definition; -However ihese_limitattons_are not new; they
are closely related to the general problem 5f inddction which-arises in all
scientific research... Establishing the validity-of a measurement procedure
requires tne:empirical verification of a number of invariance properties, and
this task is not necessarily a simpler task than the verification of other
empirical laws. The problem.of induction that arises in verifying scientific
laws and some of the solutions. that.lieve been proposed wiflbe discussed more
fully in a subsequent section.

The fatt that a generalizability_coefficient_can be an index of validity_
may be_sOrprising since generalizability theory:is usdally_seen as an extension
of reliabilitS, theory. However; the interpretation of Eq(4.12) as.a validity
coefficient is achieved only by making the strong sampling assumption that the
observed scores are baSed on random samples.from the universe of generalization
(Tryon, 1957; McDonald, 19.78):;. For most measurement procedures, ObServations
are generalized to universes:of generalization that are much_broader than the
universes from_ which they are sampled. It is not unusual, for example, for
inferences-to be drawn about. broadly defined universes of behaviors-an the
basis of_responses to a partitular type of written test items. a

series of weight measurements_ may be obtained with a particular spring. In

neither of these examples is it reasonable'to assume_that the observations are
.a random sample from the unierse:of generalization for the attribute being
Measured; and therefore a generalitability coefficient basecron these
observations would not be a validity coefficient;

therefore, this simple'universe sampling model presented in this section
does not'proKide an adequate analysis of the validitY_of,the great majority of



measurement procedures, which:do not cOnsist.ofrandoM samples from their
intended universe of generalization; For most of the attributes that are of
interest in the behavioral sciences, standardization isJiSed to.control errors
of measurement, which are often unacceptably_large-when observations are
randomly sampled from the universe of generalization._ -Standardization -involves'
an explicit decision not to use random samples from the universe of

--generalization in estimating universe scores.- A standardized measurement
procedure samples observations from a Universewhich. is a subuniverse of the
universe of generalization, and therefore requires a somewhat more

4 sophisticated model for validity than that presented in this sectibn.

_Andther method for controlling errors is the 'use of stratified- sampling

designs rather than simple random sampling._-.For.example'.;:th assessing the
dependability of generalizations from the items on an achievement test to a
universe of items; the assumption that items are randomly ampledhin strata.
is undoubtedly much more. realistic than. the assumption of simple random
sampling; (Stratified sampling is discussed. by Itajaratnam; 6Fonbach, and
Gleser; 1965;)"

In general, an analysis of the dependability of.a measurement procedure
should_reflect the sampling. design for in the measurement PrPcedure;-and.
geheralizability theory makes it_possible_to do this_in_a systematic way. -

Although the more realistic_sampling'models add complexity to_generalizability
-analyses and may cause problems in estimation, the analysis of these more .

elaborate-sampling designs is often especially informative; in a later section,,
convergenk-Validity will be shown to be equivalent.to a -generalizability
analyssWith standardization of the method of observation. -1

.

Also, it is typically the case that there are unintended violations of the
sampling assumptions in th G study. The effects of departures from the random

sampling_assum on cannot be estimated accurately, and therefdre the interpre-
tation of th resplts of G studies must always be'somewhat tentative. The
violation of sampling assumptions is, of course, a general problem in research,
and the clouding of interpretations that results from such violations isn't

unique-to generalizability theory.

1- However, sampling problems are.especially acute in:the interpretation of

ge ralizability coefficients betausecthe estimation of these coefficients
req "res sampling from both a_papulation of objects of measurementS.and.e

universe of generalization. Although the population, consisting as 4tdoes of
the_objects_that are of primary interest to theresearcher,- is likely to be as
well defined-as other populations investigated science, _most universe of
generalizations don't':even meet this rather loose Standard. The universe of
generalization; which, by definition, consists of facets that re.not being
systematically investigated, is Tikely to be more poorly defined than the'.

. population;

Unintended violationSof the sampling assumptions may introduce bias-into
the samples of some ofthe facets being investigated in .a G study, and, given ,
the universal applicability of Murphy's_ law, it would be unrealistic to assume
that the estimates of variance components will be robust against such sampling

biases; These considerations suggest, of course, that every effort should_be
made to avoid violations of the sampling assumptions. Howeveri_it would also
seem prudent to include some explicit recognition_ofr-thepossibility of

sampling bias into the interpretations. of generalizabili,ty coefficients. Ih

the last section of this paper; it will be'-shown that if' generalizability
analyses are interpreted as tests of assumptions. about invariance properties;

possible to make these interpretations less vulnerable to iiolatiOns of
the sampling assumptions; the price to be paid for this increased security is
a weakening of the conclusions drawn from various studies.'
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V Standardization and the Universe of Allowable Observations:
One way to Refine the Sampling Model

As indicated earlier, the. inclusion of an explicit theory of errors makes
it possible for relatively simple theories to provide a consistent account of
a wide range of observations. The inconsistency that would otherwise arise in
these simple theories because of violations of invariance properties is
accounted for by errors of measurement. Furthermore, the magnitude of these
errors can be_estimatedi and the effects of such errors can therefore be taken
into account in interpreting current observations and in predicting future
observations;

Although the introduction of a theory of errors has several-advantages,
thdse advantages are most pronounced when the errors involved are small; Th-6'

smaller the error variance, the more accurate the inferences that can be drawn
from one observatlon_td_another or from an observation to the universe of
generalization. it is desirable therefore that the error variance be as small
as possible.

Jhere are .three ways to decrease the error variance and therefore to
-increase thepreciSiOn:Of measurement; The first way to decrease the error

= variance;:isto base each measurement on a larger sample of observations from
the universe of:generalization. This approach is widely used in both' the
physical and behavioral sciences; and is discussed in detail_by cronbach

et.al.(1972). One advantage of generalizability theory is that it indicates
how to obtain the greatest increase in precision for a given increase in the
number of observations sampled.

A second way to reduce errors is to restrict the universe, of generaliza-
tion. Th -more narrowly the universe of generalization is defined the smaller
the errors will:b0; In the limiting case, if an observation is not generalized

.;:to-arly_wider universe, but is interpreted as an observation, there is no error

of measurement. Although narrowing the universe of generalization decreases
the error variance; it can also limit the usefulness of the:measurements; and
is; therefore; not-a panacea. Thisapproach' is discussed in: the next section.

The third method for'controll_ing_errors of measurement is totandardize
the measurement procedure. -Standardization can be very effective in reducing
errors of measurement; but _it can also be misleading; and therefore requires
careful examination; The remainder of-this section is devoted to the
implications of standardization.

STANDARDIZATION OF MEASUREMENT PROCEDURES
' Since errors of measurement result -from variations in the conditions of

obtervationiithese errors may be reduced by_controlling_i_or standardizing; the
conditions of_observationIf the observations on_an object of.measurement .

var.* as some facet varies; these observations maybe made more consistent by.
'making all observations with the same condition of the facet. If all

..

applications of a measurement procedure employ a particular condition; or_set
of conditions; of a facet;.the measurement procedure-is said to be standardized
on the facet.

Standardization of -the i facet changes the design of the measurement'
procedure so that_the objects of measurement are.crossed with the same
conditions, I*, of the _i-facet forallmeasurements; but it doesn't alter the
definition of the attriFute. Standardization of a measurementjprocedure is
not:intended to imply a change in the universe of generalization, which
continues to include the full universe of conditions for the i facet.
Therefore, the universe score for object, o, is still lib, as given by

E0(4.5).
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The observed score for a measurement procedure with the i facet
standardizedcan be represented by:

XoI *R
+.a_ + + ac51 + aR 5.1)

The expected value of the observed score over repeated application of the
standardized measurement procedure is given by:

u E(X_ = u + ao + a
oo o

5.2)

Forsa_standardized measurement procedure; therefore; the Observed score is a
biased estimate of the_universe_score; unless the last tvio terms in Eq(5.2) .

happen lo be zero. 'This bias also appears in the errors for point estimates
of universe scores; given by:

DoI*R XoI*R uo

= a + a_ 4 a-

=

I* oI* . R
(5.3)

Eq.(5..3) is the same -as Eq{4.7) except for the fatt that in E0(5.3); the first
tem, is a constant for all::observations and the second term.is. a- constant for
all Observations on a particular object of measurement; in Eq(4.7), all three
terms are random variables. The expected value of the error; DbI*R; over
repeated observations on the object; o;,is given by:

E(0 ) = E(a .a -T- a-R )
oi R I* .oI* .

R

at* ± aI*

01*
(5.4)

The amount of bias. in the estimation of universe scores is-indicated by the
two terms on the right side of Eq(5.4);

The-expected squared error for object, o, is given by

2 2 2
E (D- fa a ) + -e-(R) (5.5) :

oi*R r. * 01*
R

Notice that the first term in Eq(5.5) involves the-sum of two constants rather
than a variance component, and that the second term is the'variance component
for replications.

The- expected value of Eqf5.5) over the i facet is the same_as theexpected
- value:of the squared error; Dom;_for the unstandardized procedure; given by
Eq(4.8). Therefore; standardization on a randomly chosen set of conditions of
a facet does not.decrease the expected squared error for point estimates of
universe scores.

If I* can be. chosen so that (at* + aoI*)2 is small compared tothe
s:um ofThe_first two variance components in Eq(4.8), the expected: squared
.error for the standardized measurement procedure will be smaller than the
expected squared error for_the unstandardized procedure. A biased_estimate
with a small variance is often more useful than an unbiased .estimate with a
large variance. However; the problems of_estimation involved in choosing a
"good" value for I* are substantial (See Cronbach et al; 1972, O. 101).
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It may happen that there is no choice of that.significantly reduces the
squared error; and if an can be found witha small value for af*.; this
choice may involve an unacceptably value for agt*; AnOther possibility
is to estimate the value of at* by "calibrating" conditions of the_ i_ facet;
and subtracting the estimated value of at* from all observed scores;
however, this is equivalent_to .us-ng_regression estimates with a slope of 1:0,
and if this approach isto be, used at-all, itmould probably be better to use
standard regression estimates_for the observed scores. The use-_o f regression
estimates.of universe scores introduces a_third type of error (Cronbach et al,
1972, p.106 -107); which'is not discussed in-thiS paper;

Therefore; standardization may-decrease the error for point estimates of.
universe scores, but does'not necessarily do so; Standardization is a much
more promising approach when observed scores are.used to estimate universe
scores relatfve.to_the average universe score in the population; If all

observations hav%I*'as the Conditons of the i facet- the .expected value-of'
the observedscort aver the popultion.is:

- ,

= u t a

and; thereforei.,.

= -
oI*R

( Xopck

= a
01*

+
aR

u

(5.6)

The main effect,_ at*, does not appear in Eq(5.6) because -.it is a constant
fOr all observed scoresi and thereforahas.no effect on the differences.:
between obsgrved scores and the mean observed scare.

The expected value of d6i*R; over repeated applications of the
standardized measurement procedure is given by

E(d
OI*R

) aoI
*'

R

Therefore; the standardized measurement procedure is alto.biased in its
estimates of universe deviations scores; but the magnitude of t6ebias;
consisting only of.the interaction effect, adt*, is smaller than it is fbr
point estimates of universe scores. Note that the expected value of this
specific bias, over .the population, is zero.. Unless a0i* is zero for all
objects_of measurement; therefore,, universe. deviation scores are'systematically
overestimated for some objects of measurements and are systematically
underestimated for others.

(5.7)

=

___The'expected value of the squared error over,replications for object o is:

E
2

).
12

R
oI*R o

The expected value Of Eq(5;8) over ail.possible choices of i* is:

EE(d2
IR °I

R) .er(aI) +.e?(R)

(5.8)

(5.9)

Therefore; the squared error; dgi*R; is expected to be smaller for the
standardized'measurement proceddre than for the unstandardized measurement

c .
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procedure; given by Eq(4:10);'even,if standardization-is onrandomly chosen
conditions of the 1: facet Jurthermore; if an _I* is available for which the
specific systematic erroris4articularly small; it is possible by '

standardizing the i facetto7o6tain a procedure with a small bias and with an
expected squared error that:.is much smaller than that of the unstandardized
measurement procedure. (Again, sampling problemS make it very difficult to
make an optimal choice for I*).

_ _ _ _ _ _ _

The main advantage in standardization is that Can be used -to reduce

'error variance;., In practice, standardizetion'of a facet is most useful when

observed:- scores' are used to estimate' universe deviation scores and_the
variance for the main effect of.the i facet; er2(I); isrelatively large.
Standardization of the i facet automatically eliminates_o2(I) from the error
variance forcomparatiiE decisions, and if regression estimates are feasible;
:can eliminate e2(I) from the error. variance for point estimates; Although
it is_sometimes possible to choose conditions for the.i facet so that the
expected value of agik overthe population is Small; this goal is not
easy to achieve.

SYSTEMATIC ERRORS _ _ , _ _ .

Standardization is a powerfUl.-tool for.reducing the magnitude of errors of.
measurement; As indicated above; however; the realization of beneftts from
this technique may require judicious selection of the Conditions; i*, chosen
for standardization, and this is not a' trivial problem. Furthermore, there is

a price to be paid'fOr the benefits of standardization.

If the condition of the i facet.is the same for -all observations, the
effects.; ark and acak, are constants over replications of the measurement
procedure: For a .Tiven objects of measurement; therefore; standardization
changes some components of the error- of measurement from random variables to
constants. Components of the error that are constant for. all Observations on
an objects of measurement are called systematic errors. The'effect, ark is
a general:systematic error since it a constant oVit7-1Tl observations. The
interaction effect, aol *, which is a constant for each objects of measurement
butmay_vary from one :objects of measurement to another, is a specific
systematic error.

The systematic errors have neither_of the two defining properties of
random errors. First; the expected value of the systematic errors over
repeated application of the standardized measurement procedure is not zero.
Therefore; systematicerrors introduce bias into estimates of the universe
scores. The main effect for the i facet, is the same for all objects of
measurement; and represents a general bias; which is present in:D blk not in
d. The.interaction effect; aork-;._is _a specific_bi7as_for each objects of
measurement, o; and -it affects both D and d; Since the systematic errors -are
constant for each Objects_of measurement, They do nottend to "cancel out
over a series of observations.

Second, the systematic errors are correlated across independent
administrations of the measurement procedure. Since the expected value of
Eq(5.4) over the population is aik the covariance between the errors, a, on
two independent administrations of the standardized measurement procedure is
given by: (Lord and Novick, p.181)

cov(D0/*R,D0T*R,) = E(a,i* a0(
oI* a-RI)o "

= o,(oI*) (5;10)
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Thusi the errors of measurement for.the standardized measurement. procedure are.
obrrelated_and the magnitude of the correlation depends on the magnitude of
the specific systematiOerrors:

Similarly, the expected value of Eg(5.j) over the population is zero, and
the covariapce between the 1.rors,d,'on two independent administrations of
the_ standardized measurement procedure is given by:

cov(doi*R,doi*R, )
)(aoI* aR)(aoI* aR1)

= 6(OI*)'. , (5;11)

Since the systematic errors are "correlated across o rvations and do not
have.a mean of, zero, they cannot be interpreted as the kind,of random errors
that appear.in_reflability_coefficients. The interpretation of systematic
errors raises issues usually associated with validity.

THE UNLVERSE OF ALLOWABLE OBSERVATIONS
In stan-daqjzing the ifacet by requiring that every measurement involve

the conditiers4SI*, a,nevikind of universe, the universe of allowable
observation -s, is introduced; The uniVerseof.allowable observations is a
subset of the universe of generalization, And includes all obsevations in the
universe br:generalization that have the appropriate condition for each
standardized facet. _An.instance of the standardizO measurement procedure is
a randomly sampled observa'tion from the universe;of allowable observations.
.By.contrast, an _instance of-the unstandardized measurement. procedure is an
observation randomly sampled from the_full dniverse of generaljzation. _The
universe of allowable observations defines_a measurement protedure in the we
way that the universe of generalization defines an attribute; both are
'!extensive defigi-tions;

Sinoe'.standardization does not change the universe of generalization,
measurements involve inferences to the universe of generalization rather than
the universe of allowable obserVations. However, because it is easier -to
sample from the universe of allowable observations,. an investigatOr who is
evaluating a standardized measurementprocedure will often begin by examining
the dependability of inferences from observed rsooresto the mean over the _

universe of allowable ObservatiOns. To do thisi a GstudyTcan be conducted
with observations randomly sampled from the universe' of allowable observations.

If the a- facet is standardized as.L* in the universe of allowable
observation_all Observations in the G study involve I*, and the i facet is a
"hidden facet".. The effects involving the i facet are confounded with other
effects and cannot be estimated independenTY. An observed score can be
written as

X = Cu ) +
oi*R

+
di*

+ a
oi* aR

(5.12)

Where R is a replication index representing the combined effects of all facets
Other than. the i facet. The terms enclosed 14.1 parenthesis in Eq(5.12) are
completely confounded, and, in analyzing the G study, the model equation may
betaken as:

X' = a' + a-'
. oiR R.

(5.13)



where

u' = u + a
I*

ao;:T. aoI*

aR

rwevariance components would be generated by a G study with the -I :facet fixed
at 1 *; and these variance components, can be written as:'

2-. ) Wio) + og(Oi*)(0

5?(R1) = (R)

(5;15a)

(5t150

where .the variance components on the tight side of'Eq(5;15) are thOse that,
couldbe estimated in a G study in Whith conditions of the.i facet are_,ranOom1y'
sampled from the universe of generalization and are crossedWith the objects 0f.

.

measurement:

The investigator who conductsa G study to which all observations are
sampled from.the universe offtallowable observations will estimate the universe
score varianceby Eq(15a); and the expected observed score variance by:

e(X) = &2(0') + W(R)

+.6 (0I*)
6(R)

Using cis(5;15a) and (5;16); the generaizability coefficient would be
estimated as:

2-*-2(-X
u ) = °..(c/I)

oI*R' o +-6(Ri)

o
4. 02(0i

7
(o) + (oI*) (R)

)

.

Eq(5.17) aumes.that generalilation is over re-Olications, and,not over the i
facet, and indicate-5 the debendability.ofinferences-from Observed scbi.-es:td
the. mean over the universe ofal.lowaOle observation; 4; Eq(5,2).
The dependability of inferences_to_the universe- score -is given by the ratio of
the universe score variance in Eq(4.6) to the_obterved score variance for the
standardized measurement procedure; given by Eq(5.16): .

j(0)Er2 ;(0i.i.;u0)
w(0) +.62(0I*)-1:

'Eq(5;17) is approximately equal to the expected correlation; over the
._ population; of two independent administrations of the standardized. measurement

procedure; Since Eq(5;17):Indicates the. consistency among the observed scores
= derived from the standardized measurement procedure, it can be interpretedas,
a reliability coefficient, Since ECO.18) reflects the agreement between
observed_scores andthe value of the attribute as given by luo; it can be
interpreted as a validity coefficient.



*RANDI/LERRORS_AN_D__REL IAB IL ITY .

The_question of validity has been taken to ,be-equivalent to_the question of
%hoell the results of a measurement procedure estimate the universe score.,
This question is answered by determining how well the results of.the measure
ment protedure.satisfy the invariance properties implicit,in the operational
definition of'the dispositional attribute. Because standardization is so
commonly employed in design:ing measurement procedures, however, the operational
definition of the measurement procedureis usually not the same as the
operational- definition-of the attribute;_the_observations.thdt_are actually
used to estimate universe:scores are typically drawn-from a universe of
allowable observations which is a sub-universe of the universe of
.generalization. A natural question to ask, then, -is how well the results of.

.
particular instances of the measurement procedure generalize to the universe
of allowable observations. This question is equivalent to the question of how .

well repeated administrations of the testing procedure, i.e. repeated samples.
of_obserVations frOm the universe of_allowable observations) agree with each

= other: This issue is usually treated under the heading of reliability..
Withlp: the sampling.modeli reliability is defined in-terms of the universe of
aTTOWable Observations ' _

.

A measurement = proEedure is reliable to the.extent that-its Observed scores
provide dependable estimates of the mean over the universe of allowable

. observations.-.
e ;

Note that_reliabiliti is qefiped.as a_property:ofa measurement proceduret and
does not_depend onthe fdefinition,of_the attribute. As. noted earlier
'dispositional validity depends on_both the measurement procedure-and the
attribute being measured: -. ThiS.distinction is consistent:with the_ traditional,
definitions of:reliability and validity:- Reliability provides an .index of
consistency among the scores from indeOendent administrations of a'measurement
protedure,.and validity indicates-the rejationship betWeen the results of a-.
measurement proEedure and an interpretation of these results which goes beyond
the re; -mdefinition of_ the measurement procedu

The reliability, of a measurement procedure.is an index of the consistency
among the obServed scores in the universe of allowable-observations. This
definition,is equivalent to the definition ofreliability fOr randomly.
-parallel tests if'the-ntrue score_is equated_with_the mean over the universe
of allowable observationg. The reliability of:a measurement' procedure is
-limited-by themgnitude- of the random errors only; .specific systematic errors

.tend- to increase the reliability.-

-If the i f:acet is.standardized, the interaction effect, a 1* is a
.

. 0 9

-Tystematic-error,,and is included-in the immerator of the reliability
coefficient.in EO(5.17). Since variance components' ,are positive,

Er2(X 'ES-2(X -u ) (5.19)
o .oI*R' o ,

Er2IX6f*R,u61., Which indicatesthe:dependability of infer-enceS-from
observations to the mean over the universe of allowable observat:ions, it is a

. reliaoilty coefficient, while Er(ka*a.140)-, which indicates.the
dependability of inferences from-obsetvations-to the:mean over-the universe of
.generalization, is a validity coeffident. 'Therefore; the inequality in
Eq(5.19)-restates the well--knoWn result -from classical test ttteory that
reliabilityjian upper bound for validity For the sampling model, this
result 'can be-interpreted as reflecting thefact that generalization to the
.universe of allowable observations is always at least as dependable as
generalization to the more broadly defihed, universe of generalization.
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Although a G study in whic:the i facet is hidden does not address_the
central issue of the dependability of inferences_from observed_sCorpsito
universe scores; it. is useful -for -two reasons;- First; it.provIdes an upper

hound on the validitj'of the'measurement procedure; A reasonably high_ value

for the reliability coefficient, Er2(X01,041;doesn't establish the .

measurement procedure as.having a high validity, but a low value can establish
that/the procedure has a_low validity.- In a subsequent section; the
.imPotance of such_one-sided testswill be discussed. Second, the G study
with the i facet fixed does -provide anestimate of the random error variance,
.02ir); which_ needed-for estimating:the-validity coefficient-

.

Er(X0I*Riuo). If o2(oi) is_estimated_in_a subsequent G'studyi. the
validity coefficient could be estimated directly:

Of course; if the unfterseOf generalizationhad_only two_facets; the
investigator could estimate the variancecomponents-for both facets in a

Single study. The need for more than. one G_study arises from the fact that
most universe of generalizations have many facets, and only a few fatets can
be systematically.investigated in any:G_study.' Since large sample sizes Are

generally. necessary for the "accurate stimation.:of variance .components in .

designs with as few as two facets (see Sbith;- 1978).; an adeqUate analysis of
the generalizability of a measurement procedure will _usually.require-a number

of G studies;

SYSTEMATIC ERRORS AND VALID
rihe difference between Eq(5.18), which has been interpreted as a validity

coefficient; and_Eq(5.17); which has been interpreted as a reliability
coefficient,--is'in_the role-played by e2(oI *). A reliability coefficient'
inditates the consistency of observed scores from one administration of a
measurement procedure to another. As indicated by_Eq(5.11);-e2(0I*) is the
covarianCeof the errors of measurement oyerrepeated observations on the
object, o. Thereforei the covariance betweenthe obsered scores on two
independent administrations of the standardized measurementprocedure (two

.- independent samples from the universe'of"allowable observations).increases as
.d2(OI) increases. .:Thereforei. as the magnitpde of thepecifit'-systematic
errors-s. reliability increasesThe magnitude of 14(pI)
provides information about how well the observations-drawn from the.universe 0

of allowable,observations_correlate with the universe score forihe.attribute
beingmeasured.- This would Usually be interpreted as a question of validity.

/

Inclassical test theory, the "true score" for an objects Of measCrement
is defined as:the expected value of the observed score over repeated
application of a measurement proCedure toJthe objects of measurement; 'Far
standared measurement procedure, the.eXpected value over repeated .-

applic Lion of the measurement procedure implies taking an expected value over
R, but not over I. Therefore, the mean over the universe of allqwable
Ebservations.is.Tinalagous,to the true score of clasSical test.theory.
Althoughthe standardrzed.measurement protedure produces biased estimates of

,- the mean over the universe'of generallzationi_it does provide unbiased

estimates of the mean over the universe of allowAble_observations._ the

limit as the.number of" replications approaches infinity; the magnitude of the
random errors approacheszero; andhe observed score approaches uo.
Therefore'ut) is a parameter for which the measurement procedure provides
unbiased estimates.' Since the measurement procedure is intended to_provide
estimates of the universe score, uo, thecorrelation between uo and' ;.
.u0 provides an index of the agreement between what the procedure act0;11Y
estimates without bias and what it-is intendedtp.measure. The squA0.`ed

correlation_ between uo and uo is given by:
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e (0) + (oI*)
(5.20)

Eq(5.20) represents the-correlation between the universe score and_aobserved
score for the sampling of the universe of allowable observations is

. sufficien-qythrough that random errors can be ignored; In addition,
4(5.201 provides.an Upper bound on the validity, of measurements based on a
standardized measurement procedure; This correlation can.also be-obtained by

-taking the limit of:Eq(5.18) as nr approaches fhfinity, and therefore equals
the limit of the squared correlation between to observed score and the
universe score -as the 'sample size for the observed score ailoproaches infinity.
For an observed. score baad_on the average of_a finite number of observations
from the universe of_allowable bservations,-_the squared_ correlation between
the.observed score and the.universe store will be less than or equal to
4(5;20);

Eq(5.20) can be interpreted as a validity coefficient corrected for
attenuation,_ and cik be represented in .a form analogous to classical
attenuation formulas.

*
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where the numerator of Eq(5.21) is:the validity coefficient given by Eq(5.18),
and the denominator is the reliability coefficient given by Eq(5.17).
Therefore, Er2(ue,u0) represents a disatienuated validity coefficient
for the standardized measurement procedure.

THE RELIABILITY=VALIDITYPARADOX
The inference frOM the ObterVed score to the universe. score can be

decompOsed into two parts. Thefirst part is an inference from the observed
score to the mean over the universe of allowable observations,' and the second
part is an inference from the mean over the universe of allowable observations
to the mean over the universe of generalization, the universe score. The
coefficient for inferences from observed.scores to uniVerse scores can be
fadtored to represent the separate contributions of these'two inferences:

-2-
Er (X_
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Er (X
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6(0)

(o) + + .6(r)/n
i
n
r

W(o) + 62(o )/ni-
(5.22)

The.firSt factor on the_right side of Eq(5.22) is the reliability of
standardized measurement procedure and represents the dependability of ,

inferences from observed 'scores to the expected value over the universe of
allowable observations, ut; The second factor on the right side of
Eq(5.22) is a disattenuated validity coefficient.and represents the'
dependability.of inferences from Lit to_uo.

Assuming that the total number of observations, nipr, is to be.kept
constant, the value of Eq(5.22 )-is maximized by maximizing rli, The

systematic'error variance,_ 2(oWn4j&_inverSely_proportional to ni,
-while the random error variance, 62(R)i is constant as long as the total .



number of observationS doesn't change. The validity of the standardized
measurement procedure-is improved by_detreasing the sampling variance for the
of interaction effect, and this samp;inli variance is decreased by increasing
the sample size for the i facet.

However; attending only to the reliability of..the measurement procedure
leads to the opposite conclusion. The reliability coefficient given by the
.fitst factor in Eq(5.22),; is maximized by setting ni equal to_one;because
this maximizes the oi .interaction varianceie(oWni; which_is included
in the numerator of thereliability coefficient; However. this minimizes the
disattenuated validity_Coefficient; which_constitutes the second factor in
Eq(5.22) and thereby minimizes the overall validity; Therefore; attempts to
increase the reliability of the measurement procedure by standardizing a facet
may_decrease the validity. This phenomena hasteen called the_
reliability-validity paradox; A closely related phenomena called the
attenuation paradox; is discussed by Loevinger(1954) and more recently by Lord
and Novick(1968, p334)..

CONVERGENT VALIDITY .

Of the three_main types of validity; conttruct; criterion; and content,.
'

dispositional validity is most similar to construct validity and may even be
considered.a part of construct validity; The definition of an attribute
implies invariance properties. These invariance propertiet are laws that'can
be tested in G studies. If all of the invariance properties are tested and
verified; the measurement procedure is valid. If some of- the invariance
properties are tested and no violations are detected; the validity of the
procedure ispartially supported. If even one invariance property is
seriously violated then the_procedure isinvalid; -and7either_the ffeasuremet
procedure or the interpretation of the attribute 'must be revised;

The connection between invariance properties and constrict validity can be
-made_more explicit by examining how convergent validity (Camggll and Fiske,
1959) can te applied to dispositional attributes; Convergenalidity of a
measurement procedure can be .investigated by letting the conditions of ik
repretent different types of observations (objective tests; ratings;_
Obsercation procedures, etc.). For each Measurement a single condition from
the i facet is_sampled for all objects of measurement; and nr replications
are sampled independently for each object. The expected observed score
variance for these measurements is

.

Wjx0i0 6g(o) 63(oi) + (5.23)

Since-the universe score is defined as the expected value of the observed
score over_both the i facet and replications; the universe score variance is
given by:e?(0); The generalizability coefficient for this measurement
procedure is:

oiR'uo

o-

o?(o) + fo='(oi) + o3(r)
. .

inr

. ,

The intraclass_correlation coefficientinEq(5.24)'is appr'oximately equal
to the;expected value; taken over the population of objects; andthe'universe.
of methods and replications; of the correlation betWeen two sets of scores
based on independently sampled methods; The interpretation of Eq(5.24.) as a
validity coefficient depends on the interprkation of the attribute;:that is;
it depends on the assumption tnat the attribute is not linked. to a particular
method. The value_of Eq(5.24) can be used to check on the accuracy of a
hypothesized invariance over methods.

(5.24)

36
34



4

Convergent vilidity.is generally evaluated bY,Measuring the same.
Characteristic by several differnt methods, and estimating the correlations
taken over objects, between the scores obtained on the various methods. If

-these correlatiOnS are highithen convergent validity is :supported.
Conversely, if these correlations are __low, convergent validity is not
suppported. The generalizability coefficient in Eq(5.24) is approximate_ equal
to expected.value of the-correlation between observed scores obtained with
pairs of methods randomly seleCted from the universe of generalization._ It_
therefore provides a measure of the average convergent validity over all pairs
of methods.

AssuMing that i represents the method facet, the systematic errors acyi
are the object-method interactions: ,For a particuik method i*, aoi*
represents thespecific systematic bias that resulligfrom using methOd I*.
Since the expected value of, aoi* taken over all. all conditions of the
facet is zero, 61(oi) i5 the expected value of ag1 *. A large value for
62(oi) means that method has a serious effect on measurement. If or2(oi)

is zerO, 'method has no influence on the measurement of deviation scores.
Discriminant validity is discussed in a subsequent section:;
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VI Theory Development".

In measuring an attribute; ad; for the object; O';' the effects; ai $fid
ao are component& of the error. The larger these components are, the more
diffiCtilt it is to..obtaindependable measurements of uo,-:and; therefore, the
effects, ai and aoi, are generally viewed as nuisance factors to be reduced
as much as possible. AS deScribed'in the last section, standardization
provides_one way of dealing with these errors, but standarization introduces
systematic errors;_ Furthermoreifact that observations, s6ow,a strong
dependence on the i facet should be of interest in ilaelf; aside from its
effect on the_infjencei to_uo Where this dependencff can be described by
an empirical law; a powerful techniqUe for controlling errorsjof measurement'
becomesavailable;

The errors introduced into measurements of uo by the i facet can always
be eliminated by shifting attention to a newattribute, uoi, which involves
the same-kind of operations that ar& used to define the attribute, u0, but
which has -as its objects of measurement the pairs, oi,_instead Of the original
object's of measurement, o. The universe-scores, uoi, for these new objects
of-measurements are found by taking the expected value of the observed scores
over replications:

uoi
E(XoiR) = u + ao +

aoi
(b.0).

This redefinition of -the objects of measurement changes ai and aoi frpm
being part of the error to being part of the universe score. If the objects
of measurements are defined by i as well.as o, the difference between the two
universe scores, uoi and u01', involving difTerent conditions of the i
effect, is taken' as a substantive difference rather than as an error of
measurement. Therefore, the two components. aoi and ai, which are equal
tothe.difference,betweenuoianduwbetomeccaponents of the universe
score:

Measurements o- are_more!dependable than measurements of uo,
because the interpretation,of-Uoi is narrower than that of uo and thus
involve& inferences that are Tes,.s susceptible to errors than those implied by
u-'="---Z Wijle,the.ori-ginal attributeuo, characterizes o for all condition's'
of thelkfacet; the new-attribute, uoi characterizes o for a particular

-----:--condition-of=the. iWect.

FOr each object of measurement, oi; the universe:of generalization of the
attribute;.ubi; -includes observations with different conditions of the
replication facet; but with constant values for _a and j_; -Therefore;
inferences from observed scores. to uoi- involve generalization ove*-r; but
not over.i;',: The universe of generalization for the attribute uOncludes
obserVationS with different values of bOth:i and r; and inferences from XoiR
to uo-involves_generalization oVertoth the,i effect and the r effect. (The

generic term, "effect" is used fn this section rather than the "facet",
because some of the objects of measurement being_considered.are_defined by a
combinatien of.acondition of the :o effect and_the.i effect. .Thereforei_

. neither the i effect northe o_effeet, separately- specifies -the objects:of
' measurement: However; it is also tr)Je'that the i and o effects are not facets

of the universe of generalization;)

If the observed store,_XoiRis used to estimate uoi-, the expected
value over replications;_. the onlisot#..ce of error will be.the replication
facet. 'Therefore; the dependability of inferences from,X0iR to uoi is
given by:
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02(o) + ar(oi) + o(i)

2(

2

j(o) + e- +6 (i) + d(R)

The coefficient_imE0(6.1) is approximately equal to the_expected valUe.of the
squared-correlation between the observed score, XoiR; and the universe
scorei.uoi.

When the universe of generalization is restricted to a particular
condition of the 1 effect, uoi becomes the universe score; and Eq(6.1),
which reflects.the dependability of inferences from koiR to uol, is a
validity coefficient, with the oi combinations as the objects of measurement
and generalization over R. This validity coefficient Ere()(0iR;Poi)i_
never less than the -oiR;uo)valfditycoefficient, Er2(Y with conditions
of:the o effect as the_objects of measurement, and generaTization over i and.

R.-7-Restricting the.universe of generalization improves the validity of
measurement whenever gkoi) or de(i) is greater than zero. (By contrast;

for nonzero values of efli), standardization of-the i facet always improves
reliability but does not:necessarily improve validity.)

The_increase in validity obtained .by restricting the universe of
generalization'is_part of a.trade-off in which decrease in the errors of
measurement areobtained IV narrowing the interpretation that can be given,:to
the attribute. A high value for Eq(6.1) indicates-that-an inference frOm the.
Observed score,AoiR, to the universe score,_uoi, is dependable;_ and
therefore provides justi,ficationfor such inferencesi If Eq(6.1) is to be
taken as a. validity coefficient; generalization must not, go beyond the
restricted universe of generalization, which involves a particular value of i,
that is, inferences are to the universe score, uoi, for the restricted
universe -of generalization in.which both o_and.i;are constants for all

observations. The value of E0(-6.1)_does Tiot"inaicate the dependability of
inferences from an observed score obtained with one value of i to universe

scores involving different values of i. In 'particular, a higli7 value for

.Er?(X0iR,u0i) doeSn't justify inferences fromHuoi-to 'uoi the
universe score for thesame value of o and.a different value,cf_ii or_to uo,
the expected valu&.of..Uo4 over all vaTues of i. Thereforeya.hfghvalue for
Er2(Yv-oiR, uoi) proVidei support for only a relatively limited set of
inferences.

The_expected correlation between uoi and uoir, where i and i' are

independently sampled conditions for each-. observation, givenby:

2
(0)

E
ol' ol' 2 ..

a- (0) + e-(ol

6.2)

Eq(6.2) is also equal to the. the expected squared corelation. Er2(uojiuo);
.between the universe score; 11-b-; for universes that are.restrldted.toa
specific condition of the effect, and the universe seore;::uo for a'universe.-

that includes, the I effect as a facet..
If the universe scores, uoi, do not vary much as a function of i, then

o2(oi).and'e2(i):.Would be small, and the coefficientin,Eq(6:2) wouTd be
close tO'1.0i_inth,catipg that uoi is a dependable estimate of uoi.
Therefore fixing the_value.of the i facet isn't a serious limitation if the
'observed scores don't vary much oVir_the i facet. However, this invariance of

uoi with respect t64i would also -imply that the,validity_coefficient in
Eq(6..1) would not besabstantially largeP than thevalidity coefficient for
the original universe of generalization;, given by Eq(4.12), and there would be

little advantage in restricting the universe of generalization.



Eq(6.2) can:also be derived by setting.pi,.equal to one in Eq(4.12), and
the limit as nr approachesinfinity,

(uoi,u0) = lim Er2(X
oiR'

r--oo

That, is; Eq(6.2) provides an index of dependability of inferences to_uo.for
observed scores based on a .single condition of the i'facet and an_infinite
number of replications. Furthermore, by comparing ros(4.12), (6.1), and .(6:2)
it is clear that:

Er2( u
o

)

2

( 'RY11pi')oi
( .2a)

Eq(6.2a) partitions the generalizability of inferencesfrom XoiR to uo (or
to uoi.) into two,parts. Theifirst part, Er2(X0iR,uoi), represents
the dependability of inferenCes from XoiR to uoi, the meanover
replications for a fixed value of i. The second part, Er2(uoi,u0), is
the dependability of inferences, uoi-to uo, For the investigator who
intends to"generalize to the universe score,.uo, therefore-, there is no
beneflt in fixing the.condition of the -L facet. As a matter of fact, the
dependability 'of inferences to uo would be improved explicitly .

'recognizing the effect as a facet, and increasing ni.

The main benefit derived from restricting the universe of generalization is
the increase in the validity of measurement, the dependability of inferences
from observed scores to universe scores._ The main disadvantage associated
with restricting the universe of generalization, is that ft can lead to a. very
large increase in the number of objects of measurements in the population._ If.
there were No objects in the original population, which can each be paired
with -Ni conditions of the i facet, there are NoNi objects in the new
population. Unless Ni is very small therefore, the number of universe
scores that need to be estimated for a complete description of the population
may be greatly increased by restricting the universe of generalizAtion:

INFERENCES THAT-GO-BEYOND THE SAMPLING MODEL
If the dePendence of observations on the conditions of the iJacet involved

in the observations is investigated, it may be possible-to characterize the.;
conditions of the i facet by an attribute, wi, such "fhat:,

uoi = f(V w.) '(6.3)

where f represents some function; Eq(6.3) expresses uoi as a function of
two variables. The component, vo, depends an the value of but does not
depend on the .va:lue of The comp4nent, wi, depends on the value of i:but
does not depend. on the value Ofia. These-two variables may be breviodCiy
defined attributes or they may=be-' .defined as Oerived attributes by the law in
Eq(6.3). Since the basic reason for considering the attribUte uorin place
of the attribute, uo, is the lack of dependability -in estimates of uo.,:-the -

universe score, uo, is not a very promising candidate for the variable, vo;
if the estimates of vo contain large errors of measurements, 'it may be
impossible to identify an appropriate functioal.. formif;'forEq(6.3),..

I s

often the case therefore; that u01 fs.ekbressed in a'lw with the
following form:

g(uOi*'
(6.4)
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where g represents son* function, and i* is a partitular condition of the i
g; facet. A new variable, uoi*,.is_defined by restricting the universe-of

generalization for all objects of measurements td the fixed reference
condition, i*, for the i effect. This new variable can be substituted for

vO because Ft is a function oft) bqt not of _i_. Measurements of uoi and of
uoi* are more dependable than measurements of uo because.they do not
assume invariancejover the i effect; this facilitates the development laws of

theform given b?q(6.4).

If a law like that in Eq(6.4) can be developed, the limitation inherent in
measurements of can be overcome._ With the help of Eq(6._4),- meaSurements
Of uoi* provide information about all conditions of the i effect for which
wi is known. This information is provided by the empiri-Eal law in_Eq(6.4).
Since the use of Eq(6.4) requires measurement of the attribute wi for all .

values of ithis-kind of inference from observations involving one condition
of the i effect to what would be expected for observations for another
conditi-o-n of the i effect is more difficult to develop than inferences that-use
only invariance Foperties. However, this more complicated approach provides
a detailed analysis of,the:relationship between o and i. Useful as they are,
invariance properties' do not provide such an anaTysis.

. 1

.;
.----.

The empirital law,'"given by Eq(2:2.4 relating length to temperature is an
instance Of the kind Of law indicated by Eq(6.41Y. This'. law' can be used to

improve th6 dependability, of the inferences Involved in:measurements of length;
A new quantityi.lrt;:mayjbe-defined as an attribute of a rod at the
temperature, t.: ..: C-

1_ -= L(ri) '. ..(6.5)
rt

.

-:;:.-.
.

.

._, ___

The object of Measurement for lrt is a roc-temperature Combination; rt,
instead of a rod. All observations that;are used to estimate 1.F.-.E must

.

involve a specific rod and a specific temper4ure, whileythe observations used :

to estimate lr mutt inyolve the rod definingin-eNobject of measurement, but
may involve a-variety of temperatures. The attribute, lrt has a smaller

: universe of generalization'than.the attribuXe 1r; and the direct- . i .

interpretation of measurements of lrt are restricted to the temperature
specified in rt. :

. .
.

.

. _ .

, ,-::

.,

± This restriction is effectively eliminated by the'law ofthermal expansion;
FOr a set of rods that are made of the sane material: and foi-.:,.a fairly wide

range of temperature, the' Coefficient of thermal expansion is a constant, k;

and E0(2i2) can be written as :
.

ltt
lt;.-t -T- k(t - t )1r. : .(6.6)

? .-
:',. _

..

where t* is some fixed reference temperature (For 62nvenience, t* is Often
taken to be 200Ci a comfortable value for robin temperatpre).,- Because

- temperature variations introduce error into measureMentsbf'16 (i.e.

,.... 62(rt) is motley-0i 1r* can be.measured more dependably than 1. Also,

the_temperatOre differences, (t-t*), can be-measured veryaccOrately, `ancl,
E0(5.61 provides a v&y good fit to data over a wide fbpge Of temperatures.:
Therefore, the'dependabilityof estimates oflrt bvelion Eq(6.6) is limited -:

:mainly by the dependability in estimates of lrt*. 71-f-lerefore; fixing the

temperature for measurements of length does not seriouslYJnmitthe
interpretation of these measurements.

The observations involved in measurement are.of interest mainly because
they support inferences to other observations. These inferences are ortwo

kinds. First, there is an inference from the bbservation'-to the 'universe

score, the mean over the universe of generalization. "Secondo there are

inferences from one universe score to other-universe scores:

3



Using the bridge analogy of Cornfield .and Tukey(1956; p;9124 these two
inferences can be represented by thp_two spans of a bridge that frosses a
river. The:first span represents inferences from the observed score to a
universe score; and the second span represents inferences from the universe
score to theuniverSe scores for other attributes.

If a well articulated theory is available connecting an attribute to other::
attributes, the se7ond:span, which -is supported by empirical laws, _may be made.
quite long withOu--, 'eakening the total inference. Laws,of the kind indicated-
by Eq(6.4) make it profitable .ta_shorten the length of_the first span by.
narrowing the universe of generaliiation. Inferences from observed scores to
the universe score, upi*, for'therestrioted universe of generalization have
a higher validity than inferences to up. Therefore; restricting the
universe strengthens the first,span. A well confirmed law of the type given
in Eq(6.4) provides a strong second span by justifying inferences from uoi*
to the other Universe scores upi. Therefore restricting the universe of -

generalization does not resUlt.in any loss in generality; the second span is
simply bearing a larger share of responsibility for the inferences based on
observed scores. "A proposal to sample .items from a broad domain at random is
generally but not always a sign that one's understanding is orude" (Cronbach
et. al 1972)

0

Note that an invariance property is a special case of, the class of laws
indicated by Eq(6,4);: In particular; if the function, g; is such thatupi
is a constant for all conditions of the i facet.(i.e., wi is a constant), ,
then upi is-i-hvariant with respect ta the i facet. In such cases, there_is
no loss involved in taking_o, instead of.61-,asthe object of measurement and
there is some gain in simplicity, (In practice, it -is often convenient' to
assume_thZt_upi is invariant with respect to the i. facet,. even where this
assumption is_known not to hold exactly).

A NOTEIEDLLATENLTRADELS
. .

In the-behavioral sdences, When a test consisting of some set of items is
administered to a person, the observed score is usually interpreted as an__
estimate of the universe score for a disposion, with generalization over the_
Item facet. Latent trait theory_Can be considered a special case of the kind
of model being discussed here. For examples the Rasch model (Wright and
Douglas; 1977) represents the prObability, Xpi, that person, p, answers
item, i, correctly in terms of an attribute, vp, of the person and an

attribute; wi, of the iteM;

X--

pi

(6 7)

1

The-ability parameter is assumed to be an , attribute of the person, and may.
vary 4,roM one person to another. However it:is'explicitly assumed that vp
does not vary 'with the'saMple of items used to estimate vp. Furthermore it
is at least implicitly.assumed that vp does not change as other conditions
of observation vary. Similarly, items are the objects of measurements or the
difficUlty attribute,:wi; -and the value of wi is assumed to be independent .

of the sample_of persons used to estimate wi; and-of the-conditions of
observation:that may hold when wi is estimated;

Latent trait theories do not generally incorporate an explicit theory of
errors. The.kind of-inconsistencies that can be attributed to errors of
measurement, are interpreted in terms of a lack-of-fit for latent trait .Models.
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. NOMOLOGICAL_NETWORKS_AND_THE_IMPORTOFMEASUREMENTS _

The development. of inferences beyond the universe of generalization for an
attribute, as exemplified.bythe use of Eq(6.4),:raiset the question of the

role of empirical laws in evaluating measurement procedures.

In diScUtting this isSue,:it is_useful to define a third property of
measurement, in addition to reliability and validity. This third property,

the theoretical import, or the
be

"'ofmeasurement, can be defined as the
total significance of what can e in,erred_from the,measurement _(Hempel, 1952).

Import emphasizes the scope or range of inferences that can be drawn from a

:measurement as well as the accuracy of indiVidual infarencet. At defined
here, import does not involve anumerical index,: and _it is not assumed ;that

the '-import of individual inferences'carte measured 6nanyscaleof utilities;

Hempel (1952,p.46) provides a good:example_of the distinction between
"theoretical import" and and "empirical import "(or validity): :

Concepts with empirical import can be readily defined in any
number, but most of them will be:of no use,for sy-SteMatic

purposes. Thus,we might_define the -hage of a person as the
product-' of his height.in.millimeters and his age in years. ThiThis:

:definitibn is operationally adequate'anErtheterm "hage" thus.
0". ihtradUCed_WOUld have relatively high precisiori) and unifOrmity.
of usage; but it:latks theorettcalimport, for we have no
general laws Connecting the -hage of a person with other

characteristics

Although, "hage" lacks- import, it is postible to measure "hage" with a.high

;.degree of reliability and validity:

The. invariance properties, which provide the basic justification for

interpreting ObServations as measurements, prOvide a core of import.to all

measurements.- These invariance properties justify- inferences from the
.obserVed scores-to the universe score, and also, to some ektent, to all other

observed scores in the universe of generalization.. If th% attribute isn't

involved in any other empirical laws, these_inferences to the universe of

ogeneralizationdefine the total import of the measurement.

fhe contribution of the invariance laws to import depends on the

.generality of these laws. For example, .the import provided by invariance

properties for the measurement of_uoj may be relatively MJnor, since
infereptes from XoiR to stores for other values of _i_ is nbtjUttifieolbY'

thete4hvariance properties. If attention is restricted to the invariance

OrOpertiet iMOliedby.the,4efinitions of their respective-universe of
generalizationS,the attribute, uo has greater import thariythe attribute,:

uoi. As snch;' measureMentt of uoi do notjustify inferences to other.

conditions ofthe i facet._ Measurement of uo, on the other hand, involves

generalization over the i facet.'

Measurable attributes that play a Central role in .the- fundamental theories

of a:science are seen as having greater:significance, or import, than _

attributes_ which are_involvedin one or two isolated empirical laws, or in no

lawt at'all. The extended network of laws, which specifies the-empirical

content-Of-the theory and alSo provides confirmation for the theory; can

greatly extend the implications of measurements.

.

In Practice; the development of empirical laws can lead_to simultaneous'

increases in both the validity and the import of measurements.- This is done

by_ partitioning the universe of generalization into a number of -more narrowly

defined subuniverses, while connecting the:uniyerte scores for these
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subuniverses thrOugh empirical_ laws. Physics has used this strategy very
effettively. The history of the measurement _of such basit_measurable
attributes as"length° reveals the gradual refinement of their universes of
generalization; In the course 'of this development many facets have been
standardized, including the physicaYobject defining the unit of length, the
temperature;`and numerous aspects of procedure: At the same time, the import
of.length measurements haS been. increased by the use of nomological networks
including Euclidian and non-Euclidian geometries; classical mechanics, andthe
theory of relativity. Using these theories, inferences can be drawn at one
extreme, about the distances between galaxies, and, -at the other extremei
about the sizes_ofisubatonic.particles, while_defining length in terms of
operations involving a particular platinum-iridium bar in Paris.

NOMOLOGICALNETWORKS AND.VALIBITY
It is clear therefore that the existence of empirical laws, and more

importantly; nomological networks, may greatly extend the range of inferences
that can be drawn from measurements. Therefore such networks can great'ly
increase theTimport of_ measurements.- But returning to the question posed_
earlier, what arethe implications of such networks of laws for the validity
of measurement ?. In_particuTar; what are the implications of an empirical law;
like.E0(64)i fOr the .Validity of measurement?

The definition of dispoSitional validity states that a measurement
procedure is valid to the extent that its observed scores broVide dependable
estimates of universe scores. If this definitiOn of vatidity_is accepted,the .

existence of empirical laws relating measurements of an attribute to
measurement of other attributes has no dipect bearing on the validity of
measurements of the attribute. Campbell '('1921, pp.109-134)_distinguishes
clearly between_the developmentrof:an acceptable_measurement_procedure_and the.
application of this MP in the discovery of empirical laws. Campbell (1921,
p.134) recognizes that it is;_"because true measurement is essential to the
discovery of laws that it is Of such vital importance.to science"; but he doet..
not use these laws tojustify particular MPs; Measurement procedures. are
justified by a careful examination of. the operations'involved in'the MP and by
experimental verification of Invariance properities.

The dependability of estimatesofuniversescbres depends on the
definition of the universe Of generalization,_the magnitude of variance
components, and the extent -of sampling ofvarious facets'for each observed
score.-For- example,- assuming that_.o2(oi) is greater-than zero,
generalization fromjoiR to ubi will be more dependable than
generalization from the same observed score, XbiR, to the more broadly
defined universe score, uo. However Ae dependability of estimates of uo
can be improved simply by sampling i facet more thoroughly. In general,_
measurements of u can always be made as Valid as measurements of uoi, by
increasing sample sizes,

All derived attributes and most basic attributes are involved in empirical
laws, and these laws may be tied to the body of laws and theoretical .

constructs associated with a theory. For example; the law of thermal
expansion, Eq(6.6); describes phenomena 'that physical theory would be expected
to explain, and at 'Feast a partial explanat'fon Of these .phenomena man be
provided in terms of the motion of molecules. However, the existence of,such
an explanation is not necessary in order to interpret a coefficient of thermal
expansion.. With or without a theory, a coefficient of thermal expansion is
interpreted as .a measure of the degree to which a rod will expand when heated
and contract.when cooled. A model for the molecular structure of solids may
provide insight into why this phenomenon occurs, but such models are not
necessary for an understanding of what the phenomenon.is. .
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_However, networks_of_empirical laws do have a great, but indirett,.
influence :on the validity of measurements. The laws in the heWork make it
feasible to restrict the universe of generalitation for attributes and
therefbre to increase the validity of measurements without decreasing their
import.. These more narrowly defined attributes depend on the network_fdr
their import; rather than on the invariance properties; and the.magnitdde of
the errors of measurement are reduced because-assumptions are made for fewer-

! invariance properties.

THE TRADEOFF BETWEEN VALIDITY AND IMPORT
.

.

If the issueofimport.is ignored, it is easy. to develop attributes that
can be measured with a_high_degreebf validly. It-is only necessary to define

the universe A generalization-very narrowly. For narrowly defied universes, -
the inferences from-observations.to the universe involves generalization over
relatively few facett; and in such cases estimates of the universe scores are
likely to be -very dependable. In the extreme casei'where observations are ,

interpreted simply as:observations, there is no inference; ancreStimates of
the universe scores are perfectly accurate%

Howeveri researchers cannot ignore the-issue of import, and decisions
.which involve tradeoffS_betWeen the validity_of_measurements and the import of

'measurements must be made. The researcher who interprets observations
narrowly will draw more accurate inferences than_the -esearcher who interprets .

observations broadly; but the inferences of the first -esearchertay:less
about the world than the inferences of the second resea-:7`f The choice

between narrow but dependable interpretations and broader butlesS_dependable
interpretations is a choiceOf strategy. The continuum of available _

strategies. is more -or -less anchored by strict operationism (Bechtolt; 1959) at

on end and by construct validity (Cronbach and Meehl, 1955) at the other end.

Strict operationism demands that attributes be.defined narrowly enough to
insure that the validity of_the interpretations is essentially perfect.' The
strict operationist is unwilling_to give any hOstageS to the future_in_the .
form of invariance properties that might turn-but:to be only approximations

If taken seriously, this positIon implies that Observations_shbuld not be
assumed_to begeneralizable to-any wider'Universe-of.generalization, but _

should instead_be interpreted simply as observations. All of the implicationt

Of_the observation are to be derived by developing empirical laws that state

relationships between observations. Striitt operationalism is-the Strategy of

pure empiricism, and theory'plays essentially no role.(Bechtoldt, 1959)

Construct validity, in its most general_form, would define an attribute in
terms of all of the relationships. in which the attribute_appears., From the

standpoint of constructValidityi-the definition of an attribute entails

certain laws, and; order for a MP to be valid its observed scores must_

satisfy these laws. These assumptions are the postulates of a theoryi_andmay
state relationships between the construct and other constructs; in addition to

some set of invariance properties:

CONSTRUCT: VALIDITY
It was stated earlier that reliability is a property of a measurement

procedure; while validity is a propertylof a measurement procedure and the
attribute being measured. Construct validity is'defined'as_a property of a

measurement procedure; a construct; and the network defipinb the construct.



According to Cronbach &n,d).ieehl(1955,

"ACceptance," which was. critical .criterion- oriented and..
content Validities; as now Opeared in'construct.validity.
Unless substantjally;the same nomologiCal acceptedty:the
several users Of thetonstructi.p.ublic ValidatiorOsiffiposSible..

. consumer of the -test 4fici rejects the .author' s_thepry
cannot accept the author'S validatitn.-:He.mpst'validate the
testy or himself, if .he wishes to show that. it 'represents the
construct as.he defines it.

-p

Therefore, in construct validity, it would got be completely accurate to say
that.a measurement pocedtire 'is valid for & construct. Instead; 'a claim for'
construdl`ivali-dity should specify a measurement procedure, -a construct, and
the theory defining the construct.

-

If constructs are defined in terms of a network, changing the network of
laws in which the construct is embedded implies a change An the definition of
the construct. Therefore;.evidence for-the construct Validity of a
measurement procedure may not apply-in dffferent networks. . The invariance
properties that .-are tested in validating a dispositional 'attribute forma
.subset of'-laws that may:be part of many theories. Evidence for dispositional..
validf of aMeasurement-,proCedure applies in all networks that involvd the

ti

same de inition of the attribute and therefbre the same Set of invariance
prpper s.

As statedearlier, all of the procedures inclu4ea in dispositional
valith.ty'ire-consistent with construct validity. Indeed, the proCedures
uggested here form a subset of those proposed by Cronbach and Meehl(1955).
The difference between the two approaches is in the fact that, within
construct validity, the testing of any law involving a construct could be
construed as a test of the validity of a measurement procedure for the
construct. Dispositional validity rqgricts its attention to,invariance
properties; the testing' of laws otherllhan-the invariance properties is seen
as being directly relevant to an attribute's import but not to its validity.

_None of.the many types of research-included within construct validity is
excluded by the definitions in this paper. The major change being proposed is
in how some studies will be interpreted, rather than in the kinds of studies
to be done. In particular, the whole spectrum of research that could be
interpreted in terms of the-import of an attribute, Would, within construct
validity, be interpreted in terms of the validity of a measurement procedure.

Therefore, the apparent loss involved in giVing up evidence from some
parts of a nomological network is not realla loss_at all. For dispositions,
the inferences th,t are subsumed under cons uct .validity are divided into two
c&tegories, validity and import. None of the': studies encouraged by construct
validity is thrown away in considering dispo itions, but a resultsof some
ofithese studies are interpreted as evidenc for the imp;-ratherthan the
validity, of the disposition. Although th evidence that can be Used -to'
support dispositional validity is more re tricted than the evidence permitted.
by construct validity,the_inferences that are drawn by dispositional validity
are more restricted than those drawn by construct validity-

,Construct Validity is a property of .measurement procedure in relation to a
network because a measurement procedure is said to have construct_validity by
virtue of its inclusion in a validated network. For dispositional
import is a property of the network as a whole, and validity is a property of %7'
a measurement procedure in relation to the universe of generalization defining
a disposition..
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DISCRIMINANT VALIDITY::
__ DiScritinaht beekatined by: estimating variance components,
A_large viriance:componefit'for the interaction between'attributes_and objects:-
of measurement;: mould.inditate that the,inter&rrelations among different'
attributes are Small, This implies that the universe: score for one attribute
doesn't provide_a dependable. estimate of the universe scores for other
attributes, and therefore that each of.theattributes being-measured-provides
information which-Js:independent of_the_information in the otherattributp$'
However, as applied to dispositional attributes, discriminant validity is more
closely associated:withthe import then withvalidity.

__The logic of discriminant validity dependS on the existence of; at least,
a rudimentary theory; If two attributes; Al and A2; represent
hypothesized constructs that are-Assumed by some theoryto be unrelated;
would be expected that measurements of these:attributes should also tae
unrelated. By the logic of construct validity;.astrong .relation between
measurements of Al and A2 could be interpreted as evidence that at leaSt
one of these two sets of:measurements is invalid.

This kind of-logicis not generally appropriate for diSpositional
attributes, because dispositions are.defined in termsof_universes of
observations, and do net depend on.theoretical,networks for their meaning,
AsSUming that.Ai and A2_ are clearly defined dispositions; a strong
relationship between measurements of these two attributes would be :interpreted
as-an empirical lam that theory would be expected to explain. ,In particular,:
a high. Correlation between measurements of:Al and Az would be evidence
against any_ heol_which treated these.two dispositions as being unrelated.
It would not be interpreted:as evidence for a lack of-'validity in the
measurement'procedures. .

The exact interpretation of''the relationship -,betMe Al and. A2 would,

of course, depend_on how the two attributes are defined. If the two universes
had a high degree of overlap in theirobServations, it would not'be surprising
thathe means over these two universes are:related; However, even if there
were no'overlaPin their .universes aild;-no Other'reason to expect a
relationship, the twa attributes coulti'Ve strongly related-without having the
validity of their measurement procedUres denied.

. ....
_

For'example, the empirical result:that there is;a: strong correlation
between the thermal conductivity and electrical condUctiyity is not taken as
evidence Against the validity of the procedures used to measure these two
dispositiOnal attributes. Insteadi the relationship between these_two
attributes is a legitimate'empirical finding; which- a:theory of:solids would
be expeCted to accomodate,'

. . .

It is generally true,. however, that a very high correlation between
different attributes may limit their.usefulness for various purposes. If two:

attributes were perfectly correlated, the measurement of ither attribute
could serve_all_of the purposes served by Measurements:Of both attributes.
Therefore, the import of a measurement procedure depends on its hav4ng
discriminant validity.:

7

45



VII An Overview of Sampling Models for Validity

The earlier sections:of this paper_have discussed a sampling model for
dispositional_attribute's in_some detail.__This section provides a.genetal_
siAMary-of this sampling model; and brlefly_discusseS some issues, including
objections to sampling models; no.C.covered in the /previous section's.

A GENERAL SUMMARY OF-THE SAMI3LIND6Et.
The sampling model for the valid!qty of measurements of dispositional

attributes js based_on generalizability theory. The "true" value of a
dispositional attribute is the universe score,.: efined as the mean over the
Unlykse of generalization.' A measurement procedure is valid for, a

attribute_to_the extent that -the observed scores generated by
the procedure are dependable estimates of the universe score. ;

The basic premise of-sampling models is that measurement involves
inferechces from observed stores-; which are based on samples of observations;
to thOlilean over the universe from which these sa les are drawn; for these
inferences to be justified, eset of invariance operties must hold, at least
approximately., The invariance. properties must verified.empirically. =

_ Dtspositional validity could be estimated directly by using samples of'
observations, randomly sampled from the universe of generalization; to estimate'
a generalizability coefficient; which reflects the dependability of inferences
from observed scores to'universe scores. _Although this .direct approach 'has

virtue of simplicity; it is notdDracticalrin most cases.

The sampling model is based on a small number of assumptions: The sampling
model, makes no assumptions about underlying constructs; it neither affirms nor
:denies the existence of-SuCh theoretical constructs. The model makes.nof
asssumptions about the diStribution of observed scores, the distribution of.
universe scores, or the relationships between different kinds of:obSerVed
scores. Norestrictions are.put on the universe of generalization.or-the
universe_of allowable observations except that the universe of,allbWable
observations is; by definition; included within the universe of generalization;
in particular; the model doesn't dictate what kinds of Conditions can be
defined as facets. The one assumption that is necessary for the sampling model
is the random samplingassumption;

OBJECTIONS TO. THE SAMPLING MODEL '-'.

:The simple version of the sampling model assumes that an.attribute ins
defined in terms: of a universe of generalization and that, measurements are
bised_on random_samples from this universe.:-This simple version of_the _

sampling model ignores the complex sampling designs that are:'actually employed
by measurement procedures. In- practiceitfie assumption_that_observed scores-'-
are based on random samples from, the universe of generalization does, not apply'
whenever any facet is explicitly or implicitly standardized.

A number of authors (Loevinger; 19Q,5,; Rozeboom, 1966i Gillmore, 1979) have.
objected to' the simple version of-the sampling model because behaVioral
measurements do not:generally_consist of random sample's from a clearly defined
universe of_generalization. Ambiguity in the definition of the universe of:
_generalization-. is not_unique to the social sciences. The_discussion.of .

7attHbutes in an earlier section ofthis.reportmade a point of.eMphasizing
many Of the samplifig,Eroblems.associatedwith measurement in the_physcel
sciences. For most attributes; the boundaries of the universe of
generalizationAehd to be quite fuzzy, and. the sampling of'.condi'tions of
various_facets. is far from random; LtJ,s' generally imp:*lble to select.
random samples from the universe of generalizatfn; in part.; because_ of _

vagueness in the definitiorC0fothe universe of generalization, paFt;_

because of.; practical, difficulties.
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THE VALIDITY OF MEASUREMENT = SAMPLING FROM THE UNIVERSE OF GENERALIZATION
All of these. objections emphasize the problems inherent fh tryfhg. to take

random samples from the_universe of geaeralization. In order for statistical
inferences from observed-scores±to universe scares to be unbiased; the sample
of_ observations must be selectelmrandomly from the:universe of generalization;
and the sigiple.version of the sampling model assumes that observations are
randothly sampled from the universe of generalization.; To,the extent that the
random sampling assumption is untenablk; the simple version of the sampling
model is untenable; Since it is usual, not possible to sample the universe
of generalization randomly, this simple model is seldom applicable.

The sampling model- developed in this paper recognizes that the estimation
df_auniverse'_may_involve a relatively complicated set of inferentes. Within
this more realistic model; inferences from observed scores to universe scores
may be analyzed into several steps and may require the confirmation of an
extensive network of laws fOr their justification; In particular, the
reliability and v3lidityof a measurement- procedure may involve a large number
of invariance properties. The jnvestigation.of import would add the other
empirical laws to the network.

In_light of. the substantial_difficulties in drawing random samples_from_
the univer5eof:generalization (not tomention the demands on sample sizes for
the estimation_of variance±components; when random sampling is possible); how_
it this network to be verified? In the physical sciences, the verification of
the required set of empirieal laws is not generally accomplished in a single
study. :It ig'even -less likely that behavioral. measurements will be thoroughly
evaluated in a single study, in_which observations are randomly sampled from

,

the universe of .generalization:

.:' Even a cursory review ofthe-issues..-involved in the confirmation of laws
Would go -far beyond the scOPe'of_this paper._ However_a few:general remarks on
thls topic may put the probreMtinvOlved in testing the invariance properties

. into perspective.
.

<af-1 Popper(1965;1968) has suggested an approach to the V-erification of
Jawg, which accurately reflects the practice of science, and has been widely
:accepted; Popper views laws as conjectures which canbe tested in various
ways; but which can neier be definitely confi4ed. .A general law can be
applied to a large nuM5er.: of observatIons; andanyof these observations can
be used as tests of_thel'aw. A:deterministic law _that fails a single test -or
a statistical law that'fails a laue proportion of its_teSts_is refuted; A_
law which is subjected to_large 9dMber_of tests cf various kinds without being
refUted is considered td be supported by these tests.

There is a clear lack of symmetry in the treatment of laws as conjectures
that are.subject to'refutation; .a law can be-refuted in a single study, but;
in general, evena large number of studies cannot definitely confirm the law;
The more tests of various kinds that a law has been exposed to without being
refuted, the more strongly it_is considered to be supported; but the_law is
never completely confirmed. In a sense; therefore;.:Popper replaces the concept
of the-- confirmation of a_law by the concept of the degree of confidence in the
law. Each successfulempirical test of the law_)ncreases'confidence in the
law;..and the failure-of.one.test can cause the law, to be refuted;

Toulmin (1953) describesohysical laws not as inductive generalizations but
As rulesof inference, which can be used to draw conclusions from.obServed
facts. ;The question to be asked about Such:rule-s of inference is not whether
they are true or not, but how Widely do they apply. Toulmin analyzes the yOle.;L
of laws somewhatdifferently.from Popper, but, for the purposeS of thisloaper;

::;these two viewgare complementary. The presumptions that are made about- the
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class of observations to which a law applies are tested every time the law is
applied; and therefore such presumptions are conjectures which are subject to
refutation.

Both of these analyses of the methodalogy.fOr the confirmation of
scientific laws have implications for the validiation of measurement
procedures. The definition Of an attribute involvesauniverse of
generalization. The.claim that a measurement-procedure generates valid.

. measurements of the attribute'is equivalent to the conjecture that.the
observed scores are_invariant with respect to random_Sampiling_frOm the
universe of generalization. This-conjecture can be decomposed into a number
of more specific invariance properties; each of which applies to a Specific
facet; .

A successful test of any one of the invariance properties, which-is based
on a random sample of conditions from a,facet, provides strong Support for the
specific invariance 'property, and somewhat weaker support for, the claster of
invariance properties associated with the attribute. As the number of facets
that is investigated without encountering refutations of their invariance
properties increases; the degree of support for the conjecture that the
measurement procedure adequately representS the attribute increases.

G studies, which do not sample randomly from a-facet, !Dirt,- instead, sample
from a restricted subset of the universe for the facet, don't provide adequate
evidence for .invariance over the full facet. They do provide evidence for
invariance over the subuniverse sampled, they provide some support for
invariance over the_facet, and they also provide some support for invariance
over the universe of generalization as a whole. Such a G study provides only
weak evidence for.the validity of a measurement vocedure; and it may require
a:large number of such G studies to develop a high degree of confidence in the
interpretation of observed scores as valid measurements of an attribute.

The evaluation of evidence for dispositiohal validity is complicated
further by the fact that the support for invariance over the universe of
generalization that is provided by evidence for invariance,over a particular
facet will depend on the facet studied. If there is some reason to suspect
that _a particular facet may have a large effect'on observed scores,,evidence
for invariance over that facet_prov-ides relatively strong support fOr
invariance over the universe.of generalization. 'For example, in evaluating
the dependability-of performance ratings; the variance components for raters
could be substantial, while the variance component for equipment would be
negligible in many cases. Therefore, an investigation of the rater facet
provides a more severe-test than an investigation of the equipment facet, and
passing the more severe test provides stronger evidence for the overall
dependabiility of the measurement procedure than passixig the weaker test.

RANDOM SAMPLING FROM THE UNIVERSE OF ALLOWABLE OBSERVATIONS ,

The random sampling of observations is important for the -measurement of
dispositional attn, ibutes in two -ways. First, a measurement procedure is
defined in terms of random samples from the universe of allowable observations
.(D studiet). Therefore, the application of the measurement procedure to any
object of measurement requires the random sampling of observations from:the
universe of allowable observations for the object of measurement. Second,
studies of the properties of measurement procedure (G studies) requiTe random,
sampling from the population of objects of measurement and random sampling
from the Universe of generalization..

The purpose of G studies is to provide data that can be used im the'design
of effective measurement procedures. In particular, an important goal in
designing a measurement procedure is to reduce the'number of facets that must
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be randomly sampled in obtaining an observed score and there are three ways to
do this. First, if G studies show that all of the variance components (for the
main effeCt and interactions) for a facet are zero, there is no need to be

concerned about how this facet is sampled. Second, facets that have been

standardized are not Sampled in estimating universe scores, but the variance of
the systematic errors for_these facets -mast be estimated in G studies. Third;

.if the universe of generalization is restricted in connection with the develop-

.
ment of theory, thus sdefining a new attribute, the universe of allowable

observations for measurements, of this new attribute will elso be restricted;
that-is, if the new attribute does not involve generalizationlover a facet, the

measurement, procedure will not involve sampling of the facet. Such theoretical

developments are also based; in part, on the results of G studies.

. All of these modifications of the measurement procedure tend to decrease
the number of facets whiCh must be randomly sampled in obtaining an observed

score. The only facets that need to be sampled randomly -are those for which
interactions with the objects of measurement are fairly large and apparently
random. Efforts to obtain random samples can be concentrated on these'facets,

and as the number ofsuch facets decreases, the difficulty in-taking random

samples from the universe of allowable observations is reduced.

One of the_results of these changes is,:therefore, to transfer the bUrdeh:

of- random sampling &Om the measurement procedure to the G studies. If these

efforts to-reduce Or eliminate the.ranpm errors for various facets are

successfuli.the variance components -or all'of the facets in the- universe of

allowable observations, will be_small; anaT-the=refote,1 the measurement

prOcedure will have:a high reliability.
-

To the extent that the universe of allowable observations is homogeneaus in
the sense that all observations in this universe yield approximately the same

valueof the observed score.fdr_each object of measurement; it dbes not matter
WhiCh observation is selected from the universe of allowable observations, or
how -this observation is chOsen.' This is especially true when the random error

variance is small_COmpared to_theYariance of specific systematic errors. To

the extent that this kind -of homogeneity isattained in the universe of

allowable observatiOhs, the measurement procedure is robustapinst 'violations
of the random' sampling assumption fOr the facets in the universe of allowable

observations;

This assertion mayseem extraordinary since statistica] conclUsions are
never robust)a.gainst violations of their sampling assumptions, but the
situation being described is not one that is:typically encountered in_ _

-Statistics. In- most statistical analyses,the population is fiked and the aim

Of the study is to estimate somel?erameter:for the population. In .order- to _

Obtain unbiased estimates of the parameter it-is necessary to sample randOMly.

In developing a measurement' brocedure the situation is quite different.
Here; the'universe of allowable obtervations from which obseryations are to be

drawn is not fixed; The goal is to make the variante_in_ObServed scores for-

each object of measurement as small as possible by refining the definition cif,

the, universe of allowable observations. To the extent that thit goal is

achieved, all observed scores in the universe of allowable observatiOnt for

each object of measurement will.be approximately the same, and it will not

matter which observation is.chosen.
_ _

. . . .

,
'For example.in measuring_ length, it isn't necessary to randomly sample,

from the universe of meter sticks, because it is.known that all meter sticks .

give essentially the same result. Therefore, the most convenient meter stick

is used; The justification for such practices is fbUnd in theeMpirical-
generalization that the variance introduced into observatiOnt by the choice of

meter stickis Very small compared tothe variance ihtroduced'by some other

factors(e.1.'temperature). 51



GENERALIZABILITY COEFFICIENTS AS UPPER BOUNDS ON VALIDITY
The main source of difficulty with the simple version of the sampling model

is that it ignores the comple0ampling procedures that are actually employed
by measurement procedures: In: order to obtain a single point estimate of the
validity,_this simple model makes the unrealistic assumption-that observed
scores are%based on random samples from the universe of:generlization. In

practice, this assumption does not apply whenever any facet is standardized.'
The explicit recognition of standardization leads to a. more complex,modelwhich
does not claimto provide point,estimateS of validity, but aims instead to
proVide a series of upper bounds onthe validity.

Standardization changes random errors nto systematic errors. The

evaluation of systematic errors due to standardization requires that the
sampling variabilly for the standardized facet be estimated independently of
the other facets,-and there may be many facets that are standardized' in a giveh
measurement procedure: In general, it is_not practical to draw random samples
from the universe of generalization and therefore all the invariance propOrties
for an attribute cannot be evaluated in a single G study. In particular, it is

usually not possible to obtain' independent-estimates of variance components for
more than a few facets ,without.having very large saMple sizes. -1.

A series of upper bounds is perhaps a less,satisfattory result than a point .

estimate_of the validity, but it is generally 'more realistic to consider the
coeffiiiehI :resulting -from a typical G -study as. an -upper bound. on validity than

as an'unbiased point estimate'::"

THE PROCRUSTES EFFECT IN DEFINING UGs
Throughout most pf this-paper, it has been tacitly assumed that the

universe of generalization defining an attribdte is fixed; and that the task is
to investigate the invariance properties implied by the attribute's definition.
For purposes ofexposition, these assumptions have been convenient, but, in
practice, the situation is never quite this simple (see Cronbach, 1971, p.482):/

The definition of the universe depends, at least in part, on the invariance
properties that can be established., Initially the definition of the universe
is likely to be very loose, with many facets defined vaguely by standard
expressions_such as, "within normal limits ".' Over time, the universes of
conditions for various facets may be clarified, as'more is learned-about how
various conditions of the facetinfluence.bbservations. For example, if it is

Jobnd that observations depend strongly.:qn the choice 'of condition for .a
particular facet, it may be necessary to restrict the definition of the

-_,--upiverse for that faCet to a particular condition, or to a small set of-

conditions.

On the other hand, if an attribute which was 'expected to vary with-.
different conditions of a particular kind, is fOlind to be invariant over these
conditions, the universe of-generalization for the attribute may be extended
'to.include this kind of condition a$ a new-facet.

In most cases,- decisions about whether or not to generalize over a
particular class of conditions will depend, in part, on whether observationsl
are invariant over the conditiOns. If the observations are not invariant over
the class of onditions, including these conditions as a facet in the universe

, of generali a ion would decrease the validity of measurements of the attribute;

therefor' _conditions are not likely to be defined as a _facet of the

univer of gene lization. However,_if the observations are at least
approxi ately invariant over the class of conditions, broadening the definition.

of the atribute to include these conditions as a facet Would not decrease
validity, and weuld.increasethe usefulness of the measurements.

e c
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THE STEADY STATE REQUIREMENT
.

Cronbach et al(197) raise an issue which they treat as a limitation
generalizability theory:

"Because our model treats- conditions within a. facet as
unordered it will not deal adequately with the stability of
scores that are subject :to trends;:.dr.-taarder effeats
arising from the measurement. process'...a large contribution
will be made by the development of a model for treating
Ordered facets...."(p. 3B4)

It is clearly inappropriate to_consifier_consecutiveobservailibns as
randoml:ysampled from a univerte:of_generalization if these observations:are'
.known to depend systematidally.on time or on any other facet in the. universe;
However this should not be viewed as a limitation in a thebry of measurement.
As sing that the theory of measurement is intended to analyze the methods

er than the substantive content of science, there is no need for it to
er functional relationships among different variables.

. _

According to the dom4in_sampling mOdel proposed here,- td generalize over a
facet is tOtreatthe variability -of Observed scores due to thesamOlng of tne-
facet:as error.. Where the:ConditionSaf some kindare considered a facet; the"'
observed score is interpreted as an eStimate'of the mean over all conditions:Of
the facet; and the observed sabre is not associated with.a particular:Ondttian
of the facet; On the other hand, in arder:to,recognize a:relationship_between
observed scores and the conditions_ of a facet, each observed scoremuSt'.be
associated with a:particular condition of the facet, ancLthis iMplies the
absence of generalization over the_facet.Therefore tilititti_tkis model; It it.;
inconsistent to say that a particular kind Ofcondition Should- be included' as
a facetjn the universe Of:generalizaton, and,at the same time, to-say that
observdscares are 'a function af.the:facet;: -

The problems introdUced into sampling models by the existence of trends can
be eliminated as *soon'as the trend-: is detectedi4his is accomplished by
restricting theuniverse of generalization for each observation= to.a.fixe4.
...condition of the facet involved, and,--by treating the.trend.aS an empirical law
(see section VI). Undetected trendSwill. tendtb_cause the variance components

:for
(see_ section

to be largei and therefore.the examination-of Orianee components
can facilitate the detection of treq0S:,,

.CONCLUDING COMMENTS H_
.

The sampling model provideS a fraMework:for considering the issues that- ..

arise naturally -in the interpretation of measurements in terms of dispositions.
The -three types of issues that have been identified :ar.6.those associated;with
reliability, validity; and import. Reliability inditateS how-well observed
corers represent the universe of allowable observations, Validity,indicateS:hOW
well observed scores represent the uniVerSeof_generalization defiling an
attribute, and Impart indicates how well the observed score predittt other
observed scores that are of interest.

Since measurable_attribUtet, in_bOth the physical and. behavioral sciences
.are7interpreted as dispositrons,these.issues arise for. 'every measurement

procedure.. However; the way int':;/hIch these issues should be analyzed is not -

fixed: For convenience; most of the discussion in this'paper has; beeniin.
terms.of variance coMponents and generaliiability coefficients, but the same
points could-have been made in terms bt:correletion coefficients., In fact,
inere one is interested in the relatiOnshipaetWeen the observed scores for
particular_conditions of a facet and uniVers'escores it wbuld.belnatural to
use-correlation coefficients, In dealing wittr.categoricar,:04 rather
differeqset of indices would need to -,be estimated.



..

: Although variancetdmponents seem to_match the assumptions of the sampling
model for dispositions especial,ly well, the formal statistical Mbdelt defining
variance components should not be ellowed to obscure the_fdhdattiental concerns
embodied-in thePivariance properties. At. Cronb6ch(1976) has observed; the
teChniCal apparatus off-generalizability theory is less important than the
questions' suggested by the theory.

The sampling modelhas a number ofadvantages. It is fOrmuleted ih terms.
-_of-them:fundaMental statjsticaltoncept of:random sampling, and the model is
basitally quite simpleAn attribute.is defined.in termS Of a universe of
,generalization, and the universe score for theTettribute,iS tiMply.the,
expected value over the universe of generalization.

. . .,

If onewishes to assume that the invariance properties associated With a.
,,univ.erse:of generalization reflect' some underlYing structure or process
..associated with:the attribute; o is free to do so. However the definition

7drtheuniverse ofgeneralizatiO can alsobe treated as a matter of
. tonvenjenee Or c,onvention: The sampling model is Consistent with either.of
these two points of view. r.... := :

,

. ,

.Although the sampling model makes few assumptions; it OrbVidet an analysis
of many issues,assOciated with the dependability of measurement. It Makes it
possible to give.. validity a,straightforward interpretation; and to drava,clear
distinction betWeen:reliability andValitlity; The.cOnclusions that i-eliabilty

."is an upperThouhtLon.:,yalid-fty and that some means bf improving reliability may
-1. cause validity -to detrease can be easily derived ffbm the model. Furthermore,

the model provides a bas-it for a detailed analysis of standardizationand of
'the resulting_ systematic errors; Convergent validity can .be analyzed in terms -=
of the standardization of a method facet.

.

..... .. _ ,

Its Shbwp in section V4 the model suggests ea explicit mechanism for
relating the refinement:of_ measurement,procedures to the development of laws.
Although' the analysis of this mechanismhas not been carried very far; it does
begin to clarify the relationihip betWeen tKeory and measurement: ,

.

.

. .

.
.

.

The problems associated with sampling models are nb'more serious :than_the
-problems associated with_other Models:_- Rather these problem are:0Otited:0*-6
clearly because the'assumptions of sampling models are hibrecloo7V stated than
for other models..

:
: ,
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