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S : .A 1 INTRODUCT ION

’

~ The techn1ca1 qua11ty of behav1ora1 measurements is- genera11y eva}uated in
terms of two propert1es reliability and va11d1ty. Reliability is_associated

With the precision of measurement, and reflects the degree of consistency among

independent observations: Validity is concerned with the "meaning" of

measurement - that is, w1th the 1nterpretat1on to be g1ven to the,observat1ons

The aim of thqs paper is to prov1de an ana1ys1s ofvthe measurement of
d1sp051t1ona1 attributes. A Sampling model for the re1at1onsh1p between a_

' measurement procedure and a d1spos1t1ona] attribute is deve]oped from an

ana1ys1s of how d1spos1tiona] terms are used and 1nterpreted 1n sc1ence fThe

of measurement procedures the d1st1nct1on between r¥11ab1]1ty and va11d1ty,

and convergent and discriminant: va11d1ty77 Within ti#s: sampling model the

concepts of reliability and .validity arise natura]]y;av;aecessary requ1rements

>

- for-the results of measurement to be meaningful. fjﬁnj;,

. ATl reliability indices describe the agreeMent among repeated feasurements
on_the same individuals. The separate measurements :for each. 1nd1v1dua]'must
differ in some of their conditions _of observation, and the different o
reliability coefficients allow different conditions to vary from one set of

observations to andther: Although:they differ in their definitions of error,

the different reliability indices all assume that there is a single | o

undifferentiated source of errors:

Generalizability theory (Cronbach, Gleser« Nanda, and Ragaratnam 1972)
prov1des a multifaceted analysis of the consistency of measurement by relating
the variance_ 1n observed scores to. the sampling of different kinds of

sources of 1ncons1stency. Therefore, genera11zab1]1ty theory provides a
genera] framework in which to examine the dependability of measurements, and ¢

1t is this framework which is used throughout this paper.

Such a general framework does not exist for the va11d1ty of measurement

Criterion validity examines the agreement between observed scores and some -

external criterion, and typ1ca]1y uses correlation coefficients to yield a
single numerical estimate of validity. Content validity examines how well the
opérations employed in a measurement procedure match the characteristic. being
measured, and the results of a study of content validity are usually stated as
qua11tat1ve judgements; rather than as ‘a numerical coeff1c1ent :

Construct - validity is more general than either content validity or

criterion validity. It emphasizes the legitimacy with*which various 1nferences

can be drawn on the basis of observed scorés, and allows for .a wide range af

techniques, correspond1ng to the range of 1nferences to be,drawn. -Construct
validity may employ the methods of criterion validity or of content validity,
but may a1so~use a variety of other techniques

scores; validity invelves the 1nterpretat1on of anjobserved score as _
representative of some quantity which is not directly observable. .Validity-

requ1res the_assignment of meaning to observed scores ; i

N o
In 1ntroductory textbooks validity is-often equated with the extent to

. UnJ1ke re11ab111ty, which is defined 1n terms zigagreement among observed.

which an observed score measures, “what it is.intended to measure.” Although

this s%atement is too vague to prov1de an adequate definition, it does .
emphasize two important points about validity. F1rst the looseness of the

1
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_ part1cu]ar1y clear in phys1cs. 4 L T S

statement allows. for a very wide range of procedures for evaluat1ng the
validity of.a measurement pracedure, and this iS consistent with practice.
Second; it suggests ‘the existence.of a.‘real" value for an attribute, without
spec1fy1ng what this "real" value represents It is often implicitly assumed
that the "real" value of the attr1bute exigts somewhere, and that validation
requires a comparison, direct or indirect, between_ this real value and the =

observed score: Criterion validity tends to encourage this_process of -

reification by introducing the notion of the crfterion, which is ea51]v S

confused W1th the "rea1" va]ue of the attribute:

Re11ab111ty involves compar1sons among observed scores and is. 1ntended to
indicate the consistency of ‘measurements. Validity seeks to establish an

,appropr1ate interpretation for observed scores: Since a h1gh degree of _

consistency in_measuring the wrong attribute is genera]]y seen as being less
useful than a lower degree of consistency in measuring the intended attribute,

vaT1d1ty is generally considered to be more important than reliability.
VG1ven,the:great,1mportance assigned to validity, it is surprising_that. the

evidence for the validity of most. behavioral measurements is less adequate =

than the evidence for their reliability. In many cases, evidence for validity

,is,prattically nonexistent Ebe1(1961) Has aptly described this dilemma:

pantheon of :the psychometr1c1an It is un1versa11y pra1sed* -
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but the .good ‘works done in its name are remarkably few. ot

Test validation, in fact, is widely regarded as the least
satisfactory aspect of test development.”

This situation has not improved markedly since 1961.

 Ebel1(1961) also points out that physics, which Campbel1(1957) has called,
"the science of measurémeht",“dées not seem to encounter problems of :
validation. One reason for this difference between the behavioral sciences

_and the physical sciences is that much of psychometr1c theory gives more

attention to statistical procedures and assumptions than it gives-to the

analysis of how measurements are used (Construct validity, as developed by

. Cronbach and Meehl, 1955, dnd Cronbach, 1971, is a clear except1on to this

generalization). In the physical sciences, th1s situation is reversed there,
‘the statistical methods used to evaluate measurement procedures arée re]at1ve]y-
simple, but these methods are closely related te the practice of measurement

and its 1nterﬁretat1on.-

B The next two sections are devoted to a discussion of how attributes and .
measurements of attributes are 1nterpreted - Several simple-examples of -
physical measurement will be introduced.in this discussion. - These examples

are used because the connection between ‘the interpretation oﬂzm\gsurements and

the indices used to evaluate the accuracy of these measurements 1S

R

, Genera11zab1]1ty theory (Crongach et al, 1972) provides the framework and.

methodo]ogy for this paper, and most of the results derived w1]ﬂ be statedin
terms of variance components.  However, the emphas1s throughout the paper is

.on the issues that can be addressed in generalizability theory, rather than on

the statistical models: Except for an occassional remark about the.severity

of some estimation problems, there is no discussion of the comp]ex estimation

ssues. assoc1ated W1th genera11zab131ty theory.

OVERVIEW ) '
The ana]ys1s presented in th]S paper is qu1te 1ong, and in - sofe ways

: relat1ve1y convoluted. -An overview of the main po1nts in the deve1opment may -

herefore prov1de a useful roadmap* - : _ N

-
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Section lI ‘examines the,1nterpretat1on g1ven to- d1spos1t10na1 ittr’putes.,

Dispositions can be operationally defined in terms of.classes, or un1ver5es .é.?

of possible observations. The numerical value to be assigned te an, attr1bute

is defined as the expected value over this universe, and measuremﬁhts e 7,
1nterpreted as estimates of this-" expected va]ue e AR wa— -g,’

- assumptions that are 1mp11c1t in the ord1nary 1nterpretatxon= _ ]
scores; The estimates generated by a measurement procedure are basedrds T

samples from the universe; .consequently, the model for measurements, Ts &

- ... sampling model. Est1mates of the expected value over a universe,. -based" gﬂs.

. different samples, will not generally be equal, and, in ordef to mazntayn
. consistency in the interpretation of measurements, an exp11c1t "theory. b*f" v
errors must be introduced. Therefore,; the def1n1t1on of error*:3~based9?n éhem;

_interpretation given to the measurements, and errors of measurement ' are deaned."’,;f"'

. 'by substantive coﬂs1derat1ons rather than stat1st1ca1 assumptions. e e

Section IV out11nes the terminolegy and notat1on of genera11zab111ty theory

and introduces a sampling model for validity. The validity of measurementsof

a dispositional attribute is gef1ned in terms of the accuracy with which the
observed scores estimate the éxpected value for the appropr1ate universe.
Where the observed scores are obtained by drawing simple randoem samp1e§ from
the appropriate universe; an index of - va11d1ty can be obtained directly by.
estimating a generalizability coefficient. -In. pract1ce the sampling model

" for validity becomes quite comp11cated when it is modified to take account of e

- the sampling designs actually used in measurement procedures. 5

o  Section V examines the effects of fhe standardization of measurement
. procedures. Standardized measurements Jinvolve two kinds of errors: random
errors,. which vary from one observatio (to another, and systematic errors;, .

wh1ch are constant for a ser1es of meas rements Random errors are re1ated to

§ectlon Vi d1scusses the re1at1onsh1 between the deve}opment of theory and

- 'tne definition of dispositional attributes.. A third property of measurements

is introduced by defining :the concept of71mport in terms of all of -the

inferences that can be drawn from an observed score. This section reviews some

potentially powerfu] techn1ques for dev 1op1ng theory and contro111ng errors of
measurement. . :

1

Many of the .results. der1ved in this paper are based on rather strong i -

sampling assumpt1ons In particular, the unbidsed est1mat1on of variance _ .
components, which are used extensively in_this paper, requires random sampling.

assumptions. In most cases of pract1ca1 interest, these assumptions are._ Tikely-

to be: violated. In.section VIiI, these assumpt1ons, and the robustness of the -~

< results derived from these assumpt1ons, are examined. Sect1on Vi a1so _

. presents some conc]ud1ng comments. . . Y NG
- . _ . S T . . . - H
_ k4 - ! .
= -~
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11 The 1nterpretat1on of Measurable Attr1butes : -:_Q '

Lord and Novick(1968, p.17) define measurement as "a procedure for the :

'ass1gnment ‘of numbers ... to spec1f1ed properties of exper1menta1 un1ts in

such a way as to characterize and preserve, specified relationships in the .;ﬂ

‘behavioral .demain". = In discussing the methodology of physics, Campbel1(1957,

p:267) defines measurement as “the process of assigning. numbers to represent

,qua11t1es"* . s

Accord1ng to Nuna11y(1967 p: 2\\"Measurenent cons1sts of rules for_

assigning ‘numbers to objects to represent quantities of attributes." If the

word "objects" is interpreted broadly to inciude persons and groups of persons: :

as well as physical objects and systems, Nunzlly's def1n1tjon app]1es to

measurement in both the phy§1ca1 and the behav1ora1 sciences.

o

Measurement consists of the mapp1ng of objects into real. numbers, and
establishes a functional relationship between real numbers and- the members of
some class of objects: Depending .on the’attribute being conSJdered the

object of measurement may take a variety of forms, 1nc1ud1ng phys1ca1 obJects

persons, pairs of obJects or persons, groups, and various complex systems..¢s;.

The rules used to assign the numbers may also vary considerably: However the .

process of measurement always involves a mapping of the form

ug = Ao) o . | (5

where o is an obJect A represents the rules used to assign numbers for the ¥

attr1bute, and ug is the real number assigned to o for the,attr1bute A. : 5

Note that Eq(2. 1) makes a fundamenta1 theoret1ca1 comm1tment in that 1t

1mp11es that the attribute depends only on the object of measurement and does

not depend on any of the conditions that may prevail when the observations_ar&:

made. - For example, the statement that the length of a part1cu1ar rod.is- 10
inches can be represented as: -

= l:(r) - ) ’ N _ ,,'.; :
. \ .
where L represents the procedures used to measure 1engtb in. 1nches and r

represents the rod. This formulation implies that the length of the rod does

" not depend, for example on the locatiom, or1entat1ona or temperature of the-

rod. The.length is also assumed to be 1ndependent of the person who carries o

out the operations represented by L..

o

N Ed(Z.l) provades a very genera1 symbolic. representat1on of the process of: :

measurement: However; this definition Js not very informative or very useful:

unless the nature of the objects o and the functions, A, that are 1nv01ved are

well understood. In pract1ce both the function; A, and the obaett 0; may be

'quzte complex. : _ _ . ) .

ATTRIBUTES _
“A measurable attribute can be v1ewed as a, d15pos1t1on or a tendency to-

react in_a certain way to some kind of cond1t1ons. D1spos1t1ons may be :

qualitative or quantitative.. For a qualitative disposition,. the object is

said to have the attribute if a specific reaction occurs, and is said not to_-

have the_attribute if the. spec1f1c reaction does not occur. A c1ass1c7examp1e ‘

of a qualitative disposition is. the property of be1ng a magnet The' typical |

test condition would consist of placing a small piece of iron near the object

" being tested.- If the iron tends to move toward the object, the object is said:

to.be a magnet,: antd if the iron shows no tendency to move toward the object,

the object is §ama to be nonmagnet1c.

— . - . -
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For .a :uant1tat1ve d1spos1c1on a number\1s ass1gned to the obaect on the e

. basis of the istrength of the reaction to the, testacond1t1ons The magnitude

i_o. the attribute of being magnetic;or the strengfh of a magnet cou1d be

def1ned by how far 1t moves- a p1ece of* 1ron* : N

There are bas1ca11y two ways in- wh1ch measurab]e attributes are intrddueed

into science. In theearly stages ofwany science,- attributes are developed by -

quantifying ordinal” re1at1opsh1ps Subsequent]v other attributes can be SR
der1ved from emp1r1ca1 1awsg S : -

:u@.

, . : “ / )
) The process of quant1fy1ng ordvna] propert1es 1s oné of. exp11cat1on “the '\
transxormat1dn of subjective observations into a relatively well defined -

measureable attribute: Attributes that are defined in this way will be called

basic attributes. - {i is ngticed; for- example, that some cbjects are easfer to
f

mpve than others. I% is also noticed that this, order1ng of objects remains
the same regardless

them; or when they are moved. ‘It is convenient, therefore to think of

- "resistarice to movement" as a property, or- attr1bute of - the objects; and a

. large class of solid_objects can be rank-ordered in terms of th1s property.
Where such an_ordinal. property exists for a class of. objects, numbers ‘can be

* assigned to all objects in the class, such that the ordering of ‘the numbers

5 corresponds to the ordering of the obJects ~This ass1gnment of numbers

where the objects are located, who attempts to move

~

‘def1nes an ord1na1 scale for the -attribute:

S
i
SR

e

T
?

After some basic attributes are deve1oped emp1r1ca1 laws that. ste*e

.Vre1at1onsh1ps among those attributes can be developed, and thése laws of'ten

. involve constants that can also be treated as measurable attr1butesf For:
. example, ,the,measured,length 1q; of a metal rod s found to vary S
j’ systemat1ca11yrw1th the .temperature; ty, of the rod. If dtr is a change - :

1n the temperature of a rod -and d]r is the correspond1ng change in 1ength h?

Loa

dk;E.kr d?ff]F f:.ig | ‘ “ : ' - (2 2) ‘

;-where kt is a c0nstant* ca]led the coefficient of thermal expansion of the

-rod: Estimates of kp are obtained by changing:the temperature of the rod; R

and measuring this change in temperature'and the corresponding change in

length. An estimate of ky is then giyen by the ratio of the change in length

to the change in temperature. The operational definition of ky depends on-

the def1n1t1ons of length and temperature! two basic attributes, and on the

empirical law in Eq{2.2) which states a relationship between the two basic
attributes. .Therefore the’ 1nterpretat1on of the coefficient of thermal o
expansion as a measurable attribute is derived from the interpretation of two

basic attr1butes, and the law relating these two- attr1butes.

The value of kp var1es  from one- rod to another but ‘remains relatively

constant from -ome obServation:to another on a given rod. It is convenient; ="

- - therefore; to interpret kr as a property of the rod by assuming that kr

depends on the rod but not on the cond1t1ons preva111ng when the rod 1s .
obsexved: Lo . ;

ke=k(ry, T - | T (’2”3’),' Co
: % . : .
The assumption that ki doesn 't depend on the conditions of observatioa is a ;“

'good approximation over a wide class of observations which is taken to be the W

PO

universe of generalization. Any observation from this universe of . .
ny 0DSET . T

generalization could be used to estimate kp:~

The 1nterpretat1on of numbers as the va1ues of an attr1bute depends on

~empirical laws that state that different observations on any pair of objects

generally rank order the objects in the same way. Therefore the results of

. ) 5 7 - X . ":




. ~Janges for continudus var1ab1es, for -example, the temperature ‘is to be between:

<

{ precjsely. -In practice, however,

any set of observat1ons provide information about a much wider c1ass of
observations that could have been made. It is this generalization from

* particular observations to a universe of observations that provides the

mean1ng of an attribute and that makes measurements of the attribute usefu]

ot N
S

zOPERATIONAL DEFINITIONS .

. The rules-that are used to assign:a va]ue to an attr1bute are usua]ly,

called opehatianalAdefinltlons(8r1dgman 1927): The ruies are operational in

- the. sense that they are stated in terms of the operations performed in -

“measuring the attribute. The rules are said td be definitions. because, they

provide most of the meaning of the attribute; that is, they provide "a_basis -

for_ 1nterpret1ng the numbers: ass1gned as values of the attribute. (Ennis,
1973 _Hempel, 1960, and Carnap, 1953, provide ana]yses of the use of -

‘_d«
AR

Gperat1ona1 def1n1t1ons genera]]y 1nc1ude two. kands of, ru1esf structura1

rules and selection rules. The structural rules spec1fy the kind of -

observations that' are “to be used, and the way in which.numbers: are to be

-derived from these observatidns. Thus, psychologists arrange stimulus
situations that are likely to elicit the _tyipe of -behavior that they wish to
study. In -the absence of’ such standardization of some characteristics of the
obserVat1ons it would be very difficult to prov1de ru1es for the assignment
of numbers: - The structural,rj1es ‘may be. mere or 1ess elaborate. A rule for

a11gn the zero: ma“k of a tape measu?e w1th .one end ofthe rod,; and record the

number on the tape measure that coincides with the other end of the rod. More

=detailed rules for measuring_.length are ‘discussed by Campbel1(1957), and

“others, but all of these rules leave seme issues open. For example, what kind

of tape;neasure is to be used? Could a s11ghtiy bent metal tape measure be
‘used and would an observer with ast1gmat1smwbe acceptab1e?. '

Such questions lead to the development of seiectionépuies; The selection

rules specify the range of conditions that may be tolerated for the various
characteristics of the observations. Some of these characteristics may be

" fixed; in the example above, one end of the rod must.be aligned with the zero:
. mark of the ‘tape measure: Bther characteristics are specified in terms of

-150C and 250C. 1t is assumed that the characteristics not ment1oned in

the structural ru]es need not be contro]]ed at al1.

t;ﬂs the examp]e of 1ength 1nd1cates operat1ona1 def1n1t1ons do rot specify -

particular_observations;. they specify. c]asses of observations. The rules for
measuring length that were sketched above could be made fore precise and more

‘complete by specifying a particular tape measure, a particular temperature;
etc:, but it would be impossible to specify all of the characteristics that

might influence an observation. Furthermore, it would be self-defeating to

make the rule$ too specific because this would 1imit the usefulness :of_ the

-gconcept of 1ength Ceter1s paribus, scientists prefer to use concepts which

application, wh11e prov1d1ng a clear spec1f1eat]on of the class of

.observations allowed. The fact that operational definitions specify. classes

\ of observations rather than specific observat1ons!does not necessarily imply

any lack of pkec1s1on in the definition since classes can be defined

these classes are always defined somewhat

pil g e G B Dy

A ambiguously.. If the lighting in the room and the v1s1on49f the observer are

} discussed at all for measurements of 1ength the reguirement is 1likely to be:.

that they be "riormal' or “within normal. 11m1ts. Most of the character1st1cs
of .an observat1on are 1gnored un]ess there is some reason to believe that a-

~ S | B :
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part1cu1ar character1st1c is extreme enough to have a ser1ous effect on the

servation. This ambiguity is recognized and tolerated because it makes

- general Taws poss1b1e (Tou1m1n 1953)

THE 0BUECT OF MEASUREMENT.
I +he’ object or unit, to which a number 1s\ass1gned by measurement is called
.Y 7. the object of measurement. The number representing the attribute is not
.,assigned to an observation. The .operational definition of an attr1bute

s1gn1f1cance*

A measurgment ass1gns a number to some object of measurement which is
Jinvolved in, - and partially defines a number of observations. The purpose of
measurement is to map objects of - neasurement -into real numbers. The number

. assigned to gach _object is intended to represent the magnitude of the attribute.
for .the objeCt of measurement. A particular observation can provide
information about different kinds of objects of measurement, and if the

'

measurement is to be interpreted. unambiguéusly, it is necessary to clearly .

*  identify the object of measurement. Cardinet, Tourneu, and A11a1(1976) have
d1scussed the k1nds of un1ts which may serve as objects of measurement.

"Ln a study of aanety an observat1on m1ght,cons1st of the response of a
person to some stimuius in a particular_context: For -such observations,; the
person is'usua11y taken as the object of measurement However, for researchers

of measuremént would be stimuli or contexts respectively, 1nstead of the .
person. :

More comp11cated objects of measurement can a1so be considered. The
differential _impact "of stimuli on different persons could be investigated by

tak1ng person st1mu1us pa1rs as the obaects of measurement A researcher who:
\ ﬂ - person- context pa1rs as the obJects of measurement ' 2

A]though the observat1on has a single ass1gned value; this value may be. )
given various interpretations depending on the definition of the object -of

measurement. The specification of the object of measurement is a conceptual

issue, and is-not uniguely determined by the nature of the observations that

- are made5 As the examp1es above 111ustrate a s1ng1e observat1on can pr0v1de

y ~ The distinction that is often drawn in psychology, between a state and a

-

trait depends on a distinetion between different kinds of obJects of measure-

- ment: If -the object of measurement :is taken to be a person in a. part1cu1ar

- context, then the attribute being measured is a state variable, which is

assumed to be a function of both the person, and the context or time. It is,
therefore expected that the value associated with a state variable will .
change as the ‘context changes over time.  For a tra1t however, the object. of
-measurement is the person, and the value of the trait variable is assumed to

be independent of time: It-is recognized of, course that the behaviors g
associated with the trait variable will be exhibited to different defrees .in
different contexts, but this is ‘true of all dispositional variables. For a

trait varijable, changes in-the observed: Vartab1e over ‘time. are taken as errors

of measurement for a state variable such d1fferenc%§:are accounted for by

d1fferences 1n the value of the state variable. e




- _ A simlar d1st1nct1on is made in physics between mass and weight: Mass is

defined to be an attribute of a physical object, while weight is defined to'
depend on the physical object and the 1ocat1on of the object 1n a P
grav1tat1ona1 f1e1d .

. 7 In the physical sciences, the object of measurement to. wh1ch attrnbutes’
are assigned are -specified exp11C1t1y In their introductory treatment of
mechanics, Corben & Steh1(1960) state the following aSSumpt1ons

A particle is described when its position in space 1s.g1ven
and when the values of certain parameters such és,maSS;'
electric Chafgé and magnetic mﬁ@gﬁt are given. ' By our

definition of a particle, these parameters must have constant

values because they describe the internal const1tut1on,of the

particle. If these parameters do vary with time, we are not
*dealing with a simple particle. The position of a particle
may, of course, vary with time.(p.6) :

Therefore the mass, charge, and magnetic moment'aré.to be treated as trait
variables; with particles as their objects of measurement. Position; however;
is to be treated as a state variable w1th particle-time combinations as its

.objects of measurement

It is sometimes claimed that operationally def1ned attr1butes are va11d by
defirition. It is maintained that the operat1ons used to meéasure the )
“attribute define the attribute, and the.results of these operations are, by
definition, the values of the attribute. According to this view no-
interpretation is to be given to”the numbers assigned to objects.beyond the

fact that they result from the particular set of operations. Thgrefore there

is no inference from the results of the operations to a wider class of

observat1ons and no need to check on the accuracy of- 1nference

However in pract1ce the operat1ona1 definitions of even the most narrowly
' defined attributes. involve classes of observations rather thaf particular

‘observaticns. No operational definition that is ‘of any significance in science -

specifies a.particular observer{John_Jones); part1cu1ar equipment (voltmeter

#6) _and particular time and place. Although restrictions may be placed on the _

qua]1f1cat1ons of observers and on the type of equ1pment used, these

.observations. If the results of a pa;‘igb1ar observation tould not be used to -
S

. these results would be of little

draw inferences about s1m11ar observa

interest:

o Uniike observations attr1butes are not un1que to a part1cu1ar comb1nat1on -

a claim about an_infinite c1ass of observations. Since few of these -
- observations will actually be made for _any dbject of measurement; all
- attributes are; in a sense; theoretiéa1 constructs.

Attributes” are "constructea" by specifying classes of obseryat]onsf
Measurements of attributes are based on samples from these universes. In-
order to 1nterpret the resu1ts of measurement as the va1ue of an attr1bute for

A centra1 concern of a theory of measurement is the Just1f1cat1on of sueh
1nferences

. - ) L - D . . E o



III Measurement of D1Sp Attr1butes

an inductive inference,. from a part1cu1ar observat1on to the universe of

observations defining the attribute.” These inductive~ inferences require -
justification, and it is the task of measurement theory to prov1de an anaIys1s
of the kind of justification that is required

o

THE USE OF INVARIANCE PROPERTIES AS INFERENCE TICKETS .
. = The justification for scientific 1nference\1s generally provided by appeal

to scientific laws. Hempel(1965) has discussed\ the .use of laws as;a basis for
scientific inference in considerable detail, and\Toulmin{1953), whg.sees the

inferences derivable from a set of laws as defining the content of-thg laws;
t1f1c Taws when they are

has suggested the term "1nference tickets" for SC1
used in this way. :

- The type of law that is needed to 3ust1fy the inte retat1on of
observat1ons as measuremerits is. an invariance property "An invariance propertv
states that the results of a certain kind of observation do not depend on some
of the particular conditions of observation. Invariance propert1es are

necessarily involved -in measturement because measurement a551gns a value to an

attribute of some obJect of measurement on the bas1s of some’ set of

" observations.

Pl

A complete descr1pt1on of an observat1on wouId requ1re exhaust1ve -
speC1f1cat1on of .all.of the conditions undér which the observation 1s made.

,,,,,,, .

Since the operationaI def1n1t1on of an attr1bute spec1f1es OnIy some of the R

~ The attr1bute is 1dent1f1ed w1th th1s class:of observations and not w1th any

" particular observation. For any attribute, the conditions of observation are

" limited by the selection.rules but are not uniquely speC1f1ed Any ‘one of
this class of observations could be used:to assign a value for the attribute
to the object of measurement. ‘The observed score, Xgi; for an observation

is the real number a551gned to- the observataon by the structura1,~,1es “for the

attmbute. }_/s : _ : . o
A differst! but equaIIy Ieg1t1mate observed score, Xol' could. be

- obtainegAy ch ‘g1ng the conditions of - observat1on in accordance with the
selectdon ruIl N e _ : i .
'1hen an observed score. 1s 1nterpreted as a measurement ,1t 1s assumed
the attr1bute for the OM Since the observed. scores for d1ff*rent observations
. Ray beea551gned to the value of the same attribute for an OM; the foIIow1ng
' reIatqonsh1o must hold-at Ieast approx1mate1y in gorder to ma1nta1n cons1stency

. i : (3.1) |

here 1 ] reﬁreéent any two observat1ons for the obJect 05 that meet the
_ speC1f1cat1ons of the"operat1onal definition for the attribute.. That‘1s the

n,
> L.

X.éi Hoifals

observed scores must sbe var1ant over. the un1verse of observat1on§7def]n1ng
the attribute. -Since Lh&':ty
this assertion is testalylé
emp1r1ca1 Taw. T

-
]
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should a551gn the same value to the obaect of measurement. If all observat1ons

do assign the same value to the OM, this value .is taken to be the value of the

attribute; ug, for the obJect of measurement 0.

A

. Note that the invariance propert1es requ1red for the measurement of an
attr1bute depend on the definition of the universe for the attribute be1ng

measured. If the two quantities:¥n Eq{3:1) were not taken as. measurements of

the same attr1bute for the same OM,. there wou1d be na reason to requ1re that

they shou]d have the same value: ;

Cons1der1ng aga1n the examp]e d1scussed earlier, if anx1ety is 1nterpreted

‘as a trait, the s1tuat1ons in which observat1ons are made are conditions of

E observat1on,7and invariance over these situations is assumed. If anxiety is
- interpreted as a state, the objects of measurement-are persons in situatiens,
and changes. in the va1ue of the observed score as a funct1on of the s1tuat1on

are cons1stent with this 1nterpretat1on

. Invar1ance prbpert1es are involved 1n.measurement because they Just1fy

inferences from samples of. observations to a universe offobservat1ons., If a11

about the un1verse. If Eq(3 1) holds for a11 pairs of observations def1n1ng .
- an attribute, it provides the necessary, 3ust1f1cat1on for inferences from .
observed scores to .universe scores. TO the extent - that observations fail to

satisfy Eql3.T), such inferences are not justified: Therefogxe, the invariance -

-property in Eq(3 1) i's necessary for the 1nterpretat1on of observat1ons as
- measurements of d1sp051t1ona1 attr1butes

-

. If the observat1ons in the UG for each obJect of measurement. do not a11

- yield the same observed scores a variety of values are ass1gned to a single
‘quantity; the universe score. Therefore violations of the invariance property
in Eq(3.1) imply 1ncon51stency in 1nferences from observed scores to universe
. scores. If the magnitude of:'the-discrepancies is generally small, it may be
- possible to ignore them; and to treat Eq(3.1) as an approx1mat1on*_resu1t1ng

~in what Suppes(1974) has ca11ed a deterministic theory without-a. theory of

-error.. ‘The a1ternat1ve 1s to }ntroduce an ekp11c1t theory of errors:

Vtherefore of the dependab111ty of- 1nferences from.observed scores to universe -
~ stores, the concept of an error of - measurement- i§ introduced: The result of _
~any observation on an objéct, o, i5 taken to be the sum of the "true" va1ue of

the attribute; uo, plus-an error of measurement, e01.

E]

'X*‘E"-‘G*eai S e -.*--’(3'2’)'

Since neither the "true" va1ue nor the error of measurement is directly

observable, Eq(3.2) is not a testable hypothesis; rather, it is a def1n1t1on
of the var1ab1e egi.  For any observation and any value of ug, the value
for eyj can-be chosen so .that the- two s1des of Eq(3 2} are equal, and

'v’;therefore Eq(3.2) is a tauto1ogy. L .

*

However the- values ass1gned to the error term in. the formu]at1on presented

7'fabove are not arbitrary. Given the UG for -an attribute and any’ value for

Ug, the magnitudes of the.errors are.determined empirically. . If ghe ’

observat1ons on a g1ven obJect of measuremen£ vary. w1de1y, the. magn1tudes

fapprox1mate1y the .same va1ue the errors can be taken to be small. i
.Measurements with smaTﬂ errors of measurement are - of course, genera]]y

. . . . e
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preferred to measurements 1nvo]v1ng 1arge errors of measurement, and Eq(3 2)
provides the basis for a relative criterion for*the dependabn]1ty of

. measurement.

777751t5§ugh7th1s development has assumed that ug is a constant for any -
. object of measurement, the value of this constant has not been specified. In-
- both the physical and behavioral Sciences, ug 'is generally equated with the
- mean over all observat1ons allowed by the operat1ona1 dean1tiﬁn'of the ©
~ * attribute: ) -

s =.E (Xa%5 | : . N ‘, o (3:35v
i R : : T

Eq(3.3) determines a unique value of the attribute for each OM: * This choice is .

a convention; which is both convenient and plausible, but”it 1s a convention.

- The most\compe111ng reason for this convent1on_ls’that 1t minimizes the
._mean square error.

. With the value of an -attribute defined by Eq(3.3); it is easy to show that
: ;the expected .value of the errors. of measurement as defined*by.Eq(3;2)3'is zero
»for each obaect of measurement S L ) '
E (801) = EX 0.= 0 - - o o ‘.(3.4)}

1

FI
. ob(epi)‘_

o :-._'t"'\_(3..5)_

--The error variance in Eq(3.5) is'a measure of the aispérsiaﬁ“ih estimates of
-the. universe score for each -object of measurement. Since ug is a constant
for each OM; the error variance in Eq(3:5) is equal to the observed score

variance for the OM. Where they can:be estimated, the error variances in

" Eq(3:5) are very useful because they prov1de,an 1nd1cat1on of the accuracy of .

inferences from observed scores to universe scores, for each OM. “In the -

ph?s1ca1 sciences, the precision of measurament is often reported for each OM -

. in terms of the sguare root of Eq(3.5). However, the direct estimation of
’;thTS error variance requires repeated observat1ons on each OM, and this is

~

- —_——

A fiore eas11y est1mated parameter is the expected error variance over the'H
: popu]at1on as g1ven by : . _ .

Eq(3;6) prov1des an 1nd1cat1on of the accuracy of 1nferences frofm observed }
scores to universe-scores, averaged -over all objects of measurement. Although.
Eq(3.6) doesn't provide seperate indices of the accuracy- of measurement for

<

each OM; it does provide a useful overall index of accuracy for the
popu1at1on ‘The average«error variance can be estimated with pa1rs of
‘observations on obJects of measurement

>

Us1ng Eq(3 4) the covariance between universe scores and errors of

- measurement, can be shown to be equa1 to zero:

~——r
|H
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where u is the expected universe -score over the populat1on and’ the covar1ance

is taken over the population and over the UG. Since the errors: of measurement

, are independent of the universe scores, the observed score variance can be
Lo part1T1oned as: i

(X, ;) = &ztui)* + éz'céé]:) (3.8)

is the error var1ance taken over the population and the‘tﬁisii-

where 62 ) is the variance in the. un1verse séores over the population
-and &2 e01?

, Although sc1ent1sts Wou]d prefer to recognize the presence of. some error
of measurement rather than add complexity to theories, they still seek to
. minimize the magnitude of such errors. This is usua]]y done by standard1z1ng
the conditions of observations in measurement and’ by bas1ng each measurement
on more than one observation. The choice of the mean over the universe of

. generalization as the value of the attribute is consistent w1th this tendency

to try to minimize errors of measurement.

. ERRORS. OF MEASUREMENT AS CONSTRUCTS
Tn the absance of’any assumpt1ons about the obgect of measurement the

conceptaof an error ‘of measurement is unnecessary If we restrict .our -

attention to observations,; there is no reason to reject.the hypothesis that
every observat1on is perfect]y accurate. If measurement asswgned numbers to -

an error of measurement.

Suppose, for example, that two observers put mercury thermometers into the
same glass of water, at the same time.. Suppose further that one of the
observers records that the mercury rises to mark labeled 60 and. the other
. observer records _that the mercury rises to a mark labeled 58. These two
observations differ in several ways. If the two. numbers, 60 and 58, are
assigned to the observations,. there is no reason to assume that e1ther Sos
observation should be said to contain any error.. The twe ebservations ‘occurred .

as they occurred. The concept of an-error of measurement: arises Qn1y .when

. attention is shifted from observation to measurement. The assumptzons -about
invariance properties that are involved in .the measurement of any attr1bute
force us to introduce the concept of an error of measurement. :

-The* usual ana]ys1s of the example given above takes temperaturevto be the

time. Th1s 1mp11es that the two observat1ons described:above shou]d agree
‘with each other; as indicated in Eq(3<1): - That is; temperature: is assumed to
".be invariant over thermometers and over observers.

However, any ‘two observat1ons -on the same. obJect of measurement will, 1n
genera] produce different numerical results. -Since measurement is 1qtended
to map each object.into one real number, theory ‘must be adjusted in one of two
ways. One approach is to redefine. the obJects of measurement So that the

- measurements which disagree with each other involve different objects of
_measurement. In the example given abovefthe object of measurement could. be
redefined to be a small volume of water _in:-the glass, at a given time as wou1d
be the case in investigations of thermal diffusion: Since the two thermometers .

must be at different positions in the water, the differences between the two

measurements can be explained by the fact that they apply to different OMs.

This approach resolves the inconsistency between assumptions and observations,
but it does so at the cost of greatly incredsing the number of OMs to be
considered.- . .

14
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An alternative approach leaves: the def1n1t1on of the obJett of measurement

'unehanged but introduces ah explicit theory of errors. It is thereby

recognized that the observations used in measurement depend on the cond1t1ons

of observation as well as the object of measurement.

‘RELlAlelmcoesuueuls-/ . | - R

For many applications, the expected error variance in Eq(3. 6) is not a

" very good index for the dependability of ‘measurement. 'The magnitude of the

relative to the degree of prec1s1on needed for some purpose:

- first. chapter of an 1ntroductory textbook (PSE i968,pi4)

a

érror variance can be changed simply by changing the scale (e.qg. 1nches to
feet or meters) and:the evaluation of a measurement procedure should. not
depend on such an arb1trary choice: Thérefore, it is not the absolute

‘magnitude of the error variance that is s1gn1f1cant but the magn1tude

- *

The degree of prec1s1on or to1erance, requ1red of measurements varies

from one. area of science to another. The astronomer who is measuring the

d1stances betwesn stars can tolerate errors of thousands of kitometers, while:
a crysta11ographer might consider an érror of a thousanth of a cent1meter to.
be unacceptable. Between these two extremes, 1ies a continuum of possible.

tolerances, including those of the engineer. who wants the separate parts of a: -

br1dge to Fit together.” If the error.variance"in Eq(3:6) is baséd on the same:

scale as-the tolerance, the dependability of measurement can be evaluated

d1rect1y by comparing the estimated ‘magnitude’ of the error to the: to1erance.

This is the usual ‘method -for evaluating the precision of measurement in-

physics, and sifice the tolerances in a particular area of investigation are

usually well known, it is common practice to report the square root of Eq(3.5)
or Eq{3.6) as an 1ndex of the prec1s1on of measurement .

N The pract1ce of report1ng the relative magn1tude of errors of measurement
is sufficiently general in the physical sciences, as to be introduced in the

"If a surveyor measures a distance w1th great care he m1ght get

100.132 '‘meters + 0.3 cm. His work is a great deal more accurate

than that done when the width -of -a book page i5 measured to the °

nearest millimeter with a ruler; even though his .error is
. something 1ike three times as b1g as what anyone would perhaps .
make on the page in ten seconds' work. This sometimes finds o
expression in another way when the estimated spread of

measurements, the e, is stated; using decimal fract1ons
or percentage. Thus the surveyor would. say his, 1ength was

100.132 meters + 0. 003% wh11e the page is ust 20:1 cm: + O« 5% "

The empha§1s on stat1ng the magn1tude ofvthe errors of measurement in, re1at1ve'

-terms has_been even more pronounced in the social. sc1ences (Lord and Nov1ck

1968;° p252) , L - | e

on the ratio of the standard error of measurement to the standard

deviation of -observed scores in the group. The more discriminating the

. test items, the larger will be the “standard deviation of . observed scores;

.other- th1ngs be1ng equal; and hence, the less will be the danger: that

true d1fferences will be swamped by random errors of measurement and lost
to view." :

N

A suitable index for the relative magnitude'of errors of ‘measurement is

suggested by the relationship between dispositional- attributes and the rank

ordering of the properties of observations.. As_a minimal requ1rement the

errors shou1d not be so large as to cause s1gn1f1eant f]uctuat1ons in the

15

13

PO



~

©

ranks a551gned to GMs “frem one set of observat1ons to another. - If the universe.

- scores for two objects of measurement are ug and ugr, errors of measurement

“-.which are less than the .absolute value of (ug-ugi)/2 will not distert the
ordering of the observed scores. for these two. objects.: In compar1ng these two
‘objects. of medsurement, therefore an error variance which is smaller than

(ug=ugi)2 can_be considered -a re}at1ve1y small error variance. (see
Cronbagh and G]eser 1964 for more deta1]ed analysis of signal-to-noise
ratios . :

of measurement from one set of obserVat1ons to another is to estimate the

correlation between observed scores based on independently sampled

- observations. . Correlations indicate the degree of linear: relationship between

two var1ab1es but 1n the absence of very ser1ous departures from 11near1ty,

from one var1ab1e to. the other. Therefore, correlations are useful stat1st1cs

. for eva]uat1ng the con51stency of the rank1ngs of observed scores.

If the on]y purpose of measurement were to reflect the rank order1ng of

-objects on some attribute, rank order statistics would, Be more appropriate

than correlation coefficients in evaluating measurements: However,
measurement provides an exp11cat1on of ord1na1 relationships rather than Just
representing th1s ord1na1 re]at1onsh1p Measurements are. 1ntended to assign a

attribute. Correlation coefficients are. appropr1ate indices for ‘the preC1s1on
of such numerical assignments; while _rank-order statistics would not be
appropr1ate feg this. purpose. Therefore correlation coefficients. and indices
that are close1v réfated to.correlation coefficients (i.e. generalizability

coefficients) have ‘been w1de1y used in _evaluating the dependability of

measurements. . In particular, correlat1on coeff1cents const1tute the-basic
mathemat1ca1 mach1nery in classical test theory _ :
THE ROLE OF THEORY o e

This analysis of measurement errors. depends on_the fact that certa1n

"-assumpt1ons ‘are made about measurab]e attrlbutes., In part1cu1ar it is assumed '

‘**“’f"

and that certa1n 1nvar1ance -properties w111 ho]d These assompt1ons ‘are.

theoretical in the :sense that they form a c0nnected body, or network; -of
general laws: - The criterion in Eq(3:3) is a theoret1ca1 ideal which is never .

achieved..in practice. Errors of measurement may be v1ewed as concess1ons to
the brute fact that the world of observat1ons 1s not’ as neat and - order1y as we

might” Tike it to be. : o

minimize the number of obaects of measurement that need to be con51dered : and
therefore to simplify both descriptions of - phenomena "and ‘the theories de51gned

to explain_phenomena. The resu1t1ng gain-.in conceptual clar1ty is usua]ty

cond1t1ons of observat1on to error.r : ‘ _ L <
_ The introduction of an exp11c1t theory of errors represents a deC1s1on h

not to study some kinds of phenomena. In.the examples discussed. above, the

deC1s1on to attr1bute the d1fference between the ‘two thermometer readings 58

temperature variations w1tb1n the 1idUid “this dec1s1on which is not d1ctated

- by empirical findings; ref]ects a ‘choice among several. poss1b1e research

strateg1es : . , o “

The designation of certain sources of variance as errors of measurement

" is-a conceptual choice rather than an empirical finding. Errors of .
' measurements provide a way of hand11ng observat1ona1 var1at1ons that dre not

-
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to be given an exp11c1t descr1pt1on or exp1anat1on at a part1cu1ar stage 1n

the development of a science:. In order to make its task more managable, every

sciefice tends to restrict the phenomena that it treats explicitly. As the

- sc1ence deve]ops 1t may be ab1e to ana]yze phenomena that had ear11er been

the sphere of phenomena treated by the science, but’ there is a1ways some
variation which is intentionally left unexp1a1ned

The speC1;?Eat1on of the attr1butes in an area of sc1ence and of obJects .

th1s 1nf1uences the k1nds of quest1ons addressed by the science; i.e. the
paradigm for the science: A change in the definitions of attrxbutes and

objects. of measurement, which is equivalent to a ghange .in the definition of

. error, represents a stht in the way that phenomena are perce1ved and

descr1bed If the attr1butes that are redef1neo are fundamenta1 the

revo1ut1on (Kuhn 1970) Y

°

For examp1e the changes 1ntroducéd 1ntg;phys1cs by the specaa1 theory of

relativity are basically changes in the concepts of length and time;

specifically, they are changes in the set of invariance properties associated

with -length and time. In classical mechanics, -Jength and time are assumed to-
be invariant with: respect to the observer, in the theory: of re1at1v1ty, this
jnvariance property is rejected, and the obaect of measurement is redefined to
-include the observer {(more precisely, the observer's frame of ‘reference).

Special. relativity had a revolutionary,impact on physics because it modified

. the fundamental concepts of length and time;_ analagous changes_in Jess 5
important concepts wou1d ‘have’ had a much smaller 1mpact {See Frank, 1953, for -

th1ngs Aftr1butes are def]ned in ggmgs of universes of observations, ‘and the
assumpt1ons;spec1fy the syntax and § nt1cs of the descr1pt1ve 1anguage of
some part of science. - :

- r

The existence of errors of measurement therefore,‘depends on theoret1ca1

assumptions about attributes, and the operat1ona] definition of érrors of
measurement, depends on the definit¥6fs of the attributes and objects of -
measurement. In part1cu1ar the def1n1t1on.of the objects of measurement
determines whether the:observed d1fferences among observations are to.be _
interpreted as errors of measurement, or as d1fferences in the attr1bute for
a'fferent obJects of measurement A . I

-
i
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IV Generalizatility Theory § the: Basis for a .

Samp11ng Mode1 for Va11d1ty
S This discussion of genera11zab111ty theory is necessar11y on]y a brief
~outline: A thorough presentatfpn of generalizabdlity: theory can be found in
' " The Dependability of Behaviora?. Measurements- {Eronbach et.al., 1972).
-Introduct1ons to some of the basic 1aeas n ?eneral1zab111ty theory are found?
1979) .

»

GENERALIZABILITY THEORY ) ’ | N L
< The purpose of both re11ab111ty theory and genera11zab111ty theory is to . :

s

which_treats errors of measurement as arising from a simgle source and uses

correlation coeff1c1ents as indices of\re11ab111ty, .generalizability theory

recognizes the existence of multiple sources. of error, and uses a variety of

1tifaceted des1gns to est1mate the var1ance components for d1fferent sources
of errork -

ot

characterize” the dependab111ty of measurements. Unlike re11ab111ty theory,

: . In genera41zab111ty theory, any observat1on .on an obgects of measurement

is. assumed to be sampled from a.universe of observations.. The observations.in

. th1s -universe dre characterized by the conditions under wn1ch they are made, s

~and: the set of all conditions of a particular type is called a facet. For-

examp1e if persﬁns are the objects. of measurements and the d1spos1t1ona

attribute is a state variable; the universe could Wnclude an 1tem fatet, an

occas1on facet, and perhaps a rater facet. : . .o B

Cronbach etsal. (1972 p. 20) draw a dwst1nct1on between G studies; or

genera11zab111ty studies, which examine the dependability of measurement

procedures, and D stud1es, or decision.studies, which provide the data for.

sybstantive decisions. "In this paper, the term "measurement procedure"; 11?

. often be.used in place of the term "D study". A measurement procédure
incorporates a samp1ifng .design. for obtaining observations on objegts of

measurement that is. used over a number of separate studies. The ferm

“D study", suggests that the sam?11ng design for measurements of an. attribute
" is likely to change from one study to another. Although the possibility of -

such changes in D-study design is explicitly considered-at several places 1n 4

‘this paper, much of: the discussion’ wili*emphasize the effects of

standard$zation of the conditions of observations. . Measurement procedure is. a 5

more descriptive term thanAD study, When some- facets are standard1zed over a11
' observat1on$. o o _ -
. The d1st1nct1on drawn between a un1verse of adm1ss1b1e observat1ons and a
universe of genera11zat1on {Cronbach et 41, 1972; p: 20) is ‘based‘on the
‘distinction between G studies and 'D. studigs. In cofducting a G study, certa1n',
. facets are ]nyest1gated, and a certain rgnge of conditions is considered with
o respect to each facet: . The facets 1nvesflgated in the G study define a ’
o un1verseeofeadm1551ble,observat1ons. interpreting the observations in a D
. study as measurements. of am attribute; inferences are drawn to the universe' of
. observations ‘that prov1des an operationdl-definition of the attribute.. In ..
.. = .generalizability theory,’ th1s un1verse i&called the un1verse of genera11zat1on

- for the attr1bute. X S T

The universe of adm1ss1b1e observations Ts assoc1ated w1th est1mat1on ~and -’

1nq%cates the facets for which variance components have been est1mated in 6"

studies:. Since estimation isstes are generally not addressed -in this paper,

few \references. will be made to the universe. of admissible observations: The

) + rconcept of a un1verse79fwgenera11zat1on which defines an attribute will be.
used’ extens1ve1y in; paper: - In addition; another universe; not discussed by
‘Cronbach et.al. (1972) will later be 1ntroduced in Jorder to describe a

' l 4 measurement procedure. L . , , )
LS “ . 4 ' o 18 R .
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The purpose of the G study is to estimate components of var1ance which may

then be .used to evaluate the dependab111ty of inferences to the universe of

- i generalization. If the components of variance estimated in a G study are to
provide the informat ion needed for- eva1uat1ng the D study, they must prov1de
estimated variantes for sources of ‘error in the D study. Therefore, the
universe of admissable observations -must include the universe of

\ genera11zat1on* "6 studies are most useful -when they emp 1oy crossed designs

1:and large sample sizes to provide stable estimates of as many varjance

somponents as possible.  FoF any measurement procedure, there are many facets

that might be cons1dered but: variance components for only a few of these can'r

be\'idependently estimated in any G study. ‘Therefore; several G studies may

be .reéquired to adequate]y evaluate the dependab111ty of a measurement
° procegure. ;

‘The universe score; the expected value over the universe of generalization,
is stipulated to be the value of the attribute for any objects of measurement

" Universe: scores-are not directly observable, but can be estimated by the mea

over a sample of observations; that is, fgr each objects of measurement, *'.

- observed score is used as an estimate of the universe score: In generaliz-

ability theory, then, gquestions abgutfthe reliability of a measurement

procedure are replaced by guestions about the genera11zab111ty of observed
scores, and the dependab111ty of such’ genera11zat1ons s descr1bed by\e

Cronbach et a1 (1972 p 97) define the coeff1c1ent of genera11zab111tv for
an attribute and a D .study as the ratio of the universe - Sscore variance to the
expected observed score variance for ‘the ;D study design. The universe store _

variance in a generalizability coefficient replacds the true score variance of

7777 e 3

classical test theory, and the expected: observed score variance- rep]aces the

. observed score variance of c1ass1ca1 test theory:

. e

e Cronbach et a] (1972 p. 98) d1scuss two 1nterpretat1ons of the

universe of genera]1zat1on F1rst ‘the genera]1zab111ty coefficient’ is

- approximately equal to the carre1at1on between observed scores for two
2L independent random samples of observations from the universe of generalization.
" . 5Second, the generalizability coefficient is approximately equal to the expected
valué of the squared Eérrelét1éﬁ between the observed score and the-universe °

- ‘score.
. S
A LINEAR MODEL
- = Generalizability theory a11ows for the ‘use of a var1ety of linear mode]s in -

interpreting thé results of both G studies and D stud1es depending on .the

'gde51gn of the study

*The un1verse of genera11zat1on typ1ca11y involves a 1arge number of facets,

and in principle the model Ffor observedsscores could exp11c1t1y inelude any

number of tHese facets. .For the sake. of s1mp11c1ty, however; a.simple

-one-facet model w1th rep11cat1ons will be used as a basis for discussion

“throughout this paper. In this simple model, -one facet is considered =<
explicitly; all other facats in the universe of generalization are assumed to
be sampled randomly .and 1ndependent1y, and are. subsumed under a s1ng1e C
ﬁrep11cat1on facet. ‘The observed scores for all observations in the universe

- of genera11zat1on are. represented by the 11near mode1

) - Xowr'.;u tagtagt a61 a, (4:1),

gt




u - is the grand mean S 3

a_ is the main effect for the obJect of measurement 0

a. is'the ma1n"effect for_the‘l_facet
ag; is Ehe oi interaction |
A sp he rebljcation effect ) | o
{ : 7 I ' i
The linear mode1 in Eq(4 1) repnesents the observed scores in the universe

of generalization; it is not intendéd to represent .the: sampling-design for any

particular G study or D ‘study. -The universe of generalization defines an

attribute for a popu1at1onf

' It is assumed that the i facet is- crossed with obJects of measurement 1n

the universe of generalization; that is, in.the universe of generalization,
‘there is an observed score for each poss1b1e combination of an objects
measurement and a condition from the i. facet. -This does not necessarily imply
that D studies or G studies associated with mgasurements of the attribute will
employ crossed designs. Each effect in the model is assumed to be uncorre1ated_

with every other effect. In addition; in order to make the estimates of ~the :

o

effects unique, -the expected va1ue of eachfgtfect over any of its subscr1pts 1s

set equa1 to zero.

~ Eq(4.1) is essent1a11y a genera11zat1on of Eq(3 2).. The main difference

. between the classical test theory model in Eq(3.2) and the linear modef in

Eq{4.1) is that the classical test theory model. assumes the existence of only
two_sources of variance in the observed score, while the model in Eq(4.1)

explicitly considers.four sources of variance. The general linear model can .
be formulated to include as many sources of variance as necessary; and can be
made to reflect the ‘design under which the observat1ons are made.

The mode] in Eq(4 1) 1ncludes two facets; 1abe1ed 1 and r; and for each of

part1cu1ar study may. be drawn. These universes may be either finite or

infinite. Although the consideration of finite universes does not pose a -

. fundamental problem for genera11zab111ty theory, it would complicate the =
d1scuss1on, and for the sake of simplicity, it is assumed in th1k paper that

From a G study in wh1ch cond1t1ons of the i facet are crossed With obJects

of measurement, 0, .and rep11catnons are nested | within these oi combinations,

four components of variance can be independently estimated: The var1ance for

. © the four random eftects in Eq(4: 1) are des1gnated as 92(0),,62(1);
92(01), ayd e2(r). = o .

: In an study, the observed scores for obaects of measurements are usualJy
ic-based on the sum or average taken over -a samp]e of observat1ons and cap1ta1

'over samp1es of nj cond1t1ons of the i facet, is

" 62(ol) . R(oty/ni, t \20 - )

T R

I
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and the variance component for the average value of the rep11tat1on effect over -

samples of ng rep11cat1ons on each of nj conditions of the i facet is ,

( )/"T"r .- = ? . ) 0(4.26)

“®2(R)

The fact that the variance components in Eq(4.2) are divided by sample

sizés is a reflection of the general statistical principle that sampling o

.variances for means over random samples are equal to the samp11ng variances “for

single observations, divided by the number of obsevations in the sample. The

' re1at1onsh1ps 11sted in Eq(4.2) can be used to estimate variance components for

D studies’ 1nvo1v1ng any’ number of conditions of the i facet and_any number of

estimated in "G studies. ;

General procedures for the estimation of variance components from computed
méan -squares are discussed by Cronfield and Tukey (1956), Cronbach et al.

X7 4y P Y ERY e B

(1972), Millman and . G1ass(1967) Brennan(1977), and by most standard textbooks
on exper1menta1 des1gn (e g ; K1rk 1968 Winer, 1971); . -+ . _ T

MEASUREMENT PROCEDURES BASED ON RANDOM SAMPLING- FROM THE UG
. Although measurement procedures-that use random sampling from the un1verse
-of generalization are seldom used in pracfice; it is convenient to. .start with

this oversimplified assumption. Lett1ng capital letters designate effects for
samples of conditions, the observed scores for a D study with i nested within

o (a separate sample ef conditions of the i facet -is drawn for each objects of
measurement) can be represented as: s S -

v

-;XdiR'E u +'£ +ap +a ¥ oag R 55

where o represents the object of meaSUrement I 1nd1cates a samp]e of nj

conditions from the i facet, and R indicates a _sample of n, replications for
each condition of the i facet. Agéin _the replication index~represents the

effect of all facets other than the. i facet; and conditions from these facets

are assumed to be samp1ed randomiy . and 1ndependent1y for each observation:

Since the effects in Eq(4.3) are assumed to.be independent of each other, the .

| expected oh;erved score variance over the popu]at1on and over the. un1verse of
genera11zat1on is:

; i ) . -7 - -‘ ;v ‘- % .
BRCACRA 2(0) 0'2 ) + 'c—?m SR |
S4UREIG

(4.8) .
6’)/n v /n + 02 /n n

The universe score ug, for the object of measurement, o, is given by

u = EE(X—fi) =u+a,. % o ” (a:5)
o0 1R olIR o _ _ . 5 .
The universe score variance is given by the var1ance of thegma1n effect for
objects of measurement, ag: . B /
N 2 : r r S
E(u, - u)? = %(o) | | ‘ N | dr(a.s)

for "each objects of measurement; the expected value of the observed score over
repeated applications of the measurement procedure is eqdal to the universe
score, and the observed score is an unbiased estimate of the universe score.

Where. observations_are randomly sampled from the. un1vers§ of genera112at1on -




In ana1y21ng errors of measurement Cronbach et.al. (1972 p.76)"

'd1st1ngu1shes between the-error in po1nt estimates of universe scores (whlch :
" they. designate by a capital’delta and is represented here by the symbol D) and

the error in estimates of the universe score expressed in dev1at1on form- -
(which they des1gnate by a small delta and is represented here by.the symbol

d). Cronbach et.al.(1972) also-discusses a third kind of error, which is
based on regression estimates; _but 1s not used in this paper.’

DoIR = XgIR - Ug - ‘

Since I and R are randomly samp]ed for each observat1on on the ObJECtS of

measurement, the expected value of Dgig over the universe of genera]1zat1on
is zero, and;the observed score is an unbiased estimate of thé universe scor
for 0. The expected value of the squared -error, taken over all instances of
the procedure i$ equal to the average error variance w1th1n the obaects of
measurement, and is given by: .

EE(Dng)T= 21 + Plot) + /) | ,-f T ae)

If cond1t1ons of the i facet are sampTed 1ndependent]y for each

" obgexy /ation, the expected value of XgIg over an infinite population of

objects of’ meésure ent is also an expected value over the universe of

generalization and ¢is equal to 'the grand _mean, u. Therefore, if both I and‘R

~are nested within o, the error in est1mat1ng un1verse scores relative to the

populat1on mean is:
Saptagta AN o 49)

Since I and R are 1ndependent]y samp]ed “for each observat1on of o0, the

i expected value of dg }R over. the ‘universe of genera]1zat1on is also zero..

The expected value of the squared error, ngRa is equal to the expected
value of the squared error; D§1R,-as given in Eq(4 8)- :

EE(d—r ) =@ m F oIy + SR | . (4.10)
( ] - R .

The covar1ance taken .over €he populat1on of the errors, DoIRa on two

adm1n1strat1ons of the measurement procedure is given by

cov{D,1ps D511 ) E’E(ai +tag tag)(ag +oagpt a) (4.11)

S1nce the 1 and r facets are nested within o for the measurement procedure,
taking an expected value over o automatically involves taking expected values

~over I, 1'; R, and R'._ Therefore the. expected value over each of the

crossproducts in Eq(4.11) is zero and the errors; DgIrs are uncorrelated.
Similarly; the covariance of the errors; dgigr, for two administrations of

the measurement procedure is also equal to zero.

22
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- In clasical test theory, errors of measurement are assumed to have an
expected value of zero, to be uncorrelated across pairs of observations, and

to be uncorrelated w1th the universe score. Errors of measurement that satisfy

these reguirements will be referred to as random errors. .It is clear from the

discussion just presented that.a measurement procedure based on independent

random samples from the universe of genera]1zat1on 'satisfies these three

- requirements. Therefore, as long as an instance of the measurement procedure

is defined as a randomly sampled observation from the universe of

generalization, all of the effects contributing.to the error of measurement for
“a dispesitional attribute.are random errors. .- /" :

' Cronbach et al (ié?é) define a genera11zab111ty coeff1c1ent as the ratio.
of universe ;core variance; which is given in: Eq(4 6)— to the observed score
variance; which is given 1n\£q(4 4) . o -

r . . jo' o
_ A S A ; : 0
Erg'()’(” T g - ¢ (0) ) R : ] ;(ﬂ.lgi -
‘ OI% ° , -é?(o)'4 e2(0")/" + 0’(1)/n -+ o'(r)/n n O

1

. where nj is the number of cond1t1ons of the 1 facet samp1ed for- each measure-

ment; and ny is the number of rep11cat1ons for ‘each of .these cond1t1ons

-~

The coefficient in Eq(4: 32) 1ncorporates tests of two separate 1nvar1ance

properties, one for. the i facet andsthe other for:-the replication facet: S1nce.5

the rep11cat1on facet represents the effects of all but one of the facets in

the universe of generalization, the second of the invariance propert1es is very

general If the observationsgin each objects of measurement are 1nvar1ant over .

“the i facet; the varianee components for the i mean effect and the ei inter-
action must be sma]] Sim11arly, if observations are to be invariant over a11

_bther facets in the universe of generalijzation; the rep11cat1on variance

- component must beusmall. In qenera1* all of the variance components. that

appear as part of’ error variance in genera11zab111ty coefficients are

associated with 1nvar1ance propert1es.; To:the extent that-these var1ance

componénts are close to zero, the 1nvan1§nce propert1es are- good
'approx1mat1ons. ' . oL

5 distributeds In particular, it .isn 't negessary to assume a normal d1str1but1on

-for the errors-in ordér -to est1mate’genera]1zab111¢y coeff1c1ents.. Assumptions

Note that no assumpt1ons need to be made about how the. errors are

about the d1str1but1on of errors are used in const

‘fTHE INFLUENCE OF SAMPLE SIZE- J78BIF-
- ~In classical test theory, the error variance is und1fferent1ated and

increasing the number of observations averaged to obtain'-am observed score

DY

leaves the true score variance unchanged and decreases the error. variance:

Where an observed scpre is defined as the mean over a sample of observations.

for the objects of measurement, increasing the size of this sample deceases

~ the sampling variance of the mean. " This regqularity is the basis for the .
. Spearman-Brown formula for changes in the length of a test. _C\

/

o For the coeff%c1eht in Eq(4 i2) the re1atlonsh1p between the error ,

variance and ‘the- number. of cond1t1ons sampled for a facet is not so simple.

f " ‘However; by us1ng Eq(4. 12), it is_possible to predlctftheﬂgeneral1zab111ty
% coefficient for any number of conditions of the i facet and any number of

e réplications. The fact that ‘the genera1iiabi11ty coefficient can be predicted L

T for various combinations of samp1e sizes for the d1?ferent facets makes it

- -passible to maximize the_ dependab111ty of measurement for a fixed number of

dﬁservat1ons _In general; this is accomp11shed by samp11ng most thorough1y

-'.;:v"‘",;" A | %‘3



. The fact that it facilitates the design of efficient measurement procedures
- is one important advantage of generalizability theory. However, an equally

gy

impgrtant.point for the.purposes of this paper<is.the fact that the tetal.
errr variance for a measurement procedure can be made arbitrarily small by
increasing the sample sizes. Therefare; if the variance component ; 8Z2(o);

is greater than zero, the gemeralizability coefficient in Eq(4.12) approaches
a limit of 1.0, as the sample sizes for all-facets approach infinity (For
facets with a finite number; Nj; of conditions, the variance components for

the facet go to zero-as the: sample size,:nj, approaches Nj)J. Therefore _— -

increasing the sample sizes for various facets provides a simple way of

.9

improving .the dependability of any measurgment procedure.. . . -

- 'However, there aré practical limits on how far this method can be pursued,

- and for -important attributes, it is often impractical to achieve sdtisfactory
dependability of .measurement by increasing_sample sizes: . later in this paper,
more sophisticated approaches to the problem of measurement errors will be
discussed. --Although these technigues make it possible to captrol. errors of

measurement without inordinately large sample sizes, they aT<o make it
necessary to reRlace.the simple universe sampling model ‘discussed, in this
section by more tomplicated models. A O I

A UNIVERSE.SAMPLING MODEEL FOR VALIBITY _ 'E\iﬁ’fi,-Jy o e
- 7 Numerical estimates of .generalizability coefficients dre devéloped in’ two
steps. . First,” comporients of variance.are estimated in G studies. Second, .

:  generalizability.coefficients are calculated using the estimated variance .-

. - components-and the sample sizes for. the.D studys” < - .. -

Since. the universe score>for each objects of. measurement has been

stipulated to be the value of the attributé for the objects of measurement, a

measurement procedure is valid'to the extent that it accurately estimates the

universe score.: For a measurement procedure. consisting of irandom sampl ing
from the .universe of generalization; the observed score is an unbiased
estimate of the universe score, and the random errors assumed in Eq(4.7) are .
‘the only sources of error’ in-the measurement procedure.  Since the - ,
gereralizability coefficiént provides an index of how accurately universe 7

© Sscores can be inferred from observed scores, it can be interpreted as a
validity coefficient. - ’ AT
- By definition, therefore, the value of -the attribute for an object of
" measurement is the univerfe score; Or the.mean over al§. observations in the
e universe of generplization for the object .of measurement.- If this universe
: . score Weke'avai13€ i ) 7 ) B
< ~." dispositional atfjribute. However, the-universe score.is;generally not
"> .available and samples of observations must be used to-estimate’it.. The ..
primary requirement for measurement of an attribute is therefore that it
provide. accurate estimation;of universe score:-for the attribute: This leads
* to the f&1lowing definition, of dispositional validity. T o
: 7 R AN :

le, it would be a perfectly valid measure.of the

- . » . R oY N S i,,
A measurement proceduresis said to be valid for a dispositionatas
" attribute to the'extent that.it provides dependable estimates of

', .the universe score for-the universe of generalization defining

Y

‘». the attribute., 3 .. R L 5
L L ;,,,,,,,,,,:; o S o ' .
The validity of“a measurement procedure is an index of the accuracy of

" 'ffertnces from a \sample mean to the mean over the universe of generalization,
where .accuracy is defined by the expected squared error or by a coefficient of

_ generalizability. Validity is a'matter of degree, rather than an all-or-non
~* - property, and dépends on both the measurement procedure and the attribute.

o . .- - : o - o i,,‘
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g - The value of the genera11zab111ty coeff1c1ent “depends on how thorough]y

- the measurement procedure samples the universe of genera11zatzon and this.is

determined by the design of the measurement procedure ‘and by the def1n1t1on of
the attr1bute be1ng measured In part1cu1ar the more narrow]y the un1verse

biQronbach et al (1972 p.352) po1nt out that; "1nvest1gators often choose -
procedures for evaluating the reliability that implicitly .define-a universe

narrower than their substantive theory calls for. When they do _so; they

underestimate the ‘error' of measorementsf that is; the error of

generalization®: , S i :

In a sense the . def1n1t1on of validity given above is s1m1lar ‘to the: - =
classical notion of criterion validity, -with the universe 'scoré being taken as
the criterion. However, this similarity is relatively superf1c1a1 Unlike
most of the criteria USed with criterion. va11d1tv,.the universe score is,an\
abstraction; a parameter defined on a universe of observations. Since the \

" universe score is_not directly observable, it isn't possible to est1mate the
validity by corre]at1ng observed scores with universe scores:

-

Although the universe score is an- abstraction, and therefore not d1rect1y

observable, it can be a relatively well-defined abstraction. To the extent
that the un1verse of genera11zat1on 1s c]ear]y def1ned the accuracy achieved

" generalization is an issure. that wou]d be cons1dered under the head1ng of
content va11d1ty (Cronbach;1971). L o -

n Therefore if the operational definition of a d1Spos1t1ona1 term were

clearly spec1f1ed and if random samples could be drawn from the universe of
generalization associated with this definition, validation would be relatively
straightforward. Unfortunately the universe of generalization is usually not
S0 c1ear1y def1ned Th1s does not detract from the appropr1ateness of the -

are c]ose1y related to the genera] prob]em of induction wh1ch arises 1n all

scientific research.- Estab11sh1ng the va11d1ty4éf a measurement procedure

requires the,emp1r1ca1 verification of a number of invariance properties; and

this task is not necessarily a simpler task than the_ verification of other

_ emp1r1ca1 laws. The problem of induction that arises in ver1fy1ng scientific
- laws and .some of the solutions that. have been pr0posed w111 be discussed more ‘
fu11y ina subsequent section. . .

. The fact that a genera11zab111ty coeff1c1ent can be an index of va11d1ty

%

may be. surpr1s1ng since generalizability theory:is usually seen as an extens1on_;g”“

- of reliability theory: However; the interpretation of Eq{4.12) as a validity -

coefficient is achieved only by making the strong sampling assumption that the

observed scores are based on random samples from the universe of generalization

(Tryon, 1957; McDonald, 1978)... For most measurement procedures, observations
. are genera11zed to universes ‘of genera11zat1on that are much broader than the
un1verses from which they are\sanp1ed It 1s not unusua] for examp]e for

basis of responses to a part1cu1ar type of written test items. . Snm11arTy, a

,,,,,,,,,

series of weight measurements may be obtained with a particular spring. In
neither of these examp1es 1s it reasonab]e ‘to assume that the observat1ons are

observat1ons would not be a va11d1ty coeff1c1ent.

. Therefore, this simple’ un1verse samp11ng mode]l presented in this section
does not‘prov1de an adequate ana1y51s of the va11d1ty of the great majority of




’

<
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measurement procedures, which do not cons1st of random samp]es from the1r

intended universe of genera11zat1on ~ For most of. the attributes that are of

interest in the behavioral sciences, standardization is.used to. control errors
of measurement, which are often unacceptab1y 1arge ‘when ebservat1ons are

~

randem]y samp]ed from the universe of generalization. Standard1zat1on jrivolves

an explicit decision not to use random samples from the universe of

" -.generalization ¥ estimating universe scores.- A standardized measurement

procedure samples observations from a universe which is a subuniverse of the

universe of generalization, and therefore requires a somewhat more

SOph1st1cated model for va11d1ty than that presented in this sect1pn

=~

 Another method for contro]]ung errors is the use of strat1f1ed samp11ng
~designs. rather than s1mp1e random samp1+ng - For- example, 1n assessmng the

universe of 1tems the assumpt1on that items are random]y samp1ed W1th1n strata

is undoubtedly much more: realistic than: the assumption of simple Tandom

samp ling. (Strat1f1ed samp11ng is d1scussed by Rajaratnam; Eronbach and

G1eser 1965:)°

, In genera1 an analys1s of the dependab111ty of a measurement procedure -
should reflect the sampling .design for_ in the measurement’ procedure, ~and - :
generalizability theory makes it _possible to do this_ in a Systematic way. -
Although the more realistic_sampling models add cemp]ex1ty to generalizability .

-analyses and may cause prop%ems in estimation; the analysis of these more

elaborate. sampling designs is often espec1a11y informative; in a later sectién;

cpnvergeni validity will be shown to be eguivalent to a genera11zab111ty

analysas w1th standard1z*t1on of the method of observat1on.

5 A1so it is typ1ca11y \the case that there are: un1ntended v1o1at1ons of the

samp11ng assumpt1ons in.thy G study. The effects of departures from the random;'

jon cannot be estimated accurately; and therefopre ‘the interpre-

samp1ing assumy
/resplts of G studies must always be’ somewhat tentative. - The

tation _of the

violation of sampling assumptions is;. of course; a general problem in research, .

and the clouding of interpretations that resu1ts from such v1o1at1ons isn't

un1que to genera11zab111ty theory*

However, sampling problems are espec1a11y acute in.the 1nterpretat1on of

ra11zab111ty coefficients becausesthe estimation of these coefficients

| requres sampling from both a_population of objects of measurements and-a .

universe of genera11zat1on Although the popu1at1on cons1st1ng as it-does of
the objects that -are of primary 1nterest t0 the: ‘researcher, is 11ke1y to be as

well defined- as other populations. 1nvest1gated 1 sgience, most universe of
qenera11zat1ens don t even meet this rather 1oose standard The un1verse of

,'populat1on

Un1ntended v1o1at1ons of the samp11ng assumpt1ons “may introduce bias’into

. the saiples of some of the facets being investigated in.a G 'study, and, giveén. .
the universal app11cab111ty of Murphy's law, it would be ‘unrealistic to assume

. that the estimates of variance components will be robust against such sampling

biases: These considerations suggest; of course, that every effort should be

made to avoid violations of the sampling assumptions. However; it would also

seem prudent to include some explicit recognition. of -the 0551b111ty of

‘Q

-

sampling bias into the interpretations of generalizability coefficients. In :"

the last section of this paper, it will be‘shown that if genera11zab111ty

ana1yses are interpreted as tests of assumpt1ons about invariance properties,

it is possible to make these interpretations less vulnerable to ‘Violations of

the sampling assumptions; the price to be pa1d for this increased secur1ty is
a weakening of the ‘conclusions drawn from various stud1es , -
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R Standard1zat10n and the Bn1verse of Allewable 0bservat1ons
- ene way to Ref1ne the Samp11ng Model

As indicated earlier, the 1nc1uS1on of an exp11C1t theorv of errors makes

it possible for re1at1ve1y simple theories to provide a consistent account of
a Wwde _range of observat1ons The 1ncons1stency that w0u1d 0therw1se arise in

“1nte account in 1nterpret1ng eurrent ebservat1ons and in pred1ct1ng future
‘ebservat1ens

smaller the error variance, the more accurate the -inferences that ‘can be drawn E
from one observation to another or from an observation to the universe of
generalization. It is de51rab1e therefore that the error variance be as sma]’

as pOSS1b1e

'thesé advantaées are most ﬁruﬁéuﬁéea Wﬁeﬁ the errors 1nvo]ved are sma11 The -

Ihere are three ways to decrease the error .variance and therefore to

~increase the.precision:of measurement: The first way to decrease the error

variance; is. to base each measurement on a 1arger sample of observations from

- the un1verse of genera11zat1on This approach is w1de1y used in both the’

physical_and behavioral sciences, and is discussed in detail by Cronbach .

et.al.(1972). One advantage of genera11zab111ty theory is that it indicates
how te obta1n the greatest increase in prec151on for a given 1ncrease in the

. 4
A second way to reduce errors is to restr1et the universe. of genera11za-

. tion. The ‘more narrowly the yniverse of generalization is defined the smaller

‘the errors will be. In the 1imiting case, if an observation is not generalized

-.to- any wider. universe, but is interpreted as an observation, there is no error

of measurement. A]though'narrowing,the,universe of generalization decreases

"the ‘error variance; it can also 1imit the usefuiness of the measurements, and -

is, therefore, not -a panacea. ThiswapproaCh'is.discussed in. the next section.

The third method for eontro111ng errors of measurement is to stahdardize

the measurement procedure. - Standardization can be very effective in reduc1ng

errors of measurement, but it can also be misleading, and therefore requires

careful examination. The remdinder of. th1s section 1s devoted to the

implications of standard1zat1on

",‘STANDARDIZATION OF MEASUREMENT PROCEDURES o ‘ .

* Since errors of measurement resﬁ?t from variations in the cond1t1ons of

observation, thése errors may bé reduced by controlling; or standard1z1ng, the

conditions ef _observation. -If the observations on an obJect of .measurement
vary as some facet varies, these observations-may be made more consistent by

- ‘making all”observations w1th the same condition of the facet. If all

applications of a measurement procedure employ a particular condition, or.set

of conditions, of a facet, the measurement procedure*1s said to be standard1zed
on the facet. _ : . R

Standard1zat1on of the i facet changes the deSTgn of the measurement

_procedure  so_that the objects of measurement are crossed w1th the same

conditions; I*,; ef ‘the i+facet for all measurements, but it doesn t alter the

- definition of the attribute: Standardization of a measurement procedure 1is

not intended to imply a change in the universe.of genera11zat1on which

cont1nues to include the full universe of conditions for the 1 facet:

' Therefore, the universe score for obJect o, is st)11 uo, as given by

Eq(4.5).
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- 0f universe scores; given by:

 The observed score for a measurement procedure with the i facét
standardized can be represented by: |

XbI;R = u +136 + éI; + 361£ + éR. ';‘. o !5.1) A

The expected value of the observed score over repeated app11cat1on of the

standard1zed measurement procedure is given by:

= E( :

”O OI*R) =y + aO + aI;c; aOI; - , . ) (5.2)

For:a standardized measurement procedure, therefore, the observed score is a
biased estimate of the universe score; unless the Tast two terms in Eq(5.2) .

happen to be zero: ~This bias- also appears in the errors for- po1nt estumates
; : o

Do oI*R = XoI*R - Ug
s * 3k *.aR.

term-is a constant for all- observat1ons and the second term is. a constant for

all observations on a particular object of measurement; in Eq(4.7), all three -

repeated observat1ons on the object, o, -is given by:
._E(BoI*R) T Elap ¥ * g)

| terms are random variables. The expected value of the error; BoI*Ra over

&

=3t A s ";\ A - ; (5.4)

k.

The amount of bias in the est1mat1on af universe scores is- 1nd1cated by the

two terms on the right side of Eq(5:4):

The expected squared error for object, o, is given by

£ (ﬁgi;R);E.(afi + 361*)2 + GZQR) . - 1 N (5.5);

X

Notice that the first term in Eq(5 5),1nvo1ves the -sum of two constants rather

* than a variance component, and that the second term is the' variance component
- for rep11cat1ons. :

The expected value of Eq{S 5) over the i facet is the same as the expected

- value .of the squared error; DgIg, for the unstandardized procedure, given by

Eq(4- 8) Therefore; - standard1zat1on on a random]y chosen set of conditions of

a facet does not .decrease the expected squared error for po1nt estimates of

universe scores.

If I* can be chosen so that (aI* + aoI*)Z js small compared to the j

- sum of the first two variance components in Eq(n 8), the expected squared
error for the standardized measurement procedure w111 be smaller than the

expected sqoared error for the unstandardized procedure. A biased estimate

* with a small variance is often more useful than an unbiased- estimate with a

large variance: However, the problems of estimation involved in choosing a

"good™ value for I* are substant1a1 (See Cronbach et al, 1972 p: 101)

. \
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The expected value of Eq(5.8) over all possible choices of I* is:

-squared error, and if an I* can be found with a small value for a

It may happen that there is no choice of I* that-significantl% reduces the
#, this
choice may involve an unacceptably value for a§ps: Another possibility

~ is to estimate the value of ajx by "calibrating" conditions of the i facet,

and subtracting the estimated value of arx from all observed scores;
however, this is equivalent to using regression estimates with a slope of 1.0,
and if this approach is to be used at-all; it would probab1y be better to use

- standard regress1on est1mates for the observed scores.  The use of regression

est1mates of un1verse scores 1ntroduces a. th1rd ‘type of error (Cronbach et al,

Therefore, standard1zat1on may decrease the error for point est1mates of .

universe scores but does ‘not necessarily do so. Standardization is a much

more promising approach when observed scores are used to estimate universe

scores relative to the average universe score in the population. If all |
observations: have.I* as the conditions of the i facet, the .expected value~ of
the observed: score over the popu]at1on is: :

u;,—; Suta,

_doI;R = (Xopag = Up) = (Ug - u) ™

= a-:2 + ah _ ) B o . (5.6)

The main effect ar*; does not appear in Eq(5 6) becausé it is a constant
for all observed scores,; and. therefore has no effect on the d1fferences‘
between obsegrved scores and the mean observed score.

The expected va]ue of dgI*R> over repeated app11cat1ons of the
standard1zed measurement procedure is g1ven by v
E(doI*R) Torx (5:7)

Therefore the standardized measurement procedure is also. b1ased 1n 1ts

estimates of universe deviations scores, but the magnitude of tHe bias,

consisting only of :the interaction effect agi*, is smaller than it is for
point estimates of universe scores. Note that the expected value of this
specific bias, over .the population, is -zero. Unless agi* s zero for all
objects of measurement, therefore, universe deviation scores. are systemat1ca11y
overestimated for some objects of measurements and are systemat1ca1ﬂy

underestimated for others.

A_Ihe expected va1ue of the squared error over, rep11catLons for obJect ] is:
é o) .=
oI*R

£ ( W)Z«L FRY R '(s;s')g

gg(dgﬁg)=52(oz)‘+i.&(R) o S L (5.9)

Therefore the squared error, ng*R, is expected to be smaller for the

o standard1zed measurement procedure than for the unstandard1zed measurement
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procedure given by Eq(4 10) even if standard1zat1on is on. randomly chosen

conditiens of the i facet. ”Furthermore if an I* is available for which the

s:particularly small; it is possible by

specific systemat1c error;

standardizing the i facet to obtain a procedure with a small bias and with an

- expected squared error that ‘s much smaller than'that of the unstandardized

measurement procedure. (Again, sampling problems make 1t very difficult to
make an opt1ma} cho1ce for I*). . :

>

The main advaﬁtage in standard1zat1on is that it can be used to reduce

“error var1ance*, In practice, standardization of a facet is most useful when

observed.scores are used to estimate universe deviation scores and_the

variance for the main effect of .the i facet, e2(1), is relatively Targe.

Standardization of the i facet automat1ca11y eliminates 02(1) from the error

variance for comparative decisions, and if regression estimates are feasible,

can eliminate 02(1) from the error. variance for point estimates. Although

it -is sometimes possible to choose conditions for the. i facet so that the
expected value of a§1* over - the popu1at1on is sma11 this goal is not
easy to achieve.. , \

SYSTEMATIC ERRORS

>

Standardization is a powerfu] tool for reduc1ng the magn1tude of errors of.

measurement. As indicated above, however; ‘the realization of benefits from

. this technique may require JUd1C10US se1ect1on of the conditions, I*, chosen

for standardization, and this is not a trivial problem. Furthermore there ﬁs

~a price to be pa1d for the benef1ts of standard1zat1on

i procedure. For a. g1ven objects of measurement; therefore* standard1zat1on

~ changes some components of the error of Teasurement from random variables to

constants. Components of the error that are constant for all observatians on -

an objects of measurement are called systematic errors. The’effect, apx is

a general systematic error since it a constant over all observat1ons. The

~ interaction effect, 3pI*, Which is a constant for each objects of measurement

but. may vary from one obJects of measurement to another, is a specific
systemat1c error; .

Thé systematic errors have neither of the two def1n1ng propert1es of-

random errors: First; the expected value of the systematic errors over

repeated application of the standardized measurement procedure :is not zero.

Therefore, systemat1c errors introduce bias into est#®nates of the universe

scores. The main effect for the i facet, is the same for all objects of-
measurement, and represents a general bias, ‘which is present in D b® not in

~d: The. 1nteraction effect, agr*; is_a spec1f1c bias for each objects of

measurement, o, and it affects both D and d. Since the systematic errors are
constant for each objects of measurement, they do not tend to "cance] out"

over a series of observations. =~ _ >

Second the systematic errors are correlated across 1ndependent

t'adm1n1strat1ons of the measurement procedure.f Since the expected value of

Eq(5. 4) over the population is ajx the covariance between the errors, D, on
twoindependent. administrations of the standardized measurement procedure is
given by: {Lord and. Nov1ck p. 181) '

cov(D I*R’ I*R') E(a o51% + a- )(éei* + dﬁ;)

‘\.

= &F(o1¥) 0 s

A

"
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Thus, the errors of measurement for the standard1zed measurement procedure are

I

“the spec1f1c systemat1c errors

S1m11ar1y, the expected va1ue of Eq(s 7) over the popu1atlon is zero, and

the covar1 nce between the errors d on two 1ndependent adm1n1strat1ons of

SRR '°°V(doI*R’doI*R')+ ﬁ%(aol* + e + ap)
. ) ‘ ';‘Qr. 7 _‘ ’ . ) ) .- ] . o 7'77 .
= 62(61*)’. P S C(5a1)
] S1nce the systemat1c errors are correlated .across o ~'rvat1ons and do not
have .a mean of zero, they cannot be interpreted as the“kind,of random errorsg

that appear - i re11ab111ty coefficients. The 1nterpretat1on of systemat1c
errors raises 1ssues usually associated w1th validity.

THE UNiVERSE GF ALLOWABLE OBSERVATIONS
In sta sz1ng the 1 facet by requiring that every measurement involve -

the conditie I*, a.new ; kind of universe, the universe of allowable

observations, is 1ntroduced The universe of: allowable observations is a,

subset of the universe of generalization, and includes all obsevations in the

universe O0F generalization that have the appropriate condition for each

standard1zed facet An 1nstance of the standard1zed measurement procedure is

By- contrast, an instance of the unstandard1zed measurement procedure is an
: observation randomly sampled from the full universe of genera11zat1on ~_The
universe of allowable observations defines a measurement procedure in the same

way that the universe of genera11zat1on defines an attribute; both are g

“extens1ve" defigitions:

S1nce standard1zat1on does not change the un1verse of genera11zat1on

measurements involve inferences to the universe-of genera11zat1on rather than
the universe of allowable observations. However, because it is easier to
sample from ‘the universe of allowable observat1ons, an investigator who is
evaluating a standardized measurement -procedure will often begin by examining
the dependability of inferences from observed scores to the mean over the
universe of allewable observations: -To do this; a G-study can be conducted

with obserVat1ons random1y sampled from the universe’ of a11owab1e observat1ons

If the J,facet is standard1zed as I* in the universe -of a11owab1e
observations, all observations in the G study involve I*, and the i facet is a
-"hidden facet"' The effects 1nvo1v1ng'the,1 facet are confounded with other

B -effects and cannot be estimated 1ndependentTy An ‘observed score.can be
written as ‘ : ' ;
X"Ii—R’ = (u +"aI;\-) + (a + a”Ii—) + an ; ' (5.12)

) - where R is a rep11cat1on 1ndex representing the comb1ned effects of all facets
T  other than thefl facet. The terms enc1osed'3h parenthesis in Eq(5.12) are
completely confounded, and, in ana1yz1ng the G study, the model equation may
be ‘taken as: . . _

T T

i
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mas I*, and these var1anee eemponents can be wr1tten as: ) /,/ oL,
lo') = 6°(0) + Loy . o o o {é iéa) o
FR)=FR) | (5;15b) g

. where thefyarlange components on the rJght side of\Eq(S 15) dre those that.
could be estimated in a G study in which conditions of the i facet are randomuj
sampled from the un1verse of genera11zat1on and are crossed with the obaects of

‘ measurement - _ e N o

- score variance by Eq(lSa) and the expected observed score variance by
& (X) = (0') + F(R) , o o R
S O CAC DAL B 5
) Using Egs(5.15a) and (5;16); the §énerafiiéhiiity-EBéF??éient would be |
estimated as: o w o -
o 42 | : . o
(0') . - .
Er (X R+ Yo e ol | : e
o o)+ Py ST T (517) o

6°(0) + o (oI*) + o (R) c T e o AT

& (e) + o (ol ). OC(R) . : ~;~ S S

Eq(5. 17) assumes that genera11zat1on is over rep11cat1ons and not over the i
facet, and indicates the dependability of inferences: from ‘observed scores to-
the mean over the universe of .allowable observat1ons, uo, “n Eq(5. ).

The dependab1]1ty of inferences to thé universe score .is g1ven by the ratio of
the universe score variance in Eq(4: 6) to the observed score: var1ance for the
'standard1zed measurement procedure, given by Eq(5.16): - . T R

T o P
ErC (X pagoly) = o —— . TR
r ( oI*R ) . 62(0) - 62(01*) EZ(R)' _ o ( ) | .

popuiat1on of two independent adm1n1strat1ons of the standard1zed measurement : ;

_procedure. Since Eq(5.17) .indicates the consistency among the observed scores
. derived from the standard1zed measurement procedure, it gan be 1nterpreted as:gsy
a re11ab111ty coeff1c1ent S1nce Eq(S 18) refTects the agreement between

Tiorl
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RANBBM;ERRHRS,ANBUREEIABItITY o ' :
- The _question of validity has been taken to be equ1va1ent to the quest1on of
\how well the results of a measurement procedure estimate the universe score;

"This question is answered by determ1n1ng how well the results of.the measure:

- ment procedure satisfy the invariance properties. implicit<in the operat1ona1

definition of the d1spos1t1ona1 attribute. Because standard1zat1on is so

conmon]y emp]oyed 1n des1gn1ng measurement procedures however the operat1ona1

allowable observat1ons whlch is a sub universe of the universe of

~_generalization. A natural question to ask, then; <is how well the results of

particular instances of the measurement procedure generalize to the universe

g of allowable observations. This guestion is eguivalent to the question of how

well repeated administrations of the testing procedure, (i.e. repeated samples

of observations from the universe of allowable observat1ons) agree with each

© other. This issue is usually treated under the heading of reliability..
Within the sampling. mode1 re11ab111tx is defined 1n terms of the universe of
aT]@wab1e observat1ons . :

Kl

A measurement procedure is re11ab1e to. the»extent that 1ts observed scores. . .

prov1de dependab]e estimates of the mean over the un1verse of allowable
. observat1ons }5 : S

Note that re11ab111ty is défined as a property of a measurementkpnocedurei and_'
does not. depend on-the def1n1t1on .0f -the attr1bute As noted ear11er

attribute be1ng measured This d]st1nct1on is cons1stent with the traditional-
D . definitions of . re11ab111ty and validity.” Reliability provides an Jdndex of
. cons1stency among the scores from independent administrations of .a measurement

procedure,. and validity indicates-the relationship between the resu]ts of a--

. « . measurement procedure and an 1nterpretat1on of these results wh1ch goes beyond

the def1n1t1on of_ the meaSurement procedure e

. The. re11ab1]1ty of a measurement procedure is an 1ndex of the cons1stency

among the observed scores in the universe of a1lowabTE'observat1ons ~ This

definition is equivalent to ‘the- definition of re11ab111ty for' randomly

-parallel tests if the-“true score" is equated with.the mean over the universe
. of allowable observat1ons. The reliability of a measurement procedure is

1imited by the magnitude of the random errors on]y, .specific systematic errors

tend'to 1ncrease the re11ab111ty ,é;;,, : SR _ o
If the i facet is. standard1zed the 1nteract1on effect, aoI* is a
kSystemat1c -errer,.and is included- in the numerator of the re11ab111ty

coeff1c1ent An Eq(S 17) S1nce variance components are: pos1t1ve,_.

v EY‘ (XOI*R,U ) ‘ EY‘ (XOI*R,U ) N : N ". . ;- :-; ;}: (5;19) )
;'Erz(XOI*R uOL, wh1ch 1nd1cates “the dependab111ty of 1nferences from e
" .observations-to _thé mean over the universe of allowable observations, it is a
_-reliabilty coefficient; while Er2(X I*R,ug): which. 1nd1oates the:
.dependability of 1nferences from.-. observat1ons to the mean over the universe of

.generalization, is @ va11d1ty coefficient. ‘Therefore, the inequality in

- Eq(5.19) restates the well-known result from classical test theory that-

re11ab111ty :is ‘an upper bound for,va11d1ty7 . For the sampling model, this

result ‘can be - interpreted as. ref]ecting ‘the: fact that genera11zat1on to the

_universe of allowable observat1ons is a]ways at. least as dependab1e as
genera11zat1on to the more broad1y def1ned‘un1verse of genera11zat1on

[N -
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Although a 3 study in which. the i facet is hidden does not address the

central issue of the dependability of inferences from observed scorgs] to

universe scores, .it is useful for-two reasons.- First, it provides an upper

bound on the va11d1ty’of the measurement . procedure* A reasonably high value -

for the reliability coefficient, Erg( Xoi\Ryu ), -doesn't estab11sh7the ) ;

measurement: procedure as.having a h1gh va11d1ty, but a low value can establish -
that the procedure has a low validity. - In.a subseguent section, the ~ %

"_imponiance of such one-sided tests-will be discussed. Second, the G study

with the i facet fixed does provide an estimate of the random error variance,
& ¥); which. is needed for. est1mat1ng ‘the -validity coeff1c1ent -
Ere(Xo I*R3Ug):  If ol{0i) is. estimated in a -subsequent G’ study, the a

. va11d1ty coeff1c1ent could be estimated d1rect1y

Of course, if the un1verse of genera11zat1on had- on1y two facets, the

" investigator could estimate the variance ,components-for both facets in a

single study. The need for more than one G study arises from the fact that

most universe of genera11zat1ons have many facets and only a few facets can

be systematically investigated in any G study.’ S“nce Targe sample sizes are
generally necessary for the ‘accurate estimation;of variance components in

designs with as few as Ytwo facets (see Smith; 1978), an adequate ana1ys1s of

the generalizability of a measurement procedure will usua11y requ1re a. number .

: of G stud1es. ' o L

SYSTEMATIC ERRORS AND VALIDIIX ' s

~7The difference between Eq(5.18), which has been 1nter6reted as a va11d1ty
coefficient, and,Eq(S 17), which has been interpreted as a reliability
coefficient, is*in_the role played by e?(oI*). A reliability coefficient’

' indicates the consistency of observed scores from one administration of a -

measurement procedure to another. As indicated by Eq(5.11), ee(ol*) is the

-covariance’ of the errors of measurement over:repeated observations on the

object, 0. Therefore, the covariance between the observed scores on two

1ndependent adm1n1strat1ons of the .standardized measurement procedure (two

-_1ndependent samp1es from the un1verse/of allowable observat1ons) increases as

de(ol) increases. Therefore, as the magnltude of the 5pec1f1c systematic

. errors. increases, . the re11ab111ty increases.: The magnitude of ®¢(ol) _
provides infermation about. how well the observations- drawn from the universe # -
-of allowable observat1ons correlate thh the un1verse soore for the attr1bute

be1ng measured /

In- c1ass1ca1 test theory, the "trie score" for an obJects of measﬁrement

"is defined as_the expected value of the observed score over repeated

‘applicat

application of a measurement procedure to;the objécts of measurement. ‘For a

standa§i1zed measuremént procedure, the -expected value over repeated

jon of the measurement procedure implies. tak1ng an expected value over

R, but not over I.- Therefore, the mean over the universe of allgwable @

-observat1ons is analagous ‘to the true score of classical test theory. .-

Although the standardtzed.measurement procedure produces biased estimates of
the mean over the universe of generalization, it does provide unbiased
estimates of the mean over the universe of allowable observations. In the

1imit as the.number of replications approaches 1nf1n1ty, the magn1}ude of the

‘random errors approaches: zero, and-the observed score approdches ug.

- Therefore: u§ is a parameter for which the measurement procedure provides.

est1mates of the universe score, ug, the correlation between ug and’

.uo prov1des an index of the agreement between what the procedure actuzlly
gstimates without bias and what it is intended tp measure. The squaféd
correlation between uj and ug iS given by: |

t

- unbiased estimates.. Since the measurement procedure is intended to prov1de

e



. standardized measurement procedure and represents the dependability of . %

. while the rarndom error variance &2

,,,,, jﬁo) o AT
uoi 702(01;) o (5.20)

%

_ Eq(5 29) represents the corre1at1on between the universe scoré and. a&observed

score for which the sampling of the universe of allewable observations is

suff1c1ent1y thorough that random errors can be ignored. In addition,

€q(5.20) provides. an upper bound on the validity of measurements based on a s

standardized measurement procedure. This correlation can-also be- obtained by

- taking the 1imit of: Eq(5 18) as n, approaches ihfinity, and therefore equals

the 1imit of the squared correlation between the observed score and the ; -
universe score as the ‘sagple size for the observed score approaches infinity.
For an observed score based on the average of a finite number of observations

- from the un1verse of . a11owab1e observat1ons the squared correlation between

Eq(5 20)

Eq(5.20) can be 1nterpreted as a validity coeff1c1ent corrected for

attenuation, and cdnp be represented in .a form analogous to classical
attenuation formulas. _ .

- o,

. o Er (x u) o

re(ur,ug) = oiyr>Te (5.21)
'XoI o) -

where the numerator of Eq(5 21) is: the va11d1ty coeff1c1ent g1ven by Eq(5 18};

and the denom1nator is the reliability coefficient given by Eq(5:17): e

Therefore, Er2 (uo* uo) represents a disatténuated validity coeff1c1ent

- for the standard1zed measurement procedure.

- THE REEIABILITY VALIDITY PARADOX

The inference from the observed score to the universe. score can be
decomposed irto two parts. The first part is an inference from the observed

score to the mean over the universe of allowable observations, and the second

~part is an 1nference from the mean over the univense of a11owab1e observations

to the mean over the universe of genera11zat1on the umiverse score. The
coefficient for inferences from observed’ scores to universe scores can be

" factored to represent the separate contributions of these two inferences:

E % _ EVZ'X R U P S _ - o '
r ( I*R’u ) —-Rr ( oI;Rguo) r (HbsQé) | . : s .
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The first factor on the right side of Eq(5.22) is the reliability of the..

(5.22)

inferences from observed scores to the expected value over the universe of °

allowable observations, u. The second factor on the right side of

Eq(5.22) is a disattenuated validity coeff1c1ent and represents the ' -

dependab111ty of 1nferences from us to _ug- ’ . _ ) -

Assuming that the tota1 number of observations, n1nr, 1s to be -kept

‘constant; the value of Eq(5. 22)-is maximized by maximizing ni. The

,,,,,,,

systemat1c error var1ance,02(o1)/ne _1s_inversely proport1ona1 to njs
)s is constant as long as the total
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number of observations doesn't change. The va11d?ty of the standardized
measurement procedure” is improved by._ decreasing the sampling variance for the
0i interaction effect, and this samplqﬁﬁ variance is decreased by 1ncreas1ng

the sample size for the i facet:

However, attending only to the re11ab111ty of the measurement procedure
leads to the opposite conclusion. The re11ab111ty coefficient given by the

- first factor in Eq(5.22), is maximized by setting nj equal to one, because

this maximizes the oi interaction variance, 62(01)/n1, which is 1ncTuded
in the numerator of the. re11ab111ty coeff1c1ent However this minimizes the
dtsattenuated va11d1ty coefficient; which_constitutes the second factor in

Eq(5 22) and thereby-minimizes the overall validity. Therefore, attempts to’

increase the reliability of the measurement procedure by standardizing a facet

may decrease the validity: This phenomena has lbeen called the

reliability-validity paradox: A closely related phenomena called the

attenuation paradox, is discussed by Loev1nger(1954) and more recently by Lord

and Novick (1968, p334) 7 : o 4

CONVERGENT VALIDITY | | s -
0f the three main types of va11d1ty, censtruet, crlter1on, and content,

'd15pos1t1ona1 validity is most similar to construct validity and may even be

considered.a part of construct validity: The definition of an attribute -

implies invariance properties. These invariance properties are laws that ‘can

be tested in 6 studies: 1If all of the invariance properties are tested and

-verified, the measurement procedure is valid. If some of the invariance

propert1es are tested and no violations are detected, the va11d1ty of the

procedure is partially supported. If evenone invariance property is

seriously violated then the procedure is. invalid, -and.either the measurement
procedure or the 1nterpretat1on of the attr1bute must be rev1sed o

The connect1on between 1nvar1ance prepert1es and constr ict va11d1ty can be

-made_more explicit by examining how convergent validity (Cam 211 and Fiske,

1959) can be applied to dispesitional attributes: Convergentt¥alidity of a

measurement procedure can be investigated by letting the cond1t1ons of iw

represent different types of observations (objective tests, ratings,

observation procedures, etc.). For each measurement a s1ng]e condition from o

the i facet is sampled for all objects of measurement; ard ny replicatioens
are sampled independently for each object. The expected observed score-
variance for these measurements is . . .

az(x

Since the universe score is def1ned as the expected value of the observed

1

e).+ a?(bij + a?(ij/ﬁ,T o - .’. (5.23)

01R

score over both the i facet and replications; the universe score variance is

given by 62(0) The genera11zab111ty coefficient for this measurement

procedure is:

o 62(6) _ . -
- .” . - (5.24)

X _
oiR* o) o (0) + o (01) + o (r)/n

.The intraclass correlation coeff1c1ent in Eq(S 24) is approx1mateTy equaT

Erz(

to the. expected value, taken over the popu]at1on of objects, and the ‘universe

of methods and rep11cat1onsf of the correlation between two sets of scores

based on independently sampled methods. The interpretation of Eq(5. 24) as a

' validity coefficient depends on the interprétation of the attr1bute, that is,

it depends on the assumption that the attribute is not linked. to a part1cu1ar
method The vaTue of Eq(5 24) can be used to check on the accuraCy of a ;
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Convergent validity .is generally evaluated by measuring the same:

characteristic by several different methods, and estimating the correlations’

taken over objects, between the scores obtained on the various methods: If°
‘these correlations are high,. then convergent validity is supported. o
Conversely, if these correlations are low, convergent validity is not .
suppported.  The generalizability coefficient in Eq({5.24) is approximate equal

to expected value of the correlation between observed scores obtained with
pairs of methods randomly selected from the universe of generalization: It
therefore provides a measure of the average convergent validity over all pairs

of methods. - ) s

Assuming that i represents the method facet, the systematic errors agj
are the object-method interactions. .For a particu#e method i*; agjx .
represents.the specific systematic bias that resuMglfrom using method I*.
Since the expected value of agix taken over all.all conditigns of the i. -

facet is zero, e2(oi) is the expected value of afrx: A ldrge value for
o?(0i) means that method has a serious effect on measurement: If 6=(oi)
is- zero, method has no influence on the measurement of deviation scores:

Discriminant validity is discussed in a subseguent section::

)

Ly
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In measuring an attribute; tg, for the abject; - the effects a3 and

3pj are components of the error. The larger these components are, the more

difficdlt it is to-obtain dependable measurements of ug, and, therefore, the

effects, aj and agi, are generally- viewed as nuisance factors to be reduced
"as much as possible. As described in the last section, standardization
provides one way of dea11ng with these errors; but standar1zat1on introduces
systematic errors, Furthermore, the fact that observations. show ‘@ strong
dependence on the i facet should ‘be of interest in 1t$e1f aside from its
effect on the inferences to Ug. Where this dependence€ can be described by
an empirical law; a powerful techn1que for contro111ng errors of measurement
_becomes. available: 7 *
- The errors introduced into measurements of uO by the 1 facet can,a]ways
be eliminated by shifting attention to a new. attr1bute, Ugjs Which involves
the same kind of operations that are’ used to define the attribute, ug, but

taid

which has as its objécts of measurement the pairs, 0i; _instead of the. or1g1na1

.,obJects of measurement, o. The universe -scores, u01f for these new objects

"of measurements are founH by taking the expected va ue of the observed scores

"

} E | 3. +a.:
) = 0 oi ~ %

e

u-.-=
01

t
(=
+
fs 1]
ot

2 ge. ~
ex{fmn

(X5 ,(6'0)

S m|

ks

:‘Th1s redefinition of ‘the’ obJects of measurement changes aj and agj from

be1ng part of the error to being part of the universe score. If the obJects
‘of measurements are defined by i as well.as o, the difference bétween the two
universe scores, ugj and ugji; involving different conditions of the i
,a\effect/ is. taken as a substantive d1fference rather than as an error of
_ measurement. Therefore, the two component& agj and aj, which are equal

to the difference between ugj and Uoi' beEome components of the universe

- ¢ seores

-

Measurements of Ugj are;more«dependab1e than measurements of ug,

because the interpretation.of -ug; is narrower than that of ug and thus

: 1nvo1ves 1nferences that are 1ess suscept1b1e to errors than those 1mp11ed by

_ For eaeh obJeet of measurement; oi; the uriiverse. of genera]1zat1on of the
'« attribute; ugj,; ‘includes observations with different cond1t1ons of the

~ .replication ?acet but with constant values for o and i. Therefoxe,
“inferences from observed scores te ugi involve generalization ovéﬁfr but

not over i.* The universe of generalization for. the attribute ug:includes

observat1ons with different values of both:i and r; and inferences from XyiRr
to ug-involves generalization oV“r both the . effect and the r effect. (The
generic term, “effect" is used in this sectidon rather than the term “facet",

' because some of the objects of measurement being considered are defined by a

combination of -a.condition of the o effect and_the i effect. .Therefore,
‘neither the i effeet nor the o effect, separately. spee1f1es _the objects. of

K measurement.” However, it is also true that the i and o effeets are not facets

of the universe of éenéraliiation ) _ . ' &

O If the observed score, X01R, is used to estimate uai, the .expected
value over replicatjons,. the ‘only source of error will be.the replication
. facet. ‘Therefore, the dependability of 1nferences from X01R to Ugj 1S
given by: e ,

. _.'i_'i' . 38
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2 dz(o) + o) + (4)

:_X.,';.If‘“;.”,;iil"‘-‘. . > ——
Howtot) T 7o Fion +-§2~’(%> + P (R)

Er (6:1) =

;vaThe coefficient in Eq(6.1) is approximately equal to the expected VaTGe of the

score, . UO].

squared. corre1at1on between the observed score; Xo1R, and the universe

Wheh”the ahiveréé of generalization .is restricted to a particuiar

which reflects the dependabi
validity coeff1c1ent with the oi combinations as the objects of measurement

condition of the i effect, u? becomes. the universe score; and Eq(6:1); N
1ty '

y of inferences from X5iR to ugj, is a

and generalization over R. This validity coeff1c1ent Ere(XoiR, ugj) is
never less than .the validity coefficient, Er2 (X01R ug), with conditions
of the o effect as the. objects of measurement, and genera11zat1on over i and.

measurement whenever e2(o0j) or e?(i) is greater than zero. (By contrast,
for nonzero values of e (1), standardization of-the i facet always 1mproves

~ R Restr1ct1ng the universe ofegenera11zat1on improves the validity of

reliability but does not necessar11y 1mprove validity:) _,

The increase in validity obta1ned ‘by restr1ct1ng the un1verse of
generalization' is part of a.trade-off in which decreases in the errors of -
measurement are: obtained py narrowing the interpretation that can be given. to

‘the attribute. A high value for Eq(6.1) indicates that an inference from the .

observed score, -XgiR, to the universe score; ugi; i dependable,,and :
therefore provides Just1f1cat1on -for such inferences. If Eq(6- 1) -is to be

. taken as a validity coefficient, generalization must not go beyond the

" restricted universe of genera11zat1on which -involves a particular value of i3

that is, inferences are to the universe score, Ugj,. for the restricted
un1verse of generalization in which both o and ‘4. are constants for all
observations. The value of Eq(6 1) does ot indicate the dependab111ty of
inferences from an observed score obtained with one va]ue of i to universe

scores involving different values of i. In part1cu1ar a high value for

Er2(XqirsUpi) doesn't justify inferences from ugy to ugjiy the
- universe score for the . .same valye of o and a d1$

universe sco , i ferent va1ue of i, or to uo,
the expécted value: of: uO1 over all values of i. Therefore /a h1gh va]ue for

Er2(XgiRaUgi) prov1des suoﬁort for only a re1at1ve1y Timited set of ;-

1nferences e ER L
The expected correlat1on between ugj and u01'f where i and i’ 'ré

1ndependent1y samp led cond1tions for each observat1on 'is given by

E ” § . | 6/2(0)» - o o N | . (62)

Eq(6 2) is also equal to the ‘the expected squared corelat1on Erz(u01 uo)

specific condition of the i e

. between the universe score, j, for universes that are. restricted: to a .
?fect and the un1verse score, ‘ug for a‘universe-

that includes the i effect as a facet N ,
*_ " If the umiverse scores, ugj, do not vary much as functnon of i, then

02{0i) and ‘e2(i) would be small, and the coefficient 1n Eq(6.2) woqu be .. -
" close to 1.0, indicating that ugi is a dependab1e estimate of ugj3 )
Therefore f1x1ng the value of the i facet isn't a serious 11m1tat1on if the .
'observed scores . don t vary much over the i facet However th1s 1nvar1ance of

Ugi }
Egzﬁfl)fwould notf@efsubstant1a]1y larger than the - validity coeff1c1ent for
the original universe of genera11zat1on given by Eq(4:12), and there would be

11tt1e advantage in restr1ct1ng the universe of genera11zat1onf'

: o o ' s 0N



Eq(6.2) can .also be derived by sett1ng n1 equa] 1o one in Eq(4 12), and -
tak1ng the 11m1t as ny approaches 1nf1n1ty, _ :

: I S S
= lim  ErT{X_:psu:) 5 :

n,=* 00 01R*"0 . e R -
That,1s, Eq(6 2). prov1des an._ 1ndex of dependab111ty of 1nferences to _Ug - for
observed scores based on & .single conditién of the i'facet. and an.infinite

"number of replications: - Furthermore, by comparwng Eqs(4 12 (6:1); and- {6+ 25;

z__= i . N

1t is clear that:

Er (Uéigub)

Pty paty) = Erz(XdiR;ub1) e 2w 61,u I 5 (5.2a)

Eq(6.2a) part1t1ons the genera1wzab111ty of Jnferences from Xgir to ug (or -
to ugji) into two parts. The,first part, Erd (XgiRsUoi)s represents '
the dependability of 1nferendes from X5iR to ugi; the mean-over .
replications for a fixed value of i. The second part; Erz(uo1,u0)f is
" the dependapility of inferences from Ugi to ug. For the investigator -who
i 1ntends to" generalize to the ‘universe score, - ug; thereforey there i5 no
" benefit in fixing the.condition: of the i. facet: As a-matter of fact; the

dependability of inpferences to ug would be improved & explicitly . . S

'recogn121ng thesl effect as a facet and 1ncreas1ng nj.

v

°

oo o The main behef1t derived from restr1ct1ng the universe of general1zat1on is
- u-.;the increase in, the validity of measurement; the dependab111ty of inferences
- . from observed scores to _universe scores. The main disadvantage associated
. with:restricting the aniverse of genera11zat1en is that Tt-can lead to a very
large increase in the number of objects of ‘measurements in the population: . If.

. there were Ng objects in the or1g1na1 popu1at1on which can each be paired

- 'Wwith N5 conditions of the i facet, ‘there are NgN; objects in the new

i population. Unless N] is very smail therefore, the number of universe

 scores that need to be estimated for a comblete description of the popu1at1on '
“;'may be great]y 1ncreased by .restricting the un1verse of genera11zat1on

INFERENEES THAT-GO BEYOND THE SAMPLING ‘MODEL o "3"3'*4

If the dependence of observations on the. cond1t1ons of ‘the . facet 1nvo1ved
in the observations is investigated, it may be possible: to character1ze the
cond1t1ons of the i facet by an attr1bute w1,_such that ,

Uarl f( Ws) T P (6.3)
where fﬁ[ep[esents somerfunct1on* Eq(6 3) expresses ugj as a function. of.
two variables. ' The component, vy, depends on the value of o but does not

1

depend on the va]ue of iz The compﬁnent wa depends on the value of. J,but P

does not depend.on the value of o: . These two variables may be previously

defined attributes or they may- be ﬁef1ned as gen1ved attributes by the- Taw in : :
‘€g(6.3). Since the basic reason for cons1der1ng the attribute ugj dn p1ace R e
of the attribute, ugs s the lack of dependab111ty -in estimate$ of: g the - -7 "o
universe score, ug, is not a very promising candidate for the var1ab?e Vos

if the est1mates of .vg. contain large errors of measurements it may._ be ' L
1mposs1b1e to 1dent1fy an apprepr]ate functwona1 form i for Eq(6 3) e

It 1s often the case thereforé that u01 is expressed ina 1aw w1th the ‘;'; -
f011OW1ng form: - : , S

a f'”aiiﬂ_.f_g( i Wiix) T _'_(5'4) L E
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where g represents some funct1on, and i%* is a part1cu1ar condition of the i

- facet. A new variable, ugj*,.is definéd by restricting the universe -of -
generalization for all obJects of ‘measurements to the fixed reference S

condttion, i*, for theA1 effect. This new var1ab1e can be substituted for

v because Jt.is a function of o but not of i. Measurements of ugi and of . TF

=z ¥ _ .
¢

Ugj* are more dependab1e than measurements of ug because-they do not

assume invariancepover the i 'effect; this fac111tates the development 1aws of
the form given by q{6.4). :

If a law 1iké tRat in Eq(B 4) can be deve]oped the limitation inherent in
measurements of ugj can be overcome._ With the help of Eq(6 .4), measurements .

of ‘ugix provide information about all conditions of the i effect for which

wi 1s known. This 1nformat1on is provided by the emp1r1ca1 law in Eq(6: 4)

‘Since the use of Eq(6:4) requires measurement of the attribute wy for all:

values of t,.this kind of inference from observations involving one cond1t1on

of the i effect to what would be expected for observations for another

condition of the i effect is more difficult. to develop than inferences that ‘use

on]y inyariance pr0pert1es However, ‘this more comp11cated approach provides
a detailed ana1ys1s of - the: re1at1onsh1p between 0 and i. Useful as they are,
1nvar1ance propert1es do not prov1de such an ana1ys1s.

.
C

= The emp1r1ca1 1aw ‘given by Eq(2 2)' re1at1ng 1ength to temperature is an

instance of the kind of law indicated by Eq(6:4). This law can be used to

1mprove the dependab111ty of the inferences involved in measurements of length.

A new quantity, ln¢, may be def1ned as an attr1bute of a rod at the
temperature, te . . :

iy L) o, (6.)

The object of measurement for 7rt is a rod- temperature comb1nat1on s rty .

instead of a rod. A1l observations that are used to estimate 1% must
~involve a spec1f1c rod and a spec1f1c temperatg;e while the observations used -
to estimate 1, must involve the rdd defining,t object of measurement, but S
~may involve a variety of temperatures.. The attribute; 1, rt has a sma]]er o o

universe of generalization than- the attribufe 1.; and the direct

~ interpretation of measurements of 1p¢ are restr1cted to the temperature 1
spec1f1ed in rt : . . . .

. -
.

This restriction is effect1ve1y eliminated by the law of therma] expans1on

For a set of rods that are made of the same material and for.a fairly wide

range of temperature the coeff1c1ent of therma1 expans1on 15 4 constant ks,
. and Eq(2 +2) can be wr1tten as . S

- 1 L % [ *f

1rt 1rt* k(t t )1rt* (6 6)

where t* is some fixed reference temperature (For conven1ence t* is often

taken to be 200C, a comfortable value for room temperature‘ - Because S

temperature var1at1ons introduce error into measurements of - 1r, (i.e-

#l(rt) is not zero), 7rt* can be measured more dependab]y than 1. Also,

the temperature differences, (t-t*), can be-measured very accurately, and

Eq(6:6) provides a very. good fit to data over a wide gange of temperatures

Therefore, the dependability of estimates of 1.t baﬁéﬁ on Eq(6.6) is limited .
mainly by the dependability in estimates of ]rt* Therefore fixing the

temperature for measuréements of length does not ser1ous1y 1nm1t -the

5

interpretation of these measurements: v LT

" ) - R
o . - e &

The observations involved 1n measurement are . of 1nterest ma1n1y because

they support . 1nferences to othér observations: . Ihese 1nferences are of" two

kinds. . First, there js an inference from the observat1on to the universe

score, the mean ‘over the universe of genera]vzat1on Second, there are

1nferences from one universe score to other un1verse scores. .
. I\ ’ .
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'tO'the other un1verse scares U01 Therefore restr1ct1ng the universe of

, Using the ‘bridge analogy of Cornfield and Tukey(1956, p.912), these tuo

: inferences can be represented by the two spans of a bridge that Crosses a

river. The . first span represents inferences from the observed score to a

universe score, and the second span represents inferences from the universe

score to the un1verse scores for other attr1butes

If a well art1cu1ated theory is ava11ab1e connecting an attr1bute to other. -

attributes, the se-and’ span; which ‘is supported by emp1r1ca1 laws; may be made“

quite long withou* /eaken1ng the total inference. Laws.of the k1nd indicated-
by Eq(6.4) make it profitable to Shorten the length of thé first span by

narrowing the universe of generalization. Inferences from observed scores to
the universe score; ugjx; for the’restricted universe of generalization have

a h1gher validity than inferences to ug. Therefore, restricting the

universe strengthens the first_span. A well conf1rmed law of the type given

- ~in Eq(6.4) provides a strong second span by justifying inferences from ugix

observed scores. “A proposa1 to samp]e 1tems from a broad doma1n at random is
generally but not a]ways a s1gn ‘that one s understand1ng is crude" (Eronbach
et.al, 1972) g .

Note that an invariance property is a spec1a1 case of the class of 1aws :

indicated by Eq(6:4):. In particular; if the function, g, is:such that ug;

is a constant for all conditions of the i facet (i.e., wi is a constant),

then ug; is-dnvariant with respect to the i facet. In such cases, there :is
no loss involved in taking o, instead of o7, as the object of measurement and
there is some ga1n in s1mp11c1ty {In pract1ce it is often convenient to
assume that ugj is -invariant with respect to the i facet; even where thws

assumpt1on s known not to hold exact]y)

_attribute; wi; of the item:

A NGIE’”""”'"” - ' '
~  In the- behav1ora1 sctences when a test cons1st1ng of some set of 1tems is

administered to a person, the observed score is usually 1nterpreted as an

estimate of the universe score for a disposion; with generalization over the
jtem facet. Latent trait theory can be considered a special case of the kind

- of model being discussed here. For example, the Rasch model (Wr1ght and
-Douglas; 1977) represents the probability; Xy i, that person; p;* answers

item; i, correctly in terms of an attribute, vp, of the person and an

—3

o P i . .. :

o {vg = ws)
e P4

The ab111ty _parameter is assumed to be an attribute of the person,,and may-

'Vary.irom one person to amother. However 1trﬁs explicitly assumed that vy

does not vary with the sample of items used to estimate vp. . Furthermore it

is at least implicitly assumed that vp does not change as other cond1t1ons -
of observation. vary. Sﬁm11ar1y, items are the objects of meastrements for the

. d1ff1cu1ty attr1bute “Wi; and the va]ue of w1 is assumed to be 1ndependent .

Latent trait theories do not genera]]y 1ncorporate an explicit theory of

errors. The kind of "inconsistencies that can be attributed to errors of

' measurement are’ 1nterprefed in terms of a lack-of- f1t for latent tra1t models

An
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NOMOLOGICAL NETWORKS AND THI MEASUREMENTS o

B The;deve]ogment.of'inferences beyond the universe of géﬁéra1f2étibﬁ for an

attribute, as exemplified by the use of Eq(6.4), raises the question of the

role of empirical laws in evaluating measurement procedures.

/In discussing this issue,.it is useful to define a third property of
measurement; in ag@jtiéh'tb reliability ard validity. This third property, =~ -
the theoretical import; or the import, of measurement, can be defined as the ™

‘total significance of what can be inferred from the measurement (Hempel, 1952).

Import emphasizes the scope or range of inferences that can be drawn from a

. measurement as well as the accuracy of individual inferences. As defined

. here, import does not involve a numerical index; and it is not assumed .that

“involved in any other empirical laws, these inferences td the universe of
.generalization define the total import of the measurement. o

‘thevimport of individual inferences can be measured on’any.scale of utilities: -

Hemp&1 (1952,p.46) provides a good example of the distinction between

“"theoretical import" and and "empirical import" (or validity):

Concepts with empirical import can be readily defined in any

number, but most of them will be of no use.for syStematic
- purposes. Thus, we might define the hage of a person as the_ _
_* product. of his height.in millimeters and his age in years. This
:.définition is operationally adequate ‘and-the term "hage" thus-: -
"= introduced would have relatively high precision and uniformity . ES

of usage; but it .lacks theoretical import, for we have no. -
general laws connecting the “hage of a person with other

characteristics

" Although, "hage" lacks -import; it is possible to measure “hage” with a.high
.degree of reliability and validity: - : o

The. invariance properties, which provide the basic justification for

interpreting observations as measurements, provide a core of import to all

fieasureéments,. IThese invariance properties justify inferences from the

observed scores to the universe score, and also, to some extent, to all other

_observed scores in the universe of generalization. If the, attribute isn't

.

Foa I . N o o
fhe contribution of the invariance laws to import depends. on the

. - generality of these laws. For example, the import provided by invariance

' properties for the measuremedt of ugi may be relatively minor, since. ..

inferegces from XgiR to scores for other values of i is not justified by -

‘these ‘dnvariance properties. If attention is restricted to the invariance

properties implied by the.gefinitions of their respective universe of -~

generalizations, the attribute, ug has greater import than-the attribute;
ugi- As such; measurements of ugj do not justify inferences to other. .-
conditions of the i facet._ Measurement of uy, on the other hand, involves

generalization over the i facet. - L :

Measurable attributes that play a central role in ‘the fundamental theories - -

of a:science are seen as having greater significance, or import, than

.attributes which are involved in one or two isolated empirical laws, or in no

content” of ‘the theory and also provides confirmation for the theory; can

laws at-all. The extended network of laws, which specifies the-empirical

In practice; the development of empirical laws can lead to simultaneous’
increases in both the validity and the import of measurements. This is done

- by partitioning the universe of generalization into a number of more narrowly

defined subuniverses, while connecting the universe scores for these ‘
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sabuniverses through empirical laws. Physics has used this strategy very
“effectively. The history of the measurement: of -such basit measurable
‘attributes as length reveals the gradual refinement of their universes of

-generatization. In the course of this deve1opment many ‘facets have been

nd numerous aspects of procedure: At the same time, the import

temperature,

‘ standard1zedKa1nc1ud1ng the physical object defining the unit of length, the

. of ‘length measurements has been. increased by the use of nomological networks

including Euclidian and non=Euclidian geometries; classical mechanics,; and ‘the

“theory of relativity., Using these theories, inferences -can be drawn at one

éxtrémé, ébbut the d1StéhCéS bétWééﬁ gé]éX1éS, éhd, at the Othér extrémé,

NOMOLOGIEAL - NETHGRKS AND. VAEIBITY

It 1s clear therefore that the ex1stence of empirical 1aws and more

importantly, nomological networks, may greatly extend the range of inferences

‘that can be drawn from mea5urements Therefore such networks can greatly’

"increasSe the import of measurements. But returning to the guestion posed.
earlier, what areuthe implications of such networks of laws for the validity

of measurement?. In particular, what are the implications of an empirical 1awf
1ike Eq(6. 6), for the. va11d1ty of measurement?

The def1n1t1on of d1spos1t1ona1 validity states that a méasurement

procedure is valid to the extent that its observed scores prov1de dependable

est1mates of un1verse scores. If th1s def1n1t1on of va11d1ty 1s accepted the .

Ameasurement of other attributes has no d1/ect bearing on the validity of

measurements of the attribute. Campbell $1921, pp.109-134) distinguishes
clearly between the déveldpment of an acceptable _measurement _procedure_and the
application of this MP in the d1scovery of empirical laws.. Campbell (1921, '
p- 134) recogn1zes that 1t 1s "because true measurement is essent1a1 to the

not use these laws to- Just1fy particular MPs. Measurement procedures are

.

justified by a careful examination of. the operations -involved in the MP and by

exper1menta1 verification of invariance proper1t1es

- The dependab111ty of estimates. of" un1verse scores depends on the
definition of the universe cf generalization, the magnitude of variance
components; and the extent of sampling of “various facets for each observed
score._ _For example, assuming that. 02(01) is greater—than zero,

-generalization from Xﬁ iR to ugj will be more dependable than - - \;;
e

same observed score; XgiR, to the more broad]y

defined universe score, ug. However :he dependab111ty of estimates of uy
can be improved simply by sampling tr2 i Tacet more thoroughly. In general,
measurements of ugy can always be ‘made 45 valid as measurements of Ugis by
increasing samp1e sizes.

AN der1ved attributes &nd most basic attr1butes are involved in emp1r1ca1
laws; and these laws may be tied to the body of laws and theeretical
comstructs associated with a theory: For example; the law. of thermal
expansion; Eq(6:6); describes phenomena. that physical theory would be. expected

~ to explain, and at Teast a partial eXpTanat:on of these phenomena .can be

provided in terms of ‘the mot1on of mo1ecu1es. However, the ex1stence of such

- expansion. - With or w1thout a theory, a coeff1c1ent of thermal expansion is

interpretedfas,a measure of”the,degree to which a rod will expand when heated
and contract when cooled. A model for the molecular structure of solids may
provide insight into why this phenomenon occurs; but such mode1s are not
necessary for an understand1ng of what the phenomenon is. .
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. __However; networks of emp1r1ca1 1aws do have a great but 1nd1rect,,7;77“g,gr;"
-1nf1uence .on the validity of measurements. The laws in the hetwork make it

feas1b1e to restrict the universe of generalization for attributes and .
" therefore to increase the validity of measurements without decreas1ng the1r .

import. These more narrowly defined attributes depend on the' network for o -

their import, rather than on the ‘invariance pr0pert1es and the- magn1tude of

the errors of measurement are reduced because assumpt1ons are made for fewer -

THE IRADEOFF B:TWEEN VALIDITY AND IMPORT
If the issue of import.is ignored, it is easy to develop attr1butes that

can be measured w1th a_high degree ‘of validly. It is only necessary to define
the universe. of genera11zat1on very narrowly. For narrowly def#ned universes, -

" the 1nferences from: observat1ons to the universe involves genera11zat1on over

relatively few facets and in such cases estimates of the universe:scores are

likely to be very dependab1e* In the extreme case,; where observations are’ .

1nterpreted simply as.observations, there is no 1nference and est1mates of

“the un1verse scores are perfect1y accurateL ) R

_ However, researchers cannot 1gnore the issue of 1mport and decisions

which 1nvo1ve tradeoffs between the va11d1ty of measurements and the 1mport of
‘measurements must be made. The researcher who interprets observations © =~

narrowly will draw more accurate inferences than _the -gsearcher who 1nterprets -

observations broadly, but the inferences of the first ~esgarcher say-1€ss .

about the world than the inferences of the second resez~c-zr, The choice “ -

between narrow but dependable 1nterpretat1ons and broader but less. dependab]e f'

interpretations 1is a ‘choice of strategy. The continuum of available -

strategies is more-or-1ess anchored by strict 0perat1on1sm (Bechtolt, 1959) a

on end and by construct validity (Cronbach and Meehl, 1955) at the other end

insure ‘that the validity of the 1nterpretat1ons is essentially perfect. The

strict operat1on1st is unwilling. to give any hostages to the future in the -

(fi;/ “Strict operat1on1sm demands that attr1butes be. def1ned narrow]y enough to

form of invariance properties that might turn out to be only approx1mat1ons:n5'

If taken seriously, this position implies.that observations_should net be

assumed to be generalizable to -any wider universe of generalization, but

'should instead be interpreted simply as observations. All of the 1mp11cat1ons

of the observation are to be derived by developing emp1r1ca1 laws that state

relationships between observations. Stwict operationalism is the strategy of

pure emp1r1c1sm, and theory p1ays essent1a11y no role. (Bechto]dt 1959)

Ve 7§on§truct validity, in its most genera1 form, would. define an attribute in
: terms of all of the relationships. in which the attr1bute ‘appears.. ‘From the

standpoint of construct’ validity, the definition of -an attribute entails

certain laws, and, .in order for a MP to be valid its ebserved scores must

satisfy these 1aws. These assumptions are the postulates of a theory, and .may

. state re1at1onsh1ps between the construct and other constructsf in addition to

some set of 1nvar1ance properties.

CONSTRUCT. VALIDITY ' _
It was stated earlier that re11ab111ty 1s a property of a measurement

. procedure, while validity is a property of a measurement procedure and the

attribute being measured. Construct validity is defined as_a property of a

measurement procedure, a construct, and the network def1n1n§ the construct.




- P

Accordlng to Eronbach and Meeh1(1955 p- 257)

"Acceptance " wh1ch was cr1t1ca] “in cr1ter1on or1ented and. - -~

content validities,’ has now appeared in ‘construct . va11d1ty.,_,
" Unless substant1a11y .the same nomological net -is accepted- by ‘the
. severa1 users of the construct -public validation .is- 1mposs1b1e.
<. i..0 'K consumer. of the-test ‘who reJects~the author's. theory” -
cannot accept the author's validatidn. - He. must validate the -
test-for himself, if he wishes to show that 1t represents the
_ construct as he def1nes it. c y . T
, - s Gl

Therefore, in construct va11d1ty, it would not be comp]ete1y accurate to say

" that.a measurement procedure ‘s valid for a construct. Instead a claim for-

constructvalidity should speC1fy a measurement procedure a construct ~and

the theory def1n1ng the construct A R

. If constructs are def1ned in terms of a network, chang1ng the network of
laws in which the construct is embedded -implies a change in the def1n1tuon of

“the construct: Therefore, ev1dence for-the construct va11d1ty of a

measurement procedure may not apply-in different networks. . The 1nvar1ance -

: propert1es that are tested in vajidating a dispositional attribute form.a

bf;subset of." 1aws that may’ be part of many theories. Evidence for d1spos1t1ona1

"~va11d1ty, be 1nterpreted in terms of the va11d1ty of. a measurement procedure.‘»

validity of a measurement- procedure applies in all networks that 1nvolve the .
‘same deRinition of ‘the attr1bute and therefore the same set of 1nvar1ance
propert1 S. . ‘ . - : s T .

\. A . . . -

- As stated ear11er, a1] of the procedures 1nc1uded in d1spos1t1ona1

va11d1ty are:consistent with construct vatidity. Indeed, the procedures

suggested here form.a subset of those’ proposed by Cronbach and Meeh1(1955).

The difference between the two approaches is in the Fact that, -within

construct va11d1ty, the test1ng of any law involving a construct could be

' construed as a test of the validity of a measurement procedure.for the

construct Dispositional validity regtricts. its attention to’ invariance
propert1es, the .testing of laws other~than.the invariance properties is seen
as be1ng directly relevant to an attribute's import but not to 1ts validity.-

None of the many types of research 1nc1uded within construct va1Jd1ty is

| excluded by -the definitions in this paper: The major change béing proposed is

in how some studies will be interpreted, rather than in the'kinds of studies

to be done. In particular, the whole spectrum of research that. could be

“interpreted in terms of the~1mport of an.attribute, would, within construct -

Therefore, the apparent 1oss 1nvo1ved 1n g1v1ng up- ev1dence from soe

parts of a nomo]og1caT network" is not rea11zra loss. at all. For d1spos1t1ons ‘

°categor1es va11d1ty and 1mporta None of the: stud1es encouraged by construct
validity is thrown away in cons1der1ng d1spo itions, but e results of some

| of .these studies are interpreted as evidenct/ for the imp rather than ihev'

validity; of the disposition. A]though the/evidence that - can be used to.

- support dispositional validity is more redtricted than .the evidence perm1tted

- by construct validity,-the.inferences that are drawn by dispositional va11d1ty N

are more restr1cted than those drawn by conitruct va11d1ty_

Construct va11d1ty 1s a property of measurement procedure in. re1at1on to a.
network because a_ measurement procedure- is 'said to have construct_validity by
virtue of its -inclusion in a validated network. _For d1spos1tiona1 validitys -
import is a property of the network as a ‘whole, ‘and validity is a property of ' 5
a measurement procedure in re1at1on to the universe of genera11zat1on def1n1ng

a d1spos1t1on* o S
46 S
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DISCRIMINANT VALIDITY =~ .  — - . R

Diseriminant vaT1d1ty~can be. examined by est1matzng varianee components. "

7 A 1arge variance component for the interaction between attributes and obJects,l'

of measurement; would.indicate that the .interdorrelations _among - different

attributes are small. This implies that the universe score for one attribute

- doesn't prowide_a dependable estimate of the universe scores for other

attr1butes and therefore that each of the. attr1butes being measured prov1des
1nformat1on which-is - independent of the 1nformat1on in the other attributes.

- However, as applied to dispositional attributes; ddscr1m1nant va11d1ty is more

c1ose1y associated with the 1mport than with. va11d1ty

o'

The 1og1c of‘d1scr1m1nant va11d1ty depends on the ex1stence of at~iéast;

.a rud1mentary theory. -If two attributes, Al and Az, represent

would be expected that measurements of these attributes should also ke

hypothesized constructs that are "assumed by some theory-to be unrelated, ié}Iv

unrelated. By the logic of construct validity, .a strong relation between
measurements of Aj and Az could be 1nterpreted as evidence that at 1ea§t

- one’ of these two sets of measurements is 1nva11d

Th1s k1nd of 1og1c 1s not genera11y appr0pr1ate for d1spos1t1ona1

observatﬂons; and do not depehd on- theoret1ca1 networks for the1r meaning

Assuming that A1 and Ao_are clearly defined d1spos1t1ons, a strong .

re1at1onsh1p ‘between measurements of these two attributes would be 1nterpreted

" as-an empirical law that theory would be eipected to explain. .In part1cu1ar

a high correlation between measurements of Al arid AZ would be ev1dence7777
against any £hepr$ which tréated these.two d1spos1t1ons as be1ng unrelated.

It would not be interpreted” as ev1dence for a lack of 'validity in the
measurement procedures. 3 : e .

The exact 1nterpretat1on of‘the re1at1onsh1p betwee Al and AZ wou1df

of course, depend on how the two attributes are defined: 'If the two universes .

had a high degree of overlap in their observations, it wéuld not-be surprising

that -the means over these two un1verses are.related. However, ‘even if there

. were no ‘overlap in their universes and- .no other reason to expect a

re1at1onsh1p, the two attributes could *be strongly re1ated without hav1ng the
validity of the1r measurement procedures denied. , f\: PR

For examp1e, the emp1r1ca1 result. ‘that there is.a strong corre1ab1on. ‘

fbetween ‘the therma1 conduct1v1ty and e1ectr1ca1 conduct1v1ty is not taken as

d1spos1t1ona1 attributes: - Instead; the re]at1onsh1p between these two .

attributes is a legitimate” emp1r1ca1 f1nd1ng, wh1ch a. theory of so]1ds would

’be expected to accomodate.’

different attributes may limit the1r ‘usefulness for various purposes. If two
attr1butes _were perfectly corre1ated the measurement of e1ther attr1bute

It is generally true,. however that a very h1gh corre1at1on between

~Therefore the 1mport of a measurement procedure depends on 1ts hav;ng
d1scr1m1nant va11d1ty ‘ iy : ,

3
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VII An Overv1ew of Samp11ng Mode]s for Va11d1ty

dispos1t1ena1 attr1butes in some detail. THis sect1on prov1des a generaT

“summary .of this sampling model, and briefly discusses some issues, including

obJect1ons to sampling medeTs; not cevered in the~previous sect1ens.

. dis
. the procedure are dependab]e est1mates of the un1verse score.

‘-to the‘mean over ‘the universe from Wh1ch these sa

' .approx1mate1y The invariance properties must

~ The samp11ng mode] for the va]15€ty of measurements of d1spos1t30na1
attributes -is based.on genera11zab111ty theory. The "true" value of a
d1spos1t1ona1 attribute is the universe score, .defined as the mean over the
unlﬁéise of generalization.' A measurement procedure is valid for a

sitional attribute to the extent that the observed scores generated by

The Sas%e prem1se ef samp11ng modeTs is that measurement 1nv01ves

hles are drawn; for these

~operties must hold, at least

inferénces to be Just1f1ed a’set of invariance.

e ver1f1ed emp1r1ca11y,, :

D1spos1t1ona1 validity cou]d be est1mated d1rect1y by us1ng sampTes of

dbservat1ons, randomTy sampTed from the un1verse of genera11zat1on to est1mate"-'

~ from observed scores to’ unlverse scores. ATthbugh this direct appreach has

the virtue ef simplicity, it is not pract1ca1 1n most cases.

The samp11ng model is based on a small number of assamptions. The sampling

model, makes no assumptions about underlying constructs; it neither aff1rms nor

" denies the existence of: such theoretical constructs, The model makes no

asssumpt1ons about the d1str1but1on of observed: scores, the d1str1but1on of.
universe scores, or the relationships between d1fferent kinds of . observed

‘scores. No'restrictions are.put on.the universe of generalization or the

universe of allowable observations except that the universe of-allowable

-+ observations is; by def]n1t1en '1nc1uded within the universe of generaTTzation;

) ,.def1ned in terms of .a universe of genera11zatlon and that measurements are
~ based . .on random . samples frem th]S un1verse. -Thls simple vers1on of the B

is the random samp11ng assumpt1on*

“defined as facets. The one assumpt1on that is necessary for the samp11ng modeT

v

g-OBJECTIONS TO THE SAMPLING MODEL -~ . o -

?

by measurement procedures. In pract1ce, the assumption_that. observed scores.””
are based on random sampTes frem the un]verse of genera11zat1en does not app]y'

PR
A number of authors (Loev1nger 1965, Rozeboom 1966 G111more 1979) have

objected to the simple version of -the sampling mode] because behavioral

measurements do not gererally consist of random sample’s from a clearly def1ned-

universe of._ genera11zatidn Ambiguity in the definition of the universe of.

,genera]1zat1on\1s not un1que to the soc1a1 sc1ences. The d1scuss1on of ]

many of the sampling _problems, assOC1atedtw1th measurement in the phys1ca1
sciences. . For most attributes; the boundaries of the universe of

genera11zat1on tend to be quite fuzzy, and. the sampling of- cend1t1ons ef

various. facets is far from random. = Lt ‘is genera]ty 1mpos§}b1e to select.

random samp]es from the universe of genera11zatzon* in part, because of

vagueness in the definition' gf:the universe of genera11zat1on, and in part
because of. pract1ca1 d1ff1cuTt1es -
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_\THE VALIDITY OF MEASUREMENT - SAMPLING FROM THE UNIVERSE OF GENERALIZATION

ATT of these objections emphasize the problems inherent in “trying to take
random-samp les from the universe of genera11zat1on In order for statistical
1nferences from observed scores to universe scdres to be unbiased, the samp]e

'and the simple version of the samp]wng mode] assumes that observations are . .

randomly sampled from the universe of generalization.. To.the extent that the

random sampling assumption is untenab{gy the simple version of the samp]1ng

rand pain nce not possible to sample the universe

model is untenable. Since it is usua

of genera11zat1on random]y, th1s simplé model is seldom: app11cab1e

.

. 6f a universe. may involve a reTat1ve1y comp11cated set of inferences: Within

this more realistic model, inferences from observed scores to universe scores : -

‘may be ana]yzed into severa] steps and may require the confirmation of an

extens1ve network of Taws for the1r Just1f1cat1on* In part1cu1ar the

of ‘invariance propeft1es " The -investigation of 1mport wou]d add the other
empirical laws to the network.

~In light of the substantial difficulties in drawing randof samp]es from
the universe’ of generalization (not to mention the demands on sample sizes for

the estimation of variance components, when randem samp11ng is possible), how.
is this network to be verified? 1In the physical sciences, the verification of

the requ1red set of empirical laws is not generally accomp11shed in a single

study. It is"even dsss 11ke1y that behavioral measurements will be thoroughly

evaTuated in a single study, in which observations are random]y sampTed from

the’ un1verse of generallzat1on*
\'.

r*x : .
4 Even a cursory review offthe 1ssues«1nvo]ved in the. confirmation of laws

A\ wou]d go far _beyond the sc0pe of th1s paper However a few generaT remarks on

. into perspect1ve R

» Kar] Popper(1965 1968) has suggested an approach to the verification. of

‘e
e
W

Taws which aceurate]y reflects the practice of sc1ence, and has been widely

accepted Popper views laws as conjectures whzch can' be tested in var1ous
ways, but which can neyer be def1n1te1y conf1rmed .A general law can be
applied to a large num%er of observat1ons and- any of these observations can

" be used as tests of the:law. A determ1n1st1c law that fails a single test or
a statistical law that fails a Tagge proportion of its tests is refuted. A.
Taw wh1ch s subJected to large number of tests of various kinds without being -

that are_subject to refutat1on a Taw can be refuted in a s1ng]e study,ibot

in genera] even a Targe nUmber of studies cannot definitely confirm the law.

The more ‘tests of various kinds that a law has heen exposed to without be1ng

refuted, the more _strongly it is considered to be supported; but the law is
never comp]ete]y confirmed. :In a Sense, therefore,:Popper replaces the concept
of the conf1rmat1on of a. Taw by the concept of the degree of conf1dence 1n the

Tou1m1n (1953) describes physical laws not as ‘inductive generaT1zat1ons but

ds rules of inference, which can be used to draw conclusions from observed

facts. . The question to be asked about such rules of inference is not whether
_they are true. or not, but how widely do they" app]y Toulmrin ana]yzes ‘the ro]e«~'
of- laws somewhap d1fferent1y from Popper, but, for the purposes of this “paper,

‘these two views:are comp lementary.- The presumpt1ons that are made about the

; - S . . L : K
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class of observat1ons to wh1eh a 1aw app11es are tested every t1me the 1aw 1s ;

: refutat1on..

Both of these analyses of .the methodology: for the conf1rmat1on of

scientific laws have implications for the validiation of measurement
procedures. The definition of &n attribute involves a .universe of ,
generalization. The claim that a measurement procedure generates va11d

. measurements of the attribute is equivalent to the conjecture that the
observed scores are invariant with respect to random sampling from the -
universe of generalization. This: conjecture can be decomposed into a number :
of more specific invariance propert1esf each of wh1ch app11es to a spec1f1c
facet: , , Ly e .

A successfu1 test of any one of the 1nvar1ance pr0pert1es, wh1ch 1s based

on a random samp1e of conditions from a.facet, provides strong support for .the : -

spec1f1c invariance . pr0perty,,and somewhat weaker support for. the cluster of
1nvar1ance propert1es assoc1ated with the attr1bute As the number of facets

properties 1ncreases, the degree of suppdort for the conJecture that the

-measurement’ procedure adequate1y represents the attribute 1ncreaseS*

G studies, which do not sample. random1y ?rom ar facet but, instead, samp1e

from a restr1cted subset of the universe for the facet, don't provide adequate
ev1dence for 1nvar1ance over the fu11 facet.. They do prov1de ev1dence for -

over the universe of genera11zat1on as a who1e. Such a G study prov1des on]y
weak evidence for- the validity of a measurement procedure; and it may require .
a; large number of such G studies to develop a high degree of confidence in thé’

1nterpreta¢1on of observed scores as va11d measurements of an attr1bute.

T

that a part1cu1ar facet may have a large effect on observed scores, evidence ’.
for invariance over. that facet _provides relatively strong support for

- invariance over the universe:of generalization. +For example, in evaluating
- the dependability.of performance ratings; the variance components for raters

could be substantial, while the .variance component for equipment ‘would be

negligible in_many cases. Therefore, an investigation of the rater facet’

provides a more -severe-test than an 1nvest1gat1on of the equipment facet,. and
passing the more severe test provides stronger evidence for the overall
dependabii]ity of the measurement procedure than passiag the"Weaker.test;

RANDOM SAMPLING FROM THE UNIVERSE OF ALLOWABLE OBSERVATIONS

.. -The random sampling of observations_is important for the- measﬁrement of
d1spoS1tlona1 attnibutes in two ways. First, a measurement procedire is
defined in_terms o random samples from the universe of allewable. observations

(D studie? ) Therefore, the application of the measurement procedure to any

obJect o?’measurement requ1res the random sampling of observations from ‘the’

universe of allowable observations for the object of measurement. Second,

studies of the properties of measurement procedure (G studies) require random

‘sampling from the population of. objects of measurement and random samp11ng
from the universe of genera11zat1on. S -

The purpose of G studies is to prov1de data that can be used in. the des1gn
of effective measurement procedures: In part1eu1arf an impartant goa1 in ‘

( .'4250 | ‘



- observatﬂons for measurements of this new attribute will also be restricteds;
* that-is, if the new attribute does not involve genera11zat1on!over a facet, the

. .‘1.
-

be random1y samp]ed in obta1n1ng an observed score and there are three ways to

do.this. - First, if G studies show that all of the variance components {for the

main effect and interactions) for a facet are zero, there is no need to be

concernad about how this facet is sampled: Second; facets that have been

standard1zed ‘are not sampled in est1mat1ngfun]verse7scores, but the variance of
the systematic errors for these facetssmyst be estimated in G studies. Third;

if the universe of genera11zat1on js restricted in connection with the .develop-

. ment of :theory, thus defining a new attribute, the universe of allowable

measurement procedure will not involve sampling of the facet. Such theoret1ca1

deve1opments are also based* 1n part, on the resu]ts of G stud1es

A1l of these mod1f1cat1ons ‘of ‘the measurement procedure tend to decrease

 the’ number of facets which must-be random]y sampled in obtaining an observed

score. The only facets that need to, be sampled randomly -are those for wh1chi

interactions with the objects of measurement are fairly large and apparently

" random. Efforts to obtain random samples can be concentrated on these facets,

and as the number of:such facets decreases; the difficulty in tak1ng random

samp1es from the un1verse of allowable observat1ons 1s reduced

One of the results of these changes is,: therefore 'to transfer the burden

of random sampling from the measurement procedure to the G studies: If these

efforts to reduce or. eliminate the- random errors for various facets are

successful, the variance. components\for all'of the facets in the universe of .'

" the measurement

allowable observat1ons will be _small, and“‘there
procedure w111 have a h1gh reliability.

To the-extent that the universe of a11owab]e observat1ons is homogeneous in

the sense that all observations in this universe yield approx1mate1y the same

value“~of the observed score: for each object of ‘measurement, it does not matter

which observation is selected from the universe of allowable observations, or

how this observation is chosen.” This is especially true when the random error
variance is small compared to the variance of spec1f1c systemat1c errors. To

the extent that this kind of homogene1ty is'attained in the universe of

allowable observations, the measurement procedure is robust against violations :

of. the random' samp11ng assumpt1on for the facets in the un1verse of allowable

observat1ons* _ ' : ;

This assert1on may“seem extraord1nary since statistical conc1us1ons are

never robust against violations of their sampling assumptions, but the

situation being described is not one that 1s typically encountered in

-statistics. . In most stat1st1ca1 analyses,’ the poputation is fixed and the aim

of the study is to estimate some parameter:for the popu1at]on In .order. to _

obtain unbiased estimates of the parameterz it is necessary to sample randomly: ff'"

. i
-

‘In deve1op1ng a measurement procedure the's1tuat1on 1s quite different.

‘Here, the universe of allowable observat1ons from wh1ch observations are to be

drawn is not fixed: The goal is to make the variance in ‘observed scores for,

each obJect of measurement as small as possible by refining the definition of

‘the universe of allowable observations: To the extent that this goal is .

achieved, all observed scores in the universe of allowable observations for

each object of measurement will’be approx1mate1y the same, and 1t will not
matter which observat1on is chosen

< ' S

Tor examp]e, i measur1ng 1ength 1t isn't necessary to random]y sample .

from the universe of meter sticks, because it is known that all meter sticks .

'g1ve essentially the same result: Therefore,; the most convenient meter stick

is used. The justification for such practlces is found in the emp1r1ca1

'generalization that the variance introduced into observat1ons by the choice of ’

meter stick'is Very small compared to- the variance introduced by some other
factors (e.g. temperature) 51:

dQ
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"the other facets, “and there may be many facets that are standardized in a given '

. for an attribute cannot be evaluated in a single G study. In particular,’it is -

GENERAEIZABILITY COEFFICIENTS AS UPPER BOUNDS ON VALIDITY o ‘
The main source of difficulty with the simple version of the samp11ng model
is that it ignores the complex: ;sampling procedures that are actually employed

by measurement procedures: In’order to obtain a single point estimate of the

validity, this simple model makes the unrealistic assumpt1oh that observed

scores aré.based on random samplés from the universe. of‘genera11zat1on* In

practice; this assumption does not apply whenéver any facet is standardized.-

The explicit recognition of standardizatien leads to a more compIex model which

does not claim ‘to provide point.gstimates of validity, but aims 1nstead to
prov1de a series of upper bounds on.the va11d1ty _

‘Standardization changes random errors 1nto systemat1c errors. The
evaluation of systematic errors due to standard1zat1on requires ‘that .the .
sampling variability for: the standardized facet be estimated 1ndependent1y of

measurement procedure: - In general, it is.not pract1caI to draw random samples

from the universe of generalization and therefore all the invariance prppert1es-

Gsually not possiblé to obtain independent estimates of variance components for
more than a few facetsfw1thout haying very Iarge samp]e sizes. ™. . S~

A

A series of upper bounds is perhaps a Iess sat1sfactory result than a. po1nt

estimate_of -the validity, but it is generaIIy Tmore realistic to consider the °

__coeffJC1ent resulting from a typical G -study as an -upper bound on va11d1ty than

.-as an unbiased point est1mat€.. S R ne &

&

Yy

THE PROCRUSTES EFFECT IN DEFINING UGs , ‘ -
Throughout most of this paper, it has been tac1t1y assumed that the .
universe of generalization defining an attribite is fixed; and that the task is

to investigate the invariance properties implied by the attr1bute S def1n1t1on :

For purposes of’ éx§§51t1oh,fthese assumptions have. been convenient, but; ;
pract1ce the s1tuat1on is never guite th1s‘s1mp1e (see Eronbach*_ 971 9: 482)

The def1n1t1on of the universe depends at least in part; on the 1nvar1ance'

properties that can be established. Initially the ‘definition of the universe
is likely to be very loose, with many facets defwned vaguely by standard .
expre551ons such as; Mwithin normaI 11m1ts Over t1me the un1verses of

var1ous conditions of the facet Jnfluence bbservat1ons For exampIe, 1f 1t is

:found that observations depend strong]y-on the choice of condition _for a -

- - particular facet, it may be necessary to restrict the definition of the.

-7i.universe for that facet to a- ‘particular- condition; or to a small set of. e
. conditions. : o - a

On the other hand, if an: attr1bute which was:expected to vary with-

- different conditions of a part1cu1ar kind, is found to be invariant over these

conditions; the universe of* genera11zat1on for the‘attr1bute may be extended ‘

to . inc lude th1s kind of condition as a new facet.

“In most cases, _decisions about whether or not to genera11ze over a

part1cu1ar class of conditions will depend; in part, on whether observations :

are invariant over the conditions: If the observations are not invariant over

. the class of conditions; including these conditions as a facet -in.the universe

- therefores conditions are not 1ikely to be defined as a.facet of the-

of generaliZation would decrease the validity of measurements of the" attribute;

univerg€ of genenalization. -However, if the observations are at least = .z

approx iwately invariantgover the cIass of conditions, broadening the def1n1t1ob?,a

of the a'tr1bute to 1nc1ude these cond1t1ons as a facet wouId not decrease

.




THE STEADY STATE REQUIREMENT . . =~ .7 ..

LA
s

"gehera11zab111ty theory: ..~

Cronbach et al{1972) raise an issue which they treat as a limitation of:
: 3 A _

"Because our model treats conditions within a facet as

unordered it will not deal adequately with the stability of

scores that are subject.to trends,: or-to order effects

arising from the measurement process...a large contribution

will be made by the development of a model for treat1ng L
ordered facets.;.“(p 364) '

‘ It is, c1ear1y 1nappropr1ate to cons1der consecutlve observatﬂons as

'.known to depend systemat1ea11y on time or on any other facet in the un)verse.

Howeveér. this should not be viewed as a limitation in a theory of measurement.

A?ing that the theory of measurement is intended to analyze the methods
e

r than .the substantive content of sc1ence there is no need for 1t to g

";c er functional re1at1onsh1ps among different variables.

) Accord1ng to the domain. samp11ng mode] proposed here, tG genera11ze over: ar
facét is tg treat the variability of observed scores due to the samp]ling of the

facet as error. Where the:conditions of some kind are con51dered a ﬁacet the”

- observed score is intétpreted as an estimate of the mean over all cohd1tjons of

" the facet, and the observed scOre is not associated with a particular condition

of the facet. On the other hand, in order to, recognize a relationship between = -

observed scores and the cond1t1ons of a. facet each observed score must’ be

- associated ‘with a: particular condition of the facet, and- this implies the
-absence of genera]1zat1on over the facet. - Therefore w1th7n thJs model, 1t is ;
3;1ncon51stent to say that a partlcu1ar kind of; cond1t1on should be. 1nc1uded as
a facet 'in the universe of. generalization;. and at the same t1me to- say that

observed scores are a funct1on of . the facet.

A -

' The prob1ems 1ntroduced into. samp11ng mode1s by the existence of trends can -

be eliminated as- soon' as the trend: is detécted; ®his is accomplished by

:T'restrhctung the universe of genera11zat1on for -each observation to a fixed.

S condition of the facet involved, and:by. treat1ng the trend as an emp1r1ca1 law

. :CONCLUDING COMMENTS *

L

'(see section VI). Undetected trends,w111 tend to cause the variance components
- for the facet to be large, and therefore the examination- of v§r1anee components
-can fac111tate the detect1on of trends, . _

- en
'.—'J.

The sampling mode1 prov1des a framework-for cons1der1ng the issues that

ar1se naturally 4in the interpretation of measurements in terms of d1spos1t1ons.

The three types of issues that have been identified are those associated,with

rre11ab111ty, validity, and import. Reliability 1nd1tates how well observed

.scorgs represent the universe of .allowable observations, Validity. indicates. how

well ‘observed scores represent the universe of genera11zat1on defining an

attr1bute, and Import indicates how well the observed score pred1cts other
observed scores that are of 1nterest v

S1nce measurab1e attr1butes 1n both the phy51ca1 and behav1ora1 561ences"r
,,,,,, i

vproqedure However, the way in- wh1ch these issues shou1d be analyzed is not -

fiied For conven1ence, most of the discussion in this paper has been.in- . -0

terms ‘of variance components and generalizability coefficients, but the same

——

points could have been made in terms of correlation coeff1c1ents “In fact,

-where one is interested in the re1at1onsh1p ‘betweén the observed scores for '

"’part1cu1ar cond1t1ons of a facet and universe scores, it wou]d be natural to' -

use ‘correlation coefficients. In dealing With. categor1ca1 data,-a rather

o d1fferent set of indices would need tofbe est1mated

"v'.o P
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o -of the universe of. genera11zat1o

PR

Q -~‘ ‘ sl -

A]though varlance components Seem to match the assumpt1ons of ‘the sampllng

model: for dispositions especially well, the formal statistical models defining

var1ance components should not be a]]owed to obscure the fundamental conecerns
embodied in the sjinvariance propert1es. As Eronbach(1976) has observed, the

techn1ca] apparatus of genera]12ab111ty theory is less 1mportant than the\

The samp11ng mode] has a number of advantages It is formu]ated in terms

ygiof the-'fundamental stat1st1ca] concept of random samp11ng, and the mode] is

basically guite simples :

-generalization, and the universe
7expected value over t e universe

If ‘one- w1shes to assume that the 1nvar1ance propert1es assoc1ated w1th al'

‘universe of generalization reflect some underlying structure or process

‘;;assoc1ated with the attribute, o;F is free to do so. However the def1n1t1on

. conveénience 6r conventioni- The samp11ng model is consnstent W1th e1ther of -
- these tWo points of view. = .- I . :

~

A]though ‘the samp11ng mode] makes few assumpt1ons, at prov1des an ana]ys1s

of many issues,associated with the dependability of measurement It makes it

possible to give.validity a.straightforward interpretation, and to draw-a. clear;

distinction between: re]1ab111ty and validity. The conclusions that reliabilty -

" is an upper bound on-validity and that some means: of improving reliability may

;_ cause validity. to decrease can be easily derived from the model. Furthermore,

the model provides a basis for a detailed analysis of standardization.and of

" the resulting. systematic errors. Convergent va11d1ty can be analyzed in terms

- of the standard1zat1on of a method facet :
. : . l‘k . LT
As shown in sect1on VI the mode] suggests an exp]1e1t mechansm for -
."re]at1ng the refinement ‘of measurement. proeedures to the development of laws.

Although the analysis of this. mechanism has not been carried.- very far; it does . -

. begin to c]ar1fy the re]at1on§h1p between theory and measurement

-

The prob]ems associated with samp11ng models are no more ser1ous than the

- problems associated with other modeis. - Rather, these prob]ems are noticed: more

clearly because -the’ assumpt1ons of samp11ng mode]s are more c]earlv stated than

for other models. : - , S s e

i
T

can also.be treated as a matter of "
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