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REiTORD

- This 'reilume is a text describing how to apPly differential

equations in panel studies of career-decision making processes.
Two cqntributions are particdlarly noteworthy. First, the re-
port shows how a dynamic(mathematical,model can be form4ated
to reflect the important .theoretical idea that career expecta-
tions grpdually evolve in a4continuous process over time. Sec-

ondly, the report advocates use.of the dynamic theoretical model
to generate forecasts of career expeOations. Such forecast's

provide much stronger-tests of theory than,methods currently in

general use'. Procedures for Calculatinipand evalUating the
forecasts are described in detail in the text. The repprt'is
one.product of a three-year longitudinal study of Aeveloping
career expecations in which the differential-equation methodol-

-ogy will be applied.
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Harry Drier (Pzo ram Director) and Robert Wise (Nla,Project.Of-
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ABSTRACT

This volume contains a theoretical rationale for a-differential
equation model of the process by.which career expectations of youth
evolve and presents a'detailed explication of the technical infor-
mation needed to use the model. Three *portant 'hdvantages of the
differential equation model are reviewedA rirsr inthe differen-
tial equation model, the dependent variables are rates of change
over time in career expectations of youthilllence, theory ,expressed
by differential equations automatically accommodates change over
time. Ih contrast, most current_models express'staLic _theory in
which cross-sectional differences among indiyiduals are the sub-
ject of inquiry. Secondly, the differential equation model expressL.

es all causal feedback suggested by theoretical analysis; Whereas,
alternative models frequently neglect Causal feedback. Finilly,
the differential equation mbdel provides a built-in facility.for
carrying out empi,rical tests of theory by evaluation of the ac-
curacy of forecasts made by the model.

, The technical explication includes: (1) a téview of math-
ematical and statistical material needed to understand the dif-
ferential equation model; (2) derivation of calculating formulas
for application of the differential equation model, and (3) de- ,

scription'of a computer program written in conjunction with this
volume. The computer program is designed to carryout calculations
needed for application of the differential equation model.

vs.

vi i



CHAPTER 1

"NTRODUCTION

Purpose of Volume

This volume is written in connection with a three-year,
longitudinal study of career expectations of high school stu-
dents; the study is funded by the National rhstitute of Educa-

_

tion. The intent of the longitudinal, study is to contribute to
scientific understanding of the process by which youth fo=
Icareer expectations such as educational, occupational, and in-
come expectations. To help achieVe this intent, the theory f0S
the study is'expresed by systems of differential-fcluations.
The differcntiallequatio methodology achieVes three desirable
outcomes:

(a) The methodoiogy expgesses verbal theory that career
choice is a continuously evolving process rather than
-an event

(,b) The methodology facilitates examination of two-
directional cause-and-effect relationships

(c) The differehtial.equation system expresses theory in
ipsuch a manner that forecasting (prediction) to any,
,point along a continuous time scale is an imdetliate
consequence of: the theory, thus, predictive tests of
theory are-encouraged,

I.

Clear*, the differential-equation methodology holds a much
broader appeal tnan the application to Study of career expecta-

. tions. It presents a veniclo for expressingthe dynamics of

natural systems in a manner that is unparallelgd stlandard
practice in tne applicaiion of statistical proceduresoand con-
tains the essential elements for incorporating predi6tions (fore-
casting) into the expression and testing of theory. Examples of
topics lor which .theisd features are useful inalude micfration
and economic growtfikorganizational, behaviori votingobehavior

.
and political attitudes, and criminology. In spite of The go-
tentially A.de application of the methodoAogical proc, .res,

they have not been applied very often, primarily becaut of poor
dissemindtion to substantive researchers, including those work-
ing on development of career expectations. This volume, there- .

fore, is designed to present a clear explication of the
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differential-equation methodology written in a style, permitting
uSe- by researchers with moderate'amount of technical traixiing.

.

The intent is to avoid a purely technical exercise; ratheru the
focus centers on the juxtaposition of techniques With substan-
tive issues. .

A number of years ago Robert Merton wrote:*

This limited account he.s,,pt. the very least,
pointed to the need for a closer connection
between theory and emPirical research. The
prevailing division of.the two is manifest

. in marked discontinuitiel-of empirical re-
search, ob the one hand, and-systematic
theorizing unsustained by empiricral test,
on the other (Merton, 1957: 99).

One goal of this volume is to help reduce the division between
method and tneory.

Outline of the Volume

There are six chapters in the.volume. Chapter 2 contains a
theoretical and conceptual discussion of the use of differential
equations to'represent career planning prodesses. ChaPter 3
presents a review of selected mathematical.and statistical,topics
needed for Chapter 4 and Ch'apter 5. The intent of Chapter 3 is
to communicate the basic. concepts, omitting rigorous proofs.
Chapter develops the mathematics of differential equations,
presents justification.for using.ordinary least squares in the
statistic, - analysis, and describes a'computer program that can
be used to estimate'coefficients of the dtffereAtial equation
system. Chapter 5 draws on the technical material presented in
Cnapters 3 and 4 to describe interpretations of differential-.
equation systems appLied to career expectation variables. Topics
include comparison of interpretations'of effects based.on cross-
lagged regressions to interpretations based on differential equa-
tions, analysis of tne time path of career expectations, includ7.
ing oscillations and equi1ib4,4m conditions, development of.
standardization methods for the coefficients'of differential
equations, and presentation of a generalized correlation for
assessing accuracy of forecasts. The final chapter summarizes
the volume.,

2
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CHAPTER 2

CONCEPTWILIZATION:AND INTERPRETATION

The purpoSe,of this chapter is to introduce the idea thatA
differential equations can-be used tolexpress some important
concepts and theory related to 'development of educationaiiand
ocqupational expectations. The firSt'Section of the'chaster:
explicates a simplifFbd cros'srsectional kath.model of career ex-
pectations. The path model serves as a 'reference Ilelping' to
motivate the'succeeding discussion bf diffe,Kential bquations;
the features of the differential equation *stems are contrasted
to those.of the' cross-sectional path model. A second section
present6 a brief theoretical rationale for using differential
equations in research on development of career expectations.
The third sectidq develops a specific diffetentia equation
model to, describe the variables included in, the path model in
section one. In the fourth section, interpretation of the dif-
ferential equation system-is discussed. The final section sum-
marizes the chaster. :The chapter is not intended to contain a
thorolIgh technical justification'for every poi,nt. .Technical
descriptions are contained in chapters 4 and 5.
. I

Pl_cross-SectionaI Path Model

Although the study of which this volume is a part addresses
knottwy theoretical and coribeptlial issues that cross the boundaries
of academicodisciplines, the guiding paradigmopf the research is
...drawn from itatus attainment work-inthe field of sociology. A
path.model bf the processes by which_parental statuses are trans-

r
mitted to offspring forms the fundamfintal point of departur.

tion ctescribes a Simplified version of such a model which
pan Se u ed as a ref4rencd when:examining a.differential-equation*

. model of ame variables. To simplify the exposition, the
example ,ts lees complicated than'many path models in the pub-
lished literature, related .to status attainment Proctss-
es'(e.g., HaUser, 2.972), Nevertheless,-the example doeA captdre
the.major conceptual and theoretical ideas in the status attain-
ment literature.

For illustrative purposes, in developing the model it will
be helpful to identify a sffiall set'of variables comtonly used in
status attainment research and to classify them into three broad
categories-, as follows:



I.

,Exogenous variables

Parental socioeconomic status
Mental ability

Intervening variables

Academic performance (y )

Significant other educational
(y2)

expectation of-ego

Significant other occupational (173)

expectation of ego-

Ego's own educational expectation
(114)

.Ego's oWn occupational expectation (y )

Attainment variables

Educational attainmeht )

Occupational attainment (z )

2

For purposes of illustrating the model,-precise definitions and
operational procedures for these variables are not'needed, but ,

some description of the variables and terminology is warranted,
especially for scholars who are not familiar with status attain-
ment research.

First, note that the variables ars4lassified into three
categories: exogenous variables, intefvening variables, and
attainment variables. Exogenous variables refer to background
characteristics that affect career planning but are not affected
by any other variables in the model. In this example parental'
socioeconomic status and menTal ability are classified as exo-
genous variable,s. Parental soCioeconomic status nearly always
includes father's educational level and father's occupational
status. Family income, mother's,education and mother's occupa-
tional status'also are included'frecItiently. In most of the re-
cent researbh, these status variables are treated empirically
as.distinst variables (e.g., Hauser, 1972; Sewell and Hauser,
/1975; Featherman and.Hauser, 1977), but fOr the illustration
presented here, the simplicity of a single aggregate parental-
status variable (SES) is prefcrable. Mental ability is opera-
tionalized by use of ajstandertdized ability"test. In recent
work it is treated as dependent on-SES rather than as an exo-
aenous v4riab1e, but this treatment is difficult to justify and
does hot alter most substantive conclusions very much. For

-0



cu4xent purposes, it is useful to present the example with two
exogenous variables.

The intervening vAriables refer.to educational and Lccupa-
tional expectations. Academic performance (school grad,..a) is
also included. To avoid confuelon with the Freudian cOncept of
"ego", it is important to note that in t.ie status attainment lit-
erature the term ego refers to the individual on whom attention
is centered; the term is used in contrast to the term "signifi-
cant other" which refers to an individual other than ego who may
exert some influence on ego's attitudes and/or behavior. For
example, suppose Jack is a hiWi school sophomore, the level of
education that he expects to achieve illustrates the variable
identified As "ego's° own educational-expectation. The 1.eveL
of education that Jack's mother expects him to achieve is an
example of the variable called "Significant other educational
,.xpectation of eg6."

,

The variables called attainment variables refer to the so-
cioeconomic achievement of ego. Achieement should be carefully
\differentiated from aspi;otion or expectatiOn:

It should be reiterated that the illustration is not a compre-
hensive.aodel. In published research, paren41 SES is Onerally
disaggregated into its components, a more detailed list of
significant-other-variables generally Is includ6d, and, ihcreas-
ingly, income attainments and, sometimes-iAcome expectations also'
are studied. The important theoretical, conceptual and method-
ological features of status-attainment research can be illustrated
with this list of variables, however.

.r

Figure 1 displays a"p&th diagram of the basic theory. A'

straight, single-headed arrow denotes a cause-and-effect relation;
whereas, the curved, dquble-headed arrows indicate Oanalyzed
correlations (i.e., nb ausal relationship specified)-. It should
be noted that the two:-directional arrows ce5nnectilg-pairs of
tervening variables depart from conventional path diagrams. Nor-
mally, these arrows are omitted. They are il2cluded here beCause
their pxsence more Accurately reflects the stat6 of the theory..
than t%eir omission. Omitting the\ curved arrow connecting, say
significant other:educaional expectation to significant other
OccUpational expectation implies that neitlaer one affedts the
other. It is more accurate to state that the theory lacks the
power to specify a one-diredtional.relationdhip, and,since the
statist-Zeal methodology demands:the assumption of one-directional
effects, the cause and effect relationship generating the correla4.
tion between the two variables is left =Analyzed.

-Note especially three features of the model., First, there
are no two-directional effects hypothesized. Secondly, the
model for the intervening variables ignores change over time.
Finally, the three subsets of variable* comprise a "block-recursive"
system. That is, exogenous\Nriables may affect the other two

5
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"blocks" of variables but.are unaffect4ed by them, cLaninteiVening
variables may affect attathmertt variables but ar,,flOt affqcted by

,attainment-variables. (The i tervenin4Wariables nqrmally are de-
(

fined over the adolescent yea )
(

.

As,represented in figu e 1, thereis no direct effect of,,the
exogehous variables on attainment yariables,, becaUse there are no

arrows leading directly from parental,SES or mentalability to at-

tainment. -Thts is an important theoretical feaV:ire of theimo01.,

'By hypothesis, intervening variables comprise themechanisms'by
which status is transmitt.ed*Ifrom earent tp child.* In additiorii

by hypothesis., educational achievement i the route by, which

parental StS, mental ability,; and career expectations get trans-

_ lated.into occupational status. In simplified form, the model

may be diagrammed as f011dws.

SES Gradesp
-,,,... Educa
Mental

tion,

Abi tllIty Expectations

S
(

.

/

Of courSe, data seldom support this parsimonious viewpoint in

euery parti.cul,ar, but the th.eoretical model'is approximated fre-

quently i.4!I emgirical study (e.g., Sewell and Hauser, 1575;
Rehberg and Rosenthal, 1978,; Duncan, Featherman, and Duncan,
1972; Alexander and Eckland, 1975; Cosby, et al.; 1979).

Occupational

Status

The path diagram'is a heuri ic picture of an equation sys-

tem. The major hypotheses are e pressed by a set of linbar equa-

tions, in the-,following mannertV

(14)

(lb)

se a* +10 , 11 a*
2

x
2

+
1

t

20
+ x

21 1 a22 x2 bZ1Y1

(lc), at, + + a12 x2 +
-

(1d) y4 a* + a1 + a12 + b* y + b* y b* y
40 41 1 42 2 .43 3

(le) ys a0 + a1 x1 + .42 x2 + 134511y1 + bg2y2 + btz,y3 +

f) z 0 q11 x1 q12 x2 4- PLY1 P12Y2 1313Y3 1

(ig) 22 q10 q4 x1 +.q12 x2 P111/1 P12Y2 P13Y3 811 21 +C'2

u
1

u
2

u
4
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Process Variablei

Exogenous
Variable%

Parental
SES

-Mental
Ability

Academic
Performance

4
,

SO ed. Ego ed.
Expectatiou__7-4' Expectation

Attainment
Variables

Educational
,Attainment

SO Occ. Ego OCc.
Expectation Expectation

Figure 1. Illustrative Path Model of Status Attainaent Processes.

Notes: SES socioeconomic statu

SO significant other

ed. 7 education

Occ. = occupation

14

Occupational
Attainment.
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Where the

ficients)
ur and v

,

bj * , q* p*
j

, and s*
j

are constants (path coef7_,
ij i i i
indexing theletfec, of variable j on variable-'i, the
are unmeasured "disturbance" variables. The variances

of the disturbance varialiles index the degree to which.depend.ent
varA.ables are controlled or influenced by the measured variables
hypothesized to affect them; theismaller the variance of a ais-
turbance variable, the laFger the influence of the measured
:variables.

It is important to,notice that equation system (1) does not
correspond exactLy to the path diagram in figure 1. First, for
simplicity the disturbance, variables are omitted from the path
diagram; this omission marks a mild departure from conven-
tion. SeCodly, there ard more path.coefficients (a*s, b*s, q*s,

..p*s and s*s inecliTiiiii5n system (1)) than there are paths in fig-

)ure 1. The .pt/h diagram oversimplifies to emphasize the theory;
whereas, the quations include all paths that typically would be

calculated.in empirical application. Ap',indication of how well

.
the theory fits can be'gained by observing how close to.iero are
the calculated paths corresponding to missing arrows in figure 1.
If-thb theory,were sufficiently convincing,' the postulated zero
paths could be assu d zero, and the information thtt some paths
are zero could'theA 1 aed to improve estimation of the other
paths. In the litrat e however, it is generally assumed that
the theory is ndt"!stronT,enough to merit setting any paths to

zero a'priori.* ..

-

.

There are t;;78 f' atures of the model th t are important.in
theA3resent context. First, the-4,7e are no t -directional cause-

. ,
and-effect gelationships hypothesized..- This Imeans that in no
case is there a path coefficient inCluded to ,,,dex the effect of

'y on x 2f thdre is a path coefficient included to index the ef-
fect of.x on K. Thus, for eiample, b21* is priktent in the model;

-f

its presence indicates a hypothesized effect of academic per-
, formance on the level of education that significant others ex-
pect,ego to achieve. On the other tiand, bn is not present in

the model; its absence,indicates an implicit hypothesis that
ego's academic performance is not influenced by the level of ed-4

ucational expectation held for him/her by significant others
(such as parents),

The second,)important feature df the model is its static
conceptualization of the process vakiables. Notice that changes

,
over time in the process variables'are nbt part of the model.
The model is about eross-sectiorlal diffgrences among individuals
not about changes over tiAle foa partiCular.individual. Al-

, -,thoqgh this point is nOt lew, it does not appear to be widely
-Understood, This distinction between change overrtime and
cross-sectional differences among individuals fovms an

1. e
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important part of the fustification for applying differential
equations to the study cif career planning. In .consequence, the
next .few paragraphs develop an algebraic treatment of the approp-
riate interpriltation of path coefficients calculated from.cross-
sectional. data..

The purpose of this discussion is to review tJie meaning of
the. phraSe: statiskical rcontrol" by linear regr ssion; when
regression method's are applied to cross-sectiona data. The
cOmMentaryalso,applies to. the concept of.direct. effect in path

analysis; The fundamental idea is to examine the impact of a
single independent varialile on'a dependent variable while hol.d-
ing all other'independent variables "constant." For thi.s exer-
cise, assullfe that the dependent variable is ego's ed4cational ex-
pectation (y4) 'and that one wishes to examine the eftlict pf. ,

signicant others' educational ex,Rectation of ego KI while .

N'

"controlling" or'"holding constant" the other inde endent vari-
ables affectinci y4. --, :

To develop this idea, consicler two individuals who hav-k the

same mental ability, same parental SES, same significant-at*r
occupational expectation, and the same level of the "distukbance"
variable, but who differ by one unit with respect to significant-
other educational expedtatlion. Suppose pne wished to discover ,

to what degree two such individuals differ in the level.of edu-
cational e)4aectation (y ). Define the followinaboration of

the notational Acheme:

x
11

x
12

parental SES for person 1 and person 2

respectively ;

x
21'

x
22

- mental ability for person 1 and person 2,
respectively

YII Y12
academic performances.(grade average) for person 1

' and person 2, respectively

.v
21' 2

y2 ='significant-other educational expectation for
person 1 and person 2, respectively

y31, y32 =,significAxIt-other occupational expectationsfor
person 1 and person 2, respectively

Y41 Y42
= ego's own educational expectation for .person 1

and person 2, respectively

u
42

= disturbance term for person 1 and person 2,
respectively

9
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Keeping in mind the conditions just established, inserit this no-.
.ation into equation.(1d) for person 1 and person 2:

(2a)
Y4i al0 a:11x11 + a2x21 + bI1Y11 + 1121121

+ b*
3
y
31

+ u
41

(person 1)
4

(2b) v lo + allx12 + al2x_2_
2

bt
4-, 41'v 12 + 1121722'42

a

+ b*
3
y
32

+ u
42

(person 2)
4

%

Subtracting both sides of equation (2b) from equaion'(2a) yields'O'

(3) Y41 Y42 =, (a ,to ) +, a* (x - x ) + a* (x
41 11 12 42. 21 2 )

bI1.(Y11 Y12 12(1'21 Y22)

+ b13(y31 y32) + (u4\ u4i)

Since we have constructed the situation so that all independent
variables are "constant" except 'significant-other educational ex-.
pectations of.,.ego and have stipulated.a unit difference between.
the two persOn's significant-other educational expectatiops, the
following facts hold:

-x12 =x
21

x
22 Y11 Y12 Y31 Y32 1141 u42

(
1

. and N, Y22
1.0. iquatioll ( erefore reduces t:

:21 ,

Y41 Y42 112

3.

In woids, ceteris paribus, a unit, diffeil'ence bgtween to persons
on signif4cant-other educational,expectation,generates a
ference in ego's own,educational exp'ectAtion:egual V the path

-21 Y22 4 and iscoefficient (b*
2

v). More generally, i
4

not zero, the ratio ofith0 differenc in th- dependent, variable
to the difference in the independen variable, "everything else'
being constant" 3s the path cc?effic ellt, viz:

(Y41 Y42)/(Y21 Y22,) 112'

This is the meaning of statisti "eontrol" by regression
in cross-sectional,data. For the present discussion, it is im-
portant to note that when path analysis is applied to cross-
sec)tional data, the path'coefficients index differences between

10
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individuals,'not changes oVer time. The relationship between in-
disgidua1 differences and change over time is seldom explicit (see,
howeer, oleman, 1968 and Hout 4nd Morgan4/1975). One of the
virtuespf differential-equation analysis ls that it can explicate
this relationship,

Theoretical Basis for a Differential Equation Model

Theoretical Background

Theedevelopmental theme of forming career orientations is
pervasive in \the vodational-psychology literature. Fqr example,
the idea is repdatedly stated in the wiltings of Donala Super,
who at one point expressed it in the following terms:

.PROPOSITION 1..-VocatiOnal develument is an ongoing
qaptinuous, nd gpnerally irceversible process. Vo-
eatiOnal preTerences and)competencies ... change with
time and experience, making choice and adjustment a'
continuous process (Super, et al., 1957: 89, emphas-
is in the original).

Ginzberg and associates state:

Our basic assumption was that an individual never
reaches the ulttmate-decision at a single moment
in time, but through a series of decisions over a
'period of many years; the cumulative impia l.'s the
determining factor (Ginzberg, et al., 195-1l 27).

This theme can also be found in theA*?itings ok,6Iii7Totiler theo-
rists (e.g., Pietrofesa and Splete, 1976; Tiedeman, 961; Rodgers
196; B1u, et al., 1956). After xeviewing several "macro-
theOries," Picou, Curry and Hotchkiss indicated the folloWng
general characterization of the theoretical literature.

The macro-Veoretical approaches reviewed above
have everal common themes. First, all of the
above theorists have iMplicitly or explicitly
noted the dVelopmental character of occupational
choice and 01acement. The problems of career
choice and attainments are clearly limited to a
life,-cycte framework. Labor market entry and
career patterns tend to be viewed in conjunction
with individual matttration arid growth (Picou,
Curry and'Hotchkiss, 1976: 12).

It is undoubtedly obvious to most of the research.community
that career orientations are formed in a gradual process over
time, yet operatiozal Rrocedures commonly found in empirical
study do not reflect th'is obvious point. While the theoretical

11



literature has been helpful in.pdinting out the dynamic nature Of
the process, a proposition stated in the general terms'such as
those used by Super and associates, quoted above, is of little
use in empirical research. It is imperative that the general
idea be translated into exact hypotheses. Again quoting Merton,

Much of what is described in textbooks ai\sociolog-
ical theory consists of general orientations toward
substantive materials. Such orientations involve
broad postulates which indicate types of variables
which are somehow to be taken into account rather
than specifying determinant relationships between
particdlar variables. . Indispensable though these
orIntations are, they provide only .the broadest
framework for empiricl. inhuiry (Merton, 1957:
87188).

Although most status-attainment models have been confined to
one-directional causal systems (for notable exceptions 'see Hout
and Mogran, 1976; Woelfel and Haller, 1971; and Nolte,. 1973)' there
is ample reason to exbect that several of the key proceg-s vari-
ables in career planning exercise reciprocal effects on each
other. For example, as described in'the preceeding section in --
most models of the process, academic performance and significant-
other variables are assumed to affect'youths'-career orientations;
"ef-fects of youths' career orientations on academic performahcp and
significant other variables are assumed zero Yet it is'plausible
that students adjust their academic effort in response tq their
educational and occupational ambitions. t is also plausible that
significant others, in part, adjust their expectations of youth
.to conform to the career orientations that the significant otliers
know the youth hold (see Curry, et al.; 1976 for a discussion of

these issues). Additionally, career orientations probably ex-
hibit reciprocal effects on each other;rfor,-,pxample, ecational
expectation probably affects occupational exioectation, 4nd vice
versa (see Kerckhoff, 1971). Consequently, the dynamic model
must permkt reciprocal effects among these variables.

In the next subsection, simultaneous differential equation
models are proposedas a general methodology for expres6ing the
dynamic, reciprocal 'aspects of forming career orielqations. The
discussion is presented via a'simple example that parallels the

. example of a path.model reviewed in the present section.

An Example of a Dynamic Model

Vir,ually all structural-equation models of status attain-
'ment prd,esges have been lizear, and the few available tests of

linearity assumptions shay only minor departures frbelineari,ty
(e.g., Casson, Haller and'Sewell, 1972; and Wi,lson'and Fortes,

\
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1975). Consequently, as a first effort to translate current
m3dels into dynamic two-directional thodels'it it; sensible to ad-
here to the linear postulate.'

The siMUTtaneous, differential equation mcdef assumes con-
,

tinuous tithe and -continuous'change in the endfgenous (interVen-
ing an& attainment) variables. There is little difficulty in
cOnpeptualizing the intervening variables as changing continu-
ously; this is a major emphasis in the theoretical literature
cited abovg. The attainment variables, onthe other hand, can- ,

not be so easily conceptualized as changing continuously. Oc-.
cupät(onal change obviously occurs in diObrete jumps, and educa-
tional attainment exhibits similar discontinuous-change
especially at the end of degree provams. These difficUlties
cannot be resolved in this' voluMe; lience,- the illustration will
be confined.to the 'exogenous variables and the intervening var-
iables, and specification of a model including attainment var-
iables will be,left for future work.

4WiCh'the above corisiderations in mind, it iS now.plausible
to formulate in dynamic terms tft basic status attainment model'.
To do this some additional notation is needed. Let the variable
symbols, xi and yi te identified by the preceding liSt Of var-

iables, let b
ij

and c
ij

be constants over time and over indivi-

duals, let dyi(t)/dt regresent the instantaneys change in var-

iable yi for a small change in time, and let ui4t),:be a distur-

bance term at time t. The, dynamic model can now hie written in
the following form:

(4.4) dy1(t),`dt

(4113 42(t1/Jt

C4c) dy3CtUdt.
Cid) dy94 t /dt

11 (4.) tiy54-t /tit

#1)11Y1(t) + LI/CObl2Y2 (t) + k.313y3 (t) "12141'4 1 b5y5 It) +

b21Y1 (t) * k22Y2 (t)

+ b31y1(t) t b32y2(t)

+ b41y1 (t )
b42y2 (t)

b
51

y
1
(t) + b

52
y
2
(t)

b23y3(t) b24y4 (t) b25y5(t) u2

b33y3(t) b34y4 (t) + b35y5(.t) 4: u3(t)

b43y3(t) 17441'4 (t) b45y5(t) NCI)

+ 12535,3 (t) + ka54y4 (t) + b55y5(t) + u Ct)

It is iMportant to describe how these equations reflect thethigh'-
ly generalized hypothesis that formation of career expectations
is a continuous process, and the somewhat more specific rgu-
ments tbat reciprocal effects may beiobserved among the odess

1. Clearly, this argument must be viewed ps an analogy, for, as
noted in the preceding Section oll1the text, the cross-
sectional path coefficients and the parameters of the
differential-equation model are not equivalent. I wish
to thank Professor Robert Leik for bringing this point
ta my attention.



variables. The fact that the dependent variables are instanitan-
eous change rates (dyi(t)/dt) with respect to time reflects the

continuous nature of the process. Observ g equation (4a), one
can see that the instantaneous change in academic performanoe
at time t [dy1(t)/dt] is a linear combination of the exogenous

,

variables,SES (xi), and mental ability Cx2)x and of all the

current values of the inter ening variables [yi(t)],- including

the current value of academ c performance itself (171(t)]. The

second equation (4b). indic tes that the Obange in significant-
other educational expectatiob for-ego (dy2(t)/dt)-it also a

partial function of the current values of all the intervening
variables. Hence, change in academic performance'is affected
by significant-other expectation 9f ego, and change in
significant-other expectation for ego is af;gected by academic
performance. This type of reciprocal pattern 'can be observed
among all the intervening variables. On the other hand, the
exogenous variables are assumed fixed and unaffected by any in-
tervening variable.

Stated in the differential equation form, these hypotheses
cannot be tested against data, since instantaneous change .rates
cannot be observed. Consequently, it is necessary to integrate'
the system in order to find the relationship between Observable
variables at two-points in Lme separated by a finite time in-
terval. The integration procedure is, described in Chapter 4.

It should be emphasized that equation system (4) is only
an example. Technically, it is termed first-order ordinary
simultaneous linear differential equations with conrstant coef-
ficients. The term first order means th,at no second or higher
order derivatives appear in the equations.2 The term "ordinary"
means that change rates are taken with respect to only one var.-
iable, time. The tOrm simultigneous means that all of the rela-
tiohs must old at the same time -- thus the equations express
the concept of a system of variables. The terM lin9ar means
that the al braic form of the(equations is linear. Finally,
the term gon ant coefficients means that all the bij are con-

stant over time'. Each of these features forms a partpf the
implicit assumptions of the model.. These assumptions are fair-
ly restrictive, but it seems rq.sonable to start with a simple
model and add complicating featUres as empirical,results indi-
cate. The point is that by suggesting this model,e3iploration of
the wealth of available techhology for describing dynamic sys-
tems of career-expectation variables bas only begun.

2. The concept of first, second, and higher order derivatives are
described in Chapter 3.



This section is divided into three subsections,. The first
subsection discusses the manner in which change over time is in-
corporated in'to the condeptualizatign ef the differential-equation
system. 'he second subsection reviews the use of differential
equations fot forecasting (prediction). The concept of equilib-
rium and oscillation are introduOed briefly. The, final subdection
discusses the relationship between the change coefficients
(a.. and b..) in evation system (4) and the path coefficients13 13

(a'. and b*.) in equation Systems (1).
13 13

Conceptualization of Change
_

Consider the dependent variables in equation system (4); in
each specific equation the dependent variable is a rate of

. change, dS/i(t)/dt. The numerator, dyi(t), stands for a change

'-1---\

in the variable yi over a very brief increment in time.

dyi(t) = yi(t) yitto)

lim
t

1 -0- 0

Where y1(t1) is the value of yi at tiffie tlf Yi(to) is the value

of yi at time to, and lim t1 -0. to means in the limiting case as
t1 and t 0

are very clbse to being the same. Similarly, the de-

nominator, dtr, stands for a very small increment in time.

dt t
#4,

Putting theSe two definitions togethpr, one sees that the depen-
dent variable is the ratio of change in y to change in time, as
the change in time approaches, but never quite reaches, zero.

The hypothesis stated in the example is that this rate Of
change is a linear function,of the exogenous variables,('WS, NA) .

and the current value of all the ictervening variables tinCluding
the intervening variable 1.7Eser ghange rate is the dependeht var-
iable. As -indicated above, this' particular functional fotim is
hypothesized by analogy with current path models of the,piocess.
There are severalobvious generalizations of tle example in
equation system (4). The simplest generalization is to permit
the coefficients Ca.., b. ) to be functions of time, While main-

13 ij
taining the linear form. Thus, for example!, if a51 were a
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positive numbe4Out erded to move to zero over time, than one,
would say that the influence of'parental status on youth'svoc-,
cupational status expectation deelines over the .high school -1

year*. More generally, the change rates can.be .bypothesized
.to be.arbitraty nonlinear functions of the current'levels
the'variables and. of time. These,generalizations will not*bp'.
considered further in this volume...

Forecasting

Given the hypotheses in equation system. (4) andlobservations
at two points In time for a sample of indiViduals, it is possible,.
to estimate all paramdters of forecasting equations. 'Fotboastt
then can be expressed as functions of .time;alone. Procedures for
determining numerical results.are described in chapter.4. Once

'these forecasting ftinctions are determined,, a predictod value for
each intervening variableb.for eaph4ndividual can be*tenératutl.
for any point along-I continuous time scale,' prior to oollecting
data for the third arigi successive panels.. Thesq pre4iction§,\
then, can be viewed aepredidtions derived froM-theory.of the .1

nanner in which' a' system of career' planning variablbs operate .

dynamically over time. The advanta4es of the built-in-prediction
formula are subgtantial. ,First, it .provideg the technique And
justifica.tion for predictite tests of the thebretica/ model of
status ..:tainment processes'that heretofore -have .not been carried
.out. work With longitudinal data has been cofinedato what
might be Jrmed "post-diction," that is, the valaes'of the,pre-
.dicte.d_variaibles have been used to help estilMate the 're4restion
equations. Since the4xegression coefficients are' chosen, ex post,
fa4o,,to maximize the accuracy IA the,estimateslaV:the:deplendent
variabAs (in ordinary least squaresc69tr not surprising"to

mfind that oderately.accurate estimat can be made., Projecting
predictions mior to observation of/the pre,dicted variables
coularesult in mean-square errors exceedinfie cross--,sdci.ional

,variance of the ,deliendent variableg, but the 'cross-Seytional:'
variance is the makimum.error variance for postdiction using OLS..
Hence, the predictive test ha's a.much Strongpr chance-of-failure
and 'thus constitutes a much stronger_test pf the model (reee
chapter 5.)

`

In addition., the cont4uous-time capability of the.pre-
di.ctive model permits the measurement iqkrvals to Yaky. A
period of one year might elapse between the first and second-
panels and the projections could be made for.one ano e half J

years,-two years, or any time perioa beyond the second panel.
This feature facilitates.coMparibons between studies ueing dif-,
ferent measurement intervals, and als6 provides researchers free-7

dom to determine measurement intervals tO suit their needs.

crij
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a

It has been obserVed that a path analysis based,on longitud-
inal data could also be, used tO generate pred±ctions.'.. Certainly

,path analysii (or regression analysi0 could be used in thiS way,
.butt-its application is, se0.ous1y limited,when compared to the
differential 'equation mode, Based on Ole pathanaSysis alone,'
any predictions would have to be made over e time inteil of
exactlyCtke saLte length. as the length of tima between' ihe mea-
surementN on wh'ich the.estimates of the patn coefgibients were
calculated. For-xample, if measurements were taken on high

'school freshmen and'again on the saMe individuals when'they be-*
came jupiersi; there is no mochanism built into the theory of
path anaWYsiv by itielf to permit predieting to the senior.year.
Predittions would.necessarily be.to the year f011owing the senior
year,.since estimates of path coefficibnts were based on a two-,
year interval. SinilarJy, if 'the first two measut.eMents were
taken during ti)4 freshman and sophomore.years, predictions would
1)6 to the juhior year. cPrediptions to the seRior.year based on
path-analysit would be either () ad hoc, or-(b) depend on,
tending4the fiheory of path enialysis, It seems unlikely .tha
many'researcheis would extend pliath-analysis theory in'the required ,

nianner4,-tillther, the ektension would gen6rate a special case oT
the forecasting formula derived from differential equations with
oUt the corrOsponding.concepitual benefits and flexibility of the
differential equStions."

Interpretation of Effects
a

.4%
rrhecl-iangecoeffici.entsuaij,and b.. in .equation systeM (4)

can be usedNt9 indicate' the eff9cts of the inteivenihg variables

_ on eachothkr(3.) and 'effectsrof, g-the exoenous variables on
.

.1.j
.

r

Vheinterveningvariabla7s(ai,j). For example, a 51 indicates the
.

'effect of pdrental SES on the rate of change in occupational-
status expectation of youth. 'Perhaps of move interest, .the b
coefficiltnts can be used to assess tlie relative.magnitudes 01

- two-directidnal effects. To illustrate
'

b
42 .I.

ndicates the in-"
;

.-...,,,
stantaneousi effect of significant-other educatiOnal expectatiom

..:

,
.

3. This point was made in a private dommdnication from Professor
Robert-Leik.- 1

,

The extansi,on undoubtedly would fallow a line of reasoning in
which-the path coefficients-calcUlated'over, say; a one
vyear interval were applied successiiely to predicted
values, starting one ve'ar,after the second measurement
-used in calculatringithe path coefficienfs. A general
prediction,equation could tig be developed by induction
.in a manner paralleling the eory of Markov chain, 'over

discrete time intervals.- Sifch'a development depends, .

however, on a model in which the same endogenous- variables
are measured at both time points, a pracethe not-frequent-
ly followed 'n 'empirical studies.'

`i7 4



for 6go oh the rate of change in ego's own educational expecta-
tion; conv_ersely b24 .shows the impact of ego's educational ex- .

pectation on significant others' educaiional.expectation of egp.

As'conceptualized here, comparirgon of effects of one vari-:
able to effects of a second variable on a given dependent rate
of change-is awkward*, bepause the (independent variables mil, be
measured in scales that are quite Bifferent fromivariable to
'variable. In path analysis this'probIem often 4 resolved by
transforming all variables to a scale with zdro mean and.unit
variance, thereby rendering rough comparisons between coefficient's
feasible. The simple strategy Of transforming all variables to
zero mean.and unit varialce when the same variables -are mea'sured
at more thah one point in time is not adviiable however, because
the strategy artifically removes change over time in the mean,and
variance from the data. Methods of standardization that aVoid
this problem will be developed in Chapter 4.

Comparison to CI,:ss-Sectional Path Coefficient_s. In the .

preceding discussion it wastemphasized that cross-sectional pAth
coefficients measure differences between individuals at agiven
time point rather than changes over time. Under certain circum-
stances, however, the cross-sectional paths (a*

j
and b,

j
) yield

i i
usefulinformationaboutthechangecoefficien(aijand.).bli

If the'system of career development variables (equations (4k) has
reached an equilibrium state, i.e., stopped changing, then the
cross-sectional path coefficients and the change coefficients
for a given eeluation arb equal, up to a constant of Foportion-

. ality. This means that each path coefficient in a given equation
cap be multiplied by.the same constant to yield the corresponding
change coefficient (Coleman, 1968). Unfortunately, the constant
required to convert 'from cross-sectional paths to change coef-
ficients 'cannot be calculated from cross-sectional data. This
inter'pretation, of course, depends on specifying the path model
so that it permits nonzeto paths everywhere that nonzero change
coefficients are permitted (e.g., if the differential equation
model permits nonzero bij and bji, the path model must permit

nonzero b* and bt ). It should be emphasized, however, that

even in equilibrium, comparison of path 'coefficients between equa-
tions is not permissible, since different conversion constants
are i:equired for each equation. For example, comparing Will to b13

is permissible, since these two coefficients appear in the same
equation, but comparing bll,to bt4 is not permissible. Compari-

sons between equations would be appropriate only under the as-
sumption that the instantaneous effect of the level of each var-
iable on its own change rate iSrthe same for all variables
(b
11

=b
22

= = b 'where there are J equatioffs).. This is aJJ' ,

A
restrIxtive assumption, so such comparisons-shouid generally be
avoided.

18



Comvarison to Cross-Lacjged Path Coefficients. Suppose two
Noservations7for -each individual and each endogenous variable
were available, 'and a path analysis were executed ihiwhich the,
tim-one observatiOns.on the endoqenous vaiiables were among the
independellt variables and time-two observations were the depen-
dent variables. Define all the same endogenousvariables as in
the previous ,examples, and let y(0) be thd observation for yi

atulebegirmingpointfaild17.a) the corresponding observation
1

at time 1. 'A c-ross-lagged path-analysis might be written as
follows:

+ atixi + al2x2 + (0) + + bt5y5(0) + ut

y5(1) = ao + atixi a*
2
x
2

+ b51* y
1
(0) + + b55* y

5
(0) + u*

5 5

e..g.4 Heise, ,1970)., Generally, the coefficients at. and
13 13

are interpreted as indicators of'the magriitude-of effects of one
variable.on another. But such interpretations of the cross-lagged
path coefficients calculated oveefinite time intervals must be
made with caution. The magnitudes of the 13* coefficients depend
on the length 9f time interval between measur<nents; further,
the relative magnitudes of different b* coefficients also depend
on the length of-the measurement interval. This means that the
.relative effects of two variables on a given process variable
(b*

j j
vs b* j X j') depend on the length of ttle measuretent

i i

interval, andsthe relative magnitude of reciprocal effects de-
pend on the length of the measurement interyal. Even the sign
of the b* may depend dn the_length of the measurement interval.5

This observati6n will be justified in Chapter 4, but it
should be noted here that the statement depends on the assump-
tion that the differeritial equation system really does describe
.the process:

400
Summary

This chapter has developed the substantive rationale for-ap-
plying differential equations to the study of Oevelopment of
career expectations. The conceptual framework'is drawn from
sta us-attainment iesearch in sociology, butimportant.theoretical
insi Its from other research traditions were referenced al.so, and
inclu ed,in the model where possi,ble.

5. Doreian and Hummon. (1974; 1976) make similar observations
about a single-eiquation model of status attainment
piocesses.
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1

The first section of t\he chapter r4ciews,the status attain-
ment theory and kesents'an illuitratiOn olf a path Model::bf
theory. The path model showS status background and mental.abil-

atfecting career-expectation variables. The career-
expectation-variables affect career atkainments, The'path model
of this theory is a'set of linear equaeions'desqribing cross-
sectional differences among,individuals rather-than changes,over
time.

The second section presens the theoretical basis for trans-
lating the cress-sectional-path model into a dypaMic model'rep-
resented by a systgm of linear-tifferentiO. equatlions,. Two pointst..'
are made. First, theory sugges s that career expectations
velope gradually over,continuous time. Secohdly,, Most of the
career-expectation process variables-probably exhilki.t two-way, .

effects on each other. 'Neither tit these importft features Of
career expectationstare expressed byerross-sect 6;14 path models%

,

The third section preseqs an example'Ofia differential
equation-model to.expreSs the dynamics of developing career ex-
pectations and-two-wdy effects among, career-expectation process 'a'
variables. The differential'equation model repeesents the rate'm
of change over time in career-expectation variables (e.g.,
status level of occupational expectation) ,as finear functions of
background variables (family status, mental ability) and of cur-
rent levels of the career-expectation variables... Career attain-
ments are lomitted from the model because thev :7.!Iange abruptly
at isolated time points rather than continuoLií over time.

The fourth section discusses interpretation and appligations
of the differential-equation model.. It is noted that the model
refers to change at a point in time rather than over a finite
interval of time. Use of the model to test theory by forecast-
ing is emphasized. It is,argued that accuracy of forecasts /

comprise, stronger test.of theory than the usual post facto '

regression analyses'in which correlatioAsdare used to index the
accuracy of the model. In addition, interpretation of the
change coefficients associated with ),:he differential equation'
model is compared to interpretation of crogs-sectional and,cross-
,lagged path coefficients. It is noted that cross-sectional paths
generally do not coincide with the change coefficeints but do es-
timate change coefficients up to a constant of proportionality
if change in the system bas ceased. Perhaps of more interest,
the cross-lagged path coefficients calculated from two panels of
observations on the same process variables depend on the length
of the interv. .f time separating the.two panels. In contrast,
the change co-, ,cients do not depend on the length of the mea-
'surement interval, assuming the differential-equation model des-
cribes the process under study. It is therefore recommended that
interpretation of cross-lagged path coefficients proceed with
caution and with the realization that the coefficients do depend
on the length of the time interval separating panels. The change
coefficients associated with the differential equation model are an
alternative set of coefficients that researchers may wish to de-
pend on for interpretations of effects.
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C;IAFTER 3

REVIEW4OF SELECTED, MATHEMATICAL- AND STATISTICAL
:CONCEPTS AND RELATIONS

a

4

Thorough understanding ofparts of this volume probably
requires some previous exposure to calculus and ta linear alge-
bra. To reduce the burden on the reader, however, this chapter
reviews some basic.concept's and relationships in mathematical
and statistical theory that are used repeatedly in the remain-
ing chapters. The review is cursory and highly selective. In
most instances, basic'concepts.are summarized in an intuitive
manner, important theorems are illustrated numerically, and the '
theorems are stated in brief form without proofs. There are

-four main topics. First, elementary concepts and formulas-in
calculus are summarized. Secondly, complex numbers are dis-
cuS-sed briefly. Thirdly, concepts and formulas in linear alge-
*bra and matrix equations are covered. This review is somewhat
,more extensive than the others because of the strong dependence
of much of the,material in this volume on theorems from linear
algebra. Finally, a very brief and selective discussion related
to inferential statistics is presented.6

Elementary Concepts and Formulas in Calculus
)

There are two ma3or branches to the study of calculus -- the
differentialicalculus and the integral calculu's. A selective re-
view of the differential calculus is presented first, then the
integral calculuhs is reviewed. These reviews are not rigorous
presentaticns of the mathdmatical theory. Rather, they summarize
very brl_efly some basic results needed in the remaining chapters,.

6. The material in this chapter is common knowledge or readily
derivable from.coTmon knowledge in the mathgmatics or
statisticaltliterature. Numerous reference'sources
were used to assemble the information contaihed in the
chapter'. These include Goodman (1969), Freund (1971)
Hohn (1972), Yamane (1968) , Lancaster (1968), Fisher
and Ziebur (1958), and Platt (1971). Readers desiring
more rigorous and complete piesentations of ihe theory
are referred to these sources, among many others that-
are available.
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Differential Calculus

The diffelrentiaatcalculus is the study of slopes of 'con-
tinuqus functions at isolated points on the curves defined by
the function. The_slope of a straight line defined by
y = a + bx is familiar; the slope is .the "rise over run" or the
change in y as a ratio to the change in x. Let xo and xl'be

two values. of x, and let yo and yl be the correspo.nding values

of y determined by thb linear equation, i.e., yo = a +...ioxo, and

yi = 4.+ bxl. Denote the change in x by Ax = xo and the

change in y by Ay =.y1 The slope iS then defined by

AY

'N

Y1 yo
Xl Xo

b
Ax

(a + bx, ) (a + bxo) b(x1
Xo Xi - xo

A

This is a familiar result, illustrated in the previous chapter;
the- slope of a straight ine is the multiplier constant b in
the linear equation y = a + bx. -

For-a linear equat on, this result....hoids irrespective of
' the magnitude of AX, bu for a curved line, the slope does de-
Pend on the magnitude o px. To se;this, observe the parabola
in figure 2, defined by y = a + bx2.

Ito%

.14

-3 -2 -1 1 2 3 x

Figure 2. Slopes .of a Curved Line

The graph is constructed with.a = .5, and b = .2. Assume for
example that ome wishes to calculate the slope of the line de-
fined by connecting the 'points on the graph corresponding ,to
x =, 1.5, and x = .5. For xl = 1.5, yl = + .2 (1.5)2 =

For( xo = .5, yo = .5 + .2(.5)2 = .55. Hence, py = yl yo =

.95 - .5ff = Ax = xl xo = = 1. The slope,
4

therefire, is: Ay/Ax =..4/1 = .4. This slope is represented by
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s on the graph (figure 2). To show that this slope does not
1

remain fixed for different amounts of change in x,,carry out a
Caecond set of calculations with xi = 2, and x

0
= .5 One finds:

y = .5 + = 1.1

-.111r0 = .5 + .2(1 .55

y = y y
o

= 1.3 - .55 = .75

x x - x
o

= 2 = 1.5

Thus, slope = AyAx = .75/1.5 = .4

The following point has'been illustratpd: From a given start-
ing.point, a change of one unit in the independent .variable of a
nonrinear function generates A different slo-Pe than does a change
of one and a half units.

.It may be useful to contrast this exampll to a parallelset
-44,figures forla linear function. Consider the.linear function

+ bx with a = .5 and b = .2. Note that the constants for
this illustration are the same as for the prsevious example invol-
ving a nonlinear function. It was just shown that the slope of
the linear function, y = a + bx, is b.. )4In the 4resent case,
'slope = b = .2. To illustrate this fact, tak. the same points
for,x which were used to illustrate the behav or of the non-
linear function. For x

1
= 1.5, and x

0
= .5-

,

Ay y y
o

(.5 + .2(1.5)) - (.5 + .2(.5)) =

Ax = 1.5 .5 = 1

slope = Ay/Ax = .2/1 = .2
L

. 2

For the second pfir,-of x values used in the non126ar example,
x
1

= 2, and x
0

.5, one has

AY = = (.5 - .2 (2)) .5 .7. .2 (.5)) = .3

Ax 2 .5 := 1.5

slope = AY/Ax = ,3/1.5 = ,2

As illustrated, the slope is constant for the linear function and
equals the multiplier constant, bk= .2,

;
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It can also be seen that for the nonlinear function, the
slope is a function of the starting value of x as well as of 11,x.
For example, let Ax (-.5) - (-1.5) = 1. Note that Ax = 1 is
the same as for the first example with the parabola. For the
first example, however, the slope = Ay/Ax = .4, but a quick cal-
culation for the present case shows that the slope is -.4. Sim-
ilarly, for Axl = (-.5) - (-2) . 1.5, slope = Ay/6x = -.75/1.5 =
-.5. In thv second example with the parabola, the change in x
was also 1.5, but the slope was a positive one-half rather than
negative one-hal

The differential calculus is the study of how slopes of
continuous functions depend on x as Ax goes toward the limit of
zero. Consider now 'the function y = a + bx2 algebiaically rather
than draphically. The slope can be written

ay + bxi) - (a + bxi)
/1, X ,A x

.b(x? xl)
xl xo

= b(x1 + x0)
xl

= b(x14111- xo)

In the limit as A x -+ 0, xl xo and this result can be written:

AY 2bx = 2bx = 2bx
ox 1

lim
Aix -0- 0

This is the derivative of y with respect to x for a parabola of
the form = a + bx. In general, the derivative of y with re-
spect to x is denoted by dy/dx. As can be seen by the example,
derivatives do, in general, depend on the value of x.

The general,definition of the derivative can be expressed
as follows. Let y be a continuous function of x, Denote by
y(a) the value of y when x = a. Now,' by definition

4y y(x +Ax) y(x)
dx . Ax

lim

v
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In words, the derivative of a continuous function of x is the
slope of the function at a specified point on the curve. 'This
is not a rigorous definition, but it does offer an intuitive
statement of the main idea.

The study of the differential calculus largely is concerned
with finding algebraic expressions for the derivatives of alge-
braically expressed continuous functions.' Some of the basic
results needed in the remaining chapters are given here without
proof. It is assumed that y and z are continuous functions of x.

1. d (a + by)
dx dx

dy
n nyn-1 dy

dx dx

3. d (y + z) dy dz
dx dx aTc

4. d ln y 1 gy
y > 0; ln y stands for the natural log of y.

dx

5. dvz dz dy
dx dx dx

6. y dy
dx

= e dx
e is the base of the natural logarithm

7. d sin y
cos vdx dx

d cos Y sin Ydx dx

7. Certainly, not all functions can be expressed algebraically.
For.example. a string may be spread in a curved fashion
acrogs a pair of rectangular coordinates. So long as
noline perpendicular to the'horizontal axis crosses the
string:twice, the set of points defined by the path.of
the string forms a function. If there are no /kinks" in

the string, it forms a continuous function and hence, is
differentiable; yet it is unlikely that any algebraic ex-
presion describes the path of the string.., It is, per-
haps, a curious fact that the deriva.tives Cf many func-
tions can be expressed algebraically'even though the
fupctions have'no algebraic expression.

r4 2
,
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In all these cases, the fact that y and z are continuous functions
of x is important to a proper interpretation of the formulas.
First, illustrate the formulas in which z does not appear. As-
sume the simpleSt possible function between y and x by setting
y = x. For this instance dy/dx = 1. Thus, ,for example, formula 1
simplifies to

aR,(a + by) = ai (a + bx) as before

Formula 2 becomes

dyn
=

dxn
dx

Formulas 4, 6, 7, and 8, respectively, simplify to:

d ln x
dx

de
x

= e
x

ax

4c1 sin x cos x
dx

d cos x
dx

-sin x

To illustrate the addition formula 3 and, product formula 5,

lqt 9r = ex, and z = ln x. From formulas 6 and 4, resAptivelY.,
1

one finds dex /dx = e
x

, and id 111x/dx = -p.x > 0. lignee, the ad-
,.

dition formula specializes to

1
d(y + z) = d(e)C + ln x) = e

x
+ x > 0

dx 06,7

Similarly, with these twy functions (y, z), the product formula
bectimes

. , . x

dyz = d(ex ln x) = ex dIn x dd
+ln x

dx
ji-

dxdx ,

--;-- e + (In x) e
x

,

= cx (1 + ln x)
x

*

To illustrate a more coMplitated case than y = x for the

formulas not invdlving z, see y =1/2x 2'. In this case, formula 1,
,

for example,, indicates .

26
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d..(a j 4) = b dllx
2

Attention now shifts to ,fining higher-order derivatives.
Consider s simple function and its derivative:

=(1/6)x3

dy/tx =(3/6)X2 =4-1/2)x2 (r le 2)

Let z = dy/dx = ilx2; then dz/4dC= (by rule 2 *again), This
can be conspptuelized by the,folowinf)' notatipp.

dz tkd 1dy
ax

2
d 1/2x2

az dx

Now, ince az/dx is the furiction\ief by 4,4ferentiating
Sy = (1/6)x twice, it is termed the seco d derivative of'y or the

derivative o'f. the secon0 order. &common notation.for this is
,

a,

d2 (1/6 x3)/dx2 = x. Mobve generali.y,' let f(x) be a smooth f nction

of x, then its nth order deiivative ifs denoted by d
nf(x)/dx

It is defined by differentiating the'fiasztio f(x) n times.
( '

.416,

The Integral Calculus

There are two types of integrals.-- the indefinite 4ntegral
(or antiderivative), and the definite integral. It is important
to maintain'the conceptual diitIRETU5n betwten the f-mo integrals.
Consider.a continuous function of x, f(x). The indefinite inte-
gral of f(x) is defined to tb a second continuous function, say,
F(x), whose derivative equals f(x). The indefinite integral of
f(x) is,denoted by the symbols ff(x)dx.' Let

ff(x)dx = F1x)

then by definition

dF(x)
dx

The definite intelkal is somewhat more difficult to define
intuitively0, but it can be interpreted as the area under a con-
tinuous curve from one specific point on the, x axis 'to a second
specific point on the x axis. For example,e'the shaded area in fig-.
ure 3 depicts the 'definite integral,from point a to point b.

27
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a

Figure 3. Area Under A COntinuous Curve

An approximation of an area, under a curved line can.be found by

adding the areas of narrow strips under the .curlie, as illustrated

In -figure- 4v-

a

Figure 4. Approximations to the Area Under a tmooth Curve

Note that the area A of each rectangle is givjen' by the product of

its height and width. If its height is y = f(x) and width is the

change in x Ax, then A = 'f(x) i x. ,Intuitively, it is clear

that in the limit as Ax goes to zero, the sum of the areas of the

rectangles gonverges on the area under the curve. The definite

integral,from a to b of f(x) is denoted by-

44
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it can be'viewed heuristically as the sum of the areas.of'narrow
strips whoe-hei.ghts are f(x) and widths are 6x, in the Ximit As
Ax O.

Now, let F(xY be theindefinite integral of f(x.), so that

F(x) = ff(x)dX

One of the most fascinating and useful facts in mathematics is
the connection between the indefinite integral F(x) and the
definite integral, to wit,-

f
a

f(x)dx = F(b) Ffa)
rr

. This is known as the fundamental theorem of calculus. It says
that the area under a section of a continuous curve, that is,
the definite integral, can be Calculated by finding the dif-

. ference between the indefiniLe integral-evaluated at the end
'points, a and b, of the section.

;

Ibt

The integral,calculus is the,basis for translatinglhypoth
eses conterning instantaneous changes over, time into forms that
can be studied eMpirically. Since such translations are the fo-
cus of the differential-equation model of career expectations,
it is useful to see how the translation can be achieved. Sup-
pose one forms a hypothesis about changes in y over tiMe:

dv
= f(y' t)

dt

A derivative cannot be observed s nce it is'a slope over an in-
finitesimally short peridd. Let (t). be a function of t such
that F(t) is the indefinite integr 1 of f(y,t), and note that-

fa dy = yb ya. Taking the definite int:egral on both sides of

dy = f(y,t)dt, therefore, yields

yb ya F(tb) F(ta)

yb = F(tb) (y Fita))

where ta, tb are two sppcific time 1:36ints atwhich y.= ya gnd

respertsively. The equation involving derivatives has

been converteei into one in which all elem6qs 'are observable.
One can view ta at a fixed initial time poiht and let tb vary;

in these circumstance ya is'a fixed initial value pf y and yb



%.,

variesh,tb. Hencel.from ty ihitial hypothesis concerning
.

c-..

continuous change, a' functidA giving y in terms of t has been
derived. The function'qan be tt'sed in conjunction with datA.

The above result was dbrived with the definite integrl.
The same outcome.also can be derived using.the indefinite inte-
gral. Since it Is sometimes more convenient to use the indefi-
nite integralf_ the alternative derivation is presented. Again,
consider the dlt-ferential equatiOn: dy/dt 7 f(yrt).

dy/dt,= f(y,t)

dy f(y,t)dt

/dy = ff(y,t)dt

Suppose that F(y,t) is,a solution to fhe differential equation,
so that, by'dpfinition, dF(y,t)/dt = f(y,t). If dF(y,t)/dt =
f(17,t), then Iso does d[F(y,t) * c]/dt = f(y;t), where,c-is Any
constant cver t. This is an'essential aspect of integration;
c_sometimes is called the constant of iny'egration. Applying
this concept, one 'finds:

fdy If(y,t)dt

y = F(y,t) +

To check this'resu1t4 differentiate both sides with respect to t:

dy/dt = d[F(y,t) + c]/dt
AK.

= dF(y,.t)/dt.-4. dc/dt

f(y,t) +

since dF(y,t)/dt = f(y,t) (by eonstruction)f, and t e derivative
of a constant is always zero.

For empirical work, the difficulty with the result.that,
y= F(y,t) + c is that c is an unknown constant. To find c. one

needs an observation on y at a given time point, say ta. With

$.he observation point (ta sya
) one has.

Y (t
a

) + c

c ya F (ta

Puttiny this result into the indefinite integral yields the pre-
Vious conclusio4 based on the definite integral:
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y = F(t) + ya - F(ta)).

vp

4,14

$qmetimes an alternati.ye notat n-ror finding a definite.
integral, over a specified interval onvenient. 'In the'nota-
tion.used so far

4

tb b
st
a
'dy =

tat
(y,t)qt = F(t. ) F (tb)

Suppose that one desired to denote the initial time point by 0
(time zero) and the second time point by t; The notation

t'f(y,t)dt is -an.awkward notation tp rePresent the desired re-

sult becau-se thp symbol t is used i4 the same exprlession to in-
dicate the end point of the interval and all the pojnts in%-pe-
tween. A much clearer nOtation is:

.t t
fdy = ff(y,T)dz = F(t/ 7 F(0)
0 0

Now, t denotes the end point of the intevale and T indicates
theevariable which assumes all values in the interval (0,t).
The variable here denoted by T'is sometimes called a dummy var-
iable', but it should not be confused with the same terlq used to
'indicate,representations of categorical variables lin regression
analysis.

A large part Of the ttudy of the.integral galculus entails
findi-ng algebraic expressions forindefinite integrals. Several
of these results are listdd without proof below, for reference*
in later chapters. It is presumed y and z are continuous func-
t4cpns of x.

I bdx = bx + c

1 n+1
2. 1 xndx = + c n

3. f (y + z )d* = f ydx + f zdx + e

R = ln x + e

5. I =
dx -c

dy

6. I co s x dx = sin x c

7. -I sin x dx = -eos-x + c
,

wher6 c is a contant.



It should be emphasized that many .integrals .uxist that cannot be
expressed-by an algebraic statement. In fact, even for functions
given in algebraic terms,.existence of an integral expressable,by
an algebraic statement is the exception .rather than the rule. .

When algebraic exprespion of integrals cannot be found, numerical
solutions are a.viable alternative, by use of electronic computers.

Complex Numbers

Some of the results of the section on linear algebra depend
on knowledge of complex numbers; hence, a very brief summary of
the important ideas is given hre. The concept of a complex
number is more.meaningful if set in'the coftext of other ntAaer
sets. The positive integers are Aiscussed f#st, and the set of
positive integers is gradually -expanded through the-real numbers,
and, finally, the complex numbers.

Consider the number set defined by the positive integers:
1, 2, One can-add and multiply two positive.integers
together and end up with a positive integer for the result. The
positive integers therefore are said to be c;osed in addition and
multiplication. Subtracting,one positive integer from another
positive integer does not necessarily yield a positive integer
as, the result, however. For example, 3 - 5 = -2, or 4 4 = 0.
This difficulty can be overcome by defin9 an expanded number
set, to include the positive integers, zero, and negative inc. -

teaers. This new number set is closed for addition, multiplica-
tion and subtraction, but not for division. For. examplp,

N,

6 2 3, rout 5 2 = 2-.5, which is not an integer. Expanding
the number $et to include rational fractions as well as all
integers and zero generates a number set which is closed to the
four arithmetic operations --addition, multiplication, subtrac-
tion, and divisiQn.

Even the rational fractions do not correspond to every point
on a straight line. This may be counter-intuitive; to see 'why it
is true, consider the point p in figure 5 below.

Figure 5. Real numbers and points on a line
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The positively.slopin4 line Trom the,origin to point B and the
negativelyvsloping line from B to point p are at right angles
and each is one unit in length. The problem is to.find the dis-

. tance from the'origin to point p. This distande is the 1engi.11
of the "hypotenuse) of a right tqangle. By the Pythagorean
thepr'em,1.,t4prefore,.the square of the length from,the origin to

2
p is 2 = 1

2
. The length, R., therefozgl is 2, = /IT But the

square root of two is.not a rational fraction, as shoWn by the
followinig argument.

Since D
2

= 0, 1
2
= 1,-and the square of any integer larger

than 1 exceeds 2, try letting if-= a/b, where a/b is a rational
fraction reduced to its lowest commbn_denominator. If a/b is a
rational fraction reduced to its lowest common termr(all rational
numbers can be so represented), then eithpr a or b must be an
odd integer, because if they were both even, they would be divis-
able by 2, and therec,ore, not be reduced to the lowest common

term. Since we are assuming = a/b; a
2
= 2b

2
; hence, a = 2(b//f),

thus shdwing that a.is an ev41 integer. Since a is an even in-
teger, one can represent it'by the prtoduct, 2c, where c is any
integer. One finds

-

1.*

4c
2
= 2b

2

2c
2
= b

2

2 ?
Therefore, b is also an even inte-ger, implying b is an even in-
teger. Thus, the presumption-that a/b is.a rational fraction re-
duced to its lowest common denominator is contradicted. It is
concluded, therefore, that 42- is not a rationalnumber. Yet it
is a pointon the line, as illustrated in figure 5.-

. The set of numbers must be expanded to illclude some numbers
other than the integers and rational fractions if all points on
a line are to correspiond to a number. The real numbtrs comprise,
a set of numbers with a one-to-one correspondence to,ointsfl a
line of infinite distance in either direction from thorigin.
Yet all operations on the real numbers do not yield real numbers

as answers. For example, the ecOlation 1
2
+ 1 = 0 gives

but no real number satisfies this relation, since the product of
any real number with itself is positive. The last expansion of
the numbLt-r set is the cotplex numbers. 'omplex numbers are writ-
tell in the following form:

x = a + bt,

2._
where 1 = -l'is the "imaginary" unit. (The -'1,JiCaba-1-- E means i8\
defip4d by.) The real ntiffiber a is called the "real" part of x)
and the real number b is termed the "imag' ary" part of x.
complex conjugate of x is denoted by x anu is defined

x = a bl

S.

33



All algebraic operations are defined on the set of complex
-numbers in the same way as for real numbers, except where

t2 is encountered it is replaced with -1. Thus,,addition, sub-
traction, multiplication and division of xl =\a, + loll and x2 =

a
2
+ b

2
are defined as follows.

.

x
1
+ x

2
= + a

2
+ b

2
= (a

1
+ a

2
) + 2

x
1

x
2
= a

1
+ b

1
1 -

2
b
21

= (a - a 2) + (b
1 b 2)11

.,

x
1'N 2 1

= (a. + b 1)(a
2
+ b

2
1) = a

1
a
2

+ a
1
b
2

1 + a
2
b
1

1 b
1
b
2

(a1a2 b1b2) (a1b2 a2b1)1

(al + b11) (a
2

- b
2

1)
(al + b

1
1)/(a

2
+ b 21) =

"32 1321 )

(al + (a2 b2 )

a2 b212
2 2

='(a1a2 +,b1b2) (a1b2 a
2
b
1
)1

a
b2

, since 12= -1
2) 2

a1a2 + b1b2 a b - a I:

P1 .1

2 aF + b2
2 2

a2 su 132

2 2

Hence one sees that the complex numbers are closed in addition,
subtraction, multiplication and division, since the results of
these operations with complex numbers are, themselves, complex

numbers.

A complex number is a pair of real numbers a,
graphed as a point on a plane, as in figure 6.

#4
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a

ca.

x=a+ bt

Figure 6. Graphical representation of a com0.ex_number

The absolute value of x = a + bi is defined by lx
The angle 0 is termed the argument 'of x. Note th
written in trigonomep-ic form:

x = a + bi = 31(cos 0 + (sin 0) 1)

/2 2
= r = va + b .

t x can be

since sin 6 = b/r, and cos,0 = aA.

For multipljioation, division, finding.powers and roots, and
exponentiation, the trigonometric form is very useful. The fol-
lowing results follow directly from the,definitions of complex
numbers and the operations; they are listed without proof. Let
x
1

= r
1

(cos e
1

+ (sin 6
1
)1), x

2
= r2 (co 6

2
+ (sin e

2
)1), and

x = r(cos 0 +, (sin 0)1), then:

1
x
2

= r
1
r
2

(cos(0 + 02) + (sin
1

+ e
2
)1}

x1/x2 = (r1/r2 ) {cos(01 02) + (sin ( e
2
))1)

xn = rn icos(ne) + (sin (n6)1) \,)

l/n l/n
x = r {cos [(0 + 21(1)/n] + (sin [(e + 2kir)/n31)

where 0 is given in radians ,And k = 0 1, Therq.dre n

l/n
roots to x4,4. . Exponentiation apd natural logs can be written:

ex ea
[cos b + Csin b-3-1,],.x*.4-,-- a + bi

1xix = ln r + (0 + 27k) 1

where k is,any integer.
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The exponential and 1 garithm bf.comple* numbers enter-into sys-
tems of linear differential equations in an important' way. The
principal branch of ln x is def.ined by setting k =

in x = in r 01 ; if k.= 0

Hereafter,in this volumetit is-assumed that the Kincipal branch
of the logarith is to b used.

Elements of Linear Alizebra

There are three aspects of linear algebra and related matrix
equations which are teviewed here. First, basic concets related
to systems of linear relations are summarized. Coverage includes
the concepts of a solution to'a system of linear equations, rank
of a system, and determinants. Secondly, chlracteristic equations
are reviewed,'including eigenvalues and eigenve.ptors of asymmetric
real matrices. Thirdly, matrix funcpions involvingleigenvalues
and eigepvectors aae introduced. 0

ems of Linear 'Equations

Consider t :ol owing linear equation in two unknowns, x
and y.

x.-1- 2y . 3
4

.Clne can solve for y a fu ction of x or solve for. x as a func-
tionof Y; 4

V
y - 1/2(3 x)

x - 3 - 2y

The equation does not contain enough information to yield
a unique value for x and I); any point along the line defined by

4y = 1/2(3 - x) satisfies the equation.. Now, add a second equa-
tion so that a pair of ecB;ations must be satisfiedi

x 2y = 3
4

2x 4 2y = 4

If the first equation is subtracted :rom the second, th result
is x = 1. Setting x,r= 1 in the firtt eqAationtand golv ng for
y gives y = 1. There is n6 other pair of values x, y ta render
both equations true at the same timei henc6,. x 1 and y = 1 con-
titutes a'unique solution to the pair of simUltaneous linear

equations. ,s

0,

f.

`'
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had 3x t by = 9. T e new pir of quations is
SuppAéNthat, forttle secoMh eciu tion,gimstead of 2x + 2y = 4,

one

3x + by = 9

There is no way to solve this pair of equations to obtaiA unique
values si(f x and y. If cope atteMpts to remove y from the second
equation by multiplying the firet bV 3 and subtracting the re-
suit from the second, both _x and y,are eliminated, and so is the
constant on the right:

3x + by = 9

-3(k + 2y = 3)

0 + 0 = 0

The reason for this result is that the second equation is a simple
transfortation of the first; it was obtained by multiplying both
sides of the first equation by 3. Hence, the two equations are
linearly dependent.

Now, return to the9rut pair of equations and add a third:

x + 2y = 3

2x + 2y = 4

x y =

a

It has already been found that the first two equations imply that
x = 1 and y = 1. But, if the third equation is subtracted from
the first, one concludes that y = 1/3. Substituting y = 1/3 into
the third equation gives x = 7/3. So, x = 1, y = 1 satisfies the
first and second equation, and x = 7/3, y = 1/3 satisfies the
first and third. The three equations are inconsistent. The third
equation would be consistent with the other two if it stated
x y = 0, or some multiple thereof.

It is useful to represent these operations as.matrix equa-
tions. A matrix is a rectangular table filled with numbers (or

symbols representing numbers). If A symbolizes thc matrix, then
a..
ij

represents the entry in the ith row and jth column of A. 'The ,

entries for which the row and coluMn indexes are equal are called
diagonal entries and the diagonal entries comprise the diagonal
of the matrix.

For example, if

1 2)
= (2 2
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T.rien a11
- 1, a 21,

.= a
12

= a
22

= 2. If all entries except the dia-

gonal entries of a matrix arg zero, the matrix is called a diagonal i

matrix. The order of the matrix.is the number of rows by the-

number of columns. A ib a 2 x 2 matrix. If the number of columns

is one, the matirix a a column vector; if-the number of rows is

one, the matrix is a row-Via-Si. The transpose of a matrix A is

defined by the matrix-riiund when rows of A form the columns i5f the

new matrix. The transpose of A is deLotea by A' or AT. If A = A',

A is said to be symmetric.
,

_ z_

Matrix addition ind subtraction are defilied as the sum/

difference of the individual elements. For example, jf C!= A + A,

ithen c.. = a.. + b... Matrix addition and subtraction are not dd-

....
i .13 iD iD t

fined unless the o/jer of the-two matrices to be added or sub-

tracted is the sam.

Matrix multiplication and division are not defined as,element-

wise multiplicataop and division. If C = AB, C. a..b...
13

Matrix multiplication is defined to represent.systems of simultan-

eous linear equations. If C = AB, then, by definition,

c.. = a. b . a. b . . . + a. b .ij 11 13 12 23 1K KD

E a. b .

ik kD
k=1

where K is the cOlumn order of A and row order of B.

Note that, in general AB BA. In fact, it is possible that AB

Es defined when BA is 'not, since the column order of.A mayAtch
the row order of B 'when the column order of B does not match the

row order of A. For example, A may be a 2 x 3 matrix, and B a

3 x 3 matrix. Consequently, it is impprtant to designate pre- .

multiplication or postmultiplicatiori.
Premultiplication of B by

.A indicates AB, and postmultiplication of B by A means BA.' To

be conformable for multiplication, the column order ot the pre-

multiplier must match the row order, of the postmultiplier...

To illustrate matrix representation of linear-equation sys-

tems, reconsider the first pair Of equations among the preceding

illustrations:

+ 2x
2

2x
1

2x
2

= 4
.

where xl replaces the symbol x, and x2 replaces y.

38



I .1

Defite the matrix A and column vectors x and b, as follows.

. ,

1 2
4

. = , b
1) *0 'a (2 _ =

(2

Now, tA pair of Linear equations can be written compactly

Ax = b

11 n
12 2 1 t x2i

Suppose one premultiplfied both sides of this matrix equation by
the following matrix

-1 1 1
1-

as follows:

(-1 1 1 1 1 21 Ixo 1-1 11 4
1 1-1/2 j 2 2) tx21 1½ 1 4

Carrying out the indicated operations yields

(10 f

1 1 1

t

xi
x2

)
1

*
, Thus, premultiplication of the matrix equation Ax = b by the

matrix P yields x/ = 1, x2 = 1, as before. P is the inverse of
._.

_
-

A and is written A
1

i; t represents the matrix generalization of
Eivision. Suppose-, a, b, and c are scalars, i.e., single num-
bers rather than matrices, and ab = c. Then

-1 -1
ab --, a c

1.b = a
-1

c

b =

'The matrix inverse is defined i the same manner. If

AB = C (A,B, and C comformable matrices for the indicated opera-
-1 '

tions), then A is defined
-1such that-B - A C. LetAa special

39
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'Matrix be defined for which each diagonal entry is 1.0 and the
remaining entries 3re zero; this is called the identity matrix

and generally is *.epresented by the letter. I. For 13 = A C to

betsolution to AB = C, one must have A-1A = I. Hence, this

tion definf;s iNe mEtrix inverse. TEe Eatrix inverse is ded-.

fined only for square metrices but may not always exist even for

square;matrioz.t If A-I exists, then AA
-1 = A

-1A = I, and A
p. .

is uniqur.-.

. To gain sote insight into the relationship between the ex-

4stence of tLe matrix inverse and solvability of systems of
N4, ).inear equatwions, reconsider the second pair of 1Thear equations

\
in the above illustrations:

x
1
+ 2x = 3

2

+ 6x. =
1

.Recall that no unique solution for xl and x2 could be found for

this pair 'c equ'htions (numerous solutions exist). Now rewrite

the palr i matriknotation.

k 261 .(:1),

-
It can b( shown that for this system Q

1 does not exist; finding

0-1 is like finding-the,reciprocal of zero.

To see this, define the determinant of a 2 x 2 matrix,

A, by IAI = a
11

a
22

-
2
a
21

, where 1AI denotes the matrix de-
1

terminant. It can be shown that the inverse of A for A of

order 2 x 2 can be found as follows.

/1
a 22 -a 12

- -a
)

2, a /1

dlearly,'the inverse of a 2 x 2 matrix exists if and only
(i
f

1AI # 0. Calculate next.the determinant of Q = IQ! =
--1

g11212 (1,2(42i
= 1 x 6 - 2 x'3 = 0. Thus, Q does not exist,

reflecting the fact that the corresponding pair of equations

does not have a unique solution.

Raqaccurate definition of the determinant of a general matrix

requirc more space than can be justified here. The main results

41.
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eded for later chapters are: (a),Vle matrix inverse of A exists
and is unique if and only if IA1 # 0,\and lb) a hystem of iimul-
taneous linear equations has a-unique'solution if and.only if the
determinant of the associated coefficient matrix, Ao is not,zero ---
1A1 0. These are two ways to say the ame thing.

If in the system of equations Ax =,b,\the row order of A is
less than the column order, the system ii Underidentified ---any
number of vectors x can be found such that = b. If A is

square and 1711 = 0, then Ax = b also is unde ideEtified: If the

row order of A exceeds the column order, the quatior. system

Ax = b is ovei-identified, meaning in general,Alo x can be found
to sai-isfy the'relation Ax = b. Each of these caies has been
illustrated above.

The rank of a matrix is defined as the maximum number of
rows or enumns that are not linearly,dependent. For a square
matrix, if,its rank equals its order it is termed full rank. If

it is not full rank it is called singular. For example

(2 2

1 2

is rank 2; its rows and columns areflinearly independent; hence,

it is full rank. In contrast, the rows (columns) of Q are lin-
early dependent:

12

because row 2 = 3x(row

(1 2) = 0 6)

Also, column 2 = 2x(column 1) :

2x (13) (24

This can be written

2 () -4- -1) 6)
1 I3

2i ( 0 1

This iflustrateSltho gen al d6'finition of linear dependence. The

columns of A are defined to be linearly dependent if

Ax = 0
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with not all x zero. In the example,

X (-

note that for a scalar k

z kx, k # 0

is also a nonzero solution_to Ax = 0. This illustrates the gen-

eral fact thit if a nonzero (often termed nontrivial) solution
to Ax = 0 exists, it is determined only to a constant of propor-
tionality,vk. Note that x and z = kx are linearly dependent

.
solutions, since kx - z = 0. An important theorem in linear
algebra states that a nontrivial solution to Ax = 0 exists if
gnd onlylif IA1 = 0 (for square A). For future reference it is
noted that Ax-= 0 is a set of hoffogeneous linear equations, and
Ax = b: b # 0 is-a set of nonhomogeneous

Characteristic Equations

Few facts Aout matrices find broader application in the

social sciences than the theory of characteristic equations.
Factor analyses, canonical correlation and certain estimation
methods in econometrics depended,9n characteeistic-equation
theory. As shown later in the\piesent volume, solutions to lin-

ear differential equation systems with constant coefficients also

depend on'characteristic equafions..

One of the faspinating facts about matrices is.that some
constant A can be subtractbd from each diagonal entry, and the
determinant of the resulting matrix is zero, even if the orig-
inal matrix A is.full rank viz, 1A1.# 0. Consider as an example,

the matrix A presented earlier. ft is desired to find a constant
ihat can Se subtracted from each diagonal element of A so that

.the resulting matrix is singular. Now XI is a matrix wHose
diagonal "entries are A and off diagonals-are zero; hence, A - XI
isamatrixwhosediagona..lelementsare..-X and the reiainirig4333

elements are a . For A -.7 AI to be singular, IA - XII = 0.

Written out, this becomes

1 2

= 0

0, = L Ail (a
11

A) (a
22

- A) a
12

a
21

42
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= X
2

- (a
11

+ a 22) X 4- a
11

a
22

a
12

a
21

'2
A - 3A - 2 (for the nUmericat example)

which is a quadratic equation and has two solutions: wX1' = 3.5616,

X
2

-.5616.6 Substituting these for X in the determinental eqUa-

tion IA - XII = 0 shows the result to be 'zero. The Xs are called
eigenvYiues, characteristic values, or characteristic rdots of A.

The equation IA -XIi = tris termed the characteristic equa.tion
of A.

It was seen that the characteristic equation of a 2 x 2

matrix is a second degree polynomial. This instance generalizes.
The characteristic equation of an n x n matrix is a polynomial
of.degree n. There are n roots X of the equation, but some of
the roots may equal other roots.. There are at most n distinct
roots.

0

Consider the previously defined matrix Q as a second example

of a characteristic equation. It is desired-to find X such that.

IQ-- XII = 0. One has

11 - X, 21
0

3, 6 - X
=

(1 - X)(6 - X) - 6 = C.

X2 7A + (6 - 6) =

2
- 7A = 0

X = 0, A 0

= 7

X
2.=

0

Checking, one finds (1 1
) (6 - A

1
) = (1 - 7) (6 - 7)

6 = -6(-1) 6 = 0, and (1 - A2)(6 - A2) - 6 = (1 - 0)(6 - 0)

6 = 0. This illustration is a special case of an important theo-

rem: the rank of a matrix equals the number of nonzero eigen-

values. Also, the determinent of a matrix can be found by the
running product of its eigenvalUes:

lAi = 3.5616(-.5616) = -2 (discrepancy due to rounding)

IQ! = 7 x 0 = 0

8. ThVoughout the text matrix elements involving some operation
such as 1 - A are separated from other elemepts by com-
mas, but single numbers or characters are.not separ.ted
by commas.
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Clearly, if one or more As it zero, the matrix is singular. 4

Consider a further'examp3e. Let

2 11
-1 2 t.

,

Now, the chAracteristic polynomial is:

IB -XII = 0

(2 - X)(2 - A ) + 1 = 0

(2.- A )+ 1 = 0

,There is no real number that'i.s a solution to this eauation,

since (2.- )2 = -1, and the square of a real number, is never

negative. Evidently, (2 - A) = ± t, where, as before 122 -1.
Hence,. X1 = 2 + 1,.and A2 = 2 -

This last example illustrates an important fact:, the char-
acteristic roots (eigenvalues) qf a real matrix may be complex.
However, if the real matrix is symmeXric, as is A in the example,
the eigenvalues are all real -- if the matrix is reali it has
complex roots only if 4.t'is asymmetri,e. It is not always. true
'tHat every or even.ay of the eigenvalues of an asymmetric real
matrix are complex, hoWever. %Another important theorem has also
been illustrated: If A = AR + A 1. is a root of A, then so is

it's' complex conjugate T = X R - X 1.
I

Since IA - XII = 0, the homogeneous linear system of equa-
Lons .(A XT)x =-0 (x a conforthable vector) has a nontrivial.
solutiori. 'TFle-vector-x is called the eigenvector oi characteeis- .

-tic)i/e9to of A.associlted with-A; As before-, if (A - AI)x = 0,
so dEes (A.- Al) z, with.z.= kx, (k a sca'lar). If thi eiginiTalues
of A are a-istiTicF,,,,heaning no-t;vo is have the same value, then
there is a charvterittic vector associated with each A and the
set of all challeteristic vectm-s is linearly. independent. Let

A be a diagonal matrix with diagonal elements set equal to the,
.-eigenvalues 'of A -- is(and Offdiagonal elements.zero), and let
X be a matrix wHose columns form the eigenvectors of A associatea

\ With A. That is X =-12( x . x 1, where x' is-tA ei9eu-
-2' -n. -1

vector of A Associated with A 1!
etc. and

A
'mom.

0 .
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where A is squate with order n. tow, ik (A -y)xj all

j = 1, e, so that Ax, = X.x., then

AX = XA

Since the eigenvectors are independent, X
-I

exists, and pne finds

A can be transformed to a diagonal matrix by the given formula.
In this cate, A is said to be diagonalizable. One also.has

A = XAX
-1

This relation forms the basis for some important results in linear
differenti4a1 equation systems. It should be noted that,.if some-
of the roots (As) of A are repeated (e.g., A2 = A3), A may not pe

diagonalizable, although it may.sometimes be diagonal3Lable even
if the )s are not'distinct., Most Matrices il empirical work will
have n distinct.roots and, hence, be diagonalizable.

If A is a real symmetric matrix, and AX = XA, then the
transpose relationship also holds: X'A' =Pm; X'A = AX', since

; 7
A' = A. if A is not symmetric, then AX = XA 4' X A = AA=1 Thus

X
-1 plays the same role for asymmetric A that X' does for symmetric

K. One may calculate the solutions to the equa-tion = 0.
Thlere is a.1 x n row vector and IA - 1.1I1 = 0. It tuTnsout
that the ps are the same as the As. -Forming a maqixo4hose columns
consist of ys associated with As, one has Y = [z1,7-. ,

It follows that Y'A.= AY'. Y is called the matriz of left eigen-
vectors of A &nd-X-is EFe matrix of right eigenvectors: If A is

symmetrid, I = Ny otherwise, Y' = X
-1

. Hence, .the distinction
between rigHt aE'd left eigenvgct61:s is necessary only if A is
asymmetric.

Recall that if A has a domplex root, A = A
R

1,.then tlfe
I

complex conjugate of A is also an eigenvalue, of A -- A = AR - AI

Let x be the right eigenvector associated with complex A, the*
x = -R

+ x i6 also complex, and its complex conjugate
-I

-xlis the eigenvector associated with Y.
-R -I.

To illust ate these facts

45
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I 12

22)

11 21.
1 6/

all of which have been used in previous examples. For the matrix

A,

13.5616 0 1

10 -.56161

11.0 -L.2808)
X = 11.2808 1.0

X =
( .3787 .48511

-1 -.4851 .3787/

Checking the calculations, one finds
-1

Y. A X A

11.2808 1.0 1 1 0 -.5616 )(-.4851 .37871 f2 21
11 . 0 -1.28081 1 3.5616 0 .3787 .4851 1 21

For the mat.rix Q, one finds

( 7 0° 0

1
X

k 3

X 1
1/7 2/7 1

-3/7 1/7)

witb

X A x
-1

[13 -.12)f( 7 00 ) (-31//77 21//77) ,( 13

46



For B, one finds,

A + 1' i)

X =

-1 101x
1/4(1

+ t 1

- 1), -(1

1), -1/4(1

+ 1),

Checking thcalculations, again one finds:
^

X A X
1

( 1 + 1 j(2 +

O-(1 -(1 + 0 2 - t(1- +I(1+ 11, - t}

I 2 11
-11.-1-1' 2 )

Note that column 2 of X is the complex conjugate of column 1, just
as A

2
= T

1
.

4

Matrix Functions

One of the most remarkable aspects of diagonalizable matrices
Is that interesting matrix functions may be defined by use of the
eigenvalues and eigenvectors. Consider an elementary el(ample. In
the preceding section the inverse of the matrix:

11

was found to be:

A
-1

and the eigenvalues and eigenvectors calculated ta,be:

(

0

3.5616

.3787
-.4851

0

.5616

.4851)

.3787

) ( 1.0
1.2808

-1.28081
1.0
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low, the inverse of A aan be calculated by the following formula:

A-1
11.0
t1.2808 1.0

-1.2808) ( 1/3.5616
0 -1/.5616 -.4851 .3787

0-- )( .3787 .4851_,

(-1 11
1 -1/21

i
.t_ ,

The proof that this is a general result is simple and instructive.
Let A be a nonsingular, diagonalizable matrix, so that A = XAX-1,

where A and X aire the characteristic roots and vectors Ef A, as
defined- prevrouly. If A is full rank (nonsingular.) then, it has
been noted, all\the eigeEValues of A are eonzero; hence A-1 exists._ _

Let B = XA
-1 -I

then

AB = )(XA-1X-1

-1 -1
XAA X

AB .= I

hence, B must be the inverse of A

//

. The square root of a matrix may be defined in an analogous \

way: Let 20 = XA1/2X
-1 with A- 0 (meaning every element of A iS-

-1-
nonnegative) . Then A1/2A1/2 = ()(A1/2X -1 )(XA15X

1
) = XA1/2A1/2X

-1 = XAX = A.

This .idea can be gen-e-ralized to any funation thatcEn be repre-
sented by a series expansion. Examples include the trigonometric
functions, logarithm and exponential functions. The matrix ex-
ponential Jog functions are two important?special cases, as
they play iimportant :role in the next.chapter. They can be
defined by

A A -1
e- Xe-x

ln A - X (ln A)X
-1

)t t can be found that
7
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Consider a matriX Alt) whose eements are a functi6h of,t.
If A(t) is diagonalizable Such that the characteristic vectors,
X, ire the same for all t,,then the derivative ind integral of
K(t) with respect to (t). can be written in termS of eigenvalues
Nnd eigenvectors. An example of particular importance in the

next chapter is the integral feAt- dt. For a sense of closure
Atand general interest, both the derivative and integral of e-

,

are given:

Also,

AtA A -Ide-t = X(
de=

)X
71 = X(e-tA)X

dt -
dt

= (Xel
t
X
-1

)(XAX
-1

)

At
= e- A = Ae- , since e- A = e

At. At At

fet- dt = X(feAtdt)X =- el
t
A

A -1

eAt,- lY(XA-1X 1)-

At -1 -1 At
= e- A = A e-_

49
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Statistict il e8ncepts
,

It is assuted that the reader is familiar wi h mosg bU,t11-6,.
important colIcepts in statistics Tleeded for this kolulne, in-
cluding, in particular, the popullation/sample meaj variance,
covariance, correlAtion, tleast..t\staires regression, and signifi-1
cance tests for statistics such as these. There are some funda-
mental ideas and concepts in inferential statistics, however,
that appear to require some explicati6n. In particular, these
inchude the concepts of expect6d value of a sample statiAltic,

Iits variance,, bias,"and consistency. Th following paragraphs
attempt to describe these concepts sot.irt .their meaning will be
clear when they ar sed in the next chapter.

...,--

&The distincti ms between sample istribution, population
distribution and sampling distributio _ate-critical to thorough
understanding of elementary'conce,pts-in infeKential statistics.
Suppose one has a population buniverse defined lay'the set of
all case-s that a research quegkibn addresses. Assume that fir
each case in the populatIon it is theoretically possible to ob-
serve a value' on a variable called, x'. .,Each value Of x has a
probability associated with it, px giving the relatiVq0frequency

of that value of x in the population'.9 The set of all pairs
(x,p

x
) is the population distribution of x. The sample distribb-

t

tion of x refers to the relative frequencies associated with el'
value (or range of values) of x observed-in the particular sampl .

The term samplitg distribution generally is nOt api5'lied to_x at
all. Rather, it is applied to some function of the sample x s,
such as the saule mean, variance, or median. Take the salnple
mean as an example, and consider calculating the sample mean
from a very large number of samples, each of size n. The dis-
tribution of these means oxer all possible samples is termed, the
sampling distribution of the mean. One bf the most remarkable
thborems in statistics is that, no matter what the population
distribution of x, as the sample size gets large, the sampling
distribution of'the mean tends to the normal distribution. This
fact forms part of the central limit theorem.

The expected value of a sample statistic is defined as the
mean of that statistic calculated over all possible samples.
Clearly it is desirable that the expected value ot a sample sta-
tistic equal the value of the popul;ition parameter that it is in-
tended to estimate. The standard error of a sample statistic is
definect'as the standard deviation of that statisticcalculated

9. This is not a precise definition, but is sufficient for present
purposes. The concept of probability'elemenb needed for
continuous density functions wouldecomplicate' unduly the
presentation.
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CHAPTER 4

MATHEMATICAL AND STATISTICAL THEORY.IN THE'
APPLICATION OF LINEAR DIFFERENTIAL.

EQUATIONS

This chapter is divided into three main sections, The
-firs4 section contains a brief discussion of general differen-
tiallequation syr,t,ms. The purpose of-this discussion is to
11,ow how the pai'cular application of linear systems with con-
stant coefficients fits with the gengral theory, and thereby,
to communicate an idea of the untappe4 potential of differential-
equation systems for representing social- processes. Section two
reviews the mathematical and statistical theory necessary to con-

,

vert a model written as differential equations into a form suit-
able for empirical study. The third section describes a,computer

:rogram package that c be
to

to carry out calculations needed
estimate parameters o7 .thé differential-equation Model.

General Differential-Equation Systems

In order to gain son understanaing of general differential
equa ion _systems it is useful to consider specific cases first
and work up gradually to the general case. A very simple case
arises Tor the continuous population-growth model. Its dif7
ferential equation is of the followipg form.

(5a) dy/dt = by

Where y is populatic:T size, b is the constant rate of popula-
tion growth, and, as before, t is time. It is usefui to sum-
marize the meaning of this simple differential equation, be-
cause in most important respects the meaning generalizes to .

more complicated differential equations. One might_yiew the
lefthand side (dy/dt) as the<"dependent variable." The depen-
dent variable, then, is the rate of change in population size

(y) at a given instant in time. The righthand side of the
equation may be interpreted as a hypothesis about the manner
in which the rate of change in population size occurs. In this
simp,le example, it is hypothesized that rate of change in popu-
lation size is a constant number (0 multiplied by the current
population size (y) . More generally, the righthand side will
contain the current valde of y, time, and any number of ad-,
ditional independent variables.. The functional form of the
right side may vary depending on the substantive application.

Integrating equatio (5a) generates the familiar exponen-
tial- pdpulat on growth curve, as follows:

( 5b) y yoe
bt



'Mr

whe;-e t is a specific point in time, and y't, yo are population

size at time t and time 0, respectively. Equation (5b) also

describes the accumulation of principal on an investment with

a constant rate of interest (return) of b and continuous com-

pounding of the interegrN

Equation (5a) is a single linear differential equation. It

becomes nonlinear if the functdon of y on the right side is non-

linear. For example,

(6) dy/dt = b sin y

is a single, nonlinear differential aquation. tto`

If there is more than one equation, then one has a system

of simultaneous differential equations. For example, the fol=

lowing ppir of linear differential equations form a special

case of the model of career expectations given in equations (4).

(7a) dyl/dt =
1)111'1 -I- /3121'2

(7b) dy2/dt = b21Y1 1322Y2

where y11y2 are two variables, the bij are constants, antis
time. Since there is no constant intercept in equations (7),

they form a pair of homogeneous linear differential equations..
Adding an intercept makes the system nonhomogeneous and parallel

in every technical respect to the dynamic model of career ex-
pectations in equations (4)'. Equations (8) show an example of

linear nonhomogeneous system composed of two equations.

(8a) dyl/dt a_ b
-11-v1 bl2Y2

(Sb) dy2/dt a2 +
1
+ b

22
y
2

where a
I

and a
2
are constant intercepts,.and the other notations

are defined as in (7).

Equations (7). and (8) are linear systems with constant co-

efficietsi. More generally, the coefticients of linear systems

may be thken as functions of time. For example, suppose that y
1

represents ego's level of educational expectation and y2 is

significant other's level of educational .expectation for ego.

The idea that the influence of the significant other on ego's

educational expectation level decIinds with time could be ex-
pressed by 'making b12 a declining function of time, say b12 = e-gt

q a positive constant.
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So far, all the examples have been first-order-differential
equations, because only the first Aerivai-TV-6appears inthem.
Derivatives of any order may-appear in a diffeential e4uation.
'The order of the hithest derivative in a givénjWferential
equation defines the order of`the equation.. .Tfteorder of a sys-
tep of differential equations is defined by the sum of the orders*
of the equations forming the sytem. ftaningful examples of
second and hieher order differential equations involving .social
or psychological variables, arescarce, but there are.numerous
physical examOles Probably the rnost common lahysical example
rel4tes to distance traveled as a function of time. Speed is
the first derivative and acceleration is the second derivative
of distance w4h respect to time. For 6xample, if y is distance
and t is time,None might pOsit that acceleration of a vehicle
is a. positive but 'declining function of time, say

a
(9a) 0

2
y/dt- = ce

-bt

where c and o are positive-constantS. lith this equation one
may find the distance traveled from a standing start as a
function of tine; as follows

(9b) y = (c/b)t (c/b
2
)(e

-bt
l)

where yt is distance traveled from a standing start after t

minutes have elapsed. Thus, the single econd order differen-
tial equation (9a) can be operated on to produce a prediction
about distance traveled from a standing start at every point
in time. These predictions could be compa'red to data to see
if the acceleration hypothesis is correct.

Although social science definitions are seldom given as
second derivatives, there are some concepts that might be de-
fined fruitfully in this manner. For example, one might define
learning speed as the change in information divided by the
change in time. At an instant in time, then, learning could
be defined as the derivative of information with respect to
time. A change in learning speed,.therefore, would be the
second derivative of information with respect to time. Thus,
the concept of accelerated learning could be given a precise
definition quite analogous to the physical concept of accelera-
tion. Similarly, "vertical" occupational mobility could be
defined as the derivative of occupational status with respect
to time, so that change in mobility rate would be a second
derivative. A hypothesis about changing rate'of mobility,
analogous to the hypothesis about acceleration in equation (9a),

could be used to generate predic,ticins about occupational status
level at any point in time.

In all the examples, elerivatives have been with respect
to time alone. 'Whenever differential equations involve deri-
vetives with respect to only one variable they are trmed
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ordinary differential equations. If derivatives with respect
to more than one Var4ble are included one has Eartial dif-

ferential equations-t.

A very general first-order, ordinary differential equa-
tion system can be written as follows:

dyl/dt = f1(Y1, Yp

(10) dy /dt = f2(171, Y2

dyleidt = fk(y.tc_,172,

r t)

y
k

, t)

41

where yr
y
2

y
k

comprise a set of k variables, t is

,time,-and fi are py continuous functions of the ys and of t.

More general equation systems involving higher order deriva-
tives 4nd partial derivatives can also be written but are not
needed for the present discussion.

The next section of this chapter develops the technical
aspects of linear systems of ordinary differential equations

with constant coefficients. As illustrated in the present
section there are numerous ways in which the restrictive as-
sumptions associated with such systems can be relaxed.

r

Technical Aspects of Ordinary.Linear
Differential Equation Systems with

Constant Coefficients

It is impossible to observe all the terms in a diffe en-
tial equation, since a differential equation always contalins
at least one derivative, the derivative being a slope at/a

single point along a smooth Furve. Take equation (5a) as an

example. The dependent varihble is the instantaneous rate of

'change in i$ppulation size

Yl -.Y0dY/dt E
'lim tl tO
t 4t

0

11.

c't

where t
1

and t
0

are the two points in time that are very close

together and yl and yo are the population sizes fott-hose.time

points. Of course, it might be possible in theo'y to approx-

imate the derivative at several time poihts by drawi g a se-

quence of observation pairs with the time points of each pair .

spaced a finitec7A Short distance apart. In practi e, however,
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this strategy would be difficult or impossible to carry out for
most social or psychological topics. A much more practical
strategy is to operate on qeuation (5a) to produce (5b), which
can be compared readily to observations.

Note that if one differentiates (5b) with respect to t,
one finds

dy
t
/dt = b(y e

bt
) = by since yt

bt
e

. 4
. k

4

This,9(ercise shows that if one differentiates (5a) one obtains

equation (5b). Equation (5b) is, therefore, the antiderivative
or indefinite integral of equation (5a). Equation Ob) is
termed, therefore, a solution of equation (5a) . Referring to
the example regarding acceleration given byequations (9) , the
relationship between (9a) and (9b) is pararrel to the relation-
ship between (5a) and.(5b); equation (9b) is a solution of the
second order differential equation, equation (9a), meaning that,
if (9b) is differentiatO twice, one gets (9a) back:

d
2y d dy]

dt
2 dt dt

d d r c c -bt
+

2
(e 1)1

dt dt b

d fc c -bt
dt b b

e

d
2

=
s, -bt

dt

As does equation (5b), equation (9b) gives predictions,that
are observable. In general, finding a solution to a differential
equation may be interpreted as the process of converting hypoth-
eses about change at every instant in time into a form suitable
for uSe with'empirical data.

The primary objective of this section is to des-6ribe prac-
tical methods for converting the dynamic model of career expec-
tations given by equations (4) into a form suitable for use in
rempirical jork. The section is subdivided into two subsections.
Tne fiFfst subectiojl develops the mathematical theory necessary
for finding integrals of linear systems, and the secorid sub-
section considers statistical issues related to estimating para-
meters of the integral equation.
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Mathematical Theory

Thi.s subsectign contains a zeview of mathematical solutions
to systems of ordinary linear differential equations with con-
stant coefficients; it does not purport to develop a rigorous
statement of the mathematical theory. The review unfolds grad-

rually, developing first the basic_theory forlidmogeneous sys-
ktems, then adding constant intercepts, and, finally, including
ka set of distutbance variables. .

'4-
Consider the following equation expressiAg the general

model of a linear differential equation system.

where

(11) dyidt = a(t) + B(t)y.

y ,aKx1 vector of variables

a(t) =aKxlvector of intercepts that are continupus
functions of time

B(t) 2--aKxKmatrix with each entryacontinuous function
of time

dy/dt =aKx1 vector of derivatives of I/ with reSpect to
time

If a(t) :0 for all t, then the system is termed a homo_geneous
system. If eve;y entry of B(t) is a constant over time the
system is a limier system with constant coefficients.

Attention now focuses on homogeneous linear systems with
constant coefficients, because essential aspects of the results
for nonhomogeneous systems can be derived from the theory for
homogeneous systems. The homogeneous system is written

(12) c, , By

where 17, = dy/dt, and B is the K x K matrix of constant coef-
ficichts. The goal is to operate on (12) to produce a function
giving each element of the vector Y as a function of time, sub-
ject to tLe restriction that equation (12) holds.

Consider first a one-element vector and matrix, so that
(12) becomes,a scalar equation rather than a mat,rix equation.

(13) dx/dt = bx

where x,b are scalars. The simplest way to-solve (13) is to

di.vide both sides by x and multiply by dt, producing
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dx/x = bdt

integrating.both sides yields

er.

-dxI-- = fbdt

(14) ln x = bt + q

x = e
bt+q ebt(eq)

4

e is the mathematical constant which is the base of the ,natural
logarithm, q is an arbitrary constant, and ln is the standard
notation for the natural logarithm used throughout this volume.
Notice that if the constdnt q were known, equation'. (14) achieves
the goal for scalars -- x is expressed as a function of time.
Note also that the derivative of (14) satisfies the differen-
tial e.guation (13) , for

dx/dt = be
bt

( ) = bx, since from -(14), x e
bt

(e
q

)

This simple method for finding a solution to (13) does-not
generalize convenieritly to linear systems, 45ince one cannot
.divide by a vector, y. It is useful, therefore,, to develop an
alternative derivation of the solution. (14) . To do so, sub-
tract bx from both sides of the scalar differential equation
(13); this yields:

dx/dt bx =

Multiply both sides by e
-bt

to get:

-b
e

t
(dx/dt bx) = 0

-bt
dx/dt bxe

-bt, by the multiplicationNotice that de
-bt

x= e
rule for derivatives; hence, the above result can be rewritten

,-btde x = 0

Integrating both sides yields

-bt
e x=c=e

x e
bt

c

where c is an arbitrary constant.
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This result matches (14)'with C = eql'and, as it turns out, this
second method of arriving it (14) generalizes rdadily to sys-
tems of linear, homogeneous differential equations4

. To find.the constant 6, let xedesignate the value of x

at a point in time, t. Now, note that, from equation (14),
at the zero-point on the time scale x,may be'..found by

xo = e
b.0

(e
q

) = e
b.0

c

X =

Hence, c can be set to,the.observed value of x at an initial
panel in a longitudinal studir. The value of x can then be
made a.function of time by the following formula.

(15) xt = e
bt

c = e
bt

e
q

bt
xt = e x

0

where t is any point in time. This result 'is, of course, the
equation for the exponential population-growth model noted
'earlier in this chapter.

Equation (15) could be used in conjunction with a two-
panel longitudinal study with one (or more) observations on
x at t

o
= 0 aril at t

1
= t. Define b* = ebt a i'rewrite (15),

as fpllpws.'

(15a)

Obviously from (15a), b* = xt/x0. One can calculate b from b*

as.followwe- b = (ln b*)/t. Sabstituting fb*, one can cal-
culate b directly.

(16) b = iln(xt/x0) )/t

Hence, if there is no ,disturbance (error) term, an observation
at two time points (t t

1
) for a single case suffices to gen-

erate exact predictions at every point in time --'by substituting
the value of b calculated from.(16) into thepredictign equa-

'tion (15)

The groundwork has now been developed for finding a solu-
tion to the'linear homogeneous system, equation (12) . Tp ar-
rive at a solUtion, retrace the steps used in 010 second deriva.7
tion of equation (14). Start with (12) and subtract By from

.both sides..

5'9

Ato
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Premultiply both sides by e
-Bt

, where e
-Bt

is a matrix exponential,

e
t - By) = 0

It can. be shown: that the derivative of the matrix product,

-Bt -Bt -Bt
e is.equal to e - e,- a.. Consequently, the above ex-

pression can be writIten as follows

dq y = 0

just as for the scalar c;.tse. Integrating both sides yields

-Bt
e y = C

(17)

where c is a K x 1, vector of arbitrary constants. To find the
yector-Of constants as for the scalar case, let to = 0,

= = the value of the vector y at time t.

Then frorii (17)

D.0
yo = e- C = 1.c, I K x X, identity matrix

Substituting c = yo into (17) yields the desired prediction equa-

tion:

(18) ellty

Again, as in the scalar case, the value of B can be fol.Lld from

longitudinal data. There are at least two possibilities. First,
one might have at'least K cases at two time points (X = the
number of variables) . Secondly, one might have at least X + 1
,observations for a single case spaced at equal time intervals.
For the first instance, l'et Yt beaKxKmatrix of observations

on the K variables for I< cases, at tiMe t, and let Y be the
--o

analogous matrix at time zero. Assuming Y is invertablo, one

finds
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Bt -1e- = Y Y-t-o
(i9)

= (ln(Yt*0
-1

)]/t,

-1
(1n(Yt iY ) s a matrix logarithm, not an elementwise log)% If

there are more than'K cases, any subset of K cases can 15e taken

so long as those selected are linearly independent so that
-1

exists.
-o

For the second isntance in which K + 1 ormore observat-ions.
on a single case are available, yo may be taken as K column

each column being an observation on K variables at g
single time point, starting with to = 0; Yt can be defined

analogously, klut with the first column of Yt being,a set of ob-

servations at the spcond time point; that is

Y = lY-o -o Y1' Xic]

J

Yt IZ11 17-2 4+1

The length of time between adjacent observations must all be
the same.

Recall the definitions of the matrix logarithm and matrix
exponential given in the mathematical review, chapter 3, viz.

-1
(20) ln M = V(ln A)V

A -
(21) e- = Ve-V

1

re

I ml

M = a diagonalizable K x R matrix, IM1 determinant of M

A =aKxKdiagonal matrix with diagonal entries containing
the characteristic values of M

V =aKxKmatrix whose columns are the characteristic
vectors of M associated with X

The functions in A and ell are defined on each diagonal element
of A, i e.,
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e-A

n A1 0 0

0 In 2, 4 .0'.
. . .

a 0 g o o ln .A

n ...0

0 e
A2

0

7

(Recall from chapter 3 that.these definitions do fit the, genera4
definitIn of matrix logarithm and of matrix exponential. 'Plat

lnA
is, ln(e-) = e = A).

11

*

If every element of a matrix is-mmltiplied by "'a scalar, as
in equation (18) where B is multiplied by the scalar't, then
the characteristic values of the',7esulting matrix, Bt, are
just the characteristic values of'the matri3O B multiplied by
the scalar t. Thus, if A is the diagonal matri>1 of eigenvalues,
of B, then At is the diagonal matrix of ei9envalues of the
matrix Bt. Hence, equation (21) can be w tten as follows, for
the matrix Bt.

(22) e-
t

= VeltV-1
B

wheye V, A are now taken as eigenvector and :eigenvaltfe matrices,,
respectively,, of B.

j.Bt Bt
The matrix derivative

dt
e- = e- B was used to derive the

solution to the homogeneous linear system, equation (12), the,
selution being given by equation (17). Equation (22) can be N
used conveniently to derive th Armula for the derivative of
1-le matrix exponential, et.

ci Bt
dte

dt

At -1
Ve- V ]

A

= V( eAt- V
1)

dt -

Note that if no diagonal entry in A is zero, the dorivative

the diagonal matrix, e
itt

is
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Cow3equently,

de
Alt

/dt 40/dt dO/dt

dO/dt de
A2t

/dt dO/dt

A
K
t

dt
dO/dt d0/dt ... de

xitA

(

0

Q

d Bt At -1ne- Ve- AV

. = 1VAV-1

0 eXKtXK:)

0 ... 0

e
A2t

= VAe--V

-
= VAV

-1
VeAtV

1

(Vetv-1)(ww-1) = (vAv-l(Veltv-1)
.4

= ell
t
B

f
_

-
Since B = VAV

1
,_

Bt= Be-

Having found tlie solution to a homogeneous system of linear
differential equations with constant coefficients, one, is pre-
pared to deal with nonhomogeneous systems with constant coef-
ficients. The Mathematical theory is presented first, then it
is applied'to the model of developing.career aspirations'given
ih equation (4) .

The nonpomogeneous system with constant coefficients is
written hs'follows.

(23) = a.(t) + By

where a(t) may be a variable function oftime, but the matrix
B is fixed over'time. To find the solution to (23); trace
-t-hrough the same steps used to solve the homogeneous system.
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e -Bt.(i - By) = e
-Ht

a(t)

-Bt -Bt
d(e ) = e - a(t)dt

fd(e-12 y) = fe-Ilta(t)dt + c*

-Bt -13T
e

t
= fe a(T)dT +

Bt Bt -BT
(24) yt = e- c + e- fe

0

where T is the dummy variable of integration as explained oi
vage 31. Setting to = 0 and solving for the constant vector,

c, leads to the conclusion that c = yo. Inserting c = yo into

(24) yields

t
St Bt

(25) y = e- y + e- i a(T)dT
-t o

t
Bt -BI

Notice that the term e- fc a(T)dT is a K x 1 vector.-.
,Dt

leaa
:note it by a* (T)dl, and l*t. B* = Ot

Equation (25) can now be written

(2Sb) y = a*'+ B*y
-t -o

For two fixed points in time, to = 0, and t1 = t, equation (2513)

is linear across observations. Thus, if k + 1 or mol'e observa-
rtions at to = 0 and t1 = t are available one may form the
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. . ,
1

Y11
t.

. . . Y1Kt

Y21t Y 2Kt

YK1f YKKL

P = [a*, B*]

,Then for two time points, to = 0, t1 =

, and

() Yt R-Ye,

-
= Y Y

1

-t-o
0

where I I stands for the determinant of Y .

-o -o

As with the homogeneous case, jf more than the minimum number of
cases are available at t

o
and at tl, then K + 1 lizearly inde-

pendent cases can be selected arbitrarily. Also, if K + 2 time
points on a singigcase are aKailable, Y can be,defined by the

first K + 1 observations and Y by the second through the K + 2
-t

-cases; then equation (26) still holds.

Once P = [a*, B*1 is found, a* and 13* can be used separately
to find i-he parameters of the nonhomogneous di ferential equa-.

tit
tibn (23) . Since 13* = e- one has

(27a) B = (ln B*)/t, IB*I / 0

where In B* is the Matrix hatliral logarithm.

Note that this is the same solution as for tiw homogeneous case.

Appropriate use of a*.idepends on the nature of the function
Let

-RT
a) re - a(T)dia

''where a is a set of phrameters of the function a t). One has
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(27b)

Bt
a* = e- a(t, a)

-Bt
e a* = a(t,

Under fairly general circumstances, equation (27b) cah be solved
for the unknown parameters of the differential equation. To
illustrate, two cases may be useful. First, let the function
a(t) be constant over t, say a(t) = a, a a set of constant
coefficients. Then equation T27b) becomes

-Bt -B1
e a* = fe CL di

0

Ele-R111-1cd(t) . (1 -

Bt -1 Bt
A = B e- ) a* le- II 04-4 1BI 0

For a second example, consider a more'involved instance.
Suppose that each element of a(t) is the cosine of t +

ahd denote the entire vector by a(t) = c(a+t). In this case,
,the vector a(t) oscillates over Eime, but-the different elements
of a(t) do fiot oscillate in phase unless all a

i
are the same.

-
The function a(t,a) = fe

Bt- c(al-t)dt = (I + B
2 1

) {e
-Bt [s(a+t) -

Bc(a+t)1 [s(a) Bc(a)1}, where the elements of s(a+t) are
sinTa +t). resulE can be substituted on the right side

of (27b) , as follows:

-Bt 2 -1 -Bt
e a* - (I + B ) ie [s(a+t) -,Bc(a+t)]

s(a) + Bc(a)}

Bt
(I + B-)a*- s(a+t) Bc(a+t) e- [s(a) Bc(a)]

since (1 + B
2

)

-1
commutes with eSt . Because the sine and cosine

functions are periodic both with period 27, if t is judisciously
selected so that t = 2n7, n a positive integer, then tnis forMula
reduces to

(I + B
2
)a* = (I -.eSt- )[s(a) Bc(a)]

In either form, it is unlikely that a simple algebraic solution
can be found for a. NeverthelessAfor any application where B
and a* can be calEulated and t is known, it is likely,that a
numei'ical solOion can No found. Use of numerical analysis to
find solutions to equations that are intractable or insoluable
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algebraically is an option that is not appreciated by many social
researchers. One of the purposes of this example is to emphesiie
that algebraic so1u4ons are not necessary to the conduct of em-
pirical research.

The mathematical theory required for the model of career
expectations given by equation system (4) ha's been summariied
in the preceding-discussion. It now remains to translate the
general results into a specific form suitable for use with the
substantive theory of career expectations. To achieve this
translation it is desirable to rewrite equation system (4) in
matrix notation, as follows.

(28) = Ax + By +.u(t)

where

X =

= aKxlvector oB-derivatives of
with respdct to time

/a10 a11.."1L

a 20 a21 a2L

a
KO

a
Kl

...a
KL

= K x (L + 1). matrix of intercepts
(a

10
) and effect coefficients for

exogeneousvariables(a..,j >0) .
13

These -oefficients are constant
over time

= an (L + 1) x 1 vector, with the first
element being the constant 1.0 and other
elements being the L exogeneous variables
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,&

(

b
II.

b
12"

..b
lic

b71 b22..
132K

. .

-
b b .b
K1 K2. KK

=aKxKleatrix6of -effect coef-
ficients indicating the impact
of the endogenous variables on
each other. These coefficients
are constant over time.

= a'K x 1 vector containing endo-
genous variables

=aKxlvector of disturbance func-
tions of time

Note that Ax + u(t) is a K x 1 vector which is a function of
time; hence, one may define a(t) = Ax + u(t) and apply the
mathematical theory of the preceding discussion. The result
of this application is an equation in which time t values of y
are shown as a linear combination of time-zero values of y and
of the predetermined variables, plus "disturbance" or error
variables (u*), as follows:

(29) 4 = A*x + B*yo + u*

where, by use of equation (27a)

(30a) B* eRt and

(30b) B = (ln B*)/t , 0

To find A* and u*, one may apply equation (27b). For this
application, the cWinite integral on the right of (27b) can
be separated into two additive parts;
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t t
-

t-8B -BTfe
1
(Ax + u(T))th = fe - Axolt.T fe - u(T) di

0
e 0 0

The first term on the right of this equation has an explicit
algebraic solution which depends on the rank of the matrix B.
If B is full rank (IBI 0), the following solutiOn holds:

- -
fe 12-TAxd1 = (1 e

Bt
- )B

1

Inserting thiS result in (2713) and solving for A* yields

(31a) a* = (et - I)B
-1
Ax e-Bt e

BT
u(T1dT, IBI 0

B

0

If the coefficient matrix B is not full rank (IBI = 0),
some additional notation is needed to define the solaion. Let
A be the K x K diagonal matrix with diagonal elements equal to
the eigenvalues of B. If IBI = 0, at least one diagonal
element of A is zera. Let g be the matrix-whose columns are
the right eigenvectors of B-associated with A, so that, if B

is diagonalizable, B = VAN.1 . Assume there are K nonzero eigen-- 1
values (Xs) in A and K

2
zero Xs, K

1
+ K

2
= K, and let Al be the

K
1

x K
I diagonal matrix with nonzero A

i
i = 1, . . .

'
K in the
11

diagonal. Define A2 to be the K2 x K2 null matrix containing

the zero As. Also, let Vi be the 1(1 right eigenvectors as-

sociated with A
' 2
and V the' K right eigenvectors associated-1 -2 -

with A Similarly, let V
-1

be partitioned into V (1)
, a-2'

K
1 x K matrix of transposed :Left eigenvectors of B associated

with Ai, and V (2)
, a K2 x K matrix of transposed left eigen-

vecto.rs of B associated wits the zero Xs; A
2

A, V and V-1 are,--
thus, partitioned as follows.

0

0 A2
K
2
7K

2
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Thus,

and

4

V V
V =( -1 2

(KxK
1

) (KxK )
, 2

-2 -1 - = A VW
-1-1-

-1
B = VAV = (V V ) A 0

et = Ve--V
1

= V
2

t

-

0

0
(1)

V
(2)

B Af - A

A t (1)
=

1
v e-1 v + V V(2)
- -2-

Using these partitions of A, V and V
-I

, the desired def-
inite integral for the case wheH B-is legs than full rank and
diagonalizable can be written

fe
1 AxdT . [(I e

Bt
) A

-1V (1) + t V V (2)
]1Xx

-B 1 -2-

Substituting this result iXtvithe r)ght side of (27b) and solv-
ing for a* yields

Bt= e- [(I e
--Bt )V

1
A
1 -
-1V

(1) + t e -tV
-2

V
(2---

B BT+ e- fe u(T)dT
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which, after simplification, can be writen

(31b) a* = [Bt(e- - I)V A
-1V (I) + t-

zV,V

(2) )Ax

-
+ eSt

t
- fe

BT u(T)dt, 11 = 0

:ince it can.be shown that e 2-
t.tV V(2) = V V(2)

- -2-

The unsolved integral in (31a) and (31b) has no solution
unless the function u(t) is defined. Fortunately, the function -

can be left unspecified and treated as part of the disturbance
term in the statistical analysis:

t* at -BT
u = e- fe - u(T)fl-r_

o

where u* is the notation for the disturbance variable (see
equatit-in [29]).

In equation (31a) , the teim (eSt I)B
-1A is a K x (L + f)

matrix. Its elements can be conside-red Eo'aficients of the
exogenous variables. In equation (31b), the matrix

[(eSt - I)V1AV
(1) + t-V V

(2)Ilk is also a K x (L + 1) matrix
-2-

of coefficients of the exogenous variables. In both cases, the

coefficient may be denoted by A and used in the integral equa-
tion (29) . Thus, one has

Bt
(31c) A = (e- - I)B 1A ,

411.

(31d) A = B(0-t - I)
NIMID

(31e) A* = [(Bte- I)V A
-]V (1) + t.V

2-
V

(2)
IA if 114'1 = 0

, -1- - - -

Bt
(31f) A = [(e- - I)V A

-1
V

(1) +
t,V V

(2)
]

-1
A*

- -1-1 -2-

It may be helpful to summarize these procedures. The steps

in the analysis are listed and described below.

Step 1. Form a hypotheSis,about continuous change over
time by writing a nonhomogeneops system of linear
differential equations with constant coefficients,
written as follows:

(32) = Ax + 13y +

where
7 1



=aKx1 vector of derivatives of 'y...with respect to
tite

x = an (L -I- 1)x 1 vectoof pxogenous wiriables with the
first element set to the constant value 1.0

y =aKxlvector of endogenous variables

u(t) =aKxlvebtor futction of time, considered to be a
residual disturbance vector

A = a K x (L 1) matrix of constanttoefficients as-
sociated with the eXogenous variables, the first
column representing intercepts

=aKx'Kmatrix of constant coefficipnts indexingpef-

,
fects of endogenous variables on changes in endogenous
variables

"""'

Step 2. Integrate the differential equation (32) to form
a prediction equation:

(33) Yt A*x B*Yo u*

where the subscript attachdd to y designate-s a specific point in
time, and A* and B are K x (L -I- 1) and K x K coefficient matrices,
respectively.

46-

Step 3. Estimate the coefficient martices A* and B* by
some type of regression methodology applied to
longitudinal data. The longitudinal data must
contain at least one observation per case for
each exogenous variable x and two sets of obser-
vations per case for eacfi- endogenous variable -- one
set of observations at t

0 and one at t
1'

Thus
-

a .Wo-panel design is sufficient for empirical
estimates of the coefficients. Equation (33)
follows the form of simultaneous structural
equations as given in the econometric literature.
If one assumes x and yo are uncorrelated with u*,

then "ordinary least squares" regression can be
applied. Otherwise, sOme different regression
method,should be used. Statistical methods will
be discussed in the next subsection of this
chapter.

Step 4. Calculate estimates of the coefficients of the
differential equation system (32) by using 'the
following formulae:
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. *
(34) (1n03 )/t

*.
(313) A m B(B - I) if la 0, 0'

Bt
(Mt') A 7 ((e- I)V A 1V (1)

t.y_2y
(2)

j
-1 *

if Pill = 0- -1-1 -

where ln is a matrix logarithm defined byAquation (20).

Once the matrices A and B have been estimatedthey can be
applied to generate prealctioiis to any point along a continuous .

time scale. These predictions can be compared to observations
as a test of the theoreticAl model.

Statistical Estimation.

This Ubsection briefly sumMarizes statietical theory re-
lated to e timating coefficients of the integral equation (33)
by regessLion metheds.. Unlike the mathematics of differential
equations, the relevant statistical theory is familiar to many
social scientists via the ecOnemetric and, increasingly, the,
sociological and political science literatures (see:, e.g.;
Johnston,i1963; Goldberger, 1964,0uncan,.1965; Helse,,1975;,
Goldberger and Duncan, 19731 Ostrom, 1978; Asher,' 1976; Board-
man and Murnane, .1979). In consequence, the treatment of
statistical theory'4, this' volume,need not be as detailed as
the tr'eatment of ....nematical theory- In.particular, this sub-
section developS the assumptions underlying application of or-
dinary least squares (OLS) to'two panels of data in order to
secure est.imates.of the.coeffiaient.matHces A* and B* iurequa-
tion (33). Readers interested in di,fferential equation 3ystems
for general applications shoUld be award that numerous alterna-
tive estimatioh techniques.are available;.these will be sum-
marized briefly toward the end ofthis subsection. The present
focus on OLS applied to two panels of data_reflects likely
needs in Status ateainment '.research.for,the.immediate future.
First,.time.series of,data w.ith numerous time points,seldom are
available-in carder-decision making research. Secondly, ap-
plication of differential equation models in career-decision
making research is new,.# Variety of statistical methods'may be

, tried out as experience dictates.

Equation (33) mar'be interpreted as.a special case of,a
simultaneoUs equation./system, and one may consult the econo-
metric literatur'e.for' investigations 'of appropriate statistical
analysis. Before; aiddrefmipg the specifid task of statistical
esimation pf equa4b704410t is useful to review the broad
outlint's of econo04trie'tAdory of simultaneous,linear systems.
In this theory, sets of;lircear equations are the,object of
study; each equation expvesses a hypothesis about.the.substante
of one's topic. Con,sider t.4p following pair of structural equa-,
tions as an example. ,
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over samples. The varianee of the statistic, as with all var-

i,ances, .0 just tne squar&-of the stan(la7-:d deviation (standard

tor). :-.C,ertaihly, the smaller the variance of a statistic

the 'bbtter,-ceteris paribils. If one sample statistic has a
smaller variance than a second ptatistic estimating the same
populationeparameter, the former is termed more efficient than

the latter. At.an example, part of the central limit theorem
states, that.the expected value of the sample'Mean is the popula-

tion mean, and that the variance of the sample mean of x is the

popul'ation variance of x, divided by the sample size. Similarly,

the mean over.samples of a sample regression coefficient (in the
fixcd-effects model) is the corresponding population- regression
coe.fficient,, and the,Variance of the sample regression coef-
ficient is a function of the s.tandard error of estimate and a
diagonal element'of the inverse of the matri* of cross products
amcing the independent variables.

Two concepts ot major-importance in structdral-equation
analysis are-bias.and consistency. : Let s by any sampre statistic,

such as the mean or.sample regress.ion coefficient, and let the

corresponding population parameter be denoted by S. The expected

value of s is denoted by E(s). 'The bias of s is the difference
between its expected value and the value of-the corresponding
population parameter:

Bias (s) = E(s)

If F(s) = S, s is teiMed unbiased. If E(s) # S but Es
approaches S as the sample size goes to infinity, s is described
as asymptotical:ly unbiased. If the variance of a statistic goes
to zero as the sample size goes to infinity, then the statistic
is termed consistent. A consisten_t statistic is asymptotically
unhiased, but asymPtotic,unbiasedneSs obvioustly does not assurp
consistency. Unbiasedness is a desirable characteristic of al

statistic, but frequently, it is necessary to accept a sample
statistic that is consistent; this is the case, for example, with
many ecs.v.ometric methods such as two-stage least squares,
limited-information, maximum-likelihood estimation, arld so forth.



36a) yl = p z + y +
11 12 2

(36b)
Y2 P20 P21 (121Y1 v2

where yl, yl, z are observed variables, p
ij

and q
ij

are con-

stants, and v
1, ,v2

are unobserved disturbanbe variables. In

(36a) yl is hypothesized to be affected by z and y2, and in

(36b) Y2 is considered at effect of z and of yi7 Thus, yi

and y2 exhibit feedback effects on each other, but z is not

affected by any variable in the system. Variables such as z
are termed exogenous variables; variables such as yl and y2

are endogenous. More generallyfendogenbus variables are vari-
ables-,whose values are determined, in part,.by other variables
included in the system; whereas, exogenous variables are those
whose values are determined outside the system, i.e6 the
theory does not account for their values.

For statistical applications, the most important distinction
between exogenOus and endogenous variables is that the exogenous
variables are .assumed to pe uncorrelated,with time disturbante
variables; whereas, the dndoqpnous variables are permitted to
be correlated with the disturbance variables. It is argued that
if yl,aff-cts y2, then the disturbance for yl is.likely to be

correlated with y2, lend vice versa. This is not a deductive

argument, however; rather it is based on common sense. This
point-does not seem to be understood'clearly in the literature.
Often, readcrs might acquire tile impression from published
accounts that there is a deductive argument demonstrating con-
clusively hat if reciprocal causation occurs between yi and y2,

%then a correlation necessarily must arise between y, and the

disturbance"associated with y2, and analogously, that y2 neces'-

sarily mls be correlated with the disturbance on yl. Neither

of %these correlations follow deductively from the assumption
or: reciprocal causation. What does follow deductively is that,
once nonzero correlatienL are asSumed between independent
(msured) variables and disturba:ce variables, OLS yields in-
c.,istent estimators of the effect parameters in the structural
equations.

Equations (36a) and (36b) epch appear as a linear equatiOn
with a stochastic error term (disturbPnce variable); hence, one
might contemplate using ordinary least squares regression
to estimate the parameters p

ij
q
ij

The formula for 07,S

2stimation of equation. (36a) is

7 4
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k

(37) Iplo P11

Ez y

A

Yy
2
y . Ez. ,

Yy23,

Ez.

Ez.
2

3

E.Y2j°1
3

' 1:Y2j

4 3

2

l'y2j

where p
10

, p
11

and q
12

are sample estimates of the correSpond-

inq population values p10, 1311,
and a

'12'
rpspectively, the j

subscript stands for the jth case, and N = the number of cases.

To simplify t e presentation, it is convenient to shift
to a matrix notaidn.

Accordingly, let

E an 1 x N vector of observations on yi

= a 3 N N.matrix with the first row containing N con-
stant values of 1.0, the second row containing N ob-
servations on z, and the third row containing N Ob-
servations on y,). Each columh of W represents a

single case

v - an 1 x N vector of values for v

- a 3 x 1 vector of coefficients;

(plo, p11, q

where the prime stands for transpdse.

Equation (37) can now be. written

(37a) = yW' (WW')
-1

A

where r is the OLS estimate crf r. Note that (37a) is the trans-
pose of most notations for'simuItaneous linear systems; the
transposed notatjoh is tised to maintain consistency with the

- notation for the differential equation system. The diffo.rential
equations are Fesentcd in notation that is prevalent in the
mathematiCal literature.
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To eval(late this estimate, write (36a) in the matrix nota-
tion for N observations --

(38) y = r'W v

and postmultiply by the r'anspose of the independent variable
matrix (W.).

(39a) yW r'WW' vWs

-1 -1
(39b) r' = yW'(WW) vW'(WW')

assuming WW' is nonsingular. For a given sample. subtractIng
(39b) from (37a)gives the Sampling error:

('O) r' r' = vW(WW)-1
-1

Thus, r is unbiased only if EvW i(WW) s zero. In general
this oRpected value is not zero. Even worse, it does not tend
to zero as the sample size increases: It probability limit
is:

plimivW(WW'Y
-1
)= plimfvW'Mplirr(WW)

E(v,W)[E(wW)) -1
0

where plim stands for probability
Written out this becomes

limit, and w is a column from W.

-1
E(v w')[F wl,s/l)1 v Eviz, Evi

Ez

Ez

,
Ez

Ey.,

Ezy2

[

2

EY2 EY2z EY2
,

*ince, by as!-;umrtion Evl, Ev1z are zew, the difficulty arises'

from the-nonzero expected value, Ev1y2. As noted, this non-

zero assumption is made because y2 is hypothesizeJ to be af-

fected by yl, and'it therefore seems unreasonable to include

in the assumptions ppe postulate that the disturbance for yl

is uncorrelated-with y
2.

(Note that Ev-I y
2

is the numerator

to the correlation hfet-qeen v and y
'

since Ev
1

= C.)
2
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*IN

,
This argument was developed for equation (3ka). An analo-

gous argument-applies to (3614. Clearly, the same argument is
quite general,applying to every equation in systems of any,di-

mentions. Thus, it is concluded that OLS estimates are, incon-

,tistent (i.e., do not converge on ipie population parameters..
they purport'to estimate as N goes tc4nfinity) , when .one or

more of the re-gressors is correlaeed with the disturbance var
iAble in the associated structural equation.

Consistent estimation of the structural parameters, p

and q
ij

is approached bY way of a reluced form set of .coef-

ficients. ,to explore methods based on the reduced form, it is
instructive'to'rewrite equations (36) in th& following way.

0 + pllz y1 q 12 2
vl

.0 Pllz g21 2 4 V2

p:Iir of equations can be eo-- ctly written'in matrix no-
tation for L exocienous variables, K endogenous variables, anci

N obsc.rvations:

where

(41) 0,2 PZ

tr,+ )XN

h,N

= a matrix whose first contains all ones
and the remaining rows contain N observa-
tions on each of the L, exogenous variables

a maixix whole rows contain N observations
on each of K. endogenous variables

'V - a -matrix of K disturbance-vaxiables for I+
K.7-N oases

r

K,(f4J)
a matrix of constant coefficienfs including
the intercepts for each equntion in the sys-
tem and the parameters indexing,the effects
of each of the L exogenous variables on each

of the kendogenous variables

a nonsingular matrix of coefficients indexing
effects of the endogenous variables on *ach

other. The diagonal elements of Q can Le de-
fined to equal -1.0 to main+.a n consistency
beOween (41) and (36).



0 = a conformable null matrix.

Again, noie that, to Tiaintain consistency with the previous.sub-
section, equation (41) is the transpose of notation most pr'eva-
lent im the econometric literature.

The reduced form of the system is obtained by premultiply-
-

ing (41) by Q
1

(assum,ed to exist), and solving for Y.

where

4 1

-1
0 = (Q P)Z + Y + Q 1V_ _

-(9
-1

P ) Z Q IV

Y = rz v*

(44) V* = -Q 'V

0

= the reduced-form coefficients matrix

Since Z is uncorrelated asymptotically with V, (1/N)plim V*Z' =
-1

-1/N plim Q -1V7,',= (-1/N)Q plim VZ' = O. Hence OLS can, be used
to estimate consistently if in equation (4-2). The estimate is

-1
E YZ' (7Z')

.

0

Estimation of the structural parameters P and Q may now
proceed by making use of (43) . Preinultiplying by 70 yields

(45)

A

Givpn a sample e timate of the reduced form matrix, R one may
write the sample version of (45), and investigate hoi.4 to use

the relation for finding P.and Q;

-Q11.

In general, (45a) is not identified. There are K(L -I- 1) known

values in 1,, but K(K - 1) unknowns (excluding diagOnal erements,

set to -1) in Q plus K(L l) unknewns in P. Obviously, one
must draw on sdbstantive theory .to cohstraila the values of P

and/or Q. Generally, certain elements of P and Q are assum-Jd
zeio, and the-altered relation implied bY, T45a) a-nd the z6ro co-
efficients is gamined to see'if the remaining unknowns can be
calculated. Numerous methods are available for such calculations
(slee (oldberger, 1964 and Johnston, 1963 for4thorough reviews).
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The immed ate goal is to find suitable estimates of the
matrices A* and a* in the integral.equation (33). This estima-
tion probrem may-be interpreted al one of estimating t.he reduced
form of a general simultaneous st uctural equation system. To
see this, it is necessary to introduce some additional terminology.
The variaples of a simultaneous system frequently,are classified
into ono group termed Ex-edetermined variables and a second group
called jointly dependent variables. P.edetermined variables in-
clude exogenous variETEYJs and lagged values of the endogenous
variables, and the jointly dependent variables include only cur-
rent values of the endogenous variables- For instance, in the
.integral equation-system (33) , x represents exOg Ious variables
and the lagged endogenous variaEles are denoted 4 yo; the pre-

determined variables include x and yo. The jointly dependent

variables arc denoted by yt In scatistical applications, the

matrix Z contains predetermined variables, and Y contains joint-
ly dependent variables.

To pursue the argument, shift equation (33) into the no-
tatien.of struciural equations developed above. Let tj

repre-
Y

sent a N x 1 vector of values on K endogenous variables at time
t tor case j, and lot x, be a (1 + L) x 1 vector with its first

elemellt equal to 1.0 and remaining elements containing values#
.of L exogenous variables for a single case. Also, let v, repre-_,

sent a column vector of K disturbance variables for a single
case. Now, define

(1*L+K),N

K
t

Kc (Y1 Y-N)

(A* B*
Nx (iaLiK)

= The negativr? ofaNxKidentity matrix
Kxx

7.9



Now the integral

=

0 =

(46a) 0 =

equation (33) can be written

PZ + V

PZ Y + V = PZ + (-I)Y + V

PZ + QY + V

Equation (46a) is precisely the same form4as the general struc-
tural system given in (41), with Q E -I. Estimation via reduced
form may proceed directly by refeience-to equation (45). clear-
ly, when Q-= -1, (45) yields:

(47) P = n

Since P contains the structural coefficients for the predeter-_
mined vatliables and n is the matrixof reiuced-form coefficients,
(47) establishes the7desired result: Est4mation of the para-
meters of the integral equation (33) may be viewed as estimation
of the teduced form of a general simultaneous structuzal-equation
model. _(See Goldberger, 1964: 373ff for a similar interpreta-
tion.) Thus One may consistently estimate A* and B* by the
following f,

^*
[A B = P

A

(48) P = YV(ZZ')
-1

_

The asymptotic variance-covariance matrix for each row of P
(equation of (33]) of these estiMates is given by

Olere

(49) C- = 1/N s
vi

2
(E (zz')]-1

I .

C' the covariance matrix for the sample estimates
-12

in the fth tow of Ei

s
2

vi
the variance of the disturbance for equation i

F(z.z') = the covariance matrix among the predetermined
variables.

Genetally, the quantities in (49) being population values, are
-unknown. However, consistent est:mates can be formed by cal-
culation of analogous sample values:

(49a) C^
^2

1/N) s ( ( 1/N) (ZZ ' ) )

1

v

= s
v.

Z.7')
-1
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where the circumflex indicates a sample value for the correspond-

2 2
ing population statistic. Note that s- (1/N)E v.4

vi ij

.....1, "2 A2
(1 Ri

) where t is the sample variance of the ith joint-
Yi Y.i

ly dependent variable, arid R
2

is the square of thr multiple cor-
i

relation for'equation i. A slightly improved estimate is given
by replacing the reciprocall/N with 1/(N-K-1), where K is the
number of regressors.

As noted in the beginning of this subsection, there are
L:imerous methods for estimating A* and B* other than applica-
.tion of OLS to two paners of data. Consequently, it is impor-
tant to identify the key assumptions underlying this application,

- and to summarize briefly alternative methods. The first two as-
sumptions Are substantive rather than statistical. They are:

Assumption 1: All individuals are governed-by the same
differeritial-equation structure. This means that the
matrices A and B (and, therefore, A* and B*) are the'same
for all persons.

Assumption 2: The fferential-equation structure is sta-
tionary over time. his means that all values in the co-
efficient"matrice;AadBare fixed,over time.

It is possible, though improbable, that statistical assumptions,
to be i-eviewed presently, could hold even though assumption 1
and/or assumption 2- are not valid. In such a case, one would
produco good statistical estimates of parameters that provide
seriously incomplete description of the substantive topic.

The next two assumptions are necessary (and sufficient) for
the statisticAl estimates to be consistent.

Assumption 3: The means of ill dhsturbance variables
are zero.

Assumption The independent varibles z are not corre-
lated with the disturbance variables v. This means that
all exogenous variables x and lagged, endogenous variables
xo age not correlated with any unmeatircd variables V.

If assumption 3 and assumption 4 hold, OLS estimates are con-
sistent, meaning that:. (a) they are unbiased in the limit as N

,approaches infinity (i.e., asymptotiCally unbiased), and (b) their
'sampling variance approaches zero as N approaches infinity.

()The latter feature implies the former.)
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The next assumption is rqquired for derivation of the var-
iance covariance matrix among the regression coefficients of a
,given equation (equation [49]').

Assumption 5: The variance over samples of each dis-
turbance term is the same for all observations and it
does not depend on z.

It assumption 5 is not met it does not imply necessarily that OLS
is inconsistent. Rather, it means that statistical tests of
significance should not be applied using formula (49a) to es-
timate standard errors. In this case, however, generalized lin-
ear regression (GLR) may be preferable. to OLS, because, while
both OLS and GLR are consistent, the sampling variability of
GLR is less than for OLS GLR is more efficient, see
Goldb!rger,- 1964).

Any one of these assumptions poses a serious threat to the
valid use of OLS to estimate,A* and B*, because status attainment
theory is not sufficiently developed to generate confidence that
any of the assumptions are met. It should be emphasized, how-
ever, that no statistical method will compensate for incomplete
theory. Thus, one shotild not expect to find the situation etuch
improved by resort to alternative statistical procedures.

In the statistical literature on simultaneous structural
equations, assumption 4 has been of major interest. As review:d
above, when assumption 4 fails (i.e., regresse-s are correlated
with the disttirbance), OLS is biased and inconsistent. If OLS
estimates are inconsistent, then numerous alternative estimation

' methods might be substitpted; examples of alternative methods
include instrumental variable estimation (IVE) , indirect least
squares (ILS) , tjWo-stage least squares (2-SLS) , full-information
maximum licqihOod (FIML) estimatic,n, and three-stage least
squares (3-SLS). All of these methods depend on measuring a
set of exogenous variables (or instrumental, variables) that have
rto direct effect on tAle j.ointly dependent variables but are un-
,corilAjd With Lhe disturba.ice variables.

The bias and inconsistency of OLS when it cannot be as-
sumed that regressors arc uncorrelated with the disturbance
is well known, but a similar result for alternatives to OLS has
not been widely publiciz,ed. TO emphasize the point that stat-
is d methods cannot substitute for matare theory, the case
of instrumental variable estimation (IVE) is examined below.
Not surprisingly, it is found that ,IVE estimates are biased and
inconsietent when it is assumed erroneously that direct se:fects
of the instruments are zero. It should be emphasized that IVE
is equivalent to indirect least squares, and for "just identifiOd"
systems, also equivalent to other methods such as two-stage
least squares.
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Instrumental variables for a.given structural equation are
variables taat are uncorrelated with the disturbances for that
equation and are correlated with the independent variables in
the equation. Suppose that,W is an (L + 1) x N matrix with the
first row containing all oneg and the remaining rows containing
N observations on L instrumental variables. To avoid defining
additional notation, assume that W is uncorrelated with all dis-
turbance variables; in this case EVW' = 0. Referring to equa-
tion (41) and using the fact that Q = -I, one may write

0 - PZ - Y V

Y PZ + V

The instrumental variable estimation of P is P = Y(ZW,W )

by tle assumption (ZW')
-1

exists. The sampling error for P is

-1 -
P YW(ZW) -P = (PZ + V )W(ZW)

1

oma.

-1vW(Zwi) r

VW(ZW)

Ta:in.j probability limits, one finds

-1
plim(P-P) = plim VW'(ZW')

-1 = plim VW' plim(ZW')

-1
Ezw')

where z, w are celumrs from Z and W, respectively.

Hence, unler the stated assumptions, instrumental variable es-
timation iand indirect least squares) is consistOpt, and, as
shown earlier, OLS is not. This is a basic result in the econo-
metric literature.

An implicit assumption of the IVE is that the instrumental
variables exercise no direct effect on the' dependent variables.
To see this, suppose that some or all the instruments do exer-
cise some effect on the dependent variables and let S be a
conformable matrix containing the effec parameters. The ob-
servations.now are generated bi7 the folloi.4ing equation,

Y P2 + SW + V
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Suppose that one*assumes mistakenly that S 0 and forms IVE
-

- - es-

tinates, P YW(ZW) 1
The -sampling error.:I.or P now becomes-.

-1
= YW'(ZW') P

(PZ + SW + V )W(ZW) P

P + S (WW)(ZW)-1 + (VW')(ZW')-1 P

-1
+ (VW' ) ( ZW ' )

taking probability limits gives

-1plim (P-P) = SE(ww')(Ezw') 0

A
Thus, it is clear that instrumental v'ariable estimation generates'
inconsis=tent estimation of P when it is assumed incorrectly that
the instruments have,no direct effect on the dependent variable
(i.e., incorrectly assume S = 0).

This is hardly a surprising result, but it does,emphasize
the point that methodological techniques cannot substitute for
adequate theory. Whatever method is used, assumptions that ca,n-
not be tested against aata must be made. Con:idence in the re-
sult of the calculations must neces-s7Fily rest heavily on confi-
dence in the theory.

The above discussion introduces the general question 9f
identification. Before any statistjcal method can be applied,
theoretical assumptions must be imposed. A thorouoh presenta-
tion of the identification problem is beyond the scope of this
monograph, bUt a brief treatment is appropriate.

Assume that y represents one case on one of the dependent
variables (a scalar) . Also, let E represent one row of P cor-

.
responding to y, and let v be the corresponding scalar disturbance.
Let z be one column f7om the matrix Z. With this .notation, the
model can be written:

= pz + v

postmultiplying by z' and taking expectations On both sides, one
may dez.ive estimating equations.

or

Eyz' EEzz' + Evz'

Ezy = (Ezz') + Ezv



The second form expresses the system of estimating equations in

conventional column-vector form. In the systim, IR' and Ezv are

unknown, and Ezy and Ezi.' are assumed known. There are L + 1

rows, hence L + 1 equaElons. There are L + 1 unknown elements

in p' aLd L + 1 unknown elements in Ezv (including the mean of v).

Letting I represent an ideAtity matrix of order L + 1, the sys

tem can be written as a single system:

Ez, tE;4Z' xl

Thus, we have a system of L + 1 linear equations in 2(L + 1) un-

knowns, The maximum rank of the supermatrix of known coefficients

fEzz'i r] is, therefore, L + 1. The ildentification problem.re-

solves into the process qf drawing on theory to place at 1e6t
L 1 independent restrictions on the system. Assuming the rank

of the system is L + 1, when at least L + 1 additional linear

restrictions are imposed, the system becomes identified. As it

stands, it is underidentified. As the previous iscussion im-

plies, the most common type of restriction ip to assume certain

elements in E' and/or Ezv are zero.. A total of at. least L + 1

such assumptions are necessary (but-not suffieient). When it is

assumed that all elements in Ezv are zero, OLS are consistent

estimators, but when some combInation of elements from 2' and

Ezv are set to zero, some different method must be used. If

eRactly L + 1 values are set to zero, then the system is lust

idc!ntified, and, if some nonzero elements are in Ezy, methods

-g-Uch as-i-ndirect least squares or two-stage least squares,are

identical to instrumental variable estimation. If more 'than

L + 1 coefficients are set to zero; -.11en the system is over iden-

tified. If some of the nonzero elements are in Ezv, then meihods

such as two-stage least squares, three-stage least squared, or

full-information maximum likelihood must be.used. The reader is

referred to standard texts in econometrics (e.g., Johnston, 1963;

.Goldberger, 1964) for exposition of these methods and a or ugh

treatment of the identification queStion, (on the latter is

see also Fisher, 1976).

Although economic theory sometimes may be poweiful enough.

to specify more than the minimum L + 1 zero coefficients, status

attainment theory does not justify even the minimum L + 1 as-

sumptions with sufficient authority to generate strong confi-

dence in any estimation technique (see the discussion of a paper

by Haller and Woelfel (1971a] -- Land, 1971; Henry and Hummon,

1971; and Woelfel and Xaller, 1971b). Hence, it seems unlikpsly

that there will be in4the immediate future puch justification

for apply4nc methods in status attainment work.such as two-stage

least squares that are designed for overideatified systems.

To il]ustrate these comments, consider again the system

represented by equations (36) . Let z be parental status, yl
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represent significant other's occupational expectation of eso,
apd y2.indicate ego's occupational expectation. Because

there is causaf,feedback in the system, the standard Presumption
is that 111 is correlated with v2,.a#dy2iSforrelated with

,hence, OLS are inconzistent and should not be u,sed. Although it
does seem plausible that i"1y2 # 0, and Evny # 0, these state-

ments do not follow deductively from equations'(36). On the
other hand, Vleory\tuggests, but certainly does not confirm,
that.the effects of parental background on ego's Occupational ex-
peCtation operate indirec.tly via significant-other occupational
expectation of ego. If one is willing to make this assumption
and set o

4.21 6' 2021then consistent estimates of.p
' c1 ,

and

Ey,vi can be secured through indirect least.squates

This situation is.a specific example of the general contlu-
sion reviewed above. Without some restrictive assumptions, a
unique solution for all unknowns in the equation (36b),

(120' (121' 921' Ev2y1, cannot be found. It is plausible that
\

(121
0 and, Ev2y1 # O. If these assumptions are accepted, then

indirect least squares are appr-opriate. I. is almost as plausible
howevcr, that q21 #-0, and Ey2y1 = 0, thus indicating use of OLS.

Thc: mOst likely case is4hat neither coefficient is zero.

The example is typical-1%f the difficulty. of identifying
structurai equation nndels in status attainmeAt research (see.
Nolle, 1973, for example). All published work includes a larger
set of Variables, than the example, but each independent variable
added to ah equation adds two unknowns, but.only one new ,equation
to the eFti;lating-equation let. Hence, adding variables is not
sufficient to identify the parameters of any of the strptural
equations. What is reqUirtd. is' better thedry, but good thOory
itakes time to develop. In the'meantime, exploratory analysis

/based on available theory and data,is necessary. As indidated.
here, appaicaLion of OLS in such exploratory analysis frequeAtly
may be as easy to justify as alternative methods such as in-
direct least squares, presence of feedbilck,loops in the sysbm
not withstanding. It does appear, hOwever, that use of more then
one estimation meY.od frequently could contribute some insight
into the substantive questions under study and serlie to em7hasize
the exploratory nature of the analysis. . .

One of the main themeq of this volume is that tests of theory
by checking'the accuracy of1forecasts derived from theory con-
stAutes a promising tool for improving the.quality of theory.
First, forecast accuracy is.a much More stringent test of theory
than most techniques in general us'e currently. If theory foUls

R6
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to generate accuratevforecasts, then scholars &Fe led to reform-
ulateUe 04-ary. If theory consistently does41,enerate,aocurate
forecasts, then confidence in it will be strengthened consider-
ably over what can be justified by reliance on multiple correla-.
tions. Secondly, eMpirical tests using forecasts should stimulate
forfnulation.of dynamic theory to account for the behavior of all
variables at every ihstant on the continuous time scale. Such
dynamic formulation represents a marked improvement over cross-
sectiomal models thaf are so prevalent in the literature.

Much confbsion is associated with selection of an approp-_.

riate estimation method. For example, one, paper on statisticai
estimation with panel data states:

Whenever a lagged dependent variable is included
in the model, the errors Will be correlated With at
L-ast one of the regressors, and'ordinary least squares
regression will be biased and inconsistent (Hannan and
Young, 3.976.

As noted above, this statement is irLerror. It does not follow
deductively that lagged endogenous littriables are correlated with
any disturbance variable, including the disturbance associated
with the current value ef the same variable. Such a correlation
might be a liely hypothesis, but it does not automatically
follow from the model.

Two rens emerge from the above discussion suggesting
that OLS estimation can be recommended as an initial methodology
for estimation with two panels of data. First, the required
Assumptions have been made explicit and are at least as plausible
as alternative'assumptions. With OLS, one need not.assume any
of. the coefficients in A* or II* are zero,but must assume all co-
variances between the di3turbance.variables v and the exogenous
variables and lagged endogenpus variables are zero. Non OLS
methods require that somp eleMents of A* and/or B* be .s-med
zero, but permit estimatIon of some cevariances Involving ci.Ls-

turbance variablep., Secondly, OLS selects parameter estimates
to minimize the variapces in the disturbance variables. If

the theoretical modal- is approximately accurate, then the min-
'imisation criterion should generate good fprecasts. If it does
not, then alternat4ve estimation meAthads should be trled.

I.

Probably'the main threat to consistent estimation using OLS
is the autecorrelation of disturbances,,meaning that the un-
measured variables are correlated over time. Autocorreletion
certainly would arise, for'examplei' 'if ohe.or more impoitant
Variables 4...tomitted froM the a alysis:and the omitted variables
are correlated over tithe. :-v ,a,firSt order autocorrelation'
process for the disturbar . v rip'les, the correlation matrix
between.lagged endogenouL variables y and current disturbance
v can be written,
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Evty:t...1 = -rA +. r2a* + 3A
(B*t)

4. ..

where r is.the matrix of aatocorrelatione; A is,the matri,i4of
cross-iectignal variances and covjatiances arliohg thp disturbances;

. .

ita =.EL7tA' all t. It is assumed.that L.<.11.and that the pro-

cess h4s operated over n Reriods with'n sufficiently large so

that rn O. This covariance is unlik'aly to be zeolbut note
that It a0proaches .Tero as.seittler f (the itatrix co-putocarrtia-
tions) approaches "zero-.or as A (thF cross-sectional variance-
covariance matrix among regidaals) approaches zero.- 'Since the
diagonal elements of Alare error Variances, one sees that .a'-model
accouptir4 for p large proporti46 of-Variance helps to leep the
asymptotLc bias of 01,8 low.: A short measurement interval probably
cdntributes to small A but teihds4to-generate large r; hence, it-
is difficult to draw EbnclusionSiabout the appropriae lentth of
the measUrem t interval.

This discuss op has.been confined to estimation methods .

based on two pa of.data,:because this' seems like the.most
likely data base in atqs attainmont work in the immediate fu-

,
ture. The reader s larbe reminded,- howtver, that estimation
is possible with a t e series on .a given chse extending at
least to one more observation than number of variables in the'
model. For presentation of estimation methopls with time series
data, see Ostrom (1978) or pox and Jenkins (1470). Econometric
ters show how to handle time series data. Doreiaft and Rummon
(1 76) /ive eAmples of estimation with time seriei. In ad-

, dition, pool.ing of time series of cross sections sometimes pro-
'ducez. improved estimation (see Hannon. and Young [1977] for a
reView and survey of recent l?iterature).

1

In sum, it appears that use of 014 to estimate the coef-
ficAents o,.:.the integral equation (33) is jusiified as an

\initial. strategy, but that aleernative specification might fruits-
fully be investigateddn_future research. In particular,,it
seems advisable to explore haw fhe dynaiic quality of the dif-
ferential equation model can be exploited to address.the ptat-
istical issues. (See Doreian and Hummoh (1976) for several il-
lustrations oT estimation techniques tailored to speci:Tic sub-
stantive questions,)' Also, specification of a modeVieccountAng
for measurement error is desir'able (see, e.g.,-Coritgan, 1968;

1/4dJoreskog, 1973; Wheaton, et al., 1977), but it-is leyond the scope
of the present volume.

S.
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-The-main purpose of this section is to describe a-Computer
prograM package which is available for converting raw-vdata in- :
put into estimates of the coefficients pf the differential
equation (28) (the matrices A ,and BY by'usi4I bLS to estimate
the parameters of the corresponding integrarIequation (29) (the

matrices A* and 13*, contained in the matrix P). The prdsehta-
tidn proceeds in four parts. 'Tirst, a.brief discussion of the
calculating task is presented. 'Secondly, the input required to
use the computei program is described.. Thirdly', the output of

' the program is described. Finally, provision in the program
package for carrying out data transformations is described.'

The Ca1culatinci*ask \

'The logic of the program is'quite simple. The calcu;.ations
proceed in three steps:

1. Calculate means, standard'deviations, and correlations
r

2. ,Calculate OLS estimates of P = [A*, B*), using the
means, standard deviations, and 'Jorr-Lations as input

3z Calculate estimates of the coefficient matrices A and
B from A* and B*, using equations (30) and (31)

Calculation of means and,standard deviations by the program is
executed by omitting missing observations on each variable and
dividing the accumulated sums by the number of. observations

present for-each variable. Correlations are calculated using
all data present for each pair of variables. :

The only unusuak calculations are associated with finding -

the matrix logarithm demanded by equation (30b). This calcula-
tion can be accomplished by finding the ehalacteristic roots
and vectors of the matrix B* and applying formula (20), .Since
B* is not a symmetric matrix, its characterhstic roots and
vectors may sometimes be complex numbers; hence, complex-number
arithmetic is rewired. To find the eigenvalues and eigen-

vectors, tlie progfam package uses subroutines from an eigenvalue-
eigenvector package called E1SPAC distributed by The National
Software: Center at the,Argonne Nation4 Laboratories in Chicago.
All programming is written in FORTRAN IV, Level G.

: 4

The calculations tare executed on the assumption that the
matrix B is full rank. This is not a serious limitation, how-
ever,.since it is rare to find a singular matrix in empirical

data.
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Input to. the Program

To operate the program, three types of input are required:
a) data containing N cases for all variables, b) control cards
describing the data, and c) system-inforMation cards.

Data Input

The program assumes that observations for all variables are
groui'ied tcgether for each case (e.g., indlvidual respondent),.and
that the position of each variable on the cards; tape or disc is
the same fgr alr cases. To illustrate the Rroper arrangement of
data, figure 7 shows the arrangements.-on cards for three vari-
ables and five Cases, each case being a person.

Col. No.: 1 r3 4 5
1

6 7 0 0 1 2 3 4 5 6 7

card 1, Person 1 75 6.9 .46 *

cdi-d 2, person 2 2 .3 .82

card,3, person 3 32 3.8 .19

card 4, person 4 65 7.4 .56

card 5, person.5 42 .9 '.94

Figure 7. Illustration of organizatkon
of Input\Data

(Of course,tthe decimal.points shown in the illustration need
not be, punched on the cards, as a FORMAT statement can be used
to Position the decimal for each number.) If there are too
many variables to fit on one card, tontinup4ion cards can-be
used for eacli case. There may be any number up to and'includ-
ing 1000 variables in the data set. The program selects the
variables,,needed for a given analysis in whateVer order desig-
nated by Ehe user, according to information tsupplied by the
control cards: The data may be stored according to a'FORTRAN
FORMAT, or they may be unformatted, using FORTRAN unformatLed
input-output. The mode of data storage and FORMAT statement,
if needed, form part of the information supplied to the program
by the'controa cards.

t

Control Cards

There are three control cards which supply information
abopt the data to-the'programi The three cards are a) RUN CARD,
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b) DATA CARD, ald c) FQMAT C,61:11. The content of thede three
types is describeaibeloW.

A

One RUN CARD is r,equired for each apalysis, ond itmust ap-
pear first. The kUN PARD supplies .sevep,parameters to .the pro-

gram; the information, location on Ihe RUN.CARD and dkaultimgue
for each parameter are described below. 444,/Cv,

,

cation
olumn 4 &fault

Numbers) Puipose Value

par<1,17ter 1 - 5 Indicates the number 0 None

_ variables in the anal -

.11

4
sis 4

parameter 2 (NIV): 6 - 10 Indicates the number of
exogenous variables in
the differential equa-
tion system

parameter 3 (NR) : 11 - 15 Indicates the number of
variables in the data
set from which data is
to, be read, or the num-
ber accountecLfor in V
the FORMAT CARD, if )

the latter As less than
the former

paramete'r 4 (ITYP) :16 - 20 Indicates whetheV,the 0

data are tormated 4 un-
formated; 0 = unformatr
ed; nonzero indicates
the nutber of Cardsj up
to six, on. which thre
FORMAT 'is punched j

25 Indicates the Unit n4m- .11

ber associated with-the
READ statement used for4

None .

equal
to
,para-
meter
1

parameter 5 (NU): 21

4

6

data input. Selection
of theunit is described,
in the text,ungier systbm-
inormation car.ds
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Location
(Column

.40 Numbers)

parameter 6,, (T): 26 - 30

I.

Default
Purpose Value

Indicated'the number 12'
of 'montht elapsed be
tween panel 1 and
,panel 2

para&eter 7 (MIS) : 31 - 40- Indicates the numer-
, ical value used to

indicate missing data
(.if the missing data
code is not the same
for all variables,
transformations must
be e)iecuted'to change
tall missing daea codes'
.lto the same value. .The
last subsection, en-
titled "Data Transforma-
tions" illttstrates how
this can be done). Zero
is an invalid missing
data code.

10
9

. J
At IeAt,one DATA,CARD is required for each analysis, and

should follow the RUN CARD. ,The DATA CARD indicates the var-
iable sequence number of eachArariable til) be Used in the analy-
sis. Each sequence number is right justified in a five column
field -- the P4.rst sequence_number appearing in columns 1 - 5,
the second appearing in columns 6 - 10, etc.. (Any number of

< contihuation cards may be used.) If the data are formatted
(1 4 ITYP < 6; ITYP = parameter 4 on the RUN CARD), then the
seqUence samber gi.es the order in which'the variable appears
in the FORMAT statement supplied by the FORMAT CARD. If the

ta are.unfarmatted (ITYP = 0),. then the variable sequence
er indicat thes e order'in Which the varir..ble appears in the

1 igt data set. If for a formatted dat*set, a FORMAT state-
ment is supplied describing all variabls in the input data set,
then the sequence number gives the order of the variable in the
data set for.formatted data, juit als it does,for unformatted'
data. If the data are formatted, it is recommended that a
standard format describing all variables in the data set be sup-
plied; this procedure avoids the need to ceihstruct a new FORMAT
CARD for eaFh analysi p thereby reducing the numerous chances
for ,error inherent .in constructing FORMAT'statements.

. in each analysis, the variables are ordereekin the same
order in which they appear on'the DMA CARD. The program assumes
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.
that exogenous variables are listed first, followed b_y the endo-

genous variables for pa.el one, tWeliBEUErFRaogenous variaIü
for panel two. T e endogenouq, variakles for the two panels
should be listed in Ole DATA.CARD fn the same order as triicrder

% of the enogenous vayia:les for panel one. If "Ell,

the FORMAT statemenf art, to be used in the order in whidh they

occur in'the,FORMAT, the9 one may insert- a single blank DATA

CARP. .

Ulf
IA

One FORMAT CARD is required if the input data a formatted,

but should be omitted if the input data are unfôrmat ,e. If

. included, the FORMAT'CARD follows the DATA CLRD. The FORMAT
statement is limited to six cards: All the rules for FORTRAN
rogmAt statements apply, and, since ttalise rules arF vddely avail-

able in other sources (e.g.,.4the SPSS Manual [Nief'et al., 1975]

4nd nume:r9us texts on FORTRANrwogramming) and failip.ar to most
4readers, )ihey are not xeviewed. here. It should be noted, how
obver, .that the wotd FORMAT does not appear on the FORMAT CA

TO illustratethe use of control cards, assume the i put

data set is formattN and contains 100 variables. For thè cur- i

rent fun, supppse there are two exogenous variabaes and fiv
endogenous variables, each of the ratter measured twice -- on e

at
i
to

and once-at t
1,

giVing twelve variabres 'in the mils.rent run .

AdAtume.that all 10%,variables appear on cards in adjAce t fiv

c. olumn fields (thusloequiring seven cardS per case), and
,,

the twelle variaUleS for the current run are arranged as folloo
oVthe cards:_ ..

i'
f4

A 1 Card

Symbol , Name No. Columns
Sequence
Numbers

= first exogenous vari- 1 6 40:,, 2' ?°.'''
-__ ..)

x
2

= second eftgenous 1 , 21-25 5

variable
= first endcagenous 1 51-55 11

Yol vapable, to 0
1

= second endogenous 1 41-45 9

var,iable, to

. c,- third endogenous 2 21-25 21

Yo3 variable, to
A fourth endogenous 2 61-65 29

Yo4 variable, to

fifth endogenous 3 11-15 35

variable, to

= first endogenous 3 26-30 38

i.ariable, t1

Yo2

rOJ .
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Umja_01 Name

) a .
a

Card Sequence
No. dolumns Numbers 4' ,-

.
/

second endogenous 4 3 4.6-50 42
variable, t1

Yll = third endogenous 3 61-65 45
,

variable, t,
4,

J. t, .

Y14 fourth endogenous 5 31-35 71
variable, ti - _

, = %fifth endogenous 3 31-35 39
variaple, ti

,

Id this Case the sequence'number follaws.directly from the card
and column numbers. Assuming every five-column field contains, a

one and onWone(of the 100 variables,.the sequence number whs
calculated ty: sequence # =' 16 x (card t -1.0) + (Iasi col. #
in fie1d)/5.49 These sequenoe numbers.give the order in which the
variables appear in the inptt data. Further, suppotkie ',that any
missing data is coded 109, (1.E9 on the cards), that tOlve months
separate to from ti, and that4t is.desicied that the variables'

appear in the analysis in the order as listed in the abOve tab4
ulation. The control cards shown in fAgure 8 can be used to
operate the program.-

, 12 2 100 1 RUN CMD)
2 5 11 9' 21 29 35, 38 42 45, 71 39 (DATA CARD)

(16F5.0) (FORMOr CARD)

Figure 8.' Control cacds with FORMAT for all variables

41

0

The RUN CARD indiates 42 variables 4n the analysis, 2 exogenous
variables, 100 variables accounted for by the FORMAT CARD, and
formatted data with onesFORMAT CARD. Default values for the
other p4rameters on the RUN CARD are assumed by ths program.
The DAA CARD lists the sequence number of each variable._ The
sequence numbers appear in the order 4n which they will be used
for the aAlysis. The FORMAT card indicates the FORMAT of each
of the fiVe cards per case.' FORTRAN assumewthe %ame F.ORMAT is

to be used,for each.card. The FORMAT indicates five column
fields with the decimal plaCed to the right off all digits.
Decimals punched on the card override the FORMAT.

Alternatively, the cards in figure 9 accomplish the same
purpose. In this case, the FORMAT CARDS account for only the
twelve variables to be used in theanalysis; hence the default
value can be used for parameter 3 on the RUN CARD, seiiing
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12 2 2

1 2 4 3 '5 6 7 8 10. 11 1.2

(5X,F5.6,10X,F5.0,15X,F5 0,5X,F5.0/20X,F5.0,35X,
F5.0/10X,F5.0,10X,211.0,I0X,F5.0110X,F5.0//30X,F5.0)

'ARUN CARD)
9 (DATA CARD)

(FORMAT .

CARDS)

Figure 9. Contiol cards with FORMAT for variables
in.citirrent analysis

parameter 3 equal.to parameter 1-:\ This illustrates the point

that the number of, variables accountedrifor by :the FORMAT shoulcV

be the value of,parammetmr.3.1,-- Note alho,that.the iiariable se-

quence numbers,z0o reflect(the seqUence.'nuMber of each vari-

able which is/established by the TORMAili,CARD..

If the data were unformatted, the first alternativegis ap-

propriate; except that parameter 4 on the RUN CARD should be

zero (of blank) and the FORMAT CARD should be omitted.

System Informatibn Cards ,

The systein cards required vary among ,.nstallations. The

progralli described here was written and tested on the AMDAHL

system at the Instructional and Research Computing*Center, Ohio,

State University. The AMDAHL works like an IBM'machine in most

important respects, including the main featureeftf JOB CONTROL

LANGUAGE (JCL) used by IBM. The.description of systet cards

given here is c-nfined'to the required JCL; it'IS assumed-that

users know or !. ve access tq general rules for JCL. Users of

systems not accepting act must consult with personnel of their

facilities to.learn about the required system cards

A schematic view of the type and placement of JOIVONAIOL
ca,..ds is shown below.

JOB statement

EXEC statement
DATA DEFINITION statement for 'FORTRAN program

[FORTRAN program deck, followed by a
card with /* in cols. 1 and 2]

DATA DEFINITION-statement for input data

[input data, if on cards, followed
by a card with /* in cols. 1 and 2]

DATA DEFINITION stat'ement for program d'ONTgOL CARDS

[Program CONTROL CARDS, followed by a card
/* iii.cols. 1 and 2].
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If the data are,on cards the last twp DATA DEFINITION (DD).. cards
can be in reverse order. The information not in brackets is.JCL;
the bracketed information is not JCL. The JCL cards are describ-
ed below in the order listed.

The job statement takes the following form

11/3obname JOB of3erands

The double slash always appears in the first two columns of all
job control carde; no spaces may,appearsexcept *here shown. ,.The
jobname is a one-to-eight character alphameric name generally
selected by the user. It must begin with an alphabetic character
or $.. Some installations may supply the job card, or the-firit
card Of two or more .cards required to complete the job statement.
(WhensA JCL statement spans more than one card, the last char-
acter on all but Vle last card of the statement iso comma.)
,The operation "JOB" must be punched as is. The operands vary
according to the jp and installayon.

The execute (EXECr statement.takes. the followin4 form

//stepname EXEC procname,operands

The stepname is an afphameric name of up to eight characters
supplied by the user. It may be omitted, but one or more blanks
must separate the // from the EXEC if the-stepname is omitted.
The EXEC must be punched as is. The procname.refers to the
name of a catalogued procedure supplying P'CL for the FORTRAN
program. 'Procedures may vary amon§ installations. Operands
are optional and generally can be-omitted. An exatple with
stepname STEP1, prod:lame FORTRUN, and n9 operands follows:

//STEP1 EXEC FORTRUN

The DATA DEFINITION statement for the iORTRAN dchcic Cfakes

th'6 following -form:

//ddname DD *

It tells the Computer that the FORTRAN deck follows. An example
using FORTRUN follows

a 0

//STEP1 EXEC FORTRUN
/./CMP.SYSIN.DD *

where the ddname is CMP.SYSIN.

/, The DD statement tor the input data takes the following
form if the data are on .card)3:

0
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//ddname VD A

where ddnamt is the data-definition statement name and depends
on the catalogued rocedure. For FORTRUN, the following state-
ment is corject:'

//GO.FTI1F001 DD

The eleveh folio
mato parameter
-16-65as it match
bers designated
procedure. Uni
served for thes

If the 1da
"DD" must be r
of the data,
tion. The va
description
the user mus
accesfi the d

in FT desi mites the unit number and should
on t e RUN CARD. It nee no e e even, so
s parameter 4/and is not the same as unit'num-

for READ, WRITE, and pundh by the catalogued
s 5, 6i. and 7, respectively, arevtyPically re-
operations.

a are stored on tape or.disc, the * following the
placed with information describing the location,
uch as the data set name (DSN) and DCB informa-
iety of such information is too great t.e) permit
re. In order to create the tape or disc file,
know the requi.red information thpt can be used to
ta by tpis program.

The DDistatemept
erN al form a$ that for
typically aSsumes the

//.GO.SYSIN DD * or
.//SYSIN DDt*

A coMplete run using the FORTRUN procedure and unit 11 for
input data on cards is illustrated below.

for the control cards has the'same gen-
input data on cards. Thib general foim
specific form of

//Akt0O.JB REGION=200KITIMEml
PSTEPI. EXEC FORTRUn
//CMP.SY$IN DD *

FO tRAN prbgram
/*
//GO.PT 1F001 DD *

data cards
/*
-//G0.-SXSIN DD

OONTROL CARDS.
./*

//

The double'slast in the fir
ignatep the end:Of the job.
twotopIpands are Specified,
and a one-minute time limit

st two coltmhs,of the last .card des-,
Note:that V:. .jobnaMe is A1000, 'and
indicating..., 1( bybei of ErEorage
for the job.

#
a.

'It should.be notedthat the.program assuNes that linit 5 is
reserved for reading:'control cards4and unit 6 for printing. If

./

4.
4
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the catalogued procedure makes a different allocation df unit
numbers, the following DD statement should follow immediately
the program deck:

7/step.FTO6F001 DieSYSOUT=AID6=RECFM=FA

and.the following cartshould precede the,CONTROL eARDS:

//steP.FTO5F001 DQ *
4

where step refers to a step name
peticedure.

., GO) within the catalogued .

Program Output

There are four types of output generated bywthe programs,
each type beginnj.ng on a new page of the printout. These four
types are: (a) a record of the inforrIption contained on the
CONTROL CARDS?and default valties, (b) univariabtct and bivaAate'
statistics, (c) OLS multiple regressioh statistics, and (d) es-
timates of parameters of the differential ,equation. These four
types of output are described briefly below.

Record of control cards

A sample of this output is shown below. The output is
labeled with terminology closely matching that used it this
section. Most of the output is self explanatory due to the

RUN-CARD PAR AMETE% S

N. V c 8
N IV w 2 -

MR = 8
I TV) 0

NU = 12 .

T 12.0
MIS c 1000E .40

V AR I ABLE SEQUENCE
ORDEit NUMBER

I
2 2-
3 3
4 4
5 5
6 6
7 7

labels. Parameteis of the,RUWCARD are clearly labeled. When
default values are used by44the program, these are printed. :Note

118 s
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that informatin on the DATA CARD(s) is given dndeii.,the column

titled "SEQUENCE NUMBER." .The corresponcling, order of the vari-

able uied in the current ru-n-is Printed in the column justotiv

the left,-labeled "VARIABLE ORDER.? The FORMAT CARD(s) is(are,

printed exactly as it(they).'apPear in the input. In the.example,

there is no_ FORAM card.

bnivariate and bitvariate Statistics

Univariate stafistics are ca1culiote0 for each variable.by

4ncludin4 all dat'a present-for that variable, and bivariate

statistics dre calculated by ilidlUding all canes for which data-.

are.present on both variables in the pair.. Thus the saMple iize

and univariate 9tatistics may dilfci for a given variable de-

\ pending on the öther variable with. Which it is paired. Conse-

quently, the format fon writing the univariate and bivariate

statistics allows for a different sample size, and univariate
stati..stics for each variable pair. The following informatior

is 4)rinted for each variable pair. A sample of_the output is

reproduced on the following page.

Column
Headins

I

3.

N(I,J)

XBR(I)

XBR(J)
.p

SD(I)

SD(j)

Coy(I ,J)
4.

R(I,J)

.

Content

Variable Order number of
the pair
Variable
the pair
Number of observations
pair (I,J)
Mean of variable when paired

Me'an of variable J
I
Standard devia.ion
with,variable J
Standard'4eviation
with variable I
Cóvariaiice between variable I and variable

.1 using all cases in which information is *'

present for both variables, the number of

such cases being N(I,J)
Correlation between variable I and,vaPiable

.3 using all cases in which information is .

present for both variables R(1,J)=COV(I.J)Z

(SD(I) *SD(J))

first variable in

order number of second variable in

present for variable

with variable,

when paired with variable

oevariable I when paired

of variable J when paired



0

1 0

U4IVAR1i7F AND 01VARIATE STNT1ST1CS, N 2

/

1

--1

2
1
2
3
1

2
3
4
1

, 2
3
4
9
1

2
3
4
5
6

..
,I,

7
4

8
'5

7
1
2
3
At

5
6
7
8

100 -

J'

1

2
2
3
3
3
4
4
4
4
5
4
5
5

5
6
6
6
s

6
6

77
7
7
7
7
7
9
8
e
e
0
T
8
8

NII,J1

100
100
100._
103-
100
110,
100
100
100
10C
TOO
110
11r
100
111
110
100
100
100
111
100
110
110
101
1r0
100
110
100
100
Moo
100
100
1'10
100
100
100

XBRII)

..4.407042

."4.437042
-°0.1.?4.65
-4.417047
-80.??4'.5
55.25454

...4.437042
-90.33465
5C.25454

-10.07497
....4.417047
-..Rn.114t5
4,fi,75464
-11.074u7
12q.5698

...4.437042
".00.33465
55.25454

-.-10.07457
179.561d
cs,n1143

...4.437042

..80.3?465
552t)4r,4

-10.07497

F)9.8W 53.1

"2.3P0658
-4.437042
-9(10465
557S454

-10,07497
179.5609
55.33353

.-.9,380658
162.3972

X9R(J1

..4.437042
-90.33465
.80.33465
55.25454
55.25454
55.25454

10.07417
...10.07697
..10.07497
-10.17497
129.5609
129.5608
129.5608
179.5609
129.5608
55.933C3
55.83353
55.83353
55.t3353

5.8;3353
..).3b0A58
-9.380659
-9.390659
-9839c165,
.-9.3806581°1.P9.3065
..-9.380058
162.3972
162.3972
162.3972
162.3972
162.3972
162.3972
162.3972
162.3972

SO(1/.

391:9011
391.8011
243,4670
391.61011
243.4670
9.1197f5
391.9011
243.4670
9.111705
44.07031
341.8011
243.4670
8.111765
44.07031
400.9171
391.8011
243.4670
8.118765
44.0,011
400.5171
5.3714
301.e011
243.4670
8.118765
44.07031
400.9171
5.383714
17.85116
391.8011
243.4670
8.118765
44.07031
400.9171
5.383714
17.85116
156.4833

SO(J)

391.8011
24.1.4670
243.4670
8.11°765
8.116765
8.118765
44.07031
44.07031
44.07031
44.07031
4,00.9171
400.9171
400.9171
400.5171
400.9171
5.363714
5.383714
5.193714
5.3'3714
5.383714
5.383714
17.e5116\
17.35116
17.95116
17.85116
17.85116
17.85116
17.85116
156,4133
156.4333
156.4833
156.4813
156.4833
156.4833
156.4833
156.4833

COV11,J)

. 153508.1
-62198.64
59276.70

..442.9749

....21.75362
65.01434

..9091.164
1559.937
129.?071
1947.192
3301'.69
10341'66
835.A147

-382?.602
1&0714.5

-891.7146
359.2122
21.72343
133.4654

-1508..56?0
28,9E436
81.71739

-1720.329
2.503508
424.0796

-3469.641
14,36941
318.6638
14085.62

-4027:212
.261.0605
m638.1230
49679.15

.0130.6727
-607.0796
24497.04

14(12J)

1.010000
4'.6520412
1.000000

.44947340.01
-.11005290-01
1.000000

...5264537
.1453855
.3627959
1.000000
.2159138
1059697
.2566288

- 21641/4
L000000
-.4227449
.2740496
.4971003
.5633665

-.2429573
1.000000 ;

.11613750-01
-.3958266
.17273980-01
.5390571

-.4848012
1495170
1.000000
.7797430

-.1057052,
.2054965 '

-02531640..01
.7918495

...155048w

-0,13gla



A

014 multiple reiressign

Thd OLS regression yields the matxix P =[A*e B*], in.stan-

dardized and uhstandardized forsm It also calculates multiple
correlations. "rhe output it labelea in a f.airly. clear 'manner.

The first line of output included th:e toial sample size (N)'the
de4rees of freedom for ritimerator and denomipator of F ratios
associated 'ith each regression, and error code (IER). If IER =

0, calcula ons proceeded nortr1ly. If IER =4-11.matrix
sion did .1.16t occur, possibly b cause the correlation,patrix,is.
not positifve definitect If IER1. 0, exocessive round,ing error

,mo,y have occurred.

The regression coefficients (sandardized and unstandard-
ized) are arranged so that dependOnt variables (DV) cross rows

and independent variables cross colUmns, as labeled. The in-

*teger ntimbers'to the left of each row and at the.tOp of each

coilumn of these matriceigive.the v:Iriable sequence number (not

the order number). A sample of the'output is sh6wm on thp fol-

lowing paseio

41,

Differentiaf equations output
* r

.There are three typ6s,of.output related to the differential
equation, each type beginning on a new page. Firsti th

standarcliZed matrix P is subdi *ded into its component parts
A

A* and B*, 'and these compone s,are printed without changing

.
their valueg.. A sample of the output is reproduced below.

7
MAT44x Of A' COEFFICIENTS .....-

10 . . 1 2

\ 6 . 40.759 1.86417Ap3
7 11.220 '' v106780..401 '411723;728:Si
8

,

185.67 ....2729700I4',......16887

5
.-.270810-.02
v...140240...01.
.34361

* MATRIX OF 8* COEFFICIENTS ....
4

. 3 ,
4

6 ' .29262 .360380-01
7 ....32118. .28055
B ^1'.39284 .44887

1.

The matrices A, and B* are labeled in.the output). Again,

depe4ent variables.cross r ws and independent variables .(x for,

A* and yo for B*) cvaiss colu s. .The integer numbers besiae

;each row and`above eadh colum identify the variable sequeme

number. The "0" above column pine of A* designates the inter-

cepts.

l6l
A
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OLS MULTIPLE REGRESS/0N

N tno NUMERATOR OF w. 5 DENOMINATOR OF 94 RETURN CODE FROM INVS. IER 0
STANDARIZED REGAESSION COEFFICIENTS...7

DV INDEPENDENT VARIkBLES...-....
I 2

6 -0.16314 0.21629
7 . '0.21416 -0.31194
a 7loop39. ...0.26273

4 5
0.44128 0.29500 ...0.20167

...0.14607 0.69262.
0»12642 0.88035

1101STANDARDIZEO REGRESSION COEFFICIENTS=....

DV .INTERCEPT IIDEPENDENT VARIABLES
0 1 2 3 4 56 40.75(7 ....86617a403 .478270-02 .29262 .360390-.02 ....270810027 11.220 .106780-01 ,6...22872U..01 "040240-018 ;85.67 .-.27297001 ..,16987 - .q.3928 .1245T47 .34361

MULTIPLE R'S--
6 T 9

0.70729 0.80607 0.82621

4 7.



\.

Tne eigenvalues and eigenvectors of B* comprise- he sect:it/1,d

.type pf output relatedtto the differential eqllation. A sampre

of the output is shown bbloW.

REAL PART OF EIGENVALUESIOF 8* ..-

1
3

. 26545 .26545 .38585

IMAGINARY PART OF EIGENVALUES OF B* --

1 2 3
. 13346

.

-.13346 , 00

.EIANVICT0R5 OF 6* FOLLOW. THEi, ARC STORED SUCH THAT
IF ADJACENT VECTORS (K.R.1) ARE CONJUGATE PAIRS, THE KTH'
COLUMN CONTAINS THE REAL...PART, AND THE (K*I)TH COLUMN
CONTIANS THE IMAGINARY PRRT

RIGHT EIGENVECTORS .01.

1

2
3

1

.174340-01
-.171,3540-D1
.21198

2
.46292D-02
.677670-01
.69314D-01

3
-.321090-01
-.177950-01
.86900

. i/7

LEFT

1
2
3

EIGENVECTORS

1

16.566
-2.1149 -

.64275

Oil. we

-2.16 15
-6.9161
-.22190

2
-10.358

3

-.29661
.76196

The first row .of output displays the real part of the eigenvalues

of B*, and-the second row displays-Vie imaginty component of

the corresponding eigenvalues.

Let A be a diagonal matrix with diagonal elements equal to

the eigen;;alues of B*, and let V be the matrix whose columns

are eigenvectors associated witE A, then

B*V = VA

Assuming B* is diagonalizable, V is the matrix of right eigen-

vectors o? B*, and (V-1)' is the matrix whose columns are com-

posed of the left eigenvectors of B*. The output labeled RIGHT

EIGENVECTOR gives V, and the output labeled LEFT EIGENVECTORS

gives

The estimates of the parameter matrices of the differential

equation (28) (4 and B) comprisc*the hird type of output re-

lated to the dirferenEial eqttation. A sample of the output is

reproduced belOw.

0 103



INTERCEPTS E COEFFICIENTS OF PREDETERMINED VARIABLES,

T1/

6
7
8.

,INTERCEPT
0 t 0

4 f+8 .492
57.47A
375.44*

INDEPENDENT VARIABLES -..*
1 2

-.247310.-02 .948020.-02
.16312D-01 -.399120-01

-7-.57782D-01 -.23550

COEFFICIENTS OF ENDOGENOUS VARIABLES, 11 --

T1 TO.VARIABLES.----
3 4 3. 5

6 -11717 .' .12428 -.556390.-02
7 -1.1504 --1.1618 -.467980-01
8 -3.4110 2.6079 -1.0461

The format of the output foliows precisely the'format for

prfointing A* and B*. The iptercept and exogenous variablep (x)

/aPiloear 9.crosst the columns .& A. The td (T0) endogenous vari-

abes appear across the columns of B, and t
1
.1T

1
)

,

values vary.

across rows, as labeled.
C..

Data Transformation

A sdbroutine named DATA is called after each line of data
is reaok. This subroutine can be used to carry out data trans-
formations. The general use of, the subroutine is described be-
low, and an illustration is presented in which %taxying missing
data codes are recoded to a single value.

If no data trhsfornlatiogSare desired, the subroutine is
defined as follow

SUBROUTINE DATA(X,R,M,IPK)
REAL X(1), R(1)
INGEGER*2 IPK(1)
DO 1 J = 1, M

X(J) = R(IIIK(J))
CONTINUE

4
RETURN
END

This version of DATA-is included in the standard version of the
program package, and nothing need be added if the user desires
no data transformations. The variables are defined as follows:

X =.,a one-dimensional array which receives the values*oi
the variables to be used in.the current analysis

104
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R = a one-dimensional array which contains values of all

variables in the data set, or all variables accounted
for by the FORMAT ptatement

M = a scalar giving the number of variables to be used

in the current analysis
1

IPK = a one-dimensio41 array (length twa integer) whose
elements contain the sequence numbers Qf the irariables

to be u'sed ip the current analysis. These aria listed

in tRe order'in which they appear in the analysis on

the RUN CARD

The values of Rf M, and;..IPK are passedito DATA by the suidprogram

which accumulhtes sums fon the correlation calcul!ations; the

variable X is illeturned-to the calling-progam.
/ A

.If data transformations are desired, one may replace the

above version of DATA with a user.-written versidn. The user-

written routine must contain the same variables in the calling

<e_...r
14list that are shown above (i e., X, R, , IPK) and must define

each element of X. An exampl f a possibleCuser-watEen ver-

sion with six variables in the current analysis is shown below.

The example recodes a vviety of missing data codes to the

standard value of 109 (1.E9) . 1

RETURN
END

SUBROUTINEt-DATA(X,R,M,IPK)
REAL X(1),'R(1), XMIS(6)/9.,99.19., .,999./

INTEGER*2 IPK(1)
DO 1 J=1,M

X(J) = R(IPK(J))
1 IF(X(J).EQ.XMIS(J)) X(J)=1.E9

;
1 .

\ -
.

*.k

Note that the array XMIS contains the missing data code for

each x value. These-are defined by the declaration statement:

REAL X(1), R(1), XMIS(6)/9.199.,97,9.,9.,999./.
.

11405
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CHAPTER 5

ADDITIONAL INTERPRETATIONS OF CHANGE COEFFICIENTS

The material in the preceding chapter st.Ipplies the back-
ground necessary for a more thorough examinatAon of substantive
interpretations of differential equation systems than could be
presented in chapter 2. There are four topics to be examined.
First, interpretations of the coefficients of;the differential
equation (32) are compared to interpretat*onsof the correspond-
,ing integral equation (33). Secondly, the time path of the
career expectatiOn variables implied by the differential equa-

/tions is examined. This discussion includes consideration-of
equilibtium.and oscillating systems. lrbirdly, a method of
standardizing the coefficients of the differential equation sys-
tem is presented and the advantages and disadvantages of inter-
preting the,standardized coefficients are discussed. Finally,
a bri.ef présentatiop discusses a generalized correlation for

77 assessingt- accuracy of forecasts.

Coefficients of the Differential Equation and
Cross-Lagged Regression Coefficients

The OLS estimates of A* and B* in the integral equation (33)
are cross-lagged regression coefficients. It has been suggested
that cross-lagged coefficients be used to assess the relative
effects qf one variable on another, (e.g., Heise, 1970). In the
present context, interpretation of effects by-reference to the
parameters A and B of the differential equation system (32). is
.an obvious alternative. As noted in chapter 2, conclusions
about causal relationships may depend on which coefficient
Matrices are used in the interpretations.

To facilitate the discussion, some of the basic relation-
ships are reproduced here, and the notation is altered slightly.

(v) j = Ag + si + u (differential equation)

(51) = A*(t)x + B*(t)yo + u*(t) (integral equation)

where

= (1 + L) x 1 vector of exogenous variables

y = K A 1 vector of endogenous variables

yt = y at time t

u = K x 1 vector of disturbances

k)



u*(t) =Kxlvectpr of listurbances .(
A = K x (1 L) matrix of coefficients of the exogenous

variables. ,

B =KxKmatrix of coefficients of the endogenous
variables

A*(t) = K x (1 4- 1) matrix of coefficients of the exogen-
ous variables for a discrete inierval Of time
equal'tb

B*(t) =,)K x-K-matrix of coefficients of the endogenous
variables for a discrete interval of time Tlual

to t

The matrices A*(t) t*(t), and the vector 4eqt) are denoted here

explicitly as functions of the time interval t between

t
o

= 0 and t
1
= t; the fact that these elements depend on time

is an important aspect of their interpretation...! The following

relationships hold between A, B and A*(t), V*(t).

(52a) B*(t) = 'Ott

(52b) B = [ln B*(t)]/t

(53a) A*(t) =
t I)B

-1Afr if IBI 0B

(53b) A = B(eSt - I) A*(t), if IBI 0

(54a) A*(t) = [(et I)V A
-1V

(1) + t.V V <42) ]A,B
- -1-1 - -2- -

(2) oi
(5 A = [(e-

Bt
I)V/A/

-lc
V.(

1)
-4- t

1
*V2V .(t

if IBI = 0

In a sense, the coefficients in A and B are fundamental to
the theory because they express the iTistantineous impact of x and

x on changes in y. over time. Also, A and B are simple to inEer-

pret because they are constant over Eime. In contrastl.as re-

vealed by equations (52a).-and (53a) or i54a), A* and B* are

'matrix functions involving time. consequently, simpliStic-yom-
pariSons-among entries of A* end B* to index relative,qffects of

different variables should-be avoided. To see why, examine the,
Bt

relation B*(t.) = e- ; this implies that

1131 = 0

(54) B*(..) --='[13*(i)]t

3.

1,4,

a



where B*(1) is the coefficient matrix of the integral equation
over a single time period, say one year. Thus, for example,
the matrix of cross-lagged regreSsioncoefficients oVer a two-
year interval is just the square olilthe matrix for a one-year
i,nterval. From this fact alone itdcan bp- seen that 64 elements
of B*(t) for different t do not bearra simple relationship to
dacH other.

-

Consider a four-varialL example with the cross-lagged co-
efficients for a one year interval shown in the lollowing matrix

a

B*(1) = .6 , .4

.2

(

.05 t.l .9 - .5

.3 ..01 .4 r7

if the same 17stem were studied over a two-year interval, the
pross-lagged regressionfuld be

B*(2) B*(1)]
2

= .504 .611 .846 .579

N, .406 .735 .447 .681

.245 .195 1.046 .847

.412 .175 .3791 .733

Clearly, interpretations drawn fro1eB*(1) would differ from- ,

those based on B*(2). First, obServingAlBr(1), one would don-
elude that the iffects of the lagged value of each endogenous
variable on its curc-ent &alue aominate the system because in
every case,the di&gonal elements of B*.(1) are substantially
greater than the off-diagonal elemen-Es. This observation does
not hold for B*(2), however. In fact, observing B*(2), one
mightthe imprissed by the fact that "effects" othii; than-those
of tlffi lagged pndogenous variables on themselveS are so .strong.
Also, the relptiVe magnitudes of the coefficients have shifted,
the most drematic.example being the change in relative magnitude
of the (1, 4) and (4, 1) elements: for the one-year interval,
b
14
*(1) = .13, and b41* (1) = .3, the difference being .3 =

-.17.- For the tw,year interval, the direction of thE differènce
has changed, bt4(2) = .579# and b#41(2) = .412,\qo that the dif-

ference now is .579 - .412 = +.167.. In the first vase, one
would conclude that the effect of variable 1 on variable 4 far
exceeds the reverse effect; wheras, in the second case just the
opPosite conclusion is'suggestedg Numerous other changes in the
relative magnitudes of the coefficients can be observed when
comparing B*(1) to B*(2), but most are substantively inconse-
quential. -One inteFpretation of the coefficients in B*.(t) is
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that they index accumulated total effects -- indirect plus di-
rect effects -- over the time interval.

'Observing equation (5?a) or (54a) it is easy to surmise that
the conclusions'regarding interpretation of B*(t) extend to in-

terpretationeS4 A*(t). For the sake of brevity, however, no
example is preseRted for A*(C).

1.
Tbe main conclus*on to be drawn from this disiussion I's dot

necessarily that the coefficient matrices of the integral equa-
tion hold no interpretative value.. Rather, interpretations

II

should proceed'with caution in full knowledge of the manner.in
which A*(t) or B*(t) depend on time. One useful interpretation .

of these matrices is as-ahange coefficients of a 44.fference equa-,
tion over a finite time interval, t. 0119 motivate'this inter-
pretation, subtract yo from both sideses! equation (51):

(55,N y = A (t)x 1,3*(ty -rix,.+ ult(ti
-t -0 u

.

The left side of this result is a change vector id y (Ay = yt Y0)

over asfinitp time iptervallt. It cpn be seen from thZ right 'as,

side oi the equation/that the cobtfficients of x and off-diagonallj
coeffig4e_nts of v_ are precisely'those of the integral.equ'ation

(51). The diagonal coefficients in the change equation can be
caaculated simply from the diagonal.coefficients in the integral

equatiOn. If the time iriterval t is taken to.the.limit of zero
and division.by dt is effected, equation (55) reduces tothe
differential equation (as required by.all solutions'to4ifferen7
tial equations). Thus., one vieurcif the differential' equatioq is

that,it is a special case of,.t20 difference equition. The ques-

tion therefore may be raised. why consider the coefficients of
the differential equation more fundamental than those of the

integral equation? The answer irests with the initial hypothesis
that effects are instantaneous., Ifione doubts the hypothesis of
instantaneous effects, then the parameters of the differential
equation might.not be viewed as fundamental. Even.if the hypoth-
esis of instantane9us effects is,not tenable,,however, it does

not necessarily follow that A*It) and B*It) for some unknown t
give the fundamental parameters .0f the system. A viaba6 alter-
native may be to.alter the funftional form of the differential
equation system, thus retaifiing the conceptual advantages of
continuous rather than discrete time.

%

Omitting the disturbance term from the integral equation
(51) leaves an equation that can be used to forecast the values
of all career expectation variables and all individuals attaNy
,point in time: >N.
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(56) yt = A*(t)x + B*(t)y47

where yt is the vector of forecasts.' The.time,paths of the

elements of yt exPresses the Ovelopment over time of career ex-

pecXations predicted by the theory; the patterns associated with
uqt) are random and not accounted for by the theofy.. The pur-
pose of 'this section is to examine the behivior of the predicted
vector over time.

The behavior of the'time path of predictions can be studied
readily if one substitutes the expressions for A*(t) and Wilt)
in tents of A and B into (56):

Oil) LI.t. = V-7_7!_IS7371.A.x..+._ - YO IB V 0
Bt

_ Bt
(56b) yt = rB lAx + eSt- B -1Ax + e- yo ialyi 0

These results hold if B is full,rank; if B is not full rank:

C.

A

(56e)
Bt ./21.1._(2) otx0,= [(e -

1BI= 0

(56d) =-(ViAl V
(1) Ax tV2V (2)

Ax)
-1

B Bt
+ et- (V1A1 v )Ax + e- yo, ID1

to.

where, as before, Ai is the submatrix of A containing nonzero

roots, V V (1)
are the submatrices of V, V-1 , respectively,

A

0

associated with Al, and V2, V (2)
a
*r
e the submatrices of V, V -I

respectively, associated wAh the zero roots of'B.

It is clear from equations (56a) through (56d) that the

time path of yt depends in an important,way On the behavior of

Bt Bte- over time. If e- grows without bound, so does yt, ir-

respective of whetherl is full rank. If Ot stabilizes or goes
A

to zero over time, the predicted vector of career expectations yt
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stabilizes, if B is full rank (121 0), In general, x grows
. .t

linearly withtUt bound if-B is singular (jB1 = 0). irhis is clear, .

by observing the term in (5-6d) mrhich is liiiear-in t (i.e., -
... ,

t.*V
2
V
(2) )AX). If all eigenvalues and eigenvectors of B arel-- %, ...

real numbers, then the following matrix representafidn idluseful:,(

V*

Bt t -1
Ve- V

where A is'the diagonal matrix with diagonal entries equal
.

to

eigenva-lues of B, and V is the..corresponding matrix dT 6igenl-

vectors. This Pesult 'does not-depend on,A biifg.reab, but it'

does not yield so%much insight when A isFomplex. When all

eigenvalu6s (A) are 1..h1 numbers, iCis clear thak:lastabilizes

-__.-...only if IA < 0.

, 1
-for general matrices (r6a1 or complex eigenvalues), 'an al-

ternative developmgnt is useful.k For this devele.--ment', the

a Bt .
*

elements of e- . arcidenoted by bij. A tedious'algebraic.ariu- ...-

.
,

ment leads to the following result. .

A t
.11/C

(57) b*. .= Ey e sin(X t 4. 6.
2.3 ijk., Ik.

where

a

a ,
X.k

= the kth eigenvalue of B and, in genei is a complex .

. e

.

number; Xko= X
+ X4 I, with 12 E 71

Rk

i
= VI- (v . v k3 - v . v kJ) 2 +' (VIiliVRIC3 - v irdk )2

jk Rik R Ilk I 5 Rik I
ii.

1 ft.

..1, r kj - . kj 1

'6ijk wn t4n (vRikvR VIikvI Ilk R 'vRikvi '= fill . v

% . .
. .

vRik' vIik
= The i/kth zeal and imaginary parts,.reopectively;

of the i/kth cell in V (gright eigenvectors of J.*

kj kj
4

0

V
I

= The.k1j,th real and imaginary parts, respectively,

. of the k/jth celi in V-1 (left eigenvectors of B)

kj kj
w lIk R=lifv.v +v. vRik I

0 ofherwise

If v v kj
Rlk R

kj 3/4 kj.
v

kj
= v

Iik
v
I

v
b Iik

v
R

4- RikvI

f

A

4 A

then & t.ijk Ik.

.d.0%



The' formula given for-6.
ijk

does.Dot define 6. if vIik v
R
'ki *4-

a-

ki .

vilikvt, I
= .0, but dijk goes -.to, *11/2.as this expression approaches

zero. 'Hence, 6 will be defined as ill if v v 104
djk t , fik R

. ,

kJ
vRikv I,

tr(). Note that if the kth rbbt of 12,-, A
'

is real, then
k

- A -and v
kj

'are all zero, and one finds

c y
a ' L= RivkRkj%

V

§ijk 111/2

--- Ailktsq that, for Ak rea.l one has ye sin (XIkt + ikj)

1 j kj Ail,t.
. . .

4 = XRik.
- If all rOCits of B areieal, (54 specializes

-

1

Mb

)for X, a real ntimber

-A t kj
(524 e k v , if all A are real

.1i k

Observing (57a), it is clear that if the maximum A), (A real) is

positive, every element of e
At = B*(t) grows exponentially with-

out bound. If the maximum X k.
is negatiye, each element pf

eAt" goes to zero by A exponential decay. If maximum Ax it .zero,

the elements of ellt stAilize over time. Referring to (57),
these-conclusions also apply if one or more Ak is complex; here

the criiical variable is the real part of A,. Also, due to the
Bt ,

sinusoidal function sip (Aikt 6x.j& ), the entries of e- os%-

cAllate over time.

Combining these observations about ,he behaviok of ,the

elements of ellt with equatiOns (56) permit some conclusfons re-
garding the tinie path of the career-expectation variables:

1. If the real part of.the largest.eigenvalue of B (AR mak)

is netiative, then from (5664 one sees that the equilib-

riumofiSyt

yt(equil.) = -(B A )x
r



't

For A R max
< Of thereforel.individuals gradually revert-

to a set of career expectations determined by theik,
status origins and mentar ability. X

f XII max
is near

zero, however, this may occur so slowly that, by adtat-
hood, eareer.expectatigns may still be far froM equil-
ibrium.

2. If the real part of the largest eigenvalue bf B is
positive, career expectations increase without-bound.
Again, if AR max

is close to zero, the growth may be
-

slow_i_n the short run.

3; If the largest eigenvalue of B is precisely zeroo'B is
singular and one must reference equation (56c) or
(5'6d). From either of these equations it'is clear that
for AR x= 0, career expectations,

in general, grow

linearly without bound.

4. If any of the roots (Ak) of B are complex, an oscil-.

lation is introduced into the time path of career ex-
pectations. For example, the level of job status ex-
pectations waxes and wanes over time. The amplitude
of the oscillations depends on the size of the real
part of the eigenvalue; the larger the real part of
the complex' eigenvalues, the larger the amplitude.

5. Irrespective of whether B is full rank, if Ax = 0, then

the time path of xt is ea- yo. This means that the time

path of career expectations does not depend on the
status origins and mental ability of the individual.
This is not a general conclusion, however. For some
matrices A there may be no vector x except x = 0 that
makes Ax -7, 0. In fact, Ax = 0 4. x-= 0 geneialtrif
there arg more endogenous (ciTeer expectation) variOles)
than exogenous variables (e.g., parental status vari- /

ables). Since the fitrst element of x is fixed at 1.0,

x cannot be zero. If a nontrivial (Henzero) solution
Eo Ax = 0 exists, it means.that there is at least one
peculiai-pattern of the, status background and ability
variables that frees the time path of career expecta-
tions from status backgreind and ability. A particular-
ly interesting case ariscs when the maximum AR is zero

but its imaginary part is nonzero. In this instance,

if Ax = 0, then career expectations tend to a ptriodic
function: i.e., the career.expeci:ations wax and wane
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indefinitely'with a constant amplitude betweRn the high
and low extremes. It should be emphasized, however,
that this can happen only for indiVidipals whose abilitir
and status background follow the pecultiar pattern satis-
fied by Ax = 0, and the periodic pattern is imposs,1ble
unless A-is sUch that a nOntrivial solution of Ax = 0
exists.

Standardization Procedures

Since few of the variables used in career-decision making
research are measured on a "natural" scale, i.e., one that is
universally familiar, path analysis applications to career de-
cisions frequently are presented in standardized form, to fa-
cilitate,comparisons among coefficientA associated with vari-
ables measured on different scales. Even when variables mea-
sured on "natural" scales are the subject of study, standardized
coefficients can fascilitate interpretations, either as a sup-

. plement for the unstandardized coefficients or as the primary
fOcus of attention (Wright, 196Q). Consequently, it may be
useful to present a standardization procedure for the differen-
.tial equation system.

The standardization discussed in this section is confined
to linear functions of single x and y,variables. Note that the
usual standardization to zero mean and unit variance is such a
linear 'transformation, but we wish to study more general stan-
dardizations here.

If one makes a linedr transformation that is constant over
time on eactr x and each y variable .to effect a standardization,
the structurd of the differential equation remains intact. To
see this, define the following linear transformations on x and y.

Z1 Ry(.11 Ey)

SAL

%There D ds an arbitrary dfagonal matrix of order K, D is an
-Y -x

arbitrary diagonal matrix of .order L 1,ic and c , are re-
-,

spectively, K x 1 and (L + 1) x 1 vectors; D.4 D
y

, c , and c-x --x
are constapt over time. Tn toms of the original variables,
the differential equation is written

(62) dy/dt = Ax + py + u

Now, since D and c are constant over time,
-Y -Y
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dya/dt dt-
..-Y

= D dy/dt
-Y

Thus, ,

Axl/dt = DyAx + 9y4y.

-
= D AD

1
D A(-y--x. -x - -x

- D Bc + D u
/ -Y--Y

, -Y-

A

4.

D Ac + D
y
BD

Y
1D (y. +.,,c-Y--x -Y

A

-1 -1dy. /dt = -(DyBcy + liyAcx) + (DyADx )xl + (DyBD )y4 21

where u = D U. ./Ndw, assume that .the (1,1) element of D is.
-x

and,the'first element of Ex iS zero/ so that the first,

element-of 11I is also unity. Now, let the first column of'

-1
D AD be added to 7(D + D Ac ) and denote the resu1ting-4-y--x
sum by ao. Denote the rem ining,I1 columns_of DyADx. by al, and

form the supermatrix = al]. The differential equ'ation

system for the standardized variables can'now be written

(63) dzl/dt =

-
with B

1
E D BD

1
. This obviously has the same form as- -y--y

hence, it is concluded that linear standardizations of single
variables in the system preserve the structure of.the system.
It should be emphasized, however, that this arqument does not
justify standardization of all variables in the regression
analysis Ito zero'mean and unit varialice. "the t

o,and
t1 endo-

genous variables are both used in the regression-analysis.-. If
both are standardized, the assumption that D and c are fixed

the mean and standard deviations
will shift over time, the

ay
and

would differ from ehose for t
1

.

over time is violated, since
of the y variables generally

sy applied to y values at to

A judicious choice of the stangardization constants Eyl

t. )- 1 and C. is required in order to simplify interpretation
1,, -x -x

of the standardized coefficients. For D and c 0 there is
f X X

little difficulty. Since the mean and variance of the x vari-
ables are fixed in the analysisk R. and Ex can be define'd by
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the means and 1,.-tandard deviations of x. Let the (1,1) element
of D equal 1.0 avd the remTiAing diaZional elements be defined

by the'reciprocal of the standard deviationsof x. A140, let
thq first element of cx be zer,o and the remaining entries be

defined by the negative of the means of the corresponding xs.
Then x- is thv vector with element one equal to 1.0 and the re-

-1
maicing elements equal, to standardizdd x variableswith zero
means and unit 'variances. .

, For the end9genous variables, choice of the standafaization
constants is somewhat more ambiguous than for the ekogenous var-
iables. For the exogenous variables, the strong precedent of
standardizing to.zero mean and unit variance was followed, but
as noted above, this opS1j.on is not available for the endogenous
variables because it violates the presumption that D and'c
!,* -Y -Y
arie constant'over time. Nevertheless, a procedure.analogous to
standardizatiol to zero means and unit variances might'be used.
One might pick the means and standard deviations,9f the y var-
iables at a specified point in time, say Tf and use means and
standard deviations calculated from the y variables at the se-
lected time point. nip' transformation constants would be

D = S -1 , and-c = -E(yT), where S is a diagonal matrix with

diagopal elements equal to standard deviations of y at time T,
and E/1T) is the mean (expected value) over observations of y

at time T.

The selection of T is arbitrary. If the system has a stable
equilibrium, T may be set to infinity and the equilibrium means
and standard deviations used o define the standardization con-
stants. Interpretations'could then be made in terms of movement
toward the mean at equilibrium. If th#1 system has no stable
equilibrium, then one might set T = t

o
and interpret changes

-away from the meAn at the starting point. Other options are,
of course, defensible. One may set T to the senior year in high
school and interpret changes toward the mean during the senior
year.

As with pith.analysis, one should treat the standardization
chiefly as a heuristic device -- certainly, the relative magni-
tudes of the standardized change cioefficienes

1
B
1

) can be- - -
shifted at will by choice of the standardization constants. There
is no clear reason other than for using standard devia-
tions rather than some other measure f dispersion such 4S the
average deviation,,empirical range, or, permissible (theoretical)
range of'each variable. kmilarly, choice of the mean rather
than some other measure of central tendency is based primarily
on Iii-ecedent (see Hotchkiss [1976] for an extended discussion of
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this issue). The choice of c
"

c
y
affects'only the intercept,

. -x -
but the selection of D # D

y
affects the relative magnitudes of

-x -
the change coefficients associated with the valables.,

Forecasting 4nd Measures of Asscciation

The integral equation (51) can be used to estimate the par-

ameters of the differeriaal equation, as described in the pre-

ceding chapter, or, once the coefficients have been estimated,

the integral equation can be used to forecast or predict a
value for each endogenous variable and_each case, given initial

observations bn the vector of endogenous variables (y0).'Equa-

tion (56) is written explicitly as a forecasting equation. When__
OLS- ts applied-to-equation (51)-a-mutttpte-trorristratto-ri-dif-iti
sqd&re (R-square) for each equation i0-a standard measure of

association and is a normal part of the output of most multiple-

_ regression computer programs. When the integral equation is

used for forecasting, however, there is no standard measure of

association. The purpose of this section iS to discuss a gen-
eralized correlation that can be compared readily to correla-

tions calculated from least-squares regression.
A

As preparation for defining a goodness-of-fit measure to

assess the accuracy of forecasts, it is useful to review the
interpretation of R-square as ,proportional-reduction-of-
error (PRE) measure. Let

y = pc) + Ep.z,.+ v
j=l3 3

vAlereyisthedependerftvariablefthez.are K indepeAent
)

variables, v is the error,,and the ps are constants. The fol-

lowing formUla for R-square offers considerable heuristic appeal:

2
.((;)4) = 1 - s is

v y

where' R
2 .denotes the square of the multiple correlation (R-sqUare)

ana-e s
2
indicate the variance of v and.of y, respectively..2

v, y
Thf,' ors estimates of the ps insure that the mean of v = y y is

zero, where y is the value of y predicted from the regression
2

equation. Henee, v
is a variance of the errors of prediction

from the linear regression:

t'
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,

t

2 * 2
s
v

= z(y y) where E denotes expected value.
S.

The denominator of the ratio in equation (64) is the var-
iance of the dependent v.hriable:

52' = E(y -f Ey)
2

This vari4ce can be inte/preted as a measure of error in the
absence of informatiOn about the independent variables, wtere
the mean of y (Ey) is used as a constant predicting-the entire
set of y values.J Recall that, in fact, the mean of y is the
best constantipreditor pf all ys, in the sense that the mean-
square-error4is minitized when thp con-stant is the mean of tfie
disbribution."'

k With this backgroundl-it is clear that the ratio s
2
/s

2.
is

v y
a ratio of mlan-square errors -- the numerator summarizing pre-
diction errars froM the regression equation, and the denominator
summarizing prediction ekrors when all'values of y are.predicted

to-be the mean Of y. Hence s2/s2 can be viewed as bl.PRE 'measure
v y

and,'ipso factortrso can R
2
= 1 - s

2
dis

2
. When OLS estimates of

2
v y

the ps are used, the minimum R, is zero and its .maximum is one.
0

A straightforward generalization of (64) provides a usefull
statistic for summarizing the accuracy of forecasts.

10. Let po be a constant over the y values and form the mean-C

square-error -- MSE =,E(y p )

2
. Differentiating with

respect to p , setting to zero and solving yields,

po = Ey. The second derivative of MIISE with respect to

pwis the positive constant, 2:b. Hence, a necessaiy

and suffident condition for Na minimum is present when
po = E. Alternatively, one might postulate po = Ey +

any constant, and deirelop the foklowing argument:'

.2
; E(y - Ey 4. q, = E(y Ejy)

2
+ q

2

Clearly, this expression is7minimum if 4nd only if
q. PI so that po = Ey.
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Define

(

2 2
(65)

RFc 1
MSE/s

t

2
where. FL 4notes an R-square for forecasts; MSE,stands for

FC

mean-square error, and S
2 is the variance of the predicted endo-.

t

genous variable at time t:

MSE = Etyt yt)

st = E(yt - Eyt)
22

çwhere
t:
Is the forecasted value of the scalar y It is

t *

portant to distinguish y, the forecasted y, from y, the post
facto estimated value of y from a regression analysis. Note

that, in general Fi'(yt yt) yO 0; therefore, MSE will not be a

variance as it is in multiple regression.

2
The maximum value of RL is 1.0 and occurs if and only if

,rc

forecasts of y are correct for. every observation. On the other
2. 2

'hand, the minimum iirc is not zero; RFc may be ne.gative (indicat-
,2ing RFc should be' interpreted as an imaginary number). When'

used in conjunction with non OLS regression estimates, R
2
may

also be negative, and it iiàs been objected to on,these grounds

(Fox, 1979: 145, 3aseman, 1962). The.fact that
2RFc may be negative, however, is not a strong objction, since

a negative Ric has a straightforwareinterpretation; the nega-

tive value'indicates that more accurate estimates of all ys
result when each y is estimated to be the mean of y than when
the ys are forecast from the model.

Numerous alternatives to (65) are available (see Fox, 1979;
Ostrom, 1978). Of those proposed, one seems particularly ap-

pealing. Ostrom (1968: 67) proposes that s2 in (65) be replaced

by the mean-square of the differences between to and t1 values

of y. The implicit hypothesis of this mean-square-error is that

the y values don't-change; a stable equilibrium has been reached.

The resulting measure retains its. PRE characteristic, since it

is based on a ratio of a MSE due to the model to a MSE derived

from a "naive" model. A more general definition of
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02
is therefore suggested (see Ostrom, 1978: 68);

2 MSE (M)
(66) Rpc = 1

FigETWF

Where MSE(M) is the mean-square error for the theoretical model
and MSE(N) is the mean-square error for a "naive" model (naive
is Ostrom's term). One important advantage of defining

2 2MSE(N) = s
t,

as in (5), is that R_ is more readily compared to
re

R-square than with other definitions of ME(N); nevertheless,
a variety of MSE(N) might prove useful, depending on the cir-
cumstances.

The mean-square errors in (66) might be replaced by aver-
age deviations. One advantage of so doing is that the error
summaries are based on absolute values of errors, thus preserv-
ing the-metric of the dependent variable rather than transform-
irg metric by squaring all errors.

p.

Reliance on the bivariate correlation between y and y
(Fox, 1979) to assess forecast accuracy should be used with,
caution. With OLS regression, this bivariate correlation is
.the same as the multiple correlation, but this equivalence does
not generalize to RFc. The difficulty with the correlation be-

tween y and y is that it presumes that two regression constants,
in addition to the parameters of the model, are utilized to make
the 'predictions. Thus, systematic error in the forecasts could

eas ly be masked by the correlation between y and y. It is
. 2 .

tljéoretica1ly possible that the R_ is negative even when the
re

bivariate correlation between y and y is high. If this fact is
recognized, however, the correlation might be used in conjunction
with R_

rc deto assess the gree to which forecasting errors are

systematic.

The distinction bewteen R-square (from OLS) and Rpc-square

'calculated to assess the accuracy of,forecasts is of fundamental
importance in the agsessment of theory.4=square assesses ac-
euriey derived from a model for which the parameters are deter-
mined post facto according to the explicit criterion of max-
imiming R-sq117-6". R-square cannot be calculated until after the
dependent variable is observed and incorporated into calculation
of the regression coefficients. In contrast,

11Fc
-square cal-

culated from forecasts assesses prediction in the strict meaning
of the term, because the forecasts are made prior to observing
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the endogenous variables at the time point for,which predictions
are targeted. The values of the d'ependent variable at the tar-
get date'of the prediction do not enter into calculation of thb
prediction equation. One may conclude, therefore, that'iore-
casts comprise a much stronger test of theory than regression
studies. This interpretationis reflected by the range of R-
quare due to OLS compared to the range of Rpc-square from fore-
casts.

It should also be noted that most of these comments also
apply to cross-validation studies. In fact, the west convincing
evidence in support of theory may be derived from'aross-
validation studies in which garameters.of a differential equa-
tion model (or analogous dynamic model) are estimated from one
data _set..ana_farecasts. zre_assessed-oa--a- -different data set --,
one collected independently from the data used to estimate the
parameters: Certainly, little is.gained by splitting at random
a single sample, since discrepanciel between the'two halves (or
several parts) must be due to4sampling error alone and, there-
fore do not test the robustness of the model under variations
due to the many detailed ways in which data-collection pro-
cedures may vary among data sets. In most cases, knowledge of
sampling error is clearly stated in theoretical statisticsi
Ance, little can be gained by a few observations of sampling
error in a particular sample.

4e
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\CHAPTER '6

This volume is about the application of differentkal
,equations to the development of career eicpectations. The start-
ing point for the substantivetwork is-path modeling Of status
attainment as contained in the:dbciology literature. The I.

differential-equation model ?f career expectations may be viewed
as a revision of path models'of the same process. While status-

:* attainment ribsearch in s lology provides,the*theoretical frame-
work, impb,rtant t1eoretictai insights from other redearch tra-
ditions are referenced; part to justify the differentl.al
luation mode;. More g ectio merginj" of ideas from a variety

sot rce_s. III heeded than
\

is presented in this *irk.", however.

The materkal in the preceding. hapteA; divides:conveniently
into two main subtopics: (a), interp tdtitins oil the application
qf differential equations to the theory of career expecf.ations,
and-(b) technical explication of.a particularAlifferential-equatioi
model of career expectlions.\

Interpretation and Theory

Chapter 2'presents a justification for conceptualizing the
process of developirig_cargr expectations as a simu taneous-14n-
ear differential equation system. 41n example is pr sented whkch
contains a set of two "exogenompm variables, p,we al status,'
and measured mental ability, and.a et of five " dogenous"
variables: schookgrades, significant-Other educational :(--

pectation of ego, significant other occtpationa1 expectation
ego, ego's educational expectation for self; and ego's occu
,tional expectation for self. The rates of chalpe over time in
the endogenous variables are'hypothesized to be linear functlons
of the exogenous variables and of-the current level of all the
endogenous variables. The linear form of the model is viewed
as an initial hypothesis, possibly to be modified later on the
basis of theory and/or empirical evidence.

Three advantages accompany application of tlfdifferential-
equation Wstems to describe developing career expectations.
First, the continuous dynamic character of the development of
career expectations is expressed by the differential equations;
this feature of the differential equations is not shared )by al
ternative models of career expectations. Secondly, all possible
two-directional effects among thdiendogenous variables are in-
cluded in the.differential-equatibn model. While two-directional
effects are not a unique feature Of differential equations, cur-
rent path models of career expectations geneally omit two-
di±ectional effects, Thkrdly, since forecdstg to any point along

(



a to4ltinuous time scale are a natural aspect of th'e differential-
,

equation model, strong tests of the model are encouraged. Ob-
servation of the exogenots variables on one occasion and each
endogerious variable on two different occasions kor each case.
provide's enough data to estimate%the. parameters of the model.
The estimated parameters can then be used to forecast ,a 'value
for each endogenous variable and each person at any point in time.
The accuracy of these fdrecasts offers a difficult test fof the
theory to pass, a test not available by observation of multiple
correlations-in a regression study. .

A

The importance of using forecasts as tests 6f theory ex-
tends beyond the study pf career expeftationS. Mott social-
science research is nonexperimental, that is, social scientists
study natural systems of variables with little or no ability to
manipulate important variables. Further, measureients of key
'concepts in social-science research often stivain credibility.
Thus, the barriers to scientific stUdy of social phenomena are
high. Consequently, credibility of findings'from social re-
search demands the strongest empirical tests that can be mustered.

While the linear differential-equation model of career ex-
pectations offers advantages over current models, there are im-
portant limitations of the differentiar-equation model which
should be explicit. First, the differential equation model
presumes centinuous functions of .time; hence, it is not readily
generalizable to status attainments (e.g., occupation, educa-
tion, income), because attainment wiables exhibit abrupt
shifts at isolated time points rather than continuous change.
It is possible that career expectations manifest abrupt changes
as well, although an apparently sudden change in expectation
may be viewed as a continuous curve with short-radius turns.
It is pAsible that abrupt changes can be modeled by a relatively
new mathemlitical method called "catastrophe theory" (Zeeman,
1977).

A second limitation of the differential-equation model pre-
sented here is that it assumes a.linear form with the linear co-
efficients constant overitime. This assumption can be relaxed
should experience warrant, but the technical features of esti-
mating a general nonlinear model or .a linear moedel with non- 4

constant coefficients have not bgen presented in the literature.
A third limitation of the model isythat it probably is'far too
simplistic to capture even a reasonable approximation of the
complexities of forming career. expectations. For example, the
role ofuncertainty in forming career expectatidns is ignored
altogether in the model. Adding realistic tomplexities to the
model.while preserving some semblance of parsimony should be a
primary aspect of the research agenda in the coming decade.
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Chapter 5 addresses four aspects of interpreting liniar
differential equation'systems in conjunction with the process
of forming career expectations. First, it is noted that ;the
"change coefficients".associated with the differentia/ equations
provide useful basis for interpreting effects.of variables on.,
each other. The change coefficients express the basic theorY.
Further, they exhibit the virtue of being constant with respect
to the length of the time interval between measurements. .In.

contrast, the cross-lagged path-coefficients (or regression co-
efficients) depend in-a complex way on the, length of the 'time
interval between measurements. Secondly, the structure of the
matrix (B)i of zhange coefficients associated with the endogenous
variables determines the time-path of developing career expec-
tations. If the largdst real part of-the charactbrist-ic roots
(As) of B is pos#4.ve, career expectations increase expdnential-
ly. If the laiteit real part of the Xs is zero or negativel'And
B is full rank, career expectations seek an equilibrium that de-
pends on the background (exogenous) vakiables. If one or more'
of the Xs is a complex number, career expectations oscillate
over time; the amplitude of the oscillations expand, remain con-
stant, or dampen over time, depending on whether the largest
real part of the As is positive, zero, or negative, respectively.
If all As are real, no oscillation occurs.

Chapter 5 also develops a standardization methodology'for
differential equation models that parallels standardizatil6n in
path analysis. It should be noted that standardized path co-
efficients should not be used in the analysis because they
artifically remove changes over time in means and variances from
the data. The standardization methods developed in Chapter 5
retain changes in means and variances and fiscilitate comparisons
among coefficients.associated with variables measured on
ferent scales. One should be cautioned, howevert, not to over-
interpret these coefficients. There chief value is heuristic.

The final topic.in chapter 5 is assessment of forecast
(prediction) accuracy. Several_proport4onal-reduction-in'error
measures of strength of relationship are.discussed. One par-,
ticular measure involving the ratio of the mean-square error
due to forecasts to the cross-sectional variance represents a
generalization of the square of the multiple correlation (R-
square); hence, it is readily comparple to R-squares. It
is noted in the chapter that the generalize4 coefficient has no
lower bound; it can issume negative values. This fact is not
grounds for rejecting the measure,,however, since negative
values indicate useful inforMaiion;.viz, that thetcross-sectional
mean of the dependent variable is a more accurate estimate of all
the ydlues of the depend&t variable than-are-the forecasts.
It i concluded that the negative range of the generalized cot::
relation reflects the fact,that empirical tests based on fore-
casts offer more stringent tests of theory than do regression
studies.
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Teqhnicak Information
,

In addition tp the aintimpretative contents of this volume,
it,also contains the technical information 'needed to apply lin-

ger diffekential equation systems with constant coeffititint0 to

ehe study of developing(career expectations. Chapter I sum-

.
marizes important concepts.and theorems from mathematics that

Are'used in the rest of the monograph. Coverage includes basic

ideas in.calculus, concepts an0 operations related'to complbx

numbers, and aspects of linear algebra. The treatment ts ex-
tremely brief and intuitive, the purpose being to .summarize key

condepts and theorems in a mapner that is comprehensible to
readers with little mathematical training. Chapter 4 presents
development .ot the theory of linear simultaneous-equation systems
with constant.coefficients, proposes a justification 'fbr viewing

the statistical estimation 'of the model as a'"reduce4-dform"
system-for which "ordinary least squares* 4OLS) are app"ropriate,
and describes use of a computer program,which is ava4able to
carry out the calculationsv In the program the exogenous var-

iables and the time-zero endogenous variables'are the predeter-

mined variables and compride the ,set df regressors. The time.-

one endogenous variables.comprise the(set of dependent vari-

ables. One QLS regress.iori id calculated for each-dependent
variable using the same-set of regressors for each'regression

equation. The resulting regression coefficients are inputs to
the. calculation of the parameters of the differential-equation
model.

Commentary

A laue part of the contents of this volume apply,to-topics

other th'an development of career expectations. Any'system of

variables for which a linear differential equation systeM sup-,

plies a good initial hypothesis can be 'studied in the manlier

suggested in this volume. Examples i4clude development of

political preferences, racial prejudice, and 'prediction of mi-

gration. ,If two pahels.of data are available on a system of

variables, the estimation techinique suggested in this volume

may be applied.

The potential contribution of thcory.testing based on fore-

casts has been emphasized. It seems likely, however, that at-

tempts to verify theory using even short-term forecasts will

fail to yield convincing support of theory. Hopefully, such

failures will stimulate imaginative revision of theory in which

liore nuances of the processes under study are incorporated into

,formal theoretical statements expressed in aynamit form.
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