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REWDFD
. This valume is a text/describing how to apply differential
4 equations in panel studies of career-decision making processes.
Two contributions are particularly noteworthy. First, the re-
port shows how a dynamic ‘mathematical model can be formulated
to reflect the important .theoretical idea that career expecta-
tions grgdually evolve in a ‘continuous process over time. Sec-
ondly, the report advocates use of the dynamic theoretical model
to. generate forecasts of career'éxpeq;ations. Such forecasts
provide much stronger tests of theory ghan,methods currently in
general use. Procedures for calculatinq'and evaluating the
- forecasts are described in detail in the text. The report ‘is
.~ one.product of a three-year longitudinal study of developing
career expectations in which the differential-equation methodol-
-ogy will be applied. : | '
A Numerous persons deserve appreciation .for their roles in
completimg the manuscript, particularly, the author, Larry
Hotchkiss, and his staff, Lisa Chiteji, Alireza Rabbdni, and
Nancy Robinsen. Exceptionally capable technical r@views of
_ the report were submitted by Patrick Doreian, ‘Edward Fink, and
Michael Black. Imaddition, insightful comments and suggestions
related to the report have come from several persons, particular-
1y Evans Curry, Archibald Haller, Steven Picou, Richard Campbell,
and Robert lLeik. Frank Pratzner (Division Associate Director),
Harry Drier (Program Director) and Robert Wise (NIB .Project Of-
ficer) lent conthuing support to the work.
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ABSTRACT

This volume contains a theoretical rationale for a differential
equation model of the process by. which career expectations of youth
evolve and presents a detailed explication of the technical infor-
mation needed to use thé model. Three important advantages of tne
differential equation model are reviewed.\ First, in'the differen-
tial equation model, the dependent variables &re rates of change
nver time in career expectations of youth; hence, theory expressed ‘
by differential equations automatically accommodates change over

‘time. In contrast, most current models expressfstaﬁic_thﬂpxy in

which cross-sectional differences among individuals are the sub-

ject of inquixy. Secondly, the differential equation model express= .
es all causal feedback suggested by theoretical analysis; whereas,
alternative models frequently neglect causal feedback. Finally,"

" the differential equation mbdel provides a built-in facility. for

carrying out empirical tests of theory by evaluation of the ac-
curacy of forecasts made by the mecdel. ? .

The technical explication includes: (1) a review of math-
ematical and statistical material needed to understand the dif-
ferential equation model; (2) derivation of calculating formulas
for application of the differemtial equation model, and (3) de- “
scription ‘'of & computer program written in conjunction with this
volume. The computer program is designed to carry out calculations
needed for application of the differential equation model.

“»
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. CHAPTER 1

-~

“NTRODUCTION

L]

" Purpose of Volume

&Q ) . ) .

This volume is written in connection with a three-year

longitudinal study of career expectations of high school stu-

_ dents; the study is funded by the National Institute of Educa-
tign. The intent of the longitudinal.study is to contribute to

' scientific understanding of the process by which youth forxm
career expectations such as educational, occupational, and 'in-

_— (come expectations. To help achieve this intent, the theory for -

the study is expressed by systems of differential-edquations. - 7.
The differential®equation® methodology 3chieves three desirable
outcomes: ) : Lo

(a}) Tne methodology expresses verbal theory that career
choice is a continuously evolving process rather than
-an event ' - i

h{p) The methodology facilitates examination of two- b

' directional cause-~and-effect relationships

(c) The differential,equation system expresses theory in !
~such a manner that forecasting (prediction) to any_
.point along a continuous time scale is an imnfediate
consequence of the theory, thus, predictive tests of
theory are -encouraged , - ot

£

-~

- Clearly, the differential-equation methodology holds a much
broader appeal tnan the applicatien to study of .career expecta-
+  tions. It presents a venicl. for expressing .the dynamics of -
- natural systems in a manner that is unparalleled hy sﬁsndard .
practice in tne application of statistical procedures ®and con- .
tains the essential elements for incorporating predictions (fore-
N casting) into the expression and testing of theory. Exanples of
topics for which thesé features are useful include migration ,
and economic growtﬁﬁiorganizationaL behavior; wvoting, behavior .
.-and political attitudeés, and criminology. 1In Spite of -he po-
tentially Wide application of the methodological proc: .res,
they have not. been applied very often, primarily becau: of poor
dissemina*%ion to substantive researchers, including those work- -~
'ing on development of career expectations. This volume, there-
. fore, is designed to present a clear explication of the - ‘

!

! 7 K ’ i L
Q. o 1 v
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dxfferentlal~eguatxon methodology’wrxtten in a style permzttlng
use by researchers with moderate ‘amount of technical training.
The intent is to aveid a purely technical exercise; rather, the

focus centers on the juxtaposition of technxques gxth substan-~

tive issues.
¢

A number of years ago Robert Merton wrote-'
This limited account hes, at the very least,
pointed to the need for a closer connection
between theory and empirical research. The
prevailing division of the two is manifest
. in marked discontinuities-of empirzcal re-
search, on the one hand, and-systematic
thecrizing unsustained by empirical test,
on the other (Merton, 1957 99). >
One goal of this volume is to help reduce the division betweer .
method and tneory. : (o

¢ : ‘ -~

]

- Outline of the Volume

There are six chapters in the ‘volume. Chapter 2 contains a
theoretical and conceptual discussion of the use of differential
equations to' represent careex planning procdesses. Chapter 3
presents a review of selected mathematical .and statistical topics
reeded for Chapter 4 and ChHapter 5. The intent of Chapter 3 is
to communicate the basic: concepts, omitting rigorous proofs.
Chapter develops the mathematics of differential equatlons,
presents justification for using ordlnary least squares in the
statistic. . analysis, and describes a computer program that can
be used to estimate coefficients of the differential equation
system. Chapter 5 draws on the technical mdterial presented in ’
Cnapters 3 and 4 to describe interpretations of differential-
equation systems applied to career expectation variables. Topics
include comparison of interpretations of effeects based-on cross-
lagged regressions to interpretations based on differential equa-

“tions, analysis of tne time path of career expectations, includ-

ing oscillations and equxllbr;um conditions, development of-
standardization methods for the coefficients of differential
equations, and presentation of a generalized correlation for
assessing accuracy ¢f forecasts. The final chapter summarizes
the volume.. '

<«
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CHAPTER 2

‘ CONCEPTURLIZATION'AND INTESPRETATION

\__,,-—L -~
| The purpoSe of thls chapter is te introduce the idea that »
differential équations can-be used to' exXpress some important
concepts and theory related to development of educational: and
occupational expectations. The first® 5ection of the chapter’
‘explicates a simplifi®ed crossssectional path ‘model of career ex-
_pectations. The path model gerves as a reference helping to
motivate the succeeding discussion of diffe tial equations;
the features of the differential equation sggzems are contrasted
to those of the cross-sectional path model. A second section
presents a brief theoretical rationale for using differential
equations .in research on development of career . expectations.
‘The third section develops a gpecific dlffefentla; equation
model tQ describe the variables included in the path model in
@ section one. 1In the fourth section, interpretation.of the dif-
e ferentlal egquation system-is discussed. The final section sum-
*  'marizes the chapter. . The chapt®r is not intended to contain a
thoroggh technical jUbtiflcatlﬁn for every point. -Technical
desctriptions are contained in Chapters 4 and 5. ~

-y : . \A Cross-Sectional Peth Model
\ .
Although the study of which this volume is a part addresses
knotty theoretical and conteptual issues that cross the boundaries
of academxccd;s¢1pllnes, the guiding paradlgm\af “he research is
rawn from statis attainment work- in,the field uf sociology. A
‘path .model of the processes by which varental statuses are tyans-
mxtted to offspring forms the fundamental point of departur:.
‘ g tion describes a simplifiéd version of such a model which
can be uRed as a reférencé when, ‘examining a- dlfferential—equatloniﬁ
- model of ame variables. To simplify the expos;tlcn, the
example is le complicated than many path models in the pub—
lished empirical literature related .to status attainment Process-
es (e. g Hauser, 1972). Nevertheless, the example does capture .
. the major conceptual ‘and thecretical 1deas in the status attain- -~
'y ment lxterature. '

.
£ ’ - . : Tt T

For 1llustrat1ve purposes, in develeping the model it Wlll
be helpful to identify a small set 'of variables comdonly used in
status attainment research and to classify them into three broad
categoxlee, as follows:

3 ‘ ’ A

-
.



Exogenous variables

&

\

Parental saciceconaﬁic status .(x )
' ‘ - Mental_ability R (xif
. ; Inﬁgrvgning variables | '
| ;-Acadeﬁic performance | , (y’)
‘o ‘ Significant other educational f (y )
expectation of-egc ?
- Significant other occupational (y )
o expectation of ego- ’ 3
~ .
. - "‘ Ego's bwn educational expectat%on. (y“) .
S Ego's own occupational expectation (ys)
U - Attainmené variables
“ . Educational attainment 4zx)
) 'Occupational aftainment ‘(zz)

»

For purposes of illustrating the model,- precise definitions and
operational procedures for these variables are not’ needed, but
some description of the variables and terminology is warranted,
especially for scholars who are not familiar with status attain-
ment research. '

I First, note that the variables ar fglassified into three
categories: exogenous variables, intefvening variables, and
attainment variables. Exogenous variables refer to background
» characteristics that affect career planning but are not affected
' by any other varidbles in the model. In this example parental’
- socioceconomic status and mental -ability are classified as exo-
genous variables. Parental sociceconomic status nearly always
includes father's educational level and father's occupational
status. Family income, mother's. education and mother's occupa-
tional status also are included freqiently. In most of the re-
cent research, these status variables are treated empirically
as .distinct varjables (e.g., Hauser, 1972; Sewell and Hauser,
/1975; Featherman and. Hauser, 1977), but fbr the illustration
'presented here, the simplicity of a single, aggregate parental-
. status variable (SES) is preferable. Mental ability is opera-
_\u - tionalized by use of a/standa¥dized ability test. 1In recent
o work it is treated as dependent on SES rather than as an exo-
cenous variable, but this treatment is difficult to justify and
does not alter most substantive conclusions very much. For




/ {—m- | .‘ | .‘ , 8
. .
curyrent purposes, it is useful to present the example with two
exogenous variables. ‘ :

The. intervening variables refer to educational and cccupa-
tional expectations. Academic performance (school grades) is <
also included. To avoid confusion with %the Freudian concept of
“"ego", it is important to note that in t.e status attainment lit-
erature the term ego refers to the individual on whom attention
is centered; the term is used in contrast to the term "signifi-
cant other" which refers to an individual other than ego who may
exert some influence on ego's attitudes and/or behavior. For

~ example, suppose Jack is a high school sophomore, the level of

education that he expects to achieve illustrates the variable
i.dentified as "eqgo's" own educational expectation. The level
of education that Jack's mother expects him to achieve is an
example of the variable called "significant other educational
expectat%on of ego.” ) e

The variables called attainment variables refer to the so-
cioeconomic achievement of ego. Achievement should be carefully
\differentiated from aspixgtion or expectation. = ST

! s

It should be reiterated that the illustration is not a compre-
hensive model. 1In published research, pareritgl SES is generally
disaggregated into its components, a more detailed list of
significant-other variables generally is includeéd, and, iMcreas-~
ingly, income attainments and, sometimes- idcome expectations also’
are studied. The important theoretical, conceptual and method-
‘ological features of status-attainment research can be illustrated
with this list of variables, however. L ' -

. bt 4

Figure 1 displays a path diagram of the basic theory. A®
straight, single-headed arrow denotes a cause-and-effect relation;
whereas, the curved, dquble-headed arrows indicate udanalyzed
correlations (i.e., no kausal relationship specified». "It should
be noted that the two~directipnal arrows cdnnectihg pairs of in'-
tervening yariables depart from conventional path diagrams. Nor-
mally, these arrows are omitted. They are included here betause
their pxésence more ‘accurately reflects the state of the theory.
than théir omission. Omitting the curved arrow connecting, say
significant other educational expectation to significant other
occupational expectation implies that neither one affedts the
other. It is more accurate to state that the theory lacks the
power to specify a one-directional relationship, and_since the
statistical methodology demands.the assumption of one-directional
effects, the cause and effect relationship generating the correla~

tion hetween the two variables is left unanalyzed.
. ' ~ ',A.l . ‘ -
“Note especially three features of the model.- First, there
are no two-directional effects hypothesized. Secordly, the
model for the intervening variables ignores change over time.
Finally, the three subsets of variableg comprise a "block-recursive"

system. That is, exogenous‘\qriables may affect the other two

N

-

-
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S < .
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“Hlocks" of variables buf are Qnaffecéed by them, and-.i ;ef&éning .

variables may affect attainment variabtes but ar ot affected by

attainment -variables. (The i tervening“variablés nQrmally are de-

fined over the adolescent yeays.) .

. - R BN \

' As represented in figure 1, there_ is no direct effect of .the
exogenous variables on attainment variﬁhlesb because there are no
arrows leading directly from parental SES or mental ability to at-
tainment. -Tnh§s is an important theoretical feafmre of the model.

-

1

"By hypothesis, intervening variables comprise the .mechanisms by -

which status is transmitted!from parent tq@ child.' In addition,
by hypotnesis, educational achievement i$ the route by which
parental SES, mental ability, and career expectations get trans-
lated  into occupational status. In simplified form, the model

may be diagrammed as follows. s
f
’ ] . .
SES Grades ;- L \\ Occupational
Tl BN LEP T PP Rt 1 Education ‘ -
Mental [ |. ' — —> | . B
AbilAty | * | Expectations . Status
;\ /f . ] “ ) ) '5
! . . N

Of courée, data seldom support this parsimonious viewpoint in
exery particullar, but the theoretical model is approximated fre-
quently im empirical study (e.g., Sewell and Hauser, 1975;
Rehberg and Rosenthal, 1978; Duncan, Featherman, and Duncan, N
1972; Alexander and Eckland, 1975; Cosby, et al., 1979).

The path diagram'is a heuristic picturé of an equation sys-
tem. The major hypotheses are expressed by a set of linear equa-
tions, in the-following manners: -

: N

-

¢

{la} Yy * &{0 f~aT£ xl.+ 352 Xy +‘. , ul
- (1b) Yz:;uﬁio voady Xy taiy Xt bily; * ; Uz
(lc), y3.= afy + ajy X+ a%, x; + b3y, X uy
(1a) v = agy ¢ oad “i~* iz ¥p * P4yt Bi¥y Y Biyvy v Y4
(le) yg = agy + 5§1 Xy + ag, X, + bEiyy * bEy, + bhayy 4 . Y
GE) zy o= afy +aty X f\qiz X, * Pil*l * Py, ¢t Piays‘f‘ . “1‘

» * * ~
52 X + Ph1Yy t Py, t Phayy t 85 2 4 ¥,

]

-

™

# -



) . ' B - T
. 1 > . :
. ) R e ) . S . - :'\‘ - “::“, ,
Exogenous ‘ SRR . “~ Attainment
Variables . Process Variables : . Vaviables
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Parental . . SO ed. Ego ed. Educational
- SES . . ' Expectation. | ™ Expectation . ™ Attainment )

Academic
Performance "
t 4
//
. \ /f’
y
\ g
/ , v
-Mental , -t SO Oec. - Ego O¢e. . . - Occupational
Ability , ' , Expectation Expectation Attainment
!é [ "" 3
y A
Figure 1. Hlustrative Path Model of Status Atta{nm'ent Processes. - .
IR\ ]
) . .
- Notes: SES = socioeconomic statuk
* - s
SO = significant other .
! \
~ed. = education
e L ‘ . ¢ ;
. Occ. = occupation ' / .
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he a*:, b*., q*., p*. . ‘ -
o Where the atss bi}' qu, plj, and s13 are cqns?ants (path coef-
~ ficients) indexing the' effect of variable j on variable-~i. the q

ui;and v, are unmeasured "disturbance" variables. The variances

of the disturbance variables index the degree to which dependent
vardables are controlled or influenced by the measured variables
hypothesized to affect them; the- smaller the variance of a dis-
turbance variable, the larger the influence of the measured |
wvariables. o o - ‘ ‘ ' S
It is imgortént to notice that equation system (1) does not’ ®
correspond exactly to the path diagram in figure 1. First, for
simplicity the disturbance variables are omitted from the path
diagram; this omission marks a mild departure from c¢onven- :
tion. SecoWdly, there ard more path coefficients (a*s, b*s, g*s,

~

_p*s and s*s iziequatien system (1)) than there are paths in fig-

o 4 ure 1. The .pafh diagram oversimplifies to emphasize the theory;
e " whereas, the <€guations include all paths that typically would be
calculated.in empirical application. An indication of how well °
the theory fits can be ‘gained by observing how close to zerc are
o the calcylated paths corresponding to missing arrows in figure 1

If-the theory.were sufficiently convincing, the postulated zero -
paths could be dssumkd zZexo, and the information that some paths ;
are zero could.thgg used to improve estimation of the other

- paths. In the literatdye, however, it is generally assumed that
the theory is not ‘strong, ‘enough to merit setting any paths to
" zero a'priori.- | .. ’

‘ There are two f@atures of the model that are important.in
the' present context. First, there are no t v-directional cause-
and-gﬁfect relationships hypothesized.- This|means that in no ,?

/ case is there a path coefficient included to Xpdex the effect of B
'y on x if thére is a path coefficient included to index the ef- )
fect,?f.x on y. Thus, fgr example, bﬁl is pggéent in the model;

its presence indicates a hypothesized effect of academic per-
formance on the level of education that significant others ex-
pect eqgo to achieve.. On the other hand, biz is not present in

. the model; its absence. indicates an implicit hypothesis that

\ ' *ego's academic performance is not influenced by the level of ed-
R ucational expectation held for him/her by significant others
‘ (such as parents). -

The seconduimportant feature ¥ the model is its static
conceptualization of the process va iables. Notice that changes
. over time in the process variables' are not part of the model.

The model is about eross-sectional diffgrences among individuals
. . not about changes over time for™a particular. individual. Al-
A .~ thoygh this point is not New, it does not appear to be widely
» . \Understood: This distinction between change over "time and
sross-sectional differences among individuals foxms an ' '

Lo Re
: (. _‘ ,
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_imﬁértang‘part of the justification fof applying differential

equations to the study of career planning. In consequence, the
next few paragraphs develop an algebraic treatment of the approp-

- riate interprétation of path coefficients calculated from cross-

secticna}¥ data.,

?

the. phrase: statistical Ycontrol™ by linear regrgssion, when
regression methods are applied to cross-sectional/ data. The
conmentary.also applies to' the concept of .direct. effect in path
analysis. The fundamental idea is to examine the impact of a

‘The purpose of{this discussion is to reviewL;ﬁe meaning of

‘single independent variable on a dependent variable while hold-

ing all other® independent variables "constant." For this exer-
cise, assume that the dependent variable is ego's educational ex-
pectation (y,) and that one wishes to examine the effyct of

sigﬁiﬁ@cant others' educational expectation of ego Qf;; while

"controlling" or "holding constant" the other indegendent vari-
ables affecting Yq- L

T6 develeop this idea, consider two individuals who havg the
same mental ability, same parental SES, same significant¥é€ )
occupational expectation, and the same level of the "disturbance’
variable, but who differ by one unit with respect to significant-
other educatipnal expectation. Suppose one wished to discover -~
to what degree two such individuals differ in the level of edu-
cational eﬁpectq}ion'(yh). Define the following-elaboration of

the notational scheme: ‘ ' * .

Xyq1 X, = parental SES for person 1 and person 2,
11 12 :
respectively
L ]
Xopr X9p T mental ability for person 1 and person 2,
“  respectively

{

Yy10 Y12 T academic performance' (grade average) for person 14

and person 2, respectively

='significant-other educational expectation for

Va1r Y22 :
N person 1 and person 2, respectively
Y1, Y., = significant~other occupational expectation’ for
31 32 . .
person 1 and person 2, respectively
Ygo+ Ygqp = €90's own educational expectation for person 1
, and person 2, respectively
Ugyr Ugy = disturbance term for person 1 and person 2,
- respectively ;
/ -
p
0" 9

N

5
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Keeping in mind the conditions just established, insert this no-
*ation into equation- (1d) for person 1 and person 2:

fo= * . s
(2a) ygy = 3fp * 341Xyt A4% Y PhaYan t b423"21
+ b23y31.+ Uaq (perscn‘l)
(2b) yg, = ajg + ajyXyy ¥ 8f,%Xy5 %, bEy¥y, + b 2y22

+ b§3y32 + Uy (person 2)
. >
Subtracting both sides of equation (2b) from eqﬁaﬁion‘(ga) yields'$-
(30 yq1 = ¥4y = (3fg - afp) +afi(xyy & Xpp) *afy(xy; - xp))
(Y - ¥12) *+ Py - ¥

¥ biayyy m ¥yp) (g Uy

. Since we have constructed the situation so that all independent
“variables are "constant" except significant-other educational ex- .

pectations of ggo and have stipulated .a unit difference between ' |-
the two persdOn's significant-other educatlonal expectatiops, the
following facts hold:

K11 T X12 T ¥p1 T Xpp T Vi T¥yp T V3p T ¥3p T Wy Tugy < O
A ‘ .
and Yop = Y99 * 1.0. équatf@n (8) therefore reduces tg: - T
_ oo
- = * >
Yq1 T Y42 T P oo .

4

In words, ceteris paribus, a unit dlfféfénce between to persons
on sxgnxl;cant-other educational, expectatlon,generates a gif-
ference in eqq s own-educational eéxpectation . 'equal tp the path
coefficient (b More generally,Jl Yo1 ~ Yoo # ®.0 and_is

[

not zero, the ratio oft thé differenc¢ in th~ dependent variasle
to the difference in the independeny{ variable, "everything else’
being constant" jis the path coefficfent, viz: :

(Y41 - Y42)/(y21 = y22‘) = bzzn . '

This is the meaning of statistical "control" by regression
in cross-sectional data. For the present discusgion, it is im-
portant to note that when path analysis is applied to cross-—
sectional data, the path ‘coefficients index differences between

< ' | | 3
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individuals, ‘not changes over time. The relatxonshlp between in-
dividual differences and change over time is seldom explicit (gee,
however, Coleman, 1968 and Hout and Margané,1975) One of the
virtues of differential-=squation analy51s‘-s that it can explicate
this relationship,

£
.

i’

.- '~ Theoretical Basis for a Differential Eguation Model a
v ) . 'g_ N -

Theoretical Background
s ~o
. " The. developmental theme of forming career orientations is
, pervasxve in the vo&ational- psycholcgy literature. Fqr example,
the idea is repéatedly stated in the writings of Donald Super,
who at one point expressed it in the follcw;ng terms:

PROPOSITION 1., -Vocational development is an gngoing
S gﬁptxnuous, and generally irreversible process. Vo-
catidbnal preferences and competencies ... change with
time and experience, making choice and adjustment a°
‘continuous process (Super, et al., 1957: 89, emphas-
_ - is in the original).

-

. Similarly, Ginzberg and associates state:

. Our basic assumption was that an individual never
i reaches the ulttmate-decision at a single moment
in time, but through a series of decisions over a
‘period of many years; the cumulative impack i's the
‘ determlnxng factor (Ginzberg, et al., 1951% .27).
. This theme can also be found in the-wfltlngs oﬁ~ﬁ§ny‘gther theo-
. rists (e.g., Pietrofesa and Splete, 1976; Tiedeman, '1961; Rodgers,
-~ 1966; Bldu, et al., 1956). After reviewing several "macr0~
' theorjies," Picou, Curry and Hotchkiss indicated the follo%}ng
general characterlzatlon of the theoretical literature.

-

t
THhHe macro-gbeoretical approaches reyiewed above
have geverdl common themes. First, all of the
adbove theorists have implicitly or explicitly
noted the deyelopmental character of occupatiocnal

0 choice and §§acement. The problems of career
choice and attainments are clearly limited to a
life-cycle framework. Labor market entry and
career patterns tend to be viewed in conjunction

- with individual maturation and growth (Picou,

N Curry and Hotchkiss, 1976: 12).

It is undoubtedly obvious to most of the research communlty
that career orientations are formed in a gradual process over
time, ‘yet operatiomal Rfocedures commonly found in empirical
study do not reflect this obvious point. while the theoretical

11
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literature has been helpful in. pdinting out the dynamic nature of’
' the process, a proposition stated in the general terms such as
those used by Super and associates, quoted above, is of little
use in empirical research. It is imperative that the general
idea be translated into exact hypotheses. Again quoting Merton,

Much of what is described in textbooks as® sociolog-
ical theory consists of general orientations toward
substantive materials. Such orientations involve
broad postulates which indicate types of variables
which 3re somehow to be taken into account rather
than specifying determinant relationships between
particular variables. - Indispensable though these
or ¥entations are, they provide only ‘the broadest
framework for empirical inﬁuiry (Merton, 1957: '
B7-88). .
Although most status—attainment models have been confined to
one-directional causal systems (for notable exceptions see Hout
and Mogran, 1976; Woelfel and Haller, 1971; and Nolle, 1973) there
is ample reason to expect that several of the key procedgs vari-
ables in career planning exercise reciprocal effects on each
other. "For example, as described in the preceeding sectiom in -
most models of the process, academic performance and significant-
other variables are assumed to affect youths' career orientations;
-effects of youths' career orientations on academic performance and
significant other variables are assumed zero, Yet it is' plausible
that students adjust their academic ef?o§§§/§n response tg their
educational and occupational ambitions. t is also plausible that
significant others, in part, adjust their expectations of youth
to conform to the career orientations that the significant others
know the youth hold (see Curry, et al., 1976 for a discussion of
these issues). Additionally, career orientations probably ex-
hibit reciprocal effects on each other;’ for..example, cational
expectation probably affects occupational expectaticn, pnd vice
versa (see Kerckhof¥, 1971). Consequently, the dynamic]model
must permit reciprocal effects among these variables.

, In the next subsection, simultaneous differential equation
models are proposed as a general methodology for expressing the
dynamic, reciprocal “aspects of forming career ori ations. The
discussion is presented via a’ simple example that parallels the
example of a path.model reviewed in the present section.

e

An Example of a Dynamic Model o T

Virkually all structural-equation models of status attain-
ment prodesses have been linear, and the few available tests of
linearity assumptions show only minor departures from”linearity
(e.g., Gasson, Haller and Sewell, 1972; and Wilson and Portes,

\ o ,

~
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1975} Consequentiy, as a first effcrt to translate current
models into dynamic twa-dxrectxonal models it is sensxble to ad-
here to the linear postulate.’ % :

p -y
_ ‘ >
The simultaneous, dlfferentlal equation del assumes con- }
tinuous time and -continuous change in the end@genous (interven-
ing and attainment) variables.: ' There is little difficulty in
¢onreptualizing the intervening variables as changing continu-
ously; this is a major emphasis in the theoretical literature
cited above. The attainment variables, on. the other hand, c¢an- -
not be so easily conceptualized as changing continuously. Oc-:
cupat(onal change obviously ogcurs in distrete jumps, and educa-
tional attainment exhibits similar discontinuous change :
especially at the end of degree programs. These difficulties
cannot be resolved in this volume; Hence, the illustration will
be confined .to the exogenous variables and the intervening var-
iables, and specification of a model including attalnment var-

1ables will be left for future work. | !

[

+With the above c¢onsiderations in mind, it i$§ now -plausible
to formulate in dynamic terms ti% basic status attainment model.
To do this some additional notation is needed. Let the variable
symbols, X ang yi‘be identified by the preceding list of var-

iables, let b and c, ij be constants over time and over indivi-
duals, let dy (t)/dt represent the 1nstantaneofs change in var-
iable Yy for a small change in time, and let ui;;)“he a d;stur—

bance term at time t. The dynamic model can now Be written in '
the following form: -

3
]

(4a) dyl{t)/dt A, agx, ¢ A, 0‘b11y1(:) ¢ b12y2<:),‘ PIBYB(t)

+

Dy Yo (t) # bygyslt) + uyle)

4 a,,%, ¢+ b bz‘y‘(t) . bzsysct) . “2“’

t

(4p3  dy (r)/de - a,, @ 1Y (8} ¢ by i) ¢ by ,y; ()

+»

{4c)  dy,le)/de = LETIRAC EYL IR TPt P by (8) ¢ by () ¢ byqy,it)

-

DY (8) ¢ byoygle) + ugie)

*

=
(84} dyﬁ(:>/d: - a + a Xy f btxyx‘t’ o_b‘zyz{t) + b‘lyzt:} b“y‘(t} + b‘5y5§t) + u‘tt)

*

» (be} dysé't}/dt =ag ! ‘51:1-6 52%3 0.b51y1(t) + b52y2(t} + b53¥3“) {t) + b

55¢Y‘ 55y5(t3 + usitx
It is important to describe how these equations reflect theﬁhigﬁ-
ly generalized hypothesis that formation of career expectations
is a continuous process, and the somewhat more specific grgu~ +«

- ments that reciprocal effects may betobserved among the oefess

SN
1. Clearly, this argument must be viewed as an analogy, for, as
noted in the preceding sectlon o, the text, the cross-
sectional path coefficients and the parameters of the
’ differential-equation model are not equivalent. I wish
to thank Professor Robert Leik for brlnglﬁg this point
to my attentlon.

A1)
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variables. The fact that the dependent variables are instantan-
eous change rates [dy. (t)/de] with respect to time reflects the

continuous nature of the process. Observ g equatxon (4a), one
can see that the instantaneous change infacademic pérformance
at time ¢t {dyl(t)/dt] is a linear combination of the exogenous

variables, SES (xl), and mental ablfity (xz). and of all the

.current values of the interyening variables ly;(£)], including

the current value of academic performance itself [yl(t)]. The

second equation (4b) indicédtes that the change in significant-
other educational expectation for ego [dy,(t)/dt]-ig a¥so a

partial function of the current values of all the intervening
variables. Hence, change in academic performance’'is affected

- by significant-other expectation ¢f ego, and change in .

significant-other expectation for ego is affected by academic
performance. This type of reciprocal pattern ‘can be observed
among ali. the intervening variables. On the other hand, the |
exogenous variables are assumed fixed and unaffected by any in- |
tervenxng wvariable. : R

Statea in the dlfferentzal equatlon form, these hypotheses
cannot be tested against data, since 1nstantaneous change rates
cannot be observed. Consequently, it is necessary to integrate’
the system in ordef to find the relationship between observable
variables at two points in time separated by a finite time in-
terval. The 1ntegratlon procedure is described in Chapter 4.

It should be emphas;ze@ that equation system (4) is only
an example. Technically, it is termed first-order ordinary
simultaneous linear differential equations with constant coef-
ficients. The term first order means that no second or higher
order derivatives appear in the equatxons. The term "ordinary"
means that change rates are taken with respect to only one var-
iable, time. The térm s;multeneous means that all of the rela-
tions must hold at the same time ~- thus the equations express
the concept{of a system of variables. The term lingar means’
that the algebraic form of theleguations is linear. Finally,
the term gonstant coefficients means that all the bii are con-

stant over time. Each of thése features forms a part pof the
implicit assumptions of the medel. These assumptions are fair-
ly restrictive, but it seems reasonable to start with a simple
model and add cemplicaging features as empirical. results indi-
cate. The point is that by suggesting this model, exploration of
the wealth of available technology for describing dynamic sys-
tems of career-expectation variables has only begun.

»

-

2. The concept of flrst, second, and higher order derivatives are
described in Chapter 3.




Interpretation and Discussion’

&, ‘ .
- . This section is divided into three subsee¢tions. The first

~ subsection discusses the manner in which change over time is in-
corporated into the conceptualization of the differential-eguation
system. The second subsection reviews the use of differential
equations for forecasting (prediction). The concept of equilib~
rium and oscillation are introdu¢ed briefly. The final subsection
discusses the relationship between the change coefficients

(aij.And bij) in equation system (4) and the path coefficients

(agj and sz) in equation systems (1).

Conceptualization of Change

Consider the dependent variables in egquation system (4); in -
each specific equation the dependent variable is a rate of
N change, dyi(t)/dt. The numerator, dyi(t), stands for a change

in the variable y; over a very brief increment in time.

dyiKt) = yi(t) ~ yi(to)
lim

1+ %

Where yi(tl) is the value of Yi at time tl' yi(to) is the value
of y; at time t,, and lim t; » t; means in the limiting case as
ty and t, are very close to being the same. Similarly, the de-
nominator, d¢, stands for a very small increment in time.

dt = &) = to
lim
1 » Y

' »

t

Putting these tWO‘definitiOns together, one sees that the depen-
dent variable is the ratio of change€ in y to change in time, as
the change in time approaches, but never quite reaches, zero.

The hypothesis stated in the example is that this xate of
change is a linear function.of the exogenous variables (8ES, MA)
and the current value of all the intervening variables 'influding
the intervening variable whose change rate is the dependent var- -
iable. As 4ndicated above, this particular functional foﬁm is
hypothesized by analogy with current path models of the process.
There are several'obvious generalizations of the example in
equation system (4). The simplest generalization is to permit
the coefficients Laij’ bij) to be functions of time, while main-

taining the linear form. Thus, fcr_examblé; if dagq were a )
. . . : . ‘ . : ‘
| 15
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positive numpergbut terded to move to zero over time, then one.
would say that the influence of parental status on youth's-oc~
cupational status expectation detlines over the high school A
year®. More genérally, the change rates can.be Jiypothesized

.to be arbitrafy nonlinear functions of the current'levels oY

the variables and of time. These, generalizations will no;'gg’-
considered further in this volume.. Co : Yoo

-«

‘ ~, + .Forecasting

¢ R N\ -

Given the hypothéses in equation system (4) androbservations
at two points .in time for a sample of individuals, it is possible
to estimate all parameters of forecasting equations. Forecasts
then can be expressed as functiohs of time’'alone. Procedures for
determining numerisal results-are described in chapter.4. Once
these forecasting functions are determined, a predicted value for
each intervening wariabley.for each {individual can be genérated

-

, for any point along-a continuous time scale, prior to collecting’
data for the third am successive panels. These predictions;\\'~,

then, can be viewed ag® predicdtions derived from theory of the
mafner in which a system of career planning variables operate
dynamically over time. The advantages of the built-in-prediction
formula are substantial. , First, it provides the technigque and
justification for predictiWwe tests pf the thebretical model of
status *--ainment processes that héretofore -have -not been carried
out. F * work with longitudinal data has been CQ&finEdgtc what
might be :rmed "post-diction,"” that is, the values~of the pre-
.dicted variables have been used to help estimate the xegression
equations. Since the yegression coefficients are chosen,. eX post
facgo, .to maximize the accuracy Of thewastimates,afgthéfdegindent
variabl¥s (in ordinary least squares) ikt is not surprising ‘to
find that moderately-accurate estimates can be made. . Projecting
predictions pxior to observation eof/the predicted variables -
could result in mean-squaré errors exceeding-the cross-sectional
.variance of the degendent variables, but tng'cross—SegtiOnallf -
variance is the maximum.error variance for postdiction using OLS..
Hence, the predictive test has a.much stronger chance-of -failure
and thus constitutes a much stronger. test pf the model (see,
chapter 5.) i - ‘ :

. e . :

In addition, the contifuous-time capability of the pre-
dictive model pérmits the measurement ingervals to vary. A
period of one year might elapse between the first and second.
panels and the projections could be made for. one and a half -
years,  two years, or any, time period beyond the second panel.
This feature facilitates .comparibons between studies ueing dif-
ferént measurement intervals, and also provides researchers free-
dom to determine measurement intervals to suit their needs.

-
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It has been observed that a path analysis based on longitud-
inal data could also be used to generate predictions.? . Certainly
~path analysis (or regressicn analysis} could be used in this way.
. bug its application is seriously limited -when compared to the
‘)' ‘'differential ‘equation modei. Based on the path-analysis alore,’
‘I .+ any predictions would have to be made over :a time interval of -
. exactly the saie .length. as the length of tim= betweer the mea- :
: surements on which the estimates of the path coeffitients were
# °  calculated. For ~xample, if measurements were takem on high
school freshmgn and again on the same individuals when®they be-
came jupiprsi, there_is no mechanism built into the theory of ‘
. . path ana¥ysis by itself to permit preditting to the senior year.
Predivttions would ‘necessarily be_to the year following the senior
year, -since estimates of path coefficiénts were based on a two-
‘year interval. Similarly, if the first two measurements wegre
taken during theé freshman and sophomore years, predictions woyld
bé to the juhior year. s.Preacii.ig;\‘_;GJ'.._qns to the sepior. year based on
path-analysig would be either (&) ad hoc, or -(b) depend onrgg-.'
tending the theory of path aralysis. It seems unlikely -tha
many'resegrchers would extend path-analysis theory in'the required
manner, . Futher, the extensjon would genérate a special case of
the forecasting formula derived from differential equations with=-
out the correésponding.conceptual benefits and flexibility of the
differential equations. - | : ‘

5

2

‘ ‘ Interpretation of Effects

- The change coefficients, éij and bij in equgtion system (4f.

- can be used> g indicateﬂthe'eff cts of the intefvening variables-
on each other (bij) and effects' of-ghe exogenous variables on

the intervening variables (aij)' For example, agy indicates the

‘effect of parental SES on the rate of change in occupational-
status expectation of youth. Perhaps of mqre interest, .the b
‘ cceffic%&nts can be used to assess ‘tHe relative magnitudes of
- two-directional effects. To illustrate, b,, indicates the in-~

stantanecusﬁeffect of significanffgtﬁér educaticenal expectation

- » ‘ ’ ~

_( " 3. .This point was made in a private comminication from Professor
| ‘ - Robert-Leik... 1! o ~ ' c
’ 4. The extensjon undoubtedly would fallow & line of reasoning in

- which -the path goefficien;s=balculated‘over, say, a one
‘ Wwear interval were applied successively to predicted
' values, starting one year .after the second measurement
used in calculating the path coefficients. A general
prediction equation could t¥en be developed by induction
in a manner paralleling the Theory of Markov chaind ‘over
. "discrete time interwals.. Sé&ch'a development depénds,
. . however, on & model in which the same endogenous variables -
- . are measured at both time points, a practite not .frequent- .
ly followed ‘n -empirical studies.’ : . :

-~
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. breceding discussion it was emphasized that cross-sectional path

e . &\, . s I e

~

for ego oh the rate of change in ego's own educational expecta;
tion; conversely b24 shows the impact of ego's educational ex- .

.pectagion on 51gn1f1cant others' educatlonal expectatlcn of egp

As’ conceptuallzed here, comparlson of effects of one varl—:'
able to effects of a second variable on a given dependent rate .
of change is awkward, because the éndependent variables may be ~
measured in scales that are quite #different from:variable to N
yvariable. 1In path analysis this problem often ig resolved by ey

+ transforming all variables to a scale with zeéro mean amd unit
“variance, thereby rendering rough comparlspns hetween coefficients

feasible. The s;mple strategy 0f transforming all variables to
zero mean -and unit varialce when the same variables are measured
at more than one peoint in time is not advisable however, because

* the strategy artifically removes change over time in the mean, and

variance from-the data. Methods of standardization that avoid
this problem will be developed in Chapter 4.

Comparison to C:oss—-Sectional Path Coefficient s. In the

coefficients measure differences between individuals at a sgiven
time point rather than changes over time. Under certain circum-
stances, however, the cross~sectional paths (aij and sz) yield

useful information about the change coefficifgjﬁf?; i and bij).

‘If the system of career development variables (equations (4)) has

' sons between equations would be appropriate only under the as-

reached an equilibrium state, i.e., stopped changing, then the .
cross-sectional path coefficients and the change coefficients

for a given equation are equal, up to a constant of proportion-
ality. This means that each path coefficient in a given eguation
can be multiplied by the same constant to yield the corresponding
change coefficient (Coleman, 1968). Unfortunately, the constant
required to convert from cross-sectional paths to change coef-
ficients cannot be calculated from cross-sectional data. This
interbretation, of course, depends on specifying the path model
sc that it permits nonzeroc paths everywhere that nonzero change
coefficients are permitted (e.g., if the differential equation

model permits nonzero' b, i3 and bﬁi' the path model must permit
nonzeroc sz and b§i)' It should be emphasized, however, that

even in eguilibrium, comparison of path ‘coefficients between equa-
tions is not permissible, since different conversion constants
are required for each equation. For example, comparing b4l to b

i's permissible, since these two coefficients appear in the same
equatlon but comparing b4l , £O bl4 is not permissible. Compari-

sumption that the instantaneous effect of the level of each var-
iable on its own change rate is 'the same for all variables - o
(bll ="}322 = ... =vbJJ,fwhere there are J equaticfis).. This is a

restrictive assumption, so such comparisons-shou}d generally be
avoided. :

. e . 18 e .
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\bb Compariscn to Cross-Lagged Path Coefficients. Suppose two\
servatxons for each individual and each endogenous variable
were avallable, ‘and a path analy51s were executed in‘'which the,
time-one observations .on the endogenous variables were among the
independent variables and time-~two observations were the depen-
dent variables. Define all the same endegencus variables as in
the previous examples, and let y.(O) be the observation for Y

at tha b;qlnnlng point, ahd Yy (1) the corresponding observation
at tlme 1. 'A Cross lagged path-analy51s might be written as

follows: . s
L = % * * ' * * *
) .yl(l) alg + ay ¥y + ajy X, + bllyl(o) + ... + blSYS(O) + uy
co ~ :
' ' Ce= *. ‘* * * ‘*
Yo (1) aty + aSlxl ag,x, + bE.v, (0) + ... + b55y5(0) + ug
(see, e.J., Heise, 1970). Generally, the coefficients azj and bgj

are interpreted as indicators of ‘the magnitude of effects of one

variable. on another. But such interpretations of the cross-lagged

path coefficients calculated over' finite time intervals must be
made with caution. The magnitudes of the b* coefficients depend
on the length of time interval between measurenents; further,
the relative magnitudes of different b* coefficients also depend
on the length of the measurement interval. This means that the
relative effects of two variables on a given process variable

’(b* vs b¥.,, j # j') depend on the length of the measurement

i] 1]
interval, and-.the relative magnitude of reciprocal effects de-
pend on the length of the measurement interval. Even the sign
of the b* may depend on the length of the measurement interval.

This observatidon will be justified in Chapter 4, but it
shiould be noted here that the statement depends on the assump-
tion that the differential equation system really does describe

‘the process,

~

Summary J
ar —t .
i

This chapter has developed the substantive rationale for -ap-
plying differential equations to the study of development of
carcer expectations. The concéptual framework is drawn from

status-attainment research in sociology, but*important .theoretical

insidhts from other research traditions were referenced also, and
included.in the model where possible. . -

N

[
-

5. Doreian and Hummon- (1974; 1926) make similar observat@gns
about a single-fdquation model of status attainment
‘processes, '

/
-«
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The flrst sectxon of he chapter ré{:ewa>the status attaln— ®
ment theory and presentsan illutratidn &f a path model 'of this,
theory. The path model shows status background and mental*abil—
ity affecting career- expectation variables. The careey -
expectation variables affect career attainments, The path modél
of this theory is a set of linear equatiions‘desCribing cross- -
sectional differences amongxlndLVLduals rather- than changes over

3
‘ time. / ~— - A | | “}‘

4y

s

The second section presents the theoretlcal basxs for’ trans~
lating the cross-sectional -path model into a dynamic model “pep-
resented by a system of linear 1fferent1§l equattions, Two polntSe*

‘ are made. First, theory suggests that career eéxpectations de- = . o
velop gradually over scontinuous time. Secchdly, most of the :
T  career-expectation process variables probably exhihit two-way . - «

. effects on each other. 'Neither of these importgnt features of
. " career expectations'are expressed byTE}oss-sect onal path models.
The third section presen{s an example 0f,a differential .
equation” model ‘to express the dynamics of developing career ex-
pectations and. two-way effects among, career-expectation process “-
variables. The differential' equation model represents the rate «
of change over time in career-expectation variables (e.q.
Status level of occupational expectation) as ‘Iinear functlons of
background variables (family status, mental ability) and of cur-
rent levels of the career-expectation variables. Career attain-
ments are omitted from the model because thev =hange abruptly
at isolated time points rather than continuou<i- over time.

- . $
The fourth section discusses interpretation and appligations

of the differential-equation model. It is noted that the model
refers to change at a point in time rather than over a finite
interval of time. Use of the model to test theory by forecast-
ing is emphasized. It is,argued that accuracy of forecasts
comprise a stronger test. of thecry than the usual post facto !
regression analyses’'in which correlatiods are used to index the
accuracy of the model. 1In addition, interpretation of the
change.coeff1c1ents associated with the differential equation _
model is compared to interpretation of cross-sectigonal and.cross-
, lagged path coefficients. It is noted that cross- -sectional paths
generally do not coincide with the change coefficeints but do es-
timate change coefficients up to a constant of proportionality
if change in the system has ceased. Perhaps of more interest,
the cross-lagged path coefficients calculated from two panels of
observations on the same process variables depend on the length

‘ of the interv: +f time separating the. twq panels. 1In contrast,

' the change co.. .cients do not depend on the length of the mea-
surement interval, assuming the differential-equation model des-
cribes the process under study. It is therefore recommended that
interpretation of cross-lagged path coefficients proceed with
caution and with the realization that the coefficients do depend
on the length of the time interval separating panels. The change

+ coefficients associated with the differential equation model are an
alternative set of coefficients that researchers may wish to de-
pend on for interpretations of effects.

20
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- ‘REVIEW‘OF SELECTED, MATHEMATICAL AND STATISTICAL
CONCEPTS AND RELATIONS 4

Thorough understanding of parts of this volume probably
requires some previous exposure to calculus and td linear alge-
bra. To reduce the burden on the reader, however, this chapter
reviews some basic .concepts and relationships in mathematical
and statistical theory that are used repeatedly in the remain-
ing chapters. The review is cursory and highly selective. ' In

most instances, basic'concepts are summarized in an intuitive

manner, important theorems are illustrated numerically, and the
theorems are stated in brief form without proofs. There are

" four main topics. First, elementary .concepts and formulas™ in

calcltlus are summarized. Secondly, complex numbers are dis-
LSussed briefly. Thirdly, concepts and formulas in linear alge-
bra and matrix equations are covered. This review is somewhat
Mmore extensive than the others because of the strony dependence
of much of the material in this volume on theorems from linear
algebra. Fipaily, a very brief and selective discussion related
to inferential statistics is presented.® |

f

Elementary Concepts and Formulas in Calculus ,

T There are two major branches to the study of calculus -- the
differential. calenlus and the integral calculus. A selective re-
view of the differential calculus is presented first, then the
integral calculus is reviewed. These reviews are not rigorous
presentations of the mathématical theory. Rather, they summarize
very brijefly some basic results needed in the remaining chapters.

6. The material in this chapter is common knowledge or readily
derivable from common knowledge in the mathgmatics or
statistical 'literature. Numerous reference’ sources
were used to assemble the information contaifhed in the
chapter. These include Goodman (1969), Freund (1971),
Hohn (1972), Yamane (1968), Lancaster (1968), Fishér

,g{: and Ziebur (1958), and Platt (1971). 4 Readers desiring
more rigorous and complete presentations of the theory
are referred to these sources, among many others that -
are avallable.

-~
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. Differential Calculus
The diffgrential.calculus is the study of slopes of con-

tinuqus fupnctions at isolated points on the curves defined by

the function§. The_slope of a straight line defined by

y = a + bx is familiar; the slope is the "rise over run" or the

change in y as a ratio to the change in x. Let Xg and xl ‘be

two values 6f x, and let Yg | and yl be the corresponding values
of Y determined by the 11near equation, i.e., Yo = 2 +;bxo, and

L Y] T Gat bxl Denote the change in x by Ax = Xy = X4 and the

- R Y
change in y by Ay =¥y - yo..‘Thg slope is then defined by

B r
“ -

AY  _ Y1 - Yo _ (@ + bxy) < (a + bxp) _ blx; ~ xp)
A X X1 = Xo- . X1 = Xo X1 = X
__A_X = b SN
- AX .

{

This is a familiar result, illustrated in the previous chapter{
the slope of a straight Jline is the multiplier constant b in
the linear equation y =ia + bx. _ v

For -a linear eguatjon, this resulthholds irrespective of
the magnitude of Ax, but for a curved line, the slope does de-
prend on the magnitude of Ax. To seg,thls, observe the parabola
in figure 2, dgfined by vy = a + bx? .

]

a_‘y

3 2 1 7 1 2 3 X
, | ’
» Figure 2. Slopes of a Curved Line
O ¢ '
The graph is constructed with.a = .5, and b = .2. Assume for

example that ore wishes to calculate the slope of the line de-
fined by commhecting the ‘points on the graph corresponding to

X = 1.5, ?Pd X = .5. For x; = 1.5, y; = <8 + .2 (1. 5)2 = .%5.
Forg %5 = .5, yq = .5 + .2(.5)* = .55. Hence, Ay = yl - ¥y =
.95 - .58 = .4, Alsp, Ax = X, = X3 = 1.5 - .5=1. The slope,

&

therefﬂf?, is: Ay/Ax =..4/1 = .4. This slope is represented by :

22



S, on the graph (figure 2). To show that this slope’does_nat -

remain Tixed for different amounts of change in x, carry out a
second set of calculations withz:‘;ﬂl = 2, and Xy = .5 One finds:

y = .5+ 2(2)% = 1.3
Y, = .5+ .2(.?)2 = .55
y = yx - ya =1.3 - .55 = .75
X =X -X =2 - .%=1.5 :
1 V] 'S . . L

Thus, slope = Ay/gx_= .75/1.5 = /5 # .4

The following point has *been illustrated: From a given start-
ing. point, a change of one unit in the independent variable of a
~ nonlinear function generates & different slope than does a change
of one and a half units. _° SR ERE BETEE RN IR TR

" . It may be useful to contrast this exampll to a parallel set
- -ofy figures for7a linear function. Consider the-linear function

w =" + bx with a = .5 and b = .2. ©Note that the constants for

this illustration are the same as for the previous example ‘invol-
~ ving a nonlinear function. It was just shown that the slope of
~the linear function, y = a + bx, is b. “In the present case,

'slope = b = ,2. To illustrate this fact, takefthe same points

for .x which were used to illustrate the behavfor of the non-

linear function. For x, = 1,5, and Xy = .5;7/

L

3% (.54 .2(1.5)) - (.5 + 2(.5)) = .2 '

H
o
|
b
1}

AX = 1.5 - .5 =1 : ' | g

slope = Ay/A§ = .2/1 = .2

For the second p;ir,afix values used in the nqnlfﬁéar example,

s Xy = 2, and Xg ¥ .5, one has .} . |
\ : ,
ay =y -y = (5= :2(2)) - (.5 - .2 (.5)) = .3
2 = . 5 ,:- l . 5 . ‘ : M

: \ . Ax = DA B

' v ’ t - \ R
slope = Ay/gg = ,3/1.5 = .2

As illustrated, the slope is constant for the linear function and
equals the maltiplier constant, h = .2, . : ‘

———
e
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It can also be seéen that for the nonlinear function, the
.slope is a function of the starting value of x as well as of AX. . i
“For example, let Ax = (-.5) - (-1.5) = 1. Note that Ax = X is : '
the same as for the first example with the parabola. For the-
first example, however, the slope = Ay/Ax = .4, but a quick cal-
culation for the present case shows that the slope is -.4. Sim-
ilarly, for A = (-.5) - (~2) = 1.5, slope = pAy/ax = =-.75/1.5 =
-.5. ' In the second example with the parabola, the change in x
was also 1. 5, but,the slope was a posxt;ve one-half rather than
negative one-hal

The differential calculus is the study of how slopes of
continuous functions depend on x as AX goes, toward the limit of
zero. Consider now the function y = a + bx? algebralcally rather
than draphically. The slope can be written

AY =¢(a + bx}) - (a + bx3)

AX AX : :

R . .
=‘b{X; X§) v
Xy = Xy

A

= bix: + x0) N1 = Xo) : _

-

= b(xﬁq XQ)
In the limit as AXx = 0, Xy - xo and this result can be written:
e
LY = 2bx = 2bx_ = 2bx
AX 0 1 t
lim j
Ax +» 0 \A ,

-~

This is the derivative of y with respect to x for a parabola of
the form § = a + bx. 1In general, the derivative of y with re-

- spect to x is denoted by dy/dx. As can be seen by the example,

derivatives do, in general, depend on the value of x.

The general.definition of the derivative ¢an be expressed
as follows.  Let y be a continuous function of x, Denote by
y{a) the value of y when x = a. Now, by definition

. Q 4

dy _ ylx +4x) - y(x)
dx . Ax -
. lim

Ax » 0




In words, the derivative of a continuous function of x is the
slope of the function at a specified point on the curve. This
is not a rigorous definition, but it does offer an intuitive
statement of the main idea. ' '

" The study of the differential calculus largely is concerned
.with finding algebraic expressions for the derivatives of alge-
braically expressed continuous functions.’ Some of the basic
results needed in the remaining chapters are given here without
proof. It is assumed that y and z are continuous functions of x.

1. & (a+by) _ 4y

“dx dx
2 ay” n~1 dy i
ax - ™ dx
3. d (y + 2) dy , &z
— o dx . “dx,fnai__ et
4. lIn y 1 ”
) SK n = 5 gl, y > 0; 1ln y stands for the natural log of y.
5 dyvz _ dz dy
ax - Yax T % ax
6. ae¥ _ yay . ‘ | -
: 3 - € gy i oeis the base of the natural logarithm
)
7. d sin.y _ d ;
S s cosy
8. d cos Y . ay
Tax = sin vy 5%

7. Certainly, not all functions can be expressed algebraically.
3 For.example, a string may be spread in a curved fashion
across a pair of rectangular coordinates. S0 long as
no line perpendicular to the horizontal axis crosses the
string .twice, the set of points defined by the path of
the string forms a function. If there are no Jkinks" in
) * the string, it forms a continuous function and hence, 1is
differentiable; yet it is unlikely that any algebraic ex-
pression describes the path of the s§ring. 6 It is, per-
haps, a curious fact that the derivatives &f many func-
tions can be expressed algebraically 'even though th
functions have no algebrajc expression. . RECEE

-
K
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In all these cases, the fact that y and z are continuous functions
of x is important to a proper 1ntergretatign of the formulas.
First, illustrate the formulas in which z does not appear. As-
sume the simplest possible function between y and x by setting
yv.= X. For this instance dy/dx = 1.

simplifies to

g§xta + by)
Formula 2 becomes

n n
ay - di - nxn 1l

Formulas 4, 6, 7, and 8,

d 1n x

d Inx _ 1
dx X

X
de _ X .
——— = \
dx

d sin x

= cos X
ax

d cos X —sin X
dx

n

Y
£\

.

Thus, .for example, formula 1

respectively,

= g; (a + bx) = b, as before

simplify to: .

‘(\

To illustrate the addition formula 3 and product formula 5,

let Vv = x' and z = 1ln X. From formulas 6 and 4, resp;ptlvely,
one finds de®/dx = e*, and 4 1n x/dx

dition formula specializes to

e = + (1n x)

_ ox,1
= g (; + 1n x)

%,‘x > 0. Hanqe, the ad-

x > 0

%

e

o ———

dly + z) = d(e® + 1n x) = &* + %,

dx dx ‘
Similariy, with these tw? functions (y, z), the product formula
becymes T . ‘

ayz = d(e® 1n x) = e LB 4y
X dx X .
1 x
% e .

To illustrate a more complitated case than y = x for the

formulas not involving z,
for example, indicates

set y = %xz’

N

26

In this case,

Cus
c

formula 1,
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Attention now shifts ta defining higher-ordex derlvatives .
R Consider a simple function and its de:xvative'
. | .-}‘
| ¥ =(1/6) x3 '
- ' dy/dx =(3/6)x? =%1/2)x?® (rule 2) .
. . - S
Let z = dy/dx = kx? s then dzfﬂfﬂ: (by rule 2 again).. This o
can be conqpptuellzed by the. foblcwxng notatipn. ) \
dz i&d d | K L~ E
dx o : R, \
‘ ‘ ' o { /[
’ * ' 2 T B ‘ 1
€ 0 OO
. . k. , . ‘
Now, Jlnca dz/dx is the fqutlon\heflneﬂ(%y Q}fferentlatlng ' .
Yy = (1/6)2S twice, it is termed the gecond derivative of y or the a
derivative gﬁtthe second order. h\fcmmon notation.for this is
. s 2
& d? (1/6 x3)/dx? = x. Mére generaldy, let f(x) be a smooth f inction N\
of x, then its nth order deflvatlve ys deroted by d BE (x) /ax” i
It is defined by differentiating the f%pctlog f(x) n times, ) |
‘ , ‘ . e
N The Integral Calculus ) ,
There are two types of 1ntegrals -- the indefinite ;ntegrdl

(or antlderlvatlve), and the definite integral. It is important
to majntain the conceptual distinction between the two integrals.
Consider. a continuous function of x, f(x). The indefinite inte-
gral of f(x) is defined to B® a second continuous function, say,
.~ F(x), whose derivative equals f(x). The indefinite integral of
* f(x) is denoted by the symbols ff(x)dx.' Let

\\> JE(x)dx = F‘x)

then by definition

dF (x) _
e =

C The definite intedral is somewhat more difficult to define
intuitively, but it can be interpreted as the area under a con-

< tinuous curve from one SpeCLflc point on the x axis to 'a second
specific point on the x axis. For example, “the shaded area in flg—
ure 3 depicts the definite lntegral from point a to point b.

£ (
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Figure 3. Area Under A Continuous Curve

y

An approximation of an area, under a curved line can be found by
adding the areas of narrow strips under the curve, as illustrated

L]

. Figure 4. Approximations $o the Area Under a ‘Smooth Curve

ot
&

Note that the area A of each rectangle is given by the product of
its height and width. If its height is y = f(x) and width is the
change in x - - Ax, then A = f(x) A %. .Intuitively, it is clear

_ that in the limit as Ax goes to zero, the sum of the areas of the
rectangles gonverges on the area under the curve. The definite
integral from a to b of f(x) is denoted by- -

b
fa f(x)dx

28
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It can be’ vxewed heuristically as the sum of the areas. of narrow
strips whose-heights are f(x) and widths are Ax, in the 1;mit as .
Ax + 0. . '

Now, let F(x) be the‘indefinite integral of f(x), so that
F(x) = ff(x)dx
One of the most f&scinating and useful facts in mathematics is

the connection between the indefinite integral F(x) and the
definite 1ntegral to wit, -

/2 £(xydx = F(b) - Fia)
- a -

This is known as the fundamental theorem of calculus. It says
that the area under a section of a continuous curve, that is,
the definite integral, can be calculated by finding the dif-
ference between the 1ndef;n1he integral -evaluated at the end
‘points, a and b, of the sectlon. \

. . .,;‘

R ‘The integralrcalculus is the,basis for translating shypoth-

, €ses conterning instantaneous changes over time into forms that
can be studied empirically. 'Since such translations are the fo- -
cus of the differential-equation model of career expectations,
it is useful to see how the translation can be achieved. Sup-
pose one forms a hypothesis about changes in y over tlme-

= £y, . | :

A derivative cannot be observed sdnce it is'a slope over an in-~
finitesimally short pericd. Let X(t) be a function of t such
that F(t) is the indefinite integrgl of £(y,t), and note that -

fg dy = ¥y - ¥,- Taking the definite integral éh_boﬁh sides of

dy = f(y,t)dt, therefore, yields

1

Yp ~ ya

Yy, = Flty) + (y, - F'(f:a)) | ‘. ' "&

where t_, tb are two specific time pdints at which y = Yg alnd

Y = Yy respeg?ively. The equation involving deriyatives has

F(tb) - F(ta)

i

been eonverted into one in which all eleméyts are observable.
One can view ta at a fixed initial time poimx ‘and let‘tb vary;

in these circumstance Y, is'a fixed initial value of y and vy,




\
. ‘

Al , £ - #

. o . -, ' K .
varies with t,. Hence, -from thﬁ ihitial hypothesis cgpcerning
contipuous change, a functicdn giving y in terms of t has been
derived. The function can be nsed in conjunction with data.
'Phe above result was dérived with the définite'integrél.
ol The same outcome:also can be derived using.the indefinite inte-
- gral. Since it is sometjimes more convenient to use the indefi-
- nitelintegra; the alternative derivation is presented. Again,
consider E?e differential quatibni dy/dt = £(y,t).
| dy/dt = £(y,t) '
N o . . L

® ay = f(y,t)dt . ) ~ .

fdy = [fly,t)dt o S .

Suppose that F(y,t) is.a solution to the differential equation,
so that, by'definition, d@F(y,t)/dt = f(y,t). If QF(y,t)/dt =
, f(y,t), then so does d[F(y,t) + cl/dt = £{yit), where,c is any
. constant cver t. This is an’'essential aspect of integration; d
c. sometimes is called the constant of inyégration. Applying
this concept, one finds: . -

. . - [fay
Sy

To check this‘resultﬁfﬁifferentiate both sides with respect to t:

il

ff'(y,t)dt o -

]

F(y,t) + c

dy/dt = d[F(y,t) + cl/dt
= dF{y,t)/dt. + dc/dt
= f(y,t)  +0° . I |
y since dr (y,t) /dt ='f(y,t)'(by'conSEructioﬂy, and'the'degivative

of a constant is always zero. :

For empirical work, the difficulty'with,éhe result sthat
; y = F(y,t) + ¢ is that ¢ is an unknown constant. To f£ind ¢ one
}‘ ) needs an observation on y at a given time point, say t,. With

the observation point (Ea'yasﬁ one has

Yy © F&ta) + C

e
Putting this result into the indefinite integral yields the pre-~
vious conclusiorf based on the definite integral:" : '

S
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| , oY= F(t) f (ya - F(ta))} ’ .
. " - Sqmetimes an‘alternative n;::E&ngfbr finding a definite . - -
~ integral, over a specified 1nterval is tonvénient. 'In the nota- :
' tion .used so far - . ) - ‘ ; ‘
ib -Jt'b..i'- ¢ ‘ : .
dy = | fiy,t)dt = F(t.) - F(t,) .
t a b . . .
a a S ‘ \ AN

L] ' A

‘ Suppose that'one‘desired to denote the initial time point by 0
. - {time zero) and the second timé point by &. The notation

~}§f(y,t)dt is an awkward notation to represént the desired re-

surlt because theg symbol t is used in the same expression to in-
dicate the end point of the interval and all the po;nts ln\be-‘

. tween. A much clearex notation is:
” ) t . t . . . i 5 Fad
. Jdy = [f(y,1)dt = F(t}Y - F(0)
0 0 . . . )

Now, t denotes the end point of the interval, and T indicates
- the ,variable which assumes all values in the interval (0,t).

- The variable here denoted by t1°is sometimes called a dummy var-
.1able« but it should not be confused with the same terg used to
indlcate representatlons of categorical variables gn regress;on
analysls. \ .

~
-

. A large part of the ¥tudy of the:integral qalculus entalls
finding algebraic expressions for indefinjife integrals. Several
of these results are listed without proof below, for reference
in later chapters. It is presumed y and z are continuous func-
tions of x. :

1. J bdx = bx + ¢

_ 1 .
2. J x7dx = E:Ixy+l + ¢, n# =1

3. I (y + 2z)dg = fydx + f;dx + €

4. ax
. I 5

‘= 1ln X + ¢C

i ' ," ? =' Yd-—x-, - | .
. 5. | S eldx = e ay + c . ‘ - .

6. f cos x dx = sin x +, ¢

4

., 7... % sin x dx = -cos*xX + ¢
. ’\
where ¢ is a constant. e .
.o,
- : 3 ‘
-
’l ’
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It should be emphasized that many integrals axist that cannot be
expressed by an algebraic statement. In fact, even for functions
given in algebraic terms, .existence of an integral expressable by
an algebraic statement is the exception .rather than the rule.

When algebraic expregﬁion of integrals cannot be found, numerical

solutions are a viable dlternative, by use of electronic computers.

Complex Numbers o

Some of the results of the sectien on linear algebra depend
on knowledge of complex numbers; hence, a very brief summary of
the important ideas is given here. ' The concept of a complex
number is more meaningful if set in'the coftext of other nuner
sets. The positive integers are discussed first, and the set of
positive integers is gradually -expanded through the- real numbers,
and, finally, the complex numbers. y

Consider the number set defined by the positive integers:
¥, 2, ..... . One can add and multiply two positive .integers
together and end up with a positive integer for the result. The
positive integers therefore are said to be closed in addition and
multiplication. Subtracting one positive integer from another
positive integer does not necessarily yield a positive integer
as the result, howeyer. For example, 3 - 5 = -2, or 4 - 4 = 0.
This difficulty can be overcome by defining an expanded numbexy
set, to include the positive integers, zero, and negative in- -
tegers. This new number set is closed forx additgon, multiplica-
tion and subtraction, but not for divisian. For_examp%g, -

6 ~ 2 =3, put 5 = 2 = 2.5, which is not an integer. Expanding
the number set to include rational fractions as well as all
integers and zero generates a number set which is closed to the
four arithmetic operations -- addition, multiplication, subtrac-
tion, and divisian. )

Even the rational fractions do not correspond to every point
on a straight line. This may be counter-intuitive; to see why it
is true, consider the point p in figure 5 below.

L] é
#

o ‘ p
Figure 5. Real rnumbers and points on a line

T
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The posxtively sloping line from the origin to point B and the
negatlvelx sloping line from B to point p are at right angles

and each is one unit in length. The problem is to find the ﬁls—r

tance from the‘origin to point p. This distance is the lengtn
of the ‘hypotenuse of a right trlangle. By the Pythagorean '
theorem,” therefore, the square Of the length from the origin to

p 3s 2 = 12 + 12 The length, 2%, therefQ£g4 is & = ¢2. But the

square root of two is not a rational fraction, as shown by the
followirg argumeht

"Since 02 = 0, 12 = 1, and the square of any 1nteger larger
than 1 exceeds 2, try lletting v2 = a/b where a/b is a rational
fraction reduced to its lowest common. denominator. If a/b is a

rational fraction reduced to its lowest common term . {all rational

numbers can be so represented), then either a or b must be an

odd integex, because if they were both even, they would be divis-

able by 2, and theregsre, not be reduced tc the lowest common
2

‘term. Since we are assumlng Y2 = a/b; a“ = 2b2: hence, a = 2(b/Y/2),

thus showing that a.is an eydh integer. Since a is an even in-
teger, one can represent it by the product, 2c, where ¢ is any
integer. One finds

4c® = 2p?°

/' 2C'2 = bz | h\‘ -

\
/

‘ ‘- a .
//Therefore, b2 is also an even 1nteger, implying b is an even in-
teger. Thus, the presumption that a/b is.a rational fraction re-

duced to its lowest common denominator is contradicted. 1I{ is
concluded, therefore, that /2 is not a ratienal’number. Yet it
is a point-on the line, as illustrated in figure 5.,

. The set of numbers must be expandéd to include some numbers
other than the integers and rational fractions if all points on .

a line are to correspond t¢ a number. The real numbers comprise

a set of numbers with a one-to-one correspondence to points a
line of infinite distance in either direction from the&.origin.

Yet all operatlons on the real numbers do not yield real numbers .

as answers. For example, the ecuation 12 + 1 = 0 gives ‘2 = -1,
but no real number satisfies this relation, since the product of
any real number with itself is positive. The last expansion of

the numker set is the complex numbers. Complex numbers are writ-.

tenl in the following form:
4
x = a + bi, i ,
2 i Q*\,\ T ) )
where 1°'Z -1-is the "1mag1nary" unit. (The “symbol = means i
defined by.) The real number a is called the "real" part of x
and the real number b is termed the "imag: ary" part of\g TQ&
complex conjugate of X is denoted by x anu is defined Qy

——

X =a - bl \

P
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All algebraic operations are defined on the set of complex
-numbers in the same way as for real numbers, except where

12 is encountered it is replaced with -1. Thus, addition, sub-

5 traction, multiplication and division of x; = R@; + b1 and x, =
a, +_b21 are defined as follows.
T h X; + x, = ay ¢ blx toa, + bov = (al + a2) + (bl + b2)1
X, - x2 = a, + blm - 8y = b21 = (al - az) + (b1 - b2)1
(, - X%, = (al + bl;f(az + bzx) = aja, + alb21 + a2b11 - blb2
o . . = (alaz-— blb2) + (alb2 + azbl)t
;,a/} . - (a, + b ;) (@a, - b,1)
e T e R &, ¥ B0 (az - bix)’\
= (a; + byv) (2, - b,1)
: a; - b;tz
=" (a,a, +‘blb2) - (aib2 - azbl)1
a%\f b§ , since 1%= -1
< /5, = ala§;+ by Py maby
af + b% aé + bé

-

Hence one sees that the complex numbers are closed in addition,
subtraction, multiplication and division, since the results of
these operations with complex numbers are, themselves, complex

4

numbers.
24

L]

X A complex number is a pair of real numbers a, b; and can be
. graphed as a point on a plane, as in figure 6. '

o
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A
bL__ L {a,b) a :
, | | ;
< i ’
% x=a+t+ by -
. \ !
f | °
S i
d
Figure 6. Graphical representation of a'com%;ex_number
,"*' ¢
: 2 2
The absolute value of x = a + bt is detlned by |x| = r = + b

The angle 0 is termed the argument of x. Note that x can be
.,  written in trxgonomg}rlc form:

X = a+ b1 = #Qcos ¢ + (sin 8) 1)
. since sin 6 = b/r, and cos 6 = a/x.

For multlpl;catlon, division, - flndlng powers and roots, and
exponentiation, the trigonometric form is very useful. The fol-
lowing results follow directly from the.definitions of complex
numbers and the operaticons; they are listed without proof. Let
Xy = Iy (cos 6, + (sin 81)1), X, = Iy (cos 92 + (sin 82)1), and

) Xx = r{(cos 8 + (sin 68)1), then:

X ¥, = Y, {cos(e] + 62) + (sin (el + 52)1}
xl/x2 = (ri/rz) {?os(el - 82) + (sin (8l - 62))1)
x" = r{cos(nd) + (sin (n8)1} SN

xl/n = rl/n {cos [(6 + 2kn)/n) + (sin [(8 + 2}W)/n]1}
£ )
" where § is given in radians «nd kX = 0, 1, ««., n-1. Theresdre n
’ N "
- roots to xi/n. Exponentiation and natural logs can be written:
<. o~ :
. eX = e [cos b + (sin EYX},.x “ a + b
1n wx =l‘fx r + (0 + 21k)1 &g
where k is\any intéger.
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The exponential and ldgarithm of comple® numbers enter' into sys-
tems of linear differential equations in an important‘way - The
principal branch of ln x is defined by settlng k =

T

N 4

In x = Inr + 01 ; if k=0 o
Hereafter ,in thls volume git is assumed that the pr1nc1pal branch
of the logarlthﬂ is to bé used.

3

Elements of Linear Algebra . //

There are three aspects of linear algebra and related matrix
equations which are feviewed here. Firxst, basic concepts related
to systems of linear relations are summarlzed Coverage includes

- the concepts of a sclution to'a system of linear equations, rank
of a system, and determinants. Secondly, characterlstlc equations
are reviewed, "including eigenvalues and elgenv tors of asymmetric
real matrices. Thirdly, matrix funcfions involving ‘eigenvalues
and eigepnvectors aqefintroduced, . .

N N A
L

Systems of Linear 'Equations’ .
" -" * . . ' ~
Consider t 0l oWing linear egquation in two unknowns, x
angd vy. | < ‘ S
. ' x'+ 2y = 3 ,
: 3 &, '
! .One can solve for 3% as a fu ctlon of x or solve for x as a func- .
‘& - tion of Y; i}\ y ‘ : !
1 1 * ‘\"‘ -
. y = 1/2(3 - Xx) -~ R R
X = 3 - 2y : -

. ]
¥ b .
’ 7 : L
The equation does not contain enough information to yield
_a unique value for x and ¥; any point along the line defined by
'y = 1/2(3 - x) satisfies the equation. Now, add a second equa-

thn so that a pair of quatlons must be satlsfledi r C f
~ . x + 2y = 3 ' I .
. } ‘ * " ‘ ’ * .
p 2x + 2y = 4 : f .

. ¢ .
. If the first equation is subtracted from the second, thp result
is' x = 1. Setting x = 1 in the firs egdation! and solving for
~ Y gives y = 1. There ‘is no other palr of values X, y tlaf render
_both equatlons true at the same timey; hence, ¥« =1 and v = 1 con-
stitutes a 'unique solution to the palr of simultaneous linear
equatlons. .

- . «e ..
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Suppo¥é ‘that, fox\:‘};e secoff egukion, dnstead of 2x + 2y = 4,

one had 3x + 6y = 9. The new pair ‘of ‘equations is

P ~. -~ . 3

.-

x + 2y = 3 A | b

- : . .

e

3x + 6y = 9 .

There is no way to solve this pair of equations to obtain unique
values qf x and y. I¥ one attempts to remove y from the second
equation by multiplying the first by 3 and subtracting the re-
sult from the second, both x and y are eliminated, and so is the
constant on the right: :

N 3x + 6y = 9

=3(x + 2y = 3)
0+0 =0

The reason for this result is that the second equation is a simple

“transforfation of the first; it was obtained by multiplying both

sides of the first equation by 3. Hence, the two equations are
linearly dependent.

Now, return to the‘girgt pair of equations and add a third:
x+2y=3 e |

‘ -
2X + 2y = 4
x-ly=2' ’

-

It has already been found that the first two equations imply that
x =1 and y = 1. But, if the third equation is subtracted from
the first, one concludes that y = 1/3. Substituting y = 1/3 into
the third equation gives x = 7/3. So, x = 1, y = 1 satisfies the
first and second equation, and x = 7/3, y = 1/3 satisfies the
first and third. The three equations are inconsistent. The third
equation would be consistent with the other two if it stated.

X -y = 0, or some multlple thereof.

It is useful to represent these operations as, matrlx equa-
tions. A matrix is a rectangular table filled with numbers (or
symbols representing numbers). If A symbolizes the matrix, then

‘a.. represents the entry in the ith row and jth column af A. The.

13
entries for which the row and column indcxes are equal are called
diagonal entries and the diagonal entries comprise the diagonal
of the matrix. '

For example, if o N
12 . /
é"(zz)
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‘Then a,, - 1, @y = @19 = 855 7 2. If all entries except the dia-

. gonal entries of a matrix axe zero, the matrix is called a diagonal 5
matrix. The order of the matrix.is the number of rows by the.
number of columns. A is.a 2 x 2 matrix. 1If the number of columns
is one, the magrix iS a column vector; if the number of rows is
one, the matrix is a row vector. The transpose of a matrix A is

- defined by the matrix found when rows of A form the columns of the
new matrix. The transpose of A is deioted by A’ or AT, If A = A',

A is said to be symmetric. - ' - - .

.l;’

Matrix addition and suptraction are defined as the sum/
difference of the individual elements. For example, {f C!= A + R,

jthen cij = aij + bij' Matrif additign and subtraction are not d
.fineg.unless the Qgger of the two matrices to be added or sub-
tracted is the same. -

Matrix multiplication and division are not defined as element-
wise multiplication and division. 1f C = AB, ¢4 # aijbij’
Matrix multiplication is de€ined to represent. systems of simultan-
eous linear equations. If C = AB, then, by definition,

~

+ b

cij = ailblj + ai2b2j + ... aiK K3

k

It R

BikPxj - TN

-

1
where K is the column order of g and row order of B.

Note that, in general AB # BA. 1In fact, it is possible that AB
i's defined when BA is not, since the column order of A may fqatch
the row order of B when the column order of B does not match™the
row order of A. For example, A may be a 2 % 3 matrix, and B a

3 x 3 matrix. Consequently, it is impprtant to designate pre-
multiplication or postmultiplication. Premultiplication of B by
- A indicates AB, and postmultiplication of B by A means BA.? To
be conformable for multiplication, the column order of the pre-
multiplier must match the row order of the postmultiplier.

To illustrate matrix representation of linear-equation sys- ﬁ)‘.
tems, reconsider the first pair of equations among the preceding
illustrations:

Xy + 2x2 = 3

. 2xlvf 2x2 = 4

where X replaces thaésymbol x, and X, replaces Y.

#
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.-Jbeﬁiné the matrix A and column vectors X and'g, as follows.
__‘ 1\2 < % _ I3 -
5—“(22)"5”(#2)'9‘(4} g

Now, the pdxr of anear equations can be written ccmpactly

Ax = b ST
22 (5] - ) |
2 2 X2 4

Suppose one premultlplled both smdes of this matrix egquation by

g the followxng matrix
e - 1) '-
as follows: /I !
FEI L R S A T A |
1-% 2 2) \x2 U 1-% 4
Carrying out the indicated operations yieids | .
w ‘ S .

- -
13- 6

~ , Thus, premultiplication of the matrix equation Ax = b by the
¢ matrix P yields x; = 1, Xy = 1, as before. P is s the inverse of
A and is written 5- ; it represents the matrix generalization of
divisipon. Suppose, a, b, and c are scalars, i.e., single num-
bers rather than matrices, and ab = ¢. Then
: 1 1
'\Q ‘ab = a ¢
I.b = a—lc
/ , / b = C/‘éﬁ'

/ g&he matrix inverse is defined in the same manner. | If

" AB = C (A,B, and C comformable matrices for the indicated opera-
1

tions), then 5‘1 is defined such that B = A lg. Let{a special

‘4
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Matrix be defined for which each diagonal entry is 1.0 and the
.\\\ remaining entries are zero; this is called the identity matrix
- .
<

and generally is -epresented by the letter I. For B = éfl C to

. be'la solution tv AB = C, one must have A-lg = I, Hence, this
» relation defin.s the matrix inverse. The matrix inverse is de~

fined only for square matrices but may not always exist even for
square.matricas, s/ If ﬁ_l exists, then gé-l = éflg = I, and é‘l
is unigu=. ' .

To gain some insight into the relationship between the ex-
istence of tle matrix inverse and solvability of systems of

\ _  linear equatjons, reconsider the second pair of l‘near equations
" in the above illustrations: -
x, + 2x, = 3 | o
N -
: + -
3x, # 6x2 = 9

' ’
‘Recall that no unique solution for x4 and x, could be found for

this pair '@f equhtions (numerous solutions exist). Now rewrite
the pair ij matriX notation. , .
e X P
12 (x _ {5)«
36/ | xx) 9] -
B -2
v«

It can be shown that for this systemlgnl does not exist; finding

:_<1 ' g‘l is like finding the reciprocal of zero. A
: : ) 5 )
To see this, define the determinant of a 2 X 2 matrix,
A, by }5!:=‘alla22 - ay,a, s where [A] denotes the matrix de-
, , terminant. It can be shown that the inverse of A for A of
. order 2 X 2 can be found as follows. .
A"l Tl faa; @y A |
< = jAllma2,y agy {

Clearly,  the inverse of a 2 x 2 matrix exists if and only if
|al # 0. Calculate next.the determinant of Q = |Q| =
' qllglz - q,zqzi =1 x 6 -2 x3=0. Thus, g_ does not exist,
. reflecting the fact that the corresponding pair of equations
does not have a unique solution.
;An?accurate definition of the determinant of a general matrix
requires more space than can pe justified here. The main results

{

¥
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aeeded for later chapters are: (a)ﬁghe matrix inverse of A exists
~ and is unigue if and only if |A] # 0, and (b) a system of simul-
, . taneous linear equations has a unique olution if and .only if the
determinant of the associated coefficiéﬂt matrix, A, is not zerc ---
ig} # 0. Thesc are two ways to say the‘§ime thing.

oLt
J' Y 1If in the system of equations Ax = b, the row order of A is
’ less than the column order, the system is &nderidentified -= any
number of vectors x can be found such that = b, If A is ~
_square and |A| = 07 then Ax = b also is unde identified. If the

row order of A exceeds the column order, the ‘equation, system ‘
Ax = b is overidentified, meaning in general, no X can be found

to satisfy the'relation Ax = b. Each of these cases has been
illustrated above. \ '

e

-

The rank of a matrix is defined as the maximum number of
rows or columns that are not linearly dependent. For a square
matrix, if its rank eqguals its order it is termed full rank. If
it is not full rank it is called singular. For example

o)
S A = |
- 2 2

is rank 2; its rows and columns arerlinearly independent; hence,
it is full rank. In contrast, the rows (columns) of Q are lin- =
early dependent: o

<[} 7]

S N

because row 2 = 3x(row 1lj:
1 2) = 36

Also, column 2 = 2x(column 1):

-

=)=

This can be written i

Tl () - 02

* J
This illustratesithe genej;l @ffinition of linear deperndence. The
columns of A are defined to be linearly dependent if

Ax = 0

———
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with not all x zero. In the example,
el
note that for a scalar Kk
z = kx, k#0
is also a nonzero solution to Ax = 0. This illustrates the gen-
eral fact that if a nonzero (often termed nontrivial) solution

to Ax = 0 exists, it is determined only to a constant of propor-
tionality,sk. Note that x and z = kx are linearly dependent

" solutions, since kx - z = 0. An important theorem in linear

algebra states that a nontfivial solution to Ax = 0 exists if

and only*if |A| = 0 (for square A). For future reference it is
noted that Ax'= 0 is a set of hoffogeneous linear equations, and
Ax = b, b# 0 is a set of nonhomogeneous line§£_equations.

5

Characteristic Equations

. Few facts about matrices find broader application in the
social sciences than the theory of characteristic equations.
Factor analyses, canonical correlation and certain estimation
methods in econometrics depended on characteristic-equation
theory. As shown later in the\present volume, solutions to lin-

ear differential equation systems with constant coefficients also
depend on’characteristic equations.

One of the faspinating facts about matrices is'that some
constant A can be subtracted from each diagonal entry, and the
determinart of the resulting matrix is zero, even if the orig-
inal matrix A is full rank viz, |a].# 0. Consider as an example,
the matrix A presented earlier. Tt is desired to find a constant
4 that can be subtracted from each diagonal element of A so that
..thé resulting matrix is singular. Now AI is a matrix whose
‘diagonal ‘entries are A and off diagonals are zero; hence, A - AT
is a matrix whose diagonal elements are ajj - x» and the remaining

elements are a .. For A 7 AI to be singular, [3 - AL] = 0.
written out, this becomes

1 -2, & 2

.2, 2 - A

of - [A = AL] = lagy = Mlagy = AN 73558
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2 |
= A (ag) + 3504 +81,3,5 = 33535
2

0 = A° - 3x - 2 {for the numerical example) . %

f,

which is a guadratic equation and has two solutions: ‘Al'= 3.5616,
Ay =-5616.° Substituting these for A in the determinental equa~-

tion |A ~AI| = 0 shows the result to be zero. The As are called
eigenvalues, characteristic values, or characteristic roots of A.
The equation [A - AI] = 0 1s termed the characteristic egquation
of A. ' !

It was seen that the characteristic equation of a 2 x 2
matrix is a second degree polynomial. This instance generalizes.
The characteristic equation of an n x n matrix is a polynomial
of degree n. There are n roots A of the equation, but some of
{hé roots may equal other roots.. There are at most n distinct
rcots. : - :

-
RS
e

9 ) : -
Consider the previously defined matrix Q as a second example
of a characteristic ejuation. It is desired to find A such that.

|Q ~ A\I| = 0. One has
l - A" 2 _
3,6 - A = ° .
(1 -A)(6 -A) -6 =0
; 22 = 9% + (6 -6) =0
A2 -7 =0

Checking, one finds (1 - A;) (6 = A;) - 6 = (L - 1) (6 - 79
_ 6= ~6(-1) - 6 =0, and (L - A0 (6 = A,) - 6= (1 =01(6 - 0) -

6 = 0. This illustration is a special case of an important theo-

rem: the rank of a matrix equals the number of nonzero eigen-

values. Also, the determinent of a matrix can be found Ry the

running product of its eigenvalues: : ‘
", .

-2 (discrepancy due to rounding)

|A] = 3.5616(~.5616)

lQl = 7 x 0 = 0

8. Th¥oughout the text matrix elerents invblving saome operation
such as 1 ~ A are separated from other elements by com-
mas, but single numbers or characters are not separated

// by commas. " »
4 V.
l -
) :

LS D~




st

Clearly, if omne or more As is zero, the matrix is singulér.z

Consider a further example. Let

L om o=l 21
B={f3)

: | APV : :
Now,. the characteristic polynomial is:

S - A
£

B -1} = 0 - , o

r,

‘ o (2-0(2-A) +1=0
2-n%1=0

{There is no real numbe; that™®s a solution to this eéuation,
since (2 - X)2 = =1, and the square of a real number. is never

negative. Evidently, (2 - A) = £\, where, as before 12z -1.
Hegce,.kl = 2 + 1,‘and A2‘= 2 - 1. :
This last exdmple illustrates an important fact:: the char-
acteristic roots (eigenvalues) of a real matrix may be complex.
- However, if the real matrix is symmetric, as is A in the example,
y the eigenvalues are all real -- if the matrix is real, it has
complex roots only if }t‘is asymmetric. It is not always true
tHat every or even any of the eigenvalues of an asymmetric real
matrix are complex, however. ‘Another important theorem has also
been illustrated: If A = A + kxl is a root of A, then so is

R
its complex conjugate X = g T A
) v . e - i
: . o Singe lé - AEI = 0, the homogeneous linear system of equa-
. .~ tions (A - XI)x = 0 (x a conformable vector) has a qontrivial} .
: - . . solukion. 'The vector X is called the eigenvector or characteris— .
». U7 tic 'véctor of A.associated with'x. As before, if (A - Al)x = 0,

.~ so dbes (A - AI)z, with z .= kx (k a scalar). If the eigenvalues
-~ of A are distinct,-fmeaning no two As have the same value, then
e " there is a chérégﬁeriStic vector associated with each A and the
set of-all chagacteristic vectors is linearly independent. Let
A be a diagonal matrix with dlagonal elements set equal to the .
., .eigenvalues of A -- As-(and offdiagonal elements. zero), and let “
‘X be a matrix whose columns form the €igenvectors of A associated’

-

\ with A. That is X ="[%y;, X,s « - -+ X1, where xj is”thé eigen-

&E’ ' vygctgr of A éiéociated with Ay, etc. agd ) f,$
5 T T \ -
. A= 0‘ iz. . . 0 . |
00 . <., “
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where A is 's'quaxe'with 'order n.. &Jow, if (A fkjl):._:_j = 0, all
j = 1, . ,,ﬁﬁ,msc that éii.é Ajij‘ then .', | | - | : . i
, \ . ‘

AX = XA | o : o

Since the eigenvectors are independent, §_l exists, and one finds -
"l \‘ . <. . [ >

A can be transfcrmed to a dxagonal matrlx by the given formula.
In this case, A is said to be diagonalizable. One also has
™
A = xAxT
'This reiation forms the basis for some important results in linear
differential equation systems. It should be noted that, if some’
of the roots (As) of A are repeated (e.g.., A2 = A ), A may not pe ,

diagonalizable, although it may. somekimes be dlagonalzfable even
if the As are not ‘distinct., Most fmatrices in empirical work will
have n distinct roots and, hence, be dlagonallzab]e.

If A is a real symmetric matrix, and AX = XA, then the

transpose relationship also holds: X'A' = A'X'; X'A = AX', since
&' = A If A is not symmeﬁric, then AX = XA + X IA = AX_;. Thus.
§—l plays the same role for asymmetric A that X' does for symmetric
A. One may calculate the solutions to the equatlon y'(A-uI) = 0.

.- Where y! is a 1 x n row vector and |A - uI[ = 0, It turns out

. that the ps are the same as the As. Forming a matyix,whose columns |
cen51st of ys associated with As, one hes Y = [zl ‘e o o xn].

. It follows that §'§‘= AY', Y is called the matrix of left eigen-
_vectors of A and” X is the matrix of right eigenvectors.” If A is

— ‘ -

symmetrid, Y = X; otherwise, Y' = X =, Hence, .the distinction
between right and left elgenveet ors is necessary only if A is
. asymmetric.

Recall that if A has a domplex root,k = A - AIt,'then tie

complex conjugate of X is also an exgenvalue of A -- A= AR - A
Let x be the rlght eigenvector associated thh complex A, thep

= Xp + Xrl is also complex, and its complex conjugate - , , o

= X, - is the eigenvector associated with X. ) [

=R 1t
To illustrate 'these facts A, X agd'gﬂl are calculated for .

- 3 {
. o
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11 2).
Q= (3 6)
_i2 01

B = {—1 2

" all of which hdve been used in previous examples. For the matrix

X

Chec

-

- [3-5616 0 |
- 0 -.5616
g = [1-0 -1.2808
27 {1.2808 1.0
-1 _ ( .3787  .4851
-.4851. .3787 , ‘
king the calculations, one finds
y A o ox A
(1.0 -1.2808} [ 3.5616 O .3787 .4851)= 17 2
2 1.2808 1.0 0 -.5616 |\-.4851 .3787 2 2
the matrix @, one finds
{7 0
o= (3 o)
1 -2
= (3 1)
-1 _| w7 2/
-3/7 1/7
X A X"t Q
o - [} -2 F(? 0 ) /7 277y 1 "2
2 3 aflo ol \-3/7 1/7] {3 6
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For E,

Checking th%\caLcalations, again one finds:

-

g

-1 _ (&(1 - 1)

one finds

B

(Rov

=

.(

2+,
o , 2
1 + 1
_(l "1)1

LR(l + 1

1 + 1
(1 - )

2 1
12

7

¢

(l +";\

(1 +
(1 -

L [ —

o

) R

a‘" u‘f‘

1
1

A X

-{(1 + 1) 0 2 -1

1 - 1)(2—““ 0 )*z(l—l)','—%(l F1)

-1

\

(1 + 1), %1 - 1)

N

Note that column 2 of X is the complex conjugate of column 1,
1

as A

elgenvalues and eigenvectnrs.

2

X

4

Matrix Functions

+

\

|

just

One of the most remarkable aspects of diagonalizable matrices
is that interesting matrix functions may be defined by use of the

the preceding section the inverse of the matrix:

was

[—\‘::

[
\

1 2
Y

found to be:

A_l

-1 1

!

1 =%

|

and the eigenvalues

X

-1

|

3.5616
0

.3787
-.4851

and eigenvectors calculated te be:

0 N ~1.2808
~.5%616 | & 7 1.2808 1.0
L4851
L3787
47
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Consider an elementary example.
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Sow, the inverse of A gan be calculated by the following formula:

\ -
\

Al §§7lx"1
o : .
A_l _ .0 -1.2808 1/3.5616 0-- .3787 .4851}_
- = 1.2808 1.0 0 -1/.5616\-.4851 .3787

: (—l l) -, C 3
A R : £
N 3 ‘ |

. ,
The proof that this is a general result is simple and instructive.
Let A be a nonsingular, diagonalizable matrix, so that A = XAX™H,
whéere A and X e the characteristic roots and vectors of A, as
defined prevfoi%ly. If A is full rank (nonsingular) then, it has
been noted, all!the eigenvalues of A are ronzero; hence A-l exists.

Let B = §Q”lx'l, then !

— _ v N
~
p

AB = xax™h (xaThxTY | X
= xan
AB .= I

Hence, B must be the inverse of 5

w

. The square root of a matrix may be defined in an analogous \,

way. Let Q% = X,’\;ixnl with A2 0 (meaning every element of A is

nonnegative). Then égA% =;(§&%§-l)(§£%§_l) = §£%Q%§_l = §£§f = A.
This idea can be generalized to any function that can be repre-
sented by a series expansion. Examples include the trigonometric
functions, logarithm and exponential functions. The matrix ex-
ponential log functions are two important’special cases, as
they play &h“important role in the next.chapter. They can be
defined by

Inn o= X (1n MX

: . . A :
Using series expansion of e J and 1n kj’ it can be fcund that

L

-—
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' t
.0 T lnAI 0 ‘o n‘.

e 0.. 0’
; e~ = 0 eXz ‘ » In A = . 0 1lnA; .
i S . R .
= 0 0,,.e\" 0 0...1m
) [ ' n
Hence,
Ay -1
*11 ... *in\ (& --- O *11 ***1n
e~ : L] . : N .
= . . An . :
X X 0 ... e y
nl ... “nn ] ) X1 ... *nmn
)
- = "1
, In A X11 " %1, Ind;, .. 0 X171 ... xlq.
. \ *n1 ... nn 0 "flnkn *m ... *mn
01:\;:’.01.15‘].5;,.eln_lnX = ln(eéj = A. .

o . ¥

Consider a matrix A(t) whose elements are a functioh of t.
If A(t) is diagonalizabie such that the characteristic vectors,
X, are the same for all t, -then the derivative and integral of
A(t) with reéspect to (t) can be written in terms of elgenvalues
and eigenvectors. An example' of partlcular importance in the

next chapter is the integral fe~ dt. For a sense of closure

and general interest, both the derlvatlve and lntegral of eét

are given:

At - .
geht = —(dgt )5‘1 - §(eﬁt£)§ 1 :
Tdt o | .
= (xeftx7h xaxh, :
= eéth = Aeét , since eﬁtﬁ = Aeﬁﬁ
Alsco, :
rebtar = x(reltanyx? = xelth72xY, Al £ o
Lo o= (et Ly xa” lx 1,
. - = eété—l = _A_-leét ’ !éi # 0
- 49
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_Statistical goncepts ' s o

‘L

important concepts in statistics peeded for this olume, in-
cludlng, in partiguiar, the population/sample mea variance,
covariance, correlqpxon Jeast~§qnares regression, and s.i.gn.‘:.f:;.—,‘s
cance tests for statistics such as these.” There are some funda=- -
mental ideas and concepts in inferential statistics, however, -
that appear to require some explication. 1In particular, these
include the concepts of expectéd value of a sample statidkic,
its variance,,K bias,” and consistency. The¢ following paragraphs
attempt to describe these concepts s at their meaning will be
clear when they ar sed in the next chapter.

It is assumed that the reader is famxlxar wxgt: mos.t of - the

{

« The distinctidné between sample 1stribut10n, population
distribution and sampling distribution.age-critical to thorough
understanding of elementary’ cancepts in inferential statistics. -4

- Suppose one has a population or~un1verse defined ‘by’ the set of

all cases that a research queétlcn addresses. Assume that for’

each case in the population it is theoretically possible to ob- .
serve a value’ on a variable called x° Each value of x has a
probability associated with it, Py glVlng the relative frequency 7

of that value of x in the populatlon. The set of all pairs

(%, py ) is the population ‘distribution of X. The sample distribu-

tion of x refers to the relative frequenC1es associated with eadgq
value (or range of values) of x observed™in the particutar sampl
The term sampling distribution generally is not applied to_x at //f'
all. Rather, it is applied to some function of the sample x s,
such as the sapple mean, variance, or median. Take the sahple
mean as an example, and consider calculating the samplge mean

from a very large number of samples, each of size n. THe dis-
tribution of these means oyer all poss;ble samples is termed the
sampling distribution of the mean. One of the most remarkable
theoorems in statistics is that, no matter what the population
distribution of x, as the sample size gets large, the sampling
distribution of' the mean tends to the normal distribution. This

‘fact forms part of the central limit theorem.

The expected value of a sample statistic is defined as the
mean of that statistic calculated over all possible samples.
Clearly it is desirable that the expected value of a sample sta-
tistic equal the value of i‘he population parameter that it is in-
tended to estimate. The standard error of a sample statistic is
defined as the standard deviation of that statistic: calculated

9. This 1s not a precise definition, but is sufficient for present
purposes. The concept of probability element needed for
continuous density functions wouldsecomplicate unduly the
presentation. ‘ N



CHAPTER 4

- MATHEMATICAL AND STATISTICAL THEORY IN THE
APPLICATION OF LINEAR DIFFERENTIAL
EQUATIONS |

‘ ,
. This chapter is divided into three main sections. The
i - - firsf section contains a brief discussion of general differen-
o tial “equation sy-~t.m§. The purpose of this discussion is to
show how the par “‘cular application of linear systems with con- R
stant coefficients fits with the gengral theory, and thereby,
o " to communicate an idea of the untappgﬁvpotential of differential-
o “equation systems for representing social® processes. Section two
‘ , reviews the matheématical and statistical theory necessary to con-
. vert a2 model written as differential eguations into a form suit-
aple for empirical study. The third section describes a computer

program package that cam be to carry ovut calculations needed
o estimate parameters% theé-differential-equation model.
LS \

0&‘ '
) ;?\\EIH order to gain SOJE understanding of general differential

. €
-

N

General Differential-Equation Systems

-«

équa ion systems it is useful to consider specific cases first
and work up gradually to the general case. A very simple case

arises for the continuous population-growth model. 1Its dif-
R ferential equation is of the following form.

(5a) dy/dt = by , N
Where y is population size, b is the constant rate of popula-
tion growth, and, as before, t is time. It is useful to sum-
marize the meaning of this simple differential equation, be-
cause in most important respects the meaning generalizes to
morce complicated differential equations. One might view the
lefthand side (dy/dt) as the "dependent variable." The depen-
dent variable, then, is the rate of change in population size
(y) at a given instant in time. The righthand side of the
equation may be interpreted as a hypothesis about the manner
in which the rate of c¢hange in population size occurs. In this
simple example, it is hypothesized that rate of change in popu-
lation size is a constant number (b} multiplied by the current
population size (y). More generally, the righthand side will
contain the current valde of y, time, and any number of ad-
ditional independent variables. The functional form of the
right side may vary depending on the substantive application.

Integrating equatiog {5a) generates the familiar exponen-
tial~pdpuldt§;n growth curve, as follows:

Y

(5b) y, b= Yoebt

Ly
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where t is a specific point in time, and y£, y, are population

size at time t and time 0, respectively. Equation (5b) also
describes the accumulation of principal on an investment with
a constant rate of interest (return) of b and continuous com-
pounding of the interest™ '

- Equation (5a) is a single linear differential equation. It
becomes nonlinear if the functdon of y on the right side is non-
linear. For example, ) .-

(6) dy/dt = b sin vy

is a single, nonlinear differential equation.

v

L)

1f there is more than one eguation, then one has a system
of simultaneous differential equations. For example, the fol-
lowing peir of linear differential equations form a special
case of the model of career expectations given in equations (4).
!

+ b

12Y2

(7b) dyz/dt = b + b

2171 22Y2

where y), y, are two variables, the bij are constants, and>t_is

time. Since there is no constant intercept in equations (7),
they form a pair of homegeneous linear differential eguations.

. Adding an intercept makes the system nonhomogeneous and parallel
in every technical respect to the dynamic model of career ex-
pectations in equations (4). Equations (8) show an example of
linear nonhomogeneous system composed of two equations.

(8a) dy;/dt = a; + b + b

1 1171 12Y2

a,., + b

2 ¥ v P

il

(8Db) dyz/dt 22Y2

where al and a. are constant intercepts, and the other notations

2
are defined as in (7). :

Equations (7) and (8) are linear systems with constant co-
N efficients. More generally, the coetficients of linear systems
Fen as functions of time. For example, suppose that Yy

may bc t
represents ego's level of edurational expectation and y, is

significanrt other's level of educational .expectation for ego.
The idea that the influence of the significant other on eqgo's
educational expectation level declines with time could be ex- ¢
pressed by maRing bl2 a declining function of time, say bl2 = 9 ,

g a positive constant.
. ‘ .

e
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'So far, all the examples have been first-order-differential
equations, because only thé first derivative appears in them.
Derivatives of any order may -appear in a diffexentjial eéuatlon.
‘The order of the h#fhest derivative in a glvenigxfferential .-
'equatlon defines the order of ‘the equation. - TRe" order of a sys-
tem of differential equations ig defined by the sum of the orders+
of the equations forming the system. Meéaningful examples of
second and hicher order differential equations 1nvolv1ng social
or psychological variables are-scarce, but there are numerous
physical examgles. Probably the most common bhysical example
relates to distanee traveled as a function of time. Speed is
the first derivative and acceleration is the second derivative
of distance w&%h respect to time. For &xample, if y is distance
and t is time, ‘one might posit that acceleratian of a vehicle
is a.positive but declining function of time, say

_bt , | . ‘.‘

5
{9a) dzv/dt“ = ce

where ¢ and o are positive constants. ﬁith this equation one R
may find the distance traveled from a standing start as a
function of time, as follows .

(9b) y = (e/b)t + (c/b%) (e >t - 1)

where Yy is distance traveled from a standing start after t

. minutes have elapsed. Thus, the single second order djfferen-
tial equation (9a) can be operated on to produce a prediction
about distance traveled from a standing start at every point
in time. These predictions could be compared to data to see
if the acceleration hypothesis is correct.

Althouch social science definitions are seldom given as
second derlvatlves, there are some concepts that might be de-
fined fruitfully in this manner. For example, one might define
learning speed as the change in information divided by the
change in time. At an inhstant in time, then, learning could
be defined as the deriyative of information with respect to )
time. A change in learning speed, therefore, would be the -( &
secend derivative of information with respect to time. Thus, h
the concept of accelerated learning could be given a pregise
definition quite analogous to the physical concept of accelera~
tion. Similarly, "vertical" occupational mobility could be
defined as the derivative of occupational status with respect
to time, so that change in mobility rate would be a second
derivative. A hypothesis about changing rate of mobility,
analogous to the hypothesis about acceleration in equation (%9a),” -
could be used to generate predlctldns about occupational status
level at any point in time

T -

A

<

In all the examples, derivatives have been with respect
to time alone. Whenever differential equations involve deri-
vatives with respect to only one variable they are térmed

54
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ordinary differential equations. If derivatives with respect >

- .to more than one variéblé are included one has partial dif-
. ferential equationst
-

A very general first-order, ordinary differential equa-
tion system can be written as follows:

-

dyl/dt = fl(yl, Yoo « = e yk, t)
(10) dy,/dt = Eolyyr Yor o 0 vy Yy t)
. .. ~f ¥ .
/ = .
dyk! dt fk(yT&_yzl . b gy ka’# t) _
. - .
g where le_yz, - e e Yy comprise a set of k variables, t is

. time, and £, are gny continuous functions of the ys and of t.

More general equation systems involving higher order deriva-
tives dnd partial derivatives can also be written but are not
needed for the present discussion.

The next section of this chapter develops the technical
aspects of linear systems of ordinary differential equations
with constant coefficients. As illustrated in the present
section there are numerous ways in which the restrictive as-
sumptions associated with such systems can be relaxed.

-

Technical Aspects of Ordinary Linear
Differential Equation Systems with .
Constant Coefficients . B

/

It is impossible to observe all the terms in a diffefren-
tial equation, since a differential eguation always contgins N
at least one derivative, the derivative being a slope atja :
single point along a smooth gurve. Pake equation (5a) as an
example. The 5ependent variéble is the instantaneous rate of
change in population size --

x

- ‘
o Yy - ¥ h -
dy/dt = El_:—Eg

‘1im 71 0

tl*to

o
where t, and t. are the two points in time that are very close

0
together and vy, and y, are the population sizes #txthose time

points. Of course, it might be possible in theo to approx-
imate the derivative at several time points by drawipg a se-
quence of observation pairs with the time points of gach pair
spaced a finite<§§t short distance apart. In practige, however,

~ <

S5
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A

this strategy would be difficult or impossible to carry out for
most social or psychological topics. A much more practical '
strategy is to operate on geuation (5a) to produce (5b), which
‘can be compared readily to observations.. .

Note that if one differentiates (5b) with respect to t.
one finds o : '

\ ' - L% /
bt \ : ;
dy,/dt = b(y,e”") = by,, since y, =..y0ebt LS

Q-
This.exercise shows that if one differentiates (5a) one obtains
equation {5b). Equation (5b) is, therefore, the antiderivative
or indefinite integral of equation (5a). Egquation (35b) 1is
termed, therefore, a solution of eguation (5a). Referring to
the example regarding acceleration given by gquations (9), the
relationship between (9a) and (9bk) is parallel to the relation-
ship between (5a) and (5b); equation (9b) is a solution of the
second order differential equation, equation (93), meaning that,
if (9b) is differentiated twice, oné gets (9a) back:

2

-dy _ 4 4y,
dtz dt dt
. d -'d c c -bt
= 3r 9% Lgt + ;2(e 1)1
_ 4 (& _c g7bt
dt b b
~-bt

dt

As does equation (5b), equation (9b) gives predictions that
are observable. 1In general, finding a solution to & differential
_~equation may be interpreted as the process of converting hypoth-
| eses about change at every instant in time into a form suitable
\\- \\‘ for use with -empirical data. : ' ' '
v

The primary cbjective of this section is tc describe prac-
tical methods for converting the dynamic model of career expec-
_tations given by equations (4) into a form suitable for use in
‘empirical work. The section is subdivided into two subsections.
The first subsection develops the mathematical theory necessary
for finding inteyrals of linear systems, and the second sub-
section considers statistical issues related to estimating para-
meters of the integral equation.
. i
, fr
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Mathematical Tpeory' ‘

This subsection contains a review of mathematical solutions
to systems of ordinary linear differential equations with con-
stant coefficients; it does not purport to develop a rigorous
statement of the mathematical theory. The review unfolds grad-

. ually, developing first the basic_theory for Ydmogeneous sys-
L tens, then addihg constant intercepts, and, finally, including
“a set of disturbance variables. - .
: \
Consider the following equation expressiﬁé the general . @
model of a linear differential equation system.

(11) dy/dt = a(t) + B(t)y -

1l

‘where |
Y a K x 1 vector of variables H;: ;3

i

a(t) a K x 1 vector of intercepts that are continupous

functions of time

B(t) = a K x K matrix with each entry a continuous function
of time )
dy/dt = a K x 1 vector of derivatives of y with respect to

time

If a(t) 0 for all t, then the system is termed a homogeneous
system. If every entry of B(t) is a constant over time the
system is a lindar system with constant coefficients.

Attention now focuses on homogeneous linear systems with
constant coefficients, because essential aspects of the results
for nonhomogeneous systems can be derived from the theory for
homogencous systems. The homogeneous system is written

(12) y = By

where y = dy/dt, and B is the K x K matrix of constant coef-
ficients. The goal is to operate on (12) to produce a function
giving each element of the vector Y as a function of time, sub-
ject to the restriction that equation (12) holds.

Consider first a one-element vector and matrix, so that
(12) becomes. a scalar equation rather than a matrix equation.

(13) dx/dt = bx -

whore x,b\are scalars. The simplest way to. solve (13) is to
divide both sides by x and multiply by dt, producing

14

57

oy
C




~

dx/x = bdt
integrating both sides yields

fbdt

E

(14) 1n x

If

bt + g
[~]

ebt+q - ebt(eq)

)

x:

e is the mathematical constant which is the base of the .natural
logarithm, g is an arbitrary constant, and 1ln is the standard
notation for the natural logarithm used throughout this volume.
Notice that if the consutunt g were known, equation  {1l4) achieves
the goal for scalars -- x is expressed as a function of time.
Note also that the derivative of (14) satisfies the differen-
tial eguation (13), for 3 ‘

bt

dx/dt = be (eq) = bx, since from (14), x = ebt(eq)

This simple method for finding a solution to (13) does not

' generalize conveniertly to linear systems, Since one cannot

.divide by a vector, y. It is useful, therefore, to develop an

alternative derivation of the solution (14). To do so, sub-
tract bx from both sides of the scalar differential equation
(13); this yields:

dx/dt - bx = 0

Multiply both sides by e_bt to get:

~bt :
e (dx/dt - hx) = 0

Notice that deﬁbtx= e-btdx/dt - bxe-bt, by the multiplication
rule for derivatives:; hence, the above result can be rewritten

- . ¥
de btx = { . !

Integrating both sides yields ;

-bt _ T
e X=C‘—’eq

X = & ¢
.

where ¢ 1s an arbitrary constant.

—
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This result matches (14)”w1th ¢ = eq‘and, as it turns out, this
. second method of arriving at (14) gengralizes réadily to sys- '
. ' te?s of 11near, homogeneous differentlal equat;onsA
. ‘ . To find the constant &, let X, designate the value of x ,
. . at a point in time, t. Now, note that. from equation (14) ,
at the zero’ poxnt on the txme scale x may be .found by ‘
% = eb'o(eq) _ eb'oc L
o] .
\ — ' . . L)
. X, =c | ' o . o .
- Hence, ¢ can be set to. the abserved value of x at an initial
" panel in a longitudinal study¥. The value of x can then be
' made a-function of time by the following formula. .
, ¥ .
(15) X, = ebtc = ebteq . ' S .
. , NN . 3
. ' bt : , a ;
X, = e X,

. .

. '

_ ' ‘ . ) . \
. -

where t is any point in time. This result * is, of course, the-
equation for the exponential population-growth model noted
‘earlier in this chapter. , *\\4

Equatlon (15) could be used in conjunction with a twOn
panel longitudinal study with one (or more) observations on
X at t = 0 and at tl = t. Define b* = ebPt a 1 rewrite (15),

as fqllqws.‘. e

(15a) Xy .= b¥x - ..

Obviously from (15a), b* = xg/xo. One can calculate b from b*

as follows: b = (lIn b*)/t. s&bstitutingtfég,b*, one can cal-~
culate b directly. . '

{16) b = {ln(xg/xo)}/t

Hence, if there is no disturbance (error) term, an observation
at two time points (t . t ) for a smngle case suffices to gen-

erate exact predlctlons at every pOlnt in time -~ by substltutlng
the value of b calculated from.(16) into the-prediction equa-~
‘tlon (15).

- The groundwork has now been developed for finding a solu-
tion to the*linear homogeneous system, equation (12). To ar-
rive at a solution, retrace the steps used in the second deriva-
tion of equation (14). start with (12) and subtract By from

. both sides. - : -
! | ' 59
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y = BY - | :

Premultiply both sides by ehgt, where e_Bt is a matrix exponential,

{ ' -Bt.. | - o . :
. ey - By) = 0 | :

It can be shown that the derivative of the matrix product,

e~§£1' is. equal to e-ggg - e?gtgz. Consequently, the above ex-

pression can be written as follows = -

.

e
de géx = Q

just as for the scalar case. Integrating both sides yields

- 1 . 8
I pl

' (17)
| y = e='¢
where ¢ is a K ® 1 vector of arbitrary constants. To find the
vector of constants, as for the scalar case, let to =0,
.t:l

< - '

Then from (179

B-0 . . .
Yo - &7 & F I-¢, I = K x K, identity matrix

t;.y, = the value of the vector y at time t.

SR 3

Substituting ¢ = y into (17) vields the desired prediction equa-

tion:

Bt
] (18) y, = e= ¥,

i
Y

/
Again, as in the scalar case, the value of B can be found from
longitudinal data. There are at least two possibilities. First,
one might have at least K cases at two time points (K = the
number of variables). Secordly, one might have at least K + 1
observations for a single case spaced at equal time intervals.

'For the first ifnstance, let ¥ be a K x K matrix of observations

on the K variables for K cases, at time t, and let Y _be the
analogous matrix at time zero. Assuming Y, is invertable, one
finds

60 ,
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Bt _ -1
. &~ - th@ e
(19) -
: -1 -
U0 e = ne e Thize (gt Ao
1

(ln(gtgg ) is a matrix logarithm, not an elementwise log). If

there are more than K cases, any subset of K cases can be taken
so long as those selected are linearly independent, so that

Y exists.
Y X1s

For the second isntance in which ¥ + 1 or more observations:
on a single case are available, Xo may be taken as K column

veow . ¥s, each column being an observation on K variables at 2
single time point, startjing with to = 0; Y, can be defined

analogously, hut with the first column of Xt being.a set of ob-
servations at the second time peoint, that is

-~

> -

Yo = lyge ¥yr o o o 0 ¥yl

- ]
Et - [Y_ll X_zl *t e & 7 x{(*‘l

The length of time between‘adjacent observations must all be
the same.

Recall the definitions of the matrix logarithm and matrix
exponential given in the mathematical review, chapter 3, viz.

(20) 1nM=v(n MV -, |M] # 0
(21) e = vely™t
w o re
M = a diagonalizable k x K matrix, |M| = determinant of M

A= a K x K diagonal matrix with diagonal entries containing
the characteristic values of M

a K x K matrix whose columns are the characteristic
vectors of M associated with

<
y

The functions 1n A and eﬁ are defined on each diagonal element
Gf —1:![‘ i e‘l

6l



Ini; O ... 0 . <
v . ¢ ' .. . “ }
1n A - r ? 1:03 Aﬁtc:? R . . .
. . L] i
o 0 ... 1n A, X
. ' . , ‘

ek'l 0 ---0 -' v
0 eA2 » §

\

(Recall from chapter 3 that. these definitions do fit the geaperal
definitipon of matrix logarithm and of matrix exponential. . hat

eln‘A"=_f£)- o ® /

* -
If every element of a matrix is multiplied by & scalar, as

in equation (18) where B is multiplied by the scalar t, then

the characteristic values of the'pesulting matrix, Bt, are

just the characteristic values of' Phe matrix B multiplied by

the scalar t. Thus, if A is the diagonal matrid of eigenvalues,
of B, then At is the diagonal matrix of eigenvalues of the
matrix Bt. Hence, equation (21) can be wygtten as follows, for
the matrix Bt. o .

- 3
(22) 2t = velty™t- .

where V, A are now taken as eigenvector and eigenvalue matrices,
respectively, of B, : ¢ )

is, In(e—) =

. P :

gzegt = egtg was used to derive the

solution to the homogeneous linear system, equation (12), the
solution being given by equation (17). Equation (22) can be N\
used conveniently to derive the fbrmula for the derivative of
the matrix exponential, eBt, ' :

The matrix derivative

Bt = o qyeltyTh N
dt ¢ e’ . N

4 1

' A
) E(_q_ée@_t\_]—-l)

Note that if no diagonal entry in A is zero, the derivative‘éf
the diagonal matrix, eﬂt, is

Loa}
4%
»
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aet 1% /qe d0/dt ... do/dat
At
d At _ d40/dt 27 /dt ... do/dt
JIc° . .
: ‘ : ALt
40/dt d0/dt ... de K/t
rihy Og -.. O
0 - eht}\g -0
0 0 ... ekt .
Consequently,
gzegt = VeAtAv -3 = VAe-tV_
= \_i’eﬁt\i_lvi\v*l = VAV ly_eét“-l
= -1
ety )(VAV ) = (wav Tt veltyTly
= e§L§ = BeEt)
_l (‘ R Y Y

Since B = VAV —,

— —_—

RN

Havxng found tHe solution to a homogeneous system of linear
differential equations with constant coefficients, one is pre-
pared to deal with nonhomogeneous systems with constant coef-
ficients. The mathematical theory is presented first, then it
is applied to the model of develeplng career aspilirations 'given
ih equation (4).  ° ‘ T

The no‘pomogeneous system w1th constant coefficients is
written %s follows

(23) ¢ = a(t) * By
wﬁ:re a(t) may be a varlable function of. time, but the matrix

B is fixed over time. To find the solution to (23), trace
through the same steps used to solve the homogeneous system.
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¥ - By = alt)
-Bt | | T

e "Bty - By) = e™2Fa(t) | | ,
ae™2ty) = e Bta(ryar | | 3
fae™ty) = re"Bfarryar + ¢
3_§tzt = IE_E—S—Té(T)dT + E ‘ . a‘;" . " .
o ~ : ’
/ ) ' <
(24) y, = e2fc + e2F Jea(rya— ) \

where 1 is the dummy variable of integration as explained o3
page 31. Setting t, = 0 and solving for the constant. vector,

c, leads to the conclusion that ¢ = Y- Inserting ¢ = Yo into
(24) yields )

t

Bt Bt f-BT
5 = o— + — — a dr
(25) y, Yo v &7 ] a(t)dr
: Bt t ~BT .
Notice that the term e-- fe = af(r)dr is a K x 1 vector.
. o
, t
.Denote it by a* = egt fe_gig(r)di, and ¢t B* = egt'
O
Equation (25) can now be written ‘
(25Db) Ye a By
For two fixed points in time, tO = 0, and tl = t, equation (25b}
is linear across observations. Thus, if k + 1 or more observa-
‘tions at t_ = 0 and t; = t are available one may form the
matrices
‘ 64
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o)
1 A
S Yret o0 Yige
Yy T . , and
S TE ] Yae e Yoge
Y1t . . .  YKKt
_x P = [a*, B¥]
-\ o ‘ |
¥ Then for two time points, t0 = 0, tl = t, R
' {/, = PY
(iﬁ) Yy —o
- B _ _l
R S f
where '|Y_| stands for the determinant of Y .
As with the homogeneous case, if more than the minimum number of
cases are available at to and at t,, then K + 1 ligearly inde-
pendent cases can be selected arbitrarily. Also, if K + 2 time
points on a sing‘ case are available, 5_{0 can be defined by the
first K + 1 observations and Y, by the second through the K + 2
" cases; then equation {26) still holds.

Once P = [a*, B*} is found, a* and B* can be used separately
to find the parameters of the nonhomogeneous differential equa-.
tion {(23). Since B* = egt, one has ;

(27a) B = {(ln B*)/t, [B*| # 0
where 1n B* is the matrix natural logarithm.

Note that this is the same solution as for the homogeneous case.
;s Appropriate use of g*kdepends on the nature of the function
La(t). Let | , '
{ t :
¢ cgit, a) = Te ET?_(T)dT
A‘ O
*  where a’ié a set of éérameters of the function a(t). One has

€5

T e,



* egtg(t, a)

(2?b) - ’ - -~ . '
e Etg* = g{t, a) ‘\\x{

-

Under fairly general circumstances, equation (27b) cah be solved
for the unknown parameters of the differential egquation. To
illustrate, two cases may be useful. First, let the function
a(t) be constant over t, say a{t) = o, o a set of constant
coefficients. Then equation (27b) becomes

t . = — —-— —
e_gti* = Ie—gtg ar = [-e gi_ lglz = (I - e §t)§ lg
. 0
- N = g(egt _ E) "la*, e?_t - £I # 0 igi # 0

2 .
For a second example, consider a more involved instance.
Suppose that each element of a(t) is the cosine of t + s '

and denote the entire vector by a(t) = c(a+t). In this case,
«the vector a(t) oscillates over time, but the different elements
of a(t) do not oscillate in phasc unless all a, are the same.

~ The function q(t,q) = fe_gtc(g+t)dt = (I + gz)-i{e_gt[s(gft) -
Bc(a+t)] - [s(a) - Bc(a)l}, where the elements of s({a+t) are
sinTmi+t). This result can be substituted on the right side

of {(27b), as follows:

{

e Btax 82) 1{e Bt [s(att) - Bela+t)]

1]
| ¥
4+

- s{a) + Be(a)}
2 . Bt '
(I + B)a*= s(a+t) -~ Be(att) - e="{s(a) - Bcia)]

since (1 + §2)-1 commutes with e2%. Because the sine and cosine
functiohs are periodic both with period 2w, if t is judisciously

selected so that t = 2n7, n a positive integer, then tnis formula

reduces to

(1 + 8%a* = (1 -.e25)s(a) - Be(a))

In either form, it is unlikely that a simple algebraic soilution
‘ean be found for a. Nevertheless,\for any application where B
and a* can be calculated and t is known, it is likely that a
numerical solution can M found. Use of numerical analysis to
- find solutions to equations that are intractable or insoluable

\ ‘ a

T iy
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{
algebraically is an option that is not appreciated by many social
researchers. One of the purposes of this example is to emphdsize

that algebraic solutlons are not necessary to the conduct of em-
pirical research. L

The mathematical theory required for the model of career

expectations given by equation system (4) ha's been summar;zed

© in the preceding-discussion. It now remains to translate the

general results into a specific form suitable for use with the
substantive theory of career expectations. To achieve this ‘

translatlon it is desirable to rewrite equatlon system (4) in
. matrix notation, as follows.

\ . (28) § = Ax + By +.ult) " ST
where
{
dyl/dt
y = dy2/dt = a Kx 1 vector ofrderivatives of y

_ with respect to time

/dt
| \
/10 2117 %14 )
220 %2121
‘ ~
A = . . . = K x (L + 1) matrix of intercepts
N\ ' - . . . (aés o) and effect coefficients for
: >
e 8x0 8x1° - 3KL geneous variables (a, i3 i>0).
These ~ocefficients are constant
over time
1
*1
X = ' =
X5 = an (L + 1) x 1 vector, with the first
. element being the constant 1.0 and other
. elements being the L exogeneous variables
X

e
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B = Byy Py3+++Pox )= a K x K matrix’of ‘effect coef-
. . L. ficients indicating the impact
: : .2 | of the endogenous -variables on
b,., b,y...b. each other. These coefficients

are constant over time.

Yy = b ) = a'K x 1 vector containing endo-
N genous variables
YK
- ul(t)
u(t) = u, (t) = a K x 1 vector of disturbance func-
. tions of time
ug (t)

Note that Ax + u(t) is a K x 1 vector which is a function of
time; hence, one may define a(t) = Ax + u(t) and apply the
mathematical theory of the preceding discussion. The result
of this application is an egquation in which time t values of y

‘are shown as a linear combination of time-zero values of y and

of the predetermined variakles, plus "dlsturbance" or error
variables (u*), as follows:

= * * *
(29) Yy ‘3}_{.+§X0+E

where, by use of equation (27a)
(30a) B* = 2t , and

(30b) B = (ln B*)/t , |B*| # 0

To find A* and u*, one may apply equation (27b). For this

. application, the definite integral on the r;ght of (27b) can

be separated into two additive parts:

68

fee
v




~

A

t ~B1 t -B t -BT
Je = (Ax + u(t)dr = [fe = Axdr  + Je ='u(r) d )

The first term on the right of this equation has an explicit
algebraic solution which depends on the rank of the matrix B.
If B is full rank (|B| # 0), the following solution holds: °

t
re ¥ axar = (1 - e 258 7lax, |B] # o0
(o)

=

Inserting this result in (27b) and solving for A* yields

Bt 1

(31la) a* = (e—

t
a - E)g Ax + egtfe EFE(T}&T, !Ei £ 0
o

If the coefficient matrix B is not full rank (|B| = 0),
some additional notation is needed to define the solution. Let
A be the K x K diagonal matrix with diagonal elements equal to
the eigenvalues of B. If |B] = 0, at least one diagonal
element of A is zero. Let V be the matrix whose columns are
the right eigenveators of B associated with A, so that, if B

is diagonalizable, B = VAV l. Assume there are K, nonzero eigen-
‘ 1t K2 = K, and let él be the
Kl x Kl diagonal matrix with nonzero Ai‘ i=1, ..., Kl, in the

values {(As) in A and K2 Zzero As, K

diagonal. Define QZ

the zero As. Also, let El be the K, right eigenvectors as-

Ayo and v, the‘K2 right eigenvectors associated
- - (1)

with A,. Similarly, let V' be partitioned into v'1’, a

to be the K2 X K2 null matrix containing
sociated with A

K; X K matrix of transposed ieft eigenvectors of B associated
with Al‘ and 2(2), a K2 X K matrix of transposed left eigen-

—_—

vectors of B associated with the zero \As; Ary A, V and g_l are,

—

thus, partitioned as follows.

3

H

i
1

A 0
(le l) M 0
Av o= =
0 Az
4 = 0 0
szxz
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o -1 _ (1)
- .B.. - Y_!.\_V_ - (Y,l" Y_g) ("ll E)(Y. ) = \_7 Il v(l)

1-1-—~
0 0 2(2)
and
- 1
oBt = yeltytl o (V. V) Myt 0 —( )
0 WAVAR
_ At (1) (2)
- Y_}_ e \_7 + \12!

Using these partitions of A, V and !‘l, the desired def-
inite integral for the case when B is less than full rank and
diagonalizable can be written

¢
fe §t§§dr = [(I - e Bt

A™

v, A e v v ax

1 2

Substituting this result intathe ri’ght side of (27b) and solv-
ing for a* yields

- - B 2
ar = Btz - By p Iy *e B,y 1ax
t
+ egtfe*gTu(T)dt
o u
70
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which, after simplification, can be written

(31b) a* = {{eét _ l)glﬁ —13‘1) + t'!22(2)1§§

t |
+ e28re By (nyar, {B] = 0
0 .

since it can.be shown that e§ﬁy.g(2) = 222(2)'

The unsolved integral in (3la) and (31b) has no solution
unless the function u{t) is defined. Fortunately, the function
can be left unspecified and treated as part of the disturbance
term in the statistical analysis: -’

¢

t
* -
x, u = o2 re ™ u(nigs

- o)
where u* is the notation for the disturbance variable (see
equation [29]). '

In equation (3la), the term (e-B--t - E)g—lA is a XK x (L + 1)
matrix. Its elements can be considéred coefficients of the
exogenous variables. In equation (31b), the matrix

[ (e2t - E)Klﬁz(l) + t.géz‘szglis also a K x (L + 1) mdtrix

cf coefficients of the exogenous variables. In both cases, the

*
coefficient may be denoted by A and used in the integral equa-
tion (29). Thus, one has '

. R
* ~
(31c) A" = (2 - »eT'a, if IB] # 0.
r
(31a) A = B(e2 - 1) 7Tax
ley a* = 1B - py AT v ev v, as BP =0
1o a - (B < Dy, v ey

s

It may Pe helpful to summarize these procedures. The stéps
in the analysis are listed and described below.

Step 1. Form a hypothesis about continuous change over
time by writing a’ nonhomogeneous system of linear
differential equations with constant coefficients,
written as follows: '

(32) y = Ax + By + u(t)
- —=

. where
i 71
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’ . » "o 4 y .
. : v
b ) \ e ] )
. . I} '.‘ - " .
: Y = a K x 1 vector of derivatives of 'y, with respect to
v o i ' , C 1 ’
. time . -
x=an (L + 1)x 1 vecﬁog_bf gxogenous variables with the
first element set to the constant value 1.0
) Y = @a K x'1 vector of endogenous variables ~
~ » H] i
u(t) = a K x 1 vebtor function of time, considered to be a
residual disturbance vector
A= aKx (L + 1) matrix of ccnstaht‘boefficients_as~

sociated with the exogenous variables, the first
- :\\ column representing intercepts
B

: H )
= a K x K matrix of constant coefficignﬁs indexing: ef-
fects of endogenous variables on changes in endogenous
variables |

-

~

éep 2. Integrate the differential equation (32) to form
a prediction equation: ‘

wn

t - )

(’ . (33) !t = é*i + g*zo + E*

where the subscript attache¢d to y designates a specific point in
time, and A* and B* are K x (L + 1) and K x K coefficient matrices,
respectively. - . . /
Step 3. Estimate the coefficient martices A* and B* by
- some type of regression methodology applied to
longitudinal data. The longitudinal data must
contain at least one observation per case for
each exogenous variable x and two sets of obser-
vations per case for each endogenous variable -- one
set of observations at to and one at t;. Thus

a tWo-panel design is sufficient for empirical
estimates of the coefficients. Equation (33)
follows the form of simultaneous structural
equations as given in the econometric literature.
If one assumes x and Yo, are uncorrelated with u*,

~

then "ordinary least squares" regression can be
applied. Otherwise, sbme different regression
method  should be used. Statistical methods will
be discussed in the next subsection of this
chapter. ' '

Step 4. Calculate estimates of the coefficients of the

- *{ - differential equation system (32) by using the o
following formulae: ‘
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(34) ..B = (1mB )/t

N

(353) A= B(B - D)UAY, if |B| 40

~1.(1) . 2),-1.% ‘
- Dy v e e v 2T e ey = 0

(358} A = [(e-"
where 1n B¥'is a matrix logarithm defined by dguation (20).

Once the matrices A and B have been estiﬁated,.they can be

aéplied to generate predictions to any point aleng a continuous .

time scale. These predictions can be compared to observations
as a test of the theoretical model. . ‘

‘Statistical Estimation .

This gubsection briefly summarizes statistical theory re-
lated to efstimating coefficients of the integral equation (33)
by regression methods.. Unlike the mathematics of differential
equations, the relevant statistical theory is familjiar to many
social scientists via the econometric and, increasingly, the
sociological and political science literatures (see, e.g.,
Johnston, 11963; Goldberger, 196448 Duncan, .1965; Heise, 1975;
Goldberger and Duncan, 1973; Ostrom, 1978; Asher, 1976; Board-
man and Murnane, 1979). 1In consequénce, the treatment of
statistical theory '’ this volume need not be as detailed as
the trleatment of - _nematical theory. In particular, this sub-
section develops the assumptions underlying application of or-
dinary least squares (OLS) to' two panels of data in order to
secure estimates-of the-coefficient matrices A* and B* in equa-
tion (33). Readers interested in differential equation systems
for general applications should be aware€ that numerous alterna-
tive estimation techniques are available; these will be sum-
marized briefly toward the end of this subsection. The present
focus on OLS applied to two panels of data reflects likely
needs in status attainment research for the dimmediate future.
First,. time .series of data with numerous time points seldom are
available -in carder-decision making research. Secondly, ap-
plication of differential equation models in career-decision
making research is new, 4 variety of statistical methods may be

(i
s

. tried out as experience dictates.

Equation (33) may be interpreted as a special case of, a
simultanecous equation system, and one may consult the econo-
metric literafure for investigations 'of appropriate statistical
analysis. Before &ddressing the specific task of statistical
estimation of equal¥on{dIW: it is useful to review the broad
outlines of econom@tric théory of simultaneous linear systems.
In this theory, sets of: lirfear equations are ther object of
study; each equation expresses a hypothesis about the substance

of one's topic. Consider the following pair of strucfural equa~

tions as an example. S

N LS
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over samples. The variance of the statistic, as with all var-

iances, i just the squaré ‘of the standard deviation (standard

Swprror) . -Certaihly, the smaller the variance of a statistic

the better, "ceteris paribus. If one sample statistic has a
smaller variance than a second statistic estimating the same
population parameter, the former .is termed more efficient than
the latter. As.an example, part of the central limit theorem
states, that, the expected value of the sample ‘mean is the popula-
tion mean, and that the variance of the sample mean of x is the

- population variance of x, divided by the sample size. Similarly,

the mean over samples of a sample regression coefficient (in the
fixcd-effects model) is the corresponding population regression
cocfficient, and the variance of the sample regression coef~
ficient is a function of the standard error of estimate and a
diagonal elemerit of the inverse of the matrix of cross products

among the independent variables.

’

<

Two concepts of major importance in structural-equation
analysis are” bias- and consistency. ' Let s by any sample statistic,
such as the mean or sample regression coefficient, and let the
corresponding population parameter be denoted by S.. The expected
value of s is denoted by E(s). 'The bias of s is the difference
botween its expected value and the value of "the corresponding

population parameter:

Bias (s) = E(s) - 3

I1f F(s) = S, s is teimed unbiased. If E(s) ¥ § but Es
approaches S as the sample size goes to infinity, s is descriked
as asymptotically unbiased. If the variance of a statistic goes
to zero as the sample size goes to infinity, then the statistic
is termed consistent. A consistent statistic is asymptotically
unbiased, but asymptotic unbiasedness obviously does not assure
consistency. Unbiasedness is a desirable characteristic of g~
statistic, but freguently, it is necessary to accept a sample
statistic that is consistent: this is the case, for example, with
many ecenometric methods such as two-stage least squares,
limited-information, maximum-likelihood estimation, and so forth.




1303) ¥y = Pig Y PppZ ot apyy, vy AR

. (36Db)

Yo T Pyg V¥ Py® tay Yy tov,

) where Yy r ¥, 2 are obéerved variables, pij and g,; are con-
: stants, and Vs V4 are unobserved disturbance variables. In
(36a) Y1 is hypothesized to be affected by z and Yo and in
- (36b) y2 is considered an effect of z and of ylf Thus, Yy -
N and y, exhibit feedback effects on each other, but z is not

uffected by any variable in the system. Variables such as z
are termed excgenous variables; variables such as Yq and vy,

are endogenous. More generally, endogenous variables are vari-
ables-whose values are determined, in part, by other variables
included ir the system; whereas, exogenous variables are those
whose values are determlned outside the system, i.e.; the
o theory does not account for their values.
- Fcr statistical applications, the most important distinction
between exogenous and endogenous variables is that the exogenous
variables are -assumed to pe uncorrelated with tke disturbance
variables; whereas, the éndoqenags variables are permltted to
be correlated with the disturbance variables. It is argued that
if yl'dft“cts Yo then the disturbance for Yy ig.likely to be

. "

correlated with Yoo wuind vice versa. This is not a deductive

argument, however; rather it is based on common sense. This
point- does not seem to be understood clearly in the literature.
Often, readers micht acquire thie impression frcm published
accounts that there is a deductive argument demonstrating con-
clusively that if reciprocal causation occurs between Yq and Yor

. . then a correlation necessarily must arise between y, and the
disturbance associated with Yoo and analogously, that Yo neces-
sarily misc be correlated with tho disturbance on Yy~ Neither

of these correlations follow deductlveiv from the absumptlon
of” reciprocal causation. What dJoes follow deductively 1is that,
_ once neonzero correlations are assumed between independent
Lo (m~rsured) variables and disturbe:ce variables, OLS vields in-

c -isgtent estimators of the effect parameters in the structural
N equations.
& : Equations (36a) and (36b) e~rch appear as a linear equation

with a stochacstic error term (disturbsnce variable):; hence, one
might contemplate using ordinary least squares regression

to estimate the parameters -- Py i3 qij' The formula for 0.8
.estlmat;on of equation. (36a) is

©
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(37) {plot pllr qlzl .:

¥

/ N , Lz ¢ Iygy HES!
] J
. . . L2
Yy. ., Yz.y.., & lfz. , Tz, Zz
ijylj j Jyl]l ijyl)] j J j j ! j 3y2]
Ly, xyé.zf Xyz.z
57230 574 72
s .

< =

~ A B y

where p ., Py,, and q,, are sample estimates of the correspond-

ing population values Pigr Pyyv and qyp rgspectively, the j

subscript stapnds for the jth case, and N = the number of cases.

e presentation, it is convenient to shift

To simplify t;
n.

to a matrix notaci
S~ ‘
Accordingly, let

y = an 1 x N vector of observations on Yy

W= a 3 ¥ N matrix with the first row containing N con-
stant values of 1.0, the second row containing N ob-
servations on z, and the third rcw containing N ob-
servations on y,. Each column of W represents a

single case

v = an 1 X N vector of values for vy

\
x = a 3 x 1 vector cof coefficients;

J

£ (Prgr Pryv Ti2)
where the prime stands for transpdse.

Eguation (37) can now be written-

(373) r' — XEI(EEQ)"l

= :
where r is thre OLS estimate of r. Note that (37a) is the trans-
pose of most notations for simultaneous linear systems; the
transposed notatioh is used to maintain consistency with the |
notation for the differential equation system. The differential
equations are esented in notation that is prevalent in the

mathematical literature,
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To evalliate this estimate, write (36a) in the matrix nota- N
tion for N observationsg -- : ~

\

and postmultiply by thevéfanspose of the independent variable

-—

(38) y ='W + v

matrix (W') -- ¢
(39a) yW' = r'WW' + vw'
| , -1 , -1
(39b)  r' = yW'(WW') T - VW'(WW')

assuming WW' is nonsingular. For a given sample, subtracting

(39b) from (37a) gaves the sampling error:
o N \

(#0) r' - r' = viW'(WW') ,
Thus, r is unbiased only if Egﬂ'(ﬂﬂ‘)—l is zero. In general
this expected value is not zero. Even worse, it does not tend
to zero as the sample size increases. Ito probability limit
1S '

: T LT -1, : YT e 3 1y 1 —
plim{vW' (WW') "1= plim[vW'][plir(WW') "} =
-1

E(v,w"') {E(ww")] # 0

-

-

where plim stands for probability limit, and w is a column from W.
Written out this becomes

-1 - 9
E(v,w') [E{ww') ] = {Evl, Evlz, Evlyz} L1 " Lz By, |
“3
Ez CEz” Ezy,
. ’ 2
- =

' f

Since, by assumption Ev,, Ev, 2z are zexo, the difficulty arises
from the nonzero expected valhe, Evlyz. As noted, this non-
zoro assumption is made'because Yo is hypothesized to be af-
fected by Yy and it therefore seems uﬁ{pasonable to include

in the assumptions the postuiate that thé disturbance for Yy

/
is uncorrelated-with Yoe (Note that EvyY, is the numerator
: R
to the correlation bet-reen vy and yz, since Evl = 0.)
76 :.l?o.).
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This argument was developed for equation (36a). An analo-
gous arqument.-applies to (36b). Clearly, the same argument is
quite general, applying to every equation in systems of any ,di-
mentions. Thus, it is concluded that OLS estimates are incon-
Sistent (i.e., do not converge on {the population parameters -.

¢ they purport to estimate as N goes to finfinity), when one or
nore of the regressors is correlaced with the disturbance var-
iable in the associated structural equation. :

Consistent estimation of the structural paraméﬁers, pij

- L

- , : _
and qij 1s approached by way of a reluced form set of coef-
ficients. -To explore methods based op the reduced form, it is
instructive to rewrite equations (36) in the following way.

' ’
= + B + + ’
0= Pyo ¥ P12 7 ¥y T 912¥2 TV
= + T - + ‘
0= by P E YAy T Y2 T Y2
Tis pair of equations can be ~o " ctly written'in matrix no-
tation for L exogenous variables, K endogenous variables, an&
N obscrvations: : \
(41) 0. Pz + QY + V. :
! whoere ’
1
%
z - -~ a matrix whose first #e% contains all ones
(L+1)xN and the remaining rows contain N oObserva-
tions on each of the L. exogenous variakles
| | {
\ - a mafrix whoge rows contain N observations
K~N on each of X endogenous variables 3
v = a matrix of K disturbance-variables for N
K=N cases ¥ ‘
’ ~/
P . a matrix of constant coefficients including
K~ (L+1) the intercepts for each equation in the sys-

’ tem and the parameters indexing, the effects
of each of the L exogenous variables on each
of the K endogenous variables

Q = a nonsingular matrix of coefficients indexing
KxT - effects of tne endogenous variables on each
_ other. The diagonal elements of Q can Le de-
N ‘ fined to equal -1.0 to maintain consistency
" between (41) and (36).
- \)“ ) ‘ . —5u ;
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0 = a conformable null matrix.

Again, note that, to maintain consistency with the prev:.ous "sub-
section, equation (41) is the transpose of notation most preva-
lent in. the econometric literature.

The reduced form of the system is Qbﬁaihéd by premultiply-
ing (41) by Q_l (assumed to exist), and solving for Y.

0= (@'Riz + ¥+ Q7Y
Y= @Rz - QY
(32) ¥ = 7z + Vv* .
where
(43) I = «Qilg = the reduced-form coefficients matrix
, -1
(44) V* = -Q "V
Since 2 1is unccrrgiated asyTptotically with V, (1/N)plim V*2' =
-1/N plim @ lvz' = (-1/N)Q" plim VZ' = 0. Hence OLS can be used
to estimate consistently H in equation (42). The estimate is
no= vz oz '\

e
Estimation of the structural parameters P and Q may now
proceed by making use of (43). Premultiplying by -0 yields

(45) -QU =P
L A ~

Givan a samplg estimate of the reduced form matyrix, I, one¢ may
write the sample version of (43), and investigate how to use

the relation for finding E-and Q;

~ A

(45a) -QI = P

In general, (45a) is not idenﬁified. There are K(L + 1) known'
values in .Jl, but K(K - 1) unknowns (excluding diagonal ‘elements,

set to -1} in Q plus K(L + 1) unkquns in P, OQbviously, one

must draw on substantive theory ‘to cohutraln the values of P
and/or Q. Generally, certain elements of P and Q are assumed
zero, and theé altered relation implied by, {45a) and tha zéro co-
efficients is &Xamined to see if the remaining unknowns can be
calculated. Numerous methods are available for such calculations
(see goldberger, 1964 and Johnston, 1963 for®' thorough reviews).

Y
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The immediate goal is to find suitable estimates of the
matrices A* and B* in the integral,equation (33). This estima- - ;
tion probiem may be interpreted agfcne of estimating the reduced o
form of a general simultaneous st¥uctural equation system. To
see this, it is necessary to introduce some additional terminology.
The variaples of a simultaneous system frequently are classified
into one group termed predetermined variables and a second group
called jointly dependent variables. Piedetermined variables in-
clude exogenous variables and lagged values of the endogenous
variables, and the jointly dependent variables include only cur-
rent values of the endogenous variables. For instance, in the
“integral equations system (33), X represents exog 0us variables
and the lagged endogenous variables are denoted .y Yoi the pre-

determined variables include x and Yo The jointly dependent
variables arc denoted by Y In scatistical applications; the

matrix Z contains predetermined variables, and ¥ contains joint-
1y dependent variables.

To pursue the argument, shift equation (33) into the no-
taticn -of strucgural equations developed above. Let th repre-

sent a K x 1 vector of values on K endogenous vaviables at time
t for casc j, and let ij be a (1 + L) x 1 vector with its first

clement equal to 1.0 and remaining elements containing values ¢
.0f L exogenous variables for a single case. Also, let v, repre-
—d

sent a column vector of K disturbance variables for a single
case. Now, define '

z - /51 - - Xy

(1 +L+K) - N K

01" © " Yon A\

s

Kol

\] r -

< (yl ZN/

\ ﬂ& .
P (2> B
KX (14 L+K) .

O = ~1 = The negative of a K ¥ K identity matrix
K*K K*K

' <
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Now the integral équation (33) can be written

| FN\2=&+2

a O=P2-Y+V=PL+ (-D)Y+Y f
= , € -
(46a) O = PZ + QY + V

Equation (46a) 1is precisely the same form‘as the general struc-

tural system given in (41), with Q = ~-I. Estimation via reduced
form may proceed directly by reference to equation (45). Clear~
ly, when Q = ~I, (45) yields: : '

47) P =1

,/()“‘* "‘.J ‘

Since P contains the structural coefficients for the predeter-

mined variables and 1 is the matrix of reduced-form coefficients,

, (47) establishes the ‘desired result: Est‘mation of the para-

S meters of the integral equation (33) may be viewed as estimation
of the reduced form of a general simultaneous structural-equation
model. (See Goldberger, 1964: 373ff for a similar interpreta-
tion.) Thus one may consistently estimate A* and B* by the
following fr _aulas.

ok SRR TN ~
(A, B] =P ,
-~ '—l
(48) P = yz'(z2')
The asymptotic variance-covariance matrix for each row of P
(equation of [33]) of these estimates is given by

«

A - * -
(49)  C | =1/N s % [E(zz)] "
Eilj vy —
where
' -
C’ é = the covariance matrix for the sample estimetes
P, P; " - ”
L in the ith fow of P P
v 52 = the variance of the disturbance for equation 1 .
.‘vi | j
E(zz') = the covariance matrix among the predetermined
77 wvariables.
’ Generally, the quantities in (49) being population values, are

unknown. However, consistent est!mates can be formed by cal- B
culation of analogous sample values: :

\

-~ Fal —1
(49a) € o = (1/M)sd [(1/N)(z2")]
- “BiBy Vi _ . \
- 2 ‘ —-l . ',
= 22" _ _
. ?Vi(““') ‘ ' N,
' . N -
Q 4 _ .
- ERIC | >0 - Sv | \\

. . . ‘- .
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where the circumflex indicates a sample value for the correspond-

. . N
ing population statistic. Note that si = (1/N)L vzj =
‘ i §=1
"2, ~2 22 . : -
Sy {1 - Ri)' where gy is the sample variance of the ith joint-
i i A '

ly dependent variable, and Rf is the square of thg‘muitiple cor-

relation for: equation i. A slightly improved estimate is given
by replacing the reciprocal 1/N with 1/(N-K~-1), where XK is the
number of regressors. '

. As noted in the beginning of this subsection, there are
1.omerous methods for estimating A* and B* other than applica-~
tion of OLS teo two panel's of data. Consequently, it is impor-
tant to identify *the key assumptions underlying this application,
and to summarize briefly altgrnative methods. The first two as-
sumptions are substantive rather ‘than statistical. They are:

o

-

Assumption 1: All individuals are governed:by the same
differential-equation structure. This means that the

'matrices A and B (and, therefore, A* and B* are the same
for all persons. -

Assumption 2:+ The Qifferential-equation structure is sta-
tionary over time. his means that all values in the co-
efficient ‘matrices A and B are fixed, over time.

[t is possible, though improbable, that statistical assumptions,

to be teviewed presently, could hold even though assumption 1

and/or assumption 2- are not valid. In such a case, one would

produce good statistical estimates of parameters that provide
seriously incomplete description of the substantive topic.

The next two assumptions are necessary (and sufficient) for

the statistical estimates to be consistent.
.t
Y

Assumption 3: The means of all dMdsturbance variables v
are Zovo. - :

Assumption 4: The independent variables z are not corrxe-
lated with the disturbance variables v. This means that
"all exogenous variables x and lagged;endogenous variavles
Yo a%e not correlated with any unmeas red variables v.

.

L]

If assumption 3 ard assumption 4'h015, OLS estimates are con-
sistent, meaning that:. (a) tMey are unbiased in the limit as N
approachés infinity (i.e., asymptotically unbiased), and (b) their

- - o o ’
-Usampling variance approaches zero as N approaches infinity.

(f*the latter feature implies the former.)

~
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The next assumption is rggquired for derivation of the var-
iance covariance matrix among the regression coefficients of a
given equation (equation [49]).

Assumption 5: The variance over samples of each dis-
turbance term is the same for all observations and it
does not depend on z.

It assumption 5 is not met it does not imply necessarily that OLS
is inconsistent. Rather, it means that statistical tests of
significance should not be applied using formula (49%a) to es-
timate standard errors. In this case, however, generalized lin-
ear regression (GLR) may be preferable to OLS, because, while
both OLS and GLR are consistent, the sampling variability of

GLR is less than for OLS (i.e., GLR is more efficient, see

Goldb :xrger, 1964).

Any one of these assumptions poses a serious threat to the
valid use of OLS to estimate A* and B*, because status attainment
thecory is not sufficiently developed to generate confidence that
any of the assumptions are met. It should be emphasized, how-
ever, that no statistical method will compensate for incompilete
theory. Thus, one should not expect to find the situation -auch
improved by resort to alternative statistica% procedures.

In the statistical literature on simultaneous structural
equations, assumption 4 has been of major interest. As review:d
above, when assumption 4 fails (i.e., regressc—s are correlated
‘with the disturbance), OLS is biased and inconsistent. If OLS
‘"estimates are inconsistent, then numerous alternative estimation
' methods might be substituted; exampies of alternative methods
include instrumental variatle estimation (IVE), indirect least
squares (ILS), two-stage least squares (2~SLS), full-information
maximum livelihood (FIML) estimaticn, and three-stage least
squares (3-SLS). All of these methods depend on measuring a
set of exogenous variables (or instrumental variables) that have
mo direct effect on the jointly dependent variables but are un-
,correlated with the disturba.ice varlables.

The bias and incons:istency of OLS when it cannot be as-
sumed that regressors arc uncorrelated with the disturbance
is well known, but a similar result for alternatives to OLS has
not been widely publicized. To emphasize the point that stat-
is’ 1 methods cannot substitute for mature theory, the case
of instrumental variable estimation (IVE) is examined below.
Not surprisingly, it is found that IVE estimates are biased and
inconsirtent when it is assumed erroneously that direct e.fects
of the instruments are zero. It should be emphasized that IVE
is equivalent to indirect least squares, and for "just identifigd"
systems, also equivalent to other methods such as two-stage
least sguares. ‘
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Instrumental variables for a given structural equation are
variablas tuat are uncorrelated with the disturbances for that
equation and are correlated with the independent variables in
the equation. Suppose that W is an (L + 1) x N matrix with the
first row containing all oneS and the remaining rows containing
N observations on L instrumental variables. To avoid defining
additional notation, assume that W is uncorrelated with all dis-
turbance variables; in this case EVW' = 0. Referring to equa-
tion (41) and using the fact that—§'= -1, one may write

0O = Pl -

pa— ——

1

* ¥

X:‘:

3
-+
<

The instrumental variable estimation of P is P = Xﬂ’(éﬂ’)~l:

~

by the assumption (gﬂ’)_l exists. The sampling error for P is

«

,\” - _1
T-p o= (pz o+ VWI(ZH) T -

P - Yw'(zw') “-R

0

™

- vwzw) Tt -

vtz T
Taking probability limits, one finds
: ) . : ' by 1 ; ' : ' -1
plim(P-P) = plim VW' (ZW') = plim VW' plim(ZW')

1

- Byw' (Bzw')

=90

where z, w are columps from 2 and W, respectively.

' 3
Hence, uniler the stated assumptions, instrumental variable es-
timation (and indirect least squares) is consistént, and, as
shown earlier, OLS is not. This is a basic result in the econo-
metric literature.

An implicit assumption of the IVE is that the instrumental
variables exercise no direct effect on the dependent variables.
To see this, supposc that some or all the instruments do exer-~
cise some effect on the dependent variables and let § be a
conformable matrix containing the effect parameters. The ob-
servations now are generated by the foldoWing eguation.-

Y = P2 + SW+V

13

B3

R
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Suppuse that one,dassumes mistakenly that § = O and forms IVE es-
timates, P = gg'(g§')”l. The sampling error - for P now becomes

~1

P -P=YW'(ZW') - P
’ ' -1
= (PZ + SW + V)W'(ZW') © - P
$ g oy 1 -1
= Do+ SIWT(ZWT) T+ (VW) (ZW') T - D
- l —1

s (2w 7 e (v (2w

taking probability limits gives

plim (P-P) = SE(ww') (Ezw') * # 0

Thus, 1t is clear that instrumental variable estimation generates
inconsistent estimation of P when it is assumed incorrectly that
the instruments have no direct effect on the dependent variable
(i.e., incorrectly assume S = 0).

This is hardly a surprising result, but it does emphasize
the point that methodological techniques cannot substitute for
adequate theory. Whatever method is used, assumptions that can-
not be tested against data must be made. Confidence in the re-
sult of the calculations must necesaarlly rest heavily on confi-
dence 1in the theory

The above discussion introduces the general question Qf
identification. Before any statistical method can be applied,
theoretical assumptions must be 1mposed A thorouah presenta-
tion of the identification problem is beyond the scope of this
monograph, but a brief treatment is appropriate.

Assume that y represents one case on one of the dependent
varlahlus (a scalar). Also, lect p represent one row of P cor-
respondlng to y, and let v be the corresponding scalar disturbance.
Let z be one column f*cm the matrix Z. With this notation, the
model can be written

L]

y = pz + v

postmultinlying by z' and taking expectations on both sides, one
may derive estimating equations.

Eyz' = pEzz' + Fvz'

or

Ezy = (Ezz')p' + Ezv - . ) .
Z “4 i \ |
£
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The second form expresses the system of estimating egquations in
conventional column~vector form. In the syscém, p' and Ezy are
unknown, and Ezy and Ez2' are assumed known. There are L + 1
rows, hence L + 1 equations. There are L + 1 unknown elements

in p' and L + 1 unknown elements in Ezv (including the mean of v).
Letting I represent an identity matriX of order L + 1, the sys-
tem can be written as a single system:

zy = [(Bzz' @ 1] [p’
Ezv

Thus, we have a system of L + 1 linear equations in 2(L + 1) un-
Lnowns. The maximum rank of the supermatrix of known coefficients
(Ezz'i I] is, therefore, L + 1. The identification problem re-
solves into the process @f drawing on theory to place at lehst
L + 1 independent restrictions on the system. Assuming the rank
of the system is L + 1, when at least L + 1 additional linear
restrictions are imposed, the system becomes identified. As it
stands, it is underidentified. As the previous discussion im-
plies, the most common type of restriction is to assume certain
elements in p' and/or Ezv are zero. A total of at least L + 1 .
such assumptions are necessary (but ‘not sufficient). When it is
assumcd that all elements in Ezv are zero, OLS are consistent
estimators, but when some combination of elements from p' and
Fzv are set to zero, some different method must be used. If
exactly L + 1 values are set to zero, then the system is just
identified, and, if some nonzero elements are in Ezy, methods
such as indirect least squares or two-stage least squares -dre
identical to instrumental variable estimation. 1f more ‘than

L. + 1 coefficients are set to zero, then the system is over iden-
tified. If some of the nonzero elements are in Ezv, then methods
such as two-stage léast squares, three-stage least squares, Or
full-information maximum likelihood must be used. The reader is
referred to standard texts in econcmetrics (e.g., Johnston, 1963;
- Goldberger, 1964) for exposition of these methods and a thgsugh
treatment of the identification queStion‘(on'the latter issud,
see also Fisher, 1976). '

Although economic theory somet imes may be powerful encugh.
to specify more than the minimum L + 1 zero coefficients, status
attainment theory does not justify even the minimum L + 1 as-
sumptions with sufficient authority to generate strong confi-
dence in any estimation technique (see the discussion of a paper
by Haller and Woelfel [1v7la] —-- Land, 1971; Henry and Hummon,
1971;: and Woelfel andjﬁaller, 1971b). Henceg, it -seems unlikely
that there will be in<the immediate future much justification
for applvirc methods in status attainment work .such as two-stage
least squares that are designed for overidentified systcms.

To illustrate these comments, consider again the system
represented by equations (36). Let z be parental status, Yy

-
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! represent significant other's occupational expectation of ego,
£ and yzﬁindicate ego's own occupational expectation, Because

there is causal, feedback in the system, the standard presumption
is that y, is correlated with Vye aRG y,, is correlated with vyi

~hence, OLS are inccnsisteg& and should not be used. ' Although it
does seem plausible that 1Yo # 0, and Evzyl,# 0, these state~

N ments do not follow deductively from equations’(3¢). On the
. other hang, gheory\§uggests, but certainly does not confirm,
' that the effects of parental background on ego's occupational ex-
, pectation operate indirectly via significant-other occuvpational
s ~ expectation of ego. If one is willing to make this assumption
// and set Pyy = 0, then consistent estimates Of.pza. Aoy ¢ and

Q%dvz can be secured through indirect least squares.
This situation is- a specific example of the gen%rai conélu~
sion reviewed above. Without some restrictive assumptions, a
- unique solution for all unknowns in the eduation (36b),

Dpgr 9oy pzl,‘Evzyl, cannot be found. It is plausible that
q21'= 0 and, Evzy1 # 0. .If these assumptions are accepied, then

indirect least squares are appropriate. It is almost as plausiblé‘
however, that 95, #0, and gvzyl = 0, thus indicating use of 0OLS.

The most likely case is@ghat neither coefficient is zero.’
The example is typical of the difficulty of identifying
structural equation models in status attainment research (seé
Nolle, 1973, for example). All published work includes a larger
N set Of variables than the example, bui each independent variable
' added to an equation adds two unknowns, but-only one new equation
to the estimating-equation set. Hence, adding variables is not
sufficient to identify the parapeters of any of the strugtural
| equations. What is required is better theory, but gocd theory
takds time to develep. 1In the'meantime, exploratory analysis
fbased on available theory and data is necessary. As indicdated
here, application of OLS in such exploratory analysis frequently -
may be as easy to justify as alternative methods such as in-
direct least squares, presence of feedback, loops in the systém
not withstanding. It does appear, however, that use of more thgn
one estimation me’ od frequently could contribute some insight’
into the substantive questions under study and serve to emphasize . .
the exploratory nature of the analysis. . :

, One of the main themey of this volume is that tests of theory
> by checking the accuracy of\ forecasts derived from theory con~
‘ ~stitutes a promising tool for improving the quality of theory. >
First, forecast acvuracy is-a much more stringent test of theory
" than most techniques in general use currently. If theory fails

a , 3 ¢
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to generate accurate’ forecasts, then scholars are led to reform-
ulate ‘the thgory. I£ theory consistently does generate: accurate
forecasts, then confidence in it will be strengthened consider-

ably over what can be justified by reliance on multiple correla--

tions. Secondly, empirical tests using forecasts should stimulate
forimulation of dynamic theory to account for the behavior of all
variables at every instant on the continuous time scale. Such
dynamic formudation represents a marked improvement over Cross-
sectional models that are so prevalent in the literature.

, Much conflsion is associated with selection of an approp-_
riate estimation method. For example, one, paper on statistical
estimation with panel data stateg:

Whenever a lagged dependent variable is included
in the model, the errors will be correlated with at
‘east one of the regressors, and ordinary least squares
reqression will be biased and inconsistent (Hannan and
Your.g, 1971/;.

As noted above, this statement is in error. It does not follow
deductively that lagged endogenous Eiriables are correlated with
any disturbance variable, including the disturbance associated
with the current value of the same variable. Such a correlation
might be a likely hypothesis, but it does not automatically
follow from the model. . '

Two rea.ons emerge from the above discussion suggesting
that OLS estimation can be recommended as an initial methodoloyy
for estimation with two panels of data. First, the reguired

‘assumptions have been made explicit and are at least as plausible

as alternative assumptions. With OLS, one need not assume any
of. the coefficients in A* or B* are zero but must assume all co-
variances between the disturbance variables v and the exogenous
variables and lagged endogenpus variables are zero. Non OLS
methods require that somp e¥ements of A* and/or B* be' .se'med
zero, but permit estimatgon of somg covariances involving aas-
turbance variables. Secondly, OLS sclects parameter estimates
to minimize the variapces in the disturbance variables. If

the theoretical model is approximately accurate, then the min-
‘imization crjterion should generate good forecasts. I1f it does

not, then alternative estimation methods should be tried.
» v : . ’

Probably the main threat to consistent estimation using OLS
is the autocorrelation of disturbances, meaning that the un-

“measured variables are correlated over time. Autocorrelation

certainly would arise, for example; if phe or more important

are correlated over time. ! -veh a-first order autocorrelation -
process for the disturkar . variables, the cuorrelation matrix -

variables 4g/ omitted from the axalysis‘énd the omitted variables

. between. lagged endogenous variables y, j and current disturbance

can be written, ' :

.
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EViYey = TA + [78B2' + ITA(B*)" + ... i

-t

where ' is the matrix of aatocorrelat;éns; A is the matrix.ef

cross sectlonal varlances and covgtxandes ampﬁg the disturbances;
;. A=Eyv.', all t.. It is assumed that A°< 1. and that the pro-

cess hds operated over n gerlods withmn suftlcxently large so

that '™ - 0. This -ovarlance is unlikely to be zero, but note
- that 1t apprcaches zero as.either T. {the-matrxx'o§~autocorreia-
' tions) ' approaches zero«or as A (the cross-sectional variance-
covariance matrix among residuals) approaches zero.- Since the
diagonal elements of A:are errqr variances, one sees that a“*model
accougtlnﬁ for g large proporthn of variance helps. to keep the
asymptotic bias of OLS low.- A sfiort measurement interval probably
contributes ta small A but tdhds to ‘generate large I'; hence, it
is difficult to draw conclu51onslabout the approprlate length of
the measurez&pt lnterval. . A

This discussj on has. been confined to estimation methods

based on two panaig of .data, -because this seems like the .most

. likely data base in atus attalnmant work in the immediate fu-
. ture. The reader sﬂ!&lﬁfbe remlnded however, that estimation
is possible with a time series on .a given case extendlng at
. least to one more observation than number of variables in the »
S model. For presentation’ of estimation methods with time séries
data, see Ostrom (1978) or Box and Jenkins (1&70) Econometric
Yo ‘tqgts show how to handle time series data. Doreian and Hummon
_ 76) give edffimples of estimation with time series. In ad-
~ - dition, pooling of time series of cross sections sometimes pro-

- duces improved estimation (see Hannon and Young [1977] for a
review and survey of recent %iterature). a \

, In sum, it appears that use of OLS to estimate the coef-
ficients o..the integral equation (33) is justified as an
, \initial strategy, but that altlernative specification might fruit~
e fully be investigated in future research. In particular, it X
‘ seems advisable to exploré how the dynamic quality of the dif-
ferential equation model can be exploited to address .the stat-
istical issues. (See Doreian and Hummon (1976) for several il-

\. lustrations of estimation techniques tailored to specrflc sub-

' stantive questions.) Also, specification of a mode \accountlng
for measurement error is desirable (see, e. g., Co an, 19687 e
wJoreskog, 1973; Wheaton, et al., 1977), but it-is beyond the scope
of the present volume. ’
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Computer Calculations

_ -The wain purpose of this section is to describe a- computer
program package which is available for converting raw=data in- -
put into estimates of the coefficients bf the differential '
equation (28) (the matrices A and B) by ‘usiij OLS to estimate
the parameters of the corresponding integral equation (29) (the
matrices A* and B*, contained in the matrix P). The preésenta-
tion proceads in four parts. -“First, a.brief discussion of the
calculating task is presented. -Secondly, the input required to
use the computer program is described.. Thirdly, the output of

the program is described. Finally, provision in the prograq

e

package for carrying out data transformations is descxibed.
y ) ‘ . . - . ‘ .
The Calcula;in&*ﬁask

1Y ~ ‘

/ 'The logic of the program is‘'quite simple. The calculations

proceed in three steps: o .

1]
~

; 1. Calculate means, standérd‘deviations, and correlaﬁions
2. . Calculate OLS estimates of P = [A*, B*], using the
means, standard deviations, and correlations as input

3% Calculate estimates of the coefficient matrices g and
B from A* and B*, using equations (30) and (31)

Calculation of means and standard deviations by the progftam is
executed by omitting missing observations on each variable and
dividing the accumulated sums by the number of observations
present for-each variable. Correlations are calculated using
all data present for each pair of variables. :
Rt .
The only unusual calculations are associated with finding
the matrix logarithm demanded by equation (30b). This calcula-
tion can be accomplished by finding the characteristic roots
and vectors of the matrix B* and applying formula (20). Since
B* is not a symmetric matrix, its characterhstic roots and
vectors may sometimes be complex numbers; hence, complex~number
arithmetic is reguired. To find the eigenvalues and eigen-
vectors, tRe program package uses subroutines from an eigenvalue-
eigenvector package called EISPAC distributed by The National
Software Center at the, Argonne National Laboratories in Chicago.
All programming is written in FORTRAN IV, Level G. .
“ : i . o
The calculations are executed on the assumption that the
matrix B is full rank. This is not a serious limitation, how-
ever, sincé it is rare to find a singularx matrix in empirical
data. : ’ '
. - - o
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* Input to the Program
To operate the program, three types of input are required:

a) data containing N cases for all variables, b) control cards
descrlblng the data, and c) system—lnformaticn cards.

Data Input

" The program assumes that observatlons for all variables are
- grouped tcgether for each case (e.g., 1ndlv1dual respondent) , .and
that the posxtlon of each varlable on the cards, tape or disc is
the same for all cases. To illustrate the graper arrangement of
data, figure 7 shows the arrangements on cards for three VQ;1~
ables and five cases, each case belng a person.

Al
%

8
0

col. No.: 1r3i557ss%123u557 . s
card 1, person 1 | 75 6.9 .46 -
card 2, person 2 2 .3 .82
card, 3, person 3 32 3.8 .19
. b . .

card 4, person 4 65 7.4 .56

 card 5, person’5 42 .9 .94

. { . .
. \

Figure 7. Illustratj on of organlzatlcn
///‘ ‘ of Input Data

{(Of course, the decimal,points shown in the illustration need
not be puné%ed on the cards, as a FORMAT statement can be used
to p051tlon the decimal for each number.) If there are too
many variables to fit on one card, ontlnuﬁﬂion cards can- be
used for each case. There may be y number up to and’includ-
ing 1000 variables in the data set. The program selects the
variables needed for a given analysis in whatéver oxder desig-
nated by Ehe user, according to information supplied by the
control cards. The data may be stored according to a‘ FORTRAN
FORMAT, or they may be unformatted, usimg FORTRAN unformatted
“input-output. The mode of data storage .and@ FORMAT statement,
if needed, form part of the 1nformatlon supplied to the program

. by the: controﬁ cards. ‘ . -
Control Casd@ E - T .
— - ﬂ N . _
There are three control cards which supply information
A abopt the data to-the  program, The three cards are a) RUN CARD,
- ' 90
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Is) DATA CARD, and c) FORMAT CARD. The content of these three
types is descrlhea below. ' | ' .

‘ Y

One RUN CARD is required for each ana1y51s,.@nd it’ must ap-

pear first. The RUN pARD supplies seveg parameters to the pro- ’

gram; the information, location on the RUN.CARD and défaultuv Tue 'féi-

for each parameter are descrlbed below. , e\ -
. . . \ P e . L N \ ] .
égcation ‘ ' “ f\\\. i '.nf‘ T , ~;T
{CQelumn _° - : Default ' _
Numbers) X Putpose - value T

. . 1] X

pagsﬁﬁter 1 )+ 1 -5 Indicates the number * . 'None

. NV . - variables in the anal N
" \ sis . 4. ot t .
parameter 2 (NIV): 6 - 10 - fndicates the number of None ,

< . exogenous variables in
oL , ' the differential equa- .
. _ tion system .
: . ' . f-— . . . v

parameter 3 (NR): 11 - 15 ‘Indicates the number of ' s@éﬂﬁ' .

' v variables in-the data | equal
set from which data is / to .
to, be read, or the num- .+ . para-

v R ber accounted . for in }' * meter
’ the FORMAT CARD,’ if ) .
the latter is less than L _

the former . . ’ - 2

L

data are formatéd Of un-. SEE
formated; 0 = unformat-
ed; nonzero indicates - X
‘ the nufpber of cards, up ' .
' to six, on.which the . , ~
FORMAT *is punched \j - Y -

parametei 4 (ITYP):16 - 20 Indicates whethék the‘A - -0

parameter 5 (NU): 21 - 25 Indlcates tHe unit nqm- ‘11 z \
: ' + her associated with the o \
READ statement used for
. data input. Selection
of the‘unit is described-
in the text, unggr system-
information cards ‘

/

.



N Location ..
(Column ' - Default
%+ Numbers) Purpose ' Value
parameter 6. (T): 26 -~ 30 Indicated the number , . 12° ;
- ‘ of ‘months elapsed be-. . - " | »
. ) . . tween panel 1 and
'" ) , panel 2 - "

parameter 7 (MIS): 31 - 40- Indicates the numer- 10
- . ' . ical value used to | .o
- ‘ indic&te missing data '
N - R (if the missing data
! . . code is no® the same
‘- . ‘ + for all variables,
' transformations must ~
v o, - be executed'to change
. : 4 all missing data codes"
3 Jto the same value. The
' a last subsection, en- -
titled "Data Transforma-
tions" illustrates how
. : . this can be done). 2Zero
— - "is an invalid missing
data code. .

.At leabt ,one DATA CARD is required for each analys{s, and y
should follow the RUN CARD. .The DATA CARD indicates the var-
iable sequence number of each wariable td be t1ised in the analy-
sis. Fach sequence number is right justified in a five column
field ~- the flirst sequence number appearing in columns 1 - 5,
the second appearing in columns 6 - 10, etc.’ (Any number of

< contihuation cards may be used.) If the data are formatted
(1 < ITYP < 6; ITYP = parameter 4 on the RUN CARD), then the
sequence nmumber gives the order in which the variable appears
in the FORMAT statement supplied by the FORMAT CARD. If the
, ta are unformatted (ITYP = 0),-then the variable sequence
T‘;% er indicates the order 'in which the varizble appears 1ln the
imput data setjﬂ If for a formatted dat¥®set, a FORMAT state-
ment is supplied describing all variables in the input data set,
then the sequence number gives the order of the variable in the-
data set for formatted data, just as it does .for unformatted'
data. If the data are formatted, ¥t is recommended that a A\
standard format describing all variables in the data set be sup-
L, plied; this procedure\avoids the need to cOnstruct a new FORMAT
CARD for eagh analysig, thereby reducing the numerous chances
for error imherent in constructing FORMAT'statements.

- - ‘ .
T .In each analysis, the variables are erderei‘in the same
, order in which they appear on'‘the DATA CARD. - The program assumes
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' Jreaders, shey are not reviewed here. It should be noted, how

: Y , ~-
that exogenous variables are listed first, followed by the endo
genous variables for paael one, then by the endogenous variables
for panel two. The endogenous variables for the two panels
should be listed in the DATA. CARD in the same order as the crder

v Of the endogenous vayiables for panel one. If all variables an

the FORMAT statement are to be used in the order in which they
occur in ‘the FORMAT, the) one may insert a single blank DATA
CARD. _ . iy
) - 3 U'“ ' R . .(
One FORMAT CARD is required if the ihput data_dﬁ% formatted,
but should be omitted if the input data are unformatted. If ‘
. included, the FORMAT CARD follows the DATA CiRD. The FORMAT
statement is limited to six cards. All the rules for FORTRAN
. FORMAT statements apply, and, since thgse rules are widely avail-
able in other sources (e.g., fhe SPSS Manual [Nie,et al., 1975],,
and numerQus texts on FORTRAN grogramming) and familiar to most

‘#ever, .that the word FORMAT does not appear on fhe FORMAT CARD. i
] N 3 .

,k\ T illustrate the use of control cards, assume the ifput )

. data set is farmatfed and contains 100 veriables. For the cur-’
rent fﬁh, suppose there are two exogenous variables and fiv
endogenous variables, each of the latter measured twice -- onse
at, t and oncg;at tl,,giving twelve variables 'in the cusrent run.
Aégumé,that all 100,variables appear on cards in adjacent fiz;#

., column fields (thusﬂhequiring seven cards per case), and 4 ,
the tweiwe variabBles for the current run are arranged as follows
onf the cards: . ‘ : . ' : o
5 - ¢ - 7

1 ' v ' ; Card ' Sequence
Symbol + Name . No. Columns Numbers
ﬁl = - first exsgenous vari- 1 6 =10 2 77 e
X, = second exogenous ) 21.-25 ' 5 »
. variable ‘
Yol = first endogenous . 1 51-55 11
A ) vapiable, tg A
Y = second endogenous 1. 41-45 9
02 - :
. variable, tg _
y03 € third endogenous 2 . 21 -~25 ’ 21
variable, tg . ' '
Yo4 A  fourth endogenous 2 61-65 29
. . variable, t0 ' :
Y .. = . fifth endogenous 3 11-15 35
Q2 . . )
variable, ty
.y,; = first endogenous 3 26-30 38
- variable, £
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s
R "card ’ Seguence
Symbo1 Name No.  Golumns - Numbers # ,
“¥,, .= second endogenous . 3 46-50 42 -
¢ variable, t, o _ :
¥y3 = third endcgenous .2 .+ 61-65 a5 y
: ‘ variable, t; o )
yi, = fourth endogemous = . . 5 -  31-35 71
variable, ty - . .
§,5 = £ifth endogenous 3 31-35 _ 39
* variaple, t; - | . ;

- . ! -
In this ¢ase the sequence number follows directly from the card
and column numbers. Assuming every five~column field containg .
one and only one of the 100 varxables, the sequence numbex was

calculated by: sequence # = 16 x (card # -1.0) + (last col. § -

in fieild)/5.¢ These sequerce numberg give the order in which' the
variabhles appear in the ;ﬁput data. Further, suppose that any
missing data is coded 109, (1.E9 on the cards), that twelve months
separate to from tl' and that ét is. desmred that the variables’

appear in the analvsis in the order as listeqd in the above tab-;
ulation. The control cards shown in figure 8 can be used to
operate the program. '

»

P | : . .

V12 .2 100 1 | - (RUN CARD)
.25 11 9 21 29 35, 38 42 “45. 11 39 (DATA CARD)
(16F5.0) : . : . | (FORMAT CARD)
&f?'.. ) e ) ' l " |
Figure 8.  Control cagds with FORMAT for all variables p

_The RUN CARD inditates 12 variables in the analysis, 2 extgenous
variables, 100 variables accounted fqQr by the FORMAT CARD, and

formatted data with one .FORMAT CARD. Default values for the
other parameters on the RUN CARD are assumed by the program.

_The DAPA CARD lists the sequence number of each variable. The

seguence numbers appear in the order .in which they will be used
for the aﬂ%ly51s. -The FORMAT card indicates the FORMAT of each
of the five cards per case. FORTRAN assumes the game FORMAT is
to be used. for each -card. The FORMAT indicates five column
fields with the decimal plated to the right of all diglts.
Dec1mals punched on the card override the FORMAT.

Alternatively, the cards in figure 9 accompllsh the same
purpose. In this case, the FORMAT CARDS account for only the
twelve variables to be used in the analysis; hence the default
value can be used for parameter 3 on the RUN CARD, seiilnq

-2
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12 2 2 e B T “(RUN CARD)
1 2 4 3 516 7 8 1& 11 12 9 (DATA CARD) ,
(5X,F5.0,10X,F5.0,15X,F5/0,5X,F5.0/20X,F5.0,35X, : (FORMAT .
F5.0/10X,F5.0,10X, 2F5.0,20X,F5.0,10X,F5.0//30X,F5.0; CARDS)

I . . :

igure 9. Control cards with FORMA? for variables  ~ -
: in_ﬁprrent analysis . :

. 8 :

AV parameter 3 equal to parameter 17\ This illustrates the point
. that the number of. variables accounted~for by the FORMAT should ®
be the value of,parameﬂe;hgvf Note addo, that 'the variable se-
guence numbersra%so‘reflect the sequence number of each vari-
-able which is/%s ablished by the ¥ORMAT.CARD. .~ ' B

If the data were unformatted, the first alternativefis aﬁ-

'propriate; except that parameter 4 on the RUN CARD should be
.zero (or blank?i\:zi-the FORMAT CARD should be omitted.

ey

System Informatidn cards S -~ Ct
o

The system cards required vary among nstallatié;s. The
program described here was written and tested on the -AMDAHL
system at the Instructional and Research Computing Center, Ohio
State University. The AMDAHL works likeé an IBM machine in most
important respects, including the main features¥o6f JOB CONTROL
LANGUAGE (JCL) used by IBM. The. description of system cards
given here is c~nfined-to the required JCL; it is assumed  that
users know or ! “ve access tq general rules for JCL. Users of
systems not accepting sct, must consult with pérsonnel of their . .
facilities to-learn about the required system cards. »

A schematic view of the type and élacement of JOA\CONQ%OL
ca.ds is shown below. o S

JOB statement

EXEC statement :
' DATA DEFINITION statement for ‘FORTRAN program K

[FORTRAN program deck, followed by a = N
card with /* in cols. 1 and 2]

DATA DEFINITION statement for input data

[input data, if on cards, followed
by a card with /* in cols. 1 and 2]

DATA DEFINITION statement for program CONTROL CARDS

[Program CONTROL CARDS, followed by a card
with /* in_cols. 1 and 2)° -

Y

£

- f . »
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If the data are.on cards the last twp DATA DEFINITION (DD) cards
~ can be in reverse order. The information not in brackets is .JCL;
- the bracketed information is not JCL. The JCL cards are describ-
: ed below in the order listed. ' :

-

' The job statement takes the following form

h

—— P .
-

//Jobname JOB operands « . .,
Fi % .
The double slash alwaYs appears- in the first two columns of all
job control cards; no spaces may, appear.except where shown. .» The
. jobname is a one-to-eight character alphameric name generally
_selected by the user. 1t must begin with an alphabetic character
- or §.' Some 1nsta11atxons may supply the job card, or the -first
.  card of two or more cards required to complete the job statément.
- (When A JCL statement spans more than one card, the last char-
actet ‘on all but the last card of the statement is' a comma.)
.The operation "JOB" must be punched as is. The opérands vary
~ according to the job and installa ion.

g The execute (EXEC) etatement'takespthe following form
~ //stepname EXEC procname,operands '

The stepname is an. alphameric name of up to eight characfers
supplied by the user. It may be omitted, but one or more blanks
must separate the // from the EXEC if the- stepname is omitted.

- ' The EXEC must be punched as is. The procname  refers to the
name of a catalegued procedure supplying JCL for the FORJTRAN
program. ‘'Procedures may vary among installations. Operands
are optional and generally can be'omitted. An exanple with
stepname STEPl, procname FORTRUN, and no operands follows:

»

~ //STEP1 EXEC FORTRUN

The DATA DEFINITION statement for the FORTRAN desk|%akes
the following form: .

. *

//ddname DD *
) v

It tells the computer that the FORTRAN deéck follows. An example
using FORTRUN follows . .

//STEP1 EXEC FORTRUN
//CMP.SYSIN DD *

»

where the ddname is CMP.SYSIN.
!
N / The DD statement tor the input data takes the following
form if the data are on .cardk:

f ‘ .' ' k' ,
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//ddname on *._

where ddnam2 is the data-definition statement name and depends’
on the catalogued procedure. FoOr FORTRUN, the following state-
. ment is coryect:’ . s -

//GO.FT11F001 DD

* ' The eleven followéngAFT designates the unit number and should
match parameter 4 on the RUN CARD. it need not be eleven, SO
-Jong as it mgtches parameter 4/and is not the same as unit num-
-bers designated /for READ, WRITE, and punch by the catalogued
procedure. Uni¢s 5, 6, and 7, respectively, are typically re-
served for thes operations. .

N : If the data are stored on tape or disc, the * following the
. - "DD" must . be r plaoed with information describing the location. .

« . of the data, such as the data set name (DSN) and DCB infotma-
N tion. The vayiety of such information is too great te permit

: ~( ' description re. In order to create the tape or disc file,

- the user mustf know the required informatidn that can be used to6
, aceosa the d ta by gpxs program. : , . R

The DD statement for the control cards has the 'same gen-
eral form ag that for input data on cards. This general form
xypically assumes the speo;flc form of :

. 7/GO. SYSIN/DD * Jor : |
- .//SYSIN DD' o .

A coﬂplete run using the FORTRUN procedure and unit 11 for
input‘daté on cards is illustrated below. .

. //A1800 Jbs REGION—200K TIME=]
0 ' //STEP1 EXEC FORTRUN
" //CMP.SYSINDD * . ' . }
. . FORTRAN prdgram ‘ . ] :
/* ‘ - ‘ . -
//Go rT 1F001 DD * . : B .
S ' data cards ' : . - .
e /* : ' o . - .
| //Gofsxsxn DD -* o . . ‘ :
. "7 GQONTROL CARDS - ' . { A
VAR " . S v
A . " .

The double ’ slas% in the first two columns of the last card des-
ignat‘g the end-of the job. Note that t" ° jobname is Alooo, ‘and
two, rands are specified, indicatisg . K bydes of storage
N ‘and a one~m1nute tlme limit for the job. ) “
"It should be noted that the. program assumes that unit 5 is
reserved for readzng control oards“and unit 6 for printing. 1If

s

-
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-the catalogued procedure makes a different alloeation of unit °©
numbers, the following DD statement should follow lmmediately
the program deck: )

v
-

*//step.FTO6FO001 Dﬂ’SYSQUT=A,DCé=RECFM=FA 0 -

and. the following card 'should précede-the.CONTROL b&RDS:

t

//step.FTOSFO0L DD * ~ Lo
where step refers to a step name (e g., GO) within the catalogued
pfbcedure. .

Program Output

There are four types of output generated by,the programs,
each type beginning on a new page of the printaut. These four
types are: (a) a record of the information contained on the

» CONTROL CARDS“and default values, (b) univariat: and bivarlate -
statistics, (c¢) OLS multiple regressioh statist.ics, and (d) es-
timates of parameters of the differential .equasion. These four

. types of output are described briefly below. ' ‘

Record nf control cards.

- A sample of this output is shown below. The output is
labeled with terminology closely matching that used in this
section. Most of the output is self explanatory due to the

RUN=CARD PARAMETERS == .

NY 8
NIV = 2 -
MR = 8
1TYyPp = 0
. = 12 .
] T = 12.0
, MIS = .1000E+10
R VARIABLE SEQUENCE N
; g’ . » DRDER NUMBER 3 .
' i 1. * I:
.3 3
4 . &
5 5
g
N -8 5 ¢

. : ' - i _ . @ L.
°  labels. Parameters of the, RUN'CARD are clearly labeléd. When
Befault values are used bz}the program, these are printed. Note

=)
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that informgtién on the DATA CARD(s) is given_undefﬁthe column

titled "SEQUENCE NUMBER." - The correspondiny order of the vari-

able used in the current run is printed in the column just,td' ' ..
- the left,  labeled "VARIABLE ORDER.Y The FORMAT CARD(s) is(are)
' ' printed exactly as it(they) “appear in the ipput. In the example,
. M _there is no FORMAT card. o o -

Univariate and bivariate statistics

, .- _Univariate statistics are calculated for each variable by
.including all data present for that variable, and bivariate
statistics dre calculated by indluwding all cases for which data-
are present on both variables in'the pair. Thus the sample size
—: and univariate gtatistiés may dfffg§ for a given variable de-
., pending on the Sther wviriable with which it is paired. Conse-
- . quently, the format for writing the univariate and bivariate
- -~ statistics allows for a different sample size, and univariate
' statistics for each variable pair. The following informatior
is printed for each variable pair. A sample of_the output is
reproduced on the followihg page. . . .

< A

‘- - ~

. " Column , .
‘Heading Content
. ' variable order number of first variable in
I [y ’ the péi& - L ) X
» J Variable order number of second variable in .
! | " the pair - ' - .
' - N(I,J) Number of observations present for variabie
' ‘ - pair (1,J) - *
. XBR(I) Mean of variable I when paired with variable
. - J K :
| XBR{J) . Mein of variable J when paired with variable
] I “
SD(I) Standard devia .ion of ‘variable I when paired
: ' *» with variable J g L
< 8D ! . gtandard ‘deviation of variable J when paired
‘ . with varidble I
cov(1,J) ~  Covariapice between variable I and variable
L, J using all cases in which information is ¥
' present for both variables, the number of
. such cases being N(I,J) ‘ ‘
R(I,J) Correlation between variable I and.vafiable
. | J using all cases in which informatian is .
- present for both variables,,R(I,J)=COV(I,J)/
(SD(1) *sSD(J)) e

\D
(¥ |
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UNIVARIATE AND DIVARTATS STATISTICS, N =

R{I4J)°

COViT.d)

K SD(1) - SO{J)

XBR (J)

XBR(1)

NilyJ)

)
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OLS multiple regressign ,‘ A T
, ‘ T A AL A .

The OIS regressioﬁ yields the matrix P =[A*, B*], in stan-
dardized and unstandardized form. It also calculates multiple
correlations. “The output i3 labeleﬁ in a f§irly.clear'manner.
The first line of output includes the total sample size (N)' the
degrees of freedom for numerator and denomipator of F ratios

associated With each regression, and error code (IER). If IER = .°

sion did nbt occur, possibly bgcause the correlation.matrix. is:

0, calculafions proceeded ﬁorqéily.“ I1f IER =*-1, matrix inver-
ER> 0, excessive rounding error
L g < g

not positive definites If I
may have occurred. h

The regression coefficients (sféndardized and unstandard-
ized) are arranged so that dependent variables (DV) Cross rows
and independent variables cross columns, as labeled. The in-
‘teger nimbers 'to the left of each row and at the-top of each
column of these matrices’ give the variable sequence number (not
the order number). A sample of the output is shown on thg fol-

lowing page, - ) o
’ ! +

X / . ,
’ : P S ' 4', o \

-

Differgﬁfiai equatiens output

' There are three typés‘of-éutput related to the differential
equation, each type beginning on a new page. First,; the un-

standardizZed matxix P is subziyided into its component parts
S

A* and B*, 'and these componen$s, are printed without changing
their value§.. A sample\cf the output is reproduced below.
- - & . -
~ N . .A,
MATRIX OF A® COSFFICIENTS -o
[ .
0

l

- . ] 1 2
%" 6 . 40.759 I eB86ETONGS .478276-02
7 112220 ~ 7°10878D-01 | ~-.228720-01 -
_ 8 185,87 -1272970-01 4, =2 16887
‘ MATRIX OF B% COEFFICIENTS == %
! . 3 . & L3
6 * 429262 .360380-01 ~.27081D-02
7 -232118. 138055 ~0 1402001
g  ~i,392% 154887 234361

&
()

The matrices gﬁ'énd B* are labeled in. thg outpu® Again,

A* and‘_yo for E*) cxags coluNns. The integer numbers beside

-~ dependent variables.gross_rqgi and independent variables .(x for
um

& each row and ~above eaéh col

. identify the variéblé sequerfce
number. The "0" above column(pne of A* designates the inter-

-

CEEtS «
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N #

N =

100 NUMERATOR DF = .

OLS MULTIPLE REGRESSION '

STANDARIZED REGRESSION COEFFICIENYS~-~

oV INDEPENDENT VARINBLSS-- 3;
8 —0.063% 0.21629 0.641 28
8 ~N,06R135. ~0,26273 * ~0.07226
¥

~n&PJA~oAnoxzeu REGRESSION COEFFICIENTSI-

DV INTERCEPT
& 40,759
7 11.220
8  JBS.A7

L MULTIPLE RS~~~

6
0.70729

¥

INHEPE?DENT VAnxaagsg -

~e866170-03 «%7927D-02
«106740-01  «,228720-01
-.272070-01  -.16837 .
. ,
‘.-‘ Y ~ - g ¢
0.80607 0.82621

5 DENOH!NATD&\DF =

*

§f£96 RETURN CODE FROM INVS, IER =
A%} -

1

y
& - 5 o
D0.29500 -0.,20167
0.692862 «~0.31497
Qa12642 0.88035
'
. v
3 & 5
e 29282 «356038D0-0% -, 270810~02
~e32118 « 28055 ~e 14024001
~1.3928 244887 34361
3 o \ .
) P
1.
\ )
) / »
. ' N -
) -
/ .
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Tne eigenvalues and eigenvectors of B* comprise-gthe second

.type of output related:to the differential eguation. A sample
of the output is shown bélow. ; a

o

.

: i ‘
REAL PARY OF EIGE?VALUES% OF B8 =~

' ‘ 1 2 3
« 26545 «26545 .38588 \
Y " IMAGINARY PART OF EIGENVALUES OF 3% - ,
| 1 ’ 3 4
% 0133‘6 R "0133“6 . ..0
EIGENVECTORS OF 8% FOLLOW. THEY ARE STORED SUCH THAT
- C G DIACENT VECTORS (KeK+1) ARE CONJUGATE PAIRS, THE KTH
COLUMN CONTAINS THE REAgN:ART. AND THE (K+1)TH CCLUMN
CONTIANS THE IMAGINARY PART -
RIGHT EIGENVECTORS =~- \\'
1 2 3 \
1 «174340-01 L45292D-02  =.32109D~01 .
: - 2  ~.12Pf540-01 L67781D-01 =.17795D-~01 /o
— . 3 .23198 -89314D-01 . 86900 /|
r, LEFT EIGENVECTORS ==
) 1 : 2 “
| 1 18.568 -2.1615 ~-10.358
2 -~2.1149 ~6,936) ~e29661
3 Qﬁ‘4275 ’-22190 076196 ‘ .
[3 '
1]
y The first row of output displays the real part of the eigenvalues
of B*, and the second row display5‘§he imagina¥y component of
. ‘ the corresponding eigenvalues. !
v Let A be a diagonal matrix with diagonal elements equal to
- the eigenvalues of B*, and let V be the maicrix whose columns
_are eigenvectors associated with A, then ' : ™~
B*Y = VA |
Assuming B* is diagonalizable, V is the matrix of right eigen- I
- § . vectors of B*, and (2'1)‘ is the matrix whose columns are com-

posed of the left eigenvectors of B*. The output labeled RIGHT
EIGENVECTORS gives V, and the output lapeled LEFT EIGENVEC‘I‘ORS '

_l).. )

gives (V

'The estimates of the parametef matrices of the differential

equation (28) (A and B) comprise the third type of output re-
lated to the differential eguation. A sample of the output -is
reproduced below. : '




)
*b T ‘ S
_ INTERCEPTS ¢ COEFFICIENTS OF PREDETERMINED VARIABLES A -
Ty ‘(XNTERCSPT INDEPENDENT VARIABLES -~ '
. AB 4692 -e24T7310~02 .94802D-02 *
L7 57,4748 «16312D-0 .39 :

8 375,44 ~«57782D- o{ .339129 o . K
COEFFICIENTS OF ENDOGENOUS VARIABLES, B -- _ ’ .
T - 6. VARIABLES = ' : o N

6 !‘17173 12628“ 556323 02 ‘

.7 -1.1504 -1.1618 - .48 798D-
8 =3.4310 \: 07 Z1%8aas0 0t

. . . [] .
. N \‘ .
B e ’ *

The format of the output follows precisely the format for

' pg}ntlng A* and B*. The iptercept and exogenous variable§ (x)

agpear gcros& the columns of A. The t (TD) endogenous vari-
ables appear across the golumns of B, and ty (T ) values var
across rows, as labeled. T

LS

«

.~

Data Transformation

‘“ A subroutine named DATA is called after each line of data
is read,. This subroutine can be used to carry out data trans-
formations. The general use of the subroutine is described be-
low, and an illustration is presented in which varying m;ss;ng
data codes are recoded to a single value. -

If no data tzﬁisformatlo re desired, the subroutlne is
defined as follow

£

SUBROUTINE DATA(X R, IPK)
REAL X(1), R(1) -
'INGEGER*2 IPK(1)
DO1J=1, M
X¥(J) = R{IPK(J))
1 CONTINUE
RETURN ' \ )
END‘ AN -
This version of DATA“is included in the standard version of the
program. package, and nothing need be added if the user desires
no data transformations. The varlables are defined as follows:

. . . . ¢
X =.a one~dimensional array which receives the values of
the variables to be used in -the current analysis

r

o \ , v 104 ‘
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a one-dimensional arrav which contains values of all
variables in the data set, or all variables accounted
. for by the FORMAT statement

M = a scalar giving the number of variables to be used

in the current analysis

a one-dimensional array (length two integer) whose
elements contain the sequence numbers Qf the variables
to be used in the current analysis. ‘These are listed
in tRe order in which they appear in the analysis on
the RU‘N CARD :

n-

IPK

The values of R, M, and . IPK are passed to DATA by the subprogram
which accumulates sums for. the correlation calculations; the
variable X is feturned -to the calling progrum. ‘

o« . Lo te

If data transformations are desired, one may replace the

above version of DATA with a user-written version., The user-—.
written routine must contain the same variables in the call}ng
l1ist that are shown above (ije., X, R, M, IPK) and must define
each element of X. An example of a possibla ‘user-written ver-
sion with six variables in the current analysis is shown below.
The example recodes a variety of missing data codes to the
standard value of 102 (1.E9), \

ot

. 1 § )
SUBROUTINEMDATA (X, R, M, IPK) \ ‘
REAL X(1), R(1l), XMIS(6)/9.,99.,9.,9.,9.,999./
INTEGER*2 IPK(1l) o
DO 1 J=1,M e v
. X(J) = R{IPK(J)) , .
1 IF(X(J).EQ.XMIS(J)) X(J)=1.E9
RETURN . . 4
END R
' H , . ) \\ f —
Note that the array XMIS contains the missing data codes for

- each X value. These are defined by the declaration statement:

REAL X{1), R(1), XMIS(6)/9.,99.,9.,9.,9.,999./. .
] "; ‘ | N
. ‘ L

¢
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CHAPTER 5 .-

ADDITIONAL INTERPRETATIONS OF CHANGE COEFFICIENTS

The material in the preceding chapter supplies the back-

ground necessary for a more thorough examination of substantive

interpretations of differential equation systems than could be

presented in chapter 2. There are four topics to be examined.

First, interprgﬁations of the coefficients of .the differential

equation (32) are compared to interpretatﬁcnslof the correspond-
4ing integral equation (33).. Secondly, the time path of the
career expectation variables implied by the differential equa-
Stions is examined. This discussion includes consideration of
equilibrium .and oscillating systems. Thirdly, a method of
standardizing the coefficients of the differential equation sys-
tem is presented and the advantages and disadvantages of inter-
preting the ,standardized coefficients are discussed. Finally,

N @ brief présentatiop discusses a generalized correlation for
¥ assessing accuracy of forecasts. . S .

Coefficients of the Differential Equation and

Cross-Lagged Regression Coefficients

The OLS estimates of A* and B* in the integral equation (33)

, are cross-lagged regression coefficients. It has been suggested
- that cross-lagged coefficients be used to assess the relative

effects of one variable on another (e.g., Heise, 1970). In the:

present context, interpretation of effects by reference to the

parameters A and B of the differential equation system (32) is

. an obvious alternative. As noted in chapter 2, conclusions

about causal relationships may depend on which coefficient

matrices are used in the interpretations.

~

To facilitate the discussion, some of the basic relation-
ships are reproduced here, and the notation is altered slightly.

where

(%0)

(51)

1%

<

e

SSPUBVNERIRENVS

y = AR + By + u ' (dif ferential eguation) ~

—

Yy = AX(E)X 4 g*(t)x0“+ u*(t) (integral equation)

(1 + L) x 1 vector of exogenous variables
= K x 1 vector of endogenous variables

= y at time t

K x 1 vector of disturbances

11v



u*(t) = K x 1 vectpr of disturbances _ . , _(.

A=Kx (1 + L) matrix of coefficients of the excgenous.
variables - '

B = K x K matrix of coefficients of the endogenous
variables N S '

-~

A*(t) = K x (1 + L) matrix of coefficients of the exogen-
ous variables for a discrete interval of time

equal tdb t
B*{t) =.K x K-matrix of coefficients of the endogenous
& variables for a discrete interval of time gqual
to t ' "

RN 1 .
‘ A}

The matrices A*(t), B*(t), and the vector Q?(t) are denoted herxe

explicitly as functions of the time interval t between

t, = 0 and ty = t; the fact that these elements depend on time

is an important aspect of their interpretation. * The following
relationships hold between A, B and A*(t), B*(t).

(52a) B*(t) = eBt

(52b) B = [1n B*(t)]/t
(53a) A*(t) = (BF - 1)B7'a,s  if [B| # 0 *
(53D) a=8(eE" - n7lax(v), if [B] # 0 « .
(54a) A*(t) = [(e2F - _I_)\_rli\_l'lg(l’ + t-gzv(a)]A. if)' |B] =
(5.4fp) A= (2 - py Wk ey 1_;'{1-_),

if |B| = 0

In a sense, the coefficients in A and B are fundamental o
the theory because they express the instantanedus impact of x and
y on changes in y over time. Also, A and B are simple to inter-
pret because they are constant over time. In contrast,.as re-
vealed by equations (52a) - and (53a) or (54a), A* and B* are

‘matrix functions involving time. Consequently’, simplistic—eon-

parisons-among entries of A* and B* to index relative -¢ffects of
different variables should be ayo{ded. To see why, examine the

relation B*(t) = egt; this implies that : '

(54) Br(t) = (B*(1)]F % .
? . " Iy " .0

Ay




b
a

where B*(l) is the coefficient matrix of the integral edquation
over a single time period, say one year. Thus, for example,

the matrix of cross-lagged regression coefficients over a two-
year interval is just the square oi,the matrix for a one-year
interval. From this fact alone it ‘can be seen that Eﬁg.elements
of B*(t) for different t do not bearra simple relationship to
éach other. ‘

Consider a four—variab{e example with the cross-lagged co-
efficients for a one year interval shown in the-followipg matrix

'

a

B* (1) = .6 .4 .‘5\ .13.
. .8 .11 .4
.05 .1 .9 - .5 SR
30 .01 .4 .

If the same System were studied over a two-year interval, the
cross~lagged regressicn\:fuld be

‘% \
B*(2) = [B*(1)]° = [.504 .611 .846  .579
o .406  .735  .447  .681

.245 .195 1.046 .847
412 .175 Jol .733

Clearly, interpretations drawn fromt B* (1) would differ from
those based on B*(2). First, observing®B¥(l), one would con-
clude that the effects of the lagged value of each endogenous
variable on its curtent value aominate the system because in
every case, the didgonal elements of B*{1l) are substantially
greater than the off-diagonal elements. This observation does
not hold for B*(2), however. 1In fact, observing B*(2), one
mighggbe impressed by the fact that "effects" othex than-those
of th€ lagged endogenous variables on themselves are so strong.
Also, the relative magnitudes of the coefficients have shifted,
the most dramatic: example being the change in relative magnitude
of the (1, 4) and (4, 1) elements: for the one-year interval,
blz(l) = ,13, and bzl(l) = .3, the difference being .13 - .3 =

-.17.  For the tw.-year interval, the direction of the differénce .
has changed, b{4(2) = ,579¢ and bzl(z) = .412 ,%g0 that the dif~

ference now is .579 - .412 = +4.167._  In the first case, one
would conclude that the effect of variable 1 on variable 4 far
exceeds the reverse effect:; whereas, in the second case just the
opposite conclusion is suggested’ Numerous other changes in the
relative magnitudes of the coefficients can be observed when ~
comparing B*(l) to B*(2), but most are substantively inconse-

" quential. “One interpretution of the coefficients in B*(t) is

108 \
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L\ that they index accumulated total effects -- indirect plus di-~
rect effects -- over the time interval. .
. ‘IObserving‘equatiQn (5?a) or (54a) it is easy to surmise that
the conclusions regarding interpretation of B*(t) extend to in-
terpretation’®f A*(t). For the sake of brevity, however, no
example is presented for A*(t). '
. ; . ,
The main conclusjon to be drawn from this disgussion Is not
necessarily that the coefficient matrices of the integral equa-
tion hold no interpretative value. Rather, interpretations
should proceed with caution in full knowledge of the manner_ in .
which A*(t) or B*(t) depend on time. One useful interpretation
of these matrices is as -change coefficients of a difference equa-,
~ tion over a finite time interval, t. T9 motivate ‘this inter-
. pretation, subtract yo from both sides\gf equgtion (51):

-

“%;“m_' (5SN y, - ¥g =.§*(t)§”¥‘IE*(tT;;:ITXQW+‘E?(t7'w."“ SRR

* -

1 e

The left sidé‘cf this result is a change vector in y (Ay = !é - ¥q
over a_finite time ipterval, t. It can be seen from thé right -
side of the equation that the coefficients of x and off-diagonal E

coeffigients of Y, are precisely’ those of the integral -equation |

- {51). The diagonal cqefficients in the change equatipn can be
calculated simply from the diagonal coefficients in the integral
equation. If the time interval t is taken to_the limit of zero
and division:by dt is effected, equation (55) reduces toy the -
differential equation (as required by all solutions “to Qifferen-
tial equations). Thus, one view'of the differential equationf isg
that it is a special case of the Jdifference equation. The ques-
tion therefore may be raised: ~why considet the coefficients of
the differential equation more fundamental than those of the .
integral equation? The answer rrests with the initial hypothesis
that effects are instantaneous., If'one doubts the hypothesis of
instantaneocus effects, then the parameters of the differeptial
equation might -not be viewed as fundamental. Even if the hypoth-
esis of instantaneous effects is not tenable, ‘however, it does
not necessarily follow that é*?t) and B*{t) for some unknown t
give the fundamental parameters ef the system. A viahlé alter-
native may be to.alter the éunétional form of the differential
equation system, thus retai ing the conceptual advantages of
continuous rather than discrete time. '

Time Path of Carcer Expectations .
\ v ’ e’ J
) Omitting the disturbance term from the integral equation
(51) leaves an equation that can be used to forecast the values
of all career expectation variables and all individuals aty aqy
. point in time: ' .. + &‘

N 109 !
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(56) y, = A*(t)x + BA(t)y,

where y, is the'vector.of forecasts. ' The .time paths of the
elements of Ye expresses the dévelopment over time of career ex-

catxons predicted by the theory; the patterns associated with
u*( are random and not accounted for by the theory.. The pur-

. Pose of 'this section is to examine the behavior of the predicted

vector over time.

The behavior of the'time path of predictiéns can be studied

readily if one substitutes the expre531ons for A*(t) and B*‘t)
in terms of A and B into (56):

) , ' -

° ‘Bt ‘Bt

e <

(563) X = (e=T - IIB Ax - YO *E.h’ Fe) S
~ . . ‘ot .
{(56b) xt = B l§§ + eEF— le + e§tx° lE!#.o

These results hold if B is full_rank; if B is not full rank:

(s6c) y, = [(eBF - 1)v1A vl

. ’ 2 - -
|B|= 0

(séd) it_' =-(\11 (l)Ax + t- 2!(2)453:_)
+ Ry arty M hax + 2%, || =

where, as before, ﬁl is the submatrix of A containing nonzero

’ V‘l) are the submatrices of V gfl, respectively,

associated with Al’ and Vz, V( ) a}e the submatrlces cf V, V -1

respectively, assocxated wi{h the zero roots of B.

roots, !1

’

It is clear from equations (56a) through (56d) that the
time path of Y¢ depends in an important way on the behavior of

egt over time. If ebt grows without bound, so does xt,'ir~

respective of whether\h is full rank. If-'eEt stabilizes or goes
to zero over time, the predicted vector of career cxpectations Y¢

/ . ‘ & " ) ’
110 :
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i stabilizes, if B is full rank (|B] #0). 1In general, Yo grows

linearly withwit bound if-B is singular’ (|B| = 0). This is clear: .
by observing the term in (Sﬁd) which is ‘linear- in t, (i. e.,'w y .

te QV V(z))Ax) ©If all exgenvalues and eigenvectors of B are
real numbers, then the followlng matrix representation it useful: . {

-
Ed
. ' S e \( _
- . . * ~
- +

Bt !gﬁt!-l | B \ E ,'w ‘
where A is the diagonal matrix w1th diagonal entries equal to
eigenvalues of B, and V is the. corresponding matrlx of eigen-
vectors. This result does not depend on A béing ‘real, but it' . .

=  does not yield so*much insight when A is‘complex.. When all . -
eigenvalués (A) are real numbers, it7is clear thatvggﬁ‘htabxlizés

e only if A < 0.

N \
#For general matrices (real or complex eigenvalnes), 'an al-
ternatlve developmgnt s usefyl. \ For this develo‘ment, the * . ‘ v
LY elements of e— ~ ?denoted by b:.]. A tedlous algebralc ar;{\u- o~ T
ment leads to the ellowing result. . ‘
) ¥ ‘ ¢ t 'I
\ A t ] : o L. o .
(57) br: = I¥,..e X sin(A t'+ 8.50) 8 ; .
ij 7oy i3k, 1k. igx’ . b S
. . |
) h L -
where - - ) Lo . ‘ | :
‘ kk = Epe kth elgenvalue of B and, 1n genef'£7\1§ a co@plé§ f
. number ; Ak;= ARk A F" thh 12 -1
Ny . , ,
. 7 k3,2 k3] -Jki 2 !
* Yiik \/[>(VR1k R ViikV1 \’ ¥ (lek R~ " VRikY1 ) -
\ . -
. - _ -1 S & I . k3 . N S ) v
. %k on _ tan (lek R T ’71v11k R.” VVRikVi ) &
. 4
Veik’ Viik The i, kth seal and imaginary parts,, respectlvely,
of the i,ktH ce;l in V (;1ght eigenvectors of B} -
. o -
ka], ij_‘)&he k,j5th real and xmaglnary parts, respectively, |
of the k,jth cell in v~1 (left eigenvectors of B)
: -1 i k3 K L ey .
w = 1 Af vpgvers # vpgyVy © 2 U ,
a _ 0 otherwise . - e ’ \
Kj _ S vk, Kj' _ ooy
N VRikVR © T Vrik'n T ViV ot VRikVr o~ = Or then 4 2 CApt
/ I ™ *
H . ! . . /l,
\ N 4 - N f ‘ «
111 - ’
. N / ’ i} "‘
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sq that, for Ak re?% ?ng has Yijke

! D s . ™

e . ‘ Do , k3
(The farmula given for §ijk does.qot define §, if ink R +

. _ . ijk
k3 = 0, but 5ijk goes to ¥lI/2 as this expression approaches
will be defined as -H_if Viikvg; +

4

VRikVI
zero. - Hence, Sdi

jk
VRikV §j =" 0, Note that if the kth root of‘B. A

1K’ -and VIJ are all zero, and one flnds

is rgai,‘thgn

.

k'

ST ki | s ‘
.\5 Y. J L:: v .kV ) . —.
” *?k Rik'R }for A, a real number ,

Gljk = '.tn/z ‘ o : .
' Aot ' ,

Rk _. .

sin iyt * Oy

N

= §R k“Rkj Ankt - If ail roots of B are real, (57¥ sﬁecializes.c
"to :
. . . k 1 . . i
2 (52a) b;j-=.SMikeAktv ), if all A are real
k - ‘

N

-

L

Observing (57a), 1t is clear that if the maximum Ay (A real) is

-

p051t1ve, every element of’ egt = B*(t) -grows exponentially thh—
out bound. If the maximum Ak is negatxve, each element Of
éét goes to zero’ by éﬁ exponent1a1 decay. If maximum Ay is zero,

the elements of egt atabxllze over time. Referring to (57),

these*conclusions dlso apply if one or more Ak is complex; here
the critiecal varzable is the real part of AK ‘ Alsc, due to the
sinusoidal functlon sin (Axkt + §. k), the entries of egt.5§—

gllate over time. —— s

combxnlng these dbservatlons about ghe behavior of the
elements of egt with equatxéns (50) permit some canclusions re-

‘garding the- t1ﬂe path of the career’ expectatlon variables:

4 .
- k. If the réal part of "the 1argest eigenvalue of B (A mak)

is nedative, then from (5658 ane sees that the equllxb~z"

rium of y, is =

i .. ' .
I d ~ s ‘(l ’ . -
(equil.) = -=(B"A)x S
-~ zt q ¥ ) s, (E '—) - o

jh"i
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For Ag .. < 0, therefore, individuals gradually revert -

to a set of career expectations determined by theis .
status origins and mental ability. If AR max 1S Dear

zero, however, this may occur so slowly that, by adult-
hood, career.expectations may still be far from equil-
ibrium. L ! _
. . i e
1f the real part of the largest eigenvalue of B is
positive, career expectations increase without bound.

Again, if AR max is close to zerof the gFowth may be

‘'slow_in the short run.

; - If the largest eigenvalue of B is pfecisely zefo.‘g is

singular and one must reference equation (56c) or

(56d). From either of these equations it is clear that -

R max

for A = 0, career expectations, in general, grow
linearly without bound. '

I1f any of the roots (Ak) of B are complex, an oscil-

lation is introduced into the time path of career ex-
pectations. For example, the level of job status ex-
pectations waxes and wanes over time. The amplitude
of the oscillations depends on the size of the real
part of the eigenvalue; the larger the real part of
the complex’' eigenvalues, the larger the amplitude.

Irrespective of whether B is full rank, if Ax = 0, then
the time path of y, is egtxo. This means that the time

path of career exﬁéctations does not depend on the
status origins and mental ability of the individual.
This is not & general conclusion, however. For some
matrices A there may be no vector x except x = O that
makes Ax = O. In fact, AXx =0+ x =0 generally if ,
there arg more endcgenous (career expectation) variqbleﬁ
than exogenous variables (e.g., parental status vari-
ables) . ' Since the first element of x is fixed at 1.0,

x cannot be zero. If a nontrivial (nonzero) solution

to Ax = 0 exists, it means ‘that there is at least one
peculiar pattern of the status background and ability
variables that frees the time path of career expecta-
tions from status backgreo.nd and ability. A particular-
ly interesting case ariscs when the maximum AR is zero

but its imaginary part is nonzero. In this instance,
if Ax = O, then career expectations tend to a periodic
function, i.e., the career expectations wax and wane

113 , . ‘ ’
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indefinitely with a constant amplitude betwegn the high

.\\ . and low extremes. It should be emphasized, however,

ot ' that this can happen only for individuals whose ability
and status background follow the pecgglar pattern satis-

fied by Ax = 0, and the periodic pattern is impossjble

unless A 1s such that a nontrivial solution of Ax = O

exists..

Standardization Procedures_

Y
#

Since few of the variables used in career~decision making
research are measured on a "natural® scale, i.e., one that is
universally familiar, path analysis applications to career de-

. cisions frequently are presented in standardized form, to fa-

f . cilitate «comparisons among coefficients associated with vari-

- ables measured on different scales. Even when variables mea-

.sured on "natural" scales are the subject of study, standardized
coefficients can fascilitate interpretations, either as a sup-~ ‘
plement for the unstandardized coefficients or as the primary 0
focus of attention (Wright, 1960). Consequently, it may be

useful to present a standardization procedure for the differen-

-tial equation system. . .

The standardization discussed in this section is confined
to linear functions of single x and y-variables. Note that the
usual standardization to zero mean and unit variance is such a
linear transformation, but we wish to study morc general stan-
dardizations here.

. If one makes a linear transformation that is constant over
time on eacir X and each y variable .to effect a standardization’
the structure of the differential equation remains intact. To
see this, define the following linear transformations on x and y.

' ey s sy ' \
\
X = P«x(?i * cx) \\

where Dy is an arbitrary dgagonal matrlx of order X, D is an
arbltrary diagonal matrix of order L + 1, ~y and c,r are re-

spec:;vely, Kx 1 and (L + 1) x 1 vectors; Ek* D, c_, and‘gy

. are constant over time. Tn terms of the original variables,
' the differential equation is written

(62) dy/dt = Ax + By + u

Now, since Dy and c, are constant over time,

| SN
o
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unity and, the  first element ofg_x is zero, so that the first- -

dy_l/dt =) dD (y\+ e )/dt-,

=Dd at '
Dydy/de | L

Thus’ ( ' ; , K \ {

2 b
a

dy,/dt = D_Ax + DBy + D _ o - -
- yAD l Ex ,}_\_(ﬁ_ ' c ) =~ Eyég_x + DyBDle (l + L ) .
- DBc + Du .o
~ “‘y_"y P A !

d,/de = -(QBe, + DoAc,) + ’(Ey"ig:-cl')k-’iim+ (o, B, Dy

where u, = gyg..,Ndw, assume,thatrthe (1,1) element of D_ is-

——

9

element bf X, is also unity. Now, let the' first column of’ )
t.f,
DyAD -1 be added to ~(D ch2+ D, Ac ) and denote the resulting-

sum by ao Denote the rem 1n1ng L columnsg of DYAD -1 by gl, and

form the supermatrix Al = [go, gll THe dlfferent;al equation

system for the standardized variables can now be written

' 4

(63) dy;/dt = A x, + By, ) )

with B, Ey BD,~. This abv;ously has the same form as (62);

hence, it is concluded that 11near standardizations of single
variables in the system preserve the structure of the system. .
It should be emphasized, however, that this aggument does not -
justify standardlzatlon of all variables in the regression-

analysis to zero'mean and unit variafce. " The t .and tl endo-

genous variables are both used in the regre551on ‘analysis. " If
both are standardlzed the assumption that Dy and cy are fixed

over time is v;olated, since the mean and standard dev1atlons
of the y variabbles generally will shift over time, the Ey and

cy applied to y values at t, would differ from those for t

1
A judicious choice of the standardization constantslgy,
Lo iy and ¢ is required in order to simplify interpretation
of the standardized coefficients. For D and C therg is
little difficulty. Since the mean and variance of the x vari-
ables are fixed in the analysis; D, and c, can be defined by
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at time T.

? )

the means and ®tandard devxations of x. Let the (1,1) element
of D, equal 1.0 asd the remafnlng diagonal eleménts be defined

byithe rec1procal of the standard dev1atlonsiof X. Also, let
the first element of Cy be zero and the remaining entries be

defined by the negat ve of the means of the correspondlng XS,

Then X, is thq vector with element one equal to 1.0 and the re-

malnlng elements equam to standardized X varlables with zero
fmane and .unit 'variances. .

. For the endpgenous variables, choice of the standardization
constants is somewhat more ambiguous than for the ekogenous var-
iables. For the exogenous variables, the strong precedent of
standardizing to-zero mean and unit variance was followed, but
as noted above, this opiiion is not available for the endogenaus

gariables because it violates the presumption that Dy and’ cy

\are constant over time. Nevertheless, a procedure analogous to
standardlzatloq to zero means and unit variances might be used.
One might pick the means and standard deviations Qf the y var-
iables at a specified point in time, say T, and use means and
standard deviations calculated from the y variables at the se-
lected time point. The transformation constants would be

D = —l, and'cy = -E(XT), where §T is a diagonal matrix with
dzago al elements equal to standard deviations of y at time T,

and Ely,) is the mean (expected value) over observations of y

-
The selection of T is arbitrary. If the system has a stable
equilibrium, T may be set to infinity and the equilibrium means
and standar8 deviations used o define the standardization con-
stants. Interpretations could then be made in terms of movement
toward the mean at equilibrium. If the system has no stable
equilibrium, then one might set T = to and interpret changes

- away from the medn at the startlng point. Other options are,

of course, defensible. One may set T to the senior year in high
school and interpret changes toward the mean during the senior

year.

As with path analysis, one shoiild treat the standardization
chiefly as a heuristic device -~ cgrtalnly, the relative magni-
tudes of the standardized change éOefflcients (A, ) can be

shlfted at will by choice of the standardization constants. There
is no clear recason other than precedent for using standard devia-
tions rather than some other measure ©f dispersion such as the
average deviation, empirical range, or permissible (theoretical)
range of-each variable. Similarly, choice of the mean rather

than some other measure of central tendency is based primarily

on preccdent (see Hotchkiss [1976] for an extended discussion of
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. this issue). The choice of ¢, Sy affects only the intercept,
but the selection of D, Ey affects the relative magnitudes of
the change coefficients associated with the va?gables., N .

[~}
Forecasting and Measures of Asscciation

The integral equatiom (51) can be used to estimate the par-
ameters of the differential equation, as described in the pre-
ceding chapter, or, once the coefficients have been estimated,
the integral equation can be used to forecast or predict a
value for each endogenous variable and_ each case, given initial
observations on the vector of endogenous variables (yo).vKua-

tion (56) is written explicitly as a forecasting equation. when
oLS is applied“to“equatlon*(Sxima“murttpte*turréiaftﬁﬁ“ﬁf“IEE""“'
sqifare (R-square) for each equation is" a standard measure of
association and is a normal part of the output of most multiple-
".regression computer programs. when the integral equation is

used for forecasting, however, there is no standard measure of
assaciation. The purpose of this section is to discuss a gen- -
eralized correldtion that can be compared readily to correla- . o
tions calculated from least-squares regress;?n.

- f

o 8
—par

As preparation for défining a goodness-of-fit measure to
assess the accuracy of forecasts, it is useful to review the
interpretation of R-square as §,proportional—reduction—0f~

error (PRE) measure. Let . : .
K | |
= + fp.z.,. + vV ¢
Y Po ) ]-_:i)] J ! o

where y ié the dependent variable, the zj are K indepegéent ,

variables, v is the error, .and the ps are censtants. The fol-
lowing formula for R-square offers considerable hguristic appeal:

”

(64 R =1 - si/s!

wheré Rz.denotes the square of the multiple éor;elation'(R—sqdarg),
anﬁ’si, ss indicate the variance of v and of vy, respectivelzﬁ

Tht OLS estimates of the ps insure that the mean of v=1y - ¥ is
zero, where ; is the value of y éreaigted from the regression
equation. Hence, 52 is a variance gf the errors of prediction

v
from the linear regression: . s ;

A
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si = E(y - y)z, where E denotes expécted value.

¢

The denominator of the ratio in equétian (64) is the var-

L iance of the dependent variable: -
) . g Y
. ‘ 52'= Ely = é&)z ‘
7 y
\ y * . .

This var;a&ce can be lntezpreted as a measure of error in the
absence of information about the independent vdriables, where
the mean of ¥ (Ey) is used as a constant predicting” the entire

o set of y values.™ Recall that, in fact, the mean of y is the
y—-t best constant predxétor ) all ys, in the sense that the mean-
- square-~error s minifized when thp constant is the mean of the N
disbribution. L S Y
.ﬁm With this background it is c{sar that the ratio S /Si"s SR
. a ratio of mqan square errors -- the numerator summarizing pre-

diction errors from the regression equation, and the denominator
summarizing prediction errors when all 'values of y are. p;ed;cted

to be the mean of y. Hence S /Sy can be viewed as aPRE measure

and,! ipso factor,, so can R2 = ] - 83/S§. When OLs‘estimates of
the ps are used, the minimum R, is zero and its maximum is one.

A stralghtforward general;zatlon of (64) provides a usefuﬂ
statistic for summarizing the accuracy of forecasts.

A

-

10. Let Po be a constant over the y values and form the meanj'
square-error -- MSE = E(y - Po ) Differentxatlng with
respect to p_, setting to zero and sclving yields,

Sy Py T Ey. The second derivative of MSE with respect to °
'5 Po- is the posxtlve constant, 270. Hence, a necessary

and sufflcient condition for @ minimum is present when
Pg = Ey‘ Alternatively, one might postulate Po = Ey + g =
, any constant, and develop the following argument:
. ’ ) . -t
v - SR ' C .2 2
-4y Ely ~Ey +q} = E(y - Ey)” + ¢

Clearly, this expressxon is minimum if @nd only if
g-= 0, so that P, = Ey. . . - .

(.
~
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2 . 2 .
(65) RC_ =1 - MSE/S{ | | o

L Y .\ . -
wheregkic denotes an R-Sqﬁare for ﬁorecasts} MSE. stands for

' mean-square error, and'éi is the variance of the predicted endo-~

A3

'&f’,

where ?;i?S‘the forecéétéd;value‘of’thé<s¢élaf-y£;“ It is

«

‘ ’ -*
genous variable at time t:

. oA 2
MSE = Etyt - yt)

A _ 2
. Sy E(yt Eyt) ) .

) " *
portant t¢ distinguish y, the forecasted vy, from y, the post
facto estimated vglue of y from a regression analysis. Note

that, in general E(y - yt) # 0; therefore, MSE will not be a

varianceé as it is in multiple regression.
The maximum value of Rgc is 1.0 and cccurs if and only if

forecasts of y are correct for every observation. On the other

ing ﬁic should be interpreted as an imaginary number) . When

used in cpnjunction with non OLS regression estimates, R2 may
also be negative, and it has been objected to on these grounds
{Fox, 1979: 145, laseman, 1962). The .fact that

Rgc may be negative, however, is not a strong objection, since

-
‘a negative Rgc has a st:aightforward“interpretaticn; the nega-

tive value indicates that more accurate estimates of all ys
result when each y is estimated to be the mean of y than when
the ys are forecast from the model. /

Numerous alternatives to (65) are available (see Fox, 1979;

Ostrom, 1978). Of those proposed, one seems particularly ap-

pealing. Ostrom (1968: 67) proposes that Si in (65) be replaced

by the mean~square of the differences between to and tl values

of y. The implicit hypothesis of this mean-square-error is that
thé y values don't-change; a stable equilibrium has been reached.
The resulting measure retains its PRE characteristic, since it
is based on a ratio of a MSE due to the model to a MSE derived
from a "naive" model. A more general definition of

-hand, the minimum Rge is not zero; R;c may be negative (indicat- NN\>



systematic,

3§c is therefore suggested (see Ostrom, 1978: 68);

, 2 MSE (M)
(66) Ry = 1 - SSE(N)

Where MSE(M) is the mean-square error for the theoretical model
and MSE(N) is the mean-square error for a "naive" model (naive
is Ostrom's term). One important advantage of defining

MSE (N) = sic
R-square than with other definitions of MSE(N); nevertheless,
a variety of MSE(N) might prove useful, depending on the cir-
cumstances. .

L ere i scaeae . e cmes ciecam

The mean-square errors in (66) might be replaced by aver-
age deviations. One advantage of so doing is that the error
summaries are based on absolute values of errors, thus preserv-
1ng the -metric of the dependent variable rather than transform-
ing that metric by squaring ‘all errors.

Reliance on the hivariate correlation between y and y
(Fox, 1979) to assess forecast accuracy should be used with
caution. With OLS regression, this bivariate correlation is

.the same as the multiple correlation, but this equivalence does

not generalize to Rpe* The difficulty with the correlation be-

tween y and y is that it presumes that two regression constants,
in addition to the parameters of the model, are utilized to make

the predictions. Thus, systematic error in the fogecasts could
easply be masked by the correlation between y and y. It is
S
bivariate correlation between y and y is high. If this fact is

; -~ ‘
oretically possible that the Ric is negative even when the

recognized, however, the correlation might be used in conjunction

with RF to assess the %ﬁgree to which forecasting errors are

The distinction bewteen R-square {from OLS) and RPc-square

‘calculated to assess the accuracy of ,forecasts is of fundamental

importance in the assessment of theory “R-square assesses ac-
curfgy derived from a model for which the parameters are deter-
mined post facto according t® the explicit criterion of max-

1mixing R-square. R~square cannot be calculated until aftexr the
dependént variable is observed and incorporated into calculation

of the regression coefficients. 1In contrast, Rp.~Square cal-

culated from forecasts assesses predictlon in the strict meaning

of the term, because the forecasts are made prior to observing

120
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as in (6¥5), is that Rg is more readily compared to
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the endogenous variables at the time point for which prédictions
are targeted. The values of the dependent variable at the tar-
get date of the prediction do not enter into calculation of the
prediction equatxon. One may conclude, therefore, that fore-
casts comprise a much stronger test of theory than regression
studies. This interpretation, is reflected by the range of R-
quare due to OLS compared to the range ef RF -square from fore-
casts. . .

It should also be noted that most of these comments also
apply to cross-validation studies. 1In fact, the mst convincing
evidence in support of theory may be derlved from’ &ross~ -
validation studies in which parameters of a differential equa-
tion model (or analogous dynamic model) are estimated from one
.. data.set'and_forecasts are assessed.on.-a-different data set --,
one collected independently from the data used to estimate the
parameters. Certalnly, little is’ galned by splitting at random
a single sample, since discrepancieS between the ‘two halves (or
several parts) must be due to, sampling error alone and, there-
fore do not test the robustness of the model under variations
due to the many detailed ways in which data-collection pro-
cedures may vary among data sets. In most cases, knowledge of
sampling error is clearly stated in theoretical statistics;
hence, little can be gained by a few observaplons of sampl;ng
error in a particular sample.

»
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) : s ) . . i , . |
- SUM?RY AND COMMENTARY . '

This volume is about the app%icatlcn of dxfferenttal
.equations to the development of career expectations. 'The start-
ing point for the substantive:work is path modeling of status

. attainment as contained in the #ociology literature. The .
d;fferential—equatlon model ?f career expectations may be viewed
as a revision of path models ‘of the same process. While status- .

.» attainment r®search in s ;clogy provides, the  theoretical frame-
work, impoxrtant theoretichl insights frcm other regearch tra-
ditxcns are referenced, i part to justify the dxfferent; S

, uation mode More gclectlc merging of ideas from a variety

ig sources.is eeded t is presented“in this WOrke however.

The materLaI in the preceding haptef& divides ' convehiently
"into two main subtopics: (a). interpietdtibns of the application
of differential equations to the theory of career expectations,
and- (b) technical explication of. a part;cular,§1fferentiel-equatlcg
mcdel of career expectaﬁxcns \ ) -

LU ) b)) i A !
N | . . \
Integg;etaticn and Theory

_ Chapter 2 presents\é\gustifxcatxcn for conceptualizing the
process of develop 1ng¥carEer expectations as a simultaneous hin-
ear differential equa 1on system. -An example is prgsented wh h
contains a set of two "exogenoys" variables, pare: al status,)
and measured meéntal ability, dng a pet of five " dogenous"”
variables: school grades, significant-other educational ¥x-
pectation of ego, significant other occupational expectaticgﬁ;f
ego, ego's educational expectation for self, and ego's occu
tional expectation for self. The rates of change over time in ,
the endogenous variables are hypothesized to be linean functions
of the exogenous variables and of -the current level of all the
endogenous variables. The linear form of the model is viewed
@s an initial hypothesis, possibly to be modified later on the
basis of theory and/or emplrlcal evidence. . .

Three advantages accompany application of thé‘differential—
equa*ion systems to describe developing career expectations.

. First, the continuous dynamic character of the development of
careexr expectations is expressed by the differential equations;
this feature of the differential equatlcns is not shared py al=«

. ternative models of career expectations. Secondly, alhl p0551b1e
two-directional effects among thé endogenous variables are in-
cluded in the dlfferentlal~equation model. While two-directional
effects are not a unique feature 6f differential equations, cur-
rent path models of career expectations geneally omit two-
dlrectlcnal effects. Thirdly, sincf forecastd to any point along
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a eqhtinuous time scale are a natural aspect of the differentilli-
equation madel, strong tests of the model are encouraged. Ob-
servation of the gxogenods variables on one occasion and each
endogenous variable on two different occasions for each case.
provides enough data to estimate:the, parameters of the model. -
The estimated parameters can then be used to forecast a value
for each endogenous variable and each person at any point in time.
The accuracy of these forecasts offers a difficult test for the
theory to pass, a test not available by observation of multiple
correlations - in a regression study. R o

The importance of using forecasts as tests ¢f theory ex-
tends beyond the study of career expectations. Most social-
science research is nonexperimental, that is, social scientists
study natural systems of variables with little or no ability to
manipulate important variables. Further, measurements of Key
‘concepts in social-science research often stfain credibility.
Thus, the barriers to scientific study of social phenomena are
high. Consequently, credibility of findings® from social re-
search demands the strongest empirical tests that can be mustered.

While the linear differential-equation model of career ex-
pectations offers advantages over current models, there are im-
portant limitations of the differential'-equation model which
should be explicit. First, the differential equation model
presumes continuous functions of time; hence, it is not readiiy
generalizable to status attainments (e.g., occupation, educa-
tion, income), because attainment variables ‘exhibit abrupt
shifts at isolated time points rather than continuous change.
It is possible that career expectations manifest abrupt changes
as well, although an apparently sudden change in expectation
may be viewed as a continuous curve with short-radius turns.

It is possible that abrupt changes can be modeled by a relatively
new mathematical method called "catastrophe theory" (Zeeman,
1977).

A second limitation of the differential-equation model pre-
sented here is that it assumes a linear form with the linear co-
efficients constant over, time. This assump#ion can be relaxed
should experience warrant, but the technical features of esti-
mating a general nonlinear model or -a linear model with non-
constant coefficients have not bgen presented in the literature.
A third limitation of the model is,that it probably is' far too
simplistic to capture even a reasonable approximation of the
complexities of forming career, expectations. For example, the
role of ,uncertainty in forming ecareer expectations is ignored
altogether in the model. Adding realistic complexities to the
model - while preserving some semblance of parsimony should be a
primary aspect of the research agenda in the coming decade.

t
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Chapter 5 addresses four aspects of interpreting linear
differential equation systems in conjunction with the process
of forming career expectations. First, it is noted that the s
“change coefficients" associated with the differential equations
provide useful basis for interpreting effects of variables on
each other. The change coefficients express the basic theory.
Further, they exhibit the virtue of being constant with respect
to the length of the time interval between measurements. In.
contrast, the cross-lagged path-coefficients (or regression co-
efficxents) depend in-a complex way on the. length of the time
interval between measurements. Secondly, the structure of the
matrix (B)( of change coefficients associated with the endogenous
variables determines the time-path of developing career expec-
tations. If the largest real part.cf_the-characteristic-rocts ‘
(As) of B is positdve, career expectations increase expdnential-
ly. If the largest real part of the As is zero or negative, ‘and
B is full rank, career expectations seek an equilibrium that de-
pends on the background (exogenous) variables. If one or more’
of the As is a complex number, career expectations oscillate
over time; the amplitude of the oscillations expand, remain con-
stant, or dampen over time, depending on whether the largest
real part of the As is pQSltlve, zero, or negative, respectively.
If all As are real, no osclllatlcn occurs.
K] b
. Chapter 5 also develops a standardlzatlcn methcdolcgy’fcr
differential equation models that parallels standardizatifn in
path analysis. It should be noted that standardized path co-
efficients should not be used in the analysis because they
artifically remove changes over time in means and variances from
the data. The standardization methods developed in Chapter 5
retain changes in means and variances and fascilitate comparisons
among coefficients associated with variables measured on dif-~
ferent scales. One should be cautioned, however, not to over-
interpret these coeff1c1ents. There chief value is heuristic.
The final topic-in chapter 5 is assessment of forecast
(prediction) accuracy. Several proportional~reduction-in error
measures of strength of relationship are discussed. One par-,
ticular measure involving the ratio of the mean-square error
due to forecasts to the cross—-sectional wvariance represents a
generalization of the square of the multiple correlation (R~
square), hence, it is readily comparable to R-squares. It
is noted in the chapter that the generalized coefficient has no
lower bound; it can assume negative values. This fact is not
grounds for rejecting the medsure, however, since negative
values indicate useful 1nforﬁatlon, viz, thdt the lcross-sectional
mean of the dependent variable is a more accurate estimate of all
the yvdlues of the dependent variable than- are-the forecasts.
It i concluded that the negative range of the generalized cor -
relation reflects the fact.that empirical tests based on fore-~
casts offer more stringent tests of theory than do regression
studies. )
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, Technica&l Information
\ : - - . - N ‘ -
In addition to the fnt&rpretative contents of this volume, . N
+ it ,also czntains the techniecal information needed to apgly lin- oA
gar differential equation systems with constant coeffitients to '
the study of developing (career expectations. ' Chapter 3 sum-
marizes important concepts.and theorems from mathematics that y
are used in the rest of the monograph. Coverage includes basic
.ideas in-calculus, concepts and operations related to compleéx
numbers, and aspects of linear algebra. The treatment is ex-
tremely brief and intuitive, the purpose being to -summarjize key
concepts and theorems in-a manner that is comprehensible to
“readers with little mathematical training. Chapter 4 presents »
d@velopment of the theory of linear simultaneous-equation systems
with constant coefficients, propoges a justification fbr viewing . '
the statistical estimation 'of the model as a' "reducedq-form” .
" system.for which "ordinary least squares™ (OLS) are appropriate,’
and describes use of a computer program, which is available to
carry out the calculations,  In the program the exogenous var-
iables and the time-zero endogenous variables ‘are the predetex-
mined variables and comprige the set of regressors. The time-
one endogencus variables.comprise the set of dependent vari-
ables. One QLS regressjon is calculdted for each ‘dependent
variable using the same- set of regressors for each’ regression
equation. The resulting regression coefficients are inpyts to

. ™

the. calculation of the parameters of the differential-equation A
model. ' , | .
- . Commentary
. . hal {
A large -part of the contents of this volume apply .to topics .9

other than development of career expectations. Any system of

variables for which a linear differential eguation system sup-- ,
plies a good initial hypothesis can be 'studied in the manner .
suggested in this volume. Examples igyclude development of , '
political preferences, racial prejudice, and prediction of mi- - . =
gration.  If two panels ‘of data are available on a gystem of

variables, the estimation techinique suggested .in this volume

may be applied. ) ' .

The potential contribution of theory .testing based on fore-
casts has been emphasized. It seems likely, however, that at-
tempts to verify theory using even short-term forecasts will
fail to yield convincing support of theory. Hopefully, such ’
failures will stimulate imaginative revision of theory in which .
more nuances of the processes under study are incorporated into .o
- formal theoretical statemenis expressed in dynamit form. )
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