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ARSTRACT

In most reliability studies, the precision of a reliability
estimate varies inversely with the number of examinees (sample
size). Thus, to achieve a given level of accuracy, some minimum
sample size is required. An approximation focr this minimum size
nay be made if some reasonable assumptions regarding the mean and
standard deviation of the test score distribution can be made.

To facilitate the computations, tables are developed based on the
Comprehensive Tests of Basic Skills. The tables may be used for
tests ranging in length from five to thirty ite=s, with percent
cutoff scores of 602, 70%, or 80%Z, and with exininec populationg
for which the test difficulty can be described as low, moderate,
or high, and the test variability as low or moderate. The tables
also reveal that for a given degree of accuracy, an estimate of
kappa would require a considerably greater nucber of examinees

than would an estimate of the raw agreement index.

This work was performed pursuant to Grant No. NIE-G-78-0087 with
the National Institute of Education, Department of Health, Educa-
tion, and Welfare, Huynh Huynh, Principal Investigator.
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2 SAUNDERS & HUYNH

1. INTRODUCTION

In many applications of educational and psychological testing,
an empirical demonstration of the reliability of the measnring in-
strument is desirable. Such demonstration is most meaningful when
the estimate for the reliability has been cbtained with a reason-
able degree of accuracy. That is, the standard error of estimate
must be within some acceptable limft. In most instances, the
standard error is a decreasing function of the number of examinees
(sample size) to be included in the reliability study. Thus, some
minimum sample size is needed to achieve a given level of precision.
The purpose of this paper is to illustrate how this sample size cam
be assessed in estimating the reliability of mastery tests.

The paper consists of three major parts. The first part pre-
sents an overview of the procedures for estimating two reliability
indices for mastery tests by using data collected from one test ad-
ministration. The use of the estimation process to determine the
minimum sample size is illustrated in the second part. Finally, a
set of tables is developed to facilitate the determinatiom of the
minimum sample size in reliability studies for mastery tests.

2. OVERVIEW OF SINGLE-ADMINISTRATION
ESTIMATES FOR RELIABILITY

Mastery tests are commonly used to ciassify examinees into two
achievement categories, usually referred to as mastery and non-
mastery. The reliability of such tests is often viewed as the con-
sistency of mastery-nonmastery decisions. It may be quantified via
the raw agreement index (p) or the kappa index (k). The p index is
simply the combined proportion of examinees classified consistently
as masters or nommasters by two repeated testings using the same
form or two equivalent forms of a mastery test. The kappa index,
on the octher hand, takes into account the level of decision con-
sistency which would result from random category assignment. It
expresses the extent to which the test scores improve the con~
sistency of decisions beyond thz chance level.

3



MINIMUM SAMPLE SIZE 3

Though both p and k are defined in terms of repeated testings,
there are many practical situations in which they may be estimated
from the scores collected from a single test administration (Huynh,
1976) . The estimation process assumes tnat the test scores con-
form to a beta-binomial (negative hypergeometric) model, and may be
carried out via formulae, tables, and a computer program reported
elsewhere (Huynh, 1978; 1979). The data reported by Subkoviak
(1978) and by Huynh and Saunders (1979) tend to indicate that the
beta-binomial model yields reasonably accurate estimates for p and
k in situations involving educatiomal tests such as the Scholastic
Aptitude Test and the Comprehensive Test of Basic Skills.

The beta-binomial model also provides asymptotic (large sample)
standard errors for the estimates. Simulation studies indicate that
the asymptotic standard errors tend to underestimate the actual
standard errors when the sample size is small (Huynh, 1980). The
degree of underestimation is not substantial when the sample has

sixty or more examinees. Since the beta-binomial model will be
used throughout the remaining part of this paper, a minimum sample
size of sixty ezaminees will be assumed to hold uniformly lor all
cases under consideration.

3. ILLUSTRATIONS FOR SAMPLE SIZE
DETERMINATION

The standard error (s.e.) of estimates for p and for k are
functions of sample size m. The quantity G = s.e. x vm is
asymptotically (i.e., in large samples) a constant, however. This
constant depends only on the number of items (n), the mean (w)
and standard deviation (o) of the test scores, and the cutoff score
(¢). Given the availability of these parameters, the value of G
may be determined via the tables or the computer program presented
elsewhere (Huynh, 1978). Once G is determined, a minimum sample
size m can be calculated which will restrict the standard error of
estimate to whatever tolerable range is required.

Suppose, for example, that an estimate of « is needed for a

q
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short (n = 6 items) test tc be used with a particular population of
students. Passing or mastery on the test is to be granted if an
examinee attains a score of 5 or 6. Further, suppose that we want
the standard error of this estimate to be smaller than 10%Z of «,
that is, s.e. (k) < .10k.

What sample gsize would be needed to obtain the specified
degree of accuracy in the estimate? To answer this question using
the above mentioned Huynh procedure, a preliminary knowledge of
the test mean and standard deviation is needed. Suppose past data
suggest that the students are generally well-prepared on the con-
tent of the test in question and can be expected to be fairly
homogeneous in achievement. We might suppose that in the population
the mean will be 5.0 and the standard deviation will be 1l.2. Using
these values, and the cutoff score of 5, a value of G can be read
from the tables (or computed): G(x) = ,7390. If the population
mean and standard deviation are as given, then, assuming the beta-
binomial model, the popuiation value of xis .3778. These results
are then used to estimate the sample size needed to bring the
standard error of estimate with the desired limits (i.e. less than
.10k) .

Since the standard error of estimate 1s approximately G/vm ,
the standard error must be such that

G(k)
vm

< .10k

or, equivalently,
m > [6(k)/.10¢1%.

For this example, then,
m > [.7390/(.10)(.3778)1% = 382.62.

Thus, to have no more than 1l0Z relative error requires that at
lease 383 examinees be tested to estimate k.

A similar computation can be made for s.e. (p) < .10p when the
above assumed population values hold. Thus, using the tables,

5



MINIMUM SAMPLE SI1ZE 5

G(p) = .3210,
p = .7532,

and
m > [G(p)/.10p]° = 18.16.

Because of the previously mentioned problems of underestimation in
small samples, a sample size of at least sixty is recommended re-~
gardless of the above computation.

It might be disheartening to note that a much larger sample
size 1s needed to keep the standard error of the k estimate within
the desired limits than is required when an estimate of p 1is used.
However, the standard error for x is much larger than that of p
(Huynh, 1978). Thus, for the same relative size of errors of es-
timation, larger samples are needed to estimate k than to estimate
p. It could be argued that the same degree of accuracy of esti-
mation is not required. If so, then a less accurate estimate of «
would allow a smaller sample size.

The above illustration presumes that the mean and standard de-~
viation of the test scores can be projected prior to the real test
administration. In a number of instances involving the use of
standardized tests fora heterogeneous group of students, reasonable
assumptions may be made, which will yield projected values for both
u and 0. For example, when an n~item multiple-choice is built to

. maximize the discrimination among individual examinees, it is not
unreasonable to assume that the test mean is half way between the
expected chance score and the maximum score n, and that the stand-
ard deviaticn is about one-sixth of the test score range from 0
to n. (If there are A options per item, the expected chance score
is n/A.) In other words, it is not unreasonable to presume that

u = (n+n/A)/2
and c = n/6.

For example, consider a test consisting of 10 four-option items.
Then A = 4, and the projected mean and standard deviation are
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u=~6.25 and o = 1.66667. Presuming a cutoff score of ¢ = 6, it
may be found that p = .6140, G(p) = .3661, « = .1118, and G(k) =
.8213. If a relative error of 5% is acceptable for p, then a
sample of at least [.3661/ (.05*.61&0)]2 = 143 students would be
needed. On the other hand, a relative error of 25% for kappa
would require [.8213/(.25><.1113)]2- 864 students.

4. PRACTICAL CONSIDERATIONS IN SEITING SAMPLE
SIZE IN BASIC SKILLS TESTING

Some general formulae are given for expressing the relation-
ships among s.e., G, m, p, k, and the p.coportion of sampling error
desired in an estimate. These general expressions will then be
used in a series of simulations designed to explore their typical
numerical values foc real tests. Tables are developed to help the
practitioner decide on the sample size needed to obtain estimates

of p and k for various degrees of precision.

General expressions

Since G = s.e. X Ym is a constant for large samples, this ex-
pression forms the basis for the formulations in this section. In
the previous section .10 and .05 wer~ used as examples of desired
degrees of precision for a sample estimate of p. In general, we
will call this quantity vy, using yp and Y, to distinguish precisions

\ desired for p and «, respectively. Thus, the general expressions
for minimum sample size are:

. [mr
= | Y,P

P
and

. 2
. . [.c_s_z]

Y X

A further simplification is to let R(p) = EG(P)IPJZ and
R(x) = [G(p)/«x] 2. The above expressions for minimum sample size,

m, become
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m 2 R/ (1)
and

m > RG/ (v )7

These expressions will allow minimum sample size tc be determined
from knowledge of two quantities, R and vy.

Determining typical values of R(p) and R(x)

In practical applicationms, the values R(p) and R(x) depend on
a test score distribution which is not yet available. So, as im the
previous section, conjectures must be made regarding the mean and
standard deviation of the test score in order to project the minimum
sample size.

In this section, typical values for R(p) and R(k) will be re-
ported for practical testing situationms involving the assessment of
basic skills. Several combination of test length, difficulty,
variability, and cutoff scores will be used. To arrive at the
values of R(p) and R(x) reported in Tables 1-3, the following series
cf steps was taken.

First, a series of subtests was developed, using items found
in the Comprehemsive Test of Basic Skills (CIBS), Form S, Level 1.
The items composing each subtest were randomly selected from ome of
five CTBS content areas, to reflect a variety of subjects and
skills. For each content area, subtests were constructed with 5,
10, 15, 20, 25, and 30 items, producing a total of 30 subtests.

Second, the administration of the subtests was simulated
using actual student responses. Data for the simulation came frem
5,543 students, comprising a systematic sample (every tenth case)
of the third grade students tested using Level 1 of the CTBS by
the 1978 South Carolina Statewide Testing Program. Trom the
students' responses to each item in the CTBS, raw scores were gen—
erated for each student on all 30 subtests.

Third, values of the mean and standard deviation of raw scores
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on each test were obtained. District means and standard deviations
were calculated for each school district with 40 or more students

" in the sanple. For each of the 30 subtests, means and standard

deviations were plotted in a bivariate scatter diagram. The
scatter-plots were divided into areas representing different cate-
gories of test difficulty and variability. Then districts were
selected with means and standard deviations considered to be typical
of six categories of difficulty and variability. These six cate-
gories (tests of low, moderate, and high difficulty, with low aund
moderate variability) were chosen to represent types of test score
distributions typically encountered in mastery testing.

Fourth, the typical values obtained in the previous step were
used to determine R(p) and R(k). For each of the 30 subtests, the
computer program described elsewhere (Huynh, 1978) was used to
obtain estimates of G(p), p, G(k), and x when the cutoff scores
were equivalent to 60%, 70%, and 80%Z. These data were used to
calculate R(p) and R(x) in each zuse.

Finally, the values of R(p) and R(K obtained above were
averaged over the five CTBS content areas and the resulting values
wvere compiled in tabular form. Tables 1, 2, and 3 provide values
of R(p) and R(k) for percent cutoff scores of 60%, 70%, and 80Z,
respectively.

The data needed to enter the tables are: (1) test length
(n), (2) an idea of test difficulty (high, moderate, or low), (3)
test variability (low or moderate), and (4) percentage cutoff
score 760%, 70%Z, or 80Z). The minimum sample size needed is simply
R/vz, that is, the value of R obtained from the tables divided by
the square of the acceptable proportion of sampling error in the
estimate.

Numerical example

Suppose a study is planned to assess the reliability of a
twenty-item test (n = 20) using the kappa index when a cutoff score
of 14 (c = 70%) is employed. The students for whom the test is

9
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TABLE 1

Values of R for p and x for Six Categories of
Tests at the Percent Cutoff Score of 60%

Test Category Number of Items
(diff) (var) ) 10 15 20 25 30

High Low (p) 0.219 0.075 0.050 0.031 0.023 0.018
(k) 5.349 1.623 0.666 0.391 0.307 0.209

High Mod (p) 0.164 0.061 0.036 0.025 0.018 0.014
(¢) 2.589 0.%08 0.327 0.280 0.209 0.139

Mod Low (p) 0.244 0.085 0.056 0.032 0.025 0.020
(¢) 5.809 1.485 0.6813 0.367 0.269 0.200

Mod Mod (p) 0.148 0.068 0.036 0.027 0.021 0.015
(¢) 2,215 0.838 0.312 0.266 0.198 0.126 !

Low Low (p) ©0.199 0.095 0.044 0.031 0.025 0.020
(¢) 5.502 1.345 0.560 0.365 0.247 0.186

Low  Mod (p) 0.142 0.068 0.032 0.024 0.020 0.016 ,
(¢) 2.371 0.770 0.298 0.249 0.176 0.128 .

intended are known to be a homogeneous group of relatively high {
ability. Thus, it might be expected that the test would be of low
difficulty (i.e.,easy), with low variability. Letusgay that a
fairly precise estimate of « is desired, so Y, is set at .05.
Entering Table 2, in the row corresponding to low difficulty and
low variability, it if found that R(x) for n = 20 items i3 .362. i
The minimum sample size needed to estimate kappa with 5Z allowable {
error is then computed as m = R(K)/YKZ - .362/(.05)2 = 144.8.

Thus, a sample of at least 145 students is necessary to achieve the
desired degree of precision. If reliability is to be determined
via the raw agreement index p, a similar procedure is followed
using R(p) and yp. Again, at least 60 students should be used in
the sample, even if it is found that m < 60.

~'--——k¢.~

ERIC 10
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TABLE 2

Values of- R for p and ¢ for Six Categories of
Tests at the Percent Cutoff Score of 70%

Test Category Number of Items
(diff) (var) 5 10 15 20 25 30

High Low (p) 0.219 0.075 J.046 0.029 0.022 0.017
(¢) 5.349 1.623 0.7/6 0.455 0.410 0.272

High Mod (p) 0.164 0.061 0.033 0.023 0.017 0.013
k) 2.589 0.908 0.360 0.324 0.276 0.178

Mod Low (p) O.z«4 0.085 0.053 0.03%1 0.023 0.019
(¢) 5.809 1.485 0.646 0.396 0.322 0.242

Mod Mod (p) 0.148 0.068 ©.035 0.026 0.019 0.014
(¢) 2.215 0.838 0.321 0.289 0.237 0.149

Low Low (p) 0.199 0.095 0.050 0.031 0.024 0.019
(¢) 5.502 1.345 0.512 0.362 0.265 0.203

Low Mod (p) 0.142 0.068 0.036 0.023 0.019 0.015
(¢) 2.371 0.770 0.280 0.254 0.190 0.137

Some obsaervations on the tabled values

In every case R(k) > R{p). This fact implies that the sample

size necessary to estimate kappa will be larger than that needed to
estimate p, for any fixed degree of precision, Y. As noted previcus-
ly, practical limitations may require that larger proportions of
error be tolerated when estimating kappa than when estimating p.

R-values for the case of low variability are larger than those
for moderate variability. If chere is doubt about the expected

degree of variability, the value of R for the low variability case
would produce the more conservative estimate of m.

R decreases as the number of tust items increases. The re-~
lationship between R and n is not linear, however. Hence, linear
interpolation would not be appropriate for determining R for non-

11
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TABLE 3

Values of R and p and ¢ for Six Categories of
Tests at the Percent Cutoff Score of 80%

Test Categery Number of Items
(diff) (var) 5 10 15 20 25 30

High Low (p) 0.132 0.063 0.032 0.021 0.018 0.013
(¢) 7.076 2.805 1.494 1.055 0.887 0.660

High Mod (p) 0.098 0.045 0.024 0.018 0.015 0.011
() 3.510 1.678 0.608 0.717 0.568 0.404

Mod Low (p) 0.174 0.064 0.038 0.025 0.020 0.015
(x) 6,831 2.283 1.087 0.812 0.640 0.558

Mod Mod (p) 0.113 0.047 0.026 0.021 0.017 0.012
(<) 2.633 1.337 0.484 0.571 0.458 0.311

Low Low (p) 0.189 0.060 0.044 0.029 0,022 0.017
() 5.849 1.906 0.652 0.611 0.471 0.417

Low Mod (p) .0.122 0.046 0.029 0.023 0.018 0.014
(¢) 2.675 1.113 0.348 0.430 0.325 0.248

tabled values of n. The value of R listed frr the largest tabled
n less than the actual number of items should yield a conservative
estimate for m. For example, suppose the test considered in the
numerical example above actually contained 22 items. The tabled
value of R corresponding to n = 25 would produce an underestimate
of m, and the resulting proportion cf error in estimating kappa
would exceed Y+ The R-value for n = 20 would overestimate m, and
the observed proportion of error would then be less than Ve

The relationships between R and test difficulty or cutoff scores

are more complex. No simple trends can be observed in the tables.

In many testing situaticns, the cutoff score typically ranges from
60% to 80% correct. For cutoff scores falling between the values
in the tables, find R for both bracketing values and use the larger.

Again, coansider the situatZon in the numerical example above.

12
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Suppose t' . cutoff score was 13 (65% correct). From Tables 1 and
2, the values of R correspornding to ¢ = 60Z and 70% are .365 and
.362, respectively. The larger of these (éorresPonding to ¢ = 60%)
should provide a reasonable value for R.

4. CONCLUSIONS

In this paper, an approrximation method has been preserted ifor
determining the minimum sample size necessary to achieve a speai-
fied degree of precision in estimating raw agreement (p) and kappa
(¢) indices of reliability for mastery tests. The method uses the
quantity R which can be calculated for known test score distri-
butions. Tables of R have been constructed for test score dis-
tribustons typically found in mastery testing, for a variety of
test lengths and cutoff scores. In addition, sugeestions have beer
made for obtaining reasonable estimatas of R for situations not
directly covered by the tables.

Of course, precision is only one of the factors that must be
considered in any study. Feasibility, cost, and classroom manage-
ment considerations also play important roles. However, knowledge
of necessary sample sizes should facilitate and simplify the
planning of reliability studies. The tables presented here should
be particularly useful for tests involving the basic skills, and
perhaps other testsof similar constxuction.
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