
*

ED 1a6 276

AUTHOR
TITL

INSTITUTION

SPONS AGENCY'',
PUS DATE)
NOTE

EDRS
DESCRIPTCM's

DOCINTNI ilESONE

SE 03C /55

fiaughan, Herbert F.: Szabo, Steven
i Vector Approach to ruc4dean Geometry: Vector
Spaces and Affine Geometry, Volume 1. Teacher's
Edition.
Illinois Univ Urbana Committee cr Schotl
Mathematics. .

National'Science Foundation, Washingtcn, D.C.
71

1,079p.: Zor related document, fee SE 030 756"..-Not
available in hard copy due to small print throughout
en4tire document

MF08 Plus Postage. PC Not Available from EDRS-
Geometric Concepts: *Geometry; Instructional
Materials: *Mathematics Currioulup; *Mathematics
Instruction; Plane Geometry: S'econdary Education;
*Secondary School Mathematics; Solid :Getmetry;
*Teaching Guides: Tests: TextbqOks:-Itigonometry

IERS *Vectors (Mathematigs)

ABST Acr
This is the teacher's edition of a text for the,first

year,of. a two-year high school geometry course. The ccurse bases
plane and solid geometry ard trigcncmetry on the fact 'that the
translations of a Euclidean space constitute a vectch space which has .

an inner prod-uct. Volume 1 deals largely with affine geometry, awd
the notion of dimension is introduced only in the last chaster. Tile
principal geometric topics of this volume are parallelism of lines
and planes, and ratios. This makes possible a good deal of the,
geOmetry of "tskiangles and quadrilaterals. This commentary contains
answers to all problems, sampAe quizzes, chapter tests, sUggestions
on teaching the texts, and a great ileal of mathematical and logical
,background material which has proved telpful in orienting teachers.
(Author/MK)

* Reproductigns upplied by EDRS are the best that can lie made
fram the original docilment.

***********************************************************4*******i*



US DEPARTVENTC3F NEALTN.
EDUCATION &WELFARE
NATIoNAL irdsTITUTLOF-

actutATI.Oad

THIS DOCUMENT NAS BEEN REPAO-
DUCED ERCTLX AS -RECEINED -FROM
TE PERSON ORORGANIEATION
AT INC. IT POINTS Or VIEW OR OPINIONS
S-TATED 130NOT NECESsocaliry- wtPRE-
SE NT OF F ICIAL NAT IONA.. -1AMI TuJE Or
EOue A MON ROSITtON 04 ROL ,C V

V ,

-PERMV,SION TO REPRODUCE THIS
MATERIAL HAS SEEN GRANTED BY

Mary L. -aarkes
0S- ANL MSF

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC*'.

,

In memory of Max Beberman, a colleague,
mathematics teacher,,and above all; a friend

VI

-

VECTOR SPACES AND AFFINE, GEOME RY

HERBERT E. VAUGHAN & STEVEN SZABO

NM 1

TEACHER'S EDITION

6`.

Urllyersjty of llllnoi Committee on School MathernaticS
The MaOmillan Company,New Yorlc, New York
hollier-Macmilian Limited, London

t).



DR..14R13. RT E. VAUdRAN is Professor of Mathematics at the Uni-
versitY of Illinois. and:Chief MatheMatiCian for..the University of
Illinois Committee onSchool Mathematics.

7
Sr

-
DR.1:STEVEN 8zAso :is Principal Specialist in Edication at the Uni-

versitY of Illinois and a member of the Universyty of Illinois Corn-
mIttee on School Mathematics. 1.

Copyright © The poard of Trustees of the
University of Illinois, .1971

All rights reserved. No part of thishooli may be =produced
or transmitted in any forth or by any Means, electronic or me-
chanical, including photocopying, recording, or by any infor-
mation storage.and retrieval 'system withoUt.permissign in
-writing from the Pub4sher.,

The Macmillan Company
866 Third Avenue, New York, N.ew, York 10022
Collier-Macmillan Canada, Ltd:, Toronto, Ontario

Printed in the. United States of America

.-qNTRODUCTION

Volume 1 of A Vector Approach to Euclidean Geometry is elle text
for the first year of a two-year highscholal mathematics course which'
bases plane and solid geometry and trigonometry on the fact that-the
translations of a euclidean space constitu4e a vector space which has an ,

inndr product. [Although the word 'vector' is not introduced in the teicty .

until Chapter -5, there is a discussion of various notions of vectOr at'the
beginning of the comnientary for section 1.06.] Volume 1 dealS largely
with affine geometry, and the notion of dimension is introduced only in
the last chapter. Up to This joint, althoughstudents may think in terms/
of 3-dimensional space, th space under consideration might be at-any
dimenseion. The principal eometric topics of volume 1 are parailel.
ism of lines and planes, a ri ratios. This makes possale a good deal
of the geometry of triangles and quadrilaterals. Congruence, however,
is reserved for volume 2. Volume .2 opens wi,th an analysis of bask

,properties-of perpendicularity and distance which leads to the introduc7-
tion of an inner product of translations and`to the development Of euclid-
ean geothetry and trigonometry. The basic facts concerning volume
measures -of solids are dealt with in 'an appendix to volume 2. By the
end of. volume 2 students will haye become acAltainted with ale -theorem. '
dealt with in standard American geometry and trigonometry texts and
with numerous additional geometric theorems. They will also have a
good foundation of knowledge of a subject of contemporary matheMatical
importance -.- that of linear vector spaces.

Permission is hereby granted by the copyright owner and the Publisher
to all domestic Persons of the U.S. and Canada to make any use of those
portions.oi this Work written 'pursuant to a grant from the National
Science Foundation, after June 1, 1977 provided that the publications
iricorporating.materiala covered by this copyright contain an'acknowl-
edgment of this cOpyright and a statenient that the publication is not
endorsed by the copyrighthorder.

Supported by a g*ant from the National Science Foundation

The preparation of the present course begarrwin 1963 and has beerur
carried out with support from the N tional Science Foundatimi. Begint'
ning with the 1963-64 school year the course has been taught in an .
ever-growing number of schools fhroughout the countrY. It har also
been the basis for teacher education courses in NSF institutes. hi most
schools using the course it has been taught in grades 0 and II, burit
has also beffn used successfully in graded 11 and 12 and in grades 9 ;
and 10.

, Many teach and students have contributed icias and pro'voke
distussions whic elpedpus to develop the present text and teachers:
commentary,for 'the codrse. We wish to thank all of those people who
helped us in thie endeavor, and to single out for special th.anks
Dr. J. Richarct.,,Dennis and Pr. Hyman Gaba-i..

In common with other UICSM courses, thir one lays stress on
students' discovery of concepts through doing appropriate esorcisés.
Tbe course also stresses logic and proof, and studenti are aided in
developing the ability to write proofs, preferably in the form of para-
graphs. To this end,' some of the beginning ch'apters deal at some

length with rules of logic in thd contexts of the 'proofs of early theorem

By the nature of the course much, of the development of eometrris
algebraic in nature and the algebra resembles [and includes that of tho
real =cabers to such an extent that previously acquired algebraic skilla
are maintained and developed further. test the reader thinks that this,
a)gebraiFation leads to the loos of mueh -of the beauty of conVentional
geometry, it bearr pointing out that after a sufficient number of geo-
metrical results 'have been established algebraidally othqr theorems
can be derived synthetically from them, It -should also be siOted that,

i



beginning in Chapter .10 and to a -greater -extent in volume 2; it becomes
easy to introduce coordinate methods and,deal with geometric matteraanal'ytikally. As become s 'obvious, however the algebra'of. analytic 'gebrnetry is less efficient than is the algebL of points.and translations
'Which is developed in this course.

Ideally, a student's, preparation fr thiiiCourse should include a
good'background concerninkfunction [This is the p`rime advantage ofteaching the course during ears 11 and 12, preceded by a second coursein algebra which treats the concept of funttion in some detail. Since notall students have such a baCkground,.the first hall of Chapter I is de-voted-to a brief discusSionof functions. .[The, reMainder of the chapter
serves to develoP geometric intuitions,4 particularly concerning transla--tions. ] Some attempt has been made,in'the BACKGROUND TOPICS, .which-close several chapters, to familiarize students with algebraic
topics withwhichthey May not beacquainted. Nevertheless, there are.some standard topics of algebra which are-covered neither in a firstyear algebra cou.rse nor in .4he present cour'se. Consequently,*Mecou'rse needs to be supplenitnted, ,either in the'tenth year [as sugges.ted'above lot' in the twelfth year by a second algebra course in which stu-\,, *dents 'will Learn about such things as radicals, exponents; logarithms,
and polyncirniAl functions.

This .commentary contains answers to all problems, sample
quizzes'and chapter tests, suggestions on teaching the texts, and agreat deal of mathematical and logical background material which has,proved helpful in orienting teachers.

,
..

-The, following i4 a brief lesson guide for Sr o1unie 1. It giVes a sug- 10gestet1 number of pages to aim at covering in each lesson together with
some comments on the kinds of activitiel and assignments which areappropriate with thoseLpages. Note that this guide suggests the admin,-
istering of '.'san-iple quizzes" from time to time and allows full lessonsfor chapter tests.. Some sample quizzes have been included:.in the
teacher's commentary iit the following sections:

Les Son

1, 2

6

8

TC2.6(2) TC55-
TC101(3). T C123(1.)
TC156 TC186(1)
TCZ32(2) TC 235( 3 )
TC310(2) TC335(2.)
TC412 TC42.8(3)

--

TC69 \.TC9Z(Z)
Tc130(2) TC131

-TC.193(2) TC2.19
TC289(2) TC294(3)
TC360(11 TC363
TC441(3),

13

14

Suggested Teaching S'chedule for Volume

Section

Introdu.ction

17

1,0

-

Possible' activities
s1fMake use of force table [from Physics lab],

mirror, and rubber glove to illustrate plPints
made inithis introduction. , .

.Do A, Bs, C in class; assign DI- ).

1:01-1:02 Do D5 (d) (h), E i.,11 class; study text preceding
A; discuss siew terms; assign A.,

1.03-1. 04 Discusi B, 1.03 in class; discess terms Pre-
ceding A; do A,. Bl, in'class; assign 132-4.

1. 04. Do B5, C in class; discuss proof that function
composition is associative; do.A1. B1 in class;
assign AZ, BZ, C.

Review all resulta concerning functions; samplequiz.

1. 05. Have text read add discussed in class; assign
problem posed oe page 46. .

1. 05 Finish reaaing; begin drawing exercise's inclass; all nine problems s'hould be done,either as seat-work or as homework.
1. 06 Introduce tracing sheets as in text precedine,A;

do A in.class; assign B, C..

1. 06 Do as much of D, E, F in class as time permits;
assign rest of D, E., F, and G

66 Do H in class; assign I, J. [Begin as seatwork,finish rest as laomework.]

1. 07 Study text preceding xercises; begin exercises
in class; assign all exercises for homework;
sample quisk.

1 0 .09 Discuss section 1.08; review ideas discussedin Chapter 1; assignchapter Test as written'
work-to be handed in` auring nekt class,meeting.

2. 01 Study text preceding exercisgs; assign Exe

Z. 03

cises 1-3.

Introduce Postulates 1 2; do ensuing exercises
in class; discuss proof of part la) of Theorem
2-1; assign proof of (b).

DiscUss new terms preceding.A; do A in c ass;
sample quiz; assign B.



Lesson Section

19

-21

,Z4'

25

26

27

29

30

2.04 Discuss tex preceding oxercises; study rules
In context o samples; assign 1-10, ,

2.06

2 06

Z. 06

2. 07

2, Q8

2.09.

L/11

2.12

N.13

Study new te
131-5 in cla
136-10, C2-3.

s and rule preceding A; do A1-7,
do CI in class.L.:.i4s4scyn A8-13,

Disc-Liss text p e ding A; do A in class; assign
F3.

Study text preceding A; note (.4) and rule; go
over examples in A; assign A.

Do B1/4, CI-3, 11)1-3 in class; assign rest of
C, D.

Discuss text preceding A; d9A, 131 itricl
sarriple quiz; assign BZ-3,

Study text preceding A; .do Al, B1-3 in class;
assign AZ, ,B11-8.

Discuss rules; do A, 13 , 1-2 in class;,
assign 132, C3-6.

Sample quiz; do A, B, CI in class, assign C
b, E. s

Study text precedi g A; do.A, B, CI in.class.;
sign-C2-3, D.

:/".

Discuss text preceding
assign B, C.

A; 'do A, D in claps;

Use Chapter Testes written hourly exam, or
review ideas coverked in Chapter 4 and assign
Chapter Test as out-of-class work to 134 handed
in..

3.01 Do A, .B, C, DI72 in cless; assign D3 E, F.
[Note Commentary on these exercises. ]

3.02 Discuss text preceding Aknote new postulates;
-do A, Bo -in cla§z:; assigiV7C. . [See-commentary

Sainp1e.,qui4 an questions in text; do-Al -1
in class; assign A -20_.

04 Study text 'preceding A; do B1-3 in class;
assign 1:44, C. [See commentary.1

3.05 Discuss notion of group; note (*); do A, B, in
class; assign C. [See commentary for a take-
horne exercise on commutative grouvr. ]

et

Lesson Possible activities

35 3.06 Sample cluiz; dissiiss text preceding A; do A,
'B1-4 ih class; assign B5-7, C. See note in
commentary on B.

3.07 Do Zaterci5e I assign..2-6.

37 3.07 Note rule; do A, B in class; assign C. Se
note in commentary oniirattvi stick models to
aid in discussions.

38 3.08 Stady text and clarify notation u d; assign 1-3.

C. 39 3.09 Use Chapter Test as written hourly exam or as
basis for review of ideas discussed in the
chapter.

40

41

42

43

4.01

4.02

4.03

Discuss do Al -2 in class; avsign AJ-4, B.

Discuss text; do A in class; assign B, C.

Discuss modus tollens, double denial [See
Acommentary,,q; do,A in class; assigri ,

Do C, DI in class; assign D2, E,. F; sample
quiz.

44 4., 4 Discuss ord a i do,A1, .13 in lass;
assign Al-b, C.

45 4.05 Introduce rkew teirns; note rules; do AI -3,
131-3, in class; assign A4-6, 134-5.

Note rules and details of text discuss ns; .do
-3, D in class; assign C4-5, E.

406 Discuss reixt preceding A; do A in cla19;
assig. B. c

Chapter-Test as take-home
for review of ideas in the

xam or as a
hapter.

. Background topic,..-- systems of equations; do
A, 131-3 in class; cliwcuss determinant; assign

134 5-.. w
N./

no Exploration Exercises in class; discusS
ratio; do AI -2,, BI in class; assign A3-5,

,.
Do C. El in c ass; assign D, E2 -4, F.

52 5 02- - Piscuss postulat s,,theorems preceding A; d
A in class, assign )3, C.



Lesson Section

3

54

Possible activities

5.03 Discuss matters of logic related to condition-
als; do A in class; assign B1-3, [See commen-
tary on assignment here. ] ; sample quiz.

5.

55 S. 04

4

57

5. 05

59 5.06

60 5.07

1;1 6.01

62 6.01

63 6.02

64 6,03

65 6.03

66 6.04'

67 6.o5

68 6.05

69 6.05

' 70 6.06

71 6.07

Do 84, r, DI in class; as en D2-3, E; note
true 4alse items in commentary which may be
use,ful practice in recognition of theorems.

Study text preceding A; discuss Definition 5-1,
5-2; do A1-5 in class; assignA6-9, B.

Sample quiz; discuss directed trips; do sortie
of A, B,,C in class; assign rest.

'Discuss velocity; do some of A, B, C in class; I
assign retit.

Discuss force:, do some of A C in class:
assign rest.

Study text preceding eitercises; assign 1-3.

Ilse Chapter Test as take-home exam or as
written hourly exam,

4

Note new terms; do Al-4, Bl-Z in
assign A5:6, 83-6. [Note that C is as
tised. ]

Do D1-3, E1 -3 in class; assign D4, ,E4-8.

Discuss new terms; do A. 1n elms; assign B.

Sample quizj note Definition 6-2; do A, 131 in
class; assign 132-10. .

Note theorems; do A, B1 in class; assign 132-5.

Discuss new terms, theorernsf do A, 131 in
elass; assign BZ73, C.

Note new terms; do. Al, 5, B1,,3.n claqs; assign
t of A, B. [Alternktely, see commentary.)

tcsson. Sectron

72 6.07

73

74

75

76 6.09

77 6.09

78 7,01

79 7. 02

80 7.02

7.03

7.03

83 7. 4

84 7.05

85 7.05

86

7.06

-88 7.06

89

.6:08

Possible activities

Sample quiz; discuss pattern sentences [See
commentary for suggestions. ]; do 1-4 of first
exercise set i,n class; do 1 of second exercise
set in class; assign 2-4.

Discuss use of quantifier's in terms of three
theorems whose proofs are outlined in the text
[See commentary for objective. I; go through,
Al, Br; assign AZ, 82-4. [Alternately, see
commentary for assignment list. ]

6.08 Do Cl in class; assign 62-6.

ReView Chapters 1-6

Do CI-2, D1, 4 in class; assign rest of C, D;
use E as extra-credit.

Do F, HI -3,in cvlass; assign Ci..,H4-7.

Sample quiz; 'discuss Thebrem 6-12; assign
Z-3.

Do Exploration Exercise in class; discuss
terms preceding the exercises; assign I-3

Usk: Chapter Test as
home exam.

en hourly ox as taike-

Study text preceding exercis s in Background
topic; a,s,sige,

Discuss terms; do 1-2 in c ass; study Defi-
-nition 7-1 and text following it; assign 174.

Study text and Definition 7-2; do A n class;
assign B.

Discuss Definition 7- do Cl in class; assign
C2.

,Discuss text Precediig A, do A in clas
as sign :B.

Do C, D in class, review' Definition 6-4;
assign E. #

Sample quii; discus
preceding exercises;
4-8.

definition and theozcms
do 1-3 in lass; assign

c-

Discuss textTreceding A; do A in class;
assign B.

7.07

Do CI (a)-(c), 2, Dr in class; assign rest of
C. D.

Do El-7 in class; discois Definition 7-7 and
Thearero 7-8 and 7.79E, a s sIgn ES 9,, r.

Discuss text preceding A; do Al in class;
assign

Sample qu4; 'assign1. B, C.

Discuss text preceding AIL; do A, Bi in Clay
assign,rest of B. [Alternately, see cow=
OA suggested assignme nts.



Lesson . Sectiono PosSible activit es.
bo one o logic p;oofs in C in cla
in class; assign rest of C, D.

90

.

91

92
;

94

45

7,07

7. p7

7 08

7,08

7.08

7.08

bo 'El in class, assign rest of C.
, , B a

(1Discuss term .s; do 1-5 in JTasc' asSign 6-
. ,

13q"Al, B in class; assign AZ-5,, Sbe notp on
assignments in-commentary.]

Lesson

; dq D1-2 j
Ill

: 112

,r1:VC1-2 E1-.3(a) in cl s ign C3-3, D, .

E3(b)-4.
.. 4 .

,

Do A1:4 in ; :assign 15: Cl. .[A erna ely,
e.note in t ornrn ntary. ]:

9.6. 7,08 Sam . -ple qu ; do C2-3 in-class;,go over dis-' . cussion in C4; as,sign C4'4-5; use C6 as ,extra:
c redit,

98.4.

99

OD

101,.

102

7. Q8

7. 09

7.10 .

7.10

Do A1-2 in cla assig',A3, B.

Do A1-3, B1 in clas
t-

[Alternately, see no
mentary.

Da C, D in.class; assign E, F.

Revile 'Chapter 7; go over Background Topic:

Use Chapter Test as take-II/on-le exam o,r as
written hourly exarri.

'..assign A4-.5,
-on assign ents . corn-

4.*

/
. Po,ss b e aa.tivitres

- Study "Theorem 8-9; 8-10;' dc5 BI-3 in c a s;
.asgign B4, . s

04 Do..131-4, E1-3 in clas.s; igin D5-6, Z4,-6.
/

',8104 ' D. VI, .2, 45,, 6, 8.in c1a6s; ass F3, 4, .7,
9, PO:

114 8..05

8.'05115

'
Disctiss tekt preceding A; do A in cla's gri
B. [Alternately, seoriote oil assIgnmen s7in
4-,n-nmentary. ]. . .

Do CI -2, .b1 -3 -i class; a-s.sign C3-4; D4-6.

Do E1-Z(b9, in liass; aSsign )'-(d
F.

11.6 8.05. , DO GI, HI in class;,wassign 02-3,

117 8.06 DiScuss text, -definitions; do 1*-3 in class; (lb
.-" Al, B1-2 in class; assign rest of A, B._ '
118 Discuss Definition 8-6; do A1-3,,,,B1 in class;.

Assign ,A4, B2-3. [Alternately, see:note on
ssignments in commentarjr. ]

Assign' C1-8.

Sample quiz; ; assign C9-12 D.

8,01 Stu4y text preceding A, lo A, B in class;
assign C. (Alternately, see' note on assign-
ments in comMentary. ]

Study text prec.eding D, assign 13.

104 8.0

105

106

107

108

8.02.

109

Do some of E' in class; assign

Discuss Definition 8-1, 'Theorem 8-4,
A; Cl(a) in class; assign B,
e-rnate-1y,-Tsee -note in-commentary. I

8,02 Do 13, El -3 in cla s; assign

8. 02-L03 Do F in clas-s; di.cuss Definition do A in
%Class; aSsign B 127

119 11.07

120 .07

8

8.08

Discuis text preced' A; do Al, B1 in class;.
assign rest.of A, B. [Alternately, sep note on
assignments in.Kmrnentary. ]

pample quiz; do. C1-2, 13I-2 in
rest of C, D. .

a 'gn

:Do C1-2 in class; assign C3-5.

Sample quiz; discuss text preceding:A; -do Al
1. 'In class; asiign A274. ,[Alterctately, see note

.0.,'oriassignrnents in commentary. ].

Do .1-11-2 in Class; asSign

Use Chapter Test as take-home exam or as
wriiten hourly ,exarri.

StudY text PrecedingsDefinition 9'
do ExerciSe 1 in Second exercise set in c
assign Z.

,

Discuss' text.preceding A; do Al, -B1 in c
assign rest of A, B,

Discuss Definition 9-3; 'assign C.:.

Discuss text, Lemma Preceding A; ck9 A1-3in
class; assign A41.8. [Alternately, see note '-'on
assignments in commentary. ]



b rt Section<.

9.03
,

9.03 Do El 11-2 in ci.ass; assign E2-;-3, F3-4.

.,Stu 'ex
Theorem

Pos,rb1e acivities

preceding B; dO B in class; discuss
9-7; do C1-2 in class; .assign C3-8-.

Do some parts of D in class; assign re8t. df D.,

9.04 Study text prececjing A;1- do A,' 131, CI in lasil;assign B2-3, C2-3, " .

134 9,05 Stu.dy text precFding A; -( o A172, B1 in:class;
assign rest of 4, B. [Alt natkly, see note on
assignments in commentary, 1

9.06 Discuss definition an theorems preCeding A;do A in class.; as'sign Bl.
136 9.06

137 9.06

Do BZ-5 in class; asSign B6-9.

Do C1-4 in class; assign C5.
138 9.0.7 . .Discuss text preceding exer .assign -4,
139 9.08

',140 9. DA

D scuss text.of Background Topic; _assign
problems not done in class.

Use Chapter Test as written hourly,exaM or as' take-home exam.
- 41 10,01 Do A in class; discuss Postulate 4 and Theo-

r.em 10-.1; assign B.
142 10.01

143 10.01

145

1P.oi

10.02

141 10.

10, a.3

/49 0,04

D C1-3, 5 in class; assign rest of C.

Discuss text preceding D.; do DI in cla
assign D2-41.

Do El -2 in class; assign E3, F.

Discuss text preceding exerc ses; prove some
of thebrems in class; assign all of exercises
not done,in clais.

s; TAlte riiately,
see note on assignments in conimentary.

Discuss- text_pr ceding B; do B in class; assignu,C1-5,''

Sample ,ctuiz; do D' in cl assign rest of
4

Svudy text, do Exercises 2 preceding A; do
Al in clas assign vest of A, B. '''.

Discuss text p eceding A; assign A1-5.

Lc ssen Sectiqn :

151

152

154

155

156

157

10.05

1-0. 05

1 0,06

.Possible act vities

:Do AS, in class; assign A7-9, B3-4.

C, D1-3 ih cla.ss;;ass,ign D4,8,
4

Diseuss text preceding A; do Al, 2, 4 in cla:its
assignre4f of A.

Do. B1-5 in Class; assign E6, 8,

10.06 Do B7,.-C1 in class; assign C2-4.
10,06 Do D1-2 in class assign D3-4.
10. 06 Do El,. 2 in class; assign rest of E.

158 10.07'r Samplel,quiz; discuss teXt-preceding A; do Al,
2411-n class; h.ssign A3-5.

159 . 10.07

160 io.ps

16.1 10;08

-Do B1 in class; asSign 132, C.

piscuss terms in text; do A, Bl, Z
assign rest of 13:

Discuss Theorem A and its co nary; assign C.

in class;

162 4 10.09 Do Al-5, B1-2 in class; assign 146-10, '133-4.
[See note on assignments in the commentary

Discuss Theorem 10-14; do C(a)-(b), D1-1 i,Li
class;. assign rest of C, D; sample quiz.

'1 4 10:09 Discuss text leading' to Theorem 10-1 5; doEl(a), Fl, 3 in class; assign rest of E,s F.
10. 0 Discuss text [Sec comtnentary for suggestions. j;

do as much of A in c1as4 as possible; assign
rest of A. ...

.
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166

167

Beg4n worl on B in class; assign re t of B.

Discuss Theorem 10-16' and the examples inthe text; do C1-2, pl in class; assign rest`of

68 .. 10.10 De El, Fl in class; assign rest of E a 4 F..
%....

',1!'169 .i. . Discuss Theorem C; do*A.1, B1-2 in c1ps; .,assign rest of A, B. lAlthrnately, see 'note oh
assignments in Commentary. )4

170 10.11 Do C1-2, DI, in close; assign rest of C, D.
171 10. 12 !gas Ch7ter Test as talte-hovne exam.
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TO THE STUDENTS:

This Wilt is the text for/he -first year of a' twb-year mathematics course
which ciintarins What is usUally studied in a one-year p;lanegeometry course,
much of what is studied as solid geoinetry, and prgbably more thaii is usually
studied in trigonometry. The course also contains a great deal of.material
which' is not usually Studied in 'any 'or these courses: This extra material
furnishes a foundation' which, ties the rest 'together. if you wish a name fon,-
this extra material, call it linear algebra.

An advantage of the approach to geometry which is adopted in this course
s that it illustrates the fact that mathematica is all of one piece 7-the usual

-distinctions between algebra, geometry, and trigonometry are not valid ones.;
Another advantage is that the knowledge of linear algebra which you will .7
gain from thia'=course will be of considerable .help.should you take mathe-
matics Zir physics courses in college.

Something which you may at first think of as a diSadvantage is that your
friends who are taking courses in plane geometry will be learning some of
tiiis subject much earlier than you do. Rerhember, however, that yoil are
learning useful things which they may not learn. until late in college, and
that you will learn: all that they are le,arning, ,and inore,;by the end of tIlis
course.

,This course builds directly on the knowledge of the real (or: signed) ntun-
bers which.you'have gained by studying algebra. This knowledge is reviét,fed
_in Chapter 4. You will learn more about the real numbers (and some other
things)in the "background topics", which are given at the elia.ds of some chap-

: ters, especially in Volume 2.
'One reascm why this course takes tvio years is that You are given upper-

tunities in the exerciSes to work out ideas for youmelf. If you take allvantage
of these:opportunities, you will gain confidence in 'your ability to understand
and to use mathematics. Understanding mathematics requires more than at-
tending class and doing the exercises'.assigned as_homework. T. also.recinireS
You to think about What you do. This book is written so,that a 'good, deal of
your learning can conic from reading the tekt and thinking about it and the:.

.. -exercises. Yeu Will probably find that you need to re-read portions of the text,
_coming backto,them_from_time_to tjmi' h youxiii ,letely_uncrerstancl all
that is tO be ,learned from then'. This is in the n4ure mathematics, and we

. have done our best to make it possible for You to learn iict this wv. !-earning
to learn in this way will pay off in all your fidurest

Many studelite have studied this course in earlier, s 'mental, editions
and Most of them have found it to be fuit,We hope you'
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Inttoduction

/Before beginning a study of geometry we shall consider briefly some
problems'from physrcs. You may not be able to wOrk these..prOlernS
'low, but later in this course you will see how a knowledge of geometry
helps you to analyze and solye these probleins,

An Experiment with a Force Table

Below is a picture of a "force table": It is a' device used in physics
laboratories to perforni experiments with forces.
As you can see 'in the picture: a pin at the center of the table is en= v
circlod by a small ring; the pin holds the ring near the center of the
table. Strings which are tied to the ring pass Over pulleys clamped to
the edge Of the table, and Weights (are attached to the ends of the
string's. Each, weight exerts force on the ririg. I

Let's consider an experiMent in which just three strings are tied toC
the ring, as shown in the diagram below. (Pbsition 1)

4
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.In tbis introduCtion, we wisb,to raise some questions which%we feel '
are interesting and 'which have sonie relation to the kind orwork that we
wiH be doing in thiscourse. We do not expect that the,students.will be
able to answer the questions posed with any -degree of precision. We
would like to believe'thatithe discussions in the Introduction will arou
the curiosity of the students and will'begi'n to make them think about
motions and about representing these motions by scale drawings.

bne or, perhaps,' two days should be sufficient time to spend in
class on the Introduction. The discussion about mirrors seems to
interest students a bit more than the discussions about the force table
and directed trips. This may be the case because the questions were
of more,interest to the teachers involved or simply because mirrors
are inherently interesting objects.

Arranging to have a force table in the classroom todern-onstrate
what is discussed in the text will stimulate the student's thinking about
the notion of force; acting on a body [or, point]. The teachers who haive
burrowed a force table frOrn the physics department for use .with this
introduction have found it very effective. Those. who have tried.to teach
the lesson both with the apparatus and without it have expressed the
opinion that the 'extra effort required to get the apparatus into the class-A
room iS well worth it.

In 'connection with the,discuss n a?out reflections, it is most help-ir
ful to have a mirror and a pair of rubber glov'es in the classroom. We
have found that it flexible metal mirror workS nicely here. As a supple-
tient to the:reading i1the,, IntrodUction, the article "About left- and
right-handednes or- images and kindred matters" by Martin
Gardner (Scientific American, March, 1958) will give the.students a
chance'to exelIètheir imaginations.

If the above deNiices are brought into the classroom, you will
certainly sPend tWO-or, three class perrods with the material in the
Introduction. 'ptherwise, you have just akout enoughjnaterial,in the
Introdulion for. one class period and one homeWork asignment..

- OneZf the weights can, be made large enough to "overpower" the
effects of the other two 'weights, pulling the ring away from the center
of the table. If the weights are' sudh,that the.system is in equilibfum,
then very little additional weight.at any one of the positions will cise
the syitemio.pull the :ring-away froth the nenter. This,is easily
deoionstrated if the a0Paratlis is available in tile_ Classroom.

Oiven,the apparatui, it,is not difficult, using- trialand error
methods, to determilie a System of three forces which is'. in equilibrium
'over the center of the force table.Position

The meoitkres of the angles 'formed- brthe strings are indicated in
the dilidram. If the pin is pullet:1,61# Of the table, ao you think the ring,
wal remain where it iFi? As a matter of fact, the weights.M.Oppll-the.
ring away from the tenter of the table...[Describe conditions under
which this will happen-J.-Now, do yOu think it is possible to select.
Weights A., B, and C .so that the ring will nOt be "pulled away from,the,.
aenter -of the table?
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Suppose- that A and B are elach gram Weights,What sliould be ..
the weight Of C so that the ring -wilt remain at the center of the table?
Is a 40-gram eit what isLneed C? Is 40 grams- too much.9r,
too little? .

Now, let's imagine that otte of the conditions of the expeArnent is
changed:. In -particular,. suppose that the weights of A and B are kept
at 20 grams each, but thal, thePulleYs are moved to the 13bsition shown
in the 'diagram labeleii `Pwition. 2'. Under these conditions, what
should be the weight ctf. c so that the ring will remain at the center
of the table? ;
., For a third caSe, let us again keep the vIvights of A and B unchanged,
but suPpose that the pulleys are moved to a third position as shown
in the drawing below. To keep the ring at the center of the table,

. should the Weight of C be more than it was for Position 2? Less? How
would the weight of C for this situation compare With the weight of C
needed ("Or the aituation when the weights were arranged. in Position 1?

a

AlkaWein obo'ut Velocity

The captain of a ship wishes to sail due north. The ship's engines
can move the ship in still water at a speed of 10 miles per hour. How-
Ryer, there is a strong current that moves the ship northeast at a speed

Fqi= the given system, a weight of approximately 34.6 krams is
required at C in order to put 4he system ill equilibrium. So, a 40-gram

'weight is noi what is needed at C 40 grains at, C is tot, much.
* *

The resultant of; say, two forces acting at a point i41 a body is the
single forcv which, acting at the iiame point, would "produce tike same
effect.' As shown by experiments with the force table, two forces
acting at a point, can be balanced bY a single force. The resultant O
the given forces is, then, the'force with the same magnitude asAhe
balancing farce but with opposite .sense. [In this course we distinguish
betWeen a direction, which paraleliines have in common, and the two
opposite senses in agiven direction.

A force may be reprepented by an arrow whose length is propor-
tional to the magnitude of the force and whose sense pictures that of the
force, For example, for`ces of a lb. and 30 lb. which act on a point
B in such a way that the angle foemed by thef rays along which they. act
is one of I20° ,rnay be represented.sby the arrows from B to A and y

from 13 to C, respectively, is the-figure. Experiment shows that the
.resultant Of these two forces is represented by the arrow frorrerB, to D

A D .

3

fresul,tonf of
lthe 01,811 forCes

4

(ABCD is a parallelogramj. Quantities which, like forces, have both
magnitude and direction, and which "add" according to the parallelo,
gram-law, are called victor quantities. -Other examples of' vector.
'quantities are displac'eMenta and velocities.

In the example pictured in the preceding paragraph, the magnitude
of the resultant force can be estimated by measuring BD in the same
scale as BA and BC. Doing so shows the magnitude of the resultant
to be about 26.5 lb. The sense of the resultant can be described by
giving the size of say; ZDBC: This is about 4l!. The magnitude of
this resultant May be computed by making use of the law of cosines,
and the size of zpse may then be found by using the law of sines::

(BD)2 = (A13)2 ,+ (ADP - Z(ABHAD)(cos A)
i02.1- 302 Z(20)(30)(1)

= 700
= /NT
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. .
Hence,, the resultaz4 force is one of ION/T lbs.

sin DC sin LDCBLpBC _ .
B/C21

20. sin 60'
10%1T

.f;547

11ence LDBC is ah angle of about 40 54'.
is not-to be expected, of course, that,. students will be prepared

.at present to understand the preceding computations. Indeed, it is to
be expected that they will learn the 'laws of cosines and sines at a much
later point in this course. We' give this solution solely for your
information. .

Given a force table and scales, the students should be able to get a
reasonable rational approximation for the weight r'6quirecLat. C to put
the given systesO into eqitilibriurn. To tentfis of a gram, the answer is
10.4.

Under the conditions given, the weight needed at C is 10(4f T - %a)
gramiv. One way to compute this is the following:

Let i be the weight. in grams, needed at C.
Then, by the law of cosines,-

e A
= zo,2 + 202 - 2 20 20 c 30°

202 (1 cos 30°)
= 400 (2 -

sf-z-x zoVz - 0(.1-6 -

.Of courtie,' wedo not expect that the students s lve this. probfem by
inaking use of the-law of cosines. We give this solution solely for your
information.

It IS worth calling attention to the fact that once the, system is in
equilibrium, gach olthe forces has the property that Wig the force that
is-reqUired Co "balance" the resultant of the other two forces,

Under the given conditions', 'the weight at C shouldibe more than it
.was for Po.sition 2, and it should also be more than it was for Position

1. In.tact, thvs.weight, in grams, needed

TC 2 (3)

", ,
In general, if the size of the angle between thi strj.ngs for A and B is

0*Ot" then the weight at C is 40 cos y , We derive this as follows:
A

Let x be the weight, is
grarns, needed at C. Then",
we have in turn:

402 = x-2 + i02 lc- 10 clas

,42 - 40x cos

x(x - 40 cos = 0.
0'

Since the weight needed at C 'is 0 only when,
0'weig eeded at C is 40 cos

As before, we give this.solution S'Olely for your own inform
Rational apProximations for special positions May be Obtained
making use of the apparatus.

= 1 the

for Position l is 40 cos 30',
Position 2 is 40 cos 75°

for Position 3 is i40 cos S

4
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A Problem. bout Ve °city

of 5 miles per h ur. Will it be possible for the captain to steer the ship
in such a way titat,. despite. the.current, it will sail due north?

Although you may not .be able to answer this question convincingly
now, you can think about some of its aspects: First, consider a situation
in which there is no current. If the engines are operating and the cap-
tain points the ship north,.,the ship will move north at a speed of
10 miles per hour. At the end of the first hour it will be 10 miles north
of the starting point. We can shoW the path of the ship during the first
hour by a diagram, [In this diagram Vs inch represents 1 mile,1

0 1 2 3 4,
SCALE .

A is the starting position.
is the position at the end of 1 hour.

Second, consider a situation in which the water current is flowing
northeast at a speed 0'4 miles per hour, and4he ship's engines are not
operating, In this case, even though the captain is at the wheel keep-
ing the ship pointed north, the ship will actually move in a northeast-
erly direction at a speed of 5 miles per hour. Hence, at the end of the
first hour it will be 5 Atiles northeast of its starting point% The follow-
ing diagraM Shows the path of the ship during the first hour. [Again,
the scale is ifs inch to represent 1 mile.]

0 1 2 3 4
amarmariaara
SCALE

r
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There ,ought to be general agreement in the classthat the Ship can
be steered in such Pk way that-the resultant of the ship's velocity [10-mph
in some direction] and the current's velocity [5 mph to the northeast]
will be a velocitY which has a due`ae,rth heading.

Notice that we ate using the term 'speed' in connection with zi rate
Of motion .vhic-h is undiretted, and the te r m 'velocity' in connection with
a directed rate of motion, This is consistent with the classical usage
_of these terms, in which,speed,is thought of as a scalar quantity an4
yetocityAa a yeCtor quantity.

To give the students some basis for ainking about prablerils such
as these, you might pose questions like the followinio

How far :vould the ship go in anhour if the captain itered
the ship toward the nortl?east (i.e., directly with the
current)?
HOW far would the ebip go in an hou iflhe captain steered
the ship toward the southwest?.
What sorts of things might the captain do in order to keep
his ship right at position A?

s the starting position.
s the position at the ehd of 1-hour.

NoW, returning,to the original problem, we see that we have fo
into account:

(1) the-condition which caused the ship to movein the first situation
e., the engines operStingl

together_with
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(2) the condition which caused-the
ation Ii. e., the.water current].

Thus we tnust take into account
the faCts that

(1) the ship's engines are oper-
ating and can move the
ship north at a speed of
10 miles per hour

and there is a cm-rent which
can move the ship north-
east at a speed of 5 miles
per hour.

Under these conditions, if the captain points his ship north, its path
will be the path front A tb B shown, in the following diagram:

-

TC:4

-ship to move in the second situ-
.2: From the diagram, it should be reasonably clear that the captain

. B

A is the st rting position.
0 is the position at the end of 1 hour.
(The captain points-the ship'horth.)

I

in view of this last diagram, what do you conjecture as to the possi-
bility of steering the ship so that it .will travel due north? Ifyou think,
it is passible, in, whichdirection, tilieuld the captain point the, Ship'to
accolnplish this?

Wieslion about Mirrors

Suppose that you lookin a full length mirror. As you face Our
?nage in the mirror, the reflection of your right hand seems to be the

left hand of 'the image, and the refliction of youneft hand SePragi t°
be the right hand of the image.

To it. Face a mirror and hold a book in your righthand. The image .

facing you in the mirror is holding the book in its left hand. Now put
wn the book. Hold your 'right haneup to the Mirntr an4observe the

steer the ship somewhat toward the nOrthwesoiin order that the
resultaiirOf4he ship' s-veloCity and. the current's velocity have a head-ing which is due north.. There maT be a few students whd can devise a
scheme for making a scale diagram,which Will enable thern.to prediet
which heading the captain must take in order to getthe required job
done: 'All that is required he're, however, is the'notion that it ira
po-ssible toPaccomplish the task.

T.he following diagram and computations illustrate hov; one might
ye the problem.

in 45°sin 0°
10

Th 'captain should'direct the ship on a he'ading of 20° 42' west of north
at 10 mph in order to have a resultant heading which is due north.



Sont.e Remarks about the Preceding Problems

hand the image holds up to you. The image is holding up its left hand.
Compare the hand held up by the Mime- with your own left hand find .

you will see that they do look alike. ,

.The reflectsion of your right hand seems. t4 be the iinage'S left hand..'
lf, as it appears,' the mirror "reverses right and left", ,why doesn't it
also reverse top and bottom? If the 'mirror 'interchanges your right'
hand with your left.And,.why doesn't it also interchange your head
with your feet?

This "naturally leads to' a next questiOn. Can one meake a mirror .

which does ipterchange top and bo 'tiom? [Orcourse if you lséked in
such a Mirror, you would see yourself standing on yaur head, so. such
a mirror might not be too Useful around the house.]

Some Remarks about the Preceiling Pr.oblems

The force probkm. Many people -dunk that p should be a 40.1rem
ideight if A and p are each 2agram Weights. This is notcorrect.:

'Of course, the answer to this questionzaii.be found experimentally.
However, tb,rough experimentation, pbysiclsts1ve fit-md a way to
answer this question [and similar queStions] by using ideas andiucth-
ods which we shalrlearn About in our study'of geometry..
.11t turns out that if the pulleirspre arrAngedisahoWnin Poaition 1, .

[page 13, C should -be a weight.of tabotit] 35 grams in:order fof.the
ring' to remain at tile center of the tablie. However, ifthe pulleys are .

arranged as shown in Position '2, C should be quite a bit less than
35. grains, For the pulley arrangerne# shown, in PoSition-'3, C. should .

be more than 351grams:
Yt:;11' think there is 'a position such that 'C should' be ir.i* grems?,

a position be found such that the weight of C 44,14 1*40 "grains?.
-40

,

Tc 5

These questions about mirrors are pUrely yhetorical. Thus, we
do not expect,tkat the student answer them. Of course, as you aajid the
students Will read in the remarks later in the liitroduction, mirrors,
"reverse" front and back, In mathematical terms, mirrors reVerse
the orientation 'of space. <

Some of the students may have seen mirrors in amusement parka
that do all sorts of funny things; So, they will probably know thAt
mirrors do exist that interchange top and bottom.

,With a fbrce table in the classroom, it can be verified experixnen-
: ta11 that the larger the angle is between forces A and B, the smaller

the weight is that is needed.at C to istit tile system In equilibrium about
the center of the force, table. The limiting values are 0 grams when
tbe angle between the 4trings for A and is 180', and. 40 grams
when the angle beriefeen the stri,ngs for A and B is 0'.
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The ship problem. One way to find the direction in which the captain
should point the ship in order to sail due north is to make, a drawing
something like the following: '

0 1 2 3 4
SCALE'

A
A.is the starting posi 1011. .

is the position at the end of 1 hour.
(The captain points the ship in the
direction from A to C.)

The captain should point his ship in the dire(tion from A to C, and
during the first hour the ship will move from A to /3 Ii.e., due northl..
Compare your answer with this drawing.

The mirror problem.. Of course, mirrors do not interchange top and
bottomand, in fact, 'they don't interchange right 'and left either,

It is a common misconception that a mirror interchanges left and
right and this misconception is partly due to the feeling one has that

'he cbilld put himself in the apparent position of his image by going
into the next room and turning around to face the wall on Whose other
side the mirror is, hanging.

Actually to put yOurself in the apparent position of yolir image,
something more drastic is ealled for. To tmderstand the difficulty in-,

, volved, let us first eonsider an easier Unit analogous) problem.
Imaginet you are holding a right.hand glovb in front of you

with the fingeis pointing toward the.Mirror. What will Its image look
like? [Close your eyes and try to vitualize it.] . . .'Did you 'realize that
the image of the glove *ill look likra leithand glove with the fingers

inting toward you? [If you don't believe this, try la Can you make
the glove you are holding appear to be the same as the hnage you saw .,
in the mirror?

Though you may not think, so, it is possible to accomplish this. How?
By turning the glove Mside out! That is, you miist interchange the
front [finger-tip end] of the glove with the back [cuff endf>You will

en haVe zu4de this glove into a Ieft-hand'glove with the ftagers

it 6

Here is a ruler and compass cons ruction which will enable you to
determine the desired heading for the ship.

(1) Assume the ship is at A. Draw a north-south line
through A. Then, draw an arrow 1-.4*- inches long
(= ,5 miles per houT) from A to the northeast to the
point D,

(1) Using D as the center of a circid with radius 21
: inches (= 10 mph) determine the rocation of B, the

point directiy north of A and 1O miles from. D.
. The heading from D to .13` is the heading recluirg.d

to have the ship sail directly north. ,The,length
AB in 1-inches gives the resultant Velocity to the

. north of the ship. . .

[As this construction shows, there is a triangle-rule for adding vector
quantities. This is, of course, equivalent to thte parallelogram-rule.] 0

The process of turning a glove inside out ought to work quite well-
with rubber gloves,-and mot very well (if at all) with ordinary gloves.
It would. no doubt be handy to have a mirror and a pair of rubber gloves
in the classroom in order to demonstrate how a glove can be "made
into" its mirror image.,



More abou irrors

pointing toward you. The m rror did not interchange left and right,
nor did it interchange top 2fna 'bottonv= it intehanged front and
'hack.

. To put yourself in the apparent position of your iinage, you must
perform; a Contortion which interchanges 'your front. and baCk. You
must stand in the next room with your back toward the wall on whose
other side, the Mirror is hanging. Thpn you must turn yourself front-
side back [not around] by, say, exhaling so strongly as to pull your
chest [and the rest of the front of your body.] through your back!

We agree that it:is impossible for a person 'to perform the above
contortion, but, just as in the case of the glove, this is what would
be needed' to put yourself in the apparent position of your image

Another easy way to see that a
snirror interchanges front and batk
is to perform the following exPeri-

'ment. Write something on a thin
sheet' of paPer and holdit between
you and the mirror so that the side
containing the writing is facing the
.rnirror. What you see in'the mirror
s just what you see through the

badk of the paper.:
'If the ink were pressed through

the paper, from the front to the
'back, it Would look like the image
:you now see in the mirror.

MOre about Mirrors

Using a mirror and a piece of porous paper (e. g:, newsprint)
marked with a4felt pen, the experiment that is described here can be
performed quite easily in the_classroom. .Atiother- "experiment" with
which students will be acquainted is that of observing the image of the
licenae piate of a following car in the rear-vieW mirror of the car inwhich one is riding. Here, again, one oan understand why the license
appears to be.backward by imagining what the back of the license -
plate lobks like when viewed directly.

."It is interettiting, to note that figur s'*hich have an axis of symmetry
can be held in front of the mirror in such a way that one cannot.tell that
the mirror "interchanges" left and right.: Also, with such figurck;-
when one places the mirror so that its face is along the axis 6f sym-
metry of the figure, one still has a view of the entire figure.. The view
of the figure is, of Course, composed of the exposed "half" of the
figure together wiih the image of this exposed half in the mirror. This
notion serves as the basis for some very interesting exercises in
visualization Created by Misa Marion Walterin, her Mirror Garde.
[These are available through Educational Developenent Corporation,
Watertown,Masiachusetts.

You can Make a mirror in which
your image will be standing on its
head simply bylbending_
ble reflecting surface slightly as.
shown -in .this-diagrani:

:Let us now consider Mirrors, and
reflections in .sonie different, ..anci
perhaps unilsual, situations..



NTHODUCTION

Suppbse that yOu live in a straight-line, that is, in a one7dimensional
world. In a *one-dimensional world.a mirror is represented by a doe. If
you hold an arrow pointing toward a mirror, the image will be an
,arrow pointing toward you. The mirror has interchanged front and
back..

ARROW
<,-

RROR IMAGE OF ARROW

Notice that each arrow determi es one of two opposite senses on the
line. We may specify one of the'se senses to be the positive sense on the
line, call the other the negative sense on.the line, and then say we have
oriented the line.

If you orient the line by specifying that your arrow represents the
positive sense on the line, you have one orientation of the line. You
may reverse this orientation of t.he rine by specifying that th;Nimage
bf your arrow represents-the positive sense on the line. [Pf course, i(
you began by specifying that the image of your arrow represents the
positive sense On the line, you inay reverse this orientation of the line
by specifying that the arrow represents the positive sense.]

We say that rèflectionb, reverses orientation on. a line.
Next; imagine that you live in a plane, that is, in a two-dimerisional

world. In a two-dimensional world, a mirror is repreiented by a
straight line. In such a world you'can bend your arrow as shown in
the diagram below and observe its image in a mirror:

11C 8

The picture oripaie 8 is a reproduction of a photograph of a dia-.
gram and its reflection in a mirror placed on a table. ,It shows, quite,
effettively, that the orientation of the line is not alterbd, but that the
orientation of the plane of the paper is reversed [from clockwise to
counterclockwise when viewed from above
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.Each arrow determines one of tvo oppo.site senses of rotation o I the.
.

plane. We may Speeify one of these senses to be the positive sense of-i-----51'e-..tv''.""4"""'"4-73-4'.i":'±°111."1-315a--m-ay be 6:Yr reTiU'with the two kinds of helices .right-handed helices and left-handedintation,oh the plane, call the otherlhe negative sense of rotation on the
' plane; and then say we have oriented the plane.

If 'you orient.the plane by specifying that your arrow represents the
positive sense.of rotation on the plane, yOti have one Orientation of the
plane. You may reverse the orientation of the plane byspecifying that

. the image a your arrow represents the positive sense ol rotation on
the Plane.

'We gay thaUrellection reverses orientation ofi a plane.
The arrow Contained in the dotted line indicates the orieneatioii of

that line, and the image of the arrow gives the orientation of the
image of. the 'dotted line. Notice that the orientation -of the dotted line
and its image is the same: (Reflection, however, did interchangeAont
and batk, so that the sense;of rotation on the plane is revetted.1

A plane may be ki rather uncomfortable place, in which to liVeso
let tis return to oUr three-dimensionaLworld, which' we refer to as-.

.

In our three-dimensional World we can bend ouiarrow as shown id
the diagram and observe it image in a mirror:.

helices'. [Models of these are easily constructed by wrapping.pipe
cleaners about a pencil. A mirror-image of a helix of either kind is a
helix of the opposite kind:} Indeed, the arrow pictured on the preced-
ing page is a somewhat deformed portion of a right-handed helix, while
its mirror-image is a similarly deformes1 portion of a left-harided helix.
Somewhat surprisingly, the helices 'themselves, without arrowheads,
suffice to indicate the two orientations. On the basis of a general theory
of orientation of Euclidean spaces of arbitrary dimension it is easy to
see why arrowheads are required on pictures of segments and arcs to
indicate orientation of one and two-dimensional spaces, but are not
rieded on pictures of helices to indicate orientations oT three-dimen-
sional spaces. It turns out that, for n-dirnensional space, arrowheads
are required or not according as n(n + I)/Z is odd or even. [It would
be inappropriate to develop here. ihe .general theory of orientation on
which this result is based. For readers who are_acquainted with the
theory it will be sufficient to point but that (an, a0) is an even.
permutation of (a0, , an) if and only if. n(n + I)/Z is even.

It is worth remarking that the `orientability of Euclidean planes
depends on the.fact that 'however a sensed circle is moved abOut in such
a plane it will, if brought back to its original center; return with its
original sense. Thus, ,having chosen a positive sense, of rotation at one
point, a positive sense of rotation is thereby determined at-each point.
A Moebius surface models of which can be constructed by giving a
half-twist to a strip of paper and joining the ends l.a ascounterexample
to the generalization that all surfaces are orientable. As is easily 'Seen,
a sensed ciFrcle which is moved all the way "around" such a surface

<B imagine the circle moving
ill . around the surface .from

1 , position I toll tolli to I. -Notice ,
A ,

that its sense is reversed.

. will retu n to its original position with its sense reversed.' A non-
Euclidean plane of the Riemannian or elliptic sort equivalently,

_projective plane orientablesurface.
Each 'of the two. arrows determines one Of two opposite senses

twisi in space: We may Specify -one Of these .senses to be .the positive-
sense of twist in space, call the other the negating sense of twist in space,
-and then say we have 'oriented space;

-If we .orient space bY specifying that Our arrow represents the posi---.-
tive sense Of twist in space,,we.liaVe one orientation of spaCo. We may
reverse the orientation of $13,pte by specifying thatsthe.image of our
arrow represents the POsitive,sense of twist in space. .

Wo say that refction reverses- orientationin space,

Similar remarks apply to Euc dean 3-space. However a helix is
.moved about in such a space it will,' if broughtback to iti original axii,
,retusn With its qriginalzsense. There are, however,'Inonorientafile
3-dimensional spacei In which a 'right,handed helix can be moved in+
suclg a way as to reverse its sense. -8inee such sense-reversalis
imposeible in Euelidean 3 -space,- nonorientabli-3-niaces cannot be
modeled in Euclidean 3-apace. HoWever, the saroe trick uadin. the



NTROD1JCTION

The ai-row containea in the plane p [represented by dotted lines]
indicates the,orientation of p, and thf: image of the arrow, [contained
in the plane p',1 gives the orientation of p'. Notice that the orientation.
of .the planes is not reversed: I Reflection,.'however; did interchange
front and back, so that ,the sense of twist in space is reversed.]

We shall have more tit) say about .mirrors and -orientation of lines;
planes, and space later. in the course.

pre din
resorted
3-space:

TC 9, 2

figure to ain a plane picture of a Moebi4s surf a
o to obtain a representation of an anklogous nonori

T.,

lithe space in question is obtained by "identifying" corresponding
points of`the square ends of the bar according to .the correspondence
indicated by the lettering., Just as three dimensions are ne'eded if one
is to twist a slrip of paper to form a Moebius strip, so four din-len-.
sions would be needed if one were to twist a bar of, say, plasticene
into a model of the nonorientable 3-spacedescribed above.

e can be
ntable



Chapter
Mappings

1.01 Functions

In this section, and in the three following sections, we shall review
some 'notions with which 'you are Probably familiar from earlier.
courses. These are all. related -to the notion of a mapping. [Another
word for 'mapping' is 'function'.

Before recalling what a mapping is, let's recall what- a mapping
"does". A mapping of a set-S.into a -set T gives a way of assioing to
each member of S some corresponding member of. T. For example, the
squaring operation for real numbers gives a waY -of assigning to dny
real nuraber -a single real number, its square. This squaring operation
is a Mapping vf the set af all real numbers into itself. aiVe can picture
it by drawing two piatures of the number line [that is, of the set ofell
real nuxnbersl and drawing a few firrowt to shotv, for each ofa few real
numbers, what number 4 assigned to it by th mapping. As the figure
above shows, squaring maiis both and 1/2 on 114, maps 0 on 0,.

both 3 and on 9, etc. We say that 4 is the image of-2 'under
the aring mapping;,that, under this- mapping, 3 iS not the image.
of anything, etc. When the word `function' is used inStead of 'napping/I
.itr is customary to use the word 'value' instead of 'image'. We say, for
example, that the value of the squaring. function at 2 is 4, and that
3 is,not a value of th.

Our purpose in'this cwrse is to 'develop Euclidean, geometry' on the
basis of postulates concerWing a certain kind of mapping of. Euclidean
space into itself.' [Our "undefined terms" will be 'point': and 'trans-
lation'. ] 'Consequently, it is important that students have such a back-
ground as Will enable them to think, in some-comfort, about niappings
andt6 use, with soMe facility.) the relevant notation. By-and large,
we assume that...students of this-course do have such a background.
'Although sectioni -1.01 through 1.04 contain the essential definitions
and theorems, these sections will hardly serve, in themselves, as an
adequite.introduction to the concepts reviewed therein. Their purpose
is to serVe as a review 'of certain material, most [if not ill] of:which
is familar to the reader, and to cUrect attention especially to mappings.
of 1 -dirMntsional space which are protOtypes ot the mappings. of 3-.
dimensional space which we will deal with later, [Students who lack.
familiarity with this materia'l can beat supply it by studying the first
two chapters of High School Mathematics, Course 3, by Boberman and
Vaughan (D: C. Heath and Company, Boston, 1966): .

It is also assumed that readers of this text are familiar with-the
notion- of a svet ,and some of the simpler notions for example, those of
Ordered pair, .Union, intersection, and relative complement related
to it, and-that they are accuatomed.to the use of the Usual notational
devices in writing about sets.

As dot;s any deductively organized study of geometry, this One re-.
.quires- of, students some.intuitive feeling 'for the geometry of physical
space, as well as some familiarity With geometric terminology. We
attempt to fulfill these needs in .sections 1.05 and 1.06 and in ot
"cOncept-development 4ections" in .later chapters. [The roleof,
sections is 'discussed in the first four. paragraphs of the cornment
for section 1..05.1

Finally, participation in a task of deductive organization or,
even appreciation of the outcome of such? task requires some
kn ledge of methods of proof. Since there is considerable evidence

neither'the ability to argue rationally, nor tilt techniques of 'for-
ting arguments in some uniforrn and succinct fashion, are innate,

space will be devoted to these matters both in the commentary and in
the text.

*,
Before reaching section; 1-.05, student should have familiarized

theMselves to some extent with the use of the parallel ruler. A goOd .

device is to issue these gadgeti to students and tell them to take them
home and see what they can draw With them. (Unlined paperand sham-
pencils-sre-appropriaret;1Doni
rulers I. to draw parallel-lines. .[Parallelism Of lilies should come up
near the end of their study of secticni 1.05.1 Students should be 41i/en-
tive enOugh to think of various:things to do, and-the only pu Pose of this
"exercise" : is to develop a modicqm of Manual dead('

section.1.01 we rcalf th e n oti oon a nOtion as a set-off
'ordered pairs, "no' tWo of which have the !Berne first componeht. 'We use
'Mapping' and 'functigh' ai synonyMs; Other nations ars: sometimes
entirely legitimately "g. associated' with these words, but we"havi no
need for these notions. From a forinil point of view it ii largely'a
matter of taste whether one chooses to cOnsider as "primitive the.notia*.
of set and that of the Mamba ship .relationi or the notion of in1ppinig.4144 1.:

that of the mapping relatio of PeclagogiOa



experience and of personal preference we elect for the former. To,
the argument sometimes ,advaneed by partisans of the latter. that
a mapping "maps", but a set just "is"; an adequate 'answer would
seem to be that, in either'case, the verb 'map' is a technical term
and, .as such, must either be taken as primitive or related to other
terms which are taken as primitive. To put it more bluntly, ,'map'
does not have An intrinsic meaning which the definitiqn 'A mapping f
m. atis a on b if and only if (a,b)e f' periferts. Finally, the fact'that
"a working mathematician" seldom thinks of a function as a set of
ordered.pairs is not so damning as it's sometimes claimed. We are
accnsiomed to sit` in chairs without on each occasion being con-°
scions of the appropriate definition; and ""a working zoologist" might
well make use of the family pet on a collecting expedition, withoit.t ever
recalling the technical definition of 'dog'. Just so; in one's dealings
with 'functions, one comes to think of them most of the time in terms of
what they do or, better; what he can do with them ratljer than in
terms of what they are-; 13ecaus functio-ris unlike chai anddiigs
are abstract entities, learning what one can do with func - must pro-
ceed either fronv postulates which prescribe some of the things one can
do with them or from a definition in terine of other abstract entities
say, aetS. If, as in the case with most students now-a-days, one
already has some acquaintance with these other entities, the iatter
method has very definite pedasogical advantages.

In speaking of mappings we adopt thi3 customary distinction between
'into' and 'onto'. .A mapping is said to,map itsdomain into any- set
which contains the images of. al.], members of its domain, and to map its
domain ontoEthe set which consists of just theSe images. Thus, for
exaMple, the squaring operation for real numbers maps the set Gf all
real numbers into this same set, into the set of all real numbers greater
than -1, and both into and onto the, set of ail nonnegative real numbers. -

We shall tend to uie the word 'operation' to refer to functions of -a
certain kind. Briefly, a singulary operation On a set S is a function

which maps S into S, a binary operation on S is a function which maps
x S into etc. [Sx S is, of course, the set of all ordered pairs

both of whose coMponents' belong to S.) Sometimes such functions are
called' inner operations on S and 'operaton on S'. is-used in referring
to any function whose domain-is either S or S X S, -.... We shall

eccasibnally use 'operation' in this more general sense,
At this point it is also Appropriate to call attention to our Use of

'cOMponent' and 'member'. A set has members and we use the word
.'mernber' only in this 'sense. Now, however one may choose to,con-.
strue_t.heiacition_nLatdered_pairs_ of_obj-ects--,the_objects- -clue ation a-re

, not members, in this sense, of the ordered pair. 'Consequently,. to
speak of them g such i confusing, and an6ther word is needed. The
ward 'somponent' seems to fill this need_ best

The method,illustrated in Fig, 1-1 for iictu i g a main:Sing £ the
seeor all real numbers into itself has, for our purposes, advantages
whi8-h other graphical representations lack. For one thing,. it prepares
studenti to make use of diagrams like those in Figures 1-5, 1-6, and
1-7 as conventional aids to explaining properties of arbitrary mappinga.
[In Fag. 1-1, the. horizontal line picture the set of all real nurnberi,
and the arrow, indicate how a particular rnapping'works. In the later
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figures, the loops and the dots. inside them play the role of variables
the former ranging over sets, the latter over their members. I Of more
immediate interest is the fact that Fig, 1-1 suggests another way of
thinking about a mapping of the set of all real numbers into itself a
way of thought which is 'very worth acquiring. Picture the domain of
the squaring operation as a calibrated elastic thread, and picture its
range as the edge of a ruler. ASsuming that the thread is so designed
as to be thickest at the point labeled '0' and to become thinner in an
appropriate, manner toward its ends, one could show what the squaring
operation does by folding the thread at its 0-point, holding the thread
along the ruler with 0-points coinciding ,. and pulling with sufficient
force on the other end. . .

The suggestion just made is, of conrse, for a "thought experi-
ment", bince appropriately fashioned threads are not readily available.

11
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KnoWing a mapping amounts just to knOwilig which objects it maps
on which. lf, for some mapping,: we know.which ar'e. the ordered pairs
(a,b1 such that this mapping maps a on b, then we know the matiping
itself. For this reason, we shall say that a mapping is a set of ordered
pairs. Fyr -example, the Squaring-function is i(x,y): y x21 [read as
'the set of all ordered pairs x,y, such- that y = x2'1. To say that the
squaring function maps 2 on 4, or that its value at 2 is 4, amounts
exactly to saying that the Ordered pair (2,4) belengs to the squaring
function.

Of course, it is not the case that every set of ordered pairs is a map-
ping; an object which 'has an image under a given mapping has just
one image. Note how this restriction .is taken into account in the
definition.

A function is a set of ordered pairs no two of which have the
same first component [and any such set is a function].

Exercises

Part A
Here are some sets of ordered pairs of real numbers. In each'case

tell whether the set is a function. If it is not, explain why.
,2),(2,5),(3,1),(4,1),(-5,7)) 2. 1(1,2),(3,4),(5,1),(3,4),(2,0)1

4. 1(1,1),(2,2),(3,3)1
6. 0 [the empty setl
8. {(x,y): x2 + y2 = 9

10. {(x,y): y x21

12. {(x,y): y

3. 1(2,31,l7,4),(6,-2),(2,1)1
5. {(4,51}
7. ((x,y): y =- x + 1}
9. (tx,y): y = - 31}

11. {(x,y): x =
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Answers for Part A
The sets described in Exercises 1, 2, 4, 5, .6, 7, 10, and 14
functiOns. In particular, as to Exercise 2, the fact that the'ordered

pair '(3, 4) happens to have been listed twice in describing the sct in
question is irrelevant; as to 'Exercises 9 and 6, both sets are functions
because any set with fewer than two members certainly cannot.have two
members with the same first component. As to Ekercise 6, it may
also be well to pant Out that a set of, say, elephants is, by current
linguistic conventions, one whioh has no members other than elephants.
ConseqUently, 0 is a set of elephants, apd is also a set of ordered

'pairs of real numbers.
That each of the sets described in Exercises' 3, 8, and 11 is not

a function should be shown 'by giving two ordered pairs which belong to
the set in question and do have the same first component,.

knswers for Part 13
1, t1{1, 2, 3, .4, 5), {1, .2, ,5., 7

{1, 2, 3), {1 2, 3.)

7, the set 'of all,real numbers, tile. set of all real numbers
9. the set of all real numbers, the set of all nonnegative real numbers
'0, [Answers are the Same as for Exercise 9.]

12. [Answers are the same as for'Exercise 7.]

2. -{1, 2, 3, 5),
5-

0,1, 2, 4)
6, 0, 0

TC 13 (1)
Answer ,for Paift C
1. The sets described in parts (a), (e), and. ( are functions, the

others are not. [As to part (c), distinguis etween 'owns' and
'is part owner of'. ]

(a) the set oeall c-ooms, the set of a 1 buildings
the set of all houses which are owned by individuals, the set
of all individuals who ownhous,es

As we said earlier, the secona components of the members of a func-
tion are calliRd its values. The first components.of the members of a
function are called its arguments. The set of all argumenta of a func-
tion is the domain of thefunction; the set olialt values of_a_function is
its rqnge. For example, the domain 'of the squaring operation for real
r)umbers is the set of all real =Mho's, and the'range of tbis function
is the .set of all nonnegative real numbers. A function [equivalently:
a mapPing) is said to map its domain ontoits range.
Part B

For each function givenin Part A, describe thedomain of the fate-.
tionand the range of the function.

Part C
The particular functions which we have mentioned up tki now have

had only real numbers as aricumenta and values. The definitiiin of

the set of all points in your classroom, the set of all point
which would be in'your 'classroom if.it were.to beernoved 2
feet northeast and one'foot up ,

.

Some of_your students_ma.y not be Lainiliar with the existential_
quantifier '3. For gxarnples of how to interpret and work with '3'

say, the given sentence:
For any functton f, f = {x: 3 (x, y) E f}

you might return to the functions given in Part A on Page 18.- ln
Exercise 1 on that page, 3 iS ist the.domain of the- function
is a number y [namely 1] sUch that- (3, y) is in the funct'
Exercise 2, 4 is not in the domain of the given function foire is
no number y such that (4, y) ta in the function. In Exercise 10 on
page 19, Z is 'in the domain of the function for there a number y
biarnely such that (-2, y) is in the function. Similar wOrk with
discussing the ranges of these.functions will provide any additional
practice thai may be needed.:



Part D

Functions 13

'function' contains ,no suchrestriction and, later in this' chapter and
throughout this course, -we shall have much, to do with functionS
whose domains and ranges-do not consist of real ,numbers. Which of .

the following sets ofordefed Pairs are functions?.
I. The set of all ordered pairs each of which haS

(a) as its first component, a room* its second component, a build-
ing which contains this room

(b) as its first component, an automobile; as its second component,
a person who drives this automobile

) a house; a pe'eson who owns thiS house
(dT. a perion; a house which this person owns
(e) a city; a state route whic) runs through this city
(f), a point in your classroom; -a-point2feet-northeast

and t foot above it
2. For each functithi.described in Exercise 1, describe its doinain and .

it 2

Answers for Part D
Note. The bracketed comments following some answers a r e. there

clarify those answers. Such comments are not part of'*he answers
expected of the students.

.,its range.

We shall use 'D' as short for 'the domain of'and 'R' as short
range of'. So, for any functionf,

the

Df {x: (x,y )Ef} and Rf {y: x,y)ef

Read '3; aS 'there exists a y such that' or as Tor some y.1
an earlier courses you will have learned to use function notatio

Recall thatNr.any function'', and any a E Df,

b = Ra) if, and only if (a.b)i

1If, in , -you replace 'a" by an expression Which does not refer to'
any meMber of Df then t4 resulting expression is nonsense.]

1. Let g be a function such that.Dg-= tr O s x 1) and,. for each
x (Dg, g(x) +. 1. .

(a) Is there such a function? Is there more than one such function?
(h) Draw a picture like Fig. 1-1. to describe g. [On your drawini;

of one- line-to4ndieste-the-domain-cirgi-and a-
bel it_l

(a) Yes.; {(x, y); y ix + .1} is one such functiqn.
No.; since a set is Uniquely determined by its members it
follows, by the definition.of 'function', that a function is
uniquely determined when its domain is specified and A rule
is given which Specifies its values at its various arguments.

(b)
0 29

3 -2 -1

IF -Alkt \\ \
\ \\ \ \

42.- +3 +1-5

+4

(X: 1 X S nce , for a a 1, 1 =

la + I < .2 1 + 1 -!. 3 it follows that lig
' Since, for any b, + 1 = le, and since,

1 - 1 b - 1 3 - 1M

a

Z.0 + 1 <

1 x
1 b 3,

it follows that, {x: 1 3)

c. kg. Con equently, kg = {x: 1 < x < 3). ]
5/3, 3f2, 2, 5/z, .g(Z)' is nonpense [2 le.g], 1/4, 5/6:1/i 1siot a value of g.

The set of all real numbers. (For any real numbei a, Zs
is-a real number; for any real.numbers a and li, Za +if a = (b 1)/2.]

"

4 -3 -2 , -1 0 +2 3

t)

//
//1 'I

(c) What is Re
(d) Answen the-following cinestions:

g(Y3) F-'.?,4141/40 =.?,i(Vs) 2='?, el4Y 211' t g(2)
212, g(?) 2, g(?).',.. = VS

-2. Let h be the function'sucltthatDl&'iathésetofallrealnum
snd, for each real number. x, h(x). -7 2x ,+ 1.

What is, Rh?
(h) Draw a pictnre 'like Fig. 1-1 to describe h.
(c) Is there 's' real iumber which 'is tnapPed by h este itself? Ig

there mom thati.ene aiichjiumber?

, '
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3. 'Repeat Exercise 2 for each of the functions fo and f4, each Of
which has the sett& all real numbers for its domain' and which are
such that for each real number x, .

f,(x) x -2 1, f.,(x) = x 2, f,(x) = x + 3, and f1(x = X.

4. Let h, f, f f, and 14 be the functions described in Exercises t
and 3.
ta) Compute:

(1) h(f1(3n (2) f1(h(-2)) (3) h(f,(4)1 (4) f2(h(4))
(5) h( f,(-1)) (6) f3(h(-1). ) (7) IA f,(10)) (8) Oh(10))

(b). Let go . . , and A be the functfons whose domain is the
set of all real numbers and which are such that, for each real
number x,

g ,(x) = h(11(x)),g2(x) != f1(h(x)), g3(z) =
g4(x) = t(h(x)), g(x) = h( f,(x)), g,,4x)
g7(.t) = f2( f,(x)), and g(x) =

Express these eight g-ftMotions in .terms of 'x'. [For example,.

% g 12(1,(x)) h(x -21) 2(x 1 1 + 1 -= X. So,

111(x) x,) ,
5. MappIngs like those you have studied in Exercises 2, 3, and 4 are

said to be linear.)

A functio is linear if and only if

1

(i) Df s e set of all real .numbers, and
(ii ). for some nonzero real nuinher m and some real num-

ber b,
f(x) = mx + b for each real number. x.

-
(4) Is the function g of Exercise 1 a linear function?
(b) By definition, all linear functinns have the same domain. Do

all linear functions have the same range?
(C) The number m referred Vcrfn the definition of 'linear' is called
=t/te-siope-of-theT-functiorLIslthere-any7rea1-number-which-is

not the slope Of some linear function?.
(d) Complete.

If f is a linear function with slope,m then, for each real num-
. ber x and each real number y,

f(x) - f(y) =

(e) Suppose' that f is a 'linear mapping and that a and b are tuv
-,

real numbers. Can it haPpen that f(a),= fib)?
(f) In working Exercisea 2.;.and 3 you found that a, given linear

funciiion, may map some real number.onitself,- but tharthere
a;! 1i144T. fluktieuA wluch r.40 re.S. naaber 01.1 itself Make. ,.. ., , ,

TC 4 (1)"

The range of each of the function
set of all real numbers.

(br -5 -4

-, '-.., :,
1 '-: \ ', \\ %- t\ t

--...., "-- `"...., %, 5 . \ A.
,..., .., .. N.. I. t

5 -4 -3 -2

and f4iathe

+3 +4 +5

5 -4

5 -4 -3 -2 0 *2 3 *4 *13

.

%.

th,

, *a_ _ ., , .
Ns 'Ns

.

Np4 "Nky. Ns-
. .-4 -I 0 41 +2 +5'

(c) 'Both fial_nid .f2 map -1''on itself and neit maps any_othe
number on itself. fs maps no numbe(r on I Maps
each number on itself. [For. the pr ent, these facts are suf-
ficiently obvious from theligure,s, tudents Should, 'however,
be 'able to justify their answer as to say, .f/ by solving the
equation 'tx - 14,/2 = x*., For more OR this questioni;) see
diicussion,.beloW, of Exercitiet 5(g . You may Wish to use
the elastic thread gimmick as desc ibed there tci foriShadoW
the resn1t.of that cite:vile.]
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[The answers for
h 'are inverses Of each
clissed in sectioni '1.03 _and 1.04. The agreement between
the answers for (3) and 14) is due to the fact that f2 and
are linear fu tions each of which maps the same real number'

TC 14 (3

In doing such experiMents you ar'e" preferably without meta-ion,-
ing it -'4411ustrating the notion of function composition. [This notion-is-11. ) -111,7.1, 5) 5 introduced in section 1.04.1 For you are ____Lievaring_thatlineax-lunction------

,-------,---- --"-------mar-bothought-af as elle resultanv of a stretching [or a shrinking]
followed by a translation. [Qf course, in particular cases, either the2) illustrAie the fact that fel and stretching or the translation may reduce to the identity mapping. ] Youther inversion of functiorre is dis- can also, explicitly, bring out some of the propeies of linear map-

on itself ste the optional exercise 5(h), below.'
(b) gl(4x).= x, g = -Zx - 3, g4(x) = -Zx 3,

g5(*) Zx + 7, g6(x) = .2s + 4, .g.r(x) = -x 5, gelx) -x +
[The fact that each of g1 and g2 is 1.is due, of course, to
the fact that fi Anci h are inverses. Ttiat gs = g4- is .due to
the fact that the linear mappings l2 and h have the same
fixed poknt. ]

In preface to giu4ing anaers for iXereise. 5, it, is worth noting
that" thenature of linear mappings can be well broughtcbut by "thicught
experiments" with elastic threadslike tgt experiment described
earlier in connection with the squaring mapping. This tilne, linagine
the domain of such a function say, the function ii of Egercise. 2
represented by a calibrated thread of uniforen elaeticity, [Unfortu-
nately, the elasticity of a rubber band is by nomeans uniform: ] To aid
your -students'. imaginations), write 'h(x) = 2x + l' on the 'chalkboard,
represent the range of the function by a calibrated hothsontal chalk:line
and pretend to hold the elastic thread avinst this line. z Point out that

:Ow are holding it in such a way that the calibratiOni match. Now,
move your arms apart *saying that you are stretching' the thread to
twice its former length, but are taking tare that the 0-mark on tilethread remains at the, 0-mark on the Une. Ask questions like: Where
is the negative 2- mark on the thread? .[tnewer: At the negative 4-

. mark on the line. ] ['Negative' is a more descriptive word to lige when'
.referring to negative numbers than is 'minus'. ] ,Finally, moVe yourhands a unit distance to the rigig [announcing that it is a unit distance
and repeat Stou'i,questions. 'When your, students seem to have grasped
the relevance of your antice tósthe mapPing h, move-your hands a,
distance 3 units to the left 'and ask: What linear mapping does.this
represent what are the values of 'm' and 'b'? {-Aniwer: 2 and -
A few repetitions of this ,kind cif experiment should -give your .students a

.good feeling for linear mappings. -.To act 'out a linear mapping with
negative slope_either reverse- the2ezda-c4--ths-threa4-before-isolding-1t
against the cbalk line or-, after stretching it-make -ashift.to cross
your handsv<ithout releasing thetension'in the string.' -[Thii may

. result Ina dislocaiedfshdulder. U not, You will int'anjunctiOn with
the_ first techniqUe have illustrated the.fact that, for any real num-
ber a,- *-2.a -a;..1'hia-Is a fact that yott should mention as justi-

'.- fication for using the first teChniquej To- aci out a. linear rnappi4 with
.olppe between ,0 and 1, pretend to hold a Stretehed thread against the
chalk line-and announce that yo ta. have previously marked it-so that, as
stretchted, the calibrations now iilatch-up wit those on the board. Then
release the tdnsion,

pings. For example, a stretching moves each point other than.0 awayfrom 0, whereupon a translation is bound to move exactly one point
back to its originalTosition. [Thie point will be one which is to the
right of 0 if the translatiorfis toward the left.] So; as youVstudents
should see, a linear function with slope greater than 1 ,maps exactly
one real number on itself. A linear function with slope'l that is,a translation either maps no real number on itself er, if it is the
faentity mapping, leaves each real numbe'r fixed. Linear mappings
with slopes less than I can be inmeetigated in a siinilar-manner.
5.

*
-4 is not the set of all real numbers.

b Yes,', for m 0' andany b, the equation 'mx b = c has
a solution whatever value may be given to 'c'.

(c) Yes.; the number 0. /the funtions which, were the defini-
tion different, would be linear functions with slope 0, are
called constant functions .or, of course, constant mappings.

d m(x y)

No, ; by part (d), a - f(t )- = m(a - b) * 0 if a * b. [Notethat in this text 'tkvo' means two that is, two numbers, or
two points, or two whatever Are. by virtue of being two, dif-ferent, However, English is such that one needs sometimes
to use plurals without,implying difference., Thus, 'Supposethat a and b are real numbers' leaves open the possibilitythat a may be b. )

.47



PartE

1.02 Trimsladons, of the Nmither

a cMtecture as to which linear functions map exactly one real
numberon.

AO- The-conjecture you madein part. (f ) could be stated in the form:
A linear mapping leaves exactly one Teal number fixed
if and only if the, slope the mapping lCom-

. plete.1
Show that this conjecture is correct. (Mint: Suppose that f is a
linear mapping with slope m. It follows, by definition; that, for
some real number I), fix) = mx + b for each real number x.
So, f leavesthe real number a flxe4 if and only if ma +b= a.
What can yoti say about .{:c. nix + b x }.if m 96 17 If ni 1TI
In Exercise -4 you deilt with a w&t of combining nifippings.
1We shall have more tp. say aboyt this in another section.]
A lifiear mapping f and a linear mapping,g. are said to be per-
mutablq if; for each real number -x, f(g(x)) g(f(x)). For ex-
aMple, the linear' mapping .f, of Exerchse 3 is [obviously I
permutAble with evAy linear mapping. As year'. work in
Exercise 4 shows,. kand ,are perratitable. Are h and kper-
mutable?

(1) Try: taainjecture undq'what conditions linear fitnctions fan&
g other than are permutable. lliint: It is- eaby to show-that if,
for each real numbed x; /Ix) = nrix + b, and g(x) = m2x.+ by,
-then f and g are permutable* if band i.only if (rn,' 1)b,

1)b,. Try, hoWever, to formulate your conjecture so
that it does net refer to the slopes of f and g or to their inter-
cepts (the latter are the numbers b, and b.2).1

(h)

I. Suppose that f is a function and that S ç f. What can you say' -
about the set S'? [Hint. is S a set of ordered pairs? Can there be
two mernbers of S which have the seine first component?J

2. Suppose that f ancl4g are functions and that g ç I
(a) What may you say about Dg?
(b) What information about Dg would convince you that

Any subset. of a "function is a function.

,For any function f and.any function g such that g
. '

(a) Dg Df, and
(b) g = f if and 'only if Dg = Df

.02; Translations of the Number One

Fmm sonic points of 'view, the.simplestlinear functions are those
whose slope is 1: The function A; whbre 4(x) = x + 3, is. such a func-
tion. Yeti have already pictured thiimapping,as in Pig. 1 L. 2; by draw;.7
ingtwo 'pictures of the set of all. reninumbers andfionle arrow& Sinee,

,
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The Correct conjecture is-to the effect that the linear functions
which have exactly one fixed poihrt-are precively these whose
slopes are not 1.,
differs from I [or: is not 1, etc.]
For any real numbers m and b, there is a unique n
such that mx + b = .x if ancrenly if m 1 [and, theris a
number x such that mx + b = x.if and only if (m *
b =. 0)].
NO ,

TWo linear mappings,' neither of which is th identity mapping,
f are' permutable if and only if they map the same real -rium
hers on themselves tor: if and only if they leave the same
real numliers fixed].

There arevarious ways of estahlishing the' correctness of the con-
jecture, in pi..rt (i). One method begins by'noting that; as indicated in
the hint, f and g are permutable if and only if (rn -= (m2 - 1)b -[For any real number a, f(g(a)) m1(m2a +,b2)

i
g(f(a)) =.

m2(rn1a + ba) + bi and, so, f(g(a)) = g(fta)) if and only if m1132 + bi
m Ir"111. ff one then recalls that, for'm * 1 - the unique realt 2. fi. 1num er 1 eft xed by f is -bi/(m1 -1), he gees that, in case the slopes
of f and _g both differ from 1 these ftinctifns are permutable if and
only if they leave the same real number(s) fixed, In case ml, say, is .

1 it follows from the same condition that f 'and g are perMutable if
;and only if m2 = 1 or bi = 0. Since, for ml, = 1 and b1 = 0, f is
the identity mapping it follows that, excluding this- mapping from con-
Aderation, in case either f or g has slope 1,- if f ancij g are per-.
mutable then both have slope 1 and so leave the same real numbers

,'
[to wit, none] fixed. On Ilirovother hand, if neither f nor g leaves any
number fixed then, as we e previously learned both have slope 1
and so', as the condition from the hint tells us, are permutable., Con-

. .sequently,. in any case assuming thafneither f nor g ,is the identity
mappingli and. g are permutable if and only if both leave the same
numbers fixed.

o

A Sonnewbat mSre sophisticated argument sioe-s as follows: We
.have seen that, for al_ jx. real number a, f(g(a)) g(f(a)) if and only if
(mi 7 1)1:1 = (m2 - It follows that if there excists an x such that
f(g(x)):--1 g(f(x)) then (m2 = (m2 - 1)bi .and,, also, if
-(rn2 - 1)b2 = (m2. - '1)112 then, -for each x, f(j(X)) g(f(x)) that is,
then f ana g are 'permutable. In particular.if f and g both map a
given number a on itself then, since, for this -a, fig(a)) = a
f _and_g:are_perrautah1eP,o VUP have_shown4hat-if-Vand-g-ara44utar
.mappingis both of which map fierne number on itself then f and gc. are
permutable. From thii we deduce that if f and * leave:the same
numbers fbcod then and g -are permutable', Per thiafollows from
what has just been proved in case f, say,. leaves saKne number fixed,
while in case f leaVes no number fixed then, since, -by hyPpthesill.,.
;behaves liliewlse,2,both ,f and g have, as vie.knOw, slope '1 4ncl, lit
consequence are permutable. It remains tobeshownthatff f and g
are permutable.then either one 'of them it the identity-we-WI rrh')tW,



same real,numbers on themselves. As 'an acceptable alternative, weproceed to show_that if hei f t.or g-iii-theldefirity Mapping, and oneof then; malie some real nut-Tibet on.itseltwhich.the othetrdoesn!t, thenf and g are not permutable. To this end, suppoSe that neither f nor gii. the identity mapping and that f, say, maps 'a number a on itself, batg doesn't. Th,en, 1(4) = a and g(a) = b 4 a. So, 'f(g(a.)) f(b).andg(f(a)) b. Now, since f iS hot the 'identity mapping, and Sincef(a) a,and,h. * a, it follows that f(b) # b. Hence, f(g(a)) * g(f(a))and it follows that f and g are not permutable,
As a final comment on.part (1) we notq that it is easy to show, byIc hyead experiments, "why" linear mappings f and g .vith slopegreater than I are permutable if boen map the same' real number a onitself. To do lo, label a point on your chalkboard line 'a' and indicatethat you haVe filone'the same on the elastic thread. Then, 'announcing cthat you will show w'hat a linear mapping f with slope m1 > I, whichMaps a on itself, does, hold the imaginary thread against the chalk linewithout stretching, so that the points marked 'a' are together. Now,by stretching the elastic thread appropriately doubling its length ifmi = all the while keeping the points marked 'a' together, youwill show your students the action of _f. Stretching, instead by thefactor iT12 will', 'since g also maps a on itself, show, what g does. ,Toshow the result of first applying .1 and then g, you would first stretchby a factor 'mil ahd then, without relaxing the tension, stretch by afactor rn2. As a result, you would have stretched the thread from itsoriginal length by a factor mi ml. It follows that, since multiplicationof real nuMbers is commutative, f -and g are permutable.
If `you are fortunate in.y.our students, some may aSkvhy you aresure that stretching about a really has the effect of a linear.mapping

.which leaves a fixed. tbe answer to this amounts to showing that if-a = -13/(m.- I) then, for all real numbers x and y, y =' mx + b ifand only if y - a = m(x - a). Your students should, of course, he ableto show that this is thexase.

Answers for Part E
I. Since each member of f is an- orde ed pair, S is, a set of orderedpairs: Since no two members of f have the same first component,

nelther do any two members of S. Hence, S iv function,,, Iiishort, any subset of a function is a function.
,(a)
(b) nce g C f, if g # 1 there must be.an ordered pairin f which is not in g. Since no two members of f have the

saMe first component it follows that the_r_e_iis_41_mernber_of-Af'_
Wridch does not belong to ,Sg 1:lence, if Zs ,% then g f.1
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Fig. 2

Fig. 1-3

R f,

for, any real number a, Oa) a = 3, we can 'also picture f3 by drawing
pne picture of the number line and, one arrow..101,' course, to under-
stand this picture,'we must 'know ttikt, f ¶$4 a- linear mapping ot slope 1
and,: so, "treats all points alike."] It -is convenient.-to use "geometriC
language" and say that the mapping/3 moves each point Of thenumber
line a distance 3 in the positive sense. More briefly, we shall say that
f, is a translation of the number line -the translation of magnitude 3
in the Positive:sense. .

As another exaMple, Consider the linear mapping f such that, for
each real number x, f(x) = x '-.2. We may picture this mapping as in

. Fie1-4 and call it the translation of the number line of Magnitude 2
the negative sense.

I * -15. -4 -3 -2 -1- 0 1 2 3 4

Fig. 1-4.

[BY now, you are probably t1W of reading the words:real number'
and 'of the number line'. From noW on we shall use `.1' as a name for
the sat of all real numbers.]

A translatien of .W is a linear mappving with slope 1.

TC 16 (1)

_
We uSe the phrase 'the number line' to refer to the set of all real

numbers endowed with the structure which is defined by taking the dis-
tance between real numbers a and b to be Ia.- In mathematical
terminology, then, the number line is a certain metric space. "[By
definition, a metric speoe ,is a set fo'r whose members one has adopted .

a definition of 'distance'. Mbre specifically, the number line is a
1-dimensional Euclidean metric space'. Current use of theOrd 'space'
by mathematicians is perhaps best described by saying that Any set on
which a structure has been specified for example, by defining ver- ,

ious properties of and relefons among its members is called a splice
if study of this structure is facilitated by the use of "geometric intuiz.
tion". In the case of such structures terminology is often borrowed
frozn geometry. For example, the members of the set in question are
called points; and if a numerical-valued function whose arguments'are
pairs of points, and which hae certain standard properties of ordinary
length-measures, can be defined in terms of the given structure theh
this function is called a dista,ace function, [The "standard properties"
which characterize a distance function, d, are that, for any_p_o_inte_a__
'and b, d(a, b) = if and only if a = b and, for any poinis a; b, .and
0, d(b, a) + d(b, c ) > d(a, c). It' follow.s that, for any points a and b,
d(b,a),= .d(a,b) > 0.1

In the definition at the beginning of the preceding paragraph we have
endovied the set of real numbers with more Structure than is appropri-
ate for the study of Euclidean geometry. For, in Euclidean as con-
treated with Euclidean metric geonittry, there is no preferred dis-
tance function. Euclidean geometry/only ratios of distances or,
more properly, Atiosof segmenti .arc relevant.

In the main portions of this course we shall study Euclidean geom-
etry, basing all our ideas on'the notion of a translation ofa Euclidean,
space. Although we s'hall have in mind a 3-dimensional 'Euclidean
space [and the lines and planes which are .its 1-dimensional and Z-
dimensional subspaces], the concepts we introduce will not depend on
dimension, and many of our theorems will be prue for Euclidean spaces ,

-of any dimension. In particular, whAt in thIe agction we call 'transla-
tions of the numbe?' line' are precisely those mappings which come
under our general notion of translations as it applies to the ca,se. of this

-particular 1-dimensional space. So, the present sestion foreshadows,
to a very limited extent, our later ciiseiugsion of translation!".

:.

In speaking,,above, about distance functions, we have said that
theyc are "numerical valued". It is often helpful [we believe] to take
account ofthe fact that the nonpolar ("unsigned"] "numbers of arithme-

, tic" which, in a logical development of number concepts,' are' prectir-
sort of the polar f" signed" ] real numbers, are also different entities

.._froruthe_ncinnegative realnumbe TI one doe,a-so_then---the-va,luas-----,-----

-There is one linear mapping of Idope 1 which you may have some
,question about callinga "translation". This is the.mapping of .02 into
itself filch I h int OCR fixed. Definiti xis h v r

appropbriater a distance funCtion,are these nonrolar numbers [a die
tance eitnLeso
to magni

.ornfotrraenpsollatiitoivnes..thrltlitit cnoeugraetei,vIeh,ow
anevriptrh,e willeamiszenoaprr 1Lp...es

nonoolar numbers 2ag, An-place sg the ass. kg, nouriefative reaja.
. w eaves eac po 0 , owe e , are

,.'adopted for convenience and, as you will see,it is convenient to include
this mapping under the definition of 'translation'. [So convenient,
indeed, that if we excluded it now, we wOuld almost certainly decide
later to chonge the definition.]

5;)



For ,precision, one should distinguish between the set;of all real
numbers-and the 'number line, ,sinCe,the,latter is the former toizether
with a cei-tain lipecifiqd struc,ture. ThUs; if we use 'R' to denote this
set of all real nurnbers.-'translation of is nbt quiteTproper as a
ynonyr*, for 'translation of the nun-iber lin&, It is ,customary, how-

ever; to use the same symbol to denote both given space and the Ile
of its ppinti.

'The translation of it which leaVes each real number fixed has p r e -
viou I 1 y been referred to in this cdn'iOnentary as 'tile identiO mapping of
R into itself% This' is, k,special case df a terminology which is intro-
duced in the.text on page 25. If you wish, you may introduce itnow
or even earlier] and denoy it by '1 '.

_

it

..s
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1.02 Translations of the Number Line 17

Exercises

Part A

Part B
As you

.set of ordered pai
-erdered-pair-fo.
(2,3)? Of (3,2)?
verse of S
of S:

: 1. For each of the folio
(a) ,3),(2,5),(3,-'-1 ),
(c) 0 4..

(e) Y 141
(10 :{(x,y): y x - 5}

A

1. Show that; fbr any a E IV and any b c therelissa unique transla-
tion of ..)9 which maps a on b. 4-

2. Show that'iffis a translation of .1.4f then, for any a t and any b E

a T(b) b.

[Hint If you wish, you may use the.result of an earlier exercise.]
3. The statement you proved in Exercise 2 is a way of saying that any

translation of .vrinoves all points of d4 the same distanee in the
same sense. Show that any mapping, whose domain ia A', which
does this is a translation. [Hint: Choose some real number b, and
suppose that, for each x f(x) -x 1(b) - b. Does it follow that
f is a translation?]

4. When we use geometric language to discuss real numbers, the
distance between a point a end a point b of the number line is, by
definition, 'their "absolute difference, la - bj. [Recall that, for
each x Ix) = x ifx is nonnegative, and IxI = x ifx is negative.]
(a) What dogs a linear mapping with' slope 2 do to distances?

[That is, in terms of
can you say abou
such a mapping?]

(b) What does a
(c), What does a lin

5. In Exercise 5 of Pa
leaves just one
follows that translations of gi are just those linear mappings which
either leave no 'lit fixed Or leave mare than one point fixed:
Is there a transl tion which leaves mare than one point fixed? Is
there more one such translation?

distance between two points, what
distance between their images wider

tion of .4e do to distances?
mapping with slope m do to distances?
,` page 14, you found that a linear mapping

fixed if and only if its slope differs from 1. It

4

unction is a set 'of ordered 'pairs; but not every
is a function. For any a and b, = converse of the

ardered-pair-(bia). ig the converse of
2,2)?1 Given 'any set S ordered pairs, the con-
which consists of the coniterses of the members

ts, describe its come*
(b) {(1,3),( ,245),(3,-1)kl,5).}
(d) f(x,y): y
(f./ {(x,y): y = x 31

TC 17 (1 )

Answers for Part A
1. f is a translation o fe which maps i on 15 if and only if f is a

linear mapping with slope 1 and f(a) = b. f is a' linear mapping
with slope 1 if and only if ,.&f = le and, for some cC i, f(x) =
x + c for each x it, For such a mapping f, f(a) b if and only

b = a + c that is, if and only if c b a. -Hence, the nnicAte
translation Which maps a ,on b 4s that one such that, for eath
x C i, f(x) x + (b - a).

Z. From the definition of 'translation' and the result of Exercise 5(d)
on page 14,u it follows that if f is a translation then,, for any real
number,s a and b, f(b)-f(a) = 1 (b - a). So, f(b) b f(a) - a.

3. Yes. [slope = 1, intercept = f(b) - b]
4. (a) A lthear mapping Of slope 2 doubles all distances.

(b). A translation leaves distances unchahged.
(c) A linear mapping with slope 'm multiplies all distances by hEak
[All three answers drop out of the result established in Exercise
.5(d) on page 14. Make sure that students understand the some-,
what abstruse language used in these antwers, Nothing can change
the distance between two given points of a space. Nevertheless,
one says That a mapping doubles the distance between two points,
meaning that the distance between their images is twice that
between the given points.]
Seme of your students may be interested in the fact that linear

'mappings may be characterized as the mappings of it into itself each
of which multiplies all distances by a given number. In view of the
answer for part (c). this can be established by showing that if f is a
mapping of into itself such that for each x C 1. and each yEe,
If(x) - f(y)i = mix - yj [where m 4 0] then f is a linear maPping
whose slope is tither rn or rn. To do so, suppose that f is a map-
`ping of -4 into e and that, for each x and y in le, 11(x)'- f(y)1
mix - y I. Let a and b be two points. of R. By hypbthesis, there
are two cases, that in which f(a) - 'f(b) = m(a b) and that in which
f(a) f(b) = m(b a), It will be sufficient to show, in the first case,
that, for any c E R., ) f(b) = m(c - b) and, in.the Second case, that,
for any c E e, f(c) - f(b)/ m(b - c). Consider, then, the first case
that in which f(a) f(b) = rn(a b) and suppose ihat c is any point
of As was the case 'with a and b, we know that if f(c) - f(h) *
m(c - b) then f(c) - fib) m(b - c). But, supposing that f(c) - f(b)
rn(b c), it follows, since f(a) f(b) = rn(a b), that' AC) \- f(a) =
m(2b - a c). Since f(c) - f(a) is either m(c - a) or -rn(a - c) [and
m * it follows that c = b or a = b. Since a, *` b [a and b,be' g
two'points of A] it follows that c = b. So [evehln this least favor ble

-Howe in-the-first-Of inir t 4.1 craireis
1(x) = mx Mb). nub) for each x C an.;i, so, f is a linear mapPing
with slope m. [The second case may be dealt with in,a
manner.]

a

S., There is sih a translation and only one. It'is the ma
hich leaves each paint of ft fixed.Into itself



Answers for Part B
These exercises are exploratory for) section 1.03. Note our uses ofthe word 'cori'verse'. Although these 'have been standard for years,some authors of recently published texts use the word, 'inverse' as a'synonym los 'converse'. This arbitrary' change in the long-,acceptedmeaning of 'inverse' see page 191 is deplorable.)

(a) 1(3,1), (5,2), (-1,3), (5, Nr4)) JAlternate answer: 1(3,1),(5,2), (-1,3)1)
(b), 03,1), (5,2), (-1, 5; 4)) ) V)
(d) {(x,y): y =.x}

I =
(1) {(X,y)": y x 3} (g) {(x, y): y =- x + 5}
[As an eXample of a formal procedure for justifying the answersfor the parts (d) - (g) we .tak.e..part,(e). By defiMtion, (a, b) be-longs to the converse of {(x, y):. y .= lx1) if and only if-(b, a) E {(x, y): y 7 ix1) . The latter is the case if and only ifa = I bi - that is, if and only if lb. = a. Hence, the converseof {Ix, y):, y = 1X1) is {(x, y): I yl xN}

.' Students will presumably guess that the answers can b ob-ained by interchanging the occurrences of 'x' and 'y' afte thecolon Ion, by replacing '(x, y)' by '(y,x)' but not by doing bothThey should, however, be able to give some explanation, analo-gous to the precvding, of why,this mechaniacal proCedure works.).
-

4



_

MAPPIN6S

2.. (a) Wh ch of the set; in Exercise 1 are functions?
. (b) Which of 'the sqts ir Exerei

functions'?
. Complete:

(a) A 'function whose converse is function is a set of Ordered
pair8 Sueh that no-lwo halve the same first. component and no
two have

(br The convee of a mapping is aJnapping if and only If no two
ohjects have - under the given mapping.

4. Is the' -converse of the *squaring operation for real .nufribers a
(Unction?

-

5. iai Nrnst the converse of a linear mapping bi; a mapping?
tb).Must the converse of a translation of .:// be translation of.4?

1 have converses which are

1.03 function Inversion

Suppose that f is a mapping of a set S onto a set T. Without further
spevifying f, S, or T we can re a situatiop like that just described,, 4

as is done in Fig. 1 -5(a).'The 6o
4.

s inside the loop labeled 'S' represent A

members of S; those inside the loop labeled 'T' represent members
of T; the arrows indicate which members of T are ittlaOS of the various

' I

Fig. 1-.5

members of S. Figure 1-5(b) suggests the converse of f. The first com-
ponents of the members of the converse off are located in T; the second
members ar,e in S; the arrows run from- first components. to corre-

. Sponaing second components. Assuming that different dots inside the
left-handloop represent thfferezitmembers of 5,, the .convorse offis
not a mapping.

Fig..1. -6 shows a different situation. Again, ris a mapping which
maps S. ooto T.- Bat,..this time, the converse of, f is itiso a .mapp
land so, Of course, mai* Tonto SI. More specifically; it makes sense
say- that the mapping. Which is the .converse of f "uncioes" what th
mapping f "does". .[Run your eye from left to right alOng one of thp
arroWrs in; taL.theri, frOm right to, left. along the ooriesPonding arrow
in (b).1 'Notice, also, that finatcheS thementbers of S in a.one-to-one .

manner with those of or, if you prefer, fmatches the members of

2. (a) AU the sets described n Exercise I are functions.
(b) The -sets described in partsl, (a), (c), (d), (f)', and (g ) have

converses which are functions. Those described in parts (b)
and (e) db not.

3. (a) the same second component
(b) the same image

4. No.; since, for example, both.(2, 4) and ( 2, 4) belong to t
squaring operation. its converse contains the two ordered pairs
(4:2).and (4, 2), both of ihich have first component

r Yes. ; for m * 0, the converse of {(x, y): "y = mx + b} is
f(x, y): y x/m b/rn} and 1/tri 0.

(b) Yes.
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n a one-to-one manner with those of S. Of coume, the.converse
meinrs of S and th6se of T in the same manner.

When, as in the sectind Situation, the converse of a mapping f is,
itseify a Mapping, this converse.is.called the-inverse of f Evidently,.a
mapping has a4.1 inverse it and only if it matches the members of its
NiOmain- in a one4o-Ope wa.V with those of its range. Por thiA reason; a
mapping which has an iuverse is Said to be a one-to-one. mapping. In-
stead of 'the inverse of r one .often writes f A.Read as.'the in-
'verse of /- or, more 3easily., as f in:Vtorse'

/Eieicises"

in k.thava functioVhas all inverse, sufficient to
Show that o E DT-and any b c Df; iff(a).= ftb) lien b. An-
other equivalent Procedure is ta show that, for .any.two argurneuts,
a end" h, of f,

To show that a finictiendoes net:have an- inverse, merely Ond tWo
argiitrient,s of f at which .f the'Sarne

. ..Use'one of fhese Methods to shoskthat
.

1. squaring of real numbers does not have an fnve se,
2.. the. function.descri bed.. in Exercise 1(a) ofPart.B on .p ge17_ ha .an

i4x.rerse,

-th6ltinoti n descriI;ed in'Exercise lib) f Part 8 does not have an .

TC 19

Answers for Exercises
1.. Since (2, 4) ,and -(2-2, 4.) both belong to. the-squaring .funeti and

2 are two a,rguments of -this function:at both of whIch.it has the
same value.. Consequently. -the squaring function does not have aninverse,

2. The arguments o unction in question.are 1,. 2, and 3 and the.
co r re sponding valuys are -3, 5, and .-1, respectively,. Since. the
-function has.different values at different arguments.ii follows that'
it 1-,as an Ilver se,
Sinfie the function.in clue stion has the same value, .5, at both of its
ai.gurnentS 2. and 4 it follows.that it does, not have an inverse.
[This has.already bee-n shown, in the ansWer for Exe'rCise 504 of
Part 11_on.page 18, by showing that the 'converse of any linear
mapping is a linear mappin. T
instructions for-the.present exercis

however, does not satisfythe,

Suppos.e that a and h are argurnenft of the
with-slope ni. Thenr m O\ and, by an earlie.r
arguments a anci.-b of f, f(h) rn(a b).
f(a) f(b) then a = 1, Consequently f and,
mapping has an inve

linear functioari f
exercise,afor'any
It follows:that if

linear

"inverse,:
4. any linear mappilg -has

I.1)4Function C

appose that f and g are mappings. P'oi any a cpfwhicli,iaisuch that
nibert'gq.00±,-of-ete-rang

Rt
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of g. So, f and g togethor determine o mapping h such that Dh x e Df:
f(x) e Dg} and such that, for each x eDh, h(x) = g(f(x)). The mapping
h with these properties is called tke.resultant of f followed by g, or the
t'ornposition of k on f Evidently, composition of functions is an opera-
tion," on funCtiens in the,same senSe aS, says addition of real numbers
is an operation on real numbers. Just as we use the operator '+' in
referring to the 'result Of adding real numizersso we need an operator
to uSe in referring.to the result of composing functions. We introduce

oiuch on operator in the following definition.

For any'functions f and g,
(i ) Ii [g f] - x E Df: f(x) eDg}, and

'for each x e'D [g 6 f [g g(f(x)).

[Rekd 'g 'the resultant, of f follOwed.by g' or, for short as 'g
circle f'.1

You may recall that you computed the resultants of several pairs
of linear functions in 'an earlier exercise.

Exercises

Part A
. 1. Suppose that f = {(1,-1)(-2,4),(5,7r ),(6,-3)} and

(t-1,1),(-2,-2),(-3,5),(10,5)}.
Since 1 e Df sod 1) 1 e bg it follows that 1 e D[14 0 f ] and that
[g g(-1) 1. So, (1,1)eg f. Since, although 2T Df,
f (-2) 4 Dg 'it follows that 2 iD [g a So, there is no y such
that (-26) e g f. Also, si.nce a of, 3 eD [g f ] and there is no y
such that (3,y) g f.
Complete:

, (al g =' 0,1), (b) f g =
2. yotir work in Exercise 1(a) brings out a-point which, b pftrt

of the definition, is .obvious enough.'For .any functions h and k,
h1 Dh; but, in general Dlk eli1 Dh. In fact, es is illus-

trated in gkercise 1,(b.), for any functions h arid k, DIk hi :-Is-Dh if
. and only ff./0 Dk. .[Complete:

3. Yew y.,ork in Exercise 1 .also shows that there exist functions k
andhSuChthatk hvt h k. In other words, function coinposition
IS not a operation.

am,

Let fbe the translation of.1 which inaPs each point of the number
-line a distance 1 in tlie positive sense. tet g be the linear, mapping
under which the image.of eaCh real number is its double. You
could picture ehher 'of :these functiptsby-drawing two horizontal
linee 'which represefit its domain and range, respeetively, and .

TC 29 (1)

Since the result of composing any function g on any function f is
a function in "most" cases, the function 0 since, more often than
not, = 0 it follows that function composition is a binary oper-
ation on the set of all functions. As is .shown in the exercises, it is an
example- of a binary operation which is associative but not commutative,.

Function composition is a special case of a very basic operation
on relations which is called relation multiplication or relative multipl
cation. A somewhat tjpical "relativernultiplication fact" is that

niecehood" is the _relative product of "daughterhood".by "sibling-
hood" b is a niece of a if and'only if b Is a daughter of some per-
son who is a sibling of a. [Although, of course, 'function notation can-
not be used when referring to`arbitrary relations, function composition
-can be defined without use of function notadon. The appropriate defin-
ition (**) on page 23 Is readily, transformed into a definition of
'relative multiplication'. If we therk construe the relation "niecehood"
to be the set N of all ordered pairs of persons the second of whom is
a niece of the firSt, and construe "daughterhood" and "siblinghood"
similarly as sets D and S of ordered pairs, it is clear that N = D o S.]

Although it is convcnient to define function composition as we hive,
so that-it is an operation on the set a all 'functions, in our uses of it we
shall be dealing with mappings of a given' set S as a matter of fact,
the set of all points of Euclidean space into itself. If f and g are
mappings of this special kind then, since Ef S = so is g of.
The set of all one-to-one mappings of a given set S onto itself is also
easily seen to be closed inider.function composition. This and the fact.
that the same set of functions is obviously closed with respect to function
inversion are of fundamental importaneedor the "algebra" of such
mappings.

As remarked earlier in the commentary, we'shall later have much
to do with the set T of ail translations of Euclidean-space g. [The

s .notations ire' and 'T' are introduced in sections 1.05 and 1.07, re-
spectivel.y.] It will.turn out that the members of T are one-to-one
mappings of e onto-itself and that T is closed with respect to both
function inversion and function composition. It follows that each of
these can be thought of as an operation on .T. [More precisely, the
restriction-of each of them to I is an operation on T.] The second of
thes,e operations is not.only associative as alway.s but,. as applied
to members of T, is commutative. As a result, composition and irivers-
ing of translations' of e have algebraic properties very similar to t
those of addition and oppositing Of real numbers. In fact,' in the 1- _
dimensional case in which e..is the real number lin e. the two paire
of operation4 have exactly the same properties.

The chotce of the_ topics dissuSsed in this and the_prec g section
motivated largely by a desireto prepare students to rec.

logies between the set T of translations of and the set of translatioris.
of k.

When reminding students that'they have already dealt' with example.
of funtion composition in rt.?:ercise 4 of Part 111 'on'page 14; you might-
also lead them to recognizethat your elastic thread' experisnents wJre
bsed on the recognition that any linear rn.apping is' the resultant of a
stretching [or shrinking] followed by:fa translation. S.V recalling the
definitions of the mappings h and f, in the exercise iitSt mentioned,
you can lead them.to see that the inverse of the resultant of a tretdh-
ing `s followed by a translation t. is the resultant of the inverse of .t



followed by the inverse a( = ot-11. The relation bet*een
composition and inversion suggested by this example does indeed hold,.
A resultant of mappings which have inverses does itself have an inverle
which is related to the inverses of the "factors" as the formula sug-gests. The fart that, forysreal numbers a and b, - (a + b) - b + - ais a Special case of this general result. The fact that - (a + b) = .- a + - b, .on the other hanct, is not. It.depends esentially on the
comniutativity, of addition.

Answers for Part A

1. (a) (6, (b) -1), (-2, 4), (-3 31, (10,

3.

2. c
Netcommutative
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drawing a few arrows connecting *ome- arguments With the corre-..
.sponding values. Since Rf Dg, you: can picture. both functions
by drawing three horizontal onelor the Df,. the next below .

it for both Wand Dg, and the third, below these, for 4g.'llo so,
drawing dashed arrows; some to indicate the effect anon its.argu-
meats and others to indicate the effecrof:g on the corresponding
values. of /: pn the same picture, draw solid arrows to Show the
action of g

2. ln Exercise 1 you pictured two .functions land g:,

r

You also picti
description LII
'descifption of

3. In .Exercise 4 o
several pairs of the

y): and g (x,y):y = 2x}

nt-g /: Now+ give a brace-notation
d g abovej of g f. A so, give such a

page- 14 you computd'resuIt.ants for
ions h, and f.e. Por example, in

that exercise, g, - 1 and h.. Reacquaint yourself with
thiS exercise and answer the following questions.
'a) Is h the same function as n , h? If so, whaffunction? From

'hat you have learned since doing this:exertiso, what'can you
a ut h. and fi?

(b the same function as
(C ) I- h f. the same function as f. h?
(d) f f the same funCtion as n -.n?

4. From yoUr results'in Exercise 3 you see that some pairs of ear
functions have the same resUltant as their converse pairs, and
some do not. Em other words, some pairs of linear ntappingt!_are
permutable and some are not.I Let's investigate permutability for
I i near mapping&

Suppose that /and g arelinear mAppings. By d°eZtion,Df
= _I? and we May assume.that, for each xeM;

h and g(x) = cx + d !where a 0 cj.

By the defin tion of 'function compositionit fo lows that.D g fl
= and that, for each

lg fhx) = c(ax-+ b) + ca)X-+ (ch + d);

Similarly .IcomPletej and, for each xE.)f,

It follows that both g o f and f Qg are Mappinls
and that they have the same Moreov,er,

g of g if and only i - 11b

Answers for Part 13
l

TC 2,1

g f {(xor ); y =. 2x + 2 }; f a g { (x, y): y 2x + I}
("a) Yes; f4; They are inye of'one another..
b) 'Yes.

(e) No.
(d) No.

* *
Textbook writers sometimes confuse permutability of singulary

op rations with coMrnutativity of a binary operation; [For example,
the nonpermutability of the operations of putting on shoes and socks
maY (wrongly) be Used as an illustration of noncornmutatiyity because
"putting on" is a singulary operation.]

h; a x + d b; .(ac)x +. (ad + b);-linear; slope; d



22 MAPPINGS

41.
5. ,The- results you obtained in Ekercise 4 have sev-eral important

consequences. Here are soMe of them. For edch, explain hoW it
follows from the results of Exercise 4.
(a) The set of all linear mappings is Closed under function com-

position:
(b) The set of all translations is closed under function composition.
(C) Any two translations' ore permutable.
(d) Two linear mappings with the same alive are permutable if

and only if they are tr,auslations.
(e) The only linear mapping which permutes with every such .

mapping is the translation which maps 4ach real number on
itself. Hint. By part any 'linear mapping which permutes
with every linear mapping must be 'a translation. Is therea
translation which permutes with the rnappinggofExerciSe

.4(f ) Two linear mappings which are not translations are perinut-
able if and.only if they leave the same point fixed.

You have seen that, for any functions f and g, there is a function
g and there is, also, a function g r And, you have seen,that, for

some choices of f and g, f-g = g- f while for other choices this is not
the Case. It follows from this that function composition is not cora- '

Similarly, for any functions f, g, and h, thge is a function f [g h]
and there is, also, a function [ f c, h. For example, suppose that fi
g, and 'h are the linear mappings such that, for each x eq,

inufative. ' .

f tx) = 2x 3, g(x) -x + 5, and Mx) = 3x + 1.

It follows by the definition of function comp° ition, that, for any
a

g - /Oa) = g(hta)
g htha) f h

= -(3a + 1,) + 5 and
(a)) = 2((3a + 1 ) + 5

Answers for Part B [cont.]
5. (a) It has been shown that, for,any linear mappings f and g, the

resultant of g 'followed by f is a linear mapping. This is what is
meant When one says that the set Of all linear !mappings is closed
under function compoSition.
-(b) By'xiefinition. a translation is a linear mapping'with slope 1.
.Since, as has:been shown, the resultant of a linear mapping- g
followed by a linear mapping f is a linear mapping whose slope
is the product of the slopes of f and g, it fqllows that a resultant
of translatiOns is a translation.
(c) This follows from the final reault in Exe
and' g- are translations then- c 0 a -
(d) From the final result, for c'= a 1 it
f og if arcd only if b = d.

cige 4, since if f

follows that g a f

(e) Following the hint, for a = 1, c = 2, and d' = 0, g a f,.=
f og if and 'only if b 0.. So', the only translatiOn which permutes
with the mapping g: of Exerc.ise 2 is the identity mapping of R.
gnto itself.
( [See answer for Exercis 5(h ) of Part I) oh page 15.1"

The fill-ins on the last two lines are as follow
(g (a )) l(-a + 5) -t; Z(-(3a

Answers for Part C
1. Yes.

) + 5) - 3

arly [complete],

f g1(a) =
.gl. h](a) --- f ° gRh(a) =

Part C
1. Do you think that function-composition is associativethat is,.do

you think that, forany function's f, g,and h, f hj ff h?
2.. Note that,--by Exercise 5(a) of Part B, all functions which can.be .\\

obtained from linear function$ by compgttion are linOar functions '
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and so; in particular, have the sa e domain, R. So, if 1 g, nd h
are any linear functions, it will follow that f . [g - hi = [ 1 gl o h
if you can show that, for each x t 4,,I -1 .,[i . hthx) = ilf. gl o h)(x)-.
Do so by using ;part (ii) of the definition of function composition.

,* 3. From your work in Exercise 2 it follows tti.b for any mappings 1
g, and h, f.. Eg - h) - [fo g]o h. if f o [g Oil and [fo id. h have
the same domain. One Way of showing that function composition
is associative is to show that Nii. condition is satisfied by any
functions f, g, and h. Dp so. [A quite different proof of the associa-
tivity. of function compOSition will be given presently.]

*
There is an alternative definition of funetion composition whichit is

useful tcfknow. To discover this, suppose that (cz,b) e g It follows
that a e fl and that b [ g fl(a). So, by the definition ofrfunc-
tion composition which we are using, a Df, f(a) Dg, and b = g.(f(o)).
Since a Df, (a, f(a)) t 1; and, since f(a) Dg, f (a), g ( f(a))) e g. Since
g ( f(a)) b- it follows that ( f(a), eg. Since (a,f(a)) ef and (f(a),
b) fig it follows that

3:((a,z) f and (z,b

Hence, if (a,b) eg f, then (.).
On the other hand, suppose that a and b are such that ( ) satisfied.

Let r be some object such that 04) e f and (c,b) e g. It follows that
a e Df and = f(u), and that c EA. and b. = g(c).-So, a eDf, f (a) eDg,
and g( f(a)). It follows by our definition of functip cofriposition
that a e D[g.';" f4` and b = [g 11(a). In other words, al follows that

7 f Hence, if ( el, then (a,b) e g f
4* Combining our results we haVe:

ag

(*a-) (a,b) o f 4-0 3,((aiz)e f and (z b) c g

4

[Read.' as If and only if '.1 It is now easy to write a new definition
of fulic ion composition which is equivalent .to the one we are using:

,1

g

t is easy to show that function composition is assockive.
hat f, g, and h are any functionS. It folloWs from (**)that

and (0) e f)
.70 3,;(3,((a,v) e h and (v ,u) eg) and (u,&)fl
41* 3,,(((a,v) e h and (v,u) g) and (u,b) en

[Each of tFe first two transformations steps iSjustified by

a

e 23 (l)

2. For each xEli, [f a [g a h]](x) f([g a h](x
and [[f a g] a 11)00 = [f o 011(x)) f(g(h(x))).

*3. For any af [f o [g oh]] it follows [by part (1) of the definition of
'function composition') that aE,,[g Oh) nd that [g 1.1)(a)E f. Hence
[by Part (i)], acZh, h(a)en?g, and Thy part (ii)) g(h(a))EZ.f. Since

g and g(h(a)) f it follows [by part (1)] that h(a)E[f a g].
gince aE & h and h(a)E, [f o gl it follows that aEZ- f[f o g] o h]. Con-
s ecluently, [f o [g o h]] [[f o o IA similar a rgurnera estab-
lishes the reverse inclusion, and, so, completes the,,p-roof of
identity.]

The standard reading o *)

There exists a z such that z)e f and (z, b)E g .

It m ght, however, be help4il to read, it once as:

There is something such that 'the rdered pair a, it
;and the orde re4 pair (it, b)E g .

Following the precieding suggestions may help to develop in stu-
dents the 1\correct) feelingi that the indices. 'x , ?to on quantifiers
serve thg lame reference '!linking" purposes as do the words
'something' and 'it' in the. suggested reading. [For a rather extended
discussion of quantifiers, see High School Mathematics, Course I
pp. 116-142. What is said,there apPliel to Our ussfeif quantifiers in
the present text. *e shall here,''howeVer,':':Use open septences as well
as univerSal generalizationisenterices tO exPress univetsal gener-

. antis s . Yitiu willsfind,rno're about this _in the toTrnentary 'for section
1.07.

'The fill-in three"lines beloW .(*si
We have.Supposed4students to be s

conveyed by. 'if and',:onty if'. [This, atid
reviewed in Chapter Z.] The intradu
tiOn for this' phrase.,should 'taus,e noAtia,

The "Matteri.,of grammar"1 sretdrred'to in the braciceted analysis
of the first part. of the proof of aoss4iativity is, mOre properly, a
rule of logic '. caee your itudenia:.are already acquainted-with logic
as developed in High SchOol Mathm1tics. Courae I -you may wish to
go into the 'rules gOVerningthe ue of eisential generalizations.and
.use them in justifyir4 the stekl'i in'4pesticn As is the case for universal
generalizationsthere are tWO basic rules for dealing' With existential
generalizations.-1Tane is to the eilect thak azi existenftal-&neralization

f :and (z, y)E g)
icientLy aware of the meaning.

some Other points of logic are
n of ' as an abbrevii-

1

is a consequence of any of ite insthnces [for example, the sentence
'1,, 2 = Z' implies the sentence sax,I 'x and the other is a test-
pattern rule. To arrive at tlie latter we Shall first exemplify its ute
in a typical argument havinean existential generalization as a premiss,

ror the purposes otthis arguthent we shall assume that'we4now that
addition of real irtnners.is associative; that.for any 'real number a,

+ 0 = a; and that, for any real number a, there existti a real number
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such that a. + x = 0. On-the, basis of this information we wiah toconclude that, fbr any real numbers a, b, .and c, if b 71% a.= c + a'then b c-. Part ofthe argument might be forMulated as-follows:
Suppose that a,' b, and c are any real'nnmbers such that b + ac + a. Let d be a number such that a + d 0. Since-b + a =c ,+ a it follows that (b + a) d = (c + a) + d and, -so, that

...b + (a + d). =, c + (a+ d). Since a + d = 0 it follov--4a that b + 0 =0 and, so, that b c.. HenCe, -if b + a 7 C + a .then b = c.
This ninth of'the argument showd -that the conclusion 'if b + a =:c + a then b c' is a consequence of the assumption '.a +11- = 0', the.

associative principle for additionaiand- the principle foradding 0.' Itis eipecially to be noted that 'Er occurs only- in the first of these three
premis-ses and that, while it occurs elsewhere in the argument, it does,
not occur in the conclusion. -We may then think.of thedisplayed-argu-
ment as a pattern, with' 'd' as pattern variable, which shows that theconclusion is a consequence of any instance whatever. of .3 a + x 0.',the assOciatiVe principle for addition, and the principle for Aiding 0.Since the existsntial generalization' asserts that theze is some numberwhich has the property Which we have assumed d to-have, and, since
the steps in the -arguMent are valid, and the cOntlusion remains the same,no matter ',what number .-d may be,,,it is reas.onable'to grant th.it the
-argument shOWs that-the conclusion is a consequence of the eXistentialgeneralization '3 a + x = 0' [itself].. the .assoCiative principle for
addition, a..nd the ilrintipla. for adding 0.

Generalizing on the preceding example, we may say that a patternwhich,shows -that a kiven cOiiclusion follows from any instance whateverof a Certain existential geniralitation [together with Other premisses
shows, also, -that the conclusion follows from the existential general-
iiation itself [andthe oth-e,r premisses ]. As pointed out, it is essential.'
that the conclusion and the "other prernisses" 'be the rpeilc matterwhat insta te of the existential generalization. may beCin qUestion. This-means, in rief, that the "pattern variable" must not occur\ in theconclusion or-in the "otherpremisses". s'

On the basis of the two rules- for existential generalizations we can
TIOW justify the third step in th'e first half of the proOf of associativity
of function' composition. What needs justification is the shifting. of
'3 _' from one side to the other of the left-most parenthesis. In the
folIawing, sUppose .4ke tp be replacedby a sentence containing the
variable 'c', .'3v.Fvh' replaced by the. existential generalization of this.
sentente with. respect to 'c', and 'p' by -a sentence- in which *c' does
not occur.' With 'this-in mind, the 'first tree-diagram below shows .

that "5 A-F_v__&_0)-' a--con-e-equenrof 17,7:8,-111--,--white the -9-ccond
.shovis tNiat the first pf these two sentenceZimplies the 'second. Togetherthey show that 1(3 Fv p) v (ry & p)' is logically valid.v .

rv p

3v Fv

TC 23 (3)

Fc
Fc &

(Fvt& p)

Fv & p
P

3v(Fv & p

[The double bar signalizes an application of the test-pattern rule for
existential generalizations, and the '*'s indicate that through use of this
rule the premiss 'Ft' lias been "discharged" (in favOr of '3v Fv`)..]

5 Fv P \
3 & pv

Fv & p

There is a good deal more whith needs to be said about the test-
pattern rille for existential generaliiations, .buf the foregoing is enough
for the present.



of .grammar. I S*ilarly,

(ta 11
3 vt.a,v) Ell. and g find (

( E h and g and (w,intsf))

A Tiparing oUr t.wo tesults [and 'nOting that tasáTfor SO1YreL, ibx
amotintS', to the same thing-as sayitv 'for some L, fOr some

see tfrat, rot Any (- and b,

Answers .for Pare A.. -

Kt.;

f.'41,h)

ConSeiiwentiv,

yunetion c'ompostion is associa
,

Exireises'
.

:111.irt A .

I

f f -1, 0, fl

tThe hint becomes a satis14etory answer if the five
-place by 1f(a)',' 'a', 'a', and 'a', res.Pec-tively.]

.StIppt3Se-that fis.a functi n which has an nverse that i uppOse'. '.
that converSe of f inction. Revall.the notation 7 for the
in ver;e 'off follows:that, fvp any (-4- and.h, :

,

la i n. terms of 'Dr:and:lir, what is Ulf- Wha
DI/ ' -%1? R{ f c-

2: ShbW what the map4ng f ' does. [Hint:AI' a LI f- hen,
s" by Exer6se ir E'Df and, so, rit follows tha E f

. .and2so, that 'it'(?)) ? Hence ny /Jif-
f/ f1 la)

k. It follfrom,ExerIciseS 1 and 2 that or any function

f {(x,y); x Df 'andy ------

Allothx,ay to -establish this is,to use .(*.ft) Ofi page. 2 According
tc;` :h1c.f °I if and onlybif lt(a;z) irf and (z,h).E.f -9: $ut, the.

-latter is fhe eas1,..nif and only IiI.3-11t-,t,a) ' 4hd 4z,b) Er it 13s,..t11
definition -arici'function',. this last is .the OaSe if *and onlyif:
(a I R I f-;11_and a).-that 5s, if and only iff

e,haVe alrehat cinne:acro§S. an. = xl- in2.t,j)e Ora\ in_
-wh ch Df R. In thib 'case it is the translation which maps/pheli point,

..



1.04 Function ConVosition 25,

of the number -line on.itself For any set S, the mapping of.S into itself.
under. which .each memkier of N is its own image is called thi'identity-
rnappirig vlS on0 't:w1/' and is often denoted by U:sing this notation,
we tiee that-

x S and

So he t.esult displayed above.may bt, written:

Part 11

'

s I expla.in. hyi that

For any function f which has an inverse, f,ft f i,ahdff

1 Show that_ For any function f and any sei S.
(a)- if.Df.c S then f, .14
(13) if Ilf C S then f f, and
tc.!) ,if Rf c Df then f f:

2. It f011ows from .a r,gsult- you established in-Part A that.
. it. f has an inverse then there exists a function g

such that g .

.

,.[One such function kis' f ".I Suppose, now, 'that f g Are any
functions such thatg f i5,1. Does it follow that f has an inverse?
[Hint: Suppose thalg f i.. It fol lokvathnt D[g.. f] = I I-Why?1

for aity a E Df, g fin)) - a. IWall that imorder toahow that f
.has an inverse-it is'sufficient to show that, for any a :ED/. and any

f D7, if fta,) = ftc!,$) then at av- Try to show that this hi the
cage,

ows from Parts kand B that

any filnctiott_fr

TC 25,

Answer.s for Part B
1. (a) Suppose 'that ;;YI-c_i S. at,Ior aff, aES and,

. by the dpfin,ition. of 'is', ,at and a), a. So, by'the.defin-
n of 'function compos ition', f L ,S..[f o is] and, for,,a.- f,

.

i51(a) f(a). On,the. other hand, if then either- a0Jis]
or, Pf either .ease, a/[f 0 is ] Conseeiv t-
ly f = ;:t[f-7o is] and f

(b) Suppose that f S3.7bAks that if ' [is] and, so, that '
of.] f and, for aE,- f, ris o fj(a) =, (a). °Hence,

o f
S

by

So

Suppose that ,F.f c., .3.f and Pet 5-
that 10 is f. Since 6f

since S f 0 f

gince f cl,S t follows
w's.by (b) tha is.o f

Suppose tl-;at g 0 f Since g 0 f and are the sano function,.
they hav; the same domain. So, ;',1-[g o f] = f. So r any af
g(f(a)) =- a. Suppose that 1f arid a20 f and that

-ollows that g(f(a1)) = al, g(f(a2)) `--;.-a2, arid_
.

f(ai) f
[since a2) and g is a functiqnj that g(f(a1)) g( So,
'al = a,. Hence, for any arguments ad-a2 of f (4-2)
then ,ai a2. conssouently, f has an inverse.

an-inverseif,and only if here is d'itinction g such that
c).1* i.

4
You established the. l'only.if . part of thig-theorem -in Part. A and the

'7'ir part in Part B. We c-an learn More aboutiriverses bYtving a dif-
:ferent proof of the 5r part. TO do so, suppose that g f
lowS.'{as'in -the .hint for_ Exercise 21- that, fdr any a e pf, g(f(4)) .d.
In ether: words, for any a and b,

if (tz,b ) e f thén (b g.

,
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Now, by the definition of 'converse', (.u,b) f if and on y if b,a) E [the
converse of So,

if th,a) t [theconverse of fl then (b,a) eg.

From this it follows that the converse of f is a subSet of g. So, since
'g-is a function, and since [by Part, E on page 151 any subset ef a func-
tion is a function, it follow§ that the converse of f is a functionthat

that I has an inverse.
The preceding argument shOws, as it was intendecho, that if there

exists a function g such that g ° f iv), then f has an inverse. In addi-
tion to this, the argument shows that, for any functions f and g,

if g f then the inverse off is a subset of g.
Part C

A

. Suppose that you knew, for some function f and-some function g,
'that g f -.if. Would it be safe to conclude from this information
alone that g is the inverse of f? If your answer is 'Yes.', justify it.
If your answer is '116.', what- additional igaformation would enal)le
you to arrive at the conclusion in question?

2. You know that if f has an inverse, then f-1 f inf and, also,
f- f ' inri. Suppose that you know; for some function4 and
some function g, that g f in! and fo g ipv. Would you be
justified in concluding that g is the inverse of /2. Explain.

*
The next,two theorems aboilt inverses of functions summarize the

results in the exercises in the preceding exereises.

Foreany functions f and g,
g is the inverse. of
Dg Rf

For any function's f and g,

and on y

g is .the inverse of f if and only if (i)
=

1.05 Some Geome.try.

and ii

and (ii) f g

In this course you will be studying tfie geometry2 pace:
If you don't tthderstand the pretednig sentence, you're normal. Tb

understand it you would\ need to know the meaning of the phrase 'the
-geomeiry of spacer'. Part of what this phrase refers to you will learnin
this cotirse. Islqbody knows all. of it; 'you already know a little of it.

Answers for Part C
1.

TC 26 (1)

No. Although we may conclude that f has an inverse and that this
inverse is a subset of g, g may contain ordered pairs which do
not belong to the inverse of f. In fact, for any function h such
that Zh r If = 0 the union of h and f-1 is a function g such
that g o f = 0 f

In 'addition to knowing that g of = [which assures us that
f-1 c g] it Is sufficient to know thit f-31 = &g in order to be
iiire that g = f-1. [Since Z[f-11 = 'it is sufficient to know that

g

Yes. For, suppose that g o f =,. and fiog From the
first assumption if.foilows that f__ hat 4..ti inverse and that f-1 g.
So, in particular, RI Z. [f-1] .0 .Z g \From the second-assumption
it follows that R[f og]

g1
L Zg and, sp, since ii[f o gl

that Zg ef. Hence, from the 'two-assumptions it follows that
g and that Z.,[f = Zg . Conseqvently, if g of

and, f o g iz.irthe'n° g = [Alternatively, it follows, frOrn the
two assumptions ,that f-1 ç g and g-1, C f. Frem the'defirrition
bf ..corn-rerses' and 'inverse' it is clear that if g-1 cii then g ç f.-1
SP, g =

Using the second d the bo3Ced theorems it is easy tb establiehla
result mentioned earlier in this commentary:

For any functions f and g which have
.,- g of has an inve

[g of]-1_ 'r. 1-1. o.g

What neecy to e shoWn is that [f-1 og-1) o 1-?0f]
,

and that Ig 0 f] [f-1 o g-1] r. i,r where T = Z. If-1 0 g- Once thts first
ili estabtfifhed [for aryl f and ii which have invcises ] the second cp,n
be obtained from it by substituting 'g-1-' for .i. and ri! fof 'g'. We '
prpceed to establish the first. Since
ff--1-og-I-3-o-fg a fl. =- f.-1-0 [g-1 n-fg-o-41-= f--1-01-1g-t-s-gyo-fl -

_

where S Z g o

What we.need to show 'is that of] ,= is when S Z[14 oi].. Now,
clearly, i-1 .io the icientity mapping of its doma,,th onto itanif.
So, what needs be 411own is merely that this, domain is Z

g itf [1-11 it follows that th
aornain of i h. 'Since and haveg

in of of Z[g of), Q.t.D.

Sinoe f]

me domain', th



Consider the
((x) = + 1 and
these ions.
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Sample Quiz
unctions f, g, and howhere, for each x,

= 2x, and h.= -{(x, y): y x t 2), -Answer

1. What is [g hI(-2)? Wha of0.-2)?
2. 'Fo what values of Ca' is it the case that f(a) = .

3., Wh ch'of the functions 1, g, .and h do.not have y ;se's? Explain...
4, .. Fo what values of 'a is it the case that f(a) = g(a)?
5.. Is fog .g o f? Explain,
6. Wat is the range off f?
Answers.for Sarnple-/QUiz
1. 37;. 0, -2
2, landl
3, f doeto not hav4 nve because f is not one-to-one

[e, g . f( I ) : f( I )

gRAI
* 2a2

and [g
"fog gof,

2.a2 + 2,, Since

.

TC 26, 27 (1)

Are begin with some general comments on true sec iOn andln t e
course as a whole. More-detailed comments on the Content of t is
section begin on page TC 26,27 (3)

The purpose of section 1.05 is to lead students to think about lines
and planes and about soree Of their (simpler subsets rays, half-lines,

..intervals, and segments; half-planes and clased half-planes. Students
need a clear intuitive undarstanding of these notions as a preparation,
for the formal development which begins in Chapter 2. The emphasis
now is on intuition and experiment. In the formal development we shall
give very different definitions of 'line', etc. than those which are im-
plicit in the present section. But, students need to have developed a
feelpig for lines, etc. to enable them to appreciate thise later
definitions.

The approach which we adopt here to lines and planes through the
notion of a ray is unconventional but brings out best some ideas which
will be helpful in the sequel. The notion of a ray is introduced in
terms of the notion of a first point, P, being beyond_ a second poifit, Q,
from a third point, R. [Intuitively, this is equivalent to P. being
beyond Q from. P and to Q being between P and R (or between R

-a- 7 ---- ---------r

and .P).1 So) a formalization of geometry completely different from the
one developed in.thts text -might be based on postulates conaerning this
ternary relation of "beyondriess'-'. Because such a-different formali-
zation is of intere.st in itself, we go:into -sorrfewhat more detail. in .
parts of thiS commentary, into how such a formaliaafion might be
developed. These parti are-preceded by '44 * 5.* and followed by '5'.
They are largely irrelevant to your students' prOper-interests at this
tithe, !and: dwelling on them 'in. class would be very likely to-lead to some
confusion. .Your study of them may, however, give you a better basis
for.anssilering quefitions which may 'arise. For a much more adequate
treatzneVhaf such an alternative formulation of geometry, see Bask
Concepts OTGeometry, Prenawitz and Jordan, Blaisdell. Publishirig..
Company,. Nei., York, 19(?5,

-The exercises at the.,end of the sectiO'n are-meant to serve.tw'b,
purposes. In part.they'furnish much needed practice in. draWing
particularly, in using a parallel ruler. They have, hoWever, been
cholen-to-p-repare-students-fcri-t-hi-wark-arith7trans-lattrantrin-the
ing section.1 It. is to be hoped *at the discoVeries students make in-
that sectiOnlvkill- appear fathiliar to them because of theiz wink on these.-
eXerciSei. _In the:commentary -on the exe ises, we shall
.point'out What wts hopef'students will learn from.them.

,

Section, .1.05, and 1 '.0-:are et'arnples.of'a kind of settion which
will Occur at le4eral points in the itiict. As remarked earlier, studentS
neeettp develop Conceptsi before formulating their intuitive beliefs th a
formal manner. Section .1.05: is ia toncept-develOpment seetion deal-

,. int,viiph space and some basic getthetrie,figures,' and secticin 1,06 is
a concept-development sectiondeating With a kind ef.Mapping of space

!onto itself-Which is of extremely..basie iniportince to xis in.thil course.
-.0theSsuoh conCept-developinekt ocCur where-they:are/-
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begin is to th&nk f space as the set
around ) and in I :yob,
they may be. As uu

Is
whatever direction, and however far away,

earn .more:you' may adopt other ways of think- , 7

ing of space,. but, a space. is a .set --wv shall calf it '-(''--- and
, .. ,

.s. al embers fwhiCh-we h iggested;yoU Might! think Of as locations l
.. .

are customarily called. Po n11. To carry theSe,. ideas just orie step
furtheil, when .you think of points as locations you should think of
them aS4.absolutely precise locations. You may have been thinking
hat some location; -"Overlap: two points never do. . .

So much for "sPace' space is the set ,A -, of all points. How abodti...
'? Etymologically., this word.theans eirth-measurementabd '.

you might suspeet that, originally, geometry had to do with ways of
mputing distances betweeti points-of the .surface of theeivth and,

perlicps, of computing kirea-mealuires of ro4ions. Today/'geometry'.
has ,a somewhat 'similar but much broader meaning. T6 tell a little
a w'hat t is meaning _is it 's convenient to introduce' another -word
-'tigure'i A. geometric] /iguie is. a set of pointsusually -a fairly

simple set, such as a; triangle ir a -straight line:In other .words, a
figure is a subset of/ : Biletly [and inadequately) geometyy-is the study
-of figures and ,of relations among' figures. This includesalthough it .,

is not .immediately obvious that it duesthe study -of maepings of ,
one figure onto 'another. You may -see why if you ask,yeursea'What it
nminS to say that- two figures .have thesame shape. : ..

BefOre we can begin a.serions study of geometry we need to take
note of some important kinds of fignres. To begin 'with, we shall
attempt to clar4rour intuitive notions of lines_and planes-. hink-

sOme point P some precise location in space-and of all th

Fi
.

which are, from, your location, directly behind P. [For short, Vtre shall
say 'beyonel.,P'. I- The set _which consists of P and all. these 'points is a
ray with iierfr.r427clearly,: given any point P,-there ajtt lots of rays .
'which have P as vertex. In fact, .given any Point Q P.' there is :a.
unique ray With vertexil which.cOntairis Q. To describe sucha ray it
.is sufficient to find a 'vie oint g such that Q is beyend P froth E.

needed, Sections Of this kind are, like the Introduction, of an "entirely
atu're thaii those others.which contain our-formal organiza-

tion of geometry. In a s he text contains two-courses ` a cours$
in intuitive geometry and a ch more extensive one in formal georn-
etry. The tormal cou -by itself,, bt:NpPropriate for students
who had had the intuv cOurse in eaxlier gr.ades. For such [largely
nonexisteQt tudeff. the c-oncept-develcipmnt sections might be
critted . with considerable gain in contiouity. For Teal students,
A wever, these sekionS are a necessity. -But. it is essential to real-
ize that the coneept'-development sections set the stage for the formal
treatment and one linust be oble to distinguish between the stage7hands
and the actvs. TO help students make the dj.stinction, concept-.
development sections sometimcts bristle With the-word 'intuition' and
its derivatives. To help you, We refer to them in the commentary as
concept-devel ment sections, i . .

.- We believe hat sludents can learn through reading [in"addition to
doing exercises -as-id participating in classroom diScUssicths) and should
be -taught Fo do so. SO , the textual material in this book is meant for
student consumption and ruinination.tas well as for claSsroom discus-

'oril. The..extent of the reading matter in section 1-.05 is, ,howev(e.r,. ,

atypical. We strongly suggest the following treatment for the purpose'
of beginning to train students tO read acqurately and to learn by read.ing.
Ask a student- to begin 'reading this section aloud iii class, the .others .

listening and reading silently. -By interrupting and asking questions
when you think necessary, establish the meaning of words jordinary a

a S, well as tec hnic al ones J which you think inay I,e, unfamiliar or.ris-
understood. Interrupt the reading when you think class discussion may
be profitable. Perhaps, without interrupting, you may think i helpful,
to make sketches on the- chalkboard and, by pointing, "act out" what,
is being read.. 1.f.'is prolAbly better to. stop too frequently far discus-'
sion than not to stor:L frequently enough. You will, naturally, take care,

. ,

not to Aire but any one reader. Give-each student a chance:, .
OP'Your aim is, of course, to give, each student the idea that whe.n he4

ds by himself .heshould stop frequently and think about What he:has
id, and that understanding is.aided and tested by-making,his own/' ,

etches and examples fts he:reads.. Reading mathematics is liktily to
be relatively Unproductiyeginless one has a paper beside him, a pencil- ....4 one hand, and.rnakes frequent-use of t1z.e.4m.

.
i

This procedure We suggest is Airpe conSuming, but wothwhile. If
ed tO spend two class periods in ieading section 1. 05 and discuss-

g it, this can be time well.Speq. Be. sure that each point which
`e:e-rns-i-o--ne eci-i-tget:iiso-nve-dis-,c'AM-siorrevlsen-if e

well to poStpone the' completion of some:discussions titil the second
day.- Tell-stildents., truthfully, that a short di2cuson which cl4rifies
ti4 nature of a ,protale.m is often rnore prtifitably:'coS, inued later after -

the problem has., '1,sunk in','.. Hopefully, you will Ifien be able to reac.h
, the experiniefit Orill4.Xi,SWIC Of par4lIe1 lineS 404ich.is silggestki on
page 32 at the 'end of the- fir:St of.twP sessions, arid leave the 'experiment
as homework to be discussed during the. saecond,se.asion, Cornpleting
the reading, tieing up looSe ends, and.a preliminarydiseussion of the -

exercises : perhapq With some done as seat'-work - willtake iip the
cond session. iiF E

Fig. 1-9

99
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c du,ta lie ci discus. Lu ii o t he coutent o
,

011 r st.rting i jit is study cf eoriit't ,;crises out ot...anohe re stir ile.nts in phy.stLal,space.. [In_this sek"..--
Tuist of the ,-xperimi.nts- i'nquestion involve merely.sightingc..si t r or si.)4.11ting across a, 7: line- . Toward the

intent Wjl C n .1 nVi* s dr-iWOlg. 1 SLiCh',in analysis -

si;-)n c.,:it,c abstractions-. such ,i ti, our ''absolutelyticiecisc, lottor ocl to --'. ndow them wl-th.cortain properties and.
c dubious rocuss,. but is liustified by.its undoubted.

pr.grriptic- valu -c!1,1 bv tie ict tct, by. Anatb.t..r kind of "abstraction-.
ot1.e arrives- It.ol-Ithernkt cl as -oopwsed to physical geometr y. In
mathematical. lieornetcy .,,I.1,de,t`ls,.c.vith sentences whic'h Contain unde-
fined or. better, liztinterprete.d .---- -terms. and one studies the logical

lations anlong.these sentence's. :-.1iii,ject to the thibiety of the first-
ntioried , l hstr.q,t-tion proecs s'.' the abstr.Uctons which it is 'supposed

u rnis h- inte rpretatiOns tor'-the'undefinecl teriO.s of the- mtthe
matictI thury and, sn cr Istituto a Model Ot

Since .in .apprc.ciati rnat hematicak gebmet ny !s late, we
adopt the sornewh.ct met-cc:hi:IOUS praetie Of speaking ot such abstractions
.as --abs-qlcitely precise locations''..1. 'Doing so enables us.to 'avoid the -

us irrelevant difficulties why-711 arise out ot the tact -that real
s do nv-er1ap, and Iirfe up c.ith one another onl.y lpproximately.

F:orlunat,(qy, the sentenc.e-s we use...to express_oUr fantasies about our.-
ahsiraetiotts -ire the same .ones Nye wotild consider in studying "mathe-
matical c,corrie,try-ind the-logical relations which we wish stu,dents to
explorc. are .indeperculent of whether the termswhich, .in niatheniatical
geometry we 'Would'.treat as undefined, are. so treated or are interpr'e-
ted in a 1,0; .soe vex.

,tio muc.h in explunution aral aPoltigy. -Presumably. students will
ow the fiction ofabsolutrlv preeise locations [and-it would be

cruel, at this point. to attempt to clisabusvithern No harm will result
_if they continue-thinking inothese term's- throughout the course. -It is not

rpose to expli:citly'call to their.attention the beaUty of mathema-
1 geometry. -it is enough to give them the oppQrtunity of experiencing
tknt)wingly while they are thinking of sOrnething.else.
The richness of gseornetrrY is only partly due t.o.the exists. of'

lidean-and noneuClidean geoMetries.... These geometries are men-
tiOn'ed brietLY at.the end of the .section ;and, as is- pointed out there, .the
differences-among them result'frOm diffefent assuthptions aS"to what
space is like-. -We shall, of courSe, study Euclide.an geometry ,And', so,

-as stim e thal sp cie'itrliclean.
would still leav,e us:with-a-wide choice of .''geometries". .In chooSing
Euclidean g'eometry from among these, we-lithit'ourserves to consider-
ing properties a figures which are possessed by all similar,figures..-
Congruence 'is, Of co4rse,. a specfal case of similarity.. As.a sample

of th4 4.1ternatives., we might choose tostudy'the topology of. ,uclidean
spaces'. in which .case w.e wpdld`conceru ourselves witlymany.feWer
properties- those.properties of figures which "are preierve.4".,
under' all continuous mappings which, have continuous inverses. For

Artiply, the property of being .a spherical surface is a Euclidean..
property 'anything similar to a sphipre is a sphere--, it is not a
telpological property. Ap-herical,surfa . does.- however, have v,arious

1/4

tic

TC 26 27 (4)

tOpological preeerties. For one, any spherical surface does separate
the' rest of space into two- di'sjoint regime, one consisting of the Points
,inside the sphere and the other of the points outside the sphere. This
separation property.is topological, [Roughly and inadequately put,
however badly you dent or stretch a spherical surface, the surface
which results will still Separate s.pace..1

The question, in the text, as to what it means to sav tnat two fig7
ures have the same shape. is one which is well worthy of discussion
sometime during the, period you spend on Chapter 1. But,^ an extended
discussion it not'appropriate at this time. Merely establish consensus
as to the_ uieaning of.'same shape'. 4 drawing some similar and dis,-
similar triangles and some circles., [Concentric circles might give a
useful hint toward the answer.1 You may wish to suggest that answer-
ing a similar -question as to Same size and shape may be sirnpLei The
answer to the- question.in the 'text isthat two figures have the Barrie
shape if and only if One Of them can be Mapped on the-other in-such a
way that the distance between any two points of the first is the same
nonzero multiple of the distanee betWeen their images., [The nonzero
multiplier' is of course, the ratio of similitude (or, depending on one' s
point of view, its reciprocal). I Two figures have the same size and
shape if and.only if one ,can be mapped ontO the othr in suc_h a way
that the distanee,between any two Points is the same as that between
their images. [U you Wish, introduce the words 'sirnSar'
gruent'. ] lf, ultiMately; -you obtain satisfactory ansWers from your
students [don't be concerned if you don't just drop the subject] bring
out the fact that, for example. alloy iines*are congruent and.that any.
two segments arg similar. Also, ing out the fatt that the conditions
imposed on the mappings referred- tt i tl-je two definitions engure that
these rnaPpings are on&-to-one. 11 you have an interested class,and,
on some future day, have plenty of time, bring out the fact that congru-
ence is a symmetric and transitive relation, and so is 'sin-iilarity.

sk,
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. i
Clearly, any other.viewpoint,F which ,ics beyond P from Q will do
[eiplain], and; froth either of two such viewpoints, the points beyond
P are the same. ..

Two rays with the sanie vertex;point different ways" or, as we.shall
say, have different senses. Rays rhich "point:opposite ways" are said
to have opposite sepses. If they have the smile vertex then each is
called the opposite of the other. For example, the ray c2-4 [from P
through (2]. which is pictured above and .the QP haye opposite

thsenses but, since ey haye different vertices, ey are not opposites.
In fact, the Opposite Of 71,.(2 is a proper subset of p. What is it? What is
the opposite' of re? What is the opposite 'of1 Clearly, the opposite
of a ray consists of its vertex together withal! points which are beiond,
the vertex from any other point of the ray.

The union of two opposite rays is a lirT.. For example, the line 1
pictured here:is the union of two opposite, rays with vertex P. If Q is
any point of 1 other than P then, since the opposite ofntis a subset-11f

Fig. 1-10

QP- and QP c u Finally; the line 1 whieh,
:is th'e union and its opposite ist alo, the, union of T2i and its
opposite. So, ven any point of a line,'the line is the union o
opposite ray whiCh have this point:aa-veriex. It follows thattth
only one lirie containing-two given pOints..

Given any line,/ and any 'point P 1, there are just two rays whit4i
have P as vertex and are Subsets of.1: Each point of 1 belongs to one or
atraher of these rays, and P is the onlypoint which belongs to both'

As remarked in the ge- neral comments, the various state
made in this section are meant to be accepted aftex appropriate
amounts of thought,- discUssion, and just plain quibblthg as being..
intuitively obviOus-. For example, if P, in our initial description of a,
ray, is not a precise location,then the points directly behind P will

constitute frustum of a Aarrow cone. This will also be thiltase if. .
the pupil of the pictured eye is not a point. But, P.is a point and we

think of points as pretise locationyt and we shall impolite the
same limitation on pupils. 4Eko, Q P there is a'unique ray whieh
contains Q and has/ P as vertex and, moreover, if R is- a point not on
this ray, the' fay with vertex P which'coritAins R has only P corn-
mon with the former' ra,y. [There' are exaCtly as many rays with vertex
P as theresi,are points on a spherical' surfacee with P as center;.ana no
two of these rays have anypoint Other than P common..] 114 expla-
nation asked tor, amounts to pointing out that if E is be;ond P from Q
then Q is bey&nd P from E being "beyond P -from" is symmetric.

The noItatAttii '," which we intrtoduce, in passing, to refer to rays
is sufficient,ly useful and self-explanatory_to out-weigh the fact that it 4

conflidtsi withla notation frequently used in referring to veetors. This ,

conflict will certainly not trouble students at this time. Later.; after
they have come to pogsees clear concepts of rags and,'vectors,
willibeaSte to cope ;with the varidus` notations used, in yarious texts.

.one_which will come up frequently later.
776r1isthe way it pointsv and what&

-1-1414-ba,AtMmb meaning for ' sensc
ittear.rays,_ and'

obit tbd, IS ame-way or point opposite

P.

rTi p
co,yees. 'thltsoli, lb?
to _tv.lAke
is clear that two' such _a
'ways..

It may occur to you that 'direction' would be a rriOre nabiIäLw
to use thaif 'sense'.. perhaps.it Would; but, .unfortunately, we need,a,
word_ to-till the blank in 'Parallel lines have the same
'direction' seems to,be it. So, in Otir use of 'sense' and 'arecticin!

Fig. vNil have a direttion and each ray which is a-subset of thA. ling
ray. It is natural to speak of a point of / other than P, as being on one sense if and only if they are collinear and one A 'stf4sit 0.1,th4.-.41

are_subsets__oLimo_parallelorthey

13aveone of two opposite senses. Two rays will have the same:wil

side QT the other ofi),tecording asit belongilosmetirthezth,er afthese
two rays.,This suggetstIssayingtliat.the points other than P whichbe-
long to one of theselaysconstitute a side of-P; with respect to 1. The
line 1 is, then, the union ofthree disjoint sekthe two sides of P with

4ect to / and the{P}. Th4 set which corisistoof the points of a ray
PO-other than P is-Lften called a halrlinethe half-line IV. [It has P

,.".j,.*6ertex, eve.]!:k P does not belong to it.) So, each side of a
lioint with to a line, is_43, half-line.

half-plane whose edge is the line which contains their vertic0'.
Obviou)sly, none of the ftre,ce.ding.is appropriate fof class-discuss



TC 28 (2)

at present. 'Whatever intuitive notion of sensestudents get from think-ing.of.ihe sense of a ray as "the way the ray points" is sufficient..W hen, -in,a later chapter. is defined forma:lly in ttrrns of 'trans-lation', its 4sense"will be i.iefined in similar terms.
kthirtt word which might be used in place of 'sense' or direction'Jorientation''. :This word ish.ilso needed for another'purpose. Weshall, fbr example ori,brit a line by associating with it a chosen one of

the two senses Yahich are associated iLvith its direction. Thus, a line
tmly be given one of two orientations. Of its-elf, a line has a direction;
and, of itself, a ray has' a sense.

From the intuitive view- oint of this section, the. phrase 'the unipn
o..opposite rays' should cons ide red as an .adequate desC ription
at a line is: In some formalizations of eometry it might serveas the formal defining phrase for 'line'. Since the formalization for

which we are setting the stage is not of Niis kind, it would be confiising
to 'student.s to refer t o 'A line is th.e union of two opposif'0 rays.' as adefinition. Use 'descriptioriA, instead. In the formal part of the course
'line', will -be defined in,term'S of 'translation'.

Acc'ording .to that intuitive notion of a line for which we are propa-'
gandizing -here, to recognize thatla set is a line one Must rick out-one
of its points and convince himself thatthe set is the union of two
opposite rays which have this point as their corrimon vertex. One
might, for example, pick two points P and- 0, which belong to the set
and co/wince hirinSelf that the set is PQ -PC). [We have not intro-
duced ehe customary oppositing sigte. in the text. Do so in classif you , Allowing students to Suggest notation gives them a valuable

er notation. This is an occasion where a minimAl
"amount p odding on your part will give them a chance to feel that
they are contributing. (Some of your .students may have previously
uied this or ,a similar operation in referring to complements of sets.'
If so, you may need to point out.that oppositing of ,rays is certainly not
complementing, with respect to apy universe, but that there is no harm

adopting .a nes . meaning for a symbol as long-as you don't use it with
h meanings in the sarne context. )] That one can also recognize a

ne by noting that, .for .tWo of its.points, P and Q, it is the union
PQ -QP is a slightly diffe;rent intuitiv,e notion of a line even thoughaS "obvious- as the former ohe. Finally, noting that if a set isa lin then,- given any of its pi:Dints, it is the union of two opposite rays
with.this point as vertex,Is still another intuition. If Q belongs to theunion=two oppOsite rays with veltex I', it is at least sensible to ask
whi4her this union (13- also the union of two opposite rays with vertex Q.
'On the intuitive' level, anY doubt one may have :p to the ccirrect ansWer
should be momentary - but, the questid* deserves recognition.

'Although the three notions concerning lines which have juStibeen,
discussed are all equally obvious, the arguments sketched in the text
for accePtance Of he last two of them are of value because ttey offer
an opportunity to review some concepts from the algebth olsets, As,
suggested in the text, one can prove that PQ.v -PQ = MS. if
one accepts. that -PQ QP C PQ -P9. [From the first inclusion
it follows that PQ QP; from the second, that

a
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,
PQ QP PQ -PQ.) From this result it follows, that, gi.r.en anypoint of a line, the line is the union of two opposite rays which bave thispOint as vertex. For, conslder a line / which is the Union of' tWe, oppo-site rays with vertex P", and let Q be any. othet'point of 1. As jUst
shown, I := P7-.5 QP. 13itt, alsO, -QP C PQ C QI-3 -/ -QP and, by
the same argument, QP -QP QP I PQ. Since QP

QP = I it follows that i-s-the union of the twp opposite r.ays,
Ql? and -QP, with vertex Q.

That there is at most one ,line containing wo given points Q. and R
f011ows from the result just proved. For, if,I is such a line then,
since Q E t, f is the union of two opposite rays with vertex Q. SinceR C I, R belongs to onerof these rays and, sirice R Q, the only
ray with vertex Q which contains f2' is QR. Hence, the opposite rays
with vertex Q whose union is I mnst be QR and its opposite..'Sinc'e
these are uniquely determined by Q and R, so is I. ,

We have seen tItat, given a line / and a point P C I, 1 is tbe union
o,f two rays with verteZ P. Each of these is, of course, a subset of 1.
Should students suggest that there Might, somehow, be another ray with
ve`rtex P vrhich is a subset of I, recall that there is a unique ray with
.verte,x P and containing a given point. Any ray with vertex P which
contains another point of / must, then, be that one of the two rays first
mentioned which contains this other poini.

" The notion of 'side' is an important one. A point has two sicleis
with,respect to any line to which it belongs'i a line has two sides wi6
respect to any plane which contains it, and a plane has two sides with
respect. to space. It is convenient to identify these sides ag sets ofpoipts. The es-sence of tbis notion i's that, given a line and a point in
it, you can't get from one side of the pqint to the other without passing
through the point [or going off the line]; gtven a plane and 'a line-in it,
you can't get from one side of the line tO the other withbut crossing thO,
line [or leaving the plane); given a plane in spaCe, you can't get from
one side of the plane to the other without passing through the plane Tor_
'going out, of space]. The separation oi planes by lines and of space by
planes is taken up later in this _section,

The notation we,choose to use in referring to half-lines is, of
course, derived from that for raes. In the case of rays the dot at the
left end of the arrow indicates that the vertex belongs to the ray; in the
case of half-line-s the ,absence of the dot indicates that the vertex does
not belong to the half-line. If students have difficulty with the distinc-
tion.between, 'has' and 'belongs to', recall that we are using the latter
with the meaning of 'is a rnember,or, and poirtt out that it is custc5Mary #to say that a circle has a center, despite the fact that the cerlter is not,
on the,circle.

Be sure that students underqtand the meaning of 'disjoint'. Two
or more sets are disjoint if and bnly if no two of them have a common
member that is, if and only if each two ofthem have therempty set,0, as their intersection. It may also be worthwhile to point out again
that, in this book 'two' means, literally, two. Two things are, for us,
always different things.

0
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ts;b4...yond R 'fro etquivalently, if.P. is beyOnd R from QI
natural to :;ay,that R is heirueen P and Q. Intuitively, the pOints

between P-arld,(4 arciipst-thOse whiCh belong to. hotil Of the two.half.'
lines and QP. Thu et of-all points between P and Q-is called the

PQ, with crWpoints,P and Q. As _just \remark'd, f-,)Q PC)'
rpm our description.cif opposite rays, two points belong to op-,

posit- nes if and only ill t.he-common vertex of the half-lines
is between the points. Notice,- also, that it' two points.belong to a "given

-
half-Jine then so .doall-points bkweien them. Finally, the mwniotN1
with -ei\dpoints P and- Q consists of the points l,)etween P and-Q to,
gether with P and Q themselvesNAT - PQ i.P,Q Evidentl, PQ.

PQ. n QP.
Intuitively, a plane is a. Hat surface without holes-or edges. The sur-
e of a tlat sheet of paper makes 'a pretty good model of part of a

but, since the paper has edges and might -have holes in it =--Tt.
is not a modeLa an entire plane-. Let's try, now, to relate this rather-
vague notion :OP:what a:plane is to the notions we have developed of
ray, line. etc. pile way to begin.is by-thinking of a test you might use

* to determine hoW nearly -flat :some s* urface s.ay, the surface of your
d-esk is, SuPpose that you havt<a.rUler whose edge is StraightLjno
dents! You-Coidd test your deA top fbr flatness by holding your ruler
s-A.) that two points of its .6dge are in contact with the'clesk. top. If the
-desk top is' flat thenunless the ruler extends over .an edge Ofthedesk
=all poi nt,s. of the edge of the ruler should be in Contact with the top
of the desk. On 'the other ,hand, if.the desk top is not flat, youican 'find

vay of holding your ruler so that (at least I two points of its edge are
i lintaet with the deSk top,:but Some points of the edge are not This

gests' that we *might define, a flat surface without hole§ or edges
that is, ,plane to' be a stirface -such, that,* given any Ntwo points
which belong*tojt-each point of the line which contains these.pointS
also.belongs to 'the surface.

We-might, then, think of.a -plane as a surface which contains eac
line through any t,wo-of its points. But, this-still leaves us :with the,
'question 'as to what,a ,silrface is. This. is a rather difficult cluestiOn
ansWer.. To say that,a urface-is thin.is net of much help, but.it rn4
suggest .that a surfaCe: is easily euti TO cat a surface you'don't-ne6a::
;s4w seiSSors will do-the job.This.might remind you that-we :notiCed .
earlier that it is even eaSier cpt line: For this,.one .doesh't Oen
need scissors. All that Is. neeessary I to punch out a point Jug:as .a
pOirit of a.line seParateS'the' lin ,into two half7lines, so a linein a plane
separates the plane ink fW_Asi half-planes. This suggests that, in investi-
gating planes,.We might 1:,egiti.b,,y considering half-plOpes.4ust .as we
fourid that;aa line consis.t. or a point P tagether with the:points of two

Qp'posijc. .half-lineS Which-have P as vertex, we might ejEpect, that a
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,r-
Tie fact that,all pOints between two points of a hafline be".lon o.

'haltAinc is c:xpress'ed in more technic II terniS by sating that'
-line is convex set. Ravs. lines, intervals, ahd egments are

also., in the -sainv sense., convex. [.Convex' is sometimes used with
other, closely relatedtmeanings, For example, a convex polygon:is a
plane. porTigon which is such that the point's of it,s plane which are

sicle- it constitute z--t convex -set.] Other examples of.convex sets,
aru the half-planes, closed- half-planes, and planes [which are disoussed
next in the text}, space itself, :indith;- Set consisting- of theloints of
pa.ce whigh are ipside a given spherical stirface. [A spherical surface

itself is not convex, but the balI Which iS the union of such a-surfaCe and
its interior is convex, [ Convexity is a very ifnportant geometric pro-
p(' rty, but we Aball not have many occasions to refer to it.

Before gciing on to the- discussionin the text ot planes you .might'
.ask students to mark two .points,' label.thern 'At and 'IV and draw the
ray. MI:. Then, on'Other parts of their papers, .draw pictures of the.

While they are soray BEV:the segment . AB, and. t,he .interN:ral
erigaged7;.U,r4ite on the boarii: .

A,13 AR

ci)! AB:: BA
ThOn,,.ask.for true'-

e) AB = BA

e answers.

) AB C
(f) AB AB

'In refining cebe's inthitive nation of what a plant is, the _notion t h
flat surface without holes or edgys 'seems a good one to start

rcni:. The phrase 'ttithout holes or edges' is somewhat more adequate
'than say. 'which goes on forever!. To arrive at an "adequate de-

tion -of planes ,we begin by noting that being flat and without holes
edges suggests that any line which contains two points of suth a se;

ould be cornpletely:contained,in that set. [Technically, a set which
his property is said to be linear, but the use of 'linear' in the.

pre'sent context woulciscaroely be helpful,1 Although not-only planes,
'but lines and space itself 'have this prOperty; it should be intuitively

,.Obvious 'that the only ."..surfaces' with this property are,Planes "flat
,surfaces without holeS or edges";

Sorne surfaces have the 'property that it is possible-to find two
poirits ok the Surface such that the litie containing these points is in

surface,-.and to find, aliso,.two points of the surface such that t e

Ole

Cylindrical surfixi: :

P, '0 in .the sairfaca anct

P.64( In the surface

R, S in the surface and.

RS.= in the surface

tt.

line containing these points is in the
stirface pictured above ie an example,.

0;*

-
urface The cylindrical

f t
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pl:;ne consists o( the points ea .line ttogethe.r with the points of twO
.opposite half-planes -each .of whieh has I as its .edge.

A half-line with Airtex P consists of all tht points which are beyond
P frbm-some point E. Aiiiitlogously, a fail .1a_rie with edge I consists of

t--

Fig. 1-1
Lilt points wh ch are a ross the line 1 from some point E. [The phrase
'across I from E is short for 'beyond one or:another point of I from:E'. J
A half-plane is. analogous to a half-line:and the edge a a half-plane is
analogous to the yeilex of a half-line. SO, the analogue of a raY is the
union of a half-plane and its.edge. Such a.set is Called a closed half-
plutie: It should seem intuitiVely obvious that, given-a-line-1 %-id a
point Q there is a .unique -closed half;planc which containS lir and
has edge /. The set. of:all points Which are .acroSs I from Q is anotheer

ind' its union- with I is a 'closed half-planethe opposite
the one with.edge I which contains Q , [Thetwo half-planesas weJI

as the closel half-platieg are opposites of one another.] Evidently, pif
Q and R. belong to. opposite half-planes then there 18 a point of the

mtnon edge of theSe,half-planes between Q and R.: Alse, any .half7
contains two given points also contains all points be-

tween them,
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It remains to anSlyze what distinguishes a surface.frorn other kindsof sets. Intuitively, this is their "thinness".. In the case. of ':linear" "sets [see the preceding bracketed se.ntences1 .athin set is one which iLseparated by any lihe contained in it. In summary, one adequate des--riptionof planes is that a plane is a.,set such that
eachline ."vhich containS two.of:its points is coiritained

and eacti l-ine which is contained in it separates it.

'Fig. 1-14
A little thoi.ht shoulci convince 'you that a giv n union of tw6 (we-

site e Osed ha -planes seems to satisfy our two requirements that a
set be a plane. These were::

.
If Q and R are any two points of a plane then the line QR' 'which:contains Q and Ai is a subset of that plane. I"Planes are
flat."]

If m is any lin NNvhich is a subset of a plane then this plane Is
the union of th and two half-plaiies: which have in as

rPlanes a?e thin.")

puilmg tine Ot-out-of---
this plane separates nohat
s left of the plane into
tAi ports called halt-
planes.

union of these three parts is the [anti ane.

4The second property is closely telaied to the modern theory, of dimen-sion. A two-dimensional set is one out of which onc can separate arbi-
trarily pmall neighborhoods of any point by reinoving;appropriate
one-dirnens,i,onal. sets; a one=climensional set i.s one out of which one .can separate arbitranily small, neighborhoods of any ppint,by removingappropriate zero-dimensional sets; a zero-dirtiensional set is-one-outof which one can separate arbitrarily small neighbo,rhoods.of any pointwithout rebioing anything, 1
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Our desc'riion Of lines in term: of ra.sr or, more convenientlynow, in terms of half-linea --suggests that there may be an analogansdesc ripti.an_of-planes-irrie-rrrys -of .'ritalf--pla. This toge-the r withthe seParation property.in the des'c.ription we hive just arrive4 at sug-- gests the.appropniatedeseriptfon of half-planes. A half7plane,is some-
.vhat like a half-line, but differs by having an edge rather than a wertex.Since tisere. seems to be no appropriate word.for the analogne of:.we eall..the,union of a half-plane'.and its edge a cloadd:half-plane.

[Incidentally, the meanings of 'raye, 'segment'and 'halfrplane' are not standardized, In reading otlier anthers youmay find any of these .words prckfixed by either 'open' or 'closed'.` If.by 'open', the set referred to d6es not ciontain its vertex, end points..ar edge, as the ea'se may be.. ,lf by 'closed', it doce.1
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As a matter. of- fact, a union of two opposite closed half:planes does
haw-these properties; and that it does can lie shoVni to folio* from

What we already know about rays, lines, and half-planes. We shall
not take time to show this here because there are other propdrties of
plane's which we need to investigate.

First, let's notice that the "thinness property" does tell us that re-
moving, a lizke "cuts" a plane intO two disjoint pieces. This is becduse
ttt,o half-planes with, thb same .64ge cannorboth contain) any given
point [No half-plane contains a zoint of its edge and, as we know,
given rn and a point Q rn, there's a unique half-plane which con-
tain:s Q arid has qn as its edge.] Actually; as'you proba)y suspect, we
know more:

.

If ni is any line which 'is a subset of a plane then this:plane is
the-Union Of rn and two opposite half-plaaos.,which have m as'
an edge.

This is usually called 'the line-plane separation property' and follows:,
rather easily from 'the flatness property, the thinness property, and
the:uniqueness property for Nalf-planes. [What isthe Point-line sepa-
ration property? Can you thia of a third separation Propertyl]

Next, let's investigate .some uniqueness, properties for plones. Aa

you know, there is .a unique line inntaining any tw6 'give4r points.
What would ,be An analogous uniqueness property for planes? Recall-
ing the earlier analogies, you might think of this otie;

Given any line I and any point P not on 1; there is a unique
. plane which contains 1 and {P}. .

One plane containing 1 and -{P} is, of course:the uniim 'of th,e,closed
half-plane containing P whose edge is 1 and the opposite of this closed
.half-plane. esing the line-talane separation property, it is easy to:see
th'at this is the only plane containing band {P}..

Another uniqueness property for planeswhich you may already '

ipve thougiht of is:
Given three points not on the same line, there is a uMque
plane which contains all Of them.

frOm the preceding uniqueness property and the flat,ness
1 `be the lihe containiftg two of-the giveik poiniand

let P be the thd of the given points.]
. .

This follow
- ProPerty.

For our final property, consider 'a line / and a point P 1. A you
know, there is a unique plane.---ary, ri---;;which contains -P and each
point of 1, It iS the mnion :of 1 and .two half-planes-'-the half-Piane
which consists of the Points which are across -1;rora P and the half-.
plane which is. the' opposite:of 'this one. From tile meaning of 'aeross'
it follows fhat each point of the first of these.two half-planes bengs
to a line whiela'Contains P and ionie point ort.IThe Same is; of course,
the case for each point of 1.itFiom the ftatniiss'property we knovi that .
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We a'ke it as intuitively obvious
that given a line / and a point Q I, there, is a unique
closed half-plane which contains 0 and has edge I,
that-the opposite of a closed half-Plane, as described
in the text, is uniquely determined, and
that a union of qpposite closed half-planes does have
the flatness arid thinness properties which [as we/have

. decided] characterize planes.
Pitsumably, students will agree to thiS. If there are doubts then
although yoi Will not have time to discuss proofs .knowing how, the
first, and least dubious, of these three asserticffis can be used in
establishing the other twomaY give you ideas as to how to proceed.
So, in the next six paragphs we-shall do-w-hat-we-say in thP_text
"We shall not take time" to do there. [As the asterisks.intlicate,

3you probably need not take time to read.thern.
*

SuOpose then, that it is granted plat, given a line and a point ,
Q there is a Unique closed halfd$lane which contains Q and has
edge I. [Notice that it makes no real difference as to what we are
granting if we delete the word 'closed'. Given tiro half-planes with
a common edge, their unions with this-edge are two closed half-planes;
giventwo closed half-planes with er"common edge, removing this edge
from eath of them leaves two,half-planes. ] What is it, exactly, that we
are granting? According to our notion of half-planes, the only way tof
obtain a half-plane with edge I which contains Q is to choose a point
E' such that 0 is acrops 1 from E, and take, as our half-plane, the
set of all points Which are across I from E. What we are granting is
that, given two points, E and F, Guch that Qis across I from each

F

_

of-them, the points which are across 2 from either are the same as
those Which are across I from the other. This, now, implies at once
that a half-plane has a Unique opposite. To see this, consider a half-
plane with edge I. Thera is a point Q such that the points of the given
half-plane are just those which are across 2 froni Q. So, given any
two points E and F of the given half-plane, the same points are acros's
I from either. Hence, in describink the opposite of the giwen half-plane
we' are at liberty to chobse any of its points as our ':view-point". T.he
result is independent of this choice..

In showing that a union of two op/posite closed half-planekpirlsoth
%flat and thin, it is most economical to begin by establishing "part" of

its' flatness, use this to establish thinness, and then use thinness to
complete the Proof orflatness. [Actually, rather than thinness, we
shalL establish the sttonger line-plane separation Qroperty which, in
the text, is shown to be implied by the ,properties of flatness and
thinness. ]
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Suppose, the is 'the unionfo o opposite closed half-
planes with edge . For flatness, we wish tO show that if Q and R

byrbelong to 7 then the ,line QR which contains them is a subset of 7.
To begin with, we consider the Case in which 0 E I. In case P. 1,

OR = I and, so, is a subset of if. Suppose then that R j 1. It follows
.[since P. E 71 that R belongs to ttne of the two opposite closed half-
planes whose union is 7. Since R iI,. R belongs to one of the two cor
responding half-planes. .From our uniqueness assumpt,idn, the points
of this-h/alf-piane--c-an be desc-ribed as those which are across t from
an'y point E we may choose as long as R is beyond some point of' I

oni E. So, for E, we may choose a point which is beyond Q from R.
It follows that all points of OR belonoo the half-plane with edge 1
which cvntains R. 'All points of QE belong to the opposite of this half-

p.m...plane. Since Q and OR, is the union of the opposite rays QR and
QE, it follows that 511. C 7.

Before completing the proof of flatness by considering the case in
which neither 0 nor P. belong to 1, we use what we have already proved
to show that 7 has the line-plane separation property. What we wish to
show is that.' if m is any line contained in 7 then r is the union of rn
and,two opposite half-pIhries with tdge rn. Thq case in which m = 1 is
trivial. We consider first the ca in which n intersects 1 at a s ngle
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is a subset of 7r, each -point which is across in from U belongs to a.
Similarly, each point which is across m frown V belongs to sr. So -i [since in C 7] it follows that each point of in.i belongs to 7f. Hence,
7m. (7.7 '7. Since we have showz that 1 C 7Tm , we can almost repeat the
preceding argument beginning with 'By assumption' to show that7 C 7m T 0 begin with, let Q itAnd R be points of .rn'which are on
opposite sides of p. Since m C r, both Q ahd R belong to 7. ca,

'rice P E 1, the'two opposite closed half-planes with edge i,whose unioni
ti

is 7 must be he unique closed half-planes with edge 1 which contain Q-
and R. So, ach point of 7 i either a point of 1 and, so, belopgs to
7rm or i acroks 1 rtom Q or across 1 from R. ,Now, each point

' which is across ffrorn Q belongs to a line which contains Q and a

point P. This point separates 1 into two half-lines, PU and PV. The
half-plane with edge m which contains U coneists of all t"oints whch
are across tri frotn V. It contains each point of T. The opposit **ttl
this half-plane consistS of alk points across m from U, and-cOntai s
each point of PV. The union of rn and the.se two half4planes is a
plane let'A call it 'gm' which, as w have'Séen, contains I.
It should turn Out tO be 7. Let"s, first, ohow that wm 'c I. By.

umption, 'each.peint of 7rn is either:a point of m and, so, belongsto or is acros.s Fri from U or ac'ioss In from V. Now, each point
wh'ch Is across m from U belongs to a line Which contains 'U/arid ap nt of rn that.ii; it belongs.to a line which contains twO points of 7,one oi,t,hgm being, a Point of f. 'Since we have shown thpt each ltich

point of 1 that is, it belongs io a line which cO
Since we have shown that each stIch line is a su
which is across 1 from Q belongs to 7 , S irill
is across 1 frorp P. belongs to 7m. So since f C--- 71.1..j it follows that
each poirtt of 7 belongs to Irm. He ce, a IrC Consequently since
we' showed earlier that rm C 7 1, 7r, = 7rrn o

To complete our proof of the line-plane separation property we
.rpust fre ourselves from the assumption that the line iv intersects I.
Thiji now easy. Let P and Q be two points such that P E / and Q

two points of 7,m.
each point ,

each point which

Since P E 1 and Q e in C r we know [from the case of flatness already
established] that the line n which contains P and, Q is a subset of T.
Prom wha`t we have established as to line-Plane separatiOn, we know ,that 7 = Anh where an is the union of n and two opposite half-planes
with edge n. Since, by assumption, rn C 7 it follows that m '7,1. -Again from the special case of line-plane separation already established,an = 7 where w is the union of m and two opposite half-planes-with
edge m, Since r = In = we are finished.

We returnnow to flatness. Suppose that Ca and' R are any two
pciints of 7, neither of which belongs to 1. [As before, r is, by assump-
tion the _union of Land4w0_op1risiti. haltpla P s with etle--4.1 Let P be

g

,a point of 1 and let m be the line through P and Q. By the case of
flatness already dealt with, m ç . by the first case of linemplene
separation, z- 7m, wheie sin ,is, as ultual, the union of m and-two
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opposite. t'planas ith tdi.e rn Sihce Q n and R E
follow s rcirn the .111-r4 .st ihl ishad case o,t tlttnts s that

as v.,- \A in h,:,1 ,

heturn ng now .to liL 11.6b
ill 1")rdvr as to tba ,-N',.taranca hatv,
the- I ine-planv sap iratiOn.prope rtN,

-11e.t at Tjhe- result is

r,.igflt hues
,k;-t-. lilt St a rt, trie I

text itselt, sorne %.vords may he
-11 what w a have called "thinfIt'ss' and

An analogy. rn,ty help. Make a tIold
model` of a surface onvhiah one can

.

segriwnts running from edge
ne could .draw on the' unfolda paper .

the fold. Cuttiuu iL; along any of these lines separates the
p,ipar into two .pia,c.es. Only cutting it along the fold separates it into

,No cut separates it into "opposite half-plines".
r 'were ltt tac h cut would separate it into opposite half-

lielongs to a 1 ine then
halfliries 'wliich have

paration prope
this line is the union of {Q} and two oppoSite
Q as vertex.

is tlot if Q-'lls.any point which

The plane.-space s'eparation Property is that if 77 -is any plagie in e
.then is the unon of 7 and two opposite half-sPaces each of4hich has
r as its face. Y our students can probably gness this third 'separation
property, and suggest an adequatt): description of half-spaces with face
r, and Opposite half-spaces.

Accepting the plane-space separation property arnotints as,ypu
ht point put to your students to agreeing tKat space is three-
ensiona:l. For analo v, had we agreed that if 2 is.any line in. e.

- .i,,41,4,_ -ta-tii.-)-I4 of 4 tw-o-o-pp-o-s-i-te -leal ane-ii--e-a-eh--of whir h-l-ra-s
t as edge, we w have limited "space"..to be alfilane. I. On the other .

hand, if we wis dy fourrdimensional space we.would, following .the now-familiar e ru, have described a hyperplane as the union of
a,plane and two o halif-hyperplanes having this plane as face.
[The descriptions would be those stUdents shotild haVe suggested for
kalf-Spaces. 1 We t'vould then haye, in place. of the plane-space'separa-
'lion property, a plane-hyperplane separation property obtained frokri
the former by replacing the first '' by 'a, hyperplane' and the Second
by 'this hyperplane'. Finally, we would ha-ye a hype`treane-spacts\
separation prope rty . -. .
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Although v.7. do not discuss it in' the text at, this point, this is. a con-
venient place in the commentary to point.out that adoption f th.t plane
space sepa'ration property has thp.con.sequence thaf. two planes which
lntersect do 'so in-at lea.st two poitits,e [Using the flatriessiproperty and
the three-point uniquei-iess property _of planes one sees, then, that-the
intersection of twO planys is either empty, ox a line, (In four-dimen-
Sional space, on the contrary, two planes can .interseck in a single
point. )1 To show this, aseume the plane-space separation, property, t
and suppose that 't and 71' are tw.o planes which have a point, P in
common. Since 7 has [only] two sides in [3.dimensional] space,

r must contain
Rbeynd P fro
belon 7, -so does

rit Q on one of these sides. Since P.E r', a point
elongs'to the other side of 7'. Since P 'and Q

Now, choose a point S E 7 which is not on
QR. E 77 , we have found a s,vcond point of intersection of 7 and 77 ,
If not, S belongs topne of the t,t_t side S. of 711 We friay suppose it to
belong to the same side as Q. It follows that S and R belong to oppcf--
site sides of and, so, that there is a point of. 74 between them.
Since e_ach point between. S and R belongs to i-,,ktrollows that this is .

' a second point of intersection of 77 and 77'.

"final prope discussed in the text concerns the existence
arid uniq eness of parallel line's. In the for,mal part pf the course we
shgll def le the direction of a line,- and parallel lines will be defined to
be Uric ,hich have the same direction. [In consequence, any.line willbe par4el to itself. ] in this,section we deal with the more wsual.notion
of para the question being, first, whether, given a line and
a.point P there are points of the plane of Land ,P whi.ch are not on
any-line through P which'interse,cts If-- as.we finally urge.,stu-

C ts to-agree the-re are sutiii IYOints then, byihe flatness, property,
there` is at least one line-in the plane Of 2 and P whiclf contains P anddoes not intersect f. Such a line we call a parallel to 1 through' P.
Wh/Aher we go on to assufne that there is at most one or mose-than one
stfch parallel depends on whether we decide to study Euclidean or
LObachewskian geornetry. Althoug,h devices such as your students
parallel rulers may predispose them 'to believe in the existence df
parallel, lines in physical space, we know of no device-which would tip
the scales in favor of Euclidean as oposed to Lobachewskian geometry.
If driven to the wall, your arguments ift falfor of the formes- are that
it',s simpler and that it is what everybody els,slias s'tuelied first, -and,
'finally, that, like it or not, -it's what weparj going to!study. in this
course.



ich of,tliese lines is a subset of ir,oand we also know, that !'hp.lf"-or;
.ch line:ISmade up of Points of the.seetiiid half-plane. question: 114

.

.ac,11.45oint of the se.concl half-Olane on a line whiCh contIiii&P Andra
I IT

PI. L',poin't of 1?..

T.C. 32.

The-r'e are several refçrenees in.the tekt 6xercisesti to,a draw-ng instruinent called a parallel ruler, This'iltstrurnent,, which
essentialTy"a -ruler which is Mounted.on.rolle.rs, is a Ikandi, devlee for
drawing lines which arepacallel to a, giVen 'line,. There ae quite- a fetk

'models- available, and any- viell-stockedrawing suPply store will ha,ve
suppl,y...of IflioncAnnot ma:ntge tb have a class rooZnsupply cifsuch, instrilments aso/d.e.pai.trnental property for students to barrow and

,use in solving the eiercises in questionS, you can get by with one such
instruhient that cap be used in conjUricti.onw.4h the overhead projector
or witha large model designed fur use on the ehalkboard.

p

°Although the Point need not arise; it may be Worth examining ,the
evidence for parallel lines Which is' furnished bytpaallel_ rulers. Using
a pArallel ruler one can, On rolling it from .1 until P is on its edge, ',V

- draW a lin e. which, by synimetry,,has'the property that if either of its
rays with. vertex, P interSects then so does-the, other, So, if this
line intersects 1-at all, .it would 'seem to-intersect it in twO points.
Since there is- only one ine through two points, and since P 011,
wouId.follow that-the-1 n question cannot intersect .1 at all, This
Ointment hk's it 'S own:fl We have tacitly assurned that a raY is, not its
own opposite that sfghting.from E- through. P, one will never %see
the'back of one's oWn head or., leSs speetacUlarly put, that E
beyond ytfronn E. If, for physical spaCe, -this assumption is incalikect
then our argA4ient based on the behavior.of parallel rulers breaks down,
For, in this eaie, the line thrOugh P which-we draw "paraller!" to 4.
may intersect-1,in a' single pOint which We c4n sight toward by looking.,
"either way6 from P. If this .shouldturn out to be so then lines "cloSe
up On-themselves" Aopologically, they are indistinguishable from

And, there are no parallel linesd- The aSsurn n-that!this is.,
711it Case comMits one 'to a third kind of 7geometry called, As one
wishes, Riemannian, or

) --.-----second haii-plan

Pi

Before trying to answer the -preceding question you should .experi-
! ment by doing s me careful drawing. [Far one thing, usy a shnrp pen-

ci1.1.14 'fiat sheet of paper is a Ketty good model of part-of the plane 7T,
and -by Using a ruler and a sharp pencil you can draw pretty good.

-,pictures.of.parts 'of lines. Working as carefully as yOu can, draw a pic-
tire of-pan of 1.ahci of parts of some lines through P`which intersect 1.

1.

The figure suggests how you can use a second sheet of paper to draw
lines which intersect 1. at points .which don't show on,-your finished
drawing. Continue with, yuur arawing until you think you know

irther there are points-of ir whieh do not belong to any line through
,1? an4 a point of 1. jf you decide that there.are such _points, try to lo-
elate some of them as accurately ag you Can, .on your paper. [You can
poil the fun by Oading on, anci you may learn more if you conplete

your drawini; firSt.1
If you'have done the job sugtested in the preceding paragraph, yOu

probably have sbme icieas on the question: Is thQ union of all lines
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through P. which intersect / ia plane? In particular,- does each pOint
you could Mark oh your paper belong to, such a lihe? In doing your
drawihg, yoU may have thought of a way of usiiag your parallel ruler
to draw- [part of] a line through P. which seems IVA to intersect I. [If
,you didn't, try to) think of one miw.1 If so, you will be ready to agree
with us that the answer to the question we have been considering is,
No.' And you will agree that there is a line tprough P which is a Sub-
set of the plane and whiCh does not intersect .1. A line which is' a
subset of a plane cOntaining I and which does not intersect 1 is said to
be parallel to I. Snch a line can also be described as one whiCh has the
same direction as I. Later, this second meaning Of 'parallel' [saine di,
rection] will be \Tore convenient thah the bther. Then we shall also
agree that any line is parallel to itself [it certainly has its own diree
tion!]. So, fbt now, let's say that 1 and in are parallel if and only if
I in or I. and in are subset§ of a, single, plane and have no point in
common. .

There is, of course, more to .be said 'about our question. Although
experimenting with your parallel ruler should give you 'fairly con-
vincing eVidence that, given a line l.and a point P 1, there is a line
through P and in the plane of 1 and P which does not intersect 1, the
evidence may not seem as convinc-ing as that which led you to.naccept
the other staternents we have made about rays, half-Planes, planes,
etc. Making drawings on a rather small sheet of paper may give one
a cozY feeling; but physical space is, to say the least, Large. When we
agree to assuine that through a point not on a line there is a parallel
line, we are agreeing that the geometry we shall study is a a special
kind. For the usual Euelidean geometrY which We are going to study
in this book, we shall assume even more:-

Given a line I and a point P I there is a unique line through
P which is a subset of the plane of 1 and P and does not inter-.

, sect 1.

In terms of -the question we asked- earlier this means that not all
points of the plane of 1 andP belong to lines through P and points of 1,
but those which are not all belong to one line through P. if, instead,
ye ,assumed that there is mOre than one line through P to 1
then we.should he studying a non-Euchdean geometry which is called
Lobachevskian, tor-hyperbolic, geometry.

Since parallenilines are going to .play a congiderable role in mir
seudy, it will be of help for you to know quite a bit about them before
we begin our real work of developing geometry. The follo*ing exer-
cises give you ia chance to notice Some-of the things you should know.
They also give you a .chance to develop some skill in drawing which.
will be useful to. you,
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Eiercisei

It 'On your paper Inal:;e a pictuxe, similar to the one gitren, o
nd points A and B not on-L

-..
. A

(a
(b

'ow

-
DraAr A line tin through :a which is parallel to /.
Draw a line n through B whICh ig parallel to /.

(e) What relation [or relations] exists between lines rn and n?
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or Exercisea
After doing parts (aL and b ale student's diagram shou d lo ok
something like this:

....
t

2. Make.a picture, similar to the one given, of lines 1 and rn which
intersect in the point P and of pointh R and S which are not on /
r On RI.

: (a ) Draw a line n, -through R which is parallel to line 1..
(b ) Draw a line n2 thrinigh S which is parallel:to line az..
(c) Are the lines ni and n2 parallel? Do these, lines intersect?
(d) Try to. describe the loatiod of a 'point T such' Lhat a line n3_

through T Parallel to 1 does not intersect theline a2.:What is a
relation between the lines n3 and al? .

3. On your paper, make a picture similar to the one given of a seg7
inimat which-is-two inches-longand-Of apcsinte-whicii Wtiot on
theline AB.

a) Drawla segment tr such that rg is parallel to f and 10 is
parallel to .re. How long is tii? Compare the lengthe of V.
and W.

(b) Draw a segment tr such that br ii; parallel to V, and nt is

-

e answers you might receive heie are:
The lines m and n are parallel.

lines .m and. n won't intersect.
The lines l; m, -and n are parallel.

'[The conclusion that, for -hy lines .1, rn; and n, if in and .n are
both parallel to I then m is parallel to, n amounts, in view:of the
obvious symmetry of parallelism -to the concltision that ,parallel-
ism is transitive [if mill and O? n then mlinj. It is in order that
parallelism have this very desirable property that we insist on each
-line being parallel tovitself.

Using the nation that m and n are parallel if and only if m n
or in and n are coplanar. and. rn n = 0 it is easy to see that'
our parallel postulate implies that coplana'r lines which are parallel
to a third line are' parallel to each other. For, suppose that m and
n are coplanar and that both are parallel to i; In case m = n it
follows by definition,that m and n 'are parallel. Suppose, .then,
that n. Itlollows that if there exists a point cornizion to m .

_ and n then there exists a point through which there are two lines
.parallel to .1. Since, by the parallel Postulate, this is,not the case
it follows that m n n.= 0 Since, by hypothesis, rn .and n,are
coplanar it follow, by definition, that rn and n are patallel.

Since the-lines m and n of Exercise 1 are coplanar this
argument shows that, having Iccepted the parallel postulate,

udents:-are'commit-ted-to agreging-that-theVe lines are parail.e1:1
* * *

The jnore general proposition that [any] lineswhich are parallel to
a given line are parallel requires an additional argument. /n vieCv of
the preceding, it I. sufficient to show that lineti which are.parallel to a
giventline are col:Am:la?. We kirst dispose of trimial,cases by noting,
that if in and n are.pazailel to I then, in caste in =. n or nn = I or
n n are parallel,' either by definition or by assumiStion.
So, what remains to be shown in that if two of three line's are parallel
to a third then these two are parallel. Suppose, then, that /, and
n are three lines such that mill and HI. Since in * I, and milt it
follows,' by definition, that in and I are coplanar in SOME)
By the point-line uniqueness property of planes it folloWs, Since
M rN 1 = Oi that lin I. the unique plane which contains I and



/ ., 4
r

..trse ts m. Similarly, h and 9 art copla;iar .in sore plane rra, and
and -7'n is.the unique p.lane which contains n and interse'cts Q. Since
di n, ther.e iv Li poiryt ..----' say, .A-- of which does not belong to ,n.
1,,et ir be t,he uniqueplane-W-M-.h ctinitVi.... -and -A. *Since, rrne and 7
are planes i:dimensional spacei which both tontain .4 iii ?ollowsi
ttlut c.itr = 7 or- ,-- .7 is a line.. In-case rrrn = rr it followil,. ,

i.nce r 1 and- h r, hat ri nd-n. are coylanae:. Suppose, .

mthen,- that 7 '-' 7 ts 1;ne say; p. Suppose, that p intersec*.-
It follow.s,, siryt.4 p 7 . that r intersects P. Since Tr contains n

iows that 7 L rrn. Since A 7F A E 7rh.` .Si-nce A m and 9 c
allows:that -rrri i rr1.1-. Since r --= rrn and rrn ',- irrri it follows' that

71. = rrrn. flut, -since -----) 7 --- p, 7 7 . Hence-, p rTh I '-'.0.
Since" v and 9 -are coplanar in rrm it follows that p112. Since A E p (-,' m
44rid m 9 it follows -bs, the parallel postulate that- m = .p Since p

7r and, sq. that in and n are ,coplanar 11n 7..

Ana re for Ex-ei-cises cont.1
3... heAtude ntt s som ed .diagram hould look somethfn

a

it follows
Fre Tric ,

then 'm and
.9. m , and n are three lines such that in L and
:1 re coplanar.

Atte r doin-

4

g
sometiting

n11

d" (b ), the student' s thagram should- ok

The lines n and n are not pdralle
a[A- n argument that, might be givento support this ,is he

followin .From the conditions stated, we-know that'n
and, n m, -Asiurning tat n1 Jx2 if follows, since
parallelism is synamet-ric'andtraris.itIve,- eat f ir in; for

H n1. 1 rr. But, this contradicts the not-ion that two
s4lines parallel vnnot intersect,'" for we were

,en that 9 m {P). Hence, n, iS not parallel,to .7-12
S -911-175-TrretTy-Df-p-a-rall elism 411ow-ii-u-s-' to 15-dt-1t

and aie . ,
The lines 'n1 .and.'n; intersect.

to'shIdents'attention, the4act that the a gumen give
.Sbovie-to justifV th,e conclusion t,hat `n1 jr :n2. dOes not Suffice

,

conclusion thatn.i. e'l-n2 0 0. 'For. this conaUteion we
need to 10-low, alio, t.liat-n1 and n2 are coplanar. To
estOlishlthis. n-iake use of.the assumption implicit in
the exercise that -in, r, A, and. S are ,c6Planari.-

id)- Choosing 'T out of the -pldhe of. I 'and m" will do,the jOb
here. What we intend to do here.is, talmake- the student 'hegin
to-think about the.points "abov and "below" 'any plane in
which he happens to'be working .d4wing1.-

'Fri is 2 inches long. AC and BD have the earne,length.
(b) M is 2 inches long. -AE and BC have the same length.

,

rh,
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. -
paralV to 1- ow long is r g? Conipaie the. IengthA of-,-.1g
'and Pe2 r I

(c. ), mpare the sens'es of ray 7-(_,D. and rayig.--

41 Om of the raysThand.Ok'Fras the somesense as he her-.

has' the same-inse as ILA -Which is which?
1 , t : _ , - 4,

., Make-a picture, -si nillar to tile one iveta, Orp (n.
' 'and of point I/-? mit on b. . ... ..

fill 4 un ine 1- .

. (a) Dra line.rontaining- points. P and I?: Draw.a line q'
throu h Q paraUet to Pif.Draw a line r through R parallel to 1.

OA- Let he point of interSection oKlines q and r. What cap you
-say About the segrnents -and About. the rays V and

Let
eire?

S he point on PR: such that-P is between R and S. DraW a
lines through S parallel to 1. Let U Fe the point of intersectiOn

. Of q.and s, What can yoa say about iv and 1_7? About WI and
About.SU and i.--3"4?.

(4) Choose a point V on P4 such that Q is between P and V. Locate
a point W on such that 71-V. is parallel to kV Is there more
than 'one- such poir,it? Compare 14 and 75 Q COmpare W
and75"-'

5. Make a pkture, smilar to the tie giyen,-of angle BAC Ifor short:
LBACI.

(..)* CD

The T
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Ind'-cE-havj opposite qenses.
has the same seftse as All;
4.

pd'rpose of Exe rcises 3, 44,

as e same sense as BA.

7 is to enable students
disever..how; giveh thu-e- points P, Q. and R. to find-the point T

suc1.9 th!tt' RT..has-s-the sar'ne l'ehgth as and RT hs the same sense.s PQ,
11,4

4. The studen completed diagram should look something like this:

(a ) [See the diagram.
(b ) PQ is parallel to RT and has the s.a

the same sense as RT.
(c ) PO and SLT are parallel and have the same

SU are parallel and haVe:the same length,
the saxne sense.
Tljere is just pne point W on RQ. such that

4,.11
RV. The segments VW and PC) have the same length. The
rays VW ahd"PQ have the same sefise.

The student's completed diagram should look something

4

length as RT. PQ has

(d)

length. RT and
SU and FQ.haNie

TW is Parallel to

like thi

k a point.D about 2 inches fron A. Draw a ray7rethrough
hich has the sal* seniss as the ray.Ad; /Start by drawing

el to AB.]
Cb) Draw a ry5i which is parallel to the rarAd.and Such that

L.EDF is congruent to. LBAC.
e) Draw a .ray-W which is parallel to7fe and stich that LEM.;

not congruqnt to LBAc.,
(a) Cerapare.the rays7WwidVd.
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6. 'Make a picture, similar tothe one given, of points A andy on line t
and of points B and C suèh that A, B. and C are not collinear.

,

I (a) Draw the rays °Alit and "Ar. Draw lines th through B and r
through-C which are parallel to 1.

(1:4 Draw a line s through P Parallel to AV. Let D be the
intersection of lines r and k. What can you,say about
ments Pff and :4-61?

nt of
seg-

(c) DraW-a line t thrpugh P parallel to Aff. Let E be the int of
intersection of lines M. and t. Draw linei re and kff. Wha
you say about these lines?

(d) Compare the'segments ts-Bi.:4-0, alid Dg. .

'7. Make a picture, similar to the one given, of the segment 74A

A

(a) Mark a point A' about 2 inches from A. Draw the line AA'.
(b) Draw, the line. through A' which -is parallel to the line V.

i
DrElw the linl

on of these lines.
B which is parallel to A-Al. Let B' be the

point of inte
(c) Oonispa.7 the segMents A 13'. arid V. Compare the rays B

and AB. .

(d) Mark a point A'. Repeat parts (a)z (b), and (c).
-(e) Compare the segments ar-A'and

& Mark (three nolicollinear' points P, C,, and-C.2. Draw the. ra33s. Ye:
and
(a) Qn Pe mark two points 41' and B '.which are differ-

. 1,

ent from C Praw 4.4_r2 and tX.
r Ai?) Draw a line 1 thrOugh.0 parallel to :4,C:..Let A, be the point of

. intersection of 1 and
(c) Draw a line m through.0

of intersection of m and

DraW
.

parallel to B,C,. Let B2 be the point
braw

(d) Make a guess at a relationbetween ArB2. Chee4 yonr
guess with jour parallel ruler.

9. Let 1 and 1
'2

be two lines which inteisect ih the point P. Mark three
pointa A B and C1 on 11 which are differeni froni P and whieh
are not all on-the same side of P. Marlt a rioit Gal, which is
differint from P. Locate points A.d B2 on as in Eiercise 8,
and cOmpare the lines Ari3, and AIB2 aiyou dia in that eiercise.

The tudent's comp
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ed diagrarn ihoulel ook something like "this:

(a)

(3)

[See the diagram. ]
Segments PD and 7Cd are parallel and have the same length.

e lines DE and BC' are pai.allel.
(d) cD AP, and .13E are parallel and have the same length.* * *
Part (c) of Exercise 6 _illustrates a case of Desargues' theorem.

Thi is one of two very fundamentál. theorems [the other see
Exercises 8 arid 9 r-- is Pappus' theorem] which may suggest to yOu
other exercises. Desargues' theorem is more easily dcscribed than
stated formally. We begin by describing the kind of situation to which
Desargues' theorem applies. Suppose given two triangles and a
'matching of the vertices of orxv with those of the other such ihat coi
responding vertices aredistinct and the lines con ining correspondi g
sides are distinct, Suppose, further, that the line which contain
correpponding vertices are either parallel oriconcur t. It follows
[of cdurse] that the lines which 'contain a pair of dorresponding-sides
are coplanar and, so, either are parallel' or interliact It a unique point..

=In the case of parallelisen the lines are distinct since, otheiwipe the
same line would contaia the vertices of two pairs of corresponding
vertiFes. There are, then, two case's: for each of two tiairs of cor-

-4--responding-irides the lilies those sides are two parallel
lines, and for each of two pairs of corresponding sides, the.lines

Acontaining:these sides are tvio intersecting lines. In the seand case,
the points of intersection are'cliithiCt and, .so, determine a line I
Otherwise, the same point wouldbe.each of a pair of corresponding
vertiCes. DesargUes,' theorem; no*, -relates to the linee'containihg
t,he remaining,corrOspondir4Oidest -It itaser4 that in the 'first case

Nthese lines are parallel and that in the second case they either are
parallerto f or intersect at a point of 1.



Answers for x cises [cont.
. .

7. The student 's completed diagram ihould look something like this:

(a
the diagram.]

11(b)

(e) A'B' and AB are parallel and have the 'same length. The
rays A'B' and AB have the *same sense.

(d) .[Same answers as in (a), (b), (c).] .

) A'A" artd are parallel and have the same length.
Parts (a) -Id) show, again, how tolind points "at a

.given distance in a given sense" from given points the
points A' and A". Part (e) suggests that the points so
.found B' and B" a-r`e the same distance apart as the
'given points, and that the line containing them is parallel
to .the line containing the given pOints. In the terminology
of the next section: A transla,tion of e preserves distance
and maps each line..into a parallel line,

Tg 36(3)

Answei-s for Exercises [cont.]
8. The 'student's completed diagram .should look something like this:,

(a)
(b) [See the diagram.
(d)

(d) A,B1 and A1B2 are parallel.
9. *The student'scompleted diagram should look something like this:

T e segments A2B2 and A-2B2 are parallel.
*

Exercises 8 and 9 illustrate Pappus' theorem.. Like Desargues',
this is a theorem whi"ch May suggest to-you many eZercises. The kind
of situation to which Pappus' theorem applies can be described in the
following m"anner. Suppose one is givin coplanar lines 1 and f', /hrte
points A, B., and d. each of whiCh i on / but nOt on V. and threr points:
A', )31,' and -C' -each of which but not on , It follows [of.coureej
that Af'* C'-0 B * * C * A. ,..Flirthern'iore, the li?es of the
pair {A'C, AC'j are coplanar, as are.tnose.of {WC. BC'} and those
:of .[A')3, AB'),' So, as inthe case otnesargues' theorem, there are
two.cases: for-each of two pairs the lines of that pair a,-1 parallel, and:
for each of two pairs, the lines of that pair intersect. ../1 the second
case the points nf intersection are distinct and, so, determine a line rn.
Pappus' theorem asserts that in the first case the lines of the third pair
p.re parallel and that in the Second case these lines either art parallel'tio
m or intirsect at a poitlIt'of in
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.06 Translations of r 37.

In the precedihg sectionS you have bees improving your acquaint-
ance With some siMple geometric figures rays, segments,,half-planes,

and reviewing some of what you know about 'functions. [Or:
mapPings). M'Ost of, the time 'we used- as exelmpleS functiOns whose
domains and ranges consisted of real numbers.- that is, functions
which mapped real . numbers on real numbers. In particular you.
studipd some 'especially simple mappings- trunslations :-c'L'of the
set._ /7) of all real nuMbers onto itself. [Another name lot these map-:
pings, is 'linear functions.with slope l',
# Here- are statements of some of the things, you learned about trans-,
ations of

(a) For any.:real numbe and I), the're'is just onetraiislation of
which niaps a .on b. In fact, this is the translationrjtx,y): y x

b A resultant of translations of,g is a translation of :YP.
AO -Composition .of translations of.)t) is commutative.
(4) The'converse of a translation of ./iis a translation of .yP.

Yeu also discovered that one way of describing transIatnsf9 is to

A translation .of . -4 is a mapping f of into itself such that, for
any real numbers a-and b, fia) - a pb): frfaud.a such
mapping is a translatiOn of ,g1.

In .short, the identity mapping of ,X onto itself is a translation of ..)P,
and the other translations ofr.-h) are those Mappings each of which
moves all poiots of the number line a given distance in'a given sense.

The reason for having spent so muchlime bn.mappingsis that in our
study of geometry we shall make Considerable use 'of functions whiCh

. map pOints on peints that is, of mappings whose.domains and ranges
consist of points of er . In particular, altholigh points are very different
.from real, numbers, we shall' find that there are mappings of space onto
its0fch-h-aVe-prol*rties sinfil----,tohose Which yo-u-lihye-TcTu-nd
for translations of [V. We shall call-theSe -mappings translations o

fqr Short, merely ttranslation#: The remainder of this chapter wi
be spent in becoming acquainted with these ncappings.

'One way.of getting ideas about geonietrY is bY drawing and studYing
-pictures. Inthe preceding section you practiced Picturing georaetrIcal
figures in a given planeby making drawipgS on a sheet' of paper. ,We
can begin tO get acquantted wit4i tranplations of e: in a giMilar way: 'Po
begin .with,, our pictures, will shoW us what' a. translation does'io,
the pointS 'of a given plane: When we Understand thi we, will be able

'see how a ,translatiOn acts on all of e:,
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The.purpoSe of iis'settion is to lead studits to become aware-of
certain mappings of Euclidean space g onto itself and of son'ie. o.f the

ciperties of thecse mappings. The mappings in question are the.idn,n-
y . m4pping Of t onto itself and those mappings each of which moves

points of' F.,' a given 'distance ia gi.,ven sense. They are, then., -anal-
s to translations of %and will be called t-ranslations of e. The'

p tics of these maOpings which students will di.scover 41 this ,sec-
n are sUrnmarized on page 47,; Of these, (I) - (3) will be:

the basis of the first three postulates which we shall adopt when, in
Chapter 2, we bitgin our formal development of geometry; .and (4) will,
suggest the n-iost important part.of our fourth postulate. [It should be

'gloparent'that seCtion 1.06 is, like section 1.05, a concept-de-velopment
section whose role is to .hclp'prepare students for the formal development.]

*. *
Student' s curiosity as to the meaning of the word 'vecittirl should

remain in; at least as Ifar as you are concerned Until this
word is introduced later -in the cour,se. ft is,,however, appropriate .

now to relate, for yOu, the notion ofra translation with the noti you .

may already have obtained:of a vector from other' souCcs Ayi may
recall, -vectors are often introduced,- in elementary'texts on vecto
algebra, as directed segments Which, are repreSented pictorially by
arrows. , NoNt, two such ).rmJiVtirs ate said to be.equiValent if and only if
they have the 7ame length and the same direction in our terminology,
the same sense. Finally, it rriy- be mentioned perhaps in a-foot-
note that a vector is not really a'directed segment rather!, it is a
class of-equivalent directed segnwnts. A better-procedure which is
sornetii-nes followed is to begin by saying that.a.vector is represented
bY- a directed segment, that directed segments withithe same length aTlizi

. isense represent the saMe vect9r, and, finally, that a vector is-the set
of all direldted segments which represent it, This latter procedure is
-logically Unexceptionable,,bitt may be a bit sticky, pedagogically,

'The procedure used.inthis text to introduce translations 'is essen-
-ially the reVerse of the method for introduc-ing vectors outlined, above,

-Note, first, with regAT:d to the latter, that nothing but perhapS the Pic.-
torial representation would be changectesSentially if one spoke of
ordered pairs Of points rather-than of directed segmer4s. Matching .

each directed segment with the .ordered.pair whose first and 'second
Components are the initial and-terminal points of the directed-segmeat

respectively, gives-us -a one,to-one correspondence between ordered
pairs of_points [with distinct cornponentsj and directed sezments_. So,
in the context.of the precedinglpar aph,', a vector,might.aa well be .
defined as a set of ''equivalent" red pairs of peints. Sincethe

.

equivalence relation in question hat; given a point and a set of
equivalerit ordered pairs, the iat er ContainsjUst one ordered air
which has..the former as its first ,eomponett it' follOwe that a:V Otor as .

so' defined is'a mapping o .the set edof all-points ,into itself. fact,.
pr;ecisely a tranalatton of e . Also, each trindlatian of 0 [With,

the exceptionf the identity- Mapping} is, in this enie of the-Word, a
vectOn. ITfle tdentity mapping correspondS, ol course, with the Nzero
vector. -In the Usual developMents the latter rs ornewhat MySteriOus
since i't is.obvious that it is not, like other veators, a set of -directed
segmen,ts. The former, 9n the tther hand, bile itmay deem of -a
somewhat different nature than,other translations; is justsanother

1.1
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mapping. Since [as your student's will 'di 'oveJ a translation is deter -
mined when one is given any point .and the image of that -point rind
-translation in question, i translation is 6et.ermi.ned by any one of the
ordered pairs of points Ikhich are its members. ContequentlV, 'a trans-'
lation may bei represented pictorially by any arrow .sxhose- initial' point
represerqs the-first component of some such ordered pair and Whose
terminal point reprE;sents the Second-component of this ordered.pair.

It shcrulci-now be evident that in oulii study of translations we shall
end up with essentially the s4ine, re-sults as a-re obtxined through the
u.sual elementary.approach to -vectors. -T.he difference between our
approach and the usual is that we :begin.with notion.of a translation

d, on the Jiasis of thiS, investigate the members of a' translation,
-instead of beginning with the- potential membership of vectors and ah-.
taining the kitter as certain subsets of the 'former.- 'The .principle,
advantages-or our .aPproach are pedagogical.. One advaritiV is due to
the fact that translations are very- simple mappings easily.under-
stood and forming an initiillv reasonable subject for investigation
while the "construction '. of v-ectors.by classifying directed segmentS,
is a qornewhat abstrac.t procedure and:there seems to be no very con-
vincing motivation,- initially, for choosing the appropriate equivalence
relation.

The similarity betWeen-the .notl'on of translation and the elementary
notion of vector might be taken- as sufficient ground for rekerring.to
translations as vectors. The word .'vector' has,''however, many mean-
ings and our reasons- for using the word in this connection are quite .

different. :Although 'Vector' is introduced.much later in this course,
it may be helpful tog'o into the matter now [hut, of course, -not now in
class . As-)Fou will recall, elementary vectors are'subject to a bipary
operation called addition and, for-each real number, to'a singulary'oper-
ation caltwd multiplication la the real miMber'in question,. These
operations have a number of familiar properties -for example, addi-
tion is associative and.commutative,' eac.h of the singulary operations .

just mentioned is distributive over -addition, and any two of these -sing-
.ulary.operations are permutable. -There is also' a sirigulary operation
.of oppoSiting and a zero vector those properties with relation to addi-
tion are those 'whfch oppositing c7t real numbers -and 0 have with relation
to.addition of real numbers. Also, the -operatiore oppogiting coincides,
a,s .in the real nuMber, case, with multiplication by -1, multiplication
'by 0- 'always yields the- zerib-yector, .and the result of multiplying the
,zero vector ,by. any .real number is the zero vector; Because of all this-
tl...sire is -an-alg-eb-ra-o-f-ei-e-rrtents-ry-vett-tor-s----of-whieli the algebi
real ntimbers is a- special. case... The usefulness Of.elementary vectors
is' due- to the existence:of thiiii,ialgebra. 1'

tu rns out that, in addition to the-set of all elementary veCto
here ate many sets on which one can in natural ways, define -algehlas.

of exactly the same--kind as the-algebra of eiernentary Vectors. -As i.e.
obvious frorp our earlier remarks, the set of all translations of .e is
one suCh example.. Here the natUral addition.operation is functidn:
.compositkql, oppesiting .is function inverSion and the,zere element is-
-the identity mapping. [Multiplication of translations by real numbers

b introduced in,a later chaPter after .an appropriate concept-
.

development section. I As A source of other-examples, consider the
set of all real-valued flinetions witha given II-amain. For the mepibert
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such a set, addition can he defined by saying -that the sum of two real-
ued functions with the given domain is the function whose value at any

argument in flat domain is the sum of the values of the given functions.-at that it,rgtirrient. Oppositing and multiplication by a real nuMber can
be defined in an.analogous manner, and,the .zero element is the function
whose value at each argument The resulting algebra; Wins out to
be of the same kind as that of the elementary vectors. li, instead of
considering a.11 real-valued functions on a given domain, one considers
of-ly those of a sUbset of these which contains.the zero function and is
closed under:ffie qperations in questibn, ane obtains another example of
the same kind of algebra. Fo r exampleT, not only does the'het of all
real-valued functions whose domain is the set of all real numbers have
an algebra of this kiud, bUt, alsO, the-set of-all such functions as are
represented by polynomials has such an algebra, As a final example --
one to which.we -shall wish to refer shortly the set of all ordered
pairs of real numbers may be subjected.to the same kind of algebra.
To-do so, define .the .iium of two such ordered pairs to,be the ordered
pair whose compQnents are the sums of the components of the given
pairs, define the opposite of an ordered ,pair to be the ordered pair
whose cgrnponents are the opposites of those of.the given pair, etc.

In`View of the multiplic`Ity of interesting and useful examples it is

noosed- the kind of algebraic structure which is exemplified by the
rable to have a name to use,in referring to a set. on Which one ,has

usual algebra of elementary vectors. Since the latter is the prototype,
and since geometric intuition is helpful-in developing the theory.Of suchobjects, the,natural term to use is 'vector spaee'. So, by definition,
a vector spaCe is a set onwhich one has imposed an' algebraic structurelike the usual algebra of elementary vectors. [01' couise; the-phrase
-modifying -'structure; in the preceding definition must bV replaced by
something move. precise. This willvbe done as the course deyelops. ),

Knowing.; mote or less, the meaning Of 'vector spaee'., it is naturalto ask: What is a vector? The best answer,we earl give is that, in a
given-eontext, a vector is a meMber of a set Which is, in-that context,
being dealt with as a vector space. So, - for example,rwhen we shall
1;a-we suceeeded in.de.fining a vector space-structure on Ole set,Of trans-,,
latiOns of e we shall.refer to translations as vectors. To exeMplify
the point still further, let's return to the set of all ordered pairs of real
nUmbers. As we haveseen, this stg can "be made into". a vector
,space by giving appropriate definitions of the relevant operations. In
co.ntext in which thes'e.operations are of interest, vie ehould 'refer to an
or4e-rad-pair-mbe-re-as---a-vect-crr7 As just pointed out, in the
context of this text v*:'shall.refer to a tran9laticin of g as a vector.
Does this mean that A translation is an ordered- pair of real numbers?:
Of courbe not. What-it means is that,the word 'vectp' 'has different.
meanings in different 'contexts. ,"

Recall that we have defined the nurnber line to be the set of all real
-.numbers with the structUre-imposed-by defining the disIance between

real ntunbers to be their absolute difference.. Similarly-, we shall take
the numbei iilane to be the set of all ordered'pairs:of real Inimbers with
,the structure imposed by using the Pythagorean formUla tee define the
distance between Ordered pairs. [In terms of this distance'we can 'de-
fine such geometric terms as, `straight-line'., 'circle'i '.angle measUreetc. In this context it is natUral to refer to an ordered Oair of real.
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F4g. 1-17

One way of picturing the effect of a translation is to make tisk3 of a
tiacing sheet. As a first example consider \Fig. 1 17 as a picture Of
three points, A, B, and C and a segment in some plane 7r. ahe'
arrowhead drawn at Q is part of the instructions of the exercise.) Copy
the figure and trace your drawing on a tracing sheet. As you trace the
letters, draw a star [*J after each tracing.. [Read 'A*' as,'A star'.] You
will noW have two copies of Fig; 1 7 17. Your work should look like this:

Your copy 01 Fig. 1-17

Tracing Sheet

Fig. 1-18
Now slide `ihe tracing sheet along the line tlirough P and Q until

the point Pe lies over the point Q. Clip the tracing sheet and paper
together. Your work should look like this'

Paper CH9
.tracing sheet and the underlyinig paper, in order to show how a transla-
tion acts on a pair of planes. [The need for making the fold parallel to
the direction of the translation may bring'out the fact that a translation
maps certain.planes into themselves and paps other planes into planes
parallel`to them. Zt ,,;is not essential.that _students become aware of t

'now; but, if they do, .the'Sr will have i':elearer notion.of what a transla
tion is. I Another way of indicating, thatiwe are talking-of.-3-;dimensio
space is to use a pencil held in one band as an:arrow describing a trans%
lation, and the tip ota finger af the other hand to indicate, first, a
given point and then, .after moving the fingOrs appropriately, im.

this point under the given translation. You Cali ch,e0* fa
ing by aiking students to do

numbers as a point. But, in the preceding paragraph' wellave said that
an ordered pair of real numbers may be ,referred to as a vector. Does a
this 'mean that points and vectors are the same? Of course hot. In
different contexts we use different words in referring to ordered pairs.
In one context we may use 'point', in another 'vector', and hifl a third I' -
'complex number'. Which word v.)e use will be determined not by the
objects we are dealing with, but by the structure we have imposed on
the set of these .objects.
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In regard to the,tracing sheets referred to in the text, various .

kinds of materials are readily available for this-purpose. Amojig them
are ordinary tracing-paper, onionskin paper, velum, plain notebook
paper, aria clear acetate sheets. With the latter, the students will have

"to use grease pencils to make the tracings. [In the ewrly trials of this
text, acetate sheets were used. Later, we found that any appropriate
tracing materials served just as %Veil as the agatate sheets. ]

The use of a tracing sheet, as described ii the text and illustrated,
in Figures 4-17. and 1-18, seems to give students adequate intuitions as
to how a translation acts on points of e. It also leads rapidly to the
discovery of the properties of translations which are of immediate im-
portance. For example, the exercises of Part A on page 39 single
out translations as those mappings of into itself Which move each
point the same distance in the same sense. And, they show that any
translation can be described pictorially by an arrow whose length shows
the common distance through which points are moved and whose sense
is the sentie of the motion. The,exercises of Part B attention to
the fact that translations map segments into egments of the same
length and map each line int% a parallelline.

For our purposes the only inadequacies of a,tr acing sheet are due
to the fact that the portion of space ,dealt with in making use of the
tracing sheet is subset of a single plane and is, in faat, a "very small"
subset of-a,plarie. Students' work in section 1.05 should make up for
the second of de se inadequacies they have learned by now.how a
plane differs from the model which a sheet of paper may be thought to
be. The fact that the domain of a translatiOn is 'all of 3'dimensional'
space is brought out in the paragraph immediately preceding the exer-
cises and, also, in Exercise 5 of Part A. One way of stressing this
in class is to make. a fold, parallel to the line of the arrow iri both the



Other devices will no doubt occur to you, including utirious usesfor an overhead projector. Many teachers have found it helpful toillustrate on an overhead projector the "slidingY procedure describedin the text. -An'initial dernbnstration of sliding a tracing helps to avoidprocedural errors later on,

One.final warning., Note that although it is helpful,to speak,of a,translation as "moVing" points onto their images, it is ,literal.non-',sense to speak of points of space actually changing position. A pointof space ts where it is. The motion of the tracing sheet whenn it is us,edto show of a translation may prove Misleading. It is for thepurpose of ening the likelihood of this that we ask students to use.*:s in labeling marks they make on t.he tracing sheet and '''s inlabeling the marks on the paper which show the irnages of points. Notethat the pg'per does not move. The movement Of the tracing s}etreally, 'onlya device for locating images.
Many of the following exercises ca,n profitably be done, individuallyi,by.Students in the classroom. Hopefully, the class will be' small enoughso that you can check work, answer ciuestions, and offer advice on anindividual basis. This should certainly, if at all possible, be dOne for'the prelimina'ry drawing of :rig. 1-17 which is devribeci,in the textpreceahig the exercises,



By pushing a.pin through the tracing sheet, make hokes in the paper
under the points A., B*, and C*. Remove the tracing, mark the pin-
holeS In the paper With your pencil, and label them .`47, 'B"; and 'CI,
respectiveiy. Your picture now showS 'three peints, A, B, and C, and
their images, A' , B' , and C' under a.mapping which moves each point,
the:saipe distance- the distance between P and Q, in the same sense

the sense of the ray -N._ The ,mapping, which ihoves :each point of
space in this Same Way is called a translation.

Given .anST point R in space, there is a plane which containa P Q,
:and R. So, you colild picture P, Q, aRd R on a sheet, of paper and, re,

peating what you did with.the tracing Sheet, find the linage of R under
the same translation. Evidently; to 'find the image of .any given point
under this tranAlation, all you need know are the:locations of P and Q
and- that the, sense of the translation- as indicated by the (arrowhead
- is that.of the ray /4.'So, we can describe the translatiOn'we have

been discwsing as ,the translation frOin P to Q.

Exercises

Part A
1. Mark a point 7) on your drawing and use your-tracing shee to

image,,D', of D under the translation from P40 Q.

2. (a) dompare the lengths of the segments 75i1 , :4.'24-r, WY': tc-aa, and
,

MI'. Wbat maY you sayabout the distance Detween any point
and its image under the translation from P to Q? "P%Answers for Part B

nd

Answers for Part A
1. [While following the'Airections earlier in the text, students will

have marlZed points A', B', and C' on the work-sheet& in such a
way 'that if arrows were drawn from A to A', from B to B', and
from C to C', these would be of the same length and point the

' same way as the arrow from 1:1 to Q. On completing the present
exercise 'they .will havemarked points of ,some other such pair
(D,V).

4,

2 (a) ,The distance ,between any yoitit a.nd its image is the same as
that between P and Q. [T17e pig-tired segments shotild turn
out to have substintially the same lengtbs when shidents
measure them with a ruler.]

(b ) No, [The distance between any such point and its image would
be 0 and, so, unequal to the distance between P and Q. ]
The line through any point and its invge is parallel to PQ.
On completing this a student's worksheet will contain drawings_

east four parallel lines, AA', BB', CC', and pa There
will also be a fifth such line unless DD' coineicies with one of
these four.-]

Yes. [three times] The rax,from any point through the image of
that point has the same sense as M [and any two such rays ha.re
the same sense.]

(a

(b)

,(a) The distance between R and R' is, that between P and Q.
(h) The sense of RR' is that of 13d.

(b) Is there any point which is its own image under the translation :
frorri P to Q?.

(a9 Use- your parallel ruler to draw the line-throggh B parallel to'
):)(i. What do you guess .about the line through a given point
and i.s image under the translation from Pto Q?

(b) Check your guess in the cases where the given point is A, 6,
D,Pon Q.

4. Recall that two rays which "point the sam -may" are said to have.
the same sense. Would you say that: the rays ,W and 7 have the
same sense? How about br3 and.74?.AA and Vie?

5. -In the preceding exercises we have,been dealing with Points alr of
which lie in. a single plane: We pointed, out, just preceding the
exercises, that -the deinain, of the translation fromP, to Q is F. Stip-

'now, that R is ,any point not in the plane We have been con-
sidering and that its iniage under the translation from P to Q is R'.
(a)- How may you describe the distance betWeen R and #"? .

HoW may you describe the salse of th ay
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[One procedure a student might use is to draw the segment AC
on his worksheet and uie a tracing sheet to find the image of .
The entire segment. Another student might mark one or two
points between A and C and Make the intended discovery by
finding only their images.],.

(b) [The picture should be that of the 'segment
) The image of AC is the segment whose end points are the

imasea_of_101 an& Cf. [The discovory_aummarized in the
answer to part (c) actually aMounts to two intuitions. The

first is that the image of any, point of AC is a point of X.
The Second is that pach point of .70 is tlie image of .some
point al AC. It should not be surprising.to find a, student whe,i,
at this point, it; ready to aFcept the first but is not quite ready
rto accept the second. (Such a student should be cherished :

If this occurs, you have the choice betweenleaving the ques
don open for the student to think about and gtvbigFiim a hint

,.



Part B.

4.

Part C

a)

(3)

Use your tracing' sheet to help you 'see the images of yoints,
between A and C under the translation from P to Q:
Picture Ion your drawing{ the set of images of the points dthe
segMent Ae.
Describe this set-of images.
The set of all images of points of under 'the translation.
from P to Q is ealled-.the iNage q.v. In Exercise 1 you have.
seen that the image of is XV. What:is the image of :4-11?

(b) What is the image of the ray'AV tinder the t.tinslation from P
to Q? [Use your 'tracing sheet to check your ariswer.]
What is the image of the line tx-e under the translation from P
to g? ,

In Exercise 2 you have seen that the translation from P to Q
maps the line i4 onto the line A'e. From your dra*ing, you
should be able to make a guqs about these two hnes. What
guess?

(13 ) Use your I z:bler to draw the line through 13' which is
parallel to . The reiult Should give you evidence in favor of
the guess you made in part tz0. What is this evidence?

4

On your drawing, use your parallel ruler to draw the line
through Q pai-allel to hP.

lb Exercise 3,of Part B you probably guessed that the transla-,
tioa from P to Q maps each line onto a line parallel to it. Does
your. work in part (a) giVe you more evidenCe for this conjec-
ture? [Of what point is Q the image under this. translation
from P to Q?)
Check yOur conjmture, again, by drawing the line through C'
parallel to

(d) To check a diffeient case of yeur conjecture, consider the line
1'4. What liee itnage underthotransIptinn from P to Q?
Is this line parallel to )42?

(e) Suppoge that R is a point on bi3' which.is different from.B.
What line is-the-image-of-rg-Under -the translation-froin-P
Q? Is this line parallel to

By.noW you should be convinced that the translation from P to Q
maps each line onto it parallel line. You can use this knowledge
about translations te confirm a pess which You made in Part A.
This ,gtiess was ihat the line through a, given-point -Abr example,
the point. A and the image of this ivint under the trunslation
from P to Q is pgrailel to P. To confirm this gpess, suppose that
the 'translation doeS map each line onto a parallel line. It-follows
that the translution maps *A.:Vonto a parallel line-through A' .-§o,

such as 'What happens to VO under the' translation from Qto P?'. If you adopt the formvr course, you can make sure
that the question is settled ll'hezryou discuss Part H. Since, as
is pointed nut there, the translation from Q to P is the inv4
of the translation from P to Q, and since we are agreed that a
translation maps a segment onto '[at least] a subaet of a se'g-
ment, we can see'that the first mentioned translation maps any

#given point of A'C," on some point of AC and, so, be convinced
that the translation from P to Q maps,this latter point on the
given point of A'C'. Hence, each point of is the image,
under the tranglation from.? to 0, of some point 43f 76TZ.J
Answers for Part,13 [cont.1
2, (a) A'.13' [The point of this exerci e isnot so much the answer as

it is to introduce the notion of the image of a set, as opposed
to that of the image of a point.]
.11--.111

(b ) A'C!

(b)

Ans ere tor Part C

[Here, and in part (b), one might raise the same ques-
tion as we did in the discussion of Exercise 1(c) ogtnd answer
it in the same way, ]
that A'C' and AC' are parallel.
,The line drawn should go through the mark representingthe
point C', thus,suggesting'that 13'C' is parallel to BC.

1. (a) [The. students' drawings should indicate that A' belongs to the
line through Qf parallel to BP. Students should begin to real-
ize the connection of these eXercises *with some of those at the
end of the preceding section. In the latter exerciSes they
learted how to describe the point at a given distancr, in a given
sense, from a given point as the'intersection of tOio lines which
were parallel to lines determined by the given data. In short,
students should realize that they might have.,known that, ly is
the point of intersection of the line through Q parallel to PA,
and the line through B parallel to PQ.,

fSifnce, under the translation from P to Q, is the iinage of :
B and Q is the image of P it is to be expected [from Exercise
3_ of Part B] plat B'Q is the line through Q which Cs parallel
to BP. Since the worls in part (a) Seems to show that this is
the caser this work does give additional evidence for the
conjecture.
[The drawing should shów.that Q is a point of the line through

'C' parallel to C-P, ] .

(d) PO 'is lite oWn image and is -parallel
(e') BR is -BB', Isits oWn image, and is parallel to itself.

. .
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the 'translation maps AA-7.onto itself. [Explain.] For the sante rea-
son, the translation maps P-4 onto itelf It' follows that.arcy point-

. in A.A' fl PQ would have for its image a point in AA' fl 14.
Explain.] Since no point is its own image itf follows that if .Ar
n Pei is not empty then it contains at least two points. If ,TAI
n is.empty, then, since ,W and Ware covlanar, AWIN. If

contains two points then- - 13Q and, so, AAW.
So, in any case;

1.- Bel-ow, you are given some figures together ivith arrows which
describe the translation from P to Q . Your-job is to sketch the lin-
ages of the .giiren figures under this. translation.

(a) . (?)

(c) (cl)

H,`
Given all points iQ the
line through G and H.

Q

C--- -- D

K

\. Given all points in the
line through J and K.

P.:

N
Given all points
in angle LON
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Answers for Part C [cont.]
Z. The two explanations asked for are, first, that -since, by de inition,

a line is parallel to itself and two parallel lines are disjoint, the
<

nique line through which is parallel to X-A/ is AA'; and,
second, that since each of AA' and P0 is its' own image, any point
which belongs to both lines must have its image in both lines.]
Students may wonder what Mappings other than translations map

ch line into a lin14 parallel to it. Aside from the identity mapping
which is', in fact, eventually included among translations] and the con,-
stant mappings [each of which maps all points of e on some single
point] the only such mappings are the, "uniform stretchings" about one.
or 'another fixed point. For sucli a mapping, the lines w-hich are mapped
into themselves are just the lines through the fixed point rather than,
as in the case of a translation, a family of parallel lines.

* *

The real point of the optional Exercise 2 is That it.shows that any
rnapping,pof e into itself which maps each line into a parallel line sand
leaves no point fixed has the property that all lines each of which con-
tains the image of one of its'points are parallel. It follows that if a
mapping is known to leave no point fixed and to map-each line into a
parallel line then, given the image Q of any givenpoint P the image
of any point, A [not on P0] is the intersection of the line through Q
parallel to AP and the line through A parallel to PO. The intuitions
developed in working the preceding exercises [including those in
section 1.05] strongly suggest that the mapping in question is none
other than the translation from Pto Q. Thigi is, in fact, the case
the translations o4.8'.[other thaii the identity mapping] are precisely
'those mappingtiv of' e into itself which leave no point fixed.and which
map each line into a line parallel to it.

The preceding suggests an alternat ve definition of 'translatfbre
which is simpler aran the description Moves all points the same
distance,in the same sense" ] which we are using. This simple; defi.-
nition has, however, the pedagogical disadvantage ' always to' be
expected of simpler definitions that one has to work with it longer
before coming to appreciate its significance. So, for the text, we
have adopted a description in terms of 'distan'ce' and 'sense'. In the
apperidix referredrtd in the.second paragraph of the 0.omrnentary for
section 1.05, we adopt the simpler definition and show that it [and the

.postulates adopted in the appendix] imply the desired theorems con-
cerning translations.

Answers for Part 1)
_ Each exercise in Part 1) can be checked with a tracin

also provides a 'very efficient way to resolve arguments..
1. [if you have,your students make carefuLdrawings of the image sets

in question, their answers should compare favorably with the diar
ngrarni given below. In any case; the students should note that seg-
ments go into parallel segments of the same length, lines go into
parallel lines, rays go intq similarly sensed rays, noncollinear.
'points go`into noncolline4r points, etc,

tracing
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2. In each of the: following., you' are giiren two figures. You are to
decide whether one of the figureg is the imago of the other un.der
sornoranstatione If you think-that this is the case, draw an arrow
from some point to its image under that translation. If you think
that it is not the case, give a reason.

a)
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2. (a) Yes. The student should draw an arrow from a point of one of
the triangles to the corresponding point in the other. The
easiest points to choose in this regard are corres'ponding ver-
tices. [some students will have arrows drawn from the tri-
angles the left to the.one on the r`ight while others' will have
arrows drawn from the triangle on the right to the one on the
-lett. cillycitirse, the latter deicribe 'the inverse of the farmer,
and convers-ely.
No. .[Translations preserve dis.tance. ]

(d)

E
On a sheet of paper mark three noncollinear points P, Q, and,R ,

two ar three inchias apart. Use your parallel ruler to draw the line
through R parallel to and the line through Q. parallel to
Mark theintbraection.

n your pi re, in the segment Mt and rd-aVv an aisrowhead
(i et- y tiid1ie imTe

under the translation froni P to 0.
Compare.the results you.obtained iti.Eierctses ?, and 2; Relate your

your previoUs diactiVeries.
2 yoti have seen thitt, given tw pOints P and

e image under the translation from P to of any point not
on P is the point of intersecticm of two .lines which you Can

w with ,the help of your parallel ruler. Does this Method
.workif you Wish to find the inkage of a 'point on TV Explaill.
Figure. out Wow to usfp ;oar parallel ruler to find the image, .

anSlatioXt

-(b)

(c No. [Translaticons preserve distance. ]
(d) No.'1The image of a segment under a translation is parallel

to the segment. I -
*

No'. Notice that corresponding sides are 'parallel and of the
same length. But, a translation maps' a ray onto a ray with

-the same sens
No. [Translations preserve distance. The given figure are

.mirror images of one another. ]

AnsW'ers for Part E
[This exercise amounts to_using the parallel-line coristxuction to
locate the image of R under the-translation rrom p to Q. ]
[This exer4se is to check, using a.tracing pheet, that ehe point
iocated irrlaxercise'l iS, in fact, the image of R Under the.trans-
lation from P to 0.]
[the Rurp'ose of this exercise is' to giVe you check on whether
Students do realize that the parallel-line cons ion does work.
In,Case they dont!t as yet realize-this, ws tell. thert.n the follow-
ing exercise.] .

a) R E P40' then the imake, *Rc, of R Under the translation from
'13 to O.is; as before, 'on the line throi4gh..Q parallel to PR .

' and also on the line through R parallel to RI - But, in-this
case; these are the same,line. So, in this' case the method
does not serve to determine R.

(b) [This optional e*ercise appears .again as Exerciie 7 of .Part
F., By that-time most students should be ,able to figure out' the

nip' e-t rihk: Chbo s b-any-point-S-not-bn---IV2-and -find'itsintage
0 0. Thelranqatiiidiarom

i
to V. is the same,as thelranslation from P-,to Q.

mage under the latter at a point R on
,

ci rit to find the imags of ' R under the translation
suffi:-

So, tNi.,:o parallel-line coAstruettons sitffiCe -** 'One_ t ftn&S', ,_.:
-the other to fin& R`-. 1
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, l. Mark four points A, B, C, and D on a sheet of paper and use a trac-
--ing sheet to find, the imageS A' and B' of A andB under the trans-

. lotion from C to D.
4

2. Use your tracing sheet to-find the image of B under the translation
from A to. A'. 'What point is this itnage?

3. Can you find a point whose image under the translation from A to.
A' is different from its image under the translation froni C to D?

4.. As you know, you can describe on your paper the translation from
C to D by drawing an arroW from the mark for.0 to the mark for D.
Of Course, you can describe the translatiOti from A .to A' by draw-
ing another arrow. Dretv these two arrows:You saw. in Exercise 3
that the translation from A to A' is the same mapping as the-.
translation from C to D. So, your two arrows describe the same
translation. Draw three more arrows which describe this trans-

Jation. [The quickeat Way is to use your parallel ruler.]
5. In 'each of the following, you are given two figures and the informa-

tion that one of the figures is the image of the other undera certain
translation In erach case, draw three arrows from pointato their
mages Which describe the required translation. ,

A

(b)

(d)

6. (a) Describelive trans ationaby drawing five.arrows.
(b) Describe the. *AM five translations by: drawing five. other

7. If you did &Emilie 4(b) of Part E you Were probably alreadY aware
of the answer to Exercise .3, above. Whether or not You were able
to do Exercise 4(b), review it 'now and make sure you cari do it.

Return to your work for Exercise 1 bf Part F, MeaSure the distance
between A and B and tile distance bOween A' and B% What do
you gueis to be true &trimming the cthtanco between two points
ancl the tam between their images under a gi
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Answers for Part F
1, 2. The image of B under the translation from A to A' is its'image,

13', under the translation from C to D. rNo. The translation from A to A' is the samp mapping as the
translation from C to D.

7

et

.[Any three arrows-which have the same length and the same sense
as the arrow from C io D will do,,,]
[Airy three arrows from points in one of the figures to the corres-
ponding pOints in the other will do. These arrow's will have the
same length and same sense. The point of this exercise (and others
like lt) is to reinforce the' notion that a translation mity be described
by any arrow from a point to its image under that translation. I
(a) [Any five arrows will do as long as no two have,both the same .

length and the same sense.
(b) [Any five irrows which are Aim' respectily, to those

drawh in answer to part (a).1
,- .[See the qarlier discussion of Exercise 4 of Part E:]

Answers for Partl.G
1. The distance between two points is the

between their.images.
ame as the .distanc.e
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'2.- Mark an ther po ntiE,nn your paper and.find its image E' under
the translation Nom C to D. Comparoe the.lengths ofii and-W. 2.
and tha.e of 7 andt'e. Do your results confirm the,guess you
you made in.Exercise I?

3. There are three other pairs of segments, whose end points are
marked on your paper, which yon can use to chock your gueski.
So use them'

4. Draw a line / on another sheet of paper. Mark four points of I, A
and B, twd.inches apart, and C and D., three inches apart. Use your
parallel ruler but, don't use-the-scale markings on itto mark a
point on-rwhich is five iffeh-6---; froin C. In a simire way, mark-a----
point of I which is one inch from C.

In Part A you have seen that:Tor any two points P and Q , therels a
mapping of ( into itself the translation from P to Q which maps P
on Q and which moves all points the same distance [Exercise 2] in
thesame sense !Exercise You have Seen in Parts B and C.that such
a translation maps each line into a parallel line. In tkercise 2 of
Part C you, have seen Oat this property of tranglations; together with
the fact that no; point is its own image, implies that the lines which
join points and their inuves are-parallel. In Part E you have seen how
these two parallelism properties enable you to ie your parallel
ruler to mark iinages of given points under a given translation. In
Part F. you have seen that a translation,ean be described by.giving
any point and its image under the translation. In particular, there is
just one translation,which-maps one giVen point on another. In Part

on preserves distance. One ecinsequenceyou have seen that a trans
of this is that each trans one;to-on? mapping.

You learned earlier th etions which are one-to-one have in-
verses that is, have converses which are functions. Since eAch trans-.
lation is El one-to-one mapping, it follows that each translation has an
inverse.

4.
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[They should.
[The results of this exercise should confirm the answer given for
Exercise 1. j
Ptnalysist. To find.a point. 5 inches from C. Assuming that. the

.Points are se...chosen that the .rays- XT3- and CD have the same sense,

4
C

what is wanted is the iMage of 'D unde'r the translation whiCh mats
A on B. (U the raYs have opposite senses, we want-the image of.
D under the translation which maps B. on A. Choose a point S
not on / and find its imago S' under the translation from A` to 13.
Then find the image of D under the translation from S to S'.

To find L. point 1 inch from C. Assuming that the points are
so chosen that the rays and CD have the same sense, what is
wanted is the image of D under the translation which niaps B on A,

* *
Exercise 4 shows how, with the aid of translations one ma "add".

or "subtract"] collinear segments. Using uniform stretching see the
discussion of Exercise 2 of Part gl one may,also "multiply" collinear
.segrnents supposing tAzat one has previously chosen a unit segment.
As an illustration and aliplication of these procedures we show, bei,
how, having.chosen an origin 0 and a unit-point U. on a line '1 one'can

°define addition and multiplication operations for points of / in such a
way that if / is the number kine, 0 is 0, a.nd U Is 1, these operations
are the usual operations for real numbers. As in Exercise 4, S is an
arbitrary point not on /. In the first pf the following flguresi 54- i the
image of S under the translation which maps 0 on,.B; while in the
second, Sx 'is the image of S under the uniform stretching which m
U -on B. Using these points, We find [as in Exexcise 4] the poi
A + B -which is the image of A under the translation which maps _0 on
13 and [in a similar manner] the point A x B which is the image of A .

under the uniform stretching which maps U on B. In the first case,
11 is the line through S parallel to i; in the second 'is the line

5+

. .

1. You may haVe realiz.ed before this that a.translation has 'ail in-
verse. At any rate, with the help-of sour training sheet yOu can.
show even more than thts. Mark two peints A and B on a sh6et
'of paw'? and draw the line xe. Mark a third pointsay, C. Use
b.our tracing sheet to find the image C' of C under the translation .

from A- to B.-Now, Use yOur tracink sheet to find the image of Cs,
under.the translation front B. to A, Whet pairlit is this?

.2. Repeat Exercise 1, but this timeapply the -translationfrom p to A
first, and then the translation from 4 toil.: Where do you end up/
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hrough S which ontains 0. In the first case BSt II OS; in the second
case BSx .11 US. In the.first case A + B .is on the line thrdugh S+7`paral-0.11.
ei to SA; in the stcond case A N B is on the line through Sx parallelto

You Will find it interesting to, add to the above figures t1e construe*tions fo.r 13 F A and 13 x A. It should turn out, of course, t at B + A+ B and -BI-= A = A c B. If you do as suggested, )cou will find that thecommutativity- of addition and multiplication, when 'these operations aredefined as above, is a consequence of Pappus' theorem. The fact thatthe operations depend only on 0 and U, and not on the choice of,thepoint' S, is a consequence of Desargues' theorem. This is aLso easy tosee if you carry-out-the' appropriate Construction, Recall that Desarguesand Pappus'lheorems are discussed in the commentary for exercises6, 8, and 9 of section 1..05. L la

Warning: Ln the "algebra of points and translations'. which weshall use in developing geometry Isee section 1.03 we shall not usethese additionand multiplication operati4ns for points. U you showthem to students now, you may later have to cope with.students whowish to include them in this algebra.
Answers for Part H

'The image ,of C' under the translation from B to. A s' C.
. At C.
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3. In ExerciseA you found that the resultant (*two mappingsJhe
translation from A to 0 followed by the translation from B to A

maps C on itself. Is there any point' which is not mapped on itself.
by this resultant?

4. In Exercise 2 you found that the resultant of the translation frdm
B to A followed by the translation from A to p maps C on itself. Is
there any point which is'not mapped on itself by this resultant?
In an earlier section you saw that if f ancl, g are mappings such
-that f g maps each-element of the doniain of g on itself, and g f
maps 'each element of the domain of f on itself, then each of f and
g is the inverse of the other. What:has this to do with the results
of Exercises 3 and 4?

6. .As you have known all along, the domain.of any Aranslation ig
You have also ktnown that the range of any translation is a subset
of Waliat additional information do you now have about the range
of a translation?

f Read this exerhse all the way through heforc starting to work it,l
Draw two arrowsone about 2'incheS long and,one about 1 inch
longso that the lines containing them are not Tarallel. These

rows describe two translations: Let's call the first translation
and the secondkanslation.'g'., Yob are going te study the niiipping
g f. Since you will use your tracing sheet, it will be well to.draw,
,lightlYthe lines which contain your ,arrows. Mark three points
A, B, and C on your paper. Cover your paper with t1.11 tracing
sheet and mark on it the dots A*, B*, and C* which lie above your
marks for A, B, and C; and trace the arrow which you drew to
destlibe f. Now, 'Slide the tracing sheet so that the points A*, B*,
and C* are above the images f(A), f(B), and f(C) of A, B, and C
under the translation f

Next, being careful not to move the trEicin
'yew dreW to represent g. Now, sl.
°C.' lie over theitnages g(I(4)),
and pc) under the

4 $ I

, copy the arrow
t so that A*, B*, and.\

and g(f(C)) of f (A), f(B),
se )rour_pin to pinpointthese

images on your paper; Remove the trajng sheet,.mark the ingios,
,and: label .them 'lg.° fl(A)' , f 1(B)' , a4d fl(C),

.2. -There is, of, course, a translation from A to [g f](A). Draw an
arrow which deser,Thes thili translation. Repeat, with. "0' for 'A'
and, again, with 'C' fOr

3. You now have- three different arrows [in addition to the two' you
drew to deScri 'arid- g]. Do these three arrows describe different
translatione? [You can check Iv using tither-your parallel rtiler
or your traci -ng sheet.]

4. Is there a-point D such that the translation from D to fg no. is
different from the translation from A to [g .11(A)?

.s;
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3. No.

S. The translation from A to B and the translation from B to A
both have e as domain. From Exercises 3 and 4 we know that
the resultant of these translations, in either order, is- the identity
mapping of e onto itself. Hence, by the result quoted in this

ercise, each of these translations is the inverse of the, other.
6.' The range of any translation is e [This question may surprise

some students who have been taking the answer for granted. On.
the other hand, see ,an %arlier comment on Exercise 1 of Part B. ]
.Answers for Part r

1, 2, A students' drawing might look like this:

Nict they desc ibe the same translation.
No. [Stude,nts may wish to do more draw,ing`to be
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Yes. lin terrns of the operations with the tracing sheet, this
should be obvious. ]

6. If the identity ;napping i8 counted as a translation then, by
Exercises 4 and 5 and the definition of 'inverse', the resultant
of any two of Ale mappings we have previously called translations
will,be a translation, , Also, if f is any of these mappings then
f a i = f and 'teat* =. f, Since,rlinally, ie a ie = ie it follows that
If

e
we include i8 among the translations then a resultant of any two

translationi [or; of any translStion and itself] is a translation.
{:-Thisexemis-e-e-honWprernote-seire-cias-s-roorri-dis-cussion.;--T
.find an arroW Which represents f2'.3f1 the only Way to start is to
mark a point P, find the location of f202(Pn sOmehow; and draw
the arrow from P to this latter point. One Way to,do this is to use
a tracing sheets as in Exercise..I.,, but shifting the tracing 'sheet
twice Was probably not very easy. Could we do the job with juit,
one shift,pf the_:tracing sheet?, The first shifting of the sheet in
Exercise 1-was for the purpose of finding images of points unde.i
the' first applied ttanslation [the translation f1]. So, we could
avoid this if we cotild.choose fet.P ajioint whose image under fi
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5. One effect of our instructions to draw the arrows describing f and
g so that the lines cOntaining theM are not parallel is to rule out
the case in ,which f and g. are inverses of one another. Suppose f
and g are translations which Move points in the same sense, or
which move points in opposite senses but are not inversps. In this
case, would g f be a trSzislation?

6. You haye probably. concluded in Exercises 4 and 5 that if f and g
are translations which aq not inverses of one another then g f is
also a translation. If we include one other mapping off onto itself

,.among the translations of (` [which tnaPping?1, it will-follow thlit
the resUltant of any two translations of cf is a trapslation of e .

Explain.
7. A resultant of translations which are not inverses of each other is

a translation which js not the identity mapping and, so, can be rep-, reSented by an arrog. Suppose you are given arrows which describe
translations j; and f which:are not inverSes of each other. What is
the easiest way you can think of to draw an arrow which describes.
the translatitm f

In Part I you have seen that if,' as we shall, we include the identity
mapping of e onta,itself emong the translations of then the set of
translations of e' is closed with respect to .function composition. In
Part H you saw that the set of translations of K, as we then under-
stood 'translation', is closed with respect to inversitg. Is it still? You
also:Irknow that function composition is an associative operationso,
in particular, composition of translations is associative. Finally, you
know that function composition is not commutative-,but, it may be
well to check up..on composition of translations: ,It might be coni,
mutative. [Explain.] We shall investigate this ,poisibility.in the fOl-
lowing exercisei.

7 Part
. Suppose'that f and g are translations. We already know that g f

and translations. _Because of linother -property which-we
know that translations have, if. we choose any point P. then g f
and f g will be the same if it turns out that ff gliP) [g fl(P).
Explain.

2, l'i4ark 'a 'point P and draw,,an arrow from there to deieribe a trans-
lation f From Your Mark for f(P) drai,.en throW to describe a
translation g in a direction different from the of f Mark and label

'

the point [g
3. Continue with your drawing for Exercise 2.an using ypur parrIlel

ruler, find g(P). Noy, mark and label the inage of g(P) wider the
translation 1: Label it appropriately.

4. Is it the case that f (g(P)) = g(f(P))?

TC 46 (2)

we already know. Since wr are 'given an arrow describing f we
do have Buell a point., If we choose for P the point marked by the
tail of this arrow then fl(P) is the point Marked by its head. Now,
all that is left to, do is to find the image of fl(P) under the trans-
lation f2. This can be done either with_ one shift of the tracing
heet or by using the parallel line construction. An even easier

way is to use a parallel ruler to make a copy of the arrow describ-
ing 1.2 so that ita tail coincides with the head of the arrow which
describes Then, the arrow from the tail of the fcarrow to
the head of t4is new 12-arrow describes f2 of1, Students Will have
much use for this triangle censtruction for finding resultants of
translations. 1

We know that function composition is not a commutative operation
because we can produce functions .f aneg such that f 0.g g f. This
does not mean that function composition res 'cted to a pal-ticular class
of functions must turn out to be noncommut ive, Consider', for
example, the set of all linear functions intercept 0 that is, all
functions f such that the domain.of .f is I and, for each.x E
f(X) mx, for some nonzero m. l.f fi and f2 are such functions then
for Some nonzer0 real' numbers m and m,, f (x) m x and1 1 1f2(x) = rr2,L 'Clearly fi o f2 = f2 fi, for If a 121( ) = f1:(f2(a)
rri1(m2a) =.m2(m1a) = (11(a)) f a 11](a).

Answe.rs 'for Part J
f. We know that a translation is determined once we know the image

under it of sorne given point. Since each of f o g and g of is a
translation it follows that if P has the same image under both
then they must be the same translation.

Z. [f(P) is, of course, at the point of the first arrow and g(f(?)) is
at the point of the second arrow.)

3. [Since g is described by the arrow from f(P) to gef(P)), g(P) is
-the inter,section of the line through P parallel to f(P)g(f(P)) and
the line through g((P)) parallel to Pf(p3 (Exercise 41.(b), Part E).
Similarly, f(g(P)) is the intersection of the line through g(P)
parallel to Pf(P) and the line through f(l?) parallel to Pg(P). ]
Yes.
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5. ta) In wOrking Exercise 3 you used the.arrow from f(P) to gt fa)))
as a description of g. IOn your paper,draw the line containing
this arrow and lahel it. 7.] You found g(P) as.the intersection Of
lines rn and n, where rn is the line through P parallel-to I and n
is the line through (AI fl(P) parallel toPf(Pi.,IOn your paper,
draw the.lines rn and n.1

(h) Having found gkP)-Srou next found its image under the transla-
tion j, as the inteysection of two lines. One of these is the line
through gP') which is parallel to PrIP); the other is the line
through fJ'') ,which is -parallel to Ph-k-P): What two, lines are
these?
Relate youranswer for part ih) to your answer for'Exercise 4.

6. If you had chogen for g a. translation with the same diiection as
that of f, would it have been the case that fig(P),--,'gcf(P))?

In the preceding exercises you have discovered several things.. about
the mappings of rh into itself which we ,caIl translations. Foil, feview
and for future reference we shall now summarize some of these things.

(1).A translation is completely determined when one is giy6,it any
Point and its image under the translation.
tIn fact, if the given point and its image are different points,
you know how to ,find the.image of any other point by using
yoUr parallel ruler. If tile giVen point and its image are'the
same point then.the translation must, he identity mapping

. of ei onto 14 .1
2) For any point A and any point /4, the e is a translation which

maps A on B.
[Beeause of (I) and (2), there is a unqüe translation which
maps a given point A on a given point p.1

(3) The set of translations is closed under funCtion coiposton.
14) Composition of translations iS commutativ.

A. translation which leaves Eviy point fixed leaves each point
_fixed.ilAs_a_matter of fact, (51 follows_fron21_and-(4).1

(6) The identity mapping of K opto itself is a translation.
[This fbl)ows froth (2) and (5).1

(7) The convereaof a translation is a translation.'
(As a .matter of fact, f7) folloWs from (2); (3), .and (5)1

(8) A translation Maps each line.onto 'a parallel line.
(9) A translation other than tha identity mapping, moves each

point the same nonzero distanee in the same win.
(10) A translation preserves distance betWeen points:
In this courge, our aim is to make 4 formal study of geomet

shall, in the main; be concerned with geometriC figures which we

(b)
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= f(P)g(f(P)), m Pg(P), n = g(f(P))gCl;')
Lines n andl. The' kne through g(P) parallel to Pf(P)
the line through f(P) parallel to Pg(P) is I,

c)._ By part (b) f(g(P)) is the point at which n and intersect..
But, byptcrt (a), I and n both cOntain the point g(f(P)). So,
f(g(P)) g(f(P)). [Referring to part. (b), f(g(p)) is on the
line through g(P) which is parallel to Pf(P) By part (a),
this is n. Rekrring again to part (b),` f(g(P)) i; on the line
through f(P) which is parallel to Pg(P).. By part (a), Pg(P)
is parallel to the line I and i contains f(P). So., I i; the
line through f(P) which is parallel to

6. Yes. [This is essentially because addition of real numbers is
commutative.]

is n;
Now

As remarked earlier, ( ) and (2) on page 47 form the basis for
the first two postulates adopted in Chapter 2. [The exact relationship
of (1) and (2) with these postulates will come out, in section 1.07.]
Similarly, (3) is the basis for ur third postulate. Our fourth postu-,
'late, whose evolution begins in 'Chapter 3, inVolves (4).

,Note that neither (2) nor (3) would be true had we not included
i among the translations.

It is perhaps worth mentioning here that, ,although (1) - (3) tell us
quite a lot about translation; they do not charaeterize the set of all
translations among sets of mapvings of E into itself. For, the set of
all constant mappings of g into itself has similar properties. However;
this latter Ei e t does not have any of the properties which (4) - (7) impute
to translations. As we are about to see,, (4') is particularly important.

Up to the floint at which we decided to include ie among the trans-
lations, ,we mtght have said that no translation leaves any point fixed,
[See Exercise 2(b) of Part A. ] Statement (5) is the restatement of
this result which is necessitated by this decision. Of course, (5) by
itself does not tell us that i is a translation. But, since (2) implieS
that there is a t.ranslation w.liich maps a poi:nt A on itself, (() does
follow from (2) and. (5).

1translations in order to ensure the truth of (3). So, it is not surpris
ing that (3) arid (7) together imply (6). It is somewhat surprising,
however, that (1) -,(3) and (6), together, -imply (7)...To see that they
do, let I be any translation, let A be Any point, and sUpPose that
f(A) = B. By (2), there-is a translation say, g such that g(B) A.
It follows that fig of1(A) = A and, [f og](B) B. -By (3); both g of and
f og are translations. 'SO, by (1). g o f is the only translation which

Recall that it was because of (7) that we in luded ie among the,



maps A on ittelf and t o g is the only translati .whicb;rnaps B on
is'a translation, and since idA).- = 'A and' ,itself. Since, by. (6),

B, it follows that g"o f i fog, Hence, I and g are
verses- Of -each other. Since g is a translation'it fo lows that thea"
'converse of-a is al.ranslation,, Consequently-. (7),

In plaCe of appealing to, and (6) in the preceding argument in
order.to shOw that g of - i, f g, we can appeal to So, (7) isfo

consequencT of ,(-2), (3), .and ( 5). SiflcE, -as.shown ed 1Ier, :(6) i a
consequprie -of (1) .anclio.-(5), one sees that V) is a rather stro.ng state-
ment. The importance of.(4) is. then. indicated by the fact that (1.)
and 14) -imply (5). .1/4To-seethat thisis so, suppose that f is ai,transla-
tion and A ;is a point..suc.h that f(A) A. ConSider .any other point B.
4V:cording to (2) theres is-a translation.-- say, g -such that g(A) =- B.
Since f(A) -A it- follows-that [g 0-.11(A) = B. So, by (4), [f ogf(A) B:
Since g(A) B.,it follows tlqi f(B) = B that is,. that f ornaps B on

Conteouently, ' .s

Summarizing the results o

assuming (1) -
and assuming
and (7).

he preceding argumentl,
,

.5
statements (a).-and1(7) arc equivalent,

-q.4) commitS us to 4cce/Uing (5), (61.

have seen

41.

'(1) .(4) will be among our pos u'iates, (.5) - (7) will be thep em
As has been pointed out in, the. discussion of Eliercise 2. of Part C.

(5) and (8), chaycterize translations other than the idetitity translation,
Othes words, all properties of translatkons-follOw from "conventional

postutates for.geometry supplemented by r5), (6), Itid (a). I
It should be recalled that (7)- impliesthat-each.tanslation is 0.

mapping of e onto itself, [see Exercise .6 of Part H] and that, in view
of (7), the, word 'into' in (8) may be replased by 'onto' [see the dis-
cussioiti of .F.,xerciise 1 of Part B.]. .

our formal develOPrrrent, (8.).- will be,an immediate.consequence
of the definitirts,we shall adopt fax 'line' and 'p,arallel' .and in
fact, form part eilhemotivati'on for the latter definition. Similarly,
(9) and (10) will be imMediate cbasequences of. Our forrnal definitional,
of 'sense' and '.distance%; -and the foi-mer will -fuittish motivation for
these definitions.

S.

Inspection 1.07 we introduce a very.convenient algebraic notation
Which we shall iise thrOughout thid course. We cOntinue to use upper,
case letters, ;from the beginning of the.alpha,bet, as variable's whose
domain is F [the Ret of all points] and lower-case letters, from the
beginning' of the alphabet. surmounted by arrows as vari4bles whose
domain is T [the set of all translations], [We shall as at the beginning
of this chapter, use lower-case letters without'arrows as variables
whose domain is R.] Instead of, '1(A)' for 'the intage of thivoint A

. under the translation We shall use 'A + [Read 'A 4- a' as 'A
Plus arrow a'. ]. As an abbreviation for 'the translation'from A io B'
we-shall use .' B In accordance with these conventions, the fact
that, for any points A and B, the translation from A fo B maps A
on B is formulated in:

'.-Poptulate 2(a). A.+ (B -
4see (9) on page 511. To be able to prove that,. for any points A and
B, there is a translation which maps A on B we need to completVhe
formillation of-'our convention as to the meaning of 'B - A' by:

Postulate 1(a). B - A.E T
[By Pdstulate 1(a), Postulate 2(a) is an instance-of-the existential
generalization,.

So, the-existential generalization is a consequenceiof Postulates 1(a)
2) on page 47].

and 2(a). ]
That a translation is determined once one knows the image under it

of some given paint may be forthulated in:- .

. (*) A+t=Bit=B-;. A'
s.. Which, by our notational conventions, says that if the image of 4A under

a isi.B then is the translation from A to B. Alternatively, one
mighl formulate -the same property of translations [the property,,stated
in (1.) on page 47],in:

**) A -+ = A+1
.

e two.
u (ler ransla-

Tulations
hich:says that if sOrne point A has the sa4ie ima

tion and under a translatiOn a then is 3. The
can be shOwn to bei,equivalent once we adopt:

Postulate 1(b). A + e'

r.

which, according to our conventiOns, formulates the fact that
lation is a_ raapping.of into itielf. -

In fact, by PoStulate 1:(b), '(*) has a "consequence;
= A + Ti; -(A,+ - A

A`-t- iT. 4 A + ei" it fcillOws that 3 = (A + A and
that if A +11 = A then '5 = (A +74) A.

A + t he n = a . So, (**) i s a consequence

In partic ul.asv
witc Lal and tt:

.Conse ently, if A
of (*/) and Postulate 1(b)..
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think of as subsets of the spaee ?.''of points. Using our intuitions about
geometric figures, we saw in this Chapter that the mappings We called
translcztions "preserVe" important geometric properties such as length,
rJarallelism, and sense.

We want to organize and extend our knowledge 'of geometry. To do
this, we shall make use of notions which are based on the properties
of ctranslations. One advantage of doing this is that it will enable you
to solve problems in geometry -by using techniques verit much like
those you learned in yoiir 'study of algebra. Another advantage is that
you will become familiar with some of the basic techniques by which
new mathematics is being 'discovered at the present time.

Before we. begin to forrnalize'oUr notions about points and tranila-
tions, it will be converfient to introduce spine useful and suggestive
,mitation. We do this in the next section.

1.07 A New.Kind of Algebra

In stating, generalities 'abbut poin,th we have used caPital letters
,'B' , etc. as variables whose ddmain is For example, we might

have written: '
For any two peints A and B, there is aline which contains A and B.

More shortly, we, might write:

If A B then there is a line which con ains A and B.

A B 31(1 is a line containing A and B)

In stating generalities abont mappings we have used a similar device,
choosing loWer case lettersfor example, 'f' and 'g' askwariables
whose domain is the set of all mappings. For example, we might write:

Rf Dix a f = Df

In What follows we shall have frequent need to state generalities con-
cerning the special mappings.which we have called 'translations of F.'.
We -might, for example, write:

f and g are translations of e fog = g

Much space and effort will be saved if, instead of usiner and 'g''', we
introduce special variables whose domain is the set of all translations
of e' rather than the set of all mappings.c Since translations can be,
represented pictorially by. arrows it seems natural to use reig/, V; etc. as
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on the other hand, from (**) 'it follows [switching
that if A + a = .A + I; then a' = b. So, by Postulate' 1(a),

+ (B A) then -a.- = 173 - A. Consequent17, by Postulate
A + a = B ;then -a. g,= B A. So, (*) is.a consequence of
Postulates 1(a) and 2(a),

Instead Of adopting either the- "transposition" principle (*) or the"canc Ilation" principle (*) as a postulate, We phall adopt the
simpl

Postulate 2(b). =- (A + A

This, by itself, implies that if A + = B then --a. B A. On theother hand, ;it has already been shown in an earlier paragraph that (*)
,and 1(b) imply tbat a = (A t ) - A.

Surnmarizing,, Postulates 1 and 2 formula e the fact that transla-
tions are mappings of e into itself which have the properties that, far

, any point A and any point B, there i a Unique translation which maps
A on Bki

The two parts of Postulate 2, as well as (*).,and (**) exemplify
the close similarity which exists' between this algebra of points and
translations and the algebra of real numbers.

Our aim in the preceding discussion has been to, give you an intro7-
ductionto the ;algebra of points and translations which would clarify the
'Content of the first two postillates which will '6e adopted in the next
chapter and,,relate this content to (1) and (2) on page 47. The aim of
the discussion in the text is slightly different. There we introduce
students to more of the algebra but concentrate on motivating the choice
of symbolism, the pi.iMe motive being on obtaining .an algebra of
points and tratislations which Will be as siMilar as %Possible to the
familiar algebra of,the real tornbers.

and '11!..1
if GA +
2(a), if-
(**) and
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such variables. [Read 'a aS 'arrow a'.J. Doing this, we can simplify the
last of the sentences displayed above to:

1 ) =

Another generality we wish to be able to state easily is that any
resultant.of translations is a translation. This we- can now clp by
writing 'a a translation'. It will be a great time-saver in this and
similar situations if we adopt '.7. as a name for the set of all transla-
tions. Then, we can say that any resultant of translations iS a tranS-
lation by writing merely:

QWE

In short, because of our convention about arrow-letters, e shall
accept any sentences obtained from:

. A
LI A A

by substituting for the fliutes expressions whose values are transla-
tions, Nrk example of such # sentence is:

( 3 )

Two other examples are:

-b) C E

(Give substitutions for the frames in each of the three examples. How
does (3) help you in justifying some of these substitutions?) '

Suppose now, that you are given a translation a and a point P as
illustratedin the4i4gram below. Copy thippicture On aSheet of paper

Pig. I....20

and usezour parallel ruler to locate the point wh ch is the image of
P under a. Since a is a mapping we May use ordinary function notation
tp describe Q:

r:"
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After introducing "arrow-letters" as variables whose,domain is
the set of all translations and '7' as a name for this domain we give a
few illustrations [for example, (1) and (2) on page 491 of how-we can,
say things in terms of this notation. We also po,int out at the top of the
page how one, can infer other sentences.like-these by substitution. The
use of 'P + a' in place of ",S(P) is then introduced. The immediate
motivation for this ,is that in order to show the.image of P under the
translation a) one begins by marking the point P on one's paPer.and
then, from it, draws an arrow which describes the translation a.

It is important tlfat students learn to.recognize logical connections
among sentences and to discover ,and verify such connections by deriving
desired conclusions from given p'remisses. Ultimately, they should be,
able to put such arguments [i.e. derivations] in the "paragraph form"
which has been illustrated frequently in this commentary. Experience
has.shown that this latter skill is gained more surely and rapidly if
students practice giving derivations in a "column form" where each
"line" of the derivation follows from preceding lines by virtue of
explicitly ,stated rules of logic. In turn, ,suchderivations are more
readily Understood when analyzed into "trees". Consequently, rules
of logic, and derivations in tree ,form and in column 'term are dealt
with later in the text and, rnsiorb explicitly, in the commentary. These
matters are also treated in High School Mathematics, Courses I - 3
and students who have studied Course 1 or better, Courses 1 gnd 3
will already have a,.good understanding of rriiich which they would other-
wise have to learn from the present course.

It cannot be over-emphasized that the explicit rules of logic and
the formal procedures for writing derivations which we shall introduce
are, for us, crutches. ° Their purpose is td 1,..id students tolearn to
reason logically and to formulate their reasoning in acceptable prose.

^ You can easily bog down your studerits,and distract their attention4rom ,
the mathematical subject matter of this cou;?se by insisting on too many
formal proofs. ,[A proof is a derivation whoke premisses are postulates,
definitions, or previously. established theorems,_] Stude,nts should be,
encouraged to give acceptable paragraph proof's, When 'they fail, formal
proofs or parts of such can be used in showing them how they
might have succeeded. Doing so will teach them to write bits of formal
or semi,formar Oroofs as scratch-work aids fb formulating paragraphs:

r
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The following remarks deal briefly with the rules of -logic which are-mplicit in section 107. These rules are discussed in the text insections 2.03 and 2.04. Introducing them in tour discussian of thepresent section will 'reduce the load" when you take up Chapter 2.
The rule of logic.whiCh fornfulates our decision to express univer-

sal generatlities by open sentences s:'

The Substitut on Rule
Any sentence implies each of its substitution-

.instances..

'for s.hort, (Subst)'. [Since we shall also use open sentences in
another way -.as "assumptions': in derivations - this rule wifl be,modified later. The*forin just given is, however, suitable for the
present context:1 Beforestating this 'rule you should, Of course, point
aut 'Our-decision as.to the meaning of an open sentenceIi that, when we assert such a sentence ave are..tc; be understood as
saying ,something about all ralues of the variables whieh occur in thesentence. For'.exarnple, what-we mean when we assert 'A + a E e. isexpressed in English by:

The result of adding any translation to my_ point
is a point...

This being so:, any sentene obtained from the given'one by substituting
for 'A' an expression whose values Ire -points, and for an expres-sion whose values are translations, is a sentence, which expresses nomare than dees the given sentence. For this reason, we say-that sUch
-4 ientence is implied by the given 'sentence. For example, the septence'(A E e . is implied by - or, is a consequence.of or, followsfrom - the sentence '-/-*+ E .

There. are two points -which you should C-heck your Students' knowl-edge of. First, substitution of agiven expression fcrlf..,_a variable is
replacing each-occurrence of the variable by-an occi*ence [or: -copy]of bhe given expression. Second, "given expressiois not, in the
preceding, to be taken qUite literally. -For example, if we were beingvei.y-pretise we,Would have said, .on TC. 48(1), "Instead Ofwit shall use '(A + ,,It is common practice to omit the second pair
of parenthesis .and we shall follow this practice; As a _result, when a

ude`rit is asked to "substitute 'A + a' for- .,.." what he should dd is
substitute '(A + "S)'.

Continuing, pow, with a possible preamble to stating the substitution
rule, the---aeriteitce-s-whicir-follow frorn-a gliten one-be.ca4e of-our dC-i.-

--ston-touse-Op-en sentences to express univerthil genei.alities are jilst
those Which can ber:obtained froni it by substitutintfor or all,- of
its variables expreisions whose values belong to the dopirta s of the
variables for which they are substituted.. Thus, '(A +'a),+ b e' isimplied by a-1,4=-Ice., but 'A 4 (Ak + e e' is,not. [In fact, speaking
strictly, the latter is not even a sentence. ] '"The sentences which can be
.obtained from a given one by substitutionse'which aié "Appropriate"Sae s are, by definition, the, stipstitution-instances df the given sentence.

After this, the substitution rule, as stated above, should makesenie.
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A minor embellishment which you may wish to make when discu,s-s--'
ing pubstitution coricerns.our later use of the word 'term': For Us,.
'term' is analogous to 'algebraic expression' rather than to, say, the
more specific phrase 'indicat'bd product'. A term, then, is an expres-
sion Which,"refeers". to objects, in the sense in which nouns, and pro-
nouns do. The objects to a term refers are its'values. ['term
contrasts with 'sentence'- terms are "nominative", sentenees are
"declarative". ] Variables are terms, and expressions which are cron-
structed out of variables and operators [with grouping symbols supplied
where needed] are terms - if-the constructionist in accord with-the
rules of the language. [In our language, the ,expression + B)', for
example, is 'not a,tierm, ] Terms 'may be distingiaished from One another
by what kind of objects they have as values. For example, 'A + a' is a
point-term and 'B - A' is a translation-term.

With this "terminology" available, the notion of substitution-
instance can be described by saying-that a substitution-instance of a
given sentence is any s'entence which can be obtained from it by sub-
stitutions of pointlterms for point-yariables, translation-terms for
translation-variables, or - eventually - real numtv-terms for real'
number-variables.

The substitution rule tells you that You may [or: that it is legiti-
mate to] infer from a sentence any of its sutstitution-instances. The
act of doing so is an act of "making an iasference". It is very conven-
ient to stretch this last colloquialism a bit and refer to figure_ such as:

A + (B Al B

-A + ((A + )- A) = A + -a*
an inference. [You may read the horizontal bar as 'therefore

Since the !sentence below the bar is, a substitution-instance of the one
above it, the substitution rule asserts that this particular inference is
valid. Inferences of tiqpis type will be called substitution inferences.
In Chapter 2 we shall 1.equire students to insert another premiss in
such an inference to show why the conclusion of the inference is a
substitution-instance of the first premiss:

A +.(B - A) B A+;e
:A + ((A + ) A) 7.1 -A + a

If several substitutions are inVolved, several such auxiliary p emisses
are required. This requirement is made ;purely for reasons of pedagogy.

s purpose is to direct the student' s'attention to the fact that there are
Tte-rmivofTdifferent kiMs aricrt-o-hea-partiaA wareguard against inappro-
priate' Substitutions. lt.also,presents you With a point of attack in,
cases when inappropriate. substitutions have bepn made. The require-
Meat is dropRed after Chapter 2. The use of such auxiliary premisse's
does corres nd seth the verbal translation of the inference whiCh .

might ace a paragraph preof:
Sine A + a E.g. and A +..(13 - A) = B it fol

'A + ((A + -a!) ..ak) la A + a.
As an example of the ,nee4 for thought as to what k nd of term a

given expression is for whether it is any k nd 'of terinj you might asic'
whether + S) ((C, + 5:;) + a )safari to poirits.pr.to.tranelatiorts.
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A

n s that, for the same reason that 'C + 10P' re-fer to points,
,'(C + + a' refers to points:. Since, also, 'A + g' refers to points and

T. a-difference of points ,is a translatibn, the:term in questpn refers
anslations. As an aid to ii;iving such answers, suggest the ,adoption

liostulate 1;

.(a ) B-AET (b-)

With these assertions tO refer to one can substi4ite the following for
the answer sug,gested above:-

-From PostUlate 1(b) it -follows that C+SE e and, so,
by the same postulate', + + a E AlSo, from ,
Postulate 1(b),; A + g F. Consequently, by
Postulate 1(a), (A ((C + g) + E .

[As motivat'ion for rapid development of skill, assure your students
that they will neea to Write this sorfof thing only until they have con-
vineed you that they know what is .going on, I In case of need, or as an
introduction t&tree-form derivations, the pieceding verbal argumentcan be set forth

B-AET

A + a ee,

A + -a* c-tg0

B g) + -1)E 7

udents ask why
A + a E

tA+ (D.-) - ((C,
u don'tilwrite:

1.3E T

A +
insfead of:

A

A + g
tell them that you are wilring to as u e that they know,which variables
have points as values and which he translations as values.

,As Another example, take ' + + (B+ g)' and ask whether this
expression refers to points dr anslations, . Answer: _Since 'A + a'
and '13 + 1*)!' refer to Points, an4we have not defined addition for points,
the expression in questionis non ense.

The other rules of logic whose discuffsi n is pertinent here are
hose for dealing with equations. Briefly, . Since, for Us, '='

.what is the same ad' does, an equation such as 'Z + 3 = 5' lays that commentary.
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i# valid. [For the source of this example, see page 5 In ords:
Assuming that S = R + (Q - P) At follows', since
S - R S - R, that S R [R + (q Fin R.
[Under our assumption, what 'S R S - R'
says about S, we *lay, equally well, say about
R + (0 - P). Furthermore, since [by Postulate
2(a)] [R + (0 - P)) R = Q P it follows that
S R = [What has been said about
[R + (Q P) R we may, .equally well, say.
about Q

[bn the chalkboard, colored arrows running from the leftmost 'S' in-
the,top line of the figure to the rightmost one, and from the 'R + (Q
in the top lthe to the'rightmost one tin the second line\,, help to show what
ill going on in the first inference. Similar arrows dan be used in ex-
plaining the second inference.

The 'same tree-form derivation gives an opportunity to point out
that the premiss 'S R = S - R' is somewhat specW. Unlike tit other
sentences, this one is true merely because of what means ["A thing
's the same as itself." and because 'S - R' is a term that is, is
Meaningful. Sentences of this nature are said_to be valid,

Our two remarks about motivate our two rules of logic for
dealing with equations:

The Replacement Rule for Equation
Given an equation and a second sentence, if. either
side ofthe eqtiation is replaced, bornewhere in the
second sentence, by its other side then the result-

-ing sentence is implied by the given equation and .
sentence.

The Introductkon Rule for Equations
Each of- the sentences 'A A', a a, and 'a =
is valid. - /

7[Note that, by the substitution rule, the sentenc.e. 'S - R = S R' of our
example is a consequence Of/the, sentence 'a = a'.. So, as we shall
argue later, it follows from' the introduction rule for equations and the
substitution rule that the former sentence is also valid ]

\-An_ For additional material on these rjales,_ see sectiotn 2.05

Z'+ 3 'is 5,'' An equation such as 'A + (B.- A) =-' 13- Say-s-that ny' value - .

of its left side is the corresponding value of its right wide.: Assuining .

that a first object is a abcond object, anything one says about the first
,,object one maY, just as propertli, say about the second object. For .

example, each of the inferences in the figUre:
,

S = R + (Q - P) S - R = S -
[R + P)] -R P S-R =`!' [R 4. (0 --P)] - R

and its
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Although 'this notation is excellent for many purposes it will be to our
advantage, as well as more suggeistive, to write 'P + instead of P)'.
IYou may see why this is more suggestive if you draw on your paper
the arrow from P to Q: How should you label this' arrow?] Using this
notation we would write:

(5) Q = P + a

instead of 'Q = alP)' . [Read 'P feither as `the image of P under
arrow a' or as 'P plus arrow a:,..114otice that "adding" a translation to a
point gives a point.

Since, as we know, the converse of a translation is at translation, it
follows that any translation has an inverge. We may, of course,'use the
usual notation 'a-1' to refer to the inverse of the translation a. On your
paper, draw an arrow which describes the translation which is the'
inverse of a, and label it'a -1'. Locate the point c; + a-' . dn your paper,
complete the following sentence:

(6) Q + (P + CI) a- ----

This sentence May suggest to you that, since we are using' +' to indi-
cate application of a translation to a point; it would be natural to use

instead of 'a 11, tp refer to the inverse of a. f Rqad (4 as 'the in-
verse of arroty a', or 'as 'the opposite of arrow We shall adopt this
notation and, instead of (6), we shall writZ.;

Q = P + + ce ---- P.

You may already begin to see that, with our new meanings for the
addition and oppositing signs, some sentences, we can write about
points and translations look very much like sentences you are familiar
with from the ordinary algebra of real numbers. This will be more
apparent and helpful as we go on, .

On a fresh sheetof paper, mark three noncollinear points P,Q, and R.
---13r-a-w an arrow which-represents a translation which maps P on Q.

How do we knO,W there is such a translation? Is there more than one
such trjmslation? [Explain.] So, we may spealt of

(7) the translation which maps P on Q.

Because of our cony ntion. as to _the meaning of

P + (the translation which maps P.on Q)

The adiritive notation for functiOn application suggests the use of an
oppositing sign to indicate function inversion. The resulting identity:

( P = p
is similar to a farniliar identity for real numbers. Since a translation
is the inverse of its irwerse, you may ais suggest at this point the
identity ' --a =- -1*, as well aS *(P +,..-21..+) = P. Sinee the inverse of
a translation is a translation, ' f T' is an identity. 'At this point
students may anti...,ate the answer to a later question and suggest using
qt, - , say, in plale df 'Q + -I.'. If so, you may agree that this Seems

liFfie a ,good idea, and, note thf resulting identities:
(P a.) +1 P(P + - ="P and:

Should students suggest 'P +*(a. z: P'4or P + (a. = P' call
their attention to the fact that we have not yet defined addition [or
subtraction) of translation§. If you wish to carry the matter further
at this time you could askswhat 'a + -a' would have to 'mean if the
first of these sentences is' an identity. "Answer: ig] Students us
then suggest that "addition" of tanslations must mean functio QM
position. tf they do', tell tilem that there is another po$sillity,ut
leave what this is 46 their imaginations...[We shall use I + s an
abbreviation'for ' o a' rather than for 'a b j °
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Can yOu think of an 'algebraic expression we might use in place of "P
(7) which would make (f) look familiar?'

You may have alit'vady guessed, what we shall writeinstead of (7)..
It is:

P

Read 'Q P as you would (7) or as. minus P.] Notice that "sub-
tracting" a point from a point gives a translation. Using this notation
we shall write:

(9)

rather than (8).
. .On your pape , label the arrow you haVe drawn to -describe the

translation from P to Q with P. [HoW many arrows could you
draw which woUld describe' thetranslation Q P? Draw Eleveral such
arrows.] Be sure you realize that, while Q and p are points, Q P is
a translatian. On your .paper complete the sentence ,!Q e e 'and P- e
and Q

Since 0 P is a tranSlation it maps the point R on the po nt

R + (Q

ate this point on your .paper and label it 'S'. So,

S R + (Q P).)

This sentence tells kis tliat Q P is a translation which maps R on S.
Since there is only one translation which does this, Q - P is the trans-
lation:Which maps R on S. So, by our convention concerning the use
of the subtraction sign, it follows that

.S - R Q P.

Notice,again, how,our "algebraafpoints and_translatione.parallels

moti
with
to be
atten
atuden
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The next step is to introduce "subtraction" of points. Again the
ation is that of algebraic elegance. In view of one's familiarity

algebra of real numbers there is some aesthetic satisfaction,
a ned from the fact that 'P + Q - P) = Q' is an identity. Call

the fact that, for any. .1.:3 and Q. 0 P T, and remind
t, for any P and any a, P + a E e.

The
plies 'S -
occurring
and 2(b) w
the first an
follows that
[R'+ (C) P)]
speaking, Pos
ment. I Simila
two sentenc s a

,gument given in the text to show tnat = + 'kW
Q - P' appPals, of course, to tbe meanings of the terms

these equations. Once we have adopted Postulates 1(a)
hall be able to derive the second of these sentences from
hese postulates. For, assuming that S R -4- (0 P) it
- R = [R + (0 - P)] - R. Since, by Postulate Z(b),
R = p P it follows that S - R = 0 - [Strictly
ulate \l(a) is needed at two points in the preceding gu-
ly, uIng Postulates 1 and Z(a) and the second of the

pre isses we can derive the first sentence.
to those in the prec'eding paragraph apply to (10)

(11) can be derived qom (10) and (%) on TC
implies (10) is essentially the content of Postu-
from (11) into (10)' means replacing the 'a'
the result is (9). "'Substituting from (10) into

'0' in (II) by 'P + a'. The result is:

Rerna
'and (11). Specificall
1.07(1); and that (11)
late 2(a). 'Substitutin
in (10) by 'Q P'. So
(11)' means replacing

similar

. the algebra of real numbers.
As another example; note that ifrt translation Which-maps P

.on Q then, byaur convent:kin .as to the useof '+'

09)

and, by our

(l1),

P + a -t Q

as to the use of

Q - P

a

which is sentially,
-a' = (P +1) P

tulate 2(b).'



Substituting from;(11) into (10) you. get (9 ). What sentence do you get
r if you substitute froth (10) into (11)?

Finally, it follows from (11) tat

(12) =

..--..Since a is.the translation which maps P on Q, its inverse, 7-a, maps Q-,
. on P. Since 7---a is a transtation, it folloWs that it is the translation
wilich maps Q On P. So,

(13) -a ----
. and Ifrom ? nct '( 1g) . C mpletz these sentences.

OR

Exercises

Suppose that A, 4:änd C are points o
below.

.%
B.

as shown in the diagram

Make a diagram similar to this one on your paper.
(a) Draw an arrow 'fp deseribethe translation B - A.
(b)" Draw an arrow to describe the inyerse Of B 7 A.
(c) CoMplete these sentences:-°.

+ B - A )
'Oil The inverse of 0 7 A maps on
Ril)'-(B 1- Ay=

134- -(13 - 4) ---- B + =
d). Locate the pOint By such that D C + (B - 4).

poirit D (A B).
tgomplete: D - 13) =

niaPSX 1WiaD-Cmap

A New Kind of Algebra

Since the identity translation on 'leaves 'each point fixed, i
lows that for any points A and B,

A+ .(A = A ,=
and

This suggests that we use '0 instead of 'id' to denote the identity
translation on iC. So, for any points A and B

A + (A - -A) = A +
B (A A) B +

4. On your paper,,marAE points A and P and draw arrows to describe
translations n and b, as in the diagram below.

a) Draw an arrow from P to describe the translation
b) Mark points B and C such that B = A + and C B

Then,

(c ) Mark the point A + Eo .

# The diagram shows that

A + [roc-11. (A + +

Explain why it ought to.

--R

C on So, B - A Suppose that a and b are any translations.and that A is.any poin
Since we are using `+' to indicate application of a translation to #.
point it follows that

,

2., Let A be any point of.if -and, let abe any tranSlation..Then A + a
-

the iniagif-.7. under_ Also, (A - A is thetranslation
rna0 on ; Therekre

t for. any 'point A, tile [only] translation
iit s the2iklentity:tr4pslation,
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.This result certainly does not loOk much. like ordinary algebra. To
chamr it tO something whickdbes, we would have to replace 'lb
by"io + bor by 'tb ff we do go we shall be using in two
ways ---isometimes to ,refer to the result of applying a funclion to an
argument, and sometimes to refer to the result of coMposing func-
tions. A little reflection will sutigest ttiat doing this vuld not be as
.confusing as one might think. We shall certainlyalwaYs be able to
tell at a glance whether an expression refers to a point or a tranglation.
This beNig so, we shall have no trouble.recognizing that a '+' which
occurs after a point-expression and is followed by a translation-.
expression ,indicates function application; while a '+' which occurs
between translation-expressions indicales function composition, _So,
we shall adopt this second meanin of `+', along with the first. We
still have two choices rct7+ pr 'b . It is slightly igiore conven ent
to use:

in place of:

crin s

15

we e:

u + b

(A a) A

instead of (141. There are four '+7s in (15), For each '+ telIwhether it
refers to functioh application or function cbMpOsiition.

Exereises

L. On your pa draw points A, B, and C,. as in the figure below.

al & Draw arrows to desc4e the
B on C, and A on C. Use
each of these translations.

Answers for Exercises
1;

Ic 52

(a) jThe easiest answer to give is the arrow from A to B. ]
(b) [Any arrow with the same length and direction as the arrow

from A to B, but having the opposite sense.]
(i) B. (ii) B, A (iii) A, B (iv) A - B, A

(d) [D should be marked at the tip of an arrow from C whose
length and senst are the same-as those of the arrow from
to B; ih ahem ABDc: is a parallelogram. D + (A 7, B)
note that D + (A 7 B) j(C + An + -14 A). ]

(f) D; D; D - C [The justification for the last answer is, of
courge, that a translation is completely deterMined by what
It does to any one point. ]

A, 1,; A, A + -a.; 1

A
C;

TC 53

3. A; A, A; A, B; -6, A; 6, B
4. (a) [Students should first draw, from the tip of the arrow.given tO

describe -1, ari arrow which deScribes 1. The ansWer is
obtained by drawing the arrow from P to the tip of this latter
arrow. ]

(b )C
[The mark in question bas already'been labeled 'C'

-(d) Byour,.convention, A +- 01] = [11o1](A) = 11(1(A)) =
b(A + (A 1- 1) +

TC 54

121 (15), each of the first three '+'s rom left to right] refers to
functioa application; the fourtlf' refers to function compositivn.

Answers for Exercises
./*

1. (a) The arrows should be those.from A to B, from B o C. and\ from A to C, respectively. They 0ould be labeled 'B ik A',
'C 'C -_A'

nslations,that map- A on B,
inns sign'- notation to label

(b) C - A [The completed senten ill be adopted as Fosttil
As will be shoWn in Chapter ollows from Postulatei 1 -,3
that, for any.translations -a' and 5, a and, for any point
A, A ± b), = .(A + S. On the ot,hef hand, from thete
twa sentences and Postulates .1 and Z, one can derive Poo

-late 3. So, given PostulatO I and Z', Postulate 3 does
-* neither more nor less tharil-formulate 'our convention thai '+'

between translationexpressions refers to function composition,
and asSert that a resultant of translations is a translation. J.

(3) USing a 1+' to indicate composition of translations, we ha

(B - A) +.(C -
44,
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2. Recall that a 'uis the identity translation V. Using a '+to indi:
cate composition of translations and `71-Cli instead of 'a- '', we, have

As a preparation for an algebraic study of poin s and t anslations
we have introduced five conVentions:

(a) A. 4- a ='-aiA); so, A +lake e. IA translation is mapping of
into. r'

(b) -a = c so! a . [The inverse of a translacton is a trip-Isla-
tion.

c) B A the translation from A ecr43; so, B A E .

(d) 0.= 1,, : so,Ve . [The identity mapping of nto itself isia trans-
lation.I'

(e) W.+ h a'; so, a-. lA resultant of translations is a
translationd

Later we shall find it convenient to ado.4t, two conventions which
will give meaning to.expresions like 'A ci and 'a 7b3. l'erhaps you
can guess what these con entions will be.

1.08 What Comes Next?

In earlier courses you have probably had some practice in shoWing
that if a given operation has Certain properties then it.must have cer-
tain others. For a very siinple example, you may have proved that
because addition of real numbers is coMmutative and associative it
must have another property which may be expressed by. saying that,
for any real numbers a, b, and c,

(a + b) + e -7- (a + c )+b.
V

[Given any real nurithers a, b, and c, it follows by commutativity that
(a + -1-*Lc c + + b). By-as.seciativityre-+ (a + b) (c
By commntativity, (c 4- a) + b (a + c) + b. Consequently, fOr any
real numbers -a, 6, and c, h) ± e (a + e) b.1 This new Prep-
erty we shall .call the suliteh property. Cail You think of another opera-
tion' on real numbers which has the sWitch property? As you haye
learned, function composition is an operatkat on* the set .7 of trans-
lations of Can you tell Whether Composition of translationahaa the

vitch propertY? Explain.
ough most, of your experience along the lines illustrated in the

preceding Oaragraph hEta probably been -gained in developing the
al bra of real numbers, yoU will find that geometrycan be developed

TC 55

-a*, a
Here is a sample 'quiz. It consists of sonic completion and true-

false itemj which are typical of the kinds of questions you should expect
your students to-be able to answer. Answers are given in brackets.

Sample Quiz
1. P + p is a ; P Q is a. . [point; translation
Z.- The translatiori which maps A on Q. is . [Q A]

3; Composing a tranalation -a' with the identity translation giVes
I -a. l

4.. Composing with its inv
(or: ig or: 6)]

f P-Q R-Qthen .
u

6. If P + p P then .

ree gives . [the iden ity translation

True-
7,

a.

9.
1.0.

11,

1L.

3.

[P = R]

p r ]

A resultant of trslations a translation. [True. ]
Each translattion has an inverse which is a translation. [True.
Each point determines a proper translation. False.
Any translatiou maps a line onto a parallel line. True-.

The identity translation is the inverse of each translation. [False.
Any translatiOn cO7nposed witli itself is the identity translation.
[False.-1
Eac two point deterrnine a different translation. [False.]

14. Any translation is determined a pair of points. [True.]
9



in a similar manner. In the next chapter we shall ado. three postu-
lates [or: axioina, or: b4Sic principles] which say that translations have
certain of the properties which your vtork in Section 1.06 has con-
vinced you that they do have. In later chapter§ we shall postulate 4
few other Oroperties of translations, some with which you are already
acquainted, and some which you will discover on the basis of experi-
ments like those you carried out while studyipg Sections 1.05 and 1.06.
From these postulates we can derive other theoreins Which tell us of
other propertieS of translations. Some of these properties will be
familiar to you,: but others will be quite new. You will also dismver
that it is possible to define other geometric notions, like those of line,
plane, angle, triangle, parallelism, perpendicularity, etc:, in terms of
just the Tuitions of point and translation. These definitions of kinds of
geometric figures and of geometric relations Avill be quite different
from the descriptionS which you used in Section 1.05, but the work
you have done in Sections 1.05 and 1.06 will help you to see that the
new definitions are appropriate. Frorti these definitions arid our postu-
lates concerning translations yOU will bp able to deduce theorems
which tell you, about properties of geothetric figures and .relatigns
aneng such figures. In this way you will be a15Ie to explore thq geome-
try of space arid so enlarge your knowledge of geometry.

in pur study of geometry, we Shall state our postulates in the alge-
braic language which You were introduced to in Section 1.07, and we

, shall also use .this language ,in stating many Of our definitions and
theorems. This has the advantage that you will be able to apply to the
study. of geometry many of the techniques which you have already
learned while studying the algebra of real numbers. It has the dis-
advantage,. however, that you might come to cpry Out the algebraic .

. manipulations without thinking about why y tire doing so: To avoid
this, draw :pietures to illustrate what your quativns and other Sen-.
tences say. Such pictures will serve other urpieses besides helping
you to keep in mind the geonletry yOu should e thinking about. Some.:
times such a picture will suggest a procedure 'mai help you to
proVe_ a theorerm_or io solve a prnblRm._$ometimes-it_will-suggeSt--a
conjecture %%thick you will bêable to juStify on the- basis of the postu-
lates and definitions. .lf 'so, you 11 haVe discovered a new 'theorem. ;

1.09 Chapter Summary

Vocabulary Sumniary

function
value
domain
linear function
translation of .02
function composi
translation of e

Definitions

1
mapping
image
range
permutable functions
converse of a function
inverse
identity translation

A function is a set of ordered pairs no two of which have the same;
first component f and any such set is a function].

A function is linear if and only if (1) DI is the set of all real numbers,
and (ii) 'fin- some nonzero real nuffiber in and some real number
b, f(x) mx + b for.each real number x.

A translation of iR is a li;Oear mapping with slope 1.
For ansi function§ f and g(i) D[g of I = ix E Df: f (x) E Dg} , and (i

each D[g ofi, [g x) = g(f(x)).

Theorems

Any subset. Of a function is a function.
For any function f and any function g such tha

and (b) g = f if and only if Dg D.
Function composition is associatiVE.
For any function [which has an inverse, f o f /Di a*1. f T-1 = i.
'For any function f, f has an invirse if and only if there is a function g

such that g f =
For any functions /and g, g is the inyerse.of f if and only if (0. g f

= inf. and (ii) Rf:
For any functions f and g, g is the inVerse of f if and only if (i).g.

g (a) Dg Df,

onuentlww Concerning Points and Translations
-0

1 (AA); SQ, -4. a cif. translation is
nto e.1

(b) a a-1; sb, a c 9. [The inverse of a translation
(c) B 7 A the translation from A to B; so, B - A g".
(d) -6. ix; so, . rthe identity mapping of onto!itself is a trans-

. lation.]
(e),,T; -b4 so,7 + to-. [A resultant of translations is a

translation

nitiPPIg of

translation.]

-
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Chapkr Test

.1., Suppose that g and h are linear functions 'such tiat, for each x:
Ms) = 3x 1 and- inx) x + 2. CoMplete the following.
(a) g maps -3 on
c) Oi(a))

(e) - a.

(b) 5 is than-nage of under h.
(d) h(g)) 1.

-(f) g maps 3} on
{x; _

2. On your p per, draw a picture like theone below,

(a) Locate
(el(' Locate C + JJ A). (d
Complete these sentences.
(a) The translation mns A on A +7):
()4 The translation which maps B + c on B ig .

(c) The translation which maps C + /on C + a is
(4) The sides of a triarigle ABC have lengths 5 in., 12 in., and

13 in. The image of triangle ABC under a translation which
moves paints 6 in. to the north is a triangle with sides of
lengths , and

4. Each of the following expressions is either a point-expression, a
translation-expression, or nonsense. In each case, tell which.
(a) C B (b) (A - B) + c
c) A - (a a+ ci (d) a + B

(e) (A + B (f) + --(C - B)

b Locate B
Locate E such that E + a, =

AnsWers for C
10
3a + 5

3

Your students should have.a picture somethin like tollis:

pte

(a)-(d)

A

(At 11) A

(b ) B 7 fl +

(C + -aP) (C

or: 131

a) [or: a
(d) 5 in.r, 12 in., 13 in.
(a), (b) and, (c) are translation-expressio s
(d) and (e) are nonsense
(f) is a point-expression



Chaptcy Two
A Start at Formalizing Our Intuitions

2.01 The Need for Postulates

In Chapter 1, we listed some prolierties of translations pf e', that
translations of' the Set of points of spNce. Yoli became aware of some etf
these properties by \making use of arrows to represent translations.
Although we cannot cOniplefely on diagrams and intuitive notions

1Zr study of geometry, we shall quite often refer to.diagrams and
make.^use of our intuitions to help us as we proceed in our formal de-
velopment' ofgeometry. As.,we mentioned at the close, of Chapter 1,
diagrams can be .quite uSetul- in helping us to develop a deeper under-
standing and insight into the geometric ideas that are discusSed.
There are, however, serious dimitations-involved with-deriving infor-
mation from diagra .1-4 and it is rriportant fOr you to be aware of these
limitations, For exalle,,, in the figurte *low, wexannot asSume that --
the angles are not all right angles for it just .maY be the case that we
are looking atAa picture of the top of a rectangtilar bok:

a 4

Dise.tiss some of. the, reasons: why we should not rely completely
,

on pictures'in our tudy of geornetry. Some reasons you might eon-_

teider are
.

(a) optical illusions, ...

(b) inaccurate' measurements and drawin-gs,
.

(e) danger of accepting a general resMt on .the tiasis of a single
drawing lor even on_thejbasis_ofinanY-drawings-4

(4) lack of.precise definitions and .proofs.

Ln this chapter we introduee our first three postulates [ s e e pages
64, 65, and 105], and we prove five-theorems. The theorems are of
less irnportailce than the methods used in proving them, and the bulk
of the chapter deals with the rules of logic which [together with the
postulates and theor s] are summarized on pages Ill-113. It is
worth emphasizing t at, for this course, such rules are not an end in
themselves for e mple, we place no value on students' meMoriza-
tion of them. Exper ence has shown, however, that understanding such
rules, and applying hem occasionally to justifyFthe steps in a formal
proof, euables stude ts to acquire surprisingly rapidly the ability
to construct accepta le "paragraph proofs". The development of this
ability is one of the urposes of this course; ,

Up to this point n the course we have tried to develop the student's
intuitions about how ranslations act on points by makir% use of tracing
sheets, parallel rul s, and diagrams. What we want to point out ere
is that a formai trea ment of a mathematical topic requires that po
lates be established nd that accepted results be those which are logi al
consequences of the stulates. Diagrams may suggest theor.ems but
diagrams do not esta ish theorerhs.

The point to be e phasized in discussing the .drawings on page 59
that pictures requi e interpretation by the viewer. We must be wary

as to what informatio we read into a picture in supplementing what we
read out of it. Jus a he communicative wer of language rests on
conventions as to the eanings of words, oes the communicative
power of pictures rest on conventions. It is,'for example, because of
a convention which most of us accept that the second figure is interpre-
ted as representing a closed box or a block rather than three-coplanar
par lograms.
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Exercise

Here is a square 8 centimeters
by 8 centimeters. The. area of the
square is . square centimeters.

This square may be cut along the Lines shown and then reassembled
like this. This rectangular boundary is 1$ cm,. long and 5 cm. high.
The are of the region bounded by the rectangle is sq. cm. [What
is

As was mentioned in Chapter 1,.we are going,to.study °geometry by
developing an algebra of points and translations. There will be many

" similarities between this study of geoinetry and your study of the alge-
bra of real numbers, but there will also be some important differences.
Before discussing some of the differences, let us recall the general
procedure yOu maS7 have used tudying the real numbers.

You probably exp a.. iropérties of real numbers in sen-
tenceS which you called a a es and from these you derived other
sentences expressing furth r properties of real numbers. The postu-
lates together with the sentences which.can be derived from them are
called Meorerns.
-We plan. tATfollow much the same proceaure7in st4.4g geometry.

We shall adopt- soine basic principles which we call pOstulates. The
:first few postulates Will be suggested by what we learned from our
. intuitive discussion abdUt translations of if. Later .we shall consider
other_ properties of_translations of and add to our list of postulates.

Just as in the stUdy of real numbers, the postulates will serve as
foundation upon which we can organize our knowledge and as a start-
ing point-from which We can proCeed to derive other theoreins.

We now discuss some ofithe important differences between this
study of geometry and your ludy of real numbers, In the Case of

Answers to Exercise
The area of the squarle region which Is pictured on page 60 is 64

square centimeters; that of the region bounded by the rectangle is ET
,

.square centirrise,ters. . ,T ,

The students -should have an intuitive feeling for the notion that if
a geometric figurejs dissected, the sum of the,areaS of tbe4rdulting
parts is equal to the area' of the Original figure.' With this notion, they
will be able to see that there is "something more"- in the rectangular
region thanjust the "parts" of the original square re.gion. Of course,
it is not difficult to prove that the edges which appear to Zinc up-lalong
the diagonal of the rectangular region really do pot do so, for the
slopes of the lines involved are different. With.a careful diagram, one
can illustrate where the "extra" 1 square centimeter comes from. ,
It is the area of the region bounded by the parallelograrn ABCD shown
in the diagram,below.'

TC 60 (1)

If you were to make a cardboard model of the given square region .
and then dissect it as indicated, you would fAnd that it is very difficult
to locate or to see the parallelogram ABCD. 'It 'turns out that the
measure of the angle LBCD is' approximately l' 15'.

This puzzle is related to the Fibonacci sequence, .
1,.1, 2, 1, 5, .., 13, ...,

each of whose terms [after the secondltit the sum of the two which pre
cede it. One property of this sequence'is that the sqUare of any term
[except the first] differs from the product of the arzi,j.ac wit terms by -I
or 1.4 [12 - 1 2 = 22 1 3 = 1, 3,2 - 2 5 = -1, eft.] So, any .

iqre whoaegic niP-rnPASure_is a Fihnatri nrovhp.i.""-v...21e ditagerp.13
that the partiTan be fitted togetier in a rectangle in such a way that a
parallelogram with area-rneasure 1 either is.not cemered or is covere
twice.



T he .te
tultes.ficir

:quence,
cefuln Ais de

-2 to say thata aheprem
-postulateS, .-Since,. how

,
i

.em s otten ureed with the intent of eacluding pos-
mhood". asiy .senterice is a logical cense-

nowishes to uSaa,'theorem' in this way'must be
of the word, it will not do, 'for his`purposes,
aasentence which is a conseque.nce of his

if is just tliese sentences which make op
whateyk4-theory is being. devropd, this' definition seems to-us a good
one. rThe itternent in thtatext i eeuivarent to it, though redundarit: 1
PoStelates, then, are somewhat arbitrarily chosen-theorems, from

,w^hich the l'emaininketheerrems as ivell as thee!, themselves can be
de rived, - . .

.

:
Tea)develop thiaapoint a hit furliter, let'adefirte a deductive theory
any setaof aentences v:ihieh is such that 4.a-ich sentence %which is a

eglealicatrakiience of members of the set iii also a member of the set.
shett, a dealectiye. theory is-a-set of sentences which is closed with

. respect. to deditation. Wa`ch'oese 63 refer to the merribers of a'deduc-
thedry aa the theTreres.of thM theoae2 Iior,example,. the set of all
lantenc aoncsrning.soAe1subleci matte r -say; geometry wbich

can be lorreorated ih a:givian langoage is a deductive theory: This is
so beaaese,'' since logical consequences of true senterices are true,athis

aatet'oa,slentences is'cleduetivele cloaed, For anotlier example, it one
.1`clsooses ceiYain of these- eenlencelathen the set of all consequences of

tae. chose,n aentencati is also- a deductive, theory, This-is so because.,a,
sentencewCh is a 5 pruiequp,nce.of eentences-which can -19- derived.
.froan the c4Xasen one* is aisO & ,cOnsequence of.lhe choaen sentences,.

choaen.sentenees are carled postulates'a and any one of many
sets Of postulates Wale erigerider, throughkieduction, the sarrie deductive

*

Aeory.*:'
WecklVe, then, two waas [at least] 'of obtaining deductive theeries.

'. We may tak&!all true se.ntenc,es corieerning the:subject l'ahieh interests
Us,- or may take The "deduCtive cloeure" of asorne set of these sen-

- A conimonaprOaediare and tliellOne upon. which we are now
mbaakang is to adopt the .latter alternative, and to try to chcaose Our
Ostulatest in such a.way that the resulting deductive theoryakill include

arn4r-g. its theorems a large number andsvariety ofthe theorems of the
dedliCtive theVry which-consists of all tr.ue sentences, To this end, we

gin by ehoosing a-few promising postulates and investigating some of
theiecoeseqtrencesa Having done so, we adopt addaional postulates
defining' Vis way '..taiore'incluSlive deductive theory and see what

rite 1-1-0 114-Vc 011At Theoren ric Itreirtay hope by t1li means to
.,-arriveialast it a set St postulates whose deductive .closure is the .set

.-,of ant rue Sienteri e At any rata, we shall by this method ()bale a
better understandi g ,and a more nearly cornplete knowledge'a' of the

'.sobjeet.

IC 60 (3)

developmentJ are p6stu1atei: They differ from othee.postolates only in.
that we could, in theory, 'get aIohg without them, [In practice, we
couldn't:1 Note that any true 'sentence of a certain form can serve as
a definition. Whether it is adopted as a definition is a matter of chOtice,
just as it is a matter of choice with regard to anY true-sentence whether
that sentence is as a postulate.

.Tc61, (1)

It eems convenient to use abbre,viat ns like 'CPA' for 'the
corn utative principle for ad'ditipn' for common deicriptive phrase,s.
Some people, however, find it,a nnisaace. Use them or not, as you like.

Some students will have used quantifiers, 'V: and '3', in their
stndy of .ligebra, and some'ewill not. Those who have not will learn
how to lite theen when studying lake'r chapterte. For the present, and
in Chapter 3- as well, we shall have no use foathem.

Even though students haye used gener-alizations in their work in
algebra, some may have digiCulty in making or irrrecognizing instances
of generalizations about points and transla ions. ne reason for this ia .
hat the9 must now begin to ,concern themse es out the dornainaeof the

yariables involved, in the'generalization* thEy ork with. In their work'
in ggebra, all of the generalizations were about real numbers, in this
work, ,the generalizations are about aoints, er;translatiorts, or real
numbers, or even about sets of Pain& For this reason, special sorts
'of variablee will be used for points, for translations, and for real
numbers, and,.later for aettain kinds of sets of Points such as lines,rays, planes, etc. It may take some t4ne for all of the studente to-get
tborough19 familiar with this.,nötion.,

One deviç whiah has proved to be quite helpful in checking in-
siances of Fe ralization pecially on a chalkboard] involves,tlie use

of,frames and underlines, instead of letter variables, in pattern sena
tendes. -For example, consider the seVence:

(1) - A + (13 - A) = B
To show that the sentence:

(2)

is an instanca-pf (1), one might establish*
loops around expressions for translatiatili
for points. [Colored chalk works very*icely'h
convention, we .see that (1) has the pattOnt

A A .

al for drawing
ining expressions -

'Making u'be-Of this

paitern precisely.
Ahotheraprockdore aeicie from meeely adopting addiiional postti-

for tinlarging'a deductive theory is that:of addisig new worts tbor ahgtiaget Thie aaitomatically enlarges theaset of true Senterac,ee.
: In orderato ca'tch up, 4nVie of course, ,adopt some .dril4iie new true'

sentences as pOstulatesa Scametimes the ;ley/ words merilir alloW us to, .
moae Simply things tvhieh we could say without using Oa**. :In such

4 Case we c "catchup by idiletihg a postulate of the icutirly. siMplend caleddenjtlon As has twen definit 'is deductive 4

Of easucse, we must know that 'P + a'Q'refertQ rits latt
order-to seethat (2) fits the pattern for (1), 'it is this feature of thi
generalizations that we will-be dealing with in this course that ii

.-elifferent frormahe generalizations met inieramentary algehaa. --
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numbers, you dealt with only one kind of thing, namely, with real
numbers. So, only one' kind of variable (lower case letters] was needed.
Ako, since the OVeratioris dealt with always led from real numbers,to
real numbers, there was never any heed to say that.thr result of an
peration- was a'real number. FOr example, you could be sure.that

every value or 'i b' Was a real number !There was notSing else it
could be!l. Cohs quently,you could.be sure that:

c

was an instance of the commutative principle for addi on Ithe CPA!.
For these reasons, you did not need'a na-me [such as for the set of
rei'd numbers, nor ditlyou need a postulate such as:

[Read exampl r each real. number x'. l
On the other hand, in our proposed study of glibmetry we shall be

dealing with three 'kinds of thies-poina, translations, and Elated
I numbers. SO, in ortier to deal easilA with tthese things, we need

three kinds of variablei. We shall use,
upN-r case letters IA, B, . .1 as variablesfor polVits,
lower case letters with arrows, lo, .1,as.variables

tbr translations, and .

loweri case letters la, b, . . .1 as variables for real numbers.

In add tion to' dealing with three kinds of things,it ip also the case,
as you saw in Section 1.07, that the operations we shall 'deal with

the rfiult of"4-nix up" these different- kinds of things. For
adding a translation to a point is a point hp result of'sub4acting
a.point from a. point is a translation. C. equently;.'we must iRore
partiCular when-getting instances from eneralizations4han'we.wre

-in our study of reutnnm or. email -7C70nsiderihe-generalization:

V V X
4'

'ai'lable :generalizatictn":

4

VAs an exa ple of`a sentente which is algebraica11y eorre 't but rb ,

not an instance of the generaliz.ation (I), is the f
+ (B ) B

This..js not an instance or (1) becau,Se has values whii,h are trans-
lati ns and only expressions whose values are points may be substituted
for 'A' in (1).

In addition tokkeeping, straight which kinds of substitutions are
legttimate, it is also necessary tO pay attention to the placepent Of
grouping qymbols. For example, the expte_s,sions: 0

CZ,

(A B) A

an :

are meaningless in our system.

[Exercise 2 on page 52 :

.Someisen epces which aie instances'or both (*) and (e;*) are;

and: [P + (Q-Pfl- P P
I(P 4- in).
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Give _the substitutiofikfor 'A' and which you ou d make in (*
obtain these instances.

In order- to knoW that the given sentences are instances of (
need to know :that the values of 'Q P'..are translations, and that
those; of 7, +, In' are points. For thiS reason we neetl postulates which
tell us that this is the case. To state these postulates, we shall-Use the
names' for the set-of translations and Y1 for the set of points. The
postulates we need are as folloWs:

tp

(a)
(b)

B A t
'A 1. a \

[Read (a ) as 3 A belongs to or as. A is a translation'; read
(b) as 'A + a belongs to or as 'A 4-- a is a point'J

In case you are used to using quantifiers las in (.)l to formulate
eralizat ions and are, accustomed, to think of 1:open sentences" like
, (a), and (b) as merely showing forms which statements May have,

yov will need to remember that, in this cOurse, whOn you "assert"
such a sentence say,(a)- you are' using this sentence just as you are
accustomed to use a quantified sentence -for, example, the sentence:

In particular, adopting (a) as a 'postulate has the same effect as adopt-
ing (a') would have. An open sentence which is adopted EIS a postulate
or definition, or one which is pieved to be a theorem, has the BEt.M0
meaning as does a correspotiding quantified sentence. What thigi
amounts to is that-such a sentence iMplies each of its instances.

TC 62

To obtain, the first of the exhibited in.st?oces of the sentence (**)
on page 61, -substitute 'P' for 'A' and 'Q -.P' for [The ficst
substitution is legitimate because 'P' is a varia`ble with the same
domain, , as the variable 'A'. The second is legitimate because

- P' refers to translations, and these constitute the domain of the
variable 'a'

To obtairlthe second of the instances, substituke 'P +'iri' for 'A' .and ';' for 'a'. [The first substituiion is legitimate because 'P +
is a point-tern-1 anti tte valuet of 'A' are points._ The second-is legit-
imate ecause both and 'a' are translation-variables. I

Making use of the convention of drawing loops around expressions
for translations and underlining expressions for points, we see that
(**) has the pattern:

A

and that each of the given sentences fits this pattern precisely:

Exerciseg

Part A.
'I.-Here is a qua ed sentence which can be used to stat' the asso-

-addition: .

x (y + z)

Write a corresponding "free variable generalization se
which ,has the same meaning as (4).

(b) Does the sentence you Wrote in (a) have any fliisc initances?
2. Suppose that somebody told you-that the following sentence is true:.

The ut\iversal quantifier 'V' is uied occasion
snly for the.benefit of students who are unaccustorrie
sentences" to express univeersal generalities, -If
students, pass over the occur-reixes of 'V' as lightl
srief discussion of quantification is given on,. TO 67(1
f feasible, the subjeci,sA'ould be igndred'until it is
:ext, .
Answers for Part A

n this section,,
o using ,"ofyen
aye no,suchh

ible. 4 '

and Tt ) btrt:
oducedii the

1. (a) [Answers may vary here, They should all be of the forth
'(a 4- b)-+ c a + (b c)" and should be composed of
vaflahles --Tthat is, lower caseletters fibm near, the-
beginning of the alPhalpet.
No,

[The Students should
to show that ontiwho

mistaken,

(a) Sfrow that thia person is mistaken.



Part B
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,
(b) Write a oorresponding free variable generalization sentence

which has the same meaning as does (").
(c) show that the sentence you wrote in (b) is a false general-

ization.
3. Suppose that somebody told you that the following free variable

generalization about points and translations is a true one:

No) A 7 (A 41 = a os

(a) Wriie a correspOnding quantified sentence which has the same
meaning as does kit).

(b.) Is is4i 1 a true generalization or not?. Explain your ahswer.
(c).1an the basis of your answer in (13), what can you say about the

quantified sentence you wrote in (a)?

the ,ileneralization listed in each exercise, niake an instance as
suggested. (There may be several correct answers.)

Sample: Make arOnstance ofhst

yivwx+y=y+x
concerning the numberg '2 and '8.

.4olu1ion: Two correct instances we could Make concerning '2 and
8 arig:

an d:

Make an instance o

'2 + 8 =
8 + *2 = '2 + -8

V zy iV! x(y

concerning 3, 1/2,.and 0.
2. Make an instance of:

concerning *3 and -2.
3. Make an instance 4

= xy + xz

a) concerning P and P.+ a;
. (c) concerning-A + (B - A) and B;

4. Make an:instance of: .

b) ncering A a and C;
d) concerning a andA + a.

(a)

TC 6

[Ana era ahould all lite of the form '(a b) c 7- a - (b + c
[The -same qonnter.-examples as were7Cgiven in (a) are
appropriate liere.]
There are three possible answer
(i) V x (x 4

(ii) yx X - (x + ;) =

(iii) Ve A - (A + = x

or this part. .They are:

(b) No. We already know that is...the translation from A to
A + , If it were the case that a is also the translation from
A + to A, then a would be its own inverse. But, the only
translation which is its own,inverse is the identity translation.
So, (40 is not true for any translation except d. [This argu-

nt Suggests a source of counter-examples, namely, trans-
lations diffdrent from Z1.} ;.

(c) It is false.
* * *

Part B of the exercises focuses attention on a matter that has
been a problem with some students in this course. As we have,indi-
cated, stating generalizations without quantification will be to oUr
advantage in this work and is something mathematics' students should
learn to,do. -However, students who are accustomed to dealing with
Oneralizations in contexts where quantifiers are used may have trouble
at first making A'nd recognizing instances of seneralizations stated with-1.
out,quantification,' Part of the problem' is that it is sothetimes neces-
sary for letters 'used in the generalization to4lso be uSed, perhaps in
different positions, in an instance of the generalization. We have
included exercises like those in Pare B in several other places in the
forthcoming material, If your students seem to have trouble with this
activity, it would be Wise to generate work sheets with additional
exercises of this type for them.
Answers for Part B
1. .[There are six

for the indices
Of -3, and

(#1 + -3) +

+Icorrect answers which use i, and 0 'as values
There ar infinitely many answers if combinations

0 are Used, For example, 1(1 + -3)(+I + 0)
VI+ -3) 0' one such instance I,

-3(.1 + 0) = -3 + -3 0 z

-3(0 + .1) -3. +

:-1(-3+ :-)=-1 -3 +

(+34 -2) +(11 -; *3 + -2 [Notice that it' is
insert grfiuping symbols in an instance
geheraloistsatient

(a) P - (P'+
-PET

(b) (A -CETor
C - +

) [k+ (13 --A)] - B
B A + (1,3

(0 + -3) 7 2.0 +

-31 = +

sometimes clUrifying to.
that do not appear in the

(a) coneerning P and Q - P; (b) conceining B + c and
(c) Concerning A + a and + 76: (d) concerning i and B.
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2.02 Our First Póstuiites Another Theorem

As just mentioned, we shall adopt these i5ealtences:

(a) 13 A e
A + a

as postulatet; to use iti'determining What terms we may substitute for
our different kinds of variables. Let's review what these sentenceS
Mean.

In Section 1.07 you learned that, given a point A and a point B, there
is a map ing of A into itself which is called the translatiorf from A to B.
This .tratislation could be pictured by marking'points14 and B on a
sheet df paper, copying this on a tracing sheet, and sliding the tracing
sheet, without twisting, over the paper' until the mirk which was ovei\
A is over E. This translation could .also be described' in terms of the
points A and 8 and parallel lines. Since this unique translatien iB
certainly 'determined when we are given A and B, we may, as we
decided. in Section 1.07., call it 73 Ai. In adopting (a) as a postulate
we, are merely giving hdice that, for .any points A and B, .7 A is
a translation.

Having adopted this subtriiction notation Tor traislations itseemed r,
in Section '1.07, sensible to use an addition not,atipp, 'A + a , to refer,zi
to*the Image of a, point A' under a translation a. ,Since a trantlation is
a mapping of inte er. it follows that, for any translation a and any
point A, A + z is a point. This is what (b) says.

We combine (a) and (b) into a single postulate, postulate 1,

Postulate l (a) B - J-- lb) A + a ee
(a) A difference 9f points Is a translation.
(b) ksum of a point and a translation is a point,

Exereixes

In each of the folloWing exerciSes complete the given expression so
that, when the result iS treated as a universal generalization, it is a
true one. lItit is;ncrtpossible to do so, say sOl Vou may useY"
or a' variable for a point or a translation.

1. A +VE
4. C7. B --e

.
TC613 (2)

.We cannot make an instance cellicerning ; by using '-;' as' a
value for 'A' orjoi. 'B', since the v`al,ties of both 'A and 'B' -
are points, not translations. Of course, ,if 'a' is usea in a
point-valued expresSion t i the resulting sentence-is, in a
way, about .-S' and wbatev se was used in that point-valued
eXpression. For example, ' C + 4) 7 (A + 1),6.j" is an
instance of 'B .7 A f I' and,is about C.+ ,I. '--- aRd, so,- ab ut

'C and and A +.,S. 1 ,

4. a P + 0 E g
(b) (B + C.) +

(c) (A'+',"a4,+ (a' +.5) -e:
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As is ilhistrated with Postulate 1, we frequently accompany postu-
lates and theorems by "Englielf sentences", which apprOximate as
closely as possible the "algebra Sentences': in qurstion. [This is not
always easy; if it were, there Would be less reason than there is for
developing mathematical notation.]

The putrpose of exercises such as those following the statement of
-Postulate 1 .is to help the,student become.familiar with the kinds-of
expressions that are meaningful in the formal system we are. developing.
It may be the case that you will need to construct more such -exercises o
in order to give individual studentrk more practice. One praetice which
proved to be helpful was that of having students.generate some expres-

-'.sions which make sense and some which are 'nonsense", ,

We wish to'-call attentiondirthe facts that in our spitem, (a) aking
a point to...a translation is not meaningful, 11b) neither. is 6 ubtra'cting
point from a translation and (c) neither is adding a_point to a point.
This is not to'say ihat systems cannot be constructed in"which these ,

processes are meaningful. It is simply the case that there is no real
need to dep.1 with such expressions ite this particular formal-system.
As thingsaave been developed to this point, an$1 as the.y. will Continue to,
bj develoTed, each of the rrfeatiingful expressions is introducedvia the ,.,,
postulates and is based on our intuitions abouf points and translations.
The_care that_raLustbn_esercised in dealiiigt-cor-,rettly-w-i-th-expre-s-aionio

.,*alifout pointsrand translations:will serve tei-einforce the dpendence of
&Re's results on the'postulates. .

, Answers to xercjses

Beif

Ir
r, any variable

r., a translation]
A for, any variable
for a point
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, ....... t
Notice that Postulate 1 tells us absoly'nothing about ho^w the

translation B 7A relates to points A and B, nor does it tell iis how
the point A + a relates to point A and trtnslation a. For this we heed

.,additional-postulates.
In Section 1.0.6' you saW that the translationofrom A to B ma-Ps A on

B. Using our tddition-subtraction notation we may formulate this as:

(c) + - A), =

You also learned that, given anyiyoint A, any translation a .is de-
termined by the imtge of A under a. This-image is A and,:as we
have just noted, A ,iuks the same image under the translation from A .

to A + a. It follows that, however the translatien a may have been
chosen, a is:the translation from A to A + a. Using our addition-
subtraction notation, this may be formulated as:

a = (A + A(d)

We cvmbine (c) and d) into d single postulate, Postulate2.

Postulate'2 (a) A + (B -2 A) = B

(a) ,The translation from A
to B maps A on B.

(b) = (A + - A
b) is the translation

'Atm A to A a.

.[Notice the similarity between Postula 2(a
number sentences

'a + (b a) b'

Exercises

Pali, A
P, e

Ottd (b

and 2(b ) and thp real

S.

Tho purpose of theeexrc1se s is to give The studenta some' prac-
in making use of Postulates ga) ana Z(b). It may be that more

such exercises areneeded in individual cases. Since none of the exer-
cises in Part A are impossible to complete in a.rneaningful way, you
mazi wish to Make up a few expresSions..which cannot be completed.
Here are a few you rniiht start with:

(A B) + B
[A + (13 7,A)]+1B + (A 11)]

Note that while e,ach of the completed sentences is a conseque
of Postulate 2, only the, first four are instances of one or the other
part of this 5ustu1ate. [Exercise 2 gives an ingitanca of Postulate
which is also a consequeAce of Postulate Z(a)..]

Andwers f6r Part A
1, B

B C

a

Answers for Part B
There are-infi`nitely'mariy co ect answers for each part. We.

giv.e some'of.the obvious onea.
1. (a) (P + 5.*) + [Q (P +1)] '-=

+ t(P 4: Q] = P +

B

A - A [Formally, we cannot accept here
as We have nothing in our ostulates at this
time which tells us. what ' ]

TC 66 (1)

-+

each ofi the f61loWing exercises cOmplete the expriasion so that
when the result is treated as a nniversal generalizatio14.4 is a tali@,.. ,one. 111 it not possible to de so, say ...

F

1. B (B 2. --- t'fA + - AXI -- A
14. [4471A - r A. :

(b) There is no instance which uses as a value for 'A' or for
'W. Of course, if is used in a pqint-valued expression
then ttle resulting sentence is about "S. and whatever else was
used in that expression. With this in mind, the following-are
among the possible answers:

There are, of coUrse,*infipitply triany possible correct ans era.
(e) A (C A) = C (A C) A

[P.+ (IQ P)] {B - [P + (fl prj) t;
B + {[P + (0 P)i B) P+

+ [c + + 7-;)]:".0
5. {[A +,(B A)] +Jo) -
B A) = ((A+ + A)) (A +

A) +1 =AA. t ((D A) +
- A) + 11. is a trapilation. I

a

(b

. It might he argued in conneetion with Theorem' 2 1 hat we are 'not
in a position to.prove a theoren? .since we have net eatalgiahed the
giCal ground rulea' under whic'kWe intend tä operate. What we'
h to do at this stage cif the garrie,4 to Motivate a diicussioatOf.some ,

matters of logic. ,W4 do this by Pretenting proofs o,t' both "part:" of,

Theorem 2-1.
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Part 13

+ tB A I 'z*, 6, + (B A)1 + A1'

7, A B + (A B)1 [P + ;21 - [A + (P - A)1

Make an indicated inStance of each 4nera1ization.

1. An instance of:

A.+ (B A) = B

(a) concerning P +a andc; (b) concerning R and
. (c) 'concerning A and C; (d) concerning P. + (Q. P) and B.
2. An instance of:

+

(a) conOrning B A and B; (0) concerning C and ii"+ r,
(e) concerning A + (B - A) and ry, (4) Concerning B A and -rr.

We can now prove a theore

Theorem 2-4.
A + a = 13 if an only if a-B-A

TC 66 (2)

I. The strategy einployed in these proofs will be somewhat familiar
.-to the studen4rom their work in algebra. Notice that we invite the

students to try fheir hands at writing their own proofs Of the theorem
before reading the proofs in the text. Students who make a practice ofthis should gain power and confidence in their ability to use botti the
rules of reasoning and concepts in the forMal system we are developing.

We shall, generally, use 'derivation',. or 'argument' when refer-ring to a discussion which purports to show that a given conclusion is a'consequence of'given premisses. tA derivation may be valid or invalid.]A proof_is a derivation which (shows that a given conclusion is a theo-_rem that ia, is a consequence of our postulates,. More loosely, aproof is a valid derivation whuse.premisses a/e sentences alreadyknown to be theorems.
The bracgeted remarks inserted in the proof OfTheorem 2-1 are,

of course, pot part of this propi. Rather; they serve to explain the
prbof. It id recornmers.ded thaftke teacher /Write the proof on the board
or overhead as, the discussidn on pages 66 and 67proceedi so that
students see those sentences actually constituting this proof.

A

Fig. 2-4
[Recall that a theorem is a sentence which iS a logical consequence of
our postulates.1 To prOve a theeifeni is tasiiow that it is a conSequence
of ourpostulates. Theorem 2- ryill follow if we can proVe two simpler
theorems:

In connection with the proof of (a) you ...rriad wish to point out thatthe use of '1 = B A.' as an assumption i qgite differeht from 101asse"tting Postulate,. 2(a). In writing 'Assne4 that -; = B A.' We are
in e'tect saying "Consitker some translation a, and some points 'A and
B, s ch that I = B - A. On the other hand, our justification for 1"
writing, in this context,c4ABy Postulate 2(a), (B - A) = B,' is that
this postulate asseric4at; for any points, including the points refe.rred
to,An the assumption,t.t1* result of adding their difference to .the first'of

is the eecond. IThedistinction might be made clearer by using
.'C' initead of 'A', and 'D': instead of 'B' throughout the argument.
Rostulate 24.44' is tutbifectedVut (I) become., a different sentence
wjAicbt,toLapjoftwcei...01 this pcItulate.

t

St-lette._ itrb-jet", be taken up later,
ariay us about it.
There pe)

(a) If = 11.4:- A then A 4-- = B.
(b), If A + B A.

ISTOe,., Before reailing the prbafi foi (a) and (b), try to prove thqse
sentences yogiself. Try to cleri,ire.(aYby legical reasoning from Postu-
lates I and 2 1)o th 'Same-for
Proof cif r,

.Assunie ti* a --z--- B -._A.
[We firs, prove (a).]

niate 2(a),,

Suppose' that = B
follows trePlacing the 'a' 'bn tle b'y'B -
that \+ + = A + (B - A). Since, by Postulate .

Z(a), A + (B - A) = B it follows that A + = B.
Henc'e, tf a = B - A then A + = B.

b)]. SuPpose that A + a B. Since B-A= B-A
lit follows that (A + a) - k = B - A. Since, b

____Pottulats-2(b),. (A-+--k- A i
= B - A. Hence, if A + a = B then a B -

'There proofs make use a the logically valid sentences 'A + rz.and `11 - A e 'B -4' as pi4smissa. The-second of these;sentenc
also usi'd in the derivation, of ,Poetulate Z(a) from ileUtence:_-Postulate 1{a) whiA is given-on page 64.' As is pointed-ad-in
'cussion of this derivation, A B - A' is valid because '
is itself"' and Postulate 1(a) assures us that the expression - A"
refeLs'to things of some ldnd. [A siinilar remark applies to 'A + ;A + a'. On the other hand 'A + B A + B', fó example, is not a
entence, let alone a valid one. because 'A + B' is nonsen0.

,
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4
Since [by our assumption! B A is the same as a it follow that

c 2) . A + a B.

Hence 'Ol kws from ( 1), above, that 1

if a7i= B - A then A + a B.,
.

- I .

[STOP. As you seeour procedure for showing that (a) is a consequence
of our postulatvs was to show that 'A + a B' is a consequence of our
postulates, toether with the assumption 'a. B -A'. From what we
mean when -we say 'if then it follows ,that `if a --- B
then A -+ a = B' is imtlied .by Our postulates alone.

In deriving (2) froth our assumptioit.and (1) we made use Of theTaci.
that by `-.; We mean what 'is the same as' does. So, it i logical that,
-under` our assumption we may replace any occurrence of a' or of
'B A' by the other.

Now, before feadin- the proof we giv& for ib), _try :to write your own.]
Assume that A. + a = B. Since,- by_Postulate 2ib); a (A+

it follows that a B.L A. Hence, if A B then a A.
-'f'ro complete the proof of Theorem 2 -1 it remains to be_shown that

this sentence is a consequence of ,( a) and (b)..BTiefly, this is so because;
of what we mean when We say 'if anii on4 ir.. We shall gg into this
later in this chapter. Granted this point, our pr2of shows that Theorem
271 is, a consequence of just Postulate 2,1

In carrying out the-prec6ding proofs we have uSed seVeral rules of
reasoning.. PcIlwiuse of these rUleS._was poied out in the three brack-
eted.remarks following the proofs.] Fam arity with the rules we have
used- isimportant if one is to learn understand proofs and to- make
them upcSo, in the next few sect we shall'discuss theSe rules.

2.1* Substitution
I

We are using sentences which contain- variables as one way of
making general statements about allivalues of these- variables: For .

an example concerning real numbers consider the sentence:

Ifai"c4b+cthena= b.
Here .dnother way of saying what (I.) says:

If the sum of a first number and a third number is the same as
the 'sum of a second number and the 'third number then the
first number is the-same as the second ntimber;

1)
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4

Sentence (1) -illustrates one Way of makiiig a general t ssertion
about all real numbe.rs. Another waji-Of making the saMe assertion is;

V V V [if '3,4- + z. 4 y± z then x..=x y z
the use of.the universal quantifier 'V' and'indices letters from the
ends of our three alphabets) is" discusedlate.rithis course. There
is, also, a relevant discussion in High Schocil Mathematics, Course 1,
pages 116 - 123. This.latter discussion needs,sorne modification to
make it ppropriate to the language developed in this text. Here, open
sententes are used to make assertions about ali values of the variables
which occur in them; there, variables are Morely place-holders
differing only in form from frames aild underlinings ance.serve only

%to sbow 'some of the forriis,which statements may have.- What are, in
the ref,erence cited aboye, ca.11ed 'open sentences' c.ano. here, better

_Jae referred to as :predicates'..
Althbugh you will probably have no need to.discuss the universal

quantifier at this time, the following discussiqn mly be helpful should
the. need arise. Ln our present language we can say that all real nui-n-
bers have the.property which is, pressed by the predicate:

. 0-
by filling the places he d by the place-holder '0' b'y occurrences of a
variable; 0

Anothgr -way [4ee the reference eel] of expres'singithe
is to write; .

Always
or, more shortly:

e generality

where the place-holders flave heen crossed out-to show that thdy no
,longer serve their function of holding places. Insteafi of crossing out
tile place-holders we might ontit4them, but indicate that the spaces
which remain are not a new kinil pf place-hOlder by linking them with
the, quantif i.e r:

h V 1 =
"I 1 1

Next, ..we note tlia'at it is molie ecvomical merely to indicate the upward
prongs of the horizontal bracket By some arbitrarily chosen symbol:

V "1
*

Finally,-.since letters are easle-i'to write aild, sine it i
to use tWo lines for one sentence; wer,adopt ,the forniat:

V- lc 1 -lt
X

desirab not

But, since the function of letters when used 36 indicefi is differentfroni
their function when usetl lafi in the prsent text) as variableg, we take
care.not to use the same letter -both a's a ifariable and as on index.
Speeifically, variables.are choseivfrom beginnings of alphabets; indices

,6from the ends.
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This sentence tells us many things about numbers. For instance, since
we knoW that -9 and 11.are real numbers it tells us that

if'the sum of a first number anti the number'll is the same
as the sum of -9 and 11 then the first number- is :9.

Using variables we can express this -by writing:

(2) ' + 11 -9 + 11 then a -9.

Since what (2) says is part Of what (-1) says, we shall say that (2) fol-
lbws from ( 1), or that (2) is a consegaerice of (1), or that (1) implies (2).
[Note, howev.er, t to know that (1) implies (2) we had to know that
both and 11 .are rea numbers. 1

-Antence (2) is obtained from sentence (1) by substALiting the,nu-
meral '-9' for the variable 'b' and the numvral '11' for the variable 1.
[Recall that to substitute an e)4pression. for a variable you muSf,re-

At,place ecwh occuiTence bf the variable .by the. given expression.] llere
is another sentence which can be obtained from (1) by substitution:

(3) if a +- b = (2a + b then a 2a b.
. -

'What expression should you substitute for 'b' in (1),.and what expres-
sion should you substitute for 'cl, in order 'to obtain- (3)?) Again, what
(3) says is .part of what (1) says (but, to know this one must know that
2a b i..9 -that is, that the expression '2a, 7 b' refers- to real
numbers I. .

For another example, consider Postuhite 1(b):

(4) A + a c
I.

This says that the result of adding any translation)to any point is a
point -for short, any pointqranslation sum is a point. Since,we know
by Postulate Pa) that any point difference is a translation, it follows,

.

for instance, that

(5) A + (B A) e

Other "consequences-by-substitution" of Postu(ate 1(b) are:

C '+, (B-; A) c T.`, and: (A + + %(B 7 Mote'

Tir each of these settenpes, tell What substitutions you must make in
'Postulii.tel(b) to get it; and why' these substifutionti are legitimate.]

As o,nr work with sentences a) and (4) illustrates, one way to obtain

9.0
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- '
, . To obtain (3) by substitution in (1), Aibstitiite.'ta - b' for 'b'and 'b' for 'c'.

To obtain 'C + (B A) eg' [on page 681 by substitution in (4) one
must substitute 'C' for 'A and .'B A' for 'T. The first of these
substitutions is legitimate because 'C' is a variable wkose domain is
the same as that of 'A'. The second is legitimate because the values,
of '13 - A' belong [by postulate 1(a)] to the domain'ef the variable 'a'.

.To obtain '(A + S.) + (B - A4,6 g' from (4) one Must subStitute
'A + 1:i' for 'A' ond 'B - A' for '-'. The first substitution is legiti-
mate bttcause the yalues of 'A + fa.' belong [by PoStulate 1(b)] to the
domain of 'A', The reason for the legitimacy of the second substitution
has been given in the preceding paragraph. [Note, as another example,
that these irfstances of (4) are also instances of (5), and that the second
of them is also an instance of the first. ]

In discussing the precedinNtamples it may be well to point out
that ' B - A'' is, 'when considered as a term, an abbreviation of '(B - A)'.
So,' 'substitute '13 - A" is always a short way of haying 'substitute.
'(B - A)" While maiCing the substitution one decides whether'or not4the resulting expsession will be-ambiguous if the patentheses are

- omitted. If not, one may but need not omit them., In ordinary
algebra ohe usually adopts a number of rules.for omitting grouping
symbols. 13ecause the algebria of points and translations with its two
kinds of terms, is more comlex, the only such' rule we adopt is that
for omitting outermost grouprng symbols. [For example, we write (4)
rather than '('A + -1) E g'. ] One who feels quite "at home" in this
algebra might, without danger, omiethe parentheses about 'B - A'
f om each of the two instances of (4) which we have been discussing.

ior,
since indicated additions of point-terms are meaningless, the

zimitted parenthests could be reintroduced in only one way. On tahe
other hand, the expression ' A + 11. + ( B - A)' is or, .will be, once
we introduce addition of translations ambiguous. It might be taken

'for an abbreviation of either '(A + 11) + (B A)' ' A + [ B. + ( t - A)]'.

As.noted in our discussion of the proof of , (a) on page 66, vari-
ables sometimes ocCur in assumptions, and such sentences are not
intended to be understo64 as assertions about all Values of the vari-
ables w.hch occur in them. This other use of 'open sentences requires
a mocUlie on of the substitution rtile. .For tide, see page 111.

r ,

411.

Of

Jo .
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a sentence which is a consequence of a given sentence is to substitute
expressions for variables. Be careful to see that the expression sub-'.
stitutecl fbr a variable is one which refer§ to members of the domain of
that variable. Sentences Which can be ctbtained id this way are called
substitution-irzstances f for short: instances} of the given sentence. Our
first rule of logic is:,

The SutVitution Rule
Any sentence implies each of its subatitution-instances.

As pointed out in connection with the preceding examples, this rulel
411Pis reasonable because of the way we intend to use variables in sen-

tences to express general properties of points, translations; and
real numbers.

Although you shoufd have little trouble in forming instances of a
given sintence, you may need some practice before you fincr it easy to
tell whither a.given sentence is an instance of another. Vor example,
the sentence:

4
(6 Q+(C-D)=PifandonlyifC-D=P-Q.

is an instance of a sentence which' you Should recall. [In case you don't,
look for.it on page 66.1 Show that (6) is an instAnce of the sentence in
question.

One way to fi`nd a "simpler" sentence of which (6) is an instance is to
notice that the variables 'C' and 'D' occur in (6) only in the combination
'C D'. Since 'C D' refers to translations, (p) is an instance of a
similar sentence which has a translation-variable-say, v-where
(6) tias 'C if [or '(C

(7) and only if a. P Q

The sentence (7) is "simpl&" than (6) in that 'a is "shorter" than
'C - Because of this it' is easier to upderstand what (7) says than
what 16) says, and it .may be easier to recognize thatrit is similar to
some sentence you have teen before.

As another example, consider:

(8) B A [B + + B( al ( ) ] - (B +

This might be obtained from another sentence by sub'stitutine$ - A'
for some translation-variable which does not occur in (8). For example,
(8) is an instance of:

(9)
. Att

TC 69

(6) is an instance of Theorem 2-1.
271, *substitute 'Q', for 'A', 'C - D' for
subsiitutions are legitimate, for 'Q' and
domain is the sameas that of 'A' and of
bplong to the domain of

Sample Quiz

To obtain (6) from Theorem
'a', and "R for '13'. These
'P' are variables whose
'13', and the values of `C

Each of the following i either a point-expression, a translation-
.expression; ts. real numbe expression, or nonsense. Tell which..

/1. (R ;) (P + [translation-expression]
(P + )+ (R P) [poin't-expiession]

3. [nonsense]
4. .(a + 3) (b + 3) [real. nurnber,-expression]
5. (P + + (Q + [nonsense]
6. ((P + Q) P [nonsense]
7. (-I;+ 4)+ (P Q) [translation-expre ssiord

'8. (1-; + 5) + 5) [nonsense]
9. (P + (Q.- R)) - (R + 7) [translation-expression]

10. (P + )+ ((P + CI) - R) [point-expression]

4
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Sentence (9) is-an instkice

= (C +1)) -

and this last is an instanc4 of Postulate,2(b):
. . .

(10) ' a = iA a A $ ak

Evidently, t 8) can be obtained froM (10) by substituting 'B - A' ibr
.:(1C and '13 a/ for 'a'. Note_ that in order to obtain (8) the,Substitutions
must be made "simultaneously". If one first substitutes 'B A' for
'a/.in 110), one gets 11 A + (B A 1') If.one thensubsti-
totes + oikfor 'A' inthis sentence, thore-sult is a diffeynt instance of
(10) than (8). Can you tell what it is?

The importance of being able to see that (8) is an instance of (10) is
due to the fact that (10) is a theorem. Since this is the case, af4c1 since
se'nterices imply their instances, it fbllows that (8) is iilso a theorem.
In brief, by .sh'owing that (8) is an instance of (10) [and recognizing that
(10) is-a- theorern I. we hav,e proved (8). As this example illustrates, in
looking for sentences of WhiCh a given sentence is an instance, we shall
tisually be, looking for such sentences which we also know to be theo-
rems [postulates 'included]. For example, 4Ithough +' (A - A) = A'
is an instance of tke yery simple sefitences`B = A', this fact is, not very.
important. [Of what postulate is the.given'santence an instance'?1

Exercises

Part A
For earl, sentence; aecide whether it is an instance of Any of our

Ifourl postulates or of Theorem 2=1. Justify your answers.

1. B -'44 = [A + (B A)1 A 2. A - B = A -.[A--t- (B - A)1: 3. A , + .-, A + c'z:if and only if 4. A + (8 - A) = B if Enid onlyaif, ..

B r A = B - A

7. B A .7
9. (B - A) + A = B . 10. B +z* A +711. and only if

,:Part B
We shall-sometimes indicate an application of the substitution

rule by writing a substitution-instance of a given sentence below,a
horizontal line and writing above the line the given ientence and
[to the right of il the sentences which assert that thg substitutions
performed are legitimate. For example, the llagram:

If a +r = b+ cthena = b. 2 e'gi 3 (.9f
(Sawa)If a + 3 = 3 then a 2.

4.

.4)'The result of first substituting 'B - A' for a in (10) and then
substituting 'B + a' for 'A' in the re'sulting sentence is:

The result of," simultaneous substitutions" can, however, always be
obtained by successive substitutions. For example, to obtain (8)
from .(10), begin by "substittiting 'C' for 'A' to obtain:

(C C

Now, substitute 'B A' for 'ea.' and, having done so, substitute 'B
for 'C'. 'Another procedure is to begin by substituting 'B C' for 'a;in (10). Then, substitute B + for 'A'. and, finally, 'A' for 'C'.

The sentence 'A + (A A) t A' is an.instance of
To obtain this particular instance, substitute 'A' f,or
stitution is legit'imate, for 'A' and '$' are variebles
is the sarti. N

'Answers for Part A
1. Postulate 2(b); 'B - A' for 'a.'

Poptulate 2(a).
'W. This sub-
whose domain

L. 'This sentence is not an insta5ce of any of our postulates [or of
Theorem 2-1],, Since it is -In equation whose sides are transla-
-tion-terms, the only postulate it could be 'an instans.e of is
Postulate 2(b)., And, substitution of 'A B' for 'a' in this
postulate does not yield the sentence in question. The latter sen-
tence is, however, a consequence of Postulate 2(a), since it may
be obtained f-rom the valid sentence ' A' - B v: A - B' by replacing
the second 'B' by 'A + (B A)'. This kind of inference is dis-.,cussed in section 2.04.
Theorem 2-1;
.Theorem 2-1;
Not an instance
nonsense.

'A + S.' for ',13'
- A' for `a..'

of anypostulate or theor , since o'-;; + A' is

Postulate 1(a); .'13+ 1O.' for `B',--Z.Z ' for 'A'
7. 'Like 5,

Postulate 1(b); 'B for a
Like 5.
Frorn its form, this sentence could be an instance only of Theorem
11-1, It isn't.

A

* .
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-says t iat the, concIusion 'If a * 3 3 .then a = 2.' is a con-
sequence or the prenusses 'If + c then u '2 t,"P', and
''3 !Liter we shall - as we' already do ip the statt%niMt of the
substitution rule --omit the 'premisses '2 t. and .`3.t . 4". For, the
present, thc); serve the. useful purse of reminding us, that the ex-
presswn we substitute 4tw a variabl-e mUst refer to things which are
values of t ha ,

It. is uneti p Ul to read the herizontal line in diagrams of
this kind as 'th As antither example, the diagram:

3 A E / A tac
E

. .

indicates the applic:ition of the substitution rule to infer (A
from Post u Late I(u). Postulate lib) is written tii'die right of

Posen late 11a) to indicate that the substitution of 'A + for 'A' is a ,
legitimate one. The substitution of 17 for 13' is legitithate becorise

u variable of the same kind as 'B'

-1. Co ktt this diagram:

2.. For each
postule te
approp

2.04 Equations,

Ouy simplest sentences are equations an MeMbership-sentences.
1.(ir exampk,

'21 +. (B A) 43' is an equation, and
is a membership-sentence. .

B
(SubSt)

of the sentences in Part A which is an instance of a
or of Theorem .2-1, make a diagram whicti show§ the
u.applicati3n.of the substitution rule,

An SSW ts r s i6r Pa rt B .. ..z4 . ,
..!,.

[Diagrams like those clfsPlayed here, and asked for...as...answers,'
are called'infereaces, Although an inference "says" that it§ conqu-
sion follows logically from ifs p.n....misses it,may, of course, lie in
saving' so that is an.inferenee may.be invalid. Most of our rules ot
logic willbe assertions that inferencesof on.e or another form are
valid. The substitttion rule may

-..
kil. into rioTeted as saying that infer-

onces of the form ciiscus§,ed here are valid.
\It seems S'vell at this point.to infris't on studenfs writing the

.,

"auxillary'premi'sses" which incliL e t.he legitinracy af the substi-
tUtions. 'We shall continue doing roughout the .prese,nt chapter:
After this, there should be no da n oinitting'them. 1

A E
.

(A J- A 13 A E
'13 " A *. [A't (13 A)]

...
A "f and only, a = B A A E

A A f if and only q A ) A-

Afa=B if anci only if a 3 - 13 A E T
A .4 (B A) = if and only if A 13 7 A ..,

- _;,
A13 - A c 7 Q * . Pre p c t.,. 8

A + a Ec..6, . $ 6A t. (13' - -Mt..
We shall treat the relation of e.quality [better: identity) as pvr-

taining to logic. What relation iT.is must, then, be ex-plained by rules
of logic, The requisite rules .are'the replacement. 9rilei for eqiations
[page 741 and the introduction rule for equations [page 75]. An alter-
native procedure ,--- adopted in, for example, some algebra texts isto treat ''' as a mathematical. predicate whicl, is, then, c.haracte.rizeci
by postulates. In the case of our languagr as so fax developLecl
we would need ten"s.uch postulatcs:

r`

. A.=
-

A= B .. 'B =, A
(A -. B and 13.= C) -A ' C

1

In English, confusingly enough, one can use 'is' insaying what either
a these' says. The equaliion, for example, can be `1`translated" into:

The membership-sentence can be read as:

B - A is a translation.
In the first of these two sentences the meaning of 'is is that:iris the
same as' or of "is identical with'. When 'is' is used with this Imeaning
it is called the' is' -of identity. Evidently, the 'is' in the second sentence.

. 'does not have this meaning. Whet.' lis' is followed by a phrase of the

B

A 1:3 C C 13

5 :a°

t

A*+a-----Bi- a

Each enlargement of,our symbolism would require the adoption of
additional postulates to further specify the meaning' c)

Our treatment of 'z' as a logical predicate has th e. advantage that
all such sentences wIlich would, otherw.ise,..have to be adopted as
postulates become, essentially, logically valid sentences. `More
precisely, they can be derived from "closure postulates!' like Post
late 1 by the use of our rules of logicA [See, 'for example, .the d
cussion of (4) on page 84 , as wq11 aW TC 84 and TC 85(1). ]

TC '72 (1)
Note that our use of ihe word 'term' fbr expressions which have

"things" as values as opposiid, for eNample,.to expres.sions Which
are sentences --'-- is broader than the.usnal use of the word in elemen-
tary aleebra. Th. broader uBage is -convenient and is customary in
discussions of log ci?"9 ,

. .- 1 i r .

0
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form' 'a so-and-so', 'it is called the' o member.ship. .1 is in ordvr tot
'avoid this,sompwhat ambiguous ue Of 'is' that we tise in place of
the 'is' of identity and :E' instead of the 'is' of membership. In particular,

mean:; just what Ats the same as' does.
For an eqiiation to make sense, the expressions which flank the

Ithe "sides" of the equation ! should, refer to the same kind of thing
Hmunbers. poiots, or translations., Expressions W4ich refer to things
are cal leeterms ---lor example', "u 2' is i 'real number-tk:em, 'A + a
is a lx)i W.-Lynn, and 13. - A' is a translation.term. !Also, 'a and, '2'
are reiil nUmbet-terms, 'A* is a poiRt-term, .and 'a' is a translation-
term. I F6rmally, illi,equation is A sentence obtained by thinking an '='
'with terms which refer to the same kind-cif things. Note-that, by
POstulate 1, both parts of Postulate 2 are, equations.-

. Here is ao example of how 'an equation.may be used in a Rroof/ Our
problem is to prove:

4

If u - 9 the; a

. 'This desired concliision ma'y tuggest the cancellation principle used
_At las an example in the preceding,section:

(1 If b c then a .= b.

We `knowby the substitution rule that (1) inip.ties the instance:

(2) If a +- 4 = 13 + :4 then a 13;

Now, t-2) is very n,?tich like the sentence we wish to prove. All We need
do to getiour conclusion. is' to_replace '13 (2) by '9'. if we knOW
'that 13 + 4 is 9 then what (2) says about 13 + 4.rnust be "equally
triWp19. M'ore formally, .the eqvation: '

(3) .. 7
10and (2). her imply:

(4)

j3 + 4 = 9
-

r If a 4- 4 = 9 then a =: 13.

So, since (2) is a mnsequerice of (1), (4)is Aonsequence of (1) and (3)

equation
together.

An argument like the preceding is equally valid in case
corresponding to (3-) contains variables. To illustrate this e proveA
cancellation principle for our algebva of points and translatiOns: 1

If A + (14 A + b)then = b.

Tc 72 (2)

Note,' also, that an equation is, in this text, not merely an
flanked.by, terins. The terms Must be of the same "kind". ',For.
.example; 'B A C + iS not 'a false sentence; it is, rather, a
meaningless expression.

The intuitiv'e justification of the rrplack!ment rule,as it is-applied
in the argument involving sentences (1) (4) is very simple. (We
shall discuss' (h) (7,) later.] This justification rests on the insight
that from a sentence say, (3) which says that a fir.st object is a
second object, and a scT-itence which a.sserts something about the first
object, one may reasonably infer a senteince which says the same
thing about the second object. Frem 'John is the boy next door. ', and
any sentence which is explicitly ;about John We. , which contains
'John']: it is legitiMatento infer the .corresponding sentence which is
explicitly about the boy next door..

,

Npte that the last-mentionrd inference is valid.whether or.not
John ac,tually i the-boy next door, and w.hether or not what is said
hout Kim is true. The validity ,of an inference 'depends in no w-ay on
the truth of its premisses. What the validity of an inference does
depend on is the forms of its prernisses and its conclpsion. lkhat the
validitY of an iInferenceiguarantees is that its conclusion is no whit -
more Oubioudthan the rnost,dubious of its prernisses. As hmiting
cases, if the prernisses-of a valid,inference are true that is, are1

fdubitable then so must be its cOncluSion; and if the conclusion of
valid.inference ls farse utterly dubiods ; then so'mu_st be at least.

one of its prennis§es." This latter remark justifies the rnmon kind of
ar,gument in which one establishes-the falsity pf a sent nee by adopting
it as a pren-iiss and deriving,, from it and other premi es which` are

, true, a cOnelusion which its" faitte. lExample: "You.s y at Johnois
the boy next door. Well, we both know theit.ijOhn has a bicycle, 13iit.
it's not true that the boy next door hasra bicycle," (As otten happens,
the speaker here assurnes that his listener will-,supply the.conclusion
'The boy next door has a bicycle.' which is implied by his assumptioos.)]
df more mornentifor us( is the type of proof proof by contradiction
in,which one shows that. a sentence is a theorem by deriving a contra-
diction from ptemisses one of which is thr, denial of the sentence in
question while the others are theorems. The justificatitm of this kind
of proof depends on rules of logic which will be discussed later. We
mention it here, however, to ern'phasize the importance of recognizing
that the validity of an inferenceis independent of tlie "acceptability",
in any sense, of its premisSes lIncirlootally, proof by contradiction-
beais no very close analogy to argurnentS like tbat in our example con7
cerninf ,tohn arid his bicycle. Arguinents of this latterlype are of the
form: If it weAe thecaie that p then it would be the c,ase t'hat 14; but,
it isn't. An aVempt to.give a similar form to proofs by conttadiction
;leads to:' were a theorem then this.resulting'contradiction wot4d
be a theorem; but no contradiction is a theorem, ven if con
vinced that one's postulates are cons-istent [So thet no'contradiction is
a, theorem], all that an argument of this form shows is that .--?' is it)t
a theorem. It is syldom the case tharoAe can argue korn this, that 'p' ,is a, theorem. Proof by contradiction requirep, for its justification,
stronger,rules 'of logic than those whie'h are -sufficient to justify argil"-a .merits of the previous kind. )



-T

2.134 Equations 73
do. ; . .

!This-. theorem: says that. for- any.pOynt 44, if the image of A under a
. translation ais the same as the imag'e of A under a translat hion b t en

.. . .
a, is the same translation as b. In other,words,there is 4t. most one

_ translation under which a given point ht, :,s&iven image.] We have
already proved a theorem, which looks gonieTh.ng like this: It ig--(b)
o'n page 667 . - -_. t . ..

.. .

.,...

We coult:l*get
'A +
stitution.1 Sb,

__. .

,. , If A + a '=. V then- u ,= B A,
.

, ,.

i ,

. ..
. .

a start toward the aesired conslusion by substituting
11),tulate, lib). asisurel us thatrithis is a legitimare sill).-
we know by the substitutiom rule. that (P)-imnlies its

,instance: 0 .

(5) A --- A + then a = h)-

Just as in tke preceding argument, the equation:

(6)

Vc,c1 (5) together imply;
A

(7) If A + 1;then a = b.

So, since (5) is a consequence of (b), (7) is a consequence of (b) and (6)
' together. lin fact, (6) is an instance of Postulate `(b) and, as we have
seen earlier, ( b) is alsd a consequence of this postulate. 8O;(7) is a con-

. sequence of Postulate 2(b).1
The justification we6gave for inferring (4) from (3) t;nd (2) and for

'inferring (7) from () and (t) can be formulated as a rule of logic. Be-
fore doing so, it may be well to note a slight difference between these .
two inferenges..In the first caSe we replaced an occurrence of the left
sidi of the- equE;ition (3) by-its right side in Sentence (2). This is illus-

.,
trated' in the following diagram:

13 -1- 4 :=7,9 If a + :4 °= 13 + -4 then a =
If a + 4 = 9 then a = 13 4..)

In the second case we replaced an occurrence of the right side of the
,quation (6) by it's left side in' sentence (5).

= '(A Vr A If A a',= A + r then a = (A ,7)-3-) A
If A+c=A+.-g. then ---a4*-=

Tc

S.

. '.'i ,.
.Although your'students are not likely to.raise'titais issue, you

should be .aware that the justification for_ the use of the. rpilad-ement
rule in tht ai.gument involving.the sentences (b) (7) is sornewhit
more cOmpligate.d. )Vthough the sideS '2 + 3' a / d '5' "of equation (.3) -

are "names tor the same tMrig",,,this,;is not Oat case for the sides '5' ,

and alA".t- 11) A' of equation (6). Neither of these exprebsions is a )1
name for anything: [-The common explanation of equality inwhicb
explanatIon, for clarity, 'We insert,serni-quetes is:

:au = b' means 04 tor', is tre 'if and only in'
'aa' and_ ab' are name's 'for elle, same thing.

- . .
With or wi,thout serni-quotes,' this is.clearlok nonsense.], Nevertheless,
if we txeat, (6) as an asse-Ation then what it asserts i'a.r.that whatever
values are chosen for '5' and 'A', the corresponding values of '5' and
'(A t 13) - A' are the Same: So, from (6) and any gentence say,
(5) which asserts something about all values of one of these terms,
we may infer the sentence .r in this case, (7) which says the same- . athing abo4t all values .of the'ether.. - ., .

As before, the validity of the. inference from (6) and (5) to (7) is'
independent of the "acceptability" of its.preinisses. Since in this

',particular...a..rgument, the premisses are theorems, the,conclusion is
also a theorem. And, for our purposqs, theqrerns happen to be accept-

able, In "most" app14,cations of the replaCethent rule it.Arill not, how-
'ever, be the case that the'equation premiss is an "acceptable" sentence.
Fog, example, recall the argument given as a prooi of the antence (b)
on page 87: .

Assume that A.+ -a' = B. Sinde by Postulate 2(b),
, -a'. = (A+ -1) - A it follows that = B - A. Hence,

., if A +,; = B then a = B A. i

.. .-4
The use of the replacement rule occurs in the second sentence oi this
Argument.. The validity of the inference from `., + a 7-- B' and Postu-

, 'late 2(b) to '-a". B - A' may be justified "ntuitively just as, in the
paragraph, we justified the infe ce from (6) and (5) to

(7 , Here, 'however, the "acceptability" o the equation premiss and,
of the conclusion are a different matter. We dicate Luir unwilling-,
ness to accept everything that the equatio.n a = 'B' gays by using
the phrase i' Assume that'. Since, however, the inference is valid even
in the case of points and translations which do not satisfy the premiss

*a2A + a = B' we are iiitively justified in cfaimin that the final
7Conclusion:

Lf A + =.B then -a.6 B - A.
is satisfied by all points ana translations [strictly, by ail which satisfy
Postulate 2(b);-1;rut, this is all]. In ihort,' sra9ted the validity'of the

.,,aeplacemenr441.4erence, the acceptability of the conclusion (b) derives
solely"frorn die acceptability of Postulate 2(b). [Formally, the
validity of the inferenc'elrom Postulate 2(b) to (b) would be justified
brthe deduction rule qf section 2.06. The preceding may be intei-
preted as an intuitive justification for this fairly representative
application,of the deduction rule.]

.

.
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lln each cave, we "chose sides." in such a way as to arrive at the desired
result. J Since has the meaning of 'is the.same as', one procedure is,.just 'a-,4 logical as the other.

Another point of-great importancets that with igisklnd of -argurnent
we do not 'need, to replace.one side of the equation"by the other every-
where it occurs in the second sentence. For example, using left-hy4ight
replacement, it follows from (6 and (5) th ,

.a. A +btheno,(A + [(A - A.

Note that we chose to replace only the second occurrence of in 51
by the right side of 16). Which oecurrences- we replace is determined
by where we wish to arrive.

We can now state the first of two rules dealing with equations:

I The Replacement Rule for Equations
Given an equation and a second sentence, if either side of

the equation is replaced by the ot1.4r siae somewhere in the.
;. second sentence, the. resulting sentence is a consequence of

the givep equation and.sentence.
4

.[When, in applying this rule, we replace the left side of. the equation. 1

by its right side we say that we have uspi the left4)y-right replace- .
ment rule.1

To arrive at our second'rule, of logic for dealing-with equations we
need to Irk at the kinds of reasons we may have for believing what a
given equation says. As an example, consider Postu1ate42(a):.

A + - A) .=-- B

This equation is our way of saying that, for any points A and B, the
image of A under the translation from A to B is B. Our belief in thiRia
based on our knowledge of translations. No one who did not know at
-least a little about what translations are could believe this. On the
other hand, consider the'equatiOn:

(8) B -,A B A
which says that, for any points A and B, the tranilation from A toB
is the translation from A to B. In order to believe this all one needs to
knpw is that there is something which is called 'the translation from A
to if-he doesn't need to know any propertfes of translation, or even
,what a translation is. In short, we are willing to accept (8) just be-
cause we know that '13 - A' is a term and,that means what 'is the
same as' does.

; e
2
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(f)

k.

fg, even simpler than (8) is:
.

CI

4 ,

.2.04 Rquation; 75,

Our grodnds for acil,pting this are pumly i!-; a variable and
rneens what 'is the .sameeas' does. Sentences which, like .t) aria

(9), are acceptable on purely logical grounds are called validliwntences.
We can now state' our second rule for equatiqnS:

I
The lntroduttion Rule bor .Equ.ations ,

1 The equations .,-% 4 A'; 'a - a' , and 'CI- = (1' are valid sentences.

[The name A this rule of logic iS meant to remind you that the rUle
tells you of eilu4tious which you may introduce into any argument

: without making any extra-logical commitments.'
.1, You will learn more Lout valid Sentences in the, next section.

.

Lie

Exercises

In order to say that a sentence follows logically from One or more
sentences we shall sometimes write the first sentence underneath a
horizontal line and write the others above the line. For ex4mple,
the-diagram: 4

2 3 = 5- If a + 3 = 2 + 3 then
If a + 3 --A-5 then a 2.

says.that the sentences abo4.thle horizontal line imply the sentence,
below that line, [You may, think of,the horizontal line as standing for
tht word 'therefore'. ] The replacenitnt ,rule for equations tells you
that what the above diagram says is wed. [When such a diagram is
meant to illustrate the rephicement rule for equations we write the
Yequation". on the left and the "svcond sentence"- which may, in
OF-v(1a] cases, also be an equation-on the right.)

You are to complete the diagranis -in the fbllowhW exercises cor-
rectly by using the replacement, rule for equations.
Sample 1, 'a b = c c > c 2

r

DiscuSsion. Since the right side of 'a - b c' occurs twieL in 'c > c
- 2' we can apply the right-by-left replacement rule id either Ofthree
ways to arrive at a conclusion which is a consequence of the premissee
'a b c' and 'c > c .- 2'. We maY replace, in 'c > C 7 2.',

the first 'c' by 'a - Or

4 nswers.

freOacing the first 'c'l

the second 'c' by 'a -b', or
both'.'c's.by 'a - b'.

a b =c c>c -
a - b > er- 2

The,"more" thatis to IN. learnmi about y.alid 'sentences is that
sucih sernences.rn.cy be used as premissee of an argument and then
"Porgotten" \vhen reportijrg the resul. More explicitly,

a sentence.which is a consequence of given premisSes,
of which some are valid sentences is also a consequence
of the other ["invalid's] premisses, alonu,

*

The rule "for ignoring valid premisses". whiCh has just been
stated can be justified on the grounds Of some underlying rules of logic
which we do not discussin the text. For cornyleteness we state ther'n'
hcre, and illUstrate their use; d".

(C1) A sentence is .a cOnseqUence of 'any set'of sentences
to which it belongs.
A sentence which is a consequence of a set of sen-
tences, each of whose members is a conseqUence of
a second set of sentences, is, itself, a consequence
of this second set of sentences.

In explanation of these, "consequence" is a relation between sentences
and sets of sentences a given sentence may [or may not] be a don-
sequence of a giver; set of ,sentences. For example% a sentence is a
theoremif and only if it is a consequence of the set ofvostulates'
whateveF this set may be. (C1) and,(C2) are statement's concerning
this relation. When supplemented by more special rules, such as the
replacement rule for equations, they constitute a definition'of the

.word 'conSequence'.
Lf we talc,e seriously the definition according to which a theorem is

a sentence which is a consequence of the set whose members are our
postulates, it is (CO which tells us that each postulate is a theorem;
and'it is (C2) which tells us ,that any consequence of given theorems is,
'itself, a consequence of the postulates and, so, is '4 theoreM.

For convenience, .we define, in terms of 'consequonce' tWo uses
of the word 'valid':

(V1) A valid sentenge is one which is a consequence of th
empty set [of sentences].

(C.2)

'(V2) A valid 'inference is one whose conclusion is a don-.
sequence of the set coneisting of its premisses.

It follows, for example, ,tliart=14

and

Any consequence of .[a.set ] valid .syntences
, valid sentence.

Z. Any inference of the form
f

is 4 valid inference.

[The first,follows from (V1) and (C2); the econd, from (V2) and
(C1).]

To obtain the "rule for ignoring valid premieses" we begin by
'noting:

_
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3. A, sentence which is a con4eqicitce of a given set of
sentences consequence of dny ?et of sentekces
.which las the ,giyen set us a subset..

.[ThiS fohlows from 1.C.) and ((.,),. riy (CI), each.member ot the iv
is a.Consequence of tht "larger" set. So, b:z seritenc

which is a confle.citence of thc given set aconsequence of the"larger" set.) Froin this and (V1) it follows at once that
4, A val'id sentenci; is a cOnSequence of any' set pf. sentences.

'[For, ,th empty set is a subset of Any set.] Finally,
5. A sentence which is a consequence of a given set or.:

sentences is also a congequence of the subset consisting
ofthe plernhers of this 8e.t, whtch are not valid sentences.

by (CO, each Of the.non-validineinbers olthe set is a consequence,
of the subset of all such members; and by 4., each of the valid rnernbers
of the set is also a consequence of this subset. So, by (C-4, since the
given sentence is ri conSequence of the set in qUestion, and each member
of the set is a consequence Of the subset, the given sentence is, itself,
a consequence ,of the, subset. 1

NAL

Oro
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*S.
1 ,a b > c 2irepiac ng.tne secona J - 2

a 7 b c c > c-

{repLicing both 'e's.1 b (a - -,2,
Retriark. Diagrams like th-ese and those of Part .13 on 'Page 70 ate
called inferenee$. An inference whbse conclusion is a conseciuence of
its premisses is said ti; be ()aid..
Sample'2. B - A + cz

,
C (A + a = -(B - C)

Diseussitm. The Aesired conclusion contaifis .hoth the left side 'B' of
The equation. as well as its right side 'A +-J So the conclusion can
be obtained from the given equation and.either one ofthese two possi-
hle second sentences:

la) (' B -'C)
1?) C (A ) al = -1'1A +al -'(;')

(If you use ,( a) you will use tile left-by-right replacement rule to deri,.;e
the conclusion, and it ye use (b) you will use the right-by-left re-
placement rule to derilie tconclusion.J

B - .4 + a -C B -(13 - C.) [using (a) as
AnxivetN

(-C A .-+ =,-(B C) a. premiss]
B A C tA + -((A + - C) [using (b) aS

.

C (A + 0).= a. premiss]

1. A + B (A + al (B /.
2. _b+e=e+

3. B - A =
A + a .= A + (B A)

4. Al N M is the, Midpoint of 74g.

5. M is the midPoint, of:M. The midpoint of 'kg' belongs to 74-n.

B A If A + A + ;then = (A+-
A + (B A) = B only if B - A = B - A.

gi (A + - A' = a If + -&5 -A=B-AthenA+B.

9.-cs+b=c+d c+d<0

10. A + (C - .A) =C v
A+.(BA)=B

TC 76

Answers for F.x;;.reise-s
[The rulesaccording to which the "equation" prexniss of-a, rplace-

K,rnent rule inference is to be written to the left of the "s6cond" premiss
is adopted hPre..merely to make it easy-to distinguish one premiss from..

both are -equatIons. Tilere is no logical'riecessity for
such a rule, but you-will find it a ponvbnient one to adhere to. ]

-.
1; (A-; a) - [(A + a) + a] E T; right-by-left replacement rule

or: 13 - (B + a) E 7; left-byaright repla. ent rule
2. a + e c + b; left-by-right replacement rule
3.. A + i A + right-by-left replacement rule

or: AA + - A) = A + (B.- A); left-byright replacement rulie
4. N it; the midpoint of AB.; left-by-right replacement rule
5. M belongs to AB. right-by-left replacement rule, with the word

playing the role of. '=' in the first sentence.
5

6. There are seven [25 1] possibilities, each involving the use of
the right-by-left replacement rule. The.possible answers are:

(1) If B = + -a' theNi = (A + )-
(ii) If A + %-= B then A`-= (A + -a') -

(iii) If B = B then ,A = (A + -1) - a,
(iv) If A I- = A + -S. then A = B
(v) If B = A + -a' then A a".

1(4), If A f B t'hen A = B
,4Pi B = B then A = B -a%

7. TIte,re are seven possibilities,. involving the use
by-r.ight replacement rule. The plisible answers are:

40'(i) A + -a.1; B only if:13,- A B A.:
(ii) A + (B -A) = B only if -a" =.B - A..
(iii) A + (B - A) = B only if Br-.

+7,4 IC B. --A.

(.,) A + B only if A

( i ) A + -a" = B only if = a' .

.(vii) A + (B.-.A) = a".

Using the left-by right ;replacement rule, the
,

If -.41 =B - A then A + = B.
Using the right-tr.left replacement role, thie thr
ansWere are: .

(i) If { T.[(A + - A]} - A .---

(ii) If. (A + -a') - A = - A then

of the left-

answer is:

A+ [(A + 7 A] = B.
(Hi) If {A -EPA :4- - - A = B - A Oen A + [(A + - A] =

a

.4

..f=-,!
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2.05Conditional SentilnOes and Modus Ponens 77 ,
.

ntences and Modus ponens

In order to say ore cvmplex things than we couid by using only
,equations and me rship-sentences, we need waYs of coristruCtifig
complex sentedces. On ucji ay is by using If'..and 'then':

(a) ' If a+/=. B "A thenA. + a B. '
t t

Such seritenceS' are called conditiQnal sentences. In such a sentencel
tOe sentence between 'if' and 'then'. is called the antecedent and the
sentence which follows then'.is called-the comequent. Here is cin ex-
ample from everyday speech:, ) .

(I) If Bill lives in Princeton then Bill lives in New JerseY.

Just, as there are two rules for equationsthe replacement rule
and:the introduction rule which tell yr all you need to know
about so there are twp' rules which tell you all need tp
know about 'if . . then One of these rules tells how conditional
sentences are used in arguments; the other tells how a conditi9nal sen-
tnce can be deduced from given premises. In this section we shall
discuss the first of these 'two rules.

To begin with, consider the folloWing conven;ation:
Jack: Can you tell me in which sta.e Bill lives? )
Jim: Well, Bill lives in Princeton. And, if Bill lives in PASSon

then he New Jersey'. -

Has..Jim 'given Ack enough information to answer,his question? If
'your answer is 'Yes.' then you know what this section is about. You
probably agree that the answer:

A

(2) Bill lives in New Jersey.

follOws logically from 4es in Princeton.' and (1). If asked why,
you might answer that it does heca4se that's [part ofi what 'if. .

then means.
NOtice that wei.do not claim that (2) is a coitect answer to Jack's

4uestion. Jim may be mistaken in sayingthat Bill lives in Princeton..,
HeApaight even be mistaken in asserting (1) Bill may live in Prince-
ton, Illinois; But, whether or not Jim' is mistaken in his facts, (2) does
follow logically from his two assertions; and if Jack agrees to their'
then he certainly should accept (2).

As the preceding argument illustrates, from any sentence and any
'conditional..sIntence`which hp this as its antecedent, We may validly.
;infer the consequent of the conditional sentenCe. More brie4y, we can

-Anevvers for Exersises [cont..]
9. a b c. 0; right-Vy.-left replacement rule

10. C left-by.-right replacmcont rule
or; "B C; righi-by-left replacernent(rule

TC 76 (2)
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Figures used to exhibit the form of an inferenc,e may be called
inference schemes. They may contain loops, like the first such figure

--or\ page 78, or "schelnatic letters", usually, 'p', See, and 'r'
nice the one in the bo d saternent of modus ponens. ['Schematicletters' rather than 'v 'ables' because variables must have values.
The schematic letters, are place-holders for sentences but we [per-
sonally] are not aware of entities which, being- denoted by sentences,
could be assigned as values of these letters. Those who believe that 'there are entities say, "'propositions" which are denoted by
sentence's may properly call our schematic letters 'variables'
say'propositional variables'. ] ,

Experience reveals that students are not inherently sensitive to
the sentence patterns in the inference scheme for modus ponens. This
may, in part, be because the meaning of '1,f then .' in ordinary
speech.varies so much from one sentence to another that it is not prac-
ticble to single out a component of the menirkgs of such conditional
setences which is due solely to their ''conditionality". In mathema-
tical reasonIng, however, there is such a component and it is just this
which is specified by modus ponens and the deduction rule of section
Z.06.

e. *,
Although there is a sense in which carrying out an argument with-

out paying attention to the total meafiings of the sentences one utters isa sterile pursuit, it is perhaps impossible todevelop a critical under-
standing of logic in any other way. One needs to become 'aWare of the
fact that the validity of one's arguments depends solely On the structure
of One's sentences and not at all on the meanibgs of theeextra-logical
word's which, by sheer bulk, are most prom.inent. For validity it's the
little words* 'any', 'if', 'then', "'not', etc. which colint. It is only
once one has a firm grasp of this that he can argue logically without

_attending to the logic_of his argume.nt_to_ an_extent detrimental to its
c ontent.

*-

The exercises are intended to focus a studeht's attention on the
t .pattern.
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say that any inference of the form:

is valid rth'at is, its conclusion follows froM its premtissesl.
.

STince, in an argument, we can use a conditional sentence to go fro n.
the antecedent of this.sent'ence to its consequent wc;thall, write a con:.
ditional sentence by writing an between it4 antecedent and its
.consequent, For .example, instead of the sentence (a) we- shall write;

-(3)NAir46
A A.+ 13

Also, in writing about different kinds of inferences, if is 'easier to
use letters say 'p and V- as place-holders for sentencesinstead of
the frames which were used above.

, We can now state our IfT414<ille far conditional, senten eS. 1We give
it its Latiti name.

Modus Pollens
Any inference of.the farm:

P P
is valid.

ExerciRes

,Part A

.

s t

TC 78 (1)

*

One ca,uticm is in order as to reading eoniditional sentences [and
.sentence schlimes]. It is very tempting tvoread 'p q' as
implies ce. "Sue.eumbing to tbis temptation has unfortunate const-,
quences especially as concerns pedagogy. To see,what these are,
note, first, that,the ' is [like the phrase 'if ... then a
conjunction, and is used to Fombine sentences to form another sentence.
'In contrast, 'implies' is a verb; By analogy, if sentences were naxnes.
of Appropriate objects as; for example, numerals are names of
numbers then could be thought of as an operator used to
refer to an operation on those objects -- just as '+' is an operator
uwed to refer to the operation of addition.of numbers:, In contrast,
since 'implies' iS a verb and, sol presumably refers to some relation,
'implies' -must be analogous to a predicate for exaMple, to '>'.

In addition to hinting that `if then ' and 'implies' perform
tiTfferent functions, grammar can suggest what kind of,relation it is to
which 'implies' refers. As a first example note that while the sentence;

(*) If it is raining then the sky is dark.
it at least grammatically correct, the sentence:

(**) It is raining implies the sky is dark.
`begs for at least one and, better, two 'that's:

irLiIn this age, 'implies', refers to a relation between the "facts" which
are referred to by the nou.n-clausee 'that it is raining' and 'that the

. sky is dark'. One might then argue for the e'xistence of a relation .

among "facts" whatever.they are to which relation the word
'implies' refers. For our purposes, howeVer, it is more lielpful to
use 'implies' to refer to.a relation about whose existence there is
no question among sentences. With this meaning (**) should be
reformulated:

'It is raining.' implies 'The sky is dark.%
[This sentence is certainly false but, like (*), is grammatically.

correct.] .

We can now see cliaarlir yihy, ip spite of one's grammatical t

instincts-,7-one tends toread (-=:" as 'implies% The reason is that
.

.

.

That it is raining implies that the sky is dark.

Copy ea4kof the following exercises and write (below the horizontal
bad the conclueioii which can.be inferred from the given premisses
by modus ponens. I If no conclusion can be reached by rnodus ponens,
say so.]
4, . - Mary-has a dime

Mary has a dirne.- then Mary,,has mare Money than I have,

2. Charles lives in If Charles lives in California
then Charles lives in theUni ed Staies.

3. Charles lives in If charles lives in California
the United States. then Charles lives in the United States.

4.B-A=B-A B Ad= B - A -- + tg - A) --43

.a+3=5 a+3=5--oa=2

,

a sentence of the form:
`pt' implies 'q' c--

is true if and only if the corresponding sentence of the forrn

is logically Valid.
[In detail,-if a conditional sentence is valid' then. by modus ponens and
the rule for ignorng valid premisiies, itis ,antqcedent, by itself, implies
its consequent; conversely, if the latter is.the,9a:se then, by the deducl.

giirule, the conditional sentence is $alid: ]
The pedagogical coniequences.Of reading ' as 'implies' are. .

,
now eaSy tO anticipate.

, Suppose, for example; that you illustrate
. <
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r
-.. 4

modus ponens hy sov;tRo.p, soinething in this farm with ',p' 4nd
.....1.04eplac.ed bY4ome well ,chos4..n sententi.e.s}:

, Togethq r, 'p' and 'p impl ies q' imply .'q' .

Clearly; with yoUr two.use of iny you have at leaS t given yourstudents sorinething to puzzle over. F.N.,en if you are careful to stay outof this hole land qle deeper one we shall next point outh students who
have c+143)e to read as 'implies' are likely ta stumble into it
by th41SIselves.

T',..;42. "deep hole" has to do with the othex basic rules for vn-ditiotritlSenterlo s :--- the deduction rule. A special case of this rule
may be formul,ted.correctly by saying something of the form:

It 'p impi ie q then 'p q' is valid.
Somewhat more freely put:

We can prove 'p q' hy showing that 'p'
implies 'q'.

Exercise: Reread the preceding sentence, saying 'implies' %Olen, yotieget to the

Moral: Don't say `iMplies' when you mean 'if then ' [unless
you are talking with experts who are.beyond danger of being confused
by this usa.ge

4Answers for Part A
I.

.

Ma.ry has more money than I have.
Charles lives ihe United States.,

3.. no conclusion See discussion on piige SO.
4. A + (B )3

5, a =

P



7. a =

8. a =

and b

9. A (le

10. + a B

2.05 Conditional Sentetices and

5 = 7 (0 = Wand + 5

Modus Ponens

=

79

= 7) + 5
7.

8.

9.
10.

11:

b and b = c a = c

a ---*A+a= B

B A +

A +-a-. B

12. is a function f is h function -0 f,is a set of ordered vairs

13. [is a set of ordered paiti f is. a function is a set of
ordered pairs

..

Pait B. ....
.

-

In each of the following exercises, supply the missing premiss
[if polssible) so that the anclusion follows % rom the two premisses
by modus ponens. [Follow the pattern give in the statement of
the rule.] .

.. 1. Harry weighs 100 pounds.
t. ,. INT weighs more than klarold. t

2. a + b = 0
a =

3. 2c > 0 c >.
4.20

2 > 0
5. As a one-to-one function

fhas an inverse
6. a + 2 = a > 0

. 3 0
7. a + 2 = 5 a > 0

8.B=A+Z.
Bvr A

9. (A QB and.,a e ..10 a c
,

10.
a = B - A

Part C
1. Make an instance of:

"

Tc 79

a + 5 = 7

no conclusion [Using angther rule, "eitpartation" in addition t6
rnodus ponens, one may e,onclude 'b = c a = c'. $ee
Exercitie 6 of Part C on page 101. j
no conclusion
no conclusion
A + = B

s'

12., f is a set of ordered pairs
13. no. conchtsion

Answers for Part B
If Hariy weighs more than 100 pounds then Hari}, 'Weighs moire
than Harold.

2. a + b = 0 a =
3. tc > 0
4. 2 > 0 2 > 0
5.4 f is a one+.to-one function f has an inverse
6. impossible
7. a + 2 = 5; a > 0

r §§ B.= A+1 15-31C=-ap
9, A C B and a E A; 'a E B [This may give' students some momentary

difficulty because it is a sentence about sets. 'A' and 'B' are
variables for sets.

10. = B A [For a correct answer, fill the
blanks with copies of any sentence you,choose.)

4

Answers for Part C
1. (a) = (A + P + = -A40-r or

AIL+
B - A = B
23 - A = A - B .144F---"B (B - A) A

4

vt.

a=-B-A....-*A+C;=B

coverntg c, A + a, and 13; (b) concerning A, B, and B A.
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.,-?.. Make an instance of:
,, ... 2. (a) (AA + - 13 4.'a -= B A

*A + -a. -= A + ; v=z. ; = (A + ;) - A. .. -.(a) concerning A + a, A, pot a; (b) concerning A + a, B, and a. (b) (A + ;) + ; = B =. ; = B (A + -a*)

* ,

Coniider the inference:
If Charles lives in California
then Charles lives in the..

Charles lives in the United States. United States.
Charles lives in California.

People sometimes make the mistake of thinking that inferences like
this are Valid. Of course, they are not. Even if the sentence 'Charles
lives in California' happens to be true, it doesn't follow from the given
premisses by modus ponens or by any other rule of logic. [We hope you
didn't make this mistake in doing Exercise 3 of Part A..If you did, you
had better cheek your ansWers to the other exercises.]
Earlier, we saw that the sentence:

(a) If B - A then A + = B

is a consequence of Postulate 2t a) and that:

(b) if A + a B then a B A
is a consequence of Postulate 2i b). Looking again at sentence (a) may
suggest that it should be possible to reverse our steps and derive
Posti4te 21a) from (a). The sentence (a) and Postulate 2(a) seem to say
about the same thing. [If you think you see how to derive Postulate
2(a) from (a), write down your argument. Do you_ need any other
postulate as a basis for your argurnentl?}

Actually, it -is possibleto, show-that Postulate 2(a) iSa consequence
of sentence (a) and another poitulate. Here's how:

Since B - A is a translation it follows. from (a) tliat

(4) if 13 A B - A then A + (B

(t,) B - A *- B - A any traiiilation is itself]

it follows that'

(6) A 4- (B A) B

*
, One who acts as though some inference of the form:

q

is valid is said to have committed the fallacy of asserting the
consequent.
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[Recall that asserting la) *means that you are willing to accept any
instance of (a). So, to infer (4).from (a) all we needed to know waS that
14) is an instance'Of (a). But, to know this, we had to know Postulate
1(a). It is logical .that 16) follows from 5) and (4) because thisis part
of what wemean when we say 'if . . then The sentence (5) is,
itself, a logical assertion to make, since anything is the same asit.self

but, we need to know thatB A is a "thing'', and Postulate 1(a)
comes in, again., here. Since the assertion 'any translation is itself' is°
acceptable just because of what we mean by the word 'is', it is now
to sa'y that we have shown that the 'conclusion (6) follows logic
from (a) and Postulatel(a).1

Now, trhow that the sentence tt)
nplieS Postulate 2( b).
We now have enough fules of logic to make it worth whilelo analyze

the argument given above. What we did there was rto show that
Postulate 2(a):

ether with another postulate,

A +. (13 A ) B

could he derived by starting from the sentence:

(a) B A' +

Oui argument for this amounted to noting that,, by the substitution
rule, the inference

r

a BLA----0A+u--B B-AE,/
B A B - A A + (B - A) B

is valid and that, by thi; same rule, the inferencei

a u B A' e

B A --- A

is valid. Finally, we noted that, by modus ponehs, the inference:

A + 1/3 44.1 B

is valid. If we fit these valid inferences together.we obtain:

a a B - A 13-Ae,.(7

6
41,
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The expeeted der vation of Postulate 2(h) from sentence (b) and
Postulate l(b), asked r on page 81 is:

Since A + is ajnt it follows from (h) that a.
A + a = A .4.. a: then (A + 1,),- A. Since A* a =
A + 2.: it follows that a (A:+ a ) A.

will be pointed out later iir the text, the proof of TheOrem
two derivations just given show that .we might have adopted
n 2-1 as a postulate, in place of Posturate 2, and still have ,

same theorems.

AS
and the
Theore
had the

For a discuSsion of a derivation like that io the text, see the dis-
OUssion, below, of the answerifor EA-ercise 3 (on page 83).
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This final figure. shows just how we went abdut it to deduce the con-
clusion. 'A. it 43 A) B' from the sentence (a) and two other peemis-
ses, a and 13 A t .1'. At first sight,,it shows that Postulate Da)
-is a conseqtience of,these three pr&nisses.

Looking 4 the premisses of this deriVation more closely we see that
the premiss `a cz' is a valid sentence. (What rule tells you this?)
Wriat this means 'is that we would loe willing to accept the sentence
as- u, just because of what we intend to mean by no matter whiat

. translations or whatever -L we were talking abotit. [This is the 5ame
sort of reason fbr which we accept the last-ofour three inferences -just',

.because of what we intend to .mean 1:3;/ ' '.1 Since, the acceptability,---c)f the, premiss a d is a matter of logic - rather than, sa,E, of mathe..
,matics we shall ignore this premiss and say that the diam above
shows that. Postulate 2(a) is a consequence of (a). and Postulate 1(a),
alone, If we wish'to say why the'diagram shows this, we Can Say that
it'does so by virtue of:the introduction rule fo; equations, the substitw

oWin rule, and. modus ponens. .

The status'of the premiss 'B A 6'7: is inuch:like that .of 'a
Just as, when we described thr language we were going to use, we saidthat is a variable .whose values are translations, we might as,well
have said that 'B is a term whose values aretranslations. Doing
so.would have madelit unnecessary to adopt Postulate '1(a). So, we can
think of 'B = A e .7' aS being acceptable just because Of lioW we intend
to use '-' land not because of any special Ooperty of translations).
This.being st7, we shall say that the diagram shows that Postulate 2(a)
is a consequence of the sentence (a), alone0A'-'-'

This is as far as we can go`in ignoring premisses. Sentence (a), itself,
definitely sayt something about points and translations'L-that the
translation from A to B maps A on B.

'cA diagram which, like the one we have been discussing, is built up
out of infereneew is called a ?ree-form derivation. It is.said to bevalid
i 4.case each of tile inferenceS out of whichitiihuliltisavalid-inference.-

Exercilie8

1. Look at the argument we.gave oh page 73 to derive the sentence;

(7) A + a. A + b70 a'- b

ConStruct a tree-form derivation which shows that 7 is a copse-
quence of Postulate 2(b) and the kentenee:
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The introduction rule for equations 'tells us that 'a a is.a
valid sentence.

A

The derivations in these exercises serve,Only for practicing the
application of the rules of reasoning we ha'Ve introduced to'date.. It is
not an objective of the course that a student necessa2rily remember how
to derive, say, (7) from Postulate 2(b) and. sentence (b).
Answ_ers for Exercises

[Post: 2(b)]

(Subst)
I;

[(b)]
A-Ca. = B

r---- , -,
,

I Subst);I

-a' = B A
Tglibsir

A,+ -a..= A + f; ,=> -a"'t7 (A +.) A
ARRE)

. A + = A + =13. -77

[The portion of this derivation enclosed in the dashed box ma-y,_ as
previou,sly remarked, be omitted. ft serves only to show that the
following substitution is legitimate. At any rate, as explaincl'on
page 82, the premiss of the boxed inference is one which we shall
ignore when stating what the derivation shows Concerning its con-
Clusion. The derivation shows that its conclusion (7) is a con-
sequence of (b) arid Postulate 2(b). The remarks attached to the
derivation '[Post: 2(b)]', '[(b)]', 1(Subst)', and iRRE). are
merely explanatOry and are not parts of the derivation itself. In
place of '(RRE)', one might write '(E =)* [Elimination Rule for '='
since the replacement ,rule for equations shows how -to use [or:
"use up" ] an equation in a derivation, thus "eliminating" an

War



.. is a consequence o )stulate 2(a). We,shalI come back to this argu-
ment shortly, after e have analyzed an even simpler one.

As our first eaJnpli we shall take a conditional Sentence about
real numbers:

2.06 The Deduction Rule 83

2. On page 67 you were asked to state an argument sho ing that
the sentence: I

(b) I A + B -4B A

land another postulate]. implies Postulate 2(b): Construct a tree-
form derivation which shows that Postulate 2(b) is a consequence
of tb). .

3. What'do your answers to Exercises 1 and 2 tell' you about therela-
tion of (7) to (b)?

4. Construct a tree-form deri ation.which shows that (7) is a conse-
iquenee of

4.

2.06 The Deduction Rule

In the preceding section you have seen how, by virtue of modus
ponens, you can use a conditional sentence in deriving other sentences.
This leaves open the question of where, in the first pl ce, conditional.
Sentences come from. On page 67 we have given an argu ent to shol.,
that the conditional sentence:

(a) a =B-A A 4- a B

...(1) 2 + 5 (2 + 3) + 7 = 5 + 7

You will probably grarit that thiS sentence ts true-our task is to find
aireason_forihinkirig Ai. One _Way to start_ is with the-valid_sentence:-

(2) (2 + 3) = (2+ 3),+

This sentence is true for a very good reason-just bkiause of what we
mean by ' If we can Show that (1) js a Cdnsequence of (2) then we
will have just as good a reason for acCepting (I). To do this <ve argue
this way:

Suppose that '2 + 3 = 6. Since (2 + 3) + 7 = (2 -4-3)+ 7 it fol.-
lOws that (2 + 3) + 7 = 5 + 7. Henee, if 2 + 3 = 5 then (2 + 3) + 7

5 4- 7.
What we have done Is to note that Iby the replacement rule for
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Answers for exercises [cont.]

2. LA_ =A A+ae

A + "S".= A +

TC 83

A+-1=l3=*1=13-A a E ej
(Subst)

4- = A + = (A + - A

z- (A + -;) A
(M.P)

[As in Exercise 1, the premiss in the right-hand box might be
omitted. The content of the left-hand box might also be omitted on
the grounds that it is an obvious result of the introduction rule for ,
equations' and the substitution rule that any equation whose sides
are the same term is a valid sentence. Whether to insist, for a
while, that your students include this boxed poTtion is a matter for
you to decide. Although we shall later emit aUxillary premisses

*such as 'A + e Y when writing substitution-infereces,. we sha.,11
never 'omit a premiss merely because it is a v.alid selltende. As
remarked on page 82 we,shall, howeler, ignore both
kinds of premisses when stating whqt a derivation shows. This
derivation shows, then, that ostulate 2(b) is a consequence of
sentence (b). The bracketed r ark in the exercise 'and
another postulate' -- is merely intto students that, for the ,

present, they are to include auxilla y premisses when writing sub-
stitution-inferences. Finally, instead of the comment Pr, one
might use '(E [Elimination Rale for '1, ]

3. They show that sentence (7) is a consequence of sentence (b
[Point out that by placing the second derivation above the firs so
that the conclusion of the second lies over the premiss
41' = (A +1) - A' of the first,: one would obtain'a'single derivation
which would .show that (b) implies (7), 1 a

* [Combine the two derivations in the way that has just been
described. This requires a fairly wide sheet of paper4,s' ince the
inference line of the modus ponens-inference should not extend
over the premiss (b) of the derivation in Exercise 1, ]
Class discussion of"the preceding exercises can be facilitatedby

use of an overhead projector. If properly made [see remark for
' Exercise 4] two projectuals or one with an overlay can show the
answers to xercises 1 and 3 in such a way that, in combination, they

-give the antiwer for Exercilse 4. --At-any yOu ihouId-Tia-v--i -the
answers for Exercises 1 and 2 in view and, pointing to the appropriate
sentences, recite the coifresponding verbal argUments. For Exercise
2, for example; this might b e,

Since A + e it follows frpp sentence (b)
that if A+ a = A+ a thpen a = (A + - A.
SQ, since A + a = A + a, it follows that

= (A+-1) - A.
[When saying 'it follows that' "you might point at the appropriate
inference line.]
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equations] the sentence:

(3)
e

(2,+ 3) + 7 - 5 + 7

follow§ from a premiss '2 + 3 = 5' which .we assumed [perhaps you
see why] and another premiss, (2). This being established,'we con-
cluded l"Hence"l that the conditional sentence (1) is_ a consequence
of just this other. premiss. We can diagram'Our argument as follows:

3

2 + 3 = 5
(2 + iL 7 = 5 + 7 *2 + 3 5 (2 + 3) + .7 5..+ 7

the ""s in this tree-fofm derivation do more eplicitly what the wotd
'Hence' did in the original form of the arguitnent. As the replacement
inference shows, the sentence (3) is a conseuence of two premisses
- the "assumption" '2 + = 5' and the senten (2). The purpose of th
'*'s is to point out that the final conclusion w h is sentence (1)-4s
a consequence of (2) alone. This being so, we have just as good reason
for accepting (1) as vie have for accepting the premiss. (2). [To 'drive
home the point that the (=elusion (1) doal not depend on the pre41iss
'2 + 3 5', imagine the '5's in the above derivation to be replaCed
by '8's. Everything would go through just as befoie, but the concluskn.
would be:

2 + 3 - 8 --. (2 + 3) + 7 = 8 + 7

then (2 + 37 + 7 certainly would be 8 + 7. Of.course, the new con-; \S a = b [a

a < c b < c iThis new conclusion is jilst as acceptable as is (1)- if 2 + 3 were 8

elusion is even less interoting than is (1.).] , Since 'a < e < c' is validAlthotigh there may not seem much point to (1), you.have made a one may proce4d as follows:
%. lot of use [when solving equations] of a sentence which has (1) as an

s aN.i.nStane.8:-
.

.

.
.

4
1
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The proof of (4) an equality principle for addition may be
repeated to prove similar equality principlps for other operations. [For
the,role of such principles, see TC 71.1 'Using Greek letiters we can give
the general form of such 4)roofs

a = p Ta = Ta

7'4 =

a , p Ta = TP
The 't' is to point out ihat the sentence in questiOn is valid and, sip, is

"automatically discharged". ] In the case of the proof of (4), 'a' refers
to 'a', '13' to 'b', 'T'a' to 'a c' and, con-sequently, 'Ta' Tefers to
'b c', Here is another example of.this form of proof:

A=B C-A= C-A
C A =-C - B

'14=-B =2, C-A= C-B
Since 'C - A = C A' is kvalid sentence, this shows that the equality

4principle:

is also valid,
Evuality principles

a =
can be proved in a simi

A=B C-A= C-B

for relations for
\=;:. [a < 'c

r manner:

= b

example:
b < c]

a < c %=z6 a < c

. (4) a.--bw-iwa+b=b+c.

The argument in favor of accepting this sentencb is just 4.1te that for.
accepting (1). It starts oft.

.10 Suppose that a = b.

Here is the argument in tree.foacm:

a =b a+c=a+c
a 4-cb+c

3

< C ==:* b < c ]
30 ia te concludion.

a < c
b < c

a c c sok b < c

4'

Altirnatyely,
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Clearly,The conclusion is as acceptable aS is the premiss 'a + =

which implies it.
The argument we gave on page 67 to show that Postulate 2(a)im-

plies sentence (a) is of exactly the sanie form:
".

a B -' A A 4- a = 13

T e general procedure we have illustrated can be formulated likethis:
If you wish to show that a certain conditional sentence is a con

saitience of certain premisses, show that its cOnsequent follows
from its antecedent and these premisses, together.

iThis figure suggests what has just been said. W)en one has derived
a sentence q from an assumption p and other Ifremisses C. D, one
may infer-the conditional sentence p q and discharge the assump-
tion p. (In Part B of the exercises We shall pc;ineout a restriction on the
use of this kind of 'argument) I

As a final.example, let's show that:
(5) a + c = b + a b

is a conSequence of the following principles for real numbers:
The Associative Principle for Additicin tAPAI:

(a + b) + c = a + (b.+ c),'
The Introduction Principle for OmositinglIPM

a +. a = 0,
and The Principle fof Adding Zero [PAO]:

To do so, we may argue as fdllows:
Suppose that a + c b + c.Since(a + c) + c (a + c) + c

it follows that (a 4 c) + c (b 4- b) + c, Since, by the APA,
'. (a + c) + c a + (c + c) and_(b c) + c = b + (c1+ c).it

follows that a + (c + c) = b + (c + c). Since, by -.the IPO,
c + c = 0 it follows that a + 0 = b + 0. Since, by the PAO,
a + 0 = a and b + 0 = b it follows that a = k'Hence, if a +

b + c theka = b.

TC 85 (1)

The' derivation of the sentence (a,), from Postulate 2(a) which is
given int the text fits the following font:

a T

i ( 1) (t)n
*(Deduction

a

[To "make this fit", let 'T' refer to 'B - A' and 'Oa' to 'A + =

This kinfi of argument is reversible:
a 7 ckt

qrr

(Subs t)

(MP)

Comparison of these two kinds of arguments shows howthe deduction
rule and modus ponens complement one another, as do ihe introduction
rule for equations and the replacement rule for equations.

It results from the validity-of arguments of these two kinds that
%,cfrr a = T

(III) and
=

are valid inferences.

In other words, Orr and a = Oa "say the same thing". As an
example from real numbers, the sentence:

(a + b) b = a
and the sentence:

c.r-a+b = a
"sax, the same thing". [T.n.lhe general rule, let refer to 'a + b'
and 'a' to 'c'. J .

The deduction rule, together with the two ruleti for equations, also.
makes it possible to establish the symmetry and transitivity o equality:

= p a = a

= a

a = c3 =4, =

4 = sY\

a = 4f3 = V ==> a = V]
[The more usual form of the Aransitivity principle, = and

= ssi a = requires for its derivation some rules for *and'._
For example, the importation rule of Exerrise 6; 'Part Cron page
101 will do. I Note that only the left-by-right!ripla4ement rule for
equations I. used in these derivation sehemes So, only this pan of
the rule need be adopted as a "basic" rule Of logic, .
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The canc:ellation principle (5). differ*s from the equality principle.
(4) in triat, although .(4) is a valid. sentence, to ileriire (5) one neeNlbreinisses which are mathematicalprinciples. This is not too sur-
,Orising since (i) Caribe interpreted as saying that .'.'addition of a given
real number" .is a function, while (5) aSserts ,that 'such a function has .an inverse. That the formex the case has tObe recognized. before
One is justified in adopting the-symbol. '+' as an Operator. Sentences
15), on the otberhand, Says that the operation which ',+' referis to has
a very special property which is. not 'shared by all opezations.. For
exaMple,. the equality principle for squaring'real numbers:

4? a F.; =7:v.-a!? = brn

.becomes a valid sentence as soon as one adorits the operator ':"
r'the corresponding "cancellation principle":

. a = b
is, of course, not true.

-

Your students will probably benefit from remarks sirripar to the
foregoin,g, since confusing., a conditional keltimce with its converse is
a not uncommon error; . ,
Remarks concerning argtunent given. for

We begin by ad.opting the .antecedent of (5) as, an assumption.
The agsertion of *(a + c)t c = (a 4- c) --c' in the second sentAce

-is justified by the introduction rule for ecluations. We could derive.the
sentencie in question fi:om 'a a', 'a + c.£ 'c E by using the
substitution rule (three time;). 'Since if follows that ... in this
sentence refers (In this case) to an application of the replacement rule
for equations.

In the third sentenco, let e) + -c = a + (c CY: is a conse-
quence of the APA by virtue of the substitittion rule. 'Since it
follows that refers to two applications,of the replacertient rule.

Remarks aimilAr o ths last rpply to each'of the riext two sentences.
The' first fivelentences of the argument stjew that 'a b' is a.

conseqi.Mice of the assumption 'a_t c = b the APA, the IPO, and
the ;PAP. 'Hence' in the'final sentence indicateg that, because of what
precedei, (5) issa.consequence of just the' APA, the IRO, and the. PAO.

The derivation of (5) which is gi'ven in the text may be presented
in the..form of a tree. To aave space, we abbreviate it somewhat.

,a+ -a 0' Arm
a+ c

* b+c (a+c)+=-'c = (a+c)+-4
(RRE)a+c)+-c (b+c)+-c

(RREV,

= b

(c c

.'-a441=b+0

a + c = b.+ c a -4-b

The com4ient5 *(RRE);24 indicate that what is presented as an thference '
'is actually a seqDenCe,of two infekences. In-one case the ecluation-

*premisses of thele inferences are instatwee of the.associative'principle

b4-(c+-c)

1112Fr
*,

it 85 (3)

for addition; in the other case they are instances of the principle for
.adding zero. [The first pair is shown below.), Since the premiss

+ c) + -c (a + c) + -c' is a valid sentence, the derivation does
show that (5) is a consequence of the APA, the IPO, and the PAO.

Here is an expansion of the first "[RREP":-
- (a+b)+c=a+(b+c)

(a +b)tc a +(b+c). (a+c)+ -c a + (c + -c) (a+c)+ -c --(b+c)+- -c

(b+c)+ -c= b +(c + -c) a+(c +-c)=(b+c)+-

a +(e + bt(c +-c)
The second is' similar except that, since one of the equation-premisses
is the PAO itself, odly one substitution-inference will appear in the -

figure.

(RRE)

(RRE)

'4
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Exercises

Part A.
I. (a) In the text ton page 85) we have iiven a tree-form derivation

te show that the sentence:
-4

is a consequence of Postulate 2(a), Give a similar argument to
show that:

(b) A + ci*= B = B A

is a consequence of Postulate 2(b).
(13) Rewrite the argument you gave in part (a) as a paragraph

beginning 'Supposp that'.
2. (a) Construct a tree-form proof for the sentence:

a=b--0A+a=A+'b.
,(b) Rewrite his proof as a paragraph.

Part B
When we assert a sentence in which a variable occurs we mean' to

, be making a general statement about all values of(the variable. We
recognized this by adopting the substitution-,rule. Now we have
found a new way to use a sentence other than to assert it. Som'etimes

4

we say '6uppose that'. When, for example, in the proof of (5) given on
- 'Page 85 we began by saying 'Suppose that a c = c.' we cer-

tainly did not mean to assert that, whatever numbers a, b, and c
are, a + e is b Consequently, it would have been wrong to use
the suhethution rule in thif, proof to infer an instance of.this assump .
tion oi to substitute for 'a', 'b', or 'c' in any-sentence we arrived at by.
using this asumptionl.
I. Here is a derivation which appears to show that if 2 = 2 then'

3 2. Criticize it. .

act-(Subat)3 = 2
3 = 2 * 264 (Sub2 3 =.2 aeth)

^2. Here is another deriv,ation whose concluiton should
ressonOble to,.you. Point out where it went wrcink.

7; +'Z A
44.
a - A (Subst)

A B = A -. A.

AnswerS for Part A
1. (a).

A + ri B

TC 86

[Post. 2(1?))
= (A + 41. - A

(R.RE)
= B

-a. B - A
(b) Suppose that A + B. Since, by Postulate 2(b),

= (A + - A it follows that 1 = B - A. Hence,' if
A + = 13 then S B - A.

[For aesthetic reasons, we tend, when writing proofs in English, to
write conditional sentences in 'if then '-forin, This,personal
quirk shOuld not be taken as binding on anyone else.

2. (a) a = g A = A +

1=1; =es. A+;.= A+5
-.4h) Suppose that a = b, Since A + a = A 4: cit fellows that

A + a = A + 5. Hence, if -; 5 then A + a A +

[Since 'A,+ = A + is valid, so is the identity principle
which has been derived from it.]

Anawers for Part B
1. The substitution rule was adopted when we were,thinking of an

open sentence only as a way of asserting something about all'values
of the variables occurring in it. When an open sentence I. inter-
preted in thi way, a substitution-inference which has it as a Ere-
miss is valid. When, as in the case of the dehvation of Exercise
1, .euch a sentence is treated as an assumption, such an inference
is not valid. Specifically, '3 = 2' does not follow from 'a 1 Z' if
the latter is an assumption.

2. Since, in .this derivation, 'A + a = an assumption, it
used to restrict the values of 'A', 'I', and 'B' under discussion
[rather than to.aesert something about all values of these variables)...
So, the values of these:variables which' are, under this assumption,.
referred to 'by the sentence-1-13-- Atare regard-tett..
Since we have no reasOn to believe that these 'restrictiontallow for
the' values of 'A' being among those of. ' the inferonce to. .,aa = A A' is not valid. '

...Briefly, the substitutionArderence is not.valid lneiuse,
occurs in the assumptign, the sentence `a 'v.' - A' crit,lino;.be

interpreted as asserting.somethin -*about all values of 'W...

, .
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3. Here is a derivation which is something like that in Exercise 2 but
which is valid.

a b a = b--va c = + c
a+c=.--b+ca+

thubst)

Bothin this derivation and in the derivation of Exercise 2, we have
used the substitution rule to infer an instance of a sentence which we
have derk4d "under the assumption". In each derivation, look at the
variable which has been substituted for, and look at the assumption:
What.difference do you notice?

The exercises in Part B show that some care must be taken when
one uses an assumption. This, however, is nothing to worry about.
You aren't likely to say"Suppose that z = 2. It folloft- that 3 = 2."
Nor are you likely to say "Suppose that A + a ,--- B. It foilows by Postu-
late 2(b) that a B - A. In particular, it follows that a A - A."
When you are working "Under an assumption" you will know it and
you won't be tempted-to treat a sentence which Contains variables
which o&ur in yOur assumption as an assertion iibout all values of
these variables. (As in Exercise 3, such a sentence' may assert some-
thing about all vatues of other variables which occur in it.]

It is easy enough to avoid mistakes like those in Exercises I and 2.
Still, in stating our rule for der;ving conditional sentences, we should
say what' needs to be av . 'Evidently, what our rule should stly is
'that the method of den onditional sentences which is suggested
by the figure:

/

is acceptable

p44444#

provided that no inference used in deriving q depends
for its validity on treating, the assumption; or any
sentence deriv,ed by using the assumption, as an
assertion about all values ofany Variable which occurs(
in the assumption.

3

TC 87

3. Since 'c' does not occur in the assumption 'a b', we can inter-
pret the sentence 'a + c b + c' as asserting something about allvalues of 'c'. So, from it, we may infer 'a + 3 b + 3'. [But,substitution foF 'a' or for 'b' woiild be improper. ]

Having shown in,Part B that one can if sufficiently bull-headed construct invalid arguments by treating b premiss sometimes*as ,an assumption and sometimes not, we make haste to point out thatthis error is easily avoided by men of good will. Students need to knowabout the restrietion to which this kind of argument is subject, but
.should wm, by this knowledge, be frightened away from using it.

In a proviso (*), the phrase "in treating the assumption [as anassertion)" rules out, of course, the, error made in Exercise 1 ofPart B. The phr,ase "or any sentence derived by using the assump-
tion [as an assertion)" vales out the error made in Exercise 2. Thespecification "of any variable'which occurs in the assumption" leaves
open the possibility of using the substitution rule in the way it is usedin Exercise 3.

To make the proviso operative, we need to modify the substitution
rule as is done in the summary on page 111.

t_ 4
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This will take care of things once we note,Th connection with the sub-
stitution rule, that the validity of a substitution-inference depends on
its premiss being interpreted as km assertion about all values of the
variables for whicirsubstitutionS are.rnade. ISee the statement of this
rule on page 111.)

.'ince we shall find other rules of logic which need to contain a pro-
viso like (0, we shall, introduce a very convenient abbr,eviation in the
statement of rule. for, deriving conditional. sentences;

The Deduction Rule
Any inference of the form

f
The abbreviation is tile `Ipl'. In full, the deduCtion rule is:

Any, inference of the form:

p q

is valid and, when it occurs in a derivation,' discizarges any as-
. sumption p which has been used in deriving q, provided that no

inference used in deriving q depends, for its validity, on treating
the assumption, Or any sentence derived by using the assumption,
as an assertion about all values of any variable which occurs in
the assuMption.

*

Some question ma
form:

TC 8

arise as to the validity o'f ink nces of the

p q

[Such an inference is. sometimes called a conditionalizing inference. ]

Perhaps the only straightforward answer to such questions is that the
English phrase 'if then ' 'has many meanings and, for some of
these, it may be.the.case' that inferences of the form:

q ,

If p then (1.
are not valid. Fox:thit particular meaning of this phrase which we are
using to express, such inferences are valid. And it is this mean
ing of the phrase which is relevant in the conditional sentences which
,occur in mathematics.

Sometimes such bald truths as that just stated are not particularly
satisfying. It may, instead, be better to point out that the uricondi-

_.1ianpremiss of an inference of the form (*) says more than does
its conditionili conausiOn". the- irre-arr---
ing of 'if ... then ' which is used in mathematics, and in many
other places. It also may help to.say that the premiss q arnOunts to
the redundant

q, whether or not p
and argue from this that the conclusion says less or, at least, no
more than the premiss and, so, should be considered to be a con-
sequence of it.

It is also well to bear in mind that a student who questions he
validity of conditionalizing infermices may merely be using this as a
way of indicating that /le sees no point in inferring a conclusion which
is so obviously weaker than the premiss. To such an objection, you
can point out that conclusions usually say less than do the premissts
from which they are derived -7 certainly, they never say more.. So,
his objection wmild apply in quality if not in quantity to any valid
inference.

The, examples given at the end of the Paragraph which precedes the
exercises furnish an opportpnit for pointin out that valid sentences

It onvenient to_ say,that the conclusion of a derivation depends
-.only on those premisses of the derivation which are, not disCharged
during the course of theArivaiion,. which are not merely valid sen-
tences, and which arenot consequentes of postulates, like the parts of
Postulate 1, whiCh serve merely to tell what kind of things a term has
for values: For example, the conclusion 'a = b --- a +c b + c' of
the final derivation on page 84 depends on none of the premisses of
the derivation raffd-'84.w.Tt,.- he-durivatioiris-valicirthis-eonektaion-w----g-ra
a valid sentence]. Similarly, the conclusion 'a = B - A A + a = B'
.of the first derivation on page 85 depends only on the premiss
'A, + - A) = B' land so, since the derivation is alid and the pre-
miss in question is, a postulate, the conclusion is a theoreml.

are, accordig to our definition of 'theorem'. theorems. A theorem
is a sentence which is a cOnse.q`u_f,nce of.our--poitiiratics. -As pointed-out,
in the text, = B sk ==> A + =" B' is a coniequence of the single
Postulate 2(a). Because of this it is a conseque.nce of the set consistipg,
of all our postulates fhowever large this may become as the course
proceeds]. lietice, the sentence in question is a the6rem. The point

. to be noted'here is that any consequence of a given set of sentences is,
thereby, a Consequence of any more inclusive set of sentences. Turn-
ing now to vMid sentences.we recall that they are "true on logical

o are consequences oi the least inelusiv set of
sentences there is the empty set. So, a valid sentence is a cookie-
quence of any set of sentences one cares to name. Irk particlaar,o,.such
a sentence is a consequence of our postutateo.



Exercises

Part A

2.06 The Deduction Rule 89

'Each of the fbliowing exercises suggests a derivation in whrch the
conclusion is obtained by aPplying the deduction rule, For eachexercise,

(a) copy the exercise, filling in the missing sentence (or se 1-
tences I,

lb) circle the premisses on which the conclusion.depends,
(e) tell whether the derivation shows that the conclusion is a

tlworem and, if so, whether it is a valid sentence..

Exa ple 1. a h a-

9

S)lithon To use the deduction rule to. complete this derivati6n yonmust write a conditional sentence whose consequent is 'a h [thatis, you must conditionalize 'a2 and whose antecedentis 'a
[because the asterisks tell you to discharge the premiss 'a Thecompleted diagram is:

a a- a-
al - h'

1)2

Since the left-hand premiss.is. discharged and the right-hand premissis valid, the conclusion depends on neither premiss. So, the conclusion
is,.itself, 4 vtil Initence;

Solution.. By the 1left-by-right) replacement rule for equations,
. he' is a consequence of 'a - b' and 'cze ac'.,From frac be and. 44c be one --can infer. 'cur (Y1iy ---rifodui4-

ponns.,Finally, using the deduction rule, 'at.- he :£1' is "vondition-
alized" anti b' is discharged. The conclusion is: ,

a ..- b ;- ac,.- be =,

Here is the completed derivation with a looparound the only premiss
on which the conclusion depends]:,

'a b acae
ac-bc
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Since the only premiss on which the conclusion depends is true, so is
the conclusion.

I. a t b 2a 2a
241 2b

*

3 < 0
a <

< 0
somws (la <

_a-a
b - a

0

4. A i
.

B .a (A + - A

?

Q. It i;wai-m. If'it is warm, I get thirsty,
If I get thirsty, I drink niilk.

I drink milk.

7. Exercise 6, properly completed, shows that its conclusion is a con-
seqtience of its two undischarged conditional premisses. Note that
the antecedent of the sevond of these premisses it; the consequent of
the first. This situation occurs so frequently that it is worth for-
mulating the result as a rule.

The Rule of the Hypothetical Syllogism

Any inference of the forin:

is valid.

Notice that this rule can be justified on ,thebasis of our two earlier
rules for conditional sentences mcklus ponens and the deduction,.
rule. To do so, all you need do is Make out 'a scheme, using 'p',
'q', and fr', of the samfrforni 'as the completed derivation for Exer-

Do so.

'rc 90

Answers for Part A
Note that these exercises are vey conveniently handled with an

overhead projector. An exercise on one sheet, the missing sentences
on one overlay, the loops on another.]
1. (a) a = b 2a = 2)3

2. (a) a=1:3==z,b,-- a
3; (a) a < 0, a = -3 a5 C

(b) loops around each undischarged premiss

(b) no loops
(b) no loops

(c) theorem
(Since we have not specified any particular deductive theory for the
algebra of real numbers, there is a legitimate queiltion as to what
sentences about real numbers are to be considered theorems. In this
case, it the undischarged prernisses are theoyems, the derivation
shows that the conclusion is a theorem. At any rate, since these
premisses are true, the derivation shows that the conclusion is true.
4.(a) = B A, A + c 5 c B - A

(b) loop around the undischarged premiss
(a)

(c) valid
(c) valid

5.

theorem [because the derivation shows that the conclusion is -
a consequence of a postulate. ]

(a) Bz A + B A.

(b) loop around each undischarged premiss
(c) not a theorem [the premissr'f'A + = A' is not as yet

a theorem, In fact, the symbol `b.' is not yet "officially" a
part'of our language. Both these shortcomings will be reme-
died in Chapter 3. The conclusion of the derivation will then
be a theorem. Make sure that students see that the application
of the word 'theorem' changes as we adopt more postulates:
In contrast, from their work in Chapter 1, students should
realize that the conclusion is 4rue.
I get thirsty.; If it is warm, I drink milk.
loop around eaCh undischarged premiss
not a theorem [No deductive-theory.]

Part It
In each of the following

from which you are to inferthe given conclusion. e up a valid

.1

ercises you are given a list of sentences

7.

AI

- q r
[This is a first illustration of how,
on the basis of the rules of logic
whic h-we adopt, it -it liosraible-tcr-'
justify.other useful rules. There

r is an obviotis analogy between this
ik and deriving theorsms froilo

p 101210 r adopted postdates, ]
6
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'derivation showing that the conclusion follows from the pre
Sample I. Premislies: ( ) a - b

(2) b + (a b) a
Conchuiion: b + c - a -

Solution. Sentence (2) contains-the left side of equation (1). The con-
clusion follows by using the f left-by-rightI- replacement . rule for equa-
tion's with sentence (l) as the "equation" .and sentence (2) as the
"second sentence".

a- b-c b+ (a - b) ;= a
b + c a

...*"'Sample g. Premiss: b + (a - b) -- a
Cdnelusion:a2.b=c-..-vb+c-a

Solution. Since the conclusion is a conditional sentimce, you must
derive its consequent. You should also note that yod have an acidi-
tional premias to use, namely, the antecedent 'a - S = c' . This
.premiss is then discharged when you conditionalize +, c a'.

a - b = c b + (a - b) = a
b + c a

a b

Part C

I. Prendsses: (1) A + B
(2) B +

Conclusion: (A = c
2. Premiss: Tr; (A + - A

Conclusion: A + a = B a =
/

Premisses: (1) B - A -A-A B= A + (A - A)
(2) A + (A - A) A

Conclusion: B - A --- A A B =A
4. Premiums: (1) 7 5

Conclusion; c 7 rniec-560
Preinisses: -(1)- A + (A'-- A) =-A

(2) *--1. (A - A)=B-%-44-A=A-A
Conclusion: A .0 B -.A =A - A

O. Premiss:
Conclusion: P+ r t or= Q-P

In each of Exercises 1-4 you 'are giyen the two premisses and the
conclusion of a single substitution or replacement inference. Write

- the inference, tell which kind it is, and circle any premisses on which
the =elusion depends,

Answers for Part B
1. A + ; = B B + =

3. A + (A A) = A

TC 91

Z. A + a=

= - A

A + = B a = B - A
t

B- A = A-A =4) 13 = A + (A A)

,B-A= A-A A

[Note that thepremisses are instances of Postulate Z(a) and of a
theorem: /

(*) B-A=; T.13= A+ 1*.

respectively. (Compare (*) with the theo m (a) on page 83. )
So, the conclusion is a theorem. Once h e,en introduced,
and an appropriate postulate has been adopted, t is derivation can
be extended to a proof of '13 - A = A' 4--

In connection with (*) you may wish to rem k that, due to
the symmetry of the relation of identit t i consequence of
(a). Grant students the freedom to " dopt' eorems which are
related to theorems they have actu y proved an (*) is to (a).

c = 7 7*5
c*5 c*521coc-5* 0

c = 7 =sco c - 5 * 0.

5. A = B A + (A - A) = A

A + (A = B A + (A - A) = B B-A= A-A
B-A= A-A

A= mito B-A= A-A
[The premisses are instances of Postulate 2(a) and a theorem
like theorem (b) of Exercise 2 on page 82. So,_ the -c onclusion_

-is a theorem. Compare with Exercise 3, above, and our dis-
cusskon of that exercise.

0 *P + r Q r = (P

4'

Q p

!
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Al

fremisSfs: a) (B A) (C. 7 0) -

Conclusion: (13 - Bit '.1
Amuver. ((' - A). C A t

1RliE)
(B 7. A) + B )

1. Premisses: ) the conclusion of thesarriple
, (2) B 4- b te(

Conclusion: (13 A) + 1(13 +- - 131

Premisses: 11) an instance of Postulate 2(b)
(2) the corclusion.of Exercisq 1

Ctinclusion: (B A) +
3. Premisses: (1) the conclUsion of Exercise 2

(2) P,:tulate 1(131.
Conclusion: f(A -+-7 a) - Al b

-, 4. ,Premi'sses: (1) a postulate
(2) the conclusion, qf Exercise S

Conclusion: is' 4- 6.E
5. (a)-, As you have probably seen, the iriferences of the sapple and

Of Exercises 1-4 can be fittgd together ty obtain valid derive-
. tion Whose mriclusion is,the conclusion of Exercise 4and whose

premisses are thbse premisseg of the five inferences which are
not tvnclusioris of earlier irtfesences. Write out this derivation.
Circle 'the premiSses of the deriVation on which its conclu-
sion depends.

(g) You should be able to see from your derivation 'that i,ts con-
clusion is consequence of two sentences, one of Which is a
postulate. What are 'these Xwo sentences?'

A.

Part I)
In these exercisr you will construct anotherderivationAlis time,

instead of writing out. the inferences separately as yon did in Part C
and then' rewriting them to obtain the derivation, you will construct

derOation step by step. (Begin near the right side of your paper.]
1. Write an inference with

PreMisses: (I) (B -.A) - B.) = C-c-
.(2)'4 + (C A) C

Conclusion; A + l(B A) + .13)1 C
2. Infer an instance of.this conclusion byauhstftuting
3. Introduce an instance stf# ppetitiat as a premfss to enable you to.

infer the cpnelusion:

4. -0Ontinue, by repeating Exercises 2 and.3 with changes, Whieb

.lead,you tO,the Conclusioru:. *7 . . '

.

4'
A+'.(a + 1;1 +

.1.

^

eV.

Ankere for Part C
[Aa pointed out in Exercise 5; the answers for the sample and

Fxercises .1 - 4 can be fitted together to form a, derivation whose.
Conclusion is `: + Sic T'. (This is t& second meaning of '+'
related to function composition which was introduced in section
1.07), Later in this chapter wt... shall adopt the first premiss of the
sample as our third postulate. Thereupon, + g C will' beEome

a theorem, It may be better to do Part Cas a class exercise so that
the various pieces of the derivation ire fitted in place systematically.
9n the chalkboard you Car, do Exercise 1 by extending the tree from the
Sample, do Exercise 2.,,Jay extending the tree ilom Exercise' I, etc,
This helps Students see the relationtaiip,Atriong these four exercises.]

-A)+ (C-B)C7 B+
(Subst)

A

0

B - A) + C

3. A)+1;1) A+10E
(siibst)

[(A + Ar+ e T

1

5. (a) 'Here is a gomplete tree-form derivation of the conclusion of
Exercise 4:

A+Iee-(sub.st),'
Q.:--(At:)+)) A)+ (C; B)C B+.gie

(Subst) (Subat)
g = (8 tg) - (B-cA)+[(B+i;),BIET .

(RRE) .
Ailee :

($ubst)
.

1 \

#
V5. On what prefnisses of yaw derivation does this conelus on de
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Answers for Part D
. ..[These exercises are analogous to those of Part C in that the

. conclusion obtained will become a theorem when Postulate .3 isadoeted.1
1. 4. (B-A)+(C-B)C-A A+(C- A), C A+1E

A+ [(B- A)+(C-B)]=C

A+-ElEe

, (A

A+ - A) + gj B+1;

)- A A+[[(A+:1')-A)+11'1.(A+:16)+11

A+(+1;),(A+-;)+1.;

S. '(B - A) (C B) C - A'. POstulate Z(a) and Postulate Z(b).

Sample Quiz
1. (a ) Let P, Q, R, apd S be four points. Draw a picture to

illustrate the sentence:
(*)" (Q - 171) + (R Q) is the inverse of (S + (R S)

.(b) Tell whethee the sentnce (*) is true or false.
Z. (a) Draw a picture to illustrate the eentence:

(") If P + (Q R)' P +,a then Q H +
(b) Prove (**). That is, derive (**) from the poatulates.

Key for Sample Quiz
1. (aliere is a typical picture to illustrate, (*) P Q-P

R-Q M. is longer than tti. In any case either LB .. LA or 'LA is larger.
than LB or LB is larger than LA. In case LB = LA. then (by a

, R
theorem 'an isosceles triangles] CA v V 'and so [by a theorem aboue(b) (!) is false. .:g

.c -lernge-r-thanj '-C;tt is -not-longe-r thanA3-6..-- Iri-eaSe-LA 14-Iaig-di---thah -LBRere is a typicaiCi pture to illiistrate (**). fP4 (6- R)
Pe t it follows [from an instance Oc. (.0)] that n is longer than n and.AO'. Q-P
0-R [by a theorem about longeg than] that .61 is not,longer than IR ._ Since

(h) Proof.of (**) P.
. R [by assumption] CA is lonier.than. re. it follows that neither is 'LB

Suppose that P. + (Q R) P + a. Then, q R t, congruent to LA nor. is. LA larger th;n LB. .So, LB .is larger than ZA.
,

enee, if CA is longer than BC then LB is larger than LA.
.:

So, d , R + Z. Hehee, if P +' (-Q '-' R) . P +-as'ifien, Q = 'R .+, S. il . .

Students should realise.that 'converse' has the same meaning
that of 'turned around' When applied to ordered pairs, to relations,
and to conditional sentences. It is applicable as wel,1 to the bicondi-
tional sentences -of section Z.09 and,to the conjunction sentences of
Part C o page 101, Since, however, the converie of a sentence of
either of these kinds is logically equivalent to the sentence itself.
there are fewer occasions for the use of the word in discussing
'sentences of these kinds'.

# The notion of the converse of a cOnditional sentence may have
come up tarlier. At any rate, the yemarks made on TC 45(2) may
12e of help here in convincing stlidente that a sentence and its converse'
are not equivalent in meaning.

Although it is exceptional for a conditional sentence to imply its
conveese, this Can happen. For example, any sentence of the form
'p p' certainly implies its converse, and the same iserue of any
conditional sentence whose antecedent is a valid ,sentence [or whose
consequent has a valid denial], [These_cases and many others
are included in the triviality that a conditional sentence implies its
converse if the latter is a valid sentence.] Consequently, it is not
correct to say that inferences of the form:

p q

q =0, p
are invalid; It is correct to Say iliat if ouch an inference is valid it is
so for some other reason than that it's conclusion is the coeverse of its
prvrniss.

There.are cases which will be familiar tci you in which a condi-
tional sentence is helpful in proving its converse. One such case con-
cerns the sentence:

(*) If LB [iABC] is larger than LA then
CA Icniger than BC.

and its converse. Once either of these two sentences has been shown
tO be a theorem, the other follows readily from it together with a
theorem about isosceles triangles and 'some properties of the order

.relations larger than [for angles] and longer than [for segments]. For
example, suppose that (*) is known to be a theorem, and assume that

R S

'1.7)

.41 /44
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2.07 The Converse of a Conditional Sentence

You learned that 'a seritence of the ford:

If p then q.

is a conditional sentence. Its universe is the conditional sentence
which is formed by interchanging the antecedent and the consequent:

tIf then p.

For example, the converse of the sentence:
(*) If Jack lives in Baltimore then Jack lives in Maryland:

is the sentence:
(**) If Jack lives in Maryland then Jack lives in Baltimore.

.Notice that although 01 is true, (") may be false [for Jack may
live.in Annapolis]. This illustrates the fact that one of a pair of con-
verse conditional. sentences may be true and the other false. So, a
conditionial sentence may not imply its converse. [There are, however,
many important cases in which a conditional sentence follows from
its converse together with other premisses.]

A conditional sentence and its converse may both be, true, and as
you have Seen [where?J, may both be theorems. But, showing that a
conditional sentence and its converse are both theorems usually re-
quires two proofs.

Exercises

Part A

S.

In .each of tho following exercises you are given a conditional sen-
tence. In each case, write the converse of the given sentence.

Sample. p q
Anwer. q p

4

1 .C{ b a - b = 0
3. A e

5.A.+a=Bii-ea=B-.A
+ii.= A +T;

2. a >0 a2 > 0

4. A ite A sh-Cli.

6.k=B-.-0A-C=B-C
8. A=B.--*A+Tt.=B+Vi

9. f is a translation .001has an inverse
!O. + B and B + Tti= C) + (a +11 = C
11. Given the sentence you wrote in answer to Exercise 1; write the,"

convene of it. What is the relation of this sentence to that of
Exercise 17 Would you get similar results in &excises 2 -107

TC 93 (2)

Note, in the last sentehce, the appeal 4o the deduction rule. The
use made of (*) in this proof depends as one,would anticipateon
modus ponens. The formal validity of the proof deperids as well on
other rules, concerning the meanings of 'or' and 'not', which will be
discussed in a later chapter.

Answer to query: Sentences (a) and (b) [see answer for ExerCise 5,
below] are both theorems,'and,either is the converse of the other.

4

Answers for Part A
1. a-b=
2. a2 0 a > 0
3. .AB=.AEBC
4. AEgoA=:* AjBC
5. B-A A+= B
6. A -.0 B,- C A = B
7 .

8.

9. f ha's a,n inverse f is a translation
has an inverse

1 0 . A+( +g)= c (4 + = B and B + -13° = C )
(A + B and B + 5 C) =itzt, A + (-4a + g).= C

11. a b a b = 0, the converse of the converse of a sentence is
that sentenae.

e
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Part B

- Part C

i. (a) Which of the sentences given in Part A are true?
(b) Which of these sentences have true converses?
(c) Which of the, sentences in Exercises 5-10 of Part ,A are

theorems? t
(d) WhIch of these sentences have theorems as converses?

2. Wirite three conditiimal sentences about real numbers which are
true and have true converses,

3. Write three conditional sentences about real numbers whiCh are
true and have false converses.

If a sentence which contains a variable is false, you may be able
show-that-thiS'is the case by giving a counter-example.. For in-

, stance, as ytm probably decidesl, the sentence:

(0?) > --*a >

is false because there exist numbers whose squares are positive but
which are not theniselves positive. One such number is -2. Since
(-2)= > 0 but -2 0, the instance:

(-2)2 > 0 -4* -2 > 0

of (*) is false. Consequently, (*) is false.
t- The samevprocedure which Works for (*) also works for false sen-

tences of our algebra of points and translations. To give a counter-
example for such a sentence you must inst9ad of naming a number
-draw a picture showing points and trans*tons. For example, con-
sider the sentence:

(**) (A + + b = (A + + A+a4=A+b,
In trying to guess whether (**) is true, we draw pictures:If We can
picture a point A and translations Ciand Vsuch that A + c -1%6 A. +-6
but (A + = (A + + a then wewill know that.(0:*)iii_1a1se.--

,

I. Show that (.4) is false.
2. Cati'you show that the converse
3. Do you think that the sentence:

of (**) is false?

(***) A = (A, + + = (13 + -65 +

is true? Do you tiiink that its converse is true?
4. What simpler inonnconditional) sentence says what **a) says?

-5
TC 94 (1)

Answers for Part B
1. (a) The sentences of Exercises 1, 2, 3, 5, 6, 7, 8, 9, and 10are true.

(b) The sentences of.,Exarcises 1, 5,-6, 7.) and 8 ,have true
conve r see.

(e) The sentences of Exercises .5, 6, 7, and 8 are theorems.
(d) The sentences of Exercises 5, 6, and 7 have theorems asconverses.

., 3. [Various answers Nare possible, and discussion of these exer-
cises might serve a useful purpose in reviewing algebra.]
Here follows some ctiscussion of Exercise 1.
We expect that students will obtain answers for parts (a) and (b)

without worrying about the "truth-conditions" for conditional sen-tences. Presumably therwill understand the sentences and label 'true'
those with which they agree. Therels somevoint in knowing how to
use counter-examples to establish the falsity of open conditional sen-
tences, and this matter is taken up in the exercises of Paq C which
follow. Students may, also, in working part (a), recognize that the
se;Itences of Exercises 5, 6, 7, and 8 are theorems and grant their
truth on the grounds that theorems, generally, are true. [Our postu-
lates are true, and consequences of true statements are true. ] If you
are interested in the source of truth-sonditions for ceonditional sen-
tences, there is a discussion of this in the commentary for page 265
of High School Mathematics, Course 1. There is a more complete
discussion at the end of the commentary for the appendix on logic which
appears both in Course 2 and in Course 3. [In these references it iv
argued that it is merely by definition that consequences of true len-tences are true.)

In this cburse our interest ics more in theorem-hood than in truth.
We take care that our postulates are true, and,this assures the truth
of our theorems. The only use we make of this, fact is that it\allows us
to show that certain sentences are not theorems by showing that thesesentences are false, nence, Part C.

The apswers fof parts (c) and (d) of Exerciie 1 ,merit some dis-cussion here. The sentence of Facercise 5 is the only too familiar
theorem (b), and its converse is the theorem (a). By now students
should recognize equalityprinciples such as those in Exercises 6, 7,
and 8 and realize that any such sentence is not only a theorem but is
a valid sentence. Whether or not their converses are thnorems is
a/1401er. que stion_ We shall_ tak P up-alio:11y-

The sentence of Exercise 9 expresses one of the properties of
satrarislations discovered in Chapter 1 and intludeil, implicitly, in the
summary on page4-47. So, ,the sentence is ttue. Students should, how-
ever, be sceptical as to whether it is a 'consequence of the postulates
at hand.aikince these postulates merely tell us that translations itne
,mappingin e Into itseit and, that, given A and B, there is a unique
translation 'which maps LA on B, it is unlikely that they imply that
translations are one-to-one mappings. That they don't I. proved in'Part D on page 110.

The sentence of 134,ercise 10 is not yet a theorem. It will beconie
so once Postulate 3 is adopted. For, as pointed out on TC 92(2), in
connection v.Ith Part I), ,it will then be the case that 'A + (it + 5)
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. (A.* is a theorem., ;And it is not difficult to show that '(A + a = B
and B + g C) (A + a) + b C' is, already, *a,theorem. [All that
is needed is to infer from the antecedent Of this sentence each of the
equations 'A * ; = B' and 'B + C', perfopn a replacement, and
apply the deduction rule. ]

*

The converse of the sentences, of Exercise 10 is not,a theorem
-bec.ause it is'false. [An assumption th'at A * (a + Tg) C cannot yield
any information concerning a "new" point B.] Theconverse of. the
sentence of Exercise 9 is, for the same reason, not a theorem.
[Lots of mappings Which are not translations have in-verses.]

. .

We now come to the con'verses of the equality principles stated in
'Exercises- 6, 7, and 8. The converse of the last of these principles

. says juit that any translationhas an inverse, Our discussion, above,
of Exercise 9 show's that.it is unlikely that this converse is a theorem.
The conyerse of the sentence of Exercise 7 is a theorem which students
have already'provecl. [See Exercise 1 on page 82. ] The converse,
'A - C --% B - C A IV, of the sentence in Exercise 6 is also a
theorem. You might aslytudents to prove it. [Suppose that ,

A - C B C. It follows that C + (A C) = C + (B 7,C) and so, by
Postulate 2(a), that A = B. Hence, if A-C= B-C then A = B. ]
[In contrast, the sentence 'C - A = C - B ==ta. A = B', while true, is
not.a theorem. j. *'

The discussion preceding the exercises in _Part C;may be ampli-
fied somewhat as follows. /' Since consequences of true sentences are
true, one can show a sentknce to be false by showing that it implies
some false sentence. In/particular, in view of the sUbstitution rule,
one can show that a sentence is false by exhibiting a false instance of
that sentence. So, theisentence (*) will be shown false if we can, for
example, show that it instances,

(_2)2 , 0 -2 -,, 0
r

is _false. To do so,/we might look for a consequence .of this sentence
which is false. This looks,difficult, 'Reconsidering, we note that it
would be sufficient to derive a false consequence from this conditional
sentence and some true senteoces. Using modus ponens,, we can infer'
the false sentencie '-2 1-,. 0' from the cdnditiopal sentence and the true
sentence 1-2)7 /- 0'. So, finally, '(*) is false. [This is not the place
to raise questiOns as to why '-2 > 0' is false and '('-,2)2 > 0' is true.]

Genera4z4rig on the pieceding example it is clear ttrat the same
procedure can be used fO4r any Conditional sentence. In attempting to k,

.show that such a sentence is false, we.look for a situation in which its
antecedent is -true- but its crmsesiu6n-t is false.(-in deaiing with-sentences

itibout real nurnbers we must, to describe such a situationi, describe
one or more numbers, -Usually, we name them. In dealing with sen-
tences about points and translations we describe appropriate situatio'n.:
bY drawing pictures. ,

. Returning to (*), note that not only ii (*) false but so are its ,,..

antecedent 'az. '.> 0' [0 is a cOvinter-exainpIeland its con.equent
'a ' 0' [any nonpositive number is a counter,example]. This may
seem surprising in viewof the usual truth-condition according to which
condi-tics:al sontsnces-with false anteqedents and consequent. are true.
But, as remarked earlier, such conditions do not apply to open
sentences.

Answers for Pa t C
1. A + a

A+ ti
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r

1/4

it A TV [Nearly any drawing such aP this
will show (**) to be fals. The
only requirement is that a and
be different translations. I.

Z. No. [We know that if A + A + i; then : = g. And, if
then (A + + = (A +13) + ln fact, the converse of (**) is
a theorem, ]

3. (***) is ;rue; so is its conyerse. [Attempts t o draw a counter-
example for (***) will fail, as will similar attempts for its
converse. Such failure is, of course, not sufficient evidence on
which to assert the truth of (***) and of its converse, [We just
may not have been clever enough in conducting our search for
counter-examples.) It is, however, ..enough evidence to justify
the given answer to the question ."Do you think ]

4. (A + + = (A + r).) 4, a [This follows. from (***) by using
modus ponens and the validity of 'A = A. (***) follows from
it by using the replacement rule for esuations and the deduction
rule, In view of the truth of '(A + A + + 5)', (***)
and this simpler sentence say, essentially, that composition of
translations is cominiitative.]

TC 95, 96

The text may add one more technique to your arsenal of methods
for getting students to acc,ept the conventional meanings of 'if and
'only if'. /Actually, the only reason for bringing the matter up is to
point out to students that people who read '4:=:>' as 'if and only if' are
not complete idiots for doing so. The meaning of '4=:10 is expressed
completely in terms of the meaning of by.the rules fOr bicon-.
siitional sentences giVen on page 98 Just as modus po#ns and the
deduction rule formulate that meaning of `if then in which we
are interested,' so do the rules on page 98 formUlate that meahinig of
'if and only if' which interests us.

Incidentally, we introduce the symbol 14:10 just because a few
'people like it'. We shall make no use of it after page 97.
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2.08 Equivalent Forms of Conditicinal Sentences

Here is a conversation in which a conditional sentence is-stated in
three equivalent ways:

*Mrs. Smith: Remember Jack Jones who used to live next (Jodr to us
before he joined the army? Well, his mother told me that
Jack is only 15 years old.

Mr. Smith: That's impossible. He is in the army and if he is in the
army, he is over 18 years old.

Mrs. Smith: But. Mrs. Jonesaild me . . . . .

Mr. Smith: I don't care what Mrs. Jones told you. You know he is in
.the army and he is in the army only, if he is over 18
years old.

Mrs."Smith: But
Mr. Smith; Don't tell me "but", there is nothing more to be said.

He is in the army and he is ovqr 18 years old if he is in
the army.

AlthoUgh Mr. Smith never explicitly said so, it is c ear 'that Mr.
Smith is insisting to Mrs. Smith that:

(..

\ Jack Jones is over 18 years old.

He iS casing his ar$imetit on the premisses:

IfJaCk is, in the army
then Jack is over 18 years old.Jack is in thearnly.

Each time he presented his argument he merely stated his conditional
sentence in a different, yet equivalent, form. The equivalent forms of
the conditional premiss that .Mr. Smith used are:

ifJack is in the army then Jack is over eighteen years old.
' Jack is in the army only if Jack is over eighteen years old.

Jack is over eighteen years old if Jack is in the army.

Here is another conversation in which a conditional sentence is
statecl in three equivalent ways:

Mr. Smith: Does Mr. Jones live in N,ew Jersey?
Mrs. Smith: Of course! You know he lives in Princetonand if he

, lives in Princeton then he lives in New Jersey.....
' Mr. Sinith: But I thought ,

Mrs. Smith: Don't tell me what you thought. He lives in Princeton
and he lives in Princeton only if he lives in New Jersey .
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Mr, Smith: But .
Mrs. Smith: Don't tell me "but". There is gothing more, to be said. He,

lives in PrinCeton and he lives in N'ew Jersey if he
lives in Princeton.

,Poor Mr. and Mrs. Smith do not get along too well, ao they?Mrs.
Smith never gave Mr. Smith a chance to explain why he may not agree
with her. Of course, if he accepts Mrs. Smith's premisses he must
accept her conclusion. [If Mr. Smith doesn't accept her premisses he

need not accept her conclusion no matter how many-times she repeats
4-ier argument. l'Airs..Smith is trying to have Mr. Smith conclude thai
Ire (Mr. Jones) lives in New Jersey. She is basing her argument on
the premisses:

If he lives in Princeton
He lives in Princeton. then he lives in New Jersey.

Here are the equivalent conditional premisses .that Mrs ., Smith
used in the above conversation:

If he lives in Princeton then he lives in NewJersey.
He lives in Princeton only if he lives in New Jersey.
He lives in New Jersey if he lives in Princeton,

These imagiitary conversations suggest correctly that a sen-
tence of the form:

;711.

can be trans ated in any of three ways::

. If p then q.
p only if q.

q if p.

Either of the first two ways giyes a convenient way to read The
third way suggests introducing the symbol ' 07' to be read as 'if'.
RPad.

q p

as lq if p'.

Exercises

Part A
1. In each of thlkillowing exercises you are given a sentence of the

form q' or lp q'. In each case, write three, equivalent



Part B
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sentences using 'If . , then . . . . . only if. . . . , and . .

if.. .

(a)u=bva-b=0 (b) a = B A A + a = B
(c)A+a=13..--a=B-A (aa=B,L44,---A a=B

2. For each of the following sentences, write two equivalent se tences
one using ' 0", the other using'

(a) a - b 0 only if a = b L (b) a - b 0 if a' = b
(e) a.- B A if A + a+-= B (d) A + = B only if 73*= B A.

In each of the following, complete the inferenee SO that it iS
example of modus ponens.
1. A - A + A = A 4- only if A - A = a

2. D-C=B-Aonly if D +'(B A)

3. D-C=B-AifD=C+(B-A)

4. D7C=D-C--6D,=C+(D-C)

5. D-C=D-C*--.D=C+(D-C)

7.

? onk if ?
A + A b

? if ?

A = A +
& (A + + = B orq if ?

B (A = b

2.09 Biconditional Sentences

Consider the two conditional sententes;

(1) - If a - b = 0 then a = b.
(2) a = b then a - = O.

Notice that. (2) is the conveise of (1). We can rewrite these san
as follows:

a = b . if. a - b = O.
a = b.only if a b = 0.

If we wish to *rite one sentence which states what (1) and (2) state
together, we,may write;

[a = b if a b -01 and [a = b only if a - b 15]

5 r)
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Answers for Part A
1. , (a) If a b then a - b = 0.

= b only' ii a - b =

2.

a - b =. Q b.

(b) ; B - A then A + = B.
B - A only if A + B.

A + b if -1 = B A. ,

(c) [Same answers as for (b ).] (d) = B A if A + = B.
A + B only if -a* - A.

If A + 33**then B - A.

a-b=0a=b (b)(a,- b = 0 a = b
b a b = a= b =4' a - = 0 (.

B A A + B ( d ) A + -ae = B = -a° B A
A + B = 13 + A B - A A,,+ B

(a)

(c)

Ans\vers for Part B
I. A - A =

3.
C 13, A'

2. D-C= B-A
D C + (B - A)

4. D-C= D-C 5. D = C + (D C)

IS = C + (D - C) D-C= D-C
6. -a. = -Si' only if A'+ = A +11., 7, A+a= A+b if a =
8.. (A + -;) + 5 = B only if B - (A + i) = B,

For these exercises, we'nlust concentrate on precisely what
modus ponens,tells us, as well as on the various equivalent forms for
eonditional sentences. In terms of these various equivalent forrns for
conditional sentences, we can illustrate the inference scheme for
modus ponens in the following ways:

(1)

(3)

(5)

If p then- q.

q if p.

(2)
P only if

(4)
p =Co q
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A shorter, yet etioivalent, way of expressing the same ideals:.

a 11 if and wily, if =

Aientenie.suc:h as this onels.called a 'bii!onditio. nal s'enteAckv
Xnother way to write one sentence which' states what (1) and

(2) state together...is the following:,

V

S`,.

- b '-- 01:and b b 01

Th,j.§,, sifgOsts another convenient form in .NVhich to write a bicondi-
tional Sentence that says'whahl.) and (2)- say ,togethe4 namely:

.)

11,,:gener ;,a biebnditio al sentence:,

p. iT a n"d tinly if

ik sentence.:
.

d

c,
11) f qi and lp only i

'this, means that from a bimnditicitial,sentence of t4e form OfV), we
can infer either'one of the cot4itiona1 sentences.in,t7It also Means
that 'from both of the conditional sentenees ip (") (tAen together!
'we can , infer the biconchti.prial senterk4 We summariie the,se
notionSlin"th.e following:

14

Rules for Biconditional Sentences.
A'

Itiferenges,"of al,ny of the forMs:
2 a) p -'44

p q

pqY

q

Exereisq,

For each of t.hé sentenc4in txerctise 1 of Part A on page 96'"-* write ,
,

its 'ecnverse, add decide whether. the co'nverse i a theo-
rein. If yen bolieve that the,given13entence and its converse are..both.
theorellis, write the inference of t'pe.1(i), .

Egi4en sentence] f conversel
Icopelusioni

TC 98

..Although the identification of '4=. with 'if' and only if' suggests .

theypossibility of treating a biconditional sente'nce as an abbreviation
fo r the conjunction of two conditional sentences., we prefer the alter-
native approach, formulated, in the rules given on page 12f), of treat-
ing biconditional sentences, formally, as a Tc.!1,v kind of sentence. ,With
the adoption. in Part C on page -129, of rules for conjunction sentences
it becomes possible to show that the two apprOaches actually are equiv-
alent, [In partAcular, see ExereiseS 1 and Z of Part C.]

Note that hi part (c) of the rplo on page 101, the premisses of
the inference scheme. are in th1s order: if-part (p if q); only ,if-part
.(p only if q).
Answers for Exercise

[For convenience we write each, of the four sentenees ih Part A,using , followed by its converse. It-both are theorems, we
complete the inference'as required. ]

a.= b = 0 a-13 'a=b
(d)

(b)

(c)

a = 0 a b

=.13 -` A A + i B A + = B = B A

A + 411=* B - A

[Answer is same as b). j

A + -a' = - A A A B

B

[Note that although the conclusions of the inferences for (b) and (d)
are equivalent, they are not the same sentence. Each'is the converse
of*the other, and the if-part of either is the only if-part of the other.)

N



Consider. the following inferences:

and: ,
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a---- a = = b;. .

A

( > b -04.1 b is_positive ta. > b and h > ci a >
. la is positive and b > cl. a > c

The first of these inferences may be shown to be valid by using a
biconditional inference of type ta) above arid an inference of the form.

[SeeExercise 7 on page 90.]r
p r

a- b 2
112' tSyllogism5

b 0 a2 ti;1

The second may also be shown to be valid, but ln order to do so one
needs rules for 'and'. (See Part C, below. I

These inference's illustrate a rule of logic which is analogous to the
replacement.rule for equAtions.

,
'The Replacement Rule for Bic nditional Senterice

Given a biconditional sentence nd a second sentence, if
Other "side" of, the biconditional sen nce is replaced, some-
where in the se!pond sentence, by the other side, the resulting
sentence is'a coriSequence of the given sentences.

'This rule, should be in accord with what you feel when you say if and
only if'. At any rate, it can be justified on the basis'orthe other rules
we have Istdopted for conditional and biconditional sentences arid the
simitar -rifles we shall adopt for other kinds of senteies.,[As in the
ease-of ther,racement ruke for equations, -weshall-say that -we- have
used the lefi-by.rig6t, or the right.by:1014 Teplacemegt rule for bicondi-
tional Sentences -depending on whether we' have replaced an occur-
rence of the left "side. of A. biconditional sentence by its right side,
or an occurrence of its righ? side by its left.]

There iS also a rule analogous tOthe introduction rule for 611uations:
H.

The Reflexive Rule for Moonditional Sentences

Any senteve of the form 'p 1.** p' is valid.

TC 99

The use of a biconditional sentence in a proof is most often for the
purpose of justifying replacing one of its components ["sides"1 by the
other, somewhere in a second sentence. The justification can some-
times be carried out without much tipuble by first inferring either the
if-part or the only if-part of the biNnditional sentence .and.using this
part in justifying the desired replacement. It is, however, always
easier to use the replacement rule on page 99 dcrectly. Since :his
rule ean be justified on the basis <dour other rules of logic those
present ancl those to come it is only reasonable to use it. [In
addition, the rule has a certain intuitive appeal. A biconditional sen-
tence appears to say that components, themselves, "slay the Same
thing". That it ac y does say this can be inferred only from the
fact that the repla ement rule does follow froen the basic rules on
page 98 which characterize the meaning of 4='.]

The assertion made by the introduction rule for biconditional sen-
tences sterns from the validity of sentences of the form 'p p' and
.of inferences of the form:

p p p p

.1) p

The replacement rule and introduction rule for biconditional sen-
tences are analogous to the similarly-named rules for equations. --But,
although the latter tell us all there is to be.told about the logical predi-
cate the former do not do so thorough a job for the logical con-
nective This is because a biconditional sentence can be
"split up" into two conditiona].sentpnces, while an equatipn cannot.
[True, when dealing with, say, real numbers, the equation 'a = b'
has thc same content as 'a > b and b s a'. But, greater than is not
a logical relation. Except when the subject matter in this cake, the
real numbers is subject to an order relation like greater than, the
identity relation is unanalyzable. ]

4.
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SD.
Exercisrm:

Part A

Part II

Part

In each exercise, complete the inferance to illustrate the reOlace-
ment rule for biconditional sentences. Tell whetheY you used the left-
by-right rule or the right-by-left rule.
I. 2a + 5 = 0 a = 513- not (2a + 5 0)

2. b < 0 -b > 0 -b > 0 1, 0' is short for
'not (- >

3. B +- A «.-0 a' A I 3 a= A

4. Q t I P*--0t=P-Q Q
"SA

5. A - A + ci* brand A = B

6. P + P + 4_47* p + 1)1= P + iiand =_Q2

p p

Show, without using the replacement rule, that inferences of the
following forms are valid.

Sample,

SUlut ion.

P q P

(Part (b) of "Rules for Biconditional
P (Modus ponens) 4entences")

P Wint: See example preceding statement of theq r
replacement rule.] .2. e p .

r

A. conjunction sentence. is a sentence of the form:
.

p and q

Exaniples: John is preSent-and Jack is absent
-- -1
p q and .13- q = Q

ab = 0 and a ,*

V

What you probably mean 1...vhen you say 'and' [between two sentences]
can be formulated in:.

TC

Answers for Part A
1. hot (a = 5/3) [The reason for the 'not' rather than a slash

through the is that, when beginning to learn the use of the
rePlacement rule, students sometimes have difficulty in seeingthat 'a = b' occurs in 'a b'. Perhaps a projectural with'a b' and an overlay with '/' would help here. I

2, b X. 0. [In view of the preceding note, it will probably bear
remarking that, although 'b 0' is a sentence and is part of
'1-1) / '0', the former does not occur as a sentence in the latter;
The difference is that, while '/' "qperates" on sentences to
give new sentepc.vs, '' "operates" on terms.]

. A - B
4. + t # P
5. A + # A + and A = B
6. (i; ci and. P + Q)

Answers for Part B

+ p

[Establishing the validity of inferences like those of the sample,
Exercises 1 and 2, and Exercises 3 and 4 of Part C, is a first step
toward justifying the replacement rule. Our purpose in giving these
exercises is, however, to give students opportunities to practice
writing derivation schemes. .You might ask dtudents to recall the
justification they gars, in Exercise 7 on page 90, (Syll).]

. ..1. p :::tb q 2.
(a) , (b)q rc> p p r r =:* p p q

Syll) 4 (Syll)

4tb

q



Rules for Conjunction $Ontences

Inferences of any of tge farms:
a) p anclq (b) p and q

(c) p q
p and q

are valid.

2.10 Some Theorems 101

Show, without using the replacement rule for biconditional sen-
tences, that inferences of the following formslire valid.
1.lqplandipql 2. P q

p

3. p 4-0 q .p and r
(1 and r

ri
(p and q) --- r
(This rule of logic is
inown as importatthn.]

Ey p] and [p q
4. p 4-0 q r and p

r and q
(p and (i) --0 r
P lg r1
[This rule of logic is \
known as exportation.]

(Hint for Exercises 5 and 6: (1) A good technique to use-when you are
trying to derivZ a conditional seritence is to adopt the antecedent of
this sentence as a premiss which you plan to discharge later by apply-
ing the deduction rule. (2) if the (=serpent of the conditional sen-
tence is also a conditional sentence then you will be able to discharge
two assumptions by'two applications of the deduction rule.]

2.10 Some TheoreMs

In Section 2.02 we proved two theorems.

(a) tBAA+czz.
(b) A -I- B = B-A

V

On page 85 we analyzed the proof of (a) by exhibiting a tree-form
derivation which shows that (a) is a consequence of Postulate 2(a).

'answering Egerciab TI 1PtA : On page136 ytin -atinStnicWd a
simithr,slerivation which showS that (b) is a consequence of Postulate
2(b). Nothat we have adopted appropriate rules for bic9nditional

jJentences we can derive from . (a) and (b) a biconditiOnal sentence.
'Since (a) and (b) are theorems, sp is the biconditional sentence.

Theorem 2-4 A+ a = = B- A.
A translation maps A on B if and only

if it is the translatiam from A to B.

26o
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Answers for Part C
[Note that there are two conjunctions each of which is spelled

'and', One serves to connect nouns, the other, sentenees. It is the
latter we are concerned with here.]
1, .[q pi and [p q] (q p] and [p q]

2.

3.

4.

.q p p q

q =;:, p

p 4=4) q

[q p] and [p q]

[Exercises 1 and, 2 show that, by virtue cif the rules we have
adopted as basic for biconditional sentences and for conjunction
sentences, corresponding sentences of the 'forms 'p 4:=> q' and
"[q p ] and [p ==> q]' do "say the same thing". ].

p and r

P p and r

q

q and r

r and p p 4=P q

r and p

r ,and q

5. I p and q

p and q

k)

[The in1erene having
'p =:* q' EIsa premiss
has been shovin to be
valid in the sample for
Part B.]

p [q r]

q r

(p and

P

p and q

=0:0

(p and q) =40 "r
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U students wish more practice like that given by Exercises
6, they may .iustify inferences of the forms:

r =1> (p and q)

[r p] and
Here's how:

[ r p] and [r qj

r (p and q)

r r (p and ,q) r (p and q)

p and q

r p

p and q

==, q

pl and [r q]

[r pi and [r q

r p

p ] n d [r 9]

Ind

r q

p and q

r (p and q)
last de Hyatt*. scheme makes the point that the same premiss

. may be used more than once in a derivation and all its occurrences be
discharged by one application of the deduction rule. The previous
scheme shows that this does not always happen.

2 ere'1,40

TC 101(3)

Sample Quiz

Match each of the logical patterns given in the left column with the
most appropriate name for the pattern from the right column. You may
select the same name more than once.

1. ff p then q
p and q
p only if q

4. p if and only if

7.

8.

p and q
q

If p then g
If q then p

p and q
p if and only if q

q then p

Answers:

(a) biconditional sentent
(b) definition
(c) conchtional sentence
(d) conjunction sentence
(e) antecedent
(f) valid inference

(g) invalid inferencse
(h) conseq3.lent
(1) modus ponens

I. c 2. d 3. c 4. a 5. f 6. g 7. 8.
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A.

A ale B A a B

B A it and Only it

a B A
I

Fig. 2-5

iSOthetimes the conditional sentence (a) is called the if-part of Theorem
2-4, and (13) is callakthe only ifpai-t of Theorem 2-1. Do you see why? J

Exerrises

Part A
A e -form proof of Theorem 2-1 looks like:

(l) (2)

(3)

Th. 2-1

.Construct such a proof Illy writing the appropriate sentences in the
indicated positions) and, for each .step, tell the rule -of logic which
justifies it.

Part B
1 Write a tree-form

I

proof of the sentence:

(*) a b A +a - A +1
[Hint: Since you ate attempting to prove a conditional sentence, you
may take its antecedent as a premiss which you plan to discharge
later. As other premisses youinay take valid sentences, postulates, or
previously proved theorems. (As a last resort, study the proof of
'a ----b--va+c=b;i-c' on page 84.)]
2. (a) Write the couerse of the sentence (*) in Exercise 1.

(b) If you think that the converse of (*) is a theorem, try to prove it.
If not, look for azounter-example.

3. If you have proved the converse of (*) then, since (*) is a theorem,
you have shown that the sentence:

A A +4;*-074*.:a..

is a theorem. On the other hand, if you could prove (**) then you
would know that the converse of (*) is a theorem. [Explain why.)
You can prove (**) by deriving it from Theorem 2-1 and a pos-
tuts/Ate." Do loa.

4. Show that Theo m 2-1 is a consequence of (**) and a postulatee.

TC 102 (I)

Part A of the exercises is --" you will be glad to know almost
the last time we shall have occasion to revert to the proofs of (a), (b),
and Theorem 2-1. We shall, however, have many occasions to
Theorem 2-1, via the replacement rule for biconditional sentences.
Answer for Part A

[To save space we list the sentences which should occur in the
tree+form proof. The result is a column-proof of the theorem. The
first column-proof in the text occurs on page 107. Now, however,
is a igood time for you to steal a march on the text. We urge that y_5,:m

(

(1) -a. = B - A [assurnption]* .

(2) A + (B A) = B [Postulate 2(a)]
(3) A + a = B [(1); (2)]
(4) a = B A .. A + a = B r(3), NI),

_. ,
5) A [assumptionp

do s . ]

+ 7,1 B
-*

(6) a A [Postulate 2(b)]

\(7)'
8)

= B - A [(5), (6)]
A+a=B=B-A
A + -2,1' = B <=:* -a... = B - A

[(7),

[(4),

t(5)]
(8)].

his sequence of nine sentences is an example of a column-proof.
The 4unerals are for refence purposes, and are used in thecolumn
of braicjceted remarks -to indicate the source of some of the lines of the
proof. What makes the column of sentences a proof of the sentence
which is its last line is this: Each line either is a theorem or is an
assumption which is discharged at some later linej or is a consequence
of preceding lines. [Recap that postulates, deflqftions, and valid sen-
tences are all included under the heading 'theore I Since, as indi-
cated by the remarks, the only undischarged pre isses are Postulates
2(a) and 2(b) this proof shows that its final line, Theorem 2-1, is a
consequence of Postulate Z.

The 'remark for line (3) merely shows that this line is a conse-
quence of lines (1) and (2). The remark might be expanded to 'from
(1) and (2) by the replacement rule for equations'. [In another con-
text, the same remark might refer to some.other 2-premies kind of
inference for example, modus ponens. ] The remark for line (4)
might be expanded to 'from (3) by conditionalizing, thus dischargihg
(1)'. The remark for line (9) might be expanded to 'from (4) and J(8)
by part -fel of the rulei for bieonditional sentences'--- or,--134/ the
introduction tide for ' 4=3' "..

While the structure of a proof is most clearly showzi when the proof
is exposed as a tree, trees take up a -good deal of spa e. 'A proof tor,
more general* a derivation] in the form of a colum 'occupies space
more efficiently. If it is supplemented by a tree -elia ram like that
given in the statement of Part A, all the advantages- of t ee-proofs are
preserved.

Ae proofs become more complex, column-proofs bacome exces-
ively long. To soma extent this ca e counter-acted by adopting
conventions for abbreviating such proo by omitting easily supplied
lines. It must again be emphasized, ho ver, that students should not
be .require4 to give even abbreviated columsrproofs of apy but a few

. .,,.
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theorems. What they should learn is to give relatively short para-
graph-proofs which show theimain line of the argument and, so, couldbe expanded to complete proofs in column-form. Proof ti. of the formerkind are just as "rigorous" as those of the latter. Our attentio'n tological detail in this and the., next few chapteYs is not so much to teach
students,what they must putinto.a. proof as to show them what they mllyleave out. Roughly, they may lelz,e dut what anyone who is familiar
with logical reasoning could, 441P,AcsA, .supply. Aside from this,coltinins.and tzees will c ontinusre rve a useful purpose when one
wishes to analyze a. small porti.i)r).4,4if.a proof concerning whose validitythere may be doubts',
Answers for Part B

[To give you examples of cOlumn-proofs, w,e give, as answers,colurAn-proofs and tree-diagrams,
.1. (1) a- !. g lassumption

(2) A f- a,= A + a [valid]
(3). .A +a. Afg [(1), (2,)]
(4) A + - A + g [(3), NI))

[In writing line (2), we assume that thit sentence is easily recognizedas valid. Formally, of course,, it results from 'A by a substi-
tution whose legitimacy is guaranteed by Postulate 1(b). The uPperright-hand corners of your student's tree-proofs may look like this:

A= A AfaEe,
[(2)]

In this connection, see theLrernarks folloWing the answer., belOw,ExerCise 3.1

2, (a) A + ; = A + g
(b) (1) .A a = A + g [assumption)*

(2) i = (A + a*) A

(3) 71 (A + g)
(4) g ( A 4- g) -

( g

[Post. 2(b)]
[(1), (2)]
[(zn
[(4), (3)]
[(5), *On
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(4) 1 (A + A

( S) A + = A *
1(3)1 .

1(4); (2))

(5)

[As rem'arked, we shall eventually not bother to d"cfer to Posttilat,e
1 for the purpose of showing that (Subst)-inferences are what theyclaim to be. Abegin this down-grading of Postulate 1 here by placingsuch a referenceinthe remark for line (2) thuS getting it but of theproof proper. The tree-diagram we give takes account of this,. Yourstudents will, however if they follow previous instructions -- presenttree-diagrams whose upper right corners look like this:

At+ e
[W] (Subst)

f = B 41> a B A A +1;EE

[(2)]
Whether they do or not, point out that the temporary instructions toinclude the indicated (Subst)-inferences are still in effect, but that
failure to observe them is not crirninal and is pegrhaps even
commendable!

;One of tbe conventions which.might be adopted for abbreviating
column-proofs Would allow the omission of line. (3), and giving
Poat. 2(b)' as the comment for line (4).1

4. (1), A + = A+ B**)1
(2) A + a = A -I- (B A) 4=t. a = A [(1) (Post 1(a)))
(3) A +. (13 - A) B [Post. 2.(a)]

[(3). (2)]or (4) A + B B A

(4) (3)

[Ifote how, in the column-proof, line (2) does double duty. in the_trproof this scnrrnce- must be repeated. The remark for line(4) 'might be expanded tO 'from (2) by (Subst)'. Note that this useof (Subst) does not violate the provi
although 'a' occurs in the assurnpti 1), this assufnption is notused in deriving (4).
The converse of (*) is the only if-p of (**) and, so, is a con-sequence of the latter. Hence, a proof of (**) could easily beextended by one step.to give a proof of (*).

(1) .A + a B :=P r- \B A [Th. 2-1) (3) (1)
(2) A +7.: A +I; 4=4, 4A+g)-A [(I) (Post. 1(b ))]
(3) F. (A + A [Post.* Z(bn

o the deduction rule because,

.2q

Do not fall into the trap of interpreting Theorem 2-2 as though itwere the/weaker statement:
vx x + X + b 1 =

The if-parts of this statement and of Theorem 2-2 do "say the samething". The only if-part of this statement is true merely becausefunctions in this case, translations, which have the same argu-ments and have the same values for thesame argumentt are the samefunction. The only if-part of Theorem 2-2 asserts that translations
which have the same value for a single ag-gument are the same trans-latiob. This matter need not be brought up at this time; it is dis-cussed in a relit chapte r._

V,

Since your students' Mm should be that of learning to write para-graph proofs, the exercises of Part B may well be discussed t.,C show
how columns aid in writing paragraphs. Comparing the, answers givenabove for Exercises I - 4 with the following paragraphs may be
helpful.

Exercise 1:
Suppase that a z g, Since A+5*.= A+a it follows that
A + tt A + Hence, if = 5 then A + =. A 4. 11.

S.
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2.10 Some Theorems

Theortm 2-2 A. 4- 4. A + = 6

A translation tletermines the images..
under it, of all iSoints,and is determined
by the image of any 4;iven point.

Par:t C
1. Prove:

11 theorem 2 -3 A', C B - 6'. B

First, prove 'A ---

converse. I
B A-CrB- ", then, prove its.

2. If you have given a tree-form proof of Theorem 2-3, translate your
proof nut: ;Nortl.s. iSuggestiori: Write three short paragraphs:

Suppdse titit A B. 'Shwa .

. . .1-Ience,.if A C = B - C:
Suppose that A -L C--- B C. Since . .

. Hence, if .c B C..then A B.
Since if A.- B then A 7 C ' C and since.: .

it follows that . . .

Part Li .

1. Earlier we showéd that Postulate 2(a) is a coniequence of the
if-part of TheOrem 2- I ---,that iS, of sentence (a) on page 1Ckl. Write
a paragraph to show that this is the case. (Suggestion. Start out:

Since l(a)I if a- = B - A, then A +. a .=,,B it follows [usink Pos-
tutate 1(a)1 thai ki . . .1

2...Write a paragraph show' that anothei of our postulates is a
,

consequence of the only if-part of Theorem 2-1.
3: What single eiltence might we have used as a postulate in place

of Postulate 2(a) and Postulate 2(b)?
0 - . '

Par0 ?
L Wri

tr

,
_-a paragraph:proof of the-serance:

44 7*

'() Do yeti think that the sentence::
..

A ± 14 B-4-'4.,PA=.1?
.

Is true?
14

40
(b) *bat dOtS tlie sentence of pArt
(1) illbo 'yeti think that the se

- that th, that it is a consequence ofyootulates I and 2?sr'

,

y about 'au tfauslaiion?
art (a) is [novil i theorem.

Exercise 2(b):* '

Supliose that A + A++ g. Since, by Postul4e 2031/
(A + - A it.follows that a = (A + - A. Sinfg,

_again by Postulate 2(b)4 g = (A f 11) - A IS follows that
,a Hence, if A + a = A "I g ,then = 5. a

Exercise *3:

Exe

Since [Th. 2-1
tliat A + "t A
Postulate 2(b).
if and only if a
rcise 4 :
Since [(**)} A
A + a = A + (B
Postulate 2(a),
if and bnly if

Answers for Part C
1. (1) A =

(2) A - C'= A - C [valid]

(3) C = B - C
(4) A=B A-C=13. [(3), *(1)]
(51 A-C= B-C [assumption]t

] .A + = B if and.only if a = B - A it follows
+ 13. if and..only if "a' (A + 11) - A, Since, by..

= (A + - A it followa tfiat A + = A + b

+ a = A + g If and only if -a. = G it follows that
- 'A) if and only if it = B A, Since4 by
A + (B - A) = B it f9llows th'at A + a .=.13
= B - A,

1)

[assumption)*

(6) A + (B - A) = B [Post. 2(a)]
(7) ,C + (B - C) B [(6)]

(8) C + (A - C) = B [(5), (1]
(9) C + (A 7 C) 7, A [(6)]

(10) A L" i(g) (8)]
(11) A-C= B-C =4' A (2.;0, 1(5)1

(It) A - C B-CA B f(44,1, ,(1`1)]
Suppose-that-A =4.- Sincs:4_-__,t___= A - C a inflows

that A - C = - C. Bience, = then. A - C = B C.

Suppose that A - C B - C. Since, by Postulate Z(a),
C + (B - C) = B it foliows that C + (A - C) B. Sitce, again
liy Postulate Z(a), C + (A - C) A ft follOwik that
Bence, if A - C = B C:,then A =

§ince. if A = B then74 - C B C and since if A C = B - C
ihsn A = it follow!' tie = B C if and onlpif A = B.

[Note'the use of thillepar4raphs to . separate put cAel.rly thit
' parts !of the argurnent.1

(6)

. (6) (5) (7)

.(1)* (2) (9) (8)

(3) WO)..t
(4) (11)

(12)
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Answers for Part D
I., Since ((a)) if t - A then A. + B it f011ows [using Post.

1(a)] that l'f B- A B- A then A + (Be- A) B. Hence, since
B. - A = B A, A.+ (B - 'A) .= B.

[Obviouslys, the wording of your students' paragraph proofs is likely
to differ from\ that given in.the answers. What the.y shou.41 all say is that
an instarice.of\ (a) has a valid.,antecedent-and has Postulate 2(a) as its
consequent. :.'ro [by modus ponunil), Postul'ate ..Na.) is a consequence of
(a). How they choose to say this is a matte'r for individual initiative.
Style 'and grammar will follow from practice and fl-om the obseSvation
of suitable examples.

discussing the answers you May find it'worthwhile to tr,anslate
them into a corium-proof. This is easy. The tree-diagram for such a
proof Ls tpat of Exercise 4" oi Part B. If it includes deriying
113 A = B A from 'a = a', the diagram will be that of Exercise .3'.)
Z. Since if A + B then a B - A It follows that if A a. 'A + a-then a (A + a) - A, Hence, since a A + a, a.= (A + a) - A.
.3.. Theorem 2-1.

. [Theorem ,2-1 might be used in prace of bNib'parts of Postulate 2.
Another possibility is to use Theorem 2-2 oAltierel its only if-part
As A replacement for Postulateb). Challenge students to show that

. the latter is a consequence of Postulate 2(a) -alti the only if-part of
Theorem 2-1:

(1) A + -== 4 + (Th. 2-2)
(2) A +1 A + [(A + a - Al 4=; = [ 1 )

(3) A + (B A) B '[Post. 2(a))
(4). A + [(A+ .1)1., Al = A + [(3)]
(5) A + + a (A' + a).-. A [(4), (L)J
(6) A + ; A + [valid)

[(6), (5)1(7) ;
Similarly, the only if-part of Theorem 2-3 might be used as j.t replace-

ment.for Postulate L(a), However, Theorems 2-2 and 2-.3 ;bay not be
'used together to i.eplace both parts of Postulate 2. With each.theorem
one needs One part of the postulate one is to infer the other
Answers for Past E
L. Suppose 01111 .13, Si.nec A + ; .7. A -t ; it follows ghat

A + B + a., Hence,. if A B then A + ; = B +
2. (a) Yes, [Thiii sentence has been discussed earlier. See the

discussion,of Exercise 1,, Rart B on liC" 94(1) - (2). ]
.(b) An tl'artslation is one-tit-one [or: hiSs an inverse
(e) No. [See discussipn referred to for part- (a). ]

-
(The sentence - A C - B A = B' is another exam le
of a true sentence which is-not yet a theorerii.
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2.11 The Bypass Postulate'

Because we decided lo think of tlw imaR of a i)oint under a transla-
tiiin as the result of "adding" the translation to the point, Postulates 1
and 2 tell us that a translation isoa mapping of (" into itself and that,
given a. point A rind a point B, there is one and only one translation

the translation:1i A from A to B -which maps A on B. In the'pre-
ceding sections you have found diffefent ways of saying some of these
things which Postulates '1 and 2 tell us. [This. is' not very important.
The important things you have learned are various rules of logic and
how to use them in deducing the consequences of given premisses.]

In Ch4ter 1. you learced nruch more about 'translations than is
fornialattd in our two i)ostulates. Wart of' what you learned is sum-
marized'ori pages 47 arid 48.1 For exampleyou learned that a transla-
tion is a one-to-one maPping. As you prohahlVecided when working
Exercise 2 of Part E on page 103., this fact abovt translations, is not

..part ofthe content 9f Postulates 1 and 2. Since "sVe.' wish all true state-
nilmts about translations, a:nd abOut how they operate on points, to
Se consequences of our postulates, we might a'dopt the sentence:

A- + a
.

B

as a third postulate. Before doing so, however, let's recall some of the
other facts we knim about translations. ition to knowing that
reach translation lha an iriverse that the inverse of any
trans14tion is a translation..,More speci really, we know that the in-
verse nf the translation from A to B is- the translation from, B tc:A.
Recalling a theorem on irwerses from,Section 1.04, this ainounts to
saying that

(i) ( -.13) (B A) and H A),. (A - 13.),
lee page 26.1.

Since either of ( i ) and (ii) implies the other, we might adopt (I), say; as
our third aostulate rather' than (1). Since we decided earlier. to write,
for' exarnPle, 'a + h ir,istead of 'b - al; and instead..of mix third
postnlate Would be:'

2) (B 7 A) + (A
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The text of section 2,11`is an attempt to illustrate the sort 'of
considerations which guide one in choosing postulates. Something like
thls has been done previously in section 1.07;.,but, there, the empha-
sis was mostly on choosing a potentially helpful. notation. Tbis earlier
work might, nevertheless, be recalled here td point out that, while
Postioilates 1 and Z may be thought of as explaining the use of '-' and
one of the two uses of '4 w`hich were decided on in section 1.07, we
have no postulate whkh SQ explains the second usage of '+'. We are
certainly in need of a postulate which, i some way, formulates ou,r
decision to use of'. in such a way that a + .1; is to the resultant of a
followed by b. This would Suggest, directly, the adoption of Theorem
Z-5 on page 109 as dur third postulate, . The sentence which we do [on
pap- 105] adopt as our third postulate is another way of saying what
Theorem Z-5 does.

StiOents,will probably recognize Postulate 3 as the sentence
used as a premise.in Parts C and D on pages 91 - 9Z.

There is still more basic fact about translations than that which is
expressed by (2). It is that the set .f of translations is,closed uhder
functIon coosition. The resultant of a translation a followed.by a
thuislation fi is a translation.
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. 2.11 The Bypass Postulate 105

In particular, for any points_ A, B, and C, (B - A) + (C B) is the
resultilnt of the tr slation B A followed by the translation t' B.

B

A
(8 A) (C- B)

Since this resultant is a translation and since it maps,A on C it fol-
lows that it is the translation C ,- A.

2-8.
. ,

.., \So, another posSible choice for our thira postulate is:

(3) (13 ,+ - C A

This turns out to be the Eaostsatisfactory choice, and it is the one we
shall *dopt.

p, osiulate 3 IThe Bypass Postillate.)

- A) +,(C B) = C - A
.

The translation. whiCh malich on B followed bitha transia-
ion which rnapsBoriCi&the translation-which-maps:A en C. --.:

5 '

3

4
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Exercises

.Part A
(iltnplete ek:ch of the following sentences and draw a figure which

illustrates it.
1. (A P) - A) -
2: [(A ;- + (B A)1 + (P B) '4;

Part B

e Part (2

I. (a) Use variables 'a', Lind 'c' to write a sentence about real
numbers which is analogous to Postulate 3 on page 105.

(b) Is the sentence you wmte in part (a) true?
2. Here is a different sentence about real numbers:

What CO you.notiN when you iity to write an analogous sentence
about points? [Exercises 1 and 2 illustrate an important fact. A
true sentence about points often "tranplates" into a true sentence
about real numbers when point-variables are Feplaced by real
nuraber-variables; but a true sentence about addition and sub-
tradion of real numbers may become nonsense when real number-
yariables are replaced by point-variables.]

1. (a) Mark three noncollinear points P, Q, arid R. Draw arrows to
describe tI4e translations P Q and R - P. On the same pic-
ture, draw an arrow to describe R - Q. Your picture illustrates
an instance a Postulate.3. What 'instance?

(b), Repeat part (a) for three collinear points P, Q, and R.
2. Mark three points P,Q, R. Draw arrows to describe P - Rand

Q - R. Complete the following: ,

(a) In order to illustrate theNastance:
' 4

(Q R) + = P R
-37

of Postulate 3 we musli.draw an arrow to.deserlbe the trans-
lation

(b ) In order to illustrate the.instance:
;

)

we must draw an arrOw to dericribe the' translation -,1-1
83. ComWete each of the following to obtain al iiistancre of Ptitulatp ;:

(a) (R - P) +
(b) - (R - P) =
(c) (-- + - =
(a) - + (P

Answers fol. Part A
I. B - P

A

3. C - A

B - A

A R

P
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- D
(B 41.1. (0 --Br--

2. P -.P iorr: 4
B

.. 12 - 13

A - P

Answers for Part B
1. (a) (b - a) + (c b) = c a (b) Yes.
2. Substituting the corresponaing capital letters for lower case

lettern yields nonsense. [The point remarked on in the text's .
made very precise in section 3.07.]

Answers for Part C
.1. (a)

P R -

R -R

2. 1Figure like that in Exercise 1. j

JP-0) + (R-P)Ig R-0

(a) P Q [twice] (b) Q P [twice]
3. (a) A, R, A P [Any capital letter for that matter, any point-

term will do a,' well as 'A', For example, - p) +
((P + - R) (P + - P is one of the instances of (3) which
students might suggest. If you'promote a bit of cpmpetition in
giving answers, yo'ur students will gain practiCe in consth,I,Cting
point-terms and in making sure that they.are such
well as -becoming acquainted with the pattern of instances of
OLT

(b) P, R -.A [Again, any point-term may be used in, place
,of ]

R, .A .,(d) A, (P + j;), (R +
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1. Usibg the notation o -ourulgebra of points and translations, write-
a sentence which sars that, for any trtmslations a and h, the image,
of a point A under a + .6.it1 the same as itS image under ,a followed
by b

E. *rite a sentence .which says'that ./ is ciosed under function com-
pOsition.

3. Do you think that, since we have adopted Postulate 3, your an .
swers fOr Exercises r and 2 are theorems?

. ,

2.12 More Theorems
r

Your ansverYfor Exercise 3 of Part D. should have been 'Yes.% for
you have already shown while doing .Parts C and I) on pages 91-92

he.two senterices in questiOn. We shall
llustrate a third way of Writing proofs.

thebrem.

that Postulates 1 -3 imp
show this again mostly
We begin hy guessing at a

Consider thel.wo followi fit, res:

A 4- a

Fig. 2 10

Notice that the '+ in the left-hand figure has a different meaning than
do the '+'s in the right-hand figure. The left-hand figure illustrates
our convention of 'using '+' to refer to function.composition. The right-
hand figure illustrates our 4ither convention of using '+' to tefer to
func.tã.ux application. The two figures suggest that the sentence:

*) + - [(A + + - A

, is true. As a matter of fact, th.1 equation, with its 'IL' of fkliction coin-
-position on the left side and its '-' on the right side, looWverST much

, like an instance of Postulate 3. So, to show that (*) is [not only &lie,
but) a theorem, let's try to obtain it by making substitutions in this
postulate. *.-

si4i(1) (B - A.) + (C - B) - C - A , [Postu1ate2] -
(2) (B - A) + [(B + b4) - El [from (1);.`B + -6t for 'Cl

. (B + *b5 - A .
(3):el rs(B' + 6i).- B W [from POstula 2(10]
(4) (B - A) + b !--- (B + TA - A. Tfroln (3) and--, . ....
(5) [(A + a 1 A) + b

-,
[from (4); 'A + 'for '131.
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Answers for Part D . .
I. A + CI' 4-,.11.) = ,(A + + 11 [C.ogipare with;
2. 1. + g c T
3. Yes. [Recall Parts C and ,D on pages.17 - 119. ]

[In dissing ExeIrcise 1 make certain that students realize that
the secokid ';st..,,v3n the left side of the equation has an entirely different
intlEirpretation than do the other three '+' a. In particular, although our
notation has been chosen as it has in order to bring out formal analogies
with the algebra of real lumbers, the equation in question does not
alisert the associativity of any operation.]

. . .. . ,4 ,S.
The "third way of writing proofs" refers to column-proofs.

Your students have, we hope, rhade acquaintance with these in yOur
discussion of e exercises in section 2.10. .
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- (6) a .(44. + a) - A 1Postidate 2(b))
(7) + + + A [from IV-and (5)1 -
The preclding/is an example of What sve shall call a eolumn-hroof

Sucli a. proof is a sequene of sentences Some of-mil-lid' are-poStulates,
pwviously proved theorems, or valid sentences lor assumptions, if we
pfan to use the deduction nal. Each of the other sentences must be a
consequence of sentences which prec:ede it. [Actually., the sequence,
(1) (70 dOes not quite satisfy this requirement .unlesg we agree that
sentence (3) is. a 'previously voved theorem". We could fix this up hy
-writingline (6) between lines (2) and (3), but we shall often allow
column-proofs to contain sentences which like (3) are obviously -sub-
stitution-instances of postulates, previously proved theorems, or valid'
sentences.

The, numerals to the Jeft -of the sentences of "a column-proof are
merely for .reference purposes. The bracketed comments to the right
are intendeti to explain what is going onthey are not, strictlY speak-
ing, part of the proof.

.

.

Column-prop& are...somewhat more explicit than re paragraph-
proofs, and take uP less space than tree-proofs: ,Some meeit is helpful
to supplement a column-proof by giving a tree-diagi-arn. This is like a
tree-prtx)f, With the reference numerals in plke.of the correspoRding.
sentences.

(1)
1 (3) (2) (Subst)

(RRE) ------- (4
(6) 5)

,

[If, as suggested .two paragraphs back, we wished .to show .that (3) is
a consequence .of (6), .we 'would show another substitution-inference.

writing t6)' above. the `431' ih the tree4liagram.1

Theorern2-4.. a + [(A + + bj A.

A.pdragraph-pro4of Theorem 2-4 might go as follows:
By PostUlath 3, (B A) + i(B +-65 Bj 7:(13 A and so, bY

Postulate 2(b), (B .- A) + + -65 A. From this if, followsthat
[(A + a) - - )[(A ,± c;) +.'1A A. So, by Postulate 2(12), a +-A,

.

[(A '4- a) +.1))

( 7)
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Had we chosen Theorem 2-4, rather than the bypass postulate as
our third postulate, this- choice would have led to precisely the same
theorems. This fact is likely to suggest that we might merely have
defined addition of translations by:

(*) + = [ (A + ) + ]- A
and that, as 4 consequence, our third postulate might besdispensed
with. This is incorrect and, for a proper understanding of_definitions,
it is important to see why. To this end, suppose that (*) were
accepted as a definition. What this means is that, whatever instance

rof (*) 'we may choose, the left side of this instance is to be used, at
will, as an abbreviaticin for the right side. So, for example, both of
the sentences:

(1) [(A + + - A = [(A + ae) + - Aand:
[ ( + ) B = [ ( A + )+ I A

might be ,abbreviated to:
M 7a. + = j( A +. ) + 11) - A

This beinwthe case,,one who is presented with sentence (3) has no
way of knowing whether he should consider it as an abbreviation for the
valid sentence (1) or for the' true but nomalid sentence (2). An abbre-
viatiori such as we are assUrning hereThb.t + 11' is intended to
be must be such that there is never any doubt as to what.it is that it
abbreviates. In partyialar, an.equation which, like (*), has a variable
in its right side whioes pot occur in its left side may not be used as
4. definition.

The preceding objection to using (I') as a definition may also be
put in another way. Although the adoption of a definition does make it
possible to Prove additional theorems namely, theorems which con-
tain the defined expression it should not make it possible to prove
any "really new theorems". Any theorems obtainable by using the
definition ihould be merel'y abbreviations of theorems which could be
proved without it. Now, (*), an instance of (*) ['B' for 'A'], and the
valid sentence (l)logether.irn'ply (2). So, if (*) is adopted either
as a definition or as a less specific kind of postulate (3) becomes a
theorem. With it, by Postulate 2(a), te sentence:

( B )+ r, B + ( [( A + "S.) + 134] A)

becornes a theorem. This sentence tells us that the image of any point
B under the mapping which.le die_ resultant of a followed hy ia the
same as the image of B under a certain translation. That is, it tells
us'that the resultant of ae followed by -1; is a translation. Now, 'while
this is true enough, it does not follow from our Postulates 1 and 2.
So, the adoption of (*) has made it possible to prove something new.
Hence, (*) accomplishes more than a definition is allowed to.



Exercises

Part A
1.

Part B

Part C

2.12 More Theorems 109

Write a column to show Lit Postulate 3 is a consequence of Theo-
rem 2-4 kind part of Pose 'date 2.

2, Make a tree-diagram ofthe argument'you
Exercise 1.
Nrite a paragraph whichserves.the same purpose as zour answer
for Exercise."

gave in answer to

1, Prov:

Theorem 2-5

ta) a + b c./
(h) A + + h) + +

!if-lint: You maj7 use Theorem 2-4, as well as still earlier theorems.
If you prove Theorem 2-5(a) first, you may use 'pi proving
Theorem '

2. );3y using heorem 2-1, show that icia Pince of Postulate 3e,.
had ad ted both parts of Theorern1-5 as postulates then Postu-
late 3jvou1d still have been a tlitorein.

Theorem 2-5 migh have been suggested.by these figures:

,
A t (a b)

a *,0

IC 109 (1)

The purpose of the exercises in Part A is to. OS aii'altri#ate '. '-'i,
( r

way of organizing the properties we have about points and..traVlati..sins.
Again, the exercises should be used for practice on SeriiratiOn.-4.14:.
not crucial to the course to be able to derive, say,- PoStUlate 3 fran
Theorem 2-4 and Postulate Z. This is only an interesting observation
to most students at this point. If yeur students are..progressiiig well
with derivation, you may Wish to omit Part A. Exet:C.Iiie -2-of.Part ii-. isin-thi.eicategory also.

Answeror ,Part A'
1. =

+ B) = (A + (B - A)) -I- (C 13)) A

(4) (B A) + (C-B)
(5) B +`.(C B) = C
(6) A)+ (C - C. A 4

(1)4 -

.(3) (3J't (2)

B)] A

#.;;,Since
,:. ,...t(A +i4B - A)) + (C - B)] A. Since, by. Poetukate 2(a),,

16..4 '(B ''' A) = 13 it follows that' (3 - A) +-..(C - n) = [A+ (c - B)] -
s'giiO3..... :again _by ,Tvu1.444.;14(4. 13..+,..,(C -.B) r= C it follows that
\ (.V.;441414:#:P:c;c0:4-''A'.-:;t-iv;'-''?:- --..'- .

,.. ,,... ''2. i..4.'..-i".,,;,,.: :::, l...,, .; . ....,,Q''' 4 4, , : . ::. ;.:
'' ,1:`/ :7,..r.s- ..., .0,1 :,.

IN1.14Pe'r.8-ftit.. E'aVt7 B ".;#..-..'.. "-- .t. --,-.!'-:-:.-fs'-,.3'.:::,..., *T.-,..--
, #1111

[Proof otpart (a)] ../3y.4.PosIttl iiV15:ate:.11'74,+. a.).,+13 e.e.. S'o.,. by. ' ','..--:.;..:,''
Postulate l(a) , [(A + a) 4- bi'' 1:,;;;;;,i'aitptie.0,;-51:y.:11.1§.6:i4iii4,%,'.'...::';.17.!ii..r...:.
3 + t,"*. e-r '. IT b e '1-Terite, 'releri'-te:lt Cipptitation-of tkie -iivi,i;'.
ment,fule for.equations. I

, ,
'[`PrOof of part (b)) Since .1 + 5 E T, A + (1+ 13) = A + (-I il`.5). .

It fe.11ows by TheorelM 2-4 that A + (-1 + III = A +' ([(A + ;).+4#.] - A).
1V Postulate-. A = (4 + a) + rie .

,
9.,

[Alternatively. The.orern .475(5)_canbc.derilied_laY::nitailii,--',#:
.

ponens from, TheoreM 2-4 and an instance of the if-pa. -0,
,.

[T2k Z-4I
[(7
[Posta .2( a)]

[(3), (2)j
f(3N

[(5).44)}

1. Which '+'s refer to function, composition? Which to function
applicakion?."

2. In each part a this ,exerccse you are given two arrows and a dot. .

Copy these'nna 'Make a- alrawing like the left-hand Agure above.

(b)

60.

.

'Thporem g-I. The instance required is:

The.writing of sentences aa long as thlt s siimetin;e1.tiresome,
and the multiplicity of grouping symbols whifili fOliishes
opportttnities to blunder. These diffiulties may be reas=id by a
prdcedure which amounts to introducing abbreviationitlor-complesc
terths. 44re illustrate the procedure 'and then discuss it. '

Suppose that A + ("a" + ) B. Since .aP + .;.1 6 it
follows by Theorem 2-1 that a + 13 B A. So;

'Theoretii 2-4, B - A = [(A + -*)#:+11; ] -A auth iy
Tbeprern Z-3, B = (A 4 ' $ce, 4132`9.hie9:3?
A.1+ 4: a)
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*

A.

Vart
-

On page 104 'we considered the sentence:

t.
A +-a Ai ta"--4.A B

This sentence is true because it 'Says that any trAnslation is one-to-
one, Although it A true, sentence 1 1 is not yet a theorem. llt will
become a theorem when, in the next chapte,., we adopt 'another
postulate.] We can show that (1 ) is not 'a consequence of our three
postulates by giving a different interpretation to our language. With
this new interpretation our postulates ,will again be true but (1) will
be false. Sknre consequences of true sentences are true, this will show
that 1 ) /is riot a consequence Of our postulates.

For, this new interpretation we shall continue to think of as the.
'set of all points and of as a set of mappings of?: into itself. Instead,
however, of the members of . being translations, now the rtembers
of I are to be constant mappings. [A constant mapping is onr which
maps each point of ? on some one.point.1 Yon may think a con-
stant mapping as one which "shrinks" all of rf to a single point.
Evidently, a constant mapping is as far as yin; can get from being
one-to-one.

The only other change we shall make in our interpretation is to
take B A to be tile constant mapping which maps A on B. A '+ a is-
,t; till the image of the point A under the mapping a, and a + b is the
resultant of the mapping a followed by the mapping 6 . So, as before,
B .7 and A:+ a E

With this new interpixtation in mind; do the following exercises.
, 1. C (B A') ? [Hinit; What is the image of C under the constant

mapping which maps A on B?)
2. a 4-, b = ;? [Hint: Suppage that a the constant mapping which
- 'maps each point of ?' on the point A and that b'maps each'point

of `e.4! on the point B. What is.the image of a 'point C under the re-
sUltant of a folleWed by

3. Are both parts of Postulate 2 true? '1
4. Is Postulate 3 true? [Hint: See Exeri!ise 2.1
5. Is the sentence (I) true?

z.

TC 109 (2)

(Instead of appelling to Theorem Z'3 we mig , 'of course,. have
made use of Po-istulate 2(a). ) The preceding a gurnent shows that
Theoxern 2.-5(b) is a corisequene e' of several eo.rerns togetherr ,

with an assumption. One's i'rafuitive feelings re that, as far as the
conclusion is c-oncerned, the assuMption'may0oe discharged. This
fee4ini changes to absolute certainty on notink that substituting
'A + (a + b)' for 'IV throughout the argumen 'leaves the conclusion
'unaffected and turns the as-sumption into a v, id sentence. Of
course, actually carrying, out the substitutio would lose us the
gtiins obtaintd by using 'B' as an abbreviati for 'A + (a + b)'.
What we may do, however,- is to continue thl a.rgument by dis-
charging the. -assumption, making the substitikition in the ilesulting
conclusion, and applying ModusdponenS: ;

' lience, 'if A -+' (ae +.'11) = B then...A i ( +

(i\ 4- ae) + 17;, -In particular, if A.4 (a + lp) = A +,..(a + be)

then A + (i;. + 1:;°) = (A + it) + g. 'So, sirivf A + (a + g) =

A + ( + go), it follows that A +(a° + be) (A .4- ) + be.

This concluding paragraph is, essentially, ,a rubber stamp affair.I

So, there is really no need towrite i-i.t dow9. Abbre ating assump-
tions like'our 'A + (a. i- 5) --! B' m"4, be..ig ored onc one has
arrived at a conclusion in which the!varia e introduced as an
abbreviation does notoccur. For, 4hen, t e rubber stamp can
btAised to "complete." the pr?oofil , .

By Theorem Z--1 it follows from Theore
(A + -a!) 5 if and only.if + 1-3° = [(A'+

+ g - [(A + + be] A. 'Hence,
A,' (B A),+(C -'B) C A.

Answers for Part C

2.

The fi`rst and the last-of the three. '+'s ih
fo function com'positioN all others refer
(a)

A

+

1/*

tow.4

1.

5(a) that A + (ae + g) =
A, So, by Theorem

as,in Exercise 1 of Part

he left-hand figure refer
o function applicat,ion.

s.



2.13 Chapter Summary

Voeabulary Summary

postulate
translation
valid sentence
conditional sentence
consNuent -

converse of a conditional
biconditional senterwe
constant mapping

Postulates

1. (a) H - A
'L. (a) A 4- B A) B
3. lB A) 4- iC - Hi C - A

Other 'Theorems ,

I 1.

2-1.A fa 13 0-4- a' I 3 - A.. .2-2. A 4- a A + b 04-!, a b
2-3. A -.(.' B - C . 0 .A B

- 2-4. it + h liA
'2-5. (a) a + b.e,

Pas) Rules of Logic'

Deali ig Leah uariables

2.13 Chapter Summary

theorem
mapping
equation
antecedent
valid derivation
counter-example
conjunction...sentence
linear function,

(b) A
,(13) (r. (A + - A

111

' (b) A + (a + b) tA + +

S hstitiibion Ruse [See page 69 and page 87, following (*),]
Any sentence,which is used tO make In assertion about all

values of' some variable implies each of its substitution-instAnces
with respect to this variable.

4

Dealing with equations
-

Replacement Rule for EquatiOns. [See page
Ven-an equitinii and aifkond sentence, if either side of the

equation is replaced, somewhe?erbi the second sentendE, by the
*other side, the resulting sentence is a consequence of the given
equation and simtence.

Introduction,Rulefor Equatiora [See page 75.1
The equations 'A A', 'a - a , and 'a-- a' are valid sentences.

Answers for Paft C cont.1
2. (42)

TC 110

(d)

Answers for Part 1)
[These optional exercises illustrate a procedure which can some-

times he used to shoW that a given sentence is not a theorem. The
procedure is based on the fact that, since consequences' of true sen-
tences are triw. a false sentence cannot be a theorein in a system
based on true postulates. The power of the procedure depencV on the
fact that the rules of logic including the rules of sentence structure
'are purely formal, so that whethei or not a sentence is true depends on
whatmeeninl.ts -are assigned to -the Matliein-Mic al symbols; but whether
or not a sentence is a consequence of others is corn .11tely independent
of these meanings.. Since' we know, that our post tes are true when our
symbols have the meanings we have chosen to express by them, we
know that no sentence which is false "under t,his interpretation of our
symbolism" can be a theorem. The test is to find a new i'nterpretation
of the symbolism under which the, postulates are, again, true. If the
sentence in question tu'rns out,to be.false under this interpretation then'.
itecv,nnot be a theorem. If it turns out to be true, we have learned
nothing.

N4).hether or not the procedure just described works (in the case of
a sentence which is actually not a theorem) depbrids on how clever
or lucky we are in finding new interpretations. The more postulates
there are whose truth has to be maintained, the less likely we areto
Auccee&

L... .
1, Since O3 A. is the constant mapping which maps A on 13, B A

rnaps each point on B. So, C + '(.3 - A), = B.
2, i--: T-t. T-s.- - = -. [It is the nature of a constant mapping to "absorb"/

any ,othe r . ] .
1 ,

,

3. Yes. r'ostulat'e 2(a) follows f4om,the result obtained in Exerci e
1. As to Postulate 2(b),_. (A + a) .r A is the'con,sta-nt mapping w ich ''-.
maps each point on A + a. Since thiti is what a does,
a r- (A + -1) - A, 1 ,

..
4. Yes. [By Exerc,ise 2, (B A) + (C B) , C - A. But, C B

and, C A are, both of them, the constaut mapping whicariaps
each point on C. I

.
-v-3111-. ,._.b -.5. No. [For any c Itonstant mapping a, + a - + a no matter wnat

points A and B are. Any two points: then, giye a-counter-
example for 01). [
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ding h condit sentetuTs

Modus Ponens 1See page 78.1
Any infereRce of the tbrm:

is valid.
Deductwn (See pages 87 and 88.1

krly inferene of the form:

p

is valid.

Dealing. h bieunditional sentences..'.. .

Elimination Rule ISeellage 98.1.
Any inference of either bf the forms:

p q

P

is valid.
Introduc!'iOn Rule ,iSee page 98.1

Any inference of the form:

u
«

p

q "'"?* p p *0 qp
is valid.

hng With eriurietton sentcnces.

Elimination Rule [See 'page .121.1
Any inference.a either of the forms:

.
p and qp and q

P

is valid.

Introduction Rule [See page'101.]
Any inference of the form:

is,valid.

P q
p and ci

1

I2.13.Chapter Sununary el
.

Other Rules of Logic

:Hypothetical Syllogism [See page 90.1
-arafii tiT40 r

Any inference of the form: is valid.p =pm" r

Replacemot Rule for Biconditional Sentences ISee page 991
Given a hiconditional Septence and a Second sentence, if either

side of the hicoaditional sentence is replaced, someWhere in the
seep sentence, hy the other side, the resulting sentence is a con-
see ence of.the given sentences.
Reflexive Rule Biconditional Sentences [See page. 991

'Any sentence of the form 'p p is valid.
mwrtation arid Exportation [See page 101.1
Any inference of eithei of the forms:

P [(I
(p .and q) r

is valid.

(p and q) r
p=EOM.. r I

Chapter Test

1.' Complete the followin"g so that when the results are treated' as
universal generalizationk they are true ones. 1If it is not possible
to do so, s4 so.) -

(a) (R 7 P) ((P +
(b) (S (R + + (R S) =
(c) (1`k C) + C c

B + (C D)*
.

(e) (A + ) A -= A + a
(f) R + R) R + -o

2. Suppose that P, QT. R, ahd S are four points such that P
R - S. Whih' of the following diagrams do not illustrate this

assumption?

.C)
((a) b)

S. R R.

(d)
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3. Consider the diagram at ttie
right. Using 7.", '4', B' ,

, give three different pairs
translations differences of

- points) which have as .their
resultant the translation B

4.- Which of the follow ng expressions is hota substitu i n-instAnce of
a)

(a) p i(c) r i(t) +
(c). P p. IQ 4- iP -41 pi) -- Q

5. True or false?
P Q is the translation that maps Q on P.
q. i he translation thai maps Q on P +
R ((t) R ) is the inverse of Q S.

If O. LA b.) B then h 113 - A
Draw a diagraM that .ilhistrates this theorem about points
and translations:

(b) (Q f ()i).

(d) p + (Q (p. Q+ Q

A -

l-'rove the theorem in.part
Now con..4ider this sentenco:

A b_

Is th s sentence true'? Is it a theorem? Explain your tu-ywers.

6

d'

a

Key to Chapter Test
1..

-0(a) q

(s) .Not possible *
(e) Not possible

TC 113, 1p

/
(b) 9 ' : P. (R
(d)
(1) P. +

2. (a) and (d) do not illtrate _the given points.
Each oLthe answers is 4..)f"the form 'X P, B X' where the
possiblVaTues for 'X ate A, C, I); and. 13 [or, 13, beat not both].
Serne students may have difficulty seeing that. '(1),- P), is
one of the' answers because there is no "dottoci line? from 13 to B
to cue.this Choice!.

(c), because 'P.4- P.' is Dot a slation-term
S. (a) True.

(b) False..
(c) False,
(d) True.

6. (a) Here is an appropriate diagrm to Illustra e the theorem:
8

N

(b) Proof: Suppose that A - (B.+ g) z Then, [by Theorecn Z-1 [
A (B-+ b) + Since (B (.8) z.*13 + (1; + 1.), it follows
that A = B So, 'A B Hence, if
A - (B+ g then A B = 1-; + 1.

(c) Yes. By our work in 6hapter 1, composition ottmnsiations
is commutative, a'No. We need to haVe 'a + b b + a ,a s. a theorem (postulate')e .in order to be abie to.deriVe the gioven sentence:, Since we
cannot derive it from the present postulatel, the sentence'is
not a OTC171.

9

4s



Chapter Th,ree
The Algebra of Points

3.01 Some Properties of ons

b.

Translations

We have alreadysaiscover , 4he basis sof Postulates 1 -3, it
is a theorem that'the set Of inshitions is closed tind6re function
composilion. We stated this fact in Theorem 2-5(a):

1 ) ea. (1 + b el
1t.aher part of Theorem 2-5:

A b.) iyA
--
44) +

is just a tvlopy of say ig hat iddit'onof translations is function c po-
sition. Since, as yo qrned in ( apter 1, comioosition of functions is
associative, tt should be possible to use Theorem 2-.5(b) in proving
thaddition of translations is associative:

+- ,+ f (1, .4-
t

As a thatter of fact, ing .this is ;not onlvossible, but quite pasy..

f You will soon have a hance ti 0'0 it as an exercise.]
Another thing you.learned in Chapter 1 is that each translation has

a translationas its inverse.ir fact the inverse of the translaMon from,
say, P to (.5 is the translation from Q to P. As we pointed out in.Stion
2.11, this would follow from two instances of the sentelice:

A) + (A' B)

[Explain.] lliint: What do wi!, nedlo know about the result?nts
(IP -..Q) P) and (Q o (1) Q) in order to conclude that
f' 7 Q is tt inverse of Q P?1

1 2 fl
j 1)

115

TC 115

The text of this seon, like that of section 2.11, it: meant tr.
initiate.students intd the sec r ets of where postulittes come frolic

. Order to conclude that P Q is the. inverse of Q P, we need
to`li,now that (P 0.),)(Q P) is the identity mapping ct,p the domain.QL
Q P. namely i., and that (Q P)0Q1-: Q) .is the identity mapping on
the rahge df QN- P.

Note that (4) could pot be adopted as a definition of 4 thtre is
a variable anthe right which does not occur in what would be the defined
expr_esNn.

Note, also,- that (4) and (5.) are rell.tedoto one another in just the
satne way as are Theorem 2-4 and.The rn. 2-5. In either case, the
second sentence follows from the first Postulate 2(a), while'the ) I

first 'follows froM the second and Postu ate 2(b).
The r e'sults obtained in the exercises of this section serve as good

illustrations of how similar the algebfa of points and translations is to
the algebra of real numbers. As a matter of fact, we are beginning to
lay the aundation for the "convenient rule" stated in section 3.07
wIhich says, essentially, that a sentence about points and translations
is a tlikeorern if and only:4f the corresponding real number senterice is a'
theorem, [In addition, these exercises give t] ,c* students some good
(and "pfobably needed) prattice in.employing the logical principles
developed so far, ] .Do not hesitate to.stress the apparent similarities..
with real number theorems. Also, try to .stress the value of drawing \
pictures to illustrate what fhe the-orems and other sentences ,:i'say".

TC T161-1)'

, The\exercistes, of Parts A F are an attempt to show some of the
-iternate ways we could select pOstulates. However, there is a great

deal of work involved if eaoh student does each derivation for himself.
In fact, done individully tHese exeroises woulcfftprobablY require more
than one homeworkseignment. By thi s! time the student will have lost
sight of the alternte organizations ,we'intended to point out. ---

'In.order to confine the duration'of these exercises we suggest
assigning.eaoh exercise to aleam of tudents. The team is to solve the
exercise, and either.write their sol ion on an overhead transparencp
or prepare their -solution in dark pencil Ito that a Thermofaic transparency
may be made. Then reimut three-fourthe of the .elass period should be
spant discussing the inditridual deriVations.

Following.thils thVeacher should summalize the lesson by outlining
some possible organizations, Here is a ChaAt which, if constructed in
stages, on the chalkboard, should aid your surnrnry.

th,

4

2 ;s

11.
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'"

r,

Now that we lave Postulate 3- we see. that sentenc6 1.3) is just a
cOmplicated way )1' say i ng t hat, for anyjvint A, A A i... ("A trans-,
latien. which, lea r ,s any point fixed leaves eaa point fixed."( If we

çalI our intenti to use instead of it appears that we should
-be able to .deal wit 'nverses of-ti'anslations if we were to adopt as a
new post u late the se ence:

0

I.

TC.116 (2)

Postulates / 3

N[t_.

Th...2-5(a): f.f..; E 7 and
Ex. 2,k2.: f;) f t ;3:)

are theorems ,

Make s TT Makes r
A A' E ;1- and1

a theorem theorem&(4) 0 A

We Would wish, of course, to betible to prove that 0 is a translation and
that 0 as we intend it to be -- t y mapping of(' onto itself.

ESince this last ineans that v point is its oln image undet the ';;' become .

mappittg 0, the 'two theorems we would wish to be able to prove are: Oleo rem s

(5') cal, 0 E (h) A 4- (1. A 4r --,
Ex. C2:1 A + 0

. Neatly enough, both parts of z'")) follow from (4) together with earlier
posjulatcs. And, (4) follows from an earlier postulate and the two parts
or (5).

Sin& either (4) or (5 r tells us that translations have inverses, We
should bc able to derive from either (4) or (5) and Postulates 1-3
the sentence:

A '+ u t

- This sentence tells us' that any translation a on*-oneimappin-g.
In till., following exercises, you C up on some of the notions

which have been outlined above,as well as some uthers. After having
done so, wr shall he in a better ptsition to decide on what our fourth
postulate should. ,be.

Exentes

Part A
1. M point A and draw arrows to degcribe three translations;..

II. nd c whfch have different directions.
(a) Draw an arrow from A to describe the translation a + b and

then draw another such arrow to describe ra. + -I;) + c.4.
(b) Draw an amm from the point A + a to describe the translation

_., .
b + v, and draw an arraw from A to describe a + ( + ci.b......\

2. Prove sentence (2) on pae 115. [Hint: If you can prove:i
el + ha + h) + cle, + hi*-4:(6.+'Cil

..

then 1 using ( 1°) on page 1151 an instance an earlier theorem will
yfeld ( 2).]

r
4) 04)

"- Oa

kA.
v

= A A'
becomes a

rJ
1

,..,, /
ItheoIre,m:

I Ex, 1C1.1.------ 'i 1,

- I...A'and 1- -- 4.4 ,------
.Ex. 'Di: (A 7 B) + (B '- A) -:

are theorems either way\
i 4

Each ti:anslation has a .
traMslatUon as ans'i-nverse.

urge youo npt put too much, emphasis on 'the individual exe
c iss of Parts A F. No one derivation Ts- c ruc ial to the students
success in this course. We want the student to gain soni insights' and
appreciation-for alte'rnate se're-c ions of postulate,v. Such activities are
mit appropriate fo i. measuring upil progress end, if used for this
putpope, will probably,41.poduce negative rathtr'than Positive attitudei,

-. ..-

Answers for Part A
1. The students should hdave diagrams sdinething like this:

'144

NV,

A +

A +3

give

+

an abbrivialed proof.]
,

ii)-+ -1,..]
. _____,.,

A + 1; + (i). + -j.)1 (A +) + (II+ -j) = ¶(A + -a!)-+ b
1016nce, A + [GI' +.1.o.) + -J] = kA + I.. a.+ (b 4 c)i.. Since, by Theorem
2-5(b),. each of (a + ii) i -C. Nind a + (11+P ia a nslation it fol-,
lows frem Theorem 2-2 that (il' +.ii) + c = a + (b + c .

a
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Part B

. 3.01 Some Properties of Translations 117

I. Using. (4) on page 116 us 4.1 preniiss, derive hoth:pArts'of (5).
2. -Using th.; tvid parts of (5) Ak.s, premisses, derive (4).
I In both' Exevises 1 and 2, Your--other.ISr4saissZs should be postulates
or previously proved thwrehis.i

°Part C. . .

.1; One way.of saying that..Ois the identity mapping of (4 (2nto its.eif is

Part D

,to ris;,ert:
. -

(51 (b) A+ 0 Av
,.. 4

Sd, from this it should follow that the.resultant of any tramlation
a followed by 0. is a. Show that it does. Use the same tech:,
nique as suggested for Exemise 2 id.part. A:1
Conversely, it follows from our three poStulates an$1:

t ) +

that -(.)i the identity mapping of el' onto itself'. Here is an argument
to this.effect. Tell what should be written in the blanks.

+ 0 (A +. (A A)) + 0 [Postulate 2(a) (and Post. 4(h)

A + [(A A) + O.) !Theorem (and
and

A + I(*) (and

Hence, A
i.Postulate

As indicated in the text, we should be able, using (5) on page 116 to
derive:

)

a

If you recall how you might prove an analogous real nutaber theorem:

+c; h+c-dwoa- b

You .should see that we might hope,to Prove (**) by "adding -the oppo-
site of -(127' on b9th sides of 'A + a B + . Since, I;sy Postulate 2(b),

((- + a) Cfor any point C, we knowwhether we can yet
prove it or notthat the inverse for: opposite] of a is C (C + ti).
1. As pointed out in the ..text, to show that, for any,points P and Q,

P Q is thg inverse of Q. - 1' it is sufficient to derive: -

Show that thig sen,tence is a consequence of '0. A . A' and our
postulates. (Note that when. we do this, we will know that '(B A)

.

TC 117

.
Answers for Part 11. s

1: [5(a)) Since, bx (4),,b* =:. A .A' and, 'by
it folfol.us that 0 E T. -

. .
[5(b)] S.inte., by`a:4,), .d- A - A it folloW
and, b.y.Postulate A (a), ti,hat A I .d, -, A.
0

'

equivaientlo (4) biy Theorem 2-1. I/ L.

2. BY (5), (A '+'d') = A A and, so, by
[since ci E Ti.. [For an aliernative.answe
concerning second answer Sox. Exerc'ise. 1

Pobtulate 1(a),,A - A E T

s tliat A + 7, A + (A A)-
1Alternatively, 5(b) is

Postulate 2(b1-, 15 = A A
r, see remark, above,

1

Answers for Part C
1 . A+ (a + .6) -(A + + A + by Theorem 2.7b* (b) and (5)(b)

on pa'ge lib, Hence, .by Theore 2-2, a + = [If required to
, show that the first equation is an stance,of Theorem 2-5(b), cite

7'; this membership sentence pla,ys a similar
tionith the application of Theorem 2-Z, ]

role in connec-

2. 2-5 ), Postulate 1(a), T'; (A A), Postulate liha); A,' Z(a)
[It follows from these two elZereises that, as additional postulates

(5)(a) and (5)(b) or 5(a) and (*) will serve the same purposes.]

Answers for Pare D
1, By Postulate 3, (B --A) + (A j3) = A - A. So,

= A A it follows th'at (B A) (A 13) =
'

assuming that
.1

I.
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in 0. ) will become a theorem once we enlarge our set of Answers for Part D Alcont.]
postulates in such a way that V A --.:A' is a theorem.) Z. (a) By Postallate l.(b), a = (C -4 .3) -C and rio

2. Use Che result of Exercise 1 to show that if '0 A - A' were a the-
orem then the sentences:-.(a) a + [(' '- f('.4- all ti cb) (A + :IC - (C t.cli.i A
would be theorems.

3., Derive ( ,,,). !Hint: Suppose that A + a' - B +- a.. It follows, by the
result in Exercise '2 that ___ A. But, by Exercise 2
itself, irti , cz.) + I( -, IC t a)! . So, A B. Hence, if

1 3.
* 4. Inderiving1h) of Exercise 2 you probably used (a) together with 4. (c) By (a) and (Z) it follows 'that (5 + -a..).10,4C - (C + -1)] ,- ii + g.Theorem 2 --5ib) iind 'A , + 0 , A' I which, by Exercise 1 of Part B, SO, assuming that 8 + '6 = 5 it follows that,. (5 + i.) + [C -f("C + zn = b.is a theorem if '0 A 7 A-isl. lf, in place of these last two prem-

isses you use (2) on page 115 and 'a 4 C.= a', you can derive:

c,) it;+ U.) +- IC IC ± a))
..

}laving done so, you can then derive:

TC 118

E + (c. 1-3.)] = [(C 4 --at.) - Cif (C -'(C +

I.fsin'g an instmce qf theaseptenc.e clisplaYeel in Exeiteise
could infer 1 [C (C + a)] =

(b) By 'GO and Theorem Z-5(b) it follows that' (A + +
[C (C + -a}1 A 4 Since 'A 4- g = Z." would be a theorem

- A' .were, itfollows that in this 'latter ease (b)
would be a theorem.

IF** I b

Derive ie) and

4 a h

(p**) Suppose that 5 + + It follows by that
(5 4 'a) + [C (C + .7a)] = But; froxil (c) + a)
[C (C fa')] = 'So, 5. 5. Hence,

Answers for Part E
1. [The students should

Part E Z. (a)
As Part I) illustrates, if A A! is a theorem then whenever we

wish to refer to the inverse of a translation B A we can write
B', and whenever we.wih to refer to the inverSe ofa translation

a we can-write 'C C o)'. It is much simpler, however, to have a
notation for the inverse of a .and, as we decided in Chapter 1,.the.most
convenient notation is '-at. (Read '-a',as 'the inv&se of a' or as 'atin-
verse or as 'the opposite of 'a'.1 If we wish to include this notation in
our algebra we need a postulate:

WIt

E

to serve the same purposes as do the parts of Postulate 1, and we need
a postulate:

to .say what ' -' means.
I. Mark a point A and draw arrows to describe a translation a and the

translation +W. Draw a figure to show that

(A + + a. A. .

2. Make drawings to ill trate each ofthe follewing:

(a) -b + -(a + ) (b) (a b) + -a b

2 0

ave diagram's something like these.) .

e
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Part F
f

1. Mark A po ni A and draw two arrows kscribing translations a.and
h in different directihns. .

(a; Dr.aw ad arrow from A to describe the translation a h..

(b) Draw an arrow from A to detieribe the translation h a.
(c) Use our ncitation uiwrite,a.sentence saying wffat ydur i.esults

'show.

3.02 A Fourth PostulaW 119

2. Show th'a
A

propnate

.
t 'a + h b i a okere ad-opted as a postulate then
B B' would be a' theorem. [Hint: Consider an.ap-
i nstance of Postulate 3.]

TC 119

.st

,Answers for Part...F
1. ['rho students should have diagrams something like this.]

(a)., (b)

3.02 A Fourth Postulate

We have, seen that, on the basis of Postulates .1-3, the sentences;

bt and: (a + b) +, c a + +,c)

are theorems. We have also seen that if we enlarge our set of postulates
so that = A - A' is a theorem then the sentences:

and: a + 0 a
'

are theorems, and 1,ice uersa. In either.case the sentences:

A 0 A and: (A 13) + A)
4

will be theorems. From these last it follows that -as you l6arned in
,Chapter 1-each translation has a translation for its inverse. As was
poidted out in Part E, it will be convenient to express this fact about
inverses explicitly in postulates: ,

-d-E .7 and: a +

Finally, as Part F reminded you, compositii6n of translations is corn-
.mutative. We shall wish to express this important fact in a postulate:

_ . --
b = b + a-

A + (a+ 13)
,A + (S+

I

(0 A + + 13) = A + (I)*+ .71') [or; -S4 I; f

2. By Postulate 3, (B A) + (A - B) = A - A and (A B) + (B A) =
B - B. So, it (B - A) + (A - B) = (A - B) + (B A) then

.A-A= B-13.

'Evidently, we need tk adopt several new postulates. For reasons
which will become appa?6nt later in this chapter, we shalI group them
together into a single postulate. For the same reasons svie shall include
as parts of this postulate two-sentences which are alreadyigasorems.'
!There is certainly no harm in "postufating more than is necessary":1.
Our fourth postulate turns out, then, to have five main parts..We state
them at oRce, then discuss thtm separately.

'6
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Po5tulate 40 ia) a + b.i Wth) 0.
e

Postulate 4,4 ( + b) +,c = a (1; + t.

POstulate 42 a + 0 a

Postulate 4,
s

Postulate 44

_(c) -a E ./

Some parts of this ultbre theOrerns before its adoption. These
parts are, Postult 40(a) and astulate 4,. [Also, we could derive
Postulate 4,,(h) from Postulate 4 ) and Postulate 4 by using Postu-
late 44,(c). I The principle use of th arts of Postulate 4 is- like that
of the parts of Postulate 1 to ma sure that sUbstitution-instanees
of sentences are what we claim them to be. Since we shall seidom go to
the trouble of doing this [after this chapter] we shall not often haVe
occasion to refer to Postulate 4,).

As you have seen in Exercise 2 of Part C,yostulate 411(b) and :Postu-
late 4, have as a consequence sentence 'A + 0 44.'. So, this sentence is
now a theorem. Hence, 'Joy Exercise 2 of Part B, '0 = A - A' is also a
theorem, We take note of this:

E Theorem 3-1 (a) A + 0'= A (b) A '- A =

Another pair of theorems which are" easily prOved now are:
.

Theorem 3-2 (a)A+a=i14.-a'=04
(31 B = A - B - A =

; [Do you see how to derive Theorem 3-2(a) from Theorem 2-2 and
Theorem 3 -;(a)?1 You will investigate these theorems in the exercises
which.follow.

The reasons for adopting Postulate 40(0 and Postulate 43 have
already been given. Using them you can give a shorter proof of the
cancellation principle:

A = B A =B

than you gave in Part D. [You can use Theorein 2-5(b) and Theorem
3-1(a). Do you see hpw'l From your work in Chapter 2, you' are
probably welhaware that the converse of (**) is a theorem. [Expilin.J
So, we have:

E Theorem 3 -Y3 A, +

3 i).1)

TC.120 (l).

Just as wa might have chosen Theorr 2-4:
+ = [( A + )+ ]- A

as a postulate, in place of 156etulate 3, so we might choose:

and; .

(ii)

A A

2,

= A (A )

as postulates to introduce .0. _and Adopting (1) as a postulate
would insure that 'd T' and + 0 S' are theorems; adopting (ii)
would insure that '-"L" is a theorem; with both (i) and (ii) as
postulates [using, also, Postulates 2(b) and (3)] + = 5', would
be a theorem.

. .

Because ofthe oacurrerices of the variable 'A', neither (i) nor (ii)
should be called a definition; for, as pointed out earlier, if (i) were
used as a definition, it would always, be uncertain what term had been
abtbreviated to. - and a tiirnilar remark can be made concerning (ii).
It has also been,pointed out that such "quasi-definitions" often differ
from honest definitions t fough being "creative" the adoption of (i),
for example, makes it,ssible to prove a theorem:

(iii) A-A = B-B,
which is no vable from Postulates 3 alone, Similarly, the
adoptio (ii) makes it possible to prove:

,(iv) A ( A + ) B - ( B + )

[That neither (iii) nor (iv) follows from Postulates 1 - 3 can be shown
by,using the constant function interpretation of Part D on page 110, I
Note that by (iii) ar1cl Postulate 2(a) B + (A A) = B + (B B) =
which tellsus thatzt e translation A A maps any point B on itself
in particular, tbat,fEdentity mapping of e onto itself is a translation.
Similarly, by (iv.) id Postulate 2(a), the translation A (A + maps
the image, B + a, cop,any point B under -a' on B in particular, that
any translation has a translation as its inverse. So6:even without
Postulate 3, we could poetulateAthat the identity mapping is a transla-
tion by adopting (iii) as a postulate, and that any translation -has a
translation as its inverse by,adopting (iv). A; that (i) adds to (iii) is
that '0' is to be used as a earne for the identity mapping; all that (ii)
adds to (iv) is that '-' is to be used ae an inversing operator.

In view ol what has been-said in the pre in drag.raph it ib of
,interest to note that on the basis of Postulates - 3, each of (iii) and,
(iv) can be derived from the other. In other words, haying adopted
only our first-three postulates, it follows that all translations have
translations as inverses if and only if the identity mapping is a trans-
lation. [The only if-part is not very surprising, in view of the fact that
Postulates I - 3 imply the closure of T under composition of functions.
The if-part, on the other hand, is a rather strong result. ] To show
that this is the case we first derive (iAT)' by using WO and then der
(iii) by using (iv). .

t*



Derivation of (iv):,
IR +,..T)

.

So, bY Theorem
Derivation of (iii):

+ (A A) B

1_3

, B
5

TC 120 12)

f

5+ (a + [A ; (A + a)11 [Theorem 25(b)]
B+([(A+;) - A] + [A - (A + )]) [Postulate Z(b)t
B #- (A -,A) [Postulate' 31
1-3 "(B 41) [(iii)]

[POstulate 2(a)
2-1, A (A.+ ;) B (B1-

+ ([(A + A) +

+ ([(B + 5] +

+ (5 B)

SO, 14 Theorem'2-1, A A

A - (i ))) [PostUlate 3]
B (ti IPostulate 2(13),

(iv)]
.4,Postulate 31

. [Postulate 2(a)]
B - B.

Now, an even more surprising result becomes apparent if we
recall Exercise L of the preceding Part F. As shown there, (iii) is a
consequence of Postulate 3 aryl:

(v) =t+1
In other words, from the closure ofT under composition and the corn-
mutativity of composition when-restridted to members of T it follows
that the identity mapping is a translation and usi also Postulate 14

and 21 that translations have translations as inv SeS.
Put in another way, if (v) is extloPted 'as a postulate then (i) and(ii). are not "creative" the only purpose they serve is to-intirbduce

the syrnbolsAt and ' -'. In view of this loss Of creativity which (i)
and (?i) suffeT when (v) is adopted as a postulate, some writers would,
In this context, style (i) and (ii) definitions. Nevertheless, the origi-
nal objection ti) calling them so still 4tands,

- In view of the strength of (v) as a postulate, it is worthwhile to
discov'er its geometrical signific7ance. To do so, note that by Theorem
2-2, (v) is equivalent to:

, A + (+ 1;) = A + (+ -;)
-and that this, by Theorem .2-5(0 is-equivalent to:,

)(A + a) + b = (A + b) + a
,

As a ligure will show, wht this s.ays in geometrical ternts w,4hich
have not asayet bee,n defined is that, given tliree points, A + a, A,
and A +' g, there is a fourth point, D, such that the four points, in the
order listed, are vertices of a quadrilateral whose opposite sides are

joara11111 and have the same length. A familiar theorem abont'parallelo-
grams now suggests that, aa, a potential postulate, (v) is equivalent to:

(vi) (B + (A + = B A [Compare this with (iv)] "
J

3

F.

. a

TC 1/0 (3)

a

In the next s ction'we shall adopt (v) as a postulate and, later, it will,turn out that (vi) is a theorem. S9, to check the /suggestion it will be
sufficient, heie', to shOw,that if (ri) werl adopted as a postulate, NI
wOuld be-a theorem. We suggest a proof [using Postulate 2.(b), .(vi),

'Postulate 3 (twiee), and Postulate /(h)]: ' s.
(B-A)+(C-D)= ([D+(5-A-D)+([C+(3-A)]-[D+'(B-A)))

= [C +1.5- A)]-1'i
= (C-D)+([C+(B-A)]-C)

(C -D)+ (B- A)
4

As pointed out i the preceding commentary there are many equ
Tent choices for our fOurth postulate. We choose the particular form
given in the text because it may be restated in th form given on page
130.* This restatement permits of very simple odifications to includ,e
all of the additional postulates which we shall a gt in later portions of
the course.

.44

The derivation of 40(b) which is mentioned in the paragraph which,
follows the statement of the postulate is:

a + b 6 T

a + a + -a

--; T
(Subst)

6 T
(RRE)

r

The two proofs mentioned in the paragraph which follows the one
just rekrred to are given bAlow in the answers for Exercise 1 of Part
A and ExerCise 1 'a kotort B, respectively. The explanation concern-
ing the converse of (tRt)b,which is asked for amounts to recognizing
that all equality principles are valid sentenceaand,iso, are theorems.

-

3 0J
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4

Comparing Theorem 3-3 with Theorem 2,-2, and recalling Theorrm
2- uggests thal there is, another theorem ?matching up with the
last of ese. 'There is.

The -iem 3=-4 C B 4---0 A B
-04

dkNam/ that we have Th irem 3-3, it is not di fieult to prove Theorem
3-4. A little later we s all firid lbts of use f Pqstulate 44... .

..;.

ExerriNes

Part A
I. There is a very short. proof of Theoiem 3 -

By Theorem 3-1(a), A + a A if and an y if
A + a. A '+ By Theorem n-2 land Postulate 40(b))
A + Cz. A -+ 0.if and only.if 0": So, A * a A if
and only if a ,

Putting t is argument in, tree-form
this:

1Th. 3-lia)1 1val
p4

you will get some

sentence) [Th. 2-21
q r

ITh. 3-'2(a))

(a) Write out the tree-proof.
(b) Explain why, yn the basis of the rules summariz"kt the end

of Clkepter 2, inferences of the fohn:

are valid.
2. A longer proof of Theorem 3-2(a) involves proving its if-,part:

p r
p 4-0 r

and it§ only if-part

0 A + -

+ ci = A - a = 0

separately.
(a) Prove the if-part.by an argument which' begins:

Suppose that a = 0*. Since, by Theorem 3-1(a), . . .

(b) Prave the only if-part by an argument which begins:
Suppose that A' +-d= A. It follows by Theorem 2-1
that .

Answers 'for Part A
We recommend that one of Vxerci.ses 1 and lit be used as' a crass

exercise ,rather than for home*.aik. The reason for this is that Gni-
dents.are sometimes annoyed by a requirement'to produce several
proofs ,,ferone .beore-r-i-i. Such activities are best treated by the class
as a whole."( Similar cdtrirnents apply to Exercise Bl.0

1. (a) [In the diagram, students Should replace the bracketed
theorem-names'by the theorgms themselves, replace ' alid
sentencel' b y 'A + a A A + a Ai., and repla_c_;e 'E',
'q', and 'r' by 'A + a -= A', 'A + a = A + land' = .16'
respectively, The validity of the final inference is the subject
of part (b). I

Inferences of the kind in question are valid by virtue of the
replacenient rule for biconditional sentences. Such inferences
can also be justified, more laboriously, by using:the elimina-
tion and introduction rules for <==> and the rule (Syll).

(b)

Suppose that a =& ,Since, by Theorem 3-1(a), A + 'd -= A it
follows that A + a --. A. Hence, if a f: .6 then A + a.41-= A.

Suppose that A + l, It follows by Theorem 2-1 that
-P. -2.a -=*.A - A and, so, by Theorem 3-1(b), that a = 0: Hence,

if A + i':. ,-- A then ii -= C.

-

4

4
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) I
'tc,10The only if-part of Theorihn 3-2(a) tells you that any trans a-
* tion which leaves sonw poMt fixed is 6. The if-part of this the-.. .

orem tells you -just as Postulate 4_, doesi-- that C leaves each
I 44 point fixed., So, the whole of 'Theorem 3- 2ial formulates one

of the factf about tri slations which axe summarized on pages.
47 and. 48. Which o .?

3. Prove Theorem 3- 2ibi. [Sl4ggestic<7..-One way depends on noticing
that, l'heorein 3- 2i to is alniost an, instance of Theorem 3-2(a).
Another k to note that, since equality is symmetric, you may as
wçtl proye B -, 0 - A', What early theorem do'es 'this
re nd you of ?I

Part 1E3 4

1, GiVe the "shorter proof of:

Part C

.72

A+a B+q-ioA B

which is suggested on page 120.
2.. Prove the converse of (**).
3.. Prove ,Theorem 3=4. [Hint: By' Theorem 2-1, C - A --- C - B if

and only if B = C. (Now, prepare to. use Theortim 3-3,
by using Postulate 2(a).)I

Prove:

-. . .1..a+c-b+c-ta -b.:[Hint: Compare -with Exercise
Part 13.1 .

2. c'+ a. -- -c*+ b* 0 ci° = 1- 7.[Hint: Use-Poi-itulate 44.1 .,

3. a.* 17 ti'''---, --a. W[Hint Use Exercise 21 .
4.

IITheorem 3-5 (oa3, ) (B - A) --(AA+-41

5. --0.
6: -a + a 0 (3) --a = a
7. (a ) a - b -*- -a -7; (b)
8. + I)) --+; [Hint: Use Exercise 3.]
9. (A + + a.= A [Hint: Ther a. is a proof which uses PoStu-

late 4,, and there is a proof which uses Theorem 3 -5(b). Try for
both.]

I

10.- (.4 + ct) + - A -a° [Hint: Suppose that (A + a) +-g
= A. It follows by Theorems ? and ? that A 4- ii:+1 -6)
= A + 6. So, by Theorem ? , (*it; 'V= V. It follows by ExerCise

? that ? . So, since equality is symmetric, Hence,
if. .

1

TC 122.(1)

2. .(e) .A translation which leav'es any point fixed leaves each point
fixed. [This is (5) on page 47. Another formulation of (5) is'
'A 4- a = A 4 a = B',.. This can be derived.frorn the only
if-part of Theore3-2(a) and ari instancre of the if-1Vrt by
using (Sy.1.1). 't

3. Following the first suggestion:
By Theorem 3-2(a), A4+ (B A) = A if and only if B A

So,, by Postulate 2(0, B A if and only if B A =

Following the second suggestion:
By Theorem 2-1, A +00 B if and only if B A. So, by

Theorem 3-1(a), A B if and only if = B - A. [Since A = B
_if and only if B A, and .6 = B A if and only if B A = it
follows [using thaj'replacement rule for biconditional, senteoces]
that B -- A if and only if B A = ]

Answers for Part B
1. Suppose that A + a B + a. ,./t fol;ows [since. (A +

('A + a) + that (A + ) + -a = (B + + -a 'and s..t)y Theoretn
2-5(b), that A + = B + (-a* + So, by 45, A + B 4- d
and, by Theorem 3-1(a), A = B. Hence, if A + a. = B +:a then
A t B.

2. Suppose thtA = B. Since A + = A +
A + a = Hence, if A = B then A +

3. By ,Xheorem 2-1, C A.= C B if and only if B + (C - A) = C.
Since; by Postulate 2(a), C --- A + (C-- A) it follows that ,C A =
C B if, and only if B + (C - A) = A + (C - A). By Theorem 3-3,

of ,B (C A) = A 4 (C A) if and only if B = 'A - that is, if and
only if A = 13. So, C,- A = C B if and only if A = B.

Answers for Part C
[The theorems of Exercises 1, 2, 3, 5, 6, 7 , 8 are obviously'

analogues of theorems concerning real numbers and, in view of 40 - 44,
can be proved just as the latter are proved in algebra courses. Although
tkiey are important and useful, we shall not assign numbers to such
theorems. .(See age 126.) It is not necessary that each student derive
,each exercise in a t C. The more important'derivations are for
Exercises 4, 9, 10, and 11. ]

1. S..1,3p129,se tha...t a + c = b + c. follows [sine: (a + c) -c =
La + +, -c] that (-a! + )+ -c = (11 + )+ -c and sO, by 41, that
a + (c + = b + + Soa by_. 4s, + = + and, by
42, = Hence, if + = c tfien

it follows.that
a = B + a

40 -4. -4,
2. By 44, c+a= a+c c + = b + c. So, by the result of

Exer6ise 1, if 4 + + then' =

[Although this need not concern your studp.nts, it is interesting to ,
note that 40 - 4s, alone, imply = a' and + = So,
44 is not needed as a basis for the result of E excise 2. For an
expansion of this remark see the commentary for page 293 of
1-ligh School 'Mathematics, Course 3.-}

39"
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. .3.' By Exercise 2,i it a + a -a the b -a. So, by 46, ifa + b = 6 then 1; = that is, -1-=
7 [In the proofs given in answer to EXe rcises 2 and 3 the desired

.relatilts have been derived directly from instances of,thOse of Exercises
1 and 2, reopectively, by using the replacement, riale for equations.
For example, the latter proof in tree-lorrn is:

c + a -! + =r:4
(Subst)+ -a = 6 .-*+13... = -
(RRE)

; 1- -a
He.re is a less efficient-method of Proof ich students may suggest:

Suppose that a + b = 6. Since a + -a 6 it follows that
+ b , a + -a. Since.b E *f + + then,y xe.rLis , a,

-- -a, it follows that b -a. Hence, if a '-+ = 6 then
--

There is nothing wrong with this proof oilier than its inefficiency. But,it is well to learn to use both replacement rules as effectively as pos-
sible. The lesson to be learned is that, since replacements may be
made in arbitrary sentences, it is not necessary to break a sentence up
into smaller sentences, thein make the -replacement, then put the sen-
tence back together again. This is rather like taking off one's shoes,
then washing one's face, then putting the shoes back on all just to
get one's face washed.]

4. (a) By Postulate 3, (P - A) + (A - B) = A - A which, by.Theorem
3-1(b), So, by [an instance of] the theorem of Exercise 3.

(b) By Postulate 2(b), + [A - (A + -;)]
[A - (A + ;)],which, by Postulate 3, = A - A and so, by
Theorem 3-1(b), 6. So, byian instance of] the theorem
of Exercise 3, -1. = A - (A + a).
Mete is an alternative proof: By Theorem, 2-1,,
--a = A - (A + -;) if and only if (A + + -a = A. But, by
Theorem 2-5(b), 44, and Theorem 34.1(a), (A + ;) + =

2 A + + -;) = A +-6 = A. Hefice, = A - (A +
5. By 42", 6 + 6- = 6. By Exercise 3, if 6 + 6 = then

Hence, -35 = 6.
6. (a)" [By 45 and an instance of 44.1

(b) Since, by part (a), -TO+ a = itfollows, by an
the result in Exercise 3 that --a c a.

7: (a) [This simplest proof is. like _that of any equality principle. Use
the valid sentence '-a = -a' as a premiss. For Itickste the
result may aLso be derived by using the instance 'a + -b
=4o -; = -5' of the result of Exercise 3. From this and 46
it foliows thit if -; + -5 = t + then -; = -5, But, -if; c then a + -5 = 5 + 4. Hence, if = 5 then =.

(b) Ay [an instance of] (a), if -11 then -
= So, by-part (b) of Exercise 6, if -a = -5 then a = b..

instance of

3 )

e

e
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8, + g ) + ( 4 + -a + + -51+ [&P + + -5)] +
+ e)+ -a. 4- = 6" [by 4.1 (twice),15, 42, and 43]. So,

by the result of Exercise 3, -(a + 5) = -b +
[Notice that this result does not depend on 44. The more familiar
theorem + -; + does depend on comm,utativity. ]

9. [The proof using 45 is given in the alternative answer for Exercise
4(b). Using Theorem 3-5(b) one could argue as follows:

It follows by 14heorem 3-5(b) that (A + ;) + =
(A + + [A (A + ;)] which.' by Postulate Z(a),
= A.

There is, of course, nothing odd in the fact that either of two
theorems in this case, the result in the present exercise and
Theorem 3-5(b) can be used in "proving" the _Other. Which
of e two arguments may be accepted as proof of its cnclusion
deOnds on which result.happens to be proved first. For only
theore-ms which have been.:'previously proved" may be used as
prernisses of proofs. ]
[The required theorems and exercise are e-5(b), 310. 2, and
3. By the same techniques refer6ces to points carl be intr-ciduced
into other of the preceding unpumbe'red theorem,s. For example.,
using Exercise 7(b) it is easy to derive ' A + -a = A + -5 '' a = 5'
and, 'once subtraction is introduced in the next section, to derive' A - a = A - 5 -; = t'', ] , ,

,

t



11.

II Theorem 3-6 (A + a.) + h

3.03 Subtraction

lt is convenient:to define

and

3.03 Subtraction 123

-

subtraction of translations from points,
subtraction 9f translations from trarislations,

-a

in ways that are analogou,s to the way that subtraction of real nurhbers
is defined.

Definition 3,.1 (a) A - a A + -a
(13) b a .4- -b

(a) A - a is the image of A under the inverse of a.
(b) 41' - 19' i§ the resultant of a followed by the inverSe of?).

Let us summarize the various ways that the symbols '+' and
are being used in this algebra of points a-Nd translations:

(1) Subtracting a poitlt from a point gives a

(2.) Adding a translation to a point gives a

(3) Adding a translation to a trans.laticin gives

B A

A , a

-
+ b e

(4) The inverse of a translation-is a _ : E

(5) Subtracting 'a translation from a point [or from a translation]
is the same as adding the inverse of the translation to the point
[or to the translation]:

A-a-A+
it may also be worthwhile to note somd of the ways that the symbols

'+', and are not being used in this algebra:

Meaningless expressions:

a A

TC 123 (1)

11. After Exercise 10, all that remains is to prove the converse ..ot the
result in that exercise. _Suppose that 11- -a. It follows that
(A + + = (A + + A + (iet + = A + =_+A [by Theorem

43_, and Theorem 3-1(0]. Hence, if 11 = -a then
(A + a) + E = A.

As- remarked earlier, our emphasis on the rules of logic which
constitute the formal basis for proofs is for the purperse of giving stu-
dents confidence in the validity of informal arguments. So, for example,
the answers we have given for exercises have become less formal.
There is another kind of fd;rnality,which,- for brevity, we shall adhe're
to but which need not be imposed pn ktudents. This-is the use..of arbi-
trary and nonddscriptive names such .as 'Theorem 3-1(a) for
theorems. When itich reference s are scattered through a proof they
can be an.annoying distraction to a reader who sees what is going, on.
EVen when grouped together, as in the answer given above for Exercise
11, they are an unnecessary ainnoyance to one who is not quite sure
what statenlent was labelled, say, 'Theorem 3-1(a)' and is quite ,
sure that it's an imposition to be required to remember this. On the
other hand, students do need to have s.ome check imposed On them to
prevent irresponsible aotivity directed merely toward reaching the
correct answer. One aolution to this problem is to write the;theorems
used in a proof as footnotes.,

The blanks should be filled in as follows:
(1) translation; T
(2) point;.
'(3) .eranslation; T
(4) translation; T
(5) --s;

- Sample Quiz
11. Write a paragraph-proof of the following:

(*)
2. Write the converse of (*).
3.. Draw a picture of a counter-example,

of therboiwerse of MI.
4, PrsrVi-that -(A B JA.
AnsWeri for Sample Quiz
I. Here is a sample paragraph-proof of (*):

SpappoSe thaI A = A- c.' It follows that
A + -b A 4 C o that 4A + 4) - A = (A + 4)
Thus, -11 = -Z so that t = Z. Hence, if A
then r,

2. The converse of (*) is:

or write a paragraph-ptoof

C
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Exercises

Part A.
Let Q P + a and R Q Kas in the fig-

ure at the right. Complete each of the,fol-
lowing by filling the blanks with 'P','Q','IV, or
01. IThe first exercise has been completed as
a sample.)

.
1. u + = R -

.3. -is h = -
5. (/' + a.) +
7. IP -4 (2.) Il
9. a - 10. Q Q

11. _ 12. + R
13. Q B 14. Q -
15. (Q p) tfi Q) 16. (P Q) (Q 1-?)

17. IQ + (1.1 4. q). 4.) =
19. fQ to. 2 b + --- 20. Q +

2. -
4. -4R - P1'

P +

8. P la.

PaKt B
1. Mark three noncollinear points A, B, and C and cjraw arrows from

C to descrii;e the tranSlations A - C and B - C.
2. Draw'an arrow from B to deseYibe the inverse of A - C [that is, to

describe -HA 7 (N.
3. Using your ruler only as a straightedge, draw arrows to describe

(a) - C). tA C) (b) B A
Prove;

II Theorem 3-7 iB C) C) = B - A
!Hint: By Definition

.rem 3-5(a), (2 - C) - - C) = ? .8o, by Postulate 44 .. . .1

3.04 Postulate 4 and Definition' 3-1(b)

At ,'this stage in develoPing our algebra of points 'and translations
we,, save some postulates which refer explicitly to points [Which are
the .1 and some which deal only with translations. These last, are the

of Postulate 4. We also have A definition.which deals only with
lations.

4 fa) -a.+
4 (a 4- b) + c = a + (7+

), (B C) - (A C) = ? So, by Theo-

4. a -4- 0= a
'4 a + -a =
4,. a + b - a
Def. 3- las). a b4 = a

(c)

IC 123 (2)

3. Here is a sample paragraph-proof of the converse of (*):
Suppose, that Since A g = A -.S., it

follows that A A - C... Hence, if g CP then
A ; A

Here is a sample paragranh-proof:
We know that if (A.- B) + (B A) = thew

-(A B) = B - A. Since (A B) (B .A) B B = 6:
it follows that -(A B) = 13 A.

Answers for Part A
1. R, P 2. P, R
6. P. 7. P

11. R, Q 12. Q

15 . R, P 16. P, R
Answers for Part B

TC 124

3. P, R
8. P

13. 11-

17. R 18.

1.1

4.

9.
14.

P, R 5. R
6 10. 6
R, Q [or: g, 6]

19. R. 20. R

1, 2, 3. The students should have a diagram something like this:

4. 'By Definition 3-1(b), (B (A C) r- (B C) + -(A C). So,by Theorem 3-5(a), (B - C) (A - C) (B - C) + (C - A). So, byPostulate 44, (B C) (A C) (C A) + (B C). Hence, byPostulate 3,'(B C) (A C) 2 B - A.

The postulates which refer explicitly to points are Postulates 1, 2,and 3. The'se postulates show how translations act on points. All ourremaining postulates will, like the parts of Postulate 4, make ru;`, refer-ence to points. [Exceptions to this statement are various definitions ofgeometric figures.] This dichotomy is one of the important character-
istics pf this deVe1oprnent of geometry. Geometry is seen as the theoryof how a set T of mappings which itself has a certain structure operatesoil a set e .of points, How the mapplins opefate on points is describedin our first three postulates; the later postulates describe the structureof the itet of mappings; the. definitiohs referred to aboverimpose a.,..struc-
ture on e analosous.to the structure of T.

The purpose of the present section is to firm-up the analogy be-
tween addition of translations and addition of real numbers which stu-dents will }Lye discóvered in &Sing the exercises of Part C on page12Z. This analogy is generalized in section 3.05.
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In your previous study of the algebra
probably come across similar sentences:

(a + 'h) + c a,+ lh + c)
(ii) a + 0 a'
iii) a +' -a 0

(iv) a + b
(v) a b a + -h

Depending on how algebra was developed in your course, you may or
may, not have seen sentences analogous to those in Postulate 4#

(o) (a) a -e h (b) 0 (c) a E4
Also, instead of using variables, as we are doing,,to express generaI;.
ities, you may have used quantifiers. [For exaMple, instead of using
'a 4- h = b + a' to express the commutativity of addition of real
numbers, you may have written 'Vivi., x + y.= y + x'.]

You will alSo have learned that the properties of addition, 0, opposit-
ing, and subtraction which . are stated in (i)--(v) are in some sense
basic ones. From these sentences it is possi,blelto derive a great variety
of others. In fact, "most!' true sentences about the real number 0 and
-about ,addition, oppositing, and subtraction of real numbers, are con4e-
quences of sentences ( i) - (v). [One which isn't is `o +' a = 0 a = 0'.
Others which you wouldn't expect to be are sentences like '2 + 2 4'
which deal withrpecial properties of particular real numbers.] As
arrexample, you might derive:

(a - b)' + b = a.

of real numbers you have

from ( i )- rv) as follows:

(a h) b = (a + -b) +
(a + -b) + b = a + (--b + b)
a + (-b + b) = a (b + -b)
a + (b + -b) = a +

a + 0 = a
So, (a b) + 6 = a.

[by (v)]
[by (i)]
[by (iv)i
[by (iii)]
[by OM

[The comment `[by (v)r, for example, refers to the fact that the infer-
ence:.

- a + -h . (a - b) + b = (a - b
(a - b) b (a + --b) + b

is valid [By what rule?1, and that its first premiss is an instance of (v),
its second premiss is a valid sentence, and its conclusion is the sen,- C.

tence in question. Whether or not you require principles 4e those ii
(o) depends on whether or hot you insist Oti being able to prove that
sentences like:(a - b) + b = (a - b) + b' are valid sentiances.)

j
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You can, if -You wish, show that 'a + a = 0 a = 0' is not
deducible fron-i (o)-(v) by giving a different interpretation to these sen-
tences one in which (o)-(v) are still true, but the sentence in ques-tion is false. One such is to take for R the set whose members are. the
,two properties odd[ness] andleven[ness] orreal integers, and take '0'
as a name for the latter property. Then, recalling that a sum of two
odd numbers is even, etc., it is natural to define addition in te se.t
(odd, even) by:

even + even- = even, even + odd = odd,
odd + even = odd, odd + odd = even

Define oPpositing'by:
-even = Todd = even

and define subtraction so)that (y) is satisfied. It iq now easy to show
that (o)-(iv) are also true but, since odd + odd = even = 0 an'd odd 0,'a + a = 0 A = 0' is not. [You might note, in contrast to this last,
that 'a + a = a ==:. a = 0' is true, In fact, it has to be because it is a
consequend'e of (o)-(v). ]

In order for sentences like '2 + 2 4' to be theorems we need to
add some additional postulates, 1481. example, w'e might add a new partto (o):

E

and we might then add definitionii, '2 = 1 + l', '3 = 2 + '4 = 3 +etc.
Thq rule of logic askedifor in connection with the displayed infer-ence is the replacement &-ulii\ for equations.
The quick way to obtain a proof for '( I - g) g = I' is, of course,

to write arrows over the letters in the given proof of the analogous
theorem for real number's. [The comments litould be not quite right
for example, '(v)' should be changed to 'Definition 3(b)' bat, these
are comments on the proof rather than a part of it.]

w

3 r-
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It is proNably obvious that there is now a very easy way of showing
that the following sentence about translations:

/7) 1- h =
V.

is a consequence of' (Postulate 14 and Definition 3 1(b). If you w ,re
allowed to write in'this book,.how could you show this?

On the basis of' this example it is easy to generalize as follows:
Given .any sentence about real nwnhers which can be

derived from the s4ntences (0)-,(v), the corresponding sen-
tence about translations can be derived lin exactly the same
way.I from 4- 4, and Definition.3-1(b).

1

In your study of the algebra of real numbers you may have called
-(v) a postulate, or you may have called it a definition of 'Subtraction.
As the sample proof we have just given shows, it doesn't matter at all
which you did. Definitions and postulates are used in exactly the same
ways. In' fact, a definition is just a special sort 'of postulate. What is
special about a definition it that it merely introdUces a new way of
saying things whichiyou can say already. In theory, you can get along
without any definitions. In practice, it doesn't work out that way.
Think, for example, of the inconvenience of writing + -' every tie
you would, now, write '-'; or of the inconvenience of writing:

a fbur-sided figure whose angles, are right angles and
whose sides are congruent

instead of 'a square'.
Since definitionS are, really, postdates, and since a theorem is a

sentence which is a consequence of our postulates, any consquence
of our postulates and definitionS is a theorem. [The phrase 'postulates
and definitions' is just a redundant way of saying 'postulates'd Con-
sequently,

given any sentence about real numbers which can he de-
rived from the sentences,(o)-(v), the corresponding sen-
tence about translations is' a theorem of our algebra of
points and translations.

All at once, we have an abundance of theorems. [You have already
proved some of them in Part C on page 122. Of course, not all the
theorems you proved there are of this' special kind.] Since, from your
previous study of algebra you probably have a good idea of what can
be deduced from (o) iv), we shall not list, or asSign numbers to, any
of the theorems which are consequences of Postulate 4 and Definition

,
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If you have time, you should get students to recall the "-translations
of R." which were discussed in section 1.02. These are the prototypes
of the translations we' have bean studying and, with 'be' for .r, 40 44
iind Definition 3-1(b) 'are ohvicro,sly satisfied when the operators are
intexyreted as we do inte-rpret them for translations. On the other hand,
there is an obvious one-to-one correspondence between translations of,
R. and real numbers, undei which

the translation x x a coi.responds with the real number
In this correspondence, the translation d 'eorrespds with the real
number 0, the inverse of a'translation corresponds th the opposite 'of
the number which corresponds to the t.ranslation itself, and the number
corresponding with a resultant of translations is the sum of the numbers
corresponiling with the translations themselves. [We say, then, 'that
thc.corresPondence is an isomorphism between the addition-oppositing
structure on the set of real numbers and the 'composition-inversing
structure on the set of translations of R.] Because of-this correspon-
dence, there is a complete analogy between the addition-oppositing "
properties of real numbers and`the cornposition-inversing properties of
translations of R. More precisely, to each true statement concerning
addition and oppositing of real numbers there correspdnds, [in the olvi-
ous way] a true statement about canposition and inversion of transla-
tions of 61, and vice versa.

As the algebra of ttanslations is further developed in later chapters,
we shall see further analogies, between this algebra and that of the.real
numbers.

TC 127 CO

Answers for Part A
1, 2, 3 4, 7, 8, 10, 11, 12, 14, and 15 are conseque,nces of

Postulate 4 and Definition 3-1(b).
6, 9, 13, and 16 are false, and so eannot,be consequences of our

postulates. 5, although true, is a consequence of Postulates 1, 2, and4 and Definition 3-1(b), and therefore is not a. consequence of Postulate
4 and Definition 3-1(b) alone.

Here are proofs for the true sentences in Part A. Again, it is
not _necessary for each student to do.all of these derivations.

Proof of 1. + = + [by Postulates 40(a), 40(b), 44,
and 42]

Proof of Z. (-:+ + cr a + + -C*) = a + +5) = (-a° + -c") + b.

f'r29f of 3. Suppose that, + 5 = -a'4, Since = +
+ 5) + Since' (c + 5) + -5 = + (5 4- -5.)

c c + -5 a follows that C = a - b.
Hence, if c + = then c = a '

+ + A) = [(1 + )+ A = [-s + + zn+ =(c + = [(1+z) tj + z = (a + + (5 + a).
Proof of 5, (A + 5) + A + ( + = A F. ( +. = (A + -c+) + g.

4
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3 -111)) alone. Except when you are asked' to prove such a theorem you
may.merely write down koly one ou, happen to need and comment
`i Postulate 4 r. 'Doing this does, however, commit you to provihg
the theorem in ease you are asked

Exert...is&

Part A
'Which of.the following sentences are consequences of Postulate 4

and Definitio 3- 1t1i)?
1. 0 0 4 0.
2. la + '1)) 4- t' +

3. 07-a -"""*L-=Ci- h

4. (LI + (t.'. (I) (a + c1 + Ch
. _

5. tA b) + c= A c) b

6. a. Ch. a* -

7.0+2 - Li Ll = 0

8. io h c - ci

9. (2. b = h

10. a (e. = (a.

11. -0' =7- 0* N

12. to 1)) + (c - ) = (a + c) - (1) + (7)

13. a + h 0 (a 0 and h = 0 )

14. (a' ke*-- (a'+

'15. to' - - (T.) = a

Part B

ii

3 1 r)

16. ( ci + tb c' a +

By Postulate 1(a), the lentence:

(*) 'iC - A) B - = (13 e A)

.
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- Proof of 7. St.ippose that -a. + -a* -a.. Sincc -1+ --S. = 0, it follows
that ("a. + a) + -; =_p. ,Now, (3 + 3) +,-3 = --a*+ (-3. + -3) 7

+ d = -a. , so that a - d. Hence, if a + .1 ,.. 71 then

p.root of 8... (a*.- ii) - c =. (a* + -1-1) + -c - a + _.(,--i; + -c) =
a + i-c + -1) = Ci + -Z) + -1; = (i'l ' Z;') b.. i

Proof ol 10. (.. i;) (-e'--- a) __ (-a* + -r;) + -(Z.! + -a) = (1 + --I;) +
(-c + --a) = [( + --I;) + 41+ --A = [ l + ( -I; +, 4)) + --A ..
[-` + (..-* + -rii)] + --A = [(3 + --(7) + - g 1 +- - -a = a + --.).-i-
(-b. + --a) = (a. + --,-.) + -0-). -a) _, (a. - -.) a).

Piaui of 11. We know that if 1 + t .= 15 then -1 = and that
Di + d , d. so, - --, d: 4

Proof,of 12. (1 - ii) + (C* - a) _. (71+ -11) ('* f -a) = ( -a. + C. ) +

(-g + -a) = Fa' + -C) + -(g + a) . ( + .-) (be + a).,

Proof of 14. (-a* 11) 1 (-C* a) = (P + -11) 4- Ha. 4- -----a), = (a'. + -it) +
4. (-Z'' + A) = (-a. + -13) + (A + -Z') = (a + A) + (-r; + -Z) = ri + 4).4

(S + 4) + -(C + 13)
PyooLol 15. (a c) -3,(1a c) = (a + -c) + -(b ) = (a-+ -c) +

(-t + ----) --- (-a* * -i3.) + (-P + -4) = ( -11T; ) + 0 ,-- (-a* + --I;) =
3 - b..

-c

Answers for, Rart B
1, 2, and 6 are consequences of Postulate 4 and befinition 3-1(b).
3 is true but involves knowing more than the "fact" that differ-'. ences of points are translations. 4 and 5 are false and, so, cannot be

consequences of our postulates.

is a substitution-instance of Postulate 4,. So, (*) is a consequence of
Postulate 4.4. With this example in mind, tell which of the following
sentenms are consequences of Postulate 4 and Definition 3 -1(3).,

3. (A - 8) + + B
2. -l(P Q) -c7 -
4. [S + (R 9)l + (9 R) R
6. V+ [(B - A) --a) = B - A

Here are proofs for 1, 2, and 6.
Proof of 1. a (B - C)] (B C) [4.4- (B C)] + -(B C) =

-a* + [(B C) + -(B + = a. [Notice that the only
"fact" we need to know about 'B - C' is that its values are
tranyationa. ]

Proof di( 2. 'We know that if 1-; = then = 11. In par-
ticular, we know that if [(P Q) -;] ( P 0:1)1 = .

%then -[(P Q) - = a (P Q)4 Now, [(P Q) - +
Fa. - 4P - (:))) = P 0) + + ja + -4 P - Q).4

- + + + G. Hence, - Q) a] =
a - ,(P - Q).

Proof of 6. + [(B A) = + [ ( B A ) (B
(it + (B A) + = B-A.

Here is a proof of 3. By Theorem 2..71, we IcLiow that if
B + [(A B) + = A + a then (A B) + a = (A + a) - B. Now,
B + [(A - B) + = [B + (A -.13)] + = A + Hence, (A -.B) + =4
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Part C
1. The sentence in Exercise 5 of Part A is not a, consequence of

Postulate 4 And Definition 3- lib). It does, however, follow from
h - h 1- a , which'is such a; consequence, together with Theo-

rem 2 -511)1. Show that it does.
2. Write sOme theorems like that of Exerci.se 5 whicii are suggested

1?y Exercises 2, 4, and 8 of Part A.

3.05 Groups

There is more to be said concernii4g -postulates ( o) - (iv) for real
numbers and Postulate 4 for translations. (Since (v) and Definition
3 - 1(h) ..are merely 'definitionsswe shall ignorethem for 'now.] The
sentence in )( a) says that the result of "adding" a first real number and
a second real 'number is, itself, a real number. More briefly,

(oi( a) tells us that refers to a. binary operation on the set
ioqb) tells' us that '0' is a name for some special nuwher of
10)c) tells us that ' -' refers to a singulary operation o'h

. iv) say that this hiliary operation, this special member, and
this singulary operation have certain properties. (For ex-
ample, (i) says that the ,binary operation is associative.]

r On the other hand:
40(a) tells us that [in th4. context] '+' refers to a binary
operation on
40(h) tells us that '0' is a name for 'some special rriernber of ,v .
4(c) tells us that. ' -' refers to a singulary oReration on ..7.
4, -41-say that this binary operation, this special Member,
and Ais singulary operation have (wtain properties-7

and these are the same properties Tociativity, etc.] as are, referred
to in tit -

'In both cases we are dealing with
a set [./9 or ] on which there is an associative binary operation
1(0)(a) and (i) or 40(a) and 4,.] for which there is [in the set] an
,identity element l(o)(h) and (tic or 43(b) and 4,] and [on the set] a
singulary inversing operation l(o)(c) and or 40(c) and 43].
Also, (the binary operation is commutiative [(iv), or 44].

The kind of situation described in (t).crops up in very. many Places
in mathematics: One has 'a set on which there is an [interesting!
associative binary operation; theset containS an "identity ,element"
with respect to this binary operation; and. each Member of the sethas
an "inverse" with respect to this binary operatipn and identity ele-
ment. In many cases-but not in all -the binary operation is comxnuta-
tive. You have 'already seen one advantage of recognizing this kind of
situation-having seen that translations furnish an example, much of
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Answers for Part c
1. (A + fp.) + C. ,- A + (./...; + C.) = A + (c1' + ,I;) = (A + -c.) + il [by Theorem

2-5(b), 44, Theorem 2-5(1)1. [In the middle step one uses,..be-
, side s.an jnsta of 44, the valid sentence 'A + (b + c) =

4k 1- (b + c)' as ernisSes of a rep,,I,:aercitaferenee. j
2. [Various answ s are possible. ]

^The various ways of referring to a group which are illustrated in
the paragraph preceding the exercises are all rn cominon use. Accord-
ing to the first, a group is an ordered quadruple for example,.the
additive grOup of the 'real numbers is the quadruple (6t, 1- , 0 , It is,
howeverc adequate to say that is a group with respect to addition
witqout specifying the appropriate i4entity element and oppositing oper-
ation. 'For, in saying that addition of real numbers is a group operatioi;
one implies that there is a corresponding identity element and a corre-
spondirrgr oppositing relation; mid it is not difficult to prove that this
element and operation are uniquely determined. [See the previously
m'entioned commentary for page 293 of High School Mathematics,
Course 3.] Using commutativity; it is very easy to show this. To
begin with, suppose that 0 and 0' arc both identity elements with
respect te a commutative binary operation/ Since they are identity..
elements, 0' 4 0 = 0' and 0 + 0' = 0, Since the operation is commu-7
tative, 0'' =',' 0. Hence[ a commutative binary operation has at most one ,

identity element. Next; suppose that - and -, are both inversing .

operations with respect to a commutative and associative binary oper-
ation and an identity element 0. Since - is such an in/ersing operation
it follows [as in Exercise. 3 of Part C on page 122 ] that, for any a -
and b, if a + b = ,0 then -a --, b. Since -, is such an operation,
a -+ -a = p. Hence, ...a = -'a. Consequently, there is at most'''one
identity element and at most one.inversing operation associated with a
given commutative and associative binary operatAan.

You may find it worthwhile to illustrate tHe notion of closure in
part A 'of the following exercises by a fanciful example. Suppose tha
a given field is enclosed by a brick wall six.inehes high. Such a field
.is not closed to walking since, from a y point in it one can by walking,
Iget outside it. It is, however., closed o shuffling; One cannot get out-
side,by shuffling along with his feet remaining in contact with the!-ground.
If it does nothing else, this shOuld point out that it is sets which are
closed under operations and not, as some clerent textbook authors have,
written, operations which are closed on sets)

_ .__ .

a

C
.o
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what you know. abOut another examRle [real numbers] can be carried
overas knowledge about translations.

Whenever the situation described in tit) occurs one saySlhatthe set, .

together with the binary operation, the idektity 'element, and the
inversing operation, is a commutative 'group. More briefly, one may
say that, the set is as,commutative group with respect to the binary
operation, and that the binary operatiOn is a commutative group
operation. For example, f is, a commutative group, with respect to
addition of real numbers, and .1 is a commUtative group with respect

'to compositiOn lor: 'addition) of efranslations. Each of these binary
operations-is a coxiimutative group operation.

Exercises

Part A
We know that addition of real numbers is a binary operation on the

set .4' of all real nuriatiers. We also know that a sumOf positiye num-
bers is a positive.number -for short, that the set P Of positive numbers
is closed .under addition. Consequently, if we restrict addition to
addition of positive mimbers, the result iS a binary operationion,P.
Somewhat imprecisely, we can say that *ition lof real numbers]
is a .binary operation on P. On the other hand, a sum of odd numbers
is not always an odd, number lin fact, it never is). So, the set of odd
numbers is not cloSed under addition, and addition is not an O1:ieration
on this set.

For each exercise, tell whether the given set is closed, under the
given .operation. Also, tell whether the,operation is binary or sin-
gulary.

1, .19: sybtraction 2. integers; oppositing
3. jinear functions; 4. rational numbers;

composition multiplication
5. positive rational numbers; 6. nonzero-rational numbers,

square rooting reciprocating
7. {0, 1,-1}; m'ultiplication S. negative numbers; division

nonzera-real-numbers; IQ. negative numbers.: aadition

11. 'the set,of all functions with domain g? and range contained in [3i';
oornpositioti

12. [Sallie as Exercise 11 but. only one-to-one ftmetions whose, range
is all of a..)

For some exercises in ljartA, the operation is a binary one and the
set is closed wider it. For each such exercise, tell Whether the opera-

, tion, when restricted to the set,
La) is associative.

.

Answers for Part A
1. closed; binary
3. closed; binary
5. not closed; singulary
7. closed;' binary
9. closed; binary

11. closed; binary

Answers for Part B
1. (a) No. - (b) Yes, O.
2. [not binary]
3. (a) Yes. (b) Ves,
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Z. closed; singulary
4. closed; binary ,

6. osed; singulary
8; not Closed; 'binary

10. aosed; binary
12. closed; binary

It 130 (1)

(c) Yes, "samein . (d) No.

(c) Yes, inversing. (d) No.
[So, the set of all linear functions is a noncommutative group with
respect to composition. Students may recall that the set of all such
functions which leave a4given point fixed is, a commutative group
with respect to composition. This group is, in'any case, isomor-
phic with the multiplicative group of nonzero real numbers a
fact Which is very easy to see when the fixed point is 0. }'

4. (a) Yes, (b) Yes, 1.
[A number is rational if and'only if it 42:the quotient of an inteier
by a nonzero int6ger. Replacing the second 'is', above, 'by 'can
Jie represented by' maikes nonsense. In discussing part (C) it
should come out that had the exercise referredto the nonzero
rationals then the answer for (c) would have been 'Yea, recipro-

, cating.' and the other answers would have been unchanged. The
nonzero rationals form a commutative froup With respect to
multiplication.]

5. [not binary]
6. [not'binary]
7. (a) Yes.
8. (Not closed. j
9... (a) NO.

'10. (a) Yes.

(c) No. (d) Yes.

11. (a). Yes.
I 2.. (a) Yes, (b) Yes, JR:

_

(b) . Yes, I. (a) No.

(b)

(b). No.

,

4c) yes, "sameing.
4. "

No.

(b) Yew No.
(c) Yes,' inversing.

[So, the set Of all one-to-one .Tappings of fa - or,
onto itself is a nontOmMutitive group with respect

I

(d) Yes.

40) :No.

(d) Yes.

(d) No..
of any set - <

tO composition. 3.

14.

4/
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Part C

(b) has an identity element. (If so, what is it?!
(c) has a corresponding inversing operation.
id) 'is commutative.

Which of the following sets is a commutative group livith respect to
the given operation? e'

I. real numbers; subtraction
3. real .numbers;

multiplication
5. integers: addition

.1. naimegative integers;
addition

9. rational numbers; addition

2. real numbers; addition
4. nonzero real numbers;

multiplication
6. integers; multiplication
8. rational numbers;

multiplication
IQ. nonzero rational numbers;

multiplication

In formulating Postulate 4 we included some sentences which we
could derive from Postulates 1-3, and some sentences which we could
deriC,re from other parts of Pdstulate 4. The principle reason for doing
so was in order .to be able to restate this postulate as:

kr

Postulate 4" .7 is a commutative group with respect to
composition.

1'4' because we shall add more parts to this postulate, eirentually
coming out with a 'Postufate 4%1 SinCe, for any commutative group, we
can define subtraction as in DefinitiOh 3 - 1(b) or (v), we shall think of
Definitiim 3- l(b) as beinea piirt of Postulate 4". So, for example,
when we say that a certain theorem is a consequence of Postulate 4'",
this means that ,it is a consequence of 4, - 4, and .Definition 3-1(b).

_3.06 Other Theorems about Points and Translations

We know that the sentence;

(1) (10 ) - (a - c) - a
is a truelentence about real numbers just because addition of realnumbersls a commutative group operation. So, since addition of
'translations is a commutative group operation, we know that the
sentenee:

(2) (-1; - - =

3431

- a

TC 130 (2)

Answers for Part. C
The given operation is a commutative group operation on the givenset in Exercises -Z; 4, 5, 7, 9, and 10.
In Chapter 5, Postulate 4" is...strengthened to Postulate 4" by

replacing 'cornMutative group with respect to cornpsition' by 'vectorspace 'over the real numbers'. Postulate 4' is obtained by prefixing
'3-dimensional' to this last phrase. Postulate 4 is obtained by replac-

. ing 'vector' by 'inner 'product'. Strictly speaking,' geometry begins
with Postulate 4", and Euclidean geometry only with Postulate 4. -

The following item was designed to test the student's understanding
of the postulates for a commutative group. It was part of a chapter test
administered to experimental classes and was handled with apparent
ease by the students. "You might use it as a quiz or as a take-home
exercise.

lippose.that (Z {a,bL *, b, -) is a commutative
group with distinct elements a and b. Tbe following are
sentences about this commutative group. If a given sen-
tence is a theorem, write 'T' in the space provided, If it
is not a theorem, write 'N' in the space.

I. -b
3. a*-1) - b44-a

.1, 5. -a*a = b*b
7.

9. a *a = a
11. b*b ,= a

Answers. I. T

5. T
9. N

2. (a*b)*a = (a *a)*b
4. a *-a = b
6. a*b Z

.
IL a *0 = a

10. "(a *.-a) '-b*b
12. -(a *a) =

Z. T 3. N

6. T 7. T
10. 'I' 11. N

This section-3,06 is preparatory to section 3.07. In particular,
pay attention to the manner in which this section leads up to the result
which is stated on page 136.



3.013 Other Theorems about Points and Translations 131

is a theorem about translations. You have also shown that:

-twa theorem. lit is Theorem 3-7 on page 124.1' Aithough (3) is a
theorem and has the same "shape" as (1) and (2), its proof is quite
different from that of 11 ) and (2): This is to be expected Since Only one
of the '.-'s in t3 ) refers to a group "subtraction operation".

As another examine, the sentences:

( 4) + b

and:

) + e.= c) b

are both true land the se ond is a theorem] just because .4) and .7 are
cOmmutative grows with respect to the additiorkoperations in ques-
tion, and the subtraction operations are, the appropriate ones defined
by (v) and Definition ,3- 1(b). In analogy with (3) we may write:

(a) (iet B) +- C = (A C) 13

but (0) is certainly, not a theorem, [Why `certainly'?] There is, however,
another analogue of (4) and (5):

(6) - + c = (A + B

'This equation ha- advantage, over, ( so), of at least making sense
-both sides refe ,

nslations. Sentence (6) might be true and, if
so; it might be a theorem. The following figure shows that (6) is true
-you-couldn't possIbly draw a counter-example:,

B

Th question as to whether (6) is a theorem is settled almost as easily.
(Hint: You can show that (A - B) + c and (A + - B are ihe same
translation by finding Ei point which has the same image under
both of them. What is the easiest point to use] We shall list (6) as
'Theorem 3 - 8'. b

B

Fig 4- 1
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a

The "easiest point to use" in proving (6) is, fairly obviously, B.
By Theorem 2-1, (6) will follow at once from 'B + [(A B) + c] =
A' + and this is an. immediate consequence of Theorem 2-5(b) and
Postulate 2(a). Sentence (6), is, for that matter, a consequente of
Postulate 2(b) and an instance of Postulate 3.,[The instance of
Poitulate 3 is '(A B) + [(A + c) A] = (A + c) B'.

Quizzes like the following have thc dual purposes of reviewing the
students over ideas which were developed some weeks past, but which
liave not been needed during the discussion at hand, and to determine
whether students have some feeling for one or more' of the 'topics to be
stillied in the near future. Xhat this quiz appears on this page should
nollibe interpreted as meaning that it [or one like it] must be
administered when students reach page 131.of the text; You will note
that the items of the quiz have little local relationship to what is being
discussed in the te4t at this juncture and so the quiz could be given at
any time beyond miclehapter.

Sample Quiz
Here is a diagram of parallel rays AB and CD with the same

sense.
A

_..uppose that CD is twice as long as AB, that b = EV- A, and that
c C A. Whicll of the following are true IT) and which are false
(V?

1. g + = -

Z. D is.the image Of B unde
3. D B = g
4. B + is a point on the segment CD.
5. There is a translation which maps CD onto AB.

- +
c +

6. The lines AC and BD have a point in common.
4,

7 . There is a translation that maps line AB onto line CD.
S. Theitnage of C under g is a point on line CD.
9, The lines BC and AD do not have a point in common.
10. A D = + + 11)

Answers for Sample Quiz
2. F

7. T

3. F
8. T

4. T S. F
9. F 10, T
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Notice that the sentence:
(A 13) + = (A + -c) B

is an instance or ( 6) [because ./ is a postulate) and that this-is
equivalent to:

(6') A - 13) - c = (A c) - B
1Why?) Since t ) is a theorem, so is (6'). (Similarly, starting from (6')
it is easy to di.. ive (6). ) Weishall not bother to list separately theorems
whichilike (6) and 16' ) differ only in that one involves adding a triinsla-
tion and the Jther involves subtracting it. If you should neped to men-
tion (6' ) you may do so by writing 'Theorem 3 -8'1, just as you will
for (6).

13), (0), and 161 are alike in that if the variables in ashy of them are
replaced by real number-variables then the result isra sentence about
real numbers which is true just-because is a group with respect to
addition of real numbers.

(3')' and (6) differ from (0') in that (3) and, (6) "make sense"- that is,
they are sentences of our algebra of points and translations- but.
(0) doesn't. .

(3) and (6) not only make sense -they areconsequences of Postulates
1 through 4" and, so, are theorems. It.), of course, i not a theorem
-it's not even a sentence.)

Exercises

Part A -
In each of the following exercises you are given an equation'of the

algebra of points and translations. For each equation:
(a) (7heck to see that it really is a sentence, tell what kind of

thing-points or translations-its sides refer to,
(b) Write out a corresponding sentence about real numbers, and

decide whether you could derive this sentence from to) (v)
on page 12.'

(c) Draw a figure which illustrates the given sentence,. anddecide -
whether you think that this lentence is true.

L. A + (B - C) B + (A - C). wt. (A - B) = A -
3, (A B) (C D).=. (A - - (B Yoti can'draw sev7

eral quite different looking pictures toillustrate this sentence, de-
pending on how you choose to mark the points A,B,C, and D. One
easy choice is like this:

C.

/1.

Complete a figure like this for the sentence, and then draw one or
two other pictures as different from this one as you can.]

, TC 132

Answer for 'Why?' following (61: Definition 3-1(b) and
Definition 3-1(a).
Answers fill. Part A

In each of the three exercises the expression given is a sentence
and the corresponding real number sentences r + (b c) b .1- (a
*(a b) + c a - (b c)', '(a b) (c d) z. (a c) (b d)'] is deriv-
able from (o)-(v). In Exercise 1, both sides of the equation refer to
points; in Exerr2ises 4 and 3, both sides refer to translations.
Possible figures illustrating these equations are:
1. 2,

I.

3,

(A -C) D)

(A - (C-D) (A-0) - C 1,c)

11

A -C) (B D)

,[1./se differently colored chalk for the constructions of values of the
two sides of the equations. Interchanging the points B and D, or

' choosing BD 11 AC yields ratber different figures.]
. .

41,

wl.



Part

Part C

Prove:
1 .

2.

3.

4.

5.

6.

7.

8.
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Theorem 3-8.. (A (A - B [Hint: See 6he di
sionOf 16) on page 131.1
Theorem 3-9. A + B - C) B + (A (71 [Hint: You.can
that the point A + (13 C) is the same as thel5oint B + LA
by showing that both have the'same image. under some translat
'What theorem?1 Try using the tianslatioq C B,1

Theorem. 3 10. (A Th + = A (B It's eas
find the image of B under the translation (A - + c. Yo,I can
find the image of B under A (B (4 by using Theorern 3-9,
Theorem 3 -5(12), and a theorem about translation alone.1
Theorem 3 -11. a.- (B C (13 [Hint: The right side
of this equation is rather like that of Theorem 3-10. Can you*
transform the left side so that you,can use Theorem 3.10?1-.
Theorem 3 -12. A - (B - C (B - A) {Hint: Use Theorem
3 -9.1
Theorem 3 -13. (A B1 (C I)) = (A - (B [Hint:
Use Theorem 3-11 and Theorem 3-12.1
Corollary. A C -*A -C=B -D lAcQrollary,,is tti
a theorem which is suggested by the theorem pre&tng it and
whose proof uses "mostly" the preceding theorem. Hint: Note that

- 0-6 a 7; 0 is a theorem.]
Derive Theorem 3-4 from the theorem of Exercise 7 and Theorems
3-.1ibi and 3,-2(b).

In each of the following, fill the blanks so that the resulting state-
ment is a theorem. If it isn't possible to complete a given sentence to
make a theorem, explain why. '7--

1. 1A + 4 bJ + c (A + + (

'2. (A - + (44 + _

3. a

4. A - a A + +

5. C A .0 B --
6.CjA-C+B0--.
7. A - + c5 (A 7 ) C

+ +

10. ri -4- A A +
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s.
Answers for Faart B

,In order to expedite the discussion of .Part B ybu may wish to
ssign each exercise to a team of studenta.rather than-have each
tudent do each exercise.

O n

5

By Theorem 2-5(b), B + [(A - B) + [kB'+ (A - B)] + = A +
the last by Postulate 2(a). So, by Theorem 1-1, (A - B) + -CP =

(A + B. [Alternative proof: By Postulate 3, (A B) +
[(A + c) - A] = (A + -C") -,13. So, by Postulate 2(b), (A + =

(A + CP) B. ]
2. By theorem 2-5()), [A + (B C)) + C B) = [A + (B C)) +

--C) = A, by Theorems 3-5(a) and 3-6. On the other hand,
[B + C)] + (C B)] B + [(A 'C) + (C B)) B + [(C B) +
(A C)) = B + (A B) = A. So, by Theorem 3-3, A + (B C) =
B + (A C).

3. -B + [(A - B) + = [B ,+ (A - B)] + -e+ = A + B + [Kr- (B.- Z)]
A + [n - (B Z.)), 'by Theorem 3-9 [olf. Exercise 2]. But,
B (B - Ce) = B - (B + 4), = = e, by Definition 3-1(a),
Theorem, 3-5(b), and the theorem of Exercise 6(b) of Part C 'on
page 155, So, B [A (B - )] A + C.. So, by Theorem 2-2,
(A - B) + -C* = A - (B -

4. By Definition 3-1(b), ThiOren-i 3-5(a), and Postulate 44,
- (13 - C) -S 4 -(B C) = + (C B) C - B) By

Theorem 3-10, (C p).4- = c (B I). So, t (B C) =
C - (B [Stu.Oents should draw figures illustration Theorem
3-11, In fact, it should be standard procedure to illustrate all
theorems by figur7T.T

5. A (B - C) = A + -(B - C) = A + (C - B) = C + (A - B)
C -(B A) = C - (B - A) [DOlnition 3-1(a), Theorem 3-5(a),
Theorem 3-9, Theorem 3-5(a7 Definition 3-1(a)]

6. (A -, B) - = D [C (A 13)) = D - [B - (A C)) =
(A C) (D B) [Theorem 3-11, Theorem 3-12, Theorem 3-11]

7. A - B C - D if and only if (A - B) (C D) = -6 [by the theorem
quotedmin the hint]. By Theorem 3-13, (A - B) - (C D) ?5 if
and only if (A - C) (B - p) = z. By the theorem quoted in the
hint, (A C) (B - D) = 0 if and only if A - d B - D. Hence,
A-B=C-Difandonly ifA-C=B-D.

,
f Ihtuit,,ively, the .corollary to Xheorern 3-13-1m-hides the- statement
that if two opposite sides of a quadrilateral are parallel and of the
same length then so are the other two opposite sides. ]

--A--ye---B- if and-qrily-it-C-- C - A B.
So, by Theorem 3-1(b) and 3-2(b), C-A= C-B if and only if
A = B.



Ariswers for Part C
1. + c tor: c +
Z. a

1;1
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3. r'D

4. d [or: A - .A)
S. A = B
6. Not possible. [No completions will make this a sentence

antecedent of this biconditional is not an equation 'C +
+ are not te rms.".

7.

for the
A' and

8. Not .possible. [The left expression is not a term, and the right
-side cannot be made into a term by any fill-in

9. Not possible. [The left expressionhas values which are points
while the right expression will have values which are translations
for*any sensible fill-in's. I

10. Not possible. [The left expression is nonsense. ]
* * *

There are, of course, infinitely many theorems liike Theorems
3-8 through 3-13 and its cbrollary; and it is not difficult to find amongthem theorems which especially when illustrated by figures sug-gest interesting properties of geometric figures. The principal purpos-e
of the preceding ex.ercises is, however, to prepare students 'for the
result stated on,page 136. This result [which is proved on TC 136(1-4)]
gives a general view of all theorems which are consequences of Postu-lates 1 - 4' and renders it unnecessary to prove any additional theo-
rems of this kiA'`. [Of course, there will be ample need for proofs
once we have adopted additional postulates.]

Before continuing on to section 3.0, however, it may be worth-
while, to acit some remarks concerning an alternative set of postulates
for commutative groups and a related,alternative to Postulates 1 - 4w.
We begin by-recalling that, given any commutative group, it is possibleto define a second binary operation la Definition 3-1(a). Taking as
our example the additive group of the real numbers, one can, in terms
of the group operator +' and the inversing operator define a sub-traction operator -* by:

a b = a + -b
'On the other hand, if one were acquainted only with subtraction, we
cougld define both oppositing and addition by:

- -b
In sorrle sense, then, subtraction is more basic than is addition. Infact, it can be shown that insteci,of adopting (o)-(v) of page 1 58 to
describe the additive group structure of the real numbers we might
equally well adopt the two definitions for oppositing and addition, a
closure postulate. 'a - b and the following two postulates concern-

,.ins .subtraction:
(*) a - (b - c) c (b - a), a (a - b) =

From çhese two postulates we can derive 'a (b - b) =' a' [a - (b -010
b (b a) = a) and, using this theorem, 'a = b' (a - a t a -[a 7 (b = b -'b). This last is analogous to.-tiii) on TC IZO(9.

;4,..

N.42.
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*and, as pointed out in the ensuing disoussien, it follows that the adop-tion of '0 = a a' as a postulate does no more than introduce a conven-
ient name for the unique value of the expression 'a -.A'. Adopting this
quasi-definition, our first theorem yields 'a 0 =. a', whence, by thedefinition of '-', -0 = (0 - 0) - 0 = 0 - 0 = 0 and, by the definition ofa + 0 = a - -0 = a - 0 = a. Also, since -a = 0 - a,--a = - (0 a) = a - (0 0) - a 0 = a, whence a + -a = a - - -a =
a - a = O. Finally, addition, as defined in terms of subtraction, can
be shown to be associative and commutative, but we shall not go into,
the details of this.

As a consequence of the preceding it is fair to saythat the fact that
the real numbrs form a commutative group with respect ,to addition is
expressed by the pair of sentences (.4) [together, if one insists on
closure postulates, with 'a b E I. It follows then that Postulate 4"i
might be replaced by the corresponding pair of sentences1

(I) -s = -c+ - (;. - =

Now, the following analogues of the
(II) A (B - )= (B A)1,

(III) A (B C) = C - (B - A),

sentences (I) are.theorems:
A - ( A - ) =

A - (A - B) = B
[The first sentences in these pairs are Theorems 3-11. and 3-12; th,
second sentences are easily proved. ] Vknd, as it turns out, (1)-
when augmented by the closure postulates:

B-ACT, ; -a° e , A - 8
and the definitions:

-= (- a) - a, -1 + = A +

are entirely equivalent to Postulates 1 - 4"1 and Definition 3-1.,
("entirely equivalent" except that the latter basis introduces the name
'75' for the identityimapEing of e onto itself. BV, from SU) it-follows
that -a° = A (A - a), = a - (A - A) whence, -a" a = a [a - (A A)] =
A A, by the seconesentence in (I). Consequently, 't may be irAtro-
duced meiely_as a.convenient name for the cOmmon uhique value of the
expressions 'a - a' and 'A - A'. )

The symmetry of this alternative postulational basis bears testi-
mony to the simplicity of our algebra of points and translations as it
has been developed up to now. ^It should, however, be noted that this
symmetry exhibited by (I) - (III) may be misleading. ' While (I) ex-
presses the fact that the subtraction operation there referred to is the
subtraction operation in a commutatifve group, similar remarks do not
apply to (II) and (III). Each of these deals with two subtraction-opera-
tiOns.' 4And, neither oppositing nor addition of points can be defihed by
analogy with the' defiriitions of oppositing and addition of translations.

.
.5 3
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3.07 eBargain in Theorems

Up to now we have adopted four postulates -Postulates 1, 2, 3, and
4" ' - and one definition - Definition 3-1 -and have shown that these
imply a considerable variety of theorems. A large number of such
theorems we obtained very cheaply. These include the sentences abouL
translations which are theorems because we have postulated that ./
is a commutative g-roup with respect to addition of translations.,,How
many such theorems you can recognize depends. just on how well ac-
quainted you are with the algebra of .real numbers. Other ways to
obtain theorems cheaply are suggested in Parts B and C on pages 127
and 128 and in the discussion of (6') on page 4,4i2.

Other theorems, like these to which we have chosen to assign num-
bers have, up to now, required proofs before we could be surethat they
are theorems. Also, some of these proofs are not easy to discover. You
may be happy to learn that there is a very easy way to tell whether a
sentence of our algebrp of points and translations is a wnsequence of
our present postulates and definitions. [You may 'already guess what
this way is; but let's consider a few moreexamples. If you have a guess,
you can-check it against the examples.]

Exercises

In eac exercise you ara given a sentence (R) about, real numbers
which,fiva or may not ,be true. You are also given several analogous
"sentences" about points and translations. (As exp'erience may lead
yosi to suspect, not all of the latter are sentences-they just look the
part.] List the sentences you think are theorems. For those which
are not sentences, tell why they are not, For any sentence which you-
think is noNheorem, tryto draw a counter-example.

I. (R) a + (b - a) -
(1) (I.+ (1; =

A + (h_A) =-131
OH) + = b.
(iv') A + - A) = 2

2. (R) fu.+1.b) - a b
(i) (a +- .b) b

(ii) 77) - =r)
(C1 B) - a = B

(iv)- (dek + B) - A B
3. (R) (c*- h) + ,(a - cr= a b

(i) (j' = a --6*
(ii) (C - 14)) + ---: a

(iii) + -CS =7; B

TC.134

Answers for Exercises
[Proofs of some theorems follow the answers.]
1. (1) and (iv)are theorems; (ii) and are not sentences

- A' and '1' + (B 'a.)' are not terms. .
2: (1).and (ii) are theorems; (iii) and (iv) are not sentences

'a + B' and 'A.+ B' are not terms.
3. (i), (vii),..and (viii) ar,e theoretrai. (ii), (iii), (iv),'(v), and ( )

are not sentences 'a C' and 'c B' are not terms.

114
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(iv) (- b) + (44 -CI = A -
(v) (C B)'i- Ha. - C) = 'a.. - B

.
(vi) (c'-, Bi. + (A C-i ---r A 7 B

(vii) (C - h.) + (A - C) - A - b.
(yin) it' L- B) + tit - C) = A - B

.s.4. (R) n - (li .- c) -,--. (a - b) - c
6) .a.- (b.- c) , (a* b') C

Iii) A r (b.- el = (A - 1)) - c.
. (i) A - (B - (.9 = (A --. B) - e

(iv) A - (B 7 CI = (A BI - C
, IR? u.- (I) -, C`) = (a b) + c

(i) a (h.- CS - (a.- ti + 'e.
(ii) A - (h. - ci - (A - hi---

(hi) a: - (B - cS = (a. - B) + c
iiv) 0 - (.1) - (7) ca.,- i;) + C
(v) A 4,0 - t;S -IA ." IP + c'

(vi) a - (B --Ci = (a - J) + C
(vii) A - (h. 0) - (A - li + C
viii) A - (B - (7) = M .- 11) + c

6. 'CR) c-a=c-b4-4-a-,b
"(i) c-a-c-.b-a7.-Da=b
tii'9 C - a.= C - b"-- --W = T;

(iii) c -.A -,j C -., 6 -$. A = b
(iv) C-A=C-B 4---,- Az.= B

The most obvious thing about the expressions incthe preceding exer-
cises is that many of them are not sentences. For example, Exer-
cise 1(ii) is not a sentence because, although we'have three kinds of
subtraction, none of them allows for subtracting a point from a trans-
lation. Also, Exercise ,6(iii) is not a sentence because, since C - A' is
a translation-term and '& -0-6/ is a'pointlerm, 'C -A---C-Vis not
an equi:tion:

Next, We notice that, in each exercise, the sentence (R) is a sentence
'about real numbers which is ither true because is a group with
respect to additidn or lin one case I is false. So, we are not surprised to
find that, in all but one exercise, the sentence (i1 is a thFc' rena.

In ExeKcise'4, the sentence (R) is false. Also, although (i), (ii), and
(iii) of this exercisi are sentences, npne of them is a theorem. Does this
happen just by Alance, or is it always the case that when a real

. number-sentende .is fal-se none of the corresponding sentences of our
algebra can be derived, fxorc Postulates 1 through 4"? If' this were
the case, it would be helpful because it would give us a waY of tetsting
susmted theorems if th4'real ,numbel-sentence wrresponding to
one of MT sentenctiir turned du& to be false then we would know, at
least, that our sentence couldn't lbdérived from the po8tula4s we now

711

TC 135,

4. (R) is false, and none of the sentences is,a theorem; however, (i),
Vi4,-and are-sentences any appropriate figure with *
will furnish a connter-exaMple; (iv) is not a sentence because."
.(A B) C is not a term.

s.

6.

(i), (4), and (v) are theorems; (iii) is not a sentence since
neither of its components is a sentence for exaMple, 'A =
is not a sentence because one side is a point-term while the
other is a translation-term.-

,
(i), (ii), 'and (iv) -are theorems; (iii) is not,a sentence Since
neither of its comp.onents is a sentence for ex"ample, 'A =
is not a sentence because one side is a point-germ while the
other is a translation-term.

In each exercise for which (i) is a theorem, this theorem VS
readily proved as in ordinary algebra. As to 'some of the A:her
claimed theorems,
1. (iv) is Postulate 2(a), 2 . (ii) is equivalent.to Postulate 2(b),
3. (viii) is Postulate 3, 5. (v) is equivalent to Theorem 3-10;
and 6, (iv) is Theorem 3-4.
As to 3. (vii), (C - ) + (A - C) = A + [(C C) = A + -;
A - 5, by Theorem 3-9, Definition 3-Ub) and postulate 2(b), and
Definition 3-(.13).

S.

As to 6. (ii), this follows from Theozem 2;2, by.".way,of
Definition 3-1(b) and the the6rern = -b :=- a b'.

-As to 5, (ii), A (5 - -CP) = A + -(5 + = A'+ (-11+ -CP) =
(A + -5) + = (A - -5) + by Definition 3-1, -(5 +
-5 + Theorem 2-5(b), and Definition 3-1(b).
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have. Luckily, this is the case. The reason is that the real number-
sentences which correspond with our postulates are true. So, if, for
example, we could derive Exercise 4(iii) from our postulates then we
could in the same waY derive Exercise 4(R) from true sentences about
real numbers. Since Exercise 4(R).is false, we can't do this. So, Exer-
cise 4( iii) cannot be.,a theorem.

Lookinganow at the other exercises, we see something even more
interesting. In each of these exercises .the real number sentence is
true Ibecause .n) is a group ,with respect to additionl and each of the
analogous senterwes of our algebra 4; a consequence of Postulates 1,
through 4". Is this chance? If it isn't then we have a lot of low-cost
theorems. For, in this case, we shall know that a given sentence of
our algebra is a theorem if the corresponding real number-sentence
is derivable from io) on of page 125. This is so, and there is even a
way of turning'a derivation of a real number-sentence from (0) (v)
into a proof of any of the corresponding, sentences of our algebra.. We
shall, not go into the 'details of this. You have probably examined
enough theorems by now to be convinced.

Conibining the discoveries of the preceding two paragraphs, we have
the following rule':

A Sentence of our algebra is a consequence of Postulates 1
through 4 if and only if the correspondinpreal number sen-
tence is true just becait.se.,9 is a group with respeCt to addition.

Once we are convinced of the correctness of this rule, we have no more
need to'give proofs of theorems of the kind we have been dealing with,
and no need to list other theorems of this kind. [We shalt still, however,
have to give proofs for theorems which depend on postulates we shall
introduce later.]

A useful consequence of the,rule we have discovered is this:
We can transform expressions referring to pointh and

translations just as though both kinds Of addition and all
three:kinds of subtraction were addition and subtraction of
real numbers as long as we take care that the expressions we
write make ;ense.

Exercises

Part A

33s

Consider the following and tell which are theorems and which are
not. Explain each of your ansWers.

1. (A + a') (B + = A - B
2. A , (B + B (A - ci)e
9. A - B) = (A - B)
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For your information we give a proof of the rule stated in t e lastparagraph on page 136.
* * *

The proof of this important rule'requires two steps. We must
show that

arid

(%tf )

if a sentence of our algebra is derivable from Posthilates
1 4'n and Definition 3-1 then the corresponding sen-
tence about real numbers is derivable from the group
postulates (o)-(v) on page,1Z5.

we must show that
if the real number-sentence corresponding t8 a sentence
of our algebra is derivable frorn (o)-(v), then the latter
sentence is'derivable from Pbstulates 1 - 4" and
Definition 3-1.

Now, (*) is easy to establish. The real number-sentences which
correspond with our postulates are all consequences of (o)-(v). [Those
corresponding with the parts'bf Postulate 4".1 and Definition 3-1 are
precisely the sentences (o)-(v); those corresponding with,Postulate 1are 'a - a Eh' and 'a + a e those corresponding with Postulate 2are 'a + (b a) = b' and la + b) a = b', and that corresponding with
Postulate 3 is `(b - a) + (c b) c - a', Clearly, all are consequencesof (o)-(v). I Hence, any proof of a theorem from our postulates can be
transformed into a derivation of the corr,esponding-sentence frbrn conse-
quences of (o)-(v) merely'by replacing all variables in the proof by
real number variables, replacingr'6' by. '0', and replacing .e. and'7 by

So, (It) is correct, and we know that atiy-sentence of our algebra
whose real number analogue is not derivable from (o)-(v) is, itself,
not derivable from our trekesent postulates. [In'particular any sentence
whose real number analue is false is not derivable from our presentpostulates. )

The proof of (**) is scarcely more difficult; but, sinCe it is
longer and rather more subtle, we have not given it in the text. To
establish (**) we -proceed as follows:

,ponsider any sentence q5 of our algebra, let 145* be: its
real number analogue, and suppose that (1)* is a consequence
of (o)-(v). Choose a point-variable say, '0' which
does not occur in q5 and let 4; be the sentence obtained from
t.,5 by inierting after each occurrence of a point-vari-
able in 4). For example,

if t;(1 is 'C + (B - A) = B + C, - A)'
then gS* is 'c + (b a) = b + (c - a)'
and 4, is *(C 0) + [(B 0) (A 0)) =

(B 0) + [(C - 0) - (A, 0)T
.[As indicated, -in constructing 4i from 0, it is necessary to 'introduce
additional punctuation. The precise procedure is to, first, enclose
each occurrence in, of a point-variable, in a pair of parentheses, and
then insert '- 0' between each pqint-variable and the immediately
following right parenthesis. 'The'proof of (**) is noiv carried out
in two steps by 'showing, first, that

3 3 9
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because O* is a consequence of (o)-(v), 4) is a
(**-)' cOnsequence of Pcistulate 4" and Definition

3-1(a),
Slid, second, that

is a consequence of 4), Theorem 2-3, Theorem
3-7, Theorem 3-8, and Definition 3-1(b).

Combining these resulti, we see that is a theorem if 0* is a conse-
quence of (o)-(v).,

It remains to establish (**)' and (ritc)". We begin with the for-
mer. We begin by noting that, since 0 is a consequence of (o)-(v),
any sentence obtained by substituting different translation-va?iables for
the 'different real number variables in 4))* is a consequence of Postulate

,and De'finition 3-1(a). We obtain one such sentence X as follows.
Certain variables in 0 may have gotten there through substitAtion for
translation-variables in O. For these, we substitute these same
translAion-variables. For each of the other variables in 0 we sub-
stitute itny translation-variable we please, taking care only not to
choose the: same translationvariable twice, and not to choose a trans-
lation-variable which occurs in O. In the example above,

X might be cri. + ( ) = + - ) .

Since, as should be obvious, S, isean instance of the sentence X so
obtained, it follows that Lit is a consequence of Postulate 49" and
Definition 3-1(a).

Having e.stablishect (trstr)', .our final task is to establish (**)". It
is this part of the argument which is, perhaps, too subtle for your stu-
dents. Before entering into it, it will be helpful to illustrate the course
the argument will take bY applying it to our example., [Recall that, by

we knowthat, because 'c F (b a) = b + (c a)' is derivable
from (o)-(v), the sentence;

(C 0) * [(B - 0) - (A - (B - 0) +, 0) (A 0)1
is derivable from Postulate V" and Definition 3-1(a). We even know
a mechanical way in which to modify a derivation of the first sentence
to obtain a derivat,ion of,the second. Our task is to continue ihis
derivation in such a way as to emerge with a proof of our original sen-
tence `C F (B A) B + (C A)'.]. To begin with, it follows from the
sentence displayed above and two, instanceS of Theorem 3-7 that

(C 0) + (.13. - A) = (B - 0) + (C -A).

*I"

And, (rorn this and two instances of Theorem 3-8, it follows that.
IC + (B An -: B.+ (C - A)].

sFinally, froin this and an'insiance of Theorem 2-3 it,follows that,
C + (B - A) = B + (C - A),

In establishing (**)" we shall at first consider the case in which
as in our exAmple the' sentence .0 is an equation. We may then sup-
pose that is a' = 7 where and 7 are, both point-terms or are both.
translation-terms. In this case the sentence 4) is 010) T(0), where
0(0) I. obtained from cr and 740) from 7 in the same way in
which is.obtained from 0, that is, by inserting '- 0' after each
point-variable. We shall show that in case 0. is a point-term then
00) = 0. 0 is a theorem which can be derived from Theorem 3-7,
Theorem 3-8, and'Definition 3-1(b); while if 0' is a tranolation-tIrm

TC 136 (3)

then s7(0) = We.-show this-by induction On the
Manner in which terms are construct.ed. The simplest terms are vari-
ables and the one, constant 'a'. Now, if a is a point-variable then, by'
definition, 0(0) is merely a - 0. and the equation 00) = Cr 7 0 is a
valid sentence. If a isa translation-variable or then, by definition,
010) is merely cr, and the equation a(0) = a is valid. Thus, we tat're
established the initial step of our induction. The inductive step depe`rids
on noting that if a is a point-term whieh is not merely a variable then
it is al + 5 or al cr2, where cri is a point-term and 5 is a trans-
lation-term, while if a is a translation-term which is not a variable
or then it is either ai cr2, where at and a-2 are point-terms, or
it is a + (T2 Crl Crp or where o-i and cr2 are translation,-terms.
Our procedure now is to make the inducti#e hypothesis that the result
we are trying to establish does hold fol.' the terms cri. and 0-2 and, from
this, argue that it holds for cr.

We consider first the case in which the point-term a is al + cr2
where al is a point-term and cr2 a translation-term. By definition,
ar(0) is cr1(0) + a2(0) and, by the inductive hypothesis, cr,(0) = cri - 0
and a2(0) = cr2 are consequences of Theorems 3-7 and 3-8, and
Definition 3-1(b). It follows that. a-(0) (ai - 0) + cr2 is also such a
consecngnce. Hende, 00) = (cri + cr2) - 0 that is, cr(0) = 0
is such/a consequence sirice' it follows from the preceding one and
Theorem 3-8; The case: in which cr is - a,, swhere al is a point-
term and Cr2 is a translation-term is treated in exactly the same way
except.that, in the final step we need the theorem '(A B)..c
(A - c) -.B' which is an immediate consequence of Theorem 3-,8
and Definition 3-1(b).

We next consider the case in which cr is ai cr2, where and s-2
are both point-terms. By definition, a(0) is 0'1(0) - a-2(0) and,-'' by the
inductive hypothesis cr1(0) rri - 0 and cr2,(0) cr2 0 are confequences
of Theorems 3-7 and 1-8 and -Definition 3-1(b). It follows that 00) =
(cr1 - 0) - (a-c, 0) is such a consequence. Hence, a(0) = cr - cr2
that is., cr(0) = is such a consequence since it follOws from the pre-
ceding one and Theorem 3-7.

Finally, we consider the case in whicti a. is cri + cr2, cri 5, or-a-1, where cr1 and a2 are translation-terms. By definition, (r(0) is
Cr1(0) 0'2(0), 471(0) - 0'2(0), or -0-1(0) and, by the induction hypoth-
eels, 0-3(0) = 0-1 and 0.2(0) = cr2 are consequences oI Theorems 3-7
and 3-8 and Definition -3-1(b). Hence fin any of the three subcases],*
010) = is also such a consequence.

%Having establisried this restilt concerning terms, we retuzn to the
consideration of the sentence cb which we are supposing is an equation,

7-, where- 0- and -7-',,are both point-terms or are both translation
terms, By definition, the sentence 4) is,. then, 7(0) = 7(0), In the first
case cr(0) - 0 and 7(0) = - 0 are both consequences of Theorems.
3-7 and 3-8 and Definition 3-1(b), Consequently, the sentence o-(0) =
T(0) <=sza. cr - 0 = - 0 is such a consequence. Hence, the 'sentence
cr(0) = ,r(0) .c:==> cr T is a consequence of Theorems 2-3, 3-7, and
3-8, and Definition 3-1(b). In the second c45e [that in which r and T
are translation-terns] the equations cr(0) = e. and 710) are conse-
quencek-of Theorems 3-7 and 3-8, and Definition 3-1(3). So, in this
case, the sentence 010) = T ( ) 4:=P' 0" is' also ush a consequence.

It follows at once that in case istan equation then 4) 4=te 0 is a
consequence of Theorems 2-3, 3-7, afid 3-8, and Definition 3-1(h).
So, (**)" is established in this case. The general case now follows
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4. (A +- a) (I3 + 1))' --. (A B) + la' - 13) at once. For any sentence `riS is built up out of equations and connec- .. .. tives ['==>', '4=0.', 'and', 'or', and 'riot"), and, by definition, 4' is
5. Ai.- (B + LI = c'.--0 B + c. = ,A + (..* built uprin the same way out of corresponding equations. If one ofitheI. bu)

ck6.. (A. + el) - (C + ii) = A - IC - (b* c b 1 and,ashasjustbeenshown (0) is a consequence of Theore?ns
Cbl i2-3, 3-7, and 3-8, and Definition 3-1(b). So, by the replacement and. .7. (a + 81 IA + (B ,- A)1 = a introduction rules for biconditional sentences it follows that 4' 4=Z' 0 is

--. such a consequence. In particular, qS is a consequence of Lii and these ,8. ( P 4- i) - IQ - (Q R)) = (I) - R) theorems and definition.
9. (B - a.) [tA. a - (A - B)) =,

10. h. + tu. - (A - BP)0.-

Siniplify the following expressions, and tell whether the 'given
expression.refers to points or translations.

IA - (A En) 4- (A - er
2. [(A + (;) BI + (B A)

3. [A - (B (7)) (B - A)
.4. (c'-- I;) + ei

5. lc 4- (B - C)l +
6. IA - (A - B)) + + C)

7. (A - B) +- (C A)

8. A + (A A)

9. kit 13) + (C - + (B 7 C)
10. .{42 - IR +- (1) - 1?)]) + (P Q)

In each of the following exercises, comfilete the sentences in terms
'tz3, 'h.% 'tP, 'et or '0. Also, on a copy of the given diagram draw dotted
arrows to describe the translations listed in the Bxercises.

Exanipre. . 8. Theorem. r(p + s) - 1g -4ci r)] = (p - r) + s' is algebraically, correct and each of '(P + p) - [() - (Q - R)T and '(P - 11) + il:' isGiven: A = P + a,B=P+-13),C=P+V. a translation-term. ]

This completes the argument for (*-A)" and, so, co letes the
proof of the rule on page 136.

Incidentally, it is by the kind of ,induction used in establishing-i-
,that one justifies the replacement rule for biconditlonal sentences.

In this case, the induction is with respect to the structure of the sen-
tence in which the replacement is to be made rather than, as in the case
of (**)", on the structure of the term o- for which we wish to establish
our result. -

Answers for Part A
1. Theorem. ['(a + c) (b+ c) a - b' is algebraically correct and

each of '(A + 1) - (B + a)" and 'A - B' is translation-term.]
2:- Not a theorem, [' -B' is,nonsense. ]
3. Not a theorem. + i lionsense.
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4. Theorem. ['(a + c) - (b + d) = (a b) + (c d)' is algebraically
correct and each of '(A + 1) - (B +1:7)' and '(A - B) + (S - S)' is a
translation-term,3

5. Not a theorem. ['a (b c) = c* is not "algebraically" equiva-
lent to 'b + c = a + c', ]

6. Theorem. ['(a + b) - (c + d) = a (C', (b - d))' is algebraically
correct and each of '(A + S) - (C + sy and 'A - [C - (g - A)]' is a
translation-term. ]

7, .Not a theore m. ['"a4: + V is nonsense.]

(a) B A
(b) C - B

c

Balution-

B

ss

9, Theorem. ['(b - c) - [(a - c) - (a - b)] = 0' is algebraically
correct and each of. 'LB -_S.1 - i(A - - tA -_Bn and 'S' is a

(c) 'A - C = \
, , translation-term. ]

1(d) (B - A) +.(C - B ) + (A - C) = 10. Not 'a theorem. ['b + [b - (a - (c -.0)3 = li is not algebraiCally.
, correct. I

Anwrt fo.r Ffart B
1, -TF+ (A - c); point

(a) B - A2,-- I : ( - a+ [ore A + (B -, C); point]
(b) C B = j -' -1; 3. C; point
(e) A - C = 7; - 7 5. B + 1; point
(d) tB - AJ + (C ,-- B) 4. (A - C) = 0 7. C - B; translation 8. A; point

Z. 1; translation

4. '6; translation
6; B + pOint

9. S; translation 10. S; transla on



138 ME ALGEBRA OF POINTS AND TRANSLATIONS

a

C

1. diven:A a,J Q b:C=Q+c.,D= Q +
(a) B - A =
(b) D B =
(c). C D =
(d) A - C =
le) (B - A) 1- (D B)

fC D) + (A - C) =

2. Given: B = A * a, C B + h, D = (7 + c. F DF-E- ,,E-c:H=B+c
(a) C A3

(b) D - A =
(c) G C

(e) G 13 =
A (t) E - B -

(14) F D
(h) C E-3.=

(1) (1-1 - A) + (G +

lE G) 4, (A - E) =

3.08 A New Look at Postulates 1 /ind 2

Recall our Postulates 1 and 2:
1(a) B - A E

.2,(a).A + (B A) = B (I)) a = (A + a) A

Now suppose that 0 is a poir. Then Iby 1(a)J,for Any point A,

, A - QE.J

So, we can define a mapping [which we s ia11 call 'TO of K' into T.

T(A) A - 0

Fig. 3-2

Also, [by 1bJ tbr any translation

Answers for Part C
1. (a)

(b) a
(c)
(d)

(e) (or: A - Al

TC 138

2. (a)

(c) -;
(e) - -a*

(g) I!)

(i) 'd for:

-4.(b) a 4- b + c
(c1)

-,,(1) 5 + - a
(h) a -

A A)

[It is recdmmendefl that 'you construct a stick model to aid the
discussion of this exercise. Vencils and lumps of clay work nicely
for this purpose. You can label points with flags taped to tooth
picks.

TC 138, 13 9 (1)

This section shows that, on the basis of Postulates 1 and 2, given
an origin 0 in 8, there is determined a one-to-one correspondence
between points and translations. This result,is the basis for intro-
ducing coordinates in 8 and, more directly, for the usual uses of
vectors (qua_ directed segments] for solving problems in geometry.

This result also suggets a more special kind of geometry which,
when vectors are mentioned, sometimes becomes confused with euclid-
ean geometry. This geometry is euclidean geometry plus a chosen
origin, 0, and is properly called centered euclidean geometry. As the
result of this section shows, there is no formal difference between
vector algebra and centered euclidean geometry. Confusion of cen-
tered euclidean geometry with "hornogenized"--fordinary] euclidean
geometry leads to identifying points with vectors and to iseatements to
the effect that euclidean geometry is just the study of vector algebra.
Such statements are false. What is true is that euclidean-geometry is
just the study of how translations which constitute a vector space
cipe;ate on the set e of points, in accordance with Postulates 1 and Z.
(One way to appreciate the difference between ceAtered euclidean geom-
etry and ordinary euclidean geopetry is to note that in the former it is
possible, as indicated on page 139, to introduce geometrically mean-
ingful operations of addition and oppositing of points. Also, in such a
geometry one is barred from considering motions under which the
origin 0 is not fixed. I

The relation between T and' e whiCh are made explicit in this
section can'be tilled to good effect in gaining a more nearly complete '

understanding of notions concerning translations. Translations can be
regarded from two points of view.. In the first place, each translation
is a mapping of e onto itself. As in the case of any mapping, there are
various graphical tricks which help us to concentrate our attention on
what might be called the "structure" or the "nature" of a given
translaqpn. For example, we 'Can picture a giVen translation by drawing
a lot of airrows, all having the same sense and the same lenga, and
interpret our drawing as a. picture of 3-dimensional space fir-which, bY
the arrows, we indicate the images of selected points under the'given
translation. If we felt it necessary, we could construCt a more
"realistic.' picture by hanging actual arrows [as used in archery)
from the ceiling of a room. Other methods -- the use of tracing sheets
is an example are illustrated in Chapter 1.
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and' we can define a m4ping [which we shall call 'Po'] of `/- into

P(c;), = 0 + a4

P(a) Qa

Fig. 3-3

Now consider the composition of the mappings P, and To. Complete
the following:

[P0- .T,1 A) = Po(T(A))
= )

= A

A

[Po ° To)(A) A

C)r-

B [P, TJ(B) B

Fig. '3-4

Postulate

Po 0 To: -46
A A

We have seen that if we adopt a, definition:

I Definition 3-2
I (a) To(A) ,= A - 0 (b) Pu(-a) = a

we have, as a consequence of Postulate 2:

I Theorem 3-14
I (a) Po 0 T0 = i '(0) To 0. Po =

This theorem says, exactly, that the pappings Po and To are inverses
of one another. [Explain.] In other words, given any point 0, the
mappings Po and T spell out a natural one-to-one correspondence
between the.points of g' and the translations of

4

TC US, 139 (2)

1

The, second way of regarding translations is characteristic of con-
temporary mathematics. Translations.are objects of a certain kip4 and,
as such, are related to one another in various ways. We recognize th4
when we speak of the set T whose members are just the translations of
e and when, for example, we recognize that one translation inay be the
resultant obtained by composing other translations. Indeed, a s is sum-
marized in Postulate 4'", the members of T are subject to certain
operations, and these operations have certain properties. I;ater we
shall find other Operations on,: and relations among, the Tembers of T.
Our discovery of these operations and relations results from our study
of the "structure" of individual translations. That is, it comes about
from adopting thv point of view referl;ed to in the preceding paragraph.
But, having made these discoveries, it now becomes profitable to con-

.centrate our attentio.n'on them. In order to do so it is helpful to have
some way of "visualizing" 7,, itself.

The present section suggests how this can be done. If weschoose a
pbint of e then there is a one-to-,one correspondence between the other
points of E and the non4 translations. 'We may then represent each of
these`translatione bly an arrow from the chosen point to the point which*
is its image under the chosen translation. The result will jbe a picture

, (a) (b)

like (a). It is a picture of e, supplemented with arrows indicating cer-
tain translations. Re-labeling (a) gives us (b), which we can take as a
"picture" ,of T. In (b), the arrows are pictorial representations of
certain non-d translations and the translation is pictured by a dot.
It may help in clarifying the distinction between (a) and (b) to point out
that in (a) there is the possOility of indicating a given translation by
drawing any ace of many arrows. For example, the translation from A,
to C may be indicated by an arrow from A to C and, also, by an arrow
from 0 to a propt,rly chosen point. In fact each arrow in (a) is merely
a representative chosen from a set of "equivalent" arrows, and it is
this set whicht primarily, we think of as "representing" a translation.
In (b), on the other hand, orgy arrows initiating at the dot marked '4'
have any meaning, and each sich ari'ow is to be interpreted to be, itself,
the_ uniquc pictorial repzesenttion of_ some memhes of 7,_

The result of the present section, which justifies such pictorial
representations as (b) of T, can be interprete4 intuitively in tering of
(a) and (O. What it says in these terMs is that, as suggcsted by the N..
similarity between the two pictures, T can be "set ,Flown" on e in such '
a way that 'd corresponds with any point 0 we care to choose/.

The blanks are fiiiewd in as follows: A - 0; 0 + (A - ), '2(a)
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The. existence of such natUral one-to-one correspondences will turn
out to. be very useful. Because of them, anything we learn about .%
furnishes knowledge of c also, and vice:.versa. In later chapters we
shall be more concerned than we have beenup to now with geometrical
figures triangles, etc. that is, with subsets of . Because Qf the nat-
ural one-to-one correspondences we can study analogous things in
and then transfer what We learn to . The advantage of. doing so is that
translations are easier to 'deal with than are points. The.reason for
tiiik is that is a conimutative group and, as we shall see, a very
special kind of commutative group. So, we can apply all sorts of alge-
braic techniques to the study of .1.

The faCt that we can move back and forth SO easily between .7 a d
suggests a way in,. which'we might define oppositing and additio for
points:

--A - P(T(A », A + B 1)(T(A) + T(,(B))
Notice, however, that these definitions refer to a point 0 which We'
must specify if we are to know what is meant by oppositing and addi-
tion of, points. We have not really defined oppositing and addition of
poi ts. Instead, we. have defined "oppositing with respect to 0" and
"addi ith respect to 0". To see the 'difference, note that if. we
choose a different 'point say, p' we get a different opposite for a
given point,A and a different sum for given points A and B.

A

0, /
To'(A))

'P ,( T,,(A)l

Fig. 3-5
Exercises

Draw a figure to show 'that if 0' # 0 then the sum of A and B
with respect to 0' is not thesum of A and B with resuct to 0..

2. Ca) Which_ part of Thtiore03- 14 says that To is oneio-one?
Which pah says that P is one-to-one?

*3. Show that we were to a'abpt as postulat :

1' (a) .TD(A) s ;I
2' (a) P0 T1, =

and as definitions:

(h) P(a e
(b) ;

(a) B - A = TA(B) (b) A + -126= pA(cl

then Postulates 1 and 2 and Definition. 3-2 Would be theorems.
.

3 4

It 140
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Answers for Exerci-ses

+ B [relative to 0
A,-

/

0 1--
A +.13 relative to 01

Theorem 3-14(a).,says that T is -one-to-oneitand that P'is onto].
Theenellh 3-14(b) says that P is one-to-one [and that T
is antop.".4

[In g neral,, i,g of is a one-to-one mapping of a set S onto a' setT th no tivo members Pf S can have he same image under fif the did, hey would, by definition, have-the arne image underg of and ach member of T must be in the range of g if it.
.4 weren't it w uld, by definition, not be in the range of g of,' SinceipYis a one-t -one mapping of onto itself it follows from

Theorem 3- 4(a) that To which`; by definition has domain eand range co tained in T is a one-to-one mapping of 8 into T:\

.

8 l
and that Po

T on all of e.
which, by definition ,has domain T and range' con-tained in

Due to the unfamiliar notatipn, Exerciee 3 may be more appro-.
priate a class discussion exercise.

3. Postulato 1(a) follows from /la) and iart (a) of the definition;
Postblate 1(b) follows from l'(b) and part (b) of the definition.
The proofs of Postulate 2(a) and 2(b) are as follows:
, A + (B - A) 7 PA(B - A) = PA(TA(B)) 7 [PA o TABB) = ie(B) = B

(A + a') - A = TA(A + 1) = TA(PA(,1)) = [TA o PAM-a) = iT(:) a6

";:

,
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3.09 Chapter Summary

Vocatthlary Summary

translation of /
postulate

-binary operation
commugative group

Pustulates

1. +a) 'B - A *

2. a) A. -4 - A

3. 43 7- 4) B) C

4. ta) 4 , (b)
4i. (a r h .---, a + +

414. u +- =At
43. + = 0
44. a 4- h
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constant mappink; of
definition
singulary operation
comMutative gioup operation_

tb) A 4 a E

.(b) a (A + - A

(c) -a t

1

. .7 is a comqiutative group with respect to Composition.

Definitions

3- 1. iw A -a=A+ --a
3-2. )a) TtA) = 4 0

Other Theorems

IS

4

2-1. A*a*,--114,-a=B- A
2-2. A -C A + 1. 4
2-3. A - (,`

2-4. + ba. = 1(A t- 12) + bj A

2-5. (a) a + b

(a) A 7+ = A "

lb) a b + -b

(b).'1)(u) = 0 \

3 (a)A+d.A4-=C;----S- . (b)B=A«-PB-A=
3-3. A + = B A

V

a

142 THE ALGEBRA OF POINTS AND TRANSLAT ONS

3 -4. C-A=C
3-5. (a) -(B - A) A B (b) -a* A ( a

3-6. (A + (.1-) + = A .0-4

3-7. tB - C) - (44 - C) =-,13 - A

3-8. (A B) c°z.-- (A + B

3-9. A + (B C) B + (A C)

3-10. (A - B) c*- A - el

. 3-11. (B C) C (B

3-12. As W C) C (11, - A)

3-13. (A - B ) - (C - D) = (A C) - (.13 - D)

Corallary, A -B =C = B - D

3-14. (a) P0 (b) T. P

Rules of Inference

Any inference of either of the fop-xis:

is valid.

pqmIPri, p11 q r
q p p 4-0 r

1
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1. Simplify.
(a) lB -,+11 Afl B C)
(b) t - ri! I+ il + + -

. .

(e) (C - 1(B - h.) + (13

(d) (a. - - (a. 1.°)

- (') t(' 21)1 4 t(7 D)
(n 111/ - ((,/ R)I + -

2. Which of.the following are theorems and which are A.? Justify
each of your answers.
(a) P + IQ Q) P
(b) (1) p.) - =

ic) (P )-,p) - + (1' , p
(th (A B) ti3 C) - A
(0 HA + b.)] 4- - A - B
(f) + A 1( (1. ) 1;1)

a
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3. (liven the . et l. -1} and the operation multiplication I .) defined
on this set in the usual way (i.e., 1 1 - 1, 1 -1 -1, -1 1

1, -1 -1 1), demonstrate that this set is lor, is nal a corn-
,mbtative group under the given operation.

4. In each of the foilgwing, decide whether the given expressint
one for a point, for a translation, or is meaningless,
(a) IA + h'")

(I)) HA + (')) - D
(c) A - IC - B))) + ((: - A))
(A) + (1.) + IA + a)) B

.
(e). A - .- IC D)1 E
In B) 1(C7 B) + (C - A1,1

5. ,l'roye the folhAwing.theorem:

a

114 - A) tB (A + äI = a

Key to Chapter Test
1. (a). A (Y3 C)

[or: B + (A -
a._

(c) (A C) D)

TC 142,143

(b) (P p-*) (R
[or: (P R) +

(d)
[cannot accept a - g?, - -' as yet]

(t) P Q

L. (a) Theorem. ['p + (q q) p' is true, and P + (Q Q)' and
*P' are point-terms. Another justification might be a proof
of the theorem. ]

(b) Not a theorem. ['(P + 5) P; is a translation-term and 'P'
is a point-term. So, the given expression is not (even) an
equation. ]

(c) Theorem. ['(p + a) - [q + (p a' is true, and
*(P + [Q + (P Q)]' and `p' are translation-terms.
Another justification might be a proof,of. the theorem.]

(d) Not a theorems. ['A + B' iS rion.sense. So is. 'B
(e) TheoreM. [1(a - b) + (q 7 p) = a - b is true, and

[(A B) + 1;)] + (15 a). and 'A B' are translation-
terms. Another justification might be a proof of the theorem.]

(f) Not a theorem. ['-.a A' is nonsense, ]
3. .The set {1, -I} is a commutative group under multiplication. 1 is

the identity element, and each element of 11, -1} is its own (multi-
plicative) inverse. Associativity and cpmmutativity of multiplication

are easily verified. [Another check is that clOsure of this set under
multiplication together with the "facts" that {1, -1} c Integers
and multiplication is both associative and commutative over this
"larger** set guarantees associativity and commutativity of the
operation over the given subset, ]

4, (a)
(c)

meaningless
translation

(b)
(d)

translation
meaningles s

(e) point (f) translation .

5. Here is a proof of the theorem:
-a)] = (B A) - A(B - A) - [B - (A4+

[(B - A) - (B A)] + a -- + a =



ChAptef Four
Real Numbers

4.01 A Revievi

Up to now we have, referred to the ordinary algebra of real numbers
only for the purpose of giving examples fin Chapter 11 and analogies
with our algebra of points and translations lin Chapters 2 and 31. In
Chapter 5 we shall begin making use of the rtal numbers in our alge-
bra. This will then be an algekra of points, translations, and real
numbers. Although you know a good deal about the algebra of real
numbers, it will be worthwhile to review its foundations and put on
record the postulates we need as a basis forthis algebra.'These postu-
lates will deed with the operations of addition, oppositing, subtraction,
multiplication, reciprocating, and division, and with the order relation
greater than and its converse, less than.

Before stating ()Or postulates which we shall combine into a single
Postulate 5 it iS necessary to say a few words about retiprocating.
You are certainly familiar with the definition according to which the
reciprocal of a nonzero real number is the quotient of 1 by that num-
her. .For example, the reciprocal of 2 is 1 ÷ 2. Given the operation of
division, this, is a perfectly satisfactory definition of reciprocating. For
our purposes, however, it is more advantageous to think of reciprocat-
ing as a "fundamental" operation and to define division in terms ofit.
[This is entirely analogous to our previous definition of subtraction in
terms of oppositingi Just as we need an operator l''1 to use,in re-
ferring to oppositing, we need, then, an operator to use inyeferring to
reciprocating. For various reasons we choose tits use '/'. For example,
/2 0.5, /-2.5 = /2.5 = 0.4, and, according to the definition we
shall adopt,for division, 2 8 = 2 [Since, as iN customary, we
shall adopt the convention of omitting multiplication dots in most

\ eases, fractions such as '2/3' will, by this convention, be abbrevia-
tiens of expressions like '2 - /3' and, so, will, as they should, be nu-
merals for quotients like 2 ± 3.1

Although reciprocating is analogoui to oppositing there is one im-
portant difference of whkh we muqt take account As you learned in
the. last chapter, addition of real numbers is a commutative group

35.1 IP
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For the most part we shall, in this course, take for granted stu-
dents' knowledge of fhe algebra of real numbers. Since, however, the
real numbers enter formally into our geometry in the next chapter it
is merely honesty to include among our postulates one which asserts
thit the operations on real numbers [and the special real numbers 0
and 1] have the properties which we require. Such a postulate con-
sists of the parts So - 5.. on page 145 and se - 5ip [on order) which
appear later in the chapter. [The last, 1.512(b), is stated in Part B on
page 158. ) More succinctly, the postulate in question is to the effect
that the real numbe system is an ordered field. [In dealing, later,
with arc-measure 4nd the circular functions we shall need to postulate
completeness ., that each nonernpty bounded set of real numbers
has a least upRer bound.)

The restrictions, '[a # etc. , on 50(f), 55(b), and 57(b) have,
of course, to do with "'division by 0" . They are discussed in section
4.0Z.

The derivations presented in the text and exercises are intended .
mainly to introduce or illustrate pew rules of reasoning. As mentioned
above, we are taking the student's knowledge of'the real numbers for
granted. This includes the student's knowledge of derivations for roost
real number theorems. The teacher should exercise caution in the
treatment of this chapter lest valuable time be lost.

4

3 5
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operation, with 0 as the corresponding identity Glement arid opposit-
ing as the corresponding inversing operation. On the other hand,
multiplication orreal numbers is only "almose a commutative group
operation. Although there is an identity element, 1, fm. multiplication,
only ,nonzero real numbers have "multiplicative inverses". The num-
ber 0 has no inverse with respect to multiplication because the product
of 0 by any real ,number is 0 and, so, is not 1. The multiplicative in-
verse of a nonzero real number is its' reciprocal and, since 0 has no
multiplicative 'inverse it is customary not to define a reciprocal- for. 0.
This custom has some drawbacks, but we shall adopt it. One corve-
quence is that our postulates concerning reciprocating will have re-
strictions added to them. How to deal, with these restrictions will be
taken up in the next section.

We shall now list the parts of Postulate 5 which do not concern the
order relations.

( a ) .4- b t ) e

5 (a) Ia + + c a + b ci ib) c
1a) a 4 0 a ib ) a 1 a

5,,. (a) a + -a 0 (4) a I kl s
Irb` 5,. (a) b h.±-a a)). a b I) a

5..
5. + h)c.
5,, a a b a +. --b (b) Cl h=a-lb lb 0)
(The restrictiwi Or is to be read as 'for a different from 0'.] Of
these, 5,,(a) IdI and 5,i a) 5.1a ) say that 1 is a commutative group
with respect to addition; 5,,i di - f ) and 511b) - 5,b) are analogous to
the preceding, hut. with the significant difference that two of them are
acconipanied by restrictions. Since it follows from these-postulates that
products and recipvocals of nonzero numbets are not 0 it is not difficult
to see that these postulates together witV., imply that .the nonzero
real numbers form a group with reSpect to multiplication. [They say
more than this because they also give us information about prOducts
in which 0 is a factor.) Pestulate 5 links theoperations of addition and
multiplication. Postulate 571a) is a definition; in view of the restriction,
57(b) dosL not quite define division as an operation on the real numbers,

Id) a bt
f /a '") I a UI

a b C)

le) 1 E./2

#

Exercises

Part A
When dealing with algebraic terms which may inirolve division by 0L,

it is a good idea to indicate what restrictions are needed in order' to
avoid.this impossible operation. For example, the term;

b:4

a b

v.)

IC 145 (1)

in connectIon with our postulates for real numbers it is in order to
make some remarks concerning nomenclature. First, for reasons
which need not be gone into here, we find it convenient to consider that
the right hand factor in an indicated product refers to the multiplier.
It is because of this convention that we refer to the "right distributive
law" as the distributive principle for multiplication over addition.
Second, although we make no point of this distinction in the present
text, we use 'princi.ple'.when referring to a true statement which
may or may not he a generalization. [For example, '2 + 2 4" is,
under this usage, a principle, I Any principles are, of course, candi-
dates for postulate-.hood. There is no harm if, t rough preference or
inadvertence, you read 'APA', say, as 'associativ . ostulate for
addition' rather than as 'associative principle for addition'. Third,
definition principles are principles which might serve as definitions

is an example of a definition principle which we have chosen to
use as a definition; 'a t b a - -b' is also an example of a definition
principle which in our postulational basis for real algebra happen.s not
to be used as a definition. Finally, introduction principles are prin-
ciples which might be used in lieu of definitions to introduce operators.
For example, 55(a) introduces the oppositing operator in a way
that al1ow4 all required theorems about oppositing to be proved. [For
consistency of nomenclature the PAO and thc PM1 should be called
introductien

Of more moment than the preceding is some discussion of the con- 4,
ventions to which we adhqre concerning the use of grouping symbols
[for short, 'parentheses", whatever their shapes may be]. In the first
place, parentheses are a much a part of the language we use when
speaking about points, translations, and real nuMbers as are variables,
operators, '0', '1', and In a`proper deticription of the grammar
of the language parentheses occur in meaningful expressions according
to strict rules they are not, for example, merely inserted whenever
the writer thinks their presence might be an aid to reading. Different
languages will, of course, have different riales as regards to t.he use of
parentheses. Our language has two very simple rules. Somewriat
loosely stated they are these:

(1)

(2)

There must he a pair of parentheses delimiting the
total scope of any binary operator. [Examples:
'(a + 0)', '((A B) + '(g + -g).]
There must be a pair of parentheseh delimiting the
scope of each suffixed singulary operator.
[Examples: '(--a)2', '-(ar I

Notice that no parentheses arc associated with such prefixed singulary
operators as, for example, oppositing operators. [The parentheses in
both the examples for- rule (2) "belong tv" the exponent, a suffixed
operator.) It can be proved that these ru4s are sufficient for the avoid-
ance of all ambiguity, More easily, though, a little experience in using
thern,will convince one of this and, at the same time, obviate any
strangeness that such expressions as '(a -a)' may have.

Rules (1) arid (2) are about as simple as punctuation rules can be
and still prevent ambiguity. A competing system which may seem
more .familiar requires parentheses delimiting each of the two parts of
the scope of a binary operator r(a) + (c)',''((A) (B)) + ()'J and paren-
theses delimiting,the scope of any singulary operat&r + (-(5)).,
1-(a))2`, '(-(a)2rl. These rules are no more.complicated than are
Cl) and (2), but, obviously, require the use of more parentheses.

5-#
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. I
Rules (11 and (2) are part of the formal grammar of o4ir language.

A properly formed term will contain exactly those parenthepes which
are sp-eeitied by these rule's '-'-- no more and no fewer, Nev -rtheless,
the simplicity in statement of rules (1) and (2) has been gait ned at the
expense of requiring more parentheses than are actually needed and it
is cuatomary to regularize the use of "slang" by adopting additional
rules whie I-1 permit one io omit parentheses on some occasions where
thoy a N, requi red by (I) and (Z). In othe r wo rds, one usually adopts
rules for abbreviating terana. Such ruler) must be chosen with some
care si nut. , u he.n one i8 fated with a term which hasbeen abbreviated,
the' re, must be no question as to how to replace the omitted parentheses."'

The' simplest such abbreviating rule concerns the omission of
'oute rmost pa renthe se s" :

I i If a term is not part of another term and consists of an
,expression enclosed in parentheses then these paren-

theses may be omitted.
l'hi, rule concerns the removal of parenthe.ses associated with a binary
opt. rator and enuld have been incorporated in rule (I). The next is
similarly related to rule (2), Its purpeAe is to allow omission of
parentneses frefm terms like '((a + b))'' , where the' inner,parentheses
are required by (1) and the outer by (2), and like '(a + (b);1' in which
the syope of the suffixed singulary operator is clear without the use of
parenthi eses. .

(4) P.1 rrnt he ses required by (2) may be omitted if the
expression they enclose either consists of an expres-
sion enclosed by parenthebes or contains no operator.

For exara*le '-a;-7' must, if obtained by application of (4), be an
abbreviatnn at '-(ar since (4) does not permit the omission of
parentheses from the only other poasibility, '(-02:.

In addition to these general rules (3) and (4) one usually adopts
various rules which refer to parentheses associated with particular
binary optators. One, which may be adopted for each binary operator
permits th;r abbreviation of, say, '(a + b) + e to 'a .+ b + c'. The rule
can also be extended to allow its application to strings of specified
pai rs binary operators, say, the pair ('i-', '-') and the pair (' ', '÷').

'So, 'Ha, bi + c) -.d' May be abbreviated to 'a - b + c d'. l''

Still more special rules introduce conventions as to the relative
."strengths".of various binary operators. One such rule is the one
w4vh allows, say, '(a ly) + (c ci)' to be abbreviated to 'ab + cd'.
Generally, es indicated, is considered to he stronger than '+'
[or -' ) and so, does not tp need parentheses to hold its operands
together agaiaat. the "pull"' of +'..

P'inally, onte can Choos to omit one binary operator usually
-7- and to represent the orresponding operation by ruere juxta-.

position. Strictly speaking,\ this rule can be adopted without any
restrictions as long as na sY'rnbpl is used ,both as binary operator and
a prefixed singulary operator, Since, however, in our notation, the
binary operator '-' and t eingulary operator '-' might be confused,

. such a rule needs, practi ally, -to be rextricted.
The preceding diScu

use in constructing terms
construction of compound
with 'binary operator' r

sion of groupirnymbols has dealt with their
. It applies, however, equally well to the
sentences, Here, there is a rule like (1)
laced by $inary sentence cqnnective', Due

to the absence of analogues of safixed singulary opera
no need for a rule analogous to (2). There is also a ru
(3) and one May but we shall not make use of other viating
rules based on.the notion of the strength of varieks connective's. In
some systems, one binary connective . usually 'and', is omitted i
favor of juxtaposition. On the basis, of thr analog of (1) and (Z),
sentences of the forms, say, '[(p and q) r]' '(p and fq
are well-formed and may be abbreviated to similar senterkes of the
forms '(p and q) r' and 'p and [q respectively. [On an
informal basis, we tend to use brackets with and '<=> and
parentheses with other binary connectives.] 'Also, a sentence of the
form "In'ot p ca is a conditidnal sentence whose antecedent is a
denial sentence, while one of the form 'not [p q]' is the denial of
some conditional sentence'. The brackets may be omitte.d from sen-
tences of the first type when it is not part of a longer sentence
but not from one of the,second type, \

here is'
logous to

Answers for Part A
1, (a) p + 1 lq

4.

3,

4

(d) a
a + b b

(

TC 146 (1)

(b) 10r2 14r

01 (e)

(f) 0 (g) -2
,

[Note that oppositing and reciprocating of nonzero real
are permutable operations and that' each is its own inverse.

(c) 6a-' 13ab 5b2

P 3

(P .)(p 2) & 3

(h) 0 [a 0] .

numbers

p :-4]

(a) 7/4
(e) 9, -3

(b) 2 (c).-I/14
(1) -9, 3 (g) [no solutions].

(d) 4

( ) [no solutions]
each of (g) and (h), students may produce ar ments which

show that no numbers'other than 3 [or, in the cse of (h), per-
haps, none other than 3 and -31 can "be solut s, Such argu-
ments contain steps which lead from one equation to a non-
equivalent equation [multiplying on both sides by a factor which
has 0 as one of its values1.1
(a)

(c)
The
(a -
that

t = 2

t ,1Z

b)
a +

(b, t 6

(d) t = 4

occurs at the word 'consequently'. Since b = a - 1,
= 0 and it does not fOlow from the previous equation

1.

35!)
s
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Part B

can, as you know. be simplified: Answers for Part B

bl
u h

w t hma
- h a + h a 06 h]

The bracketed restriction calls attention to the fact that the value of
the given term, for given values ofthe variables 'a' and 'h', is the same
as the corresponding value-of 'a + h' in case the given values of 'a'
and '19.' are different. S'o,uhject to the restrietton one may replace the
given 'term by the simple). one.

1. Sin4.),14 each of the following, noting any necessary restrictions.
(a) 7ip 6ip - ql

(c) (3a b)12a 5h)

6(e) + (f) o(h - 3) + a(3 - b)p + 3 p 2
(g) 1-12 (h) /--a

2. Solve these equations.
(a) 5r - 2 + r) 12 (b) 2 ,- t 1 - s) + 7s 5 3(s 6)
(c) t 2151 1 ) "- (d) 6:+ (1) - 3)2 - (1) + 112 -- 2
(e) (p + 3) 0 (f) 42 -I.- (ity -'27 0

3 a 1 a1 a 30(g) - (h) a -
3. For each of the following, write a sentence which has the same .

roots and which begins with 't lln other words, solve for T.1
(a) 4t 12 3n -5t +.12 (3) 2 - .--
(c) 3 tI3 -1 (d) - 3) + 2(t2 -- 6)

4: Criticize the following argument.
2 is the only even number. For, suppose that ai is even. It

follows,that a +- (h + 1) where b a 7 1.. Since a h + 1
it follows that a2 - 2a (1) + 1)2 1 2(b + 112 - 1 and, RO,
that a - b2 2a - 1. From this it follows that (02 - h2)
- (a + h) , (2o 1) (a b) (u h) - 1. On the other
hand, id.' b2) - (a + 0-- (a + b)(a h) (a + b) - (a + 1))

h) - 1). So, lo + h)(1c2 - h) - 1) (a - h),-- 1 and, conse-
quently, a ±-ft Since m (hf fl r=. (a + b) +1, in z= 2.
Hence, if in is aneven number then in = 2.

(b) i5r - 71(r + 3) + (Sr 7)(r 3)
2a +(d)

h
h

Give column proofs of each of these real number-theorems.

,1. a +a a a 0
J42. 0 a '-- 0 II-lint: 0 a (0 + 0) a . .

3. a (1) + a, b + a e [This is the left distributive principle
for multiplication'over addition.)

a + a
+. -a

+ +

+ b) + c
(a +, a) + -a
a + (a +

)a

a +

(9)

3. (1)

(Z)

(3)
(4)

(5)
(6)

(7)
(8)

T (2)

----. a [as sumptionl*
= a + -a [valid sentence]

.:--- a i- (b +.c) [APAI
[(1), (2)]= a + -a

= a + (a + -a) [On

+ -a =

a + 0 =

a + 0

a -, 0 [(9), (8)]
a = a =,:,. a -. 0 [(10): *(1)]

a -a+

v
0

0

a

[(5), (3)]
[IP())

),0(6)][[1,(7A]

0 + 0 = 0 [PAO] *

0.a = 0.a [valid)
,(0 + 0) a 0. a -[(1)

4 A+ b). c = a .oc + b. c
(0 + 0).a 0.a + O a

0 a + 0.a = Oa [N, (3)]
'a+a a a:, 0 [Exercise 1]

+ (7). a = 0. a 0. a, = 0 f(7))
o a = 0 [(6), (8)]

a b b.a [CPM]
a . (b + c) (b + c) a [(1)]
(a + b).c = a.c + bic [DPMA)

(b c). a = ba + c a [(3)]
a.(b + c) = b.a + c.a [(4), (2)]
a (b + c) = a.b + c .a .[(i), (5)1

ca = a.c [(1)]
a a (B + c) a .-b a:'`c ), (6)1
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4.02 More about Reeiprocating

As you can easily proveby using the theorem of Exercise 2 of
Part B and the postulate '0 *- .1' the product of 0 by a real-number is
never 1. In short, 0 has no multiplicative inverse. On the other hand,

mrv.7

the introduction principle fbi. reciprocating:
40.

5. ( Ap.v,tt 1 la -0)

tells us that the reciprocal of any nonzero real number is that num-
ber's multiplicative inverse. Since the only use for reciprocals is as
multiplicative inverses, it is customary not to assign any meaning to
70'; and principally to avoid ktrgument we shall follow this custom.
(Note, however, that while no one could "define into existence" a multi-
plicative inverse of 0, there is no reasop aside from custom for not as-
signlng a reciprocal to 0. The worst that would happen if, say, one
defined /0 to he 0 would be that the reciprocal of 0 would not have
many of the interesting properties which are shared by the reciprocals
of other numbers.]

Since We shall need to use 51(b) in proving theorems, we need to
decide how to take account of restrictions such as-the one in this
postulate. There are several possibilities. We shall adopt the simplest,
which is to consider 5,,(b) as hn abbreviation for the conditional
sentence:

(1) 0 a /a - 1

There are objections which can be raised to any method of dealing with
restrictions, and the objection to this one is that from (1) we can derive
the substitution-instan

(2) 0 0 0 /0

Because we have assigned no meaning to '/0', this sentence-is without
meaning. We need not, however, take this objection too seriously. For,
on the one hand, (2) is not a sentence which is likely to interest us and,
on the other, we could easily insure that (2).would make senseal-
though remaining uninterestingmerely by-choosing a meaning for
70'. In any case, we cannot use (2) to prove '0 /b since we cer-
tpiinly have no way of proving '0 0'. In stort, Whatever decision we
might make about 70', we should never be Able to prove that 0ha a
multiglicative inverse.

As (2) illustrates, 70' is\ going to show up in our theorems. So, t re
is no point in keeping te restriction in 54,(f ), and we shall dro

.
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Although any singulary multiplying operation multiplying by L,
say, or multiplying by 0 is a mapping of the set SR of real numbers
into itself, the case in-which the multiplier is 0 differs fundamentOly
from that in which t14 multiplier is some nonzero number. Multiplica-
tion by a nonzero real number is a one-to-one mapping of 6i onto itself
and, so, lias an inverse, For example, the inverse of multiplying by
2 is multiplying by 0.5. On the other hand, since multiplying by 0
maps each real number on' 0, this mapping has no inverse. Put in
another way, for any nonzero real number a, there is a number y
the multiplicative inverse of ,a such that a y = 1. But,, there is no
number y such that 0 y = 1 0 has no multiplicative inverse. [Note
that the word 'ifixerse' i tiliWti with two quite different, although closely
related, meanings.] In contrast, each singulary adding operation
i.e., each translation of I has an inverst. Equivalently, each real
number has an additive inverse.

If we read '-' as 'the opposite of' then 5s(a) says that the oppo-
site of any real number is an additive inverse of that number. Since
from the existence of an additive inverse we can show its uniqueness
[by using the APA and the PAO], we can think of 55(a) as a charactr-
ization of oppositing. Similarly, if we read '/' as 'the reciprocal 'of'
then 53(b) says that the reciprocal -of a nonzero real number is its
multiplicative inverse; and 5s(b) may be thought of as a partial
eharacteization of reciprocation.

If we let matters rest at this point then 10' is, at best, undefined
and, at worst, nonsense. The diiadvantages which result from inSist-
ing that '/O' be- nonsense are considerable. To gee what these are,
note that prior- to the introduction of '/' [or of '÷'] it is possible to
give formal rules of grammar for constructing real number terms so
that each term constructed in accordance with these rules will have a
real number as its value., whatever values are chosen for the variables
which occUr in the term. [These rules correspond with 50(a) (e) on
page 145.1 As a result, it is possible to give further rules of grammar
for constructing real number sentences so that any sentence obtainable
from such a sentence by substituting ntAnerals for its variables is
meaningful [although it may, of course, be false]. Similarly, in our
algebra of points and translations, Postulates 1 and 4, may be made
the basis for definitions of 'point-term' and 'translation-term'. By
requiring that the side,s of an equation be terms of the same kind, and
that substitution-instances of sentences be obtained by substituting for
variables terms which are of the same kind as the variable, we can
make sure that everything we write is meaningful. However return-
ing to the algebra of real numbers this simple state of affairs is
dstroyed once '/' is introduced if NIO' is regarded as meaningless.

'Then, say, is a pattern for both meaninigful and meaningless
terms. is also a pattern`for terms which, like '/(a + b)', have
values for some values of 'a' and 'b' but not for others, and for terms
which, like '/(a a)', has. a value for no value of 'a'. "Most" sen-
tences inwhich '/' occurs will, like (1) on page 147, have both mean-
ingful and meaningless instances. The problem of formulating rules of
grammar for sorting out the meaningful instances is the problem of
programming a computer for solving arbitrary algebraic equations and,
so, is unsolvable,

The preceding considerations show that if '/' is introduced and
'/O' is held to be nonsense then one must accept as meaningful sen-
tences which have meaningless instances, and that there is no way of
restricting the- substitution rule so as to insure that meaningful

3 6 3
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Mom.

'Sentences shall riot halie rnedningle ss consequence s. results
would fol.low were taken Af.prirnitive and expressions cOntaining

0' ruled Aleaningless.)
tb viw.of this it is almost nece'ssary AO agree that '/O' does have

A A

or ()illy rwatv.i, !o simplicity, that it denote's. some real ,
se.irst.N, whatever number we might choose-to let it denote;

d not be a multiplicative inverse of 0.1 Acceding to

sornC me
nureiber,.'
tgis rmirtib
this nectosity a ounts, formally, to dropping the7 restriction la 4- 0,.1'
froni.,-50).*' ECM' course. the, restriction on S(b) must remain,, but we

ma..)isrliow'constrne 5..(1))..as in the text, as an.abbreviation for the con-
ditional se nte nc e t 1 f, .And we need have rio,qualins as to the meaning-
fulness of (1) -or of any of its instances. j Whether or not we keep the
restriction in `)7(b) is less important. As a Matter of elegance', it
shoul(1 he dropped; hut it is probably bette'r ped,agogy to preserve it.
One result of 'preservi,rig it will be discussed skeirtly. l'inally, it
would be more forthright to add to ',,..,(b) a dekfinition of ./0'. This...
might he either '/O. 0' pr '/0 i'', But pedogogicaVonsiderations

.again suggest that this is better' left undone;
.

',.. ..

The result of this tarnpering'with the meaning of 'reciprocal' -- ,

or, recire specifically, witl; nit, meaning of './' [but not with the
meaning of 'multiplica,tive iNerse,',1 is' that the logic-al notions express-
ed by 'wonsvenence' and °imply' are allowed to keep theirufornpal
characteir, and our rules of logic need not be cluttered up with' restric-
tions whOse enforcement poses geenerally unsolvalle problemstos to
wheat expressilins are rneaningiuli It is perliaps unfortunate that the
advantages of this call ge fully appreciated only after one has strived
to proceed loo_licalk,on'the basis of the assumption th.at '/O' is
me nil'rigletss.

.. ...
There is one subject for which the present procedure might be

considered edagogieally disadvantageous in comparison with the usua.1
Inflormal trtrnent of meaningless expre,ssions. As has been pointed
o.44.4this info nial treatment cannot be satisfactorily formalized.] The -
suEject in question is that of teaching the Solution of fractional equations.
Supposing such an equat}on tO have been transformed into the form
'a/b -, 0', one -custornarpy says th'al.its solutions are those zeros of

II the numerator whivh ate not zerosi ol the denominator the latter
flause-because a fraction'is meaningle.ss if the value of its 'denominator
is 0,N What thi's amounte to, is 'saying that when one is asked to solve an,
equation of the form 'a/b -.',,0', what one is expected to do is to solve
the system 'a =. 0, h 0'. Underithe.Present procedure, this would
'have to be said explicitly. By 57(14 [and the tljeorem '0. /b = 0'] each
.cero f bit numerator which is not a zero of the denominator is a root. of the ractiona e'quation. Elut, there is nothing in our postulates which

. . ,will. he p one`to &eide',.whether a zero of the denominator isPOT is not a'
root.of.the equation. Lack of Utility rather than restiltant lack of mean-,
..ing rintrit bra given' as a reason for igporing such 'roots shoirld they exist.
Properly developed, the4orme.r reatabq can be made at %ast as appealf.ng
asais the latter. . ,'.,

. Ths: preikeding diScussion'of reciprocatiegt'and.division is More .* lengthy' and 1-ises more questions tian classroom treatrnènt of
the subAct warrants, Your reading of it Should give you a better
understanding of tht4,1)40t; rousdfor section 4.0Z and of th0 reasons-
for the conventionsawhit h are adopted there., In teaching, however,
youshould stick rather' closely t6 the text and, if nece ry, discourage
students4rorn sterile iiiilltuisions of the varyingip sults, of defiqing '/D'
in thii- oelthat way. 'We have tried td Avoid such 4iestiohby refraining.

Of

si
p.

TC 147 (3)

from adopting any such definition in the teit and by suggesting that
although,' in consequence, '/O' ias no [definite] meaning, things .become simpler,. and no ha.ern results, from pretending that it does
have'some meaning, unknown to us.,. And this, indeed, is the burden
the preceding discussion. The one part Of thi'S discussion whinl mbe of explicit use in.the classroom is the comparison in the second
paragraph of 5:1(a) as a characterization of oppositing and 59(b) as an
only partial ,characterization of reciprocation. The whole argument is,
of course, .predic,ated orila conceptual distinction between the notion of
reciprocal and that o multipliCative inverse.

Turning now to the ,text, itself, it is perhaps.worth noting that the
reason 'for asserting that (II) on page 147 is ap instance -of (1) isPostulate 5o (h) 'Since is already present in (1), the restriction
in 5,(f) is of no help in ruling (Z) out as an instance of (1). The
moral is that if we use....'/' in sentences, th'ere- is noway of avoiding
the:appearance of 'Al' due torrsub,stitution and, perhaps, subsequentalgebrajc simplifications.

0
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We shall, however, keep.the restriction in 57tb) Ithe defining principle
for division), In view of our decision as to how tO interpret restrictions,
571b) is, then, an.abhreviation for:

t3) 0 --F0 a ±. h lb

Since mUltiplying by 0 is not a one-to-one rnappiN- and, so, has no
inverwe there is.no "dividing by 0". operation in the usual sense of
'dividing by'. Although from (3) we may infer:

00a . 0 /0

we cannot prove 'a. 0 0, /0', So, the question as to whether '± 0'
hits 'a meaning in some unusual sense .is left open. This peed not con,
cern us sinee, whatever-meaning wp might choose to give it, we should
never be able to prove '(ah) h -- a' without the assumption `b 0'.

As an example, let's see how we can now prove:

TC 144 t1)

The second proof of (*)' which is given on page 148 may be inter-
'preted in two ways. It is an .abbreviation of the first proof in that it
"can be loltked on as "khorthand" instructions for reproducing this
proof. On the other hand, it can be thoughtkol as an actual, unabbrevi-
ated, proof in which the use of stronger rifles of inference allow fewer
steps than needed in the first proof. In the first proof, 'b .0' is
adopted as an assumption under wiich the remainder of the argument
is carried out. What happens in t e second proof can be illustrated
by considering the inference of step (4) from steps (3) and (2.3.
Recalling that (3), say, is an abbreviation for 'b 0
the'rule which justifies inferring (4) from.(3) and (Z) may be stated
as fqllows:

II an
41

inference of the form:
.

is valid then o is any corresponding
infel-ence of the forin:

) h it 0 ( h) titi- a

To shorten the proof we 1.slall not :state the postulates
conclusion depends but only theiinstanc6 of them
the proof.

!lr 0
12) h iahr : b = (uh). lb
(3) lab) h lab) lb
(4) i.abi lb° a(h Ihl

"11(10),

on which the
which are used in

assurationr
57(b)1

(1), (2)1
5,(h)1
5:4(b)1

(1), (5)1
[(6), (4)1
f.5,( b

1(8), ..(7)1

1(9), (s)1,
'IP]

p

'In short, argue as though the restriction in ling (3) were `not there,
but then transfer this restriction to the conclusion in line (4). The
rule stated above is easily justified:.

=cbP 8
P.(M. )

iirassumed valid

(De,d.
q

Other such rules [far example, one With 'r replaced by 'p = are(5) h ?6 b lb 1

(6r lb 1

(7) (ah) lb a
(8) a 1

(9) tab) lh = a
(10) (ab) a ,

411
equally easily justified.

In'the scheme given above it is assumed that the given inference is
such that tre deduction rule may be applied as indicated.i This is not
always the case. For example:

a/a = 1 a # 0 =:* a /a = 1.
is valid by (Subst), but. is not valid..

b /1,2 = I a * 0 ==:* b /b = 1(11).h 0 4 (ab) ± h =

We can safely abbreviate proofs like this one by introducing restric-
tions as illusrrated in the following:

(1) h(ab) b (ab) a lb
(2) (ab) lb ath l'h).4
(3) h lb - 1

lb 011

lh -74'01

[57(b)J
[51(b)L
153(h)l.

(4) (ab) lb b 01 10), (2)]
(5) a 1 a .[5,,(b)1
(6) (ab) : lb -s a. [b 01 1(6), (4)1
(7) (ab). b - a lb 01 Re), OT

_This should cause students no difficulty for, in a column proof with
restrictions in which (Subst) is used, the naturalsthing is to make the
sUbstitution in the restriction. One would write:

(n) as
(n Ii.b

=. I [a 0 0];
not:

(n) as /a = 1 [a * 0]
b = 1 [12 # 0] (n + 1) b/b = 1 [a # 0]

Up to now, substitutionTiriferences are the only ones ivhich lie outside
the scope of the general.rule we have been Cliscussing. For these the
rule holds only', if the variable.vThiCh is substituted forssdoes not occur
in the sentence which replaces 'p'. Other exceptionli will occur when
quantifiers are introduced in Chapter b.
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By our convention as to the meaning of restrictions, the restricted
conclusion 7) is an abbreviation of .). In a paragraph, this shorter
proof would be:

.For h * 0, at)) b (ab) 4./.17. Now, since (ab) lb
b lb) and, for h * 0, b lh 1 it follows that, for h 0,

iat.)) lb a I. AlsO, since a 1 a it follows that, tbr
.1) * 0, (uTh lb a. Consequently, for b t 0, iab) h a.

Notice that lines'( 2 (6) of the preceding proof( and the second and
third sentences of the paragraph) constitute a proof of the,theorem:

(.)' h * 0 --P iczh) lb a

Since the theorem Thh )1. kacth' is an easy consequence of 5,(b) and
51(b) it follows immediately alio,:

* ) 0 rt ibth a

is a theorem. From and 57th) it is easy i1.0 derive:

h * 0 (cz blb a

(Since, for b 0, (a I b)b a (by (**)), .and sincLZT, for b 0, a ÷. b
a lb, it follows that, for h 0, ta h)h a.1
We have already noted that fhe nonzero real numbers form a com-

mutative group with respect to multiplication. Establishing this fact
requires the proof of two theorems which we shalidiscuss in the next

f
section. Since this is the case, any theorem about addition, 0, opposit-
ing Lind subtraction which is a copsequence of 51(a) - 54(a) and 57(a)
.can be transformed into a theorem about multiplication, 1, reciprocat-
ing, and divi.sion merely by changing '+'s' to ''s, 'O's to 'I's, '7-'s tO
Ts, ' 's to ' and adding "noniero reStrictions" for all Variables. For,

example, sinter

a fc-b C --0 a b

is,such thelirem,..the sentence:
ft

a c. - b c , b X 0, b 0, c 01

or, eiguivalently:

(a 0 and b 96'0 and c 0) c b â bl

is certainly a theoreM. However, as you know from your previous's
of algebra, we can do better The sentence

a b C. fc- 10J

1.?
t.o. I j

Udy
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There sitould bc no need to explain this s'econà interpre ation ofthe proof to your students. They are Likely to be happy eno gh to
accept fhis way of presenting proofs as a welcome Way of a olding
exces6 writing. All they need remember ,is that any senten e in a
proof must be acCompanied by all restrictions which affect any of the
sentences from which it is inferred.

TC 149

In the paragraph-variant of the proOf just discussed, the recurrentphrase 'forTh 4 0' occurs more often than_may be judged strictly
necessary or .euphonious. The purpose here has been to ape the
column proof; but, in practice, the phrase need be repeated only Often
enough to maintain awareness that it is still in force. For comparison,
here is a paragraphing of the firit of the two proofs of (*):

Suppose that b 0, It follows that (0) b = (ab) /b.
Since (ab) /1) = a(b /b) and [since b 0] b /1) 1' it
follows that (ab)/b = a .1. Alio, sines, a 1 = a it follows
that (ab)./b = a and, so,'that (al) b =No,. Hence, if b 0then (ab) b = a.

The cancellation principle for multiplication as it is stated first
on page 149 illustrates the use okmultipie restrictions. It would be
consistent with our interpretiition of single restrictions to ,t hink of
this as an abbreviation for:

c 0 # 0 t. [a 0 S [a c = bc a = ,e]1]
In view of the importation and exportation rules On p-age llTh*this is
equivalent to the interpretation in terms of 'and' which is giveti inthe text.

ft

x It a

ft
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is a' theorem. Since your previous experience should be a reliable guide °
in judging whether a sentence is an "addition-subtraction theorem"
and, also, in judging what restrictions are required for the correspond-
ing "multiplication-division theorem", you will not often have occasion
to prove theoliern..s/of these kinds.

Exercises

Part A
1. The theorem to on

subtraction" theorem:

Part B

Part C

page 148 is analogous to an "addition-
,

(a h ) h a

Write a 7-lineproof of this theorem like the proof of (0) on page 148.
2. Compare the two proofs and note how, given either, you could

easily obtain the other.

1. Show that the cancellation principle:

ac be b le 01

is a cbnsequence of the theorem (*)' on page 149. [Hint: As you
know from your work in Chapter 2, 'a = h -- c = be' is a valid

.s&itenee. You can use an instance of thiS and two instances of
(*)' to obtail a very short proof.]

2. The theoreni proved in Exercis'e 1 is:

Q [ae`= . bc a - bJ

Two of the rules of logic you studied in Chapter 2 te'll yau that this
sentence has the same meaning as another sentence which con-
tains only one ' What rules? What other sentence?

Prove: Ia 0 1 fa 0--01

[Hint:.Use 51(h) and a theorem proved in ap earlier set of exercises.

4.03 Rules for ter
1{.

IC 150

In Chapter 3 we have already expressed confidence in a student' s
ability to judge whether or r1ot a senten'ce about real numbers is
theorem and,' if so, to determine what, postulates its proof is based
on If our confidence turns out to b'Z.misplaced, you may need to akik
some true-false questions, and discuss how to go about attempting to
prove some theorems. There ts, however, no need to ihsist on
mastery of these skills at this time. If practice is needed, oppor-
tunities for it will arise throughout the course.
Answers for Part A
1. (1)

(2)

(3)
(4)

(5)
(6)

(7)

(a +"b) - b = (a + b) + -b
(a + b) + -b = a + (b + -b)

=

(a + b) + -b = a + 0
a + = 'a

(a + b) + -b = a
(a + b) - b , a

[DPS]

.[APA]
[IPO]

[(3), (2)]
[PAO],

[(5), (4)]
[(6), (1)]

2. Given either proof changing from additive to multiplicative nota-
tion [or vice versa], and introducing [or deleting] "nonzero"
restrictions, yields the other, [Also', one must reyise the corn-,
ments, but these are not strictly part of the Proof.]
[These exercises show one advantage which this style of prod

over that exemplified by the first proof of (*) given on page 148 To
'change that proof into a proof of the theorem of Exercise 1 is a more
Complicated task.]
Answers for Part B

A

1, ( 1 ) ac = bc =acz ac ) /c = (be). /c [valid]
f2) (ac ) /c = a .[c #.0] [(*)]

[c # 0] [(*)]
(4) ac bc a = b .[c * 0] [(2), (3), (1))

e

[Two applications of the replacement rule for equations have been
combined into a single step, thus saving a line in writing the proof.]

2. By importation and expOriation [page 101] the given sentence has
the same content ai does:

(3) (bc). /e b

Answers

Up to now the word not' or abbreviaioris for it have not occurred
very oftgn in our theorems. Now that we have postulates '0 .1',
'a ' 0 a /a 1' and 'h; ;A 0 ,---Pa±b---a-Ib'; "in wkiiri 4P`W
rneans wijat 'is not the same as' does, we need some new rules of logic

(c # anti ac = bc) a b

for Part C
/a--= 0- {assumption).

.. aiD =' 6 .[theoreni)
= 0
= 1,

V = I 1,

0 =

0] [IPR]

83), (4)]
[(5), *On1 [a # 0]

[A slight variank of this proof is given as a tree in Part E on page
156. The purpoAe of proving this theorem is to lay the ground work
for a proOf of 14-30 0 [a 0 O]'. You can. point this out white dis-
Cussing the rule 'modsis tollens given on page, 152., ]

3 1 401.
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to tell us how -to deal with sentences in which 'not bor an abbreviation
for iti occurs. -

One sUch rule which we need at this point can be illustrated by using
the cancellation principle Of 'Part B, above. For example, knowing that
3 0, it follows from this theprem that

'1768 3 -= 1766 3 01768 .= 1766.

You know,, of course,' that 1768 is not 1766; hence-even .if you had
tbrgotten everything you know 'about multiplication --you can con-
clude at once .that 1768' 3 is not 1766 3.

What this boils down to is that because of what you mean by 'if.. .

Nthen and 'not', you recognize that th infereuce:

1768 3 1766 3 --; 17('= 1766 1768 'A 1766
1768 ' 3 A 766 3

is a valid one. The argument here is of the same kind as the one you
would use to decide that because John does not live in Illinois, he
doesn't live in Chic'ago:

If John lives in Chica'go
then John lives in Illinois. John doesn't live in Illinois.

John doesni live in Chicago.

Before stating the rule which these two inferences illustrate, we
need to- come to terms with a matter of grammar. As you know, there
are usually several ways to formulate a sentence in English which
denies what is asserted by a given sentence. For example, to deny that
John lives in Illinois we may say either:

Or.

John does not live in Illinois.

la -0

it is not the case that John lives in Illinois. it"'

For simplicity, we' shall introduce another way which, while not good
English, is perfectly satisfactory for the sentences of our language; to
form the denial of-a-given sentence, we shall merely wrjtfi 'not' in
front of it. [Sometimes, in place of 'not' we shall 'use a wiggle, '-'.]
Using this convention, the denial Of the sentence 'John lives in
Illinois,' is:

not [John lives in Illinois]. .

IC 151

4

The denial of a given sentencs is the sentence obtained from it byprefixing 'not' [ors Some authors use 'negation' instead of'denial', and '' and are not uncommon substitutes, for '.--'. -One
reason for preferring 'denial' to 'negation' is 'that derivatives of the

,Nvord 'negative' already suf rom overwork.
A denial sentence is a sentence which is thenialOf some [other]sentence.
Students are unlikely tb have difficulty in accepting the rule modus

tollensv The' order in which the premisses are written in a modus
tollens-inference is immaterial. Nevertheless, as in the case of otherkinds of -premiss inferences, it is convenient to adopt one order andstay with it. The order chosen in the text corresponds to arguments Ifthe form:

If p then q; but, not ,q.

7

far

Therefore, not p.

. '16

a
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and that of '1768 . 1766 is eitlef:

not 41768 1761 or: 1768 17661

We shall, however, contimie to use '.17 1766' aS an abbreviation. I
We .can now state the inference 'rule which has been illustrated

,abo've. We give itiits Latin name.

ModUs Tollens
Any inference of the form:

p not q
notp

is valid.

For practice, tell 'which of.the' following can be completed to give ex-
amples of' infrences.of this new kind. Tell why the others cannot be
made into such examples.

A 4- a. B a. B A a 1 3 - A

b) A B - A B
- A - B

1c B A 0 A B

(d)A
. A ±

e
A

As you have probably decided, just two of (a) (e) can be completed
to give examples of modus tollens. If you completed (b) by introducing
'A B' as a second premiss, you are guilty of a fallacy called denying
the antecedent. This is something like the fallaCy of miStaking a con-
ditional sentence for its converse be:cause, from the converse of the
premiss given in. (b) together with 'A B' you may infer the giver,.
ctihclusion. 1By -what ruIe?I You probably realized that (d) cannot be
completed to give an example of modus tollens, but (e) may have
fooled you. If, for-example, you believe that:

Air3-..0/4+aB+a A+a=B+ a
= 13

is a valid_inference, you are certainly right; if you think, it is an ex-
ample of modus tollens, )ou are wrong. If you are to use the sentence:

. I. ___; .. AB---*A+a0B+a

IC 152

Completions toy-illustrations on page 152;
(a) A F [or:. not A + B, or: *A + = 13)

(b) [ ipossible to complete, since conclusion of inference must
e the denial of the antecedent of the first premiss.

c) premiss; .A B; conclusion; B A 15

(d) [Impossible to,cornplete,,1
(e) [Impossible to complete. ]

As eXplaintd in the text, (e) cannot be complete,d to a modus tollens-
inierence because its canclusion is not the denial of the antecedent ofthe first premiss, In faot, the conclusion of (e) .is not the denial [or
an abbreviation of ;he denial] 'of any sentence.- That the completion
for (e) which is giyen on page 152, is, by Our rules, a valid inference
is shown in F.xe-rci.se 1 of Part A on page 153.

We don't recommend that you try to maintain this rigid interpre-
tation of modus tollens very long. Students will 'quite naturally apply
rnodus tollens and one of the double denial rules sin-iultaneousl,y, and
after the exercises of Parts A D, -should be permitted to do'sb.

At+
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as the first premiss of:a modus tollens inrerencethen the sewnd pre-
miss must be the denial of the ConsequenteL-A + B + a'. But, the
denial of this sentenc

not A + B + ,

or, removindthe abbreviation '/':
-not mit A f.a. B

Even though, intuitively, this sentence says just what `A+a-B+ a
does, they Are certainly different sentencess. EvWently, in .order to
express what we mean by 'not', we need another hile:

TC 153

4Nn wyrs for Part A
1. sn6t A + -a" # 13 + [which is an Abreviation of 'noenot:: A-401

B + ]: not A # B .

not q not p 'not not p

IP

not not q

Using
completion
Part A.1

Exercises

Part A

Rules for Double oenials
Any inference of either of the forms:

%.not not p

,

-7

%

Pt

not nut p

is valid.

this rule and modus tollens it is not difficult to show that the
given above for is a valid inference. [See Exereise 1 of ,

1. CompPte the follqwing derivation toehow that the inferenee,:jUstd.
mentioned is valid.

. Af13---*A aB+ a
(Modus Tollens)

,

-B
2. Write out a pattern for derivations like the one you gave in answer.

to Exercise 1 which will show that any inference of the form:

not not p p

is valid.
. 3. Use modus toile= and the deduction rule to show that any infer-

.; ance of the ferrn-t, .

3.

$

#1*

not p

not q ==: no

. 6.1
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a

aaa,

g. Exercise 3 should suggest another form for the rule'you establisni;c1
in Exercise 2. State this other form.

Pvt.
.1. 1../sing'the rule for dyuble denials, the deduction rule, and a rule

for biconditional sentences, sho that any sentence of the form;

p 4.o'not not p

is a .valid sentence.
2. (a). Must inferences of the form:

7 p and not not q
nd q ,

be valid?
(b)' How about those of the form:

p and q
p. and not rt q

Para

3. In view of the restilt in, Exercise 1 and the replacement rule foi-
biconditional sentences, .what can you say about a sentence And
its "double denialr?

As you know, the sentence you obtain by interchanging the ante-
cedent and consecwent of a given conditional sentence is called' the
converse of the gi4i sentence. If you make the further step of replac-
ing the parts of thiSs new Sentence by their denials, you obtain another
conditional sentence which is called the contrapositive of the givegi
sentence:

lgivcn sentencel

I amverse of given sentence

not "hl. not p Iconttapositive of given s ntencel

For example, given the sentepce:

(a)

'the convel-se of (a) is:

A + B --0;a4 ,T A

and the cantrapositive of (a) is:

B,

TC 154

Answers for Par.t...A" [cont.]

4. Applying the deduction rule to an inferenc of the,,type described in
Exercise 2, justifies the rule:

Any inference of the form:
not q riot p ,

PI
'is valid.

[Using the notion of the contrapositive of a conditional sentence
(this is introduced in Part C); the rule of Exercise 3 says that
*ny conditional sentence implies 'its contrapositive. The rule of
Exercise 4 says that any conditional ientence is'implied by ite
contrapositive. Using the tWo, rules it is easy to show that any
sentence qi the form:

[p q] 4=v. [not q not p] 9

is valid. For short, any conditional sentence is logically equiva-
lent to its contrapositive. It follows by the replacement rule for
biconditional sentences that either can.be replaced by the other in
any context.

Note that 'contrapositive' is a grammatical term. For
example, the contrapositive of a sentence o? the form 'not 9
not p' %is the corresponding sentence of the form. 'not not p ==t
not not q'. Although the latter is logically equ'ivalent to 'p
it is by no means the same 'sentence as this. To reiterate,
'p ==t. q' is not the contraplitive of 'not q 4=c° no1 p'. ]

Answers for Part B

1. not not p

SP .
-

not not p p

not not g

p not not p a,

p 'e=t not ,not p
[Since all, premisses of a 'derivation of this form are discharged,
the conclusion pf any such derivation is a valid sent nce.]

2. (a) Yes, In de'tail, any inference of the farm:.
q not riot q. p and not not q

p arid q
is valid by virtue of the replacement rule for biconditional
sentences. Since, boy Exercise 1, the first premiss of any
such inference is a Tlid sentence,the conclusion is a
consequence of the'second premiss [taken by itself].

(b) Yeo. [Similar argument ]

3. Any sentence "may" be replaced in any context by its ciccuble,
denial, and vice versa. [In this "technical sense", 'may' means
that one does as described, the given sentence i'mplies the seri'-
tenet! which results. ]
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In this case both the gi win sentence ta and its jonverse are thtvrems,
but -- as is usually the vase with converses -.they say quite different
things. Recall that (a) is essentiall,: just another way of stating

..Post u late 2' al, while the convy-rse of (a) is just another way of stating
Postulate 21h1.1 On the other Iland, you know from ExerciAes 3 and 4
of Part A that any conditional sentence and its contrapositive are just
different ways pf making th;i same assertion. I Explain. I
1. Copy, each of, the given sentences: on the same line .with the sen-

ti:nce, write its converse: beneath each of the two sentences write
ts lont rapositi ve
.'i(I/n/)/ a B A a B

,S1dati(m .u* B A 0. :4 a

*A i B A

(a) A B C B
(b) U h hc tr.

te) A A C I) 0 A C B
id) B A B A 0.
tel uh 0 1u .0 or (5)

2, Any conditional sentence is the same as the converse of its converse.
(a) What can you say about the cohverse of the contrapositive of a

given sentence and the contrapositive opthe converse of the
i ven sentence?

h) What can you .,.7ay about a given conditional sentence and the
contrapos tive of its contrapositive? Went:. See Exercise 3 of
'Part A.1

A +. a B B A

ta,0-13

*
Rules of ContrapositiOn

Inferences of eilher ,of the tOrms:

hot q not p

are valid.

n4) f not p
p

part D
1. :Use rnodus tel lens and the double denial rulestto establish:

Symmetric Rules of Contrapoiitign.
Infttrences of either of the forms:.

p Ts. not q not p -
- not p non/ 0 le.

r valid,

TC 155 (1)

Answers lot Part. C .

[Sentence (a), which is used as sn example here is the if-part of
Theorem 2,-1. .Previous work with this theorem makes it easy to sye
that the converse of (a) and the eontrapositive Of (a) "say different

If,more examplcs are needed either part of any hicondition'al
theorem proved up to.naw will do as well as (a), yor example, the
if-part of Thetirern 2-2 is a valid sentence and its onl'y if-part, togethel-
with Postulate 2.(a). implies Postulate 2.(b). So, the eontrapositive of
the if-parr i valick, while the convertte of the if-part is not. (This
last because Postulate 2.(a) does not by itself imply Postul(tte 2(b).)

eXp!anation asked for, just bcfore the sptement of Ekere,ise
1, should refer to the results of Exercises 3 and 4 of Part A.

A C *F1 -(7 A BA..#13A-C#B-C
a b at: bc
ae # it b

A. B A -KT, 13 CA-C*1-3-C=AB
ac = be a b

# b ac .#.be
A-C,---11-.ID B-DA-11,= C-D `

A ( *B-1) A-BC-1)*--- A-13C-D,A-CB-D
AB-A7 d

B -'A B ;t A,
B A = B A
f.3-#A

(e) ab 0 (a 0. or b 0)
not (a 0 or h -- 0) ab 4 0. ab 4 (I not a = 0 or b = 0)

[The given sentence of part (a) is a.c?nsequence of Postulate 1(a)
and is iinplied by this postulate; in contrast, its convorse is an .

equality princ iple and, so, is a valid sentence. The given sentence
of part (b) is a.valid.Sentencei, its converse is a fa se sentence.
The given sentence:of part (e) is a theorem; its cpIl !rse is a eon-.
Vquenc:e of it and, also, irriplies it isee below for additional die-.
cussion of this. Both the given`sentence of part (d) and its co'n-
verse .arc theorems; neither is a valid sentence, and neither
implies the other.. A similr rerriark applies to Part (e). The
The sentvice 'not (a = 0 or b = 0)' neither a nor b is 0"
may set students tlainking about rules for the connective 'or'
These are discussed in section 4.05. )1

r
2. (a) As ;is illustrated by the answer for any part of Exercise 1,

the converse of the contraposiVve of a.given. conditional sen-
tence is the same as the coAtrapositive of the converse of this
sentence.. iSo, the coriyerse of-the contrapositive of a condi-
tional sentence, is ecoivalent to the contra:positive of the -

.converse of thiS' sentence.

(b ) The contrapositive .of the contrapoSitive Of a giyen conditional
sentence is equivalent [but different from] the given sentencU.
[By Fxercise 3 of Part B (and the aeduction rule) any sen-
tence of the form:

[not not p == not not q .4==>. .[p q ]

is a valid sentence. (For 'equivalent', ace the ciPscussion
which follows. )],

I



);
of.logicil equivalence has been introduced in the

C s of Exercise 4 .cif Part A. ilriefly, sentences are logically
e9 valent if their hiconditional is valid sentence. More generally, e

,,,,ti'entences are ekluiv.ils-nt [with respect to a deductive .theory 1 if their
bieonditional is .1 theorem. Thus, tor exiimple, since the given sen-
tence.. of Ex. 1(c) and its, converse. are both theorerns the sentences
'A 13 C D' and 'A D' are equivalent, but a re' not
logically equivalent. P:quivaleniv and logical equivalence are the
basis for most ap.plications of the replacement nile for. iconditional'
sentences.

'The 'coriverse, of the given sentence. of Ex. 1(ci Ian he inferred
from this sentence by using the substitution rule. [This amounts4,,to
interchanging 'B' and C' by simultaneous substitution.of 'C' for 13'
and of for C' To ia r ry this out by ordinary one-at-a-time sub-
stitutions, begin by' substituting 'F:', say, for 13'. Then, substitute

B' far ..-end, tor I Similarly, the'given sentence'..--"
can he inferred from its converse. Since each of the two sentencIe's
can tas inferred from the other it fckllows that, intuitively, both sew.-
tences ',' say the same-thing yr, in more tec hniciel terms, .both sen-
tences have the 'same content, Note, however, that since the derivati.on
of one sentence from th'e other involves the use of the substitution rule
we cannot go on to show:: by applying the' deduction'rule, that the con-
ditional sentence which-has one of these as its antecedent anclhe otivi
as its consequent is n valid sentence. In particular, althougMthe two
sentences have the sarcle,content they are not logically equivalent [not
are they even merely equivalent). As a. simpler example, iach of the
sentences 2.' and 'b 2' can be inferred from the other, but
"a 2. =:' b 2." ip neither a valid sentence nor a theorem'.

It is important to realize that haying the sante content is notea
sufficient hasis.for applying the replacement rule for bicônaitional
senteiices.

TC 155 (2)

*

The rules of, contraposition stated between Part C and Part D
summarize the discoveries of Part A. The discussion of EvercisC
of Part C nia'y have g'iven students more feeling.for the equ'' alence

,of conditional senterit-e and its contrapositive..
*

Answers for Part I)
1.

p not q

not p

not p q
*

not q

not not q t riot p

q uot p
a

not q p

a
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Part E

^ Om,

TC 156

Z. not q2. From Exercise 4 of Par; d you know tharany inference octhe form:

not p not q .
not!) -440 not!'

,t) q p
te,

vakid. Also, by cond tionalizing. you }snow thut any inference of
the form:

_

nat
not p not Ei

is val d, Ilouk these together, imd supply an additional step, to justif:

Rule of Contradiction
Any inference of the form:

One consequence of the rule of contradicttlon is that if a deductive
theorY is inconsistent then evOry sentence is a theorem.' The rule
is needed for another purpose in section 4.05. J

Answers for. Pa rt,
1. [Continuation of figure in text.]

0 0 I 0 1

. a # 0 /a # 0 i-- .q
. _.
not q . [An asterisk should now appear overIthe 'a 0 0 in the text. The

p csnclusion depends only on theorems-and, .so is a theoremf By
our conventions it may be abbreviated to la * 0 [a Or. .. t

is valid. 2: ah -A 0 [a 0, b # 0] [or: b * '0 [a # 0 = at # Ob. o.r:
(b * 0 and a # 0) ab # 0 (see the discussion.in Part F)1

* .1"ti.
Sa.r.nple Quiz

1. Simplify:
.p 1- 1

+: (p 1)1(p - 2)
0

L. Solve this equation: 1 + 4/t t 5t
ig.1. W ich of the following is an example of modus tollens",

. (aT A-ar13-aA rfr 'AVOB J,b) not A * B
v

I. In Part C on page 150,you were asked to prove:

/a 0 4:0 1 [a Qj(

n tree-form. your proof might beg n like' this:

a a --,6 0 4. a /a 1. 0
%. . _, -.

0 . a /a -- 1 1.
_ .

(.1 0 i

1

To complete Part C you could use the deduction rule to discharge
the assumption 'a and then abbreviate the conchision, -

'a '7' flq 0 0 1 to,ohtain (*). Instead of continui,ng
in this way, introduce another postulate and apply modus toliens.
Complete the arg'ument to obtain a proof of:

.

/a - Q [a :, 01
. 1

1

..,...2. The theorem proved in txercise 1 is one of .th.e two theorems
which We needed to prove in order to show that the nr&oero real
Nurnbers form a. conimutati ve group w4,th respect to multipligiatitb.
State the other of these theorems. (

. ..

A-a.#13-a not A = B

(c).A--a**13,--a'AO13 A = B (d ) not not .A B

4. Which of the infer'ences given in 3 is an example of the .rule
for double denials?

5. W ite (a) the converse of, and (b) the c.ontiapositie of the
se tence: _

'

Answ

..

1

0 B -

A .-,-; = B ==4 A = S .

for sample Quiz .

1.

3,

4.

5.

1
IP 2] 2. 1, -4/5

13.- 2 [1::'

.
Lal [(c) is riot; .see the, discussion on pa.ges l52-15A
jai. -

ii4(a) A B A -.a = B - (b), A B A -

`.\
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Since multiphiation of reit] numbers is as,sociative, multiplication
of iiontero real numbers is 'certainly associativethat is, PostulWie
5,, b) certainly implies:

(oh )t. aihei\la 0, h 0, e X
Similar remarks apply to 5,(b) and 'i(b); and 5(10 is already illy
stricted. So, to show that 'the nonzero real numbers form a com-
mutative group with respect to'multiplication all that remains is to
establish analtigue04.5rd) (f). We need to show that a product of
nonAero real numbers is a nonzero real number, that 1 is a nonzero
real number, and that the reciprocal of a ntmzero real number is a non-
zero real number. In yach ,case the "real number" part is covered by.
5,,«1). it?), or If ). So, what wiC need to establish is the "nonzero" part.
For reciprocils, this has been done in Exercise 1 of Part E. That 1' is
nonzero is a postulate. Consequently, all that remains is to prove!-'--

o (, a e9j

which is.short for:
(

t 9) 1, 0 and 0) oh

,By the rfules of exportation and impoaation [see page 101] sentence
c2).is equivalent to:

h 0 lu ,4 0 oh

which riay be abbreviated.to:

vs? ) a 0 0 lb 01

Answerssfor Part 1'
( 1 ) ab 01) a

Ob = 0

ab 0

0 ab 0

TC4157

[b 01

[h

[b 0

*

[theorem
[theorem]
[(2.), (1)1

[(3)]
[The conclusion', (4), may be abbreviated to 'ab 0 [b 0, a
It is not quite correct to speak of the restricted .sentence (4),as the

ceontrapositive of the restricted sentence (3). rxplicifly, *the contra-
positive of:

(3) b 0 lab ,= 0 a 01

is certainly nOt the sentence:
(4) b 0 [a 0 0 ab

Actually, (4) is inrred_ from (3) by a rule like that 'scussed on
TC 148(1). In thiercase the rule is:

If n inference of the form;

is valid then ,so is any iorresponding
inference of the form:

1
p q

p r
he u fir ation of this rule is, again, by using modus ponens and the
uction, .] To justigy inferring (4) from (3), replace 'q' byb = 0 0', 'r' 'by 'a 0 ,0 ab 0', and 0 0'. ]

0,

The contrapositive of (3) follows easily from an instance of the can-
cellation principle of Part B on page 150 and a theorem abou

Use plese hinU to wr& a proof 'of (

4.04: Order

The postulates 5 t,hrough 1.constitute an adequate basi's fciir de-
veloping the properties of the operations of addition, multiplication,
etc. of real nutrzbers. We still have to take account of the fact that.there

, is a natural and useful .way of ordering .the real numbers according to
Nihich,.for example, 2 < 5 and 3 > 9. l As you no doubt recall, is

'read as 'Is less than', and is read as 'is greater thari'.] We neecr to

ne111

f

3 CI°
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adopt some postulates which formulate the basic properties of these
relations, and others which tell how they-are related to addition and
multiplication. .

The basic prokrties of the greater than relation itself are that
(i) of any two real numbers, one is reater than the other,

iii ) no rear number is greater thad itself, and
iiii) if a first number is greater than a second, while the second is

greater 'than a,....third, then the first is greater than the third.
These .are easy to forMulate in our language:

5,4, 0 > h or b>ala bl
59, 0 1, a !Read as 'a is 7zot greater than a'. i

..ia > b a %d b > c) ..-a t,
Tim less thain re ltion has exactly the same properties; but, instead of
adopting three more postulates like 5s - 51,, it is more sensible to
adopt a definition:

511'. (1 < b.---, b > a
Using the replacement rule for biconditional sentences,'any theorem
about less than can be *-derived from 5,', and 4 cort,espodding theorem
about grNater than.

To firid postulates relating greater than to addition and multiplica-
tion, it is convenient to recall some of our work, with linear functions
in Chapter 1, in iparticulai the diagrams like Fig. -1-2 on page 16,
which we used to, give graphical descriptions of such functions.
Fig. 1 2 shows a certain translation of the number linethe transla-
tion which maps any number a on a -4- 3. Me can also think of this
figure as a picture of the singulary operation "adding 3". The figure
makes it clear that, for any real numbers a and b such that a > b,
a + 3 > b -i- 3. For,short, we can say that the pictured translation of
the number lineor the operation adding 3presgrues order. From
your experience, with translations it should be clear that any transla.
tion of the number Irne and, so, any singulary adding operation
preserves order: . -

5,2: (a) a > 6 ----. a -+- c >, h + c
We neeirrepagt (b) for Postulate 5,, which tells how multiplication is
fetitted to order. Do youithink that singulary multiplying operations.
--for example, Multiplying br2 preserve order?

..
It

Exercises ,

Part A .
!

l'. Make a sketch like 'Fig. 1-2'on page 16 to describe the linear
funclion with slope 2 and intercept TO that is, i(x, y): y 1`.- al.

. how your answer for Exercise 1 indicates that multiply-
ertf tiy 2 does [or does not] preserve order. .

I')
./ 1 sel

TC 158

Staidents are presumably acquainted witi4the greater-than and left
than relations and the solution of simple inequations [see Part C on
page 159). So, the present section should turn out to be largely reylew.

The worll 'or' in Postulate 58 an abbreviatiop for:
a b (a > b or b ar

suggests the need for a discussion of the logic\Ztr:or'. This with
some applications to ineqtality, undertaken in section .4.05.

Postulates 58, 59, and 510 may be paraphrased by saying that
greater than is connected, irreflexive, and transitive, respectively.
Any relation which has these properties leas than is another is
called an irreflexive order relation or a simple order relation. [A
c'onnected and transitive relation which, like g'reater than or equal to
is reflexive rather than irreflexive is called a reflexive order relation .or a total order relation. To round out this summary of terminology

.we note that set inclusion, 'C', is a relation which, besidies being
transitive and reflexive is antisymmetric:

(S C T and Tc S) S T
Such a relation which need not be conne.cted\ is called a partial
order relation. ]`

'Postulate's 51:,(a) and [see Part B on page 539] 512(b) are
"'monotony principles" which relate greater, than.with addition and
multiplication.

Some fairly representative theorems are presented for proof in
Part 'B. It is not of great importance that student's work out these
proofs for themselves, although that for Exercise 8 i's intended as
motivation for the dilemma rule of;section 4.05. Liberal hints
supplied and it Might be sufficient to sketch some of the proofs
with help from students in class, paying extra attention to
Exe rcise 8.

Of course, multiplying b'y l prekerves order, but multiplying by
0 or by, a negarive number does not.. .

Answers for Part A
,1. -5 -4. -3 2 -1

or /,

are

,

).5 4 3 72 0
2. Since none of the dashed a ows-c rosses

preserves order.4
..

2 .4 5

\
:,\ N.,\ N.!

vv. AL

2 3. 4 H 5
another, this rnapPing
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. ',3.3. Make a sketch like that of Exercise 1 to describe multiplyihg by 0.
Does multiplying 14y 0 ixreserve order'? . ... . _

,. 4-Make a third sketch th describe OppositiTsg.Whfit has this, to dp
with multiplyial!M. ..

.
. - 'IF°

_
.

\ ) e I.' 5. DtSes oppugning preserve o'rder? I If not. what would be a goodword-' ...
to- use in' placf of' 'preserves' to describe the effect ofeappesiting
on ,orderl

6. (a). What. kind of Multiplyiq operaions preser've order'?
(b)Ahat kind of multiplying-operations rom-se order'?

4.

1Part B
Tfie exercises of Part A Will have reminded you

finailifitilhulate for real numbers:
5,.,` (I)) a > h c>hek.t---0[

[Almost final postulate; much later in the course we shall.'need to
introduce one More important postulate.] A.s a review of what you
presumably, know alxwt inequation,., prove the following theerems.
You may as in the remai-nder of this coUrse use as premisses any
theorems which' you are sure fbllow- from Postulates 5 57.
1. > b + a > [Hint: By 5,,,( a), if a '+ c>b t c then

--c > . .

,e2. a 77- b -b.> -a [Hint: If you see why we suggested in the
hint for Exercise 1, you should have no trouble here.]

3. a < b -a' 71) Ilint:' Use Exercise 2 and 5.]
4. a > -b a < h fHiht: This is "almost an instance'of what

theorem'?)

of our°

5. 'a, > h ac k. < 01 [Hint: Suppose that c <0 and a > h.
Since c < 0 it follows by Exercise 3 that.,-c > -0 _ ... Since
.-c > 0 and u >

6. 0 > h s h 0 [Hint: By 5,..,(a) and Exercise 1 'a > b
4-* + r > h r' is a theorem.]

7. (a > b and (2 > (1)--,a+c>b+d.
8. a2 > Oj 0) (Hint: For a (I it follows by 54 that either a. > 0 or

U > a. In the first case it follows by 5,2( b).,that
9. (12 + t)2 > 2ab la # hi [Hint: I.Jr!e the theorem Of Exercise 8. Note

that a b if and only if a - b 0.1

Part C
1. For each of the, folloWing, write a sentence which has the same

roots and which, begins with 'a >' or 'a <'. [In other words, solve
for 'a'. ]
(a)'3d > 5a --3 (b) 6a + 9 < 7u - 8
(c) --(2a + 5< 3u (d) -2a + 5 < 3a

2. Solve he fopowing.
(a) 2a+ 5 a + 3 (b) 3(7 > 7(3 + 2-b)
(e) (3e - 5)(2c + 7) > (2c 5)(3c + 7)
(a) (3d + 5)(2d - 7) > (2d + 7).

%IL

.eTC 15941)

-5 --2 -1 0, ¶

4. 1

. -...

.0- 3 4 5
.

--i
,

25
-1

.."S 2-4
t

. ,
Multiplying by zero,does not pr.eserve order. [Because of con-
nectivity and irreflexivity, a mapping ex,%hich preserves order
must be one-to-one. Briefly, suppose 'that a * b. Then a > b
or b > g and, so, if f 'preserves order than f(a) >'f(b) or
f(b) > f(a). In either case; due to irreflexiv4ty, f(a) * f(b).
Hence if .a * b then f(a) * f(b).1 '111

4, fOppositing is, of course, multiplyint by -1; ' -a = a. -I' is a
th6.3tem..} ,

1

3 4

-5 -4 -3 -2 -1, 0 1' 2 3 4 5
5, No, Oppositiu everses order.
6. (a) Multiplyir1,a positive numbel preserves ,order,

(b) Multiplying by a negative number re

Answers for Part B
[Postulate 512,(b) formulates the answer for Exercise 6(al of

Part ,A. The answer for Exercise 6(b) then becomes a theorem. See
Exercise 5, below. To satisfy your,curiosity, the femalning postulate,
5 19 ' is:

Exch nonempty bounded.sUbset of It has a lea upper litound.
This postulate will not be needed during the first half of this course.
1. By 512(a), if a + c > b,+ c then (a + c) + -c > (b + c) + -c.

Ant, + c) + -c a 'and (b + c) +"-,c `13. Valice, if+c >b+c Owns >b.
2. By 5,2(aj, if a > b then a + -(a + b) > b + -(a + b). But,

a + + b) 713 'and b + -4a +.b) = -a, lience, if a > b
then, -b > -a, ,

rses order.

3. Exercise 2, if b > a then -a > ,-b. Btit, gy 51,, a < b if
and only if b > a. Hence, if a < b then -a > THence' by
an appLication of the replacement rule for biconditional sentences.]

4. By Exercise 2, if -a > -b then --b > --a. So, since --b = b
and --a = a it follows that if -a > -b then b > a, fience, by5, if -a' > -b then a < b.

3 9 ')
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Suppose-th,-4 c 0 and a b. Since' c 0 it follows by
"Seize rcise _3 that 7c -0 --- 0. Hence,, by. 5 (b) sincel a >

a -e b But, . c (zk c ) and b -c -(bc). So,by Exercise 4, ac be and, by 51.1. bc ac. Hence. for
0. if a b then bc ac.

e6. By `-i.,(it) mid Exercise 1, a b if and on1N.', if .--b b t.-b.
But, a -b a -,b andel) -b 0.. Hence, a b if anifonly if

b 0.
7. Suppose that a b and Since a a + - b.+c.

Since c d, b + c b So, [since a +-,c,. b f c and
b + c 1', d) it follows by 51 that a t b + 3. Hence, if
a ' b and d then dtc.b+ U.

8. For a 0 it follows by le that a > 0 .or 0 a. If. a > then
'by 5u.,(b), ';;. la+ - 0 0. If 0 ." a then [by 5111 N 0 and,
by Exercise "), a a 0. a 0. Since, for a * 0, a > 0 or
0 > a and since, in either czise, a a > 0 it follows that, for* 0, a a O. Since,' by definitign, a a a2 .N 0 [a * 01,
For a,* b, a b 4 0. So, by Exercise 8, for a *.h, (a - b)2 0.But, (a - b):' az' '4- b2 Lab and, by 5'.1.,(a), if a2 + Lab > 0
)n'r a2 + b ab. [Note that (a2 t-'b2 - tab) + Lab a2 F b2. IHence, for a * b, a2 + b2 Lab.

[You may wish' to remind sludents (withoutsproof) of some other
the'orems concerning greater than. One which follows at once by
modus tolleris from the instance '(a >.b and b > a '7' 'a'of 511, and 5u, ig 'not (a > b and b a This asserts tbat
greater thacn is asymmetric. Two important theorems whose .

proofs are tedious^(and requir,e the rules given in the next stion)are:
ab 0 ((a 0 and b > 0) or (a N 0 and b 0))
ab N ((a 0 and b < 0) or (a N 0 'and b 0))

'tStudents should be reminded of th'ese 'factoring transiormation
principles for inequations'. Two others which are worth.noting
are:

> 0 4:1=4> a 0 and: /a > 1 4'. 0 c a N. 1

'Students should be led to guess at the latter in the guise "/a. > 1 4=:'
(a > 0 and a N 1)' and be reminded of the convention according towhit:h 'a N b and b c' is abbreviated to 'a b

Answers for Part C .
1. (a) a N :t/2 (b) a.> 17 (c) a ".'-1 (d) a > 1

PSolve', here, means to give the solution-set,. I
{x: x -2} (b) {x: x 0) (c) {x: x > 0)
fx: x 0)

,[W,hat letter students may use in place of "x' in these answers is
, immaterial, Strictly, it should he an ind x, rather than a variable;
134t there is no nerd to go into this now.

394:



160 REAL NUMRERS

4.05 -Rules ler. 'or

, In order to solve Exercise 8 of-Part B, above, yoil,had to tkse a new
kind of argument whose N/alidity depends on tir meaning of the word..'Or' in Postulate. k. A sentece Whi.ch is of the form: ----A

'
P Or q

'is called an cater lation sentence. Ilere isa typ cal at'gument in which
an alternation sentence is wed is a premiss:

Ik5IThis afternoon,1 I go to the circus or I go to the drugstore.
If I go to the circr then I must carry some money ito pay for
admissionl. If I go to the drugstort then I must carry some
money Ito buy a magazine'. Therefore [in eithercasel, I must
C!arry some mbney.

Such an argument is called a simple ditemma and is of the form:

) or q p r r

[What sentences in th64'preceding argument should be put in place of
V. V, and `r.'?1 Here is one way of using a dilemma to. proye the
theorem:

a*, ' a2
of Exercise 8. We begin by assumi frathat u--( 0. It follows by I?ostulate
5, that

> 0 or 0 >

This sentence wil do as the first premiss of a dilemma. By Postulate

>0 fa > 0 a a > 0 al

and it follows from this that

(2) > 0 a a > 0 a.

In a similar way, using the theorem of Exercise 5 of Part B and
Postulate 5,,., it follows that

(3) 0>a*a.a>0 a:
39^

TC 160

The basic .rules for alternation sentence& which are given on page
161 .are nearly NE; transparenttas those ter conjunction-sentences 9n
page 100. Thtlse rules together with those for denial sentences justify.
'various Well-known equivalences involvinog 'and; and 'or'whi-ch
are establishq the exercises. of Part A on page 162 . They afso
furnishla basis for estaNistilng re-sults .about the greAter ,than sir:equal
to relation, some of which are investigated in tarts B 4nd c.

The "valties'-' 'p', nd 'r' for th'e argument en page 160
ar

p: go tb the circus. q: I go to the drugstore,
r: I must carry some money,'

In distinguishing the two meanings of 'or' it is customary to speak
of the exclusive meaning. vs the inclusive meaning. To some students,
however, ',inclusive' seems to suggest more than is intended possibly
that the alternativee must "overlap'". For this reson we prefer the
more exact term 'non-exclusive'. The example has been chosen to
show that the alternatives may overlap,

One occasional source of confusion is the mistaken beli,ef that
Which of the two meanings 'or' has in a given sentence depends on
whether the alternatives stated in the sentence do or do not exclude
one another. This is putting the cart before the how, .The meaning
of 'Or' rmist be decided on independently of the sent7ces which it
connects.

It is, of coUrse, possible to say in our language what couldlbe Said
ore simply if w*used 'or' in the exclusive sense. The obvious way
ir by writing:

, (p or q) and not. (p and s.q)
A much simpler [but less obvious] means to the same end is to write:

P

393
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.Iskiw;(1)-, (.2 and (3) are the premisses ofa, dilemma whosespricluOon
is:

;(4) a a > a .

.

[What are 'p', 'y', and 'r' for this dilemma'?] Discharging the assump-
tion `a -7,- 0', we obtain: -

0 a 0 a

as a consequence of 5,, 5,,(b), the.theorem of Exercise 5 and 5. The
desired theorem now follows from this, the definition 'a'' = a a', and
the theorem '0 a 0'.

The rule of the' simple dilernAgives us a wayfor using alternation
titences in proofs (an elimination rule for 'or'l. Our experience with

' and 'and' suggests that we need, also, an introduction rule. Like
many words, the word 'or' may be used in more than one way. Some-
times when we use 'or' we mean "one or the other, but not both", and
sometimes we mean "one or the other, possibly both". The first.is called
the exclusive meaning of 'or'. The second is called the non-exclusive
.meaning.of 'or' arid is the one which is always used-in mathematics.
With this second meaning of 'or', any switence for example:

I am going to the movies.

implies any alternation sentence' of which it is a partfor example:

I am going to the movies or I am going to eat popcorn.

This suggests the appropriate introductiodrule, and we can.now state
all our basic rules for alternation sentences together.

Rules for Alternation, Sentenc,es
Inferialces of any of the forms:

p q p r r
(a)

,k, P °
(c)porq p or q

are valid.

As an example of how tfiese rules may be used we shall show that
any inference of the form:

not (p or q)
not p 30

,/*
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iS valid. Hero's how:

p.
p or q.

p...- (p or q) t (p o q)no r
. (MT)

not p .

Kiercises

Part A
I. Using the second introduction rul,e for 'or' you can sho

above, that any inference of the form:

not (p or q)
not q

, just as

is valid. Do so.
2. Combine the tree-diagram in the text Iwith yours from Exercise 1

to show thal any inference of the form:

not (p or (i)
not p and not q

is valid,
3. Use the result offExercise 2 and the reSult of Part B on page 154

to show that any inference Of the fora .

not (not p or not q)
p and q

is valid.
4! In Exercise 2 you us'ed the introduction rules for 'or", the deduction

rule, modus tollens, and the introduction rule for 'and* to justify
one important kind of inference. In much the same way ypu can
show that any-ihference of th rm:

not /a or not q
not (id and q)

is valid. Use; this time, the elimination rules for 'and', the deduc-
tion rule, a rule of contraposition, and the elimination rule for 'or'

5. The rule of Exercise 3 land the deduction rule] shoWs that any
Kintence of the form:

1

not (not p or not (pnr!d q)

'Answers fo$. Part A
1, 2 P'

p or q

TC 162

p (p or q) net (p or q

not p.

*
q ,

p or q

q (p or q) no (p o q)
enot q

not p and not q
. .

3. Begin by r'eplacing 'p' and 'q' throughout the resuit of Exercise
Z by 'not p' and 'nof q'. [This is allowable, since the,result in
question concerns any sentences p and q and,, for any sentences
p and q, not..p and not q are also sentences: )]

4. .

*.
q 4:=:not no

[The '*'s
Sentences

,not (not p

p 4=Vnt not p . not not p nd not not q

5

p and q

13 and not not
replacement rule
for biconditional
sentences

indicate that the premiSset in question are valid

p and q p and q

(p and q) p (p and q) q

not p or no not *p not (p and q) not q not (P and q)
a, not (p and q)

TC 163 (1)

5. I:3y Exercise 4 [and the deduction rale] any sentence of the orm:
(not p or not q) not (p and q)

is valid. Combinini this result with that stated in
we tee that any sentence of the #,rm:-

(*)
is.valid.

not (p and q) 4=>`(not' p or

4

not q)

his exercise
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ig alid. by a syntmetric rule of contraposition, anSt sentence
of theform:

e

e not ip ant tp (not p or not q

Is talid,, Obtain'a hacer reSult.by coMbining this with the result
a'of Kxercise 4.

1I

6. Sho that Aentences.of the following forms are.wilid:
not (12 or 0.4* (not-p and not q) "4).

(p and q) '11. not ,(lot p or not q)
ip or q) 4"". not (not p and-not q)

Part B
Recall Postulates 5, 5,:

.5,4. a t h b yh >
Sr >,

> b and b-> 0 a >
,

I. Use 5, and 54 tb prove: not la > b and h > n)
2. Prove: a > h or h
3. The instance of 5, whkh you used iri Ekereise 1 can be trans-

formed by,exportation [page 1011 into:

. lb > --tra a 1

Using this and.,5,4, prove: a > h > a.
, 4. Show that Postulate 5,, implies: a b h > a.

5. Use the definition:

PariC

4)4* (a > b 4r a -

to prove:

h > a

Rules fbr Denying an Alternative
aliferenits of either of the forms;

p or q not p p or q not q
q P

are valid.
kis

TC 163 (2)

6. For (a), replace 'p' and 'q' throughout (*) by 'not p' and
'not q' and proceed as-in Exercise 3. .The result is the converse

:of (a), .but it is known that any kicondition0 sentence is equiva-
lent to its converse. .

For '(b)' and (c): note 'that by the replacement rule, for bicon-
ditional sentences any sentences of the forni ,q' 'implies the
coi'responding.sentence of the form <=3>

p 4:77:1.

7:=4.

So (*) implies:
not not (p and q) 4==" not (not p or not q)

, and (a) implies:

not not (p Or not (not p and not-q
From these, (b) rid (c) are obtained as in Exercise 3.

Answers for Part 13
1, By -51,, if a > b and b a then a > a. Since, by 59, a a

it follows that not both a > b and b > a.
2, By Exercise 1, not both a > b and b > a, So, by Exercise 5 of

Part A, Pithe r a b or b a.

3. (1) e
(2) a >
(3) b').a.a'Na
(4) a A a
(5) b A a
(6) a >bb,.7( a

4. ,(1), a = b
(0 . a j. a
(3) b /74 a

(4X as..-,b.bAa

b [b > a a > [5101*
Iassurnptionl*
[(a), (1)]

[591

[(3). (4)1'
(5), *V)]
[assumption
[se]
[(I), (2.)]

[(3), *(I))

5. By Exercises 3 anc1,44, if either a > b or a = b then
So, by definition, if. a ?. b then b A a.
[The first sentence conceals the use of the dilemma and the
deduction rule:

b A a.

Or q p r q

(p or q) r
The kind of 2-premiss inference justified by this scheme is often
used as is illustrated in the preceding answer.]

3

.%
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1. Sho,wthat any inference of the first of these two' kinds-is valid.
Use a dilemma. 13y the rule of contradiction (Part D on

page 156); not)) implies p q . Also, q q is a valid sentence}
4. Show that Postulate 5, implies:1

Part D

1-64 (1)

tr.

3. Prove:

4. Prove;

I.

b and a b) h > a

not (a > h ay a )) b >

a b h

[Hint: Recall Exercise 5 of Part B.]
5. Prove:

# .

h and b a) a b.

Law of Noncontradiction ,

Any sentvce of the form:

not tp a nd not p)

Answers for Part C
.t-

*
'not- p

p q
**

[Conversely, the rule for denying an alternative (and the introduc-
tion rulic for 'or') implies the rule of contradiction:

.

p or ci not p

This fact, together with the i ap eal of,the rule ?or denying
an alternative, may*help 1 aining tance.orithe to some
less appealing rule of contrladiction. rule of contradiction
can, of course, be justified very easily by using conditionalizing
and a symmetric rule of contraposition:

,

. Incidentally, in ,case conclitionalizing -7 without discharging a.is valid. . , , premi.es still disturbs students:it may help to point pia that
This.law is sometimes taken a one of the basic rules of logic. We it i§ easy enough to introduce a premiss which,can be dischargeCi:

can *rive' it bY using 'the rule of contradiction and a.'symmetric - *
. P 9rule of contraposition."Here is the first step for;doing so:

not .q p

not p not p q

1:

p and not p p and not p
p . tot p

pot q '
not p) not q

q not (p and not p)

So far we have shown that any sentence of the form:

q -- not tp and not p)

is valid..To finih the job all we need do is choose for q any sentence
which is itself a valid sentence. Por example: '

p -- p 13] '"."' not (p and n'ot
not (p and not p)

[Since both premisses of this modus ponens-inference are valid sea-
. -tenixas, so is the conclusion.)

p and q

p q

SO, if one accepts the deduction rule an&the rules for 'and' then
he _rnuat, accept coadifionailzing. I
Suppose that a b and a-*. b. Since a 4 b it follows by 58 that
either a > bior b 73. 'a.' So , since a A b it follows that '0 > a.
Hence, if a b and a * b then b > a,

3. Suppose that it is not the case that either a > b or a -.6'. b. By
(a) of Exercise 6, Part, A, it follows that bOth a b and * b.
So, by Exercise Z, b Hence if neither 'a > b nor a b
then b .> a.

4.. By definition and the resull. 'Exercise 3 it follows that if a A b
ther b > a. Hence, if b A 4 then a b. The Converse of this
was proved in Exercise 5 of Part B. 'fence, a .b if and only If

b /lc a,

4 0')
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4.05 Wes for 'or' 165
.

Use the law of nonmritradiction and your discoveries in Part A to
establish.the

.

P
Law of the,Exoluded MickJe
.Any sentence of the form:;.',

not p or p'

is valid.

TC 164 (2)

5. Suppose that a > b anal. a. It follows by Exkrcise 4 for by.
Exercise S of Part B) that b A a and a A b. In other no-rds
Parof Eieercise 6, Part Aj, it is not the case that either b > aor a )1 h, So, by '58; it is not elle cast- 'ehat a b that is.
a b. ',Hence, if a > b and b a then a = b.
[Its =marked-in the commentary for section 4.04, this theorem
can be paraphrased hy saying that the relation greater than orequal to is antisynirnetric.]

TC 165 (1)

Answer for Part D
By (c) of Exercise 6, Part A,

Since, for any real-number a, it is not the case that bgth a < 0
and a > 0, and since a > 0 if and only ifa < 0, it is not the case that
both a < 0 and."7-a < 0. Hence, either.a < 0 or a ft 0. In wordsjor
any real number, eitI4 it or its opposite is nonnegative.

,What has just been shown is that, for any a,

there exists a number x such that x <,0 .and (x =' a or x aJ.
There could ge two such numbers only if a < 0, =a < 0, and 'a a.

)1)To show that this is impossible; suppose that a < 0 and a < . Since .

a < 0, 0 < a'. So, it follows that a < 0 and 0 < a. From this follows
that a -?-. 0 and 0 .--- a and, so, that a = 0. Since if a = 0 then a = a

) it follows that if a < 0 and a < 0 then a ---, a. Hence, there cannot
be two nonnegative numbers each of which is either a or a.

For any real number a, the unique nonnegative real number which
is either a or a i e absolute value' of afor short; lal. Using ' --_,---' in, place of '<' we h

) 0 and (Ia! --- a or la! 'a)

and (because of tiniquencr :

(b 0 and (b = a or b = a)) la) = b.

Note that if a 0 then (ix 0 and (a = a or.a = a)). So, by,(**),

a 0

On the o her hand, if a 0 then a 0 and, by an argument like that
above, .

a O. --P lal

Cnot p or\p) <=:* r......iot (ndt not p or not p).
'S4nce, by the law of 'noncontradiction, not (not not p or not p) it
f011ows that not p or p.

t
Absolute valuing enters briefly in the final exercise of Part A on

page -179. Consequently, it seems appropriate to remind students now
of this operation.° You may prefer to do just this, ignoring the discuer.-.
sion which precedes Part E.

The purpose of the discuSsion is to indicate that one might go about
introducingatabsolute valuing postulationally by adopting e introduction
principle (*)as a postulat . If one does this then (**) s an easilyi
proved theorem and, Ng basis of (*) and (**) it is ra her easy to
develop the theory of absolute valuing. For example, as sliown in the .

text the alternative definition: ,
{a 0 )p.1 -= a] and [a < 0 j al

follows easily by using (.*). The theorems:
la) = I-al and: 1a12l = lalIbl

can be provekl as.follows:-
' By (*), I -a I >_ 0 and 1 ) -a = -a or -a -.-a).
So, since --a = a, it follows by (**) [with ' I -al'.
for 'b'1 that la! = I -al,

.

Since? by (*), I al > 0 and ibl 0 it follows that
la! lb) 0. Since, also, la] -;-. a or Lai = -a)".

.and (Ib) .= b o'r 'II)) = -b) it follows that la) ','Ib Iis ab, a. -b, -ab, or. -a -b and so, in any case2
is a h or'. -0.03). Hence, I:iy (**) [with ' [al Ibl
for 'b'], ' jab! = la) lb).

It is also qasy to prove:
-b < a < lal b and: lad < -b < a b

For the first, we note that, by (*), !al a or ki -a, Assuming*that -b a and 'a b it follows, in the first"case, that,,. since a. 5 b,
al b and, in the second, since -b k a, that -b. I a . So, ineither case,' la) < b. Hence, if -b < a and a < b then la) <

For the second theorem we begin by noting that, since la) 0,
-Ial la). So, since a = jal or a = Hal a 5 la).
Suppose now that la) b. Since .a it follows that a b; andsince --dal g a it follows [since -b Hall that -b a. Hence,if la .b then -b a 5 b.

,
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Part E

%.

I. Evaluate each of the follow!ng.
la) 12 31 ,(b) 121 13 (c) 1-41 (d) 1-3 21 (e) 1431 121.

2. Absolute s7aluing is a. mapping of into .9.. Draw 'a picture like
gig. 1-2 on Page 16 which descrihewthis mapping.

3. Prove:
(a) [flint: Use an instance of
ib) 4ziri ja;

4.06 Fields

rou learned,in Section 3.05 that a set on which there is an associa-
,

tive and commutative binary operlition and with respect to this and
an identity element a singulary inversing operation is called CZ C0171-
mutative group. For example, the parts 4 4, of P441.ate 4 tell us
that ./ together ,with the operatioris- of composition and inversing of
translations, and the identity mapping 0, is a commutative group. Sim-
ilarly, the parts 50(a) (c) and 51(a) 5,(a) of Postulate 5 tell us
tilat 4) is a commutative group with respect to addition [and oppositing
and the identity element 0.J.

You have also.seen that the sety which consists of the nonzero
members of /2 is a commutativv group with respect to multiplication
land reciprocating and the. identity element 1]. In order to show this
it was necessarSr to show that

(0) ://' is closed with respect to multiplication and reciprocating;.
1 c

(1) (a.b)e = for a, b, and e in .)90;
(2) a 1 = a, for a
(3). a la - 1, for a , 414); and

(4) ab = ba, for a and b in
The first part of (0) was proved iu Section 4.03, the 'last part,follows
from 5n(e) and 55, and each of (1) (4) follows:jat once from the corre-
sponding onk of 51(b)

What we have seen so far is that :./P is a commutative grioup with
respect to addition and that the members of ,wig different from the
identity element for addition form a commutative group with respect
to multiplication. Besides this we know among other thingsthat
multiplication is a binary operation on .()? I not 'just on ,Wal-and that
multiplication is-distributive with respect to addition.

Saying just this muchAtbout the 'real numbers tells us nearly all
that Postulate 5 does. [We can ignore the definitions 57(a) and 57(b).]
'That, 0 0 1 follows from our statement that 1 is the identity element
in the "multiplicative group" of nonzero elements of .'"?. All there
left to say is that', for any real number a,

(0. a = 0 and 0 a = 0.

Finally, one can prove:

I a + 101
as follows:

TC 165()

Since, as previously/shown, s a jaj and
- 131 < ibkit follows that -( al + ibi)
a + b + 161. Hence, by the preceding
thecrrern, la + bl ,5 I a + Ibi.

TC 166

Answerli for Part E aif

me

3. [Proofs have been given on TC

s

,

165.
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For, if we are told this then we can, for example, retrieve all of the
commutative principle 51(b) from its spmial case, (4), above. !If neith
a nor b is 0 then (lb_ _ha by 4 ); if either a or b is 0 then ab 0
by ( The same applies to 5,(b) anti 5(b).

Now, it is useful to note that the second part of follows from the
group property of .//' with respect to addition and the distributive prin-
ciple 5.. To see this, recall that, in Exercise 1 of Part B, page 146, you
have proved that the sentence:

. a a a -4. a 0

is a theorem merely because ./? is a. group with respect to addition.
Using this thebrem, we see that, because

0 + 0) = 0 a .+ 0 a

.1 by 5ta) 'and 51, it follows that 0 a ---- 0. Moreover, using the re-
sult of Excrcis 3, Part .B, .page.146, it turns out to follow that
a 0 O.

The upshot of all this is that 5 through 5, can be restated as follows:

(F)

There are two binary operations, addition andmultiplica-,
Lion, on .41. :4' is a commutative group with respect to addition
land an appropriate identity element and inVersing opera-
tion!. The members. of,.4' different from the identity element,
for addition form a commutative group with respect to mul-
tiplication land an appropriate identity elemenf-and invers-
ing operation!. Finally, multiplication is both distributive
and left-distributive with respect to addition.

The value of stating 5,, 5 in this form is that it relates the algebra
of real numbers very directly to the important notion of a group.

Just as there are many, groups, so there are many mathematical
*systems which, like th6"real number system, satisfy (F). Any such
system is called a field. One way to find examples of fields is tolook for
subsets of which contain 0 and 1 and are closed with respect to addi-
tion, oppositing, multiplication, and reciprocating. [EXplain why'any
such subset,of i9 is a field with' respect to those operations:I-For ex-
ample, your answers for Exercises 9 and 10 of Part C on page 130 show
that the System of rational real numbers is a field. In the exerCises
which follow you will dis6over another subfidd of the 'real number
field.

A field for whia there is an ordering relation, like greater than,
with the properties formulated.in 5,4 51, is called an ordered field.
Evidently, any subfield of the field of real numbers is an ordered field,

4'15
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Numbers p1.4 an essential role in many.modern treatments of
geometry. This is the case, for example, in treatments based on
coordinates, and in treatments like that in High School Matheinatics,
Course 2, in which measures of segments or distances between points
are of basac iaiportance. Nginaphers are also-introduced as a matte'r of
course in the usuallareatments oV propoationality and similarity [but :
the theory of proportion developed by Fudoxus and,expounded by Euclid
shows that this use of numbers is avoidable]. It is customaryain such
treatments to take the theory of real numbers for granted as a subject
which, while essential to the course, isa4n some sens,e, outside it.

Since the real numbers play, as essential a role tr our organization
of geometry 'as,alo points andaranslations, it is appro riate to
include among our postulates one which summarizes e' properties of
these numbers. For this purpose, a postulate consist g of the parts
5c, 51,, will seave. Since, however, there is standard terrhinology
for radically abbreviating such a postulate it seems worth'while to,intro-
duce it. As it is riga very important to-do so this section bears a

tO indicate that it is not essential to the course.
A field is sometimes defined as a commutative group with respect

tc) addition whose nonzero alements constitute a commutative gioup
with respect to multiplication, and which is such that miritiplication
distributes over addition. To be correct,tkis must be interpreted
somewhat liberally. !See (F) on page 167.jr'To begin with, multiplica-
tion must, like addition, he definecf for all elements of the set and nor,
as one might guess, only for its nonzero elements. Als1o,6rnulhtiipslwicial;
tion must have the property expressed by (la) on page
be the case if 'distributes' in the firs; sentence, above, is assumed to
mean distribuths "from both sides". , The results of wealCor assump-
tions are pointed out in "'Another Remark Concerning the Definition of
a Field", by H. E. Vaughan, Mathematics Magazine, v. 39(3), 1966,
pp. 161, 162,

If S is a subset of E which contains 0 and 1 and is closed With
respect to addition, oppositing, multiplication, and 'teaiprocating then
it is a commutative group with respect to addiaion and, as oai page 166
with 'S' in place 9f 'R0', its nonzero members form a commutating
group with respectao addition. Also, distributivity both ways
obtains in S because it obtains in E. So, S is a field. [Furthermore,
S, is ordered by greater than because it is. So, S. is an ordered field.]

4'
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In the exercises you will frnd an example of a' field which.is not an
ordered field.

Using this terminology, the postulates we have i'aclopted in this
thapter can be collected into:

II Postulate. 5' 9 is an ordered

lThe to "leave room for" the one additional postulate which, as
mentioned in Part B on page 159,.we shall need later in this course.]

Exercises

Part. A
In the following exercises you will investigate a field which is quite

different from the field of real numbers. For one thing, this field has
only twe'members; for another, no ordering rekation(for this field has
the properties expressed by 5N 51,.

.

Consider the set consisting of just the real numbers 0 and 1. Since
we shall wish to mention it frequently in the exercises, let's call it

S 1}.

1. Is S closed With respect to Addition? [Give a reason for your
answer. 1

-2. Is S closed with respect to multipAcation?
3. We are,going toFlefine a new binary operation on S.. Since it Will be

a little like addition of real numbers we shall call it 'S-addition'
and we shall use '+,' as an operator for writing "S-sums". Here is
the definition:

0 0 7 0, 0 +, 1 --- 1, 1 +, 0 = 1, 1 +, 1

Notice that, for any a and b in S, a +, 6 is justa b unless a and h
are both 1. In any case, a +, b e S.
(a) Is there an identity element for S-addition?
(b) Does each member of S- have an inverse with rtspect to 5-

addition? [Can you define an 'S-oppositing" operAtion?)
Is S-addition commutative?
Is S-addition associative? [Hint: Notim that, for any b and c in
S, (0 +, 6) 4-1c = b c and 0 +, (b c) = b c. What hap-
pens if you substitute '0' for one of the other variables in "the
associative principle for S-addition7 What other-case of as-
sociativity do you need to check?]

4. (a) Is a commutative group with respect to S-addition?
(b) Is the set of nonzero members of S a commutative.group with.

respect to iordinaryl multiplication.;
(e) Is S a field with respect to S-addition and multiplication?'

(c)
(d)

Answers for Part A
1. No.

TC 168

; 1 + 1 = g'S, since 2 0 and 2 1.

4, Yes. /
3. (a) Yes.; 0. (b) Yes.; 0 = 0, 1 = 1.

(c) . Yes.; as may be seen by checking instances.
(d) Yes. ; the instances in which one addend is 0 are trivial, the

4. (a) Yes., by Exercise 3.
(b) Yes.; {1) contains 1 and is closed with respect to 'Multipli-

cation and reciproCating.
Yes.; distributivity of multiplication over S-addition is easily
checlwd and multiplication .is commutative in S.

instance in which each addend is 1 is eas,ily seen to be true.

(c-)

TC 169 (1)

5. [Answer for 'Why?': By the postulate 'a >8 b a + c >a b c'.]
(a) It has been showe that if .1 .",t3 0. then 1 +s 1 >s 0 +s 1 and,

Similarly, if Q > 1 then 0 +ti 1 > 1 + 1 and,
R.

Hencv, in any case', both 1 >s 0 and 0 >s 1.
so, 0 >s 1.
so, 1 '>s 0.

(b) Since S-greater than is assumed to be transitive 510] it
follows from part (a) that 1 >s 1 [and that, 0 >s 0]. This
contradicts the assumption that S-greater than is irreflexive
[59]. t.

4 f-7.1
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, 5. For S'to be an ordered field it miist be possible, to define an S-
'greater than relation, ' which would have properties like those
expressed in Postulates in particular, since 0, A 1,it will
have to be the case either that 0 > or 1 0. If it is the case that
1 0 theia it will also have to be the case that 1 t, 1 >, 0 4, 1:
1Why?1

(a) Coniplete the argument to show that in either case II > 0 or
0 11 it will have to be the case that both 1 >, 0 and0 1.

.Th) Use the result of part ia) to 'show that there is no S-greater
s than relation which satisfies postulates like 5 5.

EL Cons'ider the sentence:.

ct

Part B

h ) u (2 0 ^"I" a 0

(a) Show that ( s:ri cannot be d'erived from 5
(3) Show that (0.) and 5, iMply '1 + 1 0'.
(c) Show that (**). iS a consequence of 5,, - 5 and '1 + 1 0'.
(d) Show that. ( ) is a theorem for any ordered field.

Since 0 and 1 are rational numbers and since the set of au rational
numbers is closed with respect to addition, oppositing, multiplication,

stind reciprocating, the' l.of rational,numbers is a field 'with respect
to these operations.
I. Ex.plain.lbut do not try to prove] why 'any subfiold of the real

number system must contain all the rational numbers.
2. Consider. tho set S of all real numbers "of the form" ci + b V2, where

a and b are rational numbers. 0 E S because 0 0 + 0V-.2 and 0 is a
rational number. S is Closed with respect to addition because

+ b\ 2) + (e + A/2) = (a + c) + (b d)V2

and the set of rational numbersis closed with respect to addition.
(i) Show that 1 ES. 4.

(b) Show that S is closed with _respect to oppasiting.
4(e) Show that S is closed with respect to Multiplication.
(d) Show that the reciprocal of any nonzero member of S belongs

to S. To 'show that a real number b is the reciprocal of a
nonzero real number a it ik auffiCient to show that a b = 1.

El (For a 0 0, 'a /a 1. So, if gb = 1. then a - b = a /a and,
lzfy a cancellation principle, fgr a 0, b = Ia:)]

3. is the set S of Exercise 2 an ordered field?

4 'P,)

*6. .(a)

5TC 169 (2)

Since 1 +s 1 -,- 0 and 1 0, 'a +s a = 0 a = 0' is false.1
So, (**) can.not be derived from any sentences which are true
,fo'r all fields,

(b) (**) iinpies its instance '1 + 1 O.. 1 =,o', So, by
modus tollens, '1 + 1 * 0'.

.,(c) By Sr(b); 44(b), and St,. a + a = a(1 + 1). Hence, ifra + a = 0
then a(1 + 1) 0. But, by a theorem, if a(l + 1),= 0 then
a = 0 or 1 + 1 = 0. So, atpsuming that 1 + 1 0 it follows
that a = 0. ',Hence, if a +a = 0 then a = 0.

(d) ,By p4art (c) it is sufficient to show that 1 + 1 * 0 in an ordered,
field, For this, because of irreflexivity, '74 is sufficient to
show that 1 + 1 0. U we can-sliow that 1 > 0 it will
follow that 1 + 1 .> 1 + 0 = 1 and, by transitivity, that
1 + 1 > 0. Since 1 * 0, either 1, > 0 or 0 > 1, So, it
sufficient to show, that 0 1. SuPpose that 0 > 1. Since
1 s 0 and 0 > 1 it follows [by a known theorem] that

1 > 0.1 that is, that 1 > 0. Hence, if 0 "> 1.-then
botb 0 >''' 1 and 1 > 0. Since this is not the case, 0 A 1.
[Other finire fieldia can be defined by choosing a prime number
p and taking S = {0, 1, 'p"- 1}. For a, be S, define
a + b and a xs b to be the remainders on dividing a + b and
ab by p. For an example, and further discussion of-fields,
see .1-ligh Scflool Mathematics, Course 3, pages 292 and 293.
Also, see the commentary for page 277 of this reference for
a proof that the field discussed in Part B, below, clan be
ordered in aither of two way-11]

Answers for Part .B
1. A subset of tt which contains 1 and is closed with respect,to addi-

tion and oppositing must contain all iptegers. If itbis also closed
under mUltiplication and reciprocating contains111 quotients- of
integers by,Inonzero integers that is, 11 rational numbers.

2. (a) 1 = 1 + ONTE, and 1 and 0, are both ational. .-

(3) -(a + WI) = -a + -13%fl, and the set f rational numbers is
closed with iespect to oppositing.

(c) (a + loN/7)(c + th.a) :(ac + Zbd) + (ad + beW2-, and ae + Zbd
and ad + bc are rational if a, b, c, and cl, are.

(d) b\ri)(a bsri) Zb2. So, unlee-s a2 Zba-=--0,
(a + bisM(c + d%ri) = 1, where c = a./(a2 - 2b2) and
d = --b/(a2 2b2), and- c and cl are ;,ational if a and b
are. But, since a 16 irrational, a2 2b2 # 0 for rational
a and b unless b = 0 and '= 0.

3. Yes.; any subfield of the real field inherits the latter's `order.

.)
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4.07 Chapter Summary

Vocabulary- Summary s

rreciprocal
antecedent of 'a conditional
converse of a conditional
alternation sentence
9mimutative group
order relation,

Additional Postulates

50. lal'a h EA (b)

51. .(a) 1.a f b) * c -, a +
5.(a) a + 0
5. (a) a 4' a 0
54. (a) a + b b
53.

53. (a
(a) a + b

denial sentence
conequent of a conditional
contrapositive of a conditional
order-preserving mapping
field
ordered field

e) 0 c.1? (d) a b ,JP (e) 4 E

5v.

51v.

5ts.

(b) (a b) c a (b

(b) A a 1

(b)
.(b)

0 1

h) c af/. cib.c
(b) 'a a /b lb # 6,1

a. = 1 [a 0]
a b b a,

.a > b or 1) > a [a 6]

a a
(a >tl) and h > c) a > c

ab--Pb>a
ii.(a)p>1)--!a+c>h+c

(b) a > a c > b [e > 0]

. .>9 is an ordered field

Additional Basic Rules of Logic ,

Dealing with denial sentowes
Modus Tollens iSee page 152.1

Any inference of the form:

p 0 (I* not.
not p,

is valid.

Double Denial Rules [See page 153.1.:,.,
^ Inferences of either of the'forms:

mit not p
not not p.; p

are valid.

41.4. ,

Oka,

Dealing with alternation ,sente

Elimination Rule !Seepage 161.1
'Any inference of the form:

p or q p r
r

4.07 Chapter Summary 171 '

is valid.

Introduction Rules [See page 161.)
Infer'ences of either.of theforms:

p or q p or q

are valid.

-Other Rules,of Logic

So,me valid sentences

Sentences of any of.the forms:
4

,

p 4-0 not-not p

not (p and q).1--. (not p or not q)

not (p or q) '41° (not p and not q)

not (p and not p)

not p or p

are valid.

[See page 15'4.

[DeMorgan's Laws;
see page 163.]

[Law of Noncontradictibn;
see page 164.]

[Law of Excluded Middle;
see page 165.]

Rules of Contraposition [See page 1051

Inferences of either of the forms:

P
not q not p

not q not ppq
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Symmetric Rules of Contraposition [See page 155.1
Inferences oi either of the fprgis:

p notij not p .--- q
. _

not!) not q p

a e valid.

Rule of Contradietthn (See page 156.1
'Any inference of the form:

9 q not q

is valid.

0.

Rilles or Denying an Alternative !Seepage 163.J
Inferences of either of the forms:

are valid.

Chapter red

porq not p porq not q
P

4.

1. 11i$ve reciprocals [in simplest terms] for each orthe following:
tai -3/2 (b) 0.5 (c) \(25 (d) 1-41

2. Solve the following.
P2 9 1"

p = 7 (b) q(2q 43) 8(2q - 9)
(c) Sr * 9 - 5(3 - 2r) (a) !6s + 51 - 11
(e) -3(h > 2(2) - 3) (f) + 11 1

3. Here are several inference schemes:
p -p..m.q, - pr.pq nat

(III)
" not not p'

q not p p

(IV)r or q
4V)

p and q
(VI)

notio --0 not q
q q not not q 0 not not p

Match these schemes with the following.
r, (a) modus tollens (b) a rule for conjunctions

(c) modus ponens (d) a rule for double denial
(0 invalid inference (f) a rule for contraposition

4. Simplify.

(a) 1 2

ici)

.3 2

lop2 -
(c).

+ 2
3p - 1

5p (5p + 1)-
P 1

Answers for Chapter Tes
(b),1. (a) 2/3

2. (a) {1i}
(c) {1/3)
(e) x -3}

3. (a) II
(c)
(e) IV

4. (a)

(c)

2 [13 2]p +

1 [p 1/2]

*

TC 172

/5 (d) 1/42 (c)
(b) {8, 9/2y)
(d) {1,- -8/3)
(f) {x: -2 < x 0)

(b) V
(d) UI
(f) VI

(b) [13 3* 13 0 2]3N13 2)
(d) 4 [p 1]

16.

4
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Bacifground Topic 111

(In these ekercises on solving tmuations we shall. use 'x' and 'y'. as
variables:I

Part A

11

,
Solve these.systems of linear.equations:

Sample I. 2x 3y, 5
x + 4y 6

Reminder: A Solution of this system is a pair ta,b) of real'numbers
such that each equation is satisfied when 'x' has the
value a and 'y' has the value b. To solve the system is to
find all of its solutions. There are several ways to solve a
system like this one.

Solution If 2x - 3y - 5
and

:then 8x - 12y 20 3y - 5
and 3x + 12y - 18. 2x -f 8y 12
If this is the case, then

tllx - 38 11y :,.. 7
and, so, x - 38/11...-"'

y
7/

Hence, if the system has any solution then i 1t71ast1hle.

unique solution (38/11, 7/11). Substituting' in the givenr equations shows that this is a solution.
Answer. (38/11, 7/11)

Sample 2 3x
6x - ay - 12

Solution. If we proceed as in the solution for Sample 1, our first
step is to obtain equations equivalent to the given ones:

6x -r8y 12
6x - 8y = 12

Evidently tjie tWo given equations are equivalent to one
another; any solution of one is a solution of the other,
and vice versa. 4

Answer. Ilx,y): 3x - 4y = 6).

Sample 3. 3x - 4y = 6
fix-y13 .

8alution. 'An equivalent pair of equations is:

6,x - 8y = 12 ..

6x - Oy = 13

TC 173 i .
4The Background Topic to remind students of how to solve

simultaneous linear equatio in two variables, and to introduce, verybriefly, the second orde'r de.terniinant function. Solutionti of such sys-
tems of equations are needed in Chapter 6, and deterrniteants will be ofconsiderable use in later chapters. Our use here of 'x' and 'y'
rather than earlier letters as variables is to facilitate relating to
students' past experience. [More will be said, in the text, about
determinants before students need to use them.

a



174 REAL NUMBERS

. Obviously. these have ho amnion solution.

.4nswer. No Solution.
rEquations like those in Sample 1 are said to be independent; in
Sarnyle.4, deptlident; in Sample 3, inconsistent ]

P art- B

a.*

k.

2. 6x 9y = 15
4x 6y 10

4. 6x -, 9y 15
6x 9y ',I:0,

6. 6x-- lOy --- 5
9x

It is sometiMes important to be able to tell at a glance whe her or
.not a system:

b,y 1- (1
ax + h,,y =

is independent. In order to see how to do this, let's begin to solve this
system for 'x' and kui we did the system in Sample 1 of Part A. (You
fill in tho, three blanks.)

+
(12hix + kb;j,
toik - d.,h1.)x

1. If n11), 0' then the systerikof equations has at znoSt-hne
solution.
(a) What is this pCkssible solution?
(b) Cliea to Aee whether Wactually is a solution.

2. .If ciA = 0 then the system has no solution unless (1b.., c26
And a1ci 0. Explain.

3. Suppose that 6,62.= 0,121, c1b, c2b., and a1c,
:(a) 'Show that, for any, an4..Y'i .4

(1) allartilt by + =,q,(at* + + c,)
and .(2)- b,4J.4 + 60,+ c2) = bjarr + b,y + C1)

(b) Show that if either a, 0, or 61 0 then any solution of the
/ first of the.given equations is,also a solution of the second.'
e) Show that if either ; 0 0 or 62.0 0 then any solution of the

second of the given equations is a solution of the. firit.
4. Which of the following systems are. systems of independent

equations?
iaY 3x 4' 3,

4x 5y .2 2
(c). 6x y = x + 5y

5.x Y Y 54

ila) 152x, + 37y = 63
19x + 5y = 14

(d) 20x + 10y = 7
12x + 6y = 5

TC 174
I1

Answers for Part A
1. (2,0) 2. {(x,y): Zx - 3y = 5)
3. (7/2, - /Z) 4. No solution,
S. (40/11, -12/11) 6. No solution.
Answers for Part B
1. (a) For a1132 a2b1 0, the only possible solution iB

Cibz c2b1 alc.a a2C
a 1b2 - a2b1' a1b2, - a2b1 1

(b) That this is, indeed, a solution is shown as folio s for the
first equation:

e
a1b2

i.b2 c2b1
a2b1

a1c2 a2c
a + b1

a1132 a2b1

alc1132 ale21;1 + bla2c1
a1b2 a2b1

. a lc 1b2 - b1apc1 - a2 b1). el,
-aib2 - a2b1 aib2 - a2b1 c 1

The check for the s9condequation is equally simple.
2. If a1b2 - a2b1 = 0 ihen (x,y). is a sohition of the given equations

4 only if
Ox 2 1

O. y = a1c2 a2c
These equations have a solution only if c
a1c,2 a2c1 g O.

3, (a) (Multiply out and cancel.]

- c2b1 = 0 apd

(b) If a], 4 0 and alx + bly 12c1 = 0 then, by (1),
a2x + b2, + c, = 0. J.1 b1 ft 0' and a1x4 131y + c1 0
then, by (2). a2x + b2y + 0.

(e) [Similar to (b). j

(a), (b) and (c) are systems of independent equations.

Vt.

*was

g
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There is an easy way to remember the results you found in Part B.
The principle results are that the system:

aI r+b1. v=e
1

Ci2X b e

has a unique solution if and only if (IA;
. the solution is given by the formulas:

.4 0; and, in this case,

1
b c

2
b

1
a

1,,
e.2 - a r

2, 1X
Y a,b,

Note the similarity of the expressions in the numerators and denomi
nators of these two fractions. Expressions like these hccur frequent1T
in mathematics and it is customary to define:

1*

The operation indicated by the vertical bars, .whose value for the
pairs ab,) is the number a, 0, is called tjle determinant
opehawn. Equption 0,) is read as 'the deterMinant (ark)
is cz,b, aib,'.

The formulas-for the solution of the giyen pair of equations can be'
written:

I
b

I

a-,

l02
.
b

1

al el

(assuming that the value of the determinant indicated by the denomi-
nators is not 01. .

5. Make use of the determinant operation to solve tlir following sys-:
terns of equations.

(a) + 2y = 6

5x - 6y = 12

1 4(b) x +
3 3
3 3
4 2

TC 175

Answers for Part B [cont.

(a) x = 1

6

3

ry 12
3 Z

5 76

SOlution: (15/7; -3/14)

= 36 30 6 3
-14-1-8 - 10 -28

(b) x

3
4 2,

,

SoWtion; (2, 1)

3
3 4 -1 I

3J 1 -

-r 2; Y1 ,
=

^-
*

TC 176 (1)'

1

1

1
= 1

-

In this chapter we complete-our postulates in so far as affine geom-.
etry is conCerned, except that we do not as yet specify the dimension of
our space. Definitions of 'line', 'triangle', 'plane', etc. will be intro-
duced, beginning in Chapter 7, and the course will then become more
easily recognitsable as one dealing with geometry. (A hint as to how
'line', 'half-line', 'segment', and 'ray'. might be defined may be gar-

. nered from Exercise Z on page 181.)
As far as our foarnalism is concerned, the purpose, of this chapter

is to show that the set 7 of translations can be given,the structure of a
vector space. [The vrord 'vector' is introduced on page 191. 1,,,The
requisite additional postulates, 40(d) and 45 - .are adopted in sec-
tion 5.02 after having been made intuitively reasonable in the concept-

_developznent section 5.01. Section .5.03 is devoted to preying the basic
"Z-produet- theorem' {see Exe-rcise 3- -on page Z32-1,--1nd section 5.-04-to
'the notion of a vector space and of its subspaces [see the exercises
,,following the section]. Section 5.05 introduces on a purely intaitive
level another vector space the space of "measure'vectors" and
shows how it can be used in solving problems concerning directed tripe,
velocities, and fbrces similar to those disdussed on pages I 2 of the
introduction. This section on "applications" has no connection with
lateriOrto of the couise. [This is not to say that this section should be
sldpped,in order to "get on with the course". This Work has proved'to
be quite useful in reinforcing in the students' minds the %relationships
between the formal strizatire embodied in.the posiiilate system under
Construction and the intuitions from, which this structmA is being
fashioned, Section 5,06 is an optional fiction which deals more
formally' with the,notion of measure vectors.

4 2



Chapter Five
Extending Oui List of Postulates

5.01 Multiplying Translationi by Winters

Earlier we said fhat we wish to spady geometry by rmOting use of the
properties of translations. One of our big jobs will involve describing
lines, planes, and other common geometric objects in terms of transla-
tions. As in the past, we shall use our intuitions abbut what these
geo.metric objects are in order to see just what we need to add to our
formal system to describe these objectg.

Exploration Exercises

. Consider the translation and point P shown below.
14.

A

TC 171:(2)

As remarked above, section 5.01 is,. like sections 1.05 and 1.06,
a concept-development section. [For a discussion of the role ocsuch
sections and the importance of .student's distinguishing between them
and "course-development" sections, see TC 26, Z7. J
Specifically, the operation of "multiplying a translation by a real
number" is motivated by intuitive corisiderations which deal' with the
magnitude and sense of a translation. Neither of these latter notions.'
has any place as,yet in our formal theory. Since intuitive notions of
sense heap to motivate th-e introduction of the new operation it should
come as no- 'surprise when, in Chapter 7, the sense and direction of a
trahslation are "defined formally in terms of this operation. [For,a -

quick preview, the direction of a translation A is the set [a) defiried
in, Part A on pagl 192.J You and your stuiteilts should be quite clear
that such a procenire does not involve any circularity --- at least, none
of a "vicious" nature. The motivation for adopting any formal
definition of 'sense' must arise out Of intuitive notions concerning the
sense of a translation. Tliat thesck intuitive notions should suggest'
defining something other than 'sense' .in terms of which 'sense' can,
ultimately, be defined is merely an example of the serendipitous way

( in which concepts develop.
Answers for Exploration Exercises
I, Z. Your students should have diagrams sornething like this:

- -- P+ :5.4 P + -3.5. P + -2 P84+ -ii . I P + a P+12 P+ 3.3. , . .
i. .

3. (a) ,Exactly one.; Yes.; intuitions about how translations act on
points [for example, a translation and its opposite' "move"
points along a line ]

(b) Yes, all of them.

Draw a picture something like this on your paper.
1. Locate the points P + u and P + a on your picture.
2. Sinceaddition of translations is a binary operation on we knoW.

that
- w - pa 4- a,ta + a) + a, +.+ a, 4a + ha + a) + a

are translations. Locate on your paper the images, of P under ttiese
translations.

3. (a) How many lines are there through P and P-+.a./? Do you' think
that P + a is on any such line? Why?

(1) CorkTider- the iranslations described in Exercise 2, Do you think
that the images of P under these translations are on a line
through P and P

176
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5.0l Multiplying Translations by Numbers 177

ie) Do you think that you can use successive applications of
a or ;a to get from I' to any point on a line throUgh P and
P a? If you think so, then tell how many times to apply
as I or. --a.1 to get from P to P + 11a* + a To the point
P + + a. To the point miilway between 11 + (a +- a
+ a +- a 4- (1.) and P ± a + 14* + a* + a + a + a* + a To the
point midway hetwetn P + (a + a) and P + + a + ti). To P.

i

Certain th ngs should be intuitively clear at this pNnt. Among\them
are:

There is a li!w through P and P
(ii) The point midway between P and P 1- a ought, to.be on any

line through P and P +
I jut The translation from P to the point nidway between P and

P t a moves points half as far as a.does.
Of course, the only way that we can make use of a to get from P to

the point midway between 1' and P + a is to somehow make use of
Thalf" of U. This suggests that we introduce:

as' en abbreviation.for:

the translation that moves points in the
sense of cr and half as far aS a does

Similarly, we introduce:

as an abbreviation for:

the translation that moves points in the sense
opposite to that of a and twice as far as a does

4. (a) Give, similar abbreviations for the translations described in
Exercise 2, above.

16) Can each point on the line through P and P + Ci'be reached by
successive applications Geo to P? Describe at least two
points that cannot be so reached.

5. Draw arrows to describe each of the following:
Sample. a 3

3 4

T.47° Ycr. .

"TC 177 ,

Answers for Fxp7loration Exercises [cont.]

(c) No. [three times; three times; six times; can't be done;
zero times] {Note the relevance to part (c) of Theorem
2-5(b), page 141. ]

*
Given any commutative group, it is both possible anti convenient to

Ciefine,.a multiplication of ,elemellta of the given group by integers. Such
a definition can be formulated on the basis of mathematical induction,
much as one de ines powers with integral exponents. In the case of T,
the w uld be:

a 6 and 1- (k + 1) = -a7k + and a (k - 1) = a - a,- -. -
[where 'le is a variable whose domain.is the set I of integers ]. On the
basis of this definition one can prove various "laws of multiplication"
corre'sponding precisely to the usual "laws of exponents". For exam-
ple, the analogue of:

j+k j k -. -,.a = a,a is: a (.) -"V = a j + 'a k,

that of: (ab)k 7--. akbk is: (-.; + 1)).1( = -a.)k + ii k, and

that of: (aj)k ajk is: (a j). k =-..a (jk)
[cf. 4 48 of section 5.02.1. Pa% 0 6' is the analo.gue of the expo-
nent law '.a.0 = I'.

Although multiplication by integers can be introduced into any com-
mutative group, a multiplication by [non-integral) rational numbers
which obeys similar laws is possible only for rather special groups.
[When possible, the definition is analogous to that of powers with
rational exponents, ) In agreeing that there is a translation which can
"reasonably" be referred to as -S. ,2`4 we are accepting the existence
of a translation -1; such that I; +1; = a, That there is /such a transla-
;ion [for any translation -5.1.] ik intuitively obvious just as "obvious"
as it iS that each segment'has a midpoint. Nevertheless, the nonexist-
ence of such a translation as S, above, is consistent with the pOstulates
we have adopted up to this point.

The commutative groups for which there is a "nice" multiplication
by arbitrary real numbers are very special indeed and are called vector
spaces. Our intuitions concerning the multiplication of translations by
real numbers amount to something more than that it is possible to use
real numbers as coordinates for the points on any geometric line in
itself a rather profound intuition.
Answers for Exploration Exercises [cont.1
4. (a) at' 2, -1 3, l 4, --S.2, --.a 3, --; 4 [Note that by the conven-

tions as to grouping symbols explained on TC 145(1-3), page
145, *--1. 2 refers to the product of the opposite of a by 2
for short 'elle opposite of 1 [hesit'ate] multiplied by On
the other hand, to refer to the opposite,of the product of I by
2, one should use '-(12)' to be read as 'the opposite of
[hestiate] I multiplied by 2'.

(b) No. [For example, the point Q "one-third of the way from P
to P + I" cannot, be reaChed in this wa,y. But, (.1 - P is a
translation which maps P on Q and it is natural to refer to it
by.. '1 1'3'.
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(b) a' 2
(d) a ;---4

.6. Complete the following.
(a) a a (3) a 3 a*
(c) a 0 = (d) a' 3 a".

Although we have been dealing intuitively with a kind of multipli-
cation multiplfication of translations by real numbersWe have no
postulates as yet which refer to thiw kind of multiplication. So, even
th gh yOu may have many insights .nto how this multiplication
"wo s , in our formal development of the algebra of points and trans-. _
lation expressions like 'a 2' are, up to now, not part of our formal
algebra.

In order to get this sort of multiplication into our algebra, we shall
have to add some pos/pulates. We shall need, for example, a postulate
that tell§ us that for each real number x, a x is a translation. More-
over, we shall need some postulates that tell Us how this multiplica-
tion works.

The following exercises should help you to gain some further in-
sights into how multiplication of translations by real numbers works.
After we choose statements of some of the simpler properties as pos-
tulates, you will be able to prove many of the principles which you
discover in these exercises.

Exercioes

Part A
On your paper, dra<v a picture

like the one at the right.
\Q. Draw arrows to help you locate

these points:
(a) C ai2
(b) D +
(c) E + a. 2

2. (a) Compare the tength of ZJ with the lengths of the arrows you
drew in Exercise 1.

(b) USe your drawings from Exercise 1 to compare the sense of
°with the sense of each of the rays determined by a given

point and its image under the given translation.

5.

TC 178

Your studerits should have dtagrams something like these:
(a) (b) l -2

(e)

6. ,(a) -1
(c)

Answers for Part A
1.

2. (a)

t-

[As illustrated in (a) and (b) we
shall frequently omit multiplication
dots. Such a dot may not, -however,
be omitted when it'eprecedes an
oppositing sign. Note, also, the
otnission of parentheses in (e).
This exprtssion is,an abbreviation
for '(G + a 2) + -7a. 2'. As a
general rule, in rep:eated sums
assotiation is to the left unless
otherwise indicated.

+75.2 + 4.2

C 4:5.2

15-3

AB is one half the length of C (C + 2), one third the length
of D CD + one half the length of E (E + 21, and the
sg-ne length as F (F + - The segment AB is an "1-length"
longer that the (singleton) segment with end points 0 and
G + a 2 + 2.

411

.(b) AB has the same sense as the rays from C Through C + -
ancl-from D-through D +- it* 3. It is oppositely, -sen-sed4rern--
the rays.from E through E + 2 and from F through F +
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3. ComPlete each of .the following.
(a) a 5 moves each point of / times as far as does a, and in.

the _ . (same/opposite) sense as does u.
lb) a 3 moves each point of/ ______ times as far as does u,. and in

the sense a S does a.
(c) a \ 7 moves each point of / imes as far as does a, and in

the sense as does a.
4. Measure the length of :1B4 in .Exercise 1. Without measuring, de-

termine the lengths of the segments
.

C C + a 2), D (D + a 3), and E (E + 3)
5. Suppase that a is any propeetranslation that is, tliAt a** that

u is any nonzero real number, and that A + a = A'. Complete
the following.
(a) Given that a is a positive real number, then a a is the trans-

lation which maps A on the point X such that the measure of
times that of and the sense of AV is

f the same as/opposite to) the sellse of e;z1A'..
(b) Given that a is a negative real number, then a* a is the trans-

lation which maps A on the 'point X such that the measure of
Ax' is times that of and the sense of Af is
Ithe same as/opposite tol the sense

(c ) For any nonzero real number a, a a is the translation which
moves each'peint of times as far as a does, in the

-[same, opposite] sehse as a if a > 0 and in the
(same; opposite] sense if a < 0.

*

QOnsider the segments %A and M pictured below.

a
A

gince D C = 2 and B' A =aa, it should be intuitively clear
that

(1) the segment CD is twice as long as the segmentM and
(2) the ray from C through D has the Same sense as the ray from A

through B.
,We can express both ofthe notions in the following manner:
(*) The ratio of the segment fromC to D to the segment from A to

B is 2.
We emphasize the (*) says the same thing as (1) and (2) together.

TC 179

3. (a) five; same a.

(b) three; opposite
(c ) i7; same

4. The length of the segment AB is about I inch. So, the given
segments are, respectively, Z, 3, and 3 inches long.

5. (a) a; AA'; the same as
(b) a ; AA'; opposite to
(c) !at; same; opposite

Exercise 5(c) is analogous to the usual definition of multiplication
of "vectors" by "scalars". When we have, completed Postulate 4 weshall be able to define 's,ense' and 'magnitude' for translations in such
a way that 5(c) will be a theorem.

TC 180 (1)

The notion of the ratio of sensed segments which is ihtrtduced in
the discussion preceding Part B is treated formally in'Chapter 7.
This notion is basic for the discussion of points dividing segments in a
given ratio and, so, for some familiar and many less'amiliar
geometric theorems. [Among the familiar ones are those concerning
the intersection of the diagonals of a parallelogram, and the intei.ipec-
'ion of the mediansof a triangle. j The exercises'of Part' 13 [and of
Part D on page 182] are intended to help prepare students for this,'

'later development.
In the present intuitive de'velopment students may, as is' more or

les suggested, assign ratios to parallel [or callinear) sensed wegments
by finding the quotient of their length measures and then taking the ratio
to be the corresponding positive or negative real number aecording as
the senses of the segments are the same or gploosite. Alternatively,
as suggested in Part D, the sensed,segments rdirected trips") may,
be assigned real numbers as measuies, in which case die ratio of two
sensed segmentsis precisely the quotient of these measures. [Note
that, in any case/, only sensed segmenta whose senses are the 'same or
opposite have ratios to one another.]

Although ratios of objects are frequently described,, as above, in
terms of quotients of measures of the objects, it is importint to recog-
nix(' that "ratioing" is, actually, a prerequisite for measuring. For
example, a child may make such judgments as that he is in the middle a
of his play-pen long before he has any notion of measuring distances..
The ratio of two objects is, indegcl, the quotient of their meaiures; but
this I. because the measure of an object is the ratio of'that objegt to an
ailoitrarily chosen unit object, IA. The fundamental law of "ratioing"
is, in fact:

(*) = 4. (0:10
It is not too much to say that what makeS meaeurement worthwhile is
the fact that ratios can be defined [before oneknows how to measure)
in such a way that (*) is true.

4 45 Q
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Similarly, it is intuitiver clear that
(3) the segment EtVis twice as long as the segment .741-B and
(4)4 the ray from 1) through C has the sense opposite to that of the

ray from A through B.
We can express the notions (3) and (4) together in this way:
4$1**) The ratio of the segment from D to C to the segment from A to

B is 2.

Part B
I. (liven the segments All andtI5 from the above discussion, corn-

plete the following sentences.
(a) The ratio of the segment from B to A to the segment from C to

D is
(b) The ratio of the.segment from ri to A to the segment frorri D'to

C is
(e) The ratio of the segment from D tti C to the segnient from.

is 2:
(d) D C 2 and A B (D - C)

2. Here is a picture of several segments.

.43

c

Let's agree to write:

gtz (A to B)- , to D) is 1 3

as an abbreviation for:

The ratio O'f the segment from A to B to the
segment' from C to D is 113.

Complete the following.
to BUE Loki.% _ _(b)_ _traLil):(G

(c) (E to F):(G to H) is', (d) (E to F):(A to B) is
(e) (,E to ElitC to D) is (f) to.D): --- is 6/5.

a. To say .that (A to B):(C to D) is 1/3 is to say that the segment
AB is as long as the segment CD and that the sense of the
ray from A through B is the sense of the ray from
C thrOugh D.

4. (a) In Exercise 3, replace the '1/3 by '-113' and repiat the problem.
(b) In Exercise 3, replace the '113' by--5/4' and repeat the problem.

1
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nillipcIn view of the preceding it is a worthwhile ciassroo tivity toask students.to find ratios of sensed segments without me suring thesegments. For example, draw two arrows similarly sensed oroppositely sensed, as you wish one of which is, say twice as long asthe other, Then, ask students to find the ratio of one to the other with-out measuring either of them". Their procedure will probably amountto finding the measure of the longer with respect to the shorter as .unit. [This is fine.] If students seem to need a hint, dangle an.1 unmarked yardstick" or.a pointer in front of them, They can usethis to "transfer" one arrow onto the other. Bring out the fact thatthe ratio of the longer arrow to the shorter is 2 [or -2] and that ofthe shorter to the longer is 1/2 [or -1/2]. Try to build up to anexample in which the ratios are, say, 5/2 and 2/5 [or their opposites].
Students should arrive at the understanding that ratios can be found bydirect comparison, and that finding ratios by dividing tneisures is onlya handy short cut. [The preceding sentence applies equally.well to the '"incommensurable case" ,,only the method of making the comparisonis more comple)e, and so is the notion of irrational measures. But,this is not the time to face students.with this problem.]
Answers
1_ (a)

2. (a)

(c)
(e)

for Part B
-1/2 (b) 1/2
2/5
5/2
5/6

(c) B to A (d) B A;.

(b) 1

(d) 5

(f) E to F
3. one-third; the same as
4. (a) one-third; opposite to

(b) five-fourths; opposite to

TC 181 (1)
Answers for Part C

Note: The set notation used beginning in Exercise 2 frequently
causes some problems. The problem usually centers around the useof 'X'. Students are un,lable to see how a particular point gets ,into aset. This problem can usually be solved by making an ana14i, to setsof real numbers such as ix. x = 5 + -2y) and asking questions

(a) How do we know that *1 is in the set?
(1311 How does a num iier-T-qt into this set?

*I. (a) A B )4:8

like

49n

(c ) e

(d)

A

B tilifigftiof A on
the line A,(A+1

I

[C =
- (A + a) + a (-a) A + a

(a + -a)' = A + = A, The
students' will be able to give
argument* like this when
additional postulates are
introduced in section 5.02. j

B, for C = B+b and

4

^t:

1.1

owl
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1. For ea4 part of this exercise, picture a point A and a proper trans-
lation a [that cis, a 4t el. Then, locate in yourpiciure the points B
kind C such that B = A + aa and C B +

1 3
(a) 4' h 24 (3) a 2, b = 1

-(c)' a 0, h --u (d) a < 0, h 0
(e) < 0, h < 0 (f) a > 0, h < 0, al -> hI

2. Picture a point A and a proper translation a. Then, draw a picture
of the given set and, if possible, describe the set by .name.

'Sample, {X: , X A = ay}
sSolution. A point C belongs to the set in question if and only' if

there is a rear number y 1 such that C A + aY.
For examples, since 1 1, 3/2- 1, and 5 1,
the,points

A + a . 1, A + 2, A + a . and A + .a* '5

-
belong to the set.

Answer

[In part (f), I is the set of all inteters.)
(a) {X: 3, X A + (b) (X: g X A + Ciy}
(e) {Z: 3,, Z A (a). iz: 3,(-2 5 and Z = A + ax)}
(e) )X: 3, X = A + (f) {X: X = A +
3. escribe the sets giventin Exercise 2 in case a'is the identity map7

4. SupPose that d d i; are the proper translations in different di-
rections [so that t ines through A and A + a and through A and
A. + Ware not Parallel Pitture each of thefollowing slits Of points:
(a) 4X: X A' + Vx}
(l)) (X: TiXi-- A +

. (c) t X =-IA
id) 4Z: Z A +-(ciiy
(e) {X: gi.34, X A +
(f) .{X: Vv. X = 'A

q. Describe the sets given

an) + b7x}
liy)t
+ by))+ll
Exercise 4 in case a an r, are transla-

'lions in the Sat direction:

3

4.14 (e)

(f) A C

(ai

(b)

A

TC 181 (4) s

A +

(c) [Ant era are the sanie as for (b). ]
(d)

A 302 A

(e)

Ata-1 a+30 A +31.

a

; A (A + al Vile

; MA + I), a half-line

s

A+5.5,; - -Sz)(A + -g5),-
a segment

; A(A-1.), a ray

[This is a set of points
equally spaced along

Aq,2A (A +

3. Each is {A} the set whose only member is A.
4.

(o) the line through A
In the eirection of

(b)
Id (d) the line through A

, in the &fiction of a+

b) the line throUgh In tha
traction of b

(

Owe

(e) This the plane containing the thred npneollinear points
A, A I . and A + S.

f
This set iv the closed half-plane with edge A (A + M'and con-
taining A + b.

Each ill the line Zi7. 71).

v..44 Av.
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Part'. 1D:

Part E

Suppose that A, B C, and D are points on a line as illustrated in the
figure below. Suppose, also, *that B,= A + a, C = B 4:1d 2,
D C + a . 3, and E, - D + a . -8.

A

in your introduction to additiOn of real numbers you may have
consideeed measures of trips along a road. Think 'of the line shown
.above as a road and consider trips along it. Suppose that you use posi-.
tive numbers to"measure trips in the. same sense as the sense of

land negative numbers for trips in the opposite sense), and that
the distance between A and B is 1. Answer' each of the following
questions.
1. What are the measures of the following trips?

(a) from B to C (b) from C to D
(c) from A to C. (d) from A to E. .

2. Using only your answers for xercise 1, compute the measures of.
the following trips.
(a) frorn A to D
(c) from B, to A
(e) from B to E

(b) from C to A
(d) fro'm C to E
(f) front D to B

3. Give each of the following ratios.
(a) (A to 13):(13 to C)
(c) (A to C):(C to B)
(e) (C to D):(D tO-E)

4. Complete:
(a) C = A + a
(c) E = A f --a*

(b) (A to B):(D to B)
(d) (A, to D):(D B),
(f) (A to B):(C to E)

1. Here is a picture of a point A
and translations ri and
'(a) Draw a single Picturc whichillustiatos-the following:-

A + B

(b) D = A +
(d) E C + a4 _

a
.A

B + -g c
A + (a 2 + b 2) A + = F
0 + 2 + rz -2) H B + (-f-*2 +
A + (ä+ 6 2) = D C is. -1) G

(b) Use your picture from part (a) to help you to complete each of
the following.
C + a+ =

+ (6 + 2)= G
+ (0 2 + = J

4 3

11+ r2 1-1) = J
+ ( +1,6 -1) =

A ef Ca++ --b) 2f.
+ (a 2 + b)

Answers for Part D

TC 181

1. (a) 2 (b) 3

) 3 (c1) -2
2. (a) 6' (b) -3

(c) -1, (d) -5
(e) -3 -5

3. (a) 1/a (b) -1/5
(c) -3/2 (d) -6/5
(e) -3/8 (f) -1/5

4. (a) 3 (b) 6

(c) -4 (d) -5

.

AnswIls for Part E
1. (a) Your students should have a picture like this:

(b) E ;

t --2; C
H ; E

A ; F

TC 183 (1

2. (a) 15 (b) 15 (c) 15
(d) 6 (e) (f) 3%17
(g) 1 (h). 0 (i) 3

3. (b) 6.2441 (e) 1:054:6 -2 E -I..
11.2

[The arrows drawn for (a), (b), and (c) sh
and have. the sarne sense. In other words, 'th
the same translation,
(d)

... .

---Z ,. (f) 6.5
p.

[The arrows drawn for 61), (e), and (f) describe the
translation. 1

(a)

VI5

be the same length
hould describe

,fas

same
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2. Suppose that Kis the translation Which maps P onto Q., and that
,,tli length of 74 is 3. Determine the distance betwesp P and its
image under each of the following trtinslations,
(a) K 5 (b) b -5 (e) h -3 + h -2
id) K S f. b 10 (e) b 18 + -10) (f) K \ 2,

b... 1

3. Suppose that a is a proper translation. Draw arrows to describe
the following translations. ' .- .
(a) a 3 ib) a 2 + a 1 (c) a 5 + a.. -2
[Compare the results in ta), (b), and (c):1

, - 5id) a ' 2 + a ,3 (e) ia 2)
2-

(f) a*. 5

Wompare the results in td), (e), and it'll .

4. Suppose that a.and K are proper translations in different direc-
tions..Draw arrows to ilescrihe the following translations.

...
. -- 3 3 . -, 1 3(a) a + b (b) (a 3 + b 3) .(c) (ar

-if b. ) -22 2 2
(Compare the_results in (a). (b); and 1_0.1
(d) a -2 + K -2 (e) -a. 2 + -h . 2 (f) (a* + b) -2
[Compare. the results in (d), (e), and 0.1.1

Parf F
In each of the following, fill the blanks to make what seems

intuitiVely to be a true sentence.
I. u a E [for any real number al
2. a 1 =
3. a. in +.bi
4. «L.+ h ci _ + b.
5.ta' a) b )

6. i; 0 = and 0 .a
7. Ha a = -a and -( a a

5.02 'Admitting the Real Numbers as.Operators

Up to now we have dealt with two kihds of things in our algebra
- points arid translations. We are now bringing in a third kind of
thing- real numbers- and a procedure for "combining" a' translation
and a real number to produce a translation.

In Chitpter 4 we have already adopted postulates which tell us all
We need to know about the algebra of the real numlvas alone. [These
are the Postulates 5 512 which we collected together in Postulate 5'.]
In addition to these we need postulates describing the multiplication
of translations by real numbers. One possibility would be to use Exer-
cise 5(c) of Part .A on page 179. The difficulty in doing this is that we
would then need to adopt some postulaters concerning distance and

4 1)4

4e

4. 'Your
(a)

IC 183 (2)

students should have pictures something like, this:

(0)

(d

OD)

+

;
*"-

[The arrows drawn for parts (a), (b), anti (c) describe the same
translation.]

4.
4

be-2 ---...

[The arrows drawn for paits (d), (e), and (f) describe the same
-translation.

A.,n-swers foi Part F
1, T

2.
3.
4. b; b
5. ab [or; ab]
6. 6; 6
7. a; -a
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sense. [Explain. I These notibns are somewhat complicated to get at
directly. It turns out that if we postulate some of the properties of
multiplication which you noted down in Part F above, then we shall,
later, be able to define distance ancrsense in suclva way that Exercise
5(c), on page 179 beconls a theorem. This is what we shall do. Since
thei4e new postulates will deal with translations but not [explicitly}
with points, we shall include them in Postulate 4.

70 begin with, we need a closure postulate similar to 41,(a)-(c):
416

Postulate 4, (d) a' h

The product of a translation by a real number is a
translation.

Fig. 5- I
Recall that we have alreadSi listed Postulates 4,, 4 4: and 44. We

now continue this list as we introduce the following postulates into
, our algebra.

Postulite a. 1 - a.
The product of a translation by 1 is that translation itself.-

Postulate 46 a (b +- c) =a.b+ac.
Postulate 4, a-lif)c=ac+b.c
Postulate 46 b) - a (be)

Draw diagrams to illustrate Postulates 40 47, and 4s.
Postulate§ 4(d) and 4, - 4 are usually summarized in the following

maRner:. 6

The group .1 of translations admits the real
nunibers as,operators.

Thus far, then, in our postulateS about-transkitions alone, we know
that the set of translations is a commutative group and that this corn-

, mutative group admits the real numbers as operators. We shall have
more to say about this a little later. ,

Look at the exercises of Part.F on page 183. One might ask, quite
natprally, whether or not we need postulatis that tell us that

and that

a 0=0.--0a
-(7 -a = -(a a) = -a a.

c. TC 184

Skction 5.01 was a concept-development,section. In the present
section 5.02 we enlarge our formalism by introducing into it terms of
the form and postulating some of the properties of multiplication
of trali.slations by real numbers which have been discovered in the pre-
ceding section. From now on, all we "know '! abdut this'multiplication
is what is contained explicitly or in our postulates.
particular, we can no longer juStify 'our statements as we did in
section 5.01, by arguments about sense and magnitude of translations.
[Of course, our intuitive notionS-of sense and magnitude may still suggest
statements which we may be able to show to be theorems but only by
deriving them from the postulates. ]

s
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-

As it turns out, these sentences can be derived'from our extended list
of postulates. We shall list these results in our iiext two tlworems and
leave the proofs as exercises. [We shall often omit multiplication dots
just as we do in the case of multiplication of real numbers.]

11 Theorem 5 1 ( ) aO = 0 (b) Oa (';

Theorem 5-2
(a) a -a

I.

(b) -a-. a = -(aa)

Since ,/ is a commutative group with respect to addition, you can use
analogUes of the real number theorems:

a+a=a..--Pa=0and:a+b=0 b = -a

to prove that a given translation- is 0 or thayt is the opposite of some
.given translation.

Exfrcises

Part A
Prove each of the following:

1. (a) a0 = 0 (b) 0'a = 0'
2. (a) a -a = ---(aa)(

-,,

(b) --17 a = -(Wa)
-

3. -a = a -1
%

4.

Part B

439

Theorem 5-3
(a) b) = tta - ab (b) T)a

5. (a) (A .4- Way + alb = A + + b)
(b) (A + 4) +7;a = (a'-i- ba

1. Simplify each of the following.
a2 + + +

(0) + - c' -2 + -10 (d) - 1,57

2. Solve for
(a) -(71P+-64 -2 =

:(b) 't3)2 -17. -3 1 (71)

-(1) a +1)2 + 7,a = + (11 -c16

IC 185

Answers fpr Part A
1. (a) By POstulate 46, 10 + 0 = -a.(0 + 0) = -10, Now, since 7 is a

commutative group, we knoui that if 10 + -10 = 10 then ZO d.a
Since -10 + = a0, it follows that -10 d.

Here is a tree-diagram of the proof of this theorem,
a + 0 = a -la + = l(a + b)

+ 0 ,= 0 - 10 +10 = -S(o + 0)

-10 = 6

By Postulate 47, da + da = /d + d)a = da, We'know that if
da + 4a da then da = d. So [by inocius ponens], 6a =
First note that Za + -ae -a = 1(a + -a) = = d. Since T is

a connhutative gr2up,_..we know that if -ae +11 = then
In particular, if aa + a -a =..d then 1. -a -(1a). So, since
aa + l -a = d, it follows that I. = -(la).
Since 7 is a commutative4group2. we know that if aa + d
then -(Za). Now, aa + -aa + -1)a = da
Thus, -(aa). = -aa. So, = -(;a).

3. By Exercise 2(a), 1.-1 = -(11) and, by' 45, -S1
a -1 =

' 4. (a) By definition [57(a)], -ae(a - b) = -ae(a + -b). By 46, -/(a + -b) =
aa + l -b. By Exercise 2(a), I. -b = -(113). So, -Z(a b) =
la + -(lb) = la - b.

(b) [Proof is similar, but uses Definition 3-1(b) [page 141], 47,
and Exercise 2(b).

5. (a) (A + la) + lb . A + (a+ lb) = A + l(a + b), by Theorem
2-5(b) and 46.

Answers for Part B
1.

Z. (a) = -112 (b) I = + -ce3 - a (e) (,i) [Impossible.]
['Simplify' is, as always, rather vague; For some purposes, a
simpler answer fot Exercise 1(a)' is 'a -1 +1111' and, in like
circumstancgs, ainore appropriate answer for E_.xercise 2(b) is

-5 + + d -1' ["What multiple of I:7, c, and A can, one
add-to obtain ;?"). Stiggest to students that -the skill which i
needed is that of seeing at a 'glance the results of variaas trans-
formations of a term into equivalent terms. For example, on
seeing any cane of the following terms:

- gc, -(tc), + + + 5 -c, etc.
....ene should be "automatically" aware that it can bW'replaced by any

Of the other. Which one, if any, one choose to replace it by will
be determined, of course, by the context in which it occurs.
"Simplifying is transforming to achieve some goal."]

a. So,

(a) + 1111 rori` I:711 - (b) (c) 6 ( d ) - ) 1 4

4 4 0

.
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Part C
Prove each.of the foltowing.

1. c2.1)) lh = .0)
2., (xi. h'e ()I !Hint: Note that

theorem is a valid sentence.]
3. - O. r 0]

the converse of this

5.03 0:products and Cancellation PiOnciples

In wor*ing Exercise 1 of Part C you probably recognized that the
theorem you proved is analogous to the real number-theorem:

tab) lb = a Lb 01

and that it may be proved just as this real number-theorem is proved
in steps 2) - 46) on page 148. [The only difference is that you need
two of our new postulates in place of 51(b) and 5(b). Which tWo?1

After doing Exercise 1, the easiest way to prove the cancellation
.principle in Exercise 2 is to begin with the valid sentence:

ac we) /c (i)c) /c

!How would you show that this equality principle is a valid,sentence?)
The cancellation" principle of Exercise 2 is analogous to one of two

cancellation principles for iinultiplication of real numbers:

(a) ac a = b [c 0) (b) ca = cb a = b 1c = 01

This suggests that there may also be a cancellation principle for multi-
plication of translations by real numbers. which analogous to (b).
There is, and we state both cancellation piinciples

Theorem 5-4
(a) ac t'ri 0 = -17; t 01

Thr2 = lc- -61

Of course, we still have to show that Theorem 5-.4(b) is a theorem.
Either of the two cancellation principles for milltiplication' of real
numbers can be derived froxii the other and one pf our postulates for
real numbers. [Which postulate?] However, fhe relation between parts

, (a) and (b) of Theorem 5-4 is not this 'simple. [Explain.] Also, we
cannot move part (b) of Theorem 5-4 in the way in which you proved

Is

4:11

TC 186 (1)

Answers for Part C
1. By 4 (a.b)./b = 1(b /la) and, for b # 0, b//b,= 1. So,' since

= a [45], it follOws that, for b 0. (lb). b = [Remind
students, if necessary, that the statement in the exercise is an
abbreviation fcir 'b 0 (3b). /b = To arrive explicitly at
this unabbreviateli result, replace the first 'for' in the preceding
proof by 'assuming that' and the later ', for b 0, ' by 'if b 0
then'. A column proof is indicated in the first sentence of the
following section 5.03. r
(1) -a* c (;c)./c =
(2t (a.c)/c
(34 (1;c).
(4)c = Sc

/c [valid]
[Exercise 1]

s [Exercise 1]
[(2). (3)k (1)1'

[Compare with answer on TC 150 for Exercise 1 of Part B
page 150, As a paragraph, the proof given above might go as
follows:

By an5quality principle for multiplication, ifc =
then (ac) = (Sc) /c. But, by Exercise 1, (al.c)/c =
and (Sc)/c = S. Henee, if gc Sc then,-; = b.

The proof of the equality principle -= Sa' of which
(1) is an instance ees as follows:

§.13, ppo e that, a = b. Since a = -ga it follows that
aa a. BeAce, if -a° = S. then 7a.a Sa.

The rules of logic involved are, as in the case of all equality prin-
ciples, the introduction and replacement rules for equations and the
deduction rule.. ]

3; [A derivation of this result from that
5-4(a)] and Theorem 5-1(b) iven

on

1.
ple Qu

Draw three points A, B. and C ich are not all on the same line:

of Exercise 2 [Theorem
on'page 187. ]

Locate
Locate
Locate
Locate

the point P such tha (A to P):(P to B) is 2/3,
the point Q such th t Q A4+ (C

the,point R such at (B to R):(C to .R) is 2.
the point S such 1;at S = B+ (B

+.03 -;)c.

A

Z. Prove that (A - + Sc
Answers for Sample buiz
1, Here a typical drawing.

Z. (A - le) + Sc = (A + --3.961Se = A. + (-1.c + Sc) = A + S)c
= A + (S + --g)c = A +
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The postulates which substitute for the.APM alidthe PM1 are 4;
and Note that the former 'is more than an associative principle.in addition to changing the "association" of "factors", in applying it'
one changes from one kihd of multiplication to another. Postulate 48
may, h you wish be called the qtras4-As,sociative principle [for multi-,
plication of translations by real numbers" Similarly, since two kinds\
of addition are involved, 4e, is a quasi-distributive principle. On theother hand, 47 says that multi:plieation of translations by real numbers
is distributive over, addition of translations and, so, is properly a
distributive principle.

For the proof of the validity of the second sentence displayed in
this section, see the discussion on TC 186(1) of the answer forExercise 2. of Part C.

The postulate needed. in deriving one of the two cancellation pt.in-
ciples for multiplication, of real numbers from the other is, of course,the CPM [i.e'.: ;4(b)1. Note that, contrary to some students' initial
reaction, it would be of no help in proving Theorem 5-4(b) to introduce
"mUltiplication of real numbers by translations" by adopting the defi-nition 'ai; la', Doing so would make possible a restatement of
Theorem ')-4(h), but this would be of no help in proving the theorem in
.question. As this example indicated, it makes no real differencu
whether or not one chooses to allow translations to be "multiplied on.-
the. right" by real 'numbers as well as 'on the leftil. The operation
which we chose to call 'multiplication of a translation by a real num-ber' is dn important one, but how one chooses to indicate it symbol-
ically and What one chooses to call it is of importance only in sofar 'as the choices made have some mnemonic value. The use of the
word 'multiplication' and of product-notation is suggested by the fact
that the operation in que stion does have the effect of multiplying the
rnagninIde of the translation by the alisolte value of the real`number,
andby the similarity of 4, to familianstatements about.multipli-
cation of real numbers. "the decision to use rather than 'ar'
stems from the feeling that it is more reasoeable for multipliers to bewritten on the .right,- as divisors are, and the feeling that it is the
translation which is multiplied by the real number rather than viceversa, Both feelings are, -admittedly, not much morethan prejudices.

To prove Theorem -5-4(b) as Theorem' 5-4.(a).was provedwould
require multiplication and.reciprocating operations on T which ar,e notavailable. [In the secondpart of this course there will be introduced a
real-valued mUltiplication of translations such that

a- fa* E (lic: ) (:t )c, and a . a. > 0 la 4 0].
Using this NA.:e could deriye 'Theorem 5-4(b) from the correspomding
cancellation prineiple, (b) for multiplication of real numbers and the
-theorern-that no,'positive nuMber is 0.1

The "tbird" way of proviNg the cancellation principle (b) for
multiplication of real, numbers i, briefly, as follows:

Zrom (a) and 'Oc 0', derive:
ac = a = 0 rt. :* 0)

By contra-position [and our convention as to the meaning
'of restrictions]. this is equivalent to:.

* 0 [a * ac *

0

and, as is easily show'n as well as being intuitively
obvious, t is is equivalentlw

0 [c 0 ac * 0]
ançi, so, to:

ac c 0 [a * 01
This last has the relevant instance:

- b) = p a - b = 0 [c Qj

From thisand-the appropriate distributive principle
[the LDPMS]. follows:

ca - cb = 0 a - b 0 [c 0]

The cancyllation principle (b) follows from this ancliNg
instances of 'a - b 0 .:=e a = b'.

This proce'elure is easily modified to derive Theorem 5e4(b) from
Theo em -4(a) Theorem 5-1(b), Theorem 5-3(a), an instance of

- a. = b.', and 'a - b = U a = b'. The last two rather
trivial but tseful theoterria axe proved in the same way. We prove the
second:

sup ose that a b. It follows that a + -b b + -b
and so, [by 57(a) and 53(a)), a - b = 0. Hence,
a then a b = 0,

SuppOse that a -.).? = 0. It follows that (a - b) + b =
0 4 b and so {by 57(a), 51(a),. 54(a), 53(a), and

a = b. ,Hence, if a e b = 0 then a b,
In proving the corresponding theorem concerning T, Definition 3-1(b)

'plays the role of 57(a), and 41 -,44 take the place of 51(a) - 54(a),
respectively.
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part (W. [Why not?1 Fortunately, there is a third way of proving the
cancellation prineiple (13( for multiplication of real numbers, and this
third way can be used to prove Theorem 5 -4(b).

One 'key to the proof of Theorem 5- 4(1)) is the theorem proved in-
Exercige 3 of Part C:

(,)))

This Cheorem

11)

. i21
(3)

. .
cc . 0 lc 01

is an easy consequence of Theorem 5 4(a) and Theorem

CC' 0.( c== 0. c
0(' "'

a* '

0 C 0 0

(Theorem 5.-4(a)]
'Theorem 5 )1

112), (1)1

Conversely, we can deriye Tht.orem 5-4(a) from (0 and Theorem
f-_

5-3(b) land the fairly trivial theorem - = 0 ci

51
Q e'tz - h =2- 0 lc 01

[Theorem 3(b)1
fa), (1')1

.01"karly, Theorem. 5-4(a) ,follows from (3') and two instances of the
"fairly trivial theorem".. a

. The second:of these two 'arguments suggests that we could obtain.a
proof' of Theorem .5 -4(b) by using another possible theo'rem:

( ) = 01 c' -01

..oe and Theorem 5-3(a). [The first step would be to substitute b'
for 'c' in ( 1 This suggestS that we try to prove (*.). If you ihink.hard,
yop may gee that () and (.0 seem to say the same thing. In fact, as
it turn.; out, (*) and (,,0 arelogically equivalent.

Tc; show the equivalenee of (;,) and (tir) we may begin by noting that
equivalent, resPectively, to their contrapositives:

,c fc 7.- Of
-

0 .."0 cc 0 le 01
,

'Next, pre recall what the restrictions mean. By our convention about
this, (.'). and 40P'14i.re merely abbreviations for:

- - ---

c 0 0 fc 0 Of

TC 187

The deris,,ation of Theorem 5-4(b) from (**). Theorem 5-3(a) and
two "trivial theorenls' is described in the preteding commentary.

That the restricted conditional sentences (*') is not strictly the
contrapositive of [nor (**') of (*I')) has been pointed out on
,TC 157(1). Neve,rtheless, that:

(*.') 0 [Z. .* 6 -c7c # 6i
and:

(*) e 0 c =

are equivalOnt follows, by the replacemen.t ru or biconditional sen- '
6 and its'tuners, from the logical equivalence of 'cc

(proper) contrapositive that is, from the fact that the sentence:
= 6 = 6 ] =z, rc. 6 # 6 ]

is valid.

TC 188 (1)

Parts A - F, if used as Ont\assignment, make a rather lengthy
one. If you are pressed for time and feel that one day is ajl the time
available for these exere.ises then we again recommended assigning
exercises to teams. In this case you might consider making the -
derivation of each inference form a team project, and have each student
do the exercises involying theorems about translations and rgal numbers
Answers for Part A
1. First way:,

(p and q)(q and p)

p [q r]

(p and q) r

(q and p) r

g

p and q padq

and p

q [p (p and q) =4. (q and p)
['*' indicates Oyalid sentence. ] ete.
Second way:

{q r),

p r

[p 2.]

4 4 f'
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Now it should not be difficult to see that (;") and (
thingand, in fact, it is easy to show that any in

is valid. {See Part A, below.

Exercises

Part A

P:rt:

p q rJ

q ----0 jp --0 ri

I.. Show that any inference of the form:

0 lq ri
q --elp rl

' ) do say the same
erence of the form:

[Hint: One way is to use importation and-then exportation
(page 101), noting in between that any sentence of 'the form 'ip
and q> y and pt' is valid. Another way is to use modus ponens
twice first to strip off the 'p' from 'p fy --0 ansi then the-V -and then use the deduction rule twice-first to obtain '13 --0 r'
and then 'q 0 lp

2. Sentence ,,) follows from 01.because the inference:

0 lee = 0 _
[cc --, 0 c. = 01

is valid. Use the fact that a conditionatsentence and its contra-
positive 'ape interchangeabte, toge,ther with the result of Exercise
1, ,to show that any inferencv of the form: .

mit pi 'Ply r
not r Ey pi

, .

is valid. Eilint: In the premiss,,replace 'q r' by its contrapositive
and thben apply Exercise 1.1 .

a. -Complete-the f011owing derivation of 'Theorem 5-40;0 from (*)
and previinisly ndted theorems..

(1)
(2)
(.3)

z.

*
[q

.2,
*[q =4r]:=>inot r .not q] not p r=rt- [q

not p [not r not q]

not r [not p not qJ
[EX. 1

not r [q ==>p]
r gee indicate valid sentences. ]
Another scheme, based on the symmetric rules for contraposition:

not p not r pl

not p [q ==> 1]
[E . 1]

q [not p r]

q [not r P]
[Ex. 1]

not r [q P]

-C.(a b) ca - cb
- a - b -7 0 [CP *, 0]

- = a = a
a-b= <=o'a-b

c-ea = c'kb a, = b [-C 0 0]
[For proofs of the two tl-iorei'ns
TC 186(3). ]

Answers for Part B

[Theorem -3(a)].
[(4), (3)]
[theorem].
[theorpem].

[(8), CO, (6)]
for pteps (6) and (7), see

[The direct proof of the 0-product theorem is not too messy, but
it is somewhat less intuitive than the indireEt proof-suggested in
Exercise 3. The direct proof derives the theorem from the anhlogue
of (*) by a dilemtha based on an example of the law of the excluded

cc = 0 '* c = 0 lc Wi(*)1 (by Ex. 21
b = 0

cc. 0 c = 0 [c 0] Ian}4
=

-
a b = 0 61[(2)1 0

-

One important theorernalabout.multiplication of real numbers is the'
"0-preduct theorem":

ab = (a 0 or b 0)-

b 0 ab=^0 a = 0 [b 0 0]

ab= 0 ab = 0 710Pa.= 0

b0 a =

a=,- or.b=0 a= 0 orb=-=0-
*

orb*. b=0=74)(a=.0 or b=10 1)0 03=0;(a= 0 or b= 0)

a = 0 or b 0

ab = ( 0 or b = 0)

The derivation can be shortened slightly by using the complex dilemma
mentioned,in the hint for Exercise 2 of. Part D.
1., not (a, = 0 or b 0) =140. ab * 0
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Z.
This can be proved by deriving its consequent from its antecedent
and previously proved theorems about real numbers, and then using
the deduction rule. Such a proof is, hbwever, somewhat messy. IThis
is usually the casettwhen the consequent of the condition-al sentenee
to be proved is an alternation sentence.]

Now that we have jearned that .a conditional sentence is a conse-
quence of its contrapositive we have another way of proving a condi-
tional sentence. For example, instead of trying to prove the a-product
theorgm directly, we.might begin by trying tO prove its contrapositive.
1. State the contrapositive olthe 0-riroduct theorem.
2. Use what you have learned about 'and', 'or', arN 'not); to show that

the cimtrapositive of the 0-product theorem is logically equivalent
to a theorem you proved in Chapter 4. IFor help, see page 157.]

3. Prove the "Olproduct theorem":

Theorem .5- 5 oil 0 or a 0)

I 'To disc ,r a proof, use rules of logic to transform the con-
trapositive d Theorem 5-5 into a previously proved theorem.
Then, see if you can, derive Theorem. 5.-5 from the previously
proved theorem by retracing your steps.)

4. In Exercise 3 you probably showed that Theorem 5-5 is a conse-
quence of the instance:

0=1) au .= 0 0 0 la 0)

3.

TC 189 (2)

By 'Exercise 6(a) on page 163 the sentence,4 Exercise 1 ?is
equivalent tot

(a' 0 and b * 0) ab * 0'
The latteris (2) on page 157.
By (*) on page 187, a * 0 => = J. Hence4

* 0 la 0]. So, (a 0 and -; .d) aa 0
or, equivalently, not (a = 0 or a = 11) ,* 0. Hence,

= 0 ,(a = 0 pr a =
[The logical rules involved are the replacement rule Yor bicondi-
tional sentences and.importation. The biconditional premisses for
the first and third applications of the replacement rule come from
the equivalence of a conditional sentence with its contrapositive.
That for the second application of this rule comes from the econd
of DeMorgan's Laws on page 171.1

[p r] [not r =;..not 13] notiiq [p .=t r )

not (q or r)4:(not q and not
not q =1".[not r =Pnot 13]

(not q and not r) =4"not p

of the theorem (.) on page 187. And, in discovering your proof you [p 114=4. [not
probably showed that this instance is a consequence of Theorem
5-5. Using the same procedure you can show that any inference
of either of the rms:

not q
p

is vahd. Do so..

Part C.

1. The Secon

rJ

or r)
p (q or r)

not q fp rl

d of inference 'in Exercise 4 of Part B [which shows
that (1,, ) a consequence of Theorem 5 -5] can be justified very
easily by,using one of the rules for denying an alternative. Do so,
by copstructing an appropriate tree-diagram.

2. An argument similar to that described in Exercise 1 shows that the
instan6e:

(** 71.a = 0 la.* 01

of (.*) on page 187 is a consequence of Theorem 5 -5. Give this
argument.

4

not (q or p) 2=:' not p

(q or r) [`*'s indieate valid sentences.

p or r)
not (q or r ) <=:*(not q and not r) not (q or r) not p

Answers

1.

z.

(not q and r r) not p

not I)) not q [not r zo'c'not p)

not q =*' [p

for Part C

(q or r)
q or, r not q

p =4). r

not q [p =2*.. r]

..1.3.y Theorem 5-54 if as = then (a = 0 or a' = 0). Suppose thataa .6 and that a * 0. It follows [by modus ponels and denial of
an alternativel that a = 0. Hence, for a * -0, if aa = ?5 thena = 0.
[Notice the minor difference between this argument and that which
is schematized in Exeicise 1. In comparison with Exercise I, the
second assumption in Exercise4 2 is "not r" rather than ."not q". .The effect is to validate inferences of the form '[p mgs> fq or
[not r gag> [p cd]' I

4 5 q
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1. the first of the two.kinds of inference in,Exercise 4 of Part B can
by made to Seem intuitively reasonable in the following way:,

Suppose that if not .q then I if p then and suppose
that p. It follows that if not q then r. But, q or not.

. So, j or . Hence, if p then ig or r).

Translate tht first two sentences of this arguent hito a tree-4 m
diagram:

not tj p r
Part A, Exercise 1 I

2. The claim made in the secAd two sentences is that any inference
of the form:

or not q not q r
or r

is valid. Show that this is the case. (Hutt: Y,ou may find it helpful
to,begin by showing that any inference of the forrm

porq p r
r or s

is valid.I
3. Complete the tree-diagram you began iu Exercise 1 to justify in-

ferences of the first kind in Exercise 4 of Part B.

From the preceding exercises Lt follows that there are four ways of
saying what is said by a restric* conditional sentence. For example,
we have 4een 'that any two of the following sentencjs are logically,
equ ivalent:

_

au = [(1Oi
au 0 a 0 la ?- 01
( a 0 a 0 or 0)

ia A Oand a ,e 0) *au 96 0

In general, any two corresponding sentences of the fol
are logically equivalent: .

p q [not 'r1
p r [not q]
p 60 (q or r)

(not q and not r) not p

ing forms

TC 190

Answers for Part D
The complex constructive dilemma of the hint fcir Exercise'

validated as follows:

p or q
r or s

p r Or a)

9

r or s
- *

q (r or s)
7 Or S

The answers for Exercises 1, 2, and 3 are combined in: ,

not q [p r]

q or not q

p [not q r]

not q ='=> r

Answers for Part E

g or r

ab = Q (a 0 or.b =
ab 0 b 0 [a * 0]

2. # b and * 0) -ja
ca = = [a # b]

3. A + c = A + fic =:* c 0 Fa.
= 11' or c = 0), (l 1*-t; and c

-a' a r, =5. a 0 [1. # /a .1,
1-; a and a -0) aPa

4 52,

in, A + ac = A + 't
* 0 ) A + c * A +

= -1; /a or a = 0),
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For each of the following sentences, w ite three other sentences equiv-
alent to it.
I. i a and h OP oh r
2. 7`) 4 a '- b 0)
3. A 4- a.c .4 =

4. aCi /Li la A 0)

5.04 Vector Spaces

In Chapter :3 we noted that the set i of translations of f`' is a corn-.
mutative group with respect to the operation of composition of func-
tions. Using '+' fbr composition, '6/ for i., and for inversion of.
function, w.e expressed this in Postulate 4-:

,.

(a.) + 113) Of./ (c) -a EII . *
4 (a A rh) + a * (h
4_ +

a --a 0
4,. a + h + cx

In -the present chapter we have seen that te real numbers "operate!'
on translations in.such a way that

40. (El) a he./
4 a. 1

. --
4 a (17 c)=-a.hi-ac,.
4,, la +. h). c = a c I; c,,

and 4s, (a tO e = a (be),
A commutative group on whiCh the real numbers operate according

to rules like 4,,(d) and 4,, - 4 is called a vector space over the real num-,
hers lor, for short, 'a real vector spacel. So, we can summarize 4 -
in:

Postulate 4"
over

.7, under function composition, is a vector space

Vector spaws come up often in matheniat(ics and in its applicitions to
`physics. [Some of these applications are d scribed in the next section.]
When one is considering,operstions on a s t with respect to which the-
set ia a vector space it is customary to call the members of the set
vectors. ;59, in this course, we shall sometimes speak of translations as
vectors. ..,

If you imagine erasing each '-,' in40 4,4 and replaang each V' hy
an '..y.r, you should see that- without knowing it-you have been
acquainted forlome time with one vector space. Clearly, one might
properly think of the set of real nuMbe s as a vector space and refer
to real nuTbers as vectors. One usually doesn't, because/ he can say\ /

6 453

[Here are some items which will give the students some practice
in recognizing theorems about points and translations, as wel]/as some

kpractice in u'sing Postulates 45 - 48, I
The following are sentences about points and translations.

If a given sentence is a theorem, write 'T in the space
vided. If it is not a theorem, write in the space.

.Y. + (D C) -21 - = C D .

A

4. B - [A (A - B)3] = (B A) -2
5. -C*2 -13 = 'B [(B -c+2) + a3]

6. ( A - 54) 2 A =' = 112

7. (B A)2 - 3 = -3 B = A
8. 53 + = 13
9 -a* ( C + ) + =.0

10. (A + 52) - (C + a2)
Answers, 1. T

6. 1\i

2. N

7. T

3. N 4. T

8. T 9. T

We are btrilding a very particular kind-of algebraic structure in
our Postulate 4. The following brief, remarks are to help you to see
where this particular structure lies among the large variety of alge-
braic structures. None of these remarks are intended for presenta-
tion to the students at this time.

, f
If the arrows are .removed from 40 - 48 and 'T' is replaced by

'ft' then the resulting sentences assert that R. is a rink (with identity).
['ring', like 'group' and 'field', reters to a ttipe of algebraic struc-
ture.] Let's refer to these sentences as the rink postulate's. As they
stand [with arrow&, etc.), 40(a) - (c) and all - 44, assert that 'I is a
commutative groulP, and 40(d) and 45 - 48 assert that the members
of it are operators on this group. Because these operato-rs constitute
a ring,"T is said to be a module over It: In short, a module is a com-
mutative group togetiter with a ring of operators. Setting aside the
particularainterpretations we have given to the letter 'T' and 'Fr, the
theory of Modules is the theory which has as postulates the ring postu-
lates together with postulates 40 - 48. By definition, a vector space
is a module whose operators, constitute a field. So, again setting aside
the interpretations we have giveri to 'T" and .ji,', the theory of vector,
spaces is the theory which l s as postulates 5 r0 - 57 [omitting refe-
ences to order] together wit 40 - 4e.

As pointesistfut on TC 177, the integers can be introduced as
operators on any commutative group. Since, as is easily seen, addi-
tion and multiplication of integers satiafy the ring postulates, any
commutative group can be considered as a module over the integers.
Since the integer's do not constitute a field, such a module is an \
example of one which is not a vector space, ,

Since the rational nurnbet's constitute a field, T with [only]
rational numbers as operators is a vector space and is quite a'
different one from the vector space T over ii, with which we are
dealing,

\ ,
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tiiore about the algebra of real numbers than is-included in the postu-
lates for a vector space.

In Chapter 3 we discovered a rather close analogy between our alge-
bra of points and translations based, on PostulateS 1 3 and 4" land
Definition. 3- 11 and the algebra of addition and subtraction of real
numbers. Briefly, for each sentence of our algebra there is an analo-
gous sentence about real ,numbers, and a sentence,of our algebra fol-
lows froin Postulates 1 - 4"', and Definition 3-1 if and only if the
analogous',. sentence about real numbers follows from 51,ia) (c),
5, 5, anti 5 i.$)n page 170. Now that we have enlarged pur algebra
of points and translations, our sentences still have real number
analogues but, With more postulates, more of our sentences are
theorems. From what you have seen on removing the arrows from
4 4, it is still the case that the real number.analogue of any of these
new theorems is bound to be a theorem about real numbers. The re-
verse situation is too complicated now to be.of much use. All that is
worth saying in this connection is that if the real number analogue of
a given sentence of mix- extmded algebra is a theorem then the sen-
tenee may be a theorem of our algebra, and various proofs of the
analogous sAtence about real numbers may suggest a proof of the
given sentence.

Exereisvm

Part A
ven any transli;tion I, we shall have many occasions to speak of

and to think about all of the Multi ples of by real numbers. The set
of all such, multiples is ix: x = ar.q. For conveniente we adopt the
following definition:

Definition 5-1 ;IJ 'is the set of all real multiples Of
'it. 'That is,.

IC4

1. Show that each of the following belongs to the set [cil.

de 0; 'cl - 2 , ifi 2 t -i273

.2. What postulate tells y.ou that ,i7
3. Is composition a binary.operation on That is, is it the

that a * Wf Id] for all (1 an d b in Ed)? Justify your answer.

4. Why does 0.e Id)?

V.

case

TC 191(3)

Any field is a vector space over itself. In te
dirnensionality introduced in a later chapter, sue
1-dimensional. A field i'S also a vector space ov
and, as such-, has dimension greater than 1. Fo
ntunbers constitute an infinite dimensional vector
rational numbers. [One way to see that this is a
are infinitely many prime numbers and that-any linear combination of
square roots of distinct prirnes with rational multipliers is zero only
if all of the multipliers are zero Ii.e., for distinct primes pl, p2 , ... ,
rINFP-1 + r2N5c, + ... = 0 only if r1 = 0, r,., = 0, ... ). ] As another
and simpler example of an infinite dimensional vector space, con-

isider the et of all polynomial functions. These functions form a com-i

mutative roup under the usual definition of addition of real-valued
functions [f + g = {(x, y): y = f(x) + g(x)} J. They also admit the real
numbers as operators [f . a = {(x, y): y - f(x) al]. In fact, since the
set of all )olynomial functions of degree at most n is closed with
respect t ad&ition and to multiplication by real numbers [as defined
above), is set of functions is a vector space over ft and, as it turns
out, has dimension n + 1. Vector spaces whose members are func-
tions occur very frequently in mathematics and are of great importance.
Our vecto space T is. of course, an example.

As wi I become clear when we take up dimension, any two vector
spacts ovcr the same field which have the same finite dimension are
very much alike. More precisely, any two such spaces are isomorphic
with respe t to their respective group operations of addition and their
respective perations of multiplication by field elements. [The same
is true of v ctor spaces over a gi.ven field which have the same infinite
dimension. ], For example, any 3 dimensional vector space over ft is
isomorphic to the space of all triples of real nuMbers with addition
defined by '(x, y, z) + (u,v,w) -- (x + ii, y + v, z + w)' and multiplication
by '(x, y, z)- a = (xa + ya + za)' . ,This vector space is often chosen as
the "typical example" of a 3-dimensional vector space. Aside from
this case with which it can be debcribed, this is a rather unfortunate
choice on pedagogical grounds. For some important concepts which
are readily grasPed when considering, say, T, are somewhat difficult
to bring into focus when one is viewing only the ordered-triple example.
This, too, will become evident when we study dimension,

ms of the notion of
a vector space is
r any of its subfields
example, the real
space over the
is to note that there,

TC 192 (1)

The exercises of Parts A and B serve to concentrate students'
attention on what it means to be a vector space and, also, to Introduce
concepts and notation which are fundamental to the remainder of the
course. The set [a) of all real number multiples of a translation
consists of -6 and all translations which, intuitively, have the same
direction as 1. [This is a discovery we hope students will make in
Exercise 8 of Part A. ] In view of this ,we shall, later, refer to fa I
as tb9 a. [For example, is a translation "in the direc--tion of " if and only if c [a].] The sense of a translation will be
defined in a similar Manner, but with the 'multiplication ref4rieted to
beiipositiye. [So, it will be the case that two translations "have the
same sense" i.e., belong to the same sense-class --if and only if
either [and, so, each] is a positive multiple of the other.] in terms
of these notions one can define the direction of a line as the direction
of any proper translation which maps the line onto itself, and the sense
of a ray as the sense.of any proper translation which maps-the riy into
itself. The set 0, e) of all real lin c.pniblnations of t and e
forms the basis for a similar definitTon of the "direction" ar, as
we shall s;ay, the bidirection of a lane.

456
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The exercises deal, implicitly, with the notion of a subspace of a
vector space and are analogous to earlier exercises dealing with sub-groups and subfields. You may wish to recall to students a discovery
they% made in Chapter 3. Knowing that is a commutative group with
respect to addition, they were able to show that,the set I of integers is
also a commutative group with respect to addition merely by noting
that integers are real numbers., that 0 E I, and that I is closed with
respect to ilatiiition and, oppositing. Thi.00-enough because each of the
group postulates [the APA. PAO, IPO,nualaCPA] is a universal state-
ment about real nurnb-ers which refers Ik4ro'-ia 0, addition, and opPo"
siting. [A slightly more sophisticated procedure, which you may wish
to suggest, is to show merely that1 is not eMpti,/ ancithat it is closed
with_respect to subtraction, Since, given any real number a,
0 a a it follows that if there is an integer a, and the set of integers
is closed with, respect to subtraction, then 0 is an integer. Since-a 0 - follows from the assumed properties of I that I is .closed,
with respect o oppositing. Since a + b a -b it follows that I is
closed with r s ect to addition.] F'or the same reason, it was possible
.to show that the rational numbers' form a field by using the fact that
is ;i field, that rational numbers are real .numbers, that 0 and I are
rationalind that the set of rational numbers is closed with respect to
additioa, multiplication, oppositing, pand reciproctting of nonzero
nuni.bers.
Answers for .Parf A
1. A e41; Jo; ct , A. -1; dv.r2- 13 1(a/7 + 3 And, of

course, I, 0, -I, and a7. + 3 are real numbers. ]
4(d)

3. Yes.; this follows from 4,. If da and g = 113 then
+ 17, da + 113 d(a b). [The preceding is as much as you

should expect from your students,. especially in view of the fact
that we have, as yet,. given no rules for existential quantifiexs
You may wisilto point out that implicit use is made of the fact
that the equality principle 'GI = c and 5 = a) + 5 = + a!
is a valid sentence. 1

4. (5E ] because there is a number x arnely 0,.] such that =

it 193 (1)

Answers for Part A [cont.]

5. Yes.; this ollows from Theorem 5-2(a). If a then'-a = -(ga) = 16 -a.
6. Yes. Since, bY "40(a)-(c) and 41 44, T is a commutative group

with respect to composition and [a [ is a subset of -1" which con-
tains d and is closed with respect to composition and inversing',

,[1] is also a group with respect to composition. For, since 41-34
are universal statements about composition, inversing and for
all members of T the corresponding statements must also hold for

1.

7, All that remains is to show that if a E [ and b E C thenSID E [a 1.
8, Yes. If -S. aa then -Sh (da)b a(ab), by 48.
9 Each member of [1] other than 'd has the same direction as A

does; each translation which does not belong to [a] has a differ-
ent direction than t does.

Answers for Part 13.-'
1, If -a° da then, also, a da + gO. So, each member of [a]

belongs to [a, e ]. [Similarly, [g ] [1, el'and, so, ta] e 1a[1, e Thert) are, however, many translations in [d, c ] whichare neither in [a nor in [e ] except in the cases in which 4 =
e 0, or [A] c 1. I

,
2. Yes. Since T, is a vector space over E. and A, J] c T, all that

needs to be shown is that .6 E [a, ;I and that 1, --g] is closed with
respect to addition, oppositing, and multiplication by members of
e. That 'd E [ a, g] follows from the fact that 'd E [1] C [ .4, .g" J.[Alternatively, a .6 + -- .10 + -g0 E [1, e ]. ] Tbe three closure
properties, are shown as follows;

-(1a1 + ga,) = -(1a1) + -(1a2) -: 16 -a1 + d -a2
(aal + i;a2)a --- (da1)a + (ga2)a -a d(a1a) + -e_1"(a2a)

The purpose of this section is to point out, by discussing examples
like those in the Introduction, that the notion of vector plays a role in
subjects other than geometry. The "other vector space" of the title
refers to the space [properly' 'spaces') of "measure vectors" for
which we try to give students a feeling in the discussion which precedes
the exerciseaeon page 195. To avoid devoting toci much time to the
somewhat extraneous Aubject of nongeometric applications of vector
spaces, a precise destaiption of the epaCes of measure vectors is
relegated to the optional section 5.06. As far as the reznainder of the
course is concerned the present section 5.05 may also be considered
as optional, and both pections might be omitted. It is eyen possible to
omit section 5,05 and to take up section 5,06 merely for the purpose
of showing students that there are vector spaces 'other than; T and its
subsp ces.

,
It is worth stressing the point that, although there is a rneaning,of

the w rd 'vector' according to which directed trips, velocities, and
force are correctly referred a vectors, it is a different meaning
from hat which we have given o this word in section 5,04. According
to the latter, an object may be spoken of as a vector in any context in

453
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. l- s it the ease that u.titil for everya in ktil? Thia is, is jtil closed
with respect to inversing?.Ju4tify nur answer,
Is Jj a cottiputative grouP.with respect to composition? Explain.

.
ur explanation in,answer to Exercise 5 should have shown that,
cause / is a commutative-group.witii respect to composition, any

subsei which contains 0 and is closed with respect to compo-
sition and inversing is, also, a commutative group with respect to
composition. iillhat,more would you need know about biuch a subset
in order to be sure,that it is a vector spate over ,/,"?
is I (ti a vector space over With respect to the operations irt./

9. IntuitivlAy, what do yoUothink itrue abitut all the translations
except, perhaps, 0which belong to Ilk About any translation

which does not belong to lir?

t

i

I

Dei nition 5 I J. el is the set of all real lirieur ecwn.
nations of I anti r. That is,

. = clx, ;

I. Sholv that k/I c2. (1.

2. Is I. el a-vector space over.
,

_

. 4
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a

-

Throughout the rest of thc course the only vector spaces we Ni-tall
interested in ore the vector spaCe .7 and its subspaces like those

xotrstudied in Parts A and B'of the preceding exercises. But, to give
Aiu soniSttika of other uses of the notions of vector we shall illustrate
three cif them in this section. Much of-what follows 'depends 'on the
ituiti ncrti-Ons you already have about how fahxsiCal objects behave
and, to some extent, on copirgon geometrical notiong-which will be
developed 4iore tompletely later in this course.:Most of these notions
have aftelady been used 'in pages 1 5 of the Introduction. -

Most kinds of quantity Nhich havq, like translations, both sense ariel
ma'gnitude caa bilpreated 'as vectorsthat is, as menihers of 11 vector
spAce. A.l thut is necessary for this 'is that such quantities 'can be
"added", ,and thstipey can be "multiplied" by fed numbers, in.such
it.WIty. that postulate*, liko 4 .=? 4 are satafted. '` .

I

A

%

#6 1

4,

'which:it is being considered as a nwmbei, of a vector spaise. Since, as
is pointed otlt in the text, there is no reasonable definition of 'addition'
aa a binary operarion on rhe set of direeted trips, such'trips are
unlikely tq be considered, in anl, context,' as members of a vector )
Space. As to .forces, forces aeling at a given point rnay be ehoughtrof
4's members of a vestor space and, so, he referred to as vectors id
our sense of the word. However, even whe,n forces act-at different
points they are still spoken of as,vectors even though oppositely sensed
forces of the sanr magnituae acting at different points of a body do not
"cancel" one. another.

In the second Paragraph the.wbrd 'quantity' refers to "denominate
'[vector] meaaures , ,sui!h as O miles at a,heading of 1g". Such
"quantities" of directed-trips; for example, can always be added,
although the trips themselves can be- addcd only if they fit onto one
another properly.

In line with the distiixtio n's made in this course 'sensed trips'
would be more appropriate than 'directed trips'. The latter, however,
sound less queer than the former and so. is perhaps prefertible for this
peripheral section,

Samp
1. We have peatulates that tell us that T,is a commutative gr.bup

unde r 'function 'composition, ansl ,that ab E T. Give the mfour
additional postulates we need to aay that the group T of transla-
tions admits the real numbers as 'operators.

Z. /SuPpose that -a..** .6. Draw pictures of each'of the following'sets
'of"points.

Tc 193 (ZY

(a) All points Q such that 0 A + q, for some
(1113) AU points R such that R = B + ar, for same r

* ( c ) All points S such that S = C + as and 0 1.
3. Given that a * d, deter:mine the values Of 'b' that satisfy,the

following.,
(a) 3b + 213,+ -116 = 6
(b) a..1)2 = 1) + mda.(1 b2)

Alums- rs for Sample
1. a 1 - -S(b +

Z. Here are typical pictures:
ac;

(a)

(b)

C +17

ac + 1;c; (Sb)o = (1;c)

(a) 16 5 3b + a. Zb + l6= =7:. 3(b + = %AL

' Or) oJ [-a.! 62 1(3b.- 1) -1/441 b?) -;.(Zb2 3b) =
I ,

?

at
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Directed Trips

Suppose that Bill starts at a point and takes a trip of 4 miles at a
heading of 225 to a point S. This trip may be illustrated as in Fig.
5-- 2,

R 22Y /
,IV 210 90.1F;

\\,
Fig. 5-2 milb5'

Given that Bill now makes a return trip'fronf S to R, this return trip
is one of m'ices at a headingof leomplete this sentence.l.

Make a drawing to show a trip of 3 miles northeasterly froth a
point A. 1.11e sure to "show the direction of north and to indicate the
scale of your drawing.)

Before saying more about trips like Bill's let's consiier the simpler
case of trips all of' which are taken along a straight ro la. whieh runs,
say, east and west. I CI'

w

Fig. 5-3
[For convenience, a sequence of milestones is indicat'eci..on the north
side of 'the road. 'And we have labelled some points along the road.
Note that, for exarnple, the disrance betwerM and E is 2,miles, arid
the distance bet;.veen B and C is 2.5 miles.1 In describing what kind
of a trip it is that one, makes in going from E, say, to C one might say
that this is an easterly trip of 3.5 miles. What kind of trip is,One from
C to E? e

As ybu know, anotherway of describing directed trips along a Fond
is to use real numbers. If We take the unit of distance as understood;
and agree th.at the eastward sense', say, is to be considereht to be
"positive'', we can say that the measure of the directed trip from 4' to q
is 3.5 and that the meastire of the trip from C to E is 3.5. [Or, as we
have' been doing, instead -of "3.5' We can ski.), '3.5' and, instead of

we can say '-3.5'.1
Using real numbers' to &measure difecttd trips is azitadvantage when

'one must deal with tWo or more successive trips. For exaniple, suppose
that Bilt starts from his home beside the road and Inakes two trips,ette.
after the other. Suppose that the measure of the first trip is 3 and that
of the second 'is 4.5, Without looking at the figure thich, anyWayi
doesn't show Bill's home:- you should be able tO comp. ,te the measure
of the directed trip from Bill's home to Ole point where his second trip
ends. Can you do this? What is the measure of the third trip Bill must
make to reach hems? What is the direction of this trip?

11.1
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Fill the blanks as follows: 4; 45°

The students should hav,V e drawings something like

W E

his:

V

You might want to have them make this drawing as a seat-work 4,xers
cise. In that case, you can walk arourid the room and give individual
help where needed.
Answer to question: a westerly trip of 3.5 miles.
You may want to ask sin-Car questions of the class in order to1/4 check
their understanding of the situation, -. .

If, starting at his home, Bill makes a trip of rneasu.re..3 followe
by one of rnçasure -4.5 then the measure of the directed tkip from his
home to his fipal position is -1.5. The measure of the trip from there
to Bill's home is 1,5, Since we have chosen the eastward sense as
positive. Bill must travel east to reacb his home.

In preparagn for the exercises of Part A it may be well to br.ing
out the meaning of 'heading' by questions such as 'What is the heading
of a trip from center of the compass disk [for Part A], through the
second graduation clockwise from northV Through the fourth'gradua-
tion counteIclockwise from west?' [Answers: 300, 110° it, 'Also, you
may wish to remind stugients of the Pythagorean theorem. [Exercise 1 .

deals with a 3-4-5 triangle.]

o."

411,
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Let's collect some ideas from the preceding discussion. First,' directed
trips along a road can be measured by real nuMbers. Second, some-
times but not always one trip (gin be thought of as being "added
onto" another. For example, you can "add" the trip froin 13 to F onto
the trip from C to 13 and consider thp "resultant" trip from C to E.
But, it doesn't make much sense to add the trip from B to D. onto the
trip,from A to ('. Third, 'measures of directed trips can always be added
and, when it makes sense to "add" two trips then the sum of their
measures is the measure of the resultant of the two trips.

Now, let's see what'all this has to do with vectors. In the first place,
although a directed trip along a road can be represented by an arrow
from the point where tlie triP begins to the point where it ends, differ-
ent arrows of the same length and sense will represent different trips.
Also, trips can be added only-if they fit together proPeriy. So, there
seems to be no way of think i,rig of directed trips as members of a vector
space. On the other hand, you have seen it the preceding section diat
the real numbers constitute a vector spaée. If we like, we can think of
an arrow drawn on the pictury of our road as representingnot a trip,
but the real number which is the measure of the trip from the place
where the arrow-gins to its point. For example, the arrow from A to
E and the arrow frni B to 1) would both repreSent the real number12.
Since real numbers form a vector space with respect to addition,you
can "compute" sums of real ifumbers just as you do sums of transla-
tions. For example, to "oompute" in this .way 2 +. 5, draw any arrow
!along the road) whia represents 2 and,.next, draw the arrOw which
represents 5 from the point of'Ple first arrow. Then, the arroiv which
begins where the first does and ends at the point of the second arrow
represents 2 + 5.

Now, let's see what happens when we consider trips in othe direc-
tions beside 6ast and west. Again, any suCh trip can be repre&ted by

, an arrow; but different arrowseven if they have the same length and
the same sense will representAifferent trips. And, it makes sense to
"add" ,two tr43 only if tile Second starts where the first ends. InispiteL
of Ibis, trips wnich are represented by arrows which have the satpe
length and the same sense are "similar". Just as real numbers can be
used to measure directed trips along a road, there are "numbers"
which can be used to measure directed trips in all directions, These
numbers, which wp shall call 'measure vectors', form,a vector space
and can be represented by arrows. In fact, the arkw which represents
a directed trip also represents the measure vector, of this trip..The,
difference is that the different arrows which represent different. but
"similax" trips all represent, the same measure vector. When one
directed trip can be "added onto" another, the meakiure vector of the
resultant trip,can be computed just as you compute the resultant of two
translations.'

TC 196 (1)

In ordtr to make it easier to check the resUlts in the exercises for
Part A [and other parts in this section, you might duplicate work sheets
on wnich a circular compass has.besn printed. The, ease with which
such papers are alecked more than'matces up for the effort made to
prepare such Work sheets, This is also an excellent place to bring in -
a parallel ruler as a tool for rn'aking fast and accurate scale drawings...
Answers for Part A
1, 2. Your studer ts should have a picture something like this:

The length of the trip from A to C
is 5 miles. Its hooding 1 903'.

3. Amonethe correct an%ers ire these: A to B and, C to, D;
B to A and D to C; C to A and D to B

1. "YOur stu-clents- shoulq have drawings something like ths:

A

the resultant trip tas length
1 'milee an heading IZ3° .
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Exercises

Part A'
Suppose that Jack starti.i at a

poipt A and walks 4 miles at a
ading of 1350'to a point B, Then

Jack walks 3 miles at a heading of
45° to a point C..

Par;13

1. Copy the figure,.using a scale of f inch for 1 mile. Draw an arrow
to represent the measure of the trip from A toC. What is the length
of this trip?'What is its heading?

2, On your drawing for Exercise 1, locate the point D such that the
trips from A to C and from B to D have the same measure vector.

3. What other two direCted trips between points ofyour figure have
the same measure vector?

4. PraW another figure, showing compaas directions and scale
(finch to 1 mile!, ancVmark a poi4t A. Bill stcrts at a point P.
which is 300 miles from A. fie makes a 10 mile trip from'P at a .
heading of 100° and 'follows this with a trip of A miles at a heading
of 170°. On yOur paper, draw arrows which repi=esent thb measure .
vectort of these trips and of the resultant trip. What are the
[approximate( lengthtand heading of the resultant trip?

5. On the same sheet of paper you used for Exercise 4, draw arrows-to
represent the nidasure vectors a'and -g"of Bill's two trips; but, this
,time use a settle of inch to 1 mile, Then, draw an arrow to rfpre-
sent Ito the same scale] the meaSure vector a 4- tiof the resultant
trip.

6. Continuing, with Exercise 5, drat arrows to represent the measure
vectors a, cif, and 6. --(1°. What are the lengths and headings of
trips whiCh have these measures?

In applying mathematics to physical situations one must always
make assumptions, and usually these assumptibli)kare only aPproxi-
mately satisfied. !Recall, for example, the interpretation on page 27 of
poinis as, "absolutelY preciselocations".] In talking atout directed-

,

trips we have assumed that, for instance, there.are triPs exactly TO
miles long, precisely' at a heading of 30°. More Fenerally,* we have
.assumed that a directed trip has a single, precise, measure )irector.
This is., of course, not- trUe of "real" trips. It is closaibfe, hOwever,
to assign approximate measure vectors to diOs..apd, by using the
algebra of vector spaces as though these were the exact measures
of the trips, read) sufficiontly accurate conclusions as to, say, t-

. ants of Suttessive
There is another . assumption which we make when assigning

measure vectors in the way we have done to trips on the'iurface of
the earth.

ivr;
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5, 6 , Youl students shouldhave drawings something like this:

The lengths and headings of trips which have these
- a:

g -

10 miles; 280°
5 miles; 100°

91 miles; 252°

measures are:

to,

4
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I..Sappose that Bill starts at Dallas, Texas and makes three suc-
cessive trips. The length of each trip is 500 miles. The first trip is
north. the second is east, and the third is south. In what direction
must Bill travl to return to Dallas? How far must.he go

2.When .you answered Exercise 1, you nifty have thought that 13i11
+Zo6 Id I), 5a() roil!2s yaw. or Dallas at the end of his third trip. U.
yOu did. then you should look at or imaginea globe. At the end
of his third trip, is' Bill more or less than 500 miles.from Dallas?,

3. Suppose that Bill travels 300 miles west, then 400 miles north,
500 miles in the direction of his starling point. Will

Bill b hack where he started at the end-of his third trip?
4. la) What assumption are we 'making about 'the earth. when we'

as.sign measure vectors to directed (rips on the earth's surface?
(h) Is this assumption correct'?

.

tel If your answer to (b) is 'No.', is it 'still possibk 6) use this
assumption to make useful predictions'?

I. A ship leaves Charleston, South Carolina and sails due east. After
Sailitig 50 miles east, the ship sails due north for 20 miles to evade
a local storm Then, the ship sails southeast until, it reaches the

. -line of ifs original easterly course.
in) Make a scale diagram Showing the path of the ship to the point

where It gets back on course.: Use a scale of 1 inch tsi represent
20 miles.

(h) Estimate the distance the ship traveled from the beginning of
its trip to the'point Where it gets back on_course.

(c) How far from Charleston is the ship when it gets .back on
coucse'?

2. A ship starts at Boston, Massachusetts, sails 80 miles due east,
and then sails due stiuth. The pilot falls asleep during the trip and
loses frack of how far south the ship sailed. By means of radio
cantacts, he is able to determine that the ship is exactly 100 miles
from Boston;)
(a) Make a scale diagram J inch for 20 mil6.1 representing the

path of the ship. Ar
(b) .HoW far to theseuth had the Fillip sailed When invas 100-4-Mies

..from Boston?
(C) Suppose that:the ship noW turns and sails toward a point D

which is 160 miles due east from Lioston. 1-ktrx many miles
-rFusrthe ship travel to get to D?

Id) How many miles has the ship sailed from the time it left Bos-
ton -until its arrival at D?

3. A.ship heaves a pOit A and sails west for 100 miles'to a point B.
From B the ship riiakes a trip of meaure a directly to a.point C.
(a) If the resultant trip from A to C is a trip of 0 miles, draw an!

4rrow to represent the measwe vector a. [Is there more thar
one possibility?]

API

TC 197

Answers for Part
1. Bill must trayel due west about .960 miles in order to return to

Dallas:, [Notice that Ile is not, 500 miles from Dallas. Given that
Bill makes thy thre-ips as specified, he will go 'northAy a point
near Marysville, lf,i4hWas, then east to a point.near Terre Haute,
Indiana, and then south to a.point near Montgomery, Alabama.]
Students who,have trouble seeing. thi's 'are most easily convinced by
having them plot te successive trips on a large globe. Also, by
usin'g a globe it is easier to see why,the resultant trip is not as one
would expect .in a vector space.

Z. Mure.
3. No. ; he must go a little further .to reach his starting point
4. (a) We assume that the aurface of the earth is flat.

(b) No. ,
Yes. 11,,For many purposes, and for not too large distance s, the
predictions'Will be useful. And, with a little practice, one can
make fairly gOod approximations to the errOrs inherent in this
assumption. On the other hand, for an accurate survey of a
moderately large region, one must use different'assumptions.

(el

Answers for Part C:
I. (a) Your students should have pictures something like this:

(b) About 98 fees
(c) 70 miles

z.

(b) 60 rn1les.15ee'd.rawing in (a).
(c ) 2,40 miles

3. (a) Et B No.)
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11111,

(1)) If the magnitigie.of.a iS 60 miles and the resultant trip from A
to is 40 miles long, draw an arrowto represellt, the measure
vector a. ! Is there merle than one passibility?l'

(elf the magnitude of a is 60 miles and the trip from A to. C is.
120 miles long, draw an arrow tO represent the measure Vec-

.
tor ap71Is there more than one possibility?!

(d) IT the magnitude of a is 60 miles and the resultant trip from A
to C.is 40 miles long, draw an, arrow to represent the measure
vector a. !Is there more than orw possibility?!

le) Suppose that the magnitude of a. is,60 miles and that the re-
sultant trittfrom A to C is d miles long. Explain, by referring
to a diagrain,

(i) why it is impossible for d to be less than 40,
(ii) why it is. impossible for d to be greater than 160,
(iii) why it is possible, for d to be any number between, and

including 40 and 1(30,
(iv) why a may be any one of two possible measure vectors if

40 d 160.

Velocity

Read again the discussion of a problem about velocity on pages 3-5.
. Belbre considering the solution to this problem, let us consider some
simpler problems. But 'first we should make precise the distinction be-
tween spotd and velocity. The speed of an object only refers to how fast
Abe object is moving. [For exaniple, we may say thatethe speed of an
ditomobile is 50 miles per hour.] The velocity of an object refers not
only to how fast the object is moving [that it3, its speed], but alSo to the
sense' of iLs path of movement. [For example, we May.say that the ve-
locity of an automobne is 50 miles per hour to the northwest.]

We may represent the velocity of an object by drawing an arrow
. whose length represents (with reference to a suitable scale] the speed,

and whose sense represents the sense Of the path of movement.- For
example, using a scale of inch.:to repreSent 1 mile per holini the 'ye-

_ lodty of a. boat kianing 5 milea per hour to the 'east is representedvloy
the arrow: ,

Fig. 5-4
9,)

Exercises

a

:7 -

Part A
1. Did you ever try walking up or dpqm a moving escalator? If you

walk up on an "up" escalator, thetipeed with which you climb will
be (greater than/less than) your corresponding

(.c)

C [No.]

[Yes.]

a

[No.]

All of these explanations are based.on intuitive notions about
circles and triangles.
(i) All of the points which are less 'than 40 miles from A are.

"outeide" of the circle with radius 60 [miles] and center
B. [See figure (a), below.] So, no point on this circle can
be lees than 40 miles from A. Since C is some point of
this circle and d is the distance froM A to, C, it is
impossi121e for d to be less than 40,

(a) (b)

(ii) All of the points which are more than 160 miles from A
are "outside" the circle with radius 160 [miles] and
center A. [See figure (b), aboye,) This circle intersect
the circle with center B and rldius 60 [miles]' in the point
on the ray AB which is 160 m iles from A. So, C is
"inside" the circle with center A and radius 160 [miles],
which means that it is impossible for d [the distance from
A to Cj to be greater than 160.

(iii) As C "nuives" along the circle with center B and radius
60 [miles] from thg point which is 160 miles from A to
the point which is 40 miles from A, d "shrinks" in a
systematic, or continuous, fashion from 160 tia 40.
Intuitively, any value between these extremes c'an be
obtained by a suitable location for the "moving point" C.

(iv) This follows from the fact that the circle with centb
and radius 60 Imiles) is symmetric about the line
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speed on-ordinary stairs. If yotrwalk down an "up" escalator,
the speed with which you climb will be (increased/decreased)

2. An airplane Can fly 250 miles per hour if there is nO :wind. If the
plane is flying into the Wk.ind, its speed Will be (increased/decreased)

If it is fling with the wind, its speed will be (in-
creased/decreased) If the pilot keeps tile plane
pointed north and a wind is hlowing in a westerly direction the
plane twill/will not) ..travk due north..

3. Suppose that when a ship's engines ace operating the ship Can
move with a speed of 10 miles per hour in still water.
(a) If the ship is traveling against a current, its speed will be

t increased/decreased) If the ship is headed east
'with its engines operating, aga,inst a current which is.moving
west with a speed of 4 miles per hour,,the ship's resultant
velocity wfll be miles per hour to the east. The resultant
vel(2city can be found graphically by n aking the following
drawing:

Itrrerarr,

Scale: inch 1 mile per hour
up. velocity of the ship due 'to the engines

velocity of the ship due to the curkent

TC 199

Answeri for Part A
1. greater than; decreased
2. decreased; increased; will not
3. (a) decreased; ..6

3. (b) 2; east.

4 kr'

N. '

The

(c) 15;

Te
4.

students should have drawings

E

7-L1
S

,

north..

1

somethi g
+

students should have drawings something like,this:

N

7.

+ 17c

s
vE

I MO t- -orr

( d ) 1 0 miles; 5 miles; the ship's path is one at a,,,,,beading of
ipabetut) 27' and it travels 'about 11.2 miles in one hour.,
[Nckte that, by the Pythagorean theorem, the length of QC
Nee the picture below) is
The students should have.drawings
[only twkce as large]:,

s

E
L resultant velocity of the ship ;.,

(b) If the ship is headed west, with its engines operating, aglist
a 12 rnilv per hour easterly current, the ship's. resultant
veloctty 'wilr Iniles per hour to the _ Arli'e a
scale drawing to show how you can find the resultant velocity
graphically.' "e

(c) If the ship is headed north with its engines operating and a
current is moving In the same direction with a speed of 5
miles:kr hour, the ship's resultantrvelocity will be _ =tiles
per hogr to the Make a scale drawing to show hoW

. you pan find the resultant velocity graphically.
(d) Supplise that the.ship is headed north with it engines operat-

ing and acrosi a current moving east at a speed of 5 miles per
hour. HoW far north will the ship he after one hour? 'Hew far
eaSt will the ship be after one hopr?.1-1,pw *from the starting
point will the ship be after one holalltilalie S4a1e drawing-to
show how you can find [approxin Iy the pat} 4,ft.ie shiP 4,114-

vels in one ho-yr...[Mak:e kot(4$hOiawiem--
inch to rekaienel .;

the distance
using a seal

to

something like this,

4.4
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*i. .The picture drawn forrpart (d)
is appropriate for this exer-
e is-e . toTT4w-e-f,r-om
0 to st, CI and R, Teepee-..tivery '4v , andC
'vE +rkvc ^

The studepits..?hould have
,drawings sOmething like
this one -On the right.
The captain muSt steer his
ship at a heading of [about
330° [or," "30° west of
northl. lr order that th4-
ship' a rorsultant ve1oe#y
Es', ono, yihich,4.3-due' north
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ie) Consider the same situation described in Exercise 3+d) above.
Using a scale tof inch to represent .1 mile per hour', make a
drawing to s.how:

velocity of the ship due to the engines
; velocity A the ship due to the current

resultant velocity of the ship

(f) Supwse that the captain wants to sail his ship due north, hut
there is a current of 5 miles per hour to the east, Make a draw-
ing to find approximately! at what heading the captain must
steer his ship in order that the resultarrt velocity of the ship
should hetue north.
Hint: Let us use, a scale of-.

inch to represent 1 mile
per hour. e,., the velocity of
the ship due to the current,
is wepresented by the arrow
at Ole right: .

Ihe velocity of the ship.,
due to the engines, must be
reprekented by an arrow 21
inches longour job is to
determine the sense of that.
arrow. The resultant veloc-
ity up -4 r, must be reve-
sented by an arrow pointinv
nortt So,..we start with yr .

arid line in the north-
south direction:..4

-E

Now st;t. ,a pair of compasses so that you can draw an are of
radius 2i inches,.[Make a drawing on your paper. and solve the
problem.1

4. Malke a drawing that will help you solve the problem posed 5n
page 4..

Part B
'Let V be the set cif al,l velocities that a.given shit) can attain. Some

'elements of .V are:

7 miles per hour west
_

4.5.miles per hour northeast

The elements of can Ile represented by arrows [with reference to a
:chosen scalel.

1. Choose a suitable sctie, and draw arrows to 'represent the vei
ities v, and u,.

TC 200 (2)

4. In order to solve the problem
posed on page 4, we make use
of the diaKram at the right.
The captain rputif 6 eer his ship

;at a heading of [abo I 340° [or,
.20" west of north] in der.that
the ship'.s resultant v city is
one which is due north.

Ans ers for Pat
I, 2, 3. The students shbuld have drawin s sorngthing

. .

4

o

4 "4'

OR
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--2. Find t', 1.,11the resultant'ofr, and.r_.I.
3. Draw an arrbw to represent each of the t011owing velocities I using

a natural interpretation of the symbolsI.
Ia) th) 2

Part t.
A,hoy is swimming east across a lako. hi still water, he swims with
a speed of 4 mph. The velocity of the current in the lake is 2 mph to
thO north.
(a) What is the boy's reNultant velocity under .the cpialitions ,de-

scribed above'?
1 1) ) Suppose that the lake is 8 miles wide; least-westl, 16 miles

long, and generally rectangular in shape. How long will it
take hi ri to swim across the lake? How far north of his starting
[mint will he be when he reaches the other side of the lake'?
t-'iuppose that he wants to reach the other side of the 'lake at a
point due east of his 'starting p.ui nt. In which direttion should
he begin to swim in order to do this'?

2. With no wind blowing, a certain airplane can tly at a speed of
250 mph.. Detemine the velocity of this plane if it is flying west
and the wind ic*; on the plane with a velocity of 50 mph to the
south.

3. A plahe leaves NeW York and is to be 400 miles due west in one ,
hour. However, there is a wind blowing out of the northwest that
is strong enough to move the plane.S0 mph. Make a diagram

ineh represents 20 mph I and estimate the speed and hNding
.at which the plane musts fly 'to arrive at, its destination on. tirne.

Force,

Weaq.dagain Ihe description of a' force tab,le in the Introduction', pages
1 and 22. Before considering the experiments described there; we shall,
consider. some simpler ones.

Exercises

Part A
rJ

I. Consider an. .experirnent in
which just one string, is tied to
the ring. --!Supptise that a 10L

'Weight is attached to the
end of the string:and the pin is
pulled out of the tiAle,

Will the ring move? If so, draw
moverrient:

10 1. Yes. The ring will be. Rulled tovrard the. pulley.

an arrow to describe its path of

4.4

it 201 (2) 11114......s

Answers for Part
1. (a) 4.5. mph at a heading of 64'

(b) about, 2 hours; about .4 miles
(c ) 'at a heading of [about] 11120'

About 255 miles 1.1e.r iiô
heading df about] 259°.

2 mph
north

3. Heise is a scale diagram [using
Inch to represent 20 mph)

for this problem.
400 m h

The plane must fly about. 460 miles per hour at a headingiol 277°.
4. About 470 mph.

4

Aniswers for Fart A
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The xuts ure of' the force on the ring is a vector and can be repre-
sented by an arrow. 1:sing a scale of I inCh b) a 5-gram force, and
representing the sense from the cever of the table W the pulley by
left to-right, the ine:isure vector of the force on the ring is represented
by

, or by any other horizontal, right-piUnting, arrow 1 inch long.

2. Suppose that, as shown in the
figure at the right, two strings
are attached eo the ring. A 10;
gram weight is attached to the
string over the left.hand
and a 20-gram weight is at-
tached to ti other string.

?0;

lr the pin which holds the ring at the center of the table is
removed, will the ring move? If so, desctibe the motiow

b) Draw a ti)rce thagrarn ktonsisting of' two arrows from a common
origin, which represents, to scale, the.measpre vectors of the
two forces acting on the ring.

(c) Wliat single resultant force acting on the ring is equivalent to
the Iwo given forces?

3. Suppose that two strings are
tied to the ring as shown in the
figure at the- right. A 10-gram
weight is attachecno one string,
a 20-gram weight kattached to
the s,econd string, and the pin is
removed... )

la/ Will are fing. move'? DraW a plrin of the 'force takle as seen from
above and, oNt, draw an arrow pointing the way Sxou think the
ring will begin to move.

(b) Draw a force diagram representing the measure vectors of the .

two forces which act on the ring when it is at the center of the
table.

(e) Make a guess as to how to find the resultant of these two-forees,
and use your guess to construct an arrow which represents the
measure vector of this resultant force. What is the aPproximate
magnitude of the resultant?

(ti) Supposing that your guess in part (c). is correct, can you use it
to check your answer for part (a)?

TC 202

Answers for Part A [cont.]
Z. (a) Yes. The ring will move toward the pulley of lic? 20-gram

weight.
(b)

.
resultant * IC

10 20

(c) 10 grams toward the pulley of the
3. (a) Yes.

sense of
action of 20
cram

ram Weight.

htimotod somas of cIoci of
resultant fora,

of oction af
10- Kam willght

The etudients should have enough intuition about this system to
feel that the 20-gram weight will "contribute" more to the
resultant than the 10-gram, weight, so that the resultant force
will "lean" toward the sense of action of the heavier weight.

(b), (c), (e)
"Add" the forces graphically
as .we picturecl,the addition of
translations.

44.

Thc resultant force is one of
about 15.3 grams and making
an angleaof about 36' with the
sense of action of the 10-gram
weight.

(d) Yes. Simpl4 compare the sketch made in (a) with the com-
puted resultant force in (ci.

4

0
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(e) On your force diagram, cl,raw an arrow which represents the
measure vector of the third force which must be applied, to the
ring to keep it at the center of the table.

The assumption that the quan-
tity !or: "am6unt"I of a force can

' !like the quantity of a velocity or
of a ditabiated trip] be described by a
measure Vector amounts to assum-
'ing that the quantity, of the result-
ant .of twO forces can be computed
by the same graphical procedure
we used to compute the resultant Fig. 5-5
of two translations. This assumption can be justified experimentally.
(Your answer for part (e) of Exercise 3 may suggest force table experi-
Thents which would help to justify this assumption. L

Part B

4. (a) Consider tlqe same set-up as in Exercise 3. Notice that when
the'ring has moved away from the centyr of;he table the angle
between the 1.0-gram and 20-gram forees'will have chanRd.
Guess where the ring will Ir when it hM moved two-thirds of
the way to the edge of the table. Mark this point on your
picture for Exercise 3(a). Thbn, draw a force diagram and corn-.
pute the measure veCtor of,the resultant forceon the ring.

'tb) Do you think that the ring will move in a straight line?

1. (a) Use a force diagram to find the answers to the questions on
page 2.

(b) What should he the weight of C on page 2 and B are 20-
. gram weighrsl to keep the ring fr:om nitving?

2. Suppose that three strings are ,
A

tied trithe force table ring, as
shown in the figure at the right.
Complete:the table so that, for
corresponding values of 8 and c,
the rinl.; will stay at the center
of the table.
(a ) (b e) (d) (e) if (g)

8 [degrees l 10 60 . 1940 178

c !grains) 20 10

Answers for Part A [cont.j

3. (e) [See drawing made in
of the resultant of the

5

(c ). ] The required force is the oppo,site
given forces.

4. [The figure below shows an apProximation to the path of the ring.
The arrows indicate the forces operating at various points of the
path. The procedure for drawing such an approximation may inter-
est your students. One begins with the ring at A0 and assumes
that the force is the same for a. sl.yort portion of the path to A1,
say. At this point one recomputes the force, graphically and
proceeds as before. For example, a sequence of eleven such ste,ps
brings us to A11. The dashed lines show the directions of the-two.
forces.. The construction dot in the longer dashed line indicates
the position of the arrow-head for the 10-gram 'force. An arrow
twice as long from tbis point and parallel to,the shorter dashed
line ends at the head of the arrow for the resultant force at A1-1.
A is then chosen a short distance out ,along the arrow represent-
ing this resultant, and the proCess is repeated. Better results can
be obtainid by choosing shorter distances., between successive
positions.

It is interesting to note that the curvature of the path is very
slight for nearly half its length, but increases rapidly from then
on. The path is tangent to the indicated chord When tge ring
reaches the'edge of the table.

Ip

Note that the assumptions made will be mart nearly satisfied
if the strings attached to the ring run through small, smooth-edged,
holes at ttie edge of the table rather than over pulleys. I
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Answers flor Part B
1. (a) Here is a force diag'r m picturing thecsituation desiribed on

page .

Answers far Part B

0)40 grams at C is too much. About 35 grams is needed at C
. to keep t o ring at the center ot the table.

(h) lierep force diagram picturing the situation described on
page '

(c

150
S.

20

The weight at C should be about 10.3 grams.
Here is a force diagram pictur,ing the situation described on

20

20 '.

About 39.8 grams is peedècl at C to keep the ring at the
center of The table. This is more than is needed at C in
the situation desc fbed in Position 1 on pake 1.

. (a) 0 (b) 19.9 17.5 (d) 120 (e) 5.2 (f, ) 1.7 (g) 180

110

I.

1 N(

J"

3. (a)

7 °

30

14 3 °

TC 2 4:

The balancing force is 50
'at an angle of 143° clock-,
wise from the sense of the
force of measure 40.

(h)

bouncing
forc

The balancing force is [about]
4 5 at an angle of 97' counter-
clockwise from the verticX1
force of measure .20.

4. Hei:e is a force diagram picturing the situation.

1
rittultorit

force

71°

// I
//

5. (a) Here is

4

The resulta'nt force is [about] 130
pounds at 4n angle of [about] 71.°

,clockwise from the sense of A's
tfoece.

a force diagram picturing this situation.

The resultant force is about 2.4 pounds at an angle of -[about]
5G° counterclockwise from the 3Q pound fdrce,

*

1.4

a

1
. .
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Find.the "balancing force" wheii th.kforces aupliedio,the ring are
as shown in these force diagrams: 1''

(a)
20:

30

4t.)

4..Three men IA, B, and CI are
pushing onip piano P1 in the di-
rections indicated ,in 'the -dill=
grain at the right. A is pushing
.with a force of 50 pounds, B
pushing with a force of 60
pounds, and (7 is pushing with

foree of 70 pounds: What is the
esultant Ibree exerted on the -

piano' by the three men?

5. Here is a scale diagram of fair
forces acting at a phint.li inch
represents 10 pounds.'

20

30

. 5.05 Another Vee6r Space 205

1.. (a). Draw a force diagrab t.L show 'the meastm veetornofl a force
whose horizontal component is a foree of 4 pounds and whose

,
vertical component is a force of 3 pounds.

.

(b) What is:the magnitude of a fOrce such ,as that described-in
part (a)'?

(c) Is there enough inl'ormationgiven in part (a)o describec;pm-
pletely the measure Vector of th,e force? E3iplain.

2. ConAider a board which has a handle at' each 'end for convenience

(a) Draw an arrow to tepresent the resultant force of this system
and use it to estimate this 'resultant force.

*b) Draw an-arrow to represent the force needed to put the given
system in equilibrium.

Part C
.1-t-is'Often convenient to think of a force P as beiiig the resultant

of two forces 17 and V in the horizontal and vertical directions, re-
spectively. 11 is the horizontal coniivnent of -P'and V' is the vertiCal

5

A

component of -P. If the directiOn of'P is hetizontal then the vertical
component of-P is -C. The weight of arlobject is one force which acts
on the object. What is the horizontal component of 'such a force?

in carryin.g it. Two bpys pick up the board so that it is level, and
start can-yiug it. Since the board is .leve4each bay supports half
of its weight. You can judge, by, the/directions of the boys' arn4,

!W
2-

the directions in which theyi are ptilling on the board. Which boy
'is pulling harder? How deli you know? Why should he pull harder?

a. Here is da picture of a rope which is being held so teat both ends are
at thesame height above the ground. The rope is supported by the

f,
'forces Pi an d, at its ends. As in the case of the board, the vertical .

. component o f these two forces is half the weight of the rope.
Since the ro e5nere1y being held in position by Pi and V1, the
horizontal .cornponentS. of P , and a, Must have the same mag- '
nitude. . . .4 -

,

Here is a picture of the same rope after it has leezAaulled tighter.
.-

4
An.

(a) What frthe tnagnitudeof the vertical component of12? of-62?
(b) If the rolie were to be pulled so tight as to be straight, what

would be the. ver.Ocalicomponehts of the forces on the ends of
1 the rope?

(e) Can a rope be etilled straight?

4 S 4
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5.06 Measure 1(ector4

The existence of a kind' of number ,which can .be,ciseei to mei 4.11.re
such thiniis as direCted trips, velocitiesc;;;.1 silLfortieswas mention in
the preceding section.. For climpltztene'ss' w7mtlude hare a disA; sion

' of thi?se -mekisure vectors.'
.

..

To-coipe iliiet!tlY to the point, there are different spaces of in sure
vectors, onO for .each dimension. The space of.1-dimensional me sure
Vectors is just the 'vector space of real numbers. IRecall that ,Ne is a
'vector space over .4'1. As you know, these '14imensional mealiure.vec-
tors can be .iised as measures af dirpc:ted trips along a line, as well kis
velocities or forces in a.given-directiim. To do so, it is necessary, first,
to,choose one ofthe two senses 4l(ori4.; the line: or in the given directithr,
as pocitive, and to choose a unit oflengtir,IfoOt, mile, or of spepd1foot
per second, mile, per hour-1, or Of magnitude ..of fOrce l'pound, graml.
After you have made these choices, eaCti dir-ected trip.on -the line, pr.
each velocity or for'e in the given direction, has a unique real number
as its Measure. 1With didbrent choice57;,the same trips, velocities, or
tbrces would Wive different meas'ures, and it iSeasy to see how thang-
ing one's choiCes affbcts the assignment of measures. j .

To measure directed trips, velocities, or forces in a-given plane, one
needs 2-dimensional measure vectors 'These are ordered pairs of real

. numbers with liddition of ordered pairs Erild multiplication of orde'red
pairs by real numbers defined by:

lab) b + (1),(a,b) r ac,bc).

It is easy to check that, with these definitions of addition and multipli-
. cation, the set of alt ordered pairs of' real numbers is a vector space

over 4_,What, for example. is the Zdimensional measure vector 0.?
. .What is the opposite of fa,h)? INote thai in thedefinition of addition

for ordered pairs; the first of the three '+'s refers to 'the operation
---wbich is being defined land .the other two, refer to 'ordinary addition of

real numbers. I
.

In order to use 2-dimensional measure vectors as measures of di-
,' rected trips on a giveh plane we must first make some choices, just as

we-do to use real numpers to measure trips on a line. As before, we
trcust choose a unit of length. In addition to this we must make a
choice similar to that nielhe 1-dimensional case of choosing a positive
sense.' In the 2-diinensional case we choose, in order, two positive
enses which are in directions at right angles to one another. In a

drawing, we can indicate this.ohoice by picturing two rays'and labeling
them '(1)* and-'(2)'. [In Fig. 5-6, we have also inclicate4 A hosen unit

. /
Answers for Payt C
1, ..(a) Sincethe senses of tke

vertical directiontc.arie
answers: -

TC 205

cornponentp in the horizontal-and
not specified therae are.four possible

4

(b) 5 pounds
lc) No. [See,reinark-on part (a).]'

. .

The boy on the right is pulling fiarder, as is shOen by the fact that
his ,arm is more nearly horizontl. He needs to pull harder at the
beginning to get the board in motion. Once this is achieved, it is
sufficient qat the horizontal compor)ent of his for4 balance tha,t of
hiS partner.

. 3. The magnitude of the vertical components of 1-."2 arid G., is
half the.-weight of the rope the same as that of F1 and dl.

,(b) Since the forces at the ends of a rolpe'rnust be in the direction
of the rope, if the rope were horizontal then the magnitudgs of
the Vertical components would be zero.

(c) No. The forces at the ends 'must have nonzero vertical c
1,nents and, so, can never.be horizontal,

-C206

Answe rs tO que stions.

The 2,-dimensional measure vec
b) is (a, b),

or,

Or is (0, Cs). The oppaisite of
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of length. I We can now assign a 2-dimensional measure vector (a,b)

f
A 4,

10,

(2)

Fig. 5-6

sTC' 701
,

Anowers ?or Exe rcis.es.
f*-1. 41: [(a, b) + (c`; d)l =. (a + b + d) (e,f)

,s .' '([a. +.c + er [b + f)
-7 (a + [c + e I, b + [d +
= (a, b) + (F4"-+ e. ,d +

=, (a, b) + [(c,'d) + (e, OT
42: (a, b) + (0, 0) = (a + 0, `b + 0) - (a, b)
43: (a, 134 + (a, b) (a, b) + (a, b) (a + a, b + 13.) (0, (Y)

44: (a, b) + (c, d) = (a + c, b d) (c + a, d + b.) (c, d) + (a, b)
43: (a, b). 1 = (al, bl ) = (a, b)

to a directed trip. Without our going into the detail's of how this it;
1

46: (a, b)(c + d) = (a(t + d), b(c. + d))

done, you should be able to guess when we say that the measure of the
pictured trip from A to B is (3, 1.5). [Other choices of the unit of
length and of the .ordered pair of positive senses would result in dif-
ferent measures being assigned to the same trip. For example, if we
liad made the same choices of positive senses, but had made them in
the reverse order, then the measure of the trip from A to B would have
been. (-1.5, 3). If, instead, our second ,choice of a positive sense had
been that olthe ray opposite to the one we did choose,, then the measure
of the trip from A to B would have been (3, 1.5).1

You should have no difficulty now in seeing how 2-din1iensional mea .
sure vectors are wied as measUres of velocities and of forces in a
plane. And you should be able to gliess correctly what the space of 3-
dimetwiezil measure vectors is and how it is used in measuring di-
rected trips, velocities, or forces in space.

k:xereises

1. Check 'that the set of all ordered pairs of real numbers is a vector
space over ,4 when addition and multiplication are defined as in
the text.

2. The members of the space of 3-dimensional measure vectors are
the ordered triples of real numbers. Define addition of such or-

dered triples and.multiplication of ordered triples by real numbers
in such a way as to obta4in a vecror space over

3. What choicvs must be made before 3-dimensional measure vectors
can be assigned as measures to directed trips?

ac +ad, be + bd)
= (ac, bc ) +*(ad, tsd) = (a, bo)e + (a, bld

47: [(a, b) + (c, d)Je (a + c, b + d)e
= ((a + c )e, (b + d)e)

(ae + ce, be, + de)
= (ae, be) + (ce, de) = (a, b)e + (e, d)e

48: [(a, b)cld ac, hc)d 7 ([ac]d, [bc]d)
= (a(ccl), b(cd)) = a, b)(cd)

Z. (a, b, c) + (d, e, f), = (a + d, b + e, 1.; + 1)

(a, b, c)d = (ad, bd, cd)
ICheck of vector space postulates is similar to that in,Exercise 1.]

3. Choose unit o.f length and, in succes*sion, three positive senses so
that each two are perpendicular.

- 493
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5.07 Chapter Summary

Vocabulary Summary
operatur ion a grnup1
vector space ,
vector
sub4ace
measure irector
speed

4

Postulates
1.. (a) B -
2. (a) A (B A) = B 0.

3. (B.- A) (C B = C A
.4". ./ , under function composition, is a

page 191.
.5'. .4 is an ordered field. [See page 170.1

4elocity
for'ce
force diagram '
resultant
equilitrium
component

(b) A + a'ree
(b) a.= (A -+-..a) - A

"Definitioris

(See Page 141 tbr Definition 3-1 andpefinition 3-2.1
5-1. id, - {X; -dr} "

5-2. [d, el x: 3,31, C.& + 6,1

vector space

I.

over 4. [See

Other Theorems

ISce page 141 for Theorems 2-1 through 3-i,14.]
5-1. (a) ai) 0' (b) 6a = .6*
5-2. (a) a' -a = (b) -a a -(ail), .
5-3. (a) a*(a b) = ati ab (b)-(a' b)a
5-4. (a) al' = b7[c 01 (b), cet c4b

5-5. = ^-0 to =.0 or -

Rides of Logic
(For earlier-summaries, see rages 111-13, 142, and 170-172.1

Inferences of any of the following fordis are va id:

-

ficE

# = b

p lq
q rj

notio go fq
not r fq P1

not g --0 fp ....Po
p (g or r)

q r ipii
--* r [WI

q o r [not pli
ti.e.: q p [not rli

,p 0 (g or r)
not q 4) 4.1" ri°

13, or q p --o r q oo-o s
f Ors

-

Key to Chapter Tk;st
1. .(a4 ) -3-.4-

#

(c) -'4
(a), III

(c) IV
r .

3. (a) ff--(07-

Tt 20137210 1

(b) P + 1;4

.(d) (P Q)6

(b) H

(d) VI

(b) (i)- (ii) rid (iv)
(ii)-(ii), (iii)

(iv)- (1) and (ii)
4. (a) True.. (b) True.

(d) True*. (c ) False.
5. Since it is assumed that and -c* Belong to, --a! it follows that, for

some nuwbers b and c, b. e.ab a_nd ac.. So, _for ar_i.y number
a, a ha. Thus, for any a, ba_.+ + ac = a (ba c).
so, there is, a nujnbe_T y such that ba + c = It follows quit,
for any a, ba + c [a ]. Hence, for each x, bx + c 6 [a ].

(c) False.
(f) True.

(a) The drawing should look
something like this:

4 1 r
J

L. f

144 .

I

.

l

......

. a

. 4 ....

4

.4...

I

-.i.

!

I

I

+
i

4 ..i.. .....

.

I

,- L ..... ,L,
I I

L 44

(b) No,, -S -11 c is not 15 [Many possible explanations possible '
' here. ]

4 9 i)
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.'haPter Test 4,

1. Simplify.
(a) h h3 + a2 + b. -8
(b) P 4- h'2)1- Q - + K -2if
(c) + (' -2 lt(7 - (!) +

(d) IP - (4))3 t kg +- (P +:[7')f -3 + 4 -

c:

a

49;

2. Consider the translations a
and b described at the right.

Tell which of the an ws drawn
.below describes:
(a) (4.2 +-

(b) b.
(c K a.2

(4) b12

\
3. Consider the folltiwinq ses of points:

(1) {X: X - A -+ (ii) {X: X - A + as}
{X: X = ax} (iv) {X: 3 X ---. A +-cix}

(a) Suppose that a is the translationtiescribed by the arrow drawn
below. Copy this drawing and draw pictures of the sets (i) - (iv).

(b) Answer these questions about the sets (i) - (iv).

EXPTE1VnING OUNAST .OF POSTULATES

4. Recall that (al {x: 3,. x ax}. Which cif the following are true
and whick are false?
(a) Cft 1(44 .
(k1o). (1.5 1a1
(c) IO*1 = 0
(d) If b.e la) then bf

4.. I (e) 'If 1)..c lc1 then'WE ,

(f) If (Ci'E ;Ind 1; [(1) tlien (1°E H.
5: Suppose fhat -1; and r:belong to [atl. Show that, f& each. x, bx + c

belongs to [al.
6. The following arrows describe three forces acting on "a point P.

(a) Copy this figure and make a careful drawing of the resultant
of these three forces.

(b) Are these forces in equilibrium? Give a reason eor your answer.

(1) Which of the given sets are rays with .the.same sense?
(ii) Which of the givez sets are rays with the same vertex?

(iii) Which of the given aets has each of the othkrs as a subset?
(iv) Which of the given sets has as a subset the segment with

end points A + ai and + 7:11?
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Chapter Six
Lipear Dependence and Independence V

81O1 Linear Combinations of Vectors

According to Definition 5-2 on page,193, a vector g is a linear com-
bination of vectors a and b if and only if there are real numbers x and
y such that

_- g .ax, 4- y.

[Then 'linear combinittion of a and b is short for 'sum da multiple of
a and amultiple of b.:2] For example,

_ .
`a5' + h -3 is a linear combination of a and b, and
a, -fr,a, 71 is a linear combination of a, and a,.

Similarly, we shall s.# that
-4

C b -3 + 5 is a linear combination of c,
1)-4

; and a.
To make best use of the phrase 'linear, combination"it turns out to be
convenient to agree to refer to any multiple of a vector a as a lint/Par
combination of a. So, for example. a is a linear combination of a and
C. -4 is a linear combination of, c.

Definition 6-1
-4.

a is a line
,

ar combination of al, ,

there are real numbers x . , x
n

such that,
a = (1,x, + . . . + ax,,

sure y. Ou Understand what the '. . mean in Definition 6-1.
For examples, here are the first tw5 instancvs of this definition:

a _is a linegrcombination of a 4-0
1

there is a number x such that a = a x
a is a linear combination of a and a

2
4-4

. there are Mimbers x,.and x, such that a = a2x2
What is the fourth instance of the definition?]

211
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The concepts of linear dependence and independence are of basic
importance for any work at all with vector spaces às such. The only
theoreins about vectors which do not depend on these notions are theo-
rems which are completely a.nalogots to theorems from the algebra'of
rel.l numbers. The.reason for this is simple. First', linear indepen'-
dence is needed for the purposv of defining the dimension of .a vF-ctor
Zpace. [RoughlY, the dim'ensio'n of a vector space T is, the number of .
"independent directions" ,which 'vectors iziay have. An apalogue, of -this.

. is that the 3-dimensionality of Euclidean spade cif; ilue to the fact that
one can choose in g only three independent directions. Of course,
these may hp chosen in many ways. One self-centered choice is up-
down, right--left, and-front-back.] Second, two vector spaces over ft
[or any other given field] arc isomorphic if and only if they have,the
same dimension. It follows that if one lacks the means of defining
dimension then the only results one can obtain arc those which hold for
all vector spaces. Since the real numbers constitute a vector space,
such results will be strict analogues of 'theorems about real numbers.

For our purposes, linear dependence and independence serve not
only in defining the dimension of T and, with this, the dimension of
e but also in defining such basic notions as collinearity add co-

.planarity of points. It is in terMS of these latter notions that we define
'line' and' 'plane'; the noncollinearity'of its vertices is an essential ,0

part of the notion of a triangle; the only conceptual' difference between
a circle and a sphere or between a disc apd a ball is that one is
a plane figure while the other is not. Such a list of illustrations of the
importance for geometry of linear dependence and independence could
be extended indefinitely. But these should be sufficient to convince you
Of the importance of the material in the present chapter.

As you will see, the definition of 'linear dependence', and the 'theo-
ren;is depending on it, require the use of the quantifiers 'V' and '3'
or, at least, the use of equivalent modes of expression such as 'for' all'
and *there are'. 1..ip to now we have made only rather infOrmal use of
quantifiers or of quantifying phrases and we continue this practice in
the first six sections of this chapter. However, a realunderstanding
of the meanings of '.for all' and 'there are' as these phrases arg used
in mathe?natics can best be gained by study and use of thb rules of logic
for dealing with 'V" and '3'. Hence, sections 6.07 and 6.08 are
devoted to the logic of quantifiers and to illustrations of its use in'
proving theorems concerning linear dependence and independence.
[Incidentally, this is the last large hunk of logicsto be treated in the t'

text.] You may find it necessary to omit or deal lightly with some-
but, certainly, by no means all of the material in these sections. tan
the other hand, you may find it-desirable to insert some oi this mate-
rial into your treatment of the earlier seetions. In fact, we urge that
you study sections 6,07 and 6.08 with this end in view.

The notiOn of a linear combination'Of given vectors is an importa.nt
one and forms a good basis for . understanding the notion of linear. depen-
dence. As mentioned in earlier cornmentary on Definitions 5-1 and
5-2, the former notion hi an aid to defining-the direittion and sense ref
a veCtor and, so, to defining the direction of a line' and the sense of an,
oriented line, as well as to defining higher dimensional analogues of
these notions.

The occurrence of the parameter 'n' in the definitions and many
of the theorems of this chapter requires some comment here. It will
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turn out that 'ciur vector space" of translations is 3-'dimensional and so,
-for example, ahy linear cornbioation.of any eumiser of given translations
is bound tà be a linear combination of some three, at most, ok them,
and any sequeriee of more than three translations is bound to_be linearly
dependent. So,Vas far as our later needs are concesned, it would be
suffici'ent to dealionly with the case n 4. Rad we chosen to do 'so
there'woutd have, been two alternatives., We could have introduced a
restriction say, 'n < ,4' into each defi,aition and theorem a
restriction which would never come into play or we could have si
up each definition into four definitions and each theorem into four t eo-reins. Neither alternative,rnakes sense either mathematically or
pedogogic ally.

The use of subscripts in the second ekample on page 214 is merely
for the purpose of callihg attention to the fact that subscripts could be
used to create tlew letters. The more sophisticated cOnvention, by which

say, is an alternative to the notation 'f(1)' for the value of a func-
elan f at the argument 1, is not, introduced in this book [although you
will find.mention of it id the commentary for section 6.04].

Be sure students underStand the '.., -convention illustrated in
Definition 6y-1. [You-might tell them that it is a pattern for a whole
sequence of definitions.] They may require more examples like those
following the definition, and the matter should be reviewed when dis-
cussing Definition 6-2 on page 220, Theorem 6-2 on page 221, etc.
The fourth instance of the definition is:

-ea is a linear rarnbination of al, a2, and a4

'to there .are numbers x-1, x,, xs, and such that
a. - a

1
x 1 + a2 x2 + a x + a4 as49 9

Although we do not`stress the point ;here, the notions of linear
combination and linear dependence come irrtwo slightly different forms.
One can spfi!ak either of linear combinations of the members of the set

an) or of lineaf combinations of the terms of tha sequence
*CI a ) . As explain'qd on page 218, an n-termed sequence id a.1' ' nfunction whose domain is '1, ..., n) and can be named by listing its
values 7 which are called 'its terms in order, between parentheses.

' Such a list may contain repetitions and, if it does, these repetitions
are signifiCant; they indicate that the function has the same value for
two or more a'rguments. Alsp, the order of listing is significant; it
shows which values go with which arguments. A Bet, on the other hand,
can be named by listing.its members between braces. The order in
which tke members are liate-cl is irrelevant and, alth?ug it may happen
that a member is listed more than once, any such repetitions are
irrelevant. ..

As far as linear combinations are concerned it makes little differ-
ence whether one speaks in terms of sequences or-of sets. Since,
hoWever, it is necessary to distinguish between,the two-notions in the
case of linear dependence, and since we shall be concerned mainly with
linear dependence of sequences, it is better, ifthe question arises, to
lean toward the sequence-interpretation of Definition 6-1. If the ques-
tion does 'arise spontaneously in the minds of your students, they will
probably be prepared to realize that, according to the definition, to say

. that is a linear combination -of 5 and c mean that there are numbers
x and y susli that a = gx + cy, while to say that a is a linear combi-
nation qf c and t is to say that there are numbers x and Y such that

. TC 211.13)

a cx + gy. So, since'addition of vedtors is, coniinutative, it is a
theorem that a is a linear coznbination of and c if and only ir -a*,is a
linear coitqbinatiou of c and b. Since thistheorem is not, of itselr, -a
logically ..z.a.jd sentence, the selifIerenee betweeil the con4ept of
linear col-A-hi-nation of g and e and that of being a linear comkinatior4 ofc and i; may not be Mmerely ignored, Incidentally, since c.} = {e,g}
tallthough, for g c (c-*,b) (g',.C.)1, one would have to prove the same
theorem:

(*) a 3 -a* + cy gt= 3 3 ax+byx y x y
before he would be justified in adopting the definiiion:

a is a linear combination of the members of -c*

4=:
3 + C*),x y

For, (*) is a consequence of this definition and the identity of {t,"E}
and fe, 5); so, if (*) were not a theOrem then the definition would be
creative as no definition should be [see TC 108 and TC 1201.

Definition 6-1 is, clearly, closely related to Definitions 5-1 and
5-2. Indeed, this definition might be replaced IN:

-4. -# - -i -I. -P[a, .,., an] -- {x: a ... a x = a x + +ax)i
-

'

n nxi xn
-. -..[Read_the left side as 'brackets ai through an'. ] .k.f this were done

,then 'a E gi, ... , a.,11"might replace the phrase 'a is a,linear combi-
nation of Ii, ..1 , In . Howevei-, the phrase 'linear combination' is
pseful, and we shall have need of the bracket notation only in die cases

/covered by Definitions 5-1 and, 5-2.
Finally, as you will notice, our practice as to omitting multiplica-

tion dots is somewhat random. If oppositing signs and subtractionBigns
were more readily distinguishable, multiplication dots could always be
omitted. As it is, we never ontit them before oppositing signs. In
other contexts, the mood of the moment is likely to rule.

TC 212 (1)

Parts A E involve.more work than can usually behandled in
one class period. One Way td handle these exercises is to take Parts

A and B aS one,homework assignment, Part C and the first two or
three-exercises in Part D as class exercises and demonstration, and
the rest of Part D and Part E as a second homework assignment ,

perhaps using teams for the derivations,
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Exer6i;ses

I art A
_

I. Let a,
P 4 grqm.

It
_

.
, and`c IN the translatiOns describk,d(in the following dia-.*

.On yolir paper, make use of the translations just described to illus-
trate the following linear eombinationi.
(a) c;5, t; 3, a.
(b) (1'5 + h. -"3,; + c H, c 6* 3 a.5
(c) Four other examples lot your choice] of linear combinations of

a', or of a and g, or of a, h, and c.
2. Consider any vectors a. and Answer each of the following .ques-

tions and explain your answers.
(a) Is a/7 a linear combination of cl'and [To answer this in the

affirmative, of course, you must find multipleS of a and b such
that their sum is a7. To put it another way, you must find real
numbers a 'and b such that a/7 = tin +

(b) Is Ka linear combination of a and -61?
(c) Is (j'a linear combination of a'and V?
(d) Is V a linear combinatIon of -bl? Of c-T?

3. Given the quadrilateral ABCD
shown at the right. Notim, in
the fiwe; that -b B - A, c

C 7 A and GI'
(a) Express the tinslation

C B as a linea combination
of liand As a linear Combina-
tion of V, c; and cf.

(b) ExPress each of the translations D - C and D - B as a linear,
combination of and V.

\to By Postulate 3, we know that (C B) (D C) = D B. Use
'this to check your answers in parts (a) and (b). [Hint: Substi-
tute the appropriate,results from (a) and tb) for 'C B' , 'D

_and 8' and check Whether the resulting sentence is true.
What can you conclude if it is? If it isn't?)

(d) We id not say that A, B , C, and D are coplanar (that is, all
belong tO the same plane]. And, We did not say that they aren't
coplanar. Can you tell from the figure whether or not these
four points are coplanar? Does it make a difference as far as
your answers for (a) and (b) are coneerned?

Answers fbr Part A
41.
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(c ) [For this one, ask several stutrents to illustrate one of their
choices at the chalkboard,

Z. (a) Yes, since -a*7 +

(b) Yes, since 1:*) = 10 + 51.
11, = + 50.(c) ?Yes, since

(.1(d) Yes,, since 14,. cl.; Whether 5 is a linear cothbination of
ciepends on special properties of these vectors. Srecifically,
b Will be a linear combination of -a" if and only if b or

'd and a and 5 have the same "direction"),
3. (a) C B = -c4 - = + "C1; ,B = 1). 1 + +

(b) 13 - C O + "C I +L41; D - B = 5. -CT+ al
(c) Substituting in the given instance of Postulate 3 yields:

(*) (S ^1 + +10) + (50 + 1 + an Z1

Simplification of the left side-by using theorerns 'based on
postulates 4 and 5 reduces (*) .,to a sentence of the form
'a = ;', and reversing these simplification 'steps hoWs
that (*) ts true. Actuall,y, this tells us nothing. Had (*)
turned out to be false we might have concluded that not all
the results obtained in answers to 'parts (a) andr (b) could
be correct [or that something was wrong about Postulates3, 4, or 5].,

(d) No.; No. [Anticipate some problems in visualizing this
situation by having a simple stick modelavailable for manipu-
lation. Join sticks representing b, c, and a at point A so
that the join is flexible. Elaslic thread for C IS and D C. works nicely. Tape, say, the sticks for c and d to the 'chalk-
board and let' students move.the 5 stick to vafious positio!as.
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(e) If the figure is correctly drawn, C B is not a linear wrnbi-
nation of D - C. lWhy?1 But, suppose that DIV .figure is in-
correct and that C. B is a linear combinationNf /-) - C. On
the- basis of this asSumption, show that is a linear combi-
nation-of b'and tt In doing this you will find that you need to
make ofie other assurnrition about the points.]

4. Consider the pyramid. V-ABC,
shown at the right. Notice, in
the figure, that A -2 V -- a,;,'

- V b*, and 'C - V r.
(a) Expreas,each of the tran0a-

tions B - A, C B, and
A C as linear eombina-
tions of a, b, and c.

(b) Use your results from (a) to
ve ify that (R - A) + (C

B) + 144 C) --
.5. Given the translations shown. in the following figure:

a,

-4 2
5

2

a,

a,

(a) From the figure it follows that [Complete.]
4, .

a, _____. + a2 _____ + a2 . _ + a, ... + (z3. ___
.+ a -- 0'.

-- . - -) --- 4. t ---0

(b) Express a as a linear combination of a... a a
P

, a and a
..!

(c) Expresg. a, as a linear combinatiorl of a , a , a a and air

Part B

4

(d) Expreas a, as a linear combination of ao a2, a4, hnd a6.
B. Prove: aa + bb 0 = e -0 /a) [a 0]

1. tivrftw a figure like this:

- A

(a) Locate the points D, E, F, G; H, and 1; where

D = 0 -+. g o -c-i* F = A + r A,
G F H = / = 0 + a 2.

e

(e)

"IC 213 (1)

Intuitively, if C B were a linear combinati6n of C D then
B, C, and lD would be collinear. Assuming [despite"the evi-
dence of the figure] that C n is a lineas combination of
C D it follows,,, by defisition,that thpre is a number say,

, a such that C B (D - C)a. It follows from parts (a) and
(b) that

g
-*

+ c

-c*(1 +

(-C. -1 +
-" c -a + aa4

+ 4a,
-. 1 a

C 7 13 1 + a+al +a
We note that = -1 if and only if C B C.- D that is,
if and only if B D. So, assuming that C B is a linsar
combination of C D,. and that B D, it follows that c is, a
linear combination of -Iiand a.
[Part (d) should alert studenls to the, fact that flat drawings
'need not represent plane geometriC figures, and illustrates the
fact that many of our theorems will be independent of diMen-
sion. Part (e), is a step in a cat aign which will eventually
lead tn the recognition that colline ity can be, defined in terms
of linear dependence ol appropriate p 'nt differences. It is
also an example of the use of "position vectors" [in this case
"from A" j to characterize points on a li'ne [the Uné A-512.

C E EZ if and only if c is a linear combination of 11 )

4. ( a ) B A = - 1 + 1 + -c* ; C B -a* O + 1 +
A-- C = 1 + + -I

(b) - + -1;1 + -2'o) + (10 + -1 -CPI) + 11'1 + c -1)
+ 0 + 1) + + 2-1 f 0) + + 1 +

= -10 + 110 +

In discussing this exercise, point out that the hoice of notation
which leads to_.susti equations as 'B A = b a', 'C E =_ c
and 'A C = a e' has obvious advantages it one has much to do
with the points A, B, and C. The result stated in (b_) is more
easily checked by noting that it is equivalent t6 l'(1; - a) + - +

c) = It is stin more easily checked by using Postulate 3
and Theorem 3-1(b). You naight check understanding of the
convention on the theorem:

+ (An - An -

43,

this theorem requires the use Of mathematical nduction;
al instances can be established by using inst e of

1.0
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Answers for Part A [cont.]
5. (a) I, 0, 1, 1, 2, 1

(b) + -1 + + a5 -2 + -1
(o) Insufficient information. [One might be inclined to assume

from the figure that, for example, a; + a5. Z + a6 =*11 and,
so., .fliat

a, = A 0 + a 0 + a40 a5 + a t,3

Edwever, as Exercise 3(d) has pointed out, such assumptions
are unwarranted. A demonstration will help to clarify the
point that 1..e is not necessarily a lineal-combination of.1, "1,, 15, and Se,. Copythe diagram of Eocercise 5 on the,board. Now make a new di'agram using , 2, andg Students will see that 11 + g 3 + -S4 + 2 + =0, s , 6regardleSs of.the direction of g,. In some sense, the trans-lations gi, , , XI 2, and ie., :are free" of, or do netdepend upon .22. I

-(d) a5 + et 2 4- a4. --I
6. Suppose that iiPa +gb & It follows that (-a..a + gb). /a = d /a.Sipce (;it + gb). /a (;a)./-a + (gb) /a = 1(a. /a) ii(b /a) and'since, for a.* 0, a` = 1 it follows that 11 + g(h/a)

. Since ;1 .and d /a d it follows that + g(bja) = d. so,
"A" = -Tho .s/a) g. -(b. /a ). Hence, for ; d, if aa + rb = ?5then a = -(b. /a). [Rcrnind students that the "unabbreviatedform" of this theorem is:

a * 0 g. -(b /a)] 1

Answers for Part B
, 1. (a)



214 LINEAR DEPENDENCE1PAND INDEPENDENCE

.^

(b) Consider the vectors which map 0 onto the points D, E, F,
(;, H, and I. Is each a linear combination of n'? Justify your
answer.

(c) Give the following ratios of sensed segments:

tO to A):(A to D); (A to G):(F to 0); (F to E):(0 to A);
(1 to E):(0 .to 0); (I to E):(E to H); (0 to F):(0 to M.

In Exercise 1, is each of -the points D, E, F, 0,
same line as ()and A?
Suppose that c is a linear combination of a,
vector pictured in Exercise I, and that = 0 +
that .1 is on the same line as 0 and A?
Suppose that.K is any point on the same line
and A of Exercise 1. Do you think that K - 0
bination of.CP

a Draw a figure like this:,

A

(a ) 1.,Cicate the points P, Q, I?, S,T, and U, where

P = 0 +
R A (a* 4-

T 0 + (a* + t; 2),

H, and I on the

where a is the
Do you think

as the points 0
is a linear coin-

4.

(b),

(c )

2, (a) Yes, (b) Yes. (c) Yes. [As yet, these,answers
can be justified only on intuitive grounds. When, in the next chapter,
the notion of collinearity is defined, it Will be possible to prove that
the answers are correct.. If students exhibit doubts as to the cor-
rectness of the ansWers, suggest intuitive arguments based, say,
on the use of a tracing sheet. But, point out that such arguments
are purely intuitive.]

3. (a)

Yes.;

1/3;

D 0
-.3G-0 = aT, H

1; 1; 1/5; 1/2;

TC 214

0 z -.

0 a

1

.3

1
,

F - 0 =

1 0

Q Q + 1;2, .

0 + (a* 4 + 5),
U = 0 + (a* + 1) 4.

(b) Consider the vectors which map 0 onto the points P, Q, R,
, 5, T, and U. Is each of these vectors a linear combination of
u.and V? Justify your answer.

4. (a) In Exercise 3, is each of the points P,Q, R,S,T, and U in the
same plane as AB,-and 0?

(b) Suppose that c is a linear combination off:and-6; 'whereaanift
are the vectors pictured in Exercise 3, and that V 0 + c. Do
you think that V is in the same plane as A, B, and 0?

(0 Suppose that W is any point in the same plane as A, 134and 0.
Do you think thaf W - 0 is a linear combination of a and 1/?

5. Use a pencil [or, your finger] to reRresent a vector-c4Which is not a
linear combination of the vectors-a and efrom Exercise 3. Demon-
strate how you would find the following points:

(a) 0 + c (b) 0 +-C* 5 (e) 0 + + -0
(4) 0 + + c5 (a) O.+ (b'2 +17, 3) (f ) 0 + (ci).3 +

(b) Yes,*; P 0 = -as.Z + 11O, Q - 0 = + 11Z, R - 0 = +
3 -4.

f
U 0 =

4. (a) Yes. (b) Yes.

5..

(c) Yes. [The translation a, and
any multiple of it, will map any plane containing the line OA onto
itself, The translation 11, and any multiple of it, will map any
plane containing the line OB onto itself, The resultant of any
multiple of followed by any multiple of ipt wilr map the plane
determined by 0, .A, and B onto itself. Intuitively, using just
the sums of a multiple 'cif -S. and a multiple of 13 there is no way
to "get out of" the plane of 0, A, 'and B.1
[To the teacher. ],,Each student should be able to demonstrate how
to find the various given points. Stick and string-models may be
both helpful and useful tkynake at this etage of the game. ..
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Corisider the pyraMid A-BCD:
(a) Do you think that B is

a linear combination of
B A and C - A? Of D B
and I) Of A B and

- B? Explain Yottr an-
swers.

(b) 'DO you think that C = A is
a linear cornbination of'

A and D - A? OfB A,
I) A, and C B? Explain
yOtir answer. .44

C Points to Ponder
I. tt should be intuitively clear that for any two points there is

exactly one line that contains them. Another way- to express this ;
same idea is to say that any two points are Collinear. Of cnurse,
it is not, not essarily the case that any three points are .collinear.
Try to formulate a definition of collinearity of points A, B, and C
in terms of translatfions.

2. As tated in Exeise 1, there is exactly one line that contains two
given. points. Try to formulate a definition of a line containing two
points, say,.the points A and B.

3. Three points need.not be collinear. However', git is intuitively ob-
vious that three noncollinear points are contained in exactly one
plane. Try to formulate a definition of coplanarity of`points A,
B, C, and D. Do it, of course, in terms of translations,

4., Try to Ormulate a definition of the plane containing three non-
collinear points A, B, and C.

Part I)
1. Recall that, by Definition 57 1,

- gmx. /J31

=liat-iS,14;1 is the let of all linear combinhtions ofp. lRead 'CO)' as
'brackets p ,1
(a) Show that each of the following vectors belongs to fa):

a, a, 0a + .+3

(b) Show that eaclrof the vectors in part'(a) belongs to [al.
(c) Show that each vector in is in taw [What does this tell you

about how ]a) and la.2) are related?l
(d) Show that fa.) (a2j that is, show that the set of all linear

combinations of a is the same as the set of all linear combi-
nations of a2. [Hint: Having done part (c), what more need
you do?)

6. (h)

TC 215 (1)

A

C B A) -1 + (C A)1.
Yes.; C -13= (D B)1 + (D C). -1.
No, The word 'pyramid' [and the shading of the figure] indir
cates that we are not to consider the possibpity of C being in
'the plane of A, B, and D.. And, intuitively, no translation
which is a linear combination of A B and D B can move
B out of this plane.

(b) No, for the same reason given in support of the answer for the
last question of part (a).
Yes.; C A = (B A)1 + (D A)0 + (q B)l.

Answers for Part G
le

i

[The answers to these questions ought to generate a lot of healthy
discussion about how translations act on points. While not all students
will be able to do the kind of creative thinking neceseary to generate
adequate definitions, trying td do so should " e encouraged.and, most
important, no sue

t
h attempts which seem to e or are "incorrect-

should be denounewi. We give below possible answers. J
If it is assumed that A, B, and C are three points, a correct
answer is:

A, B, and C are collinear if and only if
,C A is a linear combination of B - A.

[This is still correct untie? the weaker assumption thot A B. ]
Without any assu.mption concerning the number of elements in the
set {A, B, C):

.11/b

A, B, and C are collineara and only if (A = B
or C - A is a linear combination of B - A).

A, B, and C are collinear if and only if one of
B A and C.- A is a linear combination of the other..

z. For A B, the line -AB is {X; X - A is a linear combination
of B A).

3, aIfnistwiersaisslumed that A, B, and C are noncollinear, h correct

A, B, C, and D arg coplanar if and only if
A is a linear combination of B A and C - A.

Without any assuxnption concerning A, B. C, and D:
A, *B, C. and D are coplanar if and only if (A, B, and C are
collinear or D - A is a linear combination of B - A and C A).

A, B, C, and D are coplanar if and only if one of B.- A,
C - A, and D - A is a linear combination of the other.

4. For A, B, and C noncollinear, the plane containing A, B, uid C
is ',I

{X: )'hr A.is a linear combination of B - A and C A).
[We stress, again, that these are only some possible answers, ancL
that there is no point, at this time, in striving to force "correct"
answers from all students. "Points to Potnder" should be taken
lite rani%
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-4

1 , = al; Z. -I;
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:s:0; 7 + a' -3 4- -3) = T;.
2

[In connection with theSe answers, you might foreshadow the introduction,
rule for '3'. rhis is (2)- on-page 240 and is stated formally, along
with the elimination rule for 'V', in the box on page 244. Its
application to the e,xercises of part (a) :comes about in the following way.
To show ttrat L'we must, by definition, shd,v that there is a real
number x 'such ,that g = ax. , The most satisfactory way to show.that
there is such number' is to exhibit one. This is what is done in the
answers for the exereises.. However, ,a complete solution of the first
of these exercises woUld run as follows:

By Postulate 4,, a al.. So [by the introduction rule for ,

a - ax. Hence, by Definition 5-1, Lg I.
'iThere is np point in requiring, in part (a), that students give answers
'in this extended form. It should not be difficult, however, to get them
to see the necessity of this if 'Show' were changed to 'P,rove'. Doing
so noW will help prepare them for later exercises.

(b) a 7 al 1-) (a2.)4- [or; 2:: a-1 = a(2 /2)
2

(c)

1a -1 (a -1)1 -- la -1)(2 /2) (a )(- 1, /2) f= (2). -
2
-]

" -4. 5(K2.)0; a-2 +- a -3 6..2) =-S. -4
[The gene ral procedure is illustrated in' the answer for the
second of the three exercises of part (b). It depends pn the
easily proved theorem: .

-11

(ab)(ac) = (aa)(13c)

This theorem is Used in the answer, below, for part (c). 1
Suppotie that I; E [it ].. It follows, by definition, that ax =

Suppose that a...b. It follOws by 4,5 that -1; (-a:1))1. Since
2 0, 2 /2 = 1 and it follows that g (-aP13)(2./2)=.

So, 3 g S.Z)X and by definition, g,E 1. Hence, if =x,
then 1; c [-L]. Since ax g = itx it follows that g E [a'Zi., Hence,
'if b e a ] then g E [3l], [Thi tells us that La..] (.7_ [a:2].]
[This argument illustrates the use of the elimination rule for

which is stated formally on page 249.
In its application here it tells us that if we know that, for
any b,

,(1) = a b E I

a..nd also know that

(2)" 3

then we may conclude that 11 E [-SZ]. Note that this conclusion
does not follow fro_rn .(1) alone, since (1) might hold even if.
the equation *-1; = ab' had no solutions. In this case (1) would/
give no warrant for concluding that 5 E

Students should, of course, not be expected to give as
complete an argument as that given above. Nevertheless, if,
in class discussion, you,can brisig.them to appreciate this
argument, and the. roleirplayed in it by the two rules for ..a.,

5(
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then the pay-oftshould be large. For one thing, much of the
discussion in sections 6.07 and 6.08 will have been pre-
viewed and should cause students little difficulty when they
come to it. ]

(d ) Having shown in part (c) that [-a*1 C L2 1, all that remains to
be done in order to show that ra' = [aZ 1 is to show that
LaZ 1 c- [a ], That_ois, it remains only to be shown that if
UE 1Z I then g [ a ].

Suppose that 1;E [al ]. , By definition it follows that there
is a real number,'say, b such that g = (-SZ)b. It follows,
by 48, ehat a(Zb). So, by definition, g [1]. Hence, if.
b [12 I then I; E [11.
[This argUment has been chosen to illustrate a less complete
form which might reasonably be expected of students who
either do not know the use of the existential quantifier or who,
having learned thoroughly how to use it, have advanced to the
point of ignoring4r. (Recall our contention that, by-and-large,
only students who havethoroughly understood formal rules of
logic are able to argue informally with both ease and safety.)
By comparing the given argument with that for part (c) you
should have no trouble in rewriting it so as to bring out the

'use of the rules for '3'. We suggest you do so before reading
ftirther. The cbanges required are. toq.eplace the fouzth sen-
tence by 'By definition it follows that ax b (L)x. Suppose
that g = (al)b,' and the sixth by 'So, a x = and, by
definition, E 1. Hence, if (LI)b then I; E [ -S]. Since

3x (41.2)x it follows that 8 E ra7]..]
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One.; Infinitely many.
tells you that. =

False. Would be true if followed by the restriction [c 0

True, c = ax` is a consequence of its valid instance
, x'ac ac .] ,tar

(c) True. [By Definitions artid 6-1 this is a restatement of
(b). )

(d) False. [Restatement of (a), 1
' (e) True.

(f) False. Woald be true if followed by the restriction '[c O]',
t

(a) Intuitively, this is the line through A whose direction is that
of -al.; alternatively, it is the liale through A and A +1,,,

(b) {Al



216 LINEAR DEPENDENCE -AND INDEPENDENCE

tel How many translations are in [a'l if a' 01? If a' 01?

(t) Suppose that 1 al contains exactly (.2ne vector. What does this
.

tell you about a?
2. True or false? Justify each answer; aud if you can "add onto" a false

sentence to imike a true one, do so.
Ca) (4! lac] (b) a`c is a linear combination of a
(c) ay fl(1 .) (d) a is a linear combination of ay
(e) kw l (f) I c;c1 !al

3. Describe the set of points (X A + x'and x (WM
_ .Nai if ti it 0. tb if a 0.

4. Prove each ()tithe following:
(a) --a Clu'l
(c) E (2)

(e) (a E hl and h ela.1/
(g) >b liand h elal)

int: Prove: tidal u.e10Iti 0)i

.

(b) a E
(d) C
(f)
(h) laal - [(Ilk/

Part E
1. (a) Suppose that a s any vector. Can you find numbers a, b, and v. .such that

(12)a + ta:311) -+ a 7,4)c 01?

(b) -Find numbers a, b, and e which_are' not all zero and which
satisfy the equation in part (a),

2. Consider the vectors a-and b' indicated in.,the following figure:

(a) Are there real numbers a and b such that aa + b.b .01? Justify
your answer.

(b) Po- you think that there are real numbers a and .b, not both
zero, such that an + bb - 0? Explain your answer. [Hint: Does
Exercise 6 bl Part A seem relevant'?1

3. Suppose that P, I?, and S are any points in
(a) Show that S P is a linear combination of R - P and S.- R.

. (b) Use your result from part.(a) to find numbers a, b, and.c such .
that

Tha -f- (R. - + (S

(e) Use your result from part (b)' tn show that S - R is a linear
combination of S P and R P.

4. Suppose that a, h, and c are any vpctors.
(a) Show that dis a linear combination ofdl and c.

TC

4. (a) Sit,ce t fUows that 3x -a a- x. Hence, by
definition, -a E [a J.g -.. . _.. - ,(b) Ily pay (a), -4, E -a J. Since --a = a it follows that-. ,.a E [-a I, [Another argument: Since a,=, -a. -1 it follows
that 3 it ,'' --a*x. Hence, "4x

(c) Suppose that b = ab and that c bc. It follows that
c = a(bc) and so, by ck:finition, that c E [a ]. 'Hence, .

if c [.b ] then c l a 1. that is, .[I; [a 1. Hence, ifr

g [ a ] then [1; 1 c: [a J.
[This argument, like that given for Exercise 1(d), iS perfectly
satisfactory' on an intuitive level, Nevertheless, students will
understand'it more thoroughly, and will have more success

.4.4/ith similar arguments, if it is put in the more formal mode
illustrated by the answer for'1;xereise 1(c) (assuming, of
course, that they have already seen the latte...r). 'l-iere is how
it goes:

Suppose that f; E j. It follows that 3x b ax.
Suppose that b =

Suppose, now,: that c E [ b J It followswthat
3 x c = bx. Suppose that e r e.; Since g ab it'
follows that c (-O*b)c a*(bc). S. 3x = 4nd,
by definition, c 6 [ a I. Hence, if c -= -gc then
c E I. So, since 3x c-* bx it- follows that c
Hence, 'if i-.1" E [J then i; E [-a.] that is, [T; ] C [-; j.

Hence, if'h ab then [1;'] C h/..]. So, since
a'x it follow's that [I; ] [S.], Hence, if

'a.] then [I; ] C. ra'1,

3

E

Note how each of the three assumptions is, in turn, picked up
and discharged.]

(d). [ThT argument is the same ae that given as part of the answer
for Exercise 1(d) with 'Z'- replaced throughput by 'a'. ]

(e) [This follOws at once from the result in part (c). ]
(f) [This fellows at once from the results in parts (a), .(b), and

(g) Suppose that Tz; E [a 1. It fgollows, by,definition, that there is a
number say, b such that 1-; = ob. Since lo = it folfows
for g * 4, that b * 0. Since b * 0, b b 1 and, since

b, i follotls_that (a'b). b a(b /b) = -al = a.
So, by d inition, a E [in. Hence, for I; 0 t. if E ra') then

Suppose, now, that,11 0...n and r; C [S]. It follows [as has
just been proved-1 that a E [b ], Since, also, b [a Jit follows
13.Y thS res,tilt in part _i.e) that [ a ] [b ]. Hence, if b t arid
b E [a ] tben [a) [b].
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--1(h ) Since, by part (d), La a I C- [a J it is sufficient to prove that,
for a, # 0, [ a I [ aa 1.

Suppose tl-ifft b [a. J. By definition there is a number
say, b stich_that b -.A. Now., for a # 0, a /a -It 1.
it follows that 8 ab (Ib)1 (.1b)(a /a) (la)(b /a).
by definition, 8 f [ Za 1. Hence, for a 0, if g'E [ a I then

[ a J that is, [ a I ( [ga ].

So
So,

Answerb for Part F.
. [These are exploration exe.rcises for the notion of linear depen-

dence. For. examplyo Aplvinx Exercise 1(b) amounts to proving that
f(aZ, a 3, a -4) is a itaatbdeperident sequence,. 1

1. (a) This is trivial. Take, a b c 0.
(b,l'Since (aZ)a+ (:13)b r + 3b - 4c) [and since

aO (1] ft i's sufficient to find numbers a,' b, and c which are
not all zero and are such that Za + 3b 4c = 0. Thersokre
infinitely Many solutions. .Perhaps the simplest is obtained
by choosing a 2, b , 0, and c 1.

Yes.; -SO 4- g0 ---cai
(b) No. If there Ikere such numbers then one of -S and g would be

a multiple of the other.
3. ( a ) By Postulate 3 , S P = (R. - )+ (S R)- (R P)1 4- (S R)1.

Hence, 3 3 S - P (R p)x + (S R)y; and,' bV definition,x y
S - P is a linear combination of R P and S - R.

(b) (S P)1 (R P) -1 + (S R).-I = 6
(c) S R -[(5 R)". -1] (S P)1 + P). -1

4. (a) 6 0 80 + :0 ,r
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(b) Suppose that c is a linear combination of a and 8., Then, by
definition, there are numbers, say, a and b such that
c = aa + gb. It follows that aa + a. + -1 = -6. Since
-1 * 0, not all of a, b,- anc1:472rWdo zero.

(c ) Suppose that Za + -.13b + 'cc = Aj and that * 0, Since c 0,
c /c 1 and it follows that (-la + b + cc)/c = -l.(a /c ) +
8(b /c) + c. Since 6 /c 6 it altflo follows that -S(a c) +
8(,)?/c) + c = Hence,

-(1(a/c) +.8(b /c )1 = -(a /c) + -(b /c)
[Consequently, 3, 3 c = ax + gy and, by,definition, -C. is ay -
linear combination of and g,

TC 217 (2)

This follows ,from the result obtafned in Exercise 4(b) together
with the cornrnutativity and associativity of addition of vector's.
In detail:

If 2 is a linear cornbination of 8 and C. then
[by Exercise 4(b)] there aN2 nurnbers say, a, b,
and c which are not all iero and are such that
813 + -jc + 721a Since 813 cC + -la a + (gb + -c.c)
= aa + bb 4.c c it follows that if a is a linear con-ibi.-
n'ation of 11 and then,there arenumbers say, a,
b, and c such that aa + lgb + cc =

Similarly, if 1; is a linear combination oil
and c then [by Exercise 4(b)] there are numbers
say, a, b,and,c which are not all zer.o and are
such that aa + cc +3b Since aa + cc + 8.1)

aa + (C.c + -8b), = aa + (813 + cc) = aa + b + cc 'it
follows that if a is a linear combination of 'r, and -C.
then there are numbers say, a, b, and c
which are not all zero and are such that
aa + + cc 6.

Finally, if c is a linear combination of a and
5 then [by Exereise 4(b)] there are numters say,
a. c which are not all zero and are such
that aa + 813 + cc

Consequently "[by a dilemma argument] if one
of -1, 8, and c is a linear combination of the others
then ..

6. Suppose that a, b, and care_r2ot all zero. Then, a * 0 or b aor c ,0. Suppose that aa + bib + cc = By Exercise 4(c) it
follows that if c 0 then C. is'a linear combination of a and 5
arid, so, that one of a, b, and c is a linear.con_l.bination of the
others. Since aa + + -ca'c = 6 it follows that aa + c 4 gh -45

and that i).13 + -*cc + aa = SO, by repetitionsof the' preceding
argument it follows that if b 0 then one of a, 11, and c is a
1.inear corriiiination of the others, and that if a * 0 then one of
a, 5, and c is aJiear combination of the others. Since a 0- 0
or b 0 'or c 0 it follows that one of a, g, c is a linear
combination of the others. Hence, if a, h, and c are not all Zero
then , .

7. Supposeihat al, a2, , ak are vectors such that at least one of
them is a linear combination of the others. Suppose that it. i iv a
linear combination of the vectors a. for 1 < j k and j * I. ItJ
f011ows, by definition, that there are numbers say, a. such that---Jai is the sum of the vectors a.a Let a. = It then follows
that ;l1a1 + aa2.+ + akak = v, and, since ai -1 0 0, dot
all the.numbers ak are zero. 1-kme, if a. itr a linear
combination of the others then there are numbers a 1, ale l'ot
all ze3ro, such tnat alax + akak d Since, by hypothesis,



6.02 Sequences' of Vectors 217

(13) Assuming that -e'is tl linear combination of a and 6, show how
to find numbera a, b, and c whic.'h are not all zero such that

MI "4- hi) *

(c) Assuming that a, b, and c are numbers such that c 0 and

9

show that'c'is a linear combination of a. and b*.
5. Suppose that a, b, and c are vectors such that at least one of them

is a linear cbmbination of the others. Prove that there are num-
bers a, b, and c which are not all zero and which are such that

+ hb + cc = O.
_

6. Suppose $hat a, I)., and c are vectors, and a, b, and c are real num-
bers which are not all zero, such that

- . - -0aa bb + cc 0.

Ptove that atleast one of the vectors a, b, andc is a linear combi-
natiOn of the others.` -

7. Suppose that a,, u . . ,are vectors such that at least one of
them is a linear combination of the others. Prove that there are
numbers a . ak, not all zero, such that

_ 4

. ,.. + akak -= 0.

ak are vectors an_q a,, (4.2, . . ak are real
such that a,a, + a2a., .+ . . . + akak 0.
of the given vectors is a linear combination

u,a,

g. Suppose that a .

riumbers; not all zero,
Prove that at least gne
of the others.

6.02 Sequences of Vectors

A gequence- of vedors -is a function whose dOmain'4i a set of con-
secutive pOsitive integers, 1?eginning With 1, and whose .values are
vectors. For example,.,the function

{(1,-(i),,(2,70.43), (3,-1-A14,-05,-5:

iSa sequence of vectors. The successive values of a sequence are called
its terms-the first term ofour example is a, its second term is a3, etc.

'Although the first term and the fifth term.of this sequence happen to"
be equal, the sequence is called a 5-termed sequence. Specifically, for,
any posiVve integer n, an n.termed sequence is a function whose argti-"

5 svg
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at least one of -SI, is a line*r combination of the others,
1

there are nuxtbers al, ak, not all zero, such that
ata1 + + akak [This is more than is to be expected of
most students. As written, however, the argument suggests that
there is an '3' hidden in the undergrowth. There is. In ;act, the
assumption is that 3 . ( 1 < i k and-. -:,i is a linear combination

1of the vectors al, ak other,than ai). So, the natural pro-
cedure is- to show that, for any i [such that 1 i < kb if :i is
a en .

3
x

. . . a I 1x 1 + . ... .4 akxk ..- 4. The argument, as given.is as
-.

1 xk

close as weAcare to come to establishing thisj Similar remarks
apply to the answer for t xercise 8.1

8. Supposethat ai, ..., ak are vectors and- al, ..., ak are real
k

numbers, not all zero, such that alal + + akak = 4. Suppose
-4.thsx i . 1 xthe sum of the vectors 1.. -(a. /a..) for j 0 i. So, by definition,

3 - .1 1

a. is a linear combination of the vectors -a° OP ak other than a..
Hence, if ai 0 0 then, a. is a linear combination of4the other
vectors, Since, by assumption, at least vile of the numbers a,

i

is
1not zero it follows that at least one of the vectors :1, ak s a

linear combination of the others.

It would be possible to avoid discussing the notion of a sequence
to discuss linear dependence in section 6.03 much as we have

discussed linear combinations in section 6.01 without being specific
as to whether'this notion is meant to apply to iequences, or ro sets, of, vectors. The ambiguity which would be introduced by this procedurewould, we feel, have increasingly erious pedogogical consequences as
stuients get ,further into the course. So, it seems best to spend a short
time now on the notion of a sequence rather than to attempt to correct
misconceptions later.

As introduced here, 'sequence' i8 abort for' 'finite se-quene-64.
Since we have no need in this connection-for infinite sequences that
is, for functions whose domain is the set of, all positive integers weomit the word 'finite'. For some 4emarks "IN the difference in mean-ing between '(11, -a.101- and '{az, an}', se,e TC Zllt2)
and the answers given for the exercises.

OP-
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nwnts are the wsitive integers less thanpr equal to n. Such a sequence
may have any ntimber of values up to and inclqding n. If an n-termed
sequence has n values then it is called a sequence of distinct terms.

A sequence is usually referred,to by listing its successiv terms be-
tween parentheses. For example,.the 5-termed .sequence given above
may be referred to as'

(a, a3, b, 0, a).

Since it is the order in which the terms' are listed that tells you which
value goes with which argument, this ordering is important.

Exercises

Part A

f

1. Let f be the sequence b).
(a) What is Dr What is
(b) Complete:

f is a .2-termed sequence and Rf has members.
(e) What is f(2)? 1)? f(3)? ft5)? f('12)?..
(d) 6f, -6.0,-6) and {-A, 1;0, b.} are both sets. How do they differ from

one anothe
(e) Just one of the following sentences is true. Which one?

4

b., 0, -1;) = ( b.) { 6, 0, h } =-- .61

2. Consider the function g, where g = 1(19.(-2.2),(?,a.1), (2, aii),(4, a'3)}.
Complete:

' (a) TA function g is a _-termed sequence because
(b),A simple name for the seqtkence g is:

)

,(c) The second term of g is and, sois
td) g is a sequence of distinct terms if and only if

3. Consider the sequence f of Exercise, 1.
(a) Can you find real nurabers a,, a2, and a such, that

(*) + (640)o rig3 =
2

f Hint: Knowing that a0 = 0 should help.1
tb) Can you find real numbers av u2, and a such that not all of

them are zero and such thal (*) is satisfied?
4. Consider 'the sequence g of Exercise 2. Can you find real numbers

a 1, 03, a , arid 4if which are not all zero, such that1

(a)a, + (at.)a, + (1)a3 + (a)a, =b1?

Answers for 'art A
1 (a) {13

gO, b}'.
previously giv

(h) 3; Z
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d) [An alternative second answer is
If this is sugges,ted, point out that the answer

iso equivalent and simpler. ] -
(c) d ; 13; '1(5)' and '1(1/2)' are nonsense.

(d) The firsi is a set of ordered pairs [whose second components
are vectors]; the secona is a set of vectors [whose members
are the second components'of the members of the first set].
The second is true.(e)

Z. (a) ,t4; g = {1,

(c) 2; a.,6

3.

2, 3, 4) (h) (-a.Z, -3..3)

(d) d
(a) Simplest to choose al = a3 = 0.

(b) Simplest to choose al a3 = 0 and a2 ' 0 say, a2 1.

4. Since (a2).1.1 + (a6)ac,
and since a0 =. (5, it
a 4' not all zero, and
'simple choice [from
al 3, a2 -1, a3

+ (al )al + (a 3 )a4 = a( 2a 1 + 6a..4 +.a3 + 3a4 )
is sufficient to find numbers al,' a2, a3, and
such that ;a1 + 6a2 + al + 3a4 = 0. A
arnong the infinitely many available) is
= a4 = 0,

* *
Forqcompleteness it should be noted that the parenthesis notation

for sequences introduces a slight ambiguity because par_entheses are
already in use for referring to ordered pairs. Thus, '(a,b)' 'may, now,
refer to the set of two ordered pairs whose first components are I and
Z and whosq second components are and b, respectively; or it may,
as in the past, refer to the single ordepred pair whose first com,ponent
is a and whose second component is b.

This ambiguity is extremely unlikely to create any confusion and
will probably not be noticed by your students. The most Common formal
method for avoidi rig ambiguity is to use and >',, rather. than 't and
')', in formirlg names for ordered pairs. Then, is,an ordered
pair and (-;, b) is a Z-terrned sequence.

'
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1. Consider a 1-termed sequence ict).
(a) Is there a real number a suCh that u.0
(3) For what value1s) of 'ix' is there a nonzero real number a such

that au 0?

2. LT;e two pencils to indicate vectors ci and h., where the following.
conditions hold:

_
(a) Ther,v is a number x such that a = hx.
031 There is a number y such that h ay.
(c) There is no number x such that a hx.
(4) There is a number x such that a.- h:t and there is no number y

such that h'---"ay. (For this, one of your pencils should be very
short.

3. Picture vectors a ,and h for which the following/conditions hold:
(a) There are numbers x and y, not both zero, such that

__
ax 1- by

It is im(xssible to find nunibers x and y such that (i) not both x
ancky are zero and (ii) ax + by 0.

Use three pencils to indicate vectors-0,-6', anci-c fOr which there
are numbers x, y, arid z such that ax + = 0.
Use three pencils to indicate Vectors a, h, and c for which there
are numbers x, v, and z which.are not alL zero and are such
that ax + hy + (.7.z 0'.

Use three pencils to indicate vectors a., b., and c for which it is
irnpo- 131e to find numbers x, y, and z, not all zero:such that
ax +. ez

e tonditions in part (b), is the vector a a linear combi-
nation of b' and c7.7 Is Ws linear combination of Ciand cr? Is;a
linear combination of 'a-and h? Must 'some one of the three
vectors be a linear combination of the others? Explain each of
your answers.
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Answers for Part B [To be done in clasi.]
1. (a) Yes.. [0] (b) 0 is the only such value of 'a'.
2 , (a), (b) [The txlicils should be held.parallel to one another. Bring

out the fact that the equation 'a Za' will have a unique solu-
tion -Lasitive if the pencilsjigoint the same way, negative if,
they point opposite ways. ]

(c).[The pencils should be held so as not to be parallel.]
(d) [The pencil representing ;. would have to be of zero length.

(and the other would have to be a "real", pencil). 1
['Pencils should be held parallel. ]
[Pencils should be nonparallel.]

4. [Since -a.0 f-'50 + 0 z 6, pencils may be held in any position. ]
[Pencils' should be held parallel to some plane say, all
horizontal. Point out that it is not necosary that all should
be in one plane.)

4
(a)

(b)

(a)

(b)

(c) [Pencils should not.all be parallel to any plane for example,
two horizontal and not parallel, the tAird not horizontal. ]

(d) [Since two of the pencils may be parallel and the third be in a
different direction, the answer to each of the first three ques-
tions is 'Not necessarily.'. The answer to the fourth question
is ' Ye s. ' . ]

Sample Quiz
The diagr.am atthe right illustrates

translations a, 5, c from 0 to the points
A, B, and C, respectively. Also, from
the diagram we see that B A = isi% and
C B frit.
1. Express m as alinear combination

411.

-a° and U.
. Express mt as.a linear combination of 5 and c-°.

3, Express c as a, linear combination of a and 5
Answers for Sample Quiz
1 . - [ o r -a° - 1 + g11
2. - [or: fa% -1 +

3. -t +45(1 + t) [Frorrt I pd. 2, we know that
mt = c So, - 1.)t C t, 40, C iP)t

6.03 Linearly Dependent. Sequences

kg we have seen in the exercises just completed, it is possible to have
a sequence of vectors (a , . . . , a.) for which there are numbers "say_
ar,. . . , au, that satisfy both of these conditions:

(1) not all of a a are zeroit N

(h) (11(11 + . . . + aam = 0
Such sequences are called linearly dependent sequences. We formalize
this notion in our next definition.

a.

a and
a -t
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Definition 6-2
,

. . . an) is linearly &pendent

there are numbers xi, x., ,...,x,, such that
) at least one of the numbers is not zero

,andlii) a-fix 1. a iv, . . +- a
N

' O..

Exercises

Part A
1.

7v .

Tell which of the following sequences are linearly dependept se-
quences and which arc not. Explain each of ypur answers.
(a) 6.4) I-Remember,i.o show that this sequence is linearly

dependent you must f(nd numbers at, a and U43 at least one of
.

Which is not zero, such that ()u, + (b0)a, + (b.4)at3 0.1

(b) (a2, a.) (c) (a2, a, -a, b)
(d) a, h, 0) (e) (a, h, a - b3), .

(f) ( a, 1,, c), where a, b, and c are, respectively, tranSlations toward
the east, toward the south, and upward.

P

(g)- la; (0, where a and c are. as in part (f ).
.2. Here are arrows describing vectors a, b., and c

0

such that (i.4, b, c) is
linearly dependent. Draw a similar diagram on your paper. [Graph
paper should .make this an easy job.1

4

(a) E4timate values for 'a', 'b', and 'c' such that at least one of a, b,-- -0and c is not zero and aa + bb + cc = 0 and,illustrate your an-
swer with an appropriate figure. ,

(b) Make use of the figure you drew for part (a) to obtain an appro-
priate figure to illustrate other values for 'a', 'b', and 'c' such
that at least one of a, b, and c is not zero and_act +TA + cc

3. Consider§ithc vectors given in ExerciseA. ,
(a) Use a+pencil to indicate a vector d such that ra,-b*,-d) is not

linearly dependent. Give a short, but convincing, argument
for your'particular selection of

(b) Given your selection for -cif in part (a), would you say that
(a,W,C,-11.) is linearly dependent or not?,Explain your answer.

Part B
Consider each of the following sentences.-If you. believe that it is a .

theorem, try to prove it. If you believe that it is not true, look-for a
counter-example.

51 s
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' In discussing Definition 6-2. you miet begin by bringing out the
fact that, given any sequence (aPI, an). it is always possible to
find numbers a " a such thatgi

(ii) é1a1 + anan =
but that the possibility of finding such numbers which are not all zero
exists if and e y if at least one term of the sequence is a linear combi-
nation of the oth r terms. For, if is such a term then One can find
numbers satisfyi (ii) and such that ai -1; while if one can find
numbers satisfying (ii) and such that ai 0 0 then one c,an solve (ii) for
'S.'. [Actually, this alternative formulation of linear dependence works
on\y for n > 2 a, fact which some student should be eager to point
out.) This discussion will foreshadow Theorem 6-2 on page 221,, and
the ensuing discuSsion of the case n I will bring out Theorem 6-1,

Sonie time during the discussion of the definition it should be
noticed that condition (i) is stated in two ways:

not all of al, an
and:

are lero

at least one of the numbers is not zero
Although students are not likely to have any difficUlty in seeing that
these are ways of saying the same thing it should be of interest to note
that they may be written, respectivsly, as:

not (a/ = 0 and = 0) (al or an 0)

and that, for any given value of 'n', their eqUivalence could be shown by
repeated use of the validity of sentences of the form:

not (p and q) (not p or not q) [page 171]
further discussion of the definition it may be helpful to resort

again to pencils. [In doing so you will, of course, be restricting_con:
siderations to non-15 vectors.) A finearly dependent sequence (a1, a2)
is illustrated by two parallel pencils. Note that if the pencils are of the
same length then the twd terms of the sequence are the rape vector' or
opposite vectors. A linearly dependent sequence Z2 , as) is illus-
trated by three pencils parallel to a given plane saSr, bY three hori-
zontal pencils. If no two of the pencils are parallel then eacIrterrn of
the sequence is a linear combination of the other two. This is also the...
case if ail three are parallel. In case just two pencils are parallel then
each of the corresponding terms is a linear combination of the other
and, hence, of-the other two terms of the sequence. In this case the
term cor responding to the-third pencil is-not a linear combination of
the other terms.

The preceding remarks can be clarified by drawings on the. cha2.1c-
board. Draw three arrows to repsesent non4 irectors a2, and a

g
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in different directions....0Then draw an arrow representing &ionic non-
zero multiple.....a1a1 of al. Through its' point draw the line in the
dire.ction of a2,,.and draw through ita other end the line in the diTection
of as. As shown in the right hand figure, xou can now dl-aw arrows
representing rnaltiples a2a2 and asas of a2 and as such that
a ai + a.x2 + asas = V. Since-, by choice, al * 0, the sequence
( ) is linearly dependent. [In the figure a > 0, a2 < 0,1, 2, 3 1and as < 0. I

If you vary the construction described above by choosing al and
a2 to have the same direction, it will turn out that as = 0. In this, -*case (a1, a) as well as (al, a2, a3) is linearly aegendent. At
this point students should see that if (a 1, sa-,) is linearly dependent then
so is any "longer", sequence (a1, a2, aq, ...). For, one may choose
as, all to be 0. This foreshadows -Theorem 6-3 on page 222 and
Theorems 6-4 and'6-5 on pages 223-224.

Two nonparallel pencils illustrate a sequence. (al, a2) which ia not
linearly dependent. Three pe.ncils which are not all parallel to any
plane illustrate a sequence (a1, a,, as) which is not linearly ctependenL
A question as to whether one can illustrate with pencils a 4-termed
sequence which is not linearly dependent may provoke a discussion4f
4-dirnensional.space.
Anawers for Part A s

Since (56)0 + (50)1 + (54)0 = (56,5'0,54) is Ainearly depend-
ent. [Similarly, any sequence one'of whoselerms if V is..linearly de-pendent.]
Since (-Z2)1 + a' -2 = 6, (a2, a ) is linearly dependent. [It is
not difficult to see, then, that any sequence one of whose terms
is a multiple of another is, linearly dependent.]
Since (-.:12)0 + l + -l 1 + = V, (12,-1, 5) is linearly
dependent. [This conclusion also follows from the result
noted in (b).
Linearly dependent. [See part (a). I.
Since 1 J. + 53 + - 53)1 =, V, (-a', 5,11- 53) is 'linear depen-
dent,
got linearly...dependent. Suppose that -la + b + 'cc = Zvi-
4ently aa + bb is either aroper translation in some horizontal
diree.tion or'is..d. Since cc is, in the vertical direction or is
and aa 513 + cc = 6, aa + 5.1s cannot be a proper translation in
a horizontal direction. So, aa = and, also cc = 0.,

aa + = Z5, a similar argurn.ent shows that *la = V and,
so, that -513 = 6. Since a, 5, and c are described as proper
translations, a, b, and c must all be 0, 'Hence, it is not the
5,ase that therellre numbers a, b, and c, not all 0, such that.
aa + 5b + cc = 0.

If (arc) were linearly dependent then(g) Not linearly dspsndent.
so would be (a, b, "C").

)
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Answers for Part A [cont.)
k

-I .[Note that + 127 and have the same
direction. So, any solution must be stich that a = b. Count,-

5ing shows that c - + )2.]

2.

3

(b) [For any nonzero number k, 2k 2k, and -k are appropriate
.values for 'a', 'b', and 'c'; there are no others.] Any tri-
angle whose three sides ave parallel to the corresponding three
sides of the triangle drawn for (a) can be used to illustrate
other values for 'a', 'b', and 'e'. Reversilg the ai;rowheads
in,the fignre drawn for (a) illustrates that a -2 + b -2
+ e 1

(a) ;[Pencil should be held in any position nst parallel to the
pape r. ]

Since neither nor -5 is a multiple of the other, (l, 5), is
not linearrY dependent; :ind has been chosen so that it is not
a linear combination of a and 11, Suppbse, now, that

+ 513 + d = 6. Since is not a linear combination of a
and 5,*ki = 0. So, -la + b = V and, sinCe (S.,5) is not linearly
dependent, a = 0 and b = 0, Hence, by definition, (-a",5,2) is
not linearly dependent.

(b) (-a', 5, -j,d) is linearly dependent however a is chosen. For
-Z2.+ 12 + + ao = u.

Answers for Part B
1. Fill-ins; 1, 0, I, 1, the, sequenceis linearly dependent.
4. This la a theorem. Suppose that ..., -In) is a sequence such

that a. = a where 1 iC.j31,. Choose a. = I, a. = -1, and
-0

alt 0 for k * L Dien. a = 1n
Since 1 0, not all the numbers al., ah are 0. .So, by
definition, the sequence is linearly dependent.

3. False. For I S, aa = only if a = 0.. So, a 1-terrned
Ikequence (3) is not linearly dependent if a. #

4. Theorem. As ifrthe answer to Exercise 3, if -a' 0-5 then
not linearly dependent. Ss, if "1.-i) is linearly dependent then
On the other hand, since 01' = 0 and. 1 _f 0, the sag:place (d)
linearly dependent. In other words, if a = then (a) is linearly
dependent., Hence, (s) is linearly dependent if and only if a = 0

5. False. For a counter example, see Exercise 6.

TC 221 (1)
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1. If 0' is a term of a sequence 6f vectors then the sequence is lin-
early dependent. at: This sentence is a theorem, and one proof
goes as tbllows:

Suppose that ta.,, , . . , tz is a sequence such that a, =-6, where
is an integer between 1 and 71, inclusive. Choose u, .._... and

for,/ i, choose a, Then alai +

and, since .0 0, not all the numbers (21, . . . , u are zero.
So, by definition, . .

2. If two terms,.of a sequence of vectors are equal then the sequence
is linearly dependent.

3. Any I-termed sequence is linearly dependent.
4. a) is linearly dependent if and only if a = 0.
5. No 3-termed sequence is linearly dependent.
6. B A, C A, C - B) is linearly dependent.
7. (a) la, cu.. is linearly dependent

(h) «;/.). a"c) is linearly dependent
8. (a) If th, c) is linearly dependent then so is (a, b, c,

(b) If (a., b., c, ch. is linearly dependent then so is (-b", et).
9,. (a) If (a. b) is linearly dependent then so is (b, a).

(b) If a, b, c, d is linearly dependent then st) is (C..; ci,
10. (a) .For a ;=. 2, if one term (at least) of an n-termed sequence is a

linear combination of the others then the sequence islinearly
dependent.

(b) For n =-- 2, if an a-termed sequence is linearly dependent then
one of its tsrms [at least) is a linear combination of the others.

Sotne of the theorems in Part B are worth assignint; numbers to:

TheOrem 6-1
_

..(a) is linearly dependent --> a 0.

Theorem 6,2 For n 2,
(a1, a, . . au} is linearly dependent

one of the vectors a,, . . . , a,, is a linear
combination of the others.,

Theorems 6-1 and 6-2 can be used to,advantage in showing that a`given
.S'equence is linearly dependent. [For a 1-termed sequeuce, use Theo-
rem 6-1; fur a "longer" sequence use Theorem 6-2.1

J (")
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6. By Postulate-3, (B-A).+(C B)= C -A. So, (B-A)1+ (C - -1
+ (C - 13)1 = 6: Since 1 0 it fpllow's, by definition, that
(13 A, C A. C B) is linearly dependent.

7. Theorems. (b) (1b). + (1c)b = a(b -c + c b) 0 = 5. so,
if not both -c and b are zero then (itb,-Ic) is linearly dependent.
Of course, Li-either b'= 0 or c = 0, the same result follows by
Theorem 5-1(a) and Exercise 1, Of course, (a) follows from
(b) and Postulate 45.

8. (a) Theorem. Suppose that (11,-C),is linearly dependent. It follows
that there are numbers say, b and c not both 0, such
that 1113-+ -Cc It follows fforn tkiis that -SO + bb f cc + a0 = -6
and tha,t 0, b, c, and 0 .are nor all 0. Hence, (1,14)., c, a) is
linearly dependent. .Consequently, if (11,C.) is linearly depend-
ent then so is c, A).

(b) False. (-a°, , a) is linearly dependent, for any -choice, of g,
c, and a. And it is possible to choose 1knd c so that (g,c-P)
is not linearly dependent. [Actually: the last claim holds.up
only in Vector spaces of dimension%at least 2. .For 1-dirnen-
sional vector spaces such as (b) is a theorem.
Theorem. -Sa t b b + -a..a and a and b are not both Q if
and only if b and a are not both 0. So, by definition, (;.,g)
is linearly dependent if and only if (5,..a-.) is linearly dependent.
Theorem. [Proof similar to that for ('a). ]

Theorem. Suppose that (a2., an) is a sequence one of
whose terms say a. is a linear combination of the others.

,

[This is possible only if n > 2] It follows by Definition 6-1
that there are numbers sa

vectOrs a.a., j 0 i. It follows that if 'a. = -1 then
+ a

n
an = 0 and [siiice -1 0 0] that not all at e

So, by Definition 6*-Z, ..., an) is linearly

Suppose that....(17 ..., an) is linearly dependent.
It follows by Definition 6-2 that there are numbels say
al, , a not an 0, such that -S1a1 a = ?t.n n
Since al., an are not all 0, at least olie of them say,

surn,of the
a a + ,

an are 0.
dependent.

(b) Theorem.

y a., j 0 i such that is the

. -... ..t
a. is not 0. It follows that a /a. = 1,- and that a1(a.l. /a1)i i i

... + an(an /a) = t". /a. = .6. 1-lence, .= ;i(ai /a.i) is
[in case n Z] the sum of the multiples li 7-(aj /ad-for
j 0 i.. So, by Definition 6-1, -;.. is a lineax combination of thei-. -. -..vectors a an other than a.. Hence, for n , 2, ifi .
(-aea., '..., ;.n) is linearly dependent then one of its terms is a
linear cbmbination of the others..

a .
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Theorem 6-3
(a) A sequence one of whose terms is O° is

linearly dependent.
(b) A sequence two of whose terms are equal

is linearly dependent.

Exercises

Part A
1. Use Theorem 6-2 to prove Theorem 6-3(b). (Hint: Is a

,
a linear

combination of a?)
2.. Use Theorehis 6-1 and 6-2 to prove.Theorem 6-3(a). (1-linS: Is

6. a linear combination of O.?il

Part 13
1. Suppose.that a12 + 13. :3 +

(a) Is (a, b., ri linearly dependent or not'? Explain your answer.
(3) Complete Fach Of Ole following (if possple)-;

(i) a b + (ii) a = b
- .

(iii). b - a ---- 4. '
- -. + c

..-_ .
(iv) c '= a + b _

2. Suppose.that all + gi + C-0 + A
(a) Is la, -1-;, c,_ cf.) linearly dependent or not? Explain your answer.
(3) Complete each of the following (if possible):__.

(i) h -=-: b ___ + c._____ +I ______ (ii) W.--
MO.! (iv) it =--

(c) 1s, -17.,-/) linearly dependent?.
(d) Ikt`l.b.e any other vector. Is (a, or, el linearly dependent?

Is (a, e, ci.) linearly dependent? Explain yoUr answers.
3. Suppose that A, B, and C are three points of e' such that A +ci= B

and A C for some translation a.
(a) Draw a picture which illustrates the conditions of this problem.
(b) Determine whether or not (C - A, B - A) is linearly de-

pendent.
(c) In y.our picture for (a), draw a graph of a point D where D = A.

(d) Deteimine .whether or not 1,1) - A, C -* A) is linearly de-
pendent. , .

4. In addition to the points and the translation a of Exercise 3, con-
sider a translation Wwhich is not a multiple ofii.
(a) In your picture for Exercise 3(a), draw the graph of a point E,

where E - A + b*.
(3) 'Do you think that (E A, B - A) is -linearly dePendent7Yak?
(c) Do you think that (D E - A) is lihearly dependent? Why?
(d) In view of your answera in'parts (b) and (c), in how many

ways can you 4:complete the following sentences to make true
Jitatements?

\
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Answers for Part A
1. Suppose that two terms of a sequence are equal. It follows that

[either) one of these terms is a linear combination of the other and,
80, is a linear combination of all the other terms of the sequ4nce.
Hence, by Theorem 6-2, the sequence is linearly dependent. ,

Hence, any sequence two of whose terms are equal is linearly
dependent.

Z. By Theorem 6-1, a 1-termed sequence whose single term is is
linearly dep.endent. Suppose, now, that a sequence of two or more
terms has 0 as one of its terms, Since .6. is a linear combination
of any vectors it follows that this term of the sequence is a lineir
combination of the other terms. So, by Theorem 6-2, the sequence
is linearly dependent. Since any sequence is either? 1-termed
sequence or has two or more terms it follows that any sequence
which has d as one of its terms is linearly dependent.

As given above, noither of these proofs is likely to seem simpler than
the proofs of the same theorems given in answer to Exercises 2 and 1,
respectively, of Part B on page 221. The principle excuse for asking
for them is that two proofs of a given theorem relate this theorem in
different ways to other theorems and, so, give a better understanding
of the theory under development. Also, the more proofs one has studied,
the better one's chances of finding proofs for future theorems.]
Answers for Part B
1. (a) From the given assumption and the fact that 2, 3, and 3/2

are not all 0 it fo,Pows, by definition, that (S, Z..)ris linearly
dependent.

3 3 ,.., 3 3 2 1 4(b) (,i) i; kill (iii) 7; 7 (iy) --1; 2

2. (a)

(b)

(C )

(C1)

Yes. The numbers 4, 2/7. 0. and 5/2 are xt all 0,
1 5 35171; 0; (ii)'-S. 14 + -c.0 + J

.(iii) [impossible) (iv) a. 3-+ b. --IT+ c0
[Other correct "answers fOr (ii) and',(iv) may be obtained by
perair.iting terms or omitting 'W.]
Yes.
Yes [to both questions]. S4 +11- +

5the numbers 4, 0 are 0; -S4 +
2 5al th1 of e numbers 4, 0, are 0.

a

a

(b) (C - A, - A) (13,-;) and I. linearly dependent since
(13)1 4 -;. 3 = 6 and 1 *, 0.

(d) (D - A, C A) 2, (i -4,13) and ie. linearly dependent since
(a:. -2)3 + (13)2 0 and 3 #0.

e0. = 'd and not ail of
2 -1.5 7, and not.7 2
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0

44

E A"

(b) No. (E A, B - .A ) (a* g), and (a, b) is not linearly depend-4.ent. For, suppose that aa + bb g is not a,multiple
of a it follows that b 0 and, so, that 'ha. .6. Since, in
Exercise 3, A, .B, and C are three points, A 0 B and so4

6. So. a = 0,

6

. (c) No. (D A, E A) (a -2, b.). Suppose that la% -Oa
+ hb d. It follows that -a.' + gb and so, ley part
(b), that -Za = 0 and b 0 2- that is, that a = U and b Q.So, (D A, F. - A) is not linearly dependent.
Each can be rdmpleted in [essentially] only one way.
['essentially" because, although each blank rniot be filled by -
a nurner.sl for 0, 0 has many narnes.,]

[In ansyci...E.ing (bi and (c), students may give less compelling reasons -such as a, and b have different arections' tn support of their answers.
This is all right,. butl it should be, pointed out to them that the arithmetic
justiRcations given above are not belond their powers. )

)

5 t )

6

4

42.

f
Answers for Part B [contr]
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5, 0; 0
If a = 6, the different subsequences of (-S, 6,6) are (6); (6;(5) and

(6, d). There are five types of 3-termed seqiences. These are
exemplified by (a, a, a)., (a, a, 5), (-S, g,1), (g, a, a), ,and CS, 5, 4 where-4 -4
a, b, and c are different vectors. A sequence of one of these types is
easily seen to have 3, 5, 6, 5, or ,7 subsequences, respectively.
[This answers the bracketed questions. They are of no importance
beyond being thought-proveking and generative of a little combinatorrial
activity. ]

The' explanation asked for in connection with Theorem 6411:i)iii that
gb + ad = a0 + + -ce0 + ad, and' 0, b, 0, and d are not all if and
only if b and d are not both 0. .

The sug'gested proof of Theorem '6-5 goes as follows: A sequence
one of whose terms is a multiple of another has, for some a and some
c, a subsequence (a, ac) or a subsquence (;c,1). By Exercises 7 and
9(a) on page 221, any such subsequence is linearly dependent. Hence,
by Theorem 6-4, the given sequence is linearly dependent.

* *
A rigorous proof of Theorem 6-4 [and one of Theorerii 6-6]

requires the use of mathematical induction on the number of te,ins in
the given sequence. For completeness, we'shall outline proofs of
these theorems in some detail. As a basis, we need detnitions cif
'subsequence' and 'permutation':

is a subsequence of
4=4.

there isan order-preservig mapping f of {1, m}
into, {l, n) such that, for 1 i m, bi = avo

To define 'pçrrnutation', merely replace, in the preceding definition,
'subsequence' by 'permutation', replace 'an order-preserving' by :a.
one-to-one', and replace 'into' by 'onto'. [In the case of the former
definition one can prove that m n; in the case of the latter, th,,at
rn = n.1 Recal] that art order-preserving mapping is one-to=one and
that a one-to-one mapping has a'n inverse.. Now, given a ,one-to-one
mapping f of {I, ..., mi into {I, n), and given numbers 1:?1,

bm, define numbers al, a by:
,

a. = b
1-15)

if j e RI and a. = 0- if j-4
It follows that, for 1 < i m, af(i) = bi 3na, so, that

a
f( ) a'f( ) ' + ai.(1,11)atom 1A1b . bmbm.

Hence, to prove Theorem 6-4 or Theorem 6-6 amounts-to proving that
(*) a a + + a = 1 a + . +1 1 n n f(l) 1(1) f(m)af(m)

... under the appropriate assumptions on £ that, besides being one.to,-
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(i) tE A) + (13 - A)

223

5. Here is a figure illustrating two vectors a and b such thatlis4,-6) is
not linearly dependent.

b

Gi'Ven 'that a and b are real numbers such that aril + b V, it
follows that a and.b

1.04 Subsequences and Permutations of Sequences'

Given a sequence (a: b,c, (I), the sequences

;ia*, c, (b; c*, af), and (el [as well as sorne others]

are silbsequences of .the given sequence. More explicitly,

a subiiequence of a given sequence is a sequence whose terms
are some [or all) of the terms of the given sequence, in the
same order which they have in the given sequence.

-
For example, the subsequences of (a a2, a3) are

. 4 -4
(as), (a2), (a3), (al, (22)., (a a3), (a2, a3) and (al, .

_ ,
If (a , a., ai) is not a sequence of distinct terms then the subsequences
listed, above my

C
nbt all he different. For example, the only subse-

quences of a, 0, Ob) are. Ca}, (6), 6), (6, Th, and (d, -6, A. The:Se are
different from one another if and only if a 0. Note that, in this case,
neither Ca.,-G-ti nor (V, a') is a subsequence of the given sequence. [Can
you describe a 3-termed sequence Which hag exactly six subsequences?
One which has exactly four subsuences?]

it is ahnost obvious that if (W, af), say, is linearly dependen4 then so
is (a, b, c, el). [Explain.] Arguing in the same way we could Prove:

Theorem 6-4
If any subsequence of a given sequence is linearly

dependent then the given sequence.is linearly
dependent.

Using this theorem and two of the theorems you proved in the pre-
ceding exercisers, it is easy to piove:

5 9 (7
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(

one, f is order-preserving or onto, respectively. Under the former
assumption, yr) follOws from the fact that, for any vector a, -10 = 6 .
and + a = a = + 6. Underthe latter assumption, (*) follows from
the commutativity and associativity of addition of vectors.

The proof of (*) under the former assumption is not difficult for
one who is familiar with mathematical induction. The initial step con-
sists in noting that in cse n = J. it follows that rn = 1 and f(1) = 1.
So, in this case (*) reduce's to the valid sentence '-a'1a1 -; a

1 ' For
.

the inductive step one assurnes'that n .> I and takes as inductive
hypothesis the sentence obtained from (*) by replading shs by sn'.- .1'
and for clarity 'f' by '13' and 'rn' by 'p' where g is any order-

' preserving mapping of {1, p} into {I, . n 1*) There-are
two cases to consider in deriving (*) -- that in which n eft/ and that in
which n e Rf. In the first case f is an order-preserving mapping of
{1, into {1, n - 1) and we can replace 'gs in the induc-
tive hypothesis by '1' and 'p' by sm'. The proof of (14) is completed
in this case by noting tl1at,, since n 0113,f, an is, by definition 0 and, so,
-1 a = d andn n

r 4. Irian in-1 an-1.
In carte n c it then, since f is order-preserving, n = f(m). It follows
that anan = afirroafirn) and that the restriction of f to {1, m - 1)
is an oroTer-pr4s4rving mapping' of the latter into (1, n 1). So,
replaoing 'p in the inductive hypothesis by 1', we may take the
restriction of f to {1, m I) for g. (*) now follows from this
i.r.vstance of the inductive...assumption and an instance of the valid sentence'a = -a' + c = + c', [In case m = 1, 'm l' may npt be substi.-
tuted for sp' in the inductive hypothesis. But, in this case, (*) reduces
to a sentence of the form + + C"n = -e*,,,s where, for .1 i n 1,V re

Fe.7 u. This can be proved-by induction, using the fact that, for any a,
.4- a a. (As a consequence of the obvious inthictive hypothesis, forn > 1, ci + d if cn_i, as'we..11 as op 1_. n - 2, is

U. So, if tillior I n - I then c1 + + cn = U + c )]
The proof of Theorem 6-6 proceeds, for a arng, much like the

preceding proof of Theorem 6-4, The initial step and the first case of
the inductive step are exactly as above, with 'order-preserving' re-
placed by 'one-to-ones.. The second case of the inductive step is more
complicated. Since f is not assumed to be order-preserving we may
not conclude in case n e RI that n4= f(m). All we can be sure of is that,
for some k, n = f(k). In case i = m we may proceeci as above. If not,
we must use commutativity and associativity to show that kth term on
the right side of (*) "may" be shifted to theend of this indicated sum.
{This can bell done molt, easily _Tith (m - k) applications of the "switch
principle' + t) + c + c) For k = 1, first commute then
apply the witch principle m - 2 times.] 'We then proceed as before,
but instead of taking g to be the restriction of f. to (I,. mwe define so that g(i) = f(i) for 1 i k an'd g(i) = f(i + I) for
k i m - 1:

The argument sketched in the pireceding paragraph established the
only if-part of Theorem 6-6. The if-part follows at once since if a
given sequence is a permutation of another then this other sequence is
a permutation of the given one.

*
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Theorrn 6-5
If any term of a given sequence is a multiple of

another term thed the given sequence is linearly
dependent. -

I'rove Theorem 6-5 now.
Is

Given a sequence (a, b, r,,(1), such sequences as

(c.:1, ae), (a,c, d, a*, c5, (a*, 6*,--c; etc.

are permutations of the given sequence. More explicitly,

a permutation of a given sequence is-a sequence whose terms
are those Of the given sequence, but,not necessarily in the
same order.

-
For example, the permutations of (a, b) are

(a4

, b) and (b, a); those of
are

-
(a, , c), ( , a, di , ( , c, , (c, a 13 and (c,.b, a).b c(ab -b") b-4 -*--*-*)

For sequences of distinct terms, a 2-termed sequence has two permu-
tations and a 3-termed sequence has six permutations. If you compare
the listing we have given for the Permutetions of (a, b,T;5 with that for
the permutations of (a, b) it should be.easy to compute the number of

-1
permutations of a 4-termed sequence (a, h, ç, d ) of distinct terms.

As you saw by two examples in Exercise 9 of Part B on page 221,
whether or not a sequence (a,, . . , a) is linearly dependent-that is,
whether or not there are numbers x1 ,...,x, not all zero, such that

a,x, + . . 0

-does not depend on the order of theterms Of the sequence. This is so
because of two properties of addition of vectors. What two properties?
For example, for any vectors and e and itny real numbers rt, 6,
and c,

bb + cc + aa = + rth + cc). [Why?)

bb cc + act = aa -+ bb + cc = O.

Since, obviously,

b, c,.and a are not all zero qP a, b, and c are ti-ot all zero

53 o

es,
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The permutations of the s9uerice (-1,5,J) were listed by modify-
hng the two pe4mutations of (ab, b) in three, succespiye, ways first
by inserting 'c' at the end, thnin the middle', and finally at'Theliegth-
ning.. The permutations of 4a, c, a) can be obtained in the same way
by modifying those of (S., c). Since there are 6 of the latter and, in
each, 4 places to insert 'd' there are 6.4 permutations of a 4-termed
sequence. [As is the case with counting subsequences, counting per-
mutations plays no role in this course.]

It should be intuitively clear thatTheorem 6-6 is a consequence
of the commutative and associative principles for addition of vectors.,
Since, as indicated in the immediately preceding commentary, a,proof
of Theorem 6-6 is quite involved, it would not be sensibk to attempt
to give one in the text. You might, in class, point out that proving the
theorem in the case of 3-termed sequences amounts to proving that,,,
for any vectors -S., 5, and c,- re. -0 -4 - e4s Os -4' 74. -a+b+c= a+b+c -a+c+b,a+b+c

+ g + + + and it,. + + = -c* + + 'S. .

Proving the theorem in the case of 4-termed sequences would, amount
to proving 23 similarly trivial theorems.

Students are not likely to question Thebrem 6-4; and they will have
some opportunity to use it, particularly.in the guise of its contrapositive;

lf,a sequence is not linearly dependent -

then none of its subsequences is linearly dependent.
On the other hand, Theorem 6-6 may raise some questions'. Theorem
6-6 is perhaps even more obvious than is Theorem 6-4, but why go to
the trouble of introducing sequences in which order is important
w,hen you can prove a theorem to the effect that order doesn't matter?
A partial answer is given on TC 212(1). If one did define linear
dependence for sets rather than sequences, a similar.theorem would be
required, anyway, to justify the 'tlefinition. A somewhat better answes
is that the notion of a sequence of vectors is needed later in contexts in
which order is relevant, and the question of linear dependence of such
sequences will arise. Such a question cannot be answered by consider-
ing the range of the sequence since the sequence may be linearlY depend-
ent because it has repeated terms and this gannot be determined by
looking at its range, So, if we began by defining ,the notion of linear
dependence of sets of vectors, we should have to start afresh when it
became necessary to deal with linear, dependence of sequences. Finally,
although linear dependence of sequences cannot conveniently be defined
in teTms of linear dependence of sets, linear dependence of sets can'be

, defined, both conveniently and nanvralLy._ in terms of linear dependence -

of sequences [see Part E on page 230). [Linear dependence of
sequences can be defined-in terms of linear dependence of sets:

A sequence is linearly dependent if and only if either:
it has repeated terms or its range is linearly dependent.

But, "disjunctive' definitions such as thin are difficult to use since
one is foVced, each time, to consider two cases. Alao, the'auggested
definition ia somewhat -tionaturar _without rather careful motivation.

Incidentally, Theorem 6-6 earl be used to simplify many proofs.
As an example, consider Exercise 10(a) on page ZZI. [This is a proof
of the if-pvt of the Ory. important Theorem 6-Z, J Suppose that
(al, ., ad is a sequence one of whose terms ii a linear combination

e

53
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of the otheF. I,et (131, , gn) be a permutation_pf the given sequence
such that bn is a linear combinzttion of ,h1, b1L1.,it follow.s that
Abe.re,oare numbers -7 say, bi, . , bn_1 such that bn = b1b1 +b , b --From this [since bn + bn -1 4: it follows that.n- n-1'hlbi f bn_I + Sn-1 6. Since -1 0, i'ird is
lintzarllr dependent. [Note that tIze algebraic difficulties have been
relegated to the pro'of of Theorerii 6-6. Hence, even if one takes the
trouble to prove this theorem, these difficulties needbe surmounted
only ohce. 1

Presenting this proof to your class may inducereopect for Theorem
6-6, You can then ask them to establish the only-if part of Theorem 6-2
in the'same manner, [Suppose that (at, ..., an) is an at lea.st 2-termed
linearly dvendent sequence. It follows that there is a permtitation
(1;1, bn) of this sequence and numbers say4 b , b such. . 1 nthat bn, 0 and bibl +

}
a 4. gri-'16n-1 gribn °' Etc.

tr

p.

0
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it follows that

e, a isvlinearly dependent 47-, , el is linearly dependent.

Theorem 6 6
A permutation of a given sequence is linearly

dependent

if and only if

the given sequence is linearly dependent.

Exercises

Part A

Part B

a

I. U.se.Theorem 6 -4 to prove:
h, c5 is not linearly dependent (a, c)

pendent.
2. Use Theorem 6-6 to 'prove:,

(a, h, c) is not linearly dependent (a, c, b) is not
dependent

3. Prove:

is not linearly de-

linearly

ta,c, b) is not linearly dependent 4-4. it b, c) is not linearly dependent

4. Show that any inference of either of the forms.;
p 410 q

not p 4-4. not q

is valid.

not p 4,-*. not
p 411 q

As you learned in Chapter 4, the sentence:

(.) (a 0 or b 0) - not (a = 0 and b 0)

is valid- in particular, the sentences to the left and the right of the
' 4.--*' are different ways of /saying the same thing. In English we
might say, instead of (*):.

One [at least! of a and b is not 0 if and only if
. not both of a and b are 0.

Since both sides of (.) say the same thing, so do their denials. Hence,
using the rules of double denial, the sentence:

is valid.

not (a 0 or b 0) 4=4. (a = 0 and b = 0)

TC 225

Answers for Part A
1. .Since (-;,C*) Ls a subsequence of 11,11, it follows from Theorem

6-4 that if (a, -C") is linearily.dependent then so is (;,ii,C"). Hence.
{by contr.apsorktimnI if (I, b,c) is not..liriearly dependent then (1,c
is not linearly, dependent.

Z. Since (I, 111:1:1 is a permutation of (1,11, -c.) it follows by Theorem
6-6 that (a, c,11) is linearly dependent,if and only if (a, -e*) is
linearly dependent. Since [trivially] if (S,g,-c.),is not linearly
dependent then (1,5,C) Is not linearly.d!....pedent it follows [by
biconditional replacement] that if (a, b, c) ,is not linearly 'dependent
then (-,c,11) is'not linearly dependent. [A proof like that in Exer-
cise 1 can be given, using the only if-part of Theorem 6-6. But,
it is wise to get the habit of using biconditional replacement when
it is available. Using it simplifies many proofs and, without such
a habit, one may forget this.]

3. Since (;,J4i71 is a permutation of (;,r),O*) it follows by Theorem.
6-6 that (a, c,11) is linearly dependent if and only if (a, 5,s-c.) is
linearly dependent. Since [trivially') (:, 5, CP) is not linearly depend-
ent if and only if (1,g, -C) is not line_aarly dependent it follows [by
bicoriditional rs.placement] that (aP, c,b) is not linearly dependent
if and only if (a, b, -C*) is not linearly dependent. [Some students
may establish the if-part of this theorem in Exercise 2 by an argu-
ment like that given in Exercise '1, then establish the.only if-part
by a similar argument, and finally combine the two. In outline,
their procedure is indicated at the left:

p p

q p

p q
p 4=t. q --p 4=4, -13

"-p q

-ci 4:=4> ""p

That indicated en the right the '*' indicates that sentences of the
indicated form are valid is very obviously simpler.

4. For inferences of the firpt form see the right hand figure, above.
Some discussion of the ' rule for ignoring valid premisses" may
be in order. This rule is discussed in the text on Pages 81 and
82 and, more formally, in the commentartmy for page 75. For
inferences of the second form:

-4`

q C=4, q

5

0 ,C=A, Pal Ir..
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Part C

1. Give an "English translation" of .4).
2. The sentence "a', . . , a, are not all zero' can be restated lin Eng-

lkshl in two ways: Complete.
(a) not all of lb) one at least]

3. The sentence 'a,, . . ,a, are all zero can be restated in two ways.
-Complete:

(a) all of ()) none of

By definition, to say that a sequence (a., h*, c.) is linearly 'dependent
amount.s to saying that there are numbers x, y and z which are not. .1
all 0 and which are such that ax + by + cz = 0.

So, to si.ty that a sequence (a, 1), cl is not linearly dependent amounts
to saying that there are no Auch numbers that is, that there are no
numbers x, y, and z such that x, y, and z are not all 0 and aa I- by + ('z

0. Another way of saying this is io say that, for all numbers x, y,
and 2, ax +- by + cz 0 unless L = 0 and y 0 and z 0). So, it turns
.out that.

e) is not linearly dependent
Om*

for all x, y, and z, if ax f by + cz =
then (x = 0 and y = 0 and

I. Suppose that (at b) is linearl denendent to make it simple, sup-
_ -0

pose that a3 + b2 = 0. Let c a b,
(a) Show that:C.4 + h.
(b) Find four pairs (a, b) of real numbers lbesides (1,-1) and (4,1)1,

such that c ua + hb.
(e) If someone told you that he knew a pair (a, b) such that c = aa

-6.12, would you stand much chance of guessing what numbers
\ he had in niind?

2. uppose that (a, b ) is not linearly dependent and that c
,

=
If a friend tells you that he knows a pair (a, b) such that c = aa
4-, eb, how much will you be willing to bet that the second Of his
nUmbers is 2? IHint: Your friend's numbers must, of course,`Satisfy
the equation aa + bb ---, a 4, b2'. Find an euivalent equation
wh right side is `CP, and remember that (a, -1;) is not linearly
de ndent.1

6:05 Linearly Independent Sequences

In Part B of the preceding exercises you discovered an important
property of seqUences of vectors which are not linearly dependent,

b

TC 226

Answers for Part B
I. Neither a, nor b is not 0 if and only if both, a and b are 0,
Z. (a) not all of al, ... are 0

(b) one of a1, .,., an is not
3, (a) all of al, an are 0

(b) none of, al, ..., a is not
Answers for Part C

[The discussion,is a somewhat informal proof of the case n = 3 of
Theorem 6-7 on page 227. A different proof of this very basic theo-
rem is given on pages 227 and 228. The present proof is formalized
on pages 267 269, It may help you to see formaliztations of the sen-
tences in the second paragraph;

(a",l7,,j) is not linearly dependent
not 3. 3 3 (not (x = 0 and Ni- 0 and z= 0) and -Lc, t +-*cz =- d)

_2( z
<=4::V V.V (ax + by c z O. or (x 0 and y = 0 and z = 0))x y
4=4,V V V [itx + + cz (x z 0 :and y 0 and z 0)I

An alternative intermediate step is:
V V Vx z

not (aeX + 'c-.z and not (x 0 and y = 0 and z 0))y

-- in English:
For all x, y, and z, never ax -4 by + z
without (x 0 and y = 0 and, z = 0).

Understandiin,g the argument depends on reahzins that 'not for some
any] x [so-aed-sor amounts to the same thing as 'for each x not
so-and-sor and that 'not (not p and q)' amounts to the same thing as
if q then p'. The last can be mediated by 'not q or p' [or, as in the

text, 'not q unless p'], As in the case of proofs earlier in this chapter,
time Spent in clarifying these points is likely to result in saving time
later. 1
1. (a) s - g) 6 = + 3 + rkz. = -a. 4 +

(b) [For any k, (3k, + 1, 2k 1) is such a pai4 there are no
others. I

(c) No.
L. Bet any amount you can get covered; it's a sure thin.g. [Since

aa + bb = a + 112, 1(a 1) + 5(b -_2) = .6. Since (;,b) is not
linearly dependent it follows that a - 1 z. 0 and b-- 2 = 0.]
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S.

!And, in earliel' exercises you discovered that there are such se-
quences. I n the remainder of the course we shall have a great deal
to do with sequenees which are not linearly dependenv So, it. will be
Convenient to have a .name for such sequences.

Definition 6-3 I

A sequence, is li nearly independent

ifikand onlyif

it is not linearly dependent.

As you saw in Part B I in the case of a 3-termed sequence] it follows
from Definitigns 6 2 and 6 -3 that

Theorem.6 -7 .
, an) is linearly independent

. .

for all real numbers 1-1, ,

-0 -
+- ax = Os tx, =, 0, . , and x 0).

A fbrmal proof of Theorernqi 7 [either as a tree or as a column I
requires knowledge of some rules,of logic which we shall discuss only
later in this chapter. Nevertheless, your intuitive understanding of
the phrases 'there are' and 'for all' will be sufficient to make convincing
the paragraph proofs we shall%ive for the two parts rir and "only if"!
of thiS theorem. It -will, be easy later, if we wish, to put these proofs in
column-form, using the ruIes we shall adopt for 'there are' and 'for all'.

We first prove the if-part of Theorem 6- 7:,
Suppose that, for all real mimhers .r1, . . . , xn,

if ary,
_
axi = 0 then (x = 0, .

1 ,
, and x, = 0).

-
Now, if tai; . . , aN) were linearly dependent, it -would follow lby
Definition 6-21 that there are numbers -sax4a1, . . . , an-which cfre
not all zero and are such that a

1
a

1
+ . . . .+ a a = 0. This is not the

case, hecausaby assumption, if a,a, + . . + a4a,, Vthen (a, = 0,
. . . , and a, = 0). So, ta . . . , a.) is not linearly depondent.

Consequently, if, for all x . . ,

--r

+ . . . + a.x. --- 0 -..* (x, = 0,. . . , and x = )

then
(1 1a . 'a is not linearly dependent.,

TC 227 (1)

From the form of Theorem 6-7 it is obvious'that it might be taken
as. a definition of tl-e phrase 'linearly independent', The,n, 'linearly
dependent' could be defined as an abbreviation for 'not linearly inde-
pendent', The motivation for the procedure adopted,in this text is, of
course, that the concept of linear dependence is intuitively the simpler
of the two, as well as the more easily illustrated, Nevertheless, the
characterization of linear independence which is furnished by Theorem
6-7 is by far the most important one.

Of the two'parts of Theorem 6-7, -the only if-paTt is the more fre-
quently used. A brief explanation of a common so rt. of use is in order
here. As we shall see, it is frequently possible to reduce the solution
of a geometric problem or the proof of a geometric theorem to
that of finding all real number solutions of a vector equation of the
form:

(*) x + + -Snxn

where it is known that (;i, ..., 'In) is a linearly independent sequence,
of translations. [In studying 3-dimensional geometry, nwill neces-
sarily be at most 3.1 In a given problem, the ...,xn' will be
replaced by given real number terms. [For examples of such equa-
tions, See Exercise 1 on page 228. The only if-part of Theorem 6-7
tells us that the only solutions of (*) are the solutions,of the corre-
sponding system of real number equations:

(**) xi °, , xn °
Since, triviallach solution of this system is a solution of (*), by
finding alfsolutions of (**) we find all solutions of (*), thereby
solving the geometric problem [or proving the theorem]. More
specifically, a problem concerning a triangle can often be solve& by
using the fact that by a later definition A, B, and G are vertices
of a triangle if and oply if (B - A, C - A) is linearly independent, and,
by translating the problem into that-of eolving a4equation of the form:

[The real "problem.," is, of course, to find thit equation. Theorem
6-7 then tells us horto solve it, ]

As remarked during the ,preceding discussion, it is a trivial matter
to justify replacing the ' in Theorem 6-71 by a second
Since this is trivial, and since stating the theorem j.n this stronger
ftirm would complicate the eiisuing discussion, we have not made the
replacement in the text. That it might be done should be brought out
in class discussion.

Atie shall have less use for the if-part of Theorem 6-7.
If your students haveattained a fairly good Anderstanding'of the

proof of Theorem 6-7 in the case n = 3 which is given on page' 226 it
would be possible to review it bV using the same argument to proVe the
theorem itielf. Itt that case the proof given on pages 227 and 228
might be skipped. [As previously remarked, howtever, two proofare
always better than one. ]

In giving the proofs, it has seemed best to use, 'not linearly
dependent' rather than 'linearly independent', The switch from one
to the other by way of Definition 6-3 and biconditional replacement
is a trivial master.

a

4
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The Proof given for the 'if-part of Theorem 6-7 is, we hope, intui-
tively appealing. It in a slight y streamlined .forru -- is analyz-gd on
pages 25'S'-256.;, where, also, the les 'of logic implicit i:n it are justi
fied.. In column-form it looks_like't s [merely to save spaF.,e we take

=. 11:
(1.) [m _; x o) [assumptiOn]*

5 a [(I)!
,(3.) not (la 7-, 6 and a [(2)]
(4.),, not 3, (ax 6 and x 0 0) k ,

(,-Z) is-",11i,pearly dependent ,?c
(1 and x 0)

61 not linearly dependent
It). (1) (6)

[Definition. 6-2]

[(

fr'rorn (1) to (2) is by the elimination rule for 'V'; (2) to (3) is by an
inference from a setitence of the form 'p q' to one of the fown 'not(p apdnot q)', justifieation of such inferences requires.sometfiing
eqiiivVient to proof b4contradiction; (3) to,(4).-is by a rule More or less

valont to.the eliminatiolk rule for '3'. It is because of a restriction
use orthis latter'r.We th'at we-must start with (1) rather than.(2)

acrl assumption. Werelb:.pot for this restriction we could "erba,re";
[aa a = 0) (g) i rickt linearly dependent

{Ftm-n thj b deduce its instance:,
[-S0 = o fl] 1=z. (:). is notIinearly dependent..

...and, deducing the antetedent from the valid.seri,tence 0', enid 4pwith'i ',Y,,proof" that any I -termed' sequence is 'ilot lineal4V-dependent.
[The 'argument would generalize to show thSt no sequence of what-ever length is linearly dependent. this illustrates the.' difference
between dentences like' (1) (6) and (2) (6) and points up the
need for iiiia,ntifie re.; [On this .pdint, see the'exercises on page 434. )

TheProof given fOr the only if-part, of TheorerA 6-7 is analyzed On
pages 25,4 Snd 25,5. The only unfamiliar: rule's aAe the introduction
tales. tOr '3' and 'V'.

(1 ) (a.)t, is not linearlii, dependent [assurription)***
[assumption)**(2) -4a'= 6

(3) 'a 0 (assurnption
- "04) , ax (ilx = -6 and x 0) [(2), (3)11

.(5) 14 is linearly/dependent !4; (4) ,.. '[llefinition 6-4
(6) (S) is finerly dependent '1(5), (4)]

. lip (1) a 0 '72sso () is linearl.jr dependent' 1(6), *(3)j
(8) a ;= 0 a * [(7), (1)1

. ( 9 ) aa -6 .04> a = 0 [(8), "(V]
(1 0).-, Aix [It -= 4 =lc:" )e, = 0

(11) (1) 231," (10)
[(9)]
[(10),. ***on

In this case we could as well have proved (1) (9); but (1) (10)is what is needed if we are to combine our conClusion with thajof the'
preceding proof to obtain a biconditional sentence.

-
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Here, now, is a Foof of the only if-part of Theorem (i -7:
Suppose that fai, . . , a) is not linearly dependerlt and that. ai,

, a aro numbers such that. (IA . . an'a 0. If it were the
case that even one of the numbers (1,, . . , a were different from-zero
then it would follow iby Definition (3 -21 that (a,, . , an) is linearly
dependent. Since, by assumption, this is not the case it follows that
each of the pumbers a, . , anis 0. Hence, under our assumption that

, a ; is not linearly dependent, it follows !for any numbers ai,
. , (4n1 that

if a,(1,
tl 0 then (a, 0, . , and an 0).

Consequently, if ci,, , an) is not linearly dependent then, for all
-119 X,

a !XI 4-

Exercises

ix p, . . , and xn 0).

Part A
1. (;iven *that a i;) is linearly independent, determine all pairs (a, b)

which satisfy:
(a) at54 + 2) + h(Th 10) = 0
(3) was 5h) bocla h) 0
(e) au bl hit.; h) = 0
(d) u;6 12ai 1;31)) b)

1 5
(e) ----) + bi4b 3) 0

, . a
If) 9) hia2 + 6a 6) =

2. Suplies that (B if)la + 5) + (CI 8)(1) 2) +- (A ; C)(c 1) = O.
Find three ordered triples (a, h, c) which satisfy the given sentence.
Draw figuros to show that the values ydui,ielected "work" when A,
B, anq Care collinear- that is, on d.line -as well as when A, B,
and C are .noncollinear.

a. Suppose that ia*, 1;4 is linearly dependent. Draw arrows to repre-
'sent a and -Kand mark a point 0. Draw a picture, and give a de-
sciiption in words, orthe set of all poirhs X such that

X.---Q+y
9 .

for some linear combination y of a and. b.
a

4. in Exerci*se 4, replace the word 'dependent' by 'independent'. and
repeat theNexercise. .

* 5. Dravv arrows to represent translations a
.
and -iisuch that (a.,-C) ise

tti
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Parts A H require more than one class-hornework assignment to
complete. Because of the 'importance of linear itidependence throughout
the remainder of the c ourse, these exercises deserve due consideration
by all students. Part A could be used as in-class practice exercises
to illustrate linear independence. Parts B and C, make a reasonable
homework assignment. The theorems of Part D can constitute a
second class activity and Parts 1' and G a second homework assign-

.ment. The third cla'ss period should include a discussion of PartS F
and G, including as many alternate solutions for each exercise as
possi:ble. Part H represents a third homework assignment. We
believe that as the course continues you will find this time well spent.

Answers for Part A
1, (a) (-2/5, 10/7)

(d) (1/2, -1/4)
(b) (0, Q (c) 0)
(e) (-5, 3/4), (3, 3/4)

(f) (-3, b) i a solution for any b. [Note that changing '+ 6' to
6' in ti) would yield an equation with no solutions.

[Be sure students realize that Theorem 6-7 tells them that
there are no solutions other than thele listtd. That these ar,e,
in fact, solutions follows from the fact that 10 + 1;i0 ]

2. [Obviously, one solution is (-5, 2, 1). Since, however [mostly by
Postulate 3], (B A)k + (C - B)k + (A - C)k 15, for any number k,
it follows that (-5 + k, 2 + k, I + k) is a solution. If A, B, and C
are n'oncollinear, these are the only solutions. (See Theorem 6-12
on page 234.) In this case the figure for any such solution will be
a triangle similar id A ABC with ratio of similitude ik I. For A,

C collinear, there will he additional solutions. What these are
will depend on how the points are chosen.]

3. [If neither a nor r; is then both will have the same direction
and the picturs shoutl.d represent the line in this direction through
0. If one of a and b is 0 and the other not, the picture should
reuesent thie line through 0 i.n the direction of the non-u vector.
If a = b then the set in question is the singleton 10).1

4, the plane containing the lines through 0 in the directions of and

TC 2i ( 1 )

5. [This is a re-wording of Exercise 4 and has the same answer. j
6. the set of all points of g
[The answers for exercises like Exerc1ses."3, 5 will serife- as motiva-
tion for later definitions of 'line' and 'plaW. That for Exercise 6
will suKgest the' adoption of new parts for Postulate 4 which will specify
the dimension of T. ]
Answers for Part 13

[Theorem 6-8 is useful as a shortcut to geometric results Which
could otherwise be obtained by applykng the only if-part of Theorem 6-7,
Since this is the reason for stating it we have refrained from replacing
'If then' by if and only if% ,You should, however, point out that,
as in the case of.TheOrem 6-7, the '314.' might easily be replaced by
.4=4.9. proof of the "group theorem" is discussed below.]

Ovel
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)inearly independent, and mark a po t t O. Draw a picture, and
give a description in words, of

-X () + v and (a, h. v) is linearly dependent)].-
.H. Suppose thaf () is a point and in, h. cl is a linearly independent

,---Nsequence of translations. Describe, in words,

Part B

Part C

X. ' X () ;and la, is lipearly dependent.)}.,

1. From t he fact that translations ficrtn
addition it follows that

(2u a,h, . . . + u

group with respect, to

cr,hid +

ka,ta u b

Ise this result in proving:

Theorem 6-8 , . . , a. is linearly independent then
la,a, . aa a ,h . . +- anon

0,, . . . , and u

2. Suppose that la, 0, el is linearly independent. Find all triples
which satisfy these Nuations.

.
(a) a.a = 4- 02.-
Cbr (2u + Oh + ce = be .+ eta + 0).
(c) ari hh + cc +- h +

id) Oh. + cc LOC - b(b -+ a)

By 'Definition 6-73 land the replacement rule for biconditional
sentences} the phrase 'is not linearly dependent' may always be re-
p*ed by 'is linearly indepaidene, and vice itrsai Similarly, the,
phrase 'is not linearly independent' is interehangeable with 'is

:linearly dependent', (Explain, ills Part A. on page 225 rdevantN
-Each of the following exercises suggests an inference, but one premiss
or the conclusion-is missing. Find the niissing sentence.

I. Premiss: If two terms of iczo . . . , uN) are equal 'then (a,, . . ,
is linearly dependent. 4)

Premiss: . . , a) is linearly independent.
2. Conclusion: If a sequence is linearly independent then no term is a

multiple of another.
3. Prernhs: If (d) is linearly dependent then a

Since a.aj a.b
that

TC 22' (2)

- b.) it follows from the given theorem

"1 + + -anan alb]. + 4- a nbn

a 1(al b1) . . . an(a - bn)
Assuming that (al, .4., an) is linearly independent and that
alai * a Ilan = a4bi + + anbn it follows that al(ai bi).
+ 4- a'n(an - bn) 0 and, by Theorem 6-7, that al b1 = 0,
...,' and an b = 0. So, under the same assumptions, al
..., and an = b. 1-1ence, the theorem,

2. (a) (1, 2, -1) (b) (0, 0, 0) (d) (0, 0, 0)(c) (-7, 5, 0 )
*

The "group theorem" stated in Exercise 1 is an instance of:
a *

(*)
+ (Sn -1;n)

The initial step of an inductive proof of (*) the proof of
'a* = b a - 6' is easy, Before proceeding to the inductive
step it is convenient to prove:

(1) * - (C° + ci) = +

This will be used in the indu_itive step. Also, instances of (.1) and of
the theosern 'a 7 I; a = g take care of the somewhat special
case n = Z of (*),

For the>inductiver step the inductive hypothesis is (*) with 'n -subStitutedlor 'n'. [The hypothesis is that this holds for any, choice of
an_1) and 1111,1), and this can best be brought out

by using other letters say 'c',. and 'd' ,rather than 'a' and 'b'. ]
To derive (*) one begins*A.)y assuming that al + + an +
We are interested'only i_nthe case n > 3 and, for this, 'al + + an'is'an abbreviation for '(a + ' + + an' SO, by the associative-.'principle, al * + an ,-- al + + (an_1 I- an). It follows, then,
from the assumptiorrjust made [and the assOciative principle] that

ai +- + (an_i + an) = + " (gn-i. gri).
From this.and.an instance of the inductive hypothesis it follows that

gi) 4" 4- ((a°n--1 `In) (gn-i gn),
From this and an instance of (1) it follows that

+ + (Ai 13Pri)) =

'From this and an intitance,of the_associative pricciple. fol1owsthat4
(gf +' ' + (n-f gn-i) +*(In gn) =

Hence, (*).
Answers for Part C
I. Conclusion: No two terms of (-11, 11.0) are equal, [Note that

'Two terms of (-ael, ..., are not equal,' is, at best ambiguOus,
at worst incorrect, An alternatic,e correct answer is
is a sequence of distinc.t terms.' )

Z. -Premik;s: If one term.of a sequence is a multiple of another then
the sequence is,41inearly dependent. ,4

4 -A3. Conclusion; If a U then (;) is linearly independent.
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Part D

4. Prennss: If (a", h.) linearly.'independent and aa Pthen
= 0 and h

I:remiss: (2'3
,

5. Premiss: If a, b) is linearly dependent and a 4 0 then b. is a multi-:
pie 'of a.

( 'onclusion
. .

0 ro, b) k linearly independent.
6. Conclusion lf b) is linearly independent then (a ,0 0 and b 0).

Prove each of the following.,theoréms.

1. Theorem 6-9 If 4 sequence is linearly independent then any of
its subsequences is linearly independent. (flint: See Part A on
page 225,,)

2. Theorem 6 -10 Any permutation of a linearly independent se-
quencaNis linearly independent. Went: This is a short way of
'saying that if a given sequence is linearly independent then any
permutation of the given sequence is linearly ,independent.

3. Theorem 6-11 Any linearly independent sequence is a s uence
of distinct, non-0, terms. This is a short way of saying
that it' a sequence is linearly independent then -no two of its
termtl are equal and none of 'its terms is.C. Recall Theorem 6-3
and note that any inference of the form:

p p 1.0\

p (y and r)

is valid. I
4. Show that inferences of the form refPrred to in the preceding hint

are valid.

*Part E
A set S of vpctors is said to he linearly independent if and only if.

every [finite* sequence of distinet terms from S is linearly inde-
pendent. Prove:

Any subset of a linearly independent set is linearly independent.

Part 1.1
Consider the following sentence:

S) ' If there are three linearly independent vectors
then there Eire two linearly independeni vectors.

and its.contrapositive:

(C) If there are not two linearly independent vectors.
then there are not three linearly indePendent vectors.
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In each of the following exercises, you are givqn two premisses. You
are to state what conclusion fif any) follows from these premisses.

I. (a) (i) S
(in There are three linearly

independent vectors.

2. (a). (i)
(ii)

(h)' (i) C
(ii) There are three

linearly inde-
pendent vectors

(i) C
(ii) There are not two

linearly indepen-
dent vectors

(b) (i) C
(ii) There are t(vo

linearly inde.
pendent vectors.

(b) (i)C
(ii) There are not three

linearly independent
tvectorg.

(b)
There are not two linearly
independent vectors.

3. (a) (i) S
(ii) There are two linearly

independent vectors.

P,ga rt G

4. (a) (i) S
(ii) There are not three

linearly independent
vectors.

Consider the sentence:

(S) If there are two linearly independent vectors then
there is a vector x such that ; T.

and its converse:
- -

(V) If there is a vector x such that x O'then there
are two linearly independent vectors.

You are to stateArconclusion lif any) which follows from the two given
premisses.
I.. (a) (i) S

(ii) There are two linearly
independent vectors.

2. (a) (i)S
(Ii). There is no vector ;

such that x O.

3. (a) (0 S
(ii) There is a vector-x4

such that x O.

4. (a) (I)
ii) There are tot two linearly

independent vectors.

(b) (i) V
(ii) There are' two

linearly inde-
pentlant- vectors.-

( b) (i)
(11) There is no vector.;

such that .7
(b (i) V

(ID There is a vector x
such that x V.

(b ) (i) V
(ii) There are not two

linearly inde-
pendent vectors
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4. Conclusion: (a,b) is linearly dependent.
5. Premiss: g is not a multiple of a.
6, Premiss: If .1.

Answers for Part D
or F.; d then (:,g) is linearly :leperident.

I. It follows [by contraposition) from Theorem 6-4 that if a sequenceis not linearly deperident then any of its subsequences is ziot linearly
dependent: So, by Definition o-'3; if a sequence is linearly in
pendent then any of its subsequences is linearly independent.

2. It follows [by.contrapositionj from the only if-part of Theorem 6-6that if ,1 sequence is not linearly dependent then any perrnutation ofit is not linearly dependent. So, by Definition 6-3,

l3y Theorem 6- i(b), a sequence which is riot linearly dependent
'does not have two t:qual ter'ms; by Theorem 6-3(a), such a
sequence does not have a term which is d. t.1, a linearly
independent sequence is a sequence of distinct,, non- d, te rrns.*4. p p r

q

q and r

p (q and r)
An wers' for Part E

Each sequence whose terms cbelong to a given subset,of S. is a
sequence whose terms belongs to S. So, if each sequence of the latter
kind ,ea independent then so is each sequence of the former kind.Hence, if S inearly.independent then so is any subset of S.
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Answers tor Part I:-
'I. (a) There are two linearly independent vectors.

(b) There are two linearly independent vectors.
(a) There are not three. linearly independent vectors.
(b) There are.not three linearly independent vectOrs.
(a)
(h)

[no conclusion
[no conclusionl

An-s-wt,rs for Port G
There is. a vecto
[no conclusion)
There are not two; \line,arly independent vectors.
[no conclusion]
[no conclusion)
There are two l nearly independent vectors.

4, (a) [no conclusion]
(b) [no conclusion]

- 2such that

(a) [no conclusion
(b) There is no vect r x such that x OP.

A 4.,

Answers for Part H
1 . No. Since A and B are two points; B A; so, by Theorem

3-2(b), B - A .
Z. Your students should have pictures like this:

A* C$ BC. = A C = B

A,C B A B,C A

(B -A, A-A) Is .(13 -A, B -B) is
linearly dependent linearly dependent

In this case, C is any paint
on the line 11.

3, Suppose that B - A 'd and (B A)a + (C A)h 'It follows
that if h 0 then (B A)a = and, so\, = 0. Hence, if a and

,b are not both 0 then b 0,
4. By Exercise 3, b 0 and, so, C A = (B A).2-a/b.
5. (a) One.; One.

(b) Infinitely many.; All of them. That is, 'oach plane,which
contains A and B also contains C.

6. (a) That p 0 and r = 0, Whether or not S \Q is a linear
combination of P -% and R Q is not deter4ined by the
data.

(b) Yes. S - = (P Q) -p/s + (R - Q)-r/s.
7. (a) If the points P, Q, and R are not distinct, then (P - Q,

R Q) is linearly dependent. Since, by hypothesis, (P Q,
R - Q) is linearly independent, it follows that P, Q, and R '
are distinct. No line contains P, 0, and R, for intuitively,
if there is a line containing P. Q, and R, then one of P Q
and R Q is a multiple of the other. But in that event,
(P 0, R Q) is linearly dependent.

(b) Exaqtly one.; ,None, for in the event that s = 0, the eqution
'(P Q)p + - Q)r + (S - Q)s-=. is satisfied by any point
5; One,for if s * 0 then g Q is a linear combination of
P - Q and R - Q. Intuitively this means that S can be
"reached" from Q by applying to Q that linear combination
of P - Q and R. - Q, azd since any such point arrived at from
Q is in the plane of P, Q, and R, S is in this plane.

. .



232 LINEAR DEPENDENCE AND INDEPENDENCE

Part H
Consider tict, points .4 and B and let C be a third point such that

A, C A) is linearly dependent.

I. Can B A be 0'? !Explain. I
2. Draw figures to illustrate the three cases in which C A. in which

B, and in which .4 ( B.

3. Show that if I as. above! B A 0. and (B A)a + (C A)b
\where not both a and h are 0, then b 0. Assuming that

, A)a + A)b 0, suppose that b = 0. What-may you on-
elude about )11 A u.i?. Why?I Assuming that 13 0, what ay
you conclude,about a'? 'Why?! From your results:so far it foll ws,
under the assumptions you have made, that if h = 0 then
and ) Assuming that not' both. cLand b arp 0, what
laws about h?]

4. Show that if B A 4, 0 and )B A)a (C Ath = 0, where not
both a and h are 0, then C A is a multiple of B A. IHint: se
what you proved in Exercise 3.1

5. (a) How many lines contain Ith A and 13? How many of t
! lines also contain C?
ib) How many planes contain both A. and B? How many of th se

planes also contain C?
6. Suppose that (P Q, R Q.) is linearly independent and thatp

ands are numbers such that )P Q)p Qlr + Qls 0,
for some p, r, and s.
(a) Let s a What can you say about P and r? Is S Q a linear

combination of P Q and R Q? Explain.
(b) Suppose that s 4. 0. Is S Q a linear combination of P Q

and 11 Q? Explain.
7. (a) Explain why the. points P, Q, and R described in Exercise 6

must be distinct. 'How many lines contain all three of the points
P, Q, and y?

(b) How many planes contain all three of the points P, Q, and R?
For. s 0, how many of these planes must contain S? For

y0, how many of.these planes'must contain S'?

6.06. A Useful Theorem about linearly Independent Vectors

. Using the definitions of linearly dependent and .independent se-
quences together with the fact that .f is a vector space, we have ob-
tained quite i few special properties of sequences of vectors. Another
such property, and one which will be quite useful, is:

- --

Suppose that (a, h) is linearly indejrndent and that a, h,
to and c are -translations such that a 4 + = 6. Then,_

aa + cc Q if and only if a =, b =
.tiefore we try to prove (0, it is probably a good idea to see just what

it-is that (a) is saying.

,se

Te232 (2)

As might be guessed, (*) is another variant of the ()illy if-part of
the case n = I of Theorem 6-7. It will turn out to be quite a uselul
one. Students should be challenged to establish (*) before studying the
proof sketched on page 233. That the only if-part of the conclusion
follows from the given assumptions is almost immediate. What
remains is to derive 'a = b = c' from:

(I, 5) is linearly independent,
+ + 5 = 'CS, a n d

+ b + 5c
[Analogy with solving systems of equations might suggest eliminating

from the two.eqUations and comparing the result with the first of
the three assumptions. ]

It turns out to be relatively easy to derive the biconditional conclu
sion of (*) "in one piece" from the assumptions in (*). This is
what done on page s 133-234. ,

Sample Quiz
[Notice that the solutions of items Such as the following not gply

require an understanding of current concepts but in addition requlfre a
good deal of skill in handling notions from earlier work. Similar
items can be constructed to provide needed drill and review.]
I. Given that la', is linearly independent and that -a.(2p 3q + 5)

= 5(5 3p 2q) determine all of the values of 'p' and 'q'.
1. Given that ,(a, b) is linearly independent and that -a.(p + q - 3)

li(p2 3q,4 9) = .(5 determine all of the values of 'p' and !q*.
3. [a.] is the set.of all linear combinations of -a'. Show tharif

(5 E [ a ] and c E { a ]) then (b, c) is linearly dependent.
Key to SjIrriple Quiz
1. Since (a,5) is linearly independent, it fellows that Zp - 3q + 5 .= 0

5and 3p + lq 5 = 0. Solving this system, we find that p = -F3- and
25

q

L. From the hypothesis, it follows that p + q - 3 = 0 and
p2 - 3q + 9 O. Solving this system, we find that (p 0 and
q = 3) or (p *-3 and q = 6).

3, Suppose that 5 E [3.] and c [a ]. Then, b ab and -ce -a"c for
some b and c. For = 6, it follows that 5 and 5 are both 6 so:.
that (5,5) is linearly dependent. For ; # it is Clear that for
eitlier 5 = or C e the sequence (5,5) is linearly dependent.
For 5 -(5, it follows that b '0 so that -a' = 5 ,/..b. Then,

(5/b).c 5(c/b) so that 5(c/b) + 1 = U. Since # 0,
(.1:9,5) is linearlx dependent. A similar argument may be given for
c 6. so, c) 'is linearly depentier in any ease,
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First, to say that (a, b) is linearly independent is to say that a and b
have different directions. tif they had the same direction, then one
of t4m, say qr..would be a multiple
of the other, bi and :Iva a would be
dependent on b.] Here is a diagram
of two such .yectors:

Next, we are given th0"a14t and
c are translations sucVaCa
+ c = 0. Here is a diagrth'ii appro-
priate for this together with the
first condition:

The theorem tells us that if we wish to consider linear combinations
of a, b, and c which map each point on itself Loa + bb + cc = 0] then

c
3-

-4 --
just those linear combinations for which each of the vectors a, b, and
--cis Multiplied by the same real numb'er Will do tlie job.

To prove (*) let's suppose that

b') is linearly independent and +

and try to show that it follows that

aa+bb+cc= -a=b=---c.
[This tur% out to be simpin. The kezconsists in noting_that,
sincea+h+c=0 that c = -(a + b) and, so, that cc a -c
+ IP -c. From thisi follows that

+ C = 0

aa + bb + cc = a(a c) c).

You can fill in the details now, or do it in Exercise 1, below. Assuming
that this has been done, we will go on with the proof of (*),I

Since a + b +-7,-- 0 it follows that aa + rb =;:(a - c) c).
So,

+ c) + bth - c)

Since (-ri, 7,5 is linearly independent it follows that

Toa - c) +:blb c)"=, (14-1. (a - = 0 and b c = 0)

LINEAR DEpENDENCE AND INDEPENpENCE *-

Finally,

(a = 0 and h c = 0) 4-- (a = !.and b = c)

Rh*, is, q-0 (a = b c)]. So,
_.

at.-2 + bb + cc =

Hence,,we have proved:

(a = b = c).

Theorem 6 12
(----a; 64) is linearly independent and + b +

Exercises

q 1. Complete the proof of Theorem 6- 12.
2. Suppose that a, e, and7are as pictured below:

(a) Check that-ci+
(b) Draw arrowli representingthe translations a, 3, -c-3, and

check that 73 + +73, = 0.
(C) Choose any number r 3. Draw arrows representingAi&

and 7r. Check that -a 7)3 +
3. Suppose that we chaue Theorem 6- 12 "slightly" by eliminating

the hypothesis that (a, I;) is linearly independent. Would we still
have a theorem? In other words, we are asking whether or not the
following sentence is a theorem:,

-4
If a, 12 and c are_yectors such that a + b + c = 0,
then ao + + cc Vif and only ifa = b c.

Actually we are asking whether the folloWing two sentences are
theorems:
(a) If ri, r, and-c'are.vectors such that -c-; + -6: + =

andZa + + cc == Vthen a b c.
0. -0. -0

(b) and -C'
-

are veciors such tivt + b+c= 0
and a = b c then aa + rth + Cc =

Prove, or give a counter-example, for (a) and for (b).
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Ans Wers. for F.Xercises
"Completing the proof.':_.

th
arnounps merely t.o,filling,_0 some alge-

braic details. Since a - 6 it follow'S at c +
, I -so, that .

e.
cc -(; + g)c..

, + g) -c

Hence 'aa
= g -c.

gb.* cc r (aa f bb) +.(; -c -c)
,(aa,+ra -c )1+2.'"(gb + g -c )
a(a + -c) + b(b + -c)
a(a c) g i? ^

2,, (a) 'To.rnake this ch.4,15, the students might tr,ace the a'r,rows for
and j and niake use tif parallel ruIersto draW the r.esult-.,a'nt translation a. Itopefiilly, the drawing errors will

npt-be too great.1 Doing so they wpi have pictures something
like this:

(b) [The picture for this part should be of a triangle whose s?des
are pa'rallel to 'and three times as long as-thecorresponding
sides'of the triangle picttired in part (a). )

(c) Notice Ohm anything besides 3 will not allow the figure in
(b) to "ckose",,

(a) is not a theorem. There are several easily given counte
examples.,

(i) ; = 6, and any choice of a, b, and c such that
not (a°= b c) s

c 6, and any choice of a, b, and c such that

Any.choice of g, a Lid,13;''such that a and b are not both
zero ati a + b r ?5, ancAchoice of c, and c 0,

(b) is .a theCiii4m. Suppose that a + b + C and a = b
Then,.

+ fib + la + = ( + + -ce)a = da = 6,

j 3 '

t I

5

751

C.,

'a

The purpose of the exploration exereises is to pointiout that,
swhile our convention for using "open sentences", to express universal
generalities is sufficient to allow for expressing many.generalities,
sornething mOre is needed. This need and how fp meet it has-
already been discussed in the commentary an logic( at the end of
Chapter 1.

Parts A and B of the,exercises ar e, roughly, -parallel to one
another. The,dfscovei.ies students should make while doing therP are
discussed on pages 236 239 'of the text. You should use these pages,
yotrself, aa basic_ comrilentary on the exercises.

It wguld seem best to do Farts A and B in class discussion rather
than to assign them as homework.

At the beginning of Part A, the emphasis should be on what
Thet5rem 2-2-says atiout'an arbitrary point A, for a given translation
a and a giVen translation g. fin stating Theorem 2 Z herewe use ,

ordinary functional notatiOn to facilitate comparing it and its two parts
Lif" and "only if") with sentence (a) of,:Exercise 3 and sentences
(a) and (b) of'Exercise Z. Preliminary aiscussion ahould'briiig out
the point-that the 'f-part of Theorem 2-2 tells us that in case a
then, no matter t A we may..choose, we can be sure that
this point has the s mage-under a as trY does under b. Obviously,
this is a pretty trivial theorem in facts it is 'a valid sentence:

a = b ae(A) 1.(A)

1.(A) = 11(A)

and, since 'A' refers only to argunionts.of the mappings lo which
refers, '1(A) = a(A) Ls a valid sentence.

On the other hand, the only if-part of Theorem 2-2 is very*far
from trivial. It tells us that, no matter what point A we may choose,
if this point has the same image under both and 5 thek 5
and, so4 each point is bound to have the same image under a as it does
under b. This is a ver.y special property of the set of translations and
its proof [for which, see .TC 102(2), answer for Exercise 2 on page
102] makes use of Postulate 2(b).

In ordinary ech one might state the if-part more explie,itly by
saying: .

.1f a. ij b -then each point has the
same isilagegiu.nder as under 5.

A similar statement of till:only if-paTt is:
If g9rne

4
point has the same image

., --4.under a as under r then a is V).
If you ,have already accustomed your siudents to the use of quantifiers,
you can point.out that the if-part says just what, is said by:

4. (1) ==> Vx.. -1(X ) b(X)
while the only ifilt471.1iiii 'the, sariescontent as: -

-.,

(2) 3 1( X ) = II( X ) 2a=1:1V 1 = g
X filk "" , ,Ab

[Mite that, whiletach of the sentences just dietjayed has the same
content r's'ayis the sainq thing"I as the corresponding Part of

t.
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. Exploration Exercise's

Part A
'. If we'use ordinary 6iinction notation to refer to the image of a point
under a translation, we can rewrite Theorem 2-2 as:

The if-pArt of this blconditional sentence is:

- and its only if-part is:

= A) -- (.1 2

- The if-part is rather trivial; the only if-part says something about
translations which is not true of all mappings of onto itself.

1. Explain the remarks in the pzeing sentence,
2. Suppose that 'fct,' and `g' are varia les whose, values are functions

with ./9 as domain. Here are Use sentinces about such functions:
(a) f = g --0,f(a) -4,(a) (b) f(a) = f

Is tai true? How about tb)?
3. 'Here are two biconditional sentenceS about functions of the kind

refefreti to in Exercise 2:
= g Pa) = g(a.)

(Li) f = g 4-0 for each real number x, f(x) = g(x)
lg la) HoW abotit 410?

4. Write out the if-part of sgnfence (b). of Exercise 3 and compare
what it means to you with the meaning of sentence (b) of Exer-
cise 2. (Suggestion: The sentence you wrote is a conditiqnal' sen-
tence, so, in reading it aloud, the first word yoteay is 'if'. Under-

. .
. line the antecedent of this conditional sentelice.)

5. Compare the meaning, of sentence (b) of Exercise 2 with that of
the false sentence:

If there is a real number x such that f(x) g(x). then f = g.

Part B
I. Here are

vectors:,

(a)

1

'.
(h).

two sentences about linearly dependent sequences of

(an '4- bb = 0 and (c0 0 or b A 0))

(a, b. ) is linearly dependent

(a, --b).is linearly dependent

(al& + = Vand (476 0 b A 0))

zrr

235 (2}

'Theorem 2-2 it i riot equivalent tin the sense of being mutually re-
placeable with] to.the latter. This is because the corresponding parts
of Theorem 2-2 have the same content As.the displayed sentences only

'if these parts are understood'as-a.ssertions about all values of 'A'. ]-
Note that, although the if and only if-parts of Theorem 2-Z ate con-

sequences of one anothernthis is not the case with (1) and (2). One of
the great advantages of using variables to express universal generalitie
is that it allows us, to say what is said by"two sentences likic (1) and (2)
by asserting ,a biconditional sentence like Theorem 2-2. [This paves
the way for applications of the replacernent rule for biconditional sen-
tances. 1 This advantage is gai9ed at the east of 'exposing oneself to the
dange r of 'makpg the elementAry error of believing_that Theorem 2-2
has the same content as 'V

X a(X) = .-1;(X)== = What it does
have the same content as is:

vx [2(x) , 5(x) e=:. 2 =
a Much stronger resUlt.

Answers for Part';A 9

1.

2.

[See the prece ing commentary.]
(a) is true; ( .is false. [Not only the truth bu validity of (a)*
is established just as is that of the if-part of T em 2-2.
Counter-examples of (b) are rife. Pcir example, Choose for f
and g any two line-ar functions with different slopes, and for a
the real number at which these functions have the same value, I

Or, choose the squaring and cubing functions, These have the
same value at 0 and, also, at 1, but are vei'y different functions.
It may be 'well to be very explicit at this point 'is to the effect of
such a counterexarnple. Letting 'sq' and 'cul be names for the
squaring and cubing functions, ont instance of sentonce (b) is:

sq(1) eu(1) .=

Since its antecedent is true [12 12] and its consequence is
this instance of (b) is false. 'Hence, (b) is false. ]

3. (a) is false; it has as one of its consequences the false sentence
(13) of Exercise Z. -
(b) Ts true; it says precisely what we mean by steying that f is

)

I

the same function as
4. The if-part,of sentence (b) of Exercise 3 is:

ism each real pumt)er x, f(x) g(x) =1=> f = g
This means that I can show that f is g by showing that, at each
real nurnber, f hai the same'value as g -does. Sentence (b) r7f-,
Exercise 2 means that I can show that f is g by finding some -

real number at which f and g have the same value.,
[In discussing the if-part of sentence (b) of Exercise 3, distinguish

between this conditional sentence, and the "universal generalization
sentence:

.

for each real nurrber x [f(x) g(x) =210, f = g]
96



TC 2131 (3)

This latter has the same content as sentence (b) of Exercise 2. *le
brackets in the.latter sentence are an'impdrtant clue. They tell us that
the quantifying phrase 'for each real number x' "belongs to'; the
entire sentence. Since-this point frequently confuses students we
recommend anottier example at this point. Have students translate
into words sentences like!

( 1 ) V
X

7:( X ) g( X )

(2) Vx [ a(X) = 1( X ) =

(3) 3 X X ) )::7( X ) =

(4) .3
X

The, word trailslations for (1) and (3) start with the word 'if', 'This is
followed by a quantifying phrase.which "belongs to" the antecedent.
The word translation4or (2) and (4) both begin with quantifying
phrases, followed by 'if'. Again notice that brackets were an Minor-
tant'signal. This point is 'brought out again in section 6.0.7 when we
illustrate the, way we read sentence (V).

These two sentences do mean the same thing.

M 4-4
4.1 kJ

f41"riple Quiz

I. Consider the sentence:
4mx, a) is linearly dependent

for each real number x.
If you think that this sente,nce is a theorem, wrtte 'Yes.' and
prove it. If you think that it is not a theorem, write 'No.' and
give a counterexample.

2. Assume 'that is linearly independint arid that
1(x + y + 1) + i;(2x - y + 3) = (11.

If.it is possible'to determine yalues for 'x'' and 'y', do so. If not,
explain.

Key to Sample Quiz
-

1. Yes. Either x 0 or x O. For. x = 0, the given sequence
has (5 as,its second term and so, is linearly'dependent; If
x 0, then tiix + (rAx) 1 + = 6 and, ,since 1 0, the
given sequence ie:.linearly ependent. Hence. the given sequen e
is linearly dependent f9r each x.

2. By defirAtion, the given equation holds if and only if x + y + I = 0
and 2x - y + 3 = 0, for some x and y. And, the latter is the case
if and only if x = 4 3 and y = 1/3. :

IC 236 (1)

The preceding disctissicYn should bring out the need for quantifying
phrases [in English] and prepare the way for the distussion of,auanti-
fiers in section.6.07. [Part B will, then, serve as a check, and to
point out the relevance of the discussion to the present chapter.] If,
however, you feel in need of another example, you might consider the
analogue of the only if-part of Theorem 2-2 for linear functions: ,

If f and g are linear functions,'.a b, and
.f(a) g(a) and ,f(b) i(b) then f = g.

Compare this with:

and (vithi'

If f_and g are linear functions with
slope 1 and f(a) = g(a) t hen f g.

If '1 and g are functions with domain 1.
and, for each x, f(x,) = g(x) then f = )3.

It is possible that stwients [or you] may wonder how to prove:
(*) (kf f(x) = g(x) =11=:" f = g\x

and where a similar attenpt to prove (b) of Exercise 2 breaks down.
To prove (*), we derive its consequent from its antecedent and, since
functions are sets of ordered pairs, we can infer 'f = g' if we ar,e able
to assert:

(a, br, f (a, b) g

We need to know that, by the'clefinitiOn of function notation,
b g(a), (a,b) e g and b f(d) b) E f

To save space, we shall not repeat thele,below. Instead, we ue ' 4
inferences whose validity follows from the validity ,of.these bicondi-

N .tionals and the repl'acement rule.
t * )

Vx f(x) = g(x) (a,b)E g

f(a) = g(a) b = g(a)

b = f(a

(a, b.) 41'

4

By similar L
I argument,,

-.4 '

I,IL.--_
(a, b) 'g 2==:* (a, b) E f (a, b) f b) E g

(a, b) E f 44:1' (a, b) C g.

= g

f(x) = g(x) =CO f = g
Note that the Validit of the next-to-last.inference.deperLds on treating
its Premiss as an assertion about all values of 'a' and.all.values of 'b'.
So,,,Siter ac epting this inference, we are forbidden by the deduction
rule, to disc arge an assumption in which eithrer o these variables
ccurs. This is no actual restriction here since nly such pre-

. isses, '(a, b) E g' and '(a, b) r [in the unwritte t of the proof]
ve already been discharged. It eigalains, howe why we needed

flx) = as an assumption rather ) g(a). The former
diichayged at the end of the proof, since it:oontains neither 'a'.

Ib'. e latter could not have been. ,

4

*
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a

IS la) true? How abaut b).? [Hint: If (b).is true then so is each of its
instanCes. Consider the instancg for which h .= a and a = b..= 0. Is
the antecedent of this instance true'? Is its consequent true?l'

Z. Write new sentences la') and (b') by replacing the antecedent of
"a) and the consequent of (b) by:

there are real numbers x and y such that
by -(Yartd ix /4 0 oIwc 011

Compare the meanings of (a) ancha'). Of (b) and (1)').
3. Write new sentences la") and b") by replacing the antecedent of

Ia) and the consequent of tb) by:

for all real numbers x andy, lax* + b'y = Oand (x 0 or y ow

Compare the meanings of (a) and (a"). Of lb) and (Y')..
4. Complete:

Ofthe two sentences la') and (a"), only says precisely what
a)laays.

sNa.

Of the two sentences (b') and (13''), only _ sayti pr,ecisely what
b) says.

16.07 Quantifiers

In Chapter 2 you learned that, because we adapted the substitution
rule, we can make an assertion about all points for all translations, or
all 'red numbers) by asserting an appropriate sentence which contains
a variable which has all points for'its values for all translations, or
all real numbers). Sinv then, and up to the beginning of this chapter,
we/have not needed any other Way of making "general assertions"..
The preceding exploration exercises may have shown.you, first, that
there is now a need for another way of asserting generalities and,
second, how this need is taken care of in English grammar. to be suite
clear as to what is involved let's look again at the sentences:

Nit .

in Exercise 2 of Part A. a

1 1 .

To Simp4ify matters, let's suppose that each of the letters r and (g'
in (a) and (b) is a name of some particular 4inction whose domain
is .9.2. By the substitution rule, each of (al'and (b) iipplies each of its
instances. For example,.

and ib),implies:.(a) implies:
f g --4;,f(0) = g(0)
f = f(3.5) g(3.5)D

etc.

55;3

f(0) = g(CO: f
f (3 5) g'(3.5) f
f (70_ :=.g(7r) - f = g

etc.

TC 236 (2)

AnsWers tor Part B
3I. (a) is true.. This sentence is comparable wfth the only if-part of

Theorem 2-1. It asserts that (S, 5) is linearly ,depeindent if we
can find numbers a and b, not both zero such that aa + bb d.
(b) is false. This sentence is comparable with the if-part of
Theorem 2-2. It asserts that if (a, -1-i) is linearly depenqnt then,
whatever numbers a andlo we choose, it will turn out that
aa + 15 and that these numbers are not both zero! Any
choice of a linearly dependent sequence (1,11) gives a cdunte,r-
example if we also choose a 0 and b 0.

Z. Sentenees (a) and (a') have the same meaning; (b) and (13`) do
not. In fact, (b) is false and (b') is true-by-definition.

3. Sentences (a) and (a") do not have the same meaning; but (b)
and (b") do [and are bothfalsel. [(a") is trift you cannot
find a counter-example but this is because the antecedent has
no true instances. )

4. (a'); (b")

The next two sections, 6.Q7 and 6.08, contain important discussions
concerning the roles pf universally and existentially quantified kritencesin our formal system. These sections are the last which are el/teemed
with matters of logic. Up to now in the course, it was important that
the students understood how to use open sentences to make assertions
about all values of the variables iv those sentences. It is equally
important that they learn how to make use c4 universally and eeistentiallyquantified sentences.

"A superficial glance at the material in these sections migA give
one the impre a s ion that it is much too formal for thi,s level. However,
by reading the text in class, discussing the ideas presented, and answer-
ing, questions as they arise, you should find that this materittl is wellwithin the grasp of the students.

As was suggested in the" commentary for page 235, the first pages
of section 6.07 serve as commentary for the exercises on pages 235and 236. Used as such, these pages can be covered in short order,
giving you, and the class,' a "flying start" into section 6,07,

a

,.
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Wilat (a) says can be put into English by saying:

For any real number a, if f is g then fia) is g(a).

What (b) saYs can't* put into English by. sayitig:

For any real number a, if f(u) is then f is g.

It 'should be obvious from this that (a) i ie and that (b) is false. lAs
to the latter, the identity mapping i an t squaring.mapping y):
y .x2} have the same value Al, 0, bu are quite different functions.]

. There is another way of puttLng into Engli what sentence (a) says:
(1) If f is g then and g have the same value a1.- eac:Ii real nutribt;.r.

.Also, there is another way ofaying what (b).saes:
(2) If f and ,g have the-same value at sorry real numbenthen f is g.

Of course,, as before, the fir* of these senterices is true and the skond
is false. If we wish to have a sentence Oich, like (b), ends with Then
f is fr,(' but which, unlike lb), is true then we must say something like:

3) If f and g have the sarne value at each real number then f is g.
-This sentence is the converse of (1.) and, combining the two into a bi-
conditional .sentence we. have:

"f is g if and only if f and g have the mme value at each real number.
Note that although (a) and (1) convey the same information, their
converses (b) and (3)* not. By the use oSthe word 'each', English
manages to express. ideas which we cannot express with our variables
and substitution rule. §ince we need to be able to expreks these ideas
we shall introduce twoSymbols b' and 'T into our language. You have
met these informally before now. They are called 'quantifiers'. The
fitst- the universal quantifier-4s read as 'for each', and the second

the exitential quantifier --is read ,as 'there exists a'. Using these
we can writb sentences like (1) and (2):

(a') 1 = g 4. V xf (x) 3i.f(x) --4f=g
[Read as 'if g then, for each, real number x, f g(x)'; read
(b' ) as Iflhere exiSts a real number x sujx.that fix) = kx)thenf= g'.]
As we haVe seen, (a) and (a') convey ta sam'e :information. land are
both -true); (b) and (13') convey the sanie inforniation [and are both'
falsel. Although (b') is 'false, the converse of (0'):

V.L.fGU g(x) 1= g

is true. [What is the first word in a word translation of this sentence?]
Since (a`)t true it follows that the biconditional sentence:

(/
f 4-70 V,,f(x) = g(x)

is also true. (See Exercise 3 of Part Al
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Note that indic'es, unlike variables, are not subject to the s'ilbstitu-
tion rule'. Their "proper" role is that of linking the quantifiers, 'V'
and '' with argume'nt places. In this role'tfiey could be replaced by
arbitrar" chosetirneaningless marks or by horizontal brackets, as in: V .

' L ..--./
V 3 - '

1

and: V
i

The otoher role assigned them in the text that of cueing one as to how,
to read a quantifier itself might be better served by a separate dAvice
More explicitly, the 'x' in a 'Vx' tells one that, in the context in ques-.
tion, 'V' is to be read as 'for each real number', and the 31 in a 'Vy
tells one that, in that context, 'V' is to be read as 'for each translation'.
One might, with advantage, release indices from this duty by using 'Vit'
And 'VT' as different universal quantifiers and ei no distinction as,
to the indices`to be used with them.

* * *
Thepreceding brings out the fact float reading, 'Vx. as 'for each

real number x', and interpreting the latter in a manner analogous to
pne''S way of interpreting 'for the, real number z', does sornT violepce
to the proper meaning of 'V'. It is well to remember that our formal
language is a written one which is intended to be read rather than
spoken. What sounds one makes or imagines.himself to make
when reading such a language to himself is a Matter of convention. The
meaning of the sentences themselves is, properly, garnered from the.
rules of logic which apply to them. Of course, auc'h a puristic attitude
is not justified in the present circumstances. Here, reading a formal
sentence aloud amounts to translating it into the rnost,nearly equivalent
English sentence. But, since the translation is seldom quite equivalent,
to the original, itis important to realize that tlie rules of logic adopted
for the formal language are the final authority in deciding to what extent
customary interpretations of the English translations of formal sen-
tences tre appropriate.

There is sometimes a question concerningythe use oNhe word
'gs0Caliaation'. To some, 'universal generaliz.ation' is a reasonable
phrase, but 'eXistential generalization' is not. Point out, if neces-
sary, that a generalization sentence says \ "something general" about
the mgmbers of a set. A unitersal generalization may be understood
as imputing some property to each member of the set, The correspond-
ing existintial generalization may be understood as imputing the same
property to some member of the set Both are equally "general" state-
ments. The meaning of 'general' here is the opposite of that of 'par-
ticular'. 'V x + 0 x' and .2 x + 0 = x' are general statements;

+ 0 = Z: ts a particular stateinent.
A somewhat similar objecton is sometimes made to the use of

'instance' with reference to existential gerieralizations. The' two
objections may be related, and eliminating the first may get rid of the
second. Another approach is to tay that 'instance' is a technical word
and, in conseluence, it means rin this context at least] whaftile._,
authors' say it meani! [But, Voti Might aiid that it is very, generallir
used in this sense this is not merely another qui he authors.j
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The letter x' which is attacffl to the quantifier in the preceding
si'nitence is called an ifulex Just as we have agreed to use letters 'a',

etc. from thvheginning the alphabet as .real
we shall use lettees z' , , , etc. froth the end of the alphabet as real
number indices, So, one purPose orthe letter 'x' in (a'), and (1)') is to
telli us that the quantifiers refer to real numbers. Un contrast, 'yr:
hould.be read 'for each translation-4 and should be read as 'there

,exists a point X such that'. I The ()ply other purpose of indices is to
link each quantifier with the proper places in the expression which fol-,
lows it. To see the need tbr sucelinking", compare the two sentences:

y x and: . y > x

. These differ only as to which quantifier is linked to which "side" of
'. The first sentence tells us that, no matter what real number we

, choose, there is a et:eater real number -.7- that is, it tells us that there
is no greates't real number. On the other hand, the second sentence
tells ut that there is no least real number,

Clearly, it makes ,no.difference what ilidex we choose to use with a
given quantifier; the sentences y + 0 = y' and 'Nef x + 0 = x' say the
same thing land eaai says just what we mean to say when we assert
either 'a f 17-- a.' or '17 +- 0 h'I.

As another example of the use of quantifiers, consider the sentences
in Exercise l of' Part B on page 235. The first of these;

(a)
iaa + 0 and a 0 or I) 0))

tTimmy.

la, b) is linearly dependent'
-is similar tv the sentence lb) of Part A. It tells us that la, b) is linearly

'dependent if wecan find even one pair (a, h) of numberwwhich are not
.0 and are such that au + bb = Q, We can say the same thing by

. uSing tential ivantifietF::
(a') g (al + -1):V =0 and x, 0 or y 0)) iS linearly

dependent .

.The cnnverse of (a' Lis:
(b!)._ (a, b) is linearly dependent (ax + = dand (x

or y 0))
Both (a') and h') are tre. In fact, they are the if-part and only if-part,
respectively, of. the definition -of linear, dependence for 2-termed se-
quences. On the other arld, the converse of (a):

ta, b) is linearly dependent/
kaa + bb = 0 and (a O.or b 0))
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is, as you have Seen in Part B, false. What it asserts can be sa
using quantifiers: -

(b") (a., b.) islinearly dependent .0 VJ.V tax + by = 0 and (x 01,1or y 0)) Comparison of tb' ) with lb") should make q-uite clear the
difference in meaning between the converse (la') of (a') and the con-
verse tb) of

As in the case of our other logical symbols 'not', etc.] we need
rules of logic for dealing with sentences whicti..contain 'V' and V. To
discover these rules, let's begin by considering the sentences:

+ 0 = a and: Vr x X

We shall call the second of these a universal .generalization sentence
-specifically, it is the universal generalization pf the first sentence
with respect to 'a', using 'x' as index. We shall call the first of the two
sentences a general instance of the second. Finally, sentences which,
like '2 + 0 ,-L 2' and '(I) +- I) + 0 - b -+: 1', are substitution-itariC'es.of
the first sentence are called instances of the Second.

We shall use, a similar terminology in,discussing the two
sentences:

2 +to 2 arid: 3. 2 + x

the second is the existhntial generalization of the first with respect to
using 'x' as index, and the first is a general instance of the second.

Finally, the substitution-instances of the first sentence are called
instances of the second.

Exercises

1. Consider the universal generalization sentence:

(0) `ti.r (x - 5)2 + 10.X x2 + 25

(a) Is (a) true?
(b) Give a general, instance of (*). [Use variable 'a'.1
(c) Give two instances of (a).

2. Consider the sentence:

(*.) (a + 5)2 - 10(5 ja) a2 -

(a) Give a universal generalization of (00) with respect to '4'.
(b) When viewed as an assertion is (**) true? Is the universal,.

generalization you wrote for (a) true?
(e) Give two instances of the universal generalization yau wrpte

in (a).
3. (a} Give an existential generalization of (**) with respect to 'a'.
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(be) Is the existential, generalization written in ta) true' Exiilain
your answtsi.

(t) In 'Exercise l(b) you wrote a general instance:of NO. Give an
Efcistential gendalizatio.n lot...this general instance), with re7-
sifet to 'a' . Is it true?

It is now easy to give two of the rules we needone for 'V' 'and orle
.

for '3'. To see what they should be, consider the two inferencewl

V x + 0 = 2 + 0 =.2
. i---+-- --6-1:72 and: 3.i. 2 + x = 2

7' \.jNote that the conclusion of the first inference is ,an instance of its
premiss, and that the premisti of the Second inference is an instanCe
Of its conclusion.) . -... ...,,,

Since,the premiss of the first inference says that-vactr number satis-
fieS the equation 'a + 0 = a' and the conclusion says.thA -2 sati-Sfies
thiS equation, the premiss of this inference implies itS'Conelusion. Int
other words, the first inferen?e-is_Valid.

'4)

Answers for Exercises
1.

/Since the conclusion of the 'second inference .say's drat -there exists,
% number which satisfios6 the equation '2 .a .7=,'.2,',and:the:premiss

, says that 0 satisfies Ihih equation, the premiss of thi7,1sifmncejrn-
plies its conclusion. In:other' Words, the seconcrinfsrOkeisValid

These two examples- sUggest the rules:

(a) Yes, 9g) ,(a - 5)2 + 10a = a2 + 25
(e) (b 5)2 +.10b = b2 + 25, (7 -,5)2 + 1.9.7 = 72 25, etc.
'[Note that 3 22 + 10.7 = 72 + 25`., for exanaRle, ratan inst.ante
-of (*), It is a conseciuence Of the sed'bnd of The instances given in
'answer to (c) and the sentence '7 - 5 = 2' , Anyou who knowil,
what an tinstance is, and knows that -'7' is a name 'Tor a real num-
ber, caii give the answer to (c); 'and he should accept tills instance
if he accepts (*). Such a person rriay, conceivably, not know that

. 7 - 5 = 2 and, if so, he will not see any connection between
"(7 - 5)2 + and '22 + ]

(a) U.sing [for vaiiety] "y' as index; 44
V (y + 5)2 - 10(5 - y) = y2 - 25

[Any other real number index.would de as well.]
No.; No.(b)

3. (a)

(1 ) A universal generalization implies any-ofilp instanciees, ." ,
12) An existential -generalization is implied by Ty nfits

These are two of the four rules we shall adopt for dealing *ith general-
ization sentences. But, before adppting them, it.'*ill be well to be
quite sure that what they say is intuitively accelkable. ,

For, this purpose and to simplify the statemarat of these and 9ther
,rules we need a simpler way of talking "in general terms"..about
generalization sentences and their instances. We already have iiich a
way of talking abdtit conditional sentences, denial, senterices, etc.
Fig:example, here iS a not very simple way of stating-one of our rules: N

;P

4

Any cooditional, sentence, together with the denial, of
its consequent, implies the denial,bf its antecedent.

t
. Here is anoth'er way of 4t4ti

t

(0 + 5)2 - ld(5 - 0) = 02 - 25, ((a +12) + )2 - 10(5 - (a + 2))
, (a + 2)2,- 25, etc. [Call attention to the fact tlat, even
though (**) vi an assertion its itIalse, (**) does have
some true instances.] . A

ax tx + 5)2 - 10(5 - x) = x2 : 25 . .
V.

-(b) Yes. 0 is
a + 5)2 -

TC 240 (I)

",such a number" that is., the instance
10(5 0) 02 23' istru.e.

(c.) 3 Ix,- 512 + 10x -=" + 25, This sentence is true.
lat, its .truth follows from that-of (*)" ihebie_h,) Ahn

4S,givevi property fhen [since7there are ne=iePi]
1.fit,pkoPOrty.

.

4igib students cliscuie-4his toact material, we sug*est c_on.iptrunt,inç .

charts s.imilar tntike,f4i4Wing on the' ch.allchOaid.

Unive rsal
Generalization
General
Instance

Vx Fx = x = X =

'Atuatifike6

gxistential a'Generalization
General'
Instance
Instance

Fl
F5

Fx ;
21a =
5b =

2-+ 2 =
5 +.5*.':5i4F:=0,61).

fle,4`k x =

F7
2 + 0 =
2 + =

-

a+0L,r.a.a= 0
0 + 0 =10 = 0 =
7 + 7 = 7 = 7 = 0
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In order to del equally simply with rules about generalization sen-
, tences we-need some notation, analogous to the lettes 'p' and V,
which will enable us to indicate any.gemaeralization sentence, any
general instarice of the, same sentence, and any instance of it' what-
ever:What we shall do is use expressions like 'Fa', `Gc','etc. as place-
holders for sentences which contain variables which we wish to refer
to, and V b'x', (;y', -etc. as place-holders fos corresponding general-
izations with respect to these vari`ables. Fo,r example, if' eV,. FA' occurs
in the statement of Some rule, and we wish to obtain an example of'
the rule by replacing 'Ed ,by r c', then we:should replace 'b.,. P'x'
by:-JV1 xi) c'. If 7.'2' appears, in the same rule then, in obtaining the
same example, we should replace it by `217 O.:.

As another example, let's' considel- the pattern sentence:

To obtain an exaniple of a sentence of this fbrm, we need to choose
what to take for 'Fa'. If we chbose, say, '2 4- u === 2! then we should re-
place 'PO' by '2 0 2' and replace Fx' by '3.; 2 +- x 2', Doing so
we Obtain the sentence:

2 0 = 2 = 2

1. We have agreed that 'Fa' is a place-holder for sentences which
contain the variable:a'. Choosing '2/ ?for 'Pa', obtain the cor-
responding, sentence of the form .1±1,. 0.12 Fx'. ylint: 2.1 = 2

2. Repeat Exercise 1, choosing !1 - "3a 'F 2' for 'Fa'.
3. In each of' the following, you'are giKena choice for 'Fa' and'a form

for sentenkes. Write the sentence of the given form which cor-
. responds with the given choice for 'Fa'S,

(a) 2a-= 10; P5' (b) 2a = 10; V, Fx
(c) 10/a 2: F5 3 (d) = cr.a; 3. Fx
(e)I-a2 a .a; Fx P2 ,Ta';' a ,a; PO Fx

4. Mections: Replace 'Fa' by T;71' in Exercise 3 and do these prob-
lems.
(a.) B - A
(e) B A

a; Gg (b) A
+ a:. GO 3,. (;x (d) B 'A

.Now,'Jet's consider.sentences of the form:,

a- Gbi
+ a; 66

44

-

TC 240 (2)
. . .. , .

The example is chosen to illustrate a poirit.connecte-ci wilh the new
notation, In o.rder to construct a sentence of the givrn form one must
begin by choosing a sentence of the form 'Fa' [dr 'Flo', etc: ] from
which to obtain a replacement for 'FO' by substitution and a reclace-
ment for '3x Fx' by existential generalization. In making this imitial
choice, it is well to use a variable which does no occur in theigiven

pattern sentenoe". l'or'example: the sentence: '

a + 0 = a 3x x + 0 a
is of the form:.

To show this, choose 'b + 0 a' as 1 replacernent for 'Flo'. Then 'Fa'
is to be replaced by 'a + 0 ang '3x i'x' by '3x x 1 0 a'. Uses
'of the new symholism like that just illustrated may be difficult at first
for srudents. It is pr.obably best sto disregard the probleNuntil it arises
naturally say, through a student's saying "r'don't see vJhy tOy think
that this is of th,at form."

TC 241

Anstwers for Exerdises
I. 2, 1 Z zx

'0 1 1 - 3 '11 Z 3% 1 - 3x1 z

3.' ) 2, 5 z 10 ,(b) V
x

Lx - 10

(c) 10/5 = 3% 10/x z. (d).
(e) 3 -X2 -= Z Z (f) 02 = 0 0

4. (a) B A J. (b) B A z' g
-1c) B - A 4- d B = A , (d) 3 B A +_x.

[Note that, taken as assertions, (c) is true and (d) is false.]

B - A rx
B =

5.0
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iinV sentence of this form there is a corresp,(' mding English sen-
trnee it t he form:

For any (1: if, tin' each .1-, Fx then Fa-.

Certuml y, no Matter what sentence c.:hose to replace 'Ea' by, you-
would 10., I i nf, to iccept the resulting sentence bl the form Your
willif1;.;nes'S to do So would hart, nothing to do wtth what the sentence
you chose Sir 'hi might say, .You wouldaccept the resulting sentence
tust .beClitiSe It baLl the form 6 In short, anr Sentence of t.lie form
us not oil ly't rue hut rcara It's truth follows.from its form, independently
ir,yvh:Lt serhences replacing 'h.o' may say.

Precisely the .same remarks mar be made about any sentence of
the form:

For any o; it' YU then, forsome x,
i

' Any sentrnce of trhe form (,. i is valid, no matter what sentence ve-
places Td:

Transl at ing ) and A - ) nto our notation we obtain the rule: .

Any sentence of' either of' the forms:

Ex Eu

is

v
Obviously, in' this and similar rules we cgold just aS' well write 1.

-.1instead of ci . or '1-. insttNid of '.1..': and we could w
,rite a instead of 'a'

by arl.y 'variable and ..v. by any index whi
.,if we.alsO wrote '.1:' or 'y' say, instead of.'x'.

that varfable. ,

We are now almost.ready to reformulate the 'two rules on page 240i

short"a' can be replaced
refers to the donfain of

.

about generalization sentences. The.first of these is:.
1 A universal generalization implies any of its instanJes.

We have seen thal affy sent'ence of the form `V.,. Ex Fa' is valid and
usi ng.th is and rilodlis ponens I, it is easy to conclude that any inference

of t he fbrm:

4
Fa

ra

is valid. This means, precisely, that a universalpmeralization implieS
any of its gewra/ instanoes. To complete our disk -we must get ,rid of
.theirestrictive word:general', and state the resulting rule in a simple

,

way. 'Fo do so, let's agree that wharrv are given' expressions To'
and T1' we are to choose, as before, a sentenye s a replacemen.L. for
To', to a-Oosie a term as-a replacement fOr 't', and are to replace 'PI'
by the sentence which resul_ts from the chosen one when the chosell'
term is substituted for What this amounts to is that, whatever
sentence replaces Ex', we can arrange things so as 'to replay 'Fr
by any instance of this generalization we wis.lt merely by making the
appropriattechoice fbr 't'. in these terms,,ithe rule (1) may be stated:

Any inference of the form:
VF

Ft
is valid.

The rule can be:justified by the following scheme:

V b'x ----, Fa ,

I Subst)
V.,.. Fx V, Ply -----> P't

i Modus ponens)Ft
.

Since substitution-infer'tmces and modus ponens -inferences are valid
it fbllows thatany inference of the form:

V Ex V Ex Ea
Ft

is valid. So, since any sentence of the form
follows that any inference of the form:

Ea' is- valid it

is valid-that s, a universal generalization implies any of its in-
stances-. . .

Exercises
a

I. In the following, yoa are given sentences of the form V,. Fx:. In
edch case, write the instance FL
(a) V.,. x2 1 (x + 1)(x - 1) (131 x2 x = 0
(c) (2..T"- 1)2 2x2 - 1 (d) V.,. 1±1

2, In the following, you are given sentencea of the form 'VJGx G. In
each cas, write the instancep(li A).
(a) V,. ix B.- A -- A x B] (b) + x A

(c) "cf,-;. C x RI (d) VT..x -

5
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3. We have restated rule 1) on page 240 as an inference rule and,
in the paragraA just preceding these exercises, we have justified
it by using part of thy rule on page 242 and other rules of logic.

Answe rs for Exercise s

la (a)

(c)
1:'

(2
1 1- (r+

1 1 r
1)(1

2

--4)o the same for rule 2 on page 240.
4. The if-part and thy only if-part of Theorem 2-2are:

TC 243

1 ) (b) j2

(d) 1)

Ito connection with (d), lead students to recall that
is se. I

. . . .. .(a4 a b ----. A + (2 ,,,,i + h (b) A + a , A f 1) '-'---> a 1. (a) 13 - A B -'A A * (B A) 13'
Here are two closely related sentenc s (b) A.,0 (.13 A) !. A B - A 6

''' V, X',. a
, b' 1 1., A' * a' X + h' ----* a. i; ,.,

(0 C (B A) 13 (B A) C.-. B
(d) (B A) (B A)," -6r sing our new rules for generalization sentences land our rules

for:conditional sentences I it is easy to show that sentence (a') im-
plies sentAce ;Lo_ and that sentence ib') implies Sentence' (hi.

TC 244Do so. flint: a) and 1'1)) are conditional sentences; and one way tp
derive a conditional sentence from given premisses is to use its r'3. 3x valid

(i)anteyedent as an extra premiss and try to derive its consequent.)
Ft Pt Px5. Use thy ganw. procedure as in Exercise 4 to show that any inference

of either of thy forms:
3 Fx0. x .

:rhis jutifies the rule:
Any inference of the form:q

is valid.

The two rules for generalizatim sentences which, we have adopted
.may be stated together as:

Any inference of either of the forms;

is valid.

TO understand the remaining two ,rules we need to recall the dis-
tinetion between using a' septence as an assertion and using it as an'
assumption: [This distinction was broug'ht out in Part B 'On pages 86
and 87 andfs was pointed out on pages 87 and 88,, is essential for
our statement of the deduction rule.}. Recognizing this distinction
led us to insert the underlined words in the statement of the substitu-
tion rule:

Ft
Ft P.

`kJ

Ft

3x Fx
is valid.

4. To show that sentence (al. implies sentence ia):
*

a i; abVXfa X

5.

vx X + =

A + a A +

5 A + ILA +

To show teat sentence (b') implies sentence (b):

A + -13.Y! A +

--.+ a = X b' 3
X

X + X+b=:.

t

-.a = b

A +A + =: 17;

p => Nix Fx Fa

Fx 3 Fx
Any sentence whigb is used to make an assertion about all

Favalues 'of some variable implies each of its substitution-instances . ,,--, *
with respect to this variable. p Fa

9
A

P-

q

Fa

5"'00.4
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Incidentally, we can restate this rule to advantage in terms of our
tie4 notation:

Any inference of he form:
Fa
Ft

is valid, provided that its premiss
is used as an assertion aberut all )

values of the indicated variable.

oul

More simply p'ut:

Any inference of the form:
fa

V Fx
is valid, provided that its premiss

niS used- as an assertion about all
values of the indicated variable.

As remarked on page 242, in applying this rule, 'a' can be replaced
The need to distinguish between assertions an assumptions arose by any variable and '2 by any index which refers to the domain of

in applying the deduction rule. Roughly, what learned was tha_-that variable.]
inferences [such as substitution] whose validity. depends on their .

premisses being understood as assertions about all values of some
variable ,should not be used in deriving consequences of assumptions
in which tniS variable occurs. IFor a more precise statement, see (.)
on page 81.1 thew two kinds of inference which remain- to be con-
sidered are of this kind.. .

The first has to do with universal generalizations and we shall again
consider the sentences:

a + 0 a and: V; .4- =

When we use the first of these as an assertion we mean to say that, no
matter what number we choose, the result of adding '0 to it is tfie num-
ber itself. But, this i precisely what ehe second Sentence says. So,
u.kherz til'e first is used as an assertion it implies the second. I.On the
other hand, if we started a proof by saying 'Suppose that a + 0 = a.'
it would 'certainly not be reasonable to continge wtth 'It follows that
V, x + 0 x.! The use of 'a + 0 a' as an assurnptibn would merely'
give notice that we intended to ignore any values of 'a' which do not
satisfy this equation.1 So, in caie 'u + 0 - a' is used as an agertion.
the inkrence:

a 0 = a
x + 0 x

is valid. Similar considerations apply to any general instance of any
universal, generslization:

Ally sentence' which is used to make ap assertibn about all
values of some variable implies any universal generalization
of itself witb respect to this variable.

To illustrate the use of this new rule let's Consider again the sen-
.tences:

--)
(a) a b A+a---A+b (a')a=b-E-,V X+a-X+b

of Exercise 4 on page 244. In tliat exercise you used our first rule for
universal generalizations tr(derive (a) from (a'). Now We can use our
new rule to derive (a') from (a). Here's how:

a=b---0A+a=A+b
A+a =A+b

VrX+a-X+b
--,a=b-.°'-)yxX4-a--X+b

W,e need the new rulcto tell us that the middle one of the three infer-
ences is valid. Accordirm to the rule, this inferethe is valid provided
that its premiss 'A + a A -+ b' is used as an Atertion about all
Values of 'A'. To see whether this isthe case*we must look al the sen-
tences from which we derived + cZA + b. These sentences are the
two premisses of the derivation and, of these, only the second ()a con-

.. tains 'A'. Since we have not used this premiss ai an assumptionwe
are using it to Make an assertion about all values of 'A' and, so, the
same is.true of 'A + a = A + Put in another way, since the first
premiss of the derivation 'a = b does not contain the yariable 'A' which
has been "generalized on" In the second inference, we are juatified in
treating this premiss as an 'assumption and in discharging it when,.
.at the end of the, proof, we us the deduction rule. In contrast, since
the second premiss 'a .---b.-0A+a=A+b' does contain the variable
'A', we would not be justified to treat it as an asiumption, and to dis-
charge it, once the variable 'A' has been goaeralized on.
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For comparison, let's conSider the derivation of' (a) form (a' ):

b a Vt X '4' ti b

VI X a X + b
4

A +
b = A + b

This is much like the derivation 'we have ju :t. given of a') from (a).
The difference is that the middle inference is to be justified by our
first rulefiir universal ptin era l i za tions , rather than by the second.
Since this first rule is not Vestricted Els the second one is, the justifica-
tion of' the infjrence requires us only to note that its conclusion is,
indeed, an instance of its premiss.

The point which has been brought out in connection with these two.
derivations can be seen very simply by considering the following two
derivations:

Fa
V. Fr

Fa 4. V Fr
Each of these "claims" that its conclusion is valid. In the case of the

- first derivation the claim is austified; in le case of the second it is.rwt,
For the first inference in th

b
econd deriviitioh to be valid,- its premiss

'Pa' must he taken as an assertion about allwalues of la'. So, it cannot
be taken as an ' ssumption .rid discharged, as indicated, on the author-
ity of the ciduy&ion rule. In short [in the second derivation], either the,
first infer is invalid or the deduction rule has 'been improperly
applied. Irt either case the derivation is. invalid.. [This is fortunath. For,
if derivations, of this kind were 'valid, we' could prove, for example,
'a = 0 , _,..v =. 0'. From this and '0.= 0' we ctiuki deduce `Vix = 01]

If you study the discussion on page 244 of the derivation of (a') from
(a). you will 'see that what this derivation illustrates is that any in-
ference of the form: .

EP-0. Fa
V Fr

\;,.. is valid provi:ted that its premiss is taken as an assertion about all
values of the Indicated variable and provided that this variable does

/ not occur in the sentence which is taken. for `p'.-[Recall that in the
deriyation of (a') from (a)-it was important that.'A' did not occur in

= P.) ,

TC 245,247 (1)

411

Pages 2441 through 247 contain some of our basic rules concerning
universally and existentially quantifVd sentences. Students probably
should not be left to their own devices to read this material. Rather,
reading and discussion should be dore it cl,ass.

* * * P

An intuitive test 'for whether a valid inference does'or .49es not
block-a variable consists in substituting for the variable fluestion in
both the prerNses and conclusion of the inferenCe. If, for some sub-
stitution, tlie "resulting inference is invalid then ths given inferense is
of the first kind; otherwise it is of the second 'nd. For example, .atypical substitution inference:

a+1313+a
I b = b + 1

is of the first kind because, for,,texample, the inference:
Z + b b + 2
1+b= b+1e -

obtained by substituting '2' for 'a' is inValid. On the other hand, a
modus ponens inference auch as:

a *, 0

= *O. 1 -
is of the second kind since the result of any`substitution for 'a' or for'1' is again a rnodus ponens inference and, so, is valid. [This test is,
of course, purely intuitive. Its only use is in motivating our choice as
to which rules must be encumbered by provisos like that in the boxed
statement on page rZ45 of the substitution rule.]

As noted in the text, the distinction discussed in the preceding
paragraph is vital for proper uSe of the deduction rule.

Up to now, the only basic inferences .of,th'e first kind are substitu-
tion inferences.. These together with the two new kinds of inference
about to be introduced are the only inferences of the first kind which will
be taken as basic in ou;.edevelopment of logic. There will, howeVer, be

'other inferences of this kind among those whose justifying sshemee con-
tai.n basic inferences of one or more of the three types just mentioned.
[For ekamples, see Exercises I and 2 of Part C on page 251 .].

J The most immediate effect of provisos such as that insluded in*he
substitution rule is illustrated by the fact that although, for example:

a+b=b+ a
1 + b = b + 1

is a valid inference, it does not [fortunately] follow that
a+b=b+al+b=b+1

is a valid sentence. ("Fortunately' because.if the sentence in ques;-
tion were valid then so would be 'b + 13*= b + b 1 + = b + l' and,
with it, '1 + b F b + 1'. Although true,,the last is certainly not valid.
The validity of the inference shows that the truth of '1 + b = +
follows from that or IT.7e--'(-77-nmutativse'crinciple for addition; but the'truth of + b b;+ l' is evidently not mervly a cdnsequence of
logical principles.] A more strikinebxarpple is §iven on page Z47 ;
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Exercixes

I. In wI.1ich
W

t he followilig kii'guznt,nt,:; is t}...le conclusion a valid one.

_oppose that for each translation x. A x A. It tbllows,
A. 144pce fbr each i A +.in particular, that A

A then A 4 +/. A

Stiippose that A. o 1.111.b.. 1ovis that, for each x,,A
lience,#if A ra A then, for each x. A x

2. In each part. vim are giveli an inference of the following form:

p Ful
p v.,. Fa.

You arx to decide. in each case, whether 'or not the inferenc
valid. and to give a reason'for your decision.
(a) + + a -1)

.
.4 (t h = b

b ) (1 h A + i A 4.

(1 /7* v, X t u X h

(c) B A + B
v ,.A ,,, .v B

(d) A K 13 1 ) A 13

B V X

To arrive ateour final rule, let's consider as an exrp e the two
sentences:

A + Li and: X + a h
.

The f
as an

L

rst ot'itSese is,the only if-partof Theorem 2-2 and [when used
tionl iS true. It tells -tIs that

for Any point A, if A has the :-.(arne
im,age under both a and b then a is b.

In other vords.
if thfwe is any point which has the same
imclge under both a and b then a is

,

This last is precisely what the second of the two senterices says. This
being so, the inference:

TC 245,247 (2)

Ncite that cox-ye spondin, sentences of the form 'Fa' and
furnish an example of sentene which are '21ot equivalent. but when

same con [This distinctiou is

4 oi pag.c: 245 , c an be."'
ations which are

the foirtne r is. asserted haN4c the
discusski on TC 1'35(2).]

Note, also that the substitution rule', as s
ieriveci from tlie two rules for universal gen
given on pages 24 i and 244 . So, th'e substitution rule' need IA. talten,as
a primitive rule only in languages which,. like tha; used in Chapte'rs,

1 - contain variables but do not melte use of"cantiiere.j:
sInfere-ncel

of the form 46ot of the page cap be
ustified by-the scheme

Fa

.' Vx l`x

.

p -- V rX I
c k. X ..

. IThe validity of the si,econd inference requires that its premiss be taken
as an asdrtion about all values of 'a'. For this to be the case, the

....prernis's :p Fa' must be-ta.ken as such an assertion, Also,
must be taken as such an as seftion if 'a' occurs in ''p'.. In this c'ase,
howl2ver, 'p' c'.ould not he dischar d as indicated, Hence, for the,. .

. velidity of the-tota.rseheme we must . ire. that 'a' not 'Occur in its
first premiss [p] arsi tTiat its seconsi prt5.rniss he-taken as an assertion
about, all values. of 'a', - ` \

.

A+a=A+V =
-I+-a =-K + b *a

TC 24'

Answers fbr Exercises
I.' Argument (i) isalid, arid its conclusion is a valid sentence. [Of

course, neither 4rgunient ii) Lior its conclusiorns interesting,
since the assumption -''d; A 4 x .--- A' i.not eatisfied 1,.iy any point.]
Argument '(ii) is inv,alid since the first inference precKdes the us
made of the deductibn rule. The conClusion of the-argument is
falai; since it, together with the theorem '.A + A' impYies the
false statement A 4- x = 'A'. 4X

. (a) invalid (b) valid ic) valid (d) invalid
Each of the four inferences is of the'required form,af.mt the pro-..
viso that .,"the variable which is generalized in the consequent
must not Occur in the antecedent" is satisfied only in the case of
(b) and (c). .

5(

ame

a k--)

't



shbuld certainly be reckoned as varid., at least when its premIss is
,- used as 'an iirss;ertion. Similar considerations apply.to t;itnilar pai'rs
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sentences: . -
,.....,

. . .t -,' -f: e ti b 0. ..
h

,.,
. 3 a * .1. ,./.) -i-- x ---. a - h -

. .. '
. . .. _ .

t ua .f.' = 0, and la: i U oi. ,;- 0)) i..(ai I)). is linearlv..dependent7
hv = 0 ancria .,,, 0 br y -- 0)). Ia, )11s linear y dependent

HA" )1' = 0 and ix / 0 Or y 01) '"'" , b ) i s linemly dependenty

f(u) glal--->
. .

fLt g (.1-1

are all valid inferences if,theirpremisses are taken as assertions. lThe
last inference is .valid if its premiss is asserted InTen though its
prennss and conclusion are both false. Anyone Uho does assert the
.premiss sPiould, then, be willing to accept the-Conclusion.] In general,'
ku4 iqerence of the thrm:

Fx q

is valid provided that its .premiss is taken as an assertion about all
values of.the indicated .variable 'and provided that this variable does
not omtir Mthe sentence which is talcen for "if (Compare this with the
rule stated in the text on page 247.1

The intuitive justification of this rule .may be seen yre clearly if
we staW it in. a slightly different !but equivalent l form:

Any, inference 'of the form: .

is valid proVided that its conditional premiss be taken
as an assertion about all values Of the indicated vari-
able, and provided that this' variable does not occur in
the Sentence which ,is :taken fOr 'q',

[This second rule follows from the one first given and modus ponens.
Thesecond Ttle, together %kith the deduction fule, justifies the first
rule.] This second form of the rule ctin be stated intuitively as follows:

In case we know that, whatever a may .be, if Fa then q_
it follows, in case there is an x such that Fx, that q.r I

The
forrk:,

TC 249 (1)

reasonableness of the proviso-c.oncerning infL-ence of the

Fa *q -

..

, . X ...

and the vali'ddy of S'Uch inferences sI. ubject,to this proviso may be
a,rgued in 'the following-Way.' Let's choose sentences by which to re- .
place 'Fa' and 'q'., And consider the inference:

,-

I Fa Fa n
(**)

If we suhstitu te,for 'a', throughout this inference (**). any nUshe
we close, the rest:thing inference will be valid,. Moreover,. if ,'a'
does not -occui in the Sentence chosen for 'q', the conclusion of the
resulting inference will be the same no matter what, numerlri We cltoose
to substitute-for -Should we-be fortunate enough to find a substitu-'
tion such that bothrprernisses of the resulting inference are acceptable,
then ,:ve wbuld be jUstified in 'accepting the conclusion. In working
toward this end, our taSk will be lightened c8nsiderably if our choi
of replacements for 'Fa' and .'q' has been such that we can accept the ,

repuitini .' Fa q' when this is taken as an assertion about all value,s.;,.
of 'a'. For, in this case, we need, only search for numbers which%
satisfy the sentence chosen for 'Fa', I we are successful-in finding ^
such a number, we shall be justifieil in.:Accepting the conclusion of

.

(**). Now, vin such circumstances as these, any grounds We may have
.for believing that there44 a number which satisfies the sentence chosen
for 'Fa' are equally stro`ng grounds fot believingothe sentence chosen
for 'q', nut, this is sufficient intuitive ground fen- agreeing that the
inference:

Fa q

q .

a x

isvak., presuming of course that its Second prern s is taken as an
aesertiOn about all values of 'a', and thai does no ctir in its
conclusion. Since 'a' certainly does not occur in the sVpremiss of
this inference, we can now apply-the deduction rule to show that (*) is
valid subject of course, to the conditions just stated.

it isrt;iot strictiy,necessary* to show that the lirnititions impose-tit:in
the validky of inference; of the form (*) are unavoidable. §till, doing
so-has a certain independent inte,rest. If 'a' is alloWed to occu'r in the
replacement for then inferences of the form:

.Fa a

X
come into question. If such infel.ences were valid then so would be
sentences of the form:

(***) FX Fa
The same result would ensue lilt were permissible o'rreat the pre-
miss of a (*)-type inference as an assumption:

40.

55
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,Fa q

_ 3x Fx
* .

[Fil q] [ax Fx q 1 .
(Subst)

)
1'a ] [3 F`x Pa]x _

3 ix
a

If,, now. in (***), w't4. c hoose 'a O. fbr it would follow that the
sentence:

3x x 0 a = 0'

is valid. Since the antecedent of this iS a consequence of the valid sen-
tence '0 = 0' it would then follow that, 'a 0' is valid. So, if either
part of the proviso concerning (*) were deleted, we should be able to
prove. by "logic" alone that there are no nurilbers other than
zero! Such a "logic" would, of course, be unacceptable.

The equivalence of the boxed rule with that stateelprevioirsly is
easy le show:

Fa.
. q

3x Px 3x Fx q

*

3 Fx qx
The application of the deduction rule in the second scheme is :tustifieti
by the fact that, although the second premiss of the scheme must be
taken as an assertion about all values of 'a', 'a' does not occur in the
first prernisS and it is this premiss which is discharged.by the
application of the.deduction rule.

With the four rules for quantifiers, wf have completed the list qf
basic rules of the logic of :sentence connectives and quantifiers. If, as
is often done, set-theory is taken 'to be a part of logic then there are
other rules of logic. Of these we cite only two. The first serves as
a aefinition of brace notation:

Any sentence of the form:
e {x: Fx} e=t. Fa

is valid.

TC 249 (3)

The second is a form of the principle of extensionality:

Any infe4ence
acS4=='aET

= T
is valid provided that'its premiss
is taken as an aSsertion about all

'values of a'.

es.

Iiere, 'S' and 'T' are to be understood as variables rihose values are
subsets of the domain of the variable 'a. A more usual and clearly
equivalent [but less c-onvenient] form of the principle of extensionality
is:

,

Any sentence of the form:
tix[x es4=>xT] S,= T
is valid.

amm
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Although we liave, in our discussion of generalization sentences,
arrived at a ntimber of 'different-appearing rules, all follow easily from
four of them by using moctus.ponens or the deduction rule. 'Here are
the four ruleg which we shall` take as basic: .

An inferene of an
Fx

Et

F x

Ex Pa g

Ft

of,the rollowing forhis'is yMid:

!Elimination rule for V', (EV)!

!Introduction rule far 'V', (IV))

!Elimination rul'efor.T, (EV.

!Introduction rule for '3', (I3n
In the INct) and (F.3) inferences the premiss in which the indil
cated variable occurs must be taken as an assertion about all
values of this variable. Also, in tE3) this variable must not
occur in the sentence taken for V.

Exercises

Paq A '
1. Using the elimination mile for 'V' and the deduction rule it is easy

to shoW that the sentence 'V -A+x-1? +x-0A+c -B+cis
valid. Do so. v

I,
2. Now, show that any sentence of the form 'V., Fx Ft' is valid.

[Your derivation in Exercise 1 May suggest a way to proceed.]
3. Using Ole result of Exercise 2 and modus ponens it is easy tojustify

the elimination tule for 'V'. Do so.
4. As in Exercises 2 and 3, relate the introduction.rule for I to the

validity ofsentences of the form 'Ft.-0 Fx'.

, Faxt
1. Making use of moius ponens, the elimination rule tor, 'V', and, the

deduction rule, show that the inference:

b

is valid:II-lint Since the conclusion of the given-inference is a con-
ditional sentence, begin'by 'adopting the antecedent of this sen-
tence as an asSuMption.l

2. Now, show that any inference of the.form:

p Fx.

cz 0 Ft

Te 25b

Answers for Part A
1 . V- A X = 13-'f X .9

X

. 4YA+x.-: B + xx A + -a" B ' I.

2.. V YX
X ( Fsi)

Ft ..
V.FxFt

['*' indicate's that,P.assurning the
resUlt.of Exercise 2, the indicaed
prerniss is a valid Sentence.]

{Fxerc1ses 2 and 3 show that, given the deduetion rule and rnodus
Iionens, it.makes no different* whether we choose to consider (EV)
or the rule justified inNkxercise, 2 'as our basic elimination rule kor

4. Ft *
.Ft 'i*Lttt. 3 Fx

x(13)
3 rx

F)Ft

Answens for Part B
*

1 C#a =C+b

.3 Fxx

o + = c + 11.r. vx + x

V
X

(EV)P+a P+13

C+:1= C+i; P + = P +

2. p ==; Vx Fx

3.

Vx Px
(EV)

Ft

p pt.

VX VX

TC 251 1)

[Ex,
Fx ==,:t. Ft

Ft
ca)

, 3 Fx 3 Fx =4' q
3x Fx 3 Fx [by pre^

ceding
Ft a Fx sc heme]

a Fx
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*
is valid. I Voilz derivation in Exercise 1 should Suggest, a way to
proceed. I

'Nie elimination rule for b',can be justified if one ass9meNt.h4 in-
ferences of the k'ind treated in Exercise 2 arc valid.,Show how.
Hint: In Exerc:ise .2, replac;, by 'vr Fx' and recall Exercise 2 of

rt. A. .
.'

4. As in'Exercises 2 and 3, r'elate the introduction ruletbr with the
validity oe in*rences of the'forin;

F
Ft

Part C
.1. As pointed out in the text, the elimination rule for Ycan be re-

sulted by saying that any inference of the,form:

v

Fa q'
is valid provided that its premiss is taken as an assertion about all
values:of the indicated variable and Provided that this variable
does nOt occur in the sentence which is taken ,for V. Show that
either form of the elimination rule for can be justified' on the
basis yf the other and eithermodus ponens or the deduction-rule.

2. The introduction rule for 'V' can be used to justify the rule:

inference (;f,tte form:
p Fa

V. F-x

is valid pro,iided that its premiss is taken as an asser-
tion about all values of theindicated yariabie and pro-.
vided that this variable does not occur in the sentence
taken for 'p'.

Do this (Hint: Use three inferences--thodus ponens, the introdUc-
tion rule for and the deduction rule. Explain why the provisions
stated in the rule are ndeded.1

*. 3. The rule you justified in Exercise 2 can, alternatively, be used in
justifying the intrOduction rule for 'V'. Do so. !Hint: In preparation
for using an inference of the kind described in Exercise 2, begin
with a, conditionalizing inference:.

Fa
p Fa

Supposing that the sentence chosen to 'replact !p' does not coritain
the indicated variable; you can now add an tference of the kind

TC 251 (2)

[Summary. The elimination ritile for 'V' can be stated in any of three
equivant forms depending on whtct e take as basic the validity

Isx
.Vx

.Similarly, the introduction
valiity of: , a

Ft

3x Fx
Note that none of these six rules requires any restriction as to pre-
mises being taken as assertions or to the occurrence or nonoccurence
of variabLes, 1

AnsWers for ilDart C

1, 3x Px Fa q Fa q
(E3)

Vpc Fx
Yt, or. .

s'p Ft

rule tor '9' can 'be stateci,ip terms of the

, Pt 3 .Fx, or:x Ft q

z.

*
3 .Fx q q

P p Pa Since ,for the second inference to be valid,
its premiss must be taken as an acesertion

Pa about all values of 'a', the second premiss
UV) of the derivation must 'also be taken as such

Vx Px an assertion. So, by the proviso to the
* deduction rule, 'a' may not occur in the

first premiss of the derivation if this is, as
indicated, to be treated as an assumption.

This scheme justifies inferences of
the form:

Fa
(Ex. 2)

p `;c Px
Vx Fx

Vx Fx supposing that ''a* does not occur
,in'the first premiss and that the

second premises is taken as an assertion about all values of 'a'.
Choosing for 'p' the sentence 'Vx x x' or any other valid
sentence in which 'a' does not occur, we obtain a justification
of (IV).

[Summary, The introduction rule for 'V' can be stated in either of two
equivalent forms depanding on whether we take all basic the validity of:

Fa

Vx

or:
p Fa

p Vx Px
In either case, the premiss must be taken as an assertiOn a ut all
values of "a' and, ipthe second case, 'a' must not occur in tbe sen-
tence taken for `p,

c
. J
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.Part D

-
NEAR DEPENDENMAND INDEPENDENVE

.

described in Exercise*.t. Supposing that the sentence chosen to
replace p' is a valid sentence, you can ctimpletethe job of showing
th;it '\7';: Fr' is a constxluence of 'kV provided, of coUrse, that 'Fa'
is taken as, an assertiqp about all values of:a'.

J

Consider the senten ,ce a + a'. IS inpe this is one of our postu:.
!Res, we iritend to use it as an a.%sertion 'about all values of 'a' and 'h'.
This being ..so;.we may apply:the intrpduction rule fa 'V' in either of
two ways, depending on which of thetwo variables we choose to gen-
eralize with respect to.' Each of the inferences; ,

a h = h +- a
_ _

.vg
(2 + y y + a

' a b = b +
x +b-,b+x

Answers for Part.1)
l. V V Fxyx

V Fsy
Y

Fst
Z. Fab is taken as an assertion about all values of and 'b'
3. Fst

TC 252,253 (1)

3 Fsy

3 3 Fxyx

4. Fab

,. 3 ais viilid. Clearly, we should be prepared to accept the conclusion of.. x y
either of these inferenceP as an assertion about all. vialitegi of the vari- \ ,,,,./-N.
able 'a' or 'h' which occurs iii it. So, we may apply the introduction
rule for "b' again:.

v +y-Y +fi V X -4- + x
+y.--y+x ,VVx x+y=y.+x

As this illustrates, given any theorerdwe may infer from it a sentence
obtained by universally generalizing ith respect to each of as Many
-of the vaviables in it as we wish, doing so in any order. From such a
"multiple universal generalization" we may get back 'to the given
sentence by usinV the elimination rule for Nie as many times as is
needed to "strip off" the universal quantifiers.

To make it easy, tn discusl situations involving several quantifiers
we need to exfend 01114 notation by agreeing to use expressions like
'Fah' , etc.. as place-holders for sentences which contain two or
mere variables which we.wish to take note of. For example, we might
in-applying a rule, replace 'Fab' by 'a + h b + a'. lf we did then we
should be preparea to replac4 'V.,. Fax' by a x x + a', etc. The
inferences displayed above, illustrate lryheri tacked together, two-V
two) the schemes:

_Fab Fab
Fay d: Fxb

V.J.V;Fxy VV.r Fxy

The following scheme, which involves both basic kinds of inference
for univerSal generalizations, shows that the prder in which NIS are.
"attached" doesn't matter:

P

A

}-2),c'y

3 Fay
or; 3 3 Fxyx y3 3

x y
pxy q

Fab

3 Fay q
(E3)

The "preamble- to the preceding exercises can be extended
slightly to show that any sentence of the form:

VxVy Fxy V' V Pxyy x
is valCd. Recalling from page 242 that statements about validity likethe preceding o?e are to be interpreted as applying for any choice of
indices and variables, it is clear that the converse of a sentence of the
form in question is a sentence* of the same form. So, the can
immediatelylbe replaced by a"ct.. . Similarly, Exercise 4, with'3 '3

x Fxy` for 'q', can be extended to show that any sentence of theY
form:

3 3 Pxy 3 3 Pxyx y xis valid. And, again, the may, without further argument, be
replaced -by a '4==;0.

d
These results on the permutability of "like quantifiers" suggest

making comparis.ons between sentences of the forms:.i vy Fxy and: Vy 3x Fxy
Asilxamples, consider the pair:

(1) 3X Vy y +x = y (2) 3,x Y + X Y
and the pair:.

(3) 3 y -+x Vy .

(41 Vy_ 3x y + = 0
Sentence (1) is a consequence of 'a + 0 a' [if this sentence is takenas an asseriion]:

a + =

(1y)

iF
y+07-ly

(13)
ax Vy y + x y



/IV Fx'y
Fay

Pub
V j.-Fxb Introduction rule for 'V'
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Elimination rule for V'

v v h'xv
-r

I. It has essentially been shown in the preceding discussion that, on
the basis of the rules collected on page 250, any inference of the

4orm:

v Fxy
Est

is valid. To test youi understanding, give a scheme for showing
that this is the case.

2. One of the schemes given above:shows that any inference of the
form:

Fah
V.V11 Fxy

is vaV providi,d that . . . . [Complete.]
3. Use the introduction rule for '1' to show that any inference of the

form:

Fst
3 3 ,Fxv

-

is valid:
4. Show that any inference of the form:

3, 91, Fxy Fab q

is valid provided that iLs conditional premiss is taken' as an vser-
tion about 0.1I values of both the indicated variables and provided
that neither of these variables occurs in the sentence Which is
taken for 'o'. (Hint 'Begin by using two inferences of type (*) in
Ekercise 1 of Part C.]

Exercises 1 through 4 may be Summarized by saying that blocks of
quanfiers of the same kind [all 'V's or all I's] can be handled just like
single quantifiers. For, II: the exercises show, such blocks satisfy rules
which are entirely analogous to the four basic rules for single
quantifiers.

TC, 252,251 (2)

Sentence (4) is a cpnsequence-of á + -a = 0' [ifthis is taken as an
assertion]:

a It

3 V .3 y
y x

Sitences (1) 'and (4) are, then, theorems. They say pretty much
what is said by the PAO. and the IPO, respectively, when the latter are
[as postulates are] taken as assertions. The only differepce is that
(1) does not make available to us the numeral '0' and (4) does not.
make available the operator -'. What (1) says is that.there is somej
"unspecified] number which may, "without effect", be added to any
number one chooses. *What (Z) says is much less . given any num-
ber, there is sorne [unspecified) number which may, again without
effeAkiibe added to the given number. The difference is that,' as far
as Ws concerned, different numbers /nay "have different zeros".
The difference between (3) and (4) it similar. According to .(4),
each number has an opposite and different numbers may have different
opposites as,. indeed, they do. According to (3) there is some
number which will do equally well as an opposite of any nurilber. Since
(3) i false and (4) is true it follows that (3) is not a consequence of
(4), So, generally, a sentence of the form:

a V, .Fxyx
is not a consequence of the corresponding sentence of the farm:

..a + -a 0 -

(la)
3,ck a + x

.(.IV)
+ x 0

.
Y X Y y

More suc inctly, not all sentences of the fohrm:
Vy 3x Fxy 3 V Fxy, x y

are valid. [As is usual in similar cases, only "uninteresting" 'sen-
tences of this form are valici.] On the other hand:

Any sentence of the form:
3 V ncy V 3 Pxyx y Y x

is valid.

This rule is justified by the scheme:

Fxy Vy

Vy 3x Eky

*V Fay
-Y (EV)
Fab

La)
a Fxb

(IV)
g Pxyy X .

Fay V Fxy

st
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.s

6.08 Using Quantifiers in Proofs
.,

You "firive;seen.that in order to explain the notions of linear de-
pendence arail ,114tear independence it ts necessary to use the ideas ex-
pret4ed by the-, words"eacand 'there exists'. We have chosen to use
the quantifiers "ce and to express these ideas. To make use of the .
notions of linear dependence and independence one needs to know fiow
-to deal wjth utiiversal and existential generalizations, however they
may be eXpressed. The easiest way'to learn this is to discover the rules
for eliminating and itroducing quantifiers and then to see how these
rules can 'be ustxt proving theorems. As 'in the case of other tech-
niques of procf,.on you have learned how to use:the rules 'you can
usually see what,k do without bothering to make formal Use of them.
If, sometimes, y u can't then you still have the rules to fall back on.
!This is somethingflike learning to find sums of whole numbers. Once,
you may have counted on your fingers to find that 3 -4- 5 is 8. You prob-
ably don't do. this pow but, if you in-got the sum of 3 and 5, you still
have your fingers for a last resort].

As a first illustration, let's consider the proof of the only if-part tif
Theoi.em..fi.-.- 7. To simplify matters we shall consider tlie case n = 2:.

'zVIJ

_4.

(a, h) is not linearly dependent
.....

fax + by = 0 ix = 0 and y = 0)1
.

In this case, ihe proof ien on page 227 goes as follows:
Suppose that (a, h) is not linearly dependent. Suppose, also, that

a and h are a.ny nufkibers such that

It follows fron that

'if not ia

-4' * fau + bb = 0.

0 and IN 0) then (a*a -"b.b = 0 and not (a =
and b 0)).

So Eby the ntrOduction rule for I')
,

A

th---if not (a = 0 and h = 0) then gA fax ,+ by, = 0 and not (r = 0

:By Detnition 6-2 'it folloliisthat

and y = 0)).

if not (a = 0 and b = 0) then (a, b) is linearly dependent.

TC 252,253 (3)

Note that the use of the deduction -rule is permissiblein spfte of the
previous use of (IV) because the Variable 'b does not occur in the
discharged premiss. Any attempt to iustify inferences of the con-
verse kind will fail:. For example', in:

4.

V 3 Fxy
y

(EV)
a Fay

Fab

V Fay
,(Ia)

yr4a V Fxx y

(IV)

Fab V Fxyx y

3x V 1.`x\r

is in&lid beCause the prernis 'Fab' must be treated as an assertion
about all values of 'b' if the (IV)-inference is to be valid but must be
treated as an assumption about values of 'b' [as well as valuer of 'a' I
if the deduction rule is to bc applied as indicated. Such schizophrenic
behavior is outlawed by the proviso to the deduction rule.

TC 254
The text of section 6.08 consists of an analy'sis of the rOles played

by#e new rules for quantifiers in the proofs previously given for-the
two parts of Theorem 6-7 and for Theorem 6-0. Exercises in which
students can test theit understanding of the use of Otte rules begin on
page 260,

At the beginning of the section we-reiterate our point that the reason
for one's learninit the rules of logic and how to use them is to
enable him to argue easily and correctly without making conscious use
of them.' We wish st4dents who complete this course to be,able to
understand and applyWhe rules of reasoning in the format-of paragraph
arguments. We are not necessarily interested in turning outilarge ,

numbers of students w,ho are expert at tree-form derivations, especially
if in achieving this goal the student has lost interest in or has acquired
a poor attitude toward mathematics generally.

(ES)

Our experience has been that detailed studies of the rules of
reasoning from the point of view we have taken here are best Presented
by the teacher. This is especially true when analyzing complicated
tree-form derivations. Such discus.sions as that found on pages 254 -
260 should- be.understood by the teacher well enough for him to develop
the ideas within the framework of a class discussion.' A goodjeaching
style can do much to cover the ideas in the text in a nontedious fashion.

The first step in the argument ["It follows from (1) that') makes
use of an inference of the form:

p (q and p)
whose validity is an immediate cdrisequence of the introduction rule for
*and' and the deduction rule.

An explanation of the next step is given following the proof,
The step indicated by "By Definition 6-2 it follows that" :riakes

use of the replacement rule for biconditional sentences,
The remaining steps iliustrate modus tollens, the deduction rule,

the introduction rule for 'V' [twice], aild the deduction rule,. &
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Since, by assumption, (a, b) is not linearly dependent it follows that
1'ci = 0 and - 0. Hence ldischarging (1)1,

if aa + hi) = Otken (a Q and h = 0).

So by the introduction rule for 'V'J,
4 .. ..- . ..-0 1..

V
X

V i (IX + hy - 0 ( X = 0, and y 0)
14

Hence, the theorem.
'Notice that in order tofollow the "naturarway of writing, we have

used an inference of the form:

p Fab
p

y
Fxy

and cited the introductiori rule for Such inferences are easily justi-
,

fled by this rule:
C p p Fab

Fah Exeroise 3 of Part .D
Fxy

p 3, 344 Exy

'As our secend illustration we shall take the proof of the if-par
Theorem 6-7 -again in the case n = 2:

-
[UX + by = 0 0 (x = 0 and y = 0)]

(q, -b) is not linearly dependent

The proof given on pages 227 and 228 goes as follows:
Suppose tlat

[ax (x = 0 and y = 0)].

It follows fby the elimination rule for \i'1 that, for any numbers a
and h,

of

( 1 ) cla + b --,- 0 a = 0 and b = 0)..

Hence, .it is not the case-for any a and b-that

4.!(

+ Wib = (-Sand not (a = 0 and h = 0).

it f011oWs that .

(3) not 3, ((i*.x + by -Sand (x = 0 and y = 0)),

So, by Definition 6-2, (a, b*) is not linearl§ dependent. Hence, the
theorem.
The steps from fl) to (2) and from,(2) to (3) probably seem reasonable

enough but both depend on rules of logic which we have not taken up
explicitly. The step from (1) to (2) is an inference of the form:

* not:(p and not q)

[Awning that if p then q you 'can't very welllaave p without q.]
The/Step from (2) to (3) is pn inference of the form:

not Fah
not J. 3,11 Fxy

[Assuming that, whatever a and h are, it is not the case that Fah, it
follows that there do not existentimbers x and y such that Fxy.] As in
Part D, it is clear that this second kind of inference is just a combi-
nation of two inferences of the form:,

not Fa(**)
not

and so it will be sufficient to discuss inferences of this kind. As we shall
see, the validity of such inferences [provided that theii- premisses are '
taken as assertions about all values of the indicated variable] is
equivalent to the elimination rule for '3'.

`The justification of inferences of the form (*) can be based on the
idea that the denial of a sentence can be inferred from e fact that
the sentence itself implies a o6ntradiction. More formal1y, any infer-
ence of the form:

p 2"- (q and not q)
not p

I .
.,.< ,

is valid. This follows easily from modus tollens and the law of non-
contradiction fpage 1641 according to which any sentence of the form

, 'not (4 and not q)' is, valid. 4.!. more *convenient rule-which comes toe,.
the same thing-is 'that any inference of the form:
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is valid. We can now justify inferences of type ot) by showing that if we
assume that p .-q then the additlonal assiimption that (p andnot q)
leads to 4ontradiction: 4

p and not
p and not q

q not q
and not.q) q tp and not q) 770 not q

not ip and not q)

the justification of inferences of type i**) is like the answer you
may have given fbr Exqrcise 3 of Part C On page 251. Tb see how it
goes; consider the following scheme:

If we can find
is valid then,

- not Fa
p not RI
Fa not p
Fx not p p

not 3, Fx

a replacement for 'p' such that each of the four inferences
with this replacement,

not Fa p
not 9, Fx

-

will be valid. If, at the same time, we can choose as a replacement for
a valid sentence then, as a premiss, this ientence can be ignored,

and wv shall have jus.tkfied (*O. Now, of the four inferences in question,
the firkst, second, and fourth will be valid no matter what choice we
make for 'p'. The third will be valid providing that its premiss [Fa --
not pl is taken as an assertion about all values of 'a' and that 'a' does
not occur in the, chosen replacement for 'p'. It follows that, for `p'., sVe
need a valid sentence in which 'a' does not occur. This is easy. We
migiit choose '0 0', or we might choose, in each application, our,re-
plaCement for 'k Ex Fx'. Any number of other choices are avail-
able. There still remains the question as to when we can be sure that
the preMiss of the third inference is taken as an assertion. Ag%in
the ahswer is ea?y. This is sure to be the case if the premiss [not Fa]
of the firkit, inference is taken as an assertion. The final result, then,
is that any inference of the form:

not Fa
not 3., Fx

4 1,
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Here are three scheines referred to implicit y on these pages:

g (q and not q) not (q and net g)
(A):

not g

p not q

not,q

q arid ;lot q

p (q.:;.nd not q)
[by (A)]

not p,

p =t (q and not q)

q and not q

6 *

p q

p g (q and not q)

g and not q

not q

p 2=> not q

not p
The first scheme establishes the validity of the first of two displayed
inferences. The other two schemes shows how either of the displayed
inferences can be used to justify tlse other.

Note that by using the abbreviation introduced on p'age 88 in con-
nection with ihe deduction rule, the two rules,of inference whose
equivalence is shown above could be stated:

Any inference of either of the forms:
[1:11

q and not q
[P1 [P1
q not q

not p no g
is valid.

The advantage to doing so is that, for example, the scheme' at the foot
of the page could be #bbreviated to:

p anti not q S.

p q p and not q

riot q

not p and not q
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is valid provided that its premiss-is taken as an assertion about all
values of the indicated variable.

As our final illustriation of the use ofthe rules for V let's consider
the proof of:

Theorem 6 -13 (c )*) is linearly dependen find 0

b E [a]

This is a theorem .for which we shall have some use later. You have
already studied it in Part H on page 232. In fact, by solving Exercise 4.
of Part a you have already done most of the work required to pi-ewe
Theorem 6-13. .

To prove this theorem it is natural to begin by assuming that,
(1) (a, b) is.linearly dependent and a 0

and to attempt to shciw that it follows from this assumption, and.
various theorems about translations, that

2) b

If i.ye can 'do this then we can show plat Theorem 6-13 is a theorem
by using the deduction rule. [Explain.] Qur problem, then, is to get
from ( 1) to 12) with the help of whateVer theotems prove useful. Among
these theorems will certainly be Definition 6-2 [of linear dependence]
and Definition 5- 14of [ii]1. Both of these definitions contain `3'.

A good way t'o begin our progress from (1) to, (2) is to note that it
follOws from the first part of (1) and Definition 6-2 that

,
(ax + by = 0 and not (x = 0 and y 0)).

Now, the elimination rule for T tplls us that (2) follows,from ) and,

(**) tcz a =V and not (a = 0 and, b ())) [Z./

provided that (**) depends on no special assumptions about a and b.
[If this is the case then we can take (**) as an assertion about all values
of 'a' and This assertion may., of course, be subject to other assump-
tions which do not concern the values of 'a' and V. Presumably, the
only assumption we shall need to maim is that a # O.] Since (*) follows
frbm (1) and Defirtition 6-2, we can show that (2) follows from (1) if
we can show that (**) follims from (1) and various theorems 'about
translations. Presumably the only part of,(1) we .shall need is

5 9
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At this point, we can outline, the proof of Theorem 6-13 as follows:

(1) (1.)

[Def. 6-2] 1--;) is linarly dependent a 0 [various .theoreins1

(*)

DiE ri-Z*1
P

[Theorem 6-131

4

Here, the last inference is by the dedudtiOn rule and the one just pre-
ceding it is by the elimination rule for-V. The left side of the uppers
part of the scheme is clear. In fact, it is an example of the valid scheme:

p and q
p 4-0 r p [Explain. What sentences should be

taken' for `p','q', and '7-7]

All that is left to do is to complete the right side of the scheme by de-
riving (**) from the assumption 'a 11 and whatever theorems about
translations turn out to be helpful. Since you have already done this
in working Exercise 4 of l'art H on page 232, we Alan merelY sketch
the derivation, leaving the details for you to fill in. Before goIng on to
this, however, it is worth noticirig that the preceding discussion and
outline applies to proving any theorem of the form:

If (C-iv . . .) is linearly dependent and then

[Explain. Will a similar afgurnent work if tpe 'and is ini&ing?]
To prove (**) under the assumption that a slr it is natural to start

with the additional assumption that

(3) , ,--- 0 and not (a -= 0 and b

and attempt to derive (2). As you may recall, the first step in deriving
(2) is to show that, under these two.assumptions, b .7L Q. The liext step is
to iise this result together viiththe first part of (3) to show that

-:(alb).

Froin (2') it follows [by the introduction rule for 7] thatr
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Fine Hy, (2) follows from (2") and D4inition 5-1. Using the deduction
rule we find that (..) is a consequence of the assumption 'a,t -01 and
whatever theorems. were called on in arriving at (2').

The. argument outlind in the preceding paragMph can be dia-
grammed as follows

. ,
a A-. 0 (3) [various theorems)

!Def. 5-1]
b A 0 (3) lvarious theorems]

a (a/b) .

_
bcla

'Once the role of the rules for '3' in such proofs is clear it is not difficult
to write-something like the follOwing in proof of Theorem 6-13:

Suppose that

(14 (cil, bJ is linearly dependent and that a 0.

Since (a, b) is linearly de ndent it follows, by,definition, that there
are numbers say, a aifd b such that

(3) a.ct + bb (Cand not (a 0 and b = 0).

Suppose thaeb = 0. It follows that cl + b = +- .
= aa. So, since aa + bb = 0, aa = 0 and, sincera4- -64, a =.0. Hence, if
b 0 then both a and b are zero. Since a and bare not both zero it
follows that b 0. 0%.

Since aa + bb = 0 and b 96 0 it follows that b = a (a/b) and, so,
that b = ax. It follows, by definition, that Ve [WI. Since this is the
case whatever the numbers a and b are, assuming only that they(
sati§fy (3)- tand that a -7, Of, and sinc_i_24 by (1), there are such numbers
land a .A 0] it follows from (1) that b E [a]. Hence, the theorem.

. Note how, in this form of proof, the use of the elimination rule for
is referred to imp1icit4y in the second sentence ['there are numbers

7-saya and b such that and in the nt-to-last sentence rSince
this, ithe case whatever the numbrt'a and b are, assumingonly that
they satisfy (3), and since there are such numbers71.

Exercises

POI A
1. Theorem 6-13 on page 258 43 the first of a sequence of similar

theorems. The 'second is:

593
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In the small derivation scheme on page259 the first inference is
valid by the elimination rule for .iand'; the second is valid by the
replacement rule for biconditional sentences. For 'p', take '(1.,11) is
linearly dependent': for 'q' take 6'; for 'r take the sentence
(*) on page 258, With these replacements 'p and q' becomes sen-
tence (1) and 'p ,4=:. r' becomes an instance of Definition 6-2.

The discussion in the text so fer sets forth a scheme'which is
likely to be useful in proving 'any theorem which is a conditional sen-
tence whose antecedent implies a sentence of the form:

...) is linearly dependent
The left side of the scheme ,[the part analyzed in the preceding.para-
graph] leads to the appropriate conclusidn of Vie form:

(*,) a Ca'.1x1 + and not (x1 -z 0 and ... )).,x

The essential.part of the proof that is, 'the only part which requires
ingenuity on the part of tlle prover is to show that the corresponding
sentence:

(**') (a a 4- --- .5 and not (a =- 0 and.... )) r1 1 1

[where 'r' is to be replaced by the consequent of the conditional sen-
tence which is,to be proved) is a consequence of known theorems and
the antecedent of the theorern.to be pros.ed. The conditions for the .
validity of the (E3)-inference with (*') and (**') as prernisses will
then be satisfied if one has haci.the forethought to choose the variables
'a ' which are introduced in the antecedent of (*IV) from arnong
those which do notioccur inits consequent. The final inference, by the
deduction ru4e will be valid unless, in deriving (**1), one has used an
inference which "blocks" one of the variables '11', for exarnvle
in the antegedent of the sentence e now wishes to discharge. An
example, in the context of the proof of Tiieorem,6-13, of such an error
would be deriving '11 * 6' or * frorn-'a * (fr. Such errors
aie rather difficult to commit unless one is really trying to make them
or is paying no attention at all to what he is writing.

As illustrated in the reniainder of the 4nalysis, in the text, of the
proof of Theorem 6-13, the normal procedure for showing that (**')
is (a consequence of known.theorems and the antecedent of the theorem
to 'be proved is to take the antecedent of (**') as an additional assump-
tion and attempt to derive the common consequent of (*IV) and this
theorem. Again, ince an' application _qf the,deduct-ion rule is in_pros-
pect, one must be careful not to "block" any of the variables which
oecur in this additional assumption. As before, onceone has recognized
this as an assumption, such care as is needed is likely-to be autoniatic.

The technique Of obtaining (**/) described in the preceding para-
graph le built into the 'kind of paragraph proof which we' have been using
previously and which is illustrated in the proof on page 260. How this
is done is pointed olAt ine.the paragraph following that proof.

TC 260 (1)

Students may be curious as to the inference:
[Def. 5-11

gera'jr*3 5.1x



a
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This is actUally an example of thc replacement rule for equations in
'which the secOnd premiss is a valid 'sentence [see TC 249(2)]:

[a-1
-0

X
,jx X; a

[4
The biconditional conclusi'on of this inference might have been adoptedas a "conteXtual definition" of qa in place of adopting the "explicit
definition" Definition 5-1. It is almost as easy toxinfer the explicit
definition from the sarne valid sentence and the contextual definiation:

,E {II: 3 ax} 4=') 3x ax b E -.a. 1

x
I; a,x

g E ra", c=:* fo. /-Z ;:Xx

[ {X.; 3x Alf-
'Here, the first inference is valid by the re
tional sentences and the second is valid by
[see TC 249(i)1.

ax

cement rule for bicondi-
he extensionality principle

Since cor re spondin. g explicit and Coz textual definitions are derivable
from one another and valid sentenCes, we shall often refer to either one
by writing 'definition'. This practice is illuAtrated in the third para-
graph of the paragraph pioof of Theorem 6-13..

The discussion on p;ges 254 - 260 presents several rather involved
matters of logic. This discussion is'included toclarify some of the
prol?lerns that arise in applying such properties as Definitions 6-1 and
6-2. Unfortunately, this discussion tends to focus one's attention on
details that normally are not appar&nt in practice. It is sornetimes
difficult to motivate students to consider details that do not ';appear-
to be relevant". or that are intended'Io' "promote a better understand-
ing' of the material.

Our most important goal is to cquip students to janderStand and
, present paragraph-type arguments like that,at the "ttom of page 260.

Wc recommend that as often as possible you arrange the activity of your
class so that comp-licated_tree-form derivations are done as a class
project. We also recommend that exercises for individual consideration
he those that provide experience with paragraph-type arguments..involving
existential quantification...

Stress should also be placed on the proof strategy exhibited in the
second paragraph. [b.4ginning with 'Suppo-se that .13 - 1 on page' zst.
This strategy will be very valuable in subsequent workboth in this
cothrse and in advanced mathematics. In simple terms, one wishes to
make an assertion [la* 0' in this easel o be, in effect, does so, and
quickly adds "because if nor...." [in this ase the 'if not" is the
opening sentence of the second pailgraph]:. hen proceeds to shotv
that based upon this "if not" there are "unfor nate consequences
[in this case, the 'contradiction that "if b 0 then both a and'b "are
zero, but a ,and b cannot both be 0" ]. Too much stress on the tree-
form versions of such arguments may obscure this important strategy
for Students encountering such ideas, for the first tirne.

a

A
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Parts A G are not recommended as' a single atisi nment. One a

means of handling these exercises is:
First day
(a) Part A ,as an in-class demonstration to emphasize the

application of the various rules introduced in this section.
(b) Part B and:Exercises 1 - 3 of Part C as homework,

a

Second clay

(a) Discus,s Exercise 4 of Part C in class.,
(b) Exercises 5 8 of Part C arid Part D as homewerk.

Third day
(a) Discuss Part E in class.,
(b) Part ,F liar homework.

Fourth day
(a) Discuss the proof of Theorem 6-7 given in the text.
(b) Part G for, hornework.

Answers for Part A
1. Suppose that

(3,5,-CP ) is linearly dependent and
that (3,13) is linearly independent.

Since (3, ToP, CP) is linearly dependeni it follows, by definition, that
there are numbers say, a, b, and c 'such that

(*) a +-gb + cc = -d and not (a 0, b 0, "and,,c. = 0 .

-PSuppose that c 0. It follows that a + b b + cc - aa +
+ --cP0 aa +13b + gb. So, since' 3a + lab + -CPc =
-aPa + gb .6. and, since (-3,13) is linearly independent, a = 0 and
b 0. Hence, if c = 0 then a, b, and c are all zero: Since a,b, and c are not all zero it follows that c 0. '`4 4 .-,p ince aa + bb + cc = _and c 4 0 it follows that c = a. -(a/c)
+ 1-3% :.(b/c.) and, so, 3 c = .i)Py. It follows, by definition,
that e la, g ). Since this 4s The case-whatever the-number-ix -a. -and
b are, s.ubject only to the ass,umption (*) and since, by the earlier'
assumption, there are such numbers it follows, subject onlyikSo the
earlier assumption, that c ). Hence, the theorem.

-a. -.0 7,(a) c, d) is linearly dependent andirla,"b, c) islinearly inde:
pendent

a raP3,Z] ,,

[Definition: [I,r), c I = {x: Bx a a x = ak + by +
--, - -I. ...., - -. , ,

.7 z
(b) Yes. [A student who has answered Exercise 1 after the

pattern given in the text should have no difficulty other
than writer's cramp in giving a proof of the theorem in
part (a). ] . .
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_-
h, c) is lipearlyd i.ependent and t b) is linearly independent)

1

Prove this theorem. (Hint: The proof should be very easy if you
use the paragraph proof on page 260 as a model.l.

.2. (a) Write the third theorem in the sequence. Which begins with
Tbeorem 6 -13 tHint: You should have no difficultY,doing this
BUt., to make sense of what you write you will need to give a
definition for la, h, If you need a hint, look at Definitions
5- 1 and 5 -2.1

(h) Do you see how to prove the theorem pou wrote for part ha)?
3. Complete the follor/ing definition and theorem:

(a) la . . , . . }

(b) . . ,1 is linearly dependent and

tr...410

v

!In later chapters we shall refer to this definition and theorem.
as 'Definition 6-4' and 'Theorem. 6-13', resPectivelyd

1. Complete the following proof of the theorem:

Suppose that ar= b'a and c= ae. Since it follows that
him.) and, so, that 3, Hence, for any number c,

and so
A 4

3,

In other words, by Definition 5-1,

Since this is the caw for any C it follows that

Hence, for any number a,

a = ba

#.

and so

3, (a) 3 -;
n

TC 261 (2)

xn

(b) an) is linearly indeEendent; rai,
C

When we lave adopted dirnensionality postulates the sentence:
(, g, c, AY. isTinearly dependent

will become,,a theorem. In consequence, the case n > 3 of Theorem
6-13 will be completery Void of interest [since its antecedent can never
be satisfied] and the case n 3 will reduce [in view of the fact that,_in any case, La, b, c j c T]

r),.) is linearly independent g, ] - T

The converse of this sentence will also turn'out to be a theorem.

Answers for Part B
I. (ba)c- b(ac); c bx; c e [ a 1;

[final portion of proof:] and so

Hence, by Definition 5-1,-if 'A.e[in then [1] CT [g].

[i;]; [-a');

[This proof illustrates (twice) the use cif the rule according tá
which an inference of the form:

Fc Fr=> q

Fx q
X

is valid provided that its premiss is treated as an assertion about
all values of 'c' and that 'c' does not occur in the .senience taken
for 'q' . The first restriction is satisfied in the first of the two
applications of the rule because the premiss, which is:

c = ac ax =

depends on no assumption in which 'c' occurs. (The only such
assumption has jus een discharged.) The second restriction is
obviously sMisfif. A later step depends on the validity of the
inference:

[in =,
[-a.] C

provided that its premiss is treated as an assertion about all 1,`Jues
Of This restriction is satisfied because the only assumption in
which occurs has already been dischUrged. The validity of the
inference is a consequence of the usual definition of 'c ' in this
case:

S T 4:=4' V57 e s A*110> E

with 'S' and 'T' ranging ovoT Subsets of 'T with which we assume
students to be familiar.]

A

,
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Part C

2. Prove- the, theorem:
,

a't be]. 4,-- -I;)is Lineally dependent

!Hint: Suppoe that i; b.a. It follows + = dand, ...
since 1 >, 0,3 3 (ux + by = 0 and not1 n- that is, (o., b) is
linearly dependent. Hence, for any number a, . . ;

3. Prove the thmrem:

ci.e 11)1 t tat] ?'

1,i4int: Recall how to "unabbreviate" a restricted sentence. Then,
use two previously proved theoriems. (This is an easy one.))

4. Prove the theorem:

a fib) IV! to

I. (al t)rarrows to describe two non-dtranalations Vend C:4.such
th h, A' is linearly dependent. Mark a point A and rocate
points B and C such that B = A + b*and.c. = A + c. Draw a
line / through B and C.

(13) What ;:lo you notice about the points A, B, and ("7`.?
(c) is the sequence A, C A) linearly d'ependent? Explain.'
(d) Do you think that the sequence (C B, A B) is linearly de-

pendent? Explain.
(e) Do you .think that aiwther choice of A, g, and-C7satisfying the

conditions in part (a) would have led to different answers for
parts (b), (c), and (d)?
Would you give different answeri for lb) (d) if either tor both]
of 17 kind c were 0? .

2. Repeat Exercise 1(a) - (e) with 'linearly dependent' replaced by
'linearly independent'.

* 3(1Point to ponder] On the basis of what you have notibed in Exer-
cises I and 2 try to formulate a definition which describes, in terms
of Ithear dependence or' independence, when an arbitrary triple of
points is collinea;

4. From Faercises 1 and*2 it is easy to guess that:

Theorem 6-14 (B - A, C A) is linearly dependent
OM.

IC - B A .8) is linearly dependent

is a theorem. In fact, Exercise 1 suggests the -part of this
biconditional sentence and Eitercise 2 suggests the
IComplete, and explain.] Below Is a proof of the only if-part of
Theorem 6-14 in which some of the algebra has been taken for
granted. jn studying any proof you should do three things:

TC 262 (1)

4Suppose that 1 = la* It follows that al + b.-a = .6 and, tshaintCe
1 0,

i;)is lin arly dependent? Hence, for any nu.mber a,
ax (-a*x + by an Zi not (x = 0 and y = 0))

= (a., 5) ialinearly dependent
and so

la..,t) is linearly dependent.
lience, by Definition 5-1, the theorern.

3. Suppose that -.1E ), It follows by Exercise 2 that II% 5) is
linearly dependent. So; by Exerise 1 of Part A, it follows,for a 0 6. that 13 E [S]. Henoe, for eae. * if a. e [11] then

4. §upp9,Se that a E r I. It follows by Exercise 3 that, for
b e [a ], By Exercise. 1, since a E [5], [-I ] c [I ]; and, since[for t] 5 E [1], [X] (= ]. tiince C [5] andifor.-I 0 -C][5] C FS] it follows that [a ] = [5]. Hence, for -S. 0 6, ife [5] then rail = [5:].

The first two 'exe;cises are exploratory for Theorem 6-14. Thistheorem will be required as an adjunct to the definition; ,

1.{A, 13, C) is collinear 41 ( B A, C A) is linearly dependent
'Students shOuld be able to guess this definition upon pondering ExerQise
3. Make an effort to see that they do.
Answers for Part C
1. (a) [Any two parallel arrows will do. If the arrows drawn describe

the same translation (i.e.; if b = c) then any line containing
B will do for a line containing B and C.] Here is a.typical,
pictu're for the given Conditions.

# .41.
*At'.

Ito

(b) They seem collinear.
,

(c) Yes. nB A = C, C A = ,and ();# linearly dependent,
(d) Yes_ Assuming that A, B, and C are collinear, I believe that

(C B, A - B) must be linearly dependent.
(e) No.

(f) No. [Except that if 11, say, were then, since B would be
the same point As A, I'd be absolutely certaiii that A, 13, andc were collinear and that (C B, A -13) was linearly
dependent. ]

6cio
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(b)- They are not collineai".
(c) Yes. Sarne reason as before, [With 'Independent:

'Oependent' !I
n place of

(d) Yes. Since A, B, ani C are not collinear, 1 don't see how
IC B. A B) cotgd be linearly cipendent,

(e) No.

3. [See discussion preceding answers. j.
4. only if; if; ThatExe rcise 1 suggests the only if-part is clear.

Exercise 2 suggests that if (B - A, C A) is linearly independent
then so is (C B, A - B). So, by contraposition, it suggest* the
if-part'of Theorem 6-14. ,

4

3

a

4

ob

TC 263 (1)

Answers for Part C [cont.]

4 First explanation-of detail in proof: From the assumption and
Postulate 3 it follows that

(B - A)a [(B - A) + (C - B)Jb = 4.
So. by Postulate. 4 JandPoitulate 1(b)), it follows tJla

(C B)b 4 (B - A)(a + b) = 4.
Since B -.A = -(A - B) and -c it follows that

(C - B)b + (A B) -(a + b) =
Second explanation: Suppose that b = 0 and -(a + b) j. 0. It ;follows that -(a + 0) = 0 and, so, that -a = 0 and, finally,that a = 0. Hence, if b q and -(a + b) = 0 then a = 0and [of course) b 0,
Third explanation: From the preceding conditional sentence itfollows, by contraposition, that

not (a = 0 and b = 0) ==r not (b = ,p and -g(a + b) 0).
Earlier it,has been shown that

(B - A)a + (C - A)b (C B)b + (A - B) -(a + bit = 6.
The required conclusion follows from these since, as is easily
seen, any inference of the fornI:

p r

(p and q) r and
is valid. Here's why:

p and q ,p and q

q q sza. g

r and s
'se

(p and q) (r and s) .

Fourth explanation:__:TO save writilag, -Ist-ts- take the conditional
sentence we've just proved for 'Fab 2,4* Gbt', taking
' (a + b)' for t'. Now, consider the scheme:

Fab 2=0 Gbt

Fab z=Z 3 a ''.xyx y

3x Sy Fxy a ay Ow
The first inference is valid by two applications of a rule whichis pr,actically (3). [If you want details, the firit inference canbe validated by rnodus ponens, two (j3s, and the deduction
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CO Read throUgh the proof, taking tbr granted details which
look reasonable and can be checked..later.. Satisfy yourself,
that, if these detaik check out, the argument .is a proof of
the theorem.

(ii) Check the deta ls.
Tiy to identify the key ideas which suggested the proof to
the person who wrote it.

IThe last is the really important point. If you can do this then you
will have greater success in thinking' up your Own proofs.1 Study
the tbl low ing proof from these threepoints of view understanding,
checking. and "seeing through". The details you should check
'hre indicated by Explain. I'. write ouf your explanations and then
try to explain the key idea.

Suppose that u and h are any real numbers such that

(13 A + A th = 0*.

Since, by Postulata3,

(7 - A - (B - A) (C - B)

it follows that ,

B)h + - B1

Moreover,

1h - 0 and.-- k.,b) 0) to = 0 and b I.ExplainJ

Hence, for any n and h,

B A)u B)h 0.and not (a = and b 0)
L;

b) 0. I Explain.

p)b + (A - B) + h) -
and not (b = 0 and -7-ta t =

T.263 (2)

Ansvlers for Part C [cont.]
rule.:-'The second tfffe-rre-ia,;.-ig-,-;a-n-a Ti-y-tC,76-.3-1SPITEatiOn's of the
rule you get froth (Es) and the deduction rule.. It is.all right
to use this because the premiss of the inference is a conse-
quence [by the first inference] of the 'sentence we started with.
and that sentence is a theorem.. Also, our replacement for.3 3y Gxy' certainly tioesh't 'contain either 'a' or 13'. Isiowx
that that's settled, all you need to notice is that the only if-
part of Theorem 6-14 follows 'from the last sentence we've
proved and the definition .of linear dependince. To see that
this is so, all you need to'know is the replacement rule for
biconditionsl sentences. .

Key idea: This was, evidently,' to express the 'B - A' and 'C - A'
iniklie assumption in terms of the `C B' and 'A B that
were needed in the conclusion. Since it worked here, it will
probably work in proving the other part of the theorem,

Suppose that a and b arc any real numbers such that
(C B)a + (A - B)b

Sinee, by Postulate 3,
C B. (A B) + (C - A)

it follows that
(B A). -(a + b) + ( - A)a z

Moreiover,
(-(a + a) = 0 and a = 0) (a = 0 and b = 0).

,Henee, for any 'a and b,
(C B)a + (A B)b = 'and not (a 0 and b - 0)

(B' A). t-(a + b) + (C A)a = and not (--(a + b) Oan4 a z 0).
Consequently, if (C - B,'A - B) is linearly dependent then.so.is
(B i A, C A).

6. (a) In the only if-pfart of Theorem 6=14, subsitute [simultaneously]lEx 'C' 'B' for 'A', and 'A' 'for 'C'.

Conliequently. if tB - A, C - A) is linearly dependent then So is
- 13;A - In. lExplain.

5. Prove the if-part of Theorern-6-14.
6. Here is an instance of the only if-part of Theorem 6-14.

A BY is linearly- depindent

(A - C, B C) is linearlY dependent

(a) Check that this is an instance of the only if-part of Theo-
+,

rem 6-14.
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ParU)

(b) Show that the if-part of Theorem 6 14 is a consequence of two
instances of its only if-part.

7. If, in Theorem 6-14, you replace 'linearly dependent' by 'linearly
independent', is the result a theorem? Explain.
There are at least two ways of guessing what sentences may 13.e
theorems. One way is illustrated by the . way Exercises 1 and 2
suggested Theorem 6 14. Another '.way which sometimes leads
to interesting theorems is to notice that the key i&a of a proof
of one theorem can be used to prove another. Either of' these ways
might lead you to guegs:

- A, C - A, 1) - A) is linearly dependent
04440,

- 8, B, A B) is linearly dependent

(a) Use the ideas in the proof given in Exercise 4 to prove the only
(if-part of this theorem.

(b) Use the method of Exercise 6,to show that the only if-part of
this theorem imRlies its if-part.

1.e) Make: up, and work, exercises like Exercises 1 -3 lb discover
what, the theorem means.

I You may prefer to do part (c) before doing parts (a) and (b). That's

v.

An existential generalization is analogous to an alternation sen-
tence. For, intuitively, any sentence of the following form seems
reasonable":

3. Fx,if and only P or FO or F\''2 or FIT or : . .)

(Of course, there are y.real numbers for it to be possible to
complete this sentence as the '. . suggests.),Similarly, universal
generalizations appear to be analogous to cohjunction sentences:

. V Fx if and only if (Fl and FO and PA/2 and FIT and . . .)

If,we think of7treating Fa as an assertion" as being analogous to
using all, of the instances Fl, FO, F\'`2, F7r, . . . atonce as premissea,
there is azi analogy between inferences of the form:

Kt),

and those of the form:

Fa
V Fx

P
p and q

TC 264 (1)

6. (b) In addition to the given instance we need the sentence-,
(A .C. B C) is linearly dependent

(B A. C - A) is linearly dependent
This is Obtained from the only if-part of Theore 6-14 by the
simultaneous substitutions of 'A' for 'B', 'C' for ,`A', and
'B for .'C' . [There are other ways of using the only if-part ,
of this theorem in proving its if-part. For example, another
instance of the only if-part is:

(A 1=3, C B) is linearly dependent

(C A, B A) is lin&arly''dependent
The if-part follows readily from this and two instances of the
theorem:

(a, b) id.linearly dependent

is linearly dependent(g,
7. The result is a theorem. This is because of,the fact that any sen-

tence Of the form 'p,:== q'.implies the corresponding sentence of
the form 'not p <=t not q'. [See Exercise 4 of Part A on page

,ZZ5.]

8, (a) Suppose that a, b, and c are any real numbezs such that
(B A)a + (C A)b.+ (D A)c,= Z.

Since, by .Postulate 3,
C (B - A) + (C - B)

and D A = (B A) + (D -,B)
it follows that

(C B)b + (D - B)c + (A B) (a +*b + c)-=
M'oreover,

(b = 0, c' 0, and (a + h + c) = 0)

(a = 0, b = 0, and c = 0).
Hence, icir any a, b, and c,

(B -,A)a + IC - A)b + (D - A)c 'and

.not (a = 0, b = 0, and c = 0)
;==>

(C - B)b + (D B)c + (A B). -(a + b + c) =
and not (1, = 0, c = 0, and (a + b + c) = 0)

Consequently, if (B - A, C - A, D -A) is linearly dependent
then so is (C - B, D B, A - 11).
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(b) By the theorem just proved,
(C B, D B, A - B) linearly dependent

==>
C. A C, -B C) is linearly dependent.,

and

(1) C.. A C, B

(A - D, B D, C

, I

(A D. B D, C

(B A, C A, 6

C) is linearly dependent

1.D) is.linearly dependent,

D) is linearly dependent
=

A) is linearlydepe ndent.
The if-part of the.theorem of part (a) is a coThsequence of
these three instances of the only if-paft.
[Answers will be various. But stu4nts should be able to
guess at tthe definition:

{A, B, C, is coplanar.

(B A, C A, .1) A) is linearly dependent

TC 264 (3)

Parts B. E and F explore an important analogy which is useful
suggesting valid inferences involving open sentences and quantified

sentences, as well as in makingsuch inferences seem "reasonable".
The analogy may be set forth as follows:

'Fa', when used as a premiss asserting something about allvalues of 'a',
is analogous to a set of "representative" instances, one foreach value of 'a',
'Vx Fx' is analogous to a "conjunction" of the [infinitely

many] members of such a set, and
3x Fx' is analogous to an "alternation" of th mem'bers of

such a set of instances,
Sb, for example, the foVwing are pairs of analogous kinds of inference:

V Fx p andx q g and q Fa P q,[or:
P q Vx Fx p and qft

Fx . Fa r p or q p rx. q ==> r

Ft
[ora' px p or q p or q

These and other examples of the analogy are discussed in the exercises
and the related commentary. Here are two which are not:

p and Sx Fx p and (q or r)
a (p and Fx) (p and q) or (p andx

p or Fa p or q p or r
p or Vx Fx p or (q and r)

There are also analogies between valid sentences. A very important
example furnishes motivation for Part F. Here is a less important
but still notable one:

Vx Fx Ass:" Px Px; tp abd ql .(P' or- q)
[The 'eas,,ily-established, fact that sentences of the first form are valid
indicates that our rules of logic are appropriate only in case the domains
of our variables are nón-empty. This, of course, is not an important
restriction we shall never wish to discuss nothing! It is, however:
well to note that wben we agree to quantify over point, we are tacitly
assuming that e is .rion-empty. Note that none of the foregoing puts
.any restriction on the discussion of the empty set. The set 0 exists
and is, for example, a subset of 8. The only reStriction is ;against
taking the dbmain of any of our,variables to be 0.1
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.
,1. To the same exten as indicated above, each of our other three

basic rules for ese o
i

1' is analogous to a previottsly adopted basic 1.
rule for 'and' or 'or'. Pair up the analorous rules.

*2. What kind of inferences involving generalization sentences are
analogous to inferences of the form:

TC 265 (1)

Answers for Part D
%.

[The basic rules have been paired up in the preceding discussion.
The question as to which of the two parts of the elimina4on rule
for 'and' is "the analogue" of th e elimination rule for 'V" is best
answered by saying 'Both' and by inting out that it is our not1/43a-
tion which suggests that one kind of 'V' -inference corresponds
with two kinds of 'and' -inference. To eay, for a giyen replace-

1 ment for 'Fa', that any inference of the form 'Vx \Fx/Ft` is valid
is to assert the validity of many different ififerences which are
obtainable by niaking many different choices for 't'. the other
hand, the elimination rule for 'and' could be made mo e like that
for 'V' if we introduced a subscript i Whose domain is {1, 2} and
made the claim that any inference of the form 1101 and/ p2)/pf is
valid. S'irnilar remarks apply to the introduction rules for '-' and

or'l
.

Fap Fa rt -;
Z. , The restrictions are (1) that the

.. 'p V' Fx 3x Fx r -x
, .

premisses of these inferences be treated as assertions about all
vilues of 'a' and (ii) that 'a' not occur in the sentences which
replace 'p' and 'r'. In the analogous 'and' and 'or' inference,
(i) corresponds to the fact that each has two premisses one for
each of the two s ntences which are connected by 'and' Or 'or' in
.ts cooglusion. Irhe rettriction (ii) corresponds tq the fact that

both prernisses i n the 'and' inference have the same antecedent
and both premisses in the 'or' inference have the same consequent.

[The first of the forms of inferpnce displayed in the exercise has been
treated previously in Exercise 3 on page 230. Students should see that
the second follows at once from the elimination rule for 'or' and the
deduction rule. In connection v,)ith this exercise you might give student
one of each of the following pairs of analogous inferences, and ask for
the other:

P Vx ,Fx p ===> (q and r) 3x Fx ==o, r '(p or q) zi=o. r

p =:* q Ft .=lizO' r p =4. r

praraeg p r
p (q and r).

To inferences of the form:

p--0 r q --P r
or q) "01. r

I Note that the analogues of these two kinds of inferences require
restrictions. Similar "restrictions" are implicit in the forms die-
played above. Do you see how?.1 ,

. In the following exercises we ,shall explore further the analogy
between generalization sentences and conjunction and, alternatipn
sentences. As a starting point, you have already seenthat
inferences for 1' are analogous to Viiinitiftinn inferences for 'os':

32. Fr Fa 0 r p or q p r 0 r

The requirement on the first of these that the sentence used for
'Fa r' must be treated as an assertion about all values of 'a' cor-
responds with the need; in the second kind of inference, to have both
conditional premisses. The requirement that, in inferences of the
first kind, 'a' must not occur in the conclusion corresponds with the
requirement that both conditional premisses in the second have the
same consequent. As you may recall, we can get around this last re-
quirement, as is illustrated in the following derivation:

*
p p, r q'grammes

r Or * r Or *

ofiiT7
r or s

1. Give a scheme analogous to the preceding to show that an infer-
ence of the forra:

3,Fx Fa Go
Gx

7

p Ft
,Or, a.better estion may be to investigate the converses of the infer-

srences discu ed in this exercise.)
. As is broUght out in Part E, the analogy between the basis, rules of

logic for quantifiers and the basic rules for 'and' and 'or' makes it .
possible_ta transform a scheme wbich justiii.es one of a pair of analogous
kinds of inference into a scheme which justifies the other. So. if either
of a pair is a valid kind of inference then so is the other.
Answers for Part E "

*
1. F'a Fa =3, Ga

Ga

3x Gx
Fx Fa 2110 3x Gx

3 Gxx
41f, as suggested in the discussion of Exercise I df Part b, page
265, we had introduced a subscript i with values 1 and,'2, the

alb
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is valid provided that its conditional premiss is taken as an asser-
.tion about all values of the indicated variable. II I int: What kinti
of inference is analogouS to the 'or'-introduction inferences
r or and 'slir or s)' used in the given scheme?)

2. Use the result in Exercise I to show that, with the same provision,
any inference of the form:

Fu Ga
gs

is valid.
3. The same procedure you,used in Exercise 2 will suffice to show that,

with the same provision, any inference of the form:

Fa Gt
Fx Gx

is valid. Show this. [This kind of inference was used (twice) at the
end of the proof given in Exercise 4 of Part C.)

4. Inferences of the kind referred to in Exercise 2 are analogous.to
inferences of the form:

p-- r s

(I) or r or s)

(a) Show that the result of replacing both 'or's, abOve, by 'find's is\ a valid form of inference.
lb) Devise an analogous scheme to show that, any inference of the

form:

Fa Ga
Fx Gx

is valid provided that its premiss is taken as an assertion about
all values,of 'a'.

Part F
1._ One rule which We have found to be very useful is t

tence of the form:
1

not (p or q) 4-4. (not p and- not q)

any son-

is valid. State an analogous rule concerning generalizatioh sen-
tences. Do you think that this analogous rule seems reasonable?

. 2. Recall that in the proof given on page 255 of the ifTart of Theo-
rem 6-7 we used the fact that any kiference of the form:

/..! I -.1 .
-46

not Fa
not 3, Fx

TC 265 (2)

justification of the "complex dilemma" displayed the text
might have been simplified to a form more like the answer given
above:

p1 or p2

Pi p r 1

r
for i I andr or r21 for i

(1.1 or r2)

T 1 or r2
However, the note would be needed to warn the reader that both
rather than a chosen one of the cases must be dealt with,
Alternatively, one might adopt a general rule that an 'i' in a pre-
miss means that one is to consider both such prernisses, while an
i in a conclusion means that one may consider either conclusion.)

A.

Tc., 266

Z. [All that is necessary is to add to the answer for Exercise It.

t .

Sx Fx x Gx

and place a 't' over the premiss '3x Fx'.]
' 3. [Merely repeat the answer for Exercise Z, but replace the two

occurrences of 'Ga' (see answer for Exercise I, above) by 'Gt's.]
4. (a) p and q p and g.

p r

(b) x Fx

q so*.

r and

(p and q) 36= (r and s)

Fa Fa 114" Ga

*.

Vx Fx =4" V Gx
[Note that the Ylalidity of the (IV )-inference require* that its
premiss be taken as an assertion abbut all values of 'a' and,
so, that each premiss on which this depends and vihieh con-tains a' must be so taken. Since, however, itx Fs' does
not contain .*/,. this pren4isa maw be taken as an assumption4
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is valid provided its premiss is taken as an assertion about all
values of ',a'. We also know Ihow?I that any inference of the form:

Nif not-Fx
not Fa

is valid. Since 'o' dOes 'not occur in the premiss of this inference,
we may certainly take its concluSion as 'an assertion about all
values of V. Now, show that the if-part of any sentence of the form

. you gave in answering Exercise 1 is valid.
3. The only if-part of a sentence of the form you gave in answering

Exercise 1 is analogous to sentence of the form:

not ip or q) tnot p and not q)

Here is a scheme which shows that any sentence of this forni is
valid:

p tp or q) q 4p or q)
nOt (p or ql not p hot (p or q) not q

noi (p tWql 4. (not p and not q)

IThe '*'s are meant to indicate that any sentence of the form of,
either premiss is valid. I The analogues of sentences of the form
of the premisses are sentences of the form:

Fa 4. Fx

and, as you kno4ch sentences are valid. Now, using these
hints, show that any sentence' of the form:

not 3., Pr I. btx not Fx

is valid.

6. We can use what we have learned in Parts E and F in hiving a yery
simple proof of Theorem 6-7.* To begin with; since we know thntnny
sentence of the form;

not Fx 4.,* V, ndtrx

is valid, and since we know from Part D on pages 252 and 253 that
blocks of similar quantifiers can be handled just like single quantifiers,
We know. that any sentence of the form: .

not 31, Fxy qP not Fxy

4.

TC 267

Answers for Part F
1. Any Sentence of the form 'not Fx =* Vx not ne is valid.

This rule seems reasonable since to say that nothing exist ? which
behaves in a certain way amounts to the same thing as saying that
each thing fails to behave in this way.

2. Vx not IN

not Fa

not 3x Fx

Vx "not Fx not ax Fx

The first of the three inferences is valid by thy elimination,rule
for 'V', the -second by-the rUle referred to in the exercise. [The
latter rule is justified. on page 257. This rule' is, incidentally,
analogou's to a rule stating the validity of inferences of the form:

not p not q

not (p or q)

3. Fa 3x IN
not 3x Fx =sz. not Fa

not ax Fx Vx not Fx
.The first inference is, of course, by contraposition. Tlie second
is an example of a kind referred to in Exercise 2 of Part D.' [See
first answer for this Exercise on TC 265(1).1
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i;. vafld Eveir more for any positive integer n, any senteilce of the
form:

not ki . .

is valid.
Now, let's recall the definition of linear dependence:

. .x V not FY .

to

p ta . , an) iS linearly dependent

alx1 . aix,, -6 and not (x, = 0, . . , and x 0))
yrom.this by ,a rule about biconditional sentcrides, it followS at once
that

not

, I is not linearly
*milk

(a + a x = Vend
- 4

'
?.

dePendent

not (xi = .

and x. = 0)).

So, using (*) and biconditional replacement, itdollows that

. an) is not linearly dependent(a,

. . not (al x
1

. + 04,4 = iT and ntl (x = 0, .

and x, 0)).

With this- we have almost arrived at Theorem 6-7i'

, a.) is linearly independent

-
. . Vs. [az.tz + . . . + a.x. = (xi 0, . , and x =

To obtain this from the preceding resiilt we need to use biconditional
replacement and the definition of linear independence;

(a . . , a.) is linearly independent

is not linearly dependent
.1

and we need to use the fact that, any sentence of the form:
,

(p and not q) [p qi

is Valid. For35-om this ]ast it woufd follow that the sentenCe:

8.08 Using Quantifiers 1#3 Proofs 269

not (aza + a a = 0 and not 4az = 0, . . . and a = 0?)

is valid. So, by Exercise 4(b) of Part E, we wOtild-know that the
sentence:-

V. . V. not raix, + . . . + a.x. .= 0 and not, (x, = 0, . . .

and x 0 ))

V. . . V ix, . + a x = 0 ,--. (x. 0,-. . , and x = 0)].n
_5#

is valid. With thi§, we could complete the proof of Theorem 6-7 by
using biconditional replacement.

Part G'
All that reinains for the proof of Theorem 8-7 is the, proof that

'any sentence of the form (**) on page 268 is valid. We have carried
out half of this proof already, on page 256, when we showed that any
inference of the form:

4

p,***4
not (p and not q)

. ,

cow.

is valid. You can coMplete the job by showing that any inference of
the form.....

not (p and not q)
P

is,valid. [Hint: Use what you know (page 171) about 'not', 'and' and
'or' to transform the premiss into an alternation sentence. Then, re
call the rule for denying an alternative (page 1,12).1,
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6.09 Chapter Summary

Vocabulary Summary

linear combination 1.

sequence
linearly dependent
linearly independent'
subsequence
permutation

Defiuitions

universal quantifier
existential 'quantifier
index
universal generalization
existential generalization
instance; general instance.

6-1. a is a linear cornbination.of . . . , a.
-

. 3.rn a = a . .

6-2. (ae,, . . , a.) is lilearly 'dependent
3 3 (a

1
x + + = and not (x,r

- .
6-3: A sequence is linearly independent if and only if

early dependent. .

6-4. [SI, . . , a.1 w; tx: 3.: . ... 3: x = aix, + . . . + ax,,t
I is

0, . . .

and x,,
it is not lin- \

: Other Theorems ,

64. (tit) is linearly dependent 4P-6 -ea = O.
6-2. For rt 2, (a,, . . . , a.) is linearly dependent 4-0 one of the

vectors a,, . . . , a,, is a linear combination of the others.
. 6-3. (a) A uence one of whose terms ig vs is linearly dependent.

(b) A uence two of whose terms are equal is linearly de-
Pe L

6-4. If any su uence of a given sequence is linearly dependent
then the given sequence is linearly dependent.

,-
6-5. If any term of a given sequence is a multiple of another term

then the given sequence is linearly dependent.
A permutation of a given sequence is linearly dependent if and
only if the given sequence is linearly dependent.

6-7. cii, .-a4,)js linearly independent e
41".. Vi3 . . . Vxm (#1xi + . . . + a.; = 0 fts.(,x1 = 0, . ,'

and x. = 0)].,.64. .4., -cid is linearly indepenctent
(atal + . . . + a a = a11,, + . . . + a.
(ai 6,, . . ,.El°1111, a.

6.9. If a sequence is linearly independent then any of its subse-
.quencea is linearly independent,

8-10. Any permutation of a linearly independent sequenke is linearly
independent.

,s TC 265

The proof given, beginning hece, for Theorem 6-7 is simple in
concept and even obvious to one with some proficiency in the ule of theappropriate rules of logic. Witty 'p' as an abbreviation for , an)is linearly dependent', Fx1 xn' for 'alxi anxn Dr. andxn' for '(x/ = 0, and xn 0)', such a person wouldargue as follows: The sentence:

p 4:=P. 3 .. 3 (Fxi xn and not Gx1 xn)x1 xn
is equivalent to:

not 1
p not a ..xi

which is 'equivalefit to:

'4

a ( Fx
1

. . 7211 and not Gx1 xn)xn

not p .4=4, V .. V not Mxi xn and not Gx, xn)xl xn
which is equivalent to:

. not p 4:=24) V . V [IN Gx1xi Xri 1
(:). E. D.

The rules used are that a sentence of the form 'p 4=4' q'. is
equivalent to one of the form 'not p :=:6 not q', one of the form 'not3x to one of .itte form ; ' , and one of the form 'not(p and not q)' to .one of the form 'p ==;:, xi'. [Actually, as shown onpage 269, the final transformation uses the last of the three equiva-
lences just mentioned, the replacement rule for .piconditional sen-tences and the kind of inference discussed in Exercise 4(b) of PartE. Biconditienal replacement does not of itself justify ttle transfor-mation of the third of the sentence displayed above into the fourth,for the expressions being abbreviated by:

.not (Fx1 . .4. xn. and not Gxi xn)
and:

Fx1 xl1 19==> Gx1 . xn
are t;ot sentences. The sentences one needs to deal with are those
obtained from,these expressions by replacing the ''x's by 'a's.]

IC 259

Answers for Part G

not (p and n t q):=6(not p or not not q ) not (p'and not q)

not not pnot p or not not q

not not q

t
p
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6-11. Any linearly independent sequence is a sequence of distinct,
non-if, terms.

. e

6-12. ((a, b) is linearly independent and a + .b + c u)
I a4a + b + 0 4-0a-h'--c)

6-13. I 44 . . . is linearly dependent and (a. " 9

is linearly independent).-0 a,,
6-14. A, C A) is linearly dependent 4-0 (C B, A - B) is

linearly dependent

Other Basic Rules of Logic

Dealing with generalization
notation.)

Any inference
F x

Ft--
Fa

ix
3, Fx Fa q

sentences [See pages 240 and 241 for

of any of the following forms is valid:

[Elimination rule for4N1', (EV)1

[IntrOduction rule for V', (IV)]

(Elimination rule for '3', (E3))

Ft
[Introduction rule for '3', (13)1Fx

In the iiV) and (E3) inferences the premiss in which the indicated vari-
able occurs must be taken as an assertion about all values of this
variable. Also, in (E3) this variable muSt not occur in the sentence
taken for 'q'.

Other Rules of Logic

An inference of any of the following forms is valid:

1page 2251not p not q
P--°r

[page 230]

not p 0-0 not q
p q

p r q -- r
(p or q) r

p q p 4--- not q
nap (page 2561p. [page 256]not (p and not q)

p V Fx
p 1)Ft
p Fa

p V Fr
provided, in each Of these
as an assertion about all

[pae 2501

[page 2511.

indicated;

,

not (p and not q)
P

Fx q
[page 2511Ft --

[page 2251

[page 2651

[page 269]

Fa
[page 24913i, Fx q

last two cases, that the premiss be taken
values of 'a' and that 'a' occurs only as
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not Fa
not Fx

Fa Ga'
vz Fx v z.Gx lpage 2661

page 257)

Fa Gt
Fx Gx [page 266]

provided, in each of these last three cases, that the premiss be taken
as an assertion about all values of 'cf.
A sentence of any of the following forms is yalid:

Fx Ft [page 2501 Ft --0 Fx Ipage 2501
V.,,Vy Fry 4".. vwva. Fxy [page 2521 3,3 Fxy 4-0 93,. Fxy [page 2531

not 3,r Fx.4-0 V:. not Fx [page 267]

Chapter Test

1. At the right are arrows which
describe a and S, where (Z-bl is
linearly independent. Use
graph paper tO do the following.
(a) Draw an arrow to describe

+ b.
(b) Draw an arrow to describe_

a +
(c) Draw an'arrow to describe

a + r).
(d) Given the sequence (';i2 + + -b42) whose terms you de-

scribed in (a) and (13), tell whether this' sequence .is linearly
dependent or independent.

(e) Prove that your answer in (d) is correct.
2; Suppose thatrit is a lineir combination ofV,7, and Z.-Show that the

sequence (Z, is linearly dependent.
3. Assume that (B - A, C B) is linearly independent,sfid consider

the equation:
(*) (I) 7 A) i(a 3) + (C B) (b + 2) (A C) + 1) =-Cr.
Find three ordered triples (a, b, c) such that (*) is satisfied.

4. Here iire four logioal infei.ence schemes:
prj wailo

(I)

(III).
p q riot q

not p
Which of the given inference schemeiis:
(a) a double denial rulk? (b) modus ponens?
(a) a rule of contraposition? (d) modus tollens?

.. (11) Pnot mot p
not q -mb not p

(IV) p ow* q
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5. Recall that fa*, h) is the set of all linear cOmbinations of.a-i'and' h*.
(a) Prove that if c and dart in fa-*, hl then T'-i- .7 is in tW,-1-3). [Note:

By our agreement, to say that c is in [a, 13) is to say that c is a, . .
linear combination of ,a and b.)

4"-.(b) Prove giat if c is in la, 611 then, for any p, c . p ts in la, b).
6. The diagram at ,the .1.y-it 'de-.

seribes translations a, b, and c
from 0 to the three points, A,
B, and -C, respectivelY Also,
from the diagram, we see that

- A WI and C A = t,
where t 0.

(a) Tell whether (a-, I), c) is linearly dependent orpendent
(b) Pi:ove your answer in ta).

Backgroundl'opic

i'nearly inde- ,

In the exercises on pages 1713-175 you remiewed,systems of two
linear equations:

a a = c)
Gip + hit) = c2

rk.Yoti learned that whether or not such a system hase unique solution-
pair (a, b) depends on whether or nut the number a, b.; a2b1 is differ-
ett from 0. This number, you should recall; is called the determinant
of ((us, b)), (a2, 1)2)) bur, sometimes, the determinant of the system (*)]:

The system () has g unique solution if and only if the deterniinant of
(a) is not 0. [If the determinant of (a) is 0 then (*) either has no solu-
tion or,has infinitely many solutiona.I

Now, let's consider the following problem. Suppose that 4-7, Ci) is
linearly independent find that, for Mven numbers al, b., and. by

a = co + Va
2 and b -C*1)

I
+lb2.

What we wish to know is whether or not Cit,-6, is linearly independent.

Answers for Chap er Test
1.

TC 232,273 ,

(d) Linearly independent.
(e) Let a and b be numberl such that (a 2 + 5_1.a + + 52)b 6.Then,, a (2a + b) + g (a + lb) = 6. Since (a, 5) is linearly inde-.

pendent 2a + b = 0 and a + 2b = 0.. So, a = 0 and b 0.
Hence (-5. 4 + + 11 Z) is linearly independent,

2. Since a is a linear cotnbination of b, 4 , and b + -C.c + d,for some b, c, d. So, a 1 + -b + c -c + #::1 = 4. Since 1 0,
this last result means that CaP,11,-ce,a) Is linearly dependent.

3. Notice that IB - A) + (C - B) + (A - C) '6 and (B. - A, C - B)linearly independent. So, a, b, and c are such that a 3 = b + 2c + 1. In other words, b a 5 and, c a - 4. Hence, for anya, the. triple (a, a - 5, a - 4) satisfies (*). Examples of 'suchtriples are (0, -5, -4), (5,0,1), (4, -1,0), (3, 72,-1).
4.
5.

6.

(a) II; (b) I; (c) IV; (d) III
(a) Suppose that c and a are in [ ]. Then, c =. a c + 12% c2

,

and = a.d + b d , ,for some c c d d So.2. 2 .41 2
C 11.A. =' (acl + bc2)+ (sad." +.bd2) (Jci+ ac11)
+ (b c2 +.../).;d2) a (ei + di") + g (c2 + d2). Hen_Ce +is in [,g,b ], for c + Z. is a linear combin tion of a and b. ,Thus, if c and a are in [a,b ] then + is in

(b) -Suppose.that 5 is in [4,5]. 'hen, = 1..c + Sd, for some
Soi for_any p. c =- 4a c-

= a(cp) + 5(dp). This means th for any d p is in [a, bfo7 C'ep is a linear combination id. a and b.
(a) (5,5,5) is linearly dependent. .

(b) From tile information given, ii = B - A = -S andm t C = - a'. So, (B - A). t = C -7.4, A so that- a c - a. Thus, I. (1 - t) 5 t + c -1 =since -1 # 0, it follows that (5,5,c) is linearly dependent.
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This Background Topic introduces an important application of
second-ofeler determinants to the investigation of linear dependence;.
and indePendence of 2-termed sequences of vectors. In brief, if
(c7,4a) is linearly independent then

(cal + aa ch1 + ab,,,) is linearly indreyendent

a b
0,

a:2 132

This is the second in an infinite sequence of theorems. The first is:
1 (Z.) i's linearly independent.1

[(ca) is linearly independent 4=:, a 0]

We mention this rather trivial theorem in order to point out that it, is
related to the statement that, for (c.) linearly independent, (C) and (-Ca)
determine the same direction if and only if a * 0, More precisely
[still for (C.) linearly independent] (-) and (Ca) determine the Halle
sense if anchonlV if a '', 0 [and determine opposite senses if'and only
if a < In The two-dimensional case treated in these exercises can
be extended and refined along similar lines. Briefly, a linearly inde-
pendent sequence (C., d) determines a bidirection the set of linear
combinations [ c , .a ]. This is related to the common "direction" of a
family of' parallel plane's in E in the same way as a direction say,
[c ] is related to the common direction of a family of parallel lines.
Just as a line can be orientq/in either of two ways by choosing one of
the two senges contained indite directions, so a plane can be oriented
losj Choosing orte of the two senses contained in its bidirection. [These

yAtwo senses correspond wi the two possible senses of rotation
clockwise or count.ercloc wise in the plane.] Now, as we @Ilan
grove later, for (c, a) liicearly independent, (C., a) and (C.a1 + da 2,
c131 + alp) determine thb same hidirection if and only if.,

al 131

a2 b2
* 0

and, in this bidirkction, deterrhine the sarr*.sense if and only if this
determinant is positive.

Returning to More mundane matters, yOur students are likely to
discover by obt.aining corrbct answers by incorrect methods
that.: '

al ae

bl b2

is as good a criterion as 'the one given. Whether they do or
' might take this occasion to point out that

* 0

1 2 1a = a b2 - a2
b b a2 b21 2

That is "ohe can interehange the rows and the columns cif a deter-
minant without changing its value".

a b1

not, you

(
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You may also point out to students that, for any n, it is possible to
define 'nth order determinantS' and apply such to similar independence.
problems for n-termed sequences [and to the solution of systems of n
linear equations.
Answers for Exercises
1. linearly independent 2. linearly independent

5 5 3 3

= -5 ; 5 = -10 *0 = -12 ilk 0
1-1 0-4

linearly dependent
1

= 6 - 6 = 0
6 3

4, linearly independent

0 - 1 =, -1* 0

5. linearly independent 6, linearly independent
0 4

9-1
7. linearly dependent

= 0 36 = -36 * 0

5 -5
= -35 - -35 = 0.

-7

9. linearly dependent
9 9

= 99 - 99 = 0

I.

1

= -1 - 1 = -Z*0
1 ^1

8, linearly independent
-2 2

^2 2

10, linearly dependent
0 61

= 0 - 0 = 0
0 125

a

= .-4 - 4 = 8,1* o

63 '4
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In other words, what we wish to know s whether or not the equation:

= .0

has any solutidn other than (0, 0.), !Explain.) In view of (I), this
amounts to asking whether or not the-equation:

eta,u + bib( *(Ila,a + h,h) 7 0

has any solution other than (0, 0). !Explain.) Since (c, Ais linearly
independent, this amountssiw asking whether-or not the system:

Icy' b,h 0
+ ??,b 0

has a 'solution other than (0. b), Since (0, 0) is !obviously) a solution
of this system, what we wish to know is merely whether or not this
system has a unique solution. What is the answer?

Exereim'es

Assuming that lc, if) is linearly independent, use determinants to
determine ,which of.the given pairs are linearly independent.

Sample. ,it:1 + -140

.So7J4 (Lon-.

Answer.

1 Zi = 4 - 6 -2 027 41
rl nearly independent' o linearly; dependentl

I. (A + (/, A + 1 -I)
3. (a +, 16, C.* + (13)

119, - (7)''

ich (17 -5
5.*

7.

9. e4 + 111, (b + du)

2. (A, A 14)

4. (d,-(7) l i.e.: + ch, ci +. don

6. ((;+ 1, -
8. +

10. (0., c61 + -125)

Chapter Seve'n
Lines in 'S

7.01 Collinear Points

So far, our postulates have had to do, in the main, with translations
and with how translations act on points. In order to get to the moi-,'e
fargiliar nottOlis concerning geometric figures in e' , we need postulates
wh*h link geometric .notions.with those we have been studying. One
such notion is that of a line

In our intuitive consideration of geometry in Chapter 1 it was con-
venient to describe a line as being a Set of points which is the union
of two opposite rays. Now ire wish to define 'line', 'ray', and so on, in
terms of !point' and `translition'. Our earlier description will turniout
to be a theorem...N,will the other rpsults which we reached intuiti/nly
in Chapter 1. This will be an important test cf the ,adequacy of our
definitions. If it turned out that they didn't enable us to reach the
conclusiens which seem intuitively sound, we might suspect that
something was wrong with them.

Some of the exerCises in the preceding chapter have probably given
you a hint as to how we shall define the word line To begin with,
we,shall decicle what -it means, in terms of translations, to say that
three points "line up" or are collinear. Then we can say that a line
is a set of points which'consists of all the points which line up with
any two of its members.

As is often the case, the intuitive line of thought which leads us to
adopt a definition is 'reversed once the definition has been adopted.
This is natural enough, since we wish to be sure that, starting from
the definition, we can -recover the intuitite notions which led us to it.
In the present case we have an intuitive notion of what a line is and
our notion of collinearity is that collinear points are points which
belong to some line. We also have intuitive notions as to how trangla-
tions affect lines. In the following exercises you will review the argu-
ments, based on these intuitions, which suggest how 'A, B, and C are
collinear' can be expresged by means of terms which 'refer tp trans-
lations.

275
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,Exercises

1. Suppose that, as shown in the figure below, P, Q, and R are pointo
which belong to a Inv I.

(a) What can you say about the translations Q P and R P?
About the sequence (Q P, R P)?

(b) Prom the figure, guess nonzero real numbers q and r such that
P)q + (I? P)r = 0.

(c) Is the sequence tl? Q, P Q1 linearly dependent? -

(d) Suppuse that S is any point such that IP, Q, SI is a set of
collinear points. Where must S be, and what can you Nily about

Suppose that 7' is any point such that IP, Q, 7'1 is a set of
noncollinear points. Where must T not be, and what can you
say about (Q - P, 7' - i-')? About the sequence (P T, Q -.T)?

2. Instead of saying that points A, B, and C are collinear we shall
sometimes say ehat (A, B, CI is' a set of collinear points. More
often we shall say that (.4, B, C} is a collinear set or merely that
'IA, R, C} is collinear.
(a) C = R, can IA, B, C} be noneollinear?
(b) Is there a noneolliriear set which consists of just two points?

Of a single point?
The preceding exercises suggest that'the follo.wing definition agrees

with our intuitive notions concerning the relationship between (AA-
1ine4rity of points and linear dependence of translations:

Definition 7-1 {A, B , C} iS collinear

(B A

4..40

A),is linearly dependent

A C

A

C A

\ Fig. 7-1

N
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Answers for Exercises
1. (a) Each is ainultiple of the qther:; It is linearly dependent.

(b) Choose q = 7 and r -3, [Any choice of q and r such that
q/r -7/3 is correct.]

(c) Yes. [There are various ways to establish this. ,For one
thing, the linear dependence of (R Q, P - Q) follpws from
that of (Q P, R P) by Theorem 6-14. Students should be
reminded, if necessary, of this theobrem which will be referred
to again on pa'ge 277. On the other hand, the linear dependence
of (R -..Q, P - 0) can be 'established "by insRection" as was
that of (Q - P. R P); (R - Q)3 + (P 0)4 = .a and 3 0, ]

(d) S must be a point ofI, and (C) P, S - P) is linearly
dependent.
T must not be a point of i, and (Q .P, T P) is linearly
independent. (P T, Q - T) is linearly independent. [The.
1 tter follows, by Theorem 6-14, from the linear independence
o (Q - P. T P).].

2. (a) N [For, then, any line containing A and 13, also contains A,
B, and C.]

(b) No No.. [For any two points,
tail ed in some line.]

The con ection between collinearity and linear dependence which is
explored in xercise 1, and the explanations given for the answers for
Exercise 2, are based on an intuitive notion of what a line is and a notion
Df collinearity according t&which given points.are collinear if and, only
if all are contained in one line. Ai indicated on page 275, we now take
:he intuitive connection betwe9 collinearity and linear dependence as
:he basis 'for a formal definition of the word 'collinear' in cOntexts of
he form '{A, B, C} is collinear'. The word 'line' is defined on page
79. In Exercises 3 and 4 on page 280 we investigate the questidn as

to whether, under these definitions, it can be proved that {A, B, C is
collinear if and only if it is a subset of some line. The fact that this
can be proved shows.that our definitions are not inappropriate.

Definition 7-1 defines 'collinear', in a rather special context-. It
could be extended by agreeing that an arbitrary set of .points is collViear
if and only if each of its 3-point subsets is collinear. However, once
'line' has been defined we shall revert to the ordinary use of 'collinear'

ording to which a set is collinear if and only if it.is a subset of a,

(e)

and any single point, are con-

w As we have pointed out in the past, it is only by choice that we call
. this a definition rather than a pbstulate. Inieneral, we choose to fist

as definitions those postulates which introduce new terms into our
system.. Of,course, since a defmition is a postulate, it naturally plays

, the sameltind of role-in proving theorems as does any Postulate.

633 ,
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There is one point which nee'dS to he noted-before-adopting a defini-
.

tion like Definition 7-.1,, As you know,

{A, 43, CI =1B, A,B1
A , (13,"1C} = B, 41.

So adopting Definition 7-1 would get ifs into trouble if it were not the
'case thatl for .0ample,

4B .7 A, C A )'is linearly dOpendent
4mOdo

(C B, A B) is.linearly dependent

- 'A') is linearly dependent
-

A,,B - Ai) is linearly dependent.
,

(Explatn-why Pefinitibn,77 1 would cause trouble if (1).or (2) were not
true. Xre ) and (2) trUe?Ance we have already proved Theo-
rem 6-1 Theorem 6,-6, we can te sure,of (1). and (2). But, there
are other sitnilaristat4ments whiehlwe need to be sure of. Do we need
other theorems aS a chtx:k On these statements?

and ,

TC 277 (1)

By Def in on 7-1 we have bOth:
{A, n, C) is collinear <==> (B A, C A) is linearly dependent

and:
1.13, C, Al.is collinear 4:=4' (C - B, A - B) is linearly dependent

So, since {A,. = 1B, C, A) it follows from Definition 7-1 that
(B A, C A) is linearly dependent

(1) 9

(C B, A - B) is linearly dependent.
4

5 there were, a counter-example to this:generalization thep the adoption
of Definition 7-1 would make our theory contradictory. ,4By the ,rule of
contradiction(see page 156) each sentencetwpuld then be a theorem.
Fortun'ately, (1) is already a theorem Theorem 6-14 anokso are
the other theorems which follow in a similar mann'er froin DeMition
7-1. Hence, at this stage of oiir development, Definition 7-1 is not
"creative" and may safely be adopted.

Exercise

1. 1)r.w a picture shOwing three Collinear L, and M.
(a) ,What can y,ou say abouf the sequence (L'' 'K,A1 If)?
(b) 'Name five other 2-ternied seqUence's of nond translations

about \vhich you can say the same thing.
" (e) Add to your picturef two arrows to represerit L K and M - K

and estimate values of 'a' and 'If such that (L .1C)a +.kM kV)
O.

2. DraW a piCture slioWing two points -R and S.
(a) Mark a point P such that {R, 5, P} is mllinear and a point

Q P stich tKat ,f5N} is' collinear. Is it the case that
iP, Q, RI .iollinear

03) _According to' efinition 7-1,, what, must you show in oraer to
establish that {P, Q, g) is collinear? If.You were'g4ing to show

. this, wlidt:does pail (a) give you to work with? .'

(e) Since {k, 5, .1" is collinear youAnow, by, definitionNthat
. (

ie.
, ,. (S R, p , R) is linearly dependent. Since R '34 S you know.

, 10 that ,S -..li .# 0: So, -by a 'previous t4eorem. yDu, know that
s, .. ,-;P - R E. EState'the theorem.] .r..

prOvesthat Q - R e [S - RI. , (

You now have shown that theie are numbers-say, p...and'y
-sugh, that( P -...R -,' (S -, RV and q - R = (S - B..

c, ., -
Ake I .

c. ., . , .

.

As to what theorems are needed to justify the adoption of Definition
7-1, note that tl-?e. instance 1) of Theorem 6.-14 "takes care of" the
fact that 1A, B, C) = (B, C,\,A) and that the instance of (1) obtained
by substituting 'B' for 'A', 'C' for ',B', and 'A' for ta,ices care of
the fact that 1B, C, A} 1C, A, B). The instance (Z) of Theorem
6-6 takes care of the fact that 1A, B, C) {A, C, B) and two similar
instances take care of the facts that {13, C, A) = (B, A, C) and
(C, A. B) = 1C, B, A). The preceding, together with a 1-'transitivity
argument", takes care of all cases. So, Theorems 6-6 and 6-14 are
sufficient to the purpose. .

The neoessity for justifying a definition like Definition 7-1 may be
brought out by considering the ad hoc "definition":

''(*) {A, C} is coterminal (lic> A = C B
'From (*) and its instance:

1A, C, B). is coterminal A = B
together with '{A, B, C) {A, C, Bh we can infer,:

fi* A "=,C # 13 4=4* A -13 * C
and, substituting 'A' for 'C', arrive at the cotieliision:

A B

.[To do so, note that 'nbt (A B # A)' and 'A = N are valid seri-
'tences..) Obviously, in any nontrivial theory, (*) is $p creative as to

'be almost totally destructive! e

c.
f)

Finally, note that, instead of .Definition i7-1,,we iiiight hihvc adopted
a defimition of collinearity for 3-termed seciOnces of points:

(A, B, C) is', col,linear <=> (B - A/ C ., A) is linearly dependent
.. In this case nqjustification like that give..nlox Definition 7-1 would be

required. However, air a matter of convenience we wou1d wish to make
sure' that, for example!'

-
..IA, B, C) is collinear 4:=> (B, C, A) is collinear.

is a theorem...And, in vio6 of 0'4,1, this amounti to proving (1).

Is



a

TC 277 (2)

Answe rs for Exercises .

1 (a) Linearly depende.nt.
(h) (1. IY1,K - M), (M - 1., K - ( M - K, E K),

(K L. .M - I.), and (K M, I. M). [For each of the pairs
listed the re a re others obtainable by ieplacing terms by
their opposites. Othe'rs, which students are unlikely to sug-
gest., may be obtained by replacing each term of a listed
sequence by a non-0. line*r k:ornbina/ion of its te rms. For,
as is easy to show, it (c, (!) is linearly dependent then so is
(cal. f., J.1-> ).

(c) [Here is a spot where various stud'ents can he asked to demon--
strate their.own solutions to the class.. On the other hand, you
may Wish to save yourself paper-work by giving students work
s he, et s on whic h the points in question are marked. If so, note
th:,it there :ire two "essentially clifferent" cases that in
which K is%betweenL and M (ab 0) and that in which it is
not (ab 0).

(a) Yes. [This answer should seem iiiituitively correct. The
remaining parts of this exerciv show how to justify it on the
basis of Definition 7-1, The result to be proved may be
thought of as a start toward a proof that the line through R
and S is determined fry Any fwo of its.points... Due.-to the defi-
nition cif .line' which we shall adoPt the arigurnpt will not be
used in this way, but the techniques illustrated in the solutions
will be of value.;

(b) It must be established that .(Q P, K P) is linearly depend-
ent. From part (a), we'know that (S R, R) is Yinearly.
dependent, tlit Q 111, .anci that (S R, Q - II) is linearly
dependent.

.t"

((;) [S R. The theorerii is: If (a., 1;)' is linearly.dependent and
d then b f [ ]. [This Theorem 6-13 will be of s

much use, and it may be well to review its proof: Assuming
(a.1..;)ty be linearly deken,de;nt there are numbers say, a
and b such that aa t;1,) and a and b are not both 0.
'If b 0 then aa = d tad, au'e that a 0 6, a , 0. So,
b A 0 arid b ala/b). Hence, 3i b ax and, by definition,

E [a I. I

(d) Sihce {11, S, C)). is c011inear and R S it follows fjiat
(S R. -II) is linearly dependent and S -R 0 6. So, as in
pa.rt (c), Q 'R E RJ1 [Students should realizo that the
restilts othtained in (c) arid (d) art, instances of the oNy if-
part of a potentiaHy useful lemMa:

{A, B.' C) is collinear 4=4' A E [B A] [A B]

The if-part is easily established. I

Answers for Exercises [cont.]

(e)

(f

TC 278

C.) P R),L(q p) and R P (S R)=2
By (e ), (Q P) p + ( R P) (q p) -CC. Since Q 0 P,
Q P d and, ,again by (e), q p 0 0. So, by definition,
(Q P. R - P) is.linearly dependent. [Students may find it
more natural to solve the first equation in (e) for S R'
and substitute into the .second. This is a perfectly satisfactory
way of finding numbers r apd s such that (q p)r + ,ps 0,
but it is much more elegant to note that p and q p are such
numbers. The realization of this i.e. recognition that
:far 4- be 0' has a solution given by s) (b, a)' is
T'lle basis for numerous short cuts. .tudents may recall
Exercise 7(b) on page 221 according to which

-
( I; ] and c [a- 1) (b, c) is linearly dependent.

From this and the results in part (e) it follows at once that
(Q P, R - P) is linearly dependent.]

3. ,(z-q Infinitely many.; Infinitely many.; [Exactly] one.
(b) By definition, {G, H, E}'is collinear if and only 4f (II -.G,

H - Cs) is linearly dependent. Since (H G, H - G) is
linearly dependent by Theorem 6-3(b), it folloWs that

H, HI' is collinear. But, :(G, 1-I,' H}. So,
{G, H) is collinear.

4. (a) Collinear. (b) S is point of. 1.

Condition (ii) is, intuitively, satisfied by a set I if and only if
is a subset of some line. Intuitively,' a se I satisfies condition(iii) if
and only if it conta ns each ling which contains two of its points. For
example, any line,
points which satisfy (iii). So are 0 and any set whith consists of a
single point. The purpose of (i) is to get rid of such de nera ts.
By definition, a set is degenerate if and only if it has fe r an two

members.1. It follows that a set 1 which satisfies (i), (ii), d (iii) is
a subset of a line and, also, contains a line. §ince, intuitively, no
line contains another line, it follows that a set which satisfies (i)-(iii)

,is a line. This' suggests Definition 7-2. Note that Definition 7-2
might be reformulat.ed:

ny plane, and 8 itself are examples of sets of

is a line

(a) I is a subset ot e which contains at lst two points, and
(b) V V [({X, 17} C 1 and X # Y)4:= I = zr {X, Y, Z}X Y

-is collinear)/

a

* * *
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Complete:

Q P LS 1?) and R - P (S - 1?)

th Use yourlesult from part ie) and the fact that Q P to prove
((t) - P.1? P is linearly dependent.

3. Let fi and If be two points.
Howmanv lines contain G? Contain H?Contain both() and H?

(b) FrOve that and fir are collinear. !Use Definition 7,-1,
H, H}}

4. .Suppose that 1 is a line, and aria 1 contains two points P and Q.
1,11 Given that R is ,a point of line 1, what can be said about

{13, QRr?
(b) Given that S is a point such that iPQ, S s collinear, what

can be said about S and the line 1?

7.02 Lines

Now that we have a .formalized notion of collinear points., weare in
a position to make use of this notion, together with our intuitive ideas
about what lines. are (or, ought to be), in formdating 4 definition of
the term line. .

In order to agree with our intuitive notions, we want to be sure that,
among other things, any line I is such that

I 1t4 a subWet of and / contains at least two points.

Certainly, this condition ti ) is not enough to pin down exactly what we
mean by brie, for wé.expect a line to contain many more than two
points. And, fUrthermore, you probably can think. of many sets of more. 4
than two points that aren't anything like what you think of as a line.

The results in the previous set of exercises suggest that the ,notion
of collinear points can be used to help us define the term. line. One
way to use this notion is as follows: v.

(ii) Given that P,Q, and R arc poiRts Of I,
then P, Q, and R are collinear.

We saw that (i) wasn't enough tit; fully describe what is generally
t4ouglA of as a 'line. So, a natural question to ask at this stage:is:

s Are properties (i) and (ii) enough to fully
describe what we think of as a line?

Describe, and draw pictures of, at least'thiee seta of points each of
,whicb satisfies the conditio6 (i) and (ft) but which are not what pu
consicier to be lines.

6
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There are two basic theorems about lines:
(41) Artr two points are contained in at least. one line.
(2) Any two points are cont'ained in at most one line.

The 4econd Of these 'follows readily frorn'befinitidn 7-2. For, if 1 is
a line which contains two given points A arid B it,follows, using part
(h)'of the definition, that / = {Z: {A, B, Z} is collinear). [Thrs
restxlt is established in a slightly different way in Exercise 1 of Part
B on page 280.1 In view of this, proving (1) amounts to showing that,
for A # B, {Z: .{A, B, 7} is collinear) is a line which contains'A
and B. The proof, in section 7.03, of Theorem 7-1 amounts to a
proof of this. The proof of (1) is "more complicated than the proof of
(2) because Definition 7-2 requires a good deal of a ,set if it is to be
conside red a line .

One can give an alternati

(3)
3 3 oc YX Y

e definition
1 is a line

<==>

and I {Z: {X,

which requires less:

Y, Z} is collinear))
If we were to adopt this definition, it would be easy to prove (1). For,
accordirtg to (3), for A # B, '{Z; {A, B, Z) is collinear) is a line,
and it is easy to .show that this line contains A and B. With (3) as
definition, however, the proof of (2) becomes complicated.

Whetitier one chooAes Definition 7-2 or (3) as definition for 'line',
essential y the same complications occur , either in the proof of (1)
or in the proof of (2):

For completeness [and to justify the preceding remark) we shall
now sketch a derivation of (2) from (3). Precisely, we shall show that
if I is a 11n4, according to definition (34, which contains two given
points P and Q, then / = {Z: {P, Q. .} is collinear).

Suppose thal I is such a line, By (3) there are'two points
R aild S such that I {Z: {R, S. Z} is collinea). sirice
and Q belong to I, 1)oth {R, S, P) and {R., S, Q) are collinear. It
follows, as in Eisercise 2 On pag.st 277, that {P. Q. 11} is collinear
and, similarly, that {P, Q, SI ts collinear. More conveniently [see
the remark concerning the,solution fo'r Exereise 2(d)j,

(*) R P E [Q P] and S l'sP E - P].
Since S = (S P) (R P) it follows thatfS R E [0 - ] and, so,
that [S..- .R] c. [Q pl. Suppose, now, that {R, S, T) is collinear
that is, th'at T E [5 Rj. We ;shall show that {P, 0, 'I') is also
collinear. To do so, note 'that T - P = (R + (T R). SinCe, -by
(*), R - Pe lq - P] and, byssumption, T RE[S - R] c [0 - P] it
follows that T P e[Q P] and, so, {P,, 0, T1 is collinear, Hence,
if {R, S T} is collinear then {P, 0, TI is collinear. The converse
follows by a similae argurnent. [Since., by assumption, {R, S, P and
{R, S. 01 are collinear it follows that

(44) R [S - R] and Q R [S - A].
01`..

Proceeding from here just as we-did from (*) leadi to the result kh t
if {P. Q, T) is collinear then.io is {R, 'S, 1}.3

It has been shown that, if P and Q 'are two points which belong to
{Z; {R, S. Z) it collinear) themithis latter set is {Z: {P, o, Z),4111
collinear}. Consequently;,if 1 is a line according to definition (3)
which contains the two points P. and Q:then 1 = {Zt, Q, Z) is
,collinear). - There cannot, then, be two such linet.
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Here is 4pother insight into the relationSh p between collinearity
and being a line:

(in) Given that P and Q are two points of and that
[P, Q, Ris collinear, then R is a point of I.

Recalling the direct link between collinear points and linearly de-
pendent translations and between linearly dependent translations
and multiples of ,a translation should suggest .at least one way to
determine a point (in fact, many points) R such that R and ttVo, given
points f? and Q of I are collinear. [ The diagram below illustrates this.]

P (0

Fig. 7-2

This discuss on suggests-the following' definition:

Definition 7-2 1 is a line if and only if
(a) 1 is a sUbset of which contains at leas

and

voy, { , Y} C - f Z 1 4'. ik, Y, Z1 is collinear

wo points,

AI B
is a point of I

A
C.71(A., B, Cwfliner

Fig. 7-3

Notice that (a) of this. definition says what 6) says, and that part (b)
of this definition says what (ii) and (iii) say,. lin words, part (b) says:
For each two pointa of I, each third point belongs to 1 if and only if it
'and the two given points are collinear.]

From now on, we shall use '1','rn', and 'n', with or without subscripts,
as vari4bles whose doMain is the set of lines of e. [Since, otherwise, we
should soon run out of letters, we shall also use '1', 'm', and 'n'as
indices on quantifiers, Read `Vi' as 'for each line I', etc.]

7C 278,279 (2)

Looked at from another point of view, it is not difficult to see that
the preceding argument shows that, for R S. {Z: {R, S, 7) is
collinear) satisfies condition (b) of Definition 7-2. Since it is easily
seen that the set in question contains the two points R and S, it follows
that it is a line according to Definition 7-2, Consequently, any set
which is. a line according to (3) is a line according to Definition 7-2,
The converse being obvious, (3) and Definition 7-2 are equally satis-
factory as definitions of 'line'.

From still a third pOint of view, the argument in question shows
that, for R S, RS [see Definition 7-3 on page 281] is a line. That
this is the case is also shown in the proof, in section 7,03, of
Theorem 7-1, The argument given there might be replaced by the
one presented above [with 'R' and 5 replaced by 'A' and !B'].
Actually, the tWo arguments are essentially one.

TC 280 (1)

To be sure that students understand the application of Definition
7-1-, we recommend Part A as in-class exercises.
Answe\.s for Part A

r, i1. l -.Et).. , equivalent to Definition 7-2 because, by D'efinition 7-1,it
{A, B, C) is collinear if and only if (B A. C A) is linearly
dependent. [le,follows from this and various rules of logic that
the following are pairs of equivalent sentences:

iC E / 4=:, {A, B, C} is collinear
C E / c=::.(B - A, C - A) is linearly dependent

Iv [7, E / <==>{A, B. 2,}' is collinear]
Z 4 to

VZ
[Z. E t 4==> (B A, Z - A) is linearly dependent]

{({A,B} C,/ and A B) Z..Vz [ E./ go=z-{A, B, Z.) is collinear]
({A,B} c / and A B)=>VZ [Z 1,(B A, Z A) is linearly dependent]

{[Sentence (b) of Definition 7-2]
[Senitence (b) of (*)]

For "logic buffs" [only] it is noteworthy that the equivalence of
the sentences of the first pair follows, by the replacement rule for
biconditional sentences, from Definition 7-1 and that the equiva-
lence of Definition 7-2, and (*) followa, by a second application_of
the same rule, from the equixalence of the sentences of the fourth
pair. [In all, there are threefapplications of the replacement rule
and one application of a rule for universal quantifiers.] The process
cannot be reduced to the mere replacement of '{X, Y, Z) is
collinear' by 1Y, - X, Z - X) is linearly dependent' becaus!e these
are not sentences and, so, not directly subject to the replacement
rulet]

. Yes.; No. [Both answers'c_a_a be justified formally., For the
latter, let P ,.. K + (L - K)2 and Q = K + (L - K)3. Since, by
hypothesis., K 0 L, it follows that P 0 SE) and that neither of them
is either I., or K. Certainly at least one of P and Q is not M.

t. Finally, by definition, both {K, L, P) and {K, L, 0) are collinear.
Fe'
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Exercises

Part A,

Part B

I. Notice that we might just as well have defined a line / as,follows:
/ is a line if and only if (a) I is a subset of ra which contains at

; least two points, and ib) I( {X, Y C, / and X Y) V,
. IZ / Y - X. Z X) is linearly dependent H

Explain why !*, is equivalent to Definition 7 -2.
ConSider a set {K, L, M} where 1, K, M K, is a linearly de-

. .
pendent sequence of distinct, non-0, translations. Is it the case that,
for any point C of this set, {K, L,C} is collinear? Is it the case that,
for any.point C such that {K, L, is collinear, C c (K, L, Mr

3. Now that we have defined both 'line and 'collinear' it is only t,-,om-
mon decency to check to see whether, according to these defini-
tions, if A. B, C is a subset of a line / then {A, 13,C} is collinear,
Do this. {flint: Consider two cases, according as A - 13 or A :?` 13.1

4. We should also check to see that if { A, B,C} iseollinear then there
is a line / such that {A, 13, C I. In case A B this is easy to do
Once we have proved:

A B ji {A, 13} C. I

We shall prove this theorem in the negt section.
(a) Explain how this theorem would enable us to deal with the

cas.e Ait B. With the case A C.
(b) Oddly' enough, our posfulates do not say enough to make it

possible to prove, now, that, given any point., there is a line
which writains it. Try to guess why.

2.

I. Suppose that A B and. that both A and 13 do belong t.6 some line
-say, 1. 1 From our work. in Chapter 1 we know, intuitively, that
there is exactly one line which contains both A and B; but, our
problem now is whether this follows from our definition of 'line'
and our other postulates. r
(a) prom our definitlon of we know that

el if and Only if

(b) From our definition of 'colh ear' we know that

{A, B,C} is collinear if 4nci\on1y if

le) We also know that

lB A, C A) islinearly depen&nt if
C - A elB - Al. (Explain.]

( Since.B A ,d= 0+[Why?[ 1ve also know that

C - A t 113 - Al if [By what theoreng1
,/
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Suppose that {A, 13, C)";....Q. For '6A B,' (13 A. C A) is
(d, C A) and, so is lineatly dependent. For A * 13, sinee
(A, 13 C: 1 and' C E 1 it fo11ow;1 by (*) that (B A, C,- A) is
linearly dependent. Hence, in either case, {A, B, C) is, by
Definitign 7 -1 , collinear. 'Hence, if {A,, B, C} c' I their
{A, B, C,), is collintar.. .

4. (../ Suppose that A B. It follows froriri,he assumed theorern
that there is a line say I such that {A, B) C E.
Assuming that {A, B, C} is collinear it follows from
Definition 7 2 that C E 1, also. fleice, for A * R, if
{A, B, C) is collinear then 3f {A, 11, C) C I. [Substituting'C' for 'B' in the preceding one obtains the same conclusion
under the restriction 'A * C'. 1 The theorem is of no help in
the remaining case, in Which A = B and, A

(b) Using the theorem vouched for in part (a) we could-prove
'31 A E I if we could prove "3y A * Y'. Our probl\ern seems,
then, to be that of proving that, given,any ,point A, there is
another point. This would be solved if we could prove'that,
contains at least two points. [Then, one of them at leaSt
would be differ..ent from, the given point.] A check of our'\

'Answers for Part A [cont.]
postulates suggests,no way of proving that there are any
points at all let alone(that there are at least twol Lf, as
seems consistent with our postulates, there were exactly one
point then there 'uduld, by Definition 7-Z(a), be no lines.
This question is taken up again in Exercise 3 on page 287.

As pointed out in the commentary on that exercise, we can at
this stage prove that e 0 but not that e is nondegenerate.
In fact, it is almost obv.ious that,13.11 otfr,postulates are satis-
fied if F.. contains a single point and 7 contains the, single
translation I

.Answers for Part B
1. (a) {A, B, C) is collineaf

(b) (B A, C A) is linearly dependent
---(c) 'In general, if c E [b ] then, by definition, there is a number

say, c .such that --e* It follows that c c . -1
ans1.1 since -1 * O,.,that (1;,C*) is linearly dependent. FienC.e .if c E -[1:ij then is linearly dependent. In particular,
(B A, C A)IS linearly dependent if C A E [B Al.

(d) B because A * B. N So, C A E [B - A] if
- A, C - A) is lineaily dependent. [Theorem 6-14]
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By definition,

A * (13 Al if and only if

if ) From ial through le) it. follows that

A +- I3 7 A ).1. [Explain.]

2. In Exercise 1 yohave seen that. if A B, and if s 4 line which
contains.A and B, then

/ { X; 3, X A + 1B A41.

(a). Does it follow that, given two points, there is a line which
contains them?

(b) Does it follow, that there are not two lines, each of which con-
tains two given points?

J
Although we have ript yet shown that the set described inExercise 2

of P is a line, we are optimistic enough to adopt a definition:

Definition 7-3 AB = {X: g, X - A + (B A)x}

I Read ..Ag' as 'double arrow A B' .1 Notice that Definition 7-3 is not re-
stricted to the caAe A B. [Restricted definitions are a nuisance, and
we shall avoid them unless We have very good reasons not to.I Our
intuitions tell us that, for A B, Ad is a line which Contains both A
nd B. We shall check on this shortly; also, in the next section, we

shall see that we earl. prove a theorem to this effect. It is not really
important what *A1 is when A --,- B. But, to get the question out of the
way, what is 'AA? Is it a lirie?
1. (a) Draw a rfictureto show two points P and Q and the translation

Q P.
(a) In your pictur , locate the points C, D, E, F, G, H, I and t1 such

that

E = P +.(Q P)1, F = P + (Q - P)2,
(; P - P13, H = P + (Q P)
1 P + (Q P) -1, J = P + (Q - P) -2.

(e) Why is each point described in part (b) a point in P-4?
(d) Draw a line 1 thrOugh the points P and Q. Do you expect that

each point of kit is also a point of 1? Do you expect that each
point of I is also a point of /50?

2. Prove each of the following.
(a) IA, C 414 (13) A = B {A)
(e) A-11 line A B [Hint: Can you use (b)?)
(d) C C [B - A J

Z.,- (a)
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3x C A (B A)x
From (a) and (4),

C E I 4==v, (B A, C - A) is linearly dependent
and, from (c) and (d),

(B A, C A) is linearly dependent g:,,C - A E [B - A].
So, from these results and (e),

C E 1 e==> 3x c - A = (B A)x.

liquivalently [by Theorem 2-1],
C E i 4=1* x C A 3 03 A)x.

.o. [That there is such a line remains to be proved. See

hat given two points A and B, there is a line containing them .

nd it, in fact, is the line consisting Orihe images of A under
11 multiples of B A. Don't stifle this conviction. ]

heorem 7-1, However, intuitively, your students may argue

I(b) s. For if 11 and i2 are lines containing the two points A
nd 13, then I = {X: ax x = A+ (B A)x} = 12'i.

,Note that Definition 7-3 is equivalent to:
A .= {X: X - A E [B A]) [see Exercise 2(d) of Part C]

and that in case A B [but only in this case]
I

AB = {X: {A, \B, X} is collinear}.
[The alternative to Definition 7-2 which is discussed in the commen-
tary...far page 278 is equivalent to ' I is a line 1===. av 31, (X 0.Land
I = XY)'. ] In view of Theouln 7-1, it is appropriate to read 'AB' as
'line AB' in case A * B. AA is {A} and, of course, is not a line.
Answers for Part C
Answer to.questionS: AA is the singleton {A). AA is not a line, for
it doesn't contain tWo points.
1. (a), (b) 0- P

J I H C D E G

(c) Let S be any of the points described in (b). Then, from the
data_ven in Oak it follows that ax S = P + (Q P)x, 59,
S E

(d) Yes.; Yes.

ti
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1.03,The Line C ining Two Given Points

From Part B of the preceding exercises we know that there is at,'
most one line containing two given points. Also, if there is such a liner,
we know what it is. In fact, we can go a slep further and make a shrewd

guess
%is;?,

Theorem 7=1 For A B,
:4iti is the line'rOlich contains A and B.

This theorem is a short way of ,saying that, for A B,

( 1) ;114 is a line and {A, 11} C *kg;
12) AA, B1 C / / = ;Ali, for any line /.

Since you have already proved (2) and the second part of (1), all that
remains to be proved is:,

( ) A # *Ali is a line .

7

To prove (*), the natural procedure is to assume that A B andshow
that, under this assumption, AR satisfies our definition of 'line'. To do
this we must show that

t a) Ail is a subset of ek which contains at least two points, 'and,
(,b) [( {X. Y'f' C AB

.
and X 17)

0 V EZ E X, Z X) is linearly dependent]i.
As to (a), AB is certainly a subset of er, and you have already proyed a
theorem which, under our assumption about A and B, implies that
`XII contains at least two points. lEx ain.] So, all that we need to
consider is (b).

We can establish lb) if, \assum at

(*)

we can show that

{P. Q} ç4JandP Q,

Vz [Z E .A-14 (Q P. Z P) is linearly dependent].

iExplain.I Finally, to show thiS, it will be 'sufficient to show that

and

(Q P, C P) is linearly dependent --0 C

C XII (Q P, C 01 is lineately"aependent.

(a)

IC 281 (2)

Since A = A + (B - A)0 and B A + (B - A)1 it follows tlat
3 A = A + (B - A)x and ax B = A + (B - Akc_. So, A AB
and B E By definit4on, then, {A, B}

(b) Suppose that A = B. Then tig = AA = {X: 3. X A + (A- A)x}.
ce A A L Ua 3, and 4a, + = A it follows:that

{X: X = A) {A).
(c) By Definition 7-2, if AB is a line then AB cantains at leAst

two points and, so, is not A). By (b), if A is not {A}
then A # B. Hence, if A is a line then A # B.

(d) By Definition 7-3,
C E AB .:=:;) 3x C = A,+ - A)x,

Since, by Theorem 2-1,
C A+(B- )c <==;) C - A ( B

it follows that
3x C = A + (B - A)x 4=:, 3x C A = (B - A)x.

By definition,

}lence, C E.4AB 4=0 C - A E [B A].
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The probf of (2) is accomplished in solving Exercise 1 of Part B
on page 280 at least, all that remains is to transform the result, ap
stated in Exercise 2, by applying Definition 7-3. [The phrase 'for any
line t which follows (2) is redundant in view of the convention adopted
at the foot of page 279. ] The second part of (1) it; Exercise 2(a) of
Part C.

By definition, AB is a set of points [ AB = {X: ...]. ince
{A, B) C 173 it follows that, for A # B, tr3 contains at least two
points. This takes care of Definition 7-2(a).

First explanation: Use the deduction rule to discharge (*); apply
introduction rule for 'V' to the resulting conditional sentence to, infer
(b).

Second4explanation: From (i) and (ii) we C.an infer:
C E AB ir (Q P. C PUB linearly depezderit

and from this we can infer:
Vz [z E AB <=> (Q P. Z P) is linearly dependent]

Doing so will not preclude the use of the deduction rule mentioned pre-
viouSly because 'C does not occur in.i&).
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. I we are to use theasSurnption r'') in e stablishing (4) arid (ii), we
need to Iw,sure what it means. To ay trvat {P, Q} CAB means; Of,
cou .ely thal P e*A11 ktild Q ;kg and so, by Definitibn 7-3, that,
.,

So, 'we carcreplace by the assumption that

P A + ( B A ),v arid 3,. Q =-744. + (B

P Q A + (13 A)C1 and / Q.

Since, in I 'i and iii. wt.,:bary interested inQ P, we note that, by,("),,

Q ( B p) and q p

R

lExplain.1 We are now. ready to tackle (i),and Before reading
further, try tO derive' «,i). It rwy bp a help to recall that, as you have
pried ewlier, C A1B C A e113 A I.,.Then, ,try to,derive

Derivation ( Suppose that (Q ;- 1', ( P) is linearly dependent.
, Since P^#, Q it follOsys4h4at C P E.4Q - [Why?) Since Q'- P

[13 Al (Why?1' dfollows that IQ C lB - Al. So; C - PE IB AJ.

SinCe AerB - fWhy?[ and C A = (1-4 A) + (C it fol.
ipws that'c' A [13 - 4 11Why?l. s0:c E XII: Hence,

(V. S4Ppose that C c *AK By definition, there is a num-
. he r say, e such that cs.= A 4 (B, A)c..Since = A + (13 .-A)p it

followS,that C P (B A)(1. - so) Since Q - P = (B - AMq p.) it
'follows that

It*

4

tg Piip +.(ol Pl(ti -,p) = O [Explain.]

0 it follows that (Q P. C 11) is linearly dependent.
b

' Since q p
Hence, tii).

.ifroof hi. It follows from(i) and (iiAthat, for any c,

9 7
A-4? ( 9 C P) is linearly depepdent.

,

geneeldisi4arginy th,e assumption (.`
. * ,
if t: = A' +.113 -- A)p, Q ..--: A + (B 11)4, and P. 0,

. . .

= * then C e 'AB .--1; (Q - P, C' t P) is linearly dependent.
Q.1
, Cdnsequentlya

if3; P% A. 4. (13 A)x,'It Q = A + (B x,' and .13L- Q,
then vz. [h elliAil....*, (Q `7,- .P, Z - P)41), line lys dependentr.,

`

-..Thy? 'Whjr? s sprinkled through the.derivation of i(i), are easily
swered. For the. first, 'Theorem '6-14'; for the second,

f

g'- P'..z; (I4'- A)(c; - p)"; for the third,,' P .A (B -A)p, by (:-Ic.::: )'-,
r the Ahird, '[13,-', A I. is' A vector space. [Part A ,on page 1921 and,

so7 is olosed with' respect to addition.' -.

. Theexplanation asked for in the de.rivation of ,(ii)'1Dpil& down to th4.
fat that . . '.

(q - p)(p - c)°:1- (c.--,p)(q - P) = 0 .
,

[and (B A)0 = (. This.it a third illustration of the trick previously
.

exemphtied in the solution of Exercise 2(f) on page ,-478.'and of F..xercise
7(b) on page, 221 , We emphasize this trick'beeause it is a handy One
and seems not, readily m-astered. ,, s

. ,
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It should perhaps be pointed out that, while the assumption that'
Q is used in both'deriv'ations, t:his a'ssumption is essential only in

the czoe of (1). Its use sin the guise 'q p in the derivation
of (i) merely simplifies the derriVation.

Be sure that your studentfi Understand the transition from:
3x P-2,. A + A)x and a = A +113 A)x

to the sentence:
P -14 (B A)p and. Q A + (B - A)q and P Q.

The use of 'x' as an index in both existential generalizations in no
way implies any connection between tIie 'values of the iferresponding
variables, This is seen more clearly by our use of rand 'q' in the
second'sentence. r

, The 'Proof of (b )' merely reiterates the explanationth asked for on
page 282 and already given in the,correspOnding coiinnentary. The
'Proof of Theorem 71' reiterates remarks previously made on page
282. Sin a c'ery reasonable sense, the prdof of Theerem 7-1 is com-
pleted at the foot of page 283, This gives oceasion for rpeating and
extending earlier remarks we have made on the function of proof.

41) The purpose of studying formal rules of logic and formal'
organizations for proofs is to teali one to dispense with
formality while maintaining logical coherenee.

, (2) There are many ways of giving aslogically coherent argumen't.
One is illustrated on page,s. 282 and' 283.. This amounts to .
showing that'you could t.each the, debired Conclusion if you'
could establish certain -Osults, ,and.then'going on to establish
these results. RecapitUlation, iivon page 284, is unnecessary,

-conStrtning,i: ,and.i*en berint.
(3) Insistence on'formal proOfs whenever proofs are asked for ,

-one of the, better ways to kill studerlt interest in the gontent of
the course. Be happy and show it when students succeed
in exposing the maiii lines of an argument in a short paragraph,
One painles-s way to check:on the ability to fill in details is to ask
one stUdent tu :present hieargumnt and to ask other studento
questions like 'How' do yotuppculFe he knew that?'.te

4
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Hetice, if P '47413., Q.* AB', and p Q,

then V1 [Z t

Consequently,

VrvV, I(] X, yi \;-1-13' and X ,e Y)

P, Z -.J..41 is linearly dependent].

'"1"' v, ( Z ;4.1i (y X, X) is lihearly dependent)].

Proof of Theorem 7 -1. Sinee we have established (a)"and (ID) uncles
the assumption that A. B, and since {A, B} ç AB, it follows that, for
A B

AB. is a line which coniains-A and B.

Theorem 7 1 follows from this and the fact that, for A B,

if I is a line which contains A and B then I = Ale

-.that is, nothing other than Afi is a line which 'ccilitains A and B.
[You proved this in Part B on page aso.]

As a corollary to Theorem 7-1 we have:

There is one and only one line which contains two giveipoints.

[Instead of 'contains' one sometimes says `pa.oNes thr-ough'.4 Here
another way in which thiis co;ollary is sometimes stated:

awo points determine a funique4 line.

Exercises

Part *A
After hAv ng provcsd that, for A B, XII is a line which contaihs

A and B, we.could have completed the proof of Theorem 7-1 by'
proving that :

t.
Apswers fo:i. Part A
1. Suppo!e that A Snd B are twq points which belong to a line 1 and

to aline m. Then, by (1), 1 = and rn I -- in.
Hence, if A B there are not two line's which contain beth A.,
and B.

TC.284

2.

3.-

TC 285 (1)

A nett 313m (1 0 m anq {A, B) C, I rm m) [Students
rgay have '{A, B) c. 1 and {A, B) C_ rn't rather than
{A, B) C "Th m', but the latter, has the o.dvantage of breN;ity.]

3/ 3m (CO rn and {A, 43} ç r ni) A B

4. From our work on page 249' we know that inferences of ttie form:
Fa =P. q

[a4 no 'in the consequent]

are valid, So, [b4 two applications of this rule] the sentence of
Exercise 3 follows from:

(I * rn and IA, 131 'C I rn) A -- B '

5 The sontence of Exercise 4 is actually equivalent %vitt; (2). [For a
proof, see Exercise 8, below. r Suppose that A 0 B and
{A, B) C I rTh m. Since {A, B) C I rn it follows that
{A, B) C / and that {A, B) C rn. So, by hypotheSis A B
and {A, Alt,} C I, and A B and (A, B) C m. Hence, by (1) .

[and an in tance 21.it obtained by slii2atituting 'm' for 'I'. -
follows that 1 Ati and that ni = AB. So, [by tte replacement
rule for equations] I = m. Ilence,

iS (A * B and {A, B) ci / rTh rn) r=P rno

6. [Taking for granttd the vahdity of sentences of the forms
'(p and q).Z. (q and p)' and qnot p ==:s q
the derivation, can be abbreviated to:

(A s0 sl3 and {A, B) c I rTh rn) 1 = rn

there afe not two ,lines whiclvcontain two given points.;

Instead of this, we used tbe previoitslq proved thetkem:
1.

t I) IA B and IA, 11).C. 1) 1 =

1.. Show that (*) follows from (1). [Hint: Given two points. A and B,
such that both 1?eierig to a line 1- and both belong tO a line in it
'follows from 11) that 1 = and that _ So, 1 =
Hence, if A B then there do not exist . . . .1

* '

1.

c I r-) * B rn)

{A, B) C / pm (V* in A = B)

(i * rn and {A, B) C rn) A r. B
7. .Senterice (I), is a previously proved theorem. By Exercise 5, (1)

implies i2). By Exercise 6, (2) implies (3). By Exercise 4, (3)
implies elie sentence of Exercise 3 which, in turn, implies its
contrapositive. The latter-is a-formal restatement of 1-0).

le
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8. There are many possible schemeS. We give one which goes back2. Although a paragraph proof of (*) like that suggested in the hint
for Exercise 1 is perfectly adequate, it will be a help in con'struct-
ing simttar proofsif we put this paragraph proof more formally.
To begin with, translate (*) into "formal language". [Thnt:4 * B

not ],3,
3. Your answer for Exercise 2 is a conditional sentence of the form

'not q 7-- not p', and this suggests that it might be easiap to prove
thesentence of which it is the contrapositive. Write this sentence.

4. Ypur answer for Exercise 3 is of the form '313, Flrn cf. As you
,/know, you can derive this from a sentence which does not contain

quantifiers. Explain how, and write this sentence.
5. From xour previous work with the logic of 'not', 'and',.and ' --0',

you should see that the sentence you wrote in answer to Exercise 4
is a Consequence of

12 ) .4 13 and , I fl rn) t = 171

Derive 12) from (.1 ).
6. From (2), derive:

(3) (1 46 m and {A, B} 10,11 m) A B

7. By retracing your steps in Exercises 4 and 3, annplete the proof
of f").

8. Your work in deriving (3) from (2) can be generalized to show that
any inference of the form:.

fnot'p and q) r
(not r and q) p

is valid. Give a scheme which shows this.

Your work in Exercise 8 of Part A shows that the sentences (2)
and (3) say, the same thing. Your work. in Exercise 7 showed that,
because (3) is a theorem, so is:

(4) A not gig. (/ ni and {A, p) ç 1 11 m)

This is a fornial statement of what (a) says, and can also be translated
as:.

s.,
CA,t Two points are contained 4n at Mast one line.

Here is another theorem which appears to say 'something qukte
different: \

41
. (B) Two lines have at most one point in common.

to first principles:

not r and q

not p

not P and q

a. '

(not p and q) ==> r

not p r

t
not r d q

not r

not not p

(n41,1: and q) p

A shorter, but More sophketicld, scheme makes use of expor-
tation, an inference scheme given on page 188. and importation:

(not p and q) r

not p ==0. [q r

not r p]

9 .(not r and q)
.

Here is a third scheme to the same purpose:
(not pl'almi q) r,

not (not p and q )4:=> [q ==: pl not r =to not (npt p and q')

not r =>f ==> pi

(not rNand.q) x=".13

r

,



286 LINES IN e

1. (a) Mark two points, A and B, so that you can draw aline 1 which
contains both points. Draw another line; in, through A. The
preceding, instructions leave you considerable freedom in
choosing AO, and rn.. Can you follow these instructions and
choose A, 8, and rn so that B E rn?
Draw two lines, I and rn, so that you can mark a point A con-
tained in both. Mark another point, B, on I. The preceding
instructions leave you considerable freedorn in choosing 1, rn,
and A. Can you.foilow these instructions and choose 1, in, and
A so that B rn?

2. Exercise 1 may have suggested to you that the claims made in
sentences' ( A) and ( B) are not as different as they appear to be:This
is the case. Just as (Al is a translation of (4) which you derived
from (3), (B) is a translation of a sentence:

(5) I m not 3 .

which you can derive, from 42). Complete (5) arid derive it from (2).
3. Tidy things up by sh,6wing that (4) is a consequence of (5) and thlat.

(3) is a consequence of (4). What is your final conclusion about (2);
(3),14), (5). (A). and (B)?

4. Notice that (A) does not say that any two points are contained in.
(Ai Ae; and (B) doespot say that any two lines have a common point.
(a) Are there two points which are not contained, in any line?
(b) Are there .t.wo lines which do not have a common point?
(c) If your nnswer.to either (a) or (b) is 'Yes.', draw a picture to

justify your answer.

Part C
1. In Exeicise 3 of Part B you probably concluded that the six sen-

tences (2), (3), (4), (5), (A), and (0) are different ways of sayinethe
same thing. Write a seventh sentence ( 4*) which is related to (B)
a.1(*) is related to (A).

.

2. In Exercise 5 of Part A you showed that the sentence
\

(2) (44 B and {A,, 13} n rn) 0 / =
is a theorem by deriying'jt frontthe previously prayed theorem (1).
There is another way of proving (2) *hich shows 9ther clearl?'
what pat (b) of Definition 7-2 [of IMO "Nally means"'. To begin
'with, note that it would be easy to prove (2) if e co?ild prove:

42') (A 76 B and {A, .9} çj, rl 12) ...al.' 11.c, 12 [Explain.]

. . Derive (2' ) from Definition 7 -2. [Rini: Suppose that 1t*d 12
are lines such that A -76 B and {A,,B} ç i, fl 11. It folio*S that
(A, B1 C 1,-,And that {A, 13} Supposet,now that a

..
.

Answers for Part B
1. .(a)

(b)

TC 286

; No.

; No.

(5) 1 # =. not 3/( 3,1 (X * Y and° {X. Y} c 1 ni)
As in Exercise 4 of Part A, (2) implies:

(*) 3x 3 (X Y and {X, 11} ç / m) =*.
and this implies 'its contrapositive, (5), - So, (Z) implies (5). [Note
that this is the same form of argument by which it was shown that
(3) implies (4). ]

3. 15) ,implies (*), above, and (*) implies (Z) [by the rule given on '

page L501; preCisely similarly, (4) implies a sentence similar to
(*), and.this implies (3). So, each of (2), t3), (4), and (5) implies
any of them, and since (A) and (B) are con*ntional ways of saying
what (4) and 4.5) say, respectively, all six sentences are just
differen t. ways of saying the same thing.

4. (a) ,No. [fheorem 7-1]
(b) Yes,. ; but we are not yet in a position to prove this,
(c) [Students may draw two parallel lines or two skew lines as

intuitive justification for the ansv;er for part (b).]
Anwers for Part C
1.

z.

(**) There are not two points whiCh'are contained in two given

[(Z) follows from (V): Suppose that'A B and {A, B) m.
It follows froni (ZI'that I C rn, Also, sinCe I rTh rn = .sn rm I, it
follows that rn C I. Since I C. rn and rn /, = in, Hence, if_
A 0-13 and (A, B) cfnm then ,1 rn.]
[Proo4of (Z') s completed by fill-ins: /2; A, B, C) is
collinear,. A, B, is collinear; Definition 7-Z that C E 121
Similarly, if C E .12 then C eJr. so, I Hence, if A* B
and {A, Bç 11 1-112 then 11 .1-2

,

Oq
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C e 1,, Since IA. B} ç 1, and A A B it follows from Defi ition 7-2
that Since (A. B} 1,, A B, and {
it follows from' . . Hence, if C El, then C . . .

3. (a) Reread Exercise 4 of PArt A on page 280. We have,now proved
that any two points are contained in a line. So, as suggested

o in Exercise 4(a), we can prove:

(A, B, (7} is collinear )t (A, B, C} c 1

under the assumption that (A, B, C} contains at least two
.points. To get rid of this assuniption we need to takecare of
the case. A B - C. Titat is, we need to prove that any point A
is contained in some line. Thcf obvious argument for this is:

Let B be any point such.that B A. Then, by Theorem 7-1.,
Ali is a line and A f

This is a rather short argument and yo should be able to
figure out what its weak point is. Do this.

(b) Later in the course we shall adopt a postulate which will
furnish a foundation for the weak step in the preceding argu-
ment. Suggest a postulate about translations which would do
the job needed here. (Hint: Do our postulates guarantee that
Chere are any translations? If so, how 'Many?]

Theorem 7-2 ( {C, D} c :a' and C X D )

= trg

11 f int: If Ali contains two points, can it bethe case that A
1/4

Suppose teat A, B, C, and D are points of a line 1 and that A
and C
I. What kind of a sequenw is (B - A, C - A)? What kind of a trans-

lation is B A? What. can you say, in- consequotte, about C A?
[Hint: You'vp done all this before in Exercise 2(c) on gage 277.]

2. Prove that D A *[13 Ai.
3. Prove that b C *LB - A]. {Hint: Can you express - C' in

terrmhef 'D - A' and 1C - Al) -

4, Prove that (13 - Al [D el. IHEnt What more do you need after
Exercise 3?' When yoil have figured this out, look again at the
hypothesis prageding these exercises. If, in this, you interchanged

" 'A' and 'C' anoi-interchanged 'B' and 'D', would you be saying anY-
thing different?]

47.14

N.
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AnSwers for Part C {cont.]
3. (a) -.The weak point is the assumption. To "discharge" it we need

the premiss Y '*'A' and this we have no way of proving.
(b) 34. ic*,.* t5; ezie this and the easily proved theorem

+ a =, /1/4`. a d. we cain derive, in succession
o A.+ O'A', v A'.

# By y A', and '3 y # A'. (The suggested
postulate can be reformulated as 'There exists a linearly
independent 1-termed sequence. '. This is the first of a
sequence of sentences of the form:

There exists a linearly independent n-terrneil sequive.
Any such sentence' is, by definition, equivalent to tcle'corre-
sponding sentence of the form:

The dimension of T is at least ni
It shouldperhaps be noted that, given that. '3 y Y * A' is a
theo'rern, )t follows immediately that 'ax.ay Y * X' is a
theoreni in short, it follows that e is nondegenerate.
Similarly, we can prove that E 0 without any adation to our
postulates, For, 'ax X E g' is aconsequence of the postulate
'A + e The moral is,that in adopting our rules for
quantification we have implicitly assumed that the domains of
our variables are nonempty. This may seem sneaky; but it
allows for simpler rules than would otherwise be required,
and foregoing the privilege of talking about nothing is no
great price to pay for simplicity.]

Answer for Part Er
Suppose that {G, D C AB and C D. Since AB contains two .

points it follows that {A) and, so jj Exercise 2(b) on page
281], A 9E B. Hence, by Theorem 7,-1, AS is a ling.,. Since C \
n is the line wEiploet_sontajw C and D. So, since AB is a lirie and
contains C and 'Do, AB = C.

The exercises of Part E should bear an air of familiarity. Bring-
ing them up again at this point is intended to prepare students for the
section which follows.

VI-4aAnswers for. Part E
1. A linearly dependent sequence [since {A, B, C) is collinear .;

A non-a translation [since A * B).; That C - A e [13 - A] by
Theorem 6-14

2. Since {A, B) I, A * B, and D E 1, i?fqllows, by.Definition 7-2,
that IA B, D) is collinear and so, by Deiinition 7-.1, that
(B A, D. - "1/4) is linearly dependent. So,:iince B - A * 4, it
follows ihai t A E [B, A]. [A lazy maa's answer with which
you should be more than satisfied =- is:, Everything assumed about
A, Bo and .0 -has also been assumed about A, B, and."157'Since,
by Exercise 1, C - A E [B - A], it is also the case that
D - A E [B A]:1
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5, Since [11 AJ s a vector space, any litailfr combination of its
members...belongs te it. . So, since C - A E [B AI, A E [B Al,
and D 7 C (D A) IC -; A), it follows that D -'C E [B -

4. By Exercise [and the fz.).6t that [B X) is a.vector spaceb
[0 [Ple ;.Al. SO, tOShow thAt [B [D CI it is .
suffiNent to show that AI incv the assumptions
conce rningq A, B, C, and D which justified the first inclusion
also apply lo C, 0, A, and B 1in that order), the second iriclusion
,is likewise justified. [An alternative answer is as follows: We
proved,somewhe-re that if d and E [ I then ) 7- [6].
Sihee c; 0, 0 C # 11 and so, by Exercise 3, [B Al [D
(The re.sult referred to was proved in Exercise jig), page 216 andin Exercise 4, page, 2b2. In brief, if tf b ab then b 0,; 1;e /11, and At 1. So, if d' * b E I then [ 1;1 ( ; ) and
1;1 [1;1.)1

The results of Exercises, I and 2 might be obtained in a different
way: Under the assumptions made on A, B C, and D i &laws [eitherby Theorems 7-1 and 7-2 or by (2) on page 2821 that A - t. So,by Definition 7-i,

- A [B - AJ it=:. 3 C CI.
Since' C C and D - C belong tu [D C) it follows that C A and
D A 'belong to [B

-*3

6 5 D
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7.04 Directions of Lines and of Translations

Intuitively, a translation a is in the direction of" a given line I just
if a B - A /where A and .8 are two points of 1. This suggests defining

I

8 A
Fig. 7-4

the direction of I to be the set of all such translations. (This is a pun on
the word 'in'.) It turns out to be somewhat simpler if We include 0 in
this set and, so, define the direction of I to be

ix; 31]:( Y e 1 and Z E 1 and ;= Z

Before adopting a formal definition, let's explore this notion further.
Suppose that A and B are two points of I. qt follows by Exercise 3 of

Part E that if C and D are any two points of I then D C E 1/3 - A].
Since, also, 6E [B A] it follows that if we adopt the proposed defini-
tion for the direction of I then each translation which belongs to the
dVection of I also belongs to [B A]. On the other hand, suppose thaI
a E [B Al. Since A 76 El it follows frimn Theorem 7-1 that I AB.
So, by Definition 7 -3, since a E[R A], A + a I. Since a ---='(A +
- A it follows- using the proposed definition- that a' belongs to the
direction of I. Hence, each translation in [13 Al belongs to the direc-
tion of 1. Combining our two results we see that,.tinder the propOsed
definition,

the direction of I is [B. -*A], for ,any two points A and B of I.

This resulth suggests, using the notation '[11' as ban abbreviation for
'the direction of ,r: Doing so; otir-detnition takes the form:

Definition 7-4 :

[1] x: gyg, (Y E 1 ancte el and x Z Y)}

where we agree to read UT as 'the direction of l'. In words, Definition
7 -4 says that the direction of a line I is the set of all translations de-
termined by points al. Our main result is:

.11 Theorem 7 -,3 ({A, B} g 1 and A B) [fl [B A]
49\
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In deciding what to mean by 'the direction of I' we need to choose
something which is determined when I is specified, and is such that the
dir'ection of I is the direction of m if and only if and rn are parallel.
In the context of current mathematical thought and, in particular, of
this couree, it is also natural to choose this thing to be a set. If we
had, at this point, a definition of 'parallel', it would be appropriate to
take the direction of a line to be the set of all lines parallel to it
[including the line itself]. Lacking such a definifion 'we take, as the
direction of I, the set of all translations which map I into itself. More
simply described lifid motivated by a pun this.is

(*) [3-Z; 3 a (Y E 1 and ZEI and Z - Y)).
Y Z

Having defined directions for lines we are able to define 'parallel'.
Parallel lines are lines which have the same direction. That two lines
are parallel if and only if they are coplanar and disjoint is a theorem
which will be proved in a later chapter. The existence of a unique line
tharough a given point and parallel to a given line is established in
section 7.05.

Students should be prepared to understand (*) by their experience
with existential quantifiers and with Definition '7-3. However, you may
encoUnter Some who feel that the set consisting of all the point-differ-
ences in question should be described by using universal quantifiers.
If so, point out thaila translation ; belongs to the set de.scribed by (*)
if and only if there are points of I whose difference is a [which is what
we wished to be the case]; and that there is no translation which is the
difference of each pair of points of I' Lsit) that (*) with '3's replaced by
V's describes the empty setj.

The exploration begun on page 288 motivates the introduction of the
breviation '[../]' for (*) by establishing Theorem 7-3.

Recapitulation of the proof of Theorem 7-3:
Suppose that {A, B) C I and A1# B.
Suppose that E [t]. By Definition 7-4 there are points

of I say, C and D, such that -; D 'C. From Exercise
3 of Part E it follows that if C D then D C E [B A],
Also, if C = D then D C = LB A]. Hence, if -S. e [I]
'then a E [B

Suppose, on the other hand, that ; E [B A]. Since
A * B and {A, B} g I it follows from Theorem 7-1 th4et
I = X. Since ;1E [13 - A] it follows from...Definition 7-3
that A + a El. Since, by Postulate 2(b), a (A + - A it .,
_follows that there 'exist points. Z of I such that
a = Z Y, So, by Definition 7-4, 'a c [1]. Hence, if
1E - A] then -a* EP].

Since, as has been shown, -1.E [B',- A] if and only if
E [1) it follows. that := [B. - / Hence, if {A, B.} C I

and. A * B then [I] = [B

ITO
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.

11sing this and reusing the second part of the Keceding argument, we
have:

- .
Theo ecn 7-4 IA t I and a A at

I Explain. I

When 4a 10'.it is natural to say that the direction of a, is the direction
of the line through sbnie given point..4 and the point A +- a. By The-
?rem 7 3, the direction of this line is I (A + a, - A I; by Postulate.2(b),
this is H. So, for a 0 it is natural to say that the direction of d is Ia.].
This being the case, we shall treat 'Ia'r as though it were an abbrevia-
tion for 'the direction of ar. To avoid having to make restrictions, we
shall read la r as 'the direction of cx even in case a' '0.. (What, then, is
the direction of 0'?1 Sonwtimes when we wis fi. to imply that a 0 we
shall refer to la) ri,sa proper direction. So,

if h.c Ia.), we shall saY that .1; is in the direction of a;
if Ia.( lb.), we shall say that Wand tiare in the:same direetion, or

that they ha've the same direction;
it' 1/I = ta), we shall say' that the direction of I is that ofa, that I

has the direction of a, or (somewhat improperly) that 1 is in the'
airectipn of a.

Of course_therlast case can Occur only if (a) is a proper direction.] For
xample, Theorem 7-3 can be paraphrased a's:

If A and B alie two points of 1 then 1 has the direction of B A.

Bxereises

1. (a Prove: A B B - A
(b) 'Restate the theorem of part (a) using words ['direction', etc.L

instead of brackets.
2. Restate gach of the followiiv thmrems in terms of 'direction':

Ca) (.1. [6) (-14 -hi is linearly dependent
.(b) 'i(ris linearly dependent and a' 0') b't
(c). (a' E 117) and 1; [a = 11;1
(d) ((c7, b) is linearly dependent and a. iiO4 A - fa) = EVI

3. Prove part '(cl.) of Exercise:2. [Hint: (4), (13), and (c) have alre dy.
been prov.! in Chapter 8.1

4. (a) Restate the result of Exercise 4 of Part,E on page 287 in terms,
of 'direction'.

(b) If you omit 'A '"A` B and- C D' from your ansWer for part (a)
is the resulting sentence a theorem? [Proye or give &counter-
example.]

(e) if you replace 'A, B, C, tmd D are points of a line r by 'IA, B, Cl
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prOof of Theorem 7-4:
Suppose that A and ;,-1 J. Since . I is a line it follows

that 2 contains at least two points and, so, contains a point
say, B _other than A. By theorem 3 , it folloNks that
[2 ] Al and, so, that E [B1- A]. By Theotem 7-1,

-AA So, ,hy Decinitibn 7-3, sipee 7a.'E [B A], Afac 2.
nence, if A c 2 and a E [2] then A + a E 2.

Another proof for Tlworem

7-4
a
{A,

# A +
sinc
A +
But,
A

Suppose that A E I and a E [2].. It follows by Definition
that there are points of .2 say, B and C such that
C B. What needs to he shown, then, is that if .
B, then A 1- (C,'- 1:3) 2.

Suppcise; their, 'that {A, 13, c) 2. If t\-- Sja,then(CB)::A*O'.A2. If13 Cthen2BCsnd,
ti A E 1, A 13 E [C B]. We wish to show that
(C 13) thatis, that (.A,'+ (C B)) B E [C

(A + (C 13)) B (A B) (C B) B) sixice
B E [C 13].

Theorem 7-4 may be interpreted as sayipg that any translation
which belongs to the direction of I niaps I into itself. The oni,..r.erse is
ohvious since, if a:..maps I into itself then, foi. aey A E I, 'A ,f a E I ahd
..7 -; (A 1- a).,.- A. E [1] by Definition 7-4. Thus, as mentioned earlier in,

..

this commentary, the direction of I cpnsists of those translations which
map I 'into ifself.

TheOrein 7-4 and Postulate Z(b) imply:
(**) (A E 2 and a E [I]) ., ; 3 (7. E 2 and.'S = 7: - A)

iAs to the ques ion concerning the direction of ,i5, this is, by
definition, Pi 1, .w icci is {6).

r' . . II
'Somewhat later in the chapter we shall note, in,,passing,

convenient to abbreviate a sentence of the form:
3x (x E S and frx)'

.
,to a corresponding sentence. Of. the form:
p

that it

3 Fx
. . x 6
[HeTe, as in Chapter 6. although 'N.: is a real number index, our
rematlIks should be undou:stoOd,as applying to poicit indicFs like 'X'
and translation indices like ';' as well.] tnforrrilly, this is
justified by remarking that 'there exists an x such tclai ic bqongs to
S. and ...' should mean .the same as 'there exists an x in S such
that ...'. This informal justification motivates adopting as a rule a

, logic the-first part of: ,,
I

.

Any sentence of either of the form's:
3 Fx. 3 [x c S and Fxl

1 x C S
1:x 47:. V: [x c s Px]

is

S.
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If one adopts this rule as a.basie rule of logi*c then
show that inferences rather similar to those which
introduction and cliniination rules for and 'V'
v ally, inferences-of irly of the following forms are
be compared with the basic rules as givni on page
to the conditions given therel:

tS VxES Fx

Ft

a E S I.

Fx°
E S

3 1:x aE S [Fa
E S

it is not difficult to
are .validated by the
are valid. Specifi-
valid. [They should
271, and are subject

q]

t S
I

3xES
Conversely'. if One aopts as basic rules according to which inferences
of any of these four kds are valid then it is not difficult to justify the
rule just given concer ing the validity of two kinds of biconditionals.

By using such "restricted quantifiers", Definition 7.-4 can be
-simplified to:

{: 3 3 7 -
YEQ ZEt

Also, (**), above. can be transformed, successively, into:
a E [21 [A E 3 , 7, - A]

Z
cfl VYE2 3ZEI ''Z Y

Although we shall say very little concerning restricted quantifiers
i n.the text, yoU may wish to anticipate the little we shall say by sug-
gesting"the abbreviations just mentioned for Definition 7-4 and (**).

er

S. mple Quiz
On your paper, draW a picture of three points say, A, B, aner
such,tha: A, B, and C are noncollinear.

I.. In your picturq, locate points P. Q, and R such that
P A + (B Q = A + (C A) l and R = B + (C B) -1.
Is P on AB? Ekplain your answer.

3. Is Q on AB/ Expitin your answer.
4.. Express eaFh of the translations Q P and PR P 'as a linear

combination of translations B A, C B, and 'A C.

Tell what you must 'find' out about thc translations Q - P and R - P
in order to deterine-that the points Ft Q, and R are collinear.

.6. Determine whether or not P, Q, and R 4.re collinear.

TC 289 (3)

Liei Tto Sample Quiz
.Students should have apicture
_something like the one on the
r ight.

2. Yes. There is a nuMBer x such
that P A (B A)x, . L

No, 'There is no number x such tliat Q A + (B A)x, [To
prove this, assume that there is a numoer ,say:'q sucn that
Q A + (B .Then (B A)q + (C A) This ast
result implies fhat A. B. arid C are collinear, a,contradiction.]

4. Q (B; t (C Zi)() + (A C)-:t
[dr: (B A). -1 4 (A -

R P (B A);; (C B). -I.+ (A C)0

[or: (B - + (c -
That Q P and R P are linearly, dependent.

6. From 4, (Q P)a + (R P)b (B - A)(b/2 - a/2.) + (C 11). -b
+ (A C) -a/3. So, (0 P)a + (R -IP)b d if and only if
(B A)(b/2 - a/2) + (C B) -b + C). -a/3 Since 'the
latter is the ease if and only if b/2 a/2 -b -a/3, and that
this equation is true for any pair of numbers a and b such that

3b, Q -'P arid R P are linearly dependent and the points
are collinear.)

PAswers for Exercises ,

1: (a) Suppose that A * B. Then, AB line, and AB.confains
the two pointi A and B. So, by Theorem 7-3, CAI] [B A].
Hence. if A B then [XA J [B A],

(b) If A * B then the direction of IS is the direction of B A,

2. (a) If a. is in the direction of 5 then -4-a!, 5) is linearly dependent
(b) If (a., 5) is lineariy dependent.and is a' proper translation

then 5 is in the direction of a.
(c) Lf a is'in the direction of and is in the direction of

then the direction of a is the direction of b. [or: 'then a and
,5 have t-he same direction).
If (-a; 5 ) is linearly dependent and b_r?th a and fp' are proper
trans1,,ation4.3, then the direction of a ispthe direction,of
[or:. then a anil 5 have the same direction].

3. Suppose that Ca°,5) is linearly depend..e.nt and that By
Z.b), it follows thitil E [a ] and that a E (111. So,' [51.0 [a ] and
[ a ]C -[5j. So, [a = f ]., flence, if (a, U) is linearly dependent and

$, b then [-1] [t].
4. (a) If )+, B, C, D are points of a 1.in ,Q and A B and C D

then the direction of B A,is the direction of D C. .

(b) No. For if B .* A and D C. then [b C] (Mt * - AL
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is collinear and D} is collinear' is the resulting sentence
a theorem'.' 1rOVc or give a countelr;e.xample.1

.
5. (a) Suppose that a 4, O. Describe (X: 3/ (X el and [11

ib) h.\ there a line whose direction is 10'1?
(c) Dues (). belou to the d4rection of an. iine?

6. Draw a pict'ure sh9wing a point A and a proper translation a. De-
scribe, and .picture,
(a) (X: t.ixelfil and X - A
(to ;X: X A E lal
(c) ;X: A, X A

tr
7. Prove: *Ali IX:, X A E [B [Hint: See Exercise 2(d) on

page,28 1. I
8. Draw a line and mark a point A 0 I. Describe, and picture,

(X: X 1

7.05 Lines in a Given Direction

The preteding Exercise 6 suggests that, for any point A ana any
proper direction [a] there is a unique line through A whge direction is
la). Exercise 8 suggests much the same thing. To inveStigate this
likelihood we adopt:

Definiti"on 7 5 la) A[(21 {X: X - A flail
(b),AHI = {X: X A Ell)}

Fig. 7-5

What is AjOr Exercise &suggests that, for a 0, 'A[a .is the [unique]
lineprough A "in direction of -a- Exercise 8 suggests that Ar4 is
the runiquej,line through A which has the. swipe direction as I does.
These suggestions sound rather like Theorem 7-1 which says that,

for A B, AB. is the 'unique] line through A and B.
.1

Comparing the definitions of 'ALOP] and ' Alt it is easy to see that

[EiplainA

Q (
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No.. For if A, B, and C are distinct, and 0. C , it is' still
the case that {A, B, C} is collinear and {B, C, D) is
collinear and, yet, [B A] ai = [D

, the set of all points -iven that a 6 and A 'is any point,
A + a .* A so that (A + is a line in the direction of

(b) &o.; all'lines have proper directions.
(c) Yes, (5 belongs to the direction of each line, [This answer

assumes that there are lines a ct which we are not yet in
a position to establish formally.

(a)"
*fa

(b) (c)

Irfcach case, the set which is pictured is the l'ine through A
in the direction Of a.

7. By the exercise re,,rred to, C if and only if C A E [B - A].
So [immediately],,AB {X: X E AB} {X: X A e[B -
[Without the exercise, proceed as follows:

fx: X A E [B C - A E [B
C A E [B - A] 3x C A = (B A)x.

So, what needs to .he proved is that
ax C = A 4- (B A)x 4:=P. C A = (B A)x.

But this follows at once fripm:.

8.

C = A + (B A)c 4r47. C A (B A)c [Theorem 2.-f]

as

The set in question is the line containing A and in the direction
ori. Alternately, it iS the line through A parallelPto e.

Ard {A)

By the result proved in Exercise 7; above,

rut, (A + )- A = a.;

Just as AB (for AV B) corresponds to "the line through two
given points" of traditional high school geometry, so A[1] will corre-
spond to "the line through a point parallel to a line 1". This result is
Theorem 7 -6.
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So, we can._verify the suggestion of Exercise 6 by showing that, for
a / 0, a line through A has the direction of a if and only if it contains
A -r a. I Explain. I Since this is an easy consequence of previous-they-
rerns 'Which theorems?! we rhave proved part (a) of:

1

Theorem 7 5
: . .ia Alai it; the line through A in the directmn of a [a / 0

(b) /1 is the line through A in te direction of 1.

Wart can now he used to prove Part (b). (iven a point A and a line 1,
;there are points say, C and I) --such that IC, I)} C 1 and C D. By
'Theorem 7 -3, Ill ID CI. From this and DefinitiCin 7-5 it follows
that

:*.t11 1 IX: X A X: X A Ell) CI}

Si'nee'C D, D C O'and so, by part (a), -.01 :is the line
throU0i'A whose direction is ID Cj. So, ;11/1 is the line.through A
whose direction is .!1) C) and, since. ID C1 111, it is the line
through A whose directfon is

As ,in thecase of Theorem 7 1, each part of Theorem 7-5 is a short
Way of saying tWo things. Part tal says that4 for q 0;*

Ala) is a line, A cAlal,iand,IA[all.( la )

,12a) (A t arm rni [aj) in A[a], for any line rn.

Part (h) says that

lbi ;1)11 is a line, A E AA and CA1(11 lil;'

(21)) (A E in and I m) .111) m fOr any line,m.

A useful corollary of (A) is: ft

A e 1

Using this it is easy tp piove:

(*) Two lines with 'the same airection have no common point.
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Suppose that a d. If, under this assum tion. we can show that
(*). (A / and [i] ; (A. E I and A + /)

then, s inc e MA + Ai) is the,unique line which contains both A and A + a,
it will follow that A(A + is the unique line w.h.jc_t_c4ntaii.es A and hasthe direction [zi). But, as noted previously, A(A + a) Ara".81. So, Itis enough to prove (*),.[assuming "Stdjin order to be justified in
asserting Theorem 7-5(a).

,
The if-part of (N) follows by Theorem 7f-3; the only if-part follows

Py Theorem 7-4.
-

If-part: Suppose that A E I and 'A ,+ 7:; E Since, for 6,
A A + it follows fromeTheort)m 7-3 that [E] = [(A + z-;)'- A]

1S1. ,Hence [for * ], if A lE .2 and A + E I then A El and
rg }.

SupTose that A E I and [1] [ :lb _Since E ri:1 it
follows that a C [il and so, _by 'theorem 724, that A +'Hence, if AI and [2] = [ a ] then A C and A + c f.

Proof of (*): Suppose that [ii] 7, (12 If there is a point say,
A such that A E (Th /2 then Li =, A[21] and 1 = A[1,,1 and, since

122], RI 12. So, if I # /2 then there is no point commqn to
and 2 Hence,

(ii # /2 and Pi] not Dx x e
that is, two lines with the same direction have no cornfnon point..

-The hint suggests that 'such a proof can he discovered by translating
(*) into the sentence displayed above, noting that this, sentence is equiva-
lent to:

a) X c I r .12 not (11 * 12 and [il] --,*[./2])

and that, by the introduction rude for '3', the latter is a theorem if:
A E fm 1 ifot (11 1 and [II] [/21)

is a thebrern. This last Lan, in many ways, be shown equivalent to:
(A E I r /7 and = [L,]) =

[Compare (*) with sentence (B) in Part B'on page 285. Write a senience
like (5) on page 286 which has (*) asyne of it "English translations".
Do you see hcow to transform ttie sehtence you have written into one
which follows easily from the corollary? If you need t hint, the pro-
cecture is about theoame as that which you used in Part A on page 284.Y

[The simplest is to recall that ;not (11 * 22 and Pi] [/?])'lent to 'Pi] = [12] ==> = /2' (see page Z-71). ]
As has been repeatedly emphasized, 'the ability to give paralpaph

proofs should be rated much higher than that of giving formal logical
analyses of reasoning. The only reason tor 'developi g the latter ability
is to foster the former. A student who proves (*) by saaing "By
Theorem 7-5, there is at most one line through a given point in a given
tiirection. So, two lines with the same direction can't pass through thesame point." is doing fine. Another student who 'oesn't see why the
first can say 'So' with such confidence may, if is.acquainted with
formal rules of logic, profit from an analysis.

A restatement of (*.i using 'parallel' is:

is equiva-

Two parallel lines have no common po nt.
Naturally, you will ask whether two lines<vith no common point need be%
p'arallel. As rernarked earlier, the proof that two coplanax±lines with
no common point are parallel that it, have the barne direction willbe given after we define 'plane'.

643,)



292 LINES IN E.

f

Finally, let's recall the notion of parallel lines. Intuitively, parallel
lines are lines which have the same direction. As pointed Out in Ctap-
ter 1, it is convenien( to agree that any line is parallel to itself'. So,
we shall adopt:

E Definition 7-6

!Read '1' as 'is parallel to . 'Ate (*) using ',parallel'. Restate Theo-
rem 7-5(b) using 'parallel'.

Since Theorem 7 -51b) tells Us that :41/11s the line thr7L;gh A which
is parallel to 1 it follows frOm this theorem that

Theorem 7-6 'here is one, and only one line through a given
point and parallel to a given line.

thl

Exercises

Part A
I. Coniplete the detuils'of the proof of Theorem 7-5(a) by proving:

.ia) Ala') = AlA I (1)

ib) 111 1a.l Af+ c/.5 (a.
2. (a) Prove: A s /1

(b) if, as Atn;ge-sted, you 'wroic a sentence having (f') as one of it .

"English translations", your sentence was probably much like

A e 11

t.his one:

.4(I) (1, and [1,1 = 11.,1)*--*. not XE1

Show that (1) is a theorem f and only if the sentefice:. .

t2 I, and 41,1 14,1 A 41, 7-1

is a theorem.
Prove sentence 121.

-
Part B

4 TC 292 (1)

Parts A are more than can be reasonably covered in onehomework.assignment liere i-s one means for hAndling these exercises:
F'irst day

(a) Part A as in-class exercises.
(b) .Parts 13 arid C as honie

Se.7und day

.Pa rt D as- in-class exercises using a stick model to
N, illustrate the various line's in Exercise 1, Also discUssDefinition 7
(b). Parts E and F as homewer

T"-Answe rs, for Part A

.(a) A[ a {X: X A C [-a.D .

x -A& [(A ) - A 1) A(A +
(b) For d , A # + So, for A E P. it follows by Theorem

7-3 that if A E / then [(A A] = [1 J. Hence,
for 0 and A c 1. if A i act then [i] If [2] [S.]
then a E [I] and, for A E I. it follows by Tileorem 7:4 that
A + Hence; fpr A E I, if [I] = [ I then A + a E

(a) Suppose that A c 1. Since [2] = [P), it follows by (.2b) that
Atn. Hence, if A Exe Then A[n.

-..
r. 1. Diaw an arraw to deserikw a proper translation p arid mark a

point P. Draw the line through P in the direction of p. Locate points.. ...

salk4444!nd R such that Q -,.., P, Q s Pfpl and R i P[A.
.

2. Write 4race,notatiOn name tin. V. Show that V PTI. That is,
.. show that 127i arldV are different lines!

3. you think ihat IQ RI .---. IP .Q1 or.not? Explain yr__ our answer..
4. dd to your diagram a picture of Rii. Are the lirrcs I* and R[pJ

parallel or not? Do they interaect or not? Explairieyolir answer's.
5. Show that Whas the same direction as does the 4ne through Q +

4,--v
. and R + pi What, then, can be said of lines 121? and (Q + ..p)(R + IA?

/

On the other hand, suppoSe t1;at I AP]. Since, by (lb),
A E A[P1 it follows' that A E 1, Hence, if A[1] then A c 1.

(h) Sentence (1) is of the form ''p not 3x FX' and (2) is q.fr
the form not IA'. Since either (1) dr (2) is a theoremif and only if its contrapositive is a theorem, we may consider
the corresponding sentences of the forms ..'3x FX not p' "
and '1.'A not p'. The seco,nd,is a consequence of .the first.So, 'if (1) is a theorem then 1"Z), ih a theorem. The first is aconsequence of the second in cage the 1,atter is treated as anassertion. So, if (Z) is a theorem then it implies (1.),' and (1,)is also a theorem.
Suppose that A E (Th It follows from part (1) that
Li *A[g,i and 12 = 442]. So, if [1,1 = [12] thert' = 1v;Hence, a A E then not both # 22 and [11]
-Taking the contrapositivy, we obtain (2).

(c)

P

61'1

*.
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R

2: N. t (R Q),J.

-.11.
P C53

R[F53

l'o sl.ow that QR PQ, it is eiough t-o'show th,lt QR contains a
point not in PQ. Since Q trid {Q, P) P[1; j, P[1.;]
Since R P[p ] it follows titat H /PQ. But, P. E QR.
No. For it IQ- RI Q1 then PQ ;And QR have the same
direction tnd. since both contain 461), PQ But. PQ 7: QR.

4, Yes, for t-Ach his the diroction of p.
No, tor it P[ I and R[ p 1-1;.!ve a point in comingn t.hen, by
Theort.n1 r-tr, hey would contnin exactly the same points (.±ol-. in 2.Definition 7-6, m 1. Hence, if then rn
they koll-ld be the sAme line). But, we know that P. IP[ p (c ) SupPose that I m and m .11 n. Then [2] =- [] and [m]
[Q1:1 I P. Qt P P. fi) [(Q 1;)I. so that [1] = [n]. 1 bus 2 11 Hence, if (1,11 m and m n)
Th, Ines .t re p.1 rA 1 .

then
,-(d) Suppose that n and, n rri. BY ib) m n so Oat, by

(c), 2 11-n. Bence, j.f (1 H m and n H m) then I H
(e) Suppose that i 1 2,,.--""rfther 2 (-"N = 0 or 22. * 0.

Assume the former,. It follows that 2., or 1 (Thl =P[inferring an alternationl. Assume', then, that T1,
In this case, 1 and 1 have common point and, since
21 L,, 2 2,, by Theoro'n. '7 -6, It follows that, in this case,
2

1,
ox .21 = Vrice, in either-case = 2 or

im 12 it follows that if 1 1.1 12 then = 12 or,./1 /22

(a) No, for A and B may be the'-samepoint, in which case,
= D.

(43) Yes, f*r then B - A d and since B A = C .D, C D
and C D. It follows that [2 ] [ B AJ. [ C D ] [m].
lience, I H m.

3, Since (B A, C)s is lirrearly inde n e it follows that
B A *, D C d, and ¶B Al * [D [If ra:1 =111] then

E [j and (a, S) Wlinearly dependent.] nce B - A 0, A B.
So, since {A, B} C. 1, [1] [B A]. ilarly, mf'r- [D C].
Since [B C] it follows that [1] [m.] and, so', thit
1 kf rn

4. Fur any twd points A and B of 2, [1] =.133 A]. If :(B - A, -a'

linearly dependent then4 *ince B A * 0, - .p]. Hence,
A if, a V[2] then (B A, a) is linearly tridependent.

[Exercises 3' and 4 have as a consequence that lines AB and CD are'
-parallel if 4.nd only if (B A; D C) is Iiinearly dgpendent. ]

6. No, for Pita.. is the only line containing P and Q and P.
Linelirl independent.; Equal's 6.

7.
e

(a) . flee "rheorem 6- I.?.
(b) Q P

y (P.-13)2
Answers for Part C
l. (i) By Definition 7 -6, 2 N 1 ::: [1]

follows that 2 l! I,

(C.) (R 4:=> ( }D')1 f (I2 -Q)ai- (P- R)1).-: 6
b

(Q-P)2
(R Q)2

R)-1- R-04

(h) Suppose that H rn. Then [2]

[1]. Sitiee [2] [2],

,,
[m]. So, [m] 21. By
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.

.
,.or ... 1

1..

6 Is TP, Q, I? oalhnear or. nut? How tlo you know? Wh'at can be said
of (Q 1- it,','Ii - tir? 01+Q - P) 4+- fR - Q) ±. (P - R)?,

7. (;iven that-, Q, R } is nkcollinear, prove each of the 'f Hawing.
There.is theorem. in Chapterfi which help, I

-
rt. of&(a) (4) g!'r R)p if ma only it: q r

(b) P R)rt R P)t) if and linly if a 4*. '= 1.

8. Draw figures tie illustfate the theerem in P,:xerciSe 7(ti, for 2
and for

orem 7 .7.{
(a) / '(b) 1111/./ rrift/

tI in kind .rn n I n cd) II rn and n 1 m) I n
(e I I, '(1, I, or I, n 0) Illint: Sincc,1 11 I. c you

I

ran show that I, n I. 01by .4howinlg ;liat there does not exist
any point

,2. Suppose that I and pi are lines and 1A,./1; c I and, (C, D}.
'Also suppose that B C D.
la) From the above conditions does it follow that I ill? If not,

)(plain Why. If so, give a proof.
SuppoSewe also assume that A B, With this added condition .

does it follow that I!! rn? If not, explain why. If so, give a proof.
B. Suppose that / and ni are lines and , 13 ) C I and (C, D c m

and lir- A. b G) is linearly independent. Prove that I is not
, parallel to m.
4. Suppose that / is a line and that a fa Prove that for any two points

A ind B of /, B A, a) is linearly independent.

he tbllowing (b), and i.c) ire parts of Th

7-Part D
1. Consider the rectangular box

. ARCD -Mill, shown at the
right. Answer each of the fol-
lowing by referring to the points
A through H which are the
corners.iif the_given box..

I
(a) ' Give three lines each of which has the same direction as A. 'As

.

.

tb) Give at least One link whidl has a direction different from
if and which intersects Xff. In how many Pointedges this line

intersect ,AB? How do you know?
(c) Give at least oneline which has a direction different from 'Ail

and which doi's not intersect U. Is this line parallel to Ag?
How do ypu know?

2. In Exercise 1 a Part C, you pr.oved:

11 1, (11 !,or 1 n 1, 0).

'Answers
(a)
th)

' ( c )

*
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for Part I)
w

C.D, EF, GH;^
Any of tile AX 'where.' E {C, I), E, FG, will do.;
One. ; if it ,had two points in conimon With AB, it wourd c the
s'arne line and, sQ, wouLd have tile direction of A.

wb

Eli [The"re aye lots of otheYs. j;, No, for if.has 4 different
clireL:tion from fht of AB.
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(a) W rite the c.otiverse of ) and tht amtrapositive of ). Which
of these two statements is equivalent to C.)?

(b) Give a counter-example to show that one othe two state-
ments written inela) is not a theorem. /

.
From tht results in Exercise 2, above, it should be clear that the

converse of 1 ilt; not a theorem. This means that there are lines ir}
space which do not intersect and which are nOt parallel.-Such lines are
called skew lines.

*

Part E
In Chapters 2 and 3 you proved various theorems about points and

translations. Some of these are collected in the summary on pages
141 and 142. Before reading further, turn to this .page,and read over
Theorems 2 -1 tfirough 2-13.

One of the main conclusions .we reached in Chapter 2 was, roughly,
that sentences about addition and subtraction of points and transla-
tions which look as though they should be true are .actUally the-
orems. Now, read the correct statement of this conclusion on page 136
and check your understanding of' it by writing the real nUmber sen-
tence corresponding. to:

(B c.) (44 + e) A-N.

1. .Draw a picture ill iistratin.g (1). Do.you think that (1) is a theorqm?
2. Prim/e( l) using only postulates and theorems on pages 141 and 142,

!Hint: In Chapter 2 you learned ttiat a promising attack on proVing
-. --ta theorem ofThe form , a b is to use Theorem 2-2, making a help-

ful choice fcir 'A'. I
3. Draw an illustrative picture, and proVe: t's

(2) A + = B (A - B) + ar
[Hint: Try Theorem 2-3.]

4. Prove: "

(a) {A, B, C} is collinear {A + a, B + a, C + ab) is collinear
(b) C t C + a't (A + Ell

5. (a) Draw a line I and mark on it three points, A, B;_and C. Draw
an arrow to represent a translation a such that ai1/J. Locate
the images of A, B, and C under the mapping a. Afe the points
A -I- a, B + a, and C + a collinear?

(b) Mark a point D sach that D El. Are the images under a-'of A, B,'
and D eollinea'r?

(c) Would your answers for the questions in (a) anc(b) be differ-
ent if a were chosen in (11? 4

I.
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(a) Converse df (*): (Z)) H

Qnt.rapositive.of (*): not 'or r,.0) A

The contrapositive of ('!:), is.equivalent to (*).
-

(b) Let' ..(11. AB and e E1-1, Then i, 0 but I V L.
So, the converse of 4*) is,not a'the(;-rom:

Answers for Part-E
The .real nuhtber sentence corre'spopcling to 1) is:

(b c ) ' (a +,c) b -.a
1. Here is a pictui'ei illustrating (1):

A+ 'e

2. (A [(B+Z)- (A +C)]-- B+c

So, by Theorem

B +

[Post. 2(a)]
[A 4-,(B- A)] C. [Post. 2(a.)]

= (A + (B A) [Th. 2-5(a),

2-2, (B + )-(A + ) = B A. '

E.*

Post.
Th.

Mb

44,
2-5(b)]

[Motivation: A translation is determined lay its effect on any one
point. The "simplest point" to which totapply, (B + c) (A + is
A +- C. Let's try to show that the image of this point under this
translation is the same as its image under B 7 A.
The choice of A + c as the point to work on is reasonable because
Postulate. 2(a) can be.applied at once for a fast start. It is pos si-
ble, however, to "reduce" 'A + [(IV+ (A .4- C!')I' to 'B' sby
using Theorems 3-9, 3-5(b), 2-5&*b), Postulate 43; and Theorem
3-1(a). One can then obtain the desired coakision from Theorem
271.

3. Picture for (2):.

A- B

JA +
Picture for (3):

A b

(8 A

a a-
Proof of (2): A + = B+ (A + )-B = (B+ 5) - B

<==. ( A B ) ( B + ) B

P oof of (3): A + [(B -S) A] B -

= A +113, (A + 1)]

A- B - (A +SQ, by Theorem 2-2, (

6 "di

[Th."2-3]
[Th, 3-8]
[Pos.t. Z(b)]

[Post. .
[Del. 3-1(a)]
[Th. 3-5(b)]
T.Th. 3-9]
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[Another ,proof proceeds by transfoitning '(B 2 A' by using
Definitior.i 3-1(a), Theor'em 3-8, "Theorem 3-10, Definition 3-1(a),
and --a, A third proof transforms '(A -a*) [(B - S.) r AY'
into, '( 5 - S) * a' by use of Theorem 3-9 and Postulate 2(b). The
latter term reduces to 'IT, and Th'eorern 2-1 can be applied .

Student response tq Exercises 2 and 3 niay'suggesT the desira-.

hility ofea brief review of paris of Chapter 3., What is most iniportant:
however, 'is that student's, he convinced of the validity of the criteriqn
on page 1'36 and.be able.to use it as a toutce,for thsorerne of this kind,

' * .

4. (a). {A; li, C} is collinear .1::b (B A, 'C-- A) is linearly
,dependent' .

.4=z((13 + -a') - (A 4 a), (C + a) (A4- -))
is linearly dependent 4

(b) C E Ali! C AE[11

( C + ) (A + E [1 ]

E (A +

C + is collinear

TC 294 (3)

Sample Quiz
1. Suppose that is a line and that a and 5 are linearly, independent

translations. Eact ofs I + a, and/ 5 is a line. Are these lines
or no0 Explain your answer.-

2. Suppose that (.p, q) is linearly independent. Consider any point
W say, A.

a

(a) f-13raw an appropriate.picture for these conditions and locate the
' points B.and C, where B = A + -1 and 'C = A + -4

(15) What iTs the direction of the line thronh B and /5: + q?
(c) The line through A + sand parallel to B(A + q) intersects AC

in a point 7 say, D. Vizid,the number d 'sUch that D A +
4044. A

d ) Is BID parallel to the line:through A + p and A + q? Explain
your answer.

Key for Sample

AAAl

1. i + -a' 11 / 4 8, ecaiuse each is
parallel to 1.
.(a). [Students should have a

picture something like
the one at the. right.]

(D) [ + I

(c) d = 2 [Since (A + p) (A +'-cr)B, it follows that, for
a, Rid - ja = + om this, it follOws that a
d

(d) No, The'direction 61. ED is [i).1 42.1 and that of (A + -6.)(A +
is [f; q 1. Since there is no ntimber a such that41 4Z)a
=. the conclusion follOws.

st

s om
and

a



, 7.05 Lines in a Given-Direction 2,9.5

6. li Chapter 1 Au discovered a nuriber of im'pornt pro,perties
otrItuslations by using tracing sheets and' parallel rulers. Ten
,of these properties are described in '(1)7(10) On p4e 47. Up to

. now we have 15een able to show that, on the bibsis 'of our postu-
lates, 11)-17) iire theorems...N.1w you Fan sho:w that (8) is also a
theorem. ,

- ta' ) 4; iven aline 1 and a transliition,a, tind.a linem which is parallel
to 1 and contins the image under a of each point of 1..

lb) Is each point of the line rn of part (a) the image of some point
Pf 1? Explain.

7. In Exercise 6 yho will have proved somewhat more than is kated-
in 18) on page.47.

Theorem 7-8. A translation maps any line onto a
parallel line.

To deal with similar ththrems it is convenient, to introduce some
notation. Recall that, by definitipn [Chapter .1 I, the iniage under
a mapping f of a subset of Df is the set of 'all images under f of
members of It is customary to denote the image.of .4' under f

..by 7(./Y-1'. So, since we are usingi`A + a instead of `a(A)., it
-.oral to use '.1/. + a".ibr the itnag4f a subset ./'!. of ',.`; under the map-
ping a. So, we adopt:

Definition 7-7 For c
+- a = (Ye.`l(andX= Y + a)}. '

[Read 'Jr + u a ,the image of under a'. ] Alternatively [Explain.]

-

C -+ a 4.-0 3; (Y4.41. and C Y + a).

(a) USe the new notation to ref1ate Theorem 7-8. INote thatt
the theorem makes tw ims; the image of 1 under a is a line, .

and this line is parallel to I.] .

(b) Prove:' C E C it` Lh/- çf .1. [Hint: Suppose that,.
B t.){ and C = B + a. Does it follOw that C - a EX? If .0

.47 , does there exist a Y such that Y .X. and C = y +.

*

'Al 'Theorem 7-9 For C `e`: , + X: X a ,c)(1.

8. Prove, for .?r*
(a) CE.AtC +a-Ez+
(b) (.;r- + ct") 4-- ----, + (a' +

9. Prove:
(a) :tut (14,-- (A + a)[1] [Theorem 7-10]

i)
t

, Answeks for Part E [cont.]

cl
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a .

6, (a) Let 4 be a point of L. Then 2 A[i] and if m
. then It.follows by Exercise 4(b) that C 4:=== C a-trjm So,

ni contains the ..irnage undei 1. of each point of I.
(b) Since ID -.a) + a -17.) it follows a E.! := D m, each

point of rn is the image under a of some point of 4,, t

7. (a)

(b)

.[Since [rn] = [1] it follows from (a) and (b) tiat a translation
.'rrtails any line onto a vanillel.linc. [By, (a),, a rhaps into ni;
by ,(b)., the mapping is ontod% In other Words, t,ie image of a
line under a translation is a parallel line. You mightosk:
What is the image of I under a in case '1..E [1]? ]
I.+ a ia a line and I+a Hi
itS1).ppose that B E.X and C .v B + at Sincc C = B +_.

C .- a'. So, since 13 6 3{, c 3 ,E X. ilence, if B E X and
A C = B + a" then C -al' E X'. Consequently,, if there existS a Y

such that Y E X and &-- Y + a then C a E ). In short, if
C E X + a then C - E X. . . .

; .

Suppose, on the other hand, that C - a E X. Sirice
-.

C t- (C -a.) + a it follows that there exists a Y such that
Y g X and C = Y + ..t.'. Hence, if C a E X it follows that
elc X+ a, ,

.
.

[The solution foT Exercise 7(b)
Theorem 7-9.]

8. (a) By Exercise 7(b),, C + E X +
(C + ;) a" = C. Hence, C + a e 3e+

:CX+

(C 7 -S E X.

ice (C t) c - + g) it follows that
(C g) a E X C g )

Hence, C E (X+ -a') + 13+4==> C X + + in shOrt,, (g+ 5) + b g+ (1 4- 5.).
9. a) ;C + 4=;:.c Excise 7(b),]

- (A + 1)121 [Exercise -4.(b).1
C s ( A '+ dic ) + C ]

Hence, A[S] + = (A + -S)[iL [This is, of course, a

course, a proof for

(C + - E X. 'But,
-a' <=4*C that is,

re-working of Exercise 6.]

,g1

1
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(b)'/ II rn --4'4-4 + x --, rn [Hint: How can you describe a lot of,...
translations, each of which maps 1 onto in?]

(c) I +- d s-= I 4,--:. dr Ill

,

PaH
, 1.. Suppose that 1 i; a line and that a (/].1,et A and B be.two `points

of 1.

(a) Show that A -r- a. *.13 + agi. .
4 --_, .

(b) Let In - (A + a)(B + al). Find a point which belongs (x) 1 11 rn.
(Hint: Since 1 ..AB., C e 1 0-6 3. C A +.43 r Alx. A Similar
statement. can be madebabout rn. So,

to
find ng a point C which be-i'l

longs both,tand rn amounts to finding pair (c1,c2) pf numbers
which satisfies: /

4 +,(13 Arc, = (A + c5 + [ lc,

iCoMplete, and e4plain.) Transform this equation nit° one of the
form '43 f- a = 0 and, by inspection, find a r
,solution.
lc) Since 1 and rn are two lines [Why?] and you have found one

point in 1 fl nz, you krkolv that / fl in consists of d s.ingle point.
It is, however, important to realize that you can dedike this
from ,rour final equation in part (13) and a property of B A
and a. Explain:

2. Repeat Exercise 1 with 1' replaced by 'a', [Waini,ng, You may need
to add a restriction.]

7.06, Some Theoyems about Parallel Lines

The techniques you needed to solve the exercises of Fait F will be
useful throughout this cotirse. In consequence, it will be worthwhile
to illuftrate their use rioiv in a few more exercises. While we are about
it, we shall prove some useful thc;orems about-parallel lines.

Suppose that I and rn are two
An.es tbrough a point C and that
A e / and B e n't: A natural question

ask is whether Xrn-il and
have common point. The interest-

. ing case is that in which A 96 C and Fig. 7-6

(b) Let A e B rn.
4_444 + (13 A))[/1 = B[I]. If 1 m then [1] = Im] and

Bfrrl m. -Hence, if 1 11 rri then / + (B A) = m,

.(c)
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Since*/ = A[I], - A) = ] + (B A)
qsss

qvisequently, thea + m,

Suppose that I + -a* ri- I. .1..jt E 1. It follows 4hat P -S.*/ + -a*

and, since / + /, that P.:s- E I. Since P I and P+cI
it follows that (P g)'-' PLE [IL But:41D +.-a*) -P = T. Hence,
if I + = 1-then E [I],

-tSuppose that a E [i]. It follOws [by 'Theorem 7-4] that if
A c I then A 4 a E I. Suppose, then, .that A E I. 'Since

`a.* = (A + -S)[I) it follows that A + a* belongs to'both I and ,
-+ a. So, since 1-+ Z H 1. 1 + = I. Hence, if g. E [1] then
+ I.

The exercises of Part F may prove difficult and it may be wen to
treat Exercise 1 in class before assigning Exercise 2 and sonic of
,section 7.06 as homework, The technique`introduced in these exer-
cises and developed further in section 7.06 will be of frequent use in
Chapter 8 and later.
Answers for Part F
1. (a) Note that B +

(h)

Since

-.1
+ -a*

= [I]
[1}, it follows that A + a*. * -4.

As indicated in the hint, cIimn, if and only if s-

C = A + (B A)c1 [or, equivalently, C (A + -a*) + [(B + "S-1)
(A + g)1c2] where (c1,c2) is a solution of the equation:

A + (B A)c1 = (A + + [(B + (A +

Using Theorern 2-5(b) and Theorem 2-2 this equation is4seen
to be eqUivalent to:

(B A)c.1 = + [(B +11) - (A + i*.))c2
Using other theorems or mere compion sense this
reduces successively to:

(B - A)c1 + [(B A)

(B A)(c1 - c2) + (- - 1) = b*
This latter equ_a.tion is satief,ied_if G2 = c1 and c2 Z. And,
since (B A, a) is linearly independent it is satisfied only in
this cAse. Hence,

CC/ rThrn C = A + (B - A)2.
So, t.he oni.y.point-asked kor is A +.(B A)2.
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B C. [Why?) So, we shall consider this case-1 that is, the case _in
which (A, B, Cf is noncollinear. In this case tii = [A CI and irn1
= 1/3 Cl. So, our problem is that of deterniining,

when AA, B, 0} is noncollinear, do A[B CI
and h[A -1 have a commompoint4

If it turns out that ;VB - fl h[A - -(1 0, the next problem will
.be to describe the point[or poirg,$) which belong..to this intersection.

Before reading further try, now, to find a point in A[B C
11 [or to show that there is.no such point]. If you fail, con-
tinue reading until you reach a glace from which you can make an-
other attempt.

Repeating the reasoning which led to the solution of Exercise 1 of
Part F, we note.that a point P belongs to ALB - Cl if and only -if 3, P
= A + (B - C)x, and that it belongs to k[717=C1 if and only if 3, P
= B + (A C)x. So, there will be a point in )i[B n h[A
corresponding to any ordered pair (a, b) which satisfies the equation:

(1) A + (B C)a = B + (A - C)b C
In fact, for any such solution, the point A + (B C)a [or, equivalently:
the point B.+ (A C)b1 will belong,to the intersection. Our problem,
then, is to See whether (1) has a solution and, if it does, to find all
solutions of (1), [You may be able to find a solution of (1) by inspection.
If so, that's fine. You've solved the first part of therproblem.

Simplifying equations like cp is not difficult ifyou remember that
you (tan deal with expressions tor points and translatons in the same
way you have learned to treat real number expressions as long as the
results of your dealings make sense. [Recall the discussion preceding
the exercises of6Part E on page 294.] Following this lead it is easy to
see that (1) is equivalent to:

[A + (B C)a] = (A - C)b;

that-this isequivalept to:

,(A 13) + (B C)a = (A - C)b;

apd that this is 'equivalent to:

(2)' '(A - B) + (B C)a + (C A)b =

In fact,, with very Itttle practice, you will bi; able to go imtnediatelY
froia (1) to (2). Equation (2) may be simplified still furthdr by using
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2. (a) A + = B + -d*.a '4=> B.- A -;(1 a)'.,
A + a + ad. hesauie a V[13 - A] =

.then A +, # B +,aa because .A # B.

So, if a 0 I then
[I]. And, if a = I

. .
(h ) As pefore, C if and only if' C = A + (B - A)c1 where,

giowN

A + (B A)c = (A + + [(B + - (A + iinc2
that is,

(13 A)c1 = + [(B - A) - -1'(1 a)]c2,
(B A)(c1 c2) + -;[(1 a)c2 11 r- t.

Since (B.- A, a) is linearly independent, this is theocase if
and only if

c1 = c2 aryl (1 - a)c2 f. 1.

For .a I there is no solution [as one should have suspected
since, in this case, I and in are parallel]. For a # 1 the
only solution is c1 = c2' = 1/(1 - Hence, in this case, the
sole point common to I a'nd in is

A + (B. A) TI-T.

[Note that this.checks with the an.swer for Exercise 1, whe,rea = 1/2.)

Answer to Question. If either A = C or Ps C then the lines in
questi n have C in common.

a

IC 297 (1)

The proof that
4004'(P = A + (B C)a and P B + (A

4=4>
fp = A + (B - C)a and A + (B - C)a B + (A - C)b)

involves mai y the rules for 'and' and the replacement rule for -equa-
tions. Using e [as shown below] we can derivdeach of the displayed
conjunctions from the .other. The biconditional follows, once the dedtiCe
tion rule hiiiBeen applied to euc'h of the giveri derivationn. To simplify
[and generalize] the derivatickne we use 'sa' and 'tb' to stand for PoInt-
terms such,as 'A + (B C)a and 'B + (A C)b' in which the real
number variables 'a' and 'b' occur. [This is an extension of the nota-

'tion used in Chapter 6, where 'Fa', for example, stood for a sentence
containing 'a'. ]

P sa and P = tb

P = ea and P = tb P = sa and P = th

P = Sa P = th

P = sa sa = tb

.P = ea and sa tb

NM
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P = sa and sa tb , P sa and sa , tb .

P sa and sa tia sa tb P sa

P si and P Lb

P tb

So [for any replacement of 'sa'. and 'tb' byyoint-term we havethe theorem:
(P isa and P tb) C:==tb P sa and sa tb)

From the only if-part of this theorem we can infer:
(P sa and P = tb) sit tb

from which to1,1)ows, successively:
(P.. sa and P tb)3 3 sx ty

74 y
The converse of this last follows from'the if-part.of the biconditional:.

(1) , sa and sa tb) ( P = sa and P tb)
(P sa and sa tb) .3x (ax X = sx

(sa -- sa arid sa , tb) .3)( (3x X = sx
sa - tb =3x (3 X 'sx

.3x,(ax X = sx
iion I has a_solution if and.only if thereSQ,

existo a

3 3 fix tyx
for example, equ
point common to A[13 C ] .and B[A C.].

and 3x X --- tx))
['sa z sa'and 3x x = tx)

and 3x X tX)
is a valid
sentence]and 3. = tx)

Students who recall that A + (B. C) B + (A'- C) will see, "byinspection". that (1) is satisfied if a -' 1 and b 1 and be able to
conclude that A + (B C) belongs to both A[rn] and B[.1), They can.-then argue that these lines contain no other common point. For, if they
did, it would follow that A[m] B[f], B E A[m], A[rn] B[m] rn,
and, finally, A E rri BC contradicting i'he assumption that{A, B, is 'none ollinear .

As case of students who are learning to solve ordinaryalgebra ations, the ability to solve equations like (1) by inspec-tion is a e one, For one thing,-a student who displays thisability pro y understands what is meant bY "solving an equation".On the other hand, the more formal algebraic techniques of solvingsuch equations rnist be mastet-ed, for no student can solve ail suchequations by in ction.
((A B) + (B C))+ (C - A) (A C) + (C A) = C C = 03,

By Theorem 6-12, if (A B, B C) is linearly independent and
(A B) + (B - C) + (C A) = d then (A 13)1 + (B - C)a + (C A)13 =if and only if 1 b,

Since P = A + (B - C)a,' and a = 1, P = A + (- C)1,
We have shown that A,t, 413 C)1 = B + (A C)1.., Suppose, then,thdat P A + (3 - C)1. It follows that (P = A + (B - C)1 and+ (A - C)1) and, so, that (3 P = A * (B C)x and

ax P B + (A - C)x) that is, that P A[B CI rTh B[A C],
Hence, if P A + (B - C)1 then P E A[B - C] eTh B[A C ].
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On the other hand, suppose that P A + (B.- G)a andP B + (A C)q,.. It follows that A + (B C)a = B + (A - C)1.) and so,as we have shown, that a = 1. Hence, if (P A + (B C)a andP * B + (A C)b) then P = A + (B C)1, Consequently, if
(Bx = A + (B C)x andlf3 P + (A - C)x) then P Ap+j,..13 r C)1.

_...10.-gliort, if P A[B C1,.(Th B[A - CI. then P A + (B - C)1:
* .

On TC 297(1) we showed that any sentence of the form:
(*) (P sa and, P tb) 4==z (P sa and sa tb)

is valid. 'quation (1) is of the form:
tb

and we have proved a corresponding bicondit-ional sentence of the form:

11,

( la) 1 sa.e= tb 4..(a = c and b .- d)
So, for the particular choice of the terms 'sa' and 'tb' niade here, wehave the theorem: -

.
1

( P = sa and P :- tb) ( P = sa and a ,.: c and b
In partiacular we have [sinCez.'P = sa and a , c' implies ' `, se]that

d)

from which
(P = sa and P tb) P sc,

follows that
(3x P sx and 3x P tx) P sc.

On the other hand, suppose that P = sc. Since we have proved thatsc td, it follows that (P sc and P td) and, so, that(3x P ,sx and a x P tx). Hence,
P =,sc (3x P sx and 3x P tx).

In summary, since any sentence of the form (*) is valid, any sen-tenee of the for'rn, (**) has as a consequence:
(3 P = ix and a P tx)4=te P = scx

e" 5
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..1 Postulate-3. Ond this is a point at which you might, if you have not
already dt...Ine so, start off on your own.) Another way to continue is to
note that

(A ) ,+ (B C) + (C: 7: A) - 0 [ Explain. ]

and bp Teminded by this of an earlier theorem. ,Try to recall this the- .

orem.1 Since we are..considering the case in which {A, B, C} is non-..
collinear .this theorem tells us that equation (2),is equivalent to:

J. a h fExplain.)

Solall at once) we have discovered that, for {A, B, CI noncollinear,

P'e *A1B Ci II 13[A Cl P = A + (B

[ Explain.[Iln other words,

(*) :4113 {A + (13 C)}
[ {A, B, C} noncollinead.

'Of course, we might replace the right side of this equation by '{B
+ (A C) }'; but we don't ..neeetithe work we have done here to tell us
that. [Do you see why not? And, do you see how yoti, might have show,n
that A + (B - C) is a point of the intersection as soon as you had
written down equation (1)? How could you have shown, then, that
there is no other point in the intersectitm?) The sentence (*) is useful
enough to rate a nurnber. We shall call it Theorem 71-11',

Exercises

Part A
1. Use equation (2) on.page 297 and Postulate 3 to prove

7- 11.
2. Suppose that C E m, fml fa. Show

rn 1 0 if and only if "D C fa, b). fHint. First find
this theorem means by drawing a figure. Then, writeAn
which is solvable if and only if bl/i 0 fit

3. Prove:

"Theor01 7-12
bid n m øs*.bm n I ?6 0 [I n m 0 0]

Theorem

that Mil
out what
equation

[MO For 1 n m 0, there is a point say C - such that C 1,n1n.
And, for any lines land m there are non-0 translations-say a andl
--ouch that fli = [a) and itnJ = [131.]

Answers_for Part A
1. Note that B C = (A + (B A): Using this and equation (2.).

we obtain, in turn: *

(B A)[-1-+ a) + (C.- AnAla + bj

2.

Since (B A, C. A) is linearly
latter'thac

-1 + =.0 and
That'is, a = 1 and b. 1,

Hence, the only point in A[B C] t- B[A 7 C I is A + (B C),
This proves Theorem 7-11,
Here is a figure that illustrates
the meaning of the theorem,
[However, it is not assunid in
the theorem that -(i.,1;) is linearly 'I
independent.

Ttelheorern sa.ys that the
lines D[I] and m have a point in*
common if and only if D C is a linear combinati of -a* and -C.

Since P D[i] if and only if ax P D + Lc, and P In
if 3...P + 1x, it follows that

D[1] (Thni00 x4=tB 3 y D+-Sx

independent it follows from the

eSv
-a + b .0..

Sice
C +

D + a C +-1;1) 4=> D - q + bb

it follows that.
D[1] rTh rn 0 4==: 3 9 D 11'2'LE +

4=PD C E izej,\

As suggested in the hint, we can for a prope,rly chosen point C
Use the result of Exercise 2:

D[i] m 0 c;=: 12) - C E 11]

Since m r I = we can also for the same Point C infer.
that

if and only

Since [13, J it follows that
D[i] m 0 P [rn (Th

[Of course, the eXistence of a point suoli as 4 deli:lends on thO
assuingtion that I rm in *. 0. ] .
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,4. Show that mai n 0 if and only if & A E [

5. Civen that {A, BC} is noncollinear, show that. _

(a).Ak.) fl hO o cdB A, C Bi and 61
tbi (c'c IB C BI and e*it - B1 Aftl n / 0

(flint ti)r 1)): On assuming the antecedent of (b) we may
pose that there are real numbers-say ci and c,--such that

_.__. and 0.1

Part,11
1. Suppose that / is a line, that A and B belong tml, and tha #,

Suppose, a4io that h and c are translations such that c (a,
(a) Show that

Part C

(B ; b.) (A +- ci ra,

(Hint: Why does B A E 1;J?J, '
(b) Use l'he result of part (a) to

show that
-iA iBt b) is a line;

*
(ii) (A +- c)(B +- b is not parallel to 1;

(iii) (4A + ci(B + hi n 1 = 0.
.2. Suppose thlit I and m are two lines through C, that P E 1 and P *4C,

and that {1J = End , [bf, and c 0:[Draw a picture!]

(a) Under .what conditions would you expect PEefta intersect rn?
(13) Show that.

Pfeil * 0 4-0 W.E[fi.,.11.and (61)

In each of the following exercises you are given tianondvectors
a and 1; such that [6'1 = In each exercise estimate the value of
'b' such that b. at.

(a)

(C)
AO-

1.

(b)

(d)

2. In Exercise 1, list the 'parts for,,which the value of 'V'sucti that
db is greater than 0. 'Also list the parts for which b < 0.

69#)

4. [The proof is that of Exercise 2:]
B + = A + ay

3 y B A = yx

[It is perhaps worth noting that it has loot been assumed that either
7.1. or g is non-& So, since A[5] = {A} and [& [g], 'the ,
theorem tells us that A E B[g 14=> B - A E [11 ]. Since p[UJand [d] {d} the kheorem also tells us'that A - B :=> B A =. .

Neither Of these res'ults° is new, but it is interesting to see how
appa.rently unrelated results are, in fact, connected with qne
&mother. It will be seen that one cif the advantages of the present
approach to geometry is that it shows unexpected connections among
seemingly unrelated theorems, (The preceding is, admittedly, a
very trivial example. )]

5. (a) Suppose that A[j] (Th BC 0 , where {A, B, C) is noncollinear,
It follows that there are numbers say, p and q uch that
A + cp B + (C B)q and, since AIM p 0. SO,
cp - (B - A) 4' (C - B)q and; since p 0, C"E [B - A, , B].
If E [C B] then so does -Cp and it follows tlet for some
number say, r -- (C.- B)r = -Cep = (B A) + (C - B)q,
contrary to the linear independence of (B - A, C B), So,

B]. Hence, for {A, B, C} noncollinear, if
AI-C] BC # 0 then E [B A,,C B.] and -cr Fi[C B].,
Suppose that i*E [B - A, C B] and f/[C B]. It follows
that there arc numbers say, c1 and c2 such thit
c = (.B A)c 1 + (C B)c2 and c1 # 0. So B,- A =. c
+ (C B) -(c2/c), from which it follows that B + (C B)
(c2/c1) = A + So, there is a point [the point
A +, c /c11 which belongs both to A[J] and to BC. Hence,
.

c [B A, C.- B] and c [C B] then A[c ] rm BC # 0.
1

* * *

(b)

Exercise 5 can also be solved by relating it to Exercise 4. Doing
so will bring to light a resulLvhic e sh 11 come upon later when
dealing with planes, Since BC = B it follows from Exercise 4
that

ArtirNBC*04=PB-ACk*, C-13].
So, for (a) and (b), respectively, it is aulfigiont-to'es-tabligh the if-partand the onlyli-part of:

(*) (Z*E [B - A, C and -CP - 44=>B - A [CP, C B],
for' {A, B, C) noncollin-dar. These are easily established by argu-
ments similar to those given above for (a) and (b). Inspection,of (*)
suggests, however, that it is merely an instanceof a theorem which
has nothing, explicitly, t9 do with points:

(**) e -A-5] and -Cj[tD4=a4t. e[-C,11] -[(1,10) linearly independent!
This is the case, and a mere,ly notational modificaticm of the arguments
which would establish (*) will, serve tJ prove (**8); As it will turn out,

69,

e
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the only if-part of (**) 7- which does not require-the linear independence
of (S,F) is the mort interesting. Its proof is essentially that given
fdr part (b.):

Suppose that c- E [a, b 1 and C. [ 1. It follows that there are-numbers say, c1 and c., such that c ac1 gc,, and cl # 0., ---So a c /c 1-7 R. /C from avhich it follows that a E [ c, b 1.
Hence,

(c. C[-ati iFind k/[ 8 ]) -a [ ,

'From this result it follows easily that
(w**) and j [ g I) [ g

For, if c [ g then, since g g I, V, I

similarly, if [c ,1? then g [CI', ].

The importance of .(***) is that it show,s one way of choosing a new
basis" in a given bidirection [ a, g ] equivalently, of ma'king a

"change of'coordinates" in a given plane,. Moreover, it leads, as we
shall see, io more general theorems of this nature. As first step,
note that, by two applicationS of (***) we obtain:

({-j, a} [ g j and 7c.il[g and a. [ ]) a [

For assuming the antecedent, we have directly from (***) that
Since, by assumption, a c [--;,r,..j it nowIollows that

[c, ] e 1. So, since a 9, jt follows from an instance of
(***) that [4, e] ,[g,,c 1. Since [ c, = it follows that
[c.a[ f g ).

Finally, we obtain the very important result::
[ a-, g and (c-., d) is linearly independent)

For, assumin thT antecedent, since (c,d) is linearly independent it
follows that a j[c ].

g
So the desired conclusion will follow from the

preceding result unless c,belongs both to [g] and to [a ]. -[11 c al
then the conclusion follows from the instance obtained by inter anging
'a' land 'g', together with the feact that 1,1,-Z-Le= [a, b 1, Now, since '
(C., of) is linearly independent, c 0 5. SO, if c belongs to both [a] and
g1 it follpews that [a 1 = = Li; 1 and-it follows from this thai
a, b - [c 1, But, since d [ a, B ], this implies that a E oon-

tradicting the assumed linear indepenaence of (ce, 4).- So, lila 1 iTh[11]
and, as remarked above, the desired conclusion follows,

_

Our final result can be stated as "Any two linearly independent
members of a bidirection form a basis for the bidirection". It will be
of use in proving a theorem for planes analogous.to Theorem 7-1 for
lines. In particular,' it has as orA consequence the fact that three non-,
collinear points [or: two intersecting lines] determine a unique Plane.

Answers for Part B
(a%) Since (B + 11) + -c°) (B - A) + b - and since

B - A E [1] = [a ] it follows that. if LB + ) - A + ) E, i;
then c E 1;1. 'Hence, since c 1[ a, 1-; ], (B + -8) (A + C6)

[ i
(b) (i) Since e (.',17;_j it follows from part (a) that

(B + - (A + c) * 6. HenCe, A + c and B+ g a e
, two points and, so, (A + -Ce)(B + is a line.
(ii) [(A + -C*)(B + g)1 [(B + g) - (A + -C)1 and, by part (a),

this_ediiection is not a subsetof [7S,'51. But, [I] = [1.1
C [a, b]. Hence, the two lines have different directions,
and, so, are not parallel.

1.

2.

IC 299 (3)
ga.

(a)

(iii) SupPose that (A + C.)(B + r 1 4 0. It follows that there
are numbers say, p and q such that

= A 4 q,

c -t (03 A) + C°))p

( 1 p ) = q p (B A)p.
Since B A E follows that 7c* E [ ] unless
So, since C. gill, 1, p = I and [from thelast equation

= (B - A).
<

So, since B - A E j, C [at.] [1]. Hence, if
(A + -0(13 + em 1 .# 0 then 1-; E [1] that fs, if g
then (IV+ Ce)(B + g) rTh = 0 . [Note that the converse
also holds.. For, if t [I] then, since B E 1, B + b 1.]

When CS,5) and [i; J.
(b) Since P and any two points of

follows directly from parts (a) and (b) of Exercise 5.
Part A, page 299.

Answers fdr Part C
1 (a) 2 (b) (about) -4

(c) (d) ,

2. In (a) and (c), b > 0; in, (b) and (d), 0*

are noncollinear, this

IC 300 (1)

In ;section 7.04 ai.id its commentary we gave reasons 'for interpret-
ing 'the direction of a' as referring to [-al]. The somewhat 34bitrary
choice of including b. in the direction of every vector [and ofevery line
has paid off in added simicity. Yor example, with the Chosen defini-
tion we can say that, for a * 14, the line through A in the directiori of

is the set of all points X such that X - A is in the direction of a.

st
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7:07 The Sense of a Vector

We have already_ agreed that the direction of a vector a'is the.set lal
of all multiples of a. As Part C on, page 299 reminds us, proper trans-
lations which have 'the sa'ine direction may havel',ither the same sense

seor opposite sens. For example, the vectors a an all four parts of
of Exercise 1 have the sa cqs? direction; but those in part (a) have'the

,sa_me sense while those in part tb) have opposite senses. Intuitively,
non-0 vectors have the same sense if and onl. if each is a multipleV
the other by sorae positive ilumber. So, as in the case of 'direction', it
seems reasonable to define the sense of.a non-0 veator .to be the set of

'all multiples of this vector by positive numbers. To avoid restrictions,
we need also to dkefine the sense of 0+and, again as in the case of `direc-,
tiorf, the choice of this definition is dictated by convenience. As it
turns out, it -is most convenient to define 'sense' so that the sense of
0 is the empty set. These considerations lead to:

11 Definition 7-8 (di. (-;;11(farid x ax

an0 to reading 'Ial as 'ihe sense of a' . IRead 1,0' as 'there exists a
real number 2 greater than 0 such that'. More formally, a sentence of
the form r is equivalent to one of the form 1. (x > 0

d )'.I In whrds, Definition 7-8 says that [a]' is the set of all
non-0 translations that are positive multiples of 'a.

The somewhat complicated_ form of Definition 7-8 yields the de-
sired resultslon senses of nond vectors an;:l of 0:

Theorem 7 -13 (a), tal: x: XI= °X} [o,4 0
IOT =-0

Translations ri. and 6'have the same sense if and only if fcM 9 161,
-otherwise, a and lihave different senses. For a and b to have oppo-
site senses, each -or, either - must have the same sense as the opposite

--ot the other.
As an example, let's consider.a proof of Theorem 7713(a). Since it is

clearly the clise that, for any.a, [al' C {x: 3, x a.x) [Why?), what

-we need to Show is that, for a 5k' 0: if = then . (Explain.]
For this we nee/I to show thatr for .Z76 if > 0 and %.=-. a then

A'0" More simply, we must show that i'f7i (fand b > 0 then a $
This last follows from an earlier theorem and the fact that if b > 0
then b 0.

An analysis like the preceding is as good as a,proof-'assuming that
you can giye the required explanations-and is often easier to under=

60
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[Theorern'7-5(a)J. f the direction of a- had been specified as consisting
of the proper translations in [.T1

] then the same line would have to be
described [in terms of 'direction'] as the set of'all points X such thateither X A cir; X A is in the direction of Complications of this
nature would have occUrred throushout and, in, addition, we would have
needed a new notation., say, 'd(ar or 'NIL.; to use in referring to
directions of vectors. Were it not for these two objections, a good case
could have been made on the grounds of the intuitive connotation of
'direction' for excluding V from all directions..

Objections of the kind just brought up do not apply to lirni t'our
choice of a definition of 'sense' We shall, in any case, nelel to adopt '
a new notation. IlIrthermore, the sense of.a vector will be referred to
in describing both rays [which contan,\ their vertices] and half-lines
[which do not]. So, we can expect that, %vhether We exclude 7C5 from
senses or include it in them, we shall encounter the same complications,
in describing either rays or half-lines, which we avoided in the case of
lines by including .4 in.all directions. These considerations set us free
to follow intuition more closely and to exclude .6 from the senses of, atbest, non4 vectors. Intuition would probnbly urge that "d as no

d lead
ense'

e sense

sense", But to leave the phrase 'the sense of undefined woto further complicatioo. Applyin&to 0 the same definition ,o
which seems satisfactory for non-0 vectors leads us to take
ofq. to be 0.

The notation '["]4" seems a natural one, btit it has one forinal
disadvantage. It suggests that the sense of a vectdir results from
carrying out some operation on its direction. This is, of course, note
the case. If a 4.6 then, even.though jz:1 it is not the casethat [ii:r , r. This apparent exception to the usual rules of logic
for equations can be explained by noting that the ' in '[ ]' is not anoperator. Rather, one should think of the complete symbol r asan operator,

The captions 'Definition 7-8' and 'Theorero 7-13' could perfectly
well be interchanged. We shall, .in fact, make most use of Theorem
7-13. The only reason for not adopting it as a definition is that we have
h prejudice against what might be called "definiti'an by cases" in con-trast to "monolithic definitions".

See TC 289(2) for remarks on restricted quantifiers'like 4
-rx > 0 '

AnsWer, for 'Why?::' If # 'CT and Sx > 0 = _then
Sx c - ax. In other words, if C. E ra'r then -C`,E 0 - as'x

Analyses Ulve that referred to here have been discussed in the
commentary in connection,with the proof of Theorem 7-1. As an indi-
cation of an understanding of what is going on, such analliitra are oftenbetter than more formal proofs. Unless you have good reasons to the
contrary, allow studepts to present such analyses when proofs are
asked for.

Proof of Thelirem 7-13(13): By definition, if C'E (-dr then c Vand there is a nuniber' ,say, a such that a > 0 and z- Va. Since
t5a it follozs that if s. [VP' then c 0 V and "i; -d Since it is notthe case that c V and c = follows that [far any c ]c cdr.since [dr T, 0.

v

4'
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stand. It is easily turned into a more conventional proot by merely
turning it around:

Suppose that a 0 and that b > 0. Since 0 > 0 it follows that
b 0. and so, .by Theorem 5-5, that (lb 0. So, fbr a y6 0, if b > 0.
and t) czb theri 0- that is, ifq, = ax then h 0. Hence,
for a , 0,

b and ], = (ix)

Consequently, Theorem .7 -13(a).

E xerthes

Pal:t A

Part B

Draw an arrow describing a proper translation t.) and mark four
points A, B.C. and D.

I. Draw the set of all images of A under translations which belong to
[b l. and the set of all images of B under translations which belong
to fcl-b1'. Does A belong to the first set? Does B belong to the sec-
ond set?

2. (a) Choose a translation a, e [b; l and draw an arrow to locate the
image of C under a,.

(la) Similarly, locate the. image of' D under a chosen translation ,

a, t b.1..

(c) In the_ same way, locate the images of _13 under a t anslation
a I bl And under a translation a

1
E

3. Referring to the translations (21, and a, of Exercise 2, tell
Which of the following have the same sense as-IA.1nd which have the
sense opposite to that of b.
(a) a; (b) (c)

(e) + .b (f) -3 (g) 5 (h) -5
() a + ( j) (41 +-4) -2 (1) al,

4. Which of the vectors of Exercise 3 have the same direction os

1. Show that -,
(a) O't [ , (b) a* 0 a
(c) faj4- =' 'a* .74 0. [Hint: Use Part (b).l
(d) b*[(2)* - c.17911V

II- I int: Complete: (.= dand b c;b)

(e) [CP = 0 [Hint: Use part (d).],
(f) [of' n = 0.

2. Prove: ,

(a) .b'e [-b)* [Hint: UR the fact that if b > 0 then b 56
and lb > 0.]

(13) :b.( fol'' 7 [At.

0

Parts
Parte C is
another re

TC 301 41)
4a.

A and represent a reasonable.hornework assignment.
recommended as an in-class activity, Parts D and E m
sonable homework assignment.

.0

Answers for Part A

- -- -
3, al, a4, al + b, a2 5, (a3 + a2) -2, ;,i+ have

- Pa2, a3, a:4 -3
' -a 5, a3 + a have the sense opposite ro2

4. All but (a f ;4)0 have the .same direction as

same

Answers for Part P.
(;) Suppose that

p Thus,
Suppose.that a
3 a =x 0
then,

sense as r).
that of 11.

c ra*]÷. Then, P. 0 6 and 3x = x. So,

if p = .6 then P. /fa. i+. That is,
* Since -a' = and I..> 0
So, d and 3 x
Hence, if -a* 0 .6 then a c }÷,

it follows that
By definition,

Suppose that 0 15. Then, by (b), a E [a ] so that ra.] 0.
Hence, if a' # 6 then Ia. r. 0 0. By contraposition, if
[R*r = 0 then a. =

If = d and = -a.b then = 6. So, if -a. = and 1:43 e [-a.r
then 13 = But, if 1-; E t'a'T then ro 0 .6, Hence, it is not the
case that a = and 1-; E [-Sr. in other words, if 13 E [a.i then

By part (d), if -O. = then I; that is, 11 gird r. Since
[D.r c T it follows that [d 1÷ = 0.
Suppose that r, E [-a*]' [ ], By definition, b 0 and there
are numbers say: p and q such that g 0, q > 0,
b ap, and. b = -aqa It follows 'that ap = -aq a.nd, so, that",
a(p + q) Since p > 0 _nand q > 0, p + q 0 and, so,

Since b C j; eTh [ a] + it. follows that 1). E rd.
= 5j. Since, by part (e), b ftf it follows that
1)* [t] [-1]4' that is,. [] ; = 0
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(a), Suppose that 1.; ; l'. It forlows., by definition, that g #
and that there is a number -.--.say, h such that b 7,_.:0 and-
b al). Since b . 0, b # 0 and it follows that .,-. b. b.Sinye b 0, ./b ,. 0 raytd it follows that ; gx..

Moreover, ;: # (15 [.eit}:er by Exercise l'('d) or bei.-au.se
a D

i- ,,
0/ , .' .dmd ,/b # 0]. So, 1), dZ.-finition, a E ill, J.

/fence, ,i-lt. b E a r then .,-; E [ 5 i*..

( b) 4suppos , that [ ,.: r. Suppose, also, t hat j E [ I; r . It 'followsthat c (5 arid that flyere is a number say. c such that
e 0. AtIci c Cc . Since g E [ .i.. r there as a number say,. -..b such that b .. 0 and b a ). It follows that. c (ab)ca( liy) and, sitile b 0 and c .- 0, bc ''' 0 Since
it follows that : E . Ilence.4, if j E i 1-3 r then J.E rthat, is, [ I; r.

It rollows tIlat it -.).E :. r then [i r !. [-a.]. 'So, if .

;I E [ h r then I a If [ Ii.' But, by part a), if g E 'i: r
t h., n ,-.I' E-(1; r. t Hence, if 1.: E [ 'i : r then [; [1,.) r.

TC 302 (1)

Answers for Part B [cont.]
3, Yes. [it is even an instance .of Exercise Z(a)1.; No [[6 r. = [6. r,

but il e [ d 1.1.
IL

4. (a) Suppose that e E H--Zr. It follows that -t7 # b. and that, for
--.some number say, c c > 0 and c = -ac. Since-.. -. -1. ---tac -(ac) jt follows 'that -c = ae, where c > 0. Since-. .. . .,. -.C. 4 -(5, -c # (5. so, -c, E [ a 1 . Hence, if c E Ha* r then- ...-e E [ a]",

ib) After (a), what remains to be shown is that if -c e F a j. then
c r, But, by' (a), if -c E a r then ---ct E
Hence_

1.
since --a = a and -e = C., if [I]. then

c E [-a ],+.
. (c) By (b), c E {rar if -and only if -c E .a 1 and' 7 e []'b if and

4. -. --*

only if s: E [4] . 'Hence, if [ad' -, gr then c E [--1 r if and
only if c E [-gr that is, if [a 1' = [SY then [-.Ir = [ -5 J.

(d) By i'e), if [ a r .= [-i] " then [----a*] , [- -g r., Since --g = g
it follows that if [Ir. [g1" t,lien.[I.;)" = [-al+, F'ror_r.i this
it follows [by instantiation] that if [51 = (-a I then [. a 1+ ::, [-gr.
Hence, [-I I.- = [ -g I- if and only if [11 I" ..= [-,-ST.

5. No. If a. and g have different directions then they will have differ-
ent senses but will not have opposite senses, [If, however, .1 and
17; have the same.direction then eithqr they have the same ssnse or
they have opposite' senses.]

6. No. If a .;= g then a and g have the same sense and, since
g -,- -a, they also have opposite senses. [But, proper translations
whieh have till same sense do not have opposite senses.]

Answers for Part

t1

p and q

a q) P

a

p and q

p =i> (p and ei)

p or q
q (p or q)

g 44==> ( p and q)

q

7 c.
(por q) Ftztoci

(p or q) q

g ;:tt q
'4( p

P 4rq
q ==:a. p

(p .or q)4=:*q . q 4=1;(q and p)

I (p or q) and p)
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'3. Is the.converse of Exgrcise.2(a) a theorem? How about the Converse
pf Exercise 2(b)?
Prove: t
(a)
(1:0 c e [al (Hint: Recall that oppositing is

inverse. I
(c)
(d)

5. S'uppose that -a.and tido not have the same sense:Does it follow that
a and b. Iyve opposite senses? Explain.

6. Suppose that a and tihave the same sense. Does it follow that they
do fl(at have opposite senses? Explain.-

. Part C .

. Sh w thcat inferences of any of the following forms are valid:
. .

p q

p ip and q)
P q

(p or q1.110 q

p4#
(p or q) 4^-1. (q and p)

IAri, inference of the first kind was used in proving Theorem 7-13;
fin infereate of the third kind-with Exercise 4(d) of Part B as a
premiss.: justifies the phrase 'each-or either' in the paragraph fol-
lowing Th&rem 7 - 13. on page 300.1

P art D
1. Consider ha, prpper translitici.n a and suppose that &,is in the direc-.

tion of a.
.0" t

(a)' Can b
(b) If b Vcioes it follow that has the same sense as a?
(e) If your a'ncairer to (b) is 'No.', what can you say about the sense

of any non-O.westor in the direction of V?
2. Prove:

II Thecirem 7 14 = JG4d u (61
4

--Ihrint: In proving "c",_Consiler two cases, a = 0 and a yk 6,1
3. What is tr4e of (a, b)if a and tihave the same sense? If-ciand g'have

opposite senses?
4. Show that la,l) is lineariy dependent if and only if-W= -dor b*=-6

or a.andVnave the samesens,e or opposite senses. (Hint. (i; t,b) is
linearly dependent then a -Vor . . . .)

5. Show that a and I; have, the same direction if and only if they have
the same sense or opposite senses. ;

, TC 302 (2)

Answers for Part D
1. (a.) Yes. (b) No.

(c) Any non-0 vector in the direction of a has the same. sense as
a orhas the sense opposite to that of a. LFor, if id.* b E ]

then there is a number say, b such that ; ab and
b 0. Since b # 0, either b 0 or -b >- 0. In tho first
case, since ; # 0, ; E j' . In the second case, since ; #
and since A.13 --a° -b,, ; 4 [-a r.]

4. Suppose that ; 6: Since = {d}, [d] ,, and = 4, it
follows that [I] = [1]' { }

Suppose that. a # 6: Suppose that ; ]. By definition,
there is a hurnger say, b such that ; = lb. If 11 d then
Las intlie expl_pati6n, above, for Exercise 1(c)], e [a.]' or
b r. If b t5then E {0'). Hence,. if g E rag. ] then
5 -S I+ 1/4-/ {d} [-a ]e. On the other' hand, if 11 E Ill' then

--sx and, so, 3x ; = ax that is, 5 E [l]. Also, if>0
E then E [-a.] ]. Since, finally, tl E ] it folldliks

that 1/.1* Id) [].. Hence, the theorem.. [For
U, this theor`ern- will tell us that, if A E I then ,Vis the 3.inion of

two opposite rays whose Common vertex is A4 See page Z8 And
Exercise 2 of Part C on page 307. Since [a ] r [-a ] 0 , it
Oso will tell us that a point divides a line into two disjoint half-
lines, ] .

1 3, If a and b have the same sense [or have opposite senses] then
ca,;) is linearly dependent.

4, If (a, ) is linearly,dependent,then a = -0 or ; E [Theorem
6-14.11So, by 'Theorem 7-14, if (;,11) is linearly dependent then

= 0 or ; E [a ] or = -0 or 5 [- ] that is, a = or
-0 or ; and ; have th same sense or opposite senses..

5. Su.prose that a.' and b have the same sense. It follows thist
[a ] 7 [i] + ind, by Eiereise 4(c) of Part B, that. [-.;]+
So, by Theorem 7-14, [-a*] = [in. Hence, if a-and have the
same sense then they have the same dirution. A similar argu-
ment using Exercisil. 4(d) shows that if a and ; have opposite
senses then they have, the same direction.

'Suppose, now, _that ra.. and 1-; have _the same direction. It
follows that either a = J.; or -; # 0 # 11, In the first case
both a and 5 have the sense 0, [The second case has been
treated previously. See explanation for Exercise 1(0.3 ,

410.



Part E

7.08 Subsets of Lines 303

Given three noncollinear points A, B, and C, let a B 4. A,
b* C B, C - A, 411 - A + = B + R - A +a*A,
and S = B +
1. Draw an'appropriate picture for these conditions..
2. (a) Find numbers ?n and n Such that N M +

(b) Find numbers r and $ such that S R - ar + Cs.
(c) Use th.e results of ia) and (b),to exprew S R as a linear

combination of N - M.
3. Show the following.

(a) Vg ll'A:SP (b)
(c) N 111 and!. are oppositely sensed.
(d) S R and c have the same sense.,

4. SuppOse that P and Q are points such that,
P --- A + cip and Q B +
(a) For what values of `p' and 'q' is it the caselhat P. = Q?
(b) Express Q as alinear combination of a and 6:

*(c) Show that Q - P is ir the direction of C. A if and'only if
p + q - l.,jHint Note thatIC A = --(;+ Cana that Q P is
in 'the direction of + I; if and only if Q P = +Ili, for
for some LI

for some p and q,

718 Subsets,of Lines

In Chapter 1 We developefl intuitivw notions of rays, half-lines,

a- hall-line A

7AA
I

segment AB
interval Ai' A

'Fig. 7-7

nterva1 s, and segments: In thit*setit-we t11 arrive at-definitions
.

forthese kinds otf subsea of lipes,,Perhaps you:can guess whit. willibe
-.our definition of,. say, AB' . Try "to do so.

Exereiaes.

n'

im

TC 303

Answers for Part E
I. Here is an approp iate picture for the given conditione.

A

s /

Z. (a) From the diagram [or the given information it follows that
N-M=t -4- + r) - i- . So, m = -- i and n = -- i-.

(b) From the diagram, S 7 IR'.= 1:24+ 17,-. so, r =
(e) 5 - R = + t)g-' + -f. = (4' s

(N - M)
[MN] = [N M] [:+ [S R.] =. [RS]. So, MN ItS.
[RS] = [S = +11 = [C A] = Sp; RS 11
From the given information and Poiktulate 3, = + and
N M + 11)4 . So, ax N M = a°2c. Hence N M
land, c are oppositely sensed.

`
(d)" From the given information, S - R. Cae + 12°)-i'= 74. So,

x > S iex. Hence S - R and -Z,have,the same sense..
4. (a) 1 ffor 'p' ] and 0 [for [A + 4 = B + ik if and only if.

A + (B A)p B + .(C - Bk. that int if and only if
(A - B)(1 - p) + (C Ski = -G. Since (A. B, C) is non-
collinear, (A - B, C - B) is linearly independent and, 'so,
the preceding equation is satisfied if and orgy if 1 -'p 0 =-q..]

(b) - P = + - (A + 4) = (B - A) + (1-k - 4) -= p) + 'Se]
(c) Q P E [C - A] if and only if 1(1 p) + Since

+ it follows that Q - [C A] itand

linearly independent, this is the case if and only if
1 - p = q,

Suppose, that P Q. As you know, there is a Unique line; Mwhich
oontas P and Q, and .

. .

= X = P + (Q P)x}
P [Q -

,

We shall define 'AB' so that
45-73 = {X: X - A 6 [B - An

See Definition 7-9 on page 305.3 '
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In th

and

exercises we shall (=wider sets p p2, p, p and pH, where
(X: 3,. .' X - P + (Q -

X P + tQ - pa),
p, (X: X - P + te?
pi (X: X P + (Q -

X P + iQ P)x}-,
p (X: 3,. X - QC- (13 Q)xi.

1. Are hny of these sets nut subsets t5f
2. Graph each of the sets, [This calls for six. pictures. It will help if

you line up the six marks you make for. P vertically and do the,
same with your marks for Q. I

3. How many sets have you pictured? Explain.
.

4. Each of the sets we are considering is one of the kinds illustrated
preceding theie exercises.. Which are rays? Which are half-lines?
Whicli are intervals? Segments? 4

5. Intuitively, p, r, IT(i; and this will turn out to be so, formallyl- once
we have adopted the appropriate definition for 'half-line'. Write .
an equation like that in t he Oreceding- sentence for each of the
other sets we are conside

r
ng. [In one case use an oppwiting sign.]

6. Use your answers for Exercise 2 to aid you in graphing each of
the following sets. ..

(a) 'I), n m .(b) p, U p (c) p, fl pi (d) p, U-p,
(e) p, rrp, (f ) .p2 U pi , (g) 13,11 p, (h) pi U A

7. For each of the sets listed in Exercise 6, tell what kind bf set it is
and give a simple hame for it. [When possible use the kind of
notation illustrated preceding the exercises.1 :

8.. As you discover from your graphe, it appears that p2 - p..
Sllow that this. is the case by completing the' following arguinent:

- IQ + 1 + Q) -a
= + (P Q) '

ands
a 4-6 1 - a

9.' (al Draw a horizontaipicture "of Pit, Below it draw a picture of
the number line with the marks for 0 and 1 vertically below
those for P and Q, respectively. On your picture of N, graph

onyour picture of the numbesiline, graph q2, where
. .

qt x 01.

The s jpuilrity of appearance should be s)iking.
(b) Re t part (a) for p, and an appropriately defined subs* ;

q, of
Write a brace descriptidn (c) 9f q fl qs. (d) Of p2.fl /35.

10. Prove:

IITheorem A + (B A)cf = A + (B A)b

Answers for Exercises
No.

P3

/4

Pe

TC 304

`PI

P2

9

9

3. Five. p2

4. P2 Ps 135, arid p6 are i'ays; pl and p4 are halfAines; there
no intervals or 'segments pictured.

. PR P0; Ps = -13Q; P4 = QP; P5 QP; P6 '-

6, (a) 0 (b) 9

NY) 9. (e) (1)

(g) P 9

7. (a) empty set; 0
(d) line; PO
(g) segment; PQ

(b) line; PQ
(e) singleton; {P) (f) line; PR
(h) line; M

PQ.

are

F: 9

(c) iraerval; PQ

8. -a; (P 0); (1 - a); 1

9. (a)

4

p

1

(c) q2 q5 = fx: 0 x

tr(d) P2 ITh P5 7' IX: 3u (0 5 x
10. Suppose that A (B - A)a 41,. A + (B A)e and A * B. It follow's

that (B A)(a'- b) = and B - A Zt. So, a b 0. Thull,
a = b. Hence, if A + (B A)a = A + (B - A)b then a = b * 13].

Suppose that a = b. Then (B - A)a = (B A)b so that
+ (B' - = ,A + (B A)b. Hencia, if a = b.then A +(B - A)a,

= A. + (B A)b.

1 and X = + (0 - p);))
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Half-Lines and Rays

Theorem 15-shows how, given an ordered pair (P,Q) of distinct
points, one can establish a one-to-one correspondence-between and

X P +- 't(2 P)xl tei-at is, between .4' and the line PQ in.
which 0 corresponds with P and 1 with Q. Intuitively, this correspon-
dence has,. a much more special property than that Of being merely
one-toone it seems to preserve order. For example, points of 14

hich we would think of as being on "the Q-side of P" are just those
which correspond with positive

. numbers and the greater the cor-
responding number, the farther' a'point is from P. It would seem na-
tural then, to formaliZe the first part of this intuition by defining the
Q-side of P that is, the half-line PQ. so that

(1) PQ X: 3,, X - P 4- (Q P).X IP
*

To formalize the second part of our intuition that greater positive
numbers correspond,Aith points which are farther frtim Ptve would
need a notion o4stance. Such a notion will be introetticed later in the
course.

The. Only difficulty with taking (1), itself, as a definitiori is that it
bears the restriction 'P Q'. Intuitively, case P Q there should
be no Q-side Por.1;eiter, the Q-side of P shouldb; 0. This is a rather

'trivial case but would be troublesome if we didn't take care of it. Our
discussion of sense in the preceding section shows how to do this; we
slkiuld formulate our definition so that, for any P and Q,

{X: X P and 3, X P P)x).

The easy way is to ad

Definition 7-9. ta) Afal =

b) -kg = A[B,--A17

{Just, as you -read as 'double arrow AB% read 'AI' as arrow Air.)
Note that 1 is a consequentv of Definition 7-9 and an earlier ,the-
orem. {What theorem?1

When A B it is proper to read 'Ail' as 'half-line AB' [and to read
Tit`as 'line Air.).

Having introduced half-linos it is easy for us to introduce rays:

definition 7 - 10 (a). A[or" ---- {A A[a.
(b) 44413' --- {A} UAL,

[Read Ail as 'dot arrow AB1.) As in the case of lines and half-lines,
when A g it is pro'per to read as 'ray AB' . What set is IV?

1.41

1

TC

s'esc.Q.Ipitence (1) on page 305 is a consequence of Definition 7-9 "Lwhich gives:

4

{X: X P E [Q Pl.)
and Theorem 7-13(a) which. for Q P * d, gives:

3x
{Of course, we also need 'P Q4*Q-P 4' and 'C - P -:1)* 4=i%
C P + b' in'addition to Definitio 7-9 and Theorem 7-13(a),

(Q P)x

For Q P ii, Definition 7,-9
'rtQ 0', as expected.
Definiffn 7-10(b), AA

4 to

-
and Theorem 7-13(a) yield

In short, for any, point A, AA'= 0 and, by
{A).
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Theorem 7 -16 t a) Ail (X: g, X = A + (13 - A)x}
[A B

Exerciims

Part A

Part B

4

I. (a) Fomplete: AB. {X: X - A c
(b) Prove Theorem 7- 16(a) [Hint:-See the note following Defini-

tion7-9.l
(e) Prove Theorem 7-16(h). Csnsider two cpes.]

2. (a) Prove:

11 Theorem 7 -17 C e-,9 (Ad AB and
'Ad = *Ad)

Hint: By Definition7-9(b), Ae AB if [C -
(b) If Ae Ali does it follow that Cc,,.?
(c) If C e Ali What follows about A and B?

3. Show that irA ?,` B then AB' e#A.. !Hint: It is not difficult to de-
scribe a.point of 7411 which, if A B, does'not belong to ra.

4. Shbw that if A C then Ate -x Cb*.[Hint: The case in whicli A - B
is very easy. Assuming that A B, the case in which C eXY is
easy; that in which C Aff is like Exej-cise 3, but splitS into two
cases, one-of which is more difficult]

5. If kg CII does it follow,that'A C? Explain your answer.

In Chapter 1 we dealt with vertices ofiays and half-lines. As you
recall, for A 5.4 B, A is the. vertex of the ray AB and of the half-line AB.
We also spoke of the senseS of rays and half-lines and, as you probably
guess, the sense of 'Aff land of 0 is [B Al+

Before, however, we are entitled to call A the vertex of71.0 we need
to_ be sure that-them-is no othex point which thasame-conventions
will require .us ithe yertex of .0. Explicitly, we need to make
sure that if Xi; = 4CD then A = C. That rays and half-lines do have
unique senses fol ows from the next two thedrems and their two
corollaries.

II Theorem 7-18 AW --trff -- A - C

11 Corollary V =leg 7-* 1I3 in+ = ID C]+

11 Theorem 7-119 & = Uff A = [A B]

11"Coro1lery Eff -- 113 4414 = [D c[4'

TC 306 (1)

We recommend that if Parts A And B a're made part of a single
homework assignment, that you assign a team of students to each deri-

,vation rather than require each student to do" each derivation. Part C
makes a nice class activity. Parts D and E constitute a homework
assignment that is reasonable for all to do.

Answers for Part A
1. (a) [B

(b) By Definition 7-9 C E AB ff and only if C - A E [B A]4. For
A B, B A # -16 and it follows by Theorem 7-13(a) that
C - .A [B - A]' if and only if 3x >,o c A z (B A)x. Since
(a > 0 and.0 - A (B A)a) if and.only if (a > 0 and
C = A + (B A)a) it follows that 3x C A = (B - A)x if
and only if 3x > 0 C A f (B - A)x. Hence,

C E Al3 4=t a c A + (B A)x>0
and, consequently, AB X: gx ), X = A + (B A)x)
[for A # 13],

(c) .For A = B, AB {A} = {X: X = A) = {X: 3x> 0
X A + (B A)x), For, in this case, A 7 A-s+
= A + (B A)a.

For A # B, C E AB c:2. (C = A or 3 >C A+(B-A)x),x 0.
by Definition 7-10(b) ancrpart (b), above. Suppose, now, that-

,

a > 0 and C = A 4- (B A)a. From this it follows that

4,

(a = 0 and C = A + (B A)a) or (a > 0 and C = A+ (B - A)a),
from which it follows that C = A or 3 C = A + (Bx >0
Hence,

3x >0 C = A + (B A)x

(IC = A or 3x > 0 C A + (B - A)x).

To establish the converse, note first that if C A then
(0 > 0 and C = A + (B - A)0), so that

A 0 C A + (B A)x.x
Second, if (a > 0 and C a A + (B - A)a then (a 0 and

, -_.A)a). so that-
3x >0 C = A (B - Agc :=41' 3x 0 ,C (B -

From these two results it follows that .---

(C = A or ax >0 e . A + (B - Mx)
4=4*

ax > C = A + (B - A)x.

Hence, for A 0 Bo c e AB 4P2r> a. 0 c A .4 + (13 - A)x and,
consequently, AB {X: Sx 0 A (13 - A)x}.
[We ttave' gone into sort* detail in order to illustrate the rules
for .''or* and '3'. Much leis need be required of studenti.
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.

2. (a) Suppose that C E 7-CA. It followTr, by definitiOn, that
C A [B - A] and so, by Exercise 2(b) di Part B orii_Lage301, that [C Ar [B - A]*, So, by definition AC = AS
and, by this, AC AB. Hence, if C E AB then (AC AB
and AC AB).

(b) No. [It might be the case that C = = B, in which case
AC 0 AB and C AB.

(c) If C E AB then A B.
3. By Theorem 7-16(b). A + (B A)2 E AB. Now, A (B A)2

(A (B A)) + (13 - 4) B + (A B). -1.. So, since -1 0 itfollows by Theorem 7-16(b) and Theorem 7-15 that, for A * B,
A + (B A)/ 41 BA. Hence; for A * B, AB * BA. [Of course, inplace of 2 one might use any real number greater than 1. Cheresult of Exercise 3 is used in proving rrheorem 7-18 accordingto which a ray has a unique vertex. This, despite its. intuitiveobviousnestp, is a rather important theorem. The correspondingtheorem for half-lines [Theorem 7-19] is much more difficult toprove. The gifficulties are concentrated in Exercise 4. j

that A * C. LI A B then B C and AB n 0 C.
Suppose, then, that A B. If C ii4.AB then C # dB and

(B). So, any point of AB ,otherfhan B is a piaint of AB which,
since it dAs not belong to CB, doesiot belong to C,13. Hence, if

f(AB then A13 * CB. -Suppose, then, that C E,AB [as well as
that B * A C]. Since C AB.and ',C A, C A (B A)c

1where, c 0, If c > 0 then C = A +.(C. - A) A +1(B A)c E AB.
Since C VC13'it follows that AB # CB. To deal with the remaining
case that in which c 0 note that since A 7.0 (A B)c
= [(C B) f (A - C)]c it folloWs that (A C1(1 (C B)c and
that, for c 0, 1 - c > '0. Hence, if c, c 0 then A C + (A C)

--c, Since A it
follows that AB * CB. [The rnotivati$n for the main case that
in which B # A C and C E AB is obvicitis enough, Since,
A c e AB, C belongs either to AB or to its opposite". If C E AB
then AB CB because C 1'1 CB; if C .--AB then, although A riAB,

No. It may be the case that 13 = A * C D. [This exceptionalcase cannot occur if D B; and, as shown in Exercise 4, if--,,,
D'- B and AB = CD then A = C. See, also, Exercise 3 ofPart B, below. 1
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I. Prove Theorem iS, (Hint: Use Theorem 7 -17 and Exercise 3 of
Part A. Assuming thal 'AB" C) show that A C - In
the latter case t A" :AB: Repeat the argument to show that,
this case, C A ore-AC

2. Prove the corpllary of Theoreth 7-18. (Hint: If °AB. 70:1 then
4 B f*Cd.1

3. Prove Theorem 72-19. [Hint: Use Theorem 7 -17 and Exercise 4 of
Part A.]

4: Proye the corollary of Theorem 7 -19.

'art C
In Chapter 1 we define-d the oppo site of a ray for a half-line] to be

the ray tar half-linel with the same vertex but the opposite sense:

I Definition 7-11 (a) A[-Tck

(b) -Ala) =. A[- a*)'

What is the ,intersection of and -AB'? Of.Aii" and .AV?
Show that
I. *All Xfi u {A } II-lint: Recall Theorem 7 -14.]
2. "Ail - u Show that {A U -AB' --.4411.1

3. AB" hoi,v "that. --.Ag C °BA.. A + (A B)c
B IA

4. AR AB' U BA. IA ?` BI.
5. Suppdse that P Q.

la) What- kind of set is the.set of all points of PQ"which are not in
QP?

lb) Give ti simple name for the set described in part (a):
.,=(e) Prove what you have conjectured in part (b).

Part D

.a

Draw an arrow ,to describe a proper translation a such that a
B - A.

1. Locate the pOint M such that M - A = -al. Show that B - M = a.

2. Locate the point N such that N -; A = al. Determine n such that
'-..N - What is_nk,2_

3. Locate P such that P A a2.:Determitie p such that B - P
- rip. What is p + 2? ,

4. Locate (2 "guch that. Q A -- a.. 1. Determine q stich that
B Q aq. . .

5. Which of the following l4ve -the same sense 48.-0? Which have
the, sense of -460"?'I 'AR 'V 7v1

75if 721 tVg Wri

,

6 liven that R - A = deterrnine s such that B R = a r's.

TC 397(1)

Answers for Part B
1. Suppose that AB = CD. Since .A AB it follows that A E CD, So,

by Theorem, 7-17, A = C or A C CD. In the latter case CD
[again, by Theorem 7-17] and since, by assumption, AB = CD,
AB CA. Since, C E CA it follows that C E AB and [as before]
C A or ,C C AB, In the latter case ACc-NAB = CA and so, by

11-IR 1611.
Exercise 3 of Part A, A C. Hence, if AB CD then [in any
case] A =.C.
Suppose that AB = CD. Since B C AB, B E CD. So, = C or

4.0

B - C [ID Cr. Since, by Exercise I, A 7. C it follows that
B = A or B A E [D Cr. In the latter case it folloWs from
Exercise 2(b). of Part B on page 301 that [B = [D C]'.
In the former case AB {A} {C} and, so, CD = {C) and

= C. So, in this case, [B A]' = 0 = [D - Cr. Hence, if
AB = CDthen [B - = [D Cr.

3. .Suppose that A B and that AB = CD. It follows that B E AB
and, eo, that B E CD. Froli1 this it follows that .E-5 = avd,
since AB = CD, that AB = CB. So, by Exercise 4.of Part
A = C. Hence, for A # B, if AB = cr) then A = C. [Students
who have not solved the optional Exercise 4 of Part A should
still be able to apply it to the solution of the present exercilse. ]

1. Suppose that AB = CD. LI A = B then CD = AB = 0 and, so,
C D and [13 = 0 = [D - C]'. If A # B then B E WE. = CD
and, so, B C C ID - Cr. Since, by Exercise 3, A = ,,C it fklows
that B - A E [D - C]' and, so. by an earlier re.sult, that [B A]'
= [C D]*.

*of
Another corollary of Theorem 7-19 is:

[A # 13]
The converse [without restriction] is a corollary of Theorem 7-18,

The notion of the opposite of a ray was introduced on page ZEI.
Note that, hy_Definition 7-900, -AB = 7 Ar and so, 1:4. Definition
7-11(a) [and Theorem 3-5], -AB = A[A - B]'. Similarly, -AB =
AIA - Br. Since, by Exerdise' 1(f) of Part. 13 on 134ge 101, [13 - A]
n [A - Br 0 it follows that AB n = 0 and AB n -AB = {A),

Note that Theorems 7-18 and 7-19 and their corollaries are
needed to justify adopting Definition 7-11%, For example, before adopt-

, ing part (a) of this definition we must be sure thai if ArZrm
then A[4]. = If this were'not the case then the same half-line
would, according to the proposed definition, have two opposites, WI)ile
we would, then, speak/of an opposite of a half-line, we could not speak
of the opposite. Now,, suppose that A[1.1* = Clc'r. With (for .
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abbreviation) B A + and D C + c, Ara' r AB and = CD.
So, AB By the Corollary to Theorem 7-19 it follows that[B - Dr that is, that. [1 j' [Z! l'. Hence, by Exercise4(e) of Part li on page. 302, [-ST , [-C From the theorem itself40-0it fo,llowsthat, tor # A C. so. At-a ]' Y at least inthe case u.whic h a # d. Hence, NXe' have:

(*) AI a C[ c A[-a )', C[-c [ a # ]

In case a d, A d' ilce) and. so. if A r CLJ r ther4. - 0and J 6. So, in case ef, it follows from the antecedentof (4')that -a. , () -c and., so, that /NHS.). , 0 c[-c so, (4) holdswithout restriction, and Definition 7-11(ii) is accutable. The accept-ability of Definition. 7-11(b) is slightly simpler to-establish becauseTheorem 7-1S carries no restriction..
Answers for Part C
I. C E AB 4=: C A E [B [B {-d} A))4.

c==::IC A E [B Ay or C A or C A E'[-(B A)r)
4:=t (C E A r or C. A or C -4A[B Ar)

(C E AB or t - Afro C E -AB)
Hence, AB AB A.} -AB.

i. By 1-5xe rcise 1, AB' ({ A y AB) Li ({A} -) , B y 15 efinition
7-10(b), {A} AB' AB. On the other hand, {A) -AB = {A)

A[A B A[A Bl 1- -AB. 'Hence, AB = AB Li -AB.
3. This follows from Exercise 2 once i, a leen shown that

AB BA.- To do so. suppose that ,--AB "--A[B - A14
A[A - It follows [by Theorem 7-16(b)j that, for. Some

number say, c c ;0 and C ' A + (A B)c = [B + (A B
)- (A B)c 13 +- (A I3)(c 1)E BA, since 'c + 1 > 0, Hence, if
C E -AB then C C BA that is, -AB C. BA.
As in Exercise 3, but using Theorem 7-4.6(a), it follows that, for
A *, B, -AB BA. [This inclusion also holds, trivially, in case
A' B. I Also, for A # B., A E BA. [Here, the assignption that
A O'sB 'is essential.),,So, by Exercfse 1, for A
AB AB Li BA. [Note' that AA A) # 0 AA Li AA. ]
(-a) This set is a ray.
(13) -QP
(c) -By the hint for Exercise Z, '-QP {Q}

440 111110.
Q 111QP and QP -QP 0 it follows that QP (Th -17 0.
By.Exercise 1, QP -OP 151. Hence,' -OP c.onsisto of
just those points of QP which are not in . But, VI+

Since

0
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Exercise 4, for 0 # P, QP QP M. So, be points.of
a which are not in QP are all in M. Since C

it follows that the points of T-Cid which are not in OP ,e pre-
cisey those of OP which are not in QP that is, they soli
precisely the points of -QP.

There is 'another way of handling Exercise 5(c). This depends onTheorem 7-15 which asserts that, for Q P, there is a one-to-one
correspondence between the points of OP and those ort i. such that a
point C E OP and a number c E6 correspond if and pnly if C Q =(P Q)c. Since this correspondence is one-to-one we may deduce
from Theorem 7-16(a) that a point C of OP belongs to OP if and only
if the number corr.esponding with C is positive. So, a point of QP
fails to belong to OP if and only if the corresponding number is not
positive. Now, by Definition 7-1 1(b) and Theorem 7-16(b),
-QP {X: 3x 0 X z 0 + (z, - Q)x} . So, a point C of QP belongs
to -QP'if and only if the cOrresponding number is not 'positive. Hence,
a point of OP belongs to -QP if and only if it fails to belong to QP.The remainder of the argurhent proceeds, as in the given solution, viaExercise 4.

Exercise 4 can be dealt with in the same manner. Use Theorem7-16(a) and Exercise 3(b) of'the following Part D, together with thefact that each real number is either greater than 0 or less than 1.
Answers for Part

2.

{ B. = (A - NA) + (B A) z

ArP

Of

B - N = (A N) + (B - A)
n = I; n + = 1.

+

B P = (A - P) (B A) = + a
= p -1; p + 2 = 1

B Q (A - Q) + (B - A
q = 2; [q + -1 = .1]

ai

=

a

a. '7' = 12,

5; AM, AN, AP, MB, NB, OB, and MP have the sense of AB; AO,
and 15i5 have the sense of ,--111. .4

B -'R = (A - R) + = + a a(1 - 'So, ifR - A = ar then B - = -4's, where s = 1 - r.
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Part E
I. Suppose that P Q.

(a) Find a point in PQ n QP: [Hint: See Exercise 6,.page 304.: and
Theorem 7-161.

(3) Complete: .
13t2 n e)15 = {x: 3, (O.< x P

2. Show that

B + (A - B1a = A + (13 A (1 - a).

))

4
I. Show that

(a) 73X - {X: 3, X = A + (B Ali}, and
(b) BA {X: , X = A + (B Mx} IA Bl.

4. Use brace-notatiOn to desc'rilie'ifif n '1-9X and AB* n.BA.

4 Intervals and Secnents
-

In Chapter 1 we discusse'd intervals 'and segments. Intuitively, the
interval AB with endpoints A and B is tile set of all pointi "between A
and B. We shall merely adopt the definitions we used in Chapter 1:

11 Definition 7 (a) 'AB Ali n
(b) 4A, 13} U AB.

Fig. 7-8

Ft* A 4-lr it is reasonable to read `ABLas :interval Airand (5eg-
ment AB'. As in the cases of 'line', !half-line' and 'ray', We shall use the
wors 'interval and 'segment', only yrith reference to nondegenerate
set4 that is, sets which contain more than tme element. As you might,
suspect, We haye a theorein:

Theorem 7 -21
(ai-4213 {X:<x < 1 and X -= +.(13

Bl

. 4 4'

.1
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Antwers for Part E ... i
1. (a) By TheorvIt 7-16, C C,PQ =1=> ax ), 0 C = P +(Q P)x and

CECTIS.=:::. 3x ,c, C --., Q + (P - Q)x. So, C e PQ rTh QP if
and only if C = .P + (Q - P)a = Q + (P Q)b whi4;re both a

Z. B +

3. (a)

and b are positive.. Now
P + (Q - P)a = Q + (P - Q)b

if and only if (P Q)(1 a - b) = i5 and, since P Q *
the latter-ds the case if and only if a + b = 1. In order for a
and b to be positive solutions of th4 equation we need only
choose a between (Y. and 1 and choose b 1 - a, So, for
example, P + (Q C PO (",,QP.

1; (Q.- P)x [For, it has been shown in pai:t (a) that, for
P ,O, C C PQ m OP if and only if ax (0 < x c 1 and

C = P + (Q P)x)1

(A B)a = [A + (13 - A)) + (B A + (B - A)(1 - a) ,

Since a 0 if and only if I - a 5 1 it follov;s by Exe.viae
that

(a 0 and C B + (A. B)a)
<=4).

(1 - a) 5 1 and C = A + (B A)(1 -

Hence,

ax .0 B (A -B)x

C = A + (B A.
Consequently, by Theorem 7-16(b), X = {X;

A S 4
X A + (B - A)x}.

(b) [Like (a), but use Theorem-7-16(a) and,note the need for tlr
re striction.

AB rm BA = 10 5 x 1 and X' = A + (B - 4)30);,'
= x x < I and X = A + (B A)x).) [A # 1:31

4,1
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Exercises

Part A
1. Show that AB AB 11 BA.
2. Prove Theorem 7 -21. [Hint: Recall Exercise 3 of Part E on page

308.1
3. Show that A? QP and that P4
4. What is .4.4? AA? .

5. If Ail .C15 does it fdllow that A C and B D?11f not, what does
follow about A, B, C, and D? What follows if AR Cr)?

6. If (A, Bi {C, D} does it follow that M tl? That AB OD?
Part B

-As in the case of vertices of rays and.half-lines, we need an "en-
abling theorem" before we are justified in speaking.of the endpoints
of a given segment or interval. It should, for example, he possible to
justify ybur 'answers for Exercise 5 of Part A.

II Theorem 7-22 ta AB , CD {A, B} = id, DI
II [A B1

(b) Ag -- IA, B1 - {C,1),}

The proof of Theorern -22i a) is rather long, and we omit it. But, you
should be able to fill in.-the details of the following proof of part (b).
Better yet, when you get an idea, follow it through by trying to coin-
plete the proof on your.own.

The case in which A B is trivial..[Discuss it. I Suppose, tilein, that
A .sc B, and that 'MI = II. There are numbers-say, a, b, r, and d
- all of which are in {x: 0 x s 1}, such that A - C (D Oa;
B -,C + (I) - C1b,C = A + (B - and') = A + (B - It fol-

. lows that B - A - (D - a) and D C - (B A)(d c); and
that-1 sb - as and-4 %. d - c 1.SinceA 5.6 B,(b -,a)(d - r)

1. So, if Jb - al < 1 then id - cl > 1. Since id - el s 1 it follows
that lb - al 0 1. So, lb - al = 1. We now know that either b a = 1
or a - b 1 and that 0 a s 1 and 0 b 1. What Choices does
this permit for a and b?

Part C
Draw a picture of :79 and below it draw a pictUre ofa line Prii. Mark

the point P directly below the mark for 0 and marlAf directl; below
the mark for 1.1 Consider the following subsets of Q.

p, - {X: 3, x s and X =. P + (Q P)x)}
P2 < X < and X = P + (Q - P)x)}
p, {X: 3i X (Q Px}
p4 {X: X = (Q

1. Draw lightlylour lines below your picture of Pr/ and on each line
graph a different one of the seta 101, P2, Al, pc
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Part A is a reasonable homework assignment, Part B is best as
a class activity. Give the students an opportunity to "predict wHIlst '

comes next" at each step of the derivation. Exercise 4 of Part C
should be discussed in classalso. ;Th,e other exercises of Part Cfs,may be used either as class or homework exercises.
Answers for Part A
1. By definition, AB = {A, 13} Li (AB rTh FIX). Since {A, B) c: AB .

and AB n BA c: AB+ C AB it follows that. AB ç AB. Similarly,
AB C BA, lienCe, AB C AB rm °EX. On the other hand, 'if C E AB

and is not A then C e AB, while if C 6 S"-X and is not B then
C BA. So, if C E AB im BA and is neither A nor B tten

(Th 1Tir Hence AB n BA C AB. Consequently,
AB = AB cm BA.

2. (a) If C = A + (B - A)c where 0 < c K 1 then, for A B,

C E AB [by Theorem 7-16(a)J and C f [by Exercise 3(b)
of Part E on page 108 1. Consequently, for A B,

ix: a. (0 < x < 1 and X = A + (B - A)x)) ç AB. .

On the other hand, suppose that C c AB = AB n BA, It fallow&
for A # B, that C = A + (B A)a where a > 0 and that
C = A + (B A)b where b < 1: 'By Theorem 7-15 it follows
that a = b and, so, 0 < a < 1. Hence, if C 6 AB then
3, (0 < x < 1. and C = A. + (B A)x). Consequently,

AB C {x: 3, (0 < x < 1 and X = A (B A)s).
I-fence, Theor 7-Z1(a).

(b) [.Theorein 7-Z1( can be proved 3 heorem 7-21(a) 'has
been, using Exercise 1, abve, and Exercise 3(a) of Part E,
The restriction that A # B is needed only in the proof of the
analogue of the second of the displayed inclusions. But, since

0, this inclusion is trivial if A = B.
Alternatively, Theorem 7-21(b) can be derived from Theorem
7-21(a) and Definition 7-12(b), in caSe A * B. The case in
which A = B is trivial.]

3. PO = MrTh f-57 = r`s = QP; PQ = {1=2, (1) LI PQ
p) QP QP- ,4. AA = 0; AA = /

5. No. But, if AB = CD-then either (A = C and B D)
(A = D and B = C). in short (A, B) = {C, D). If AB.= CD
then .{A, B) = {t, D} Or (A = B and C D).

6. Yes.; Yes. [If A = C and. B D then, by definition, AZ = CD
and ABr= CD, If', on the other sand, A = D and B C then .

AB = DC" = GI/ and AB = DC = CDA

-s

a
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Answers for Part B
Suppose that AB = C:D. If A 13 then CD AB .{A} and,

so. C D .= A B. Hence, for A 13, Jiff A13 = `CD then {A, 131

{C. DL Suppose, then, that A 4 Li, The existeni2e numbers
such as a, .b, c, and d follows from Theorem 7-21(b) d the fact
that (A, 13) AB CD and fc, I)) CD AB. Since 0 a
and -I -b 0 it follows that -1 a = b 1. Similarly,
- 1 d c 1. By sibstitution, B A [(B A)(d 4))(b a)-

(13 A)[(d c)(b - a)1. So, since 13 A 6, (d c)(b - 1. It
follows that !cl c ID - a 1 and, from facts about Products of-
nonnegative numbers, that if b - al 1 then Id c 1. But, we
already know that -1 'd c 1 that is, thqt d 1. So,

al )( 1 ,and, since lb H 1, lb:- a 1. [The use of abso-
lute values may be av,oided by using properties of reciprocals. ] Since
O b. 1 it follows that if - = 1 then < a + 1 1 that is,
- 1 a 0. Since 0 a 1 it follows that if b - a ,= I -then

0 and b I. Hence, in this case, 'A C And B D. Similarly,if a b 1 then A D and 13 =-C.. Hence, in n y case, if
then {A. 13) {C, 1)1.

The proof of Theorem 7-22(a).is not extremely difficult and, since
it illustrates the notions developed in Part C on page 307 and gives
practice: in using inequations, you may wish to work through it in class.
We assume that AB CD and that A *. B. It follows at once that
M3 * 0 and, so, that CD * 0 and C p. It would be helpful, now,
if we could find numbers like the a, b, c, and d of the proof of part'
(a), This is a little more difficult here since, for example, A g'Cl).
We do know, however, tfLt AB C AB, that CD r.1 CD and that AB
[which is CD1 contains at least two points. 1"rom the last it follows
that AB CD and so, for exarnpre, that {C, D} C. AS. Sol,there arr
nurnbe r say, c and d such that C = A' + (B .A)c and

A f (B;-, A)d. [As it turns out, we shall not use the similar cor-

sequenee of the fact that (A, B) C D. ] Let'si cbncentrate, now, On
locating C. Since A *5, AB = AB BA and, since C E n and

,

C (CD AB AB r- BA, either (C E AB and C FIA) or (C E BA
and C "(AB). By Exercise 5 Of .Part C [page 307) it follows that
C E. -BA or C 6 -AB. .1n the second case we should be able to show-
tliat C A. If we can do so,then we can cvrtainly show that in the
first case C B. So, we shall concentrate on the second case,. and

a-411.
assume that C E In this case the number c introduced previously
is ',less than.or equal to O. .Now, in any event, D 6 AB 7 AB L.) -AB.
Suppose that D 6 (With both C and I) in -AB it would seem that,
CD is outside of AB an impossibility. We aim tO sliow that this is
the case.] Since c e -AB and a E.-AB, both c 0 and d 0.

71 :1
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Answers fpr Part-13 [cont.]

Consoider the point C + (1) C)1 which certainly belongs.to.CD.. Since
C z A + (B - Ale and li C = (B A)(d c), this point is A + (B A)
[c + c Now, c + (d c)/Z (d + c)/2 < 0. So jsince A * B],
the point in question cannot belong to Th. Sihee it does belong to CD,
we have a contradiction and D -AB. So, D E AB and d > 0. ['In this4

case, since C E -AB, we should have C A or A E CD. After check-.
ing on this we may conclude that C A

6. t,hus, essentially, finishin
the proof. 4 Since C A + (B A)e,. A = C + (5 A) -c = C +
(D C) cc d
and, 0 < -c

Since c < -0 and d > 6 it follows.that c/(c - d) 0

d c, c/(c d) < 1. So, A C [if e = 01 or
A e CD AB. Since A E/AB, A C. Hence, if C E -AB then C = A.
Similarly, if C E -BA then C = B. Since this covers all cases it
follows that 'C E {A, B). Similarly, D {A, 13}. Since C 0 D it
follows that {A, B} (c, D}.
Answers for Part C

1

4 4 0
3
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Answers for Part C [cont.)
Z. pl. is a segment; p2 is-an interval; ps is a ray; p4 is-I half-line.
3. P + (0 - P)-1- and P + (0 P)-; P + (0 P) -1 and P + (0

P (0 p)a; P + (0 - P)3
4. ' Since A -t P+ 011 - P)a and B P + (Q P)b, we have that

B - A (Q P)(b a). So,

P + (0 Prr [P + (0 - P)a) + (Q P)(r
A + (Q- P)(r - a)
A + (B -

[Sineg a < b, b - a * 0.] Alsc-i,

b 4:=>0 b-a
4=t g 1.
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2. For each of the sets tell whether you think it is ialf-line, ray,
interval, or seginent.

3. For each of the sets, name its vertex or its endpoints 1whichever is
appropriate!.

4. ('onsider the set p4. This set appears to be the segment V' where
A P Q P); and B - P + (4) P. That is, it appears that

{X:r1x and X P flQ P)x)}

[X: it 10 1 and X + (B A)x)}.

Let's show that this is so.
'No begin with, we are interested in points P (Q P1r, where

r that is, Where 0 i r This,.and the suggested
chola.. of A suggests noting' that,

1)",tLIV - 1)),- 11) 4- (Q (Q - i)
A vt tQ P)(r

Since we have guessed that B P + (Q P), as well as thht
A P. + - - A (Q PYI. This suggests noting that

A 7 i(2 - P!(r I) 7 4 4.1(Q

Combining our results we see that

r -P 4- (Q - Pr A + (B

Final y, we note that.

This completes the proof of (*).
Now you cAhow that, for a < b,

{X: (a b and X, = P (Q - 13).)} *AA .

Aere A P (IQ - filo and B 4.= P 4 Mb.
A. You 'can use the work you did 4g'Exercise4 to show hat.

{X: 3, X P + (Q Mx} - AB, }.

where A P 4- (Q - P)4 ana B P + (Q - P)(a + 1). Do so.
*6. Show that

J
Pt (Q 'P)x} =Iff,

where A P + (Q - Thu apd B is properly chosen. [Exercise 5
may suggest a simple Way to choose B.)

he
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''[Since a < b, b - a C 0.1 So, for a < b,

(a r b And C P + (Q 11r

J

(0 < 1 and Cb - a b a
H.nee, the 6esired result,

S. Taking 1b a 4- .1, we have, by Exercise 4,
p (Q - P)r = A + (B - A)(r a).

Also, r >0
So:

: a and C (Q P)r )

(r a '> 0 and C A 4- (B - A)(r a))
Hence, the desired result,

b. Let B P + (Q P)(a 1). As in the preceding exe'rcises,
P + (Q P)r A + (13 A)(a r)

r .; a a r > 0
Hence:

C P + (Q P)-x

C =- A + (B A)x

Sample Quiz
Suppose that d and that A, B, and R are points such that, for
son-ie a and b, R A - la and B R = -S13. Show that ifB-Ar then a + b = 1.

4:---wCiven the conditions in Fxercise 1, assume that B A -a. andthat 0 < a <- 1. Which of the font:ming are,true and which arefalse.
ar AR C RB

(b) RI3 C AB

(e) RA RB = .AB
(d) AR and RB have the same sense.
(e) RA anil RE have the same sanse.-

. 7
3. 7.n the direcqons for Exe'rcise 2, replace '0 ,4-< a < l' by 'a < 0'

Now, answer parts (a) through (e) with this iiew condition. .

Key for sample Quiz .

i
1. Stikse that B - A = a. By _postulate 3, B - A = (R - A) :I- (B - R)= Ia.+ gla = l.(a -1: b). Since al = a, it follows that a + b = 1.
2. (a) False,
3. a) False-.

(b) True. (c) True. (d) True. (e) False.
(b) False, (c) False. (4) False. (e) True.
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Paeallelism

We have defined parallel lines as lines witii the same 'direction.
Intuitively sp'eaking, each nondegenerate tsubset of a line !that is, a
subset containing at kast two 'points! "inherits" the direction of that
line !Why 'nondegenerate7l. This suggests that we agree that, for
example, parallel rays are rays which are subsets of parallel lines and,
to continue the example, parallel segments are segments which are
subsets of parallel lines. In general, let us agree that a 'first set is
parallel to a setxmd set if and only if they are nondegenerate subsets

, 1 of parallel lines.
Does it follow from this agreement that two segments' in parallel

lines are parallel? How, about two segments in the Same line? How
about two rays with opposite senses?

Exercises

Part A
Consider three noncollinear

points A, B, and C, Where
B - A - a ani4/ C - 13 -: h.

Let 1) di and E B 4' 61.
These conditns are illus-
trated in the diagram at the
right.

1. From 91e, data given, it follows that
(a) E 7- D and (6) C - A

2. Using the results of Exercise 1., show that bris mit parallel to:V.
3. (a) ,ocate,a point F on 47:10 such that ,b-P. 11 he. How many such

points are there? .

031 Since Ft ;#,O,F -- A + (C - A)f, where 0 Ls, f 1. Determine f
10 Express F: - A in terms of 'a/ and
(c1)1Bince 7), 11 730, ii follows that F - D is.in the direction of

:Whet is a relation between nd Nig?-Between br and EV?
s Between F - D and E B? Between F -D and C - E?

Part B
Consider' five lines 1,, 1,, 1,

1 and 1., which intersect as
indicated in the figure at the
right. Suppose 'that 1, 11411 4.
and that a and eare linearly
independent translations, as
indicated in the figure.

7 3
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A degenerate set is either '0 .or a singleton say, {A.). In any
ease, such a set is ,a subset of many lines with differing directions and,
.so, cannot be thought of as having the direction of the line whicli con-
tains it.

Since we have reserved the use of 'half-line', 'ray', 'interval',
and 'segment' for nondegenerate sets, we may Speak of any two sets,
each of which is of one of these kinds as being parallel supposing
of course, that they are subsets of parallel lines.

Note, however, that to be sure, for exarriple, that AB 11 BA, we
est make sure that A B. [In 'the contrary case, neither 7-tg nor

is a ray.

Parts A and B illustrate important applications of our knowledge
of translations.. All students should attempt these exercises.
Answers for Part A

(a) ;iv b.T (b)

2. If DE and AC were parallel then E D and C - A would have the
same direction and there woulAi be a number say, c such that

a + b + g)c = c + gc,
Sin.ce (ii,g) is linearly independent, this would require that c

1

and c = So, there is no fsitich number ai c, and DE and AC
are not parallel.

3. (a) F , A + (1+ g)a, where 0 < a So, F
while C B g. So, BV lh We if and only if there

a.

2 -+) + ba
3

is a num-
.

ber say, c such that
t) +

Since (a",g) is linearly independent, there is such a number if
2and only if a = 0. Hence, F A + + g).4.

(b) Since C - A a + b, f

(c )

(d) D is in the direction of g [or; of BC}.; 5/- I tg;
H rd; [F [E B1; [F D [C -
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1. Determine b and t' such that F C E.-;. and F E
2. (a). Locate the point M such that M AY.

.(b) Show that 1M -1412 F M..
3. Locateapeint R such that R+Lia A and k I) for some

a'and d. Is there more than one such point? Justify your answer.

7.09 Ratios of Translations
If a and h aie proper translations whiA have the same directiOn then

either is the product of the other by some unique nonzero real number.
We shall call this real nu ber the ratio ofthe first translation to the

.econti. It. can be defined by

..11 Definition 7- la a.: -c-m-'0,- be Haliy-- lb*] t0+}]

Fig. 7-9

Note that catios are never 0 and' are defined only for non-0 vectors
which are linearly dependent What do you know about a and bb if,
a : :.7%. 0? If 9 : < 0? If a : b 1? Also recall that, by evlier theo-
rems,' a and b are non-0. Vectors with the same direction if and wily if
a 0 and. We lhJ. Explain.

The following theorem is equivalent to Definition 7-13:

Theorem 7-23 (a) a.= bi : {0 )

(b) : b' [ a :61

-

Corollary (a) : b ail?. [

b 0]
(b) = ba --, b = a,114.[a b 0]

IThe arollary follows from ithe theorem and the fact that, for b 0 0,
ab ba if and only if p

Exercises
Part A

Consider the translations
p, q, and r pictured at the
right, where q. 'A and
r - p -3. Compute:

(b) q : p
(d) r : p (e) q : r

v

c) p : r
(f) r : q

'fc 312 (1) ,

Answers for Part B
1. (B C) + (1: B) + (F + F) d;

+ (E D) + (B E) =. d. so,
-c an a + c + + c - ,

From the latter it follows that g = -1 + CI and, substituting
-

B) + (.3) A)

into the'forrner and collecting terms yields:
.a.(2 b) + C.(1 + c)

,Z 2
is linearly independent it follows that b .2Since

5
c 2- .

(a,c)

2. M 13 + crn z A +13(b 1)]n, for
determinedkin Exercise 1, b 2.. Since

.

-.1,a -1 +
3n)'+ -C.(n m z 6,

5Since ( ) is linearly independent, n = 7 and m E., 5
111,4 = + c E.

4

= D 11:1; - gd + = + c -d +
2; 7. A + a. -2 D + 2.

and

some m and n, where, as
A -"B =, a, it follows-that

and, since

3. A -
d=

a

Because of the line'ar'independence.Of C.) there is no otter
solution., Alternatively, because c .6, A * D*2nd 14-4 is; so,
there is'no more than one point corpmOn to 14 and 15.
In introducing the ratio of proper translations with a common

direction we are -approaeling the notion of distance. Intuitively, each'
translation moves all points the same distance, and the ratio of two
proper translations in the same dir,ection is the quotient Of the respec-
tive distances, with due regaid to the sense-s of the translations., [This
quotient is, of course, independent of the choice of unit for measuring
distance. ] -The notion of distance in will be introduced formally 'Only
in volume 2, and it is not until then that we shall be ajole to compare
the distances through which poiiitS,ar,e, moved by translations in differ-
ent directions for, for that matter, to deal foimally with distances
between points. Until then, squares are indistinguishable from other
rectangles and, in fact, rectangles are not,distingdishable from other ,
parallelograMs.

As has been pointed put in the commentary' thr 'page 18,0 [TC 180(1,2)1
the notion of the ratio of two lengths is bothlogically and psychologically._
prior to thelnotion of computing such a ratio as the quotient of the
measures of the lengths with respect to an arbitra.ry wit length., So it
is far from unreasonable to deal with ratioq.of-translilions before intro-
ducing the notion of distance. To say tliat a .= is tO gay that a
moves'points,tWice as far as i; does hut lit the opposite sense,. Recog-
nition that one wall of a room is twice as faz away from one, to/one's

'left, as the opposjte wall is, to one's right, does not require a prior'
knowledge of yardsticks or of their use in assigning measures to,len.gthol.

fog

790
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Since f'l is a vector space isn which all nonzero vectors have the
same direction, the theory of jatios of real numbers is a spe,cial case
of the theory developed.rii this section. For thissee the Backgtound
Topic on page Sig.

I jig - 0 then a an, g avhe S`en, d h e t same se. If :iiii. -.. 0\then
and g have opposite senses. If a : b = 1 then a g.

If a-* and g, are non d vector; with [ii ) [g. I then, since, a ..f...a f [61 and, of ctiurse, a. d. CM the other hNod, suppose that a
and that a E { g J. 1rFrom the' latter, .a ga where, since a # d, I; d .

and a O. 'So, g a.:a [a I 1

[ g 1 ... [ a ], Hence, if # fl and a E [I; I then i; # d * and FS )
E .a c

,
Since a f [b) and g E la 1, [l .1

,

In view of the'result )ust established, the restricsion on Definition
7-li may be replaced by t E [Stee proof, below, -for Theor
7-2.3(b)?)

Proof of Theorem 7-2,3pil. By 'Definition 7-13, for t a 1 -; [g I
01, if 7:7 % 7 r :E` then a g(-::.:g); So, i-; g(:--;:g). [Qn the'.other

hand, 'assuming that '71" i g c it ,follows by Theorem 7-23(a) that
a -- bc, So, Theorem 7-1 (a) might serve as a substitute for the
if -part ot the definition. I

Proof_ of, Theo rem... 7- Suppdse thiit'.a. : ge. Then, by defini-
tion :4' E

] and, for a t a 51 (d) So, by Definition 7-14,-.a :b = c, Hence, for a # 0, if :1 bc then -ri:b ', c, [On the other
hrand, if [:; I ..- [g1 {(I) then -';' # -d. So, 'Theorem 7-2'3(b) might
serve as a substitute for the only if-part of the 'definition. ]

,Proof of Corollary,_ (a) If a :b a/b 'then, by the theorem [or the
definition], for Pt.] [11] {d},, a g(a/b) and, for b, # 0, ab ga,

(b) If b a then, for b 0, g(a ) and, by the theorem,
fur # a/b,

..
To be sure that students understand,Definition 7-13, we rec1om-

mend that you disceiss Part A in chiss; Parts B and C make a
reasonable hOmework aissignment. Part D lends -itself to an in-clas,s

'activity. Paks E and F are important and should be considered by
each student, followed-by a class disoursiori in which the "geometric'
implications, a re 4mphasized.
Answers for Part As ,

1. . (a) 1/2 (b), I., (c) 113 (d) 3 (e ) 4/3 tn-
.
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2. Here are some 4entences abotit tion4tFanstations. Yor each sen- Answers for Part A [cont.)
2, tence. dtaw an appropriate figusre and write an equivalent sentence 2. (a) f'

S (R S):(P Q) = i.
about ratios of transI4ions. 1Whvh pO§sible, draw figures so that
not all points are wilinvar.1
(a) if? - A ±3 (P 7 0)2 \ (b) (R - S)2,P, (P - (pa .
(c) (M 7 Kr2 --, 11, M):3 411' ( K 1.,13 - ( I, M12
(e) (241 -7-K)2' (NI - L)1 tf) IM Kt2 - ti, - M) -3

L(g) (NI Ki -27. d. - M)3 (h) kM - K)3 kL - M) 1--:2

(4) M..- K L. -: K. r-'2 (j) M K ?I, - M) -1 3
. . 11C*.LJ -(c) . (14 K):(I., -M) -: I,

(k) M .K (I, , P) --1 (1) M - K - I . . M .

,3. Here is a picture of a line PS'. N$ indicated in the picture, E - S

- s):(P Q)

(j,s i. P (S - R) -1, and G R) . (d) (K M).= 311

3

'R K L

(M K) : (M L) -z.,(e)

_

3
(S R) 4) -1

4 (S .

41A) , .
Complete these sentettes.
(a) E - So, (E R) :.(S R)
(b) R).: (G So, I% R (G -
'(c)

'4. Suppos% that P and Q are two points of ajaine I, thatg Q P,
and that A,' B, anti C are points such that A
B P + (.1.. -1, and C P q.
(a). Draw an .appropriate picturfil-far these Conditions.
(b) Express each of the translationsB C A ond C as a.

linear combination of q.
(c) Compute these ratios:

(I) (B A) : (C A) (ii) (C - A) :(C
B) : (13 A) (iv) tC - /315 (B. - 44)6

4. (a) 7;iv'en, tbt (1. ta b, what is a. : bZ What is b"..:
What is a5 : b'3?

(-b1 Csive-n, for.p.-41, O4that,pä 42, wilatisp : Whai isj2
What is p

Part B
O Suppose,that a apd,# are proper tianslations with the same direCtion

..mind_that a :,-ti, -, c.

, 5. (a) 7/Z; Z 7; 35/6,

1. (a) 44aking use of Definition 7 ir 13., express a as a linear combina--_. (b), .2/3; 4/9; -4/9tion of b.
. r. Answers for Part Ba:* Now, using Theorem 7 -23(a)',.express a as a linear combina-

tion of b'. 1. (a) a 'lie
. .
.. . . (*N. 4..

-

4
(M K) : (1- M) 4

, (g) (to .- K):(1- M) ' -

(h) (M K): (L M) r

, (M K) 2'
. L K

(j) [impossible]

(k) K (M K):(L - P) = -1

,
(t4 K):(L 1,4) .-_-_ 1

. K ki L

3,, (a) 5/24 5 2. (b) 4/3:4/3 (c) 74/3 (d) -11 17

. (a)

31
(b) 13 A = -4; C A

(c) (1) fA/3 (ii), 3/5 . (iii ) -s/s (iv) -5 8
4

A-te",
.;

tit
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2. (a) Since a* is a linear combination of b., so is a*3. Making use of
Theorem 7-23(a), express a3 as a linear conThination of g.

(b) Complete: -a*3 .

(c) Complete these sentences. Be prepared to justify your answers.
(i) la*7) : -6* (a. : bL. (ii) (a*. -4) : b - (a*: bL

MD (a*, -4) : g (a* : (iv) -a7: (7;.-2) (a*,

3. (a) Sincea is a linear combination of b then a is a linear Ambiria-
.tion of b5. In palli,cular, a : -6) - (6.5)[(a*: b)1). so,
(i` ih.5) I Complete. i

(b) (',ornvlete these sentences. Be prepared topstify your answers..
(ii). a : 16 -3) (a :

(iii) : it>1).= ta` (iv) a*: (g. - (a.".
4. (a) The re:sults in Hicercise 2 suggest that, for, a i4 0, (aa) :

. [Complete,
(b) The resu4ts in Exercise 3 sugg

lComplett, I
(c) Make use of the gtneralizations

a 0 b, the ratio (aa) : (6.6)

est that, for b s 0, a*: (gb)

in (a) -and (b) to compute., for
ir terms'of the ratio a : b.

'Part C..
1; The following theorem is suggested by *the exercises of Part B:

Part 0

Part E

Theorem 7-24 (aa) : (bb) = (a : b)( b)

Ha.] = {0}, a -A 0 hi

Supply the details of the following proof of Theortem 7-24:
Suppose that ial Ib {01 and a 0 b. It foilows that laa)
1661 {0). So, by definition, (a`a) : (A) - (a : 6)(a0)) if [and

only if).

aa = (A)((a*: b)ia/b)1.

,.But. (bb)Ita : 6)(a/6)1
f/;(a*: 6)1a. da.

2. Prove:

.11 Theorem. 7-25
11

b?;)(alb)1(a.. : (64a)(a* :

a'.a + b : c4= : + : -clb

=.11,1 = {-6},Cia obi

'Prove each of the following theorems.
I: a : a = 1 [a 0)
2. (O': -6)(b* = a.; C.. = 16) = 101 [Theorem 7-26]
3. 6.: -"c; RC; `b*) II ii"(ó'}UHnt : Use Exercises l and 2.]

[Hint: Use two instancea of Exercise 2.]

Suppose that _0, B C) is non-
collinear, b'eAB and D 4, and
E a AV and 4, A.

a

Answers for Part B [cont..]

2, (a) -a.3-4

(b) 3

(e) (i) 7 (ii) 4
3. (a) (1/5)

.(b) (i) (1/12)

4. (a) (Z:)a

TC 314

=

iii) 1/3 ) (-1/2)

(ii) (-1/3) (iii) 5

(b)
(c) (a.a):(gb) =

Answers for Part C
1. In any.case, since aa E [a.], ra'a j [I).

a (aa)- /a E [aa 1, So, for a * 0, [an
[1:;b [1-; ].1 The last line of the

referring to Postulate 48 {page 191] and
numbers.

l. 'For -;.a + b * 6 it followtby The_irern 7-23(h) thato(a.a + 13b):
+ -C*)b if -ea + bb c [(a 1-c.)a + By Postulate's

46 and 48, c [(I : C*)a + (g j = Lcia.*:-C)Ja + [c(b:C)13]. By Theorem
7-23(a),_.%r [a] re. I 0, {0}..C.(a:-C) = a and, for [-C.]= [ifl

{6), e(b : ) = g. So, [(ae + (g a*a + fp'b. Hence, for
= [ b J = * {6} and aa + * (.;a + i3b):-j" = (-S.;C*)a

.+ (E:C*)b,

[Theorems 7-Z4 and '7-22 are, of course, analogous of real
number theorems which are us'ed to justify the usual hlgorithms
for "multiplying and adding .fractions". J

Answers for Part D
1. Since -a. = a% it follows, by TheoreM 7-23(b), that, for a

= 1

2. 1(g)(1-;:Z°) [.(13:")](:g) 11(::g) = -a', for (iD*1 = [-j_d * {6)*

= 1S:5)( by Theorem ,7-2.3(b). Since , a
if [1 1 {6).]

3. By Exercises 1 and 2, (a...b*)() =". 1 for [-S] = pi) {6).
Hence [under this restrictioni, = A-S:13), [It is a real
number theorem that if ab = I then b /a.]

4. By....Exercile 2., (-a*':1-;)(4:-C) = -a*: -e* arul : -c7)(-j a) = 5:a, I-Nnce,if a = c then c 5:a. [The converse is the iristapce of
this obtained by interchanging. '11% and 'c'. }4)

(iv) (-7)

For a * 0,
[,.-1 J. [Simillarly, for

proof Can be justified by
properties of real

and [I] [ 51* {6}, by Theorem 7-23(af)..So,[fr_-S,{s)
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1. (a) Show that D - A dB Ai and D A 7k 0:
(13) It follows from (a) and Definition 7-13 that there elists a real

number x such that D - A) : IB - A) x.'Assume that,

inv- A ) : (B A) d and (E 7 A) C A) e.

Express (.7 B and £ D in.tyrms of 'C A'.and 73 A'.
(e) Complete: 7.51 hc.t. if and only if there exists a real number x

such that E D
(d) Show that E (C Bc if and only if e. c d.
(e) Draw a conclusion coricerning bAf,110, and the ratios intro-

duced in part (b):
) Complete: bk (E - D) B) = fD _

2. Suppose that b [i 14.!

(a) Let I be a line through A. other than Ag, which intersects 13(1
at a point P and bk.' at a point ev. Show that (Q 1)) : (E D), (p, - B) : (C 8). r Hint: Wivit chies the generalization
prowecl in Exercise .1(f) tell you about? Q D. and P B?)

(II) Show that if P B + C - BIt and Q D + .E D)I then
(A, P, Q.} is milinear.

Part F.
1. (a) Picture a segment .4 1-1 and, if posible, locate a point M such

that /V/ 7..4 B - M.
by Is there more than one point such as M?

2. If and B are points such that M -A B -M then {M, A, B}
is collinear !Why?). So, assuming that A B, M E AB. It follows
that there is a number-say, p --such that M A + (B 'AV).
Find all values of 'p' such that M - A B M. 1Hint: Express
Al - B in terms 'B', and

Definition 7- 14 M is the midpoint of .rig*.-) M A
= B M.

Phe9rern 7 -27 The midpoint =' A + (B

*
3. Exercise 2 contains,.the proof of Theorem 7 727 in case A B.

biscuss the case A - B.
4. Given that VI. and Wri are parallel, that-(a, b) is linearly inde-.
. pendent, and that (G - H) (L ,3, as shown in the dia7

gram below. 1

TC 315

answers for Part E
1 (a) By definition, D E AB if and only if D A E [B 2 M. And

D - A * if and only if D A. So, by askmption,
D A [B AI and D A

(b),+ C B = (C - A) (B A);

(c) B)x

td) E D B)c ifand only if
.' (C - - (13 A)d [(C A) (B A)]c

= (C - (B -
{A, B, C) is noncollinear, (C A, B A) is linearly

independent. So,, (C (B A)d (C - - (B Mc if
and only if e c and d c. Hence, E D4- (C:- B)c if and
only if e , c d.

(e) By part (d).there exists a real number x such that
P (C B)x if and only if c = d. So, by part (c)

DE H BC if and Only if (E A):(C A) = (D.- A):(B A),
(f) (D A) :(B A)

2. (a) We can apply the result of Exercise l(f) with 'P' for 'C' and'Q' for 'E'. So, (Q D):(P 13) = (D - A); (B A). So, by
r.xercise l(f), itself, (Q D):(P B) = (E D): (C B).
Hence, by Exercise 4 of Part D, (Q D.):(E - D) =
(P B).:(C B).
Suppose that P = B + C - 13)t and Q = D + (E D)t. It
follows that P A = (B - A) + (C B)t and Q - A = (D - A)
+ (E D)t. By Exercise 1(f), E - D and D A are multiples
of C B and B - A, res4ctiyely, by the same real number.
So, 0 - A is the product Of p by this same number.
Hence, (P A. Q A) is linearly dependent, and {A, P, Q}
is collinear.

(b)

a

Answers for Part
1. (a)

A

(1) No.

2. ,If M- A = B-M then (A M)1 + (B M)I 6. So, (A - M,
13 - M) is linearly dependent and {M, A, B) is collinear. Suppose
that M .= A + Mp. 'It follows that M B (A - B) + (B - A)p
= (B A)(p - 1). *ince M A = (B - A)p and B - M (B - A)(1 - p
it followtrthat M-A= B-M if and only if p 1/2.

13. M A = 4 M if and only if M = A. Also, A = A + (A -
So, by Definition 7-14, the midpoint of is A; and Theorem
7-Z7 holds in case B = A.

eta
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.1.nswers'for Par F [cont.]
(a) Let M and N be the midpoints of hg and Li, respectively. Ex-

press the translation N M as linear combination of and h: 4. (a) M H + a 7 . Since L 1-1+ (a + b) and C - L = g3 +

(13),Show that kg is parallel to kf. N H + ( + g ) + ( Z )1- 11 + + g 2. So N M = Z.(c) What is (N 411) : - M) : (G H)?
(b) [iv M] I [1.] [L - So, l71'11 KL.a(d) Determine-whether the midpoints of td, ii71\7, and h4 are or

are not collinear. (N - M):(L K) (gl):g 2; (N M):(G H) = (1.32): (1;3)

(d) The midpoints are A, B. and C, where A = K +11-12,
7.10 Chapter Summary

B M + g, and C = 11 + )11. So, B - A ;, (M - K) +
-, 1 1

= a.
2

+ C A = (H K) + g 1 + g, Hence,
C A (B A)2 and, in particular, (B - A, C - A) is

colhnear linq linearly dependent and {A,. B, C) is collinear.

Facabu,ary Summary

half-line ray
interval tiegment
direction sense

of a vector of a ve4or
. of a line of a half-line, or: a ray

vertex endpoints
of a half-line, or: a ray of an interval, or: a segment

midpoint ratio
parallel skew

I/ /*Minoru;

7-1. {A, 13, ("} is collinear if and only if tB A, C -7,A) is linearly
dependent.

7-2. 1 is a line if and only if (a) 1 is a subset of rf. which contains at
least two points, and (h) yof,. 1 {X, Y} ç 1 and X X Y) --
IZ c 1 {X, Y, is collinear]]

7-3. AB..= IX: X A 4. (13 - A)x} .{X: X A E13 An1
7-4. 11) (x: (Y 1 and Z c 1 and x Z Y)1 [Read 1.1)' as 'the

direction of 1'. Ato, read latl' as "the direction of arrow a'.1
7-5. (a) Aluf - {X: X A

(b) A tin)
718. /-11 rn if and only ifift
7-7. For ± c:= {X: 31 IY .41. and X = Y a)}.

.7.8. [44. 0.and x ci:x4 'irk' as 'the sense of
a

74. -(a) Ara i' = {X: X - A Elc;lt}`
A[B - Al: [Read 'Mt as 'arrow AB% when A. B,

it is proper ta read 'AW'as 'half-line ALF.]
7-10. (a) Afi;P- = {A} U A1äP

(13) IA U

7-11. (a) Ai =

031 7-Aiir4t
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7-12. (a) A, A n BA.
.(b) AB IA. 1-3) U AB

7-13. a.: b c a* b*c {01
7-14. M is the midpoint of Ail.-.214-A B M

.0ther Theorems

7-1. For A 4- B. Alf is the line which cOntains A and B.
Corollary. There is one,and only one line which contains t o given

points.
Corollary. Two points are contained in at most one line.
Corollary. Two lines have at most one point in cmumon.
7-2. 11C. I)} C' and C V2=LJt
7-3 i1A, B) c I and A * 13) -1-6 III 113 '- Al
7.4. IA t I and a.1/1) A + a I

7-5. (a) For a * 0. Alai is the line through A in the direction of' d.
(b) ,*41;1 is the line through A in the direction of I.

.Corollary. 4 E - 1
7-6. There is one and only one line through a given point and

parallel to a given line.
7-7. (a) 1 A 1 (b) In - rn 1

t 1 rn and nilln) I H n
7-8. A translation maps any lino onto a parallel line.
7-9. 3'. + X a ;.`} f., C ' I

7-10. V/1 + (jr A
7-11. 1B-CJ n {A + iB C)}

1{44, B, C} noncollinear
7-12. AI) n yti 0.. n I 0 II n rn 01
7-13, (a) J.,- ...ix' a:T}

(b)10.1.
7-14. ((I.! la.1 U {01 U
7-15. A + (B A)a A + (B Ath a b EA
7-16. (a) Ag {X. 3,. , X A + (B A)x} EA BI

(b) 7111 {X:1 X A (B - A)x}
$*-17. (7e AB' (A t .,41i5 and AC.,' -*AL?)

748. *Ag A --,1C ."'
Corollary. Ad'--.11 -CD - Al' ID Cl.
749. Kg CD -.I. A B1 .

Corollary. Ai; Al' ED - Cl*
7-20. Xi `A8' u
7-21. (a) A8 (X: 1. (0 < x < I and X = A +

(b) M {X: 10

7-22. (a) AA CD

(B - A)x)}
( /3)

x 1 and Xk A + (B A)x)}
A, 13} = {C, D} EA BE

7-23, (a) d =-1(c: : flaj 161 (-01

(b) = : c Ea. 0)

Corollary. (a) alb (2.15 lla lb) {6), b 0)
. (b) : o/b b 01 .

7-24. (a.a) : (gb) - (a. : a I b) b.) ,k {01 , a Ike bi
7-25. io.a + 13.1)),: (a. : a +(g.: (.7%11a) ,

+

7-26. ca.: (;)(1)*: =1b1 lci
7-27. The midpoint of M A .(B

Other Rules of Logic

inot p and q) r
not r and I page 2851

( q)

P q P q p-
p (p and q) (p or (1) (p or q) 4"'"." p- and 113age 3°21

Chafter Test

1. Suppose 'that A r B and that C = A + (B A)5 and
+ (B A) -1.
(a) Make. a/sketch of this situation.
lb) Let P = C + (D Find p
(c) -Let Q = A + (B A)2. Find
(d) Give an argument to silow ttiat

2. Suppose that K. L and that Af
+, (L - K)2. Determine the ratio L

3. Recall that P E4A-14 if and only if
terniine all values f'or 'p' sueh that:
tal PEAR ,
(c) PEVI and P ,ig

4. Suppme that IA rn and that_
(a,b) is linearly independent,
as illustrated in the figure at
the right. Also, from the figure,
we see tliat E A = b3,B - A

-. Ez* 4, C - B t;, anld D E
=A, for some 5:

Ruch that P A + (B A)p.
such that Q = C + (D C)q. .

P, Q,,C, and D are collinear.
= K K)i and N = K

A + (il:- A)p, for some p. De-

(b) P E AB
(d) P B

(a) Express B - E and C - 1?..as linear combinations o -a4and-b4.
(b) Determine all values for '5'!
(c) Deterinine 'c' such that C D (B E)c.
(a) Dtermine the ratia(E - A) : (D A).
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'Answe rs tor Chapte r 'Test
(A) Tile students should have drawings something like this:

5. (a) Here is-n appropriate picture
of the given situation:A 8

.

TC 319 (1)

Answers for Chapter Test [cont.]

(b) From the picture, it is clear that p 3. Here is one way tO
(letermine the .01ilut. ot 'p' using the algebra of pdints and
translations:

A

C:q [A ( 13\7- A)5 ] [(B A)
N)3. So, p 3.

c) l'roni the picture, it is clear that q I

-2.-*this is the case:, ..-

C./ A (li 7 A)2. [(r, 4- (13 A) -5) +- (B A)2

+ (B A) -3,. Since D - C .. (13 A). -6,
1 1 1

Q C.+ (D 1::) -;- -3 C + (D C)-2-. So, q =, z.
,.,

Here is a proof that

(d) Vrom the information given about the Bc.li_rits P. Q, C, D, it is
,the cAse that each belongs to the line X. So, the given points
;Ire collinear.

5(
2.. From the g'iven information N M 107-3-. More conveniently,

'3 3,
M)-5-. So, by definition, (L K):(N

3. (,i) {x, x 0} (b) x

(c) {x: x,c. 0 'o r x 1} .(d)
4. (.a) B F a4 - g3. [or: ;--;4 + b. -3)

C aS g(i'+b) [or: ii5-s- g -(3 +13))
(b) b 4-, One solution: Since 11 ni C D (B -

sonic t. 13y the results of (a), 5 1(.3 b) (:;.4 g3)t, So
that i(5 -"At) g(3t - (3 + b)). d. Since (a.',1;) is linearly
independent, 5 4t 0 and 3t - (3 + b) 0. So, t 5- and

. 4i
b .T. .' p

,

Another solution: Since (a,1-;) is linearly independent and
-g3 '4- 4 + (F: - 131 = d, it follows, by Theorem 6-12., that
(-1;3)d + (i'4)e -FL (F:- li)f = b. if and only-if d = e f. From
the figune [or, pie given information], and since, for'some t,
D C : (E .B)t, it follows, that

(-1;3)(1-;-f'11) + (
4

a*.4)-- + (E - B)t = d.
3

3 + b 5 5So', by Theorem 6-12,, ---,- = .- 't.i 4 That is, t = -4-1 andS
b

5(c) From either solution given in (b), it folloWs that c v.

4(d) 4/5 [This follows from the fact tl t E -A g3
4(D - A).
5

7`)()

(b) [AB) [la - A] [(C) P)4 (R P)4] z [(Q R)4] [R 0]
= p.). So, AB

a

4.
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E5. Suppose that P. Q, and R are noncollinear points and that A = p Answers for Background xercises
+- (Q - P)4 and B - P ,-+ (R - IN. .

.
, 1. (a) 3/2 (b) 0, 4 (c) 5 (d) no values (e) 8, -,8 (f) 25, -5,

(a) Draw a diagam to illustrate this situation.
(b) Show that Ad 4 41i.

Background Topic .

, Recall that ."2-as wel is a vector, space over a. It follows
that real numbers can be thought of as vectors, and that we may
speak of ratios of real numbers. According to our definitions qf direc-
tion and sense for vectors, all nonzero real numbers have the same
direction and each nonzero real number has one of two senses- the
positive sense or the negative sense. [Explain.] According, then, to
Definition 7-13,,

a : b ea= c1a54 O 6].

S nce, for b 0, a = bc if and only if c = bib it follows that, for non-
zero real numbers a and b, a b = afb. In consequence we may, for,
example, read 'aib' as 'the ratio of a to b [when a 0 bi and,
since a - all, we may also read 'a' as 'the ratio of a to 1.',[when a 01.

in the next chapter we shall find these readings convenient.
When the vectors under contideration are the real numbers the

notion of ratio leads to that of proportion. By definition, nonzero real
numbers a, b, c, and d are said to be in proportion if and only if

( ) a : b c : d.

[Alternatively, one says that the ordered pairs (a, b) and (c, d) are
proportional. Sometimes (*) is read as 'a is to b es c is to d'.1
1. Determine all val such that the following are true. If no

value for 't' will 0 : given sentence, say so.
(a) 5 t = 10
(c) U - 2) : 6
(e) 4 : t = t :

: 3
= 6 :
16

12
(b)
(d) 15
(f) 5

- 21 : 4 = 3 : 6
+ t : 7 = -12 :

: (t 20) = t : 25
14

Here are some theorems about proportion. Think about what they
say, and_reIate each of them to things you already know about ratios
of vectors and about multiplication and division of real, numbers.
[All variables have the set of all nonzero real numbers for domain.]
2. a : bc
3. a : b.c: d4- a : c=b:d
4. (ac) : (bd) = (a : b)(c : d)
5. a : b c 44-0 3.., (a = t and b = dx)
6.13 : b 6 : c 161 \lac [When a = : c, b is said tk; be a

mean proportional brween a and c.1

2. Since a :b a/13' ane e d c/d, the theorem in question is equiva-
lent to':

a c 4=c.ad bc,b d
a familiar theorem concerning real numbers.
follows that bd and, so,- a/b c/d if and
= (c/d)(1341) that is, if and only if ad = bc.]

ad 7-- bciz::=:.
c d

So [page 273 ), ad = be if and only if therd exist,numbers x and y,
not both 0, such that

= 0.

[Since 1 * 0 # d it
only if (a/b)(bd)
Notice, also, that

'ax+by= 0 and cx + dy 0.

In other words, the Z-dimensional measure vectors [page 206]
(a, c) and (b,d) are linearly dependent if and only if ad = bc.
[This result is independent of the restriction to nonzero real
numbers.]

On the other hand, by applying Theorem 7-23(a) to the vector.
apace Rwe see that a = b(a:b) and c = d(c :d). So4 ad = (bd)(a:b)
and bc (bd)(c :d). Hence, if a :b = e:d then ad =Ibc. .Con- ,

versely, by Theorem 7-23(b), if ad = bc then a :b c/d = c :d.
[The result of Exercise 2 doe's.not generalize completely to vector
spaces other than IR, because, in higher dimensional vector spaces
there' is no,entirely satisfactory analogue of multiplication in

3. This follows from the resikIt in Exercise 2 since ad = bc if and
only if ad = cb. On the other hand it is ,a consequence of Exercise
4 of Part D on pbse 314.. /

4. (ac):(bd) = (ac)/t):Li- (a/b)(c/d) = (a :b)(c :d), by the familiar
real number theo or "multiplyingfractions". On the other
hand, by applying Theorem 7-24 to the vector space a we see
that (ac):(bd) (a(b)(c/d) = (a:b)(c : d).

5. a :b c :d if and only if a/b = c/d. So, if a = c :ci then
a ,.- (c/d)b c(b/d) and,- since b = d(b/d) and b/d 0 it follows
that axoo (a = cx and b = dx). And, if a = ck and b dk with
k * 0 then a/b = (ck)/(dk) = c d' and, so, a :b = c :d.

On the other hand, by Theorem.7-23(a), a =, c(a:c) andt = d(b:d). By Exercise 3, if a:b c :d then a:c = b:d and
it follow* since ratios_ arelLnanzerci, that" = cx and la
Conversely, if a = ck and b = dk where k * 0 then it follows by
Theorem 7-24; that a :b = (ck):(dk) = (c :d)(k/k) = c:cl.

6. By Exeraise 1, a :b = b:c if and only if ac = b2 that is, if and
onlyif Nrie NAT) = jb .

-
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Cha--pter'Eight

.Triang1es and QuadOlaterars
14

'01 Ratios and Parallel Segments

Comiidei; two noncollinear parallel segMents AC, and 13I5. [Since AO
a segment, C A. Can A and B be the same poiiit? How many

points are in fA, B, C, 1)}"'?) Since 4315 we know that f0 -
, IC A It may happen, .as in Figure 8- lid), that I) B A.

7

8-1

What carvyou say in this case abgut 0 C and B A? About Aland
t7b*? The more." likely case-, that in which Di= B C A illus-
tratel in. Figure 8- lib). [In the figure, (D- 13) : (C A-) > 1. DraW

- a figure for which ,this ratio is between 0 and .1. Draw another fOr
which the same ratio is megative.] It seeMs intuitively likely that in
case- (.1.) "-13) : (-C ,A) 1 the lines Ad and ED" intersect at iorne
point. Let's trY to Rhow that this, is:the case.

To begin with, we know that ;Wand CD intersect if andonly if there
are numbers-say, p and q - such that

(1), (5% + (D C) =A + (B A)p

that is, such that
6

(2) C A = (B .A)p + (C D)q. tlixplaind

°Diu' prablelli, th'P.31, is to show_ that, C - A iS a linear combination of
. ' B ^ A and C - 0. Weth this hint, Figure '8-1.(a).should remind us

. ., th'it . .
,

41,

1. `

320

and, so hat'

8.01 Ratios apd Para lel Segmento 321

(3), C' - A = (B A) +' (D B) + (c D). .

Explain.I If we recall that D B = (C A)).(D B) ,(C - A)), and
that we are assuming that (D - B) : (C A) ,A I, then it cs easy to

, find numbers p and Twhich sailsfy' What are they? Are there any
other solutions of (1)?

We InZve proved two theorems. The first [see (2)] is:

Theorem n U/5; 0-0p,- A :[B - A, C DI

Note that-this is not-restricted to the situation we have been discussing
-that in which16 and hi) are noncollinear p4ral1el segments. The
second is:

Theorw -8-2 f Ad lid E'Ire noncollinear
pllel segme d (D_- B) : (C: -e.A) r then

;114* ilb7) r = I and
'AW brl = 44 + (it - A) 1(1 ; r)) if r 1.

Exercises

Part A -
.1. Draw figures to illustrate Theorem 8-2 in case

(a) r (b) r - 2 (c) .r = -1 (d) r ---f .
2. in each of your figures, label the point of intersection of 'and

with 'P'.
(i) In each case, estimate (P A) : (B P).

Make a guess as to how the value of '(P - A) : (B P)' de-
pends on that of ';'.
Check your guess by drawing other figures.

3 Your guess 2 might be put in the form:

P = A 4- (13- A) 1 r) (P A) : (B P)

-Y. [A P

Complete tbis theorem and Prove it.

Part B
.1. EXplain 'why. Yar and al intersect if and only. if equation 1 has

a solution (p, q).
2. Show that elkations ,(1.) land (2) are equivalent.11

g. What postulate Yields equation (3)?
4. Explain how equation '(3)' is used to find a Wu/011'a (2):
5. (a) What aSstritption about AV 5nd rti tells yclu that equatithp (1)

has atI, most one'tg.oltition?

fr-f A 44
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In this ,chapter the theory of ratios of translations is applied to the
study of triangles and quadrilaterals. The basic results 'are, for the
most part, implicit in some of the exercises in the preceding chapter
particularly those rka r the end. o t section 7,09. these rsults are

npresedied more formally i secti
e

n H.01. The notion of the ratio in
which a point dividesan interval is.basic for most otthe theorems andproblems of this chapter, This'notion is introduced in section 8.0Z
and is used repeatedly thereafter, especially ii_i_j,ectiorvi 6.04, 8.07,
and 8.08. B\riefly, for A 13illy point P E AB [other'It. han A and B1
is said to tiiNtule the interval trom A to II in (P.- A): (B P). Intuitively,
this ratio ot translations is. .also, the ratO of the distance from A to P. .

. s

P A
/Ma

A

'11

to that t roo.. P to B, due regard being'paid to sense. As is pointed oul.
ii Pa.rt D on page St,i, it is possible at this stage.to introduce such

"sensed distances- for ordered pairs of points of any given line, even
though the postulates of the present volume do not furnish a basis for
comparing distAnces between pOints it uate d., jEpairs, on nonparallel
lines. Such comparisons will _be possible in vdirkime 2; but at present
we cannot, for example, singFit*out for rtpecial considerations isosceles
triangle's, rhombuses, or rectangles. In spit of this therg are many
interesting ry.sults to be obtainrd. SoSne of these are listsgE as theorems
and others occur as exe rc iscs.

As you May have noticed, the notion of the ratigxan which a point, divides an interval includes both "interior where the point
belongs to the interval and the ratio is ppsitive",-and "exterior division'',
where the point is elsewhere on the line containing the interval and the
ratio is negative.. 1Thes end points oi the interval are'excluded in order
to avoid zero -ditliculties. As a 'result- of this .gederality, many theo-
rems ab,out triangles turn out to be speciial, cases of more general
.1;heo.rems whi.ch apply also to trapezoids. TIncidentally, we find it
convenient to define 'trapezoid' in such a way that parallelograms are
included among trapezoids. This is in line with the:usual tendency td
consider squares as, special rectangles, rectangles as specillill paral-
lelograms, andequilateral triangles as special isrosceles triangles..1

y this time students haveat,thei'r disposal niimerous techniques
which can be .applied to solve problems -of the type, corigidered.Were.
Consequently,' you may 'expect and should welcome .a_yariety of
soIutitifis for .any given problem.

Some of the tfetails of thc proofs Of Theorems 8-1.and 8-2, con-
cerning which quveritions are Asked in the text, are reverted to in the
exercises of Part B on page 321. The questions in-the teXt may be
answered os 4011ows: ,

A * for if A B th'en AC and BD: being parallel,
would be collinear.

B, ç, D} consists of foil:. points.
If D-Bs C- A' then D C B - A. and AB H tr).

4;-

TC 320,321 (2)

A figure for which 0 < (1) B):(C A) 1 can be
obtainedefrom Figure 8-1(b)'"by interchanging the labels
'A' and 'C' and One for which tZe, ratio in
question is negative is obtainedloyinterclianging he labels
B' and and redrawing the dashed lines.

The explanation of (,Z).might be that, by's. "bargain
theorem", if Csa A + 1; then C A g, In more
detail, it C+a n A+ 1; then (C - A -(A + - A and,
so, (C A) # a g and C - A + Also,,.. -[(1)

-( D C)q (C., D)q.

"Equatiori.(5),is obtained by two uses of Postulate 3,
serrated by a uiie of the.associative principle, for addition
of translations.

Let (D B): (C.: A) r. Then, 9 -.B ,(Cre A); and, by (3),.,
C A (B A) + (C A)r + (CD).

Since r # 1,

C A -; (B A)/(1 r)+ (C 1)/(1 r).i
Comparing this with (Z) which i's equivalent to (1) it7 follows hat(1) is satisfied if

p = /(1 r) ,o
If there wee.; two solutions of (1) with O_Aferent valties of._;,' then,

/are
since A # B, there woul.de tw2.points of AB beVing to CD. From
this it would follow that AC = BD. But, anri are noncollineari
SA,iilarly,I there cannot be two solutions of (1) with d,ifferent values of

Hence, (1) has at most one solution. -

'Note that, as is pointed out in Exercise 6 of Part B, also thecase that, for r 1,

AB rs s {C + (1) C) 7/(1 -
[This follows from the fact that q, as well as p, is /(1 r). t lso
follows from the theorem by way of the hint given for Exercise 6. t

Note that interchanging 'B' and 'D' in Theorem 8-2 and replacing'r' by ' yields an instance of the theorem whose anteFedent is equiva-
leurto that of the theorerts but whiles, co se.uent gives information about
AD and BC rather than about AB arid DC. The following diagrabi
summarizes these two resuats in case < r c 1:

1-i U Ir

,
(0 A);,(D - 0) l/r and (0 - A)': (D - A) = 1/(1 + r).

40In the figure, the 'r's, ' l's, and
'1 r's indicate the ratios of pairs
of translation's with the same direc-
tion., For example, since
.(1 r) + r = 1, the figure sho s
that

(P A): (B - A) = 1/(1 - r).
C a also shows that,

7. 14.+40[The fact that 'r' is associated with, for example, both PD and PB
indicates nothing concerning the relative lengths of these segments.]
Although, as remarked, the figure illustrates the case in whicis
0 r < 1, the formulas read from it hold in any case.
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Some, at least, of the preceding [including the figure] should be
'included in classroom discussion of Theorem 8-2. Following the
answers given below there is 'a more extended discussion whose pur-
pee is to better acquaint you with some of its implications.

Following the discussion of pages 120 - 321, we recommend Part
A afi a class activity, followed by P-art B as a homework assignment.
Part C is probably best treated in class due to ehe lengthy discussion ,
following Fxercise 3. Parts D and E together would make a rather
long homework assignment. Perhaps Part D eould be homework for
all students, with a team of students assigned te each exercise of
Pa rt E.

Theorem 8-2 is of considerable importance, and many of the
exercises in this chapter are rather thinly disguised repetitions of it.
Some discussion of its ramifications is in order here.

In the first place, assuming that AC and BD are novollingar
parallel segments, it follyul fremthe theorehr that if AB if CD then
(D B):(C A) I and AB (-Th CD consists of a 'single point say,
P. [Reference to the preceding ligure will be helpful.] In this case,
letting (D B): (C A) be r, (P N A): (B A) /(1 r). Equivalently,
(A B):(P A) r - 1 [a fact which, also, is easily read from the
figure and, since (P - A):(P A) z I (A B) + (P'- A) = P B,

(ID B):(P - A) r. In short, in case AB r*N CD =

(1) (P B):(P.- A) (Dtlitn- B):(C -0A).

The result ,(1) can be restated as:
(P B):(P A) r (D B):(C.- A) = r

Revising the algebraic steps in the preceding paragraph,-we see that.

P 4 (B A). r)(1) B):,(C A) = r. -

It follows that, if r 1, then
-AB (- CD = {A +'.(B - A)../(1 r)} (D B)4(C - A) = r.

Only the if-part of this is explicit in Theorem 8-2; but, as we have
just seen, the only if-part is a consequence of the theorem aaid some
elementary algebra.

B'More simply, the theorem inliplies that, AC and TD. being' non-
collinear parallel segments,

(2) AB 11 CD if and only if D - B = C A.

The if-part is explicit; the'only, if-part follows from the fact-that, by
the se42rid of two conclusions of the theorem, if D -`13 C - A
then AB and CO intersect in a single point and, so, are not parallel.

IC 320,321 (4)

As pointed out in discussing the preceding figure, interchanging
'D' theorem yieldserestilts, like the preceding, concern-

ing AD and BC. In case (D Bh (C A) -1 these lines intersect at
a point say, 0 and, (1),

(0 - D) :'(f) r A) = (B D): (C A).

More conveniently written:
(3) (0 D): (A 0) = (D B): (C A),

Assuming that 1(D B)-2(C A)] 4 1, both (I) and (3)1hold.
Interehanghig 'A' and 'C', and 'B' and 'D' we 'halie [since

TB - D):,(A C) z' (D - B): (C A)] that
'(1') (P D):(P C) -(D B):(C - A)

and

(3') (0 - B):(C - 0) = (D 13): (C - A).

The preceding results [which ore essentially only interpretatiod
of Theorem 8-2] imply many fai4iliar theorems. For example, (1)
yields a theorem op the proportiality of corresponding sides of tri-,
angles whose corresponding(fsides are parallel' [Theorem 8-11].
[Without a way-of comparing measures of nonparallel intervals, this is
as close as we can easily come tb the AAA similarity theorem.) The
ease of (3) in which (D B); (C - A) 0 yields a theorem concerning
the ratio in wIlicti thepoint of intersectibn of the diagonale of a trape-

.zoid divides each of them this ratio is the warns 4s the ratio of the
.bases, [This includes the theorem according to which the diavenals of
a parallelograth-bisect each other.1 The converse that qUadri-
lateral Whose diagonals interssect in a point whieh divides them the
same ratio is a trapezoid follows from Tlieol.erp 8-3. The result

t(I) canalso be thought of as a considerable generalization of the \
familiar theorem concerning the relation betWeen the tnte.iVal joining
'the midpoints of two sides of a triangle and the third side. Similarslx
(3) generalizes the theorem concerning the existence and iodation of

Fin&lly, (hi may be
ere equidistant", along,.

seoLfve(

if-Part yields afatniliar charactdration of parallel.ograrns. I ,

Between them, Theorems 49-2 and 8-3 [on page 324] include re
large amount of that part of Ole geometry of triangles and trapezoids
whichlleals with ratio and similarity. Because conventional geometry ,
courses may have accustomed you to deal with special cases of these
_theorems [with midpoints and medians rather than arbitrary points of
division and intervals related to- them) and because, with atronger
postulates at hand, these courses can deal at an earlier stage than ours,
with angle measure and stronger similarity theorems, you'may tend tO
underrate the present development. If sce try not to let it show. It is not
unlikely that:once yku hay. tered It you will be impresied br.the
unity amongnlike top cs vhich-this treatment reveals au well as by
the fact that so much comes out of so little.

the intersection of the medians of a triangle,
interpreted as-that parallel linesf are "ever
whatever dirliction other than7t e lines
chooses to measure distance, [This is the if
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Answers for Part Av-

(b)

El*

2. (1) -2; 1 2; 1; 2

(iii) Ivariouid
-/r; U P = A + (B A)/(1 r) then P - A = [(P A)'+ - Pll./(1 - r) and, so,

(ii) (P A): (B - P) = 1-/r

(P- A)(1 ,. 1B- P)T--
From this last itfrfollows that (P A):(B P) = -1 r.

Answers for Part B
1. Bu definition, the points of Tg and CD are the yaluels, for the

various value of 'p' and 'q' of 'A + (B A)p' and 'C + (13 -respectively. So, a point lgelongs to both lines if and only if it is avalue cff both expressions. In particular, there is a point which
belongs to both lines if and only if (1) has a solution.

2. C (D C)q = A + (13 - A)p if and on,ly if IC + (D - C)q] - A
7. + (B A)p1- A. But, [C + (D - g)q] - A = - A) + (D - C)q
alikd [A (B A = (B - A)p. Furthermore, (C A) + (Dv- C)q= 'CB - A)p if and only if. C A = (B - A)p + -.1(D - C)ql. But,-[(O - C)q] = - C)q = (d D)q.
Postulate 3 [and Polittgate
From (3), with D - B (C A)r, it follows that C r A = (B - A)r) + (C - D)./(1. r).. Comparing this with.(2)
inpnediately that (2) is satisfied if p = /(1 r) 4 q.
(a)/ The assumptiaathaLre and ig5 arenoncollinsar segments..N.

implies that. AB * CD and, so, that 11) h&s aemost.sone
solution.
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0,01

Part C

7I9

.(13) What can- yOu conclude about 1B C D) in the case in
which 121 has exactly one solution?

6. In your proof of the second part of Theorem 8-2 it turned.mit that
p q. So. For r n 17/./ IC - (7) I I - r)}. This
result is not included explicitly in the theorem. Show that, never-
theless, it t"ollows.from the theorem.itself. Rewrite the the-
orem, interchaning 'A' and 'C' as well as '13' a d 'D'.1

7. The seciind part of4he thmrem has a corollary:1

If !tnd 734 are noncoll i near parallel segments
and Ag ;Lb). then D - B - C A.

(u) Show"that this coropary follows from the theorem [and a
theorem concerning the intersection of parallel linesi.

(h) Give ano,her proof. of the corollary by showing that, for
{A, B, noncollinear, if ID Ij [C - AI and ID - CI

IA Al t D B (1' - A. [Hint: Suppose that if B

44)1) 'a d D C -.4413 A)c. Express 'C B' in two
ways in terms of A and 'C A' .1

I. Strose that AO' and HD are parallel tioncollinear segments, that
AL and BF are parallel noncollinear segments, and that (F - B)

(a) Show ttiat Ag n
(b) Does it follow from these assumptions that t-,,e and WI are

noncollinmr?
(c) Show that IE - IF -- DI.
(d) Under what conditions can you conclude 'that

2. Suppotte that 1(J and kg are parallel noncollinear segments. We
ki.:117T, by Th'eorem 8-2, that either (i) Pill or ,(ii) t'R n
consiSts of a single pointb-say, T. Let L = P. (Q - R
+ )8 Ii)3, and N R (S - R)2.

(a) Ilraw an ampropriate' picture in the case Pi? 11 t2g.
(b) Draw an appropriate picture in the case Pie 11 12g-..{T}.
(c): In part (a), iS either of the lines EM or triparallekto 41S? If so,

which ene? Prove your.Answer.
.(d) In part (b),.what appears to be the case about lines

Provle that what you say is the case.
Suppo4 that Ae and h13 are parallel noncollinear
Theorem 8-2 there are two cases:

(I)
(ii) At( n congists of a single point -2. gay, P.

Suppose, now, that Q e 4A-d and R e D. In particular,'sepose that,

= A + (C A)s'and R = (D - BO.

(a) Show in case (i) that s. t if and only ifj%J.

segm By

"er

II

a.
TC 322 (I) 'ffir ,

ei`

(b) That (1) has exactly one solution implies that (B A, C D)
is linearly independent.

6. By.1.4e sugged instance of title theorem it follows that, for r 1,
if CA and nri are noncollir4:ar zaxallel segments and
(B - D); (A - C) r then CD rm,AB {C (D (112./(1..1.1-)). The
auirq___Lesult follows from this and the latat that'

11130B BIL1B Dh (A C) (D B): (C A), and' r.-- AB
go= AB CD.

7. (a) If AB II CD then AB rmçjD doekilot consist of a single point.
So, by the theorem, AC and 4:15 are noncollinear parallel
segments and AB II CD then it is not the case that r 1,
where r (D B):(C A). So, (D B):(C - A) 1 that
is, D B C A. P

(b) Suppose that, D B -= (C A)b and D - C = (B - A)c. Since
C B (D B) + (C 1::).) it follows thatC B (IC A)b
+ (A - B)c. But, also, C B (A B) (C A). Assuming
that {A. B. C} is noncorlinear it follows that (A B, C A)
is linearly independent. So, b c 1. Hence, D-B=C-A
[and D - C B -'A].

Answers for Part C

z .

follows from Theorem 8-2 that Al) r'N CD =
Let' B);(E - A) = (D A) = r, w{.Ahetre(Br-* 1 It

r)) Xlimr-F".
No. [E and I.' may belong to CD. ]
F D = (F B) (D B) . (E A)r (C -,- (F. C)r.
So, F' ,DE [E C]. Since, as a ratio, r * 0 it follows, also,, -
that F C [ F D]. Hence, iE C] = [F D].

CD,JI DF if [and only if] E C [or, equivalently, F * D]-.
L(b) , '7":"

7.77

(c) LIN II QS. For,- (R + (S R)2).- (P + (Q - P)2)

= (It P) + ((S -,Q) (R p))2.
Since we know by Theorem 8-2 that in case (a) S - Q = R
it followa thaLlg L = R P 7 s - Q. Hence, [q] L]
= - [OSI. , A

gt.

(d) PRr LN z {T} Since L. - P = (Q 13)2 and N R = (S R)Z
it follows that (N R):(L P) = (S R.);( - ?Land so, by .

Theorin 8-2 [or Exercise 1], that'151Tr LN P-T-1 =
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(b) th ca. that s t if and only if P e '.
[Hint: if 0, t then. in.any case, 's e can .1D, translated into
a sentence about ,ratios and' both parts a) and 13), can. be solved
eas\ily by using things you already know. Having 'done this, con-

,. sider the case s 0 and the case t 0.1

.Suppoie that A. B, C, D, and P are five points such that ;Alf (-I/

Fig: 8-2

We know from Theorem 8-2 that, under these ircurnstan *f
AC 1.16 then tD (C A = r # I and that

/ (1 r) C (I) - C) 111 r): It f011ows that

1 !lb _11= B B -
= + ( B

s,

= A + (B A)

(B - A) = and, since IP - : A)
1 r

(P B) : (P A) = r.

Similarly,

(/) - D) : (13 - r,

and, so,

(4)

Heuce, if Ad CM then

(P D) : (P C) = (D - B

1

It 322 (?)

AnsersJor Part C' [coril.

.
.

3. Suppose that a 0 4.t.---Ii follows that AQ and BR are parallel
noncollinear segments.. It also follows, by hypothesis, that in this
csase s = (Q' - A)i(C A) and t =,(R - B):(D B). So, s =.t 4
and,only if (Q - A): (C A) (R B):(D 7 B). That is, s ,= t. ifand only if (R B):(Q A) = (D B):(C 'A). Now, in ca.e (1)'
it follows from Theorem 8-2 that s = t if and only if .
(R B.): (Q f2a.- lSo, by applying, Theorem 8-2 again, s =, t
if and onliiiNif AB If QA. Turning.to case ,(ii),'.it follows fromE
Theorem .4: that,..lp thiLiailep .......s. ii and only if ABrNZI1 =,
Since- P E AB and OR ,AB, AB ,-..QR = {P) if and only if P.E

In case s = 0 or t = 0, s, .= t if and only if s , 0 and 't = 0that is, if ang_2nly if Q -.IA and R `---- B Now, A and
R. = B then OR AB and, since P e AB, OR H AB and P't OR.
[So, we have established the only if-parts of (a) and (b). 1 On the
other hand, assuming,. as we are, that one Of s and .t is Q., it
laLlowttliat Q A or R = B:7 Supp.ne that Q = A.' If either'
QR ;AB or P E tri. it follows that QR = . AB and, so, that
R E A . Since R E 15-6 and .6AP rTh ,r-VS11 = .{B) *it foll2y.s that R = B.
,Sirniarly, supposing that R = B i'frfollows

,
that if QI-1 H 7c.ff or ,

QILLIsen Q ; Hence, fdr,p"= 0 or t = 0, if either
OR I AB or P E QR then Q = A and R = B [and, so, .0 = ti.

ining thesresults of the preceding paragraph, we have
accomplished both (a) and (b) in case as = 0 or. t. = 0. The sofi.-.
trary case having been settled previously, this completes the
argument.. '. / .

.
,,

[It 'rnay seem that, in view of the triviality of the case in which
f s = 0 or t -: 0, this case might best Oe simply ignored. 44Doing so

would, however,' burden us with unneceSsary and troublesome .
restrictions to an important theorem. . It is.roaaonable, though, in

Iv' the c,prnplexity of the argument, to consider this case as
in
*

ely obvious or to replace the, argument given above by a
less complex one.

' As is brought out in a later exercise, the results established
in Exerc'ise, 3 are basie for a useful theorem concerning the Pro-
portiOnality of intervals intercepted en parallel Hiles by parallel orconsurtent transVersals. [See Theorem 8-6(a) and part of Theorem8-6(b) pn page 33.5,,,j .

Suppose, now, that (4) holds [in the situation pictured in Figure
8-21, kind, let r be the common value of the ratios It follows that

.

P D = (P C)r and B (P A)r.

'

I.
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so,

D B = (P - A)r (P (C - A)r,

and it ficillows that AC 11.M. Herux,

if (P D) (P C) = (P B) : A) then Act

These result& are summarized in the next theorem.

Part D

'

1

gheorem 8-3 If A, B, C, D, and P are five points
such that Ail n rfs = P I then
(a) --6 (P D) (P - C) = (D - B)

: (C A) = (P - B) : (P A), and
(b) (P D) : (P - C) = (P 13') :,(P - A)

eife

Corollary 'Under the conditions specified in the
theorem;,:-4e II 130 if and only if

1, Prove that if A, B; and P are three collinear points and 0 t 1

then each two of the following are equivalent.
(a) (P - A) : (13 - A).= t (b) (p B) : (A - B) = 1

(c) (Ps A) : P) = (d) (P B) : (P - A) = t -4 1

.2. Show that, for three collinear points 14, B, and P. and nonzero
numbers a and b such that + b 0,

(13 - A) : (B - P) = = A + (B - A)

and, for any point 0,

LP A) ; a 1) - =
'7. *Ramp* ,

3. Given seven points on
two linei las shoAnin
the fi iKurel and the n-
dicated translations.
Assume that (CI = (d]

0. Make Use of the -2
aresultsin Tlaeorem-8 -3

a
a + b

a
+ (13 0))a + b a + b'

bp
a

tO compute the fol-
loWing.

3

b6

"ir

As noted in the proof of Theorem 8-3, part (a) is a eiaateme,nt of
the second conclusion of Theorem 8-2, together with the instance of the
latter obtained by interchanging 'A.* and 'C', and 'B' and 'D'.: [See
equations (1.) and (1') in the discussion of Theorem 8-2 in the com-
mentary for page 320. The proof of part (a) does involve some addi-
tional manipulation of ratios. Skill in such manipulation is very useful,
and the exercises in Parts D and E which follow and in Parts A and
C on iwe 322 should help students develoP it. See, also, Part E on
pages 330 and 331.

..Part (b) of Theorem 8-3 is not a consequence of Theorem 8-2.
Rather, it complements the latter. . Converses of theorems deriving
from Theorem 8-2 can often be established by using Theorem 8-3(b).
Answers for.Part D
1. (a)4=:)(b): (P -A):(.B - A) = t<==c)P A+ (B - A)t ft 01

B+ (A - B)(1 -t)
C=t)(13- BMA B) = 1 -t

(h)c=,-(c): (P- B):(A B) = 1 tc=:)P-B = (A - B)(1 -t)
P B = ((P- B)+ (A - P))(1 7 t)

ce=v(P-B)t = (A- P)(1
A):(B P) = [0 *t 1]

(c)<=>(d): (12e A):(B P) =
t 14=>.( 'P - B):(P- A)

[t * 1]
[t * 1] ,

Z. The fix st can be established directly by the techniques in Exercise
1. Alternatively, use the equivalence of (a) and (c) of Exercise 1,
choOsing t such that t/(1 t) = a/b. The second comes from the
first together with the fact that

P = A + (B A)r4==>P - 0 = (A - 0) + ((13 - 0) (A ()))r



*
(a) p ,

(d)
4. Given seven

two )ines las
the figure)
indiCated tia
Show that

5.

'Part E

(b)
(e) e c

points on
shown in
and the

nslatiOns,
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(1) : .b.p

(a) lel.= idig--+
(b) a.,h/ 111b2

(C) 4('T ati d - 11,112,

(d) -
: e f- ty

Suppose that and
are three p

lines which inber
lines / and nt as shown
in. the figure. Show that

: - L,)
(M M ,).

By Theorem
8-2 either I. is par-
allel to ni or I inter-
stls ni et. a point P.
The first case oc-
curs. ,when M.,

In the sec-
ond case IL,' - 1P L.,); : M)1Why?1..1

-9
aa2

bb

_

Lid

6. Add a fourth parallel line, p, to the figure for Exercise 5 and show
that (L, Tr. .1.3 ) : L, Li) M3) : 412 Md. [Hint: .Use
Exercise

a.

Suppese that A, B,and P are three collinear points and that a and h
are. noluaro numbers such that a + h O. You proved in Exercise 2
of fr'art D that

(i) A) : (B =

Tak-ing h 1. and a --- s it follows that

. (ii) (P - A) : P)

a + b
ig 0 b, a + b /-01.

TC 325

'Answers for Part D [cont.]

3.` (a) -4 (b) -6 (c) -3/2 (d). 2/5 ( .) -5/3
4. (a)

(b) [

(d)

c' 1

az/a1 = .b2/b1 .

4=7:. dib2 = -a2b1

(a'a2.); raa2 + (i;b2):(lib2 gb3)
c==> a (a2 b2/(b2 + b3)
4=:1. a2(b2 + b3) b2(i2 + a3)

= a3b2

+ 1;163)

= baj(b2 + b3)
5. By Theorem 8-2, in case N m, L3 - ,M0 L2 = M1 L1,

and, so, M3 M, = .- L2 and M.-, - L1. 'Hence, in
this case, (L3 1,2): (L.p L1) = (M3 M2):(M:2 M1).

qn.case A m then, by Theorem 8-2 n-) {P} where
= t 1,2)/(l r) and P = M2 + (M1 M2)./(l r),* with r (M1 "t. L,-,). It follows that (L, - 7 140
r - I = (Nr2 M1): (P = M3). Similarly, (1...2 L3): (P -.L2)-

= (M:.2 IV13):(P M2): From these results it follows thai
(L3 - L1) = (M3 M2): (M7 M1).

6. (L4 - Ls): (L3 , (M4 Ms): (M3 - M2') and (L3 L2): (L2-
(M3 M2): (M2 - M1). So [:.'n-iultiplying corresponding sides' ],

(L4 L3) : (L.2 - L1) M3): (M., M1). [Thes'e results are
formulated in Thevrem 8-6(b) on page 335. ]

9.

a
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Taking a b 1 and a j. t it follows that

(iii .4 ) : P) ' .4 R - A )t 10 t 11.

Wompare this last formula with_ir result obtained in Exercise 1 of
l'art D.1

1. In terms of the rekrictions on 'o' and 'h' in explain the ,restric-
tions on 's' in iii) and those on 't' in ill.

2. ('heck the consis ency of (ii) and iiii) by sho ing that

ss = t = 'It 1,-ss
.

3. Sentences (ii) and I iii).were atained as instances of i i ). Show that, 4. (a) Suppose that 0 c t c 1. It follows that t > 0 and'el t > 0.
a quotientconversely,, ii) is an instance of ( ii ) and that it is also an instance of Since of positive numbens i 6 positive it follows that

ini,).
. . . .

Ap :> c c f4. The right sides of i i). W), and (iii) show different ways of describing (b) STpose lat s 0. It follow.s that 0 s s 1 and, so,
.that

aeint P of tile line AR', in terms of 'a' and 'h', or of 's', or of '1'. The 0 t; 9 4 1

left sides show cm-responding ways of describing P hy using the s.4- 1 `s+ 1 'Si- 1. .
. % ratio of P A to B - Pjor example, t ii) tells. Us that this ratio is 1 Hence, if s .-> 0 then 0 c s/(s + 1)'c 1'. Substituting
.

if and'onlv.if.P - A t- ih, - A)1. For another example, (iii) tells us '01 tr for ,'s' an9using Exercise 4 wields the desired
that P E A B if and only if thiSijatio is 01.- t) where 0 < t <; 1. result'.

- Show that -. . . 5. (a) A
_

B p p A

TC 326 (1)

Answers for- Pa rt E
1.:or , l' and a s, # b and a + b tn if and only if
(s # 0 and 1 s

For a + b 1 and a - t, # 0 * b and b 0) if and onfy
if (t #.0 and 1 t 0).

Z. S s St t [t # 11
t

t( s L.1 ),

4==D
1

1

3. To show that (i) rs an instance
followg that s/(s + 1) = a/(a

of (ii) 1

b).
b and note that

To show that (i) is an instance of (iii), take t = a/(a +

(a) t 1 then 0, and

(b) if !- D then 0 t < 1.,IHint: By 1-7,xercise 2, you can es-
1 t

tablish b by showing that if s > 0 then 0 <.
s 1

5. In Exercise 4 yot) showed that

PtAB -- A) : B,- ilf' 0. lExplain.1

LI

(P -A) i(-B P) < -1 -t < (P -1A): (B P) < 0
<=z.

-BA P c -AB

(b) P E -BA ' (P A): (B P) c -1 it

Proof. We know that P E -BA if and only if P = A + (B - A)t
for some t > 1. So, by (iii), it follows that -PE BA if and
only if (1:;) - A): (B P) -'t) for some t > 1. Hence,
we need to show that ifor t 11 '

(1) - t 1
1 t

Now, as in the hint,

It 114lows from this.t4t

P BA* ; - A) ; IB P) <Q. lExplain.l

(a). Draw a figure to il4ustrate the aSe in which (P - A) : (B P)
-1 and tinother to illustrate case in which -1 < P A)

: (B 0. Guess,two theores like ,(*). [Hint: .P c-Ag-
-

tb) Prove the theoremsTyou have guessed. [Hint: Using iiii), one of
your guesses probably 'amounts to showing that, fort 1,

,

t 0 if and only if -1, < < 0. The key to tictis problein is

that, sirke I /- 1, 't < 1. or I > 1. So,

I < 4-4. (Ct <. I and < 0) or
t

717 ,

2) s - 1
1

t <and -1) or (t ? 1 ,and -1)).-.t
Taking the first alternative we note that

(t < 1 and (t c 1 and t c -1(1 t))
(t < 1 and 0 < :-1).

16.4 #1.

I .2)
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Answers for Part 1.1 icont.1
!--iince 0 the rst alternative 'can never hold. 'Faking the
Acond alternative,

(t 1 and
t

) (t. I and t t))
.za(t 1 and 0 -1)

}fence, by (2.), (1 ).

A B -1 (1) A):(B P)

Proof. ,EThe proof of this sec.ond theorem is like [hat of the
first', and is outlined in the hint. We give here only the.
reductions of the two' a4ternatives.

I. and t 0)<=z.(t 1 and -1(1 t 0).
I t

0.

and -1 0 and t 0)

(t . ,,d -1 , t 0) (t 1 and -41(1 t) ' t 0)
1 t

.*=>(t 1 and -1 > 0 and* 0)

The second alternati.ve heing clearly imPossible it follows ftlat-1 -
1

0 t==' t 0. 't
,:,... .TI-le results obtained in Exercises 4 and LI are .formulated as

Theore;rn 8-') on page il.o. Another Oroof of the' results in Exorcise
is oblained in Fxurcises 2. and ; of Part Clon page 330.

ti

75f)
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t(t > 1 and.-,I

327

You will find that one of thes. is impossible and
that: the other holdtkif and onty t <

8.02 Points of Division I.

Considei two points, A and B, anda point

-A.

Fig. 8-3

ntuitiveIy, P

;)

divides the interval Aff- into 'two. intervals, ;IP- and PB, the ratio of
. whose lengths is IP A ) : (A 1'). As yet we have no formal notion

f length; but, even without slich a notion, it-makes sense to talk abOut
dividing an interval into halves or into thirds, or, to speak of the mid-
point of a given interval.

For example, suppose that 1 is "one thihi of the way from A to B",
go that N

A) : (B 1') - 1/2.

In this case we shall say that

the ratio in

br that

which P divides the interval fiorn A to B is 1 2

a

P divides the interval from A to B in the ratio of ,1 to'2.
.

W.,e shall 'also say 'segment' rather than 'interval% but, due to the re-
strictions in Definition 7-13, P cannot be' either A or B if '(P

.: (B - P)' is to make sense.
Note that the ratio in-which a point Pi of an interval AB divides the

-interval from B to A is (P B) : (A P) and, so, is the reciprocal of .

the ratioin which P divides'the seme interval frOm A'to B. [Explain.]
As noted in Exercise 5 of Part E, P E AB if. Sand Only, if (P - A).
(B P) > 0. If P ip som,ewhere else on XII. [but A P.6 El] then the

ratio is negative !but, Since A ?4, s, the ratio is never -1 f. 'As 3.7oti were
asked tO show in Exereise 5, the Possibilitiessare as indicated -in
Fig. 8-41a) and Fig. 8-4(b). Even t4ough in these caies P AB it is.

TC 327

There are some general remarks on TC 320, 321(1) concerning
division of an'interval by a polnt. Also,students slibuld recognize
'(P A): (B P)' from reCent exercises. . Ratios particularly in
connection with "points of division" are basic for most of what .

follows in this volume. e.)

The phrase 'the interval from A to B' may confuse some, since
it appears to refer to a "srtseifi interxal" and this notion has not been
defined. The complete phrase:'

P divides the interval from A to B
is best thought\of as an elision for:

P divides the interval AB in the ensellpf B
%.1*

So, in the eitlehnple given on'page 37, perhaps the best w6rd translation
for the sentence: '

is this:

4.

(P A):(I3 = 111(2

P dividei the irterval A.E3 in the sense
of B A in the ratio of 1 to Z.

Intuitivefy, of *ourse, the conc-ept under discussion shOuld be clear
enough, at least when P E AB"; and the difference in meAn,ing brought
about by interchanging 'A' and 'B' should be easily grasped.

Given that (P A):(B P) is r/s, it follows that neither r nor X.
is 'zero and fhat (P - B):(A - P) is s/r. Since r/s and s/r are
reciprocals, so are IP ThA):(B -13) and IP.- B):(A-- P).

a

4.

.
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(a)

Pk AB
1! (P A) (B . 0

(b)

Fig. 8-4

P

(P A) : (B P) 1

stilLcustomary to say that P divides the interval 'from A to,13 in
A ) : t13 P. !Sometimes these cases are called "cases of exterior

division" of the interval from A to B.] So, we shall adopt:

Definition 8 1 For P 6:4147 A P -` B, and a .0 h,
P divides the interval from A to B in a : b

if and only if
(F. A.) : (13 P) alb.

[As previous noted we shall allow ourselves to substitute 'segment'
for 'interval' Definition 8-11 Note that to say that P E AR and
A P B, a unts to saying that A, B, and P.are three eoWnear
points. [Explain why it follows that'A B.] This is sufficient to ilisure
that P A has a ratip to144- P. and that this ratio is not-1. [Explain.]
In paiticular,if P - : (B P) alb then a + b 0 0.

From the definition and ti) of Part E we have:

Theorem 8-4 For A P B,
(s) P divilies the interval from.,A to B in a :

1-;\= A + (f3 - A). a [Pffqa 0/b]a + b
"tb) P = A (13 - A a

)-a + b
P divides the interval from A to B ii a b

a +. b 0].

ab lab :-'01
.t4

(P A) : (B a :
(P A) (5 A) a : a b (P B) : (,4 B) b : a 4- 14

Fig. 8-5

(ii) and tiii) were inferred from.(i in Part E, so we may infer
Coronary For A P B,

(a) P divides the inteeval from A to B in s : 1
, s

P = ± (B [1,1E, s 01

Tc 328

The e,xpliinations asked for in the text following Definition 8-1 are
as follows:

Assurping that P E AB it follows that if B then
P .A B. So, if A P B then-A # B. In case
(P A) : (B - P) -1 it follows that P A !- P B and,so, that A ' B. Since, as just noted, A B, he ratio
is not -1,

Thelie remarks justify, for Theorem 8-i, .replacing the restrictions on
(i) of Part E by the restrictions.which appear in the statement of the
theorerri%

n reading the definition, note that 'a :b is' read as 'the rVio of
a, to b'.

Figure 8-6 on page 329 illustrates Theorem 8-6, but the 'kills'
and, 'CS also correlaiLlorwith those of the corollary toTheorem 8-4. ,a

.,

41,

a.
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.
fir P A + fl - A)t

P divides the interval from A to B in t :

Finally, fwrn your work in Part E it follows that

Theorem 8-5 For Pe AB and A P

Exer s

Pa

or I e AB or P -BA

aceording.as the ratio in which P divides the interval from
it to B is

between -.1 and 0 , or pOsitive or lessAhan -1.

s U A

Fig. 6-6

1. Pic ure a line VIV. and points P, Q, R, S, 7',.and U such that
(a) IP M) : (N P)- = 2 (b) (Q : (N 1,1) = -3 .

'IC 329

Pa.rts A and B provide class exercises to insure a facility with
the v'arioys ways of expressing ratios. Parts C and-r) together make
a reasonable homework assignment. Pitrt E, when used as a class
activity, can siimulate lively d4scussion. Part E. can then.be a home
work'activity. Be sure the discussion at the bottom of page 3i2 and
top of page 331 is clear betWre assign ng'Pa'rt F.

Ansv:;ers fo'r Part A
1 .

:1" R W SP N

(a) Z/3 (b) 3/ (c) -1/2 (d) .1 (e) -3:7 (f)

Answers or Part B
[The ternative form of.the definition is obtained by replacing its

last line ( age 328) by '(P A)b = (B P)a', 1

Suppose that PE AB and A # P 5., It follows that [P A]
".= # {d} and so, by Definttion 7-14, that

r(P A);(13 - P) a/b P - A r (B - P)(a/1/).
Assuming that` b # 0. P - A = (B P)(a/b)4==, (P A)b (B P)a,

TC 330 (1)

Answers for Part C
-

I. (a) Since %.(P A): (B P) s, P - A = (B P)s P)
+ (B - A)Js. Bence, (13/- A)(s + I) (B (A B). -8.
Consequently, (A - B):(P A) ,(s + 1): -,417"

[Note that s + I b becauSe A # B and (P A): (B - P) s.]
' [Alterhatively, thiA exercise can be solved by starting with part (a)

of the corollary to Theorem 8-5.]
(b) [This can be established by the same technique used for (a).

It is wOrthwhile, however, for students to note that it can be
obtained frorn (a), lt8elf. Here's how:

By (a), .

(c) (.1? - M) : (I'V R) - -1 : 3 (d)'S = M + (W M)i (-P - A): (B P) = s (A B):(P'- A) , 8i-1-.

. (e) T = M + (N M) L-1 , (f ) (U g)4 ,,,- (N .- U) -3 Sp, by a cyclic permutation which Aplaces 'P' by 'A',. 'A' .

2. Complete the following.sptences about the points in Exercise 1'. by 'B' and 'B' by 'ID',
(a) P = M + (N M) _ (b) Q .-..- M + (N 7 M) ______ . (A B):(P A) = r (B .e.,1: (A B) . r
(c) R 1 M + (N - M) (d) (S - Mr: (Ar - S1 = .1:_.

. Substiting ' 5 : 1 ' for 'r' .yields the expected results. ]
. ,

(e) (T M) : (N 7') - (f) U = M i-i- (N M) .--
Z. A C BP if and only if P_E -AB. So, A E BP and P ...* A if and only

. if P E -KA. So, we 'cbuld establish the first case of Theorem
Part B . . J 8-5 by showing that -1 . s c 0 if and only if .(s + 1)/s c U.. ..,

An.alternative form of Definition 8-1 is suggpsted by the theorem: This is easy to show by cOnsidering the two cases [s + 1 > 0 and
s < 0, s + 1 < 0 and s > 0] in which (s + 1)/s <, 0. The second

4

- For P E AB, A 9,`, P -7( R, and 'I) x 0,
... case holds if and only if -1 < s < 0; the first case is .(

(-Pv- A) ; (13 P) L aTh 4-0 (13 - A)b = (h Pa. impossible.,
.

3. By (b) and the second case of Theorem 8-_,_5 B e AP if and onilif
.

Prove this theorem, 1) s * 1 < 0. so, a:s in'Exercise 2,,*P E -BA if and Only if s -1.
- % This reestablishes the third case of Theorem 8-5.

)

6

7Sz
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Part:C
1. 'Suppose that P,`.4. and B are three collinear

points:a ;E: (J and tliat C divides the inter-

.

val from A to B in the ratio s.'.. 1. .... 8 P)Y'! (A ,B) -1---1Shim that. - .' . . . s. , . ....

. (.3) A diV ides the 4nierval from B 'to P in the ratio s + 1
and that . .

.,
(P A) . (B P) s

A P ."
(s 1)'(A 8) A).

.7, 20 s

(b) B .divideS the interAil from P to A in c the ratio
, -1 : s 4 1.

20 From Fxercise 10) and the second of the three cages of:theorem
8.-5 it follOws that .4 eBP-if and only if fs- 1)1 s < Relate thitA
result tO theAtirs,t case of the theocem.

.,..?1 .3. Relate the reSult in Exgrcise lib) to the third ,caseo Thetxrern 8-5.

Part D ,

1. Show that if AC and NA are poncollinear parallel segriientS sueli
that D B C A. then Ag and t'.7/5 intersect At a point which
divides both the interval fromA. to B and the inlerVal from C tot)

((.7 A) : (13 D. Mint: Most of the work has been done in
proving an earlier theorem.)

'2. Illustrate Exercise I for a case in which the ratio in question is
negative and for a case in which this ratio is positive.

3. Sappose that 7.1(7 and 73/5 are noncellinear.paraliel segments. that
.Q E AC, R Ph*, A c. ; and B R D. Show that Q and R
divide.thelptervals frdm A tof and from B io D, respectively, in
the .same ratio if and only if'

(i) RJJAB lin 'case Ag f tii] or
(ii) Pe Of lin case ;Ili ntJ = {PH. [Hint: Again, mPst of the

werk was done earlier in this chapter.]
-4. Restate the corolhvy to Thtwent 8-3 in terms of the ratios in

2.4i.vhich. points divide intervals.-

Part E
Suppose that A(i . and,Y0 are ncincollinear

'parallel segments and that - B) : (C - A)
r -1. Suppose that R eAr, -S E hfi,

A R "'C, and B .S D.

fc 33p (2)
If

. . .
Students shoulcipby now have at le,ast a tem, porar4y acquaintance.with

-the transformations of ratios dealt with in Payt.:E qn palge 326,. Theorem
8-4 *and its corollary, and Exrci$e .,1., .0bove.: Itavingestablishe'd the

,.validity of thesy traf1sforrnations it is well..4'.orthwhile to-bTing out the,
fact thatthey can .be.easily Ncallet1 by Skstc)iing a:figure shOwing a

-41partit:ular case. Ti,e figure for Fixe:icise -1,,. top eXartSpie., illustrates
the 'case in w'hi'oh (I-1.- A): (13 13) ','^' FO. Iiii:t;-.a.shown in thc1 exei-eIse,..... . 0 .,-.the expressions for (A - B):(-P 7 A) and (B --,V): (A.- B), .which the
figure makes obvious in this casO, are 'valid in-all ciascs:

%, 7 f . ..,,Exercise 1. . s 1
(P-A):(B- 1-))-2, s

(A- B):(P.',.'A 1)/6 .,A , A -...13
(1 P):(*:,-;. + 1) - 1/(s + 1)

,. ,

Theorem 8.-4,. 0-.s.L.,..0__,.-

Corollary.

t.,

he figurei.11ustrates the case in which r> 1. Draw other figures
illustrating other cases. 9 4

. Show that .4i0 and he intersect ai a pocnt 0 which divides.both the
interval from A lp D and the interval from C to B in 1 : r.

3. What ratios'must be the saine in order that.{R, S, 0} be collinear?
4. (a) Suppose that rffahd Wintersect at P. Can you choose R and

S so that both and P belong to ke?
(b) Sup e that A/111 tg. Can you choose R and S so that

e and kg ii.u?

Q 0.

A P B

a+

(P- A):(B - A)

(P A):(B- t-. 4 P 5 (1-)-A):(BP) -2-1`; 1 t

This graphic procedu'r e of computing a ratdinvolving three points
in terms of another such ratio is extended on pages 331 and 332 to
apply-to cases in vihich more than three ponts are invogived or-two or
more ratios are given.

In answers to exercises, we shap, usually refer to the appropriate '
theorems; but, students should pro144 y be ailo d to use the graphical,
method to obtain the desired results.

9

Answers for Par( D
1. ByTheorern 8-2, the po.int in question sayP such that

- A (B - A)../(1 - r), where r (D 13): (C - So, by (iii) -
of art E. on page 346, Fr divides the iiittft-val from A tq B in the
ratio t :(1,;-!'',t), when t /(1. - r). On subtracting qind
Ore, ratio turns out to be - ,andl)iis is (C.- A): (B D).

2.



A

3. This result follows t
the fact that

(Q A):(C -AA) (R - B):(D - B)
A):(C ; Q) (R B):(D R).et

TC 330 (3)
rn Exercise 3 of 'Part C on page ZZ and

The latter, follows mcit read ly from (iand Of-Part. E on
page

4. If A, B, !Ind P are tiv poluts .;such thut AB /- C,I) {P}
then VC. /713 if and only ii P divi es the interval from C. to D
and the'interyal from A to B in the, same ratioC

part F: hr ngs together, results already deduced by us.ing Theorem
including thoswhich were first noted in the coMmentaryfor page

320 and the results obtained in the exercises of Part D. Thee results
will be of frequent use, and are summacized again'in Part B on page
3 3.3.

Exereisv 4(a) adds to, earlier results [see, ifor example, the
figure on tc. 32.0(1V1 the fact that, in trapewid ABDC, the midpoints
of the parallel sides, the intersection of the diagonals, and the intey-
section of the lines containing the ,nonparallel sides, are collinear. Of
course, this can also be interpreted as saying something about A PBD
[or A PAC, 'St A 013D]. It also has consequences,concerning quadri- P

rals, 11 as PAOC,.in which one diagonal bisects the other.
The variety of the interpretations just referred to may indicate why

a mathematician might be satisfied with Theorem say, and be
happy'to forgo talk of triangles, trapezoids, etc. I
Answers for Part E

%at

0 -0
A

[The figures should remind students'that, while Theorem 8-2
"explicitly giVes information about the point P at which AB ahd

interse .it can also be used to locate the point 0 of inter-
section of an0., tr .1

TC 330 (4)

. By Theorem 8-2 [with 'B' and 'D' interchaeed and .`-r' for 'r'
it follows th'at, since (B D):(C A) rl, and EZ intetsect
at a point O'suCh that '

d = A + (D A). /(l F r) = tC t (B r).
Ad in Exercise I,of Part ,,12. [again, interchange 'B' and EY and
replace 'r' by -r' I, 0 divides the intervalssin question in. 1: r.
[If, as in the figure, r 1, then XT3 and n intersect at a point
P which divides-the intrvals from A to B and from C D in

-1:r. ]
Answers 'for Part F. [cont.]

3. From Exercise 3 of Part C on pageln-22 or ,ExerCise 3 of Part D,
above, with. 'B' and 'D' interchanged, 0 41171 if and only if
(R -,A):(C A) r (S 1)) : (B D) and, also, if and only if
(R (C R) S L D):(B 5). ?

(a) Yes. By the second of the answers for Exer'cise 3, 0 RS. if
and-only if (R A): (C R) = D):(B 5). Interch nging
"B' and 'D', P Ijoif and only if (R A) : (C R)

(S B): (D 5). Hence, 0 and P both belong to lig,
and only if (S -^D):(B S) = (S B): (D S). This condition
is satiation if .and only if the common value of these ratios
eachOf wbich is the reciprocal of the other is 1. [The
common value cannot be -1 becaure B # D.] In short, R
and S must be the midpoits of AC and g-6, respectively.

(b) Yes. Again, R and S must be the midpoints of AC and E15.

(a) 'For 06 (R AI; (C A) (S D):(B D). Stnce the four
translations whose ratios are involved here have the same
direction it follows that (R A): (S - D) (C Ah (B. D) -/r.

(b) Since AR II DS, (0 R): (S 0) = (0 A):(D 0).1. /r. .

[Corollary to Theorem 8-3 and Ex,.ercise 2 . above.]

TC 331,(1,)

Answers for Part E [cont.]
6. ..(a) (0 - A): (D - A) = + r). So, fpr V n, NO II BD if and

only it (V A):(B - = /(1. + r). So, V must be the painc
A + (8 -`A)./(1 + 7).

(13)

(c)

As in part (a), W C + (D C)/(1 + r).
0 3/ = (0 - A) + (A - B)./(1.+ r2.00(D -.A). Al + r

- B)J, /(1 + r) = (D B). /(1 + r).
W - 0 (C 0) + (4 - C). + r) = (C B). +

(4- (D - C). /(1 + r) = (D B). + r)
Hence, (0.- V): (W 0) = 1 : 1.,

By (c ), W - V = (W 0) + (0 -.V) = (D .13)4.2/(l.+ r)). Since
(D - B):( - A) = r it follows that W - V = (C A)(217(1 + r)).
Hence,

(V W)t(B I?) + (V W):(A - C).= i3 + =. 2.+r +r
s:

r)
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You ,should have found Exeicise 7 rather easy if you recalled the
answers for parts (a) and (b) and the results you learned in- Part D,
and Used some simple algebra of ratio4 This procture is, however,
rather roundabout in case, for example, you happen to need, say,
only the answer to part ( g): There is an easy graphical method for
finding the answeis to such problems. [Perhaps you already use a sim-
ple form of it to help you recall the results of Part D. ] To solve, gxercise_
7 by this method, we indicatf the collinear Points P, R,S, and 0, and
the known ratiostP R) : (S P) and (0 - R) : (S - 0), in a dia-
gram [the role of 't' will appear in a moment]:

--r
1

11-1 t t

Fig: 8-7
Using the notations above the line We can compute ratios involving

the points P, H,. and S. For example, (R S) : - = _1
r - 1. Similarly, using the notations below the line we can com-

pute ratios which involve R, S, and 0.1f we wish to. compute a ratio
which involves both P and 0 then we mitst choose t in such a way as
to. make the notations consistent With one another. For this, we need

+ rt = r'- 1 and, so, t = We can now see that, say,r +

(0 R) (I) R)

a
TC 331 (2)

[This result is as closeAs we can come at present to saying
that, given two bases, AC and BD, of a trapezoid, the
metisure m of the segm'ent througli the intersection of the
diagonals and prallel to the bases is the harmonic inedri of.
he rgeasures b1 and 132 of the,.,bases:

+" I )
01. b2

' Of course, considerably more has beeniplroved.) For examPle,.
,locate'V and p on the figures iri answer to Exercise 1 for
which r ss 0, and interpret ths. result:of the present,exercise..]

It may be helpful to summarize same of the results obtained:
Each iaterval cont4i.ned,in a linethrough 0 And whose end points

belong to AC and T3-5, respectively, is divided by 0 in 1: r, and tike
ratios in which the end points of suchIn intp,rval divide the intervals
from .A to C and from D to B, tespectivelyare the same. [Exerci e
5, parts (11) and (a).

'II 0[Replacing '0' by P", ''`r` by ' -r', and interchanging 'B' arid 'D',
in the preceding statement gives another correct result.

P, P. 0, and S ar.e collinear if and only if R is the midpoint of
'AC and 5 is the midpoint of BD.; [Exercise 4(a).]
r 0 is the- midpoint of VW, and

(0 V):(D' BY = r) and
(0 (0 - A) = r/(1 + r), Exercise 6]

These results hold for any value of 'r' other than 1 ana
[Those not involving P hold even if r 1.]

1 + r), Exercise 6]
These results hold for any value of 'r' other than 1 ana

[Those not involving P hold even if r 1.]

.1

7. [The as umption that, I I is, of course, to ensure the exi
ence ot P as well as that of 0. ]
(a) (P - R):(S P) = (P,!. A):(B P) = -/r
(b) (0 R): (S 0)
(e) - S):(P - ,R) = (A -,B):(P - A) = -//(1 r) = r 1

(d) (R S): R) /r = -(1 + r) [Use (b).
(e) (S P): (R 5)_. 1.1 r/(-1 - r) fusz 446), and (c
(f) (S Q): (R 5) -r/(1 + r) [Like (e). ]
(g) (0 at) R) (1 0/(1 r) [Use (c-nlnd. (d). )
(h) (5 P)iS - 0) = (r +1)/(r..- 1) [Use (e) ar.? (f).

8. In each case, the two ratios *are opposites.

The method of computing ratios from others which is illustrated on
pages 331 and 332 is a considerable time-saver. As is pointed out,
the order in which the points are indicated in Figure 8-7 is immaterial.

.1

,

7. [The as umption that, I I is, of course, to ensure the exi
ence ot P as well as that of 0. ]
(a) (P - R):(S P) = (P,!. A):(B P) = -/r
(b) (0 R): (S 0)
(e) - S):(P - ,R) = (A -,B):(P - A) = -//(1 r) = r 1

(d) (R S): R) /r = -(1 + r) [Use (b).
(e) (S P): (R 5)_. 1.1 r/(-1 - r) fusz 446), and (c
(f) (S Q): (R 5) -r/(1 + r) [Like (e). ]
(g) (0 at) R) (1 0/(1 r) [Use (c-nlnd. (d). )
(h) (5 P)iS - 0) = (r +1)/(r..- 1) [Use (e) ar.? (f).

8. In each case, the two ratios *are opposites.

The method of computing ratios from others which is illustrated on
pages 331 and 332 is a considerable time-saver. As is pointed out,
the order in which the points are indicated in Figure 8-7 is immaterial.
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rlf this lookS like magic, note that, above th line, we, are really say
ing that S.- Ro,- AR P)(i- 1 ). _Below the rine we are saying 44hat
S - R - Putt + rn. In order to be correct both times We must
have f + = r - 1.1 Note that it daesn't matter in whdt order' we l*

vith points.

Part F
1. Use the graphical tectuntwe to check your answers fbr Exercise

of r art E and to find P - : S) and ter? - 5) : - 0).
2. Suppose that A, Lr.,C, and D are four collimar pOihts such that

it1 a and 13 I)) : (1) C) = b. Compute at
least six ratios each of which involes three or_four. of the given
points.

3. Sppose that .1. K, L, and M are four points of a line! such that
(K - : 11. L 1) 2 and al L) -4.. Draw. an ap-
prophate picture and compute these ratios.
ja) (.1 : - el) (b).(K : M.)
(c) (St - - (d).(K ;.(K
(e) ( K : - (f) kM - L) - J)

(h) (J- 1.) :

7

8.03 Triangles

Definition 8-2
ca) PQR = P4 u ?A u
-4PQR is a triangle {P, Q, R} is nencollinear

R

.".

Fig. 8-§,

We shall usually write 'APQR' when we wish to refer to the set PQR
an'cl, at the same time, imply that {P, Q,R} is noncollinear. The points
P. Q, and R are the vertices of APQR, and the intervals QR, RP, and
PQ. are its sides. P is the.vertex of 8PQR opposite side QR, and QR is
the side of AeQR opposite the vertex P. Etc. Note that, for any points
P, Q, aiid R, PQR PRQ. So, in partieular,,,APQR APRQ. Give
four othir ways of referring to the same triangle.

Eierciseii

Part A
1. (a) .Draw aAKZR.

(b) List the vertiCes and the sides of your triangle, pairihg up each
gertex with the.opposite side.

-

dmr,

Answers fon. Part F
1, (P-O):(R-S) -2r/(1 r)(1 - r); (1:1-S)R10), r(r 4 1)/(r 1)

[Vie answers will va'ry accoraing to Which. ros students chroose
to compute. Computations'may be based on,a figure like:

' . 1

3.

B.
bt

t

where, since t bt , -1, t -= -1/(b 1). As an example:
(B A): (D C) -a :t a(13 t .1)

1
2

1

With t =

(a) 3

(e)

-4 t

(c) 3/5
('g) 3/4

1

(d) 1/5
(h) -1

The letters.' and 'RI in any order, preceded by a
1/4giyes a sYmboLIFferring to APQR.

The exeres of Part A provide practice with the language of
triangles and cae easily 1:;e treated in class. Parts B* and C can be
used as a homeWilrk assignment. This is a rather large assignment,
however, containing many important applicationigof ratios. We recom-
mend that in addition to assigning Parts B and C as homework you
discuss the exercises,in clasi the next day.

Answers for Part A
I. (a) jAny triangle.

KB [or: Bk]; K

) K, Zs.; z , RK; R, K4

TC 333 (1)

3. [Since no three of the five points are collinear, any three are
vertices of a triangle. F9r irading purposes it is probably better
to know that there are 10 triangles, rather than to harVe a heck-
list. It is common to have students who do not "see', for è1xaniple,
that B, Bo and D gra vertices of a triangle because BD is iot

drawn ial the figure.]



I.
8.03 Mangles 333s

2. Without drawing ,%13LK, tell which side of this triani.,,le is opposite
I. and which vertex is opposite the side.BL.

.31 Name all the triangles w,hose
vertices, are among the, poknts .

A, 13; C, D, E in the figure.
a

-
A

4. (a) Ilrawa r\PQR and Mark the Midpoints, M arid N, of Pi? and

Pirt B

Part C

RQ, respectively.
(b) Show that NiN
(c) Compute (N - M (Q p),

In AABC suppese thCA
and E RC.
1. Show that DE 11AR if anfol only

if D and E divide the sides from,
C to A and from C to B, respec-
tively, in the same ratio.

2. Suppose that DE AB.
(a) Sh9w that (1,; - D) : (B - A) = r if and Only if (D = C).

: (A - C) = r. Froni this and the hypothesis that D E CA,
-what can you conclude:about (E D) : (13 A)?

(13) Show that A:e.lind YD. intersect at a point 0, and compute
(0 - D) : (R - 0) and (0 : 0). Must 0 belong to
the intervals AE and BD? Explain. ,

(c) Show that tiU inteirsects and A73- at their respective mid-
points, F and V.

(d) Compute (0 - : (P - 0) and (F (13 - C).
(e) Compute (0 - .P) : (C 0).

Webhave had a good deskr to do
'with ratios of translations. It wip
tUrn out shortly that, for, some
purposes, it is more confienient to
speak of ratios of int,ervals. Given
parallel intericaIs AR and CD we
shall_ say tthat, the ratio Of CD to
to Mi. [for short: CD :I AB] is the v,

absolute value of the ratio of1) C
to 13 A:

f P

CD : 'AB (D - C) : - I

I. ShoW that CD : AB DC AB = DC : BA CD. : BA -and that
AB CD ia the reciprocal of CD : AB.

le

TC 333 (2)

Answers for Part A cbnt.]
4, (a) :R (b) Stnce (R Q):(R N) 2

(R - P):(It M) it follows by the
corollary to Theorem 8-3 that

If (N M).:(Q P) r then, by
Theor,em 8-2, R P + (M P)'

/(1 '2- r). Sinci> different values
of *.r* yields different values of ,'/(1 rY, the converse also
holds. So, since (R P):(M P) 2, it followsthat.1 - r 1/2 and that r 1/2. Hence, (N M):(Q'- P) 1/2.
[Although it is good practic..e to learn to u.se the general theo-
rems developed in this chapter, it is 'Often easier to solve
exercises independently of these theorervi. In the case of' the
present eicercise it is COnvenient to let p = P..- tt and

= Q R. Then N M (N - R) - (M R) q /2
(9 /2 = 11./2.. This result yields both (b) and

.

Answers for Part B
[As remarked in the commentary for page 330, preceding the dis-

cussion of Part E, much of the present Part B is a review of the
results obtained in Part E. Exercise 1 is an exception to this. In.any
case, all follows from Theorems 8-2. and 8-3. The results of Exercise

are summarized in Theorems 8-9 and 8-10 on page. 338. )
°

i This is an immediate consequence of the corollary to Theorem 8-3
[as restated in xercise 4 on page 330] together with,the fact that
C divides the intervals from D to A and from E to B in the same
ratio if and only if the ratio in.which D divides the interval from C

r to A is the same as the ratio' in whibh E divides the interval, from
C to B. This last follows frbrn the fact that either of (C D):(A C)ad (D C'):(A D) is computable from the other and, in the same
way, the.correSponding one of (C E): (B C) and (E 7--C):(B E)

computable from theother. So, starting with the same value for.
(C - Dh (A C) and (C - E):(B C) one will obtain bycomputation
the same- value for (D C): (A D) and (E (B E), and vice
versa. .

2., (a) .[To show that (E D): (B A) r if and only if (D - C):(A-
r amounts just to showing that (E D-HB C):(A C).And, to show the latter, it is sufficient to show that if

(E D): (B A) r then ID CHA C) r. ] By Theorem
8-2, 'since rn eThrr consists of a 'single point, (E - D):(B- A)
# 1. Moreover, since A-5 (Th {C} it ,follows that if
(E - D):(B A) r then C A 4 (D A)/(1 r). .1Note
that both parts of the conclusion of Theorem 8-1 have been
called orr4H the preceding argurndnt. ] It follows that
(C - A):(D - A) = 7(1 r), (D - A): (A C).= r 1, and, so,
(D C):4A - C) = (r - 1) + 1 = r. Hence, if (E -,D):(B- A) =
then (D - C): (A C) = r. Since .(E D):(B - A) is some -
number, it follows that (E D) (B'- A) = (D - C): (A - C).
Consequently, (E D):(B - A) = r if and only if
(D C):(A C) = r.

Resuming that D E CA it follows that 0 < (I) CNA C < 1.
So, under this hypothesis, a < (E Dh (B - R) < 1.

(Zs



TC 333 (3)

Answers for" Part B [cont.!
(1) [Students should recognize this as a repetition of Exercise 2

of Part F. on-Rage 330. If one identifies the points D, A, 8,
and F of-the present exerise with the points A, D. and C
of Prrt, E then the pcints 0 of the two e3tercise&4correspond,
but the number r of Part E is the reciprocal'of the number r
of part (a) of the present exercise. Translating the reSult of
F:xercise Z of Part E 'into the present notation, we see that 0
divides the interval frorri D to B and the intervat'from E to
A in r :I. So, the value of each of Ow ratios in question is
r that is, each i (F - D4:(B A).

Since the latter ratio is between 0 and 1, so are the
former. It follows from this that 0 belongs bothto BD and
to AE."

(d)

Students y answer by referring to a figure like:

which summarizes the relevant information from Part E. The
corresponjling figure for the present exercise is:

,t
More "generally":

r
For a verbal staterilent of the property used, see the figure of
the4summarizing statements following the answer for Exercise
O-of Part E. 1
[This has been c4hown in Exercise 4(a) oelz'art E on page 330.1
(0 0) (E D): (B - A)
(F - C):(P - C) = (D Ch(A C) (E D):(B 7 A)

(e) (0 P):(C 0) - (1 r)-:(2r), where r z-- (E D); (B A).
[Use part (d) and the technique explained on page 331.]

."
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It is sometimes ,conv.nient to speak of the natio of two iqtervals
Loy segmental'. [See, for a,camplt, Thetbrem 8-6 on page,335 and
*Theorem 8-7 on page 335,] In doing so, one disregards tlie notion of
sense which does not apply to intervals and, so often loses for-
mation which is available in statements about ratios of translati s etr
"about ratios of sensed distances ,set Part D on. page 363].
Answers for Part C
1. Since (D C):(B A) = -[-(D C):(B

and since numbers which are opposites have the same absolute
value, it follows that I(D C)-(B A)I = (C D):(B A)I. So,
by.definition, CD:AB = DC:At. Etc.

Since (B - A): (D C) is the reciprocal of (D - C):(B A),
and since the absolute values of reciprocals ar,e, themselves
reciprocals, it follows that I(B A : (D.- C),I is the reciprocal
of ID C):(B - A) . So, by definition, A-T3TCD is the reciprocal
of CD:A13.

a

'e

44'
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et

J

2. In 'each of the following, you are given certain information about
a figure. Also, certain ratios of intervals are indicated in the given
figurip.41se this information to Ike lp you to compute the indicated
ratios of intervals. [For hplp, see Exercise 3, page 322.1

(a) A (b) A

2

Given: EF 11 BC
Compute: EF *: BD; b-C-: FG;

EG : EV: AG : At:

(d)

2
a

5

\C

Given: *F1 !IBC
Compute: FG : Bb; fl7 : EC;

AH ; AE; ET : Fl

G iy en : DE 11 A-C

Compute: BF : Pd; BE : Pc;
.EF : CO; CA : ED

3. Suppose that AB 11 EF PDC,
and that the ratios among the
intervals EF, BF, and FCare
as indicated in the figure at
the right.
(a) Coro ute these.ratios:

B; EF DC;
; BE : BD

(b) Sh
EF . EF : CD . 1.

4. In_each of the following, you are given that I rn4. n. Also, certain
ratios of inteIvals are indicated in the given figure. ILI:. this
information toN compute the indicated ratios ,of intervals. [For
help, see Exercise 5, page 325.]

A

'IC 334

Answers for Part C [cont.]
2, (a) EF': BD a 2/5; DC :.FG =7. ; EG = 2/5;

AG AC = 2/5
JIEL_

; BCY = 5/7; HI : = 5/7 ;

7/3
(e) BF : FG ; 3/4; BE ; EC 3/4; LEF." : CG =. 3/7;

CA: ED a 7/3 -
(d) 511: = 3/4; IE : GC = V4; BI: BG = 3/4;

4/3
3, (a) EF: AB 5 t + t); ET: DC = s : (s + t)

Cf EA t : s; BE : BD s : (s t)

A
(b) EF: B + : CD = - I"

Given: DE 11 AT
ComPtite: DH AF; JE : GC;

Bi : Elt-i; AC :

41)

Compute: AB : BC; AG : AF; Given: pi'
AD : GR; BG : Compute: A : CD; BC ;

AC CD; AB : AD

to
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.5. It a u.IK'osnary to call each of two intersecting lines a iransuersal
of the other. An interval of a line / is said to be intercepted by any
two transversals .of / which, together, contain the endpoints of the
interval. Tt.70 or more lines which have a common point are said
to be roncurrent. The following theorein restates earlier results
in theSe new- terms. Prove it by referring to the appropriate exer-
cises and showing how these apply.

Theorem 8 - 6
a ) The ratio of two intervals which are intercepted on one

of two parallel lines by. concurrent transversals of both
theSe lines is the saMe as that of the correSponding inter-.
vals which are intercepted by 'these transversals on the
other. .4(

4,1)) The ratio of two intervals are intercepted by
parallel lines on one transversal of these lines is the
same as that of the correSponding intervals which are
intercepted by these lines ori any other transversal.

8.134 Repos in a Triangle

Fig. 8-9

The exercises of Part t3 suggest several theoretms about triangles,
r aild-rthe notidn introduced in Part 0 helps in stating Some of them. For,
example: .

..

Thpoedirnetsm f8 t-w7o Ts ihdee i

arid its rio to the ..iird side is 1/2.at

lanwghle pearndasirsto tthhierdmsiidde-

, .

ft ear vt rai

Coronary kline through the midpoint of one side of a triarigle
is parallel to a second side if and only if it contains the mid-

, point Ofthe third ske. .

1,

Before.stating our next theorem we need a definition.

Ai\
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Answers for Part C [cont.].
4. (a ) 1.Z 314; A0: 3 7; AD: GE.- 7/4; BC.: 3/7

'(b) AB: E5 /2; BC: AT3 = 1/2; Xc .5/-4; AB:AD z 2/9
5: Theorem 8-6(a) can beyroved by using Exercise 3 of Ptest a on

pagy 330% Suppo,se [in the notation of that exercise] the t'..cVo
parallel lines of the theorem, are Arr, and r5 and consider the
concurrent transversals r?-;_pc artil 75-6 which intersect A7 at
A, C. and 0 and intersect 13D at B, D. and R. respc;ctively.
AccOrdiniLto the exercise, (0 A): (C Q) (R Bh (D R).So, AQ :QC :BR: ITO, This establishes Theorern'8-6(a) in.case
the intervals are intercewted by three transversals. 4To establish
the general case, ;vs pictured in Figure 4-9(a) it is sufficient to 4apply the special ease twiee. Suppose that four-concurrent trans-
versals intersect-one of tivo parallel lines, at A1, 13+, As, and A4
an ntersect the other at Bs, and B4 , respectively, and
that we wish to show that A1A., AsA4 B1B,, :B3-134 By the
special c is& A A,,A B lLB and,also, A:

. 3 As A-4

= ll,B B3134.; The desired result now follows' from the fa ,that
(A

;
A , A.,A3 )(.A A :!..3 A4 ) ,A1A; AsA4 and similarly for the_ 3 :

. 1

heorem 8-6(b) has already been established in Exercise 6
of Fla I) on page 325.

dhit Theorem 8-6(a) has a corolla,hr;
The ratio .of two intervals intercepted on two parallel

lines by two concurrent transversals is the same as that of
the intervals intercepted on these lines ,by any.two trans-
versal's which are concurrent at fhe same point as the given
transversals.

The corpllartAis also illustrated by Figure 8-9(a), where Ow comm-on
ratio is-. t. [In the theorem itself, the common ratio is a/b (or b/a).]
The proof is easy. Referring to' the proof given above for Theorem
8-6(a), since AlAe ANA4.= 1T.,-.W,,:B;134, and the four intervals are
tarallel, it follows that Ps.,A2 :B11:3;.= A3A4 : i333:34.

There is a similar corollary fol. Theorem 8-6(b); but, here. we
must' require that the two tra rsals be parallel. The two cor011aries
can be combined into one if w eak of the parallel lines of Theorem
8-6(b) as the transversals: .

The ratio of tw,o interivals Intercepted on two parEillel
lines bY two concurrent '[ir parallel} transversals is 'the
sarne,as that of the intervals intercepted-fon these lines by
any two transversals which are concurrent at the same
point as [or are parallel to] the given transversals.
'You may wish ta-give your students a'restaternent of the parts of

Theorem 8-6 aping the wors; 'pro-portional':
Concurrent transversals of ptrallel lines intercept

proiportional late rvals .

,Parallel linos intercept proportional inte;rvals bn alltransversals.
t

4
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4

Definition 8-3 The median of a triangle from a given vertex
is the interval whose endpoints are the given vertex and
the midpoint of qie opposite side.

AM is the mechan.of ANABC

1
from A Tor : to BM

Fig. 8-10

How many medians does a triangle have? Is it possible to have a
triangle which has some two of itS.medians collinear? Is it possible
.to have a triangle which has some two of its medians parallel and
noncollinear? Explain your answers.

Theoreen 8-8 The three medians of a triangle intersect at
a point which divides each of them, from vertex to midpoint
of opposite side,' in 2 : 1.

Illint: From Exercises 2(13) and 2(e) of Part B, page 333, what are
(0 - A) : (E - 0), tO B ; (D 0), and (0 C) : (P - C) when
r 1/2?)

Theorems 8-7 and 8 take account of only a very. special case of
the results you obtained in the exercisa4 of Part B on page 333:To
state these resultsNn a more easily remembered form it.is helpful to
generalize the notion of midpoint. The midpoint of the interval AB is
the point A + (B A) f. [4, is also the point B + (A B) f.] We
shall refer to the poipt A + (B A)r as:

TC 335 (2)

Two proofs for Theorelii 8-7 are given irAhe answer for Exercise
4 of Part-A on tia4e 133. The theorem is also a special case [r =
of Theorem 8-9(a)" on page 337.. This theorem is a consequence of
Exercises I and 2(a) of Pact B on page 333.

The if-part of the,corollary is obviously a restalernent of part of
the theorem. The only if-part is a consequence of,the if-part: For,
there is just one line through the midpoint of the given side and parallel
to the 'second side and, by the if-part, the line through the midpoints of
the first and third side is.this line. [So,. this line contains the midpoint
of the third:sidc.')

A triangle has three medians, one from each vertex. [The mian
from onertex Iy, A cannor'be.., also, the median from #trinther
vertex say, B for, if it were, the millpoints of NZ and of
would belong to N-A, and {A, B, C.) would be cotlinOar.] No two,
medians of a triangle can be collinear.' {Same reasonS as given for
distinctness of medians.] That no two medians of a t;iangle can be
parallel follows from Exercise 2(b) of Part B, on page 333.

As indicated in the hint, Theoren1 8-8 follows at once from
Exercises 2(b) and Lie) of Part B. Several other proofs of this
the,orem are given later in this chapter.

Sample Quit
In the picture at the righitimPS

is 1/4 as long as and T divides
the segment from P to1 R in the
ratio 1, 3.

True or false?
the r-point, from A, of AB 1.

2.
So, for example, the midpoint of AB is the f-point, from ei her A or B, 3.of AB. Note that

4.

their-point, from A, of Ah is the (V r)-point, from B, of AB. 5,

Note also that by the Corollary to Theorem 8-4, that [for 0 76 r, _6.

7,

the r-point, from A , of Ali &Ades theinterval from A to B in r I. r, Ke

and that [for --=1 s. 0 01
S I

the point which divides the interval from A to B
s.in s 1 is the --point, from A, of AB.s 1

S divides the segment frox"n P to Q in the ratio 1/4.
1511 is 1/4 as loni as PR.
°§7 is parallel to coke.
ST is as long'as QR.
The ratio ST:QR, is 1/4.
The midpoints of ST and QR and the point P are c6llinear.
,The segments S,R and QT intersect.
to Sample Quiz
False. Z. True. 3. True.
True. 6. True. 7. True.

t

4. False.
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In each of the following, you Eire given that I' and Q are certain
r-points af the si.des AR and AV, reszectively, of AABC. Carefully
-draw a picture for each case,and EinSwer the following:

What is (Q P) (C B)?
(1i) Given that R is the point of intersection of PC and QB,

compute (R P) : (47 R) and (R Q) : (B Q).
(iii) *liven that S is the point of intersection of ATI and he,

compute (S B) : (C S).
(a). Given that P is the fpoint, from A, of AB and that Q is the

(t-point, from A, of AC.
(b) Given that P and Q are the i-points, fron, of Ali and AC,

respectively.
(c) Given that P and Q are the i-points, from A, of4AB and AC,

respectively.
(d) Given that-P and Q are the midpoints of,sides ATI and A-0,

respectively.
2 .1 ppose that R and S are points on the sides DE and DF, respec-

tively, of ADEF,
(a) Given that P is the i-point, from A,,of Ab and' that Q is the

i-point, from A:of AC.
(b) Given that R and S are the ;points, from D, ofDE ari'd DF,

spectively, what can you say about h-sl and LT? Try'tp show
that your answer is correct. I

3. Suppose that CM and BN are the medians froinic and 13-, respec-
tively, of AABd. L'et B = C (M - C)2-and S - B (N - B)2.
(a) Draw an appropriate picture and show that P.C!
(b) What is BC : RS? MN : RS7.5

(e) Show that A is 'the midpoint of kg.
4. In the figure at the right, AM

is the median from A in AABC,
?Vend S gUse the I-points, from ,

, of AB and AC, rèspactively,
and RC and BS intersect in the
point T. Compute the;se ratios,.

. (a) (T : (C T) (b) (T - B)-; (S 7 T)
(e) (T -"A) : (M T) [Hint: Let U be the point of intersection of

. RS and AM. Make use of the ratios (U - A) : .(114 - U) and
U): (M T). Or, see ExerCiSe 2ie) of Part B, page 333.]

A

The followingi theorems are suggested by our work with retiod
in triangles in Part A and in earlier wait.

Thebrem. 8 -- 9 .

(a) The interval whose endpoints are the r-points of two
sides of a triangle, from their common endpoint, is parallel ,
to the third side, and its ratio to the third side.cs r.

TC 337 in

Part .6 should be a class activity due to the introduction of some
'new language. Parts B and C constitute one reasonable fiomework
assignment. Part D is.a second homework assignment. Part E pre-
sents some interesting in-class activities., P,art F is a third possible
homework assignment but, because of its length, should be carefully
discussed the following day. The exercises of Part F contaip manir
interesting and important geometric relationships.
Answers fot. Part A
1. (a) A

(b)

(d)

(i) (0 -.P): (C 1/3

(ii) (R Ph (C R)

(R Q): (B 0). 7- '1/4

(iii) (S B):*(C.- S) = 1

(i) 2/3
(ii) 2/3; 2

(iii) 1

(i, ) 3/4
(hi). 3/4; 3/7

(iii)
1

.

(i) 1/2
4ii)i1/2; 1/3

(iii)

:41

.1!
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Anewerit:for Part k [cont.)
Z. (a) 3/4; 3/4

(b) I I rf. This follows from Exercipe 1 of Part B on
pz,ge 333,

3. (a) . SR ..§-4k; and SA 1! ZTA hecause
(N 13):(N S)- (N - C):(N A)

[Corollary to Theorem 4-3. J
There are ,many other proofs that

tn: All, however, go back
to Theorem 4-3,

(b) BC:RS = 1/2; 0MN:RS 1/4
(c) In A ACR, (A R):(N M) and, in AABS,

(S A): (N M) 2. So, S A (14 M)2 A R
and A is the midpoint of. 'Kg.

4. (a), ,11.4

(b) 4

(c). 2/3 [Fron1 the. given 'infot-rnation and the hint, ,U
point, 4rorn A. of AM and A- the 4-point, from U, of UM.
So, T is the z;--point, from A, of AM (for, +

Thus, T divides the ent from A to M in the ratio 2/3
3(for., (--5)./() 2/3 ), 1

tr.

4

4.14)

Q
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(b) A line through the r-point of one side of a triangle, from
one of its vertices, is parallel to the side 'oppbsite that
vertex if and only if it contains the- r-point. from that
vertex:of the third side.

Fig. 8-11

Theorem 8-10
(a) Iritervals from two vertices of a triangle to r-points of

the opposite sided [from, their common vertex] intersect
2r
+ 1 -poi& 'of the median from that vertex. The

point of intersection divides each of the two intervals,
from vertex to opposite Side in 1 : r and divides the
median, from vertex to side, in 2r : 1 -

(b) Lines through two vertices of a triangle which tinter-
sect at the s-point of the median from the third vertek

intei-sect the opposite sides at their.2 s ,points from .

this vertex.

Part B
1. ProVe these theorems. lliint: You may, of course, use the results

you obtained in Part B on page 433.1 .

(a) Theorem 8-9(a) (b) Theorem 8-9(3),
(e) Theorem 8-10(0 (d) Theorem 8 -1003) _

r
2. in each of the following, AM is the median from A in AABC,D and

E are given r-pMnts, from A, of AB and AC, respectively, and F is
the 'point cominon to Am, gE, and CD. Make use of Theorem 8-10
to help answer the given questions.
(a) Given: D and E are 1-points fmm A.

Complete:
(1) F is the, from A,

of AM.
B) : (E and,

divides AM, from vertex to
side-in the ratio

,

TC 338 (1).

Theorem 8-9(a) is obviously a,generalization of Theorem_ 8-7,
and Theorem 8-9(b) is the corresponding generalizatIon of the corollary
tO Theorem 8-7. The proof of Theorem 8-9 is analogous to the proof
of Theorem 8-7 and its corollary.,..1[Sce TC 335(2).]
Theorem 8-10 is related in a similar way to Theorem 8-8. [Theorem
8-10 is a special case of a much more general theorem see Exerdises
5'and 6 on pages 365 and 366.]

1, Students should illustrate
iiigures 8-11(a) and 8-11(b) illustrate T mheore 8-9(a) and 8-10(a),

re ctively, in the case in which 0 r
the Cases in which r 0 and r 1.

In all strictness, these theorems require .some Mild restrictions.
In the ca,se Of Theore.m r must be restricted to be 'nonzero. In
Theorem r can be neither 0, 1, nor -1 and s cannot be 2,
Students should draw figures to illustr.ate these excluded vases.

sa.
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Answers for Part 13
1. (a) This is an immediate consequence of Exercises 1 .and .1(a) of

Part Li on page 333,. Alternatively, using the notation of.
Figure 8-11(a), D C' + (A C)r and E C +_113 C)r. So,

D (B A)r, Ilence, DE H AB and DE:AB r.
(b) Since there is one itnd only onefline through D parallel to

and, by (a), the line,through I) and E is parallel to AB, it
followsthat the line through I) ya-rallel to AB is the line,
through D which contains E. Hence, a, line through D is
parallel to .AB if and only if it contains E.

(c) This is an immediate consequence of Exercises 1 and 2 'of
Part B on page 333. bsing the notation of this exercise, D
and E* are the r-points in question and, by Exercise 1, the
assumption made for Exercise 2 is.satisfied. By Exercise
a(b), the intervals in question intersect at a point 0 which
divides each of them, from side to vertex, in the ratio r and,
so, divides each, from vertex to side in 1 :r. By Exercise!
2(i), 0 belongsto the median from C: and, by Exercise 2(e),
0 divides the median, from P to C, in 1 - r :2r. So, 0 '
divides the median from C to P in 2r :1 --r, and the point
which st? divides the medtan is its (2r)/(r + 1)-point [see
Pant A on page 137 ].
In the notation of the answer juSt given for part (c), one need
only note that, subAct to appropriate restrictions see
TC 333(1)1,

Zr
44=P. r -

s
r + ,

s

Theorem 8-10(a) can be proved directly,, without reference to
earlier exercises. Using the notation of Part B on page,333 [which is
that of Figure 8-11(b)] we have that D C + (A C)r and F. C+ (B -C)r
and are seeking a point 0 such that [for some u and vl 0 = 13+ (ID'. B)u
= A + (E - A)v.. We wish, then1 to'solve:

B + (D - B)u = A + (E - A)v
or,, equivale
. B f [(C -'B) + (A C)r]u = A [(C A) + (B C)r)v

- A (C A)(v + ru) + (B- C)(rlf + u)

(d)

TC 338 (3)

Recalling that B - A = (C A),+ (B C) and that (C A, B C) is
linearly independent,.'this amounts to solving:

ru + v 1

fu + rv = l

which is satisfied if and only- if u = v- ,:. 1/(r + 1) [assuming that
r # -1]. It follows that the desired_point 0 exists [uniquely] and is
the 1/(r .I. 1)-point of both A-- and Br), from 'A and B, respectively.
It is readily coMputed [Part A] trat an 1/(r + 1)-point of an interval
divides the intervarin 1 :r,

It remains to be shown that 0 belongs to the- median from C and
to compute its locatiovin this median. This can be done by comparing
b C and P 0 where P is given as the midpoint of AB. Alternatively,
one may avoid predvement of the i sue by showing, by the technique
used above, that CO and rE, int eet at a point P which turns out-to
be the midpoint of Kt.,

-

Students should be required to 'protictice arguments like the pre-
ceding [from basic principles], as well as arguments which, like that
previouSly given inproofof Theorem 8-10(a), -are based on general
theorems.

Answers for Part B [cont.]
2. (a) (i) 1/2 (ii) 3; 3 (iii) 1

51
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(b) Given: 13 and E are,i-points from A.
Complete: (i) F is the -point, from A, of AI .

(ii) (F. - B) (E and
(F C) : (D

(iii) F divides AM, from vertex to side, in
ratio

(c) Given: F is the i-point, from A, of AM.
Complete: (1) Both D and E are _-points from A.

(ii) (F - C) : (D =
(iii) (F - A) (M - A) =

3. Draw a picture ortriangle PQR. Locate A on PQ such that A is the
-point, from P. In the following, add to y:our picture and answer

the question&
(a) liocateB on QR such that AB ll PR. What is (B Q) : (R B)?
(b) Locate C on PR such that BC II PQ. What is (C R) : (P - C)?
(c) Locate D on PQ such that CL5 II RQ. What is (D Q) : (P -
(d) Locate E on QR such that DE l PR. What is (E Q) : (R E)?
(e) nocate F on P1? such that ErP 1 PQ. What is (F - P) : (1? - F)J
(f ) What can you say about AF and QR? About AP and DC?
(g) Show that (1-' A) + (C D) = R Q.

4. Prove:

the

Theorem 8-11. If, in AABC and AA' B' C' , AB NB' ,

BC II B'C' , and CA II C'A' then
. (a) (B' - A') : A) = (C' B') : (C .B)

= (A' C') : (A C), an4'
(b) for A A' , B ?4, B' , and C C', the lines AT,

kW, and Ware parallel or concurrent.

int: Part (a) is just a restatement of a theorem in Chapter 6; foi
part (h), use Theorema 8-2 and 8 -11(a).l

Part C
In each of the following, you are given certain information aboiot a

figure. Also, certain ratios of segments are indicated in the given
figures. Use this information to determine the values asked for.

A

1. Given: br
Find: .a; b

3

Given: lig
Find: e; d

:41
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Answers for Part [cant.]

(b) '(i) 2/3. (ii) 2

(c) '(i) 1/2 (ii) 2; 2

(iii)
WO 2/3

[You may consider it w.l)rthwhile to make up other exercises, like
those of Exercise 2, using less familiar values of 'r'. Remem.ber
that)s:lgative values .and values greater than I are permissible. ]

3. [This is exploration for Theorem 8-12 on page 340. ]
(a) 4 (b) 1/4 (c) .1/4 (di 1/4 (e) 1/4

) AF QR talso, AF:QR 1/5);
AF 11 DC [also, AF : DC = I/4] .

(g) F A = (R.- Q)(I/5), C D (R Q)(4/5); (1 ) (4/5) = 1.

0
4. F:or part (a), the theore4n in question is Theorem 6-12. Let

a = - B. 5 = A - C, c = B - A, a.' = C' B', .= A' - C',
and = Then (a.,11) is linearly independent, -a. +

and a' + + c' = Since a' = a), etc. it follows by
Theorem 6-12 that 3' :a =
For (b), let r = : a. 31i. Theorem 8-2, CC'
and, if r 1, and SS' intersect at the

, of Ere. Since, by. Theorem 8-11(a), 5-5'

that, if r * 1, t'Z' rx, and, if r # 1, CCI
at thel(1 r)-2aint, from C', of n,. So, if

, 1-Ef , and CC' are parallel and, if r 1,
concurrent.

, Theorem 8-11Lb) is part of the converse of Desargue's TheOrern
[TC 36(1) for page 36]. [The other part which some of your more
interested students may wish to prove says that if the intersections
of lines contalning`'corresponding sides_of thetriangles are collinear
then the lines containing corresponding vertices are, again, either
parallel or concurrent. ] Theorem 8-11(b) gives a way of solving the
following "construction problem". Given two lines and a paint, as

shown, draw the line through P
which is concurrent with the given
lines, assuming that it is impossible
to find the point of concurrency by
extending the pictures of the given
lines. [The use of parallel ru/era,
or other instruments for drawing
parallel lines is allowed.

if r = I

1 r)-point, from
r, f011ows

and A-A' intersect
r = 1 the lines
these lines are

Answerslor Part
1.' 1; 4 Z. - 8/5
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Part 1)

3.

4.

Given: bt O
Find: e; f

Given: bt it Pa it h0
Find: _,g; h;

1; 3 4. 2 3; 3; 11/3 is

Answers for Part D
-1. Assuming that D is an r-point from C, E is an r-point from C

and F is an r-point from B. Assuming that G is an s-spoint from
C, H is an s-point from C and I is an s-point from- B. Since G
is a'n s-point from C, C s a (1 - s)-point from B. So, F is a
(1 s)-poirit from B. Hence, 1 s r. Since.D is an r-point
from C, D if a (1 r)-point from B. Since I is an s-point from
B and s 1 r it follows th t ID j! AC.

The results in Exercise a of Part B suggest the following interesting
theorem. If you will review the manner in which the critical points
were obtained, you will see why it is reasonable to call this "the tWice-
around theorem".

Theorem 8 12 [The twice-Around Theorem)
If, in 6A8C, G and D are in BC , E and II are in
and Far e in AB and DE BA I GH, EF CB HI, .

FG 11.44C, Then ID 11 AC .

A

Fig. 8-12

1. Prove the twice-around theOrem. [Hint: Suppose that D and G are
the r-point and the s:-point, from C, onfiC. Which points are E and
H, from C? Which points. are F and I, from B? Which points are G
and D, from B?]

I
2. Show-That, in the Iwice-around theorem, w E) (0 H

3. Draw a figure for the case of the twice.around theorem ill. which
D G. (

4. The lines k-F and intersect eta peint O. InAwhat ratio does 0
divide the interval fronvE to F? Thaffrom D to I? [Answeix in terms
of the number r referred to' in the hint for Exercise 1.3 -

5. The line al iptersects DE at a point P,and AB at a point Q. In what
ratio does 0 divide the 'interval from P to crl How might you de-
scribe the interval CQ?.Compute other ratios -involving .C, 0, P,
ahd Q.

3.

Since E
from C,
But, r +

arl,d n are r-points fr
it follows that b E

s 1.

rn C, and H and G are s-points
(13 A)r and G - H (73 A)s.

[Figure, 8sL1 illustrates the case in which
0 c r 1 3. The figure for Exercise 3
illustrates the case in which r 1/2.
Students should draw other figures; r 1/3,
1/3 1 r I/2, and 1,42 c. rc 1,.

4. (0 E):(1. - 0) (D - C):(G = r/(1 - lr );
(0 D)7($1-. 0) r:(1 4r) ,

5. (0 - P); (Q 7 0) = (0 E):(F 0) n r/(1 2,r); the median
of L)ABC from .6

p

es
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6. Draw a figure like that for the twice-around theorem, but choose D
in -CB. Does the conclusion al the theorem hold for such a
choice of D?

1. (a) Draw two lines, / and rn, intersecting at a Point P. Mark a point
A on 1 and draw an interval from A to a point B on rn. Draw a
second interval from B to a point C of 1 and a third interval
from C to a point D.of rn. Continue this procedure, but draw
the foiwth interval parallel to AB, the fifth parallel to BC, and
the sixth parallel to CD.

{b) Repeat part (a) at least twice, trying to choose the first three
points in such 'a way as to obtain figures which look different.

(e) Choose a point C 1 and a point F E m. From C, draw two inter-'
vals to points of m. From F, draw intervals, parallel tei those
from C, to points of 1. What do you notice?

2. Part of what you have discovered in Exercise 1 is stated in

Theorem 8- 13
If, in AABP, D and F aire in BP, C and g are in PA,
Eie 11 BC, and CD 11 AF; then DE II AB.

TC 341 (1)

The ccinclusion holds in this case, of courpe for, .the proof in
ansWer to Exercise 1 reciuiues no restriction bn thevalue of 'r'.,

Answers for Part E
A

Prove this theorem. [Hint: Suitose that F is the r-point, from P, in
BP and that C is the s-point, from P, in AP: Which points are I) and
E, from 13? The technique tried in Part F on page 332 should help.]

3. Once the points C and F have been chosen, the points D and E are
determined by the parallelism fequirernents. Your work in Exef-
cise 1 should have shown you that DE will be paraIlel to AB if D is -
arty point, other than P,,iit h P.' and g is any point, other than P, in
PA. Does your proof of Theorem 8-13 show this to be the case?

. 4. The extension of Theorem 8-13 which is referred to in Exercise 3
is called Pappus' Theorem. State Pappus! Theorem, usiniithe note-.

. tion of Exercise 1(a).
5. There is a second case of Pappuer. Tiieorem in which the lines I

And m are assumed to be parallel. Investigate this case.
EL A surveying party of three-Todd, Taylor, and-Reid---are-rtmning

a line due east across country which is mostly' flat. Todd, operates
a transit, and Taylor and Reid act as redmen. Unfortunately, their
line runs. into the west side of an isolated, uncliznhable mduntain.
Somehow, they must 'locate a point, to the east of the thountain

g

b

1

F

The intervals indicated by
dashed lines are parallel.

2', Proof of Theorem 8-13. Suppose tha; F is an r-point, from P,
in 1-51E, and that C is an s-point, from P, in 15A. Then,. D divides
the segment frem P to F in s :1 - s, and E divides the segment
frozn P ,to C in r :1 - r. So, for some a .(E - P):(C - E)
= ra :(1 Oa," where s = ra + (1 - r)a = a. Also, for some b,
(D PJ:(F - Di = sb; (1 - a)b, where r = ab + (1 - s)b = b. So,
(E - 10):,(A E) = rs:l - re and (D - P):(-B - D) = rs:1 - rs,

E divide-s-the-se-gnient from-R to' A in the -same
ratio that D. divides the,segment from P to B. Thus, 15Z 11 TtE.

3. Yps, for theproof shows that neither D nor E is P; TY is an
s-point off7 and E is an r-point of Tre.

-4
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Part F

from which to extend thwir line. Fortunately, they have a spare
transit which Taylor can opqrate, and Taylor knows Pappus'
Theorem. He poi ts 'out to the others that the land south of the
mountain is flat

CAiven a po
d shows them hip,v to locate the required point.

P west of the mountain, show( how to locate a
point Q du east from P .vid east of the mountain,. [Hint: Using a
cornpass and transit, Todd [or Taylor] can direct Reid te a Aint at
any bearing from a point at which a transit is set up-provided the
mountain is not in the way. Using both transits, Reid can be di--

rected to the point at which lines through the positions of the twd
transits intersect.)

1. Suppose that DEI ]] BC and
EP It A. Also, (D - : (B

A) - Determine
lowing-ratios.
(a) (D - A) (B - D)
(c) (E D) : (C - B)
(e) (G - C) : G
(g) tA - : (A
(i) (E D) : tii D)

2. Suppose that D, E, and F are
the midpoints of BC. CA, and
AB, and that SI, N, and P are
the midpoints of AF, FB, and

8

(b) (E A) (C - A)
(d) (E - D)..: (B
(f ) (F E) : (B - A)
(3) (G - E) : (F G)
(i) (D - A) : (G E)

EA. 1.
,(a) Show_ that r 1j EF M F N

.

tb) Describe the location of the point of intersection of kID Al
and It1ID - fil

(C) In what ratio does the point of intersect ern of AD and EF di-
vide these segments?

(d) Show that ME ND.

TC 341 (2)

Answers for. Part E "P'ent.)
4, lf e` m = {Pr and A, C,. and E are three points other than P

are thre:e_points other than P on m, and
DE II AB and EF BC, then FA H CD.

6.

TCF 342

The theorem is like that of
Exercise 4 except that I and m
are two parallel lines, By '

Theorem 8-2 it follows that
D-E= B-AandE-F=C-B.
Hence [by addition] D-F=C-A
and, so, D - C F A. Con-
sequently,' FA CD.

Todd and Taylor first take up
positions at A and B. [Todd has
a transit; Taylor carries a rod
and the spare transit. ] Reid
remains,, with his rod, at P.
Todd, at; A, Can see both P and
B, and records their bearings
from A. Taylor at B can see
P, 'whose bearing he records,
and, also, can see past the
eastern slope of the mountain.

A ''c Once the bearings of P from A
and B have been determined,

Reid leaves P and is directed by Todd, at A, along a line running
east from A. Reid drives a stake at a point C. of this line from
which he can see through' B along a line running east of the
mountain. Taylor, at. B, records the bearing of C from B.
Taylor now.m2ves to C and directs Reid along a line through C
parallel to WI Todd signals to Reid when the latter reaches a
point D on AB. Reid drives a stake to mark II. Todd moves
to D and directs Reid along a line through D parallel to AB.
Tay4r, at C, signals Reid when the latter reaches the paint 'CI
of CB. Reid drives a stake at this point. c.

Answers for Part F

2.

(a) I/2 a (b) 1/3 (c) 1/3
cf. ) 2/3 (g) 1/3 (h) 1/2
(a) MP H rt by Theorem 8-7.

4
(b) The lines intersect at the midpoint of

(d)

(1) 3

(c)
(d) By Theorem 8-7, each of ME and RD is parallel to zr

Ilenee ME I ND.



3. Suppose that D, E, and F are
points of BC, CA, and AR, that
M e AP, 'and that N e FR. Sup-

. pose, also, that (111 ) :

M) (E A) : (C - E)
and that (N - F) : (B.- N)

C) .(B - D.
(a) Show that ME 11 NT).
tb) How mist (M - A) (F M) and (IV : (B N) be re-

lated in order that DE AB?
(e) Suppose that fik AT3 and that (M - A) : (F M) s> Com-

pute (D E) (B - A.
4. in_ AABC, C B = a, A - C

= and B A e*. Also,
C - E = de, D - C = t);1, and
E -
(a) Show that c = = P.
(13) Suppose that P - A

(B A)p and Q IE - DV Show that {C, P, Q} is
collinear if and _only if p = q. [Hint: 'Express '(P C)a

, -,- rth' in terms of 'P and Y.1
5. An intervaLis said to be bfsected by a given get if [and Only if Ithe

intersection of the given set and-the interval consists of the mid-
point of the interval. [Two intervals 'bisect each other if their
intersection consists of a,single point which is the midpoint of
eai± of them.1

Show that if L, M, and N are the midpoints of the sides of a
triangle, L being on the side opposife the vertex A: then Arand
WV bisect each other.

6:The centroai of a triangle is
the point of 'intersection of its
medians. In AABC, let L,
and N be the midpoints of BC,
CA, and AB, respectively. .

(a) Show .that Nog and ALMN have, the sarnecentvid.
.(3) Let T be the common midpoint of AL and MN. In what ratio

doeS the centroid diVide the interval from T to L?
The interval from 7' to A?
MBC, suppose that D- and

E diVide the intervals from
A' to B and from A to C, re-
spectively, in the same ratio,
and that P td Q divide the
intervals from B to E and from
C to '0, respectively, in the
same ratio.
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791 (a)Sholil that PQ [Hint: Consider ABCD and AD-EC.1

TC 343

Answers for Part F [cont.]
3. (a) By Theorem 8-9(a), each of ME and ND is parallel to EP.

Hence, 1\71-2 H

(b) The ratios must be reciprocals.
(C) Since (M A):(F M) s, (E A); (C E) s. So,

(E - C):(A C) 1/(s 4- 1). Fience, (D-E):(B-A)=
4. (a) This is an immediate consequence of'Theorem 8-11(a) [or,

of Theorem 6-12].
(b) [This has been established in each of several earlier exercises;

but the hint suggests a solution, the,details of which we give
here.] 'Using the hint, we note that P C = b + cp and
Q C 1;c1 + c(cq). So, (p C)a + (Q C)b = 11(a + bd)
+ c(3.p + bcq). Since (r),0 is linearly independent {C, P
is collinear if and only if the equations:

a + bd = 0

+ bcci 0

are satisfied by numbers a and b which are not both zero.
Recalling that c = d, it can be shown in several ways that 0.1
has a solution other than (0, 0). [The simplest is to note that
this is the case if and only if (*) has more than one solution,
and thus occurs if and only if the determinant (cq) - p d 0.]

5. That AL bisects MN follows from Exercise 4(b), with p = q = 1/2;
it -also follows from Theorem 8-6(a), and from any of several
earlier exercises. That icifg bisects At follows froth Theorem
8+6(b). [Consider AIB -,C1 as a third transversal.

6. (a)

(b)

77 (a)

(*)

Q)

The median of P LMN from I; is a subset of the median of
A ABC from A and contains the 2/3-point, from A, of the
latter.
1 :3; -1 ;4
Let (D A): (B - D) = r = (E - A): (C E) and
(P B):(E P) s = (Q (D .Q). Let R.and T be the
points which divide the intervals from B to D and from C to
E in the ratio s. It follows that R and T divide the intera'rals
from B to A a d from C to A in.the same ratio. [This ratio
turns out to be r ( s +0 but this is not impant. I It
follows that RQ, and are all parallel to C. Since
there is only one line through R parallel to r6, rej,
Similarly, 1ST. Hence, = 1513 and, so, P011 13Z.

TC 344 (I)

(b) Let S be the'point of intersection of CD and BE., By Theorem
8-10(a), S belongs to the median from A of LABC. and divides
the intervas froth B fo E andfrom C to D irr the same ratio.
It follows that P and Q divide the intervals frow.13 to, S and
from C to S in the same ratio. Hence, ra 11 BC [this is
another solution for part (a)) and,y Theorem 8-60), .the
median of 6, MT' from S bisects PO.,

7. and (P R):(E D) So,

(Q P):(E L2112/21D)
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(b) Show that A, the niidpoint of /3-0, and the mi4point of BC are
collinear.

Answers for Part F [cont.]
8. (a)

(b)

Since7M

As

+

is/the midpoint of ITC), Q M = M - B. Since
; (4k ro. fctilaws B =.(11,01 Ei)2(c) Suppose that.D-Alivides the interval-fro-fir a telr d, so, = B + (M B)2.

C + (NI C)Z. So, R - Q = C + (N C)21
B + (M B)2] (C B) + [(N C) (M /3)12 = (C 35)
(N - M) + (B C)J2 = (C B) + (B C)3 = (B C)2.

that P is the midpoint of BE. What is the ratio of Q - P to
E D? [thnt:44 R and T be the points in which Winter-
sects "-A-/-4 and AU, respectively. What is the ratio of T R to

-E D? OfP-RtoE-D?]

8. Suppose that BM and CN are medians of '6,ABC, that M is the
midpoint of BQ and that N is the midpoint of CR. Show that
(a) Q B + (M - B-)2,
(h) R Q '(B C)2, and
(c) A is the midpoint of QB.,

9. Suppose that, in AABC, M and N are the a-pointsf from A, of
AC and AB, that Q B + (M B)d, and thatR = C + (N - C)d.
Suppose, also, that a ok 0 and that d 11(a + 1):
(a) Show that MN 11 FIE.

(b) Find the ratio of M N to C - B.
(c) Show that QR BC.
(d) Find (Q R) : (C - B).
(e) Show that A is the midpoint of QR if and only if d = 1,i(1 '

[a 7A 1].
(f ) What is (Q R) (C - Li) if A is the midpoint of QR?
(g) Apply some of the preceding results to check your answers

for Exercise 8.

(c) A R = (A - C) + (C N)2t = (A - N)+,(C N) = \(N - B)

Q A -= (B - A) + (M 13)Z = (M - A) + (M B) (C M)
+ (M - B) =.0 B.

Hence, -= A R and; so, A is the midpoint of QR.
9. (a), (b) By Theorem 8-9(a), MN H BC and (M N):(C B) a.

(c). (kJ) Q = B + (M - B)d, R = C + (N - C)d, 0 *1- R (B C)
+ [(iVi - B) - (N - c)}c1 = (B-c) +.[CM N) + (C B)jd
=2,(C B)j--1 + (a + 1)(11. So, since d 0 1/(a + 1), 5Tit H BC
and (Q R):iC = (a + 1)d 1.

(e) A R = (A - C) + (G N)d (A - C) + [(C A) + (A - B)a}d
(C - A)(d - 1) + (A ,BO'ci; similarly, Q - A = (A - B)(d - 1)

+ (C A)ad.,5 Since iA, C) is noncollinear it follows that
A-R = Q-A if and only if ad = d - 1 that is, if and only

10. Consider two lines, 5X and 64. Let B =. 0 + (A 0)2, C = 0 10
+ (A - B' = 0 + (A' - 0)1, and C' = 0 + (A' - 0)4.
(a) Find points P. Q, ajaci R such that r pn re -7 {P}# t'A

n b744' = {Q} and n/ 1.

(b) §how that {P, Q, R} is collinear.

8.05 Two Ways of Setting Up Problems

p to now in this chapter we have dealt mostly with ratios of trans-
-lab ns expressed in the form4TB - A) : (C - D) , As you have seen,
th are quite general results- for examples, Theorem 8 -2, The-
ore 8-3, and the results collected in Part E szin page 330 and in Part )3
o 338-which can be expressed in this form and.which leaa to
g theorems like Theorems 8-9 and 8-10. Often it is more
veni nt, however, to make a fresh start on a problem instead of tailor-
ing general theorein .to tit. In this section we shalt illustrate two
help ways of using arrow-notation. One ot them you are already
somewhat acquainted with.

8

if d = 1/(1 - a).
(1) (Za)/(1 a)

a

This exercise involves a great deal of computatiOn. The work can
be simplified somewhat by using polition vectors of points with
respect to CD. lf, for each X and x, x = X - 0 then the given

7data reduces to t = = = and C.! =; We seek
5, "el, and -; where 5 = S + - S)pl = S' + - Slp2,

= + (1' -c*)q1 and 7 Z k - 1)r1
= + lg 11r2. Substituting the given data and collecting terms
we find that 5 = ;(2 - 2p1) + V(4131) = 1(il>2) +1'1(14 7siP21,

- 7 7 -.= 347 - 4q24,4";
+ = Z(Zr2) + r2). Noting that (-1,1') is' linearly
independent we find that pl p2 = ql , q-2 rc .3 10 21

3 Z1. 'In
71 " ,and 1 72 . SP. 5 "" = ;in-+ PA, and

=1 it + It follows that -4 = - -2- +5 10 ' 13 13- 1. 9 3r = a + a Hence, 13, is linearly
dependent and: consequently {13, 0, It) Ill coilinear.
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As an illustration, let's recon-
sider the theorem .concerning the
concurrency of the mkkdians of ,a
triangle. Consider a triangle7. say,
AABC. For convenience, let a -= C
- B, = A - C, and -c*-- B A.
Note that we have chosen a b, and- 9 -o

in such a way thata + c = 0.
Note

, also that since ABC is a tri--

angle, (a, b) is linearly independent.
[So, fbr that matter, is each af (/)°,c)
and (c, a).1

Suppose, now, that M and N are the
tively. We wish to know whether- and,
sect. This we know we can find out by
eqUation:

midpoints of BC and CA respec-
if so, where X-4 and inter-
considering the solutions of the

A 4- (M A)in = (N - B)n

Since M = C - ir/2 ahd N = C + 1)/2 this equation is equivalent to:

.A [t(I, -ae/2) - A im rB + [(C. +r)12) - Bin

or, equivalettly:

A

Since C - B - a, A - C =andB - A = c, this can be rewritten as:

( a + b4/2)n + (t)* TZ/2)in +

-and simplified to::

ritn + m/2) + b(n/2 + in) = 0

From what has previously been said 4out a, b, ahd c, this equation is
equigalent to:

n
1

5

and so, by a little real number algebra to:s

-= 213 = n

Thus AM and BN intersect at a point which divides each, from vertex
to opposite side, in 2:1. Since, obviously, the same must hold, or#117
and tlke median CP from C it follows that all three medians thtiir
at a point which divides each (# them, from vertex to oppoSite, Side,
in the ratio 2:1.

Clearly, a similar, procedure can be used to prove ,Theorem 8 -.10 by
taking M C - ar and N = C +.r)r. In fact, the less'easily stated re-
sults concerning the intersection of AM and lig when M C - au and'
N = C + by [u ..v1 are nearly at; simple to establish. [And we have
proved no general theorem previously from which thesexesults could
be derived.]

In applying the Method just illustrated one intrpduces arrow-
notation for translations which are determined solely bi the points
in which one' happens to be friterested. This method is particulaily

suitell to the solution orprob-
lems concerning triangles.
'For Other problems it iS orten
more convenient to introduce
what are called 'position vec-
tors of the points in question. Doing so amonnts to choosing, arbi-
trarily, a point .1- say, 0 and associating with each point X its position
vector X - 0 with respect to O. It is convenient to let, for example,
a = A - 0, b B - 0, etc. One advantage of this choice of notation is
that, for any points A" and B end their respective position vectors
Ciand

result it is easy to set; tht
--.

.4-*7 =V(1 r)

Fig. 8-14

Because of this the equation:

r)

iEsometimes referred ts as the vector eguation of VI:This means that
a point whose position vectoils7belongslo the line in question if and'
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only if there exists a number x such that r a(1 x) + Wx. Of imurse,
given-a. and bi whathne it is that is "in qUéStiön"'déPen& on the

choice of the yoint 0. But, Tor given points, A and B, (1) remains the
equation of AO, whatever 0 may be, as long as = A - 0 and -S

oft p 0,
'One result which led to consideration of (1) yields our first basic

theorem concerning position vectors:
4

Theorem 8 -14 If 'a 1 and r-:ai-Z position veCtors
of A, B, and R [with respect to any point 0]
then, for A B and 0 ;e 1, R is the point
which divides the int.erval, from A to B in
r:1 r. if and only if r = a1 - r) + br.

For example, the midpoint of A713 is the point whose position vector is. .
(a + b) What is the position vector of the point which divides the
interval from A to B in 2:1?

If we note that '1

r = at1 r) + a(1 + 'br + r.-1 = 0
p.

and that (1 r) + r + -1 =.0, the prec&ling theorem suggests a second
basic theorem:

,

toTheorem 8-15
a_.

d c are position vecrs of
. . collinear pointsi itf b nd ly if there exist nrikers

x, y, and 2, not all 0,4u that ax + by + cz = 0
and,x + y + z = 0.

24

In one of the laer exercises you will be asked to prove this theorem.

A

Exerrises

Pqrt A
111 AABC, letM be the u-wint, from C, of B-C- and let N be the

v-point, from C, of CA. Let ä= C - B, = A"- C, and-= B -A.

1. Express M. - A and N.- B in terms of V, 'u', and V.
ib2. Show that ra11131V if and only if uv 1;

3. Show ihat AV and V intersect at a single point if and only if
uu .1 and compute the ratios in which the point of intersection
'divides the intervala from A to Af and from B to N.

a. Check yo.ur result in Exereise.3 when a = u again4the result of
an earlier theorem.
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Due to the introduction of position vectors in thegprec 'ng text, we
recommend that Parts, A and_ B .1ae_treateri as-a elas4 ac:i*y..-- Be sure
to emphasize the similarities between the "point-difierence" notation
for translations and the new "position vector" notation. arts C. and
D make a rather long homework assignment. Perhaps you ould allow /
students to work in teams for the derivations. Part E is rather
involved and is treated most easily under the direction of the teacher.,
Parts F,.' 0, and I-1 present some important relationships in geometric
figures and together make another reasonable hçmework assignment.

Answers for Part A
C B, A C, = B A,

M = C N C +

1,

Z., AM II BN if and only if (M A, N B) is linearly dependent. By
Exercise 1, this is the cas.e if and only.there are numbers say,
a and b not both zero, such that

(*) (-a'u + 17.)a + +.5v)b = 4.
Since (;,1:4;) is linearly independent, numbers a and b satisfy4 --4.10
if and only if .

au + b 7 0- and a + by = 0.

If a and .b satisfy theile equations and are not both 0 then neith
is 0, and u = v = -(a/b), and uv = 1. On the other ha
if uv = I then the equations are equivalent and any pair.of nonzero
numbers which !satisfies one_Lsiaticali jatisfi'es boyth. For example,
let a = and b So, AU BM if and oniy if uv ',1; 1.

3. 0 E AM r-N BN if and only if there are numbprs say, rn and n
such that 0 = A + (M A)rn = B + (N B)n. Using the réittIts of
Exercise 1, we need to allow that:

A au + -1;)m = B + + )n

has a unique solution if and only if uv # 1. The equat
equivalent to:

(B - A) + au + To.)m + (-a* + gv)n 7 it
+ n) + ri(rn + vn) 4 =

+ . and ( fa* s linerl independent, iswhich, since ;
'equivalent to:

on is

uncr+ n = 1

rn + vn =



- .
. .

Answers for Part A [iont.]
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In case uv = 1, multiplication with .'u" 'on both sides of the sekond
ecitiation shows that the equations are inconsistent [if u Il.or
equivalent [if u = This agrees. with ExA.cise Z; if 'uv, = I
then WI and SR are two parallel lines or are the same line. If
uv # 1 the equations are easily solved.for *rn' and 'n':

12

uv 1 uv
So, if uv * 1, AM and BN intersect at a point

point) 'from A. of AMand the point from B, -of
It folitws that 0 divides the intervals from A to M

1 v 1 ufrorn, B to N, respectively,' in the ratios and
(1 v )u 7

4. In case u = the poi,nt 0 of Exercise 3 dMdes the intervals in
the ratio 1/12. This is in agreement with,Theorem, §-10(a).

The results in Part A can be developed further to obtain a proof
of Theorem 8-20, Suppose that the u-point M divides the interyal froAa
B to C in the fittio r asd that the ,v-point N divides the'interval from
C to A in the ratio s. Then r (1 - u)/u, a v/(1 - V), u = 1/(1 +'r),

v + a). ComFbuting 1 uv in terms ofc'r and a siows that
M 1124 if and only if 1 + r 4 rh =10 and that, otherwise, these lines

intersect oit O. where
0 A + (M Ahn =-,B + (N - B)n

0 which ist the,

1 + r r(1 + a)with rn and n -
1 + r + rs , + r + ra

Consider, nqw, a third point P which divides the interval from A
to B in the ratio t. It follows frorWthe preceding results that SR 11 t-P
if and only if I + s + at = 0 and thatotherwise, ,these line's intersect
at 0', where

0' B + (N -.B)n` = C + (P -'C)p
1 + 3 s(1 '+ t)with n'

1 + + st and p =

Nelw suppose that AM 49( BN CP. It then follows
lines are concurrent if 'and only if 0' = 0 that is, if
n' = n. But n' n if andbonly if

1 + r(1 + a)
1 +s+et l+r-frs
1 + r + re = -r(1 + s + st)

1 = rst.

that ihe three
and only if

This result has been ciptaiktd under the assumption that ,rg is not
parallel-to either. Mlnior CP. But [by cyclically permuting the-nota-
tion) it is clear that the sauna conclusion holds if there is one of the
three lines which is not parallel to either of the others that isat
holds unless the three lines are parallel. So, if XV, BN, and CP are
not arallel then they are concurrent if and only if rat = I. In
a ticular,

84 ,so

if rat 1 then 'XV, .BN, ind CP
are e her parallel or concurrent.

'IC 347.13)

On the other hand, suppose that 1.1 JI CP. Then, 'as previonsfy
shown, I + r + rs = 0 and 1 + s + st = From the accepted of these it
follows that r rs + raft = 0; and thiso iii combinktion witLthe first,
shows that rst = 1. Suppose, 'finally, that. AM, BN, and -CIsl are con-
c u r rsja. Se M and N a:re points of division, . M__,* la and N * A.

ANL/ BN and, since M * 0, MAI RN. Similarly..
P. But, it has already beeii proved in this case.that, AM,
being concurrent, rat =. I.

Consequently, we have arrived at the following,theorem;
AV, V, and t are parallel or
concurrent if and only if rat = 1.

This is the result of Exercise 4(a) on page.365. ,Exercise 4(b) is
easily obtained from results which are already known, and Theorem
8-20 can be obtained as outlined in Exercise '5.

and

.

4.

8#1-.?

4

080.
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Part B
In each of the following you are given a figure showing points A,

B, C , D, and 0. In eacij case, copy the figure and cfraw arrows indi-
eating the position vectors 0,V, c, and -d,,of A, B,C, and D with respect
to O.

et

t. Express each of the described transla ions in terms of V, ,
and '-(t.

(b) A

C B (iii) A

(iv) (c - B) + (B D.) (v) D C

(i) A B D A (iii) C - D

C (iv) C B (v) D - B (vi) C - A

(c) Like part (I)), but with 0 = D. Compare your answers with
those of part (b).

2. Express the position vector of each of the described points in terms
of 'o/, rbi , and trt.

(i) the midpoint, M, of AB
(ii) the midpoint, N, of CD

IUD the midpoint of MN
(iv) the midpoint of the interval

whose end points are the mid-
points, P and Q, of AC and 11/5

(1) the midpoint, P, of AB
00 the' point Q which divides the

. . interval from A to D in 1:4
[Note, in (ii), that, in applying
Theorem 8-14, the value of

is not 1/4.1
(III) the point which divides' the

interval from P to-Q in 2:3

3. The following questions refer to the figures in Exercises land 2.
Answer them by expressing,the translations referred to in terms of

and 'Ct.
(a) Suppose that, in Exercise 1.(a), M and N are the midpoints of

AC and BC, respectively. By comparing M - N and. A - B,
reach a conclusion concerning MN and I.

(b) Suppose that, in Exercise 1(b), AD j BC, , R, and S are lite
midpoints of A(A AB, and ED. By comparing S - R and
m reach a conclusion concerning M, R, and S.

7C 348

Answers for Part B
I. [There seems no need for giving, here, either the figures or theformulas 'which are requested. Thv latter are obtained merely byreplacing capital letters by the corre.spondin'g arrow-lettens. Forexample, the answer for (a) (i) is '.c - a',

(b)

(0, +

CaP + 2)/4
go,

(iii) 31 t g.19)/50
N ( -a° + ILL c)/

X13. !and MN: 1/2.
S M = Cc. + aVZ 4)/z 2

R (a. + -cP)/2 (; 11)/Z S)/2
Since, by hypothesis (a - - g) is linearly depepdant,
is (S M, M R). Hence, {M, R, S} is collinear,

(ii) (-c t 2)iz
(iv) (-; -c* g +.2)/4
Go (14 8)45

(;. ii)/2 = (A B)/2. So,

S 0

\4-

8 0
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(e) In Exercise 2(a), compare M P and Q N. Reach a conclu-
sion about Nu? and QN. about MQ and PN.

(d) Suppose that, in Exercise-2(b), K, LY, M, and N are the mid-
points of OA, AB, BC, and OC., respectively.' Discover, by

. using posiiion vectors, as much as you can about the intervals
KL, LM, MN, NK, KM, and LN. [Hint: You should be able to
make a significant discoVery about each of thrtv pairs-of these
intervals.]

Part C
Suppose that.A, B, (7, and 1) aft,

four points,' no three of which are
collinear.
1. Use what you know about lines to show that AC? and hg have at

most one point in common, and that none of the given points be-
longs to, both of these lines.

2. Supposing that :4-C1 and 131i have a common point, I?, it follows from
Exercise 1 that this point divides'each of the intervals, froni A to C
and from B to D, in some ratio. Suppose that the ratio is the same
for both intervals.- say, r :1 r. Show that CD HAB and that C - D

A B. [Hint: Introduce position vectors for the given,points,
equate two expressions for the pmition vectOr of R, and deduce an
equation concerning C D and B

3. Suppose that C'D and C D A - B. Show that the lines `AV
and intersect at a point which divides the, interval from A to C
aria the interval from B to 1) in the sanie ratio. [Hint: If (C - D)a

(B A)b,withu and b not bothO anda b 0, then you can find
a number r suCh that r' : 1 -r--,a:hand retrace the steps you made
in solving Exercise 2,1

4. Show that the interv4js. AC and b intersect at a-1point which
divides both [from A and from B, respectively] in the same ratio
if and only if AB 11CD and (B 2 A) : (C - D) >

Part
Mark points_p, A, and B, with A B, and indicate the position

vectors, a and' b, of A and B with respect to O.

I. On your figure, locate six points, e; throggh C., whose position
vectors are given by:

a
-

= 02 + b --1,

k
C al + b 4,
c - = a -2 + b3,

a3 + c 34 =

ce a + bi

2. lf, in your figure, you made a' different choice for 0 , would you
obtain different points as C1, . .

3. Which of the six points belong to AB? To --/Tic? To -T4it? Justify
your answers by referring to Theorem 8-14 and Theorem 8-5.
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3. (c) M - P = (S + 8)/2 - (7;.+ '')/z ,-(g 7 J)/2;
Q N = (g'r ;4)/2 (J + a)/4 , (i;

So, M P Q N and, hence, M Q , P N. It follows
that MP 11 QN, MO 11 PN, and MP:QN --; 1

1

(d) I. K (-; r,g)/2 -1/2 g/2; M N ,- (g + -c')/Z ,C72
So, KL and MN are parallel and their ratio is I.

= i)/2'. So, LM and MN are .parallel and their ratfo is I.
The midpoint of LN has position vector (..S. + + -c.)/4, and this
is also the position vector of the midpoint of KM. So, KM and
TR bisect each other.

Answers for Part C
I. Since no threeof the four points A, B, G, and D are coillnear, the

four poi2t. arLE,ertainly not all on one line. So, V* no and,
hence, AC (-- itibe contains at most one point. Also since nO three
are collinear, A c B LAZ, and D j. Hence, none---.
of the four points belongs to both AC and

2. Suppose that A m {R} and that R divides the intervals
from A to C and from B to D in the same ratio say, r': I r.
Using position.vectors, r a(I - r) + cr 8.(1 r4 rar. It
follows that (c -..a)r = - ;XI - r) and, hence, that (C D)r

(B A)(1 - r). Since neither r nor 1 r is zero it follows
that (C DI = (B Hence} CD II AB,

3. Since CD H AB, there are numbers say, a and b not both
zero, such that - (C D)a (B A)b. Since C - 0 A B,
a + b # 0. So, (Q D)a (B - A)

a b
Let r a/(a + b).

+
It follows that b/(a r b) = 1 - r. So, (C D)2- =(13 A)(1 and,
introducing position vectors, jc - d)r = a_2(1 r). Hence,
;(1 r) + C'r g(1 r) + Ar. But, -;(1 - r) + cr is the position
vector of the point R1 which divides the interval from A to C in

r, and b(1 r) + dr is the position vector of the point R2
which divides the interval from B to D in the,same ratio. Since,
as we have,seen, R1 =. R2, it follows that V and r3 intersect
at a point which divides both intervals in the same ratio.

4. After Exercise 3, what remains to be shown is that 0 < r < 1 if
and only if (B A): (C 0) > _0. 'But, 'since (C - D)r (B - A)
(1 - r), (B A): (C = 'r/(1 - r) and, as previously shown,
r/(1 - r) 0 if and only if 0 < r < 1.

Answers for Part D
'1. (Various. ] .

Z. No. [A different choice for 0 would result in different values for....'a', 'T, etc., but the points would be unaffected. For example,
C1 will be the midpoint of X. however 0. is chosen.]

.

3. By Theorem 8-14, di divides the interval from A to B in,,pe
ratio 1; C2 divides the'ayame interval in the ratio 3; Ce, *in IA

.- C4, in -1/2, and Cs, in -3/2. So, by Theorem 8-5, Cl, (-2, and
1Cs belong to AB, C4 E -A , and C5 E --f3T, Since I + 7 * 1, C6

is not a point which divides Ole interval from A to ,B in any ratio.
Also, it is neither A nor B. So, C6 11/7Z.

8 1
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1 t

Part E

4. As we have seen,

. (if_and only if 3, c. .
- X) + bx.

Prove, using.Theorem 8 -14, that, for A ,*7 B,
(a) C e t. a(1 - + where 0 .< c < 1;
(b) C e AB 4-0 c - 1, c) +-Cc, where c > 0;

,
(c) C-E (l(l - c) be, where c < 0;
'(d) CAA* c a(1 - c) -4-b*c, where c 1.

5. For each af the translations e, through c. of Exercise 1, determine
whether there exist numbers x, y, and z, not all zero, sUch that

I- 0+ y +- = 0 and ea + by + O. ji = 1, 2, 3, 4, 5, or 6)

B. *hat can you say of A, B,C,} if there are nurJIs x;y, and z as
-described iri-EZeicise 5? What can you say if There are no such
numbers? (.

I. Prove Theorem 8715 by first showing that
(a) if an + bb + cc = 0 and a + b + c = 0, and not all of a, b, and c

ire zero, then (a clot + (b. = 0 and not both a and b are 0,
and
(b) if (a

.
- c)a + (b - -clt; =0 and not both a and b are 0, then there-exists a number z i'uch that aa + bb

.
ez = 0, a + b + z = 0,

and a, b, and z are not all zero.
[To complete the;proof, note that it follows that

there exist numllers x and_;v: not both 0,
such that (a (75X + (b - cly

if and only if
there eLcist numbers x,-y, and z, not all 0,

such that ix. + by + cz 0 and x + y + Z = 0,1

2. From Exercise 1(a) it follows that if a b_ts; 0,a +1) ) +
- 6, and a, b, and c are not all 0, then (al - C, b 5 is linearly de-
pendent. This sentence is of the form:

fp anti q and not q 8

(a) Verify the statement just ipade it giving the sentences which
should replace 'p', 'q', 1.77', and 's'.

(b) Explain why a sentence of the form (-) is equivalent to rre-
sponding sentences of the formsr2
(i.) p -* Rq and not r) 81

(ii) p [not s not (9 and not r)]
(p and not s)''-" not (q and riot r)

(iv) (p and not 8) i..+0.Eci
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Answers for Part D Icont.]
4. (a) ,C E AB if and only if C E Ali and divides the interval from .A

- to 13 in a polive ratio; = c) + tc if and only iof C is
'the point of AI1 which divides/the interval from A to B inc/(l c); c/(l c) > 0 if and only if 0 < c < 1,

[(b) (d) are similar. J
5. Such numbers exist for C1, C2,
6. Ci AB; Ci IT
Answers for Part E.
1. (a) Suppose that +

c -7 -a + -b, (;
c -a + -b 0.
not both a and b

and C5, but not foF C6.

+ 6 and b # c = 0. Then, since
-c)a + (g -c*)b . Also, if a = 0 = b then
So, if not all of a, b, aikd c are zero then

are p.
ISo, if theje exist numbers x, y, and z not all 0, such that
ax + y + cz = 4 and x + y 4 z 0 Vlen there..exist numbers
x and y, not both 0, such that (a c)x + - cly = - that
is, then the points whose position vectors are a, g, and c
are collinear. ]

(b) Suppose that ,(; c)a + - -c.)b where.notboth,a, and bare 0. Let c -a + It follows that ai bb + cc
a + b + c = 0, d; since not both a .p.nd b are zero, not all

d,

of a, b, arid c are zero. So, there exists a z such that
aa + + cz 4, a + b + z 0, and not all of a, b, and z
are zero.
[So, if there exi-st riUmbers x and y then,teere exist

N. nwnbers x, y, and z I

2, (a) p: a+ bp+ c 0; q a + gb + ?S; a'= b = c = 0;s: (a c; g is linearly dependent
(b) (*) is equivalent to (i) by importation and exportation.

(i) is equivalent to (ii) because.a sentence is' equivalent to its
contrapositive, and because, of the replacement rule for t;icon-.
ditional sentences.
(ii) is 'equivalent to (iii) by importation and exportation.
(iii) is equivalent to (iv) because sentences of the forms
'not (q and not r)' and 'q =40r' are equivalent [pages 255
and 269] ,and because ol the replacement rule.
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(c ) Show that.Exercise 1(a) implies:
If (a e, b is linearly independent and a + & + c 0
then, if a'a b + c 0, a -- p and b 0 and c = 0.

(d) Pmve the following corollary of Theorem 4- 16;

Corollary If a, b, and e are position vectors of non,-
collinear points, and a, k_and c lire numbers such
that a + h + c = 0, 'then au + hb + cc = 0 if and
only if a 0, b 0, and c 0.

[Hint: In part (c) yod have essentially proved the part of the
corollary which you would obtain by replacing 'if and only if'
by 'only if'. The other part iftlierreasy.]

Suppose that [as in Part CI, A,
B, C, and D are four points, no
three of which are collinear.

Part G

1. Introduce position vectors ror these points and compute the posi-
tion vectors of the midpoints of BD, AD, and BC.

2. Suppose that the three midi;ofints of Exercise 1 are collinear.
(a) Make a conjecture iXrincerning a and a.-
(b) Use the only if-pait of Theorem 8-9(b) to establish a result

concerning AB apa OD.
3. Supposp that AB 110. By retracing the steps you took in Exercise

2, shoW that the rnApoints of Exercise 1 are collinear.

The corollary to theorem 8-15
can be used to giVe another proof
that two medians of a triangle
intersect at a pdint which divides
each in the ratio 2 : 1. Suppose
that, in I.ABg, M and N are the
midpoints of BC and CA: respec-
tively.

1. Introduce position vectors of A, B, and C.
(a) Compute the position vectors of M and N.
4b) Compute the position vectors of the points which divide the

interval from A to AV and the interval from B toN in the ratios
m : 1 m and n : 1 - n, respectively.

2. (a) Obtain an equation of the form Va + + [where 'a',
'b', and 'c' are exprapionS in 'in' and 'n',1 which has a solution if

. and only if 3-ki and rt, intersect.
(b) Show that the corresponding equation of the form 'a + b c

0' is satisfied.
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Answers for Part E [cont.]
(c) Exercise 1(a) is of the form (*), with the replacements for

'p', 'q', , arid 's' given in part (a). This is equivalent to
the sentences of the form:

(not s and p) [q r]
with the same replacements. In particular, the former implies
the latter.

(d) To prove the corollary, all thaI remains is to note that if
a = b = c = 0 then la + bb + cc =

Answers for Part F
1. midpoint of BD: (g

midpoint of BC

(a) AB 11 CD
(b) In AABD, the interval joining the midpoints of I3D and AD is

parallel to Jr.S; in ABCD, the interval joining the midpoints of
131) and BC is parallel to CD. So, if the three midpoints are
collinear then the line 'containing them is parallel to both AB
and CD and, so, TE CD.

+ )72 ; midpoint of AD:la' +
-c.)72

Suppose that AB 11 CD. It follows that the two intervals joining
midpoints are parallel and, since they have a common end point,
are collinear.

'Answers for Part.G
1. .(a) i = (g + J)/Z, g = ( +'Z')/2

'(b) m) + (g + C')(m/Z), g(I - n) + (C. + -;.)(n/2)

Z. (a) ( 1 - m

(b) (I - m + (1-211- 1 -+ n) + =

Th o
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Part H

(c) Apply-qie corollary to find the values of " and 'n' which
" satis fy the equation of part (a).

3. I terpret the reSult of Exercise/2.

I. .Given AARC, let a, h; and c be the position. vectors of A, 13 and C
with respect to an arbitrary point 0.
(a) Show that the pogition vectors of the intersection of the me-

dians of AAR(' is it; + b. +
(b) .Compare the result in palirt (a) with the expression for the

position vector of the mid5oint of Ail.
A uniform rOd of constant cross-

, section is a reasonable physical
model of the segment Ali. Such
a rod will balance if it is supported by a fulcrum placed beneath
its center. Similarlya triangular 'piece of cardboard is a reason-
able physical model -not of a triangle, but of,a "solid triangle".
(a) Cut out several triangulan pieces df cardboard.
(b) Hold a corner of one 'of your pieces of cardboard on the ,clge of

a ruler and twist the cardboard until it balances. When it
does, mark the point in the side opposite the chosen vertex
which iswver the edge of the ruler.

2.

Repeat this experiment, choosing different corners, and using
different pieces of cardboard.

(c) Draw the medians on each of your pieces of cardboard. What
happens when you place the cardboard so that a median lies
along the edge of your ruler?

(d) Try to'balance one ofyour pieces of cardboard on the point of
a pencil.

8.06 QuadrilateralA

Definition 8-4
(a) PQRS =NU U U
(b) PQRS is a quadrilateral 4-0 each of {P, Q, R} , {Q, R, S},

{R, S, P}, {S, P. Q} is noncollinear

When we write 'quadrilateral PQRS' we shall be refprring to the set
PQRS and, at the same time, implying that it is a quadrilateral. The
points. P, Q, R, and S are the vertices of quadrilateral P,S,, and the

4.
81

IC 352

.. .
(c) 1By the corollary, sinCe -a., g, and C. are position vectors of

noncpllinear points and equation (b),holds, equation (al is
satisfied if and only if ,

_

rti + = 1 T
m nn 1,

that is, if and only if rn = = n.

3. The result of Exercise shows that t,he medians interlect at a
2point which is the T-point, from A, of AM. and, also, the 3-

point, from B, of ;IN. .

Answe for_ Part II
1. (a) From Exe,ci'se 1(b), with m 3-, we see that the desired

position vector is + t C.)/3
(b) [The'position vector of the midpoint-of AB is (1+

2. 4he, cardboard triangles s.h.ould balance when the edge of the ruler
lies under a median, and.when the pencil point is under the inter-/
section of the medians. 4

8
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Quadrilate'rals 353

intervals QR,RS, SP, and PO are its sides: e,j4 _and .:47.P. are opposite
sides, ku4 are RS and PQ. The intervals PR And QS are the diagonals of
quadrilateral PQRS. The endpoints of a diagonal of a quadrilateral
are called opposite.rertice.s of the quadrilateral.

Some care must be exercised in listing the vertices of a quadrilateral.
If 1', Q; R, and S are four points,,no three of which are collinear, then
there is more than one quadrilateral which has these points as vertices.
An easy way to see how many such quadrilaterals there are is to pay
attention to opposite vertices. Choosihg one of the four pointssay,
P -2 how many choices do you-have for the vertex which is to be oppoSite
P? How many quadrilaterals have .1', Q, R, and.S as vertices? [Make
some sketches. Indicate the diagonals 1337 dotted lines.) Note that

'quadrilateral PQRS and quadrilateral -RQPS have the same pairs of
opposite vertices and, so, are. the same' quadrilateral. [How 'many
names,like these two can you find for this quadrilateral?]

4,

Exercises

1. (onsider four points, .4'; B, C, °
and I), situateti as in the upper
figure on the right.
(a) praw a picture 'of quadri-

lateral ABcp and use dot-
ted lines tto.strepresent its
diakonals.

(b) Do any two sides of this
quadrilateral intersect?

(c) Do its dia4onals intersect;
(d) Repeat parts (a) =i(c) for,

quadrilateral ACBD.
(e) Repeat parts (a) (c) for

quadrilateral.ADBC,
2. Repeat Exercise 1 Aen A, B, C, and D aile situated as in the

lower ffgure.

A.

A.

'13

.0

.9

,C

3. Suppose that A, B,C; and D are
&our corners of a box, as shown_
in the figure.
(a) Repeat Exercise 1(a).
(b) Are you less sure of any of

your answers for ExerEises
1 and 2?

8.1

TC 353 (1)

Suppose given four points, P. Q, R, and S. no three .of which are
collinear. There is,a quadrilateral loxing these_points as vertices and
which has as a Aiagonal another which has MI as a diagonal, and
a third which has PS as a diagonal. There are six intervals with end
points P. Q, R, or S, and the choice Of one of these as a tliagonal
detarrnines which of the remaining five is the other diagonal. The
remaining four intervals are left as the sides of the quadrilateral. So,
there are exactly three quadrilatwrals with the given points as vertices.

PQRS, QRSP, RSPQ, SPQR, RQPS, QPSR, PSRQ, and: SRQP all
ame the same quadrilateral. [That,there are eight such name-s is to r
-expected, since there are 24 permutations of the letters and each

s ch names one of three quadrilaterals. ]
* *, *

The exercises which follow can be easily treatcd in class. We
r c rnrnend that you have a stick model for,Exercise 3.

Answ rs fo Exercises
I, (

(d)

(b) No.
(c) Yes., AtiKleast, they

appear tot]

Yes, AC and BD [seem to]
intersect.
No.

8

(e) [As for part (d). ]

( a)

.*

(b) No,
(c) No.

tlk
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.

One of the quadrilaterals, you drew in the preceding exer-cises ap-
peared tq, hIve intersecting diagonals. [Which one?] One appeared to
have two opposite sides which intersect. [Which one?] As Exercise_3
points out, appearances may be deceiving. On the basis of these ex-
amples we define two properties of quadrilaterals:

Definition'8-5
(a) A quadrilateral is s pie .if and only if no two of its

sides interseet.
b) A quadrilateral is convex if and only if its diagonals

intersect.

The,quadrilateral of Exercise l(a) iS simple and [apparently] convex.
That of Exercises 1(d) and 1(e) is not convex and [apparently] is not
simple. The quadrilaterals of ExereNes 2 and 3 are simple and not
convex. One might' expect that, in addifion to quadrilaterals of these
thtiv kinds [si e and convex, simile,blit not convex, and neither
simple nor co there would be quadrilaterals,of a fourth kind.
What would the foUrth kind.be? Do you tilink there are quadrilaterals
of this kind?

Exercises

Part A
4. Which of.the foHowing are pietuies of (i) simple quadrilaterals,

rtii) convex quaftrilaterals, simple epnveX.quadrilaqralsr

. hat

,(a) quadrilateral RSTU
(b) quadrilateral RUST

fe drilateral DFGH .

(f) quddrilatOYal fiFHG

(42) quadrilateral AMLC
(d). quadrilateral CLAM

(g) quadriliteral OPEN
(h) quadrilateral MON

TC 353 (2

(d)

(e) .[As for part (d).

3. (a).

TC 354

No.

No.

(b) Students who gave unquali-
fied 'Yes,' answers
Exercise I should recon-
sider. The points A, B,
C, and D of Exercise I
may or may not lie in one
plane. U they do, then the
'Yes.'s are correct; if
they don't, they aren't.

a

Answes fr Questions. ABCD of Exercise 1; ACBD of Exercise

Any'convex quadrilateral is simple, so there 4'reno convex and
nonsirnple quadrilate rals [This is proved in Exercise 4(b) of Part A
on Page 355.
Ans.wers for Part A
1... (a) Simple (and ',not convex)

4e,) simple (and not' convt-x)
(t)' simple and convex
(g) neitkier simple nor convex

(b) simple and convex*
id) neitiier simple nor comex,
(f) simple (and not convex) '

(h) simple (and not convex)
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2. Suppose that A, B, C, and D are four points no three ofw .ch are
collinear.
(a) How many quadrilaterals, have these points as vertices?

'Justify your answer.
(b) How many such quadrilaterals have A:13 as a diagonal?
(c) How many such quadrilaterals have AB as a side?

3. Can you choose the 'points of Exercisea2 in such a way that
(a) all of the quadrilaterals with these points as vertices are

simple?
(b) just twoof the quadrilaterals are simple? [Justify your answer.]
(c) all the quadrilaterals are simple and at least one of them is

convex?
Try to draw a convex quadrilateral which is not simple.
Prove that there are no such quadrilaterals. [Hint: This is
difficult. It is sufficient to prove that if AC n RD - {Ai} then
Al? n CD 0. (Why is this sufficient?) One way to proceed
is to assume that M A + - Alm - B + B)n, where

< m < 1 and 0 < n < 1, and to try to find numbers p and q
such that A + (B A)p C + (D My. (Explain.) It can be
shown that if there are such numbers then (n - 4)(q p) = I.

From this (and the assumption concerning m and n) it follows
that q p! > 1. Ftom this it follows that no point of AB n CD
belongs both to AR and to CD. There are other ways to proceed,
and you may have better success using your own judgment as
to how to 'start.) .

4. ()
*(b)

Part B
1. (a) Drilw a quadrilateral POS whose diagonals, FR and QS, are

parallel.
(b) Mark the midpoints of the sides of the quadrilateral of part (a)

and make a conjectUre. . .

2.. Suppose that {A, B,C} and VI, C, D} are noncollinear. ProVe that
(a) ACIIR-TI if and only if the midpoints of AB, -0C, and CD are

bcollin*ar, and that
(b) if AC 11BD then the midpoints of AB, BC, CD, and DA are col-

linear.' fkiint For ta t, use Theorem 8-6; for (b), use (a).1
3. Show that the midpointS of the ski:es of a given quadrillateral are

the vertices of a second quadrilateral if and only if the diagonals
of the first quadrilateral' are pot parallel.

4. (a) Prove that, in a quadrilateral, the midpoints of two iSppqaite
sides and the midpoint of a diagonal are collinear if and only*
if the other two 44ides are parallel.

(b) Can the midpoints of tvo non-opposite sides and the midpoint
of a diagonal of a quadrilateral be collinear?

1

Answers for Part A [cont,)

TC 355 (1)

2, (a) Three [ABCD, ABDC, and ACBD]; each of the three points
B, C, and D is the vertex opposite A in one of the possible
quadrilaterals.

(IT) One .

(c) Two,
3. (a) Yes. One way is to choose three noncollinear points and

choose .a fOurth point not in the plane determined by the other
three. Another way. is to choose coplanar points as in
Exercise Z on page 353.

(b) If one of the three quadrilaterals is nonsirnple then a
pair of its opposite sides intersect, Taking these and its
diagonals as sides,, one obtains another nonsimple quadri-
lateral. So, it is not possible that just two of the three
quadrilaterals be simple. [Note 'that taking the intersecting
sides of the given quadrilateral as diagonals, one obtains a
convex quadrilateral. So, for any four points, nothree of
which are collinear,the three quadrilaterals with these pisints
as vertices are such that tither two are nonsimple and the
third is convex, or all three are simple and none is convex.
The first case is illustrated in Exercise 1 on page 353 if the,
points A, B, C, and, D are coplanar, The second is illus-
trated in Exercise Z for coplanar points and,,.also, by any
nonplanar quadrilateral. The only question remaining is
whether or not, in the first case the third quadrilateral is
simple. This is settled in EXerciss 4.]
No. If all the quadrilaterals are simple then no two of the six
intervals in question can serve as the diagonals of a convex
quadrilateral.

4. (a) This is impossible [see answer for part (13)].
(b) Suppose that AC n ,BD {M}. If we can deduce that

AB em = 0 then, since TYE 1115, it will also follow that
ATE) h CB = O. The result,will then, show thatif ABCD is a
convex quadrilateral, it is also simple. [The result also
shows that eheere is no quadrilateral such,that both pairs of
opposite sides intersect. ] Our assumption amounts to saying
that M = A + (C A)m = B + (D B)n, where 0 < rn < 1
and 0 n < Fand that (C A, B - D) is linearly independent.
To investigate AB.(Th CD, We consider theequation:
(1) A + (13 - A)p = C + (D C)q

Our problern is to show that this equation has no-ttilution (p, q)
such that 0 < p < 1 ,and 0 < q < 1. From our assumption
it follows that B - A = (C A)nl + (B - D)n. Substituting in
(1) yields:

A + (C - A)np + D)np = C + (D.- C)ci
which is equivaleilt to:
(Z) (C A)(rnp 1) + (B - D)np = (D.- C)ti

(0

4
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Answers for Part A [cont.
Leaving this fpr the moment we note that. by Postiilate 3,

9/1 (C A)rn (B D)n
'and, so, that
(3) (C A)(rn I r+ 113 D)(n 1 1) D C.

From (2). and...L3p). ("by subtraction '1 we obtain:
(C A )(nip 1 - mq (B D)(np nq t q) 6

,Since (C, A, B - 0) is linearly inAependent this equation
whicli, under our assumptions is equivalent to (1) is
equivalent to:

(4)

Now

()

Trip (rn 1)q

1,, np (n - I)q

("by subtraction"1. (4) implies:
(rn n)(p,- q)

But, since 0 c rn I 'and 0 n 1, 1rn n1 1. So, if
(p, q) is a solution of (1) then p - qf 1. Hence, not both
Litnd q can he between 0 -and 1. Consequently, .if n and
CO doin rsect. their intersection cannot belong both to AB
and CD

1

The pre d ng conclusion is sufficient to our needs; but, of
cour uch more can be de rived from the preceding argument. he

gument concluding with equation (5) makes no use of the assirrn ion
that and n are betwe.en 0 and I. So, 4) and 5) continue to hold
under merely the assumption that n , and they can be
made to yield muchlaformation concerning the i tersection of n and
r-f5 [or of tf5 and BC] uhder this assumption. For example, if
rn n equivalently, if M divides the intervals from A to C aud
from B to D in the same ratio from (5) that rm CD = 0,
and one may argue further to show that AB 11 C. This result has
already been established in Exercise 2 of Part C on page 349.
Supposing, now,that rn n, equations (4) are equivalent to:

(6) p
I n

tri n' q rn n
VSp, if A"-e and "A-5 are two'intersecting lines and rs 41nd n are not

parallel, then n and t-5 intersect at a unique point which can be
located by-using (61 and (1)-- assuming, of course, that one knows the
locatioa.of M wit'h respeCt to A and C -and to B and D. Fol,..g

example,if M E AC rl t-5 then, using (6), one can show that n and
sec at a point which is. either on -la and --6-5 or on

iorittr -

[For, suppose:that, m and n are two numbers between and 1.
'It follow. (ram (6,) that if m > n then p > 1 ands c. 0. So, b (1),
in this case the point of intersection belongs to -11A and to --a. The
case in which 'm < n can be treated similarly.

11:355(3)

s'It ie noteworthy that Theorem 8-2 treats of the case in which AC
and rf5 are two parallel lines and forms the basis for our study of
trapezoids [including parallelogramstlt The preceding considerations
deal with the ca.se in which re and are two intersecting lines and
forms the basis for a study.of quadrilaterals no two of whose sides are
parallel. Although many interesting results are obtainable which con-
cern ratios related to such quadrilaterals, the theory is obviously
more complex than is that of trapezoids, and we shall do very little
with it.

Ansvtrs for .Part B
[These exercises are of some interest in themselves but are

mainly preparatory for Theorem 8-18.1

(.13) If the diagonals,of a quadrilateral are parallel then the mid-
points of its.sides are collinear.

2. (a) Let K, L, and M' be the respective midpoints of A_J_B BC, and
.CD. Note that KL II AC and that LMJJ, BD. So, AC BD
if anal only if RI LM. But, ISL LM if and only if K, L,
and lf.4 are collinear. Hence, thit conclusion,

(b) Using the notation from (ajz,, assurne fuTther that N is the
midpoint of WA and that AC 11 BD. By (a), K, L, and M are
collinear and, also N, K, and L are collinear if it is the case
that {A, 8, D) as well as {A, 8, C'), is noncollinear. This
is the case, for if A E n then, since KE 11 BD, C
contrary to the assumption that {B, q, Di is noncollinear.
Since K, L. and M' are collinear and N,- K, and L are
collinear, and since K * L [because {A, B, C) l concollinea
it follows that K, L, M, and N are collinear.

3. Using the notation of Exercise 2, suppose that CD is ssuadri-
lateral; It follows from Theorem 8-7 that KL LMJI AC and

[1 BD. Sot if AC 14 rib then 1-r1., Lld- MN,,
1;f51 srg, and NR" RIO' In particular, if C j4 13-5 then

L, M), IL, M, N), {M, N, K), and {N, K, L) are non-
collinear and, so, K, L, M, and N are vertices of a quadrilateral.
On the other hand, if K, L, M, and N are vertices of a_qiiadri-'
lateral then {K, L, M) is noncollinear and, so, RE V nu and

fao



TC 355 (4)

4. (a) Consider quadrilateral ACDB and apply Exercise 2(a).
TV5 If and only it the midpoints of the sides AT3 and c_75

,ncrthe rvidpoint of Hite diagonal BC, are.collineaP. Also,
CA !I DB if <mil only if the midpoints Ofthe sides CD and AB
.ind the niidpoint ot the fliagonal DA are collinear. So, the
opposite sides AC: .ind BD are parallel if and only if .the mid-
points of the sides AB and CD and the midpoint of one of the
d'ion,tis Are ollmear. [Note that, in an entirely similar way
one ,-.111 shOw that the mid-points of the diagonals of a quadri-
Litt' rdl and the midpoint of one of its sides are collinear if and
only it the two sides adjacent.to the one just mentioned are
p,ir incl. So. for example, it follows that a quadrilat.e&_ral
whose iliAgonals bisect each other is a parallelogram:1

(h) No. Var. the remai ung two sides would be collinear.

44,

40

ql
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Since, by Definition 8-6(a), opposite sides of a parallelogram are
parallel and, because of the noncollinearity of the vertices of a quadri-
lateral, are noncollinear, rhey have no common point. So, a parallelo-
gram is a simple -quadrilateral. Hence, by Definition 8-6(b), any
parallelogram is a trapezoid.. Note that there are .nonsirnple quadri-
laterals with two parallel sides.. These -bow-ties" are not trapezoids.

Parts A D would make a very long homework assignment. We
recommend using Parts A and B as in-class exercises. ,Parts C and
D still make a long assignment, however, It would probably' be best to
identify 8 or 10 of theAexcrcises for all students to do and then to
assign a team of students to each of the remaining exercises. Follow
this with a careful class discussion of all the exercises.
Answers for Part A

(b)

-

L. Suppose that {4i, B, C) is noncollinear and B - A = C - D.
It follows that-Vt it 13 C and B C A D. So, AB DC
and CB I() DA. Since Alig H r5c and C D Al. So,
{A, B. D is noncollinear.. Similarly, {B C t D) is non-
collinear and, using this and the fact that AB- II DC, {A, C, D)
is noncollinear. Hence, if {A, B, C) is noncollinear and
B-A -C-D then ABCD is a 'parallelogram.

On the other hand, suppose that ABCD is a parallelo-
gram. Then {A, B, C) is noncollinear and C B [D A]
and B A E [C 13]. Itvfollows that there are nonzero
numbers say, c and a such that D A (C B)c and
C D A)a. y follows that C A (B A)a + (C B)c.
Since, also, C A = (B - A) + (C B) and since (B-'A, C B)
is linearly independent, it follows that a 1 and c = 1. In
particular, C - D B - A. Hence, if ABCD is a parallelo-
gram then {A. B, C) is noncollincar and B A = C - D.

3. If A, B, C, and D are vertices of a parallelogram then the
parallelogram is either ABCD [D opposite B] or ACBD
[D opposite C-] or CABD [D pposite Al. Suppose, now,
that {A, B, CI is noncolline It follows from part (a) that.
the figures listed aboice are parallelograms if and only if,
resPectively, B A =. C ID. or C A = B - ID orA-C =B-D that is, if and only if D C + (A B) or
D = B + (A - C) or D B + (C - A). [Students should, ei
course, draw figures to illustrate this result.]

4. This follows at once from Exercise Z(b) of Part B on page 355.
For, if, in that exercise, we interchange 'B' and 'C' all we need..
note isithat, by Definition 8-6(a), if ABeD is a trapezoid with
bases .N13 and Cr) then {A, C, B) and {C, B, ID) are noncollinear
and AB 11 CD.
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8.07 Trapezoids and Parallelograms

.Definition 8-6'
a ) A quadrilateral is a trapezoid if and only if it is simple

and has two parallel sides.
(b) A quadrilateral is a parallelogram if -and only if its

opposite sides are, parallel.
(ar (b)

Fig. 8-16

Since a parallelogram is certainly simple [Why% any parallelogram
a trapeZoid: !Note, however, that the word 'trapezoid' is sometimes
-but not in this i)ook used to describe a simple quadrilateral which
has exactly two parallel sidesd Any pair of parallel sides of a trapezoid
is called a pair of bases ot' the trapezoid.

Exercises

Part A
1. (a) Draw tire of a trapezoid PQRS with bases PQ and RS.

(b) Draw a adrilateral ABCD with AB 'ICI) which is not a
trapezoid.

2. Show that ABCD is a parallelogram if and only if {A, B,C 1 is non-
collinear and B - .4 - C - D. (This is Theorem 8-161

3.. Show that if {A, B, C} is noncollinear then there are three, and
'only three, parallelograms each of which has 4, B, and C as three
of its vertices.

.

4. Show that, in trapezoid ABCD wilh bases AR and CD, the mid-
points of the sides Be and DA and those of the diagonals AT! and
,RD are collinear. .

5. Prove lipch of the following. 1
.

(a) If the midpoints of two si4s .and of a diagonal of a simple
quadrilateral are, collinear thm the quadrilateral -i8 a trape--
zoid with the remaining, sides!as bases. ,

(3) If the midpoints of two diag nals and of a side of a simple,
quadrilateral are collinear thè the quadrilateral is a trape-
zoid.with the sides which arb n'ot opposite to the given side as
bases.

6. A quadrilateral is a parallelo m if and only if its diagonals
bisect each other. (This is Theo m 8-17.) ''''

Part 111'
1. (a) Suppose that PQRS is a trapzoid with bases PQ and RS, What

do you guess to be true of the ratio (R S) (Q - P)?

8 ?

TC 356 (2)

Answers for Part A [cont.]
5, (a) This follows ai once from Exercise 4(a, b) of Part on page

155, and Definition 8-6(a).
(b) Like (a), [See note to solution ol Exercise 4(a) at the end of

Te iS5(4).
Supp9,se that the diagonals Of quadrilateral ABCD have mid-
poiprfs K and L and,that the sides AB and. 'BC have midpoints
M and N. If K L then {K, L, M) and {N, K, I.} .are
collinear and so, BC DA and n CD. Hence, if K L
then the quadrilatel'al is a parallelogram.' On the other hand,
if ABCD is a parallelogram then, since pc -5-A , {K, L. M}
is collinear and, since AB 11 CD, {N, K. L} is collinear. If
K were not L it would follow that {M, N, K) is collinear.
But, by Exercise 5(b), this is not the case. Hence, if .ABCD
is a parallelogram then K L. \,
Exercise 6 can, df course, b.e proved in many Ways. Here is

one which makes use of the position vectors a.., -c!', and a of
C, and D, res:pectively. The position'vectors of the midpoints of AC
and BD are (a + and. j)2. Hence, the midpoint of n is\
that of BD if and only if a+c b+ that is, if and only if

- d b a that is', if and only if B - A = e D. Assuming, noVt,
that ABCD is a quadrilateral it follows that AC and BD have the.sam
midpoint if arid only if they bisect each dther, and, by 'Theorem 8-16 of\
Part A, that ABCD is a parallelogram if nd only if B A C D. r
[Note that Intervals AZ and To may have the same midpoint without
bisecting each other. This can occur,if the intervals are collinear.]

1Answers for, Part B,,
1. (a) (R Pal.> 0

(b) ,PQRS would be nonsimple

4
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(b) Suppose that PQRS is a quadrilateral in which PQ RS and
1,1 < 0. What kind of quadrilateral do- you

'guess PQRS to be?
(e) Suppose that PQ and sk are noncollinear parallel intervals.

Show that quadrilateral PQRS is simple if and only if (I? S)
: rQ P) O. Want: Use Theorem 8-2 to show that if

- ,S ) : P) r then 'PS Qil if r 1 and S and
i.ntersect at point which divides both the interval from P toS
and the inter\al from Q to R. in 1 : -r.1

2. \Prove:
Ca)

1h)

Theorem 8 18
a ) PQRS is a trapezoid with bases PQ andRS if and

only if PQ and RS are noncollinear parallel in-
tervals such that (Q P) : (R - S» 0. :gm

I?) If, .in, trapezoid PQRS, PS QR then i°S and'
QR inlersect at a point which divides both the

vai from P to S and the interval from Q to R
RS):in

Theorem - 19
(a) A trapezoid is conVex.
0311f l'QRS is a trapezoid with bases PQ and RS

then the intersection of its diagonals divides
each of them, from P to I? and from Q to S, re-
spectively, in PQ : 1?-g.

Reread, the hint for Exercise 1(c), interchanging 'R'
and

1

3, (a) Show' that the digonals of a simple quadrilateral are not
Illint: The vertices of a quadrilateral with parallel

diagonals are also vertices of a trapezoid. Use Theorem 8-19(a)
to shothat a quadrilateral with parallel diagonals is not
Aimple.1

(b) Prove:

Theorem 8-20
(a) The midpoints of successive sides of a simple

quadrilateral are the,successive vertices of a
' parallelogram.

(b) The intervali joining the midpoints of opposite
sides of a simple quadrilateral bisect each other.

AIM
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Since, by hypotkesis, PQ '-\ RS 0., PQRS is simple if and
only if PS (Th QR 0. Following the hint, PS QR 0 or,
for r 1, PS r- QR is the point, from P and from ,Q,
respectively, of the interval from P to S and the interval

Llrorn Q to it. So,- it is the point which divides each of these
intervals in 1 -r. The point belonga to the intervals, them-
selves, if and only if this ratio is positive that is, if and
only if r < 0, .1lence, it fails to belong to these intervals if
and only if r > 0.

L. (a) Suppose that PQRS is a trapezoid with bases PQ and RS. It
f011ows, by definition that PZ) 11 RS and that {P, Q, RI is
honcollinear. So, PQ and -RS are two noncollinear parallel

tervals. Since, by definition, PQRS is simple it follows
om Exercise 1(c) that (Q P):(R S), > 0.

On the other hand, suppose that PQ and RS are non-
cpllinear parallel intervals such that (Q P):(R S) > 0. It

lows that PORS is a quadrilateral with Pi:5 and irig, as
pirallel sides and, by Exercise 1(c), that Pc...IRS is simple.
S , by definition, PQRS is a trapezoid.

Suppose, now, that PQRS is a trapezoid such that
4 QR. It follows that M and SR are noncollinear

pa allel intervals and, by Theorem 8-2, PS and TA-
in ersect in the /(1 r)cpoints, from P and Q, respectively
of he intervals from V,Ao S and from Q to R, where
r (R S):(Q P) and, by Theorem 8-18(a), is positive.
This point divides the intervals in question in the negative
ratio 1: -r that is, (Q P):(S R). Since this ratio is
negative it iS

The figure illustrates Theorems 8-18 and 8-19 in the case in
which 0 s (C) P);.(R S) 1. Ratios read off the figure, with
'(Qi- P):(R - SY for 'r' [with proper regard for sense] will.hold in
all cases.

set

(b) Suppose that PQRS is a trapezoid with bases PQ and RS. It
follows that Pa and RS are noncollinear_nrallel intervals and
(S - R) (Q - P) s 0, By Theorem 8-i, PA and ng intersect
at P + (R P)/(1 - r) [which is, also, 0 (S Q)/(1 r)]
where r (S R):(Q P). Since r c 0, 0 c /(1 - r) < I,
from which it follows that the kloint of intersection belongs to
both PR and 0S-.- ,Since these intervals are the diagonals of
quadrilateral RS it follows that PQRS is convex.

The ratio i which the point of intersection divides the
diagonals is, ir the notation of the preceding paragraph,
I: -r. ThiE ratio s then (Q P)R - S). Since it is a
positive number it is, also, PO:RS.
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Part C
1. In parallelogram ABCD, Show

that the point 0.of hildivides
the intervals from P to Q and
from R to S in the same ratio.
istkssume that PQ ![ AR and

io
.A

TCS' 11A-b.) .%,41
,

2. In parallelogram ABCD, show
that E divides the intervals
from A to F, B toD, and G to H
in, AB : DF. Show, also, that
HE : DP' = Ee; : AB.

3. In parallelogram ACD, M
and N are tItie midpoints of AB
and CI). Show that E and F are
the trisection points of Yfi.
[The trisection points of an

Interval are the points which
divide the interval, from one
endpoint or the other, in 1 : 2.]
lincidentally, What theorem
assures you that AN and BD
intersect?)

4. In AABC, suppose that- D
divides the interval from C to
A, E divides the interval from
(7 to B, G divides the interval
from P to A, and H divides the
interval from F to B, all in t
.saine ratio! Show that G
is a parallelogram.

5. In parallelogram ABCD, E
and P divide the sides from
A to ft and C to D, respectively,
in the samt ratio.
(a) Show that El-1FG is a

parailelogram. ,

(b) Wh9t can You say about
EP' and 'about GH if the
given ratio is 1?

6. In paralfelogram ABCD, M I
and N are the midpoints og,
BC and DA, respectively, aril
P and Q are two.points which
divide the interVals from B to

TC 357 (2)

3. (a) Suppose that ABCD is a quadrilateral whose diagonals, AC
and fib are parallel., Since ABCD is a quadrilateral, A-C-,
and BD are noncollinear parallel intervals. By Theorem

one of the two quidrilaterals ACBD And ACQB is a
trapezoid and, so, either AB e.- CD * 0 or AD rN BC * 0.
In either case, quadrilaterar- ABCD is not simple. Hence,
the diagonals of a, simple quadrilateral are not parallel.

(b) Since the diagonals of a simple quadrilateral are not parallel
it follows from Exercise 3 of Part B on page 355 that the
midpoints of the sides of a simple quadrilateral are vertiCes,of a quadrilateral. From the solution of Exercise 3 using
Theorem 8-7 it follows that opposite sides of the quadri-,
lateral whose successive vertices are the rnidp4nts of
successive sides of the given quadrilateral are parallel.

Theorem 8-20(b) follows at once from Theorem 8-20(a)
and Theorem 8-17 on page 356.
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Answers for Part C
1. Since M and DE, are transversals of the parallel lines AD, RS,

and AT it follows by Theorem 8-6(b) that POODC) - DO:OB.Similarll, DO : OB RO : OS, So, PO : RO t OS: [Actually,this does not quite solve.the exercise, since, the problem is to
show that (0 - F.) : (Q --0) = (0 R): (S - 0), and in using ,Theorem 8-6 we have lost track of senses. For a complete'solution, use Exercise 5 on page 325.1

2. Dy Theorem 8-19(a), in trapezoid ABFD E divides the intervals
from B to D and from G to H in Ala: DF. HE : EG = DE EB
= DF AE by Theorem 8-6021 and EF : AE = DF :AB by_Theorem8-9(a). So, HE EG = DF AB and, Consequentley. HE :DF = EG: AB.

3. D-A= C-B and.N D (C D)/2 (B = B - M. So,N A = (D - A) + (N D) = (B M) (C B) =S..- M. Hence,AN II MC. So, in A BAE, F is the midpoint of BE. Hence,
E D = F - E. = B F and, consequently, E and F are the tri-
section points. [E - D = (B E)/2, F B = (D - F)/2] [AM and
ED intersect because they are diagonals of the trapezoid ABND.

4. By Theorem 8-9(a), in A ACB and A AFB, (E - D): (B - A)
(H - G):(B - A). Hence, E D H G. So, unless {D, E, H}

is collineiru_DENG is a parallelogLarn. [Exercise 3 of Part A]
But, if HE DE thea .DB DI4 = DE-and E *13, cent-raw to the
assumption that Eivides the interval from C to B. ,

S. (a) As in Exercise 3, F - A = C - E. But, in A FAB and ACED,
= (G F):(E C) = (F - G):(C - E). Hence, H - E F Gand, unless {t, H. Fl is collinear, EHPG is a`parallelogram,
Since Ue -and XE are noncollinear patDel intervals and
F E DC while E E AB and /H C EC, Fet14.
EF II AD and GH AB. The first follows by Exercise 3(1)
of Part D on page 330. The second follows in the same
manner once one notes that [as shown in part (a)] DE n FEand that, in the present case, G and 14 are the midpoints ofDE and FE.

*

4



4 *
D and film D to B, respethively, in. he same ra i Sh'ow that

. . .
MPNq is...a parallelogram. I

else tilat AB ft'Ck/ and that.A(7 bisects hi i . Show that ABC!)
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. 9

nirallelogram. ,

ppose that ABCD is a parallelograM and I ia line contrining
)(Ants A', and D' such that any two Of AA1, ET', and
gi which are lines are paraltel. Show that D' C' A' B'.

if lot: "Iet P A' * tB 8' and-Q B + ), In. case
IrtrAB. and Q't Myou can show that Theorem 8-11-applies. Sup-
pvse, then, that P Alf and conAider two cases, P # B and P B.}

9. In let M be the midpoint of:AB, N the midmint of BC, P a
point ofAC and R and S,"the midpozihts of AP and P17: respectively.
Show that MNSR is a parallelogram.

10. Suppose that the diagonals of quadrilateral ABCD intersect at 0.
Let Pi, P fl, and P, he the centroids of AABO, ARCO, ACDO,
and ,ADAp, res'pectively. Make a conjecture about Pi P. P I', and
$ ikaow that it s correct.

11. In AABC, let P divide the interval from A to B in t : 1 t and Q
*divide the intervsl .?rom A to Cin : 1 - s. SupposA that APQR
is a paragelOiiram. Shoty that

0 1, and that ,,,

if it 11 then0 B + (C B)

12. In (413C, the medians 13 k and AN intersect at P, R is the mid-
point of AP, and Q is the Midpeint orBP. Prove that MNQR is tk
parallelogram.

I'art D
I. (a) Show That the, midpoints of a pair of bases of a trapezoid and

the intersection Of its diagonals ai.e collinear.
(b) kow that the ratio -in which, the interval between the mid-

points of two bases bf a trapezoid is divided by the intersection
of the diagonals is the, same as the ratio.of the bases,

2. I9trApezoiciPQRS, TU isparql-
tO the bases. PQ undiTS. and

contatns the point M at which
"the "diagonals-intersect. Show
that "°
(.a)4QU is 'the midPoint of
(15") divideS the 'side

tio of the basps, and
t U) P) 2."

. Show4that a 'quadrilateral whose diagonals intersect at, a point
ich dii4s:them in the same ratio is .a tiatpzoid. What is,the

',I eatio,or.tRe!Bases of,this trapezoid? *0,k;

4. Show that the lines, containing two nonparallel sides of a trIpezoid
thtersect at a point *hich is collinear with the inidkointg..pflthe
4baSes and the intersectiolt of.the di'vonals Of tlib trapezoid:

9 . ..4 .

..tc41
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Answers for Part C [-cdnt.]
6. Let K ISe the midpoipt of IID. Then R N = (B A)/Z (C D)42

M R and,. So, R is the'midpoint of MN. Also, R D"t= B
'and,. so, (R. Q) (Q D) = (B P) t (P But, bir hypothes.is
(Q D): (B -.13) (P B): (-D B) and, so, Q D .B P. Hence;

Q P.- R and, so, R is the,midpoffit of PQ. It follows by
TheoreM 8-17 of Part A on,page 356 that.MPNQ is a parallelo-
grarn if it is a quadrilatersl. It is easy to shoW that no three of
M. P. N, and C.fare collinear. -

7., Since AB II CD and AC and BD intersect ai a siglf.! point -.,
say, M'--- A-BCD is a 'quadrilateral and AB and 7D are non-
collinear parallel intervals'. By Theorem 8-6(b), since M is the('

...midpoint of BD, also the midPoint WC. So, ,by Theorem
8-17, ABCD is a. parallelogram.

8. Let P A' + ( B') and'
Q D' (C ). Then t.0 C

(13' C) (C -,C') = ID) - C'.
id p B - (A' B) + (B B')

. So, our problem is t
show hat Q C P tl." From
what we have already dozie it follows
that if P 0 18 and C then

A' C'. Furthermore,,`in tkits.case p,B A'B' =
= C 11 QC. Al'so, P A = - A) + (B -B') and D

(D"- 1)) (C 1.'). From this it follows tha't)if * A. and
* D then the ud'impti..,c*f AP.._ud rd is the common direction

efth6se of AA', BB', CC and D13' which are lines. Finally, .

BA H CD. Since ek = D C. it pow follows.by Thedrem 8-11
that if P tirg and Q (5-e then Q - C = P B.9
. Su2p.4ose, 'now that P B and * C. It foIloWs as before

.that so, if.pither' P 6 -rg or. Q Enrd_....then it is the
aitte caseithat P AB.. and Q E DC Assurning. that P E AB [and P* B]

it follows, as before, that AB = FB 11 1. Suppose that A '11,1. it
ol ows.1.1at B 1 and so tfiat A * AA' and B B'. In this case,

AA 11 BB' and ABB'A' is a parallelogi-am. Hence, A' B' = A - B.
Suppose, on the other hand, tha.LA i,.iryvhich case AB = If
A- Al then either C CI or CC II Aft = f. In either case,
since C' 1, C 6 1. Since, howetreii,,IA,' B. CI. Is noncollinear,
C E(AB = 1. So,, A = A"; Sirriilirl# "1:1 Al ad and, again,
A' - B' = A - B. So, in any caae, iL.PE AB and P B then
A' B' = A - 13;. Q E noc ,it.nd Q*0 C then
D' - et - - C. Since D - A - 13-it follows tha1/412r- B
and Q C, D' - C' = A' B' if'both P E4A-1 and Q DC.
17lowever,- as we have seen, this condition is satisfied if *ither
P or Q e,

'The only case which remains to be considered is that in which
P = B or Q c. Note, first that if both P B and Q C then
A' = B' and = C' and, so Dr C' = A/ - 8'. All that
remains; hen, is to show that if, Othes,:ij B or Q =. C then
both P = B and p = C. suppoim,:itliell,' that P B, As noted,1
it follows [since P A' = B - that A' = ,It followi, z4e.

9

7

91.



TC 359 (2)

Answers foe Part C [cont.)

A 1. B, that either # A' "or B # A'. 4iupposet A # A'. If
B B' then B B' A and, since A cTAA-1 arwl 13 A,
AA AB. II, ..n4/ge o,414r h, B B' then 771A 11 70...aacif ,since A' .B`, AA' -BB' Jlence, if A # A' then AA' =
Similarly, if B B' then Fill It follows that, i any Nese,
if fz_.4. B then C C' or CC i,s the line .through C parallel
to AB. In either case, C.' is the inte_Ltgetion of .r-.7 with 1.

D' is the intersection of -co with 1. Hence,.if Pthen D' C' and, since Q D' + (C C"), LI C. Similarly, ifC then P B. 1.1ence, if either P II or Q = C then both
P B ;Ind. Q C. As pointed out earlier, this coMpletes the
proof. .

The treatment the special cases i.n which P E N-7 or Qas the preceding shows, quite messy. Students sh9uld, however, be
,able to handle the principle. case that in which PlICA and Q /tr.
and should be encouraged to do so.

It is worth peintin out that, by Theorisrn 8^6(b),..the result of
ExerciSe 8 continues to hold if, instead of requiring that,BCD be'a
parallelogram, one merely requires that ,r) s. A - B. ai'or, ifand 'AB are. noncoll04ar, then ABCD is la1/4parallelogram and Exercise

'8 applies, while if CD and AB are collinear then Theortm 8-t(b)
applieS [except in the case in which A l and 9 D but, thiscase is trivial). --,

There.is another way'to solve Exercise 8 which at first ni
appear tope simpler than the. solution given here. Unfoitunatelit runsinto many difficultie The, .ee of this solution is tp let sv, say, 'be
the' intersi.ction of 11-1V and CD and let A" be the intersec!tion of 7-k."A7and t7.). Then, since ABB"A" i a parallelogzam, A" B" 7 'A - B
= 17),-.0 and, by Ttleorern 8-'6(b), (A' 13');*(D' C') (A" -SB"):(D- C)I. The difficulty p in inaking sure of the points A" 'and B" In
plane geOrnetry we would be able to argue that a line say, BB'
which 'intersects one of t,vo parallel lines must also inteslillet the other.
But; to use this fact we would, here, have to show that BB' isin the
plane of ABCD. This is not too, easy to do, even if we knowabout .
tilanes. fn addition to this fundamental difficulty, we would still have3
to deal with the speci.al cases in which B B' or A = A'. T,aken all'in all, there seems no very simple way of establishing th'e result of
Exe misc. 8. The simple- arguments all require stronger assUmplotbns.

,9. S P 4-C P)I2. rend P - R (P A)/2 it follows thatS -.R (C A)/2 N -"M. Since,. for example, M {R, S, M)is noncollinear. SO, by-Theorem 8-16 of Part A, MNSR is aparallelogram.
0. Pi F12 P3 P4 is a parallelogram [unl'essiit turns out giat these pointsmay be collinear!). Using position vectbrs with respect' to 0,

1;1 ' P.2*= (5

and- j;,s = (a +
s°, /34 113 a)/3 and P2 PS p2

iZ/*3 -a)/3sHence F' P4 132 . .!It follows that, unless {P1, P2, ps),
say, is. collinear, .P1P,,,,P1P4 is a parallelogram.. We shaltesseTheorem 8-15 to check on the collineafity of {P1-, 'P2,' P3}.
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According to thiltheorem, if {P1, P: Ps} is collinear then there
are nuMbers say, a, b, and c which are notAll zero, such
that p, c p2a + psb and a + b + c 0 So, for such' numbers,

,

(a*.+5)c + (5 + -c.)a + (i7 + a)h

11e + 11)*(c + a) + j(a + b) ab
+ -b + -c +b =
(4 2 )c + (-.g)b rd

(A'- C)c + (D B)b

Now, the last equation insplie.s that if not both b and c are D, the
diagonals AC and DB are parallel. Since both contain 0, they
would then be collinear. In Ibis case, ABCD would not be,,,a quadri-
lateral: So, b c = 0 and, singe a 4 b + c 0, a -; '0. So, by
Theorem 8-15, {P1, P2 , P3 }. is noncollinear.

11. (a) P - A + (B A)t, Q = A + (C A)SR ;, A P
= A + (C A)s + (A - B)t. By Theorem 8-1, AR r.e
if and only if - A [R A, B C]. So, from.thie [or`
directly, if the theorem is,forgotten] 7,-rT tr a if
and only if there are numbers say, p. and q such th

' B A = [(C A)s (A - B)tlp + (BC)q
(B- A)(1 ps+pt) = (C B)(ps -q) [C - A = (B A) + (C - B))

Since .{A; B, C} is noricollinear, p and q satifify this equation
if artnly if

p(s - t) 1 'and ps q.
For there to exist such numbers it is evidently necessary that-
a t. On the other hand, if a t then p 1/(E,- t) and

s/(s t). 4 -

So, AR r- BC 0 0 if and only if s t.
(b) If AR r-,13C {D) then, D B + (C B)a = A + (R A)b and

A) (R A)b + (B C)a.
From p'art (a) it is evident that b = p = 1/(s t) and
a = q = 5/(s t). So, D B4+ (C - B

The preceding exercise can be modified by assuming either that
ARPQ is a parallelogram or th'at APRQ. is a parallelogram. The exer-
age parte need no change, in the former case. In-the latter, merely-

. replace 't' 13*--t', beginning with the expression far R.
12. 'Since P is the 2/3-ix5int on either of the ,medians, it is the mid-

psint of TN and MQ,, Since P is-the only point common to AN and
MB, M, N, Q, and It are vertices of a quadrilateral. So, MNQR

- is a parallelogram.

8 S
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The exercises Of Part D are for the most part, restatements of
results obtained in Part E on pages 330 and 331. Some ,students may,
refer to there, or to results of other eicercises in answer to those of
Part D. We shall, however, gixo alternative answers.
Answers for Part D
1. (a) Suppose that PQRS is a trapezoid with R 9 (0 P)r. By

Theorem 8-18(a), r 0, and by Theorem 8-19(a) the inter-
section of the diagonals is P + (R P)/(1 + r). The Midpoints
of P0 and RS are P 4- IQ P)/2 and P + (R - P). + (S
respectively. The latter is P + (R P) + (P Q)(112). To
show that the thsree points are collinear it is sufficient to show
tht

((Q P)12- (R P)i +1 P)( r) Q)1-1

is linearly'dependent. This is obviously the case -- the second
term is the product of the first by r.

(b) Since thr intersect n of the diagonals divides eath of them in
the ratio of the base , it also divides any interval through it,
whose end points ari on the basest in the Same ra io. More
directly, if 'M is the iidpoint of PQ, N is the mi oint of RS,
and 0 is the intersec n of he diagonals, then 0- z (S- N)
f (0 S) and M r + (M Q'). Since (S - 0)

(S - R): (P Q) r an S):(Q 0) r it folloWs at
(0 N):(114/1 0) r.

2. (a) Since UT is parallel to PQ and SR, U and T divide the tinter-
vals from S to P and from R to Q in the same ratio. So,
(P ? U): (P S) = (0 T) : (0 R). 'Also, .(T M):(R--- 5)

(00 T): (Q R)''and (M - U):(R S) (P U): (P S). It
follows tha M): (R 5). = (M S) and, so, thitt
T. M M U. Ilence,M i the midpoint of TU.
U dvide the interval from S to P in the same raOio as M

. di,vides the interval from S to Q [Theorem 8-6(b)]. Since the
latte r ratio is the 'ratio of the bases, so is the former. ,

(T (R 5) (M - U):(R 5) + (T.-.M):(R S)

= (0 T); (Q R) + (P U):(P - S)
1 1

I r' where r (R 5): (Q P)
1 + +

(T U):(Q P) l+r ,l+r

'3; Suppose that, in'quadAlateral PQRS, PR cm QS =. {0), where
(0 S):(Q - 0) = (0 - R)j_iP - 0). It follows by the corollary to
Theorem 8-3 that PQ 11 R5. Since PQRS is a convex .quadri-

'lateral with two parallel sides it is a trapezoid and, by Thorem
8-l9.3, the ratio (R - S):(Q - P) of its bases.is a raiio inewhich
divides the dials_mals frorn R to 0 and froci S fo P. Equfvalently,
SR : PQ 50: 0Q = R0; OP.,

4. This fcillows by two aPplications of Exercise 3(ii) of Prt. D on.
page 330; or, seeExercise .4(a). of Part E on-the same page.

(b)

( )

819
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Answers for Part ID [cont.]

p2. (a) U z P.+ (S arid we wish to 'find numbers a and b
such that

U + (Q P)a. = Q + (R Q)b

P + (S
1 t + (Q P)a Q + (R Q)b

+

. (P Q)(1 (a + b)) + (S R)13- = [( P 0) + (S P) + (R S)jb
'

(P- 0)(1 (a + 131] +'(S I2)b (S - P)(b rfo
Since RS 11 PQ, (P - Q)[.I - (a + b)) + (5 - )13 c f P 01. So,

since {P, Q, S} is noncollineor'it follows that b -T--t+t-: So,

T 0 + (R Q and corequently, divides the interval
from Q to R in t :1.

f

g7

(b) T U = (Q P) + [(R Q) (5 - -11),1 + t Since

( R 0) - (S P) (R S) (0 - P), T (0,

+ (R = (Q 1:17± s±1.
1 4

Sample Quiz
1. Given a parallelogram, which of the following are true?

°

(a) The diagonals are the same 14/1 th.
(b) The diagonals divide each other in

I "

(c) The diagonals bisect each other.,
(d). Both pairs,of opposite sides.arb-parallel.
(e) Botsh pai?s of opposite sides have the same length. '
Answer:

-o

ratici

Given a trapezoid, which of the Iiy.e statements in I 'are true?
Answer:

Key to Sample Quiz
1. (b), (c), (d), (e) lee true.
2. (b) is true.
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5. Suppose that PQRS is a trapezoid with bases PQ and RS, and that, 17 divides the interval from P to S in t ; 1. Show.that
(a) the line I71Q. P1 intersects Qk at a point T which divides the

interval from#Q to ,R : 1, and
1T I; i(4 P) + (it S) I.

8:08 T%+ip FamOus Theorems

By Theorem 8-9 if R and S
are the r-point and the s-poiat,
from C, of BC and AC, respectively,.
then R:3 11 A.& if and only if r - s .
Also, if ES AB then AT? and BS intersect on..the median from C, and
this mediah contains the median of ASRC from C. In this section we

shall ithrestigate som-te of the things.)
which happen when r s. In this

A

case, as we know, AR and BS inter-
sect at a point which is not on the
median from C and RS if AB. As
suggested in the figure, this leads
to the consideration of two new

points, T aiy6 T' , on AB. The relation of these points to A and,B
worth investigating, and we shall look for answers to the questions:

Where mupt T' be in relation o A kind B in order that
{R, S. T' } be oollinear?

, Where must T be in relation to A and B-in order that
An, h 64; and be concurrent [that is, have a point in
common]?

Before answering these questions itmwill be helpful tO consider some
- examples.

Fig. 8- 18

Exercises

Oart
1. Given AABC, and points R, S, and 'I' such thatR = 'A +

. S B (C, -ta)i, And 7' C + (A C)
(a) Draw an appropriate picture for these conditions. ,

(b) Compute the ratios (1? - A) : (B R), (S - B) : (C, S ),
(T.- : (A - P. What is the product of these ratios?,

(c) Make a colljecture'about the points R, S, an4T.

4

44
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The "two famous theqrems" are Menelaus' Theorem, page 3631
and Ceva's Theorem, Exercise 1 of Part H lan page 367 A`proof of
the latter has been indicated in the discussion of Part A on page" 347.

Parts A and B can be used as a seat activity during a class period.
We recommend that you permit discussion among individuals during this
activity. Part C is a reareonable hotnework set. Becaus, c idea of
Rensed distance is introduced, we rpcommend Part D class dis-
cussion and solution. Parts E and F provide exercises in which
students can be permitted to work with a partner. The main reason for
such an arrangement is the complexity of the algelira involved in theseexercises. It is not uncommon for a student working alone to make an
error early in 'an exertise that causes the rest of his work to be inerro;, Parts G and H present some interesting applications that can
be used as either a class activity or A homework assignment.

Answers for Part A
I; (a) B (b) 1; 2; 1/ 1

(c) Collinear,

4

;

A.

"N.

4

'

_
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2. Given, ADEF and points L and M such that L D + (E and
M E + (F -
(a) Draw ari.appropriate .picture for the:se conditions.
(1) Show that LM is not parallel to DF.

,Lo.cate N, the point of intersection oe LAI and blfi. Compute
the ratio (N : (D N),

(ci) CoMpute the ratios (1. D) (E L) and (M 1,2) : (F - Mi.
What i.1 the product of these ratios with the ratio computed
in (c)?

3. In each of the following, you are given certain indicated ratios
and that 4', S, and T are collinear. Compute the ratio (T C)
: - T).
(a)

3

2/

AL

(d)

3

Part B
1. Given AABC and pOints P, Q, sand 1? such that P A + (B A)3,

Q B + (C B) and R = C + (A C)i.
(a) Draw a careful picture of this situation.
(b) Compute the ratios (P - A) : (B - P), - : (C -42), and

(1? 7 C) : (A - R. What is the product of these ratios?
Th(e) What can you say about the lines ditiO, ,* and tir?

2.IGiven ADEF and points K, L, and M Such that K = D + (E D)11,

E + (F E), and M'= P + (D
. (a) Draw a careful picture of this situation.
(b) What seems to be the case about the lines .b-r, r and Pie?
.(c) Coniputh the ratios (K 19)-: -(E K), (L -E) . - and

(M : (D - What is the product of these ratios?
3. In-each of the following,_xou are given certain indicated ratios

and that the lines V; AR, and &rare concurrenkjConcurrent
lines a-r-n-ines which pass ,through the same At.] Compute
the ratio (R C) : (A -14 R.), and determine r such that R = C
+ IA -

Answers for .art A cont.)

(d) 3; 2; 1
3. (a) -1/6

TC 361

M L = (E - D)!T + (F E)4.
So, M - L is not a m.t..iple of
F D so that M kr W.
N E LM DF if and only if
there are numbers a and b
such that N = L + (M - L)a
= D + (F D)b. This last
gives us, in turn: .

( L

(E

So,

3 1

4 4 3

4 (D- F)b
3 1 Z

b.
9

6

Therefore,a -5- and b =

N = D + (F se that

/(N - F):(D N)

Hence,

(b) 2 (c) 3/20 (d) 9 28

From the results of Exercises 1 and 2, students may suspect that,
R, S, and T being collinear, [(R A): (B - R)I[(S - B):(B 5)]
[IT C): (A - T)] = 1. The parts of Exercise 3 should encourage
this suspicion.

Answers for Part Bd..
T. (a) -a (b ) 3/ 2; 1/3;

(c) They ape para .

. (a)

a) ; 3/4

(b) They are cOncurrent.
(c)$ 4; 1 2; ,I1/2; I
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Part
SUppose that, in v/\ABC, R di-

vides the side from /I to C in r : 1,

S divides the side fro'th C to A in
s : 1, T divides the side froth A to
13 in t : 1. We wish to find 'condi-
tions on r, s, and t which will en-
sure the collinearity of (I?, 5, T.

Part

.T

1. (a) By hypotheSis, R = 13 tC Write similar apres-r
sionstor 'S' and T.:.

(b) Using the results of part (a), show that
nation of C B and A - C and that 7'
tion of A C and B - A.

2. Show that, for any real numbe and b,
.

a+ r

[flint: Use the results obtained in Exercise l(b) and apply Theo-
rem 6-12.]

3.'(a) Show that

R is a linear combi-
S is a linear combine-

.

s + b
1 + s

as + b 1 - rs..
1 + 1 s +7a b'

(-W- Conclude-that

(;...3 Rki + S)1; (1 rs 1 - rs)t
=

;1 r a b and a
1-t a). e.

'Show that-fR, S, T1 is colnear ind only if rst = 1.
.

5. Show that if {R, 5, T} is collinear then S divides the interval from
R to 7' in rs 1:1 + r.

Although we cannot, as, yet, introdtke the notion .of distance be-
tween points of we can, if we consider only Nints of a given line .

Ointroduce a notion of distance between pointh of 1. To "ilo so, choose a

elb

. Answers for Part B [cont.]

(5:3) 1; 1 / 2

TC 362

(d) 3/5; 3/8

Just as the results of Part A illustrate, and suggest, Menelaus'
Theorem, those of Part B anticipate Ceva's Theorem.

Part C giv es a proof of Menelaus' Theorem. Part D introduces
a notion of sensed distances which allows the theorem to be put in more

. conventional form. .

Answers for art rC

1. .(a) R = B (C r + I
iStudents should note cyclic symmetry and use it, as a time-
saving device in part (b) and in la.ter exercises in this section.]

1(b) S R (C B) + (A
1

(C B)r
+ 1

= (C - B)s + r + 1
+ (A C)8 +s

1T - S = (A - C)8 + (B -

2. By Exercise 1(b), (S R)a +7(T S)b (q
1)+ (I3 - Since {A, B, is

noncollinear and (C B) + (A - C) + (B A) = 6 it follows
from Thecrem 6-12, that

(S R)a + (T S)b, + r
as + b bt
1 + s 177'

3. (a) [Trivial algebra; note that since B C, r * -1 and since
C # A, s -1.

CO [By part (a) and Exercise 2..]
4. {R, 5, T) is collinear if and only if '(5 - R)a + (T - Sib = 6' is

satisfied for values of 'a' and 'b' which are riot both zero. By the
first equation on the right side of Exercise 3(b), a solution for
which a = 0 has b 0, also. By the second equation, a solution
for which a 0 0 exists only if (1 - rs)t = 1 + t that is, only if
rst = -1. Finally, if this conditioA is satisfied, we may evidently
choose a arbitrarily and compute b from the first equation.
By Exercise 3(b), (S R):(T S) = (riv- 1): (1 + r).

-a

The introduction of sensed distances [usually called 'directed
distances'] in Part D enables us to state Menelaus' Theorem VI its
usual form. [Theorem 8-21; Menelatile Theorem is the only if-part.]
Ordinarily, there is available a notion of distance.for all goints in the
plane of ABC; here, we must use Ihree_spite incendent notions of*,
distance one on each of the lines BC, CA, and A. But, as is
pointed out in Exercise 2, this does no haxm. Note that in Theorem
8-21, R, for example, may be any point of M. This is a slight
extension of the situation dealt with in Paut C, when B R * C. This
extension is, of course, of little importance, but it does make for a
simpler hYpothesis in the thedrem. The extension I. justified [in the
case of R] in Exercises 3 ana 4. Obviously, then, the restric.tions
of Part C on S and T. may also be dropped.

,r



zero-point, 0, dnd a unit-ppint,
speet Go these We can, for \{P, Q}
P to Q [fur short, PQ! by:

PQ
{(Q

P)

8.08 Two Famous Thi.orents 363

U, orrr such that U 0. With re-
c 1, define the sensed distance from

0) If 7' Q1
EP - 01

Note that the senseld distance PQ depends on the choice of 0 and U,
However, if P, Q, R, Si c I and P Q. ond /KA S then

o)
o) (ti P): (8 R)

and, so, PQI RS is independent of the choice of 0 and,U. .

An advantage of the notion of sensed erittances can be seen in the
following statement of the results of Exercise 4 of Part C.

Theorem 8-21 [Menelaus' Theorem and Converse]
If, in QABC, R s a, and T
thenAR, S, 71) is collinear

if and only if
* BB -CS .AT = --(RC .tTA ,TB).

Fig..8'-19

Answers for Part 1)

z.

TC 363

In the case in question it follows by Fxercise 4 that,
collinear if and only if rst - -1, where r ( R - (C
s (S CLIA S. and t (T A): (B T). Using sensed ail,-
tances on ;VC, on TA, and on Tff, r = BR/RC, s 'CS/SA, and
t AT/TB. So, rst -1 if and only if (B11/11C)(CS/SA).(AT/TB)
, -1, and this is the case if and only if BR CS AT =:(:-RC.SA TB).
Whatever snonzero tzanslation U - 0 we use as "unit translattbn"
in the'airec,tion of BC, any other is a multiple of thia by some non-
zero:real number. So, sensed distanees computed with respect to
suchanother unit translation will be equal to the quotients 24 those. .

ciempUted-with respect to U 0 by the same real number.'"Ro, the
result of a different choice of unit translation for Ve will be to
divide each of BR ,and RC bY the same "conversion factor"..
This has 40 effect On the equality of the products referred to in (*).

3, (a) Supafte 13. If T B Alien S, TY BS ind,
T AB, if S 1\ then {11,.S, TI c An, so, in either case,

T is collinear. On the othz...hand [still assumin
that 11 = 13], if T B thtn So, if {R,. S,',T1,1 is
colainear, Ere: rTh 12T, = rTh AB = {A), Hence, if
{R, S, Po is collinear then T = B or S = A.

) (c) In caw! R B, BR = 0 and Theorem 8-21 requires that
{R, be collinear if and onlY if RC SA TB = 0. Since
R = C, RC SA TB = 0 if and only if SA 0. or
TB S 0 It- that is, if and only if S = A or I' = B. But, for
R B, we-know from pah (a) that {R, S, T1 is collineaOf

. . ancLonly if S A or T B.

- I.Slict*. 43,s in Exercise 3(a) that, in case R = C,*{R, S. T.) is
c011inear.i? pir A. Theni proceed as in
'parts "(b4) si;;;V(c). , , 4; - ' '

1. Derve Menelaus' Theorem, in the case in whicht...R (VI, CI, S 0
{C, A}, and 7-0.{A,'B};', from; the result of Exercise 4 of Part C.
1Hint: r = (R.7 B) : (C - R) BRIRC.1

2.. Given the points R, te translations R - B and C - f?
are completely determined and_so is the real number which is
their ratio. On the other .hand, to determine the real numbers
BR and RC we-Inust, not' (icily know B, C. and R but, also, have' .

ehosen a senae;on and. & "unit' interval" in [or parallel to]
Explain why it is that whether (*) holfia.of tpt is iiiili*ndentpf
these two cliiiees:: ...

3.:(0'ghowrthtit Ai case 17 --./3 it follo,w#.
and only. il'T= B or S L=. A. )

-(b) Show _that in'Oase R B it fq141i;

,. Saavple QuU
*Assume that IN.13.CD s a trape-

zoid, that Af- D a, B A =
and C D- = X4, as shown at the
right. .'

2.

gaud
. only if T 13 or S = A.
(c) Conclude that Menelaus' Theorem bards in.casi.??,.----A

4. As in ,pxercise 2, : ,w that Menelaute:9Theorkm110
R C. . 41

y'rhai.'is the ratio B A:C - I)?
Al'surni, that AC and BD intersect in

--I" -

3. Locate the point E sttch that AECD is 'a parallelogram. ...Exp-rosS .4
D as.a liVar combination of and 5.

4. What is the ratio E 137:"C D?

5. Assume ttiat ITC arid iniersect in th&Pcii,14:4
t 1 What is

Assume ttat 'AD and BC' intersect in the .pqint Q. What-is

f

T;

he point P. w h4t is,

ZA: Kb? What is Zi73:-OC?
Key to Sample Quiz
1. 1/4 1/4
4. 3/4 3.:

'--1,
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p.
Part E

Suppose that, in z1AB(', R di-
vicies the interval from B to C in
r 1 and S diviaes the interval
from C to A in s 1. lSo, neither r
nor s is 0, 1;

tr

1..1a) ...ihow that R A (13' A) f (C 13)
1 +

(b) Complete: S B .

2. (a) To determine the conditions under which Ali and )3..q are
parallel, show that

- A )a iS B)b O'tP a - 4+ h = bgr 1 s'

[Hint: Use Extircise 1 and Theorem 6- 12.1
(b) Show that 1 5r

*--). 1

of the biconditional sei4tence i

+ + rs 0. [Hint: The right side
1n part (a) is equivaIent to: f74_ ra

bqndo

1'- 3. (a) TS determine the conditions under which 4A-It and )18/intersect,
show that

.

Part F
Suppose that,. in 4,ABC, R

vides the side from BtoC in r 1, S
divides the side from e-to A in s : 1,
T divides the side froth A to B in
t 1.'

ar bs_(Ai A)a - B + iS Blb 1 - a =
1 + r 1 + s

it)) ShOw, that if *Ali }{ 23s" then 'Ali n S {P}, where

A + (R A). + (s B)
),

1 + r
+ r + rs 1+ r + rs"

1. It follows fforn Exercise 2(3) of Part E that

.4Art 1 Yg bi4 (1 +. r + rs = 0 and 1 -t s + st - 0).

Explain.
2. (a) Show that if 1 + r + rsa= 0 and,1 + s + st = 0 then rst = land

1 + t + tr [Hint: To show that rst = 1, multiply on both
sides oi '1 +,s + st -= 0' with 'r'. Having shown that rst = 1,
show that 1 + t + tr = 0 by performing a similar maneuver
with '1 + r + rs = 0'.]

4

TC 364 (1)

Parts F and 1' deal with the-proof of Thebrem 8-22, of which
Ceva's Theorem is the only if-part;, with R, S, and restriCted to
be on the sides of A ABC.
Answers for Part-F,
1. (a) By hypothesis [and definition], ,R B

(13 + A (13 - A) + the desired
(b) S,- B (C-.B) (A [From

iymrnetry of notation.
(a) Since R - A (B - A) + (C B). r+ r and S, 13 = (C B)

+ (A - (R + (S. - B)b (11 Ala + (C 13)

(, + b) + (A -.C),b--21--. Since (B : A, C A) islinearlyr f $
i'ndependent and (B A) + (C B) + (A C) 2 d it follows
by Theorem 6-12. that

(R - A): + (5 B)b = 4=z. a

*4,

+ (C S nce
result follows.
(a), by cyclic

ar bsb
1 + r 1 + s'

(b) 'AR 11 RS if and O'nly if (R -A, S B) LS linearly dep6ndent.
By part _(a), the latter is the.case if and only if the equations:

( *)

are
Now,

ar bs
= + b.

1 + r 1 f s
satisfied for values of 'a' and '4 which are not both zero.

ar 1+ b .4=:) a -. b, and
1 f- r 1 + r ,

D
bs s ,

. a = e.:t a . .
1 + s 1 + s

So, (*) is equivalent to:
1(**) 1 + r,a = b and

, 777 b
From the first equation; if a = 0 then b 0,. Henc , if not
both a 4nd b are zero, a must be nonzero. Since substi-
,tuting from the first equationinto the second], (**) implies
that

a

***) a = (144 r)(1 + s)a
it follows that if (*) has Solutions with a and b not both zero
then s )--= (1 + r)(1 s) that is, 11+ r + rs'= 0. Conversely,
if this condition is satisfied, we may choose any value for 'a'
and complite a corresponding value for 'b' from the first equa-
tion in (**)... thi,s equation and '(**,) are, together
sal2 401 e nt to (**), this win yiela a solution of (*). .Conseqpntly,
AR Jig :==:, 1 + r + r s =
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Answers tor Part E [cont.1

3, (a) [The procedure is esriactly like that used in Exercise 2(a).
fact, starting with the secoiad of the answer given above,
all that is needed is to add an 'A 13' on-both sides of the
equation and replace 'b' by -b'. Then, make the appropria e
minor changes in what follows.

(h) the Syntence Lsoreesponding with (*) of Exercis L(h) is:
r

b
1 + r

That corresponding with .(**) is:

'

bs
1 + s

1 and a +
s

Multiplying on both sides of the first with
+ 1

and sub-
tracing trom tf-le., second yields, after slight simplification:

1 + r rs
1

1 + r a

is olvable it and only if 1 4- r + rs 0, that is,' if'and
o'nly if AR / BS-- and, the first equation of (**), yields:

1 r +

So, assuming that AR

r(" s)and
1 4- r + rs

BS, AR cm BS -- {P}, where

A 4- (-R- A)
1 r+ ir rs

+ sj_
+ r + rs

Answers for Part E.
By Exercise 2(0 of Part E, AR II BS if and only if 1 4 r + r
13c the s ,mrnetry of the notation we have introduced it follows that

if and orily if 1°4 s I. tit 0, Hence,
AR H BS H CT (1 + r + rs 0 and 1 + s st = 0)

[Since pnrallelism is transitive, students should realize that it
follows that if 1 + r rs = 0 and 1 + s at -t 0 then 1 + t tr
This pXrely ,algrbraic result iS established algebraically in
E:xerciso 2. ] I

Supposs= that 1 + r + rs 0 and 1 a + at z- 0. Frorn' the
second it.follows that r + 1:s + rst = 0. Comparing this with
the 'first assumption shows that ret = 1. From the first 'of
the two assumptions, rt + rSt 0. So,. since rst =
1 + t. + tr' '=

(-a)

TC 365 (1)

Answers t.c.ir Part E [cont.]

(b) Tht; equations are: .
(1) 1 f r + rs. 0

(2) 1 + s t st 0
s

(3) 1 + t + tr
(4) r st

Ithas been shown that if (1 ) and (L) 'arc satisfied then so are
(3) and (4). By symmetry it obviously follows that if (2) and
(3) are satisfied then so are (1) and (4), and that if (3) and
(1.) are satisfied then so are. (1.)' (4). It has also been
ithown that if (4) an-ci (1) are satisfied then so is (3) and, by
the immediately preeeding remark, so is (l). By symmetry,
'if (4) and (2), or. (4) and (3) are satisfied, so must be the
others.

I. Ca) The first equation hap been obtained in,Exercise .3(a) of Part
E. The secorid is obtained from it by symmetry of notation,

(b) AR cm BS (-\ CT 0 if and only if P = a Since S 0 B,
P , Q if and only if

(4)
1 +

1 s + s
r(1 +,$)

1 + r + rs
Sinc e I +, s t 0 .arici, by the assuniption of nonparallelism,
1 i! s 0 *N1 + r.-+ rs, ($) is equivalent to:

- 1 + r rs ,r(1 + p + st)
and,,- so; to 1 rst', Hence, if 'n.--A.17.44 Y'S

abr. 4111,..11P

AR (- BS (Th CT .* 0 =4". r st 1.
'

4. (a) From the result of li;xe.r.c.ise 3(b) it t$1ows (by symmetry),
that if one of the lines AR, 'BS, and CT is not parallel to
either of the othet two then the lines. are toncurrent if ancl
only if rsf 1. To denY that some one of the 1i"Aes is not
Parallel to either of the others is to affirm that each of the
Ilirles is parallel to one of the others. Supfx3Se this,to be the
'case for lines m, and n and that, say, 1 rn. Since
n H or n H Iv it follows that 11 n. So, wh.a.Uollows.,
from Exercise 3(b) is..that if it is not.the cass that AR, BS,

'and CT are parallel then AR ins 4F-cg t's CT *V 4:=> rst I.
This conclusion is of the. form 'not. p =0. [q 4=c:. rr Such a
sentence has as one consequence the corresponding sentence
of the form:

CT then

not p [r(3]
r ===s [not p =co. (II'
r (p or q)

Sd, we have that if rst 1 then AR, BS, and CT are parallel.
or concurrent. On the other hand, we have show'n in Exercises

t

f

46.
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_lb) Show that if,r, s, and r satisfy any two of the equations in
' part a) then they satisfy all four equations.

3. la) It follows from Exercise 3(b) of Part E that if Ali
then Afi and 13S ,intersect in a point P and hs and t't intersect
in a point Q, where

1 4- rk 1 s IP A, « tR A )-
r B + -

4-
B)-1 + r -rs.' and

1 r `rs
1 + sQ « (.6; C iT .01
t st 1 + s st.

Explain.
(6) Show that if :4/i h.s. ificY then

AR n 0 :F=-0 rst 1.

lTwo or more lines which have a c( mmon point are said to

4. (4) ShoW that .

AB,BS, and rr. are concurient
or parallel if anti only if rit 1.

.(b) Show that 'MUST, and *04 are parallel if and only if

if'st 1 and (1. -t- r + rs - 0 or
1 + S St -- 0 or 1 + t + tr 0)).

5. As in the casp of Menelaus' Theorem, the results of Exer..cise 4(di
can be expressed ainveniently in terms.of sensed distances:

1

Theorem .8'- 22 /
If, in AA1367, R eNd,- S E N*, and T E4.1.3+

then zafii,k.Sr, and bY are concurrent or parallel
if and-only if

.
B)? .CS . AT -*RC .t5A.TB.

.
4

(a) berive TheoreM 8-22, in the" case in which R {A, C}, S
. {C, A}, and.T {A,.13}, from the result of Exercise 4(a).

..,

4
1 and 2(a) that r'st I if the lines .are parallel. Also,, if the
lines are concurrent they are not parallel [since {A, 13, C.7,} is
noncollinea r 1 and, .by ise i(b), rst 1. Consequently,III., and CT are.concurrent or parallel if and on ifrst 1.

(b) This t,.ollows at 'once from Exercises 1 and (b),
(a) [See answer for Exercie I of Part. 1) on page 56 3.1

a

4

a

'

41,
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't

(b) Show thst the theoredolds in case R -.13 and in case R - C,
Ithnt: The arguments are much like the wrresponding ones
for MenOlaus' Theorem.)

6. (a) As in Exercise 3, if Ail n n Z.77' {Pr} then

4b,

+ r
A) + r + rs

f.sf st
(5 f - c)---1 t

1 + t ir

Expkiin.
(b) ShoW that if Ah',,bs*, and CT' are cOncurrent- at P, where

f'.0 {A, B, C 1, then

". f' divides the in'terval from A to R in 1 + r : rs,
.P divides the interval from B to S in 1 + s : st, and. .

P divides the interval from C to T in 1 + t Cr.,

, (c) Show that if rst 1 then 1 + r rs + r) : 1.
(d) Show that, under the'assumRtion in.part (b),

A

P divides the interval from A to 1? in BC SA AT : k,
P divides the interval from B to S int A .1,,TB - B1? : k, and
P dMdes the interval from C to Tin AB RC - CS : k, whev
k - AT BR CS S'A TB ; RC:

Part G' .

1. In each of the tbllowing, the figures are mailed so as to indicate
ratios in' which two sides of a triangle are divided. You are to
determine AP : PB.
(a)

P

(c)

4

(b)

(d)

Answers for Part 1' [cont.]
5 ,(h) guppose that R B. In this case the lines are certainly con-

. current'if T B or S = A. On'the other- handl_if T 4- 13

[and R 13] and the lines afe concurrent th'en AB rA
and S must belong to AB so, S = A. Hence, for R B.
the lines are concurrent if and only ii T = H or S =
Finally, if R B then CT cannot be parallel to AR. So, it
merely weakens our result to say tliat, for R = B, the lines
are concuri.ent or parallel if and only if T B or S A.
[The remainder of the argument that the theorem holds if
R B is like that given in answer to Exercise 3(c) of Part D
on page 363: That the theorem holds in case R C is
established by repeating the precedivg with merely alphabetic
variations.]

6 (a) The first two formulas are given'in Exercise 30) [with 'Q in
place of 'P'). The thirg follows from thi second as the
second from the first by Cyclic permutation.

.-
(b) Since.the u-point, from M, of, MN divides the interval from.

M to N in u : 1 u it is sufficient to note that

1
1 1- r rs ,

r + ra 1, + r 4-4rs
[The assumption is.nee4ed to ensure that neither r, s, nor t
is zero...}.
Multiply both terms of the'ratio by t.

1 t;

.0

(c)
(d)

%

%41) IBC SA . AT AT°. BR CS = (BC/BR) (SA/CS) = 1 + r
r s

= 1 r :rs
BC SA. AT :S.ei.TB

= t(1 + r): I

1 + r tC (BC/BR) (AT/TB) -= is 1 *

The preceding computations, together with parts (b) and (c)
establish the result concerning this division of the interval from
A to R by P. 'Phe other two results follow by cyclic p muta-
tion. [Actually, the second computation alV, for that

.matter, jt IL).1, also is unnecessary sincitslay Theor
. 8-22, if KR, ng, and CT are cvoncurrent then.

SA TB oRC = AT BR CS. l
.Answ-ers for Part G
L. (a) 3,4 tb) 1/6

(c) 14

(d) I [This is, of courst consistent with Theorem 8-10(a).

r
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2. In each of the preeeding figures, let 0 be
Compute:
(a) 01' (a). M9,: OA

1, A theorem called eeva's
from Theorem 8-22 by
the words 'or parallel'. Prt
of Part F to sh9w that the pr
points belong to the intervals:1

he point of concurrency.

(c) NO OB (d) AM : MT)

land its conversel is obtained
g by s, and by omitfing

is theorem. IHint:Use Exercise tha)
concuureney requires thal the

141Weva's Theorem to:show that the Medians of,a triangle are
concurrent.

3. Use Ceva's Theorem and Exercise 6 'of Part F to prove Theorem

4..Show that the ratio in which 'I"
divides the interval from- A to
B is the opposite of the ratio in
which TP divideS the interval
from

1

A to P.

8.09 Chapter Summery

Vocabulary Summary

triangle
median of a kriangle
transversal
simple quadrilateral
paralluilograin
bisect

Defutitious.

quadrilateral
diagonal of a quadrilateral
concurrent lines
convex quadrilateral
trapezoid
centroid

8-1. For PsAB, AsPABLA 0 b, P divides the interyal
from A to 13 in'the ratio a b if and only if (P A) : - 1')

alb.
8-2. (a) PQR - Ptti u ffl u

(b) f:pcm is a triangle {P, Q, RI is noncollinear .
8-3. The ihwdinn of a triangle from a .given vertex is the interval

whose endpelints. are.the gi,ven vertex and the midpoint of the
opposite side. -

8-4. (a) PQRS PC) U U 7?..4 U 741r

857

TC 367 (1)

answers for Part C., [cont.]
2. [Although the questions to answer here look innocent enough,

the work involved is a bit tedious. Everj so, the answers should
be well within reach of the students by this stage of the game.] '

(a) 0 c"-= + 6-.)p and
A

A - ((g g}-1- ,)q,

for sonie p and q. So,
-.3.

-

or, 'Tho
a( -1

iveniently,
-.3 3p) d

So, since (a.,-1;) is line'srly inde-
pendent, /5c q He_nee,

.
CO:OP r: 5/2.

O = e4 4, 1J; )p and

O B 1;t/c1, for
sarne p and

B (le*-1-3)-1 -11.)q

- + c
or, equivalently:

.S*(-1 q+ 4p)

+

Since (t, C's) is linearly' irides-
pencleilt,sc 2p and p0
so, p u and q =
MO:OA =

B = (.4 + -4)p and

Hence

A =

s6rne p arid q. So,
A - B -a

or, equivilently:

Since (-S, C.) is linearly iride-
1,5_ 9pendent, q p .and p = T-7

.9 .35so that p arid q .

Hence, NO: OB 28/9.

e
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Answers for Part C, [cont.}

Answe rs for Pa rt 1-4 '

-5 -41'0 - A (c- + b-)p and
6 6

0 -1-1 (1i ,7 g)q, for-(1-;

some p and q, So,
-5

A (s- b)q (c+1).6-)p
or,4equiyalently;

I.; q+1;-p)+c(;-.p.- Tq)i u
Since (g, C.) is linearly..inde

6pendent, q p , e,

AM :40 '

Since 'R, 5, and T belong to the sides of AABC, r
0 s' 1, and 0 t 1. Since r, s, and -t are all positive:
it follows from Exercise 6(a) of Part*F un page 366 that the
Limint P of concurrerVy belongs to ?Le intervals.

2. If R, 5, and T 'are the midpoints of-the sides of n ABC: then
r s = t 1, rst = 1 and, by Ceva's Thvorem, the

edians are concurrent.
3. Suppose that R and S are u- ints, from C. of BC and CA,

respectively. Then r s - Br2 RC 1 and s CS/SA
u: I -u; If T E AB then A.R, BS, and CT are concurrent if and

1 -.-ttonly,if the product of --u -, 7 u and the ratio in which 'I' divides
thy interval from A to B is 1. This is the case if p.nd only if the
latter ratio is I that ij4 and Oy if, T is the midpoint of AB. ,
So, by Ceva's Theorem, AR and TAS are concurrent at a point of

.1the rneddian from C. By Exercise .6(b), the point P of concurrency
1 udivides- the interval froiri A to R in 1 4- This ratio isu

u u1:u. P divides the interval from B to S in 1' 1.

Tbis ratio is, also, 1,.u. P divides the interval'frorn C, to 'T in
1 + 1 1 1,u71. 'This ratio is 2u:1 u. From this'last result it--ifl that P is ti.te 2u/i1 + 4.t.)-pOirtt, "from C, of CT. So,

*The ,10(a) is completely reestablished.
4% By s Theyetn, the ratio in which T divides the interval,

from .1to B i.s 1/(r) [where 'r' and 's' have the meanings
they h'ave had throughout the foregoing exercises]; and,- lin,
Meffelaus' Theorem T' divides the interval from A to B in

5")

368 TRIANGLES AND QUADRILATERALS

(b) PQRS. is a quadrilateral -71. each of {P, Q, R), {Q, R,S},.
'1{R, S, P}, 4S, P, Q} is noncollinear

8-5. (a) A quadrilateral iS simple if and only if no two of its sides
infersect.

(b) A quadrilateral is cohcex if and only if its diagonals intersect.
8-6, (a) A 'quadrilateral'is a tretpezoid if and only if it is simple and

has tWo parallel sides.
(h) A quadrilateral is a parcillolograrn if and only if its opposite

sides are parallel. '

4

other Theorems t
8-1. flif n 0 4--*C AEIB - A,r I?!

If AC! and 13 15 are noncolliriear parallel segments and (D B)
: (Cr- A) r then A/3.11 (731 if r 1 and XY,1) = {A4' +- (1f - 4) 1(1 r)} if r 1.

8-3.#1f A, B, D, and P are'five points such that Aff n iY= {P}
then ,(a) 13/5 (P - D) : (P C) =." (13_- B) : (C A,L.

(P - B) : (1' - A)2 and (b) (P (P C) (P B)
: (P:- A) AiY.

Corollary. Under the conditions,specified in.the theorem, Xellh/5
4-* (P D) : (P C) (P B) (P -71).

8-4. For A X. P B, (a) P divides tile:Interval from A to(B in a : b

+ (B A):a+ P. diyides the intei-val from A to B in
a : h la + b 0)

Corollary. For A P B, (a) P divides the interwl fromn A to B in

-
+ (B - A)t --* ivides the interval from A to 13 in t :.1 - t.

8-5, For P eAB and A P B, P AB or.PE-Ad or P E-44 ac-
cording as the ratio in whiclW divides the interval from. A to B.
is positive, or between 0 and -1, or less than -1:

8-6. (a) The ratio of two intervals on one of
two parallel lines by coneurren versais of both tip**
lines is the same as that of the, corresponding intervals

.

which .are intercepted by these transversals on the other.
(I3) The ratio of two interAls which are intercepted bY parallel P

lines on one transversal of these lines is the same as that
of the corresponding intervals which are, intescepted by
these lines on any other. traxisversal:

8-7. The intOrvai whose endpoints are the midpoints of two sides of
a triangle is parallel to the third side and its ratio to'the third

Nside is 1/2. , 86,
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Corollaiy, A line through the midpoint of one side Of a triangle, is
.paralIel tx) a second side -if iind only if it.contains the midpoint-
'of the third Side. , - . .

8-.8. The tilree median's of a triangle'intersect at a int Altici:. t. . .

- vides eachpof them, front .vertex to midpoint Of the ottposite ...

side, in 2 : 1: - . . a. ..

The .interval whose-endpoints are thv r-pciipts of two sides
.of a triangle, from 'their common endpgint, .1s -parallel to
the third s'ide, and iLs ratioAkhe'thirdTide is C.

A. i rie through the ,i-point of ?ne side of a triangle, fron-
pf its vertices, is paralljl to the side owosrt that vertex
if and only if ie contains the r-point, from Ilia vertex, of
fhi: third side.
Intervals t'rtvii two vertices of a triangle to, r-pointsvf the
opposite sides [from their common vertexl intersect at the

2 r
-point of the median fram that vertex.' The point of

iztersection divide each of the two intervals, from vertex
to 4posite side in 1, rand divides the median, from vertex:

. Nip side, in 2r 1 r
.

(h).tines through two vertices of a triangle which intersect
.'at the s-point of the median from the third vertex.intersect
the opposite sides at thei;2 -ti-points frOrn'this vertex.

8-11. If, ini,\ABC and AAB't , AB 11 A' B' , BC B'C , add CA C' A'
th;ri .4') : (B A) -1. (C` - B') ; IC B) (A' - C')
: and (13) for: A A , 13 =?6 B' , and -C C', the lines

13B? and t'il7 are parallel or-concurrent.
8-12. 1The Twice-Around Theoreml If, in AABC,G and D are in BC,

, P: and. 11 are in CA, and l,and F are in AP , and bk 11 GH,
E-12 reB HI, PC; I1AC, then 1 D II AC .

8-13. If, in AABP, D and Fare in pp, c and E are in 13-A, EF 11 BC,
and C1Y 11 AR, then N: II AB. IF

8-14. If a 14., and r'are position vectors of A B, and R [with respectto
any pOint Oli-then; for A 4: 13-end 0 r 1,R is the poin4 Which
divides the int val from A tp B in r 1 - e if and, only if
r = a(1 - r)

845. a, h, and c ar position vectork of collinear points 4-and only_if
' there exist njnbrs x,.y, and z, not all 0, sUch that cpc + gy + cz

andx y + z 0.

Corollary. If b, and r are position vectors of noncollinear points,
. and a, b, and c gre numbers such that a b + c 0,. then

+ b.b -C4 Vif and onlyi if = 0,. b 0,and c = -0j.
8-16. ,Quadrilateral ARCD is a pdtallelogram if and only if {A,,B,C}

is noncollinear,and B A D.
8-17. A quadrilateral is a parallelogram If and only if its diagonals,

bisect each other. ,

170 TRIANGLES AND QUADV1ATE1f48
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. a

8-18. .(ai Ams is a trapezoid with.bases PQ and,RS if and'onl if PQ
and R'S are nolicollinear parallel"' -intervals such that

. P) : ,(1? > 0.
,.(b) if, in trapezoid. PS QP then'Pg Lula WI intersect

at. a pOint which divides bektirthe'interval fKoln S and.
:the interl. from.Q : IRS).

8-19. .(a) A trapezoidAs conVex. . ''
(b) It-PQRS is a trapeioid with bases PQ and RS' then the inter-'

section of its diagnals 'divides each of them, from P to R
and fromQ toS, respectively, in PQ

8-20. (a) The midpoints" of successive-sides or a simple.quagrilateral
are the successive -vertices of a parallelogratifH'..'

,(b) intervals jo' ling the midpoints of oppaalcOttles of a
simple q&iadril4eral hilt* each other, 7

8-21. IMe-nelaus' Theoru1i and Converse] If, in AABC.,,R s E
and T E Alf then 4R, S, `I} is collinear if and only if BR CS

AY = -(RC :
8-22. If, in AABC, B e S E 17A', and T e the:u and bi

are concurrent or 'parallel and only if BR CS,. AT = RC
". SA TB.
IForiceva's Theorem, see Exercise 1_, Part H, page 367.1

Chapter Test

1. Given AABC,, assume that M is
the midpoint of AB, that EP
A13 , and that CP' :.1%B = 5/2.
Cornplete each' of the following.
If not possible, saY.So.'
(a) (E C) : (A - = ?
(0) EDMA is
(e) DE : MA = ?

F + (13 - A)

(b) (F - E) (B' A) =
(d) (E C) F C)
(f) EG : GM =- ?
(h) A divides the segment from C

to E in

2. Given quadrilateral OABC,
with"A -_(;) =7-P C - 0 = C), and
B a'b, for some nonzerok.
Also, M is the midpoint of OB.'
Answer these questions. a
(a) OABC is a parallelogram if b
(b) OABC is a trapezoid with base BC longer than dA if & =
(c) Far what values of b' is it the case that (interval) OC and (line)

AV intersect?
id) For what values of 'b' ig it the-case that (interval) BC and (line)

Am intersect?
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I

(e)' For what value of is it the caAe that C Am?
..(f) Assume that P iS the midpoint of OC and. that Q is the mid;

point of C.I3 Expi.vss Q P as a linear combination of a4and tr.
;3. Suppose thatu, I)) is linearly independent .and that

) p - big p) + (a. bil2p + I) kti u*)(ci - 2).

Compute the values of 'p' and fOr-which V ) Ls satisfied.

4. Given, AARC, wrth P, -11 1, and
ALthe midpoints of sides AO,

_CB, and BA, respectively."As-
sume that the medians of AABC ,

intersect in the point Q.
(a) Consider AAQC. Is the point of intersection of its medians

on the line hi'? Explain your answer.
(b) Consider ANBC.'Is thi!.point of intersection of its medians on

.Y.P*? Explain.
(0 If either of your answers in (a) or (b) is giVe the Tatth in

which that point divides.the segment from B to P. If both an-
swers are 'No.', ignore thiS part.

5. In each of the following pictures, you are given the lengths of some 1
segments. Use this together with the other given information to
help you to ansWer the questions.

(b)

Given: /, 12

Compute: cc, b; c; d

k_ Given: /I 1112 1113
Compute: e; f; g

1,

8(?*$,:o

TC 370,371",

....,Key to Chapter Te-St
1 . (a) 5/L

.
(b.) 5/7 (c) tra,p.spaiti : (d), not 'possible

4
5/7 . (1)- 5/7 . (g), not possible (h) -7/2

1,.
'2:* (a) 1 (b.) [any, nurnbe r greatt;r than 1 I.

,--(c) all va u s less than 1 (d) all valkivs greater than 1
. ..

(e) 1 . P
.

,(1) a b/Z + 'C. 1/4 ".

3. ,(:',:c ) is equivalent to: ,..(p q + '213 + I 4- q 2.) + b(p q 2p 1 +'2 q)
I

or, more conveniently,. to:
- 1) + 11(-p 2q 1) d

So, p '3

(a) Yes, for QP c: BP and QP contains the point of intensection
of the medians of A AQC.

(b) No, for BQ contajalt.no point of the median from B of LINBC.
So, neither does BP.

(c)1 The pointof intersection of:the friedkans of z_VAQC divides the
segment from 13 tc5 P in the ratio 8 :1.

3 5 9
a = 2' 2' c

8 9 18
= g 7 -.

3 '
(h

4
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9.01 Coplanar poitits

I t

So far, we have .used our postulates about points and translations to
introduce the notion of collinearity of points and, in terms of this,
notions about lines and their subsets, and about triangles and quadri-
laterals. ln a similar fashion, we now wish to'add to our.structure of
formal geometric ideas soMe notions about coplanar points and planes.

In our intuitive consideration of geometry in Chapter 1 ,it wa's con-
venient to describe a plane as being a set of points which is the union
of two closed half-planes. Now, as in the case with lines, we wish to
define 'plane' in' terms of 'point' and 'translation'. Our earlier descrip-
tion will turn out 'to be a theorem. So will the other results about
planes which we reached' intuitively in Chapter 1 As before, this will
be an important test of the adequacy ofour definitions. It it turned out
that our definitions didn't enable ,uS to reach the conclusions which
seem intuitively sound, we might have reason to suspect that some-
thing was wrong with them.

Some of the work with linearly dependent and independent transla-
tions and with lines may have given,you a hint as to how we shall
define the word 'plane'. As in the case of lines, we shall decide what .

it ineans, in terms of translations', te say that-four points are oaplanar.
Then we can say that a plane is a set of points which amisists of all
the points which are coplanar with any three of its noncollinear
members.

In the following exercises, we shall examine our intuitive notions
about planes and linear dependence to see if we can find a suitable

_definition for ,a set of coplanar points in terms of translations deter7
.'mined by those points.

TC 372

The early parts of this chapte;r on planes are very similar to the
treatment of lines in Chapter 7, 4orne similarities are pointed out in
the text,*d in the conlmentary. I should pe Worthwhile to read -

...through, i class,' Definitions 7-1' through 747 and Theorems 7-1:
, through 7-10.-,Spot reading in section 7,01 through section .7.0;
'.rnay a1t3o be irfor_der, as a: rapid revie!.v._ You can best judge what.is,
gppropritte for your class.

4

I
I.



Exercises

''44:444,1%

01.

0.01 Coplanar Points 373

(4.

.1. (a) Giveii a point say, A is, there a plane whicb contaiAs, A?
Is there more than one such plane?

(b) (jiven two .points- say, A and is4herf a Plane whicll crn-
tain, both A and B? Is there more than une such Plane? .

,

lc) Given any set of c-ollinepir poinfS, is there a,plane which con-
tains them? How many such planes are there?

(d) Given any set of collinear points and a point which is not a
member of this set, is tl.Tre a plane which contains them all?
How many such planes are there'?

(e) If A, 8, CI is noncollinear, is there a plane which contains
A and (7? How many such planes are there?

(f) Describe a set (A, B, C, DI of four points such that no plane
contains all of them.

2. Suppose that A, B,C, and 1) are four pointh contained in a plane.
That is, suppose that A, B, C, and I) are coplanar points. Sup-
pose, also, that A , B, (71 is noncollinear.
(a) Draw an appropriate picture for these conditions and estimate

values. for 'b'. and Ic' such that D A (B A)b (C A)c.
(b) Is tB A, C - A, D A) linearly dependent or not? Explain

your adswer.
(c) Suppose that E is a point such that (B - A, C A, E - A) is

linearly dependent. Do you think that A, B, C, and E Eire
contained in a plane?

(d) Suppose that F iS a° point in the same plane with A, B, and C.
Do you think that (B A,C A, F A).is linearly dependent
or not?

(e) Is it possible to locate a point-say, G-- which is not coplanar
with A, A, and C? Ifso, describe the position of G with respect
to the plane you drew in (a). What would you say about (B A,
(7 A, G - A) in this case?

(f) 'Is there a translatiOn -say, a -7 which maps 4 cmto a point
which you would not consider to be coplanar with A, B, and C?
If so, use your picture from (a) and a.pencil to help you de-
scribe such a translation. What would you say about (B - A,

3. Suppose. that E, F, G, and. H are four coplanar points, and that
{E,EF, G} is collinear. Draw a pictuTe to illtistrate.these condi-
tions and answer the following,
(a) Is (G E, F - E) linearly dependent or not? Explain.
(b) Is (G. E, F E, H -,E) linearly dependent or not? Explain.
(c) Given any point-say, P -show that (G E,F -E,P - E) is

linearly dependent.
(d) Given any, point-say, Q -do you think that E, F, G, and Q

. are coplanar? Explain,

TC 373 (1)1L

. Answers,.for most of the exercises, both here and on pages 374-5 --.
must be bped on intuition,.since weido not yet have a formal.definition
of 'coplariar'. Approprigte intuitioub should have been developed in ,.
section .1.05. Sorne' can, however, be answeiled on formal groUnds
which include DefinitiorT#7-1 5:rf 'collinear.' and lieorerns concefnirig
linear dependence. Note that the word 'coplanar is introduced in it$
usval mvaning in Exeycist.. 2. As with 'collinerr', we shall adopt this'
rneaniAk after we haire.c1;!fir1ed 'plane'. Up to:theni and after Definition

. 9-1,, 'collinear' will .baVe the rather special and res,tricted meanirig
,given it in that definition.

.. .

. ,

The pn-ipose of these.exercises is, mainly, to stimulate diusaion.
For this reason the exercises are, best treated as a Class activtty.
Recall that it has been helpful to use pencils and pieces of cardboard
as models of lines and planes.

Answers f.or Fxetcises
I. (a) Yes.; Yes.

(b) Yes..;, Yes.
(c)

(d)

,(e)

(f) .Choose, forexample,
horizontal plane and c

a

Ye's.; Lots, [Infinitely many; as.many as there are points on
a line skew VI° the line containing the given set.
Yes.; Just one if .the point is not collinear with the other given
poirts; Oiherwise, see pa..t (e).
Yes.; Exactly one.

noncollinear points A., P. and C in a-
hoose D above or below this plane.

b - 1/2, c -= 5/4
(Students will, of course, have a
variety of drawings. I

(b) (B A, C A, D - A) is linearly dependent.
(c) Yes.
(d) Linearly dependent.
(e) Yes. Given that the plane of A,- 8, and C is horizontal,

choose G above or below this plane; (B A, C. A, G -.A)
is linearly independent.

(f) (B A, C - A, 1) is linearly indapenden
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'OFE. F G

ta) is linearly depentlent because' GI, is. collinear.

or

H

E F G

'(b) (C1,- F., F - ,r) is linearly deprde y part (a), since
sewence is li-neavriy'de.pendentf it has a lineardependentdr

subsequence,
,

(c) .[See ansvier for part (b).1 A 9.

,(d) Yes There are lots of planes côntaining {F; F, and at
least one.of thern,coptains Q. -Or:. In Chapter I we decided.
that, given any line and any point, there is',a plane which I
contains them.

41

0

41
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4. Suppose that I', Q, ancfR are three points.
(a) l P P, Q - P, I? - P)-linearly dependent or not? Expla*--
(b) rs there a plane which contains P, Q, andf.R? Might there be

more than one.such plane? .

5. Supplsethatil., M, and N are noncollinear po&ts.
(a) Draw a picture showing a point-say, P --such that L, M, N,

and IT are not coplanar:
.(b) Given the point P of part (a), would, you say that L, M, and P,

are coplanar? If so,. is N in this plane? Explain your answers.

In the exercises above, we used our intuitions about points and
lines to try to develop a feeling for some of the relationships among
points in a plane and linear dependence. The results of these exercis
suggest that the following definition agrees with our intUitions abottt
these relationships.

Definition 9-1 {A, B, C, D} is'coplanar
41

- A, (. A, D A) is linearly dependent

Fig. 8.1

In this definition, we speak of the set of points {A, B, C, D} being
coplanar. As in the case of collinearity, and since {A, B,C, D} {11,

D, C, A}, we would be in trouble with this definition were if not the
case that

(B - A, C.- A, D.- A) is linearly dependent.

(C - B, D 13) A B) islinearly dependent.-

That this is the case can be verified by an argument which is very
similar 'to that suggested on page 277 in 'connection with the defini:
tion of 'collinear'.

Kiercises

1. Prpve. that
(a) any pair of points is coplanar, and
(b) any three points are coplanar.

TC 374

for xercises [cont.]

This sequence is linearly dependentbecause its firkt term,
P,

(b) Yes.; There *ill be more than one such plane if and oply if

5. (a)

{P, Q, is collinear.
p

(b) Yes.. Intuitively, any three points are contained in a plane.]
No; [I N was in the same, plane as L, M, and P, then all
four points would by in the same plane. But, P was chosen

. so that it was not in the same plane as L, M, and N.
The displayed theorem and successive instances of it obt'TfTd by

cyclic permutation supply the justification which is needed because of
the fact that,

{A, B, C, D} {B, C, D, = {C, D, A, 13} -z {D, A, B, C}.
[Going one. step further, it is readily seen that the if-part of the theorem
follows from its only if-part.] The other facts which need to be taken.
account of for eXample, that {A, B, C, = ,{A, C, B, are
taken account of by recalling that any permutation of a linearly ,dependent
sequence of translations' is, also, linearly dependent.

As a result of the preceding analysis, all that need(to
that

<`

(B - A, C - A, 'D A) is linearly dependeht

(C B, D /3, A B) is linearly dependent.

be proved is

The proof is like that of the similar "Theorem 6-140, [See page Z63.1
Suppose (B - Ma - A)b + (D - A)c UsChg Postulate 3 twice
itfollows that (C B)b +-(D B)c + (A B) -(a + b + c) = d; If,
now, b = c = -(a +al) + d) = 0 then a = b = c = 0. Hence, if na an .

of a, b, and c are zero then not all of b, Ez_and -(a + b + c) 4re zero.
ConseqUently, if (B A, C A, D 'A) is lin'early dependent then sSis
(C - BD B, A - B).

Definition 9,-1 gives a basis for "formal answers" for exercises
1, 2, 4(c) and 5.
Answers ?or Exercises

(a) {A, B} z-- {A, 13,1B, B) is coplanar:if and only if (B - A,
B A, B - A) is linearly dependent. Since any sequence with
a repeated term is linearly dependent, {A, B) is coplanar.
[For a variatio4, see answer for part (b).]
{A, B, C) {A, B, C, A) is coplanar if and only if (B - A,
C - A, A - A) is linearly dependent. Sinse A - A = ?Y and any
sequence with a term 'd is 'linearly dependent, {A, B, C) .

.rcoplanar.
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.2. Suppose that P, Q, and R are collinear points^
(a) Choose any point sEy, S of IN. Show that IP, Q, I?, SI is

coplanar. .

(b) Cheimie any,point -=say, Show thlt {P, Q, R,T} Is coplanar:
By Exercise 2, it should. be \lear that the set consisting oi any
thrre "lor, two] points of a line together with any point in space
is a coplanar set. Can you find two points in space which, 'to-
gether with two points of a given line, constitute a set-Of four
points which are not copttinar? Try to picture four such points.

4. On Your paper, draW a picture of three noncollinear points R, S,
and T.
(a) Picture a point P such that {R, S,T, PI -is coplanar. -
(13 licture a point Q such that Q P and {R,S,T,Q} is coplanar.
(c) Is it the case that {R, S, Q, P} is coplanar? Explain youi

answer.
(d) Describe this set of points:

{X: R,S,Ti and X are coplanar points}

5. On your parier, draw a picture of three collinear points U, V, and
W. Describe this set of points:

{X: U, V, W, and X are coplanar)

6. Suppose that .21- i a plane, and that ir contains noncollinear points
A, B, and C.
(a) Given that D e T, what'can he said about {A, B,C,
(b) Given that D is a poi,nt such that (.4,B,c,D) is coplanar, what

can be said about D and the plane IT?

9.0241anes,

Now that we have a formalized notion of coplanar points, we are
in a position to make use of this noti6n, together with out intuitive
ideas about whot,planes are (or, ought. to be), in formulatitig a defini-
tion of the term plane.

.

In ordr to agree with our intuitive notions, we want to be sure
that, ambng other thin , any plane 7T is such that

(i) -,7T is a subset of e and 77- contains at least three
noncollinear points.

Certainly, this condition (i) is not enough to pin down exactly what.
we mean by plane, for wfl expect a plane to contain many more than
three noncollinear points. And, furthermore, you probably can think
of many sets which contain three nencollinear points and which aren't
iftwthing like what you think of as a plane. Draw pictures of at least
two such sets.

8h7411
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Apswers for Exercises [cont.]
1 .

as,

Z. (a) Since S e OR, {Q, R, 5}, is collinear that is, (R Q, S 0)is linearly dependent. It follows that (R Q, P - f.))
linearly dependent and, so, that {Q, R, S,, P) is coplanar:
15ut, {P., 0, R, 5) -7: {0, R, 5, P}.

(b) The assumption that {P, 0, R} is.col,linear was not used inpart (a). So, with 'P' for '0', 'Q' for 'R', 'R' for '5', and
'T' for '12', the same argument shows that IP, 0, R, T)
coplanar.

3. Choose two points on a line which is skew to the given line. [See,also, Exerctse le of Part B on page 299 for a suggestion of
possible answers ]

4. (a), (b) 0

S.

(c) Yes.

R

In case {R, S. 0) is collinear it follows by Exercise Z(b that
{R, 5, Q, P) is coplanar. Sulkoose, then, that '{R,' is 'non-
collinear. Since {R, S, T) is noncollinear and {R, S, T, P}
and {R, S, T, 0) are coplanar it follows by Theorem 6-13
that P R and Q R belong to [S R, T Rj. So,
P 0 e [S R, T - R]. Since IR, S, Q) is noncollinear and
{R, 5, 0, T} is coplanar it follows that T - R [S R, Q R].So, [5-- R, T R] C [S R., R]. SinCe S - R
+ (S - Q) and .0 R (R Q) 4 follows that [S - R, Q R]C [R Q, S 0]. So, P 0 6 [R - Q, S pj from which it
follows thai {Q, S. P) is coplanar.

(d) The set in question is a plane; it is the unique plane containing
R, 5, and T.

.5. The set in question is e. [See Exercise Z(b). ]
6. [If our intuitive notions concerning planes ,are correct, and

Definition 9-1- is suitable, then].
(a) {A, B, C, D) is coplanar -(b) D

s
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The .resalts in the previous exercises should suggest that the notion
of coplanar points can be used to help us define the term plane. One
way to use this notion is as follows:

Iii) Given that. A , B, , and I) are points of Tr, then A,
-B, C, and I) are coplanar.

We saw that i). wasn't, enough to fully describe what is generally
thought of as a plane. Neither are (i)- and (ii) together. Describe, and
draw pictures of, at least two sets of points each of w,hich satisfies the
conditions (i ) and I ii ) but which are not what you consider to be pianes.

Here is another insight into thei relationship t)etween coplanarity
and being a,plane:

'Oil) Given that A, B, and C are nongollinear points of tr and
that {A, B, C, DI is coPlapar, then s a point of 7T.

'It should be intuitively clear that what one thi ks of as a plane satis-
ties all three of thse conditions, and any set hich satisfies li); (ii)
and (ih) is a plane. So, the above discussion suggests the following
definition:

Definition 9-2 ir is a plane if and only if
(a) Tr is a subset of e" which contains at least three non-

collinear points, and 'I. .

lb) {X, Y, Z} C 77 and {X, Y, is noncollinear),
vw ]W X, Y, Z, WI is coPlanar11

Notice that part (a) of this definition says what (i) says, and that
paa (b) of this definition says what (ii) and (iii) say. In words, part (b)
says, "For each three noncollinear points of a plane 7r, any fourth point,
is in rr if and only -if it and the three given points are coplanar."

From now, on, we shall use 'Tr' (pi) and o-' igrna), with or without
subscripts, as variables whose domain is the set of planes of?f. We shall
also use '77-' and as indices on quantifiers. Read eV7, as 'fdr each
plane ', etc.

Exercises

Part A
As in the ease of Definition 7-2 of cline', Definition 9-2 can be

reformulated in variOus ways. In' tWo simple reformulations the

, V (W E 77. {X, Y, Z, W} is coplanar)

in part (b) is replaced, in one case by:

V,4, 1W e TT -.(r. z - X, w - ,x) is linearli dependén I

TC 375,376 AO

The discussiOn leading to the adoption of Definition 9-2 is ,similar.
to tIlat on pages Z78 and 2-79 which leads .to the adoptioh of Definition
7.-2. Both discussions are, of course, based on intuitive notionv .and
each serves only as motivat on for adop "on of the corresponding
definition.

Condition (i) iS ..51tIsflea by any set which coriSists of jUst three
noncolltnear points, by on which consists of,the points of.a line
together with a point 'not o..) the line, by a pla,ne with a hole in it, 1.)y.e
itself, and by many, other sets which are not planes. Oi the sets men-
tioned specifically in the preceding semtencc, Condition (ii) rules out
only Con i ?On'(11) is satisfied only by sets wlaich are subsets of
planes,. Con ition (ii) tends to require' 7 to be "small".. conditionsr.
(i) and (iii) [on page 3701 .farce tT to be "large" among sets which
satisfy .00._

. Definition 9-2. is., .obviously, analogous to Definition 7-4 on
page 2.7q.

As indicated iti the e exrcise,s; Refinition 9-2 c m.7.7n be Od fied a s. .

inition 7-Z in Exeycise 1 of Part A on page 2279;
Answers for Part A
I, By Definition 9-1, the se_ntences:

DE 27',<I> {.k B, C. D} is coplana
D C r (B A. C A, D A) is linearly dependent,

are equivalent. !For the Jest,. see the answer in TC 280(1) for
Extrcise 1 Of Part A.

TC 377 (1)

dependent.), ) is linearly indepenOat then (a., b, c) is .0
By Theorem 6-13 ?nd the definitions 01 If ]'

if
,linearly dependent if and onlY if c E [5*, b So, fo { A, 13, CI
noncollinear.

(I3 A, C A D -.A) is linearly dependent

,
D [B A, A].

Hence, uncicr the same assumption, the. sentences':
Vw [WE r 4=:*(E3 A, ç -A, W -,A) is linearly dependent]
Vw [W E wW - A, C Ai]

are equivalent. So, the conetitional sentences W.hich have these as
conse'quents and have:

.
( A B,

,
d C). is noncollinear)

as their common aritesedent are equivalent-. Constiquent, the two'
modifications of Defin iyton.13-2 are equivalent.'

Answers for Vart'13

1. ''''Suppose that {A, 43, C) is a noncoIlinearsubset'Aof IT. ''Since ir is
9. plane it follows, by part (b) of.laufinition 9-2, that D 7T if and
only if {A, B, C, D) is ccaplanar. So, in this case, {A, B, C,
is coplanar. On the-other hand, it has been shown, in Exercise
2(3)1 on page 375, that in case {A, B, c} is collirtear then
{A, B, C, ..13} is coplanar' [whether or not D E 77].



, Part B

ao.

Part C

9.02 Planes, 377

-and, in thaother, by:

vi.11-4T7±, - iy;lY X;Z X1)

1. Tell why the first of these rephicements yields a statement equiva-
lent to Definition 9-2,

2. Tell why the two replaements yield equivalent statements, 1Hint:
If (1, 1), co is linearly dependent and (a, h) is linearly independent,
what can you infer about e!' If 'C''E a, 1)1, what can you infer about
(a, b, e)?!

1. SuPpose that A, B, (', and I) are points of -a plane 77. ShoW that'
{A, B, C, I.)} is coplanar. litfint: Consider two cases- that in-which
{A, B, is noncollinear and that in which {A, B, (7} is collinear.)

2. (a) Show that if A, B, and C are noncolliuear points of a,plane
then

rr = (X: X - A 113 A,

(13) Does 'it follow fro n Me result in part (a) that, given noralilli-
near points A, 8, arid. C, there is at least one plane which con-
tains thew' points?

(c) Your answer for part (b) should-have been either 'Yes.' or 'No.'.
Change One word in part (b) to obtain a reasonable question
which halt< the other answer.

3. Suppose that i is a line, 77- is a.plane, and 1 C 77. Show that 7
4. Suppose that each of two lines, I and' rn, is cOntained in a plane 77

and, also, contained in a plane (T. Show that 77

Exercise '2(a) of Part B tells us that there is at most one plane con-
taining the noncollinear paints A, B, and C, and giVeS us a cdrivenient
description of the only subset of e which has a chance of being such
a plane? As at the corresponding place in Chapter 7, if is worthwhile
to introduce a definition:

Definition 9-3
Are = tx: 3u-X = +. (B - A)x + (C - A)y }

(Read Tafel' as 'cross ABC'.) In words, AliC is the set Of all images
of 4 under the linear combinations of B - A and C A.1
1. (a) Explain why Definition 9-3 is equivalent to:

Age fX: X A [B - A, C An
*.(b) Is it the case that, however A, B, and C are choSen;

rr: {X: W - A, C - Ai, X 7 A) is)inearly dependentl?'

TC 377 (2) .r4

[Exercise . 1 goes halfway to showing that, with our definitionof 'plane', Definition-9-1 is consistent w'ith the usual definitionaccording to which points are coplanar if and only if they belong tRsome plane. :What should be ,shown is that {A, B, C, D) iscoplanar [according to Definition 9-1] if and only ifBr. {A, B., C) Exercise 1 takes Care of the if-.part. Theonly if-part will be established by Theorem 9-1 on page 378 incase {A, B, C.) is noncollinear [or, in .i,ny case three of A, B,C, and D are noncollinear:). This leaves the case in whichC D and that in which {A, B, C, Dl is a..s.ubset ofsome line. [See Exercise 4 of Pii,rt A on page 280, and the dis-cussion of it on TC 280(1,2). I To handle this case and thecorresponding case for 'collinear', we need to know that eachpoint belong-73 to some Hne And thikt each line is a subset ofome.plane. These resu]ts follow froM poStulates on dimension whichare adopted inlChapter 10. ]
(a) This is an immediate conSequenceof part (b) of the gecondmodificatibn of Definition 9-2. Compare with Part 13'on.pages 280-281.
(b) No. [Compare with Exereise 2(a) of Part B on page 281. ].
(c) Change the word 'least' to 'most'. [See Exercise OD) ofPart B on, page 281.1

3., By part (a) of Definition 9-2, 'r contains three noncellinear points.Given three'such points, at most two can 'belong tq 1. So, one 'ofthem [at least] belongs to 77 but not to I. Since there exists apoint of 77- which does not belong to 4, r 1, [Of course, theassumption that / c 77 is irrelevant to the argument and to theresult; but, if 1 V 7r then, trivially, 1 # 77 an Wiinte restingcase. )
4. 1 rn Contains three noncollinear points. As noted in Exercise2(c), three such points are contained in at most one plane. Hence,.

77 0 .
'

Answer's for Part C
[Definition 9-3 is obviously analogous to. Definition 73. ]

1. ,(a) D. A f (B - A)a + (C A)b if and only if D - A = (B - Ma+ (C A)b., Hence, 3, 3y D = A + (B - Mx + (C - A)y if and
-only if 3x 3. D - A (13 + (C A)y that is, if and

only if .D - A 'Epp - A, C - A). Consequently, by Definition
In other words, ABC {X: 'X A E4B - A, C - AD, .[Compare this with Exercise l(d) of ,Part C on page 281. ]

(b) No., This is the case if {A, B, is noncollinear [seeExercise Z of Part A); but, if {A, B, C} is collinear then{X: -(B - A, C - A, A) is linear,ly dependent) e[Exercise 5. on page 375), while AliC is a linetor consistsof a single point. [See Exercise 4, below. ]

if u

a
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2. (1\ii Draw a picture to show three noncollinear points P, Q, and R
and translations Q - P and R - P.

(b) In your pictur, locate the points C, p, E, F, G, and H such that
C P + (Q - R) + (R - P),'

P + P) -1,

F = P + (Q P) -2,
G P + (Q P) -1 + (R P)2,
H = P + (R P) -1 + (Q - P)

. (c) Why is each point described in part (b) a point in 13 R?
3. Show that {A, B, C} C 00.
4. What kind of set is AFIC if {A, B, C} is collinear?
5. HAAT,' is a plane, what may you say about {A, B,

9.03 The Plane Containing Three Noncollinear Points

We have seen that if there is a plane which contains given non-
collinear points A, B, and C then it is Ake. Since, according to our
intuition, there is such a plane, we should be able to prove:

Theorem 9-1 For A. B. CI noncollinear,
AAC is the plane whicb contains A, B, and C.

B .

/
,ABC

Fig. 9-2

_J

Since we already know that {A, B, C} ç AiiC, all we nOed to do to
prove Theorem 9-1 is to show that, for {A, B,C} nOncollinear, Ai3C
is a plane. Since we alreadY know that part (a) of Definition 9-2 is
satisfied [Why?], all that concerns us is part (b). To show that the sot

, ABC satisfies this part of the definition, we must show that

if IP, Q., is a noncollinear subset of AliC then

D b I) e[Q P, R

[Explain.) Recalling Exercise 1(a) of Part C, the most reasonable way
to atbinapt to carry this out is to assume that

(*) {P, Q, R} is 'a noncollinear subset of Mk'

Answers for Part C [cont.]
2. (a),.(b)

TC 378

(e), ror each of the points, there are real numbers as,required by
- Definition 9-3.

3. A ---- A + (13 MO + (C A)OL B =. A + (B A) 1 + (C - MO;
C = A + (B - A)0 + (C - A)1 ---

4. Suppose that {A, B. C) is collinear. If C = A then, by Definitions
9-3 and 7-3, ASC = X. If C * A then, since {A, B, C} is

B At [C A] Theorem 6-131 and,V Exercise 1(a)
and Definition 763, X AC. either case, ABC either is a
line or consists of a single point..

5. By Exercise 3 of Part B, a plane is not a line, and by (a)% of
Definition 9-2, naplane consists of a single point. Sq, by
Exercise 4, if ABC is a plane then {A, B, C) is noncollinear.

a

Theorem 19-1 is analogous to Theorem 7-1. Just as Theorem 7-1
implies that two points belong to a unique line, Theorem 9-1 implies
that three noneollinear points belong to a unique plane.

By Exereae,_3 of Part C, {A, B, C} c ABC so, for {A, B, C}
noncollinear, Ai3C contains three noncollinear points rand, so,
satisfies pars (a) of Definition 9-2.

The explanation asked for in line 3b is to the effect that one "may"
universal:1y generalize on a variable in the consequent of a conditional
-sentence if this variable does not occur in the antecedent,. {For this
rule of lpgic, see Exercise Z of Part C on page 25 1.
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and, pith the help of this assumption, show that

(1) A E 1/3 A, C - A) D , P 1(2 - P, R P].

Since, by (*), P E ilk it follows that

P-AdB-A,C-AJ.
So, if either of D A and D - P belongs to ill A, C - A] then go does
the other. I Explain. I Hence, in place of (1), it will be sufficient to derive:

(2) P [13 - A, C. AN) D 7 1 'IQ P, R. - P1

Since, in (2), D may be any point in rc', D P riy be any translation
in 7. So, deriving (2) amounts to deriving:

(3) IQ P, R Pi - 1B - A, C A]

To see how to utie (*) in deriving (3), we neat to see what (*) tells us
about the translations Q P and R - P. In the. first place, by the
definition of 'collinear', (*) tells us that

(*) (Q - P, R I) is linearly independent.

In the second Place, by Exercise 1(a) of Part C, (*) tells us that P - A,
Q - A, and R A all belong to fB A,C - A 1. From this it. folloWs thqt

.1Q - IR A, C - Ai and R - P IR A, C -..A].

'So, we, shall have proved Theorem 9-1 if we are able to derive (3)
from (*) and (**). In doing so we shall be dealing with the translations
Q P, R B A, and C A rather than with the specificlpoints
P, Q, R, A, B, and C. So, we may expect to find it more convenient to
pfove_a general theorem about translations ,similar to those-ofChap-
ter 6. Looking at (*), ("), and (3) suggests that the theorem we need
may be stated as follows:

emma.
( CC: J iS linearly independent:and fi.; (71 .Q [ a4, )

[A lemma is a theorem whose main use is to simplify the proofs of
qther theorems.] This result should ffieein Intuitively, reasonable to

8
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The explanation asked for preceding (2) is that since
D P (D A) - (P A) and D A -= (D - P) + (P A) and since
[B - A, C A], Veing a vector space, is closed under subtraction and
addition,' it follows that if D A and P A belong tothis Space then
so does D P and if D P and P A belong -to it then so does D - A,

As to (**), the argument just used shows that, for example, if
P - A and Q A belong to [B A, C -A] then so does P Q for,
P Q = (P A) (Q A).

This lemma is stated [and proved ] on TC 299(2) where it s shown
to be nelated to Exercise 5 of PartA on'page 299. The proof iven
t*re is suggested to students in Exercise 2 of Part D on pa e 384.
Another proof is suggested 'in Exercise 1. The third proof suggested
here makes use of properties of determinants developed in the Background
Exercises on pages 273 and 274. As poin;ed out in the text following
the lemma, what needs to be proved is that if (c.,d) is linearly inde-
'pendent then the equations; ,

c 5c
(*)

= + 5c12

can be solved for '-aP1 arid '5' We note, first, that if (-P,5) is linearly
dependent then either [a, = [-a.] or 1;, ] and, so, if (*)
holds then either {CP, a} C [;} or {C*, a; [ g I. And, in either case,

a) is' linearly dependent. Since we are supposing that this is not the
case and that. (*) holds --,(aP, 5) is linearly independent. Now4 b.y
pages 273 .and 274_.[with the roles there assigned to (CP, a) and (a,b)
interchanged], if (a, 5) iS linearly independent and (*) holds
then (c, a.) is linearly independent if and only if cld., - c2c13,,0 0. But,
this i's just the condition needed in oi:der to be able to solve (*) for
and '5'. In.2hort, if (CP, d) is lineaPly independent then (*) can be
solved for 'a' and '5'.

Incidentally, the proof of Theorem 7-1 can be carried out along
the lines indicated for the proof of TheoreA 9-1, The *nalogue of the
letthria which is needed, for this proof of Theorem 7-1 is:,

and. E [ 1) =*-

The proof of this, like that just g.iven for the lemma, involveps showing
that if -c* 0 "6 then the equation 'c le can b.e solved for 'a'. This is
fairly obvious, since, if ae "d then c 0, It is etisentially thiq that
is used, on page 283 in the "Derivation'of (ii)". .

Finally, note that the argument given above for the lemma shows
that, assuming {*), (-CP, a) is liriarly independent if and only if (-1,5) is
linerly independent and cid2 - c2d1 * 0.

S.
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you. In the first.place, if c and d are linear combinations of a and I;that is if

(4)
<

- t
e = be
I =

for some values 'of 'c t', 'd, and 'cl;- then, clearly, any linear
combination of c and d is also a linear combination of a and b- that is,
lc, C Ia, b). And if, in addition, (c, (iris linearly independent then
you might expect to be able to solve equatithis 44) to show that a and
Kare linear combinations of c and al. The lemma can, indeed, be proved
in this way. Another proof is developed in Part D of the exercises
which follow. Pending this we shall take Theorem 9-1 assproved and
investigate some of its cOnsequences.

One immediate corollary of Theorem 9- I is:

There is one and only one plane which
contains three given noncoltineaepoints.

More briefly:

Corollary
Three noricollinear points ljeterinine [uniquely] a plane.?

Exerthes

'Part A
1, (a) Show' that if P and Q are two points of a plane ir then there is a

third point-say, R -such that TT = POR.
(b) Show that if P E 71- then there are points say, Q andli -such
11 that - PO.
(e) Show that, for any plane 7r, there are points -say, PA), and 1?

-such that Tr ['QR.
2. Prove:

Theorem 9-2
({D, E, F} C Are and {D, E, F} is noncollinear)

3..Show that ,

(a) ilk and (b)

8Q.)

41

TC 380

In order to insure that students understand the u;es ef Theorem
9-1, we recommend treating Part A of the eicercises inselass, followed
by Parts B and C fOr -homework. Part I) can be rather complicated
for some students so it isprabably better to do these exercises in class
also. Parts E and F make another nice homework set.
Answers for Part A
I. (a) Since r is a plane it c.ontains three noncollinear points. For

any three such points, at least one is not a point of P. So
there is a point of r R such4that {P, Q; R) is nal--
collinear. Since P(3,1k is, then, the only plane which contains
these points. 7T = PQR.

(b) As in (a) there arz_three noncollinear points in. r .say, A.
Tit and C. If P Alt_then let Q =. A and R = B. If P
and P 0 A then P VAG. In this case take Q -- A and R C.
If P A, take Q B and R C. In all caseft, IP,
is a noncollinear subset of 77 and, as in pfirt (a), 7T = PCIQ R

(c) Let P, Q, and R be any three noncollinear points of 'Ir. Then,
as in (a), r 1-76F-2.

L. Suppose that V, E, F} is a noncolline;r subset of ABC. It
follows that A C is not a line or a set consisting of a single point.
So, by the result of Exercisi 4 of Part G on page 375, B, C).
is _pot collinear. Henee,,,ABC is a plane. But, by Theorem
DLF is the only 'plane colitaining {D, F, F). jience, 7k-S.Z = Dt F.

3. (a) Since [B A, C [C A. B A] it f9jlows by Exercise
1(a) of Part C on page 377 that .74.-ge. ACB.

(b) Since C A (B - A) 1- (C B) and B A = -(A B),
[13 A, C A] [C B, A - B]. Similarly, [C - B, A - B]

[B A, C AL So, - A, C AI C B, ,Pt - )3] and,
as in part (a); ABC = BCA.

r
'85'3
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4. On your paper, draw a picture of the plane MAIP and of points A, B.,
and C which are contained in 1-1V. [Question: How must the points
M, N, and P be related in order that M1'1P is a plans?[
(a) In your picture, locate each of the points D, E; F, G, H, and 1,

where
= A * (13 C) -1, E = A + (B C)},
= M + (B - C) -1, G = M + (.1V - Pli,

If = A 4.- (.0 / P + (B A).
(b) Which of the points given in a) are in 11-474-NP?
(e) Show that, for each x, A -4 (B A)x is a point in MATP. What

does this tell you about 'AB. and MAT?
5. Prove the following.

(a) IfiA,11}C iT then AV i a subset of 7r.
(b) Each triangle is g subset of the plane containing its vertices.

6. Suppose that 1, and L are txXro lines which intersect in the pintP.
.(a) Show that there are three noncollinear points among the

points of 1, and /,.
(b) Show that 1, and` I, are contained in exacay one plane.

7. Sttypose that I is a line and Q is a point not on I.
(a) Show that k U Q [ contains/at least three noncollinear points.
(b) Show that 1 and Q are contained in exactly one plane,
(e) How many lines are parallel to I and-contain Q? Show that

each such line is a subset of the plane determined by 1 and Q.
e S. Suppose that I and m are two paralleLlines. How mAny planes con-

tain both of these lines? Justify your answer.

In the preceding exercises you have proved several theorems which
are worth Tecvrdink:

/-
Theorem 9-3

A plane contains the line determined by any two of its points,

Theorem 9-4
A line and a point not on that line determine a plane.

Theorem 9-5
Two intersecting lines determine a plane.

Theorem 9-6
Two parallel biles determine a plane.

Fig. 9-3
A

Ariswers for Part A
4 (a)

(b)

(c)

5. (a)
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cont.]

[{M, N, P} must be noncollinear fOr MP to be a plane..]
^

A

'v"..

.., ...
*, -... \

-*4:- -----4,6\ C\ ...
s.\

%I

All the points given in (a) belong to "CAT'.
Since {A, B) C MNP, A - M [N M P M] and
B - M [N M, P M]. Since B - A , (5 M) -,(A M) it
follows that B A E [N M, P - M] and, so, that [B A]
7 [N - M, P - M]. Hence, if C A [B - A] then
C - M (C A) + (A - M) E [N M, P M]. So,,jr eac,b
x, if C = A.4- (B A)x then C E MNP. In brief, A C MNP.
By Exercise 1(c), r for properly choscnpoints
ge. and R By Exercisearzl(c), if (A, B) C PQR then
AB C" PC)R. Hence, if TA, B) C 7r then AB,C r.

i(b) t ABC C AB Li BC Li CA and, by part (a), each of these
lines is a subset of the plane Mk which contains noncollinear
pdints A, B, and C.

(a) -Lpt Q and `R be points of IL and 1,,, respectively, which are
different from P. Then R = I5?1 and, so, P, Q, and R
Are three nuncollinear points.

(b) 13517t is the only'plane which contains P, Q, and R; so, it is
the only plane which can contai; /1 [= 13d] and 12 P.M. :Put,
since {P, Q} ç PTA, PCIOR, and, similarly I2 PQR.
Let P and 1:r be two points of I.
is noncollinear.
Since {P, R) A:11: = PR C
I Li {Q} C MA, But, any plane
contains {P, 0, R) and the only.

Since Q 9'1 = PR, {p, 0, R)

?QR. Since Q 6 Rift,
which contains_ /...) {Q}
such plane is PQR. 4

Therp is just one line, OD) whicli contains 0 and is tiarallel
to I. A point C belongs to this line if and only if C - Q4 [1] = [P R}. sirws [P R QI, anyjmch
-point C belongs to ()PR, But, Q 'PR MR. Hence, Q[I)

. is a subset of the plane Mri determined by and Q.
8. Let 0 e rn. Since rn jj ./5 m 011] and; by Exercise 7 , is a

Pubeet of the plane determined by I and Q. No other plane can
contain both m because no other contains I and Q,

4
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INote that, for example, Theorem 9-4 is short for:

Given a line and a p6int not on it, there is one and only
one plane to. which the given point belongs and of
which the given line is a subset.

Re.state Theorems 9-5 and 9 -6 in this more explicit form.. Note, also,
that it follows from Theorem 9,6 that any- two parallel lines are
coplanar.] ,

Part B
1. A plum, quadrqateral is a quadrilateral.which is a subset of some

plane. Show that
(a) trapezoids are plane. quadrilaterals cWhat about parallelo-

grams?I,
(b) convex quadrilaterals are plane quadrilaterals,
(c) nonsimple quadrilaterals are planequadrilaterals,
(d) if a quadrilateral is not a Plane quadrilateralihen it is both

simple and nonamvex.
2. Is the converse of 1(d) a theorem? Justify your answer.
3. Show that lines which are transversals of the same two parallel

lines are coplanar.

Although if two lines are 'parallel then they have no point in com-
mon, the converse is.not true. !Explain.] So, given two lines, one can-
not lin general] conclude that they either are parallel or have a non-
empty inlersectiOn. In spite of this, we discovered in Chapter 8 many
situations in which we were able to draw this conclusion. [Theorem .

8-2 is a case in point.] In each case we were able to do this because we
,had additional information about the line in question. It is now easy
to see that this additional information implied that the given lines.
were wplanar. [Check this in the case of Theorem 8-2.1This suggests
that we might be able to prove:

8Q"
. 1,1

Ttieorem 9-7
4

Twp nonparallel Coplanar lines intersect.

TC 382

Theorem 9-5:
Given fwo intersecting lines, there is one and only
one plane of which both are Subsets.

Theorem 5-6:
Given two parallel lines, there is one and only one
plane of which both are subsets.

Answers for Part 13
1. (a) Thelines containing two bases of a trapezoid axe subsets of a

plane. SinCe the vertices of the trapezoid belong to these lines,
the lines containing -the other sides are subsets of this plane.
Since the trapezoid is a subset of the union of these four lines,
it is, also, a subset of the plane in question, [Parallelograms
are trapezoids, ]

(b) The lines containing,the diagonals of a convex quadrilateral
are subsets of some plane It follows that the vertices of the
quadrilateral belong to;this plane and, so, as in part (a), the
quadrilateral is a subset of the plane.

(e) [Like (b), but start with lines containing two intersecting side's.]
(d) This follows [by contraposition] from parts (b) and (c).

That two parallel lines have'no common point follows from Fxercisg
1(e) of Part C on pay 293. Lines with no point in dommon may be
skew.

The lines referred to in Fheorem 8-Z are all subsets of the plane
determined by the parallel dines AC and BD.
Z. No. [There areQsimple nonconvex quadrilaterals which are plane

4 quadrilaterals.]

3. Two parallel lines determine a [unique] 'plane and any line which
is a transversal of both is a subset of that plank. All such trans-
versals will thus be coplanar.

TC 383 (1)
Answers for Part C
1. Show that C - A E [B - A, C - Dl.
Z. E CD but, by hypothesis, C jAB. It follows that {A, B C} is a

noneollinear subset of any plane which contains AB and CD and,
hence, that the only such plane is 7C5E.

3. That D - A E [13 - A, G A].
4. That C - D e [B - A, G A],
5. No. But we also know, 'by hypothesis that CD 4 X. So,

. [C - D] # [B A] and it follows, since C D d, that
C D Ei[B - A]. [This is fairly obvious and easily proved, but, if
a reference is needed, it is to Exercise 4 of Part B on page 262.]
Since C D lid[B A] and B - A 0 d it follows by Theorem 6-13
that (B A, - D) is not linearly dependent. But, by the pre-
ceding rxercise 4, (B - A, C D, C A) is linearly dePendent.
So, by Theoreni 6-13 C A6 [B A, C D]. [1-lence, by
Theorem 8-1, AB r CD 0 0.] [A different argumelit is given
in Exercise Z(a) of part D. bblow,
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' Part C
Suppose that Aid and tD are coplanar lines such that C 0 AB and

-a

g.

1 . What does Theorem 8 .1 suggest
n 94 0?

as a way of proving that

2. Show that All CD., and that the .plane containing AB U ti; isA.
3. it follows from Exercise 2 that D e AAC. What does this tell yatit

about D - 'A?
OK.

4. It is also the case ihat C - A t(13 A, C --AI. From this and
Exercise 3, what can you (=dude about C - D?

5. Compare your answers for Exercises 1 and 4. Can you derive the
former from the latter alone? If you can; do so. If not, do you have
any additional information from which,- together with the result
of.Exercise 4, you can derive your answer for Exercise 1?

a 6. Use what you have established in Exercises 1-5 to prove Theorem
9-7. [No further algebra is needed.f

, 7. Prove:

1

.1Theorem 9,8 ,

Two lines are parallel if and only if theyare coplanar
and have no commoit .point. '

(Theorem 9 is often used as a definition of parallelism for lines.]
8. Show that a line which is coplanar with two parallel lines and is a

transversal of one of them is also`a transversal of the other.

Part D
We have still to Vrove the lemtna to which we reduced-the prod of

Theoren1 -1: '

((e7,) is linearly independent and cc4,-4,..c [CZ Ea,

[Incidentally, We shall have other' uses for this lemma later.] The
fillowing exercises (and hints) outlincs two 1)rOo1 a of-tha-leinina:

I, Suppose that (C7,1d) is linearlx.independent and {ZVI'
(a) Why does it follew that (e,d) c {711:7,1?
(b) What remaind fo,he deriyed fnmiLtlie assumption? What iloes

your answer ,for part (a) riaggestas to how to go about derit,-
A .ing this?

The linear independence of (i;71), should remindyou-Of an ear-
her theerern which will allow yoti to calty out the suggestion

(e

of part (b) in one ease:
(d) Coinplete the proof of the lemina by showing that if f1

c thin is linearly dependent

a

8°°'
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6. Suppose that 1 and en ara two coplanar nonparallel lines. Let A
and B be two.points of /, C a point of rn wilj.Cch is rigtsn 1, and D
a point of zn different from C. Then I AB, m = cal, and the
hypotheses for Exerciseq 1 5 are satisfied. So, by Exercise 5,
it follows that I n rn 0 0.

7. By T5eorern 9-6, two parallel lines are coplanar and, by Theorem
7-6 [orExereise 17-el. of Part C on page 293], they have no
common point. On the other hand, by Theorem 9-7, coplanar
lines which have no common point cannot be nonparallel.

8. Suppose that I and rn ate two parallel lines and let x be the plane.
which containa them. Suppose that n is a line which is contained
in 1 and intersects I at a'single point. It follows that n frf I and
[by transitivity of parallelism] n W rn. It also follows, since
Ifmriri 0, that n m. So, by Theorem 9-7, n n m 0 [and,
of course, consists of a single point].

,

Answers for Part D
1. (a) Since, by hypothesis.; -1 and d are linear combinations of a

and b, so is any linear combination of CI. and [It may be
well to call attention to the fact that this follows from laostu-
lates 47, 48, the "twist principle" 'ICI + + le° + -= (a + e)

(s. + a)' , and Postulate 46, I
(b) That raft, SP] C [Zi., }. ; Show that {1, C *[
(e) In case (C6,a,-;) is linearly dependent it follows by Theoretn

6-13 that, aince a) is linearly independent, -a.. E[Z, a I.
Similarly, if ("e*, 3,11) is linearly'dependent,then e le., a 1.

(d) Suppose that = -a*c1 + Sc2 and a = gd2. It follows
that ac2 = :(a1c12 d1c'2). Now, supposing that
is linearly iddependent, it follow* that c2 d2 = 0 and so,
by'otir original assumption, fc', C [c], and (-ca) is ,

linearly dependent. But, supposing that (Z, a, I) linearly
independent, (-C, a) is linearly independent. From fllis Con-
tradiction it follow* that a, 1) is not linearly inclependent.

La niat.1-incaqy independent. -lienee,--if
11) then (2', a, and .(-Ce, a, I.)) are linearly

dependent.' So, by part (c), if, in addition, (Z,a) is linearly
independent then {-1, [ a], it fol1o4s-that
f7, g J c a] and so, by Part (a), 'that CC., 3] 1;3-

a. -
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.2. Another proof of the lemma starts 'from the argument you may
have used in Exercise 3 of Part C. The result established there is
stated in part (a), below.. Prove each of the following.

_.
.(a) c WI and

(1)) let a, his and (:.01a'll
(c) i (e C 1a 1;1, e. Ia.', and Jg ic.1) -i-Pfe; di.= la-, 1 illint:'USe

part (h) twice-the second time with for V.]
_ .

(d) El) is linearly independent and (c, atI ç La, 6.1) Ic, di
. = la, hi [Hint: Use part (C) twice-the second time with 'cl/ and

'F')/ interchanged. This will take care of all cases except that in
which e k 1(4.1 and c:.t It)). Show that this case cannot occur.]

" 3. Prove:

Part E

(a) (ic,* ci) is linearly independent and*, d) C la, bl) b) is
linearly indevendent.

(b) fc, d, C [a, I;) -- (cs,g, el is linearly dependent. II f in.t:Lfse
the lemma provearin Exercises 1 and 2.1

in thskiw exercises we shall be concernRd with the translations
which map a given plane 77 into itself. Since, In Definitpn 7-7 [see
page 495] ale image of r undef the translation a is 7 + a, th,e transla-
tions we are interested in are those for which IT + a. C Before read-
ing further, your experience with lines may suggest to you what we

,` are about to disawer, and why it is of interest,

, Part F

1. Suppose that rr a C r. Show that there are points-say, Q and R
- which belong to rr anil are such that a R - Q.

2. Suppose that PQ, and R are points of r. Show that P + (R - Q) t
[Hint: Consider the rase in which Q = R and the case in which

3. Prove:

+ - 301(Y e r and Z e and = Z
A

Suppoev that (A, B,C} is a noncollinear 'subset othe plane 7T.
.

1. Show that if') anciQ belong tog then Q - PEW -A, C - AL
2. Show that ifi7t1B - A,C - A) then there is a point -say, P - such

that P e rr and P - A = a.
3. Conclude from Exercises 1 and 2 that

- A, C - Al = 302 (Y Tr and Z r and7= Z Y)}

prow thatif P a 7T and Cis II3 A, C - Al then P

Answers for Part D [cont.]
-R

2, (a) Suppoie that c-P e [a,
numbers. say, c1
C 2 sA 0 ISO, 'I;

Suppose that g [S,(b)

.1
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I

and
g [11. It follows that there are

such that g -a.c1 + gc2 and
re) + g /c.2, and g E 1.

gj and g le[4 Si&e E [ g] and .

C [ [ -j ] C [;, 1:1; ]. On the other hand, by part (a),
g [ -aP , ). So; since a. e [ , , . [ , [ -aP, . Hence,
[ , ] = g

Suppose that {g, a} c j, and A c 1. Since
11 and C.7 0 it follows by part (b) that [al-, ] = g

Since a' g] = [ri, C.] = [C..% "i'] and a flz.] it follows
part (b) that rg, a (g,k1 [;., g 1,

(d) Suppose that (-g, a) is linearly independent and {-c., [ a; b ].
It follows that d tc J and so, by part (c), tf c fi[ a ] then
[g, a] = -gb Similarly, if fi[g ] then rg, a] =

fl,i1]. Since (J, a) is linearly independent, C.: d. so,
if --cP [ ] and g [ ] then [ ] = [ 1 = _01], Since [ = 1,

[-a!, F.)] = lib Since IC., c [-a!, 5) it folloWs that' if .-c° e ra.
and g C [g] then {g, a} c [1]. But, since (C:a) is linearly '

independent, (g, a) cz [n. Hence, it is not the case that
[-a.] and g [g ],

(a) If (ie,g) is linearly dependent then either [I, g = [a..] or
[:;., 1;1 = Land, in either case, [I, gl cannot zontain
linearly 'independent vectors and A.
Suppose that {g, a, -me' [ , i"; ]. In case. (-C., a) is linearly
dependent, so is Cc., a, ei). In case (CP, a) is linearly inde-
pendent then, by the lemma, [e', a] = 131. 'In this case,
since ; J. ;BP and, so, (g, is linearly

(b)

dependent.
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.Answers for Part F.
[The purpose of these exercises is to prepare the way for.section

I. Let Q be any point of 7. Since 7 QiaE 7. Let
R Q a, Then Q and R are points of 77 and a. (Q + Q= R Q.

.
2. In case, Q - R, P + (R Q) PE 7. ......Wppose that Q R. ByTheorem 9 QR v. In case P E.QR, so does P f (R Q).In case Pii6IIR it tollows tha ir -; Ptik and. P '4' (R Q)P +'(Q P) 1 1- (R -.P)1 E IT .

I. The only if-Part is established in Exercise 1, 14he if-part isestablished in Exercise 1., [By Exercise 2, if Q and R are anypoints of ir then 7 + (R Q) 7. ]
Answers for Part F -

{A, B, C} is a noncollinear subset of 7 =

PEircz=0:P-AE[B-A, C-Al and Qeir4=>Q-AE[B- A , C A],'Hence, if P and Q are points of Ir then Q P = (Q A) - (P - A)
[B A, C A),

.

2, Suppose that a E [B - A, c A], Let P.be any point of r. ftfollows that A + 7. So, if P A + a then PE 7 andp - A + a.) A a.
Since A 7 it follows by t:xercise 2 that each member.; of
[B A, C - A] is a difference of points of If. By Exercise I,
any difference'of points of 77 belongs to [B - A, C

-4. Suppose chat, P 7 and a, [ B - A, C.: A]. Since P E 77 ,
A E [B A. C 2]; So, since a*. E [B A, C - A],

(P A) 4' Z.; E B A, t-, - A]. But, (P A)'+ a (P + - Aand, since (P + A E [B .- A, C - A], P + a E

\ I

.
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9.04, Directions of, Planes .

In Chapter 7 we chose to define the direction pf a line l as a set of
trunslations. As it, turned out, a translation a belongs to the direction
of I if and only if it. Maps I onto itself. It seems intuitively reasonable
to say that a translation is in the direction of a given plane if and only
if it maps that plane onto itself. As you have seen in the exercises of
Part E On page 384, these-translatiOns are just those from a first point
9f the given plane to a seCond. Modeling our notation after that which
we used for lines, we shall adopt:

-1
Definition 9-4

17d E Tr and Z rr and Z Y }

anti read-1711.as 'the directiqn of 71). In words, Definition 9-4 sayS that
the, direction of fr is the set of all translations determined by points
of 7r.

In Part F you have proved:

. and:

Theorem 9-9
{A, B,-C} is a noncollinear subset of 7T

= 113 A, C A]

Theorem 9-10
(Pen-and a [TT]) */)-F ac iT

What are the analogous theorems about lines?

Exercises

Part A

1. Is there any translation, which belongs to the direction of every ,
plane? Do you think that there is more than one such translation?
Explain.

2. (a) Suppose thatTiand-rbelong to [7r) and that (Ta is linearly in-
dependent. What else can you infer about [Tr], -a°, and -b.

(b) Sdnose that-CY; b; and Aelong to br.l. What can you infer about

(c) Suppose that [irl = WI. What can yoti infer about
(d) Suppose that [77] What can you infer about

What else?
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The treatment here of directions of planes is analogous to that of
irections of lines in section 7.04. In'particular, Definition 9-4 is

analogous to Definition 7-4, Theorem 9-9 to Theorem 7-3, and
Theorem 9.-10 to Theorem 7-4.
Answers for Part A
1. Ye,s.; d belongs to the direction of every plane,. If # 0 and

belongs to fhe direction of every plane then, by Theorem 9-10,
every plane containing a given point P wg.u4sontain P + a and,
by Theorem 9-3, would contain the line P[ a ]. Iiowever, on
intuitive grounds, given any line through P, there is a plane
through P which does not contain "thist lime. So, on the 'basis of
this intuition, therb is nonon-ti translation which belongs to the
direction of every plane. [Of course, if the intuitive considera-
tions governing our development of geometry were concerned
with a ssace of fewer, than three dimensions, we Would obtain a
different answer, ]

2. (a) [ ]. For, 7r contains three noncollinea ts and,
if A, 13, and C are three such points it follows by T eorem
9-3 that [7r ] [B A, C A]. But, by the lemma on page
379 [proved in Part' D on page 383], if (1,1-3) is linearly inde-
pendent and {7S, 1;} C. [B - A, C - A] then [S., ] = [B- A, C -

(b) is linearly. dependent. 'Nee Exercise 3(b) 'on page 384.]
(c) (a, b) is lirlarly independent. Since rr contains three non-

collinear points, [ 7] contains two linearly independent trans-
lations, So, if 7r..] = [-a*, 'lib it follows by Exercise 3(a) on
page 384 that (a,U) is linearly independent,

.

(d) By Tart (b), (a, b, c) is linearly dppendent. It follows that one
of a, 5, and c is a linear combination of the others and, so,
that [ C'j is either La*, 5], [5, -C'], or [ -a..]. So, by part
(c), (a., 5), (S, C.), or (-J., a) is linearly independent.
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Answprs for Part B
(a) Yes, if +they are collinear [and there are noncoplanar points].i

No, by Theorem 9"-1.
(b) Suppose that 77 C.- cr and let A, . B, and C be three noncollinear

points of 7. [That there are such follows from'Definition 9-2.
Since C 5 these 'points also belong to So, by Theo-rem
9-1, = ABC = -Since (B 'A, C - A) ((B +1)- (A + a), (C + - (A + a)),
(B - A, ,C A) is linearIT -dependent 6if and -;nly-if -(-(B +

(A -r (C + + a)) is linearly depeprident._.' Hence.,
{A7 B, C} is collinear if and only if {A + a, B + a, C 4- a}
is collinearti

2. (a

(b) In answer for part (a), replace 'dependent' by 'independent'
and 'collinear', by `noncollinear'. [Or, make use of the
logical etjuivaltnce of sentences of the forms 'p q' and
'not g 4=1.,not q'.

S 0
X

v



Part B

Part, C

PLANES IN

(b)
3. fa)

( b

(c)

Can two planes have, three points in common? Three non-
collinear points? Explain.
Suppose that n- cr, where TT and a ar`e planes. Show that
IT CT,

Show that (A, B, CI is collinear if and only if {A + a, B a,
C a) is collinear.
Repeat part (a) with 'collinear' replaced by `rioncollinear'.
Show.that, for any plane ir and any translation-a-4, is a
plane. [Thnt: There are nonOollinear points-say, A, B, and C
-such that 71 AAC. [Explain.) You may find Theorem 7-9

helpful.)
,

Compare 171 and In. + a],
I ,

Show that a 1714-6 7 -+ a = n-, [Hint: Use a result you ob--,tained (gi page 384.1

1. (a) Suppose that -1--7) is linearly independent. Deschç set
{X: X - A e [a, [Hint: ,Postulate 2(b) may be of s .1

(b) What is the.direation of the plane described in part (a)?
2. Suppose that A e ,

(a) Show that there are pints-- say, B and C-sueh that

(h) Show. that {X: X - A c Lid} = 7r.
10. Show that if D E then {X: X D e 11 is a plane. What is its

direction?
3. (a) ShoW that if 7r and a are plttnes with the same directiou and

iT 11 a ?, 0 then rr =
(b) What follows from part (a) ooncerning two planes which have

the sathe direction?

D.b5 Planes with a Given Direction

In Exercise 1 of Part C you have seen th4 if (a; A.,is linearly inde-,
pendent then there are plahes whose direction is fci, A. In fact, for
any point A,- A(A cii(A + b) is such a plane. This suggests that we
refet to ra, --.6) as a bidirection- the bidirection determined hy for,
simply: -off-a and In analogy with our-previdus use of 4dikectioil AA.
applie to sinkle translations, we shall speak of lit, Ilas a hidirection
evert in case (a, b) is linearly dependent. When we wish to imply that

is linearly independent we shall call 1W;7;) a proper bidirection.
In analogy with Definition 7=5, we adopt:

Definition 9-5 (a) Afa,
_

= - A 171+,-11)

(b) A[TrI ,;-= {X: X - e [771}

3 . (a) Since 7r is a plane it follows from Definition 9-2 that r ccsn-
tains three noncollinear points say, A, B, and C. So, by
Theorem ,9-1, :T..= ABC. By Theorem 7-9, D c r +I if and
only if D a E ABG. By Definition 9-3, the latter is the case
if d'nd only if (D - - A E [ B A. C A ]. Since (D - 1) -
= D (A + B A = (2, + 1) -4A + and C A = (C +1)
- (A + ;), 'it follows that D E r + a4if and only if D - (A + 1)
E [(B + (A + (C - (A +,a)] that is, if and only if
D 6 (A +1)(B+ 1)(C + '5.). So, r + = (A + ;)(B + -S)(C +
Since {A, B, C) is noncollinear, so is {A + a, 13 + a, C + 1).
Hence, + ; is a plane.

(b) [ r ] = [ 7r + -;], by, thd pr.eceding and Theorem 9-9.
(c) BY Exercise 3 of Part E oil page 384 and Definition 9-4,

r + ; C. r if and only if ; Ern. By Exercise 1(b), _above,
since

I
r + ; is a plane, r + a C 7f if and only if r + a r.

Hence, a E ir] if and only if, 7 + =

Answers for Pa
1. (a) Since ; = A,+ -aP) - A and g (A+ A it fo.J1cas by

Definitip that {X: X A E [a, 1)]) = A(A + a)(A + L
Since (a,ii;) is 'nearly independent, {A, A + A + /fl is
noncollinear. the set in"question is a plane.

Theorem.9-9, the direction of the plane in question is
[a, 1;].
By Exercise 1(b) crf Part -A on2age 380,, points B atalIC
be chosen in ir such that lr Al3C. B, C is, ourse,
noncollinear and so, by Theorem 9-4, (

r&g
-7r ] [B A, C 4A].

(b) In the notation of part (a), 77 = ABC = {X: X - A E [B - A, C -
= {X: X -AE[r]).

(b)

2. (a) c an

(c) {X: X D [r]} = .{X: (X A) (D A) E [r])
{X: (X - (D A)) - A E [7r]) = {X: X (D - A) e
r + (ID - A). By Exercise 3(a) of Part B, this set

is a plane. By Exercise 3(b), its direction is that of v.
3. (a) Suppese that 77 and cr are planes such that [7] = [v] and that

A E. r (Th CT. By Exercise 2(b),- r = {X': X - A C [7r]) and o- =
{.X: X A E [cr]). So, r, a-.

(b) Two planes .which have the san-i direction have no comrrion
point.

This sectionis analogous to part of section 7.05. In particular,
Definition 9-5 is analogous to Definition "?-5, Theorem 9-11 to
Theorem 7-5. Parallelism is tre'ited in section 9.06 which is
analogous to some of the remainder of section 7,05.

Note that Exercfses 1 and 2 of Part C show that A[,1 and
A[r] are planes through A which have ,the directions specified in
The.orem 9-11, Exercise 3(a) of Part C shay/a that there are no
other eush.p1anc s .

,



9.05 Planes with a Given Direction 387

From the exercises of Part C we have:

Theorem 9- 11- .
(a) For (a, hl linearly independent, Afa, 61 is

the plane through A with the bidirection Ia, b
(b) Aln-] is the plane through A with the direction

of 7r.

Exercises

Part A

Fig. 9-5

I.

1. On defining proper bidirection' we should check to see that if
c: [a;h) and rc, di is a proper bidirection then so is [6: -6). What

earlier result tells us that this is the case?
2. Prove each part of Theorem 9-11 by referring to earlier exerciseS.
3. Show, similarly, that A e rr if- and only if rr
4. Suppose that c'is a nonV translation belonsing toa, proper_bidi-

rection Ia bi. Show that either 1c, al = [a b or [cy = fa, TA
[Hint: This might suggest to you the lemma used in proving Theo-
rem 9-1.1

5. Suppose that C' and ci are non-0* members of a given bidirection
and that IO al. Show that the given bidirection is [1,-4 and
that it is a proper bidirection. 3.

TC 387

You can save time by treating Both Parts A and B as in-class
exe rc is e s . The text at the beginning of Section 9.06 as well as Part A
whiCh follows it can usually be covered in the same class period. Then,
Part 13 of Section 9.06 can be as,signed for homework.

Answers for Part A
1. If [c., d j is a proper direction and 4, a] La% 5;1 then (C., a ) is

linearly independent and {C., a} c [a, 5 I. It follows by Exer ise
3(a) of Part D on page 384 that (a%5) is linearly independent and,
sci, that [-a., is a proper bidirection.

2. (a),, Suppose that (a, b) is linearly independent. Bylawncjje 1(a)
of Part C on page 386 [and Definition 9-5(a.)}, b is a
plane through A whose direction is [3, J. By Exercise 3(a)
of Part C, there is no other such plane.

(b) [Like (a), but use Exercise 3(c) in place of Exercise 2(a). ]
3, 13y ExerciL.,_e 2(b) of Part C on page3,86 ; i A E then' it =

Since A Atr] it follows that if 7 = ADr) then A E 7r.
4. Suppose that [a., 5] is a propej bidirection. Since (1, is

linearly independent, [3.. t- [b j c6). [For, if Sa = bb then .a = b 0..]. Suppose, now,,that c *J-. It follows that either
-C° ] or c Ei[t ]. Since (a, g) is linearly,indepenclent it follows
that neither it nor 5 is .6. So, by Theorem 6-134 either (1,.a.)

(C-%.5) is liirai;ly indeps.nd_vnt. Assuming thaLc E [ it
followe that lc, a)_ and lb, y ire subsets of [a, 5 ]. So, bythe
lemma, [-c*, a ] = [a% in or [ , c ] [ g ]. [The last four sen-
tences can be replaced by: So, by Exercise 2(b) of Part D on
page 384 , either [-C.., -a*] = [a.P, ] or j5, -C*1 = [a, fib]

5, Since ti and [C*] fa) it follows that i'vta].. Similarly,a i[c.]. Hence [by Theorem 6-2], re#, kis linearly independent.
the lemmafor Theore.m 9-1 it follows that the bidirection

question is [c., A ]. Since (-C.,) is linearly independent, it is a
proper bidirection.

Answers for Part B
I. (a) This is an immediate consequence of Definitions 7-4 and 9-4.

(b)

2. Suppose that A E 1 eTh 7. Then 1 = A[1]*and r = A[r]. Since
[1] C [71. it follows from Definitions 7-5(b) and 9-5(b) that
1 C 7T.

art
1. (a) Show that if I C 7r then [11 C [7r1.

(b) Is the converse of the reetult iA part (a) a theorem?
2. Suppose that Id C rid and that I n TT 7k O. Show that 1 c 77.111int

One very easy solution is based op Exercise of Part A arifl a'cor-
responding theorem on lines.)

3. (t) Suppose that [11 (rd. Sbow,Ithat there is a plane which n-,
tains / and whose direction that of IT.

(b) How many strch planes are re?

Let A1 ,Then I Arz) .and. Atari _is. a.plane whose
direction is that of 7T.
Only one, since there is only One plane 'containing A whose
direction is that of r.

5
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9.06

In analqgy

Parallelism

Definition
(a)
(b)
(C)

of Planes

with Definition

9-6

and Lines
4

7-6 we adopt:

17T11

g id
r

Theorem'9-1Z is proved in Exercises 3(a) and 3(b) of Part B on
page 386.

AAP

Theorem 9-13 follows' from Theorem 9-11(b) [and Definition
9-6(a)].

There are infinitely many lines thrQ11g,a poin4 A parallel to a
plane 7. In fact they are just thc lines A for a E [7] , and there
are as many members of [71 as there are ordered paiis of real
numbers.

The if-part of Theorem 9-14 is proVed in Exercise 3(a) of Part

7r1 II'77-2 4-0

ji 4-'.
ji 1

Fig. 9-6 ,

So, parallel planes are planes with the same direction and a line is
parallel to a plane if and only if the direction of the line is a subset
of the direction, of the plane.

In view of Definition 9-6(a), you have already proved:

' I Theorem 9-12 Any translation maps any
I plane onto a parallel plane.

Fig. 9-7
I What earlier exercise is relevant here?.] Similarly, in consequence of
an earlier theorem, we have:*

I Theorem 9-13 There is one and only.one plane
through a given point and parallel to a given plane.i .

Fig. 9-8

Which theorem yields Theorem .9 -13?) How many lines are there
a given point and parallel to a given plane? Use pencils and

* cardboa.rd to illustrate this situation: Given a line and a plane, do you
think that you can count on there being a plane which. contains the
given'line and is parallel to the given plane? Explain. Where have
Yoll Proved Me following theorem? ..

B on pa-ge 387. If there is a plane et containing I and pa;aklel to 1r

then, bst Exercise 1(a), [I] C_ [al [71 and, SO, 11 7r. This estab-
lishes the only if-part of Theorem 9-14.

kt.



9,06 Parallelism of Planes and Line4 ...* 389'
/

Theorem 9-14 There is a plane containing a givep
line arid parallel to a given plane if andlonly if the
given line and plane' are parallel.

Fig. 9-9

Exercises
Part A

Answers for Part A
1. .(a) No.; No.

(b)

1. Hold a "pencil and a piece of cardboard so that theY represent a ,

'line parallel to a plane. 0

(a) Could the line and plane intersect in exactly one point? Exactly
two points?

(b)- With a second piece of cardboard, demonstrate that two planes
can be ,parallel to the same line and also be parallel to each
other. Draw an appropriate picture.

(c) Demonstrate' that two nonparallel planes can be parallel to
the sane line.

(d) Demonstrate that two lines can be parallel to a given plane
.and (i) be parallel linear (ii).be intersecting lines; (iii) be skew
lines. .Draw an appropriate picture.

2. Hold two pencils so that they represent two intersecting lines.
(a) How many planes can contain the lines represented by the

pencils?
' (b). Hold a piece of cardboard in such a way that it represents a

. plane parallel In each of the two lines. How many such pranes
are there?

(c) What can you say about the direction of any of the planes found
in (b)? Diaw an appropriate picture of two such planes,

44) What Would you expect to be the.intersection-of any two-of the-
planes found in (b)?

3. hold twoopencils so-that they represent two p4rallel lines.
(a) .HowDmany planes can contain ,the lines represented by the

- pencils?
(b) Hold a piece of cardboard so that it represents a plane parallel

to each of the two given parallel lines and (i) is parallel to the
plane containingthe parallel lin ; (H) is not parallel to the
plane taining the Parallel knee; (iii) contains one of the
lines not the other. brew appropriate pictureifor i), (ii),
and (iii).

4.

TC 389 *

cordboad

PePd .

(c) [For example; each or two planes containing t line is parallel
to the line, and to any parallel line, but the planes are not
parallel to each other.

t.4

Just one. ['theorem 9-5} (b) Infinitely man;r:'

The directions of two such planes are the same.

(d) -The intersection of two such 13,lanes is 0. P t (c) and
Exercise 3(b) of Part C on Pate 386.1

4111114/Ar

(a) Just one: iTheorem 9-6)
(13)

(1)

JAI
(il) )11Ir
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Part B

(c), Hold the cardboard so that it is parallel to both of the given
lines and intersects.the plane of these two lines. What can you
say about the line of intersection of the two planes and the
two given lines? Draw an appropriate picture.

gr
..)11

1. Prove each of the follOwing theorems.
(a) IT II 7

(c) iT, II 7T "'"'"" 711!

(rr, 11 anci.a II
and (0.1

(b) (7T II (T and 7T II a) 0 Tr II 772

[Show that this follows from (a) and (b).
71:II 72 (Show that this follows from (b)

(e) (I trt. and rn II 7) 0 I II 7
(f ) R and irll, ) 1 II (r
(g) a II Tr = it or a 11 it 0) nt: This is a corollary of

what theorem?)
(h) (1 c r or I n it = 251[1-fint:Refer to earlier exercises.)
(i) I c Tr ° (j) = 7T Tr

2.. (a) Do you think that the converses of parts (g) and (h) are true
on intuitive grounds?

(b) Do you think that these converses are theorems?
(c) As you krmw, there are skew lines. Do you believe that there

might be "skew planes"?
ere are four theorems about parallel lines and planes. Relate

each of them to results stated in Exercise I.
(a) Two parallel planes have no point in common.
(b) Lines which are parallel are, also, parallel to the same planes.
(c) A line is a subset of a plane if and only if it is parallel to the

plane and contains a point of the plane.
(d) Each line contained in one of tw,o paraljel planes is pai:iallel

e other plane.
4. Explam.Why 3(a) is a consequence of Theorem 9-13.
5. Prove:

11

Theorem 9 -15 There is one and only one plane
which contains a given point and is parallel to
each vf two given nonparallel lines.

[Hint: How might you describe the direction of such a plane?]
6, (a) Show that if each of two intersecting lines is parallel to a given

plane.then the plane determined by these lines is parallel to
the given plane.
Can you solve part (a) if 'intersecting' is replaced by 'coplanar'?
Suppose that a line is parallel to each of two planes.: Does it
follow that the planes are parallel?,

(b) Suppose that each of two lines is parallel to a given plane. Does
it follow that the lines are parallel? °

(e) Draw pictures to illustrate your answers for (a) and (b).

(b)
7. (a)

TC 34y)

Answers for Part,A [cont.]

(c) The line of intersection of the two planes is parallel to each of
the,i.given lines. [The figure (ii) of part (b) is appropriate. ],

If Part B is used as a homework assignment as suggested earlier,
we recommend not making Part C part of thsarne assignment. Part

'C can be a class activity for the next day.
Answers for Part B
1.. (a) Since 17] = [7], 77 II 7. [Definition 9 -6(t)]

(b) If [711.= [a] and [72] = [a] then Ni [7721., So, by
aiinition 9-6(a), if ri a- and 72 II cr then"r1 II 77 2 [This
property of paralltlism of planes is, you will notice, slightly
different from transitivity [(d)]. It is called skow-transitivity.
As is indicate'd in.the notes for parts (c) and (d), reflexivity
[(a)) and skew-transitivity imply symmetry and transitivity.]
By (b). if ri H 71 and 72 ji In, then 7/ H 72. Since, by (a),
r1 71 it,follows that if 72 71 then iri 11 772.

If iri I a- and a- H r2 then, by (c,), 71 a- ancr7r2 II a- and
so, by (b), ir H 72.
If [4] = [m] and, [m) C [7] then [111 C H. ,So, by Definitions

(g)

(h)

t

7-6 and 9-6(b), if I Irm and m r then./ II 7.
If [I] ç, [7r] and [7) [7) then II) C [71. So, by:Definitions ,
9-6(a) and (b), if f 7 and 7 II 0- then I a.
Suppose that a- II 7 and that
TheoreM 9-13 that a 7r.

or 'Th = 0).
Suppose that f II 7 and I k)
on page 387 [and Definitioh
'then (1 C r or 1 n = 0).

Acan 7r. It follows by
Hence, if a II A then (a

7 96 0. Byxercise 2 of Part B
9-6(b)], IC 7. Hence, if I II 7

(i) If 1 C 7 then [by Exercise 1(a) of Part B on page 387 )
PI C [7r) and so [by Definition 9-6(b)], 1 11 R.

.

(i) If 7 = o- then [7] ,-- [a] and [by Definition 9-6(a)] 7 II 7.

2. (a) To establish the converse of (g), all we need do, in view of
part (j), is to show that if a n 7 = 0 then a II 7. On intuitive
grounds, this seems reasonable. [But it is sot tr-ie in a
space of four or more dimensions. ] Similar remarks apply
to the converse of (h).

,(b ) [Whatever students may think these converses are not, as yet
theorems. They will become so, in Chapter 10, ,after the
adoption of a postulate'restricting e to be at most 3-dimensionald

(c) Not in 3-dimensional space.
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Answers for Part B [cont.]

3. (a) This is a consequence of.Exerc...ise 1(g). P.
(b) This is a consequence of nxe rc ise 1(e),
(c) If-part from Exercise 1(h); .only if-part fronl Exercise 1(1)

and the fact that 0 not a line.
(d) This is a consequence of Exercises 1(i) and (f).
'rwo parallel planes have the same direction and, by Theorem 9-13,
at most one of them can contairf a given point. Hence, two such
planes have no common point.

5; Consider a po nt, A,,and two lines, .1 and m, such that,/ m.
Su'ppOse that [a ] and ,[rn] = [b.]. It follows that
and, since I 4 m, ] 0 [5 I. The direction of any plane parallel
to both I and rn must include [a ] and [g]. So, by Exercise 5 of
Part ,A on pane i87, the direction of any such plane must be

g I, and [a,13] is a bidirection. Moreover, any ?lane which'
has this direction is,parallel to each of 1 and.m. Since [a, g ] is
a bidirectionvit-follows by Tbeia_;;,.em 9-.5(a) tha,t there is one and
only,one plane the plane A[a, ] which contains A and has
this direction.

b. (a) Suppose that, / and rn, are two intersecting lines and [1] .= [a ]
and [rn] ]. Thep, as in Exercise 5, the direction of both
planes is [I, 13 ]. 1-lence, the planes are parallel.

(b) No. LI die lines are parallel then all we know about the direc-
tion of a plane parallel to both lines is that it contains all
common directions of both lines. This_goes only "half-way"
to specifying the direction of.the given plane.

7. (a) No. The intersection of the directions qf the two 131anes must
contain the direction of çhe line; but this intersection may
cointide with the latter,J in which case the planes will not be
parallel.

(b) No, For example, the lines might be two interseciing lines
and the plane might be the Plane determined by them.

f c )

(b)

TC 391 (1).

Anawers for Part B [cont.]

8. Two lines which are contained in different parallel plaries have no
point in common [Exercise '3(a)]. By Theorem 9-8, two such

2 lines which are coplanar are parallel. By Theorem 9-6, two
lines which are parallel are coplanar.

[The if:Tart may be rephrased as: Lines which are the inter--
sections of ti plane with two parallel planes are parallel. Note, in
discussing this theorem, that we are not yet in a position to prove
that the intersection of two intersecting planes is a line; ncir can
we prove that two nonparallel planes intersect.]

9. (a) Suppose that a 11 !t., that I intersects r and d at A and B,
rpectively, that rn 1: and that C /Th w. It f011ows that
B A E (1 = [m] and, so, that C + (B A) E m. Also,
C A e [s] = [cr] and, so, B + (C A) E cr. Since C r+ (B - A)
= B + (C A), rn 0- 0 0. On the other hand, if m (Th cr
contained more than one point it Would follow that in C fr and,
so, that rn 11 a- and, so, I I I g. But, since I is a transversal
of a-, I bf a. Consequently, rri 0. consists of A single point,
and m is a transversal of a.. SimUa1y, rn is a transversal
of it. [We are not yet in a position to establish (a) without
the assumption that m rm 7 * 0. Why this is can be seen by
an analogy: Suppose given a transversal of two parallel lines.
The three lines are coplanar and any line which is parallel to
the transversal,and which is in the same plane is easily shown
[Theorem 9-7] to be a transversal of the given parallel lines.
To insnre-that the fou.rth line is in the plane of the given three
it is sufficient [Exercise 3(c)] to require that it intersect one
of the given parallels. However, there are, in space, lines
parallel to the given transversal which do not intersect eiiklier
of the given parallels. the line through any point nbt in the
plane but parallel to the given transversal has the desired
prOperty. Entirely analogously, in a space of more, than three
dimensions one may have a transversalsof two parallel planes
and a line parallel to it which intersects neither. The trans-
versal and the parallel plane's all lie in one,3-dirnensional
subspace and the line through any point not In this subspace
but parallel to the transversal has the desired property. In
Chapter 16 we adopt a postulate which ensures that is at
most 3-dimensional. Using this it is possible'tv prove that
any parallel to a transversal of two parallel planes it, also,
a transversal of these planes, In fact, any line not parallel
to a plane can then be proved to be a transvcrkal of that_plane.
[This is an analogue of Thecrrem 9-7.]



8. ProVe:
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ITheorem 9- 16 .Two lines which are amtained in
',. different parallel planes are parallel if and only

.. it they, are coplanar.

IThnt: What do you know abokt coplanar lines?l
i9. A line which has just one point n common with a plane is called a

transversal of the Plane.
(a) Show that if a line is a transversal of each of two parallel

planes then any line parallel to it iVhich intersects one of the
planes is a transversal of both.
Prove:(b)

Part C

TheoreM-9:V The hitio of two intervals which are
intercepted by parallel Planes on one transversal
of these planes is the same as that of the corre-
sponding intervals which are intercepted by these
planes on any other transversal.

/
\, 'A,' ,,A' / -/ AB : BC A'8' : B'C'

,
...,

.

1. (liven a plane 7 and a point P 7, show that
(a) there is a plane which contains no points oii, and
(b) there is a plane, different from Tr, whose inteFsection with rr

contains a line.
2. Suppose that a Jr.

(a) Shqw that 0 n 7 either is empty, or consists of a single point,
or is a line.

(b) Do you:think that y rr can consist of a single 'point?
(c) Do you think that if a- rr 0 then a- 1r?
(d) Do you th'ink that if / is a line such that / n rr 0 then I rr?
(e) Do yOu think that a line which is a transverSal of one of two

parallel planes must interSect the other?
3. !arts (c) - (e) of Exercise 2 Suggest theorems which we have not

yet *proved. As a matter .of fact, although the statements in ques-
tion are intuitively reasonable they.)are not yet theorems. They
will become theorems, llowever, in the next chapter after we adopt
an additional postulate. To see what is involved here, consider
the following question: .

Is '1 fl m 0 I 11 m' a theorem?

99"
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Answers for Part B [cont.]

l'(b) Using the notation of ,the figure, if AB and A'B' are con- .
current or parallel then they determine a plane w which,' by
.:Ihrorern...9211,, intersects the giVen planes in parallel lines.
AB and A'B' are transversals of these parallel lines, and
the.desire4 conclusion follors.from Theorem 8-6(b). For
the general case, in which Al3 and 7.-'1737 are not coplanar,
introduce aLlthircl transversal the line through A' which is
parallel to AB. By part (a) this line is gtransversal, and,
by the preceding argument, the ratio of the intervals inter-

e13ted
on it is the same as the ratio of those intercepted on

A'1737 and is also the same as the ratio of the intervals inter-
cepted on AB. [Note that the figure illustrates a speciel case
In general,, there will be four parallel planes and the intervals
which are in question on a given transversal will not have a
common end point. Note, also, that by Using Exercise 6 of
Part D on page 3Z5 one can obtain more precise information.
In the case illustrated in the figure, it-follows that
(B A): (C - B) = (B' A'): (C' I3'). ]

There is a corollary to Theorem 9-17 which is of basic importancein volume Z. Suppose that 72, cri, and a-7 are'parallel planes and
that f, m, and n are transversals of these planes and m. Supposethat I intersec,ts 77.1 and ar;, at A and 'B, rispectively, that m inter-
sects crl and tr,, at C and D, respectively, and that n intersects
7. cri, and at A', B', C', and D'. It follows that (B' A'):(D' - C')
= (B - A) : (D C).

To establish this suppose; first, that.," rn. In this case the
desired conclusion iollows at once from Theorem 9-17 '[if this theorem
is made more precise as indicated in the note to the answer for Exer-

,cise 9(b)). In cases, m, let Cr' and ID9' be the points at which 1
intersect's cr.' and o-p, respectively. By the case jus,t settled,(B' - A'):(D' C') (B A): (D" - C."). Since I ir rn auti 2.0 rn,
I and iii determine a plane [Theorem 9--6] and the lines CC:Lapd
are contained in this plane [Theorem 9-3]. Since crl. H F2, CC" H DD"
[Theorem 9-16]. It follows that C"D"DC is a pa'rallelogram and, so,that D" C" = ,D C. 1-11-Ice, (B' A'):(D' - C') (B A): (D C).
Answers for Part C
1. (a) 1777r] is such a plane. [Theorem 9-11(b), Definition 9-6(a),

and Exer,cise 3(a) of Part
(b) Let Q and R be two points of w. Then PQR is such a plane.

{Theorems 9-3 and 9-1) . _

rTh Tr contains two points then, by theorem 9-3; it con-
tains a line. If it contains line and a point not dn the line
then, cootrary to assumption, cr Tr.

(b)-(e) flektiona.of physical space would motivate a negative
answeMo (b) and positive answers for the others. All four
situation's can occur in spaces of more than.three dimensions.

(a)'
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Answers for Part C [cont.]
lio* would you answer this question now?

(b) How would you answer it if we were to adopt a po4ulate ac- 3.
cording to which any four points of 'rf' are coplanar?

4. As Exercise 3 suggests, our present postulates% allow for the possi-
bility that ? is so 7large" that queer-seeming things can happen'

, in it. For example, our present postulates are satisfied in spaces
which contain pairs ei planes whicIThave a sin& point in common.

In spite of this, we can prove the following theorem;

If a given line is parallel to each of two intersecting
planes then the intersection of the planes is a line which
is parallel to the given line.

Prove this theorem.
5. Suppose that, as shown in the figuwi (A - P, B - P, Q - P) is

linearly independent, Nt, an," 1173P.

(a) What tells you tkliat A, P, and Q determine a plane?
(b) How do you kn6w that 71-PZ # NATI?
(c) Show that 7A- and C D are parallel planes.
(d) Can Xti be pra11e1 to 4? Explain.
(e) Ift 1 P Akhat can you say about Ae fl gifi? Why?
(f), If AC? 0, What can you say about (D Q) : (B P)

and (C ) : (A P)? About ti and %A?

1.

*9.07 Half-planes

As you will recall from Cliapter 1, half-planes are analogous to 1. (a)
half-lines, and closed half-planes are analogous to rays. Both half-
planes and closed half-planes have edges rather than -vertices. A

4.
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(a) No, because our postulates are consistent with the ex.kstence
of skew lines.

(b) With this postulate to work with the statement in question
would follow from Theorem 9-8. [The statement of this
exercise should, of course, be compared with Exercise Z(c

se that 1 II 1r, I I Cr, cr # w and A E 7 rTh cr. It follows that
A C [Exereise 3(c) of Part 13) and, since o- 7r, that

rm = [Exerciae 2(a), above].
[A more familiar thedrem is: A line which is parallel to each

of two nonparallel planes is parallel to their line of intersection.
However, at this stage we cannot prove that nonparallel planes
intersect; and it is only during the proof, given above, that we
find that 'their line of intersection makes sense.]

5. (a) Since it follows from the hypothesis thit (A - P, Q ID) is
linearly independent, {P, A, CO is nonc9Irinear. So, A, P,
and Q. determine a plane the plane APQ.

(b) If- APQ = BPQ then, by (a), {13, .A, B, Q} is coplanar. This
latter is not the case because (A P. B P, Q P) is linearly
independent.

(c) P, B - Pj and [CQD),
Q [C Q} = [A' Pl, and since )00 II
[13 - pj, §2, [A P, S - P] 7 [c.r.JOI We Hence,

[APB} = [CUP] and, by definition APB COD.

(d) Yes, This will be the case if and only if C - Q = A - P.
[Ex'ercise 2(a) of part A on page 385)

(e) Lf 7A-6 then al'AZ rTh 15?1 = 0. Since qjit ç Af'Q and
11-6 , AT3Q r BPQ 1331. So, if

PO then AC rTh BD =
ThtRKem 8-2, the ratios are tlie same. By Theorem 8-3,

177, II "Arf,
(f)

Answers for Exer ises

.4.edges

Fig. 9-10

closed half-plane contains its edge, a half-plane cities not. A half-plane
is deterMined when one knows a point which belongs to it and knows
the line which is its edge.

(b)

TC 393 (I)

This set is a plane. In fact, if
A e I an = [a ], it is the
plane A

The set in question iv a half-
plane,



,
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We shall study half-planes more thoroughly in Volume 2. Here, we
shall only suggest how they may be defined and how to establish the
line-plane separation property stated on page 31.

Exercises

1. Suppose that / is a line and that tit la Picture, and describe, each
of the following sets.
(a) {X: g, X Y lh.J} (b) IX: 3,. X Y
(c) X: X - Y t (d) {X: 4, X = 0

2. Which, if any, of the sets of Exercise 1 has 1 as a subset?
3. (a) What is the intersection of the sets of parts (a) and (el) of Exer-

'rise 1? Of parts (b) and (d)? Explain.
(b) Do the set4 of parts (b) and (42)- of Exercise 1 have a point in

common? [Hint: If .13, and B., are points of I, A B e1h, and
A B. t (-1)i , what contradictory conclusions can you draw
concerning B., B ,?1

'(c) What is the union of the sets of parts (b), (c), and (d) Exer-
ciSe 1?

4. Suppose that/ c 7.
(a) Can youfind a translation b'such that birJ but [117

(b) if lit [Id but lit IR what is {X: 3,,fi X Ye [6)}?
(c) Suppose that b., and 1.): are translations which belong to [7rJ

hut not to [1]. Compare X: 3,..1 X Y and {X:
X --1/ b*.1' }.

(d) State and prove.A result suggested by part (c).

9.08 Chapter Summary

Vocabulary Summary

coplanar points
coplanar lines
bidirection
plane quadrilateral.

Definitions

_plane
direction of a plane.
proper bidirection
transyersal ,

9-1. {A,' B, C, D} is coplanar (B - A, C A, D A) is inearly
dependent.

9-2. ir is a plane if and only if (a) r is a subset oft' which contains at
least three noncoihnear points, and RA vxvvvz r({X, Y, Z}
and {X, Y, Z} is noncollinearl -- Vw er'4- {X, Y, Z, IV}
is coplanar/I.

911

.2.

3.

(e)

rtl

(d)

p.

11 a
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This set is a half-plane, the
opposite.of that in part (b).

This' set is I.

The first and fourth contain:1.
(a) [since d [r; ]; 0 [since d j [ in' and gti
(b) No, lf A belongs to botb sets then there a're points of I

say, Bi and 132 such that A B1 rand A - B2 =
where both bi and b., are positive. It follOws that B2 B1
= -1102 + Sitce B2 B1 E.[1] and 5 itilf) it follows that
b.-, 4- b O. Since b1 and b2 are positive, this is not the1case. Hence, rib point belongs to both sets.
The plane described in 1(a).

4. Yes. [i]C [77] and [77], since it is a bidirection, contains
vectors not in [f],

The sets described are either the same or opposite half-planes.
{X: 3yei X - Y E [gin and {X:. a X - E [52 are
the same or have 'no common point. [As the proof shows, no
conditions are needed on 51 and L*2 other than that they are
non-& So, this result shows that no two half-planes with
edge have a common point, and, with g1 [1], that no such
half-plane contains any point of ]

Let gi = {X: aye' X Y C [12.1]+} and g2 = {X: ayei
X - Y E 11. Suppose that gl rt2 * 0. In particular -
suppose that Bi r12 g,b2, where Bi` and B2 belong
to I and bi and b2 are positive.. suppose, also, that

B + gOD, where B and b > 0. Since -1;1 = (B2 -
. fb, + 5,(T32/bi) it follows that C' B + (B2 Si)(b/bi)
+ 52-03b27b0. Since B + (B2 - Bi)(b/bi) El and ibb2)/b2 > 0
it follows that C g2 Hence, if gi (""%-g2 # 0 then gi Z2
and, by symmetry, V2 C Zi. Consequently, either ai =
pr fTh Z2 = 0.
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.9-3. Aire = {X: 3, 3, X A + B - A)x + t.0
9-4. 171 - 3, (Y 7r and Z rr and ; Z 1')}

9-5. (a) A la, - {X: X. - to;
(b) AT7r.[ {x: X - A 17r1}

9-6. (a) 7T, 77 [7r,l l7r21

(b) /11.7r I/1 c 1,7r1
(c) 7T 11 1 1 II 7r

Other Theorems

Lemma. (it': d). is linearly independent and tc., c la., -61)
ia,bi

9-1. For {A, B. C] ruincollinear, ABC is the plane which contains
A, B, and C.

Corollary. Three noncollinear points determine [uniquely.] a plane.
9-2. (ID, E,. I%) ç A1I2 and .{D, E, F} is noncollinear) --0 A- C

D*F
9-3. A plane contains the line determined by any two of its points.
9-4. A line and a point not on that line determine a plane.
9-5. Two intersecting lines determine a plane.
9-6. Two parallel lineedetermine a plane.
9-7. Two nonparallel coplanar lines intersect.
9-8. Two lines are parallel if and only if they are coplanar and have

no common point.
9-9. {A, B, (1 is a noncollinear subset of rr {rrl = 1B - 4, c - A]

9-10. IP* n- and a E (rrl) ' p+ a e 17
9-11. (it) For (a, b) linearly independent, Afa, 6.1 is the plane through

A with the bidirection la*, -b).
(f.") 70-r1 is the plane through A with the direction of 7T.

9-12. Any translation maps any plane onto a parallel plane.
9-13. There is one and only one plane through a given pOint kin

parallel to a given plane.
9-14. There is a plane containing a giveA line and parallel:to a given

plane if and only if the given line and plane are parallel.
9-15. There ia one and only one plane which contains a given point

and is parallel io each of two given nonparallel lines.
9-16. tWo lines which are contained in differdnt parallel planes 4re

parallel, if and only if they are planar.
9-17. The ratio of two intervals which are intercepted by parallel

planes on one transversal of tbese planes is the samdas that
of the corresponding intervals which are intercepted by these
planes on any other transversal.

ye V
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Chapter Test

1. Ti-ua or false?
. .

(a) If a line is parallel to a plane, it is paiallel to ecrery line in the
plane.

(b) If two planes are parallel, then every line which is a trans-
versal 'Of one of the given planes is a transversal of the other
one also. ,

(c) If two planes are parallel, then every plane which intersects,
but is different from, one of the given planes intersects the

. other one aid°. '

(d) If two lines are parallel, then every line which intersects one
of the given lines, but is different from it, intersects the other

( ) If ABCp is a convex quadrilateral, then {A, B, C, b} is co-

one also.
(e) If' two lines are parallel and One is a transversal to a given

plane then so is the other.
(f) If two planes cut a third plane in such a way that their lines

of intersection with the third plane are parallel, then the two
given planes are parallel. .

planar. .

(11) If ABCD is a simple quadrilateral, then {A; B, C, D} is tz-
plariar.

2. Suppose that (c-i; 1), q") is linearly indesPendent, and that A - P
B P b., and Q P rt

(a) Draw an appropriate picture for the given conditions.
(b) Is AN a plane or riot? Explain your'answer.
(c) Is B in --A-PQ or not? Explain your answer.
(d) et C Q + a*2 and D = Q + 6d, for some'4., For what lialues

f 'ci' will it be the case that Wand Ahavea point in com-
mon? Explain yopr answer.

(e) Given the information in (d), for what values of will it be
the case that hi5 and 4116 are parallel? Explain your answer.

3. Given that .4-C1 id a plane.
(a) What can 'you say about the points A, B, and C?
(b) What is the direction of 00?
(c) Show that kte + t is Parellel to Alic.

f (d) Which a these Points are in Ak. + 7, given that /1 ['OC]?

(ii) A + + - (A +CZ)
+ (B- A) +

(iv) (C .+ + {(B + - (A + 4)
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Background Topic

" On pages 273 and 274 you considered vectors 'and b such that

a - + cia and

Uhere tc tl is linearly, independent, and showed that

4 f ) hi is linearly inaependent 4-4

(Recall that. the definition of the determinant of the pa r
(a b.,» is:, ,

u.n.

. See page 175.) Note that it foirciws immediately from the definition
thaL

1114144) al a,
b, 15, :12.16),',11'. (Explain:A

In v ew of this, ) amounts to the following:
_ .

(ura, + u,a,4 uh + ub.,) is linear y de Iendent

=8.
ci, y,

0 ku,, u) is linearly
b, k . independentr

.
,

We,shall need'similar results concerning the linear dependence of
ta, bi, :where . -4

(") a -- 14 az -4- u,u, and b = u1b1 + u3b:i4
.

.0

sind u,, uT) is linearly: independent. First, let's experiment a bit
with (2).

4u>

Parst A ,
1. Suppose that-tu,, u.,1 is linearly-independent. In eaeh of the-fultow-

.
ing caseti, use (2) ,tio determine whether or not Ca, b.) is linearly
dependent,
(a) (4 /414 +, u, 2;1/4= u, 6 + 3

(b) a 14,6 + e417, b ui3;1-k,u24

(c) 27 + u, 18, b. 14, 21 4- u, 14

(d) 6 6= u, 3 4-4,,

(e) _ u,2 + u,, 3, 11 p. . .
'Q. Recall that ila # O'the, 1A is linea}ly dependent. if and'only if'

ral use this and (2) to provelhe reatumber theoiem:

91 5

Key to Chapter
1. (a) False.

True.
i. (a)

TC 395

(b) True.
(1) False.

(c) True.
.(g) True.

(d) False.
(h) False.

(b) Yes. Since a and q are linearly Independent translationA
{A, P, Q} is noncollinear. 14-*

(c) No. For if 13 E AfK) then 4) is lin,earlyjittgendent.
Since ("a% ci) is,not linearly dependent, B jAPQ.

(d) Let RE BD f-Th AC; Then,. for some p and q, S = 13 + (D 7 13)p
A I (C.- A):9. So, (B )\.) 4 (D B)p C)q = Since

B A a, D -_ + = i;) + ld t nd
A C = (A - Q) aZ = (a 4) - -S2., it follows that,

(I; + [(4 11) + + [(-a*' - 4) - -a*Z]q

or, more conveniently, that
+ 11[1,+ (d 1)p] + 4(p q) 6.

Since (1, 4) is linearly independent, p = q = -1 and
(d 1)p'= I. So, d = Z.

Hence, the only value of 'd' for which BD rm AC 0 0
is Z.
BD H AC if and only if D - B = (C ,A)t, for some t. From
(d), we know that D - 13 q + b(d - 1 ) `and C A = q + a. ,,So,
the given lines are parallel if and only if q + 11(d ) = (q + -A.)t
for soni t, lhat is, if and only if, for 'some'ti q.,11 t) + 13(ci 1)
a. -t =\-05. frhe latter equation holds ii anii only .ir't = 1 and
-t 0 which is clearly impossible. So,Jhe given lines are
never parallel.

3. (a) Thy are noncollinear
(b) [B - A, C -.A]
() IABC, + = [(B + a) (A + (G 4-,a)}

(e)

,

= [B A, C - A]

So, ABC + a II ABC.
(d) The following points are in ABC +

(i) A + (C B)

(c + a) ((B + a) - (A + a))
[Reason for (1): A + (C -.B) ABC:, reason for (iv): Given
expression equivalent to 'C + (B - A),+, a', and C + (B - A) E ABC.

91r1
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13) lb ki O'ith1 a1x and aix)
la, and a2 not both 0)

1 int: Let' L4.2 be any linearly independent pair of vectors and
let a. ir,a, and b'

3. (a) Use the result of Exercise 2 tojind several ordered pairs x
which satisfy the equation:

2x 3y 0 Illint: Let a, - 2 and a, 3.1

tb) Deschbe all solutions ,oc, y) of the equation in part ia).

part B
Suppose that 114 14,1, 14:11 is linearlY independent and that

u,a, + u,a, + ua and)) ab1 + + uh.
. .

1. Express {r(i a as a linear cLmbination of ui,.0 and u.
2. What three equations must a and b satisfy in order that a'a +- bb

0
3. What is one obvious solution (a, b of all thire equations in

Exercise 2?
4. What kind Of corn solution must the equations in Exercise 2

have if Ia., b.) is li Sr-dependent?
.s.

In the situation described in PartB,

cia + bb u1(a1a + h1h) + + b2b) +

and so, since ts, u,,.1434 is linearly independent, aa + 0'if and
only if ta, b) is a solution of the system of equations:

a1a + bib 0
(***) , bib = 0

a la + 'Hub - 0

-Hence; to,. 4). is linearly dependent if and only if (***1 has a solution
. ,

ther than (0, O. That is,. (a, b) is, linearly dependent if and only if
has a nontricial solution.

TC 396
g,

From the definitior of the determinant of the pair, ((al, b1),
(a2' b2 )) and properties of real numbers;

a2 bl a1b
b1 b,

It may be useful to spend a few minutes [but hardly any more] here to
allow the students to state other forms for the determinant of the given
pair,as such may occur to them after their having taken note of the
above demonstration.
Answers to Part A

linearly dependent
not linearly dependent
linearly dependent

2. Letting (ui ,

also, letting
(101

(d) not linearly dependent
(e) linearly dependent

TC 397

be anyllinearly independent pair of 4ctors'sand,
= lX1a1 + and = il1b1 + -132b2, then, by (2),

qi131 f d2b2) is linearly dependent if and only if

ai a2
= O.

b1

Also, for al and a, not both 0, (1101 +
linearly dependent if and only if Ihere' is a real
that.

1 b 1 + 1122 = 61 1 4+ u+2a2)x,

which is to say that (ti1a1 + i2a2, i1b1 + is' linearly
dependent if and only if

= a1x and b a2 x [a ana

ulbl + u2b2 ) is
number x Bitch

Hence,
al a2

111 b2

a2 not both 01.

= Oc=ctax (b1 -7 alx and b2 = a2x) t'ai and a2 not both 0.[

(a) Several such ordered
3(a, --2-a).

(b) f(x,y): az (x
Answers to Part .13

Now, any solution. of (***.) is also a solution of each of the three 1.
.systems:

ja,a + h,h 0 Ja,a + bb jola + bb ==
ta,c; +

$4

0' [aa + 0' talc; + b1b = 0

. Each of these systems hEis (0, 0) as one solution. And, as we learned.
, on page 175, the firSt of them has no other solution unless cl,b, -

= 0. Since if (***) has a nontrivial solution then each of the three

z..

pairs are;

= -3z 'and y

5 -5(7.z (8, -12),

-. -.
"la + Gb ,-- iii(a la + b1b) + u2(a2a + b2b) + us(a3a + b_413)

1

ala +.,bib f-- 0

a 2a" + b2 b = 0 if

aaa + bb = 0

3. One obvious solution would be, a tz b,
4.. The ordered pair .(a,b) must be such that a and b are not 'both

zero, and 4f (al, b1) is if common solution then, for each k,
(a1k,b1k) is a solution. .

= O.

9
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Part C

systems of two equations has a nontrivial solution, it follows that,if
i) has a nontrivial solution then

ar brr, ; -1 0, and
h

a
,5

h
I

al hl 0,

So, using (1), we see that if (a., b.) is linearly dependent then

(4) 0, and

To establish the converse it is enougli to show that if (4) holds then
(+.") has a nontrivial solution. We shall consider two cases. First, in
case h, h, h, 0 it is easy to find solutions (a, b) of (***) in which
not,both a and h ,art, 0. (ive some, Second,\guppose that at least one
of the numbers hi, h,, and hi is not -tbr example, suppose that

0. From the second two equations in (4) it follows that

u h, 0 and u,,h + h, 0. I Explain.

What, then, is one nontrivial solution of the first two equations ,of
Is this also a solution of the third equation?.

We have seen that'if (4, is satisfied then (***) has a solution other
then (0,0, and, so, (a, 1;), as described in Part B, is linearly dependent.
Combining this with the result obtained two paragraphs back weI -0

see that, for'(ui, a,, u) linearly independent,

(141(11 ,+ /4 1, u,h, uh) is linearly dependent

15) oms..
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Given that b1 b2 b = 0, (***) is equivalent to the systein:

a2a

0

0

oa s a ----

So any ordered, pair (a, b) having zero as a first component is a
solution.

The first of the two equations 'is obtained from the third equation
of (4) and by noting that 'albs + b -as = 0' is equivalent to that
equation. The second of these is obtained from the second equation
of (4) in a like manner.

From bs 0, albs + bl 7

have a 1 = b
1 and abs bs

are zero it follows, by (3), that the
trivial solution because

a a21

b1 b2

0, and a2b1 + 13,, -as = 0, we
Since not all of al' a2' and a3
first two equations have a non-

3

An xxample of such a nontrivial solution would be any ordered paira,
(a, --bi-a); such solutions do satisfy the third equation ofbs

Answers to Part C
(a) 6 9

0,
-4 -6

9 ".--4

-6 -3
0.

Not linkarly dependent,because
is not 0

(b) Linearly dependent
(c) Nol--linearly dependent

-4 6
# 0

3 -4
of the dete rrninants

.1. Suppose that
lowing cases,
dependent.

(41 a,
h,

(u1,
use

0,

.. .
/4,, ad
.(5) to

ai,
h, hi,

is linearly
determine

0, and

independent.
whether

al(1
i

b,

orliot

- 0.

In each of the fol-
(u, b) is linealy

2, In a manner analogous tO that used to establish the theorem of
Exercise 2, Part A, vie first note that, according to (5),
is.linearly dependent if and only if alb, = 0,
a2b3 - a3b2 = 0, and a3b1 albs 0. Further, (;,g) is linearly
depe.ndent if and only if, for some x and for at least one of al, a2,
and a, not equal to zero, b1 alx, b2 a2x, and bs = asx.
The tbeorem follows, as before, by.an application of the replace-
ment rule of biconditionals,

. .. ..
ta) a. ---. difi t- u.,9 _t- u, -4, Li --. a

1
. -4. + 44.2 *.-6 i u AS_ ,

__. . . .
(b) a. 4 tr.16 + ti, . -8 + u10, h = u,9 + u3 -12 + u31.5

. . .-

(e) a =- ut8 + ay + u4, b = uP

12 + ui0 + u35
, 2. Pse 15) to tirove the real number theorem:

For aii, a,, ad rk (0, 0, 0),

- 0, u01), - u3b2 0, and a3h3 a ----- 0)

(6) 10ami010

r.
(b, atx, b, a,x, and b,1 a3x).

919
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Chapter Ten
Dimension

10.01 Making RoomBut Not Too Much

In our intuitive discusSions about ei and .7, .we ha've tried to keep
alive the notions that is the set of points of what we commonly think
of as "space" and that .7 is the set of all translations that.att on these

Otir original intention was to construct a set of postulates
which woUld in a formal way describe the sets ru and .I..So, in our for-.
mai development of geometry, ei and .7 are' merely sets which satisfy
Our postulates. There are many yoys of satisfying our current postu-
lates.

Exercises

P art A

91)i

1. Suppose that cr consists-of exactly one point say, 0-and that .7
consists of exactly one translation.
(a) What is .

(b) Which of our current postulates are not satisfied'?
2. Suppose that el contains two`points.

(a) Does it follow from our postulates that e".contains other points?
What points must 7 contain'? Explain.

(Ii) Does it follow that r. mntains a line? May el contain three
noncollinear points? Must rc amtain three nonwllinear points?
Explain.

4e) Is each point of el: co4tained in a line'? Need there be more
than one rine containing a given point of 'el;? Explain.

((I) Does it follow that eath line of A is contained in a plane?
gxplain.

.

Dors it follow that contains a non-0 translation? May .7 con-
tain two linearly independent translations? Must .T contain
two linearly independent translations?

3. Suppoie-that 7 contains three noncollinear points. ,

(a) Does it'fbilow that contains a plane? Dors it folloW that each
point ,of is,-is.contained in d.plane? That each line of is con-
tained in a plane? That e. contains Jat least) two planes?

(e)

399

TC 399

There have been several indications especially in Part C
page 391 that we need to have postulates which specify the dimen-
sion of g. Even earlier [in Chapter 7], we discovered that without
such postulates we could not prove that each point belongs to a'line.
Difficulties like this last are taken care of by Postulate 49 on fage 400.
Difficulties like those in Part C are taken Care of by Postulate"-41.0 on
page 40i With these new postulates we have a complete basis for
3-dimensional affine geometry roughly, the geometry of incidence
and ratio for 3-dimensional space. Postulates to be adopted in volume
2 will make it possible to introduce the notions of distance and perpen-
dicularity anA, so, to develop Euclidean metric geometry.

Ln Part A we investigate several sets which, according to our
postulates, could be P. or 7. Our purpose in this investigation is to
demonstrate that there are features of the'true sets e and T which
.have not been specified in our postulates. Then we investigate some
alternate ways of specifying these features. We recommend that Part.,
A be used for class discussion. In this way, students will more easily
recognize the relationship betweeti the exercises and our treasons for
adopting Postulate 49. These exercises usually precipitate heated
discussions. When used for homework, the opportunity for such
spontaneous discussion is not present.

Answers for Part A
(a) T {d)-

.None. iput,(b)

(a)

this should be checked for each postulate. I
g must Contain all points of the line determined by the two
given points, but need contain no points other than those of
this line.

(b) Yes.; Yes, ; No.; If e is a line and 7 is its direction then
all postulates are satisfied.

(c) Yes.; No.; If P contains two points then, given any point
of g, there is a point different from it, and the given point
belongs to the line determined by it and any such other point.
However, g may be merely a line, in which case each point
of e is contained in exactly one line.

(di No.; As mentioned, 8 may be a line.,
(e) Yee.; Yes.; No.

3, a) Yes.; Yes,; Yes.; No. [If e is a pline and T is its direc-
tion then all postulates are satisfied.
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(b) Does it follow that J contains two linearly independent trans-
lation.4? Three linearly independent translations?

4. Suppose that rx' contains four noncoplanar points.
(a) In this context, would you give a different answer to any of the

questions in Exercise 3(a)?
(b) Flow about the questions in Eiercise 3(b)?

5. (a) It is implicit in Postulates 1 and 2 that neither O' nor Y is
empty. For example, from Postulates 1(a) and 2(a) we can infer.
'A 4- (13 - A) 4r; from this and Postulate 2(a) we can infer
'B e,t'; from this, '3, X t In a similar manner, prove E

(b) Can you infer the last more simply from another postulate?
6. (a), Suppose that .7 contains a non-etranslation. Show that thers

are [at least] two points. [Hint:Use ale contrapositive of + a
A a

(b) Suppose that there are two points. Show that there is a non-0
translation.

7. Show that there are, two linearly independent 'translations if and !

'there are thive noneollinear points. [Hint: If A, B, and C
are no collinear points, what translations do you know to be
linearly ndependent? Given linearly independent translations
a and 1;', h w can you describe three noncollinear points?]

8. Show that here are three linearly independent translations if
and only if t ere .are four noncoplanar points..

The preceding exer ses show that, as far as our present postUlates
are concerned, e,' need not be a very "roomy" space. K may consist of a
single point, or it may be a single line or a single plane. None of these
possibilities is agreeable with the aims in this course. As was sug-
gested on page 27, these aims are somewhat vague; but, at least, we
wish our postulates to describe as completely as possible some of the
aspects of the space around us. So far we have been able to show, for
example, that, given three noncollinear points of K, there are subsets
of K whcli satisfioat least some of.our intuitive notions of what planes
should be like. In particular, given three such points- it is not difficult
to,show that each point of ef is contai*in some line, and that each,
line is a subset of some plane. Given o ly three noncollinear points
there may, however, be only one plane. o be sure of enough space to:
move around in we need to be assured of e existence of at least four .

noneoplanar points. As we have seen,' one way to ensure this is to
postulate the existence of three line ly independent translations.
We do so by adding to Postulate 4:

ii 'Postulate 4, There are three I nearly independent
II members of Y.

99 1
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AAswers for Part A cont.]

(b) Yes.; No, /
4. (a), (b) In elach cAse, the answer for the last question should be

changed to Yes. '.
(a). B-AET A+S.Ee

b.
(b)

(a)

z- (A 1) A (A + - A E 1`,

3 - C T

Yes, .frOrn the postulate T'. [Al:so, from '13 A T'.
Suppose that a 0 0. Since A + = A = -(5 it follows

_

that ,A f a 0 A. Since A + i C e it follows that \
3 3 Y Hence 3-

Y X ' x d 3y 3x Y
(b) Suppose that A 0 13'. Since B A ,: (5 A B it follows

that B - A 0 d. Since B A E T it follOws that 3,_, - -.Hence, 3 3 Y 0 X =-. x xu. \Y X x
\

7. Suppose that {A, B, C) is noncollinear. It follows that
(B - A, C - A) is linearly independent and, so, that 3.3-1 3--); 07,3;1\
is lincaOy independent. Hence, 3x 3 37 {X, Y, Z} is ncii-y,-
collivar (,;), is linearly independent. Suppose that
(i,g) is linearly independent and suppose that A e,. Since
a I- -a") - A and .5 (A + - A it follows that {A, A +
A 4- b} is nonccillinear and, so, that ax 3y 3 X, Y, Z) is
noncollinear. Since., as indicated in Exercise 5, 3x X E g it
follows that

- i
3 , y) is linearly independent

3'X 3Y 37 {X, Y, Z i noncollinear.
8. [Vvrely insert extra letters in athaver for Exerci.se-

'noncollinear' by 'noncoplanaP.

Parts .1i and C make a
the introduction of Postulate
give at least two illustrationz
Exercise 1 of Part B.

TC 401 (1)

and replace

reasonable homeWon assignment to follow
49. We recommend, however, that you
cd_paragraph proofs appropriate for

Answers for Part B
1. Sineel/by 49, T has threelinearly independent members it

certainly has two linearly independent members. So, tas inExercise 7 of Part Aj, e hagi three noncollinear points.
Sinee e contains four, points [by Theorem 10-11, given\ anypoint of e, there is another. .Since, given two points, there
is a line containing them [The'orem 7-1], any point of e is
contained in a line. [Note that we can now be certain that{A, B, C) iaS coilinear, by Definition 7-1, if and only if A,
13, and C are contained in sonic Hie.)



10.01 Making Room-But Not Too Much 401

As is shown in Exercise 8 it follows that

II Theorem 10-1 There are four noncoplanar points.

lAs is alSo shown in Exercise 8, we might have chosen Theorem 10- 1
as our new postulate, and called Postulate 4, 'Theorem

Part B1
1, Give a short pagraph proof for each of these statements:

(a) There are three noneollinear points in (-4 .

(b) Each point is contained in a line.
,(c) Each line is a subset of a plane.
(d) NO plane contains all points oft.
(e)- Any plane contains at least three lines.
(f) There are at least six lines and four planes.
(g) 'Given any line, there is another line parallel to the given line.
(h) kiiven any plane, there is another plane parallel to the given

plane.
(i) Any plane has a transversal.

2. (a) How Many lines does anir plane contain?
(i16 ) How many planes doesX contain?
(c) Given any line, how many lines in ei are parallel to that line'?
(d) GiveiNany plane, how manyiplanes are parallel to that plane?

Part C
1. Suppose that a_ p, 0. Draw a figure, and complete these sentences.

(a) Since a ( a ) is
(b) If (a't asid A e 1) then A
(c) If (Wein and' 6.e HD then (a; 6) is
(d) If (a.e Ill and b.el11) then (a; IA is'
(e) Show a vector Ksuch that fa, b) is linearly independent.

2. Suppose that (a., b') is linearly independent. Draw a figure, and
compk.te these sentences.
(a) If ta.c l7r1 and 1;470 then =
(13) If 1.de Iv. and T; el7r) and A e Tr) then A + + 63)e

.If h., c 177-4 then (a; W,
(d) Desci-ibe a translation c'such that (a*, c) is linearly inde-

pendent.
3. The figure shows three lfnearly independent translations, a, b,.

and c: Copy the figure on page 402.
(a) Given a plane 7r, such that Er1J = ta, 4, is it thecase that c E

177,3?

(h) Suppose that I? is a point of .7r1 and that ir., is a plane that con-
tains R and has direction Then R n Iry Describe
three other points of fr; Iry

a.

IC 401 (2)

(c) By part (a), e contains three noncollinear points. So, given
any line in E, there is a point of E not on this line. By

'Theorem 9-4,,the given line and any such point are con-
tained in a. plane.

(d) By Theorem 10-1 there are four noncoplanar points. Since
no plane can contain all of four such points, no plane contains
all points of e.
Any plane cOntairis three noncollinear points and, by Theorem
9-1, any two of three such points are contained in just one line
'and no such line contains all three points. Since three pairs
can be chosen from throe objects, it follows that any, plane
contains at least three lines. This theorem does not depend
on 49.3 . .'

(f) Since, by Theorem 10-1, there are four noncoplanar points
and any three of four such points are contained in a plane, and
no plane contains all four points, there are at least as many .
planes as there are triples which can Ile chosen from four
objects. So, there are at least four planes. Since no three of
four noncoplanar points can be collinear, any two of four non-
collinear points determine a line not containing the other two.

I Since six pairs can be chosen from four objects, there are at
least six lines.

(g) Given any line /, there is, by part (c), a plane containing 1.
This alae containaa.point not on 1. If A is any such point
hen A[t) II 1 and A[1] 0 1.

(h) Like answer for part\(g), but use part (d).]
,\

(i) Let A be 'any point of the giyea.alane. By part (d) there is a
point not on this plane. Then AB is a transversal of the given

. plane.
2. [For each part, an acceptable answer is 'infinitely many'. ]

(e)

Answers for- Part C
1.

3. (a) No.

(b) [Vx +

(a) linearly independent
'(b) I

(c) linearly dependent
(d) linearly independent

(a) [a., 5
(b) A

(c) linearly dependent
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,

A

(c) Point A is shown in the figure. In your copy, show the position
of the point A + (a" + b + liAd label it

(d) What oan you say about tiience (CZ b, c, B A)?
(e) Can you visualize the posaimi 9f a point C such that (a, g, c,

A) is linearly independent?
4. Given the linearly independent sequence and a point A,''

consider the planes Ala, 1;1 and Ale,
__,

(a) How do you knoW that Ala, bl is a plane?
(b) Do A In, and Alc,, di have a paint in common?

(c) How many points do Ala, b) and Ale, di have in common?
5. Suppose that A s 77.,, a÷, WI, and I ctl. Show that

n n, = {A if and only if (Ci, c.,.d) is linearly independent.
6. Suppose, iiven the linearly independent sequence (a, b*, d) and

the point A, that 1 - Afal and n. (A + Ab*, c.
(a) is 1 parallel to rr?
(b) Do / and 77 have a common point?

,7. Consider a line I and a plane 77, where 1 = Ala.] and n 13112,

Show that if / r and I n 77. = 0 then there are four linearlyinde-
pendent translations. [Hint: You know that (g, C-7 is linearly in-
51ependent, that a-f0 cl (Why?), and that B - A 4W hy?) .1

8. Modify your work in solving Exercises 6 and 7 to show that there
exist nonparallel planes which have no common point if and only
if .there exist four linearly independent translations. [Hint: In
Exercise 7, consider planes d BEL., cf.] and show that some
four of -rie, I); c, it, and B be linearly independent if the
planes are nonparallel and ave no common point.]

As is shown by Theorem 10-1 and-perhaps, better-by Parts (g),
(h), and (i) of Exercise 1-of Part B, Postulatia 40 ensures that e is roomy
enough for us to move around in. In short, Theorem 10-1 may be
taken as asserting that

e' is at kasi

It is customary, when dealing with vector spaces, to say that a vector
space is at least a:dimensional if and Only if it has at least n linearly

Answers for Part C ['vont.]

3. (c)

IC 402(1)

13+ Z3
1-c3

'

(d) It is linearly dependent.
(e) No. [Unless you can visualize 4-dimensional space.]

. (a) By Theorem 9-14.1(a). For, since (1,11,C., a) is linearly inde-
pendent, so is (a, 5).

(b) They have the point A in common..
(c) Only one, ttie point A. For, suppose that B belongs to both

planes. Then thereare_numbers say,a, 1:22 c, and d
such _that 13 - A= aa + bb and B - = 4c + dd. It follows
that aa + bb = cc j- ad and, since (a,j1, c, a) is linearly
independent, that a= b=c=d= 0. So, B = A.

The if-part is provedin the answer for Exercise 4(c). Suppose,
then, that /3. n 5.2 = IA).,Supkose, now [to test tor linear inde-

.

pen kdence that aa + gb = cc + dd. It follows that P, where
P = A + (aa +11b) = A + (4, + ad), belongs to nboth plaes. So,
P= A and Za + gb = .6 = cc + 4d. Since (1, i3P) and .(CP, J)'t*re
linearly indetendent it follows that a = b. = 0 and c = d = 0,
Hence, (1,g, c, a. ) is linearly independent, [Note that it has been
proved that there exist two planes which intersect in a single point
if and only if there are four-linearly independent translations.
Combining this with the result,of Exercise 2(a) of Part C on page
391, it follows that there exist two planes whose intersection is
neither 0 nor a line if and onl if there exist four linearly inde-
pendent translations.]
(a) Since 044, t,CP, 4) je lineirly independent, so is (1.,ii, C.). So,

a f/iiill, c ] and [a ] c/ [b, c ]. Hence, 1 if 7.
(b) If Pfin ragien there are nuRbers say, a, b, and c --

such that 13.11 ,A + la = LA + + (13b -4- cc).- From this it
follows that 1.a = Al + gb + -L and, since 1 it 0, that (IA i.,a).
is linearly dependent. Since the latter is not the cane,
I r i .7- . iThe answer to the question is ' No,'.

5.
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Answers for:Part C7-;[cent.1

7. Sup Poet- that 1,4 7 and 7 A. It follows that .11 41, ,[7i and,
sd that 1 [ g, c . Since [ 5,, Z.:* ] is1a bidr,ection, jb s linearly .

mdent and it follows by Theorem 67/3 that (a, b, c ) is
indei>end'erit. If 'Bu:- A E [a, b, c I then B plus some linear

n of g find c would,equal A plus some multiple of ,a
t described in trither of theae,e9uivalent ways would

.

c

belon.e tooth r and I. Since there is nu Such point, B A c
-SiAce .("albsre); is linearly independent it follows, by TheoVem 6713,
thAt B A). is linearly independent. So, there are four
linearly independent translations: [Note that it has been shoWn in .

Exercises 6and 7 that there exist a line and a plane which are not
*parallel and do 'not intersoct if and enly if there are four lieearly
independent translations.]
SupFose that (b. c, ia) is linearly .0(A:::fendent. Sin e 8) and
(8, c) are linearly independent, A[ a, hi and (A + J') h, cl are- "ra.,p1;irws. Sir.ice. (a, c) is linearly independent, 000 a, b ] and,. so,

g 1 [b, c 1 and the planes are not parallel. If the planes had
point in common then.the're_would be numbers sax, a, b1, b2,

and c such that -A, + (aa + 81)1) (A + 31) + (8b? + cc) and,
since 1 A V, (.1,1;;, c Woule ,be linearly dependent. -Since the
Ia er is pot the ease, the planes have no common poiet. Hence,
iflhere exiSt four linearly independent translations then there
exist two planes which neither areparalle( nor have a common ,

point.
'Suppose, pow, tha't r and cr are planes such that f cr and

or (-\ g. :We may, of eoerse, assume that 47 At a, b1 and_B[c, dJ, where (a, b) and (c.k) are linearly indewndent.
Sinc..e r o- 0. it, follows that 13 - A c, al. Since 7T 4 I:l-

it follows that [a, 8 *..[ c, Since (i'7, c) is linearly independent
* it follows by the lemma to TSeoreen 9-1 thet a} [g,g}.
vs, Supoeee that c b 1. Since (a,b ). is linearly independent it

" follows, by Theorem 6-13, that (S,1;:c') is linearly independent:
B [ agh, c 1 it follows, by Theorem '6-13, that

g, c, B A) is' linearly iredependent. So, if 'j ire', 1; I then-
c.41.3 - linearly independent. Similarly, if A ( a, b ]

then (a, g, a, B A') j.s linearly independent. Sirice,,, Ag; shown.
previously, one of c and a muse fall to belong to a, 8 ], it
follows that there exist four bilnearly independent translations.
Hence, if there exist- twq planes which neither are parallel nor
hea4e.a cornrnon point then there exist lour linearly independent

,
r a ns atne
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_In discussing this page make sure ihat students are aware of the
equivalence, as a postulate, -of Ristulate 41, and.,any of;

r iqo two planes intersect .in a eingle point.
[See note to the answer for Exercise 5 of Part C.

Any line ahd plane either are parallel
or have lat leaSt1 a point in eommon.

[See note to the answer for Exercise 7.1
Any two planes either'are parallel or
have at least] -a point in cammon.

Point ou4that, in.p7irticular,- having adopted Postulate 4, each
of these three sentiences is,' now, a theorem, ,[Their 'proofs are given
n 'the answer for in the answer for Exercise 7, and in the

second part of the.answer for Exercese 8, respectively.]
,Next, point out thet the first of these three theorema And the result.

of Exercise e(a) of Part C on page 391 have, as an imrriediate
consequence:

The irile-rsecti ytwe planes
is either empty inc.

or, equivalently:'
Two planes which Itave,a point in cory-
mon have a line as their intersection.

TC 404

gairi, because of the discussions usually preeipitapd by the
exercises, we recommend Part D as class discussion exercises.
Pa rt, E and 1' provide a homework assignffient to callow Such
discussions.
Anewers for Part p
1. (a) 2

(c) 2; dimensional; vecto-r;.:apiwe,
Yes.; Such a subeet is call*iet. ;kw'

most; 2; dimensional

. .

er b direction.
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independent members. So, .by definition, Postulate 49 can be abbrevi:
ated to:

is at least 3-dimensional.

On the other hand, postulate 49 puts no upper limit on the number
of linearly independer4 translations. As a consequence of thistur
present postulates allow tbr the existence af planes-which intersect at
a single point, of a line and a plane which have no cvmmota point but
erre not parallel, and of skew planes. As far as our intuitive notions
of e go, there should not be room enough in 'eA- for such situations to
occur. According to Exercises 4-8 of Part C, ruling out any of these
possibilities arnmints to adopting:

Postulate 4:0 _There are not four linea4
independent members of ,7;

By the definition mentioned in the preceding paraguph, ifostu-
late 4,0 amounts to saying that it is mitkthe case. that ,(7 is at least
4-dimensional. More simply:

DIMENSION

Two parallel planes
no points in common

Two nonparallel planes
must intersect

S.

' Fig. 10-1
The first and third of these may, in view of earbcer theorems, be corn-,
hined into:

Theorem 10-2. The intersection of two nonparallef planes
I is a line.

Note that Postulate 4 isiequivalent to:

Any four members of i ait linearly dependent.

Since Postulates 49 and 4,0 amount to saying that .`) is exactly
3-dimensional we may summarize Postulates 4° - 4,0 in:

0
J' is ( mosi 3-dirhensional..

Il

Postulath4 f, under.function composition,
is a 3-aRmensional vector space over M.

As was.shown by Exercise 5 we might have adopted the folowing
theorem as a postulate in place of Postulate 4,. [Postulates 4,, 49 are given on page 191 and are summariZed suc-

cinctly in Postulate 4" on page 191.] As the ' suggest's, w8 ;hall have
No two planes' intelsect in. a single point. another bunch of parts fo include in our final Postulate 4. These will

be introduced in the second volunre. 40.
Other alteenatives to Postulate 4,0 were suggestd by Exercises '6.
and 7: Part D

A line which is not parallel to a given
plan contains a point of that plane.

[or: A line and a plane:which hEive.. no common point are parallel.]
and by Lercise 8:

Two nonparallel planes have a nonerapty intersection.
4

*far Two planes which have no point in cemmon are parallel.]
'Any of thpse alternatives to Postulate 4 may be taken as asserting
that

<is at inost 3-dimensional.:

9 3

Suppose that, instea of adoptink Postulates 49 and 4, we choose
to adopt the following statements ais postulates:

(1) There are two linearly independent members of :T.

(ii) -Any three members of ..(7 are linearly dependent.

1. (a) Statement (i) tOls us that our space is at least _.--dimen-

(b) Statement (ii) tells us that our space is at

(c) Statements (1) and (ii) can be summarized as follows:
,

.7 is a -

2.. DO you suppose that our 3-dimensional vector space ,(7- has a sub-

set which satisfies (i) and (ii)? If so, do we have a nanie for this
kind of subset?
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3. Under the assumptions, made for this part, how mightyou describe
t.? Which of the following would you expect to be theorems?
(a). There are four noncoplanar points.
(b) There are three non4;11inear points.
(c) Each two points are on a line.
(d) Given any line, there is another line parallel to it.
(e) Two lines have at most one point in common.
(f) Two line's can have different directions and still not intersect.
40 Two lines are either 'parallel or they intersect.

4. Give a reason for rejecting any of those statements in Exercii;e 3
which you'did not select as possible theorems. \

1. Repeat Exercises 1 and 2 of Part D with (i) and (ii) replaced by:

There iaa non-0 member of .

Any two Members of are linearly dependent.

2. (a) Write statements similar to (1) and (ii) of Part 'D which, to-
gether with Postulates 4 40, can be'summarized as: ,

(*)
7, under function comAition,
is a 4-dimensional Vector space.

(b) Describe some of the "peculiar" situations which woad- occur
in O' E Postulates 1 3 and (*) were satisfied.

(e): Give e or the numbered.theorems in this and earlier chap-
-- ters whi wouldnot be theorems if Postulate 4' w replaced

by (*).
3. (II) Show that the direction of a line is 1-dim onal vector

space.
(b) Show that the direction of a, plane is a 2-dimerilional vector
e space.

, .

part F
1. (a) Consider thw plane oily [so, 10, (JSI is noncollineart Show

that . .

+ (U - 0)p + (V 0)q = 0 + (U - 61)r + (V - 0)8
if and only if p = r and q = s.

lb) Consider the plane 0(u, Aso, (ii,74) is linearly indetendenti.
State And prove a.result similar to tad of part (a).

(c) What do the results of' parts (aT and (b) tell you about a plaRe
and the set4 x of all ordered pOrs of real numbers?

(Id) What analogous result have you previously estabfisthed con-
cerning lines?

Answers,for Part D [cont.]
3. ' Under these assumptions e ie. a plane. Staternents (b), (c), (d).(e) and (g) are theorems. [In fact, (c) and (e) are, as we have

shown in Chapter 7, independent of any postulate of dimensionality.]
4. By Exercise 8 of Part A on page 400, (*a) of Exercise 3 contra-

' diets assumption (iii. Statement (f) contradicts (g) which, by (ii)
and Theorem 9-7, would be a theorem under the present assump-
tions. Moreover, by the method used, in the second part og the
answer" for Exercise 8 of Part C on page 402, it could be proved
that (1) implies the eicistence of th-ree linearly independent
translations.

Ans,wers for Part E
1, The assumptions considered in this exercise tell us that e is at

least and at most 1-dimensional. They can be suinmarized as
follows;

IC 405 (1)

4
T is a 1-dimensional ctor space.

Our 3-dirn,ensional vector space,.T has many 1-dimensional sub-
spaces. We haVe called them proner directions.

2. The reJ# four linearly independent members of T.; Any five
members of T, are linearly 'dependent.

(b) If (*) were added to Postulate 1-3 [and 5] then, as proved.itk
the exercises for Part C, there would exist pairs of plane,s
which have exactly one common point; there world exist lines .;
and planes whith are not parallel but dio not intersect; and
there would exist skew planes. e would contain 3-dirnens1onal
"hyperplanes" [defined in analogy With Definitions 712 and
9-21 which would have'many of the properties which plaries
have in our 3-dimensional space. For example, two 94ch
hyperplanes would 'be parallel or have a plane as their inter-
section. A hyperplane would be ,determined by' four nonc6planar
points, by a ,plane and,a line tr-ttna.u.vse toit.". Each hyper-

.
plane would be "just like" the -dlnWgnl space vie are
studying and, for example, lb analogy with rem, 9-7, we
cotad prove that tWo r;onparallel 01-apes contained in ihe Same
hyperplane intersect in a line. [11,11 fact, the proof would be
'precisely that of Theorem 10-2.

(c) Of cou'rse all the theorems of earlier chapters would remain
theorems. Theorem 10-1 would also be a theorem, but
Theorem 10-2 would not. [What would takez the plice of
Theorem 10-2 has been indicated above.1

3. That, for any and g, [Z] and [a+, g] are vector spaces has beed
proved in Parts A and 1$ on pages k92. and 193. It remains only
to be shown that if 0 then US.] 1-dimensional, and that a

is linearly i,ndependent then [ a, -I; I is Z-dimensi9nal.
,

Supno hat ie. # ?5, Then (;) is linearly independent arnd
a e , [1], is at least 1-dimensiona14 Supposing, n
that .(15, ) [ a J, we need to show that kb, c) is linearly
depettdent Tflis is obviouslythe case if b d. On the
hand, it thttn [1] = rig I and since E'E [a] l [113,14,
is linearly fiendent.; So, is at most 1-dimensional.

(a)
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Answers for Part E [cont.]
(1) Supaose that (a, b) is linearly independent. Sitice(a, b) C: [a, b J it follows that [a, b j is at least 2-dimensional.

On the other hand, by Exer,cise 3(b) of Part D on page 384,
[ 1, .131 is at most*Z-dithensional.

Students.wbose interest in 4-dimensional space is 'aroused by, say,ExerCise 2, may consult H. P. Manning, Geometry of Four Dime-rTions,Dover, 1956. [But, they will find it tough going. I See,,also,D. M. Y. Sommerville, An Introduction to.the Geometry of NDimensions, Dover, 1958.

Answer4 for Part_F
I. (a) [Compare .with Theorem 7-15.] Suppose that

(*) 0 + (U O)p + (V - O)q = 0 4- (U - O)r + (V 0)s.
,It follows that (U - 0)(p r) + (V 0)(q s) 6. Since{0, U, V) is noncollinear, (U - 0, V - 0) is linearly inde7
pendent. It follows that p r 0 z s. Hence, if (*)then p r and q s. On the 'other hand, (*) holds trivially ,if p r and q s.

) .
(b) [Merely replay in the preceding by and'(V - 0)' by 'v', and delete the sentence begi,nning with'Since'.
(c) Corresvondink to any 3-termed sequence of noncollinear pointsof a plane there is a one-to-one correspondence between the

points of the plane and the members of X 1.?. [By (b), insteadof three points, o.ne may 'start with one point of the plane andtwo linearly independent members of the direction of the plane.)
(d) Theorem 7-15.

a

41.

4

p.

,4
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2. Suppose that {0, U, V, W} is noncoplanar. (Draw a figure.]
(a) Is there a point-say, A -suclithat A is not a linear com-

bination of U 0, V 0, and W - 0? Explain.
(b) State and prove,a result analogous to that of Exercise 1(a).
le) Formulate Mid answer a questionlike that of Exercise 1(c).

41

intersettioni

Now tbat we have postulated that .7 and, hence, -,7 is 3-dimen-
sional we are in a position to tidy up some of the theorems on lines
,and pkaages which were proved in Chapter 9. [You have already done
'Mucli of the necessary wo'rk in Part C,rof the preceding exercises.]

Ilefore doing this, let's recall a problem which arose in Chapter 7
in connection with col l inearit3Naving defined 'collinear', by referring
to wilinear poknis, we wishea'teNmake sure that

if {A, B, C} is cAinear thenvthere
is a line which contains A, B and C.

This was easy to do in case A B. [In that case, .*.g. is a line which
oOntains A and B and, if {A, B, CI is collinear, also'contains C.1 The
cases in which B C and C A are, of course, treated in the same way;
butt,that in which A = B C,could not be settled at that time. You &In
now see why. Use the notion of dimension to do so. [Hint: Re:call Exer-
cise 1 of Part A on par:399.1n the context of this exercise, what is
the dimension of ''?] We cab now settle the.matter by proving that
each point belongs to some line. [Which of Postulates 40. and 4,0 is
useful in doing thie]

You may hbve thtreight of atimIlar probleM involvingipplanar' and
'plane'. Suppose, that. {A, B, C, D} is coplanar. Does it follow that there
is a plane which contains A, B, C, and) D? As in the previous case,
it is easy to see that there is suh a platie in case {A, B,C1 [or {B, C,

.,D}, or {C, D, A} , or {D, A, B}] is noncollinear. One way to complete
the argument is,,to tilhow that M the remaining case there is a line
which contains A, B, C, and D, and then .to show that each line -is a
subset of some plane.. Do this.

The last theorem'Eaah line is a subset of a plane.' has another
application. Reeall that 'W`e were able to show-that two parallel lines
are coplanar. But, up to this point we could not have. proved:

1, II 12 i- 1, and /, are coplanar

Explain:
The preceding problems are not very exciting. The more interesting

problems are th6se whose solution requires us to 1sume that there
is not too much nom in e. The question aS to whether gr' contains skSw

2.

4.
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(a) No. Since fo, u, V. w) is noncoplanar, (U 0, V 0, r
W - 0) is linearly independent. By Postulate 410,
(U 0, V 0, W - 0, A - 0) is linearly dependent. So,
by Theorem 6-13, A - 0 [U 0, V 0, W 0].

(b) For {0, U, V, *} noncoplanar,
+ (U 0)p + (V 0)q (W 0)r

= + (U 0); +. (V - + (W - (3)u
if and only if p = s, q t, and r u.
[The proof is too like that given in answer to Exercise 1(a) to
bear repetition here. ]

(c) Given any 4-termed sequence of noncoplanar points, there is
a one-to-one correspondence between the points of g and the
members ordered triples of real nurnbersj of ft X it X R.

As shown in Exercise 1 on page 399, in the absence of dimension
postulates 8 might consist of a single point and the dimension of e
would then be 0. ,If so, it would not be the case that each point of e
belongs to a line, Postulate 49, however, makes it possible to show
that each point of e belongs to a line. A weaker postulate

would do as well, for this purpose.
The proof that if {A, B, C, D} fe coplanar 4nd {A, B, C] is non-

collinear then there is a plane which contains'A, B, C,. and D can be
caikied out by using definitions and Theorem 6-13, In case each of the
Lets {A, B, C), {B, C, D}, {C, D, A) and {D, A, B} is collinear,we
prove that {A, B, C, ID) is a pubsei of a, HA by considerin'g two
cases that in which two of A, .B, C, and D are different and that
[treated above] in which A = B = C = D. .If, far examOle, A * B
then, by definition, C and D [aswell as,A and'13] beicnig to the*line
rs because {A, B, C) and {D, A, BL) are collinear. 2'hat each line
is a subset of a plane is Exercise 1(a) of P4krt 13 on page 401.

The proof of:
H =.? /1 and /2 are coplanar

is treated in tWo cases. In'case it 12 use Theorem 9 -6, In calks(
= 12 use .icercise 1(c).

4

9
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planes is an orample. As w aye seen, this is settled by Theorem 10-2
which is, essentially, Nut alent' to Postulate 4,4,, In view of this
theorem we can restat,the theorem you proved in Exercise 4 of Part C
*on. page 392 as follows:

Theorem 102'3 A line which is parallel to
each of 6,wo'nonparallel planes is parallel
to their intersection.

Fig. 10-2
Hen is andther theorem which depends essentially on the assumption
that e is at most 3-dimensional:

Theorem 10-4 A line and a plane which are
It not parallel intersect at a single point.

This theorem has two useful corollaries:
.1

11

Corollary 1 A line which is a transversal
of one plane \is a transversal of any
'parallel plane.

Corollary 2 Parallel lines are transversals
\ of the same planes.

4

[Notice in what way these' corollaries are stronger than the results
used in proving Theoreni -15.1 We can also beef up Theorem 9-14:

Theorem 10-5 A plane which intersects one
of two parallel.planes intersects the other,
arid the intersections are'parailel lines.

Fig. 10-3

9 9 °t,)
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In proving Theorem 9-17, we asSumed that a given line was a
transversal of each of certain parallel planes. By Corollary 1 it
would now be sufficient to assume that the line is a transversal of oneof the planes. We also had, to assume that a line parallel to the given
transversal ints.rsected one of the planes in order to show that it was
a transversal ot each of them. Now that Corollary, L is available this
assumption is no longer necessary.

That neither of the corollaries to Theorem 10-4 holds if, contrary
to Postulate 410, there are four rinearly indepeudent translations is
,casvsto prove. For, if *134...cj) is linearly independent and A c e thenALI] a tvLr8al of ..A[b, ci which does notintersect the parallel
Elane (A f )[b, c J [if it did, some multiple of a would be the sum of
a and some linear combination of 11 414...c, contrary to the lineainde-
pendence of and, while At a] is a transversal of A[E,
the parallel line (A + ) a is not [if it were, the sum,of a and some
multiple of a would be a linear combination of b and c 3.

Theorem 10-5 is not quite correct, since it leaves open the possi-
bility that the first-mentioned plane might be the first of the two parallelplanes.

5.

a



'Final ly,-we can now settle two questions brought up on page 390:

Theorem 10-6 (a) a 11 n- (0- Tr Or o- fl 0)
(9) 41171- 4-. (1 C ir or I n ir = 0)

!Compare Theorem 10-6(a) with Theorem 9-8 7 which we could now
rewrite as:

1 II rn (1 and rn are coplanar and t/ = rn or I n m = 0))

Do you see the effect, on Theorem .10 -60a), of Postulate 4,0?l
Proofs of Theorems 10-2 through 10-6 can be obtained by putting

together results you have already proved. As indicated by the hints
for some of the tbllowing exercises, it will be a good idea to repeat
some of the work you have already done. .1 .

Exercises

1. (a) Show that the intersection of two planes which have two points
in common is a line.

(b) Show that, two planes which have one point in common have
another point in common.

(c) Show that two planes which axe not parallel have a common
point.

(d) Prove Theorem 10-2.

1 H int: For part (b), show first that planes Ala; 13) and Alc, di have a
point Other than A in common if and only if (7..414.,--c; V) is linearly

dependent. For part (c), show that Ala, e) and BIC.; dl have a point
in common if and only if B A sla.,v,-c.,11. Next, ,show that if
(e,W) is linearly independent and [c., (I],t la, 1)1 thenri. ancl-a.do not
both belong to [a:4. Conclude that if la,b) and V, 4 are two proper.
bidirections then either (a*, or (c-414, 4 is lin,earl independent.
Show that, in the first Case A E c, af) and, in the
second, -AEfab,dJ '-- la, b*, CP, VI.1

2. Pi love Theorem 10-3. lifing-liere a reference to Theorem 10-2
and an earlier exercise may be suifighlt. If you havedoubts, re-
peat the work of the earlier exercise.)

3. Prove Theorem 407.4. [As Exercise 1(c), your principal tool is
tli-efact that if a 0)6; 0, where (-6*,-0 is linearly independent, then
(a, b+,7.. is linearly independent. What theorem tells you this?)

4. Prove Corollary 1 of Theorem 10-4. [Hint: It is helpful to realize
that a line is a transversal of a plane if and only if the line and
plane are not parallel. One part of this is Theorem,10-4. Where
did you prove the other part?]
Prove Corollaty 2 of Theorem 16-4.

Taking into account results obtained in Exercise 1
page ,390, what remains to the proof of Theorem 10-6
of:

.(a) = pi

(b) I 7r 0 1 H 7r

As noted on page 403, each of these can
by the use of Postulate 41.

of Part B on
are the proofs

[and, in fart, has been] proved

Theorem 10-6(a) is analogous to the displayed farm of Theorem
9-8. But, beCause of Postulate 410 there is no need in Theorem 10-6(a)
for a clause analogous to *1 and rn are coplanar'. There would be no
need for this phrase in Theorem 9-8 ifk in place of Postulate 410, we
had assumed that there are no three linearly independent members of T.
On the other hand, the analogous clause, 'ir and r are cohyperplanar',
would be required in Theorem 10-6 if Postulate 410 were not assumed
to hold.
Answers for Exercises

(a). By Theorem 9-3, two planes which have two points in.corlunOn
have the line determined by these points as a subset of their
intersection. By the corollary to Theorem 9-1, the intersection
cannot conta41 any other Roints.
We_py assume that the planes in question are A[ a, b ] and(b)
Arc, By Postulate 410, there are numbers say, a, b,

and d which are not all ze.re and afe such tbat
aa + 51D = -*cc + L. Since (4a' 5) and (.;', a) are linearly inde--.pendent it follows that aa + bb 6. [if it were '6 then a, b,
c, and d would all be 0.] Hence, A + a + 512 is a point other
than A which is common to the two planes.

(e) We may assume that the planes are A[a, b ] and T,T,"2.7],
where [a, J ree, I. Since (1", a) is linearly independent it
follows 12y_the lemma to Theorem 9-1 that either c V[ a, b]
or fi[a, b ). Since (1,5) is linearly independent it follows,
by Theorem 6-13, that either (a,5, c) or (a, 5, a) is linearly
independent. In the first case, since it follows by Postulate
410 that ja,b,c, B - A) is linearly-dependent, it,follows that
B - A f [a, 5, ]. so, B -plus some multiple of c, is the sum
of A and some linear combination of -1 and 11. In other words,
the planes have a common point. The second case that in
which (-S,r), a) is linearly independent leads to the same
conclusion, Hence, two nonparallel planes have a conunon
point_ ^

(d) Given two nonparallel planesis these planes have a common
point, by (c), and so, by (b), \have two comrnon points. Hence,
by (a), tfieir intersection is a line.

By Thoorem 10-2, two nonparallel planes intersect in a line. By"
Exercise 4 of Part C on page 392, a line parallel to each of two
such.planes is parallel to their line of intersection. [Rather than
Theorem 10-2., it is sufficient fo refer to Exercise 1(c), , above.
Doing so will better bring out the relation of Theorem 10-3 to
that of Exercise 4 on page 39Z ]

ge'
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Answe ri for, Exe rcises [cont.]
3. Wevz.i4y suppose the line ,ind plane in qui;stiOn to be A[ a J and

B[b-, t.j, where (a I / [g, c and, so, a c 1. Since, also,
(11,C) 'is linearly independent,,it follows, by Theorem 6-13, that

is 1,Fiea rly Independent. Since,. by Postulate. 41o,
(a, I."), c, B A) is linearly .dependent it follows, again by Theorem
6'1 that 13 A

, b, c H Hence., the sum of B and scpeive
member [ bJ is the_siip_of A and s'orne mvmber of [a]. In°the wo e4ds , A [ a and B[b, 1 thive a common point. If they had
two points ill common t1hen, bY Theorems 9-3' and 9-1, the line
would be a subset of and, so, earal. l1 the plane. Sincethe latter is lot the case, the line and plane intersect at a single

4. By.Theor..rn 10-4 a line which is not parallel to a plane is a
t.ransyersal of that plane. Oil the other hand, a line Whic h. is a.
transversal to a plane intersects the plano,but is not a subset of
it .and so, bY Exercise 3'(c) of Part on page ign , is not parallel

the plane. So, to prove Corollary I wPmust show,that a line
which is not pi4rallel to.,. plane is. also, not pa'rallel to any parallel
plane. But this i equivalent to the result of Exercise 1(1) of Part
B on page 390 . [CorresporMing sentl.nces of the formslp and q) r and '(tiot r ;end q) not p' are logica ly
equivadent.
i! H n a.ral / 7 then nsi / r. See Exercise 1(e) of Part B onprige ion .1
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6. Suppose that cr 0 [and that a- * I'd and that 71.., 1. tt
follows that a 14 77-1. and, so that ir So, .by TheOr!'end 10--a,
cr (Th 71 and cr /Tht7r:.are lines and, tiy' Theorem 9-16, are parallel;

'7. Using ,results of Exercise I of Part ,11 on page 390 [specifically,parts (g.), .(I), and (j)1 all that remains is to'iprove:
(ar\ ,N 0- 1 TT

(b) (Th n. II 71

It .wil'l be simpler [and sufficient] .to prove the contrapositiyes of(a) and (b). The clintrapositive of (a) is an,imthediate Oonse-
quence of Theorem 10-2. Th.it of (b) is a consequence of Theorem
10-4,

-
A sequeonce (.1,...,a,f) of mewbers of a vector spcNs said to

s,pari the space if 4rid only if each member of the space is, a Ntnear
combination of terms of the sequence, The' sequence is called a basis
for the space if and only if it spans the .space and is linearly independent.
Intuitive.ly, then [and also formally]. a basis is a spanning Sequence
without redundant terms.

Part A and the text leading to Definition 10-1 can be used topromote class discussion of the idea of a basis. Parts 13, C , and ,b'can be used as a single hothework assignment, but it is unreasonable
to halie eiteh student do each of the exercises in Part D. Instead, eachstudent can work all exercises of.Parts 13 and C and then students canteam up for Part I), with e.ach team preparing"and presenting the dis-cubsion for just one of.the exercises,.

Answers for Part A
1. Yes. Any sequence with repeate21 terms is inearly dependent.

"Theorem 6-3(b)]

No. 'Any sequence with 6 4s a term is linearly dependent.
[Theorem 6-3(a)] - a.

3. By Postulate 4101 (al, a,a3,b) is nnuarly dependent.
4. Yes, by the definition of-linear dependence.
5. If d were 0 then, since 1>0 .6 and (a-i, a'.3) is linearly inde-

pendent, it would follow that i, b. and c arc, aluo, 0.-.6. Stnce, by Exercise' 4, a 1 a + + a c + d and, by Exercise, 3
5, d * 0, it follows that '4; = a

1 (-a/d) + 3.2(-b/d) + a3 (-C/d).
here exist numbers x, y, and z such that '.13.

7. Yes, for t'ete conclusion, in Exergise '6 made no
properties of the translation b.

8. T

9. Yes.; a

-
a..1x + a2y + a3z.
use of any specfal

's
.

a 3C (a 1 2)(a/Z) + (a 3)(b/3) + (+3 -1) -e
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6.. Prove TheoFem 10-5.
7. Prove Theorem 10-6. [Ili, of this has been done on

page 300.1

10.03 Basestfor../.

hi this chapter, we 'have postulated that7 glere 'are three lineafty
indePendent 'translations, and that any four translations are linearly .
dependent. This. and .the postulates that tell us that is a vector
space combine to give us:

iS a 3-dimensional vector space

We shall now investigate some important properties of the Alimen-
sional treetiwspace .

Exert.ist44

Part A
Suppose that ta,, a, ad is linearly independent.
1. Does it follow that al, (2,, and al are three vectors? Explain.

. .
2. Can any of the vectors a ,, a, and d., be 01? Explain yotir answer.
3. Suppose that h E 1. What can be said of (a a2, bl?
4. Based on your answer in Exercise 3, are we justified inotating

that there are numberssay, a, b, r, and d not all zerb, such
that a,a (1,b + + hd = 01? Explain your answer. ,

5. Show that the number d of Exercise 4 is nOt zero.
6. Using the results of Exercises 4 and 5, show that there are num-
' bers x y, and z such that .

x + +

7. Does it follow from Exercises 4, 5, and'6 that each vector in j- is
a linear com4ination of av a., and a3? Explain your answer.

P

S. Witat is another name for fat, i, cial?
9. I; each vector in ,(.7 a linear combination of a,2,-43, an i; 1?

Explain your knswer.
10. Suppose that a 0,1) 9L 0, ana c 0. Prove that 1a,---ti,h,6 =

--P - -0
1 1 . Prove that ekh. translation is a linear combination of cr2, and

a - a
;

In the preceding exercises we have founcrthat each translation is a
linear combination a any three linearly independent translations.

TC 409 (2)

Answers for Part A icont.13
4 ?

-10. Any linear combination, of a a b
,and as c is a member of 'T.

For the rest, it is suflficient [by Exercise 7] to prove that if
x*,-;,g,.4) is linearlhAndependent and a 0,. b #.0, and c a

then (aia, a3c1) .is linearly independent. Suppose, then, (that
-

(1a)d f (a;,b)e + (-S3c)f (1. It follows that 11(ad) +
+ d and, supposing that (gi,g;. is linearly independent,
that ad -, 0, be = 0, and cf 0. Assurninethat a b, and are
nonzero, it follows that d e= f = 0. So,. under the indicated

,rassurriptions, (11a, -S3e) is linearly independent.
11. s in Exercise 10, all.that 'needs to. be shown' is that if ("Fli,"-aP.2,

is linearly inde.pendeni tt;en so is ). Suppose, then,
tilAt ia + iLb + = (3, It follows that a1(a c) + -S2b'

r and,*assuming (,;., 3:3) line-arly independent,
a - c b c = 0. It'follows at once that a = b = c = 0.
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Whis result is a consequence of Postulate 4, and Theorem 6- 13.1 In-
4koducing a word which is often used in discussing vector spaces, we
may state this result as:

Each 3-termed linearly independent
sequence of translations.spans ,/ I.

[Similarly, as we notrd long ago, any bidireCtion is a vector space
and, as -we .proved mote reoently, such a vector space is spanned hy
any linearly independent 2-termed sequence of its m'embers. (Locate
the references referred to by 'long ago' and 'more recently'.)]

There are many sequeRces which.span .")- but which are not linearly
independent. For example, if ai, 021 aa, and a, are translations such
that (a,, a,, q) spans ./ then so does the sequence (a1,a1, q, 'ad. In
fact,, it follows from ( ' ) that

a sequence of translations span.%'./.- if it has
a 3-termed linearly independent subsequence.

4[Explain.] .
Having a sequehce of translations which spans we know that

each translation.is a linear combination' of terms of ';./ and, of course,
each such lipear combinatian is a translation. It is helpful if we can
also be sure that each tran.slatiqn is a linear combination of members
of the sequence "in only one way". By Theorem 6-8 this is the case
if [and only if] the sequence is linearly independent. It is custemary
to call. a.linearly independent sequence which spans 4 vector space a
basis for the space. [The plural of 'basis' is 'bases', pronounced as.
`bas'eez'.] In particular:

Definition 10-1 (ap . . . , a) is a basis for Y- if an only if
f (i) (a . . . , a ) is linearly independent, and

(ii) [00 . . . , a11 =

SO; we can restate (*) as:

i Theorem 10 ,- 7 Each 3-terMed iinearly independent
I sequence of translations is a basis for ,9`.

*Up to now, Postulate 49 has not been referred to in our discussion
of bases. Together with Theoreni 10-7 it tells us.that there is a basis
for [As Exercises 10 and 11- of Part A indicate, it follows that there,
are manibases for .7.] 1n addition to this, Postulate 49 makes it P.ossf-
ble to show that the bases specified in Theorem 10- 7 are the only oncs
there are.

TC:410

By Postulate 4 , (S,g,C,cf) is lfnearly dependent._ So,by.
_Theorem 6,13, if (,b,c) is linearly independent then d E [ a, t, c I,

'long ago' refers to Part B on page 193; 'more recently' reiers
to the lemrva. to Theorem 9-1.

Given any sequence of vocturs, a vector which is a linear cornbi-.
' nation ok_the 'terms of some subsequence isa also, a linear combination

of termsVof the given sequence.

Answers for Part B
1.1 (a)

(b) Yes. [By Postulate 41, there ar t! three linearly independent
tanslations ad, bY Exercise 3(b) of Part D. on page 384,
fhree linearly independent translations cannot all belong .to
[-S, 111.1 Here is a picture which describes such a translation.

Ar.iy_.tranalation c whaich maps ,poizits of a plane with directiorl
[a, b ] out of that plane is a translation which does not belong
to [g, 11].

(c) No, t
ir (al, a2., a3) is linearly,idependent then so is (Si, ) and, if

-4

1'21 CR,--g-1 then, by the lemma to Theorem 9-1, .

, a b* 1. If, in 1ddition, 1-;} it folplowti that
1, -;.2 1, thus contradicting the linear'independenee of
-S2, Since, by Postulate 48, the7re exist thiee lineaily

independent translations it fbllows that there.is a translation which
does not belong to [..a!, 1;1.

3. By Exercise 2, no sequence with fewer than three terms spans T.
By Postulate .410t no sequence with morelhan three terms islinearly independent. So, each basis for 1" must be a 3-termed
sequence ancii by definition, be linearly independent.



Part B

10.03 Baiesfor1 411

.
1. (Ai) . Draw arrows to represent a translation u and a translation /2.

(b) Is there'a translation which does not belong to [a, br [If your
answer is 'Yes.', dekribe such a translation; if 'No.', tell why.]

(c) Might yoUr answer for part ib) have been different, if you had
chosen different translations.in part (a)?

.2. Prove th4.for any a and h, there is.a translation which doeg not
belong to [a, K1, [Hint: Suppose that ta.,, a, a'.,) is linearly inde-

. pendeat and that {a,, C [a, What follows about WI, W,1?.
About a, and [a, ht]?)

3. Prove:

Theorem 10 -8 Each basis for .1,is a '3,termed
I linearly independent sequence of translations.

[Hint: By part (it of Definition 10,-1 and Postulate 4 each basis
for i has ,at most 3 terms (and is linearly independent). Can a
basis for have fewer than 3 terms?j

4. Prove:'

Part C.

Theorem 10-9
la,av,a1 )/ (a,, a, a.,) is linearly independent

11

1/ Suppose that to, h) is linearly irldependent. ,

(a) 1)6 you believe that there is a vector-say, c- stich that ( a e
is a basis for .1?

( b) Try-to use Exercise 2 pf Part B land a well-worn theorem] to
show 'that there is Such a vector c.

_ _

2. Suppose that a 0 [that,is, suppose that (a) is linearly indepen-
dent I.
(a) Do you believe 'that there is a vector-say, b - such that cz', A

is linearly independent?
(b) Try to prove that there is such 4 vectoC h.
te) Ate there vactors say, and e--six...h tba is a basis.

for .7?
3. Does 0 belong to any basis for :7? Rxplain.
4. Suppose, aS in ,g2prcise 1, that (a*, A is linearly indopendent. Let A

be-any pointi _
(a) What can you say about {A, A + a, A + b}?

(b) 'Is there a point-44, 13-such that B Ala, bi? Explain.
(e) If' there is such a point asl, what can you say about(a, h,

-4. --I.

B

5. Suppose that, as in Exercisefi, V. Give an argumebt which,
like that of exercise 4, uses what you know.about.pointh lines and*

. planes, to show how to find vectors b apd c such that (a, b,--c-5 is a
baiis for J.".

4

Answers for Pact B [cont.]

TC 411 (2)'

ir

4. As pointed out ,on page 410, it follows from Postulate :41(., and
Theorem 6-13 that each. 3-termed linearly independent sequence.
spans T. This establishes the if-part of Theori2m 10-9. On the
other hand, if (S,, spans T it cannot be linearly depend4nt.
For, if (g..,,-aen) is linearly dependent then, by Theorem 6-2,
[ ii*3 I is a bidirectiean and, by Exercise 2, no bidirection
contains all members of T. This establishes the only if-part of
Theorcattii

tAs a result of Theorem 10-9, we can shoW that a 3-terme0
sequence of members of 7 is a basis for T either by showing
that it is linearly independent or by, showing that it spans T.
We need not go to the effort of *allowing both.]

Answers for Part C
1.. (a) Yes.

a'(b) By Exercise 2 of Part 13 it follows that there is a trahsla-. , -(ion say, c 7-- such that ,c g [ a, b ]. Since (a",1-;). is linearly
independent it follows, by Theorem 6-13, that Ja_tbi.c) js
.linearly independent. Sq.,. ny Theorem 10-9, (a, b,c) is a
basis for T.

'2. (a) Yes.
(b) By Exercise l'of Part B, the.Te is a vector say, such

'.that b f,a, ; I Since a -(1 it follows, by T,heorern
6-13, that (4,g) is linearly independent.

(c) Yes. This follows from ivrt (b) and Estercise 1(b).
3. No. A basis is, by definition, lintarly independent and no sequence

one of whose terms is d is linearly independent.
4. (a) This s'et is noncollinear.

(b) Yes.. For by Postulate 49, not all points belong to one plane.
(c) This sequence is linearly independent.

#Let A be any point, Sincea A(A +
.,t) is a line. It has pre-

viously been shown that there is a plane cc:Attaining thi.1ine.0Let
B be a po,int of such a planq which does not btlong to A(A +
[Or, let b be a translation in the direction of such a'plane whiTh .

does tiot belong to Then (-1, B., A) ti> r (i.,111} is'linta-rLy
independent and we can continue as in Exercise 4.

P.
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Part D

The

I. If A,

exercises of rart C 'suggest two proofs for: t
Theorem 10-10-

(a) Each noh-0 translation is a term of some
basis rI
Eac linearly. independent translations
are jS of some basis for .7.

4

wh eh of the following are theorems and justify your.answer.

/I, C, Ind D are noncoplanar poinis of e. then (B A, C *- A,

TC 412

Answers for Part D
1.

2.
3.
4.
5.
6.
7.
8.

Theorem, by Definition 9-1 and Theorem 10-7.
Theorem, .by Theorems 107, art10-9:
Theorem, by definition of 'basis' and Postulates 1(a) and L(a),

fNOt a theorem.,.
Thsfes:?rem by Theorem 10-10(a).
Theorem, I4y definition of 'basis' and TIseorem 6-13.
Theorem, by Theorem 3-2(b) and rem 7-3.
Theorem, by Definition 7-1 and T erri 9-3.

.11

.1) - A) is a basis foi ,7 .
2. a, b, (..) is a basis for .7 if and only if = [a el.
3. If W., (.:3 is a basis for and 0 E et, then_

---- {X: 3,]3 X 0 -+ ax + by (74.,

4. If u'e there is a basis (a, for :/- .

5. If there is a basis (6,-c3 for 7.
6. If (a., b*, cl is ,a basis for .7 theh
7. If A r Li then (B 7 A) is a basis for [API):
'8. If {A, Bx} is nanollinear then (V A, C A)

[AffC] - .

*

10.04 Components .ofAlectors

,St_ipppo.F4e that (a a.,, a) is'a basis for each v
to 41,; a: a,,I, the set -of linearcpalbinations of (1,, cr and
this.] It follows that, for each x, there are numbers x1, x2,
that

-

is a baSis for

ector belongs
[Explain

and x,, such'

Exercises

,x = a x a x a3x3.2,2
. .

.1. Given that Tal, a.d is asis for If:, show that, for each -X*, there--s exactly one triple (xi, x x.3)- such. that x a,x, az.x2 + aax1.

fi

Explanation asked for
basis for T spans T.

.0""

1.

z:

n line 2, is merely that by definition, a

aniple Quiz -
Tell what is means to' say that a given sequence of vectors is abasis for T.
Suppose that (11',S, is a balis for T. Tell which of the following
are also bases for T and which are not. Justify your answers. ,

(a) (a% + -a* + +

(b) - be

Key to-Sample Quiz
1.
Z.

.

The sequence has as it, terms three linearly indepen nt vectors.
4. is a basis for 2.; for the secAience consists ;of three.linearly
inde-perident vectors.; This is easy to show, for to say that V's. +

+ )b (i++ S + CP)c = 0' implies that ala + b + ).+ S(b,+ iec4
= ?1, and the }atter togetlier with the linear inde_pendende of (a, V, c)implies that a = b = c = 0. I 7

-. -pplag k *14411 Q.L L for c jia - b, b, a + b ]. Alternately(a - b, b, a t b) is linea'rly dependent for a + S = + SZ
is], is a hasis for for the sequence consists of three linearly
independent vectats. This is easy to shbw, for to say that+S "C)2 - 5 + (z-a* + + -C*)c 17 implies that
-1.(a + b - c) + .$(a - b + c) + c(7-a 15,.5and the latter
together with the linear liadepencrence of (a, b, c) implies that .a=bcc 7- 0. .
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'e

2. Is thl? converSe of Exercise 1 a theorem? That is; iS it the cosv that
if a.,1 is a sequence of vectors`such that for each x there is
exactly one triple tx. x,x1 i sticl-fthat x atx, a.x, ± a:fx,,, then

1,(1 a1 is a basis for .1? If you think that it is a theprem., prove it.
If not, give a countes-exam4e.

A.s a resulttof the above exercises, we are assured, that, for a given
basis for , there is exactly one triple' or numbers associated with a
given vector, and there i exactly one vector ussociatkd wall a given
triple of numbers. Put another way, given a basis for thert is a
one- to-ora' correspondence between the members of .7 and. the triples
of real numbers.

One Consequence of the one-to-one correspo ndence betweentransla-
tions and triples of re.al numbers,is the following. Suppose that, wail-

_

respect to the basis (a., h, , ci correspondsoto the triple (d1, d, d,).
Then,

_ .
= -1;(1

So, in a sense, "part" of results front a,
.

from c.-This suggests our next definition.

Definition40-2 If cu , 1) is a basis for .7
and a =-- a la + u 2a2 +

:1
a

3

then a ., u, and a are, 1-vctively, thg first,
secEm4 and third components of a with respect
to the given basis. Also, (a,, a, a) is the
companent-f-Piple of a with respect to this basis,

[Instead of saying. that die components of.a are a1, p, atid aw.respec-
tivIely, or that the.b6mpO'nerit-triple of a is (a0.41.2, a3), we shall often
but imiroperly;--say that the components.of a are (c/o 'at, a1):1

fe part" from and "part"

a

\Answers for Exercis
1

A

tr

Tc-113

Sineir a batis for T spans T, there,is at least one
Since a`basis is li early independent it follows by
that there is at most on such triple;
The converse is, a,theorem, If, fcir each x, there is at least one
such triple then (al, a, a3)' spans T. If, for eacl x, there is at
most otie such.triple tlierl the re,is at most one such tripli for d
and, by Theorem 6-7, (a1, a,, a3) is-linearly ndepenaent.

Consider the correspondence
a -- (al, a )

lietween members di! T andm embers of RxRx which holds when.
= 'a' a + +1 1 I a9. .

$,

Since T is a vector space over'fthe'.reals, each Member (a1, ao, as) of
RxRx i corresponcls, with exactly one ntember 'a .of T. Assuming that
(al, a2, a3) spans T .amounts, by *definition, to assuming that each^
member of T corresponds with at least one member of. R x ft ft.
Assuming that (al, as) is linearly independent arnotionts, by Theorern
6-8, to assuming that,nozne49ber of T cprrespondirwith ;wo.rnernbers
of Ii X. x Ii. Sot if (a1, a, as) is a basis for T then the corresponclence
in queNtionA one-to-one between all of T and..all of R-X Rex irc

Exerecise 2 showS that the correspondence in qtres'tion has Orli;
property only if (a'1, a2, Is) is .a basis for T,

such triple.
Theorem 6-8

The exrctses on page 413 together. with Parts A and- B /follow-
ing provide a medium for introcikacing the 1a7ngtaage cornponnts,

'The exercises of Parts A anti B also,help to point out the intimate
relationship between additiOn of vecross and multiplication of a NTctor
by a real number, and addition of 11h0 components [with re4pect teNa
particular blsis ] and multiplication of the componects by a real number.'
Lf properly planned, Parts A and B and the discussion on pages 415,-
417 can be p'resented in one class period, with a hornewcrk assignment
of Part A onpa es 418 - 419 ,*
Answers fo'r t A

(a) (5 -4 311 5; 2; 3 (b) 0; 0; ye
TC 414 (1)7

(c') 3 + + -c -14^ (8), lir

4

-0 -p
1

f
Suppose that (a, b, c) is a basis for ,(1
(a) If ci + then, with .respect to the given basis,

the triple corres* Ponditto 4 ailt4Is....tr3t, second and.
third copponents of et are , ____, and ___, '_,

6b) If e 0, then the first, second and third components of e4tre

(c) If (has corn nents'(33 2, 11 then7=
(d) If the c6mponents of g are (0,1, 0) then i =

i

.

4"3 4_ 54 + 524 11 t -5-1; 11-. -4; --a.5-; 44. 54

aZ + g -1 + -eel; 4 + + Zfo; (4,7-Z, 6)

-r e) + f); (a + d, b + e , + f)

;z(a2b) + a3(a3b); a b. V2b; ash
By Exwacise 1(b).
Steipppse,that the components
(a3, a, a3)] ,are (a1, 4, as),
and, so,

'a = (aiai + + asay = (a1A1) + (;2a ) +.-"(a'sas)
=. 41. -*at + 32. -a2 as *

with r_fspect, to tile given::basis
Then a = -a1a1 + a2a2 + asas

,a

c),. each comp9nest of ---a° is the. opposite of the corresponding
component of a.

(c) By Exercise'l(g). ( ) ercise 1(h).
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414 gimENsio,N

a

(e) IP(3,4, 2) are the conAponents of h and (4-5, 3) firv tli6 corn-
ponents of-i then

MN.

".
h + =

ancslinpon-ents of h + i are
6. Ifihas ctimponents )2, 1;3) then

*

. and .j,`2 haa the components ___ ._` At
.- .. a - , , ..g.. -,

(1) If (o:b, wi are
.
the cpntonents IV. anclid, e, /) are the compo-,.

,

. .. nents of n; then'. 0-
.

k + n

. ;C 414 (2)

Theorem 10-ll sbows th'at the corresponderiCe. ,

(a-
4
a, a .) .5

1. $
deter-mined, as in TC 413 byl,a given basis ;) is an
isomorPhisrn betwee'n T and the-vectot spacc of 3-dimensional measure'
vectors discusded insectin 5.Ob. , [See, in particular, Exercise 2 on

j*,#.page. 207. As vetor spaces, these. two' "1-Tve the 'same structure".
As a consotittence,anr two 37divneiisiona1 vector szaces are isomorphic
and, more generally, two vector spaced of the sarnZ finite_dimension

isomorphic, (For exarriplai,` ari) 6.vo Propdr bidirections
phic, for' each is isomorphic with the spate, of Z-dimensional Meapure
vectors. DerivatiVely from this, any, plane, cOnsidered in isolation, is

.",jtist like" any other plane, I

and the components of k 4-r'rn-are
(12) If and a, are-the first, second md.third corn

n then'

.

nents of

and the first, second and thir4.components of nb are -
'

2. Prove:

Theorem 10 -11 For an3 baSis for
a.> each component of 0 i? 0,
(b) each component of a is the opposite orthe

corresponding component of a, *k,

(c) each component of a + 6'is the sum of the
correspénding components of ---*a and

td) each coniponent of aa is the pr6ductthe
corresponding component elf a by a.

3. Here is a,figure representing a
linearly _..independent triple of
vectors , a'.2; u). GoPy the fig-
ure on your paper. and draw
arrows 'foe the yectors'-corre-
sponding to each df the triples
given helova..FAn'arrow for the.

'-, vector-say e-correaponding to
(1,.f, 2) is shown in the.figureJ,: .,
(a) u: (1, 0, 0) . (4) "Y: (;* 0,-1)

(d) (-3, 1, 2).

Answ ers for Part A [cont4
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10.05 Coordinate Systems fim 415

4. Suppose that )U K S i; a basis 'for 7. and that
.110

(.1 4- 6.3 c 1 .

V) 'Show that a5,I.; -40; ea) a basis for ../ .
.

._. 4,dr - id'5) +. ih -10) ___ .. + (c3) _-_, so the first, secona,
and third compOnents of dwith resPect to the basis (a, b* -10,

_ .
e3 ) are __ _________, ____....________, and

. . ,
I.

(c) The firSt, seamd, anti. third component's of-it with respect to
the basis (CZ h.2,7 -1) are _____ , ______, and

4.

An

because
, 3.

d' , d' 1;2) +

Suppose that tu, u, 13) is a basis fOr nd that 0 . CoMplete
the following:

1. If (2, 1, 4) are the components of h with respect to ty,, EI,) then

b
and 0 +

.2. If P is a point of such that

P 0 +.(u,4
then

u,7 + u3 -1):.
.. ..

+ u, +

and the components of P 0 with respect to (uu2,u) are _
3. if (a,, ai, a) are the components of A 0 with respect to

then

-A =

4. State the co.nv ise of the conditional sentence in Exercise 3.

Cgordinate Systems for e
4.

In Section 3.08 you learned that, given any point 0 in e, the map- .

Oing'of .7 into which maps a on 0 + a and die mapping of if into
which maps A on A - 0 are inverses of each other. [Explain; By what

,

a -+-0 a

Os- A

Fig, 10-5

TC 4]5

(a) By .Theorern 10-9 it is sufficient to show 'that (a.5,b..-10,-j:.3)
spans4T. But, this j.45 obvious.. For-, given any,l, theye are

..nurribers say, a,/ be and ,c such that sa = aa + bb + cc
)(a/5) +AU. -1c)(b/-10)'t (c3)(013)..

(b) 2/5; -311.0; -1/3; .2/5; ,-3/10; -1/3.
(t) 2; ,3/2; 4; 2; 3/2;* 1.

tswers for Pari,B
4.1:1 + 1134; 0 + 6-71;.'2 + 112 34)

4; 7; -.1; (4,,7,-1-1)

0 + +

4. If A E e such that A = 0
of A - 0 with.respect.to

+iia1 + u3a3 that the 'components
are (al, az, a3).

TC 415-417

The first mapping maps 7 into E 1)); Postulate 1(13.); the seconsl is
a mapping of E into T by Postulate 1(a). That each is the inverse of
the other results from Postulate 'Z. [For, more details, see section
3.08 and, especially, the accompanying commentary. ]

A 0. is the position vector'of A with respect to 0.
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postUlate ,is the"first mapping 'a mapping of ;7 into t'? By what postu-.

latpis the secorid mapping a mapping of into :7? Why is each of the
. two mappings ihe inyerse of the other?1 It follows diet these two

m
. .

appings establish a one-to-one correspondence' between the points, ,
iri ck" 'and the -translatiou in .. i-. {In Chapter 8 we made use of this
one-to.7one correspoddence. I-I9w.clid we, there,.refer to the translatibn
,A - 0?) . iiir

..,

In the preceding section you have seen that, given any basis_

u) for :r , there is a one-to-one correspondence between triples of real

_-
0 -

(a ,, a7, a,)+- 4- (u, a, + u, az a,)

Fig. 106

ntimbers - that is,,the members.of x x.f.4i- and the members ofT.
CoMposing these two one-to-one col-res.pondences.We see that, given

any point 0 in e' and any basis (u u.2, u3) for T, there is a one-to-one .

correspondence between the triples of real numbers which. are the
members of x X .4 and the points which' are the members of e.

RxRxR

--0 -0 -4
01, t a, a2 us a.)

Fig. 10 7

.v

.This correspondence can be 'described bz saying that to any triple (a
a3) there corresimnds the point 0 + (utat tqC2 u3a3) and, to any,

point'A there correizonds the componenttriple of A - 0, with respect
to the basis (rz u2, u3).. This Suggests. the followink definition.

1. 10.05 Coordinate Systems for e

f
Definition 10-3.. If0E , u u , au ) is a basis for2

and

A' 0 + (u,a, u2a2 ± up3)

I 'then -a 1, a21 and a3 are, respectively;the first,
'Second,- and third cooidinates of A w;th respect
to the given point and the given basfs. Also,
(a av a3) is the coordinate-tiiple of A With
rcbspect to tiiis point and ba§i9."

[As 'in the case of components of translations, we shall sometimes say
- improperly-that the coordinates of A are (a,,a a,,,) when- properly
- (a a2, a) is the*ordlnate-triple otA.]

II! , I, Cooran es otA

4117.

(u, a, + u,a, + u3 a3)

A 0 -- u, al u; a, + u, a,

Components ol A 0
Fig. 10-43

corre§pomienee betwen triples of real numbers and points of e
of the kind described in DAnition 10,-3 is called (after the French
maihvmatician René Descartes] a cartesian coordinate system tor K..
Other correspondences between tripleiof real numbees arid points are
also called coordinate systems for , but we shall have little to do with
other than cartesian coordinate-systenis.

You have seen that Many results concerning points, lines, _planes; -

and other geometric figures, such as triangles -and quadrilateralS,-cian
be established by usinOtrantlations., In Sectign 8.0kyou saw that
establishing such reSults is sometimes simplified by using position
vectors froni on arbitrarily chosen point O. The -use of a coordinate
system, based on a point 0 and.a basis (u. , .7T13) for , is another way
of stud geometric figures. This prciscedure-makes. it possible to
solve a p blem in geometry by, -first, translating it into a related
problem in the algebra of real numbeis, solving this pmblem, and,
then, interpreting its solution to obtain, the solution eof the original
problem. Often it is simpler to Work directly-with translattons, as we
have 'done in ihe past. but, sometimies this "coordinate method" of
solving gedinetric problems has adVantages. In later sect:jobs we shall
give S01110 illustrations of the use of this method, .
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,Ex
9

Part A

rcises

1. Copy the figure,- showing, a.
point 0, and a basis, (Li U1, c43)4

for On your 'pictu're, graph
and label the pointEl whose co7
ordinates are given below.
(a) P.: (1, 20) (b) Q; (1, 0, 1)
(d) S: (0, 0, I) (e) T: (f, -1, 1)
(g) (71: (1, 0, 0) (h) (0, 1, 0)

at

(c) R: (0, 2, 1)
(1) U: (i, 1,1)
(i) 1.7:3! (o, o, 1)

Answers for Part A
1,

2. Referring to the points in Exercise I, complete-the following:.
(a) Since P 0 the comgonents of,

.P 0 are and
(b) Give the components of - O, R - O,S - 0,T - 0,U - 0,

IT1.- 0, U, 7 0, and U 0.
3. Referring to the points in Exercise I, complete the followinA:

(a) P. R . [0 + ul; + u , u - 1.0 + u
4- /42 u , Therefore, P - R u, -;+ u2

+ u and, the components of P TR are
(b) Give the componemts of 'the vectors P 7 T,Q -S,S Q and

,LT - Lly
-4. (a) Suppose that A is a point of Ofu, I: Can yoU say anything about

the first coordinate of A? About its second coordinate? About
its tRird coordinate?

(b) Supme that A cO[u:,]. Answer the questions in Part (a).
.(c) Complete the folloWing: N

A E 0[L13] the first coordinate Of A iff
and the-second coordinate of A is

5. In each of the following exercises you are given the coordinates for
a pair of pointh A 'an4 B. Your job is to'describe the coordinates of
the points of All.
(a) A: (2, 0, B: (-2, 0, 0)
(b) A: (0, 2, 0), B: (0, 4, 0)
(c) A: (0, 0,,0),,B: (0, 0, 3)

TC.418

,

SI

U2

' -

Z (a) 1; Z; O; 1, 2, 0
1 .

.f(b)
Q 0: -i, 9, 1 R 0: 0, 2, 1

-S - 0: 0, 0, -1 T - 0: ji, -1,., 1
, 3 3 1

U 0: -2-, -z, -2- U1 - 0: 1, 0, 0
. U2 - 0: 0, 1, 0 U3 - 0: 0, 0, 1

3. (a) I, 2, 0, 0, 1,

1, 0, -1; 1, 0, -1
,

,N 1
(b) P - T: -2-, 3,%-:1 Q S: 2, 0,

Ul -. U2: 1, -1 ,

In 'discussing t.he callesian coordinate system determined by a pbint
0 and a basis (u u -43), 0 is called the origin [of the coord,inate sys-
temj; the points 0 +.1; 0 + and + are called the first,second,

4=7,0
and third t;nit points, respectiveln'and the lines 0E110, O[uj, and O[zij,
are called ,the first, seond, and third coordinate axes.'

(a) Some real number; zero; zero
(b) Zero; sorrre real number; zero
( ) Zero; zere

°.%) (a, 0, O), forkany a.
(b) (C).a, 0), for any a.
(c) (0: 0, at for any ,a.
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Note that a point belorigs to, Say, the second coordinate axis if 'and
only if its first and third coordinates are both 0. Make sirpilar remarks
-concernini,, the other two coordinate axes.

6. (a) 'Is 0[14.,, a.plane? Explain your answer. .

. Ib) Since Olt,u1 = {X: A E rij if and only if the
first coordinate-of A is

to) Make a stateraent about Of u.i, u ,1 like that which you obtained
by completing part (b).'

(d) Repeat Vart (c) for ota*1721.
7. For each of the following exewises, describe a plane which con-

tains the three points whose coordinates are given.
(a) (0, 1, 3), (0, 3, 6), (0, 6, -7)
(3) (1,0, 51, (7, 0,0)
(c) (3, 0, 0), -2, 0), (-93, 3, 0)

8. (a) ShoW that, there is only one plane which contains the points
whose coordinattie are given in Exercise 7(a). (Ifint:,Suppose
that the points in question are A, B; and C, respectively. You
need, of course, td *silow that (B - A, C - A) is linearly
independent-that is, you need to show that if (B A)a
+ (C - A)h OP then a = h = 0 Do this by, first, exp.ressing
B - A and C - A as linear combinations of the basis vectors.-
14, R, and a7,. Knowledge of determinants (pages 273, 274) will
be helpful but is riot necessary.]

(b) Is there more than onefiane which contains the points Fhose
coordinates are given in Exercise 7(1:)?

(c) Repeat part (b), but for Exercise 7(e).
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Answe rs.fo r .part A cont.]
6... (a) Yes.; Since (ti1,1,12,i15) i a basis for T, (ii2,1.1s) is linearly

.
independent. So, br Theorem. 9-1,1(a), O[u2, us ] is a pla.ne.- 4(h) X -0E[U ,u2 3 r

(c) A E ()[is, ] if 'and only ifthe second Coordinate of A is
^le

(d) A E 10[11i, 112 ] if and only if the third coordinate bf A is 0.
7; (a) Of u2, u9 I (b) Ore's, ill] (c) ]

$. (a)

The planes Olti, u31, O[u.3, and are the first, second, and
third criordinate planee, respectively [with respect, of course, to the .

cartesian cooTdinate srstem deterinined by the point 0 and the basis,
(17, u, te,11-; Note that epoiiit-belOngs.to:Say, the-first coordinate plane
if anci only if its first coordinate is 0. What' can you say about the co-.
ordinates d'a point Which belongs to the first coordinate plane and,
also, to the first coordinate axis?: Is there such it poipt? is there more,
than one?

9. Siippose that, with respect to a coordinate System with origiNa,
the first, second, and third coordinate axes are the 'lines 11and
13, respectiyely, and the first, second, and third coordinate planes

- are 77.,: 772, and Iry respectiyely. Use what you know about the co-
-ordinates of points on the Coordinate axes and Planes to
'each of the following:
(a) 1, n (b) 7)-2 ri 7T (0) 1 11 Ir?, (c1) 1 n rr

nate

Using the.notation of the hint, B - A = u22 + ;133 and
C - A = u25 +...119. -10, Supgose that (B A)a + (C A)h = 6.
It foljows that, u2(2a + 5b) + us(3a 10b) = .6 and, since
(ile;, us) 'is Ilineaily independent, that 2a + 5b = 0 and
3i - 106 = 0. Solving fo.r 'a' and 'b' [by, for example,

'multiplying the first equation with '2* and adding the result
with the second equation] shows that a = 0 and b = 0. So,
(B A, C A) is linearly independent and, hence, {A, B,,C1.
is a sebset of just one plane. [The solution is much simplify,1
by using the results mentioned on'determinants. It is
sAdfis.ieut to add, after the first sentence, above:' Since
(u2, us) is linearly 'independent and 2. -10 - 5 3 = 0 0
it follows that (B A, C - A) is linearly independent, Hence
{A, B, C), is a subset of juSt one plane, ]

(h) As in part (a) [but with new values for 'A', 'B',..and !C'
B A = 111 -3 and C - A = el 6t us. -5, So, if
(B - A)a + (C- A)13 = 15 then iii(-3a + 6b) + =

apd,. since (, '118) is linearly independent, -3a + 6b = 0
and -51, = 0 that'is, a = 0 and b = 0. So, .

(c) In this case,,;' Bo- A = + 112 -Vend C -4A = 1. -6 + 3.
iff inspection, (B + (C A)2 = 15. So,. {A, B, C). is
collinear and is a 'subset of infinitely many planes.. [Using
determinants, it is sufficient to note that 4.3 - -6 -2 = 0
in order to conclude that (B -A, C A) its linearly, dependent.]

* =

The intersection of the first coordinate plane and the, first coardi-
axip consists of the origin.

U, as suggested earlier, Part A is u.sed as a homework assign-
ment,' we do not recommend 'Part B as part of th1,:s same assignment.
Rather Part B can be used as -in-elass exercises to. reinforce ,the work
of Part A,aiid to identify possil5le misconceptionst Part C serves as
a good class summary of the wcrrk"oh coordinate,systeme.1 This is
difficult for students to. do alone,. however. Because of the way we
name the points in our noncoplanar quadruple, students frequent/4 do
not:realize that a choice of origin, first coordinate axis, eft. has 'been
made, Part D can then be used as a homework assi4nment.
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Part B t * ,, Suppose that (0, tf,, if,,v,) is a quadruple of llonCoplanar poinis.
tThat is, (0, U,, U2, t !,) is a 4-termed sequence whose terms ure

.. .

"

pointS, and the set 10, (1,, U. U31. js.noncoplan,ar.1

(a) Show that (U - 0, U2 - 0, U., bas" is for. J.

(b) What are the coordinate axes of the coordinate system deter-
_mined, by the basis cu - 0, (J - 0, t o) and 0? What
are the unit points? What are the coordinate planes?

(c) Give the cobrdinates of 0, U 1.12, and U.1. C-

2. If A has coordinates (i, 72, 1) then

0 + (U, + (1/, - 0)- + (U3

Therefore, A - 0 = and the components of A 0
are.

. .3.- (a) Describe how one clan use the basis (11 - 0,U2 0,U - 0)
to assign a triple of,real numbers (a,, a 03) as coordinates of
any given point A. !`

(b) Describe how one can use the given basis to assign a triple
(hfeb,, 1;) as components of A - 0.

(e) Is there any relationskip between the, triples (a,, a a3) and
b IV determined in parts (a) and (b)? Explain your answer.

4. ,If A and B have coordinates (a a) and (b b), respectively,
respect to tile basis ,(04, - 0, U, - U3 - 0) then.,

A = 0 +
B 0 +

Part C
You have, seen in Part B how a quadruple of noncoplanar points

can be used to determine a unique cartesian boordinate system for K.
Discuts the possibility of using'a noncoplanar set (0, 113, U2, Uji} to
determine wee/Wallin coordinate system.

and B - A has the components (

-

Answers for Part, B
1. (a.)

TC 420

Since (0, Ul, U2, Us) is noncoplanar it f011ows by Definition
9-1 that(tT1.--, 0, Us = 0) is linearly independent.
LIencs-,., by Theorem 1'0-7 [or, Theorem 10-4'9 and the definition
of '4-asis'], (U1 0,. Up - 0. tJ - 0) is a basis for T.

(h) T fiLst secr;nd.,_..and third

2

coordinate axeS 'are, respectively,
G1111.1'?' 0U2' ahd Ms. The first second, and third coordinate
planes are, respectively, 0-------U2Us, 014U1, and

(b) (0,0,0), (1, 0,.0), (0,1,0), and (0,0,1), respectively.
2. 3 ; 7 2 ; (1)1 0)3 + (U2 - 0)- -4 + (Us 0)1; (3, -4,1)
3. (a) The coordinates to be assigned to A should be the components

of A 0. So, in order to assign an ordered triple of real
numbers to any given point one must know the components of
the translation A - 0 with respect to the given basis.

(b) The components of A - 0 are precisely the numbers b1, bp,
and-b3 such that A - 0 = (U1 0)b1 + (U2 - 13)b + (Us - 0)b3

(c) The coordinates of A with respect to 0 and (U1 .0, U2 0,
Us 0) and the components of A 0 with res.pect to th
(Uri 0, U 0, Us 0) are precisely the Barrie real
numbers. This follows from Theorem Z-1 and the fact
that (U - 0, U2 - 09 U3 - 0) is a basis for T.

4. (U1 0)a1 + (U2 0)a2 + (U-A. - 0)as; (U1. - 0)b1.4. (U2 4'15)b2
( *- 0)139; (U1 - 0)(131 - a1) + (U2 0)(b2 a2) + (Us - 0)(b34

al, .bs a2 - as )

The points U1,1 U2, and Us .are often called the unit points (first,
second, and third, respeetive1) of.the coordinate system discussed in
Part B. Given any four noncoplanar points, one may define a coordi-
nate .system by choosing-one point s origin and the other three - in
any order as unit points, So, o has a choice of 24 coordinate
systems. Thii is the reason for sta ting Part B with a 47-termed
sequence of points rather than with a a of four points.
Answers for Part G

To determine a cartesian coordinate system, al in Part B, based
nn the points 0, 1.71, U2, and Us, ane must decide. 4jhich of these four
points is to be taken as the origin, ,Then, one naust_decide which of the
rernairiiiig points is to determine* [ingether with the chosen origin] the
first coordinate axis, and which is to determine the 'second coordinate
axis. Given only the set of,four noncoplanar poin ats, there re 24
coordinate systems which may be obtairi.ed by us., 41m is, the way
deogribed.
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Supptisetha.t. we have a coordinate syStem for (4,. with origint9 and
halis (u,, u u). Complet4the foljowing.

gP1. (a) 0 has-the coordinates
(b) u, has the components
(e) 0 + = 0 u, + + and so 0 + u, has-

tho-coordiniites
44 -

ui has the components
has the coordinates

-AP+ /4,4 has the components
+ u4) has the coordinates

(c) If a has the components (a, b, c) then a = +
+- u, and. 0 + a has coordinates

3. Suppose that A has coordinates (2, -1, 3). Then.A 6, u*,

"b

, ond + (u, +. u,

, and d +

+ If a tias components (5,-3, 2) then a = u,
u 3---u Also,

-,
, A a = (.0 + + u +1; )1

+ + + -.= 0 +. + + u
Thus, A + 7E-'2has the coordinates

4. In each of the following exercises you are given a point A and its
coordinates, and a vector a and its coMponents. You are to find the
coordipates of A + a.
(a) A: (3, 5, 7)

a: (1, 2, 3)

(c) A: (-1, -2, -
k a (1:293)

. + a: A + (21:
se

4

that a has components (1, 2 '3) and I; has components

(b) A: (1, 2, 5)
(-2, 1, -.77)

(d) A: (a, b, e)
(d, e, f)

2, 4). Then

and

Therefore,

a = u + u +
b u + u + u3-.. 3--

-
a + b. = + u + u'

and so a + ghas the components
6. Suppose that --a1, and -Aave the components (1, 2,

and (1, 4, -2) respectively. In each exercise you are
combjnatIon of these vectors. You areto find its co
(a) + c (tb) a +-6' e
(c) (72 (d) --ar3 :4- -6P L1

) 1;2 +

-3), (-4, I, 31
given a linear

mponents.
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Answers for Part D

a

1. 2 (a) (0,0,0) , (b)
(0, 1, 1); (0; 1, 1)

(b) 1140, 4); (1, 0,-4)

(c) -`a; c; (a, b,

(1, 0, 0 ). Cc) 1.; , ; U, 0,0)

.4,

3.. .

2, -1,.
, ,t`

-1, '3;

7, S

(7, -4, S)

4. (a) (4, 7, 10) (b) (-I, 3, -2)
(e) (0, 0, 0) (d) (a + d, b + e, e ,f)
1; 2; 3; 3; -2; 4; 0; 7; (4, 0, 7)

6. (a) (2, 6, -5) (b) (-2, 7, 7.2)
(d) (7, 5, -12) (e) (5, 1, -6) (f) (10, 4, -11)
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Suppose that A has coordinates (1, 2, 3) and that B has coordinateS
(5,, 3, 1 ). Then
(a) B A has tomponents
(b) (fi -,,,4)t has components
(c) A '+ (B A)t has ixi2rdinates
(d) Recall that

4-

Therefore,

= {X: j, X = A + - A)t

TC 422

Answers for Part D [cont.]

7. (a)"(4,i172). (13-4444t, t, -.2t)

(c)

(d)

X e AR*if and 'only if X hus the coordinates

(e) X E Mid and only if
--

X .-- u1x1. + u,x. + u3x, where., forsome real number t,

(*)

- (f ) Since for,t

{x, ='-' 1 + (5 - 1.)t =
X=v--......-,.
Xs =

'A- 1 + 4 ---- 3

x2 = 2 + 1 =
x, 3 + 2 = 2

it follows that C ) are the coordinates of a point
on rff.

to What vaiuesDf 'e in the equations (*) will yield wordifiates of
the point A? Of the point B?

(Ix) What value ofY in the equations (*) will yield the coordinates
of the 'midpoint of AB?

(1) Give the coordinates of three other points of
-SSuPpezeitUat A 1181a-coordinatastAa a 9-2) and B-llas-coordkkates

(h b3). Then . .

(a) (B -- A )t has components
(b.) A + aft - .A)akias coordinates
(e) C eXii.P-0 for scirrie t, C has cocirdinates (,
(dk C C + Lite, + ujc, Where, for sople

(a)

(b) (al + (b1 - )t, az "4- (1:12 - az )t, as + (bs 3)t)
(c)
(d)

(e)

(1 + 4t, 2 + t, 3 ; 2t)
,

(1 + 4ti I + t, 3 - [for some
1 + 4t; t; 3 2t

(3,g5 2, 2)

0; 1

1/2.

[Various' answers, each to be obtained by subs ituting or' 't'
in tge answer for part (d). ]
((b1 ai)t, (b2 a2)t1 (bs - as)t)

...

al + (b1 - al)t; az + (bz - a2)t; as + (be - as)t
al +',(b1 - al)t; a2 + (b2 a2)t; .as + (bs as)t
t :1 t [Assuming? of course that A .0 Compare
Theorem 8-14.]

with

Td 423 (1)
, .

Acir
Note that interaanging the, 'a's and ''13's in (*) yields anotlier

set of parametric coordinate equations for AB. Of course, the same" :
, value of '1' jother than 1/21 will yield the cOordinates of dif erent

pointe of AB wben usea in the two sees of equations. Each Ie has
as ,many sets of parametric coordinate equations as there ar choices ..
f an ordered pair of points belonging to the line. pne can, for .

example, given the coordinates of A and B, use. (r) to find the
coordinates of two points of Al and, using these coordinateS.write new
cc:Illations of the form (*) for rs. In paiticular, when, as in Pxerciace
1 of Part A, students are given coordinates of two points.and asked

,for parametric equations, each student might ggi'd--a different answer,
all of which answers might be correct. But, this il.not likely to occur.

,

The fact that two types of parametric equations [coorciinate and
vector] are introduced, in the exerclsep of this section sometimes.
causes confusion. ,This is .aggravaied by_the inclusidn ofstwo7goint
coOidinate equations. ;a help avoid confusion we recommend using:
Exercises I - 3 of rt A and Exercises 61 -3 of P.Xrt13 'as class
discussion exercis The Exercises .4 - 8 of Part A. and Exercises
4 - 9 of 'Part B can 4 one homework assignment. Part C makes a L.

good .class actWity for thdividuil work. -,Part li) ,can be usedAsr.a home-
work assigninent big Part E calibe very complicated. for soma student*,
We recommend that Part E be used as the basts.of a _class dpic4tssion;

. -,and demonstration. . ,

(e) If the coordinates of the point C and the real number t are 're-
' lated as the last three equations in pa4.(d),in what ratio

does C.dividethe interval from B?



10.08 Etivations of Lines ,

In the last exercises you tipted that if the coordinates of A are
(as, a, a1) and the coordinates. o f p b,) with respect to a co
o r d i n a t e system whose basis is (u , u, and whpse origin is 0 then,
for each X e ,

1VIT if and-only itX ------ 0 + urx, + + u,x
where, for some t,

10.08 Equatierni,,of Lines 423

4

= a + (b1 adt,
(a) x, = a, + (h, a,lt,

x3 = a3 + (b3 - a;)t.

The equations (*) are called parametri.c coordinate equations of Ali
with respect to the given cdordinate vatem. [The variable et whose

. values serve to single out points of AB l called a parameter.]

Exercises

In each of the following exercises, assume that a cartesian cx)--
ordinate system with origin 0 has been established.

Part A
1: Write parametric coordinate equations for Alf, given that A and B

have Coordinates:
(a) (14 10, 8) and (-5, -5:0) (b) (6, 3;0) and (0, 2, 6)
(c) (-4,1-4, -4) and (4, 4, 4) (d) (1, 1) and (-2, -2 '2)
(e) ((Y, 0, 0) and (1, 2, 3) (f ) (1, 0, 0) and (1,.1, 0)

2. For each part oi Exercise 1, salve each of the parametric equations
1.1 for Y. In which part can you not do this? Draw a figure for this
part.

anti-,13,i-* a3,-you may salve the Parahietrit-equa-
tions (a). for " to obtain:

x - a x x32

- al b2 - a2 b a3 3
,

,. .-,---,,ince (x1, x2, x3) are coordinates ora point of AB g and only if there is a
vale of 'e such that all three of these equations are satipfied it fcillows
that the equations af AB can he written as: ,

,

x; - a; x2 az x4.,- aa
- a, b3 - aa

...

Answers `for Part A
1. (a) x

1 12 - 17t
= 10 1Stx2

x3 = 8 - 8t
(c) x1 -4 + Si

X2 = -4 + St
= -4 + St

(e) x1 =
x2 2t

xs 3t

(a) t = -17
x2 - 10_

TC 423 (2)

x 6 3 xt - 1-6

(b) x1 6 - 6t
x2 3 -

6t

(d )x1 I 3t

3t

(1) x1 = 1

.x2 = t
xs

-8

+ 4 x + 4 x + 4- 2--
1 x + 1, x, + I

1 Z 3,
x,

(1) t r; but 't' c-annot be expressed in terms of either

01.

or 'x

It will turn out thA each of the three eq/lations summarized in
* ia-the coordinate equation of plane- the pla,le whic-h rontaini

-AB and is parallel to one Of the coordinate axes. 'These planes are
called proJecttheplanes for 11, with respECt to,the giVen coordinate
system. Note that, mostly by Theorem 9-15, there is a unAue ?;lane
which contains a given lineh I and is parallel td a giv.pn line u 4 I.

Of course, any two of the three. equations ,sumniarized in .(*)
imply the third. -
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These equations are called two-point coordinate &illations for V.
[Notice that summarized three equations.1

*

. Write two-point wordinate equations for the line AB,.given that A
and B have mordinates:
(a) (12, 10, 8) and (-5, -5, 0) (h) (1, 2, 3) and (2, -1, 4)
(c) (-4, -4, -4) and (4, 4, 4) ,(d) (1,771, -1) and (-2, -2, 2)
(e) ,10, 0, 0) and (1, 2, 3). (f) (0, 0, 0) and (1, 1, 1)

4. Given P with coordinates (-7, 4, 0) and R with coordinates (1, 0, 2),
decide which of the points whoSe coordinate's are given below Se-
long`io PR.
(a) (-3, 2, 1)
(d) (-11, i)

(b) (1, 8, -2) (c) (2, I, i)
(e) (9,74, 4) (f) (-11, 6,.-11

(g) 18, -3, 4) (h) (2, -7, 6) . (i) (-23, 12, L-4)
5. (a) For each ,of the points of Exercise 4 Which belongs to -it, tell

the ratio in which the point divides the interval from P to R.
(b) Is there a point of Pit in the first coordinate plane?

6. Given thelines

AB. wah parametric equatio'ns:
= 1 t
= 3 + t

X3 = 1 2t
x, = 2 + s

and Eli with oarametric equations: X2 = 5 2s
- 3s

Determine whether the lines intersect and, if they do, give the
coordinates of the point of intersection. ,

.7. Given the lines

'Ali with parametric equations:
x3 1 - 21 .

. x, = 1 - t
x = 3 + t

and Z1J with.parametric equations:

. Determine whether the lines intersect and if theY do, give the
coordinates of the poin't of intersection,

8. Suppose that A, B C, ancl D have. coordinates (1, 2; 1),, (0, 5, 2),
c6; 5, 4), and (-1, 8, 3) respectively. Determine whether n nAd'

interseCt, and if they do, give the coordinates of the point of
intersection.

x%=-,2 + s
= 5 - 2s .

Of

Part B 4

Suppose that A and B aro tworints of a line I.Lat 0 be any point.
Recall that the position vector a,, with r pect to (),.olthe wizit A is, .
by definition, A.- 0.

TC 424 (1)

Answers for Part A [cont.]
x, - 12 x, - '10 x. 8

3. (a) Llslote that equivalent equations
,are obtained by 're'placing the denominators ' -17',' ' -15' and
' -8' by numerals forimultiples of the corresponding numbers
by any nonzero number. J

Ars

(b)

(c)

(d)1

x2 2

343

.111=1
x3 + 4 or: xa + 4 -+ 4

3-

,x2 4

-8
,*j

Xi - 1

-8
!CV_

1

-8

X31+ 1

-3 -1 3

1 3

x x x
(f)

1
=: -2- =

1
[Compare with part (c). ]

1

[We may use either (*) or (**) to describe PR:
-7 + 8t

-- 4 4t
x3

To use the former, we would substitute for 'xi', 'x2', and 'xs'
and see if the resulting three equations were, satisfied by the same
value of 't': The two-point equations are, perhaps, a bit more
convenient for the purpose at hand.]

So, the point with coordinates (-3, 4, 1)

or; x + 7 x - 4 x
8 -4 2

(a)

(b)

-3 + 7 a 4
8 -4

belongs to
1 + 7 8 - 4 - 2
-8-- - 4 . Z

7 4 i

(d)' -(13/3) + 7 (8/3) - 4 213_
8 -4 2

-9 + 7 4- -4-(e) So in PR.8 -4 Z

So, .not in.PR.

So, not in PR.

So, in PR.

-11 + 7 6 - 4 -1 *--0
(f) 5°' in Pa.
ig). 441 * So, not in' PR.

(h) * -4 * Z So

-23 + 7 12 - 4 _

(1) 8

not in P R.

So, 'in PR,
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Answers for Part A [cont.]

) [The points in question are those of parts (a), (d), (e),
and (1). Had we toed parametric equations, the desired ratios
Could have been found by substituting into 't/41 t)'. However,since, for t = x5/2 wit can still do the ,equivalent. I

(Q) 1 (d) I/2 (e) -2 (f) -1/3 (i) .2/3
(b) [To find such point, we must find a point of PR such that

-- 0. We may, again,use either the parametric oT the two-point equations. , We give both methods. ]

't

Using parametric equations:
For siich a point, 0 = -7 +' 8t, ao t = 7/8.. Hence,

7 1x2 = 4 - 4. = 7 and x 2 =, 71-,. So, there is
a point of PR in.the first coordinate plane, and its
coordinates are (0, 1/2, 7/4).

Using two-oini'equations:
to -4. 7 x'-4. 3±3.For such a point, -8 z Solving any

two of these equations we Clinclfthat x2 = 1/2 and
7/4. 'So, .

To find a point common to the two lines, we must find values of'40 and 't' wh,ich satisfy the three equations:
1 - t = + s
3 + t = 5 - Zs

I - 2t = 3s
Solving the first two. yield = 3, t =1.--4." Since these valuessatisfy the third equation AB and CD ictersect at the pointwhose coordinates are (5,-1,9).

7. (1 - t 2 f a and 3 = 5 Zs) if and'only i (s = 3 and t 74).Since I 2. -4 I +.3.3, the lines have no common point.
Parametric coordinate equations for AB and CD are:

= 1 t xi = 6 - 7t
= 24 3t and;

xs = 1 + t xs = 4.- t
For there to bt.a point common to the lines there must be a firstvalue of 't' and a second value of 't' such that ,,the first and second'sett o Auations yield the same coordinates for the respectivevalue:17a For simplicity, then, we replace the parameter inthe second set a equations Iv, say, s' and look for solutions of:

I t - 6 -
+ St z- 5 + 3s

1 + t =. 4 - s
Solving tv.ro of these and checking in the third, yields a I, t `z. Z.So, 'the lines do.intersect, and the point of kntersectiom has coordi-.

.pates (-1,80 3).
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1. Siiice A B and {A, B) g 1 it follows that 1.= Ak Complete:. '

R t1 3, R
3

. Complete-the following without using 'A and 'Er:

Recall, for one thing, that B A = (B O (A - 0).)

The ,equation:
-* -

r = a + (b ,.a)t

is,, for a b,, a parametric vector equation for the line determined by
the points whose position vectors are a and b. What this means is
that the position vectors of points of this line are just the values, for
the varibus values of 't', of the right side of 0.). Equation (1) is, of
course, equivalent to:

(2) r = 0(1 - t) + bt

This suggests a more symmetrical form of equ 'on which serves the
same liurpose as (1) and (2)

(3) -1--ya [a b 1}

Given the position vectors Ciand-lioftwo points, a giveii vector-As the
position vector of a point on the line containing thes6 points if and only
if there are numbe.rs- say, a and b whose sum is 1 and which sat-
isfy (3).
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Answers for Part B
1. A + (B A)t

2, ; + (c, - [For, R A -I- (B A)t if and only if R 0 =,(A 0)
; (B A)t; and R 0 = -1%, A - 0 = a, and B - A = a, where

B O. )
*

4

, In "coordinate geometry" it is customary to use 'xi', 'x21, and
*)q., or 'x', 'y', and 'z' as va-riables whose values are interpreted as
cyordinates, of points, In "vector geometry" it is customary to use
'r' as a variable whose values are interpreted as position vectors [or
"radius vectors"). ,Th'ese conventions motivate our somewhat
oscillatory clioice s of notation.

,

Students may recall equation (2) 'as equation (I) on page 30.
3. (a) Since r, a, and 11, are R 0, A 0, and p - 0, the pompo-

nents of r, , and -1; are the coordinates of R, A, and B.
Furt1erm.ore, by theorwm 10-11, the vectors in question
satis y (1) if and only,,if their components satisfy (*).

(la) By T eorem 8-14, a point R Whose position vector is given r
`i by ation, (2) divides the interval from A tio B in the ratio

t/(1 t). The same holds when thv coordinates of R are
given by (*). In order for t/( 1 - t) to be a :b we must take
t = a/(a + b). [Obtained by solving 't/(1 - t) = a/b' for 't'.]

4.

4

3. (a) Assume as given a basis a, 1-4, 1413) for and, taking the
point,O as origin both for coordinateS and for position vectors, '
explain the relation of the parametric vector equation (1) to
the parametric equations (*) on page 423.

(b) For what value of 't' do the equations (*) give thfk.coordinates
of the point which divides the interval trom A to B in a : b?
IHint: Recall Theorem 8 -r 14.1
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..
.. .; AnsWers for Part B kont.14. The vector equation 1) is a propriate for use in situations where .

it would be natural to use 'A -it n referring to a kiven line. What ;1.i

form of vector equation would it be natural GO u:se in describing
a line .41.<1? ..

5., 'Suppose that A has coordinates (aa,a) and that the non-0 vector
e has components ce,, c c,,). Write parametric equations for the
coordinates ix,, x,, xrit of a point of AO, If you ttre not clear
as to whitt is wanted here, see equations (a) on page 423.1

The equation:

(4) r = a + ct

is, like (1), a parametric equation for the position vectors of points of
a line. In the case of (1), the line in' question is the line whichcontains
the points whoe position vectors area and 6*. Ilithe case of (4), the line
in question is the line whose direction is 1-cl and Which contains the
point whose position vector is a, Corresponding with (1) we have equa-
tiOns i*) on page 423 which are parametric equations for the coordi-
nates of points of the line through, say, A and E. Corresponding with ,

(4) we have simidar eqUations:
"

cal + e It -

x,, :. ti.,-:i-
.1c3. .--. a 3 + e3t
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= t [Some students will have already recalled that, fo'r
{A, B} C 1, 13 A E and that, for A E 1 and 5*. E [I], A + e J.]

S. xl. a +c1t, ,x2 a2 c,,t, x3 a tc t0 3

In volume Z, where we can use mutually perpendicular coordinate
axes, it will turn out that, for such a 'coordinate system, the direction
numbers of a line are proportional to the cosines of angles determined
by the line and the coordinate axes. [Which angles may bêtspecified
by choosing a sense on the line and on each of the axes. ] the cosines
of these angles am; then, called direction cosines of the line. Of
course, students ere not yet prepared to discuss these matters.

*
(10 x1 Z + Zt

x? = 5 + 4t
x3 1 t

(d) x1 = 4 t

3 + 2.t
(f) xl 4

7

1

6. . (a)

In these equations, (a, a a1) are the =ordinates of a point A of the
line anct (c1, c,, (3) are the cOmponents of some non-V vector in the
direction of the line. IThe components of such a vector are sometimes
called direction numbers of_thipine_-_of_coursit, 'With respect to--the---:- -
given coordinate system.]

6. In each of the follovkig exercises you are_iiven the coordinates of
a point A and the components of a vector c. Using (**) as a model,

write parametric equationS for the coordinates of points on Ala
(a) 4: (0, 1, 2)

(2, 4, -1)
(c) A: (3i -2, 1)

(h) A: (2, 5, 1)
c: (2, 4, -1)

(d) A: (4, -2, -3)
(2,

(a) A: (5,
c: (0,

0, 74)
-6, 3)
2, 0)

c: (-1, 0,.2)
(f) A: (4, 7,

c: (0, 0, 0;

2t

1 + 4t

^ t
3 Zt

Z
xs 1 - 4t

(e) x 5

-6 + Zt

3

/-
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7. Consider the various sets Aid described in Exercise 6.
(a) Are there any of these sets which are not lines?
(la) Are two of the lines described in Exercise 6 parallel?
(c) Is the saMe line described twice in Exercise 6?
(d) Are any of the lines of Exercise 6 parallel to any of the coordi-

nate axes?
(e) Are any of the lines parallel" to any of the coordinate planes?

8. Suppose that,A has coordinates (1, 2, 3) and that B has cooisdinates
(2, 4, -3).
(a) Use (*) to,write parametric equations for AB*.

( b) Use (*a) to Wiite parametric' equations for "AO, where C'
= B A.

(e) Compare your answers for parts (a) and (b),.
9: Suppose that A has coordinates (0, 1, 2) and that. i'has components

(3, 5, 7).
(a) Uae (rg) to write parametric equations for Arcl.
(b) Use (*) to write parametric equations for V, where B = A +C+.
(c) .Compare your apswers for parts (a) and (b).

Part C
1. If / is the line which contains two given points,. A and B, then, as

you know, [1] = [B - A]. You also kno-w that, for a =?k 0, fria) =
. Suppose, now that A, B, C, au0 D have coordinateS A; (2, 3, 5),

B: (4, 2, 6), C: (6, 3, 9), and D: (8, 2, 10).
(a) .What are the components of B - A?
(b) Wliat are the components of D C?
(e) What can you say about the lines 4AW and trh

2. Repeat, xercise 1 when the coordinates of the given points'are A:
(3, 5, 1),B: (2, 1, 4), C: (4, 6, 3), and D: (2, -2, 5).

S. In each ofthe following exercises, 'Cletermine whether or not

(a) A: (3, 2, -1) (b) A: (2, 4, 0)
B: (4, 7, 4) B: -2, -3)

(3,-0,1) 2)-
D: (6, 24, 16) 'D: (9, 3, 7)

(c) A: (4, 7, 0) (d) A: (2, 9, 4)
. B: (3, 6, 0) 4 B: (4, 0, -1).

C: (-2, 4,0) C: (1, 0, 4)
D: (-4, 2, 0), D: (2, 0, 2)

4. In each of the following exercises you
point D such that ri is parallel to ti3
(a) A: (2, 4, 0) (b) A:

are to find coordinates Qf a

(1, 4, 7)
B: (1, 2, 5)
c: (8, 4, 0)

(c) A: 4, 0)
1,2,0) '*
4 1, 0)

B:
C:

(d) 4:
B;
C:

(2, 9, 1)
(3, -2, 4)
(3,,5, 0)
(4, 3, 0)
(2, 6. 0)
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Answers for Part B [cont.]
1 .

7. 4 a) The set desc.ribs in part (f) is not-a line. (As should be the
casepce A[ Q ] = (A). the parametric coordinate equations
for A[0] yield only the coordinates of A. ]

(b), The lines described in (a) and (b.) are parallel-since the
direction of each.is described by the same vector.- The lines
depscribed in (c) and (d) are. also parallel since
[u12 + U*3.-4] = [ul -4 + u321.

(c) The same line is described in (a) and (b). This can be dis-
covered in several'ways: (1) Use th equations for.one line to
find coordinates of a point on tha}1t e, and use the equations
of the other ta show that the sathe point belongs to it. (ii) Note

i that replacing 't' in the equations of (b) by 't 1' yields the
equations of (a). This means that any coordinates obtainable
from either set of equations 'is obtainable from the other.
,[That different lines are described in (c) and (d) can tie shown
by showing that one coordinate triple - for example, (3, -2,1)
which satisfies (c) does not satisfy (d). ]

-.

(d) The line described in part (e) is parallel tothe second coordi-
nate axis, since its direction is
The lines described in (c) and (d) are parallel to the second
cobridinate plane sbinte.their direction, [u1 - u32], is a subset
of the direction [us, a / ] of this plane. And, by part (d), the
line described in eg r t (e) is parallel to both the first and the
third coordinate plane. 4 .-

S. (a)-(c) The equations obtained in answer to (a) and (b) are, of
course; the same:

(e)

; 1 t
= 2 + Zt

-x3 = 3 - 6t
9. ) (c) The equations obtained in answers to (a) and (b) are:

xi = 3t
4.

= .1 + 5t
= 2 + 7t

s.°

Arts ems _for Part C.
I. (a) (2, -1,1) (b) (2, -1, 1) (c) AB II CD
2. (a) (-I, -4, 3) (b) (-2, -8, 2) (c.) AB 14 -6-5
3. In parts (a) and (c), AB !LCD; in parts (b) arid (d), AB n CD.
4. [In each pari, one needs to' find a point' D be1onging to C[33 -

The simplest 'choice is C.+ I rt?. *- A) but, of course, for any t # 0,
C + (B - A)t will do as well Ars easy check is D - C 111

a) 17, 2, 5) (b) (4,3, -2) fc.) (3, -1 0) (d) (3, 4, 0 ) ,
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Pirt1) -
1. Consider the points A, B, C, and D whose coordinate: are A: (1,

-2, 3), B: (2, -3. 5),.C: (-1, 4, -3), and D: (-2, 5, -5).
(a) Show that',Vd and intersect.
.(b) In what ratio.cloe$ the-point fohnd in part (a) divide the inter-

val from A jo &Title interval from B to D?
(c) What follows about ABCD from the result obtained in pa.rt (b)?
(d) Obtain the concusion you reacted in part ,ic) another.way.. .

2.- Suppose that {X, B,C, DI is noncoplanar. '

(a) Draw a figure and mark on it the midpoints P, Q, R, and S of
WI, and 74-0, respectively.

(h),. Using A as origin and (B.- A, C -PA, D - A) as.ambasis for .1 ,
fihd the coordinates of P, Q ; R, and S.

ShOW that P-4 and hag intersect.
(d) What does your work in part (c) t:ell you About XI and rg?
(e)!Pormulate a theorem comierning the segments joining the

midpoints of-oppositesidesof a tetrahedron. rtpa'ahedron' is a
sylxii:iym for 'Itiangcaar .pyrami d'.

3. Supposii1iat44); and dttre pogition victors of fourooncoplanar
points. .

(a) Whai can you say about a,1(
(b) Suppose ,t.haf a+b+c+d 0 and -a÷a + + + cid

What can you say about ala. + b + c + d)? About (t; - A
+ - ale + CA:1? About b, c, and d?

(c) Prove: .

A

. oft

a

Theorem 10 -.12 If 7:42 1-;:,--e.; and are position
vectors of nondoElanar points and a -44 e + d = 0
then.

au- + bb +Vd VW and only if..
0 -0,. c .=F .0, ana d = 0.

4 4. Reconsider Exercise p. suppase thdt b, p, and 3' atc the position
vectors of A. B, C, and-D, respectively:
(a) What are_tha_position vlfootors-poli-i,P4md--;of-P, 9.4.4
(4) The fictuatOn: r

. .

a parametric Vector &Notion of P. Use.your resUlts from
part (a) to rewrite this eqoation in terms of the Position veeters

'and 'c7f,, and:write.a equation for kg, using
akpararaeter.:,
Uoe Theorein '10 /-2 and your equationsfrom part (h)to show
that Pa and V hiseet each other.

Answers for Part D'
(a) "AZ: x1

= -2 + 6t
xs = 3 - 6t

AC and BD intersect at the point
by t 4 1/2 and s = 1/2.
Since, for the point of intersection, t (1 t) = s : (1 - s) z .1,
this point is the midpoint of both intervals and, so, divides
each in 1:1.

2. a)
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BD: x1 = 2 4s

x2 -3 + 8°
xs = 5 - lOs

Whose coordinatcti are given

ABCD is a parallelogram.
The components of B A and C D are [for both] (1, -1, 2).
So, B - A = C - D. C since the components of C - B
are (-3,7, -8) and, so, C - B [B A]. Hence [by Theorem
8-16], ABCD is a parallelogram.

. .

(b) Since P - A = (B A)-1, the coqrdinales of P are (1, 0).
Since Q - A = (C - A)(1 + in A)-1, the coordinates of Q
are (0, 1). Similarly, the coordinates of R are (I, 0, I)
and those. of S are (0, 0).

(c) It is a reasonable guess that WI and RS have the same mid-
point. Thisiod quickly,checked by noting that, for each, the
co&rdinatesiof its midpoint are (1/4, 1/4t 1/4). Sirwe
{A, B C, Didsnoncdplanar, {P, Q, is noncollinear and,
'So, Plot and have no other cornmon point. [A More pedes-
trian approach is to find riararnetric equations of 13?5 and ra,
and proceed as in Exercise 1(a). A more inspired approach
is to note that ABDC is a simplerouadrilateral and use Theorem
8-20(b) thus ayoiding the somewhat cumbersome use of
coordinates'. } -

RS. bisecteach other.
(e) The three. segrnents_wbickjoin_the Tnir1pn4 rit of,_Qppos.,ttiaes,.!''

of a tetrahedron intersect at their, -common midkint.
^
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Answers for Part [cont.)
3. .(a) Since ...t; B - A, etc., - c-* 1, a --;) is linearly

independent.
(b) Suppose that a + b + c + d 0 and la + b + jt ad

follows that a(a + b 4- c + -ci) 6 and,/ so, that (aa + + cc + ad)
- (la + + + ld) 6. Hence, (i) + (C7 - -1)c + ca

Ad, since [by part (a)) (i; a, C.,;- a, d -;) islinearly
independent, that h c d 0. Since . a + c ,+ d 0,
a 0 also.

(c) The proof is contained in the- precedingargumente except for
noting that if a b c d .D. then aa + 5b 4- CC + ad 2,

[Theorem 10-12 is, of course, analogous to the corollary to
Theorem 8-15.. Theorem 8-15 has a similar analogue of
which Theorem 10-12 could be considered a corollary.

4. (a) p + + + ; +-i [If, as in
Fxercise 2. position vectors are taken with respect to A then

.6. The .preceding formulas, however, hold forany origin.
The symmetry which results when the origin is unsAecified is.

often of more value than the sirnplicity which sornetinies rasults
from a special choice of origin. This is one reason why vector
-methods are often more efficient than coordinate methods.

(h).. VC: (; + + (-c +
2

RS: a)-12----

[To find where, if at all, PQ and RS intersect we look for
values of '5. and 't' which give the same value for

- +1 t 4t a2-2-0it +s -1 s 1 s
+

- c-2-+ -?

(4) S.(1 t - s) 4- (s t) + -C*(t - s) + a(s 4: t 1)

Since "a*, 5, C., and d' are positiOn vectors of nOncollinear poi
A.arid sint e

it 'follows that (*) is satisfied if and only if s + t and,,
s = t that is, if and only if s = 1/2 = t. So, P910 and "RS
bisect each other,
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Saznple Quiz

1. Suppose that (l,13, is basis for 1", that (Lis the origin, and
that A, B, and C have'coordinates (2, -3, 1), (-1, 2, 4), and
(2, -7,1), respectively, with' respect to the coordinate system
determined by 0 and the given basis.
(a) Find the coorthnates of ail points X such that A, B, C, and

X arc the vertices of a paralYe'logram.
(b) Find the coordinates of the point of intersection of the medians

of AABC. [This point is called the centroid of i'ABC.
(c) Given that the points you found in (a) are X1, X2, and X3,

show that the centroid of AX1X2X,1 is the centroid of AABC.
Suppose that A has coordinates (6, 5), that B has coordinates
(-9, 7,7) and that I has components (2, -4, 6) with respect to a
given coordtnate system.
(a) Write parametria equations for A[ a ].
(b) Compute the coordinates of M such that B is the midp6int

of AM,
(c) Show tha1 A, A + B, and B a are the vertices of a

parallelogram.
Key to Sample Quii
1. (a), (5,-12,-2), (-1 6,4), (-1,- 4)

(b) (1, -8/3, 2)
(c) The centroid of AN.I.X2X3 has coordzinates (1, -8/3,,2).

Compare with (b).
2. (a) x1 = 6 + Zt, x2 = -3 -

(b) ( -24, 17, 9)
[Many solutions.

5 6t
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(d) Show that, even if IA, B,C, DI is coplanar, it shall follow that
.Pti and vg have the Same Midpoint. Conclude that if a simple
quadrilateral is not a parallelogram then the midpoints of its
diagonals and of a pair of Opposite sides are the vertices qf a
parallelogram.

Part E c

Recall the two-point coordinate equations of lines which were in-
trOduced in Part A on page 423. If A aria B have coordinates (a,, ay
ai) and (hi, hi, h,) then the parametric equations:

+- (hi. - udt
.1:2 = di, + (6, - a,2)1

-, -. a, + (hri - adt

can, each, be solved for T L assuming that hi * ai, b, 6,, and b3
* a,. On doing so, we note that lxi, x, xid are coordinates of a point of
Xii.if and only

xl - al X - a 3

- a, b, - a,, I)

Something similar to this can be done if the restrictions thilat hi
b; and h, a, are not all satisfied. -

I. Whet is All in eaae none of die three.restrictions just mentioned

14

are. satisfied7.
2. SUppotle that. A and B Ihave.ecordinates (2, 6, 1) and (6, 4, 1):

(a) Write parametric coordinate eqUations for ATI.
(b) Use your et for part (a) to find-two equations, neither of

which the parameter, and which are satisfied by the
. coordina juit those points which belong to

(C) What do you know about the thitd coordinate of any point of
dici?

(d) Describe the set of all points of e' whose third coordinate is 1.
___JWIlat _kind, of set-is-it,- and how-is it- relsted-to-thevoordinate

planes or axes?]
3. In solving Exercise 2 you should have found that the line Xri r

iferred to there csn be described by the two equations:

1, V

xl - 2 - 6
3 2 ' x.
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(d) In any caz.q, (*) is satisfied if s 1/2 = t. So, in any case,
1M and 115 have the same midpoint [but, they may have other
points in common). Consider the quadrilateral to be ABCD
and assume that kl BC. In the notation of this exercits,
P -and 0 are the midpoints of the opposite sides TA and CD,
and R and S are the midpoints Of the diagonals BD and Ye.
We have seen that PQ and RS have the same midpoint. By
earlier results [Part B on page 355) we know that, since
A-TA BC. {P, 0, R) is not collinear. Hence, the intersection
of and ITS must consist of their common midpoint in
short, they bisect each other. Hence, PRQS is a parallelogram.

Answers for Part E

1- ki-. -.b1 b 4 aw, and bs = as then B -A A and., so,
B = AA - ,

Z. (a)

(b)

(c)

(d)

x 2 3t

= 6 - 22
-1

3 -2 '

It is -I.
xs = -1

It is the plane which is parallel to the third coordinate plane
and contains the point 0 - us whose coordinates axe (0,0, -I).
Foj, D belongs to this set if and only if D 0 + us ti2t
+ u -1 for some choice of valUes of 's' and Itl. So, the
set in question is fx: ax ay X (0 U3) 4' Ulx and
this is (0 - us u2 I.

TC 430 (1)

3. (a) One such translation is '":111. ; but the suin of this and any
member of [ui, u2 } will do as well.

(b) It is reasonable to guess that the equation:

(4)
x, - Z x, - 6

=
3 -2

represents another plane containing the )ine Mg. Since .
places no restriction on- 'x31, (x1, x2, xs) satialies (*) if and
only if there are numbers og and t such that

YOU also should have noted that the se:16nd of these equations is
satisfied by the coordinates (y11 ye y3) tif just those points which
belong to a certain plane whkh is parallel to the third coordinate
plane.

I.
4

Fquiv ntly,

'ill = 2 + 3e
X2 = 6 - Zs
las = t.

=.2 + 3s Ot

x2 = 6 - Za at
= 0 + Os + it -.

So, if C has coordinate:I (z, 6, 0) and it halt components
(3, -'2,0) then th oo.çlatèe of a point P are given by Os
if, and Only if P -C[ a, us J Hence, (0) represents a plane'
which is parallel' to.the t12..44:1 coordinate axis and whose
direction contains ullcf ,12
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-
(a) Describe a translation c which maps the third coordinate plane

onto the plane whose equation [Hint .c-*must be a
linear combination of the terms of the basis (4 u2, of the co-
ordinate system.]

lb) Theorem 10- 2 might now suggest something about the first
of the two equations. Make a guess and think of way§ of
checking 4..

4. Consider-the line through points A and 13 which have coordinates
(3, 2, 1) and (4, 2, 1).7
(a) Repeat parts (a) and (b) of Exercise 2. °

(b) Pescribe two planes whose intersection is VA
(e) How .is Air related to the cobrdinatt planes and.axes?

10.07 Equations of Planes

If you recall the similarities between Theorems 7 --1 and 9-1 and
between Theorems 7-5 and 9-11, it should be clear that we can ex-
pect that vector, equations and coordinate equations of planes will be
similar to those of lines. For example, if {A, B , C} is noncollinear then
there is a unique plane, Ake-which contains A, B, and C, and a p6int R
belongs to this plane if and only if, fof some numbers s and t,

R A + (B A)s + (C -,A)t.

As in the case of the line AV, if a', c, and rare the position vectors of
A, B,C, and R, with respect to some point Q, it fosllowq that R if
and only iMor some S and t,

-

a + (b - a)s + (c - a)t.

[Explain.I If, now, we choose a basis t-72,-ii,) for .6.7 then the .coordi- .

nates say (xv, x, ";)- of a _pyint R c Age mustsatisfrpexametricto (c.)
orciinate equations:. 4
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This result can, of courpe, be generalized to ipply to
any equation of the form of (*). For example; the equation:

x + I x 9

4 7

is satisfied by the coordinates of pst.those...points Which belong
to the plane whose direction is [ul, u24 + u971 and which con-
tains the.point whose coordinates are (0,m-1,5) [or, for that
matter (-217, -1, 5)1,

As mentioned etarlier, the plane represented'hy (*) is the
projecting plane, parallel to the third coordinate axes, for AB.
[In case the axes were mutually perpendicular, this plane
would customarily be described as the projectiu plane, per-
pendicular to the third coordinate plane, for MS, or, as the
x1x2 -projecting, plane for xr.

Since, for each point of AB, xs = -1 [see Exercise 2],
this lett equation represents the projecting plane for -A-A.
parallel to the second coordinate axis and [the same] projecting
plane for -a parallel to the first coordinate axis.

In general, the three equations summarized in the two-
point coordinate equations of a line represent three planes
projecting the line parallel to the three coordin.ate Axes. In
case one of the denominators represents 0, two of these
planes coincide in a plane parallel to the other two axes'.

The subject of projecting p.lanes deserves to be discussed
in class in connection with the present exercise. See also,
the, following exercise;

4. a) x1 = 3 + t
x2 = 2

xs = I

(b). x2 = 2, xs s I [Evidently, the first of the parametric
equations puts no restriction On .x1' . It merely serves to
specify the parameter-value, associated with a point on the
line; in terms of the first cciordinate of the point.

(b) The glair villich is parallel to the second coi6rdinate plane and
contains, say, the point whose coordiriates are (0, Z, CI; the
plane which is parallel to the third coordinate plane and con-k

tains, say, the point whose coordinates are ,(0, 0,1).
7r3 is parallel to_ the_ fizat _coordinate axis_and...-0.a, to-each-of ---
the second and third coordinate i:olanes,

A line like AB is contained in eacl of infinitely many.
planed parallel to'the first coordinate axis. The two of-these
each of which I. parallel to one of the ether axes are called
the projecting planes of the line. ,

In discussing-Exercise 3(b) of Part E we came upon an example
f (*);

i'
4- + (b, ,- ads + (c, - adt

; .= a,,,- -4,- (b, - ads + (2 -

where (a a,, a,) are the coordinates of A [or, equivalently., are the
cOmPonents of the position vector A - 01, etc, [Explain.]

in the folloWing ex&cises, we suppose that a coordinate system
based in some point 0 and some basis (41, 04, /.73) is chosen.

9 S 'I" r e '

xl 2 +.3s +
x2 =- 6 sa 2s +..pt

= + Os + It .4
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1. Consider the points A, B, and C whose coordinates are (r, 2, 3),
(2, 5, 7), (3, 1, 1).
(a) Show that {A, p, ci is noncollinear.
(b) What are the comi:onents of B - A? Of C - A? Of (B - A)s

+ (C A)t?
(c) What are the cooniinates of A + (B - A)s + (C - A)t?
(d) For each point X, X AII-6 if and only if, for some s and t, the

coordinates (x x2, .z.) of X are given by the equations:

TC 431

At least the first two exercises of Part A should be used to
i1lus?1.ate the discussion on page 430. The algebra involved in Part B
can become veryinvolved for eome students. These exercises best
treated under teacher direction.
Answers for Part A
1

are

(a) The components of B A and C - A are (1., 3, 4) and
(2, -1, =2), respectively. Since neither yector is 6, 'linear
dependence would require that each comi3onent of one be thv
same-multiple of the corresponding coenponent of the other.
Since this is not the ease, (B A, C A) is linearly
independent and, so, {A, B, C) is noncollinear.

(b) (1,,3, 4); (2, -1, -2); (s + 2t, 3s - t, 4s 2t)

ICoroplete.1
(e) Give, as linear combinations

translations which
2. Write parametric coordinate

the points whose coordinates
(a) (1, 0, 0), (0, 1, 0),
(b) (1, 1, 1), (0, 0, 0),
(e) (3, 4, 0), (2, 5, 0),

3. Write parametric cooq
, [in each of the following

of A and the second and
respectively.
(a) (1, 0, 0), (-1, 1,
(b) (1, 1, 1), (-1, --1,
(c) (3, 4, 0), (-4, 1, 0),

2.

3.

4.

5.

(c) (1,,+ s + Zt, + 3s t, 3 + 4s - 2t)
.(d) 1 + s + 2t; Z + 3s t; 3 + 4s - Zt
(e) [The.translationg- B A and -C-- A a e the most natural ehoie.

qi + u23 + 1134 and 1112 u2
(a) x1 1 -s-t (b) x1 = 1 - s t (c) X 1 = 3 - s Zt

x2 = S. x2 1 s - t = 4 + s - 9t
xs = t x 1 s 2t

[Same answers as for Exercise 2.]
0 = A, (,)tii B 412 C - A, I [The choice of
As immaterial, as'long as (111, us, us) is linearly independent. It
would never be referred tb in solving such a problem,' so there
would be no need to make a specific choice. ]
To make use of symmetry, it is helpful to modify thv procedure

deScribed'in Exercise" 4 and choose 0 B, 111 = A B, and
u2 = C - B. The coordinates of A, B, and C are, then (1, 0, c),
(6, 0, 0), and (0, 1, 0). Those of the midpoints of SZ and t---A are
(0,1, 0) and 0, 0). The coordinates of the point 2/3 of the way

x

xa

of terms of Cd ü, /id, two
are tbr. -a basis for [AEC].

equations for the plane containing
are:

and (0, 0, 1)
and (0, 0, -1)
and (1, -5, 0)

ATeiinate e4uations for the plane , c where
parts] the first triple gives the coordinatet

third triples give the components of-gand c,

(-1, 0, 1)
-1), (-1, -1, -2)

(-2, -9, 0) from A to the midpoint of BC are (1 + -.1, 0 + I.+, 0 +1-.o).
[Compare your answers in Exercises and 3.1

4. Suppose you had a problem to solve which involved only points in
a given plane Aiie. If you wished, to use coordinates and hoped to
make your algebraic work as simple as possible, what would be a
geod choice for and for (, zi2,1s,)?
Use _coordinates to show that, in LIABC, *the medians from A and ,

from C intersect at a point which is of the way along either of
them from vertex to midpoit of opposite side.

Part,13
When studying coordinate equations of lines we' foUnd thitt it was

'possible to "eliminate" the .parameter from the parametric equations
of a.line so as to obtain the two-point equations of the line. Similarly,
it is possible to eliniiiate both parameters from the parametric 'co-

.- ordinate equations of a plane and, thus, dt?scribe the coordinates of
points belonging to the plane' without using parameters. We stft
with a rather simple exanaple.

9SD

Those of the point 2/3 of the way from C to' the midpoint of BA
are (0 + 1 + 1 -1, 0 + 1.0). So, the points are the same.

r
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I. Considei points A, B, and C whose coordinates are (1, 1, 1),
(3, 1, 2), and (2, 2, 1).
(a) Write parametric coordinate equations for AEC.
(b) Solve two of these .equations for 's' and it. lHint:4Choose the

two equations for which this is easiest to dol
(e) Use the equations you obtained in part (b) to eliminate 's' and

't' from the third of the parametric equations for AEC.
(d) Why must the coordinates (x1, x xs) of any point of AEC satisfy

the equation you obtained in part (c)?
(e) Why 'must any point whose coordinates satisfy the equation of

part (c) be a point in Age? [Hint: Given coordinates (x x x3)
which satisfy the equation of part (c), how can you compute
values of 's' and from which you can get the given coordinates
by using the parametric equations from part tar]

The only thing special about Exercise 1 is that it is particularly easy
to scAve two of the parametric equations of AEC for 's' and T. [Why'?]
The parametric equations of any plane are of the form'

x1 = a, 4- b1s + c1t
x2 + b2s + c2t
x3 a3 + b3s + c3t

[What is (a ,, a , ,;)? What are (b1, b2, 113) and, (c1, c3)?1 These equa-
tions Can be reWritten in the form: '

b1s + c1t --= xi a,
b2s c2t x2 - o2
b3s + c31 s3

and, whenever it is possible to solve some two of these equations for
4 is'land te then substitution in the third equation yields a single equa-
-tion. which is satisfied by the coordinates of just thoie points which

belong to the given plane. [Whether or 'not it is possible to solve some
two of the equatiOns for 's' and 't' dependt on what the triples (b1, b3)
and (es, c c3) happen to be. Make a conjecture as to the relation
.between ihe vectors having these components in ease no two of the

-equations can be solved--for and 't'.1

Part C

2. For each of the planes Afb,i1 of Exercise 3, Part,A find a single
equation representing the plane.

I. What points have coordinates which satidy the equation:

Ox, + Oxs+ d
ifd.0?Ifd = 0

Answers for Part B
1. (a) X =

2

Xs =

I + Zs + t
+ Os -t 3t

I + + Ot

(b) From the second and third equations, $ z xs and
t (x2 -4. 1),/3.

(c) Substituting from the results of part (b) into t e first equation
and simplifying;

3x1 x2 - 6x3 = 2
(d) For any point of -A7S-E, its coordinates must be given by (a)

for 'a proper choice of values of "s' and These values can
be ctimputed in terms of the second and third coordinates of
the point by using the equations in part (b). The equation of
part (c) is just another way of saying that these values of 'a'
and 't" and the first coordinate of the point satisfy the first of
the equations in (a).

(e If x,, x2, and x3 satisfy the'equation in part (c) and s and t
are aetermined from x2 and xs by the equations of part (b)
then x2, xs, s, and t will, automatically,: satisfy the second
and third equations of part (a) and, because xi, x2, x Satisfy
the equation of'part (c), xi, s, and t will satisfy the first
equation of part (a).

[A correct ciinjecture is that no two of the equations carPbe solved
for 's' and 't' if and only if the vectors,with componenti (al, a2; as)
and (131,b21b3) arelinearly dependent. It is,just in this case,that
Alt- is not a plane.] ,

2-, - (a) xl 4. x2 x3 = 1

Answers for Part C
1. No points.; All points oi e.

(b) xl 7 x2 (c) x.3 =. 0
s



al

10.08 Determinants 433

2. Consider the equation: 2x, - 3x2 - x, 5.
(a) Show that the parametric equations

1

x I

X% = S

.X3 =

represent a plane whose points are just those which satisfy the
given equation. [Hi/it Does it matter what letters we use as
parameters? Could we use place of 's?]

(b) Give two other sets of parametric equations, iitch of which
desci-iboagthe same plane.

*3. Show that the equation:
kt

a,x, + atx.,4 a3x, = d

is an equation of a plane if and only if not all of a,, av and a, are
zero. lifint. For the only-if part consider the case where all of
a,, a2, and a. are zero. From this, you should be able to show that

, the equation is not one of a plane. For the if part consider the case
where not till of a,, and ã are zero and make use of the notions
discussed in Exercise 2 and Part B.]

10.08 Determinants

In Chapter 4, on (pages 173-175), we discussed methods for solv-
ing systems of linear equations. Systems such as:

(1) 8x + 2y = 17
5x -I: 2y = 11

are said to be independent because the equations of the system have
just one common solution. (What is the solution of (1)?) %%terns
.such as:

(2) 3x
6x - 8y 12

TC 433

Answers for Part C

I.

2. (a) Using'"x2' in place of '1' and 'xs in place of ' as
parameters, the parametric equations become:

5 3 1

' xi
2
- + -x + -x

2 2 2 s

(b)

1

, = IL2

3 3

.

This last system is equivalent to the single equation
'2x - 3x2 - x 5'. The solutions of the parametrics
equations are the solutions of the gilren'equation, and
the parametric equations represent the plane represented
by the given equation.
-An example of each df two typical kinds of other sets of
parametric equations which students might offer:

e 10 6 2x 4 4 4., x1 = a
5 2 1+ 1-fii - it and: x2 =

xs = t
.. -t

However, if the student chose to locate three paints of
the plane described by the given equation sikch a, for
example, the points whose coordinates are 11, -1,0),
(0, -1, -Z), and (2; 0, -1), that student might offer the set
of parametric equations:

x1'. 1 - s + t

xs .= 2s t
In such clime it may be well to ask the s4dent to demon-
strate that his parametric equations do represent the same
plane as that of the given equation. As an exercise, the
students could be asked to.use the parametric equa-
tions to *rite a single equation which describes the same
set of paints. They may do this, of course, by "eliMinating'
the parameters" from the given parametrie4quations.

3. Suppose, first, that the given equation is an eqUitiOn of a plane.
Now, if all of al, a2, and as are zero, then the given equation
is satisfied by the coordinates of each point of 8 proyided d 9 .
and no point of esprovided d # 0, In either case,, the given equa-
tion is not one of a plane, a. contradiction. 'So, not all of al, a2,

are said to be dependent because the equations of the system have the
same solutions. that is, are equivalent. And, systems such as:

(3) 6x -7.8y = 12
- 8y = 13

are said to be inconsistentbocause the equationsZf the systerd have no
common ,soIution.

and -43 are zero.
Suppose, next, that not all of ap a2, and as are &erg. In case .

a 1 *0 , the system of parametric equations r- Oa; - s/a1t/a *X2 ', t' is equivalent t the smgle equation
+ asxs d'. Since the -kyst m of parametric equie-

tions represent a plane, so 0.9es the sin le uation. A similar
result occurs in case a2 * 0 and itvcas as u ku any
case, a1x1 + a2x2 + asxs d' is an eq ation of a plane.
If you did not review eolutions of simulianeous linear equations

while fitudying Chaptet 4, we suggest that, before beginning thi
section, you review these tdpics witb yoUr ;students.. Pages. 173 .-
175 should help you with this task.

The aolutiou to system (1) is (1, 3)

g



Answers for Part'A
As mentioned earlier on 'page' 174, there is an asy 'way to tell

whether a system is. independent. Tke system:
(4) a,x +. b,y .c,

1.

bgc=

is.independent if_and only if (the determinaa) 3.

a, b 4.

(5,
b

0. 5,

(If this deteniiinant is 0 then either the system is defefident (the equa-
tions are equivalent) or the system is inconsistent (has no solution).]

The operation indicated by the vertical bars is chlIed the determi-
nant operation. For the pairs (a b,) and (dr b.,) the-value ofthe deter-
minant dperation is- the number a,b2 - 'ci,,b,. That is,, . ,

a1 b,...

= a b as,b1 .1 2

a;
4

The sequences (a , b,) dnd (a.2, b2) are called the rows of the deter-
_ minant; (a and (b b2) are called the colamns of the determinant.

When thd value of the deterMinant for the system (4) is not 0, the
common solution of t4 equati9ris in (4) is given by the formulas:

b,

.1
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(a) .5 [2.4 - 3.1] (b) [2.4 -1.3)
ja) .41 [3.2 -5.7] (b) 17.-5 2.3)

TC 435 (1)
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(C) 41 [2.3 - 7.-5]

la) -2 [3.4-7.2] (b) 4 [-6.4 - -14.2] (c) 4 [3.-S 7.-4]
(a) 34 [6.8 2.7] (b) 34 [(4.13 4.7)+ (2.8 - -2.7))
(a) 2 [1.8 - 265] (b) 2 [1.(8 - 2.3) 2(3 - 1.3))

A

re.
r.

Note that "deterrninanting" [as' far,as tve introduce it here] is
function from pairs of pairs of real numbers to realtnumbers. [Coin
with squaring as a function from real nurfibers to real nuMbers. ] So, the
determinant of a pair of pairs is a real nurnber just as the square of
a real. number is a real number. 'the word 'determinant' is sometimes
used to refer to the symbol formed of a phir of vertical lines enclosing a
square array of numerals, We shall occasionally uge the word in this
sense. We do so, for example, when we speak of the yalue of a deter-
ininant.

Third'order determinants are better, the third' order determinant-
ing function is introduced on page 462.

Determinants hhve several simple properties. Somefof these
should discover in doing the exercises of Part. A.

-7Exereises . . . .

, Part A
1.mplify for; evaluatel each of the givea deter*inants.

3 '(b)



Part B

3.ta)

4. (a)

5. (a

3 7

2 4
6 2

7 8
1 2

3 8

(b)

(b)

(b)

Detecraluant4.

7 8 7 8
1 2

3 - 1 3 8 - 2 3

*4

8

Each of the five exercises in Part A illustrates one or more rules for
computing with determinants. For example, Exercise 1 suggests thatV
two determinants have the same value if the first and second columns
of one are, respectively, the first and second rows of the other. Briefly,
"interchanging the rows' with the columns of a determinant does not
change its, value. This, as well as the rules illustrated in the other
exercises, is easily derived from the definition.

Prove each of the following theorems.

b,

a. b,
2. tai ta

b, b.

as (b)

b, b, b, bj al al b, b,
[Nole. It is easy' to prove both part (a) and part (b) merely by
using the definition. It is still worthwhile, however, to notice
that part (b) can be deriVed from part (a) by using Exercisil;

b, b, a,

a2

c

b2 lb, bIr
k

. Justify each of the three steps in this argument.]
3..(a ) a,c a.cI (b) aic a3

c
'112 btc. b2-

1Prove part (b) by using Exercise 1 and part (a):Provepart (c),
below; by miing Exercise 2(b) and part (aY.1

ov td) 'a1 a2c1 a, a,. (c

. t (a

Answers for Part B
1. al

a-,

2. (a)

1

'as al
b1

'It 435 (2)

anbi - a1b2

al a

b b

- a211 )
al a

tal b2
-(b) The proof is given in the hint. The justifications for the steps

are, in turn, Exercise 1, Exercise l(a), and Exercise 1.
. (a)

(b)

a c

'

1

1

e bsC

(4) ai asc
bi

4. (a) ai

131 b2

b2c

ale b1c

b2as

1 b2c1

as I

b1

a2c b2 C

al b1
a2 b2

bz b2

a2

-

C

a a2

b1

b2
=

a2

.b2

c =
b1 02

a2

131 b21

.7. (a 1)b2 - (a 2)231

116(aibs -.aab bs

:b
a2

at

b,c b2ct b, b biz
a1+Ci 1L2 al a2 el

b, b b, bJ b,
(b) State three similar results -which you can derive from part (a)

bY uging either Exercise 1 orIxercise 2.

9 ok.7;--,
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5- (a) a, "2 a, a,

b; + a c- + acr 6, b,
{Hint. ilse one of your results -from Exercise 4, then use Ex-
ercise 3(c). Notice that Exercise 2(b) tells you that

= 0. Why?)
"2

a, o,
(b) State three similar results which you can, derive from part (a),

by using Exercise 1 or Exercise 2.

Many-of the applications we shall make of determinants depend on
th9 following fundamental theorem concerning a system of two equa-
tions in 'x' and 'y':

Theorerd A
The system of equations:

jalx + b1y = c,
ta2x+byc2

as a unique solution if and only if

a
1

-Answers for Part B

5. (a)

and, i4 this case, the given system of equations is''equiyalent
to:

1

b2 a2 -b2

_1See Part B on pages 174 -1'701 Thisis easy to remember if you com-
pare the common denominator of the two fractions with the given
syatem of equations and then note how thi numerators of the fractions
compfire with this denominator. It may also lie helpful to compare this
theorem with a simpler one:

The equation 'az = c' has 'a unique solution if and only if
a 0; and, in this case, the given equation is equivalent to
ix c/a'.

(b)

a2

bz;+a2c 1,1

a2

a c1

al +bi

b1

1

al + a2c a2
t.

b1+ b2c b2

al a 2

b2

t%
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There is a frequently useful corollary of Theorem A which deals
with solutions of a system of equations like:,

ja,x b,y = 0
) "art + 0

Such a sys tem always haS at least one solution. [Explain.] But, there
are many 'situations in which we wish to know whether there are
numbers x and y which aie not both 0 and which satisfy the given
equations (4 ). In other words, we wish to know whether 01 fias a solu-
tion other than (0,0) or, as it is sometimes put, whether (*) has a non-
trivial solution. Now, since (0, 0) is a solution of (*) it follows that

) has a nontrivial solution if and only if (*) does not have a unique
solution. So, Pas a corollary to the first part of Theorem A we have:

Curotlar'y
The system of equatiorls

S.%

f a1x + =
1a2x + b2y =j)

as a nontrivial solution if and only if

=. 0.

tx.
2

Part C
1. For each of the following systems of potions, use Theorem A to

determine whether the system has a unique solution and, in case
it does, to find this solution.
(a) f 4x 4- 2y = 7 (a) 4x 2y = 9 .

1.5x4+ 3y = 8 6x + 3y = 7
(c) f3x - 7y = 12 (d) f--5x + 6y = 11

12x + 5y = 8 14x - 5y = 0
2. 'Which of the following systems have nontrivial Soluticms

(40- ,j1 5x + 21y = (b) 15xec- 26y = 0
110x + 14y = 0 14x - 7y = 0

3. Explain why the following is equivalent to the corollary to,Th
rem k.

,asi 1

b, b.

.such that.fary 1+ 61y = 0 and aix + by = 0).

[Hint Recall &excise 1 of l'art B.J

7

= 0 if and only ifthere are nunibers x and y, not both 0,

TC 437

System (*) has the. solution (0,0). So, it has at lea st one solution.

Answeri for Part C

1

1. (a) Since
4

= 2 0, the system has a unique solution. It is
5 \ 3

a

(5/Z, I-3/2). [By Theorem 4, the solution is found by solving:
F 2 4 71

18 31 15 81x and y =

No unique solution.

(c) Unique solution. It is (4,0).
(d) Unique soliition. It is (-55, 44).

15
2. (a) Has a nontrivial solution, for

10 14

(b) The only solution is (0,0). That is; there are no nontrivial
olutions.

3. To say that there are numbers x and y, 'not both zero, such that
aix + bly = 0' and a2x + b2y. = 0 is to say that the sytstem:

jalx + bly = 0
1. + b2}r'* 0

has a solution other than (0,0) that is, has a

nontrivial solution. Also,

C,

fal

b I Ibi 132
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10.09 Determinants and Equations Ad Planes

.Suppose that (-C-, -4 is linearly independent and that, for certain
nUmbers a ay 6,, and b2,

(*) 2a2 and 7; +-Ay

What we wish tO know is whether or not (a,A is linearly independent.
In other words, what we wish to know is whether or not the 'equation:,

has any solution other than (0, 0). [Explain.] In view of (*), this
amoUnts to asking whether or not the equation:

;(ala + b b ) +1(cLia + b
2 b) 4-- 0

has any solution other than (0, 0). [Explain.] Since Cc; -4 is linearly
independent, this amounts to asking whether or not the system:

fa,a + b1b = 0
la2a + b2b 0

has a solution othb than (0, 0). Since (0, 0) is [obviously] a solution of
this system, w we wish to know is merely whether or ,not this
system has a uuique solution. W#at is the answer?

Exercises I
Part A

* Assuning that (c, d) i lineirly independent, use determinants to
detelmine which of the given pairs are linear4, independent.

Sample. .0 +-d2,-a +ZAP

-2 0
2 4

Answer. ? ['linearly independent' or 'linearly dependent']

I.
,4 3. + Z6,7+ Zs)

7. A + -5 - 27)
9. +7111,-J3 +V11)

4.0,70 +-sm

8.- <-7-cl ---a. 12)
6,1 4.z ,126)

TC 43$.

It may be helpful for you to teview the commentary for pages
373 - 374. The exercises in Part A of this sectlon are the sdme as
those in the Background Topic on those pages.

, Hete *are some suggestions for the use of Parts, A F, ptxges
438 - 447. Following an illustrated discussion of the iext preceding
Part A, Parts A and B, make a reasonable homework aAignment.
We recommend that you use Part C in class to illustrate the applica-
tiort'of Theorem 10-14. FollOWing this, Part D can,be used for
homework but we reeommend that you *permit your students to team up
for this. The 'algebra needed in these exercises is a little involved,
and there is no point to doing subsequent exercises based on the
results of an algebraic error. Part E is another class exercise to

,illustrate applications of Theorem 10-15. Finally, Part F can be
used as an individual homework assignment.
Answer's for Part A
1. line a rly independent

5 5

3.

= -5 - 5 = =-10* 0

early dependent
4.

6 3-

= 6 6 = 0

5. 'linearly independent
0 4

= 0 - 36 = -36*
§ .-1

7. linearly dependent
5 -5

= -35 - -3 = 0
7

9. Clependent
9 1 9 .

= 99 - 99 =
11 11

0

2. linearly independent .

3 3

0 -4
linearly independent,4.

= * 0

4
O 1 I

1 p

6., linearly independent
1 1'

1 - 1 = -2 *0.
1 -

8. linearly independent

1 ,

-2
-2

linearly dependent
O 61

Q -125
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In Exercise 3 of Part C on page 437, you showed that one,corollary
to Theorem A is:

a a '2

= 0 if and only if there are numbers x and y, nit both 0,
b, b,
such that a,x + bor = 0 and arx + = 0

1. Use (*,) to prove the following-

Theorem lie-13 For linearly independent,
(u,a, + u44 u1b, + ti,b2) is linearly deOntient

0.
bi b,

iliint: Complete: (4a1 + u
2a2 )X (u lb! -44 uitbdy =.

u,l I

2. Use Exercise 1 and an exercise from Part 13 on 'page 435 to Show
that la', 1-)* + cid is linearly dependent if and only if la, b) iS linearly
dependent. WOO For any a and b, there are vectors-say u, and,

u- such that (u d.,) is linearly independent and {-a+,11 C
Li, I

3. (a) One solution (x, y) of '3x - 2y ,- 0' is (2, 3). What are some
other solutions?'

(b) Use -xercise 1 to prove:
Tor (a1, a.,) (0, 0),

a, - a,sy - 0 rro. (x art and j; = nit)

glint: Choose any u, and Ti.l.such that (-4,-4) is linearly inde-
. pendent and let -c7 a, + and-6* = + 14x. Recall-that,

foF a ve 0, (a, b) is linearly dependent if and only if Ws [-r-i).]
---

.(c) INscribe ale solutions Of the lquatio-n '5x + '3y = 0',
4 Suppose:thilt,-4--;-A, -1.--;;-) is linearly-independent and that

a u,a, + u3a and + WA.

a) ,Show that ta, ikis linearly depp.Itclent if and only if the system:

ary + ky .-= 6
ayx .+ bo = 0
arx + bo =. 0

has a nontrivial solution:

Answers_ for Part B

Suppose that (111, u2 ) is linearly independent. Now, the sequence
(111a1 + u2a2, ulbt + ii2b2) is linearly depende4it4f and only if there
are numbers x and y, not both,O, such that (uial + i'i2a2)x

(u611,1 il2b2)y or, equivalently, such that al(alx + bly)
+ ii2-(a2x + E*2y) & Now, since (ui,11-,) is linearly'independent,
the latter is the case if andonly if aix 1: by = 0 and a2x`+ b2y = 0,
and these last equations have a nontrivial solution if and only if

=

2. Let (u,, u2) 'he linearly independent and such that {1,5} c [111.4.-ti
Then, lor some numbersday, al, a2, bu and b2-4 = ilaal.,+ u
-and 5 = i+ilbi + 4b2. So, for any c,, 5 + ac = 111(1,F1 + a
+ 112(b2 + a2c-). ,4t follows by Theorem 13-1 that (a, S) is linerl
dependent if and only ,if

1 4 r.1 a

lb
l = 0

b

and (,. + -gc) is linearly dependent if and only if
al

0,
b + a 1 c b + a 2c1 . 2 1 .

.

But, by Exercise 5(a) on page 436 the two determinants have thg
sarne value. Hence, one determinant is 0 if and only if the other
is 0 and, tip, one sequence IR linearly dependent if and onlY if the
other, is linearly dependent.

3. (a) All solutions of the giVe.n equation ar the form ' (Za, 3a)' for
some a, That is, (p, q) is a solution of '3x - 2y = 0' if and
only if at: (p, q) = (2t,*3t).

(b) Choose 'ill and et2 so that 4(4,,,-12) is linearly independent and
'let -S 1101 + ii2a2 and 5 = y +.11-x. By Theorern 10-13,

- a2y = 0 if and only if (Z,5) is linearly dependent. For
(al,' 42) (O, CO, * Oland, so, (-4:11-;) is linearly dependent if
ansi only if there exists a real nurnber t siich that 13 ='-itt
that is, [since (111,112) is linearly 'indepefadentj such that
y a1t and x = a2t.. So, forAav (0,40, alx
'if and only if- ix a2t and --i.,,5::a1t). Note that we/have
used a result concerning vector apiees to prove ene which

(c)
concerns only real slumbers I
All (p, q) figh that .at (p and q = St).
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(b.) Show that if (a-", is linearly dependent then each of the
determinants

b3I

b1!

is 0.
(c) Show that if each of the determinants in part (b) is 0 th (be,

(be-, and (b. -o) are solutions of-(*). [Hint: (b
is obviously a solution of the first of the Three equations in
Show that it is also a solution'af the second equation if and o
if a certain one of the determinants in part (brig 0, and
it is a solution of the third equation if &id only if another
'these determinants is 0. Give similar arguments for (b
and (b;

UP Show that if the three determinantaim part (b) are 0 than (*)
has at least one nontrivial solution. [Hint: Assuming that the
determinants are 0, you know three ways of finding a sOlution

(*). All that remains is to show that (*) still has a nontrivial
solution in case all three' of these ways give the trivial solu-
tion (0, 0).]

Frpm Exercise, 4 and 'Exercise 1 of Part B [paw 4351 we obtain a
very useful theorem:

Theorem 10-14 For17 U2, 143) linearly independent,
(u,a, 41- ula,; + .u3a3, uebe 4 u2b2 + u3b3) is linearly

'dependent

a2

b2

4 ,

0, 0* 0)..

4. (a) (Z,11;) is linearly dependent if and,only if there are -numbei.s x
and y, !lot both 0, such that Zs + by d. -This is so if andonly if u1(tlx + tr2(a2x + b2y) +113(aax + bay) -1

Siprce (a, , ir,) is linearly independent, we have that 41, t)
is linearly dependent if and only if there are numbers x and
y, not both 0, sudh that aix + bor .= 0, a2x + b2y = 0, anda3x + bay = 0. Since the latter is thehease.if and only if (*)
has a nontrivial solution, the proof is finished:

TC4440
- .

(b) Suppose that (1,11) is linearly dependent... Then, bv (a), the
system (5) has a nontrivial solution. So, each two equations
in (*) has a nontrivial solution. Hence, each of the given
determinants is J.G.

(c) Suppose that each of the givdn determinants is 0, Since
4b1, -ax) is a solution of the first equailon, we will be
[essentially] finished if we can !How that it is also a solution
of each of the other equations in (*) In making use of the
second equation, we see that a2b1 + b2- al = a2b`l b2a1

a2 b2 al bl
Sintilarly, a3b1 - baal = 0 soal bl a2 b2

that. (131, al) Is a solution of (*). Similarly, (b2, a2) and(b3, --a3) are solutions of (5).
(d ) U at least one of and g is non-s then one of the three solu-

tions from part (c) is nontrivial. If both and 11 are ?5, then
each ordered pair of reals (x,y) is a solution of (5). So, in, any case, there is a nontrivial solution of ( .

The order in which the determinants are given in Theorem 10-14 isajlitira.ble one since, as we shall see they are, in this order, the
(111, u2, u3) compon.onts of...a vector whiih is interestingly related,to the
s..Tquvic_e 41a1 + u2a2 + usas, uib1 + u2b2 + u3b3). la/articular, if
(11,112, u3) is orthonormal then the first vector, U not 0 , generates the
orthogonal complement of the bidirection which has the given sequence.
as a basis. More generally, see part (b) of Theorem 10..-15%on page 445.

Explain. Compare his theorem with Theorem 10- 1.3., [The
tage alwriting-the deterisinanta in this onier,--instead otin the
given in Exercise'4(b), will appear later.].

'Determinant 1ik lhose in Theorem 10-14 appear in two ways
when we introduce a coordinate system &yid use etivations to-represent
pianes. 'As you, know, given a coordinate systein an an origin 0 e? 1
and a basis u1, ut, u3) for .7, a plane Ikan be descsibed by giving para-
medic equations: .

.

{xi = al + pis + git
= a., + p2s iht

(13 + /338 + gat
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In these eqUations (a,, a:,) are the coordinates of a point A e while
(ps, p3) and (eii, q,, q.,) are components of vectors p and q- that is,

-- . --(2) p = uipi + u2p1 +u1p. and q u1q + +

-such that Ip, ql is the bidirection of 7T. A point belongs to 7r.if and only
if its coordinates .are the values of the right sides of equations (1) for
some values of the parameters 's' and' t' . Of course, a system like (1)
need not represent a.plariesSucb a system will represent a plane if and
only if ,the vectors p and q given by (2) are linearly independent. So,
one consequence of Theorem 10- 14 is that the system (1) of parametric
equations represents a plane if and only if

(3)
P3 P3 Pi Pt .192

q: q, q. q

96 (0, 0, 0).

Note that, with respect t4the same coordinate System, any plane can
, he 1140ed by each of many sAterns of parametric equations like (1).
. lE4(lain.1 We shali see in tile next seCtion how to tell whether two (. .

such systems represent the same plane. . .

Part C .
In the following, you are 'given sysfeins cif equations like (1). You
are to decide which of the systems are parainetric equaticins'for a
plane and which are_not. .

4 + 2.8 3t fX(h) =.7 + 3s - 51
- - .28 - 31 x 6 - 8

7 .--;1 4s + 61 4 + t
xi - -3 4= 10s:- 4t

1 - 5s + 2t
2 4-' 5s - 2t

(d) = 3
x2 =" 5' + 4

8 Ht
2. Por, each of the parametriC eqpations in Exercise 1 Which are para-
, metric.e.qUations for plane , ve the components of two vectws

-aayp and (i-such that ql ia the bidirection of the plane!
*3, or each part of Exercise 1 which gives paniimetric equaticnis for
. .a planer write parametric -equations for the'Vlane which pas;iea

'through the origin and is parallel io that i3lane.,

(c)

44.* ')

From our wo k Part B on pages 431a432, we tean see hatan

TC 441 (1)

Explanations called for in' the text: Exercise 4(b), together With inter-
changing rows and columns of the given determinants, e.stablislies tk4e
only-if part of Theorem 10-14. Exercises 4(c) and 4(d) in conjuni-
tion with Exercise 4(a), and interchanging rows and columns of the.
given determinants, establishes the if part of Theorem 10-14.

Choosing any point of a given plane and any basis for the bidirection
of that plane yields three ordered triples - say, (a1,a2,a3), (Pr, P2,and (q11 q3) which may be used to write equations like (1) for that
plane,

2

Answers for Part

1. (a)

(b)

(c)

Plane, since

Plane, since(.

Not a plhne, sivce

((d) Plane, since

-2 4
-3 6
-1 0

0' 1

0

0 -1
Making use of sentence

(1) for *part (a)
(ii) for part (b)

(iii) for part (d)

16 -3

0 3

1* -5

5. -5

2

0 O.

0

-5 0

)4
... ( - 1 -3, -5) # (0, 0, 0).

(0, -24,.-12 #(0,0,0):

11.

2 -4
0 1

0 0

(2), we have:
(2, -2, 4) and
(3, -1, 0) and
(0, 1, 0) and

10 5
(0, 0,0).

-.4 -2

)=. ( -.1*, 0, 0) # (0, 0, 0

[Of course in each case any two independent vectors which are
linear combinations of the given two will do. But, it .

requires a bit more work than was done here to get.8uch,answers.]
3. [TherA are, of course,

hoostArect one. j
(a) xi = Zs - 3t

x2 = -?.8 3t
x3 = .4s + 6t

many answers'for each part. We give-the

) xi = 35 - St (d)

xs = t
=

X3 -
t

ion like:
kg%

Tewe'sentk plane,i

(5) '0

t Mn2, +7X3M "=.7, 4

and only if
),

IN)
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*oy, rnt 0. (4 ) is equivalent to the system:
s( M7

xs t
X2 S

) W-Tri 3

and the vectors with components
are linearly independent since

0

0 1'

4

1,rn 1, 0) and (-m

0 0.

3 , 0, 1)

r arguments apply to the cases in which rn2 * 0 and m3 0.
lf, condition (5) is not s,atisfied then (4) is,satiefied by the coordi-

nates of any point if f .0 or of no point if f *. 0.

a*

IF

1

TC 441 (3)

'1, Sample Quiz
1. Here is a system of equations:

alx + a2y = a3
bix + lazy = b3

Solve for 'x' and 'y', expressing your ansvi7er in de erminant form.
Z. Consider the system of equations:

3x - 5y = a :

{8x + by = 16
(a) ,Solve the given system for' 'x',and 'y'.
(b) Give values for 'a' and 'b' such that the solution set of the

system is empty.
(c) Give values for 'a' and 'b' such that the solution set of the

system is a linear function.
(d)- Give values for 'a' and 'b' such that the solution set of the

system contains exactly one ordered pair of real numbers.
Key to Sample Quiz

x

an

a

al'
bl

a3
b3

a

b

a,
h

and al
b 1

a2
b2

(b)

a-
16

b

Choose b = -40/3 and a 6.
Choose b = -40/3 and a 6, .

(d) Choose b * -40/3 an.clia -any real number

It

ab + 80 - 48 - $a [b # -40/3J3b + 40' Y 3b + 40

-ad

a
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iRecall how to transform an equation like (4), which satiefies (5), into
an equivalent system of parametric equations which satisfieS (3)., What
points Satisfy (4) if condition 15) is not satisfied?[ If (4) represents
a plane ir contlfthing the point A with coordinates (a), a2, a3) then
I ---- a,m, + and, so, (4) is equivalent to:

(6) (x, a))m, + 7 + (x3 - 0

Conversely, any equation like () for which (5) is satisfied describes
some plane which contains the point A. We need to find an easy way
of determining when two equations like (6) [or like (4)] describe the
same plane. But, first, there is a mol'e basic question to answer: Does
every plane have an equation like (4)? Equivalently: Does every plane
which contains A have an equation like.(6)? The answer to these ques-
tions is 'Yes:. Briefly, any plane can be described by parametric equa-
tions 'like (1) and, by eliminating the parameters from these equations,
one can obtain from them an equation like (4) which describes the
same. plane. Although, you can already "reduce" a particular system of
parametric equationslike (1) to an equation like (4) [by solving two of
the parametric equations fdr 's' and 'e and then substit4ing in the
third], there is much to be gained by carrying out this Wocedure "in
general" - that is, without using special numerical valUes for the nine
variables 'a71, , . , and `q3' in the equations (1).

Part
Consider the parametric.equations:

(1)
+ Iv. 1: rift

x2 = ; + p2s +. q2t
x, = a + po + q3t

and assume that the condition:

13)

.
is satisfied.

P2 Pi P3 P1

ql (41 (12 q1

" ) (0, 0; 0)
ql 172

kl`

1. Assumption (3) says that at least one of three determinants is
not O. This suggests considering three casesthat in Ohich the
first determinant is not 0, that in which the second is not 0, and
that in whieli the third is not 0. Explain why, hi each case, two of ,

the parametric equations in (1) can be solved for 's' and 'f.

TC 442

Answers foe Part D

Z.

This follows directly from

tin Suppltse, first,. that

the equations:

fx2
tx3 =

9r, the equivalent equations:
{x2 - a2
x3 - a3

can be solved, by use. of Theorem

,TC

Consider the system: 1P1s
tp2s

Theorem

P

(12 (13

a2 + P2s
a3 + p3s

.

- p2s
= p3s

443 (1

cilt
+ q2t

4)..

0 0.

4- q2t
+ q3t

+ q2t
+ q3t

A, for

x
x2

Here is one such explana-

Under this assumption,

81 and 'V. I

a2

which is
Since

Pi qi

(12

equivalent to the first two equations in (1) on page 440.

0 0, it follows, by Theorem A, that this system has a

I2nique solution, and is equilalent o:
-

9 ..ixi-ai qil
lx2_- a2 q?)

s t =
Pa qi
P2 '14
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2. Let's consider the third case, that in which

0.

q q2

Use determinants to solve two of the parametric equations in (1)
for 's' and T. [Rint: Rewrite those equations as + qit
- as', etc.)

3. Substitute the expressions you obtained for 's' and 't' in Exercise 2
into the third parametric equation like (1). [flint; Since we are
trying tOobtain an equation like:

(6) Ix, adm, + + (x3 - asdrn, 0,

it should save trouthile later if, before substituting, you rewrite the
third parametric equation in II) as '-ps1s4- q1t + - a,) 0'.)

4. Simplify the equation you obtained in Exercise 3 by "clearing of
fractions." Then use the definition of 'determinant' to rewrite the \
resultsin the form of (6).

It The result of Exercise 4 should be an equation like .(6) in which
'rri', at least, is replaced by a determinant. If you have not already
done so, transform your result int9 one in which 'ms' and 'm; are
also replaced by determinants.

6. We began by noticing in Exercise 1 that condition (3) suggested
three cases; from Exercise 2 on, we have been dealing .with the
third case. Looking at the result you obtained in Exercise 5 for
this case, what equation do you guess you would have obtained
in the second case? In the first case? If you have any doubts as to
the correctness of your guess, repeat your work in,Exercises 2-5
for one of the other cases.

In the preceding exercises you have seen that, under the umption
(7) of Exbrcise 2,-the system consisting of the MA two jtrametric
&potions [in (1)1 is equivalent to:

So, the system (1) of paritmetric equations is equivalent to the system
consisting of these two equations and the equation you obtained in
Exercise 3. [Explain.] The latter equation is equivalent to:

Answers for Part D [cant.]
3. Following the irections

- at
q

-133
1 CI

P2 (12

TC 443 (2

in the hint, we obtain the equation:

IPP12 a21 + (x3 ^ a
IP1 gal
1P2 C121

4. -Clearin fractions and simplifying, we obtain, in turn:
- a

1 q 1

- a2. q2

pl x1 -.al

p2 x2 - a2

1)(12 (x2 42 )(11) (13 (131(x2

'11
0

P2 (12

131 411

P2 42

a 2 ) t 2(X a )

)(132c13 -1:13(12)'+ (x2 a2)(P3q1. P1q3)+ (x3 a3)

si

= 0

P1 ch

+ (x2 a2)
Ps. Pa

+ ( - a3)
P. P2.

=

(12 (13 1(13 q 1 q 1 (12

P2 133

The last result is an equation in the form of (6).
[The final resialt should be the last result in the solution of .

Exercise 4.

. (12

=

.You would obtain an equivalent.equation in each case. To see this
P 'it should be sufficient to note the 'argument for the second case can

be obtained from that just given for the first case by a cyclic
, substitution of ubscripts '3' for 'Z', '1' for '3', and 'Z' for

'1% Now, note 'that the same substitutions transform the result
obtained in Eyercise 5 into an equivalent equation. Finally, the
third case cin be obtained from the second by the same substitution
of subscripts.

. Answers to questions:
Given coordinates which satisfy (9) the corresponding values of

'a' and 't' can be found by substitutionin (8),_ _

A[p, q is a line if Ai) is linearly dependent and p and are
not both 4. It is {A} in case = = If (i,c1) is linearly dependent
then the set Miscribed by (9) is [SP! (9) describes 424i, in only if
(ii,4) is linearly independent. I

1
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1,Your answer for Exercise 5 may not be the same as (9). But, fro n what
you know about determinants, it should be obviously equivalen to (9).1
It follows that, under the assumption (7), the system (1) of par metric
equations is equivalent to the system consisting of the equations in
(8) and (9). In particular, if this assumption is satisfied, coordinates
(x,, x2, x) satisfy (9) if and only if they can he obtained from the para-
metric equation§ by choosing Appmpriate values for 's' and it'. [If you
had coordinates which satisfy (9), how might you find corresponding
values for 's' and 't"?)

Finally, in answering Exercise 6, you should have discovered that
the proceckure which led to equation (9) under the assumption (7)
would lead to the same equation in each of the other two cases covered
by (3). Hence,

the plane which is described by the, parametric equa-
tions (1) [in case (3) is satisfied] is also described bY
the single equation (9).

So, since any plane can be described by parametric equations it fol-
lows that any plane can be described by a single equation- and, in .(9)
we have a sVple rule for writing an equation which describes the
plane AEp' VL given the coordinates of A and the components of
and q. Since AAC AIB - A, C Al we can also use (9) to obtain an
equation for AliC, given the coordinates of A, B, and C. [Of course, the
preceding remarks apply only if (P, -41 is linearly independent and
{A, B, C } is noncollinear. What kind of set is Alp, q-') if kp, q) is linearly
dependent? What set is described by (9) in this case?] 1'

As an example, consider the parametric equations:

-3 + lOs + 4t
(*) x2

ani

-2 .+ 5$ 2t
5s- 2 t

10.09 Determinants and Equations of Planes 445

SimplifYing this, we obtain, in turn:
1

tx, + 3) 0 + (x2 + 2) -.-40 + (x3 - 1 ) -40 = 0
(x3 + 2) + (x:- 1) =

x2 + x3 = -1

-"Se last is an equation which is equivalent to one of the form of sen-
tences (4), namely:

.

x rn X2t7Z2 t X" = f
and describes the same plane as does the system of equations (*)

Our results on describing planes by equations mayi\mi summarized in"

Thedem 10 - 15 Suppose that, with respect\to a given co-
ordinate system, the coordinate's of A are (o) a3) and the
components of and if are (p p p) and (q1, 42 cis), respec-
tively. With respect to the given coordinate sys
(a) the parametric equations:

a I

describe the set Arp*, -41., and this set is a plane if and
only if,

ixl = af + As + q1t
Ai = a2 + P2s + q21
x3.7 a3 + p3s + q3t

. (t)

and
(b) the single,equation:

Pa ...Pa

As we have seen, it is easily cheeked that. these are parametric equa-
tions for a, plane. Since (-3, 72, 1) is a .solution for (*), we can make
usd of (9) as follows to write single equatir for this plane:

5 -5 -5 101 110
+ (x3 - 1)

2

+1.2C2

V12 (4 (IS q2

PI P2

q

represents A[p, (LI if and only if this set is a plane-that
is, if and only lithe condition (t) is satisfied.

The advantage of writing the
...,given should be clear when

determinants apPear in.the ain,g
in part (b) of the theorem.

three determinants- in '1') in the order
you look at the order in which these

le equation for the plane.4414p,ligivan
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Part E
1. In each of thi following parts you are given, first; the coordinates

of a point A and, second, the components of two vectors p and q.
(1) Use determilants to check-the vectors for linear inde-

pendence.
(ii) In ca'Se the vectors are linearly independent, write para;

metric equations for the plane Alp,-0 and, also, write a sin-
gle ekuation for this plane.

(a) (2, -1,,11; (1, 4, 6), (-2, 3, 5)
qi) (8, 7,.-5); (4, -2, 6), (-6, 3, -9)
(c) (4, -3, 0); (-2, -5, 6), (2, 5, -4)
(d) (9, -76, -3); (7, -14, 0), 1-3, 6, 5.)

g. In each of the following,parts you are given coordinates of three
points A, B., and C.

(i) Use determinants to check the points for noncollinearity.
(ii), In case the points are noncollinear, write parametric equa-

tions for the plane ABC and, also, write a single equation for
this plane.

(a) (2, -5, 9k (4, 1, 15), (1, -7, 6)
,(b) (4, 6i -4); (6, 3, 1), 110, 10, -6)
(c) (-3, -3, 3), (3, 1, 1), (-1, -6, 8)
(d) (-7, 9, -7), ( -1, 0, 8), (-9, 12, -12)

We have, now, three ways of describing a plane with respect.t0 a
given coordinate system. We may use parametric equations like::

(1)
{x, = a3 + pis 1.- tif,t

x., = (2,, +f.p2s + q2t
.x3 ---- a3 1.2 p3s + q3t

Or we may use a single erition like:

(64- fx

or.we may use

(4)

+ iar2 = adm2 fx-3 -.a3)nri

a sing e equation like:

in
1

+ x n12 xin3 = f

in (1) and (6), (a a a3) are the coordinates of a point A-which belongs
to the described set. In (1), (p p2, pd and (q,, q,, q) are components or
vectors; andq -

p = u p + u2 p2 + u3p3 ana q = u,q, u2q2 +

grAnswers for Part E

1, is linearly

(2, -17,11) #

b)

TC 446 (1)

4 6 6 1 1 4
independent, since I)

3 5 5 -Z -2 3

0,0, 0)._ Parametric equations for Atp, q I are:
r- 2 + r,- 2s

X 3

A single equation for

-1 + 4r + 3s
= 3 + 6r + 5s

40, 41 is:
2x1 - 17x2 + 11x3 = 54

[This was obtained by simplifying 2). 2 + (x2 + 1). -17
+ (x3 - 3). 11 = 0'

) is linearly dependent, since
-2

-.
-(0, 0, 0). So, A[p, q J. is not a plane.

4

-9 -6

-5 6 6 -2 -2 -5
( ) (i.),"4) is linearly independent, since

5 -4 74 2 2 5

= (-10, 4, 0) * (0, 0, (1). Parametric equations for AH, are:

= -3 - 5r + 5s
Xs = 6r - 4s

A single equation .for A[i-;, 4 ] is:
5x1 - 2x2 = 26

[This was obtained by simplifying '(x1, 4 ) -10 + 3). 4

+ x3 0 = 0'. )
0

(d) (p, q) is linearly independent, since
1 7

6 51'

= -35, 0) (0, 0, 0). Parametric equations
-4-- = + 7r 3s

-6 -,14r + 6s
_3. + 5s

A sinlë equation for A[iro, CI] is
Zx 1 + x2 1

{This was obtained by simplifying
+ (x9 + 3) 0 = 0`.

7 -14

-3 6

for A[ite, ]are:

9) -70 + (x2 + 6 -35



Answers for Part E [cont.)
Z. (a) B - Ad and C A have

respectively. Since

cAnnponents (2, 6,6) and (71, -2, -3),
I 6 21. 2 61

-12 -31' 173 711 -1 -21
= (-6, 0, 2) * (0, A, C A) is. linearly independent.
:k5, {A, B. C} is riqtalp.near.
Pal'ametric equatioac:1#' ABC are:

-5'+ 6r - Zs
= 9 + 6r - 3s

A single equation for ABC is:
3x1 7 x3 -3

which is obtained by simPlifying '(x1 2). -6 + (x2 + 5) 0
+ (x, - 9) 2 =

(b) B - A and C A have components (2, -3, 5) and (6, 4, 72),
-3 51 5 2

respectively. Since
4 -2 11 72 6

2 -3

6 -44
(-14, 34, '26) (0,0,0), 413 - A, C A) is linearly inde-, pendent. So, {A, B, C) is noncollinear.

Parametric equations for ABC are:
x 4 + 2r + 6s

{X2 = 6 - 3r + 4s
-4 + 5r Zs

A ingle equation for ArC is:
7x1 - 17x2 -13x3

which i.s obtained lifying '(xj. - 4) -14 + (x2 - 6) 34
+ 4)'. 26 =

= -3 + 6r + 2
2 -3 +4r 3s ; 7x - 17x2 13x3 = -9

x,3 - 2r + cra

(d) B, - A.-and C - A have components (6, -9,15) And (-2,3, -5),
-9 15

respecti ely. .Skince
3

-9
s

2 3

= (0.0, 0). (B - A, C - A) is linearly dependent. So, B,is collinear.

4
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such that bidirection, of the set described by (1) is lid; 41. And, in
stpdying (6) :Ind (4).it will bemnveciient to consider the vector m whose
-omponents-a (rn rn rn3):

1

nz
1

+ UTfl1 +
:4 rn 3..-

,As we "haie seen, the/condition that either (6) or (4) describe's a plane
.is;just, That rn to: The cpndition under which the parametric equa-
tions (1) describe a plane is given in Theorem 10 -15(a). Part (b) of this
theorem tells how.,to find an equation like (6) Mr a plane which has
previousl been described y parametric equatiens [like (1)]. Cor',7\
versely, given' In equation like7:t6) which describes a plane- that" is,
one for which rn 0- it is eas, to find pajametric equations (1)1
which describe the same plane. If, for example, rn3 ,7& 0; we can obtain
such equations by replating cz,)' and `(x3 - a) in the following,
equations by :4' and 't':

I

xl = at (x0

x,= cri + I li(; az)
= a,, +.1 (x,i a3)

I Expfain why this works, and show 'how to obtain paiametric equations
like (1) for a plane described by an equation like (4), for which m; 96 0.1
Finally, given an equation like (6) it is easy to find an eqUivalent aqua-

, tion like (4) merely by taking.

= ct,m; + a/n2

And; given an equation like (4) Which represents a plane it is easy to
find an 'equivalent equation like (6) by taking for (a.', Gl2, a) the co-
ordinates of any poi;it of this plane. Note that, in these procedures fccr
changing frOm (6) to (4) and from (4) to(6), the vector m is not changed.

77Z3- (X, - a3
-mi

Ih each exercise faVare given equationa hJe (1), (6), or (4). page
446. lu each case, chec& whether ti;e givib,,equations describe a, plane.
If they o, write, equations of eachliof the other tWo kinds which
describetbe saite plane.

6.+ GS s7 3s t
if as +

- 4)q4

t.

Answers fop PaTt r

TC 44.7 (1)

., ,

p and I have components (r2, 3, 4)iand (3, -9/2; -6), ireipectively.
, t ,./3 4 4 -2 '' -2

(0, 0, 0),'(I:e4 4) is'
.-9 / 2 -6 ' '4;76 3 -9/2

linearlY dependent.' So, ehe.given parametric equations do not
describera plane. ._:..... m

ince (
3

3, 8.) and (-2; 1, 8/3), 'reSpectiVely.
6' 4*

-2 1

$O, the

2. "...,... and ii have compol*nts (6, -
..; -3 8 , 8 ,.- 6

Since
1 8/3 13/3 , -2 ,

(Fp% ii) C.:linearly independent.
describe a plane.

)
. 2

=,(46,-2, 0) 0,0, 0, 0),

given parametri,c equa ions

A single equation like (6) which describer the same plane is:
+(x2 + 7); -32 4-1x3 - 6).0. = 0

ich,describes the sarnq plane is.:
*s;+ 2x2 = -9

Since (rni,m2,m3) = (z, -4,3) (0,0,0),
ctesc ribes.a plane, ',( -

Now, since the equation:
xx. = 1 + (x2 + 3)2 + ,(x3 4) -3/2

is equival'ent to the given equation, 'paaltiettic qquations which
describe the same pla-ne.as does the given equation are:

' = 1 + Zr
= -3 + r

4 + a

[These aye obtained by letting r x2 + 3 and
A single equation like (4) Which describes the

- 4x '4- 3x3 26;
4. Since' (m11 rn2:, 4) 4 AO., 0, 0), the

describes a plane.

'A single equation 'like

he given equation

p.

t,
An.e_qpation hie (6) whici deislribes the gabae_plane

(x1 - 4, (x2 - 2)2 + (xs - .11 t -4 =
[There ais, of cour,se, many correct answers. j e equation:

2 4
Txx rx3

is equivalent:to the given equation, parametric eel ona which
descri,be the iame plane as dqss the given equatio are:

4

742 S '

= x3 -4.)
sa.nie plane is:

given equation

X3 =
- [These are obtained *.letting a = x2 .#nd t =

.7
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Answers (or Part F [cont.
4. Since (m1., R1,3) = (1, 1, 1) (0, 0, 0), the given equation

describes a Plane.
An equation like (6) which describes the; sarrie plane is:

- 1). 1 + (x:, 1) -1 + (xi - 0) r 1
[There, are, of course, mant correct answers. ] Since the givenequation is equivalent to 'xi + parametric equationswhich describe the .sarrie plane as does the given equation ire:

r t 9

- s

[the'se are obtained by letting r x. and s x1:1
b. Since (m m, ) (1, -3, -2) (O, 0, 0), the given equationdescribes a plane.

An 'equation like (6) which describes the same plane is:
(x1 - 0) + (xz., - 2). + +, 3+; -Z 0

[There are, of course, majw correct answers.] S'ince the givenequation is equivalent to 'itiv = IX.. +'2x ' parapietric equations4which describe the same plane are:
x 1 = 3r + Zs

xl

e.

[Milking use of the equation like (6), lt is easy to obtain the follow-
ing parametric equatiOns for thimame plane:

Xi a 3'r + Zsi
2 4' r '

= -3 +
There are,' of cburse, many correct answers, no one of Which canbe construed, to tie the "best" one.

$ .

,



448 D1WNSION

10.10 Determinants and Equations of Lines

There is one more.problem concerning the description of planes by
equations which remains to be solved. SuP Pose that we are given two
descriptions of, planes each of wilich is like (1), (.4), or (6) on page 446.
How can we tell ,whether they describe the same plane or different
planes'? Since a plane is parallel to itself and since no two parallel
planes have a point in common, we'can solve this problem if we know
how to tell whether tWo descriptions of plane's describe parallel or
nonparallel planes. [Explain.] Since it is easy to change from one.kind
of description to the other it will be sufficient to solve this problem for
equations like. (6). As we shalt see, the saine procedure will apply to
equations like (4 )---or to two equations onb of which is like (4) and the
other lace (6). So, let's _consider two equations:

(6) lx, adrn,
(6' ) (x, - bdn,

-+ (x., - + (x3 -Ad = 0
-4. 4x - b)n., .4- - b3)n3 = 0

It is-- reasonable to suspect that, in case these equations represent
plan& Tr and (r;the direction of 7r will be determined in,some-way by
the vectorern and that of g will be determined in the &Arne way by the
vector n, where

_ .
nt 11 nt +t1,m, '+ dm and r u;n1 + /4.2n2. 3 3 3

...01%., it

IC 448,449.

The discussion which be,gins here is' a lengthy one! In it we show
how to determine if_two equations like (6) and (6') describe the same
or different planes. For your students it is the result, stated and
illustrated on page 453 that is important. It ,ii a very easy result to
apply, a very difficult one to obtain. Much of the work on the ensuing
p-ages should be-developed by`the teaclier and class together. It is:
mucl) too involved for most,students to do alone. However, when
guided by the teacher,, students are able to understand the argument,
and to contribute small parts of it from time to time. A student
should not be `asked to reproduce this argument.

The explanation asked for near th beginning of section 10,10
might be that in 'vase the descriptions tlscribe nonparallel"planes they
describe different planes, and in case the describe parallel planes
they describe the same plane if and only if there is a point whose
coordinates satisfy both.

Explanations called for in text':
If [7] is determined by [rn] and [ci] is determined in the same

way] by [ii ] -then 117)_.= [el if ,ri{1 only. if [I:A] = in]. So, by definition,
r li u if and Qnly if in-i] = [xi ).

For rii # tI 0 ii, [nil = [in if and only if (rii, ri) is linearly
dependent.

In fact; we might guess that [7r1 is,dete,rmined by [rid and [al 12.yrril. If
this is -orrect then it will be the case that 7r II a- if and only if [rti I
[Explain.] Since (6) and (6') drscribe planes if and only if rn and n are
non-0, We may state our guer by saying that

(6) and (6') destribe parallel planes if and only if i-r;
4 ) , ,

. andri are non:0 and (m,ii) is linearly dependent.,

[gxplain.

Equation (4'), if n = rnk, is equivalent to x1(m1k) + x2(rn k)
+ xn(rnsk) g' and for k 0, this is equivalent to (4").

If f # g/k then the planes described by (4) and (4") have nO
common point; if f = g/k then (4) and (4") describe the same plane.
In either case, the plane described by (4) is parallel to the plane
described by (

Having es lished (*1) all we need do is establish its converse.
So it is sufficient to establish the contrapositive of thc converse oj (*
Now, this latter is equivalent to: I

If (rii:x1) is linearlyindependent or
d or 11 = d then (6) and (6')

do not describe parallel planes.
We already klitow that, if rri = or n z U then (6) anc3(6') do hot
[both] describe planes. Sp, what remains to be proved is:

If xi) is linearly independent, then (6)
and (6') do,not describe parallel planes.

A

Clearly. this follows frotia_th stronge r Eitatenle.nt.qt2)._
sufficient.to prove (=,

We can Obtain some more' Confidence in the correctness of r) by
notidg that its if-part is almost obvious. To make it quite obvious, note
that, (6) and (6') are 'equivalent; respectively, to ,

I. (4)
an .

x1nt1 ,x2rn2 + x3rTr3 = f
x1n; + x2n + x3n3 = g,

IP

is.
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where 1 = a1m1 + a yn, + and g = + + Nn3. Now, as-.
suming that ni and Ware non-Wand (-771, is linearly dependent, it fol-
lows that there is sime number say, k such that-ti = and k 0,
[Explain.]. Hence, equation (4') is equivalent to: .

(4") x1rn, + x" + glk [Explain.]

It should now be obvious that, when ni and n are noii-edependent vec-
tors, the piano described by 14) is parallel to the plane described by
"(4'"). [Consider two caSes0 that in which f k and ihat in which
f g 1 k.1 Since (6) is equivalenrto (4) and t6') to (4"),16 have estab-
listed the if-part of ():

If n; and Ware non-il and n) is linearly ,
) dependent then (6) and.(6') describe parall

planes. . -

To complete the proof ef ( ) it will be pufficient to sho that

if (ni', 72') is linearly independent then (6) and (6')
describe nonparallel planes..

[Explain.Mo guess bow we might be able to prove (,),,note that we
could replaCe 'nonplarallel pli.ans' Planes whose intersection is a ;
line'. §o, Aisuming that (in, n) is linearly independent, we might try to
obow that any three points whose coordinates satisfy both (6) anct(6')
are collinear. This would lead to the consideafion Of sfx equations

three' obtained by substitiding the coordinates of the three points
in (6), and three obtained in the same way from (6'). 'It wouldn't be
itnpossible to prove (*,) in this way,, but there should be something. .

simpler. Looking for a simpler. Way, we miglif remember that the '-
collinearity of three ,points amounts, °by definition; to the linear cfe-'.1
pendence of two translations!' [Explain.] Also, if tile three points be-
long to a plane then the two transptions belong to the' bidirection of
that plAne So, we_could prove (*,-)- by Showing that if (T7-.;, is- linearly
independent then any two translatiOnlk which belong both to the bi .
direction of ihe plane described by (6) and to the bidirection of the
plane described by '(6') are linearly dependent; This gives uS an-easy
-.problem to start on: Whkit candition must the components of a vector
c Satisfy if-;belongs to the bidirection of the plane described by (6)? It
turns out, as we shall see, that this condition is 'a rather simple one
and, after learning a bit more about using determinants to solve pairs
of equations, it will .i2e !may to prove_(*2). Moreover,, it will be easy to
compute the componentb of a non-Vvector in the!direction of the line of
intersection of the two planes.'



450 DIMENSION

Exercises

Part A.
-

In these.exercises we shall assume that (rn, n) is linearly indepen-
gent and we shil consider the planes 71 and 0- which are described by
the equations:

(6) (x, - adm, 7*`o,4)rn., +- (xi nz
3

=

and:

(6')

respectively.

- b ln x ; - b 21,32

1. Why does it follow from our assumptforif that equatiqns (6) and (6')
do describe planes?

2. What are the coordinates of a point v h Y6u can,be sure lies on
the plane 7r described by equation (6)?

3, (a) Suppose that c [7r] and that P r. What can you say about
;zIP

t,-,

)
(b) Suppose that P and P + ;both belong to 7r.What can you say

about c'?
4. You know that the point A 'whose co.ordinates are (a a3) belongs

to Ir. You alSo know that c t brl if and only. if A +.c en% Asswning,
that

- -4
C = U1C1 + 142C2 4- U3Cy,

what are the-coordinates of A Derive from (64 an equation
which says,that A + c Err.

5. What is alit equation which is satisfied by (c,, c , c3) if and only if
tc c c3) are the 'COMponents of a vector c'whicl. belongs to thehi-
direction of the plane described by (6)?

6. Repeat Exercise 5 for ,the plane described by (6').

You have seen in the precedingLexercises that (c1 vc2, c3) are t1te comL
ponents of a vectorsay, c fl [a] if and only if (c c2, c3) is a
solutitn- of the m:

(10) . jcimi e2m2 'd t
c,n, c2n2 cof3 =

---
In order to prove 0'2) on pipe 449, we wisil to show that, if On, n) is ".

linearly independent, aji susp. vectors C are linearly denndent.
terma of the comporienta of in ancrri, the condition that (,ri) lin.

TC 450

It may require the majority Clf a class period to compleie the dis-
cussiOn.on pages 448 - 449. I.n view of this, we recommend just Part
A as a homework assignment.° The material on pages 491 455,
including Part B, is best treated in class, so- hat emphasis can be
placed on the result derived (Theorem 10-16 and its corollary) rather
than on the derivation itself. After a brief illustration, Parts C and D
make one reasonable homework assignment and Parts E and F make
another.
Answers,for Part A
1. Because tfie linear

nor n is d.
2.. Jal,a2,a3)
3. (a) P + C 7

(b) [7]

e.

independence of (in, ) implies that neither m

The coordinates of A + c are (al, +
follows from the fact that A'+ 0 +
A + e = 0 + d1(a1 + + 11242 + c2-) +
result gives the coordinates of A + Z. ]
we obtain, in turn:

az + c, a3_+ c3). [This
{(A 0) + Z), for then

+ c3). The latter
Making use of this in (6),

((a1 -t cI) - a1)m1 + ((a2 + c2) - a2)m2 + ((a3
c1m1 + c2m2 + c3m3 = 0

- So, A + -c. z if and only if this last equation is
components, (c1, c2 , c3 ), of -e .

5. sc1m1 + c2m2 + c3m3 = 0.
6; c2n2 c3113 =' e

V

;

I ;N o V*01\

earl, indezindent is:
114,

nka "Is Ma mi mi ,

(I1) * (0, 0, 0)
n2

. 4;.4.,-..24..

,

c,3 ) - atm3 0

satisfied by the
0,

4
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[By what theoren;?] So, our problem is to discover what we can about
the igolutions,of a System like (10), assliming that the condition (11)
is satisfied. .

Since we shall deal 'with other'Systems like (10), we shall ;restate
our problem in the "a, b, c, x, y, z-notation" 'we used earlier in this
chapter."[Slee, for example, TheoreM A on page 436.] In tliese terms,
we are interested in the solutions (x, y, z) of the system:

(124)

\ subject to the condition: 1 .
\ I

.7 b, c, c
1

at a bL

..
, ) (0, 0, 0)(13)

b, (2,2 (2 a., t:. a,
..

Solving (12), subject to (13), turns out,to be rather similar to what you
,did in Part D of Section 10.09 in order to transform the parametric
equations (1), 4ibject to (3), inth the equation (9).

fart .+ b1y + c1z =. 0
tarx + h v + 2 = 0

Part B
In these exercises you will learn.how to find all solutions of the

system (12), above, subject to the,condition (13).
1/4

1.. Assumption (13) says that at least one of three determinants is.
not 0. This suggests considering three cases that .in which the
first determinant is not 0, etc. Explain why, in each case, the equa-
tions in (12) can be solved for two of the variables 'x', 'y', and 'z' in
terMs of:the third.

2. Let's consider the third casethat in.which

p-

(44)

Use determinants to solve (12) for 'x' and 'y'. [Hint. Rewrite th
equations as lei>: etol A.

.3. On the basis of your answer for Exercise 2, show thaf 42) iseqinva-
.lent to the system:

a b

10,2 b )1'

61S .bs

[Hint: Recall the properties of detenninentS which you established
in Part B of Section 10.09.]

TC 451

f The theorem referred to in connection with (11) is Theorem 10-14.
Answers for Part 8 .

1, Given tile condition (1 ), the iystem .(12) reduces to one,of the
xiform:

where

that

Pi P2'

CI1 C12

b1

C 2

A

P1X1 P2X2 P3

CI1X1 Cl2X2 CI3

is a nonzero term in (13). [For example, given

0 0, the system (1-2) reduce, to the fo1lowing:11/41

z

b2y + c2z = -a2x
In this ease spl : b1, x1 = y, p2 = ei, x2 = z, (:) = -alx, etc,1
Given the condition (14), we are asked to solve the system:

{
alx 4- bly = -elz
a2x + b2y -c2z

This system is equivalent tO: .

X =
b2

3. The system (12) is,equivalent
because .

-e z1 1

-C2
and

b2
401.11'

C2

a -c z1 1 1

a2 C22 a2 C2

. 1

-c 2z

al. b 1

a2 b2

in this exerciseto the system given

-r.z ...z
b2

z.

1.939
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.4.. For any solution (x, y, z) of (12) theiv is a number t such that

b,

b,

. Show that, in terms of such a number t, the solution in question
is given by:

r x
b c

' t, y
CI U

1

Z

b,

b2

5. Show, by substitution in the system of Exercise 3, that, for any
value of 't', tlie numbers determined 'by _CI satisfy the equa-
tions (12).

,O. You have shown, subject to the assumption (14) of Exercise 2,
that numbers (x, y,z) satisfy (12)..if and only if

a,
t, and z =

b,

Do you think that this also holds in the other two cases covered
by (I3)? Explain.

The result proved in Part,B can be stated as follow :

Theorem B
For

a2 b2

0 and azx + by +; c2z = 0)

'1';

t, and z =
a.,

[This resuI is sunilJ to that, in Exercise 3(b)'of Part 13 oh Page 439.

I 11 r)i)

Answerz fozPart B [cont.]

4. In terms of the nuivber t, z

TC 452

al b1 t and, using this result in
a b2

the equations.in Exercise 3, we see that

and

X' =

r
a

2 az
1

.
b

<- a2 b

t =

b1 cl
b

ci

Hence, the solution in question is given by (*)
5. Substituting from ,(*) into the system of Exercise 3 results in two

equations of the form 'a = a'. This shows that, for any t, the
numbers determined by (*) satisfy the system of Exercise 3.
Since this system is equivalent.to (12) subjeTt to the condition
(14) we know that, for ahy t, ee, numbers determined by (*)
satisfy (12),

. .
Yes; SolvinilikVundeir the asstimption,that either the second or
the first of t terminants in (13) is nonzero will yield the same
equations (*): ...The argument given in TC 443(2) for iixercise 6
of part D applies here also.
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Details which are left to the reader:
The equationi§ (41c*) describe difierent planes because, for example,

(5, -4,6) are the coordinates of a poilit which is in the plane described
by the first equation but [since (5 + 6) -6 + (-4 + 4). --4 + (6 + 2) 4

' # .0] does not belong to the plane described by the second equation.
zr-

Explanation, called for ,in text:
A,If (6) and (6') describe nonparallel planes then * n and

(6) and (6') do not describe parallel planes. So, by the cont4apositive
of (443.), if (6) anti (6') describe nonparallel planes then (r-A,n) is
linearly independent: [The contrapititive of (*/) is equivalent to:

If (6) and (6') do not describe parallel...plans, then
is linearly independent or m = 0 or n =

The assumption that (6) and (6') describe norrrallel,p4pes
the antecedent of thi conditional as well as 'sr) , IS and n *. 4*-). r
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We can now appily this _result to the sitnation dealt with in Part A
[page 4501. If the vectors rn n whose components are (m1,,771.1,
and (n n2, na) are non-) then etch of the equations:

(6)

(6')

sidm, + (x, - a,)nz, f (x, a lrn =, :s

17,1)n + (x - h)ti, + (x, - b3)n3

describes a plane. A vector c with components tel, r bblongs to the
intersection of the bidirections of these planers if and only if

MIL% + + TC1 = 0 and n,c1.+ n2c2 + n3c3 = 0.

[We haVe modified equations (10) slightly to conform nior closely
with the 'statement of Theorem B.I Also, by Theorem 10-14, is
linearly-independent if and only if

) 54 (0 0,: 0); ,,:"I 2' ,:. .: , ,..,..::::,.

.1.54 inMENSION

bonipute the determinants, in this case, as eserjbod injil
note that

2 -

1

2 3
3 9 2

3 2

2 3

/
^41.

) = (24, 23, 13) i6,4)., 0, 0

So, tb,es eqi:iations 41 describe nonparallel planes- and these planes-
intersedt'in ,a lina whose direction is that of the vector with compo-
nent:4 't?:4,--.23, 13).

14 As a second example consider_the equations:

(-1,*)

1(x + 6) L--6 + (x2 4- 4) 4 + + 2)4 = 0
(x, 5)3 + (x2 + 4)2 + (X3 - 6) 2 =

.0

Computifig tir,determinants described in (11) we note that
I

101, course, if n) is linearly indeperident then az and n are
, So, if (r:, n) linearly independent tlien, (6) ,and (6') aiscribeAner
-and, by Th rem B, (-belongs to the' intersection of tile
of these planes if and only if

and c,

--4; 4 4 -6 ----4
,4

:the'ectitOtiscais (1!'i),-4,Ekilitie 7140diel:Planes. fIt'is lefi.,ta
tq .determin.'Whet#er:,016:--, aik"a40.4s it-19. describe diitinet plane's:

' Since' we ,liate,,seek 4ii:Tekt`: t'i.c.(6)-elnd.f. 0',) describe nonparallel
,planis then,,KniA tit naj,,independexit tExplain see (*) on iitte"f,

..

4491; io have- tliii*ib . , ,.

Tbeeretp 10 -16 SAppose that, with respect toa given cootdi-
nate system, the 'corarlonente of m; and 7: are (tno
ana (n r n 2)'respectively. With respect to the given 4°0r4
nete,systean, the equations:.in other words, the intersection of the-bidirections of the twa plais

ía precisely the direction of the non,0_ vector whose_cornponents are_

416

the determinants given in the left side of (11). In particular, the inter- '
section of planes desiTibed by, (6),and (6') is a line-that is, the planes
are nonparallel. '

Although the disedssion on pages 448 -453howing-hov to debar-.
mtne whether twe uations 1escribe '1ane1 qte Ipng
and ..invOlOd, the7 4 is 'easy. to p10 Ada, the

-
x, 5)3 + (x2 + 4)2 +
x 4,1+ 6) ...-2 + (x2 - '5)0 +

o'
6.1 11

1,,
,

f(x, Om, (x, 4- (x3 - _cat,
4.: b.)n, + (x2 b2)n2 (x.4

\f*

dcr'benoparflei if
independent;' end, iri

nid



10.10 Determinants and Equat4ons of Lines 455

We also have tlie corollaries;

Corollary 1 The equations (i) describe parallel
planes if and only if rn and n are non-0 and
(rn, n) is 'linearly dependent.,

'Corollary 2 If (rn, n) is linearly independent then the
line of interseption of the planes described by the
equations ii) is, itself, described by the system:

rn,1

722 723

in rn

71.3 723

rn nh

n

r'

'where (cs, (72, c1) are the COordinates of any chosen
point C which is common to the two planes.

lExplaini. Both Theorem 10-16 and its corollaries applY seq4ally
well if equations (i) are replaced by: -

.

+ x2m2 +
mei ,x,n2 + :c3n3 = g

P,Lirt C
Here are six deicriptions of planes.

4x3 - 6x, + 2.x = 5
. 4x, + fix, 2.x = 7
7r3: 6x, - 9x + 3x = 10

= -3r + 4s
--.- 2 r + 2.8

= + r imps
x2 = 4 + r + 2s
x3 = I.141 r

= 1 + 2r - as
= -r + 2s
= 2 + r

Whlh of these planes are parallel? [Hint. Find single equations
which describe 774, IT s, and 77-5,J

2. Do ally two of these desciiptions describe the same plane?
.3. Find an equation for the plane parallel to 77" 2' which contains the

point whose coordinates are (1, 2, 3).

.
[Explain. ]
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Answers for 113art C
Taking the hint in Exercisg 1, single tcquations for 74, 75, and 76are:

1.

2, 'Yes. 774 ri and 773 ,
3,

71'

'25E1 + 3x2 x3 [for 74]
3x2 = 10 3 [for 775]

2.x1 3x1., .= [fo 41-1, 71i, ]

and 75 are parallel; 774, and 76 are parallel

One such ecivation is .2x, 3x2 x3 '7 5'. (This is obained by
simplifying the equation (x1 114 + (x 2)6 + (x3 - 3). -2;=

TC 456 (1)
.1

4. One s e't of parametric equations for the required plane is:
= 1 + 2r 3s

x., = 2 r + Zs
=3 3 + r

[The splane described by th'ese equations clearly has the same bidirec-
tion as 7f 6, 'namely [i3, where 1-3 and have. components (2, -1, 1)
and (-3,2, 0), respectively, and also very clearli contains itie point
with coordinates (-I, 2, 3), I

5. (Th 7,, intersects the thira coordinate plane in the point whose
coordinates (x, y, 0) satisfy the system:

14x - 6y = 5

4x,.+ 6y 4 7

So, iwr 7f2 contains,the point with coordinates (3/2,14/6, 0).
7f r 7.2 has the direction of the ve&or m whose components

-6

6 -Z

4

2 4,.

4 -6
)= (0,16, 48).

4 6,

4 0

Also,
are.

.
Thus, by Corollany 2 of Theorem 10-16, ararnetric equations' for

v are:2

= .3/2
= 1/6 +: 16r

Any line parallel to both 71 and 72. is parallel to 'ri t-S r2. So, by
Exercise 5,- any such.line is in the direction of the vector whose
components are (0, 16, 48). Thus, parametric equations for the
required line are: ,

= 37 '4'
= -96 + 16r
= 4&.,+ 48r

1 i
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4 Find parametric equations for the plane parallel to 77, which con-,
tains the !mint with coordihates (1, 2, M.

5. Find parametric equations for the line of intersection of 77 and 7r.,.

[Hint: This is the line A) rl for any point A E Tr, n 77: and any non4i
vector r t fl )ni. An easy choice for A is-the pdint at which
n"fl ir, intersects one of the coordinate Planes.)

6. Findparametric equations for the line which is parailel to 771 and
'to 77 And-contains the point with coordinates (.K, -96, 42).

b Part D
1. Show that, tOr

A

the solutions of the system:

u1x + p,y - d,
+ b.,y(

are given'parametrically by:

I, y = y1, +

C2 a 2

tO, 0, 0)

t, z = 2
CI

2
b,

1,

where x, y,,, z) is any chosen solution of (''). [Hint: Interpret the
equations.in as equations Of planes with respect to some coordiz-
nike systeM. Then proceed as in Exercise 5 of Part C.]

12. Find several solutions of each system: .

(a) i3x 5y + 7z 2 do, (b) ix +'2y 3z = 0
+ y Z 13X y 4z = 0

'Part E
Here, are descrip ions of a plane 77 and of lines I, in, and n

-a: 5z, + 3x,4 - 4x3 =- 1

1

x, .= 1 + =01 + 3r x, 2 + 2r
x., -.---- 3r : x=2r #: x, = 1 + 6r
x., = 3 (- 2r 3 --=. 2 + 3r = 3 + 7r

. .
.., 0

1. Find the coordinates of a point in which I interselcts 77. [Myra: Begin
by Taiding.a value tit tr' such that the corresponding coordinates
given by the eqhtions for I satisfy the equation for 7T. Do thia.by
obtaining an equation whoae solution is such a vallYe of 'r'.I .

2. ,Show that m ii Ir. [Hint: By a prOcedurelike thkuse in Exercise 1 ,

shAv that rn n .* =--. 0.1

3. Show that n c i:r.

1 "

TC 456 (2).

Answers for Pikr-t
1. Since the/determinant triple is not (0, 0,0), it gives the compo-

.

merits of A vector in the direction of, the line of intersection of the
planes described lay (*). And, if (x0, y, z.0) is any sylution of (*),
it follows that (X0, yo, ze) are 'the coordinates of a Point in the
intersection of the planes described by (*). Hetfee, by Corollary

.2 of Theorem 10-16, the given equations are parametric equations'
fer the line of intersection of thcre planes, and the coordinates of
all such point's arc the solutions for (*),

2. fa) The line of intersection of theEplarws described by the given
equations intersects the third coordinate plane. in-the point

y, 0). which satisfies the system:
.13x 5y. 2

y

This point, therefore, has coordinates (47/13,5/13,0): The
line of intersection of the given planes is in the direction of

'

whose cirnponents are
7 3

-1

3 `-5''

2 1

(- 2, 17,13).

So, all the solutions of the given system,are of the form:
(17/13 - 2r,- 5/13 + 17r, 13r), for some r.

(b) An analysis similar to that in part (a) shows, that all the solu-
lions of the given system are of the form:

(5r, -13r, -7r), for...vome r
Anvers for Part E
1. 11 1- intersects ly then there is an r such that 5(1 + r) + 3(3r)

2 4(3 f 2r) = 1. The only such value of 'r' is 4/3. So, the
coordinates of the point of intersection of I and 7 are (7/3;4,17/3).

2; If rn intersects 7 then there is an r such that 5(1 + 3r1 + 3(2 - r)
4(-2 + 3r) = 1, that is, such that 14 = _1. Since 19, # 1, ni does

not intersect 7, Hence m H ar.
3. The pbints common to n .and .7 are such that 5(2 + 2r) + 3(1 + 6r)

- 4(3 + 7r) = 1, for some r. This is the case if and only if 1 = 1.
So, for each r, the point yhose coordinates are (2 + Zr, 1 + 6r,
3 +Jr) is a point of 7. nus, each point of n is a point oi /T. Thatis, n ç ar.



Part F
1. Prove:

2. Prove:

10,10 Determinants and Equations of tines 457.

Theorem 10 -17 Suppose that, with respect to a
4

given coordinate system, the components of/. and p
are III, 1) and p1, p,, p), respectively. With re-
spect to the given coordinate system, the equations:

(i)

and:

/3

x, =, al + p1r
c(ii) x = a., + pr

x = a + p3r
. ,

describe a plane and a line which are parallel if and
only if 1 and p are non:kand .

1,1)1 f 1.2P2 + 13P3

and, in thLs ease, the line is a subset of the plane if
and only if

lia3 = e.

CoroltAry The equations (i) and (ii)represent a plane
and a transversal to this plane if and only if tipl,

+ 1p O.

3. In each of the following, you are given equations for a plane 77
and a line I. You are to determine whether ir II r

TC 4,57 (1)

At-iswe r s 4or Part I.'
1, Suppose, first, that (i) and (ii) desc ribe a plane and a line which

are parallel. Then,, both L 1.3)* (0, 0,0) and (pi, P20.133)
(0, 0, 0), So, both and a're non-& Then, either there is no

rAsuch that yal + p1r) + 2,(a3 + e, that i's,
sTieh that

(*) (/031 + /pp, + dir,p3)r e + ),

or t.very value of 'r' satisfies this equation: It fol ows that
fip1 + .f:,p, .+ /703 , 0 and either e # /1a1 12a + /1a3 or
t., 17 1,a,,, respectively. Thi roves the only if-11a1 + :2al, +1
part of the first part of the theorem and, a so, iiroves the second
part of the theorem.

Next, suppose that f # (I # p and that glp.i. + f:,p2 + 13p3 = 0.
.-.

It follows that (.i) and (ii) describe a line and a.plane and, since
(*) dpes not have a unique solutlon, that this line and plane are
pa rallel t

2. By the theorem, if (i) and (ii) do not describe a parallel plane and
lir then P. = d or I = or

1
p,1 + /21;12 + 0. So, ff (i) and

(ii) describe a plane*and;a transversal then f1p1 +,12p2 + /3ps 0.
[For, in this case, p d .1. I on the otherlland, if

+ /2p2 + iripn # 0 then 1 d, p and, so, (i) and (ii) describe
a plane and a line which, by the theorem,- are not'parallel. Hence,
in this case, the line is a transversal of the plane.

The structure.of the proof of the corollary is a bit tricky. U
we symbolize the first part of the theorem by 'p==:)(q and r)'
and'uie 's' for '(i) and (ii) describe a plane and a transversal'
then, in addition to the theorem, we have '(^4p and q) =El' and

q'. Using the firs of these and the if-part of the theorem
we can derive [see below 's r',, Using both and the only if-
part of the theorem we ah de.i.ze [see below] s'.

.4 (q aria p

(-p arid q ) 4s=s s

-p (""q or

and q).-r
s -r

(a) rt: 3x,

(e). Tr: 4x

+ 5x,

xi 2
x2 = 1
t3 2

+

2x= 7

+ 2r
2 Atr

7r

=

(h) 7T:

(d) 7T:

:

7x,2

=
x3

=

+ 2r
6 + r
11 + 6r

+ 2x.1 =

12

'

16

5

-r

p (q arid rY

or -1.)7. p

"-r===>q

(-p and q)(-p and q) s

1:

4. (a) For those
.c 77 .

x = 4 4- 3r
= -2 - 2r
= -7 + 3r

parts of Exercise 3 in which 1, determine

x, = -5 + 2r
X3 = 8 5r

whether,

3. )

(b)

(c)

(ii)

3.2
6.2
4.3
-9,

+ 5 -4 + -Z
+ -7. 1 + -3
47 -Z + -1

+ -4. 2 +

t
So,

So, 7
7 11

7

1.

1.

1.

a

-7 = 0. So,

6 = -13 # 0.
3 -- -.5 0,

-5 = 0.. So,
(b) For, those parts of Exercise 3 in which 71. X 1, determine the

coordinates of the point ifi 1 fl .1 1

e.
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1 DM Third Order Determinants

By Thevrem 10-16 we know that if (m, n) is linearly independent
'then the equat ons:

+ x rn., + X37/13 = f
+ x2r1.2. + rxri g.

deserbe tAvo planes whose intersection _is a line. By the ,corollary to
Theorem.10- 16 we know that if in and n are non-0 and (m; r;) is lin-
early dependePit then eachrequaition describes a plane and the plane
described by one equation is Rarallel to the plane 'described by the
other. We also know that if riz, say, is 0 then the first equation de,
scribes 0 1in case I 01 or fin case f - 01. These .geometric results
can be used to obtain information cpncerning the solutions of a system:

If) JaX + b viz = d
-+ b,v + e.,z d2

As we saw in Part b;siich a system has a "one-parameter family of
solutipns" in case

(2)
b

cl

C2 a,

1),\

a., b2

atThe preceding geometrical argument shows what may happen if (2)
is not sati,.sfied. There are three possibilities:

(i) Ticsystem,(1) may haveino solutions.
(W The systcm (1) may have a "two-parameter family of solu-

,tions".
(iii) Every triple (x, y, z) may be a solution of (1). fr'[Explain,

A simil;ir geometric analysis will lead us to an understanding of the
solutions of'a system consisting of three equations like those in (1).
To begin with; recall the corollary Theorem 10-17 in which-you
showed that a plane described b

(3) x212 -f-vx-3/3 e

arid a line described by parametric eq.uations:

x, a, -+ p1r
(4) =-- + p2r

tL + par

intersect in a single point if and only if'

lip, 4- 12p2 + 0.

IC 457 (2)

Answers for Part F [cont.]
4. (a) In 3(a), / II .1 Since 3 - Z + 5 1 - 2 Z = 7, 1 C /. 4

In 3(d), 1 If .1. Since -9.3 - 4 -5 + L.8 = 9.4- 16, 1 ctir.
,

(b) In 3(b), Ir i4 1. So, for some unique r, 6(8 + 2;) 7(6 + r)
3(11 + 6r) = 12. Sitnplifjing, r = -3. /The, coordinates of

the point in I rTh 1 are (Z, 3, -7),
(c), i V 1. So, for smile unicime r, 4(4 + 3r) + 7(-2 zr)/-3 + 3r) = -5. , Simplifying, r = 14/5. So, the coordinates7

of the point in 1 A ir are (62/51 -38/5, 7/5). .

TC 458

Explanation asked for at'end of firdt parakraph:
a

Suppose (2) is _riot satisfied, [This corresponds to the'preceding
situation in which (m, it) is linearly dependent.) a (al, b1, c1) rie (0, 0, 0)
then there is a number sayk such that a2 = a1k, b2 = blk, and
c. = c 1k. In this case' if d 2 * d 1 k the system has no solution, while2
if do = dk the solutions of the system, are those of the first equation
and, wo, constitute a tw,o-parameter [If, for example, al 0,
the solutions of the first equationcan be found by assigning values to the 'two variables or parameters 'y' and 'z' and computing the corre7
sponding value of Similar remarks apply in case (ap., b, c2) # (0,0,0).
SUppo'se, then, that (a1, b1, c1) = (0, 0, 0) = (a2, b2, c2 ). In this case ifd or ,d2 is not 0 the system has no solutions, while if d1 = 0 = d2 the
system is satisfied by any triple.

V

V

_
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(Under what conditions are the plane and.line parallel? Under what
further condition is the line a subset of the plane?1 Let't apply this
result, to the case in which the line is given to us, not by (4), but as the
intefsection of two planes described by the equations:'

X.1171.2 4- A1n3
+ x,11, + = g(5)

In this case we know Theorrn 10-16 that the rine has para-
metric equations, like i4), where

n3

, and =

So, in this case, the plarre. and line intersect in a unique point if and
only if

1
/71,, /713

64-
71

2
t. n. n n /1 /1,,

3 1 1 x

What we have shown is that in case

,(1,, 1,, 1,,) t'' (0, 0, 0) and

rn n22

(7)
Inn in)

nj

0.

(0, 0, 0)

the system consiiting of the three equations in (3) and (5') has a unique
solution if and.only if (6) is satisfied. Now, if (6) is satisfied then so is,
(7). Hence, i ) is satisfiedthen our sysiem of three equations has a
,upique solu,tk6n.

As an e1ample consider the system of equations:

13x,

- 2x + 5x,, = 7
4x, + 3x0 + ifx3.-= 3
'8x1 - 7x; 2x:, = 5

. .

To determine whether the system (*) has a unique solution, we make
use of (6) to do the following computfations, and note that

3 6

-7 t-2
3 36 +

+

-2 56

6 4

-2 8f

+ 5

+ 5

-52

4 3

18 -7
=1-264 0.

. 4

TC 459

.
Answer to question.

The plane and line are parallel if .and only if Iip1 + 12.p2 + 13p3 = 0.
[Implicitly, since it is assumed that the equations de sc r ibe a plane and
a line, I # 11. The line is a subget ofthe plane if...and only if,, in
addition, si P2a2 +

1.) e
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Thus, we know That the system of equations ( '-) has a unique.solution.
1AS a matiter d fact, we are well on 'our way ter finding the scilution.
In a, short tiine we shall be able to make use of, these computations
to help us obtain it.1 .1

Suppose, on the other hand, that the ;system consisting of (3) and
has a unique solution. We know that (3) describes_ either a plane

or 0 or (A, and that 4(5) describes either a line or' a plarie or 0.or e .

Since, together,, they `describe a set consisting, of a single point it
'follows. that (3) mus,t describe a plane arid (5,) musf describe a line.
So, if the system consisting of (3) and (5)thas a unique 'solution then
(7) is satisfied. But we have seen that in case (7) isatisfied it follows,
that if the system has a uniqug ski\ ation then (6) Holds.

The preceding arguinen't shows!that we can forget about (7); the
system consisting of the equations in (3) and (5) has a unique solution
if 'and Dnly if (6) .is, satisfied. In our "a, b, c, d, x, y, z-notation" this
;cleans thaf ihe system of equations:

aix + 61y + ciz
a.,.t + b2y*+.r2z d2

+ bv +

has a unique so ution if and only if

at

e;

+
a,,

This result should `remind you. of Theorem A, the fundarnentai
theorem concerning solutions of a system of equations in two variables:

7.

jart+
+ b2y c2

which has be e bais for all our wOrk in Sections 10.08 through
10.11. In fact, definition which we shall state sholly, sentence (9)
can Ve replac y:

.

.-
(10)

b,

r., 0
63 c3,

. ma as in the Case of.Theorem A; our new result can be completed

.11
to giVe another fundamental theorof concerning the solution of
enuations in three variables:...

TC 460,461
r

. Ve shall not askrstudentt to prove the second part of 'Theorem C.
A proof by direct substitution is messq and thei: "natural" way to prove
the thcorem,requiresra knowledge of-fourth order determinants or their
equivaltnt.. As en indication of this "natural" proof we _give her the
apalogous Proof for the second part of Theorem A by usivg proper 'es,of thi rd.o rde r determinants.

We wish to show that, if, a1h, b1a, 0, the system:
{alx

b2y
has

as a solution. Substituting in
of fractions we have:

1al
b.,

From properties A second order

al.

) -

c,
the first of-the

+ b1
a ci

a2 C

bi

b,
two eqvtions and clearing

cl
ai
a2

determinants this

'al bl

a 1 C
,_ 1

2a c 2
1

By the definition of third order deterrnina
b c1 1

b1

b2 C2

13..

is equiyalent to:.

=

its, this i equivalent to:

But this is the case since ar third order determinant with a repeated
row is 0. A simila.r argument shows that the reputed solution satisfies
the second of the two equations.

Once fourth ordey determinants are defined and it is shown that
such a determinant with a repeated row is 0, a similar prooIcan be
given for the second part of Theorem C. [One also needs to know,the
result concerning interchanging columns of third order determinants
wciich is given in Exercise 2 of Part B on pap 463.1

. 4. .

Answer to question in the text:

a 1 dl c 1

a2 d2

a3 cis c s

b1

b2

b3

= a

c a2 .2

C 3 3

d20

ci*3
4- di

a2

a3 b 3

it 4
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Theorem C
Th6 system of equations:
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. .

..a4x 1),), -d,
a x + bv +. et2`,,
a

A 3 4X b
.

y + d

A

4

has a unique solution if and only ii..
4

a2
a -' th;

and, in thil cage, the given syst'ern of equatiqns is equiva-
'..lent to; -

.

4

,

a d
1

. c
.

'
1. 1

b, e a2 42 ci

113' ag d:, c,
,,----;---7------2

ba
1 1

c
1

a2 62 C
a

3
b

3
. e

b

a2 b,. d,

2 =
.0a b, (1

ai
a2

b,
b, C2

bg 3

Note tha.t, at least by analogy with (9) and (10), the numerator of the
first of .tliese three fractions:

d,
d, b,
d:, 'b,t eq.

is an abbreviation for:

C2.

C3

[What are the other numerators abbreviationi for ?i

IC 462 (1)

The definition of third order determinanting makes use of what is sodie-
times called "thc eXpapsion of a flitird order-determinant with resReet to'
the elerrients of its first LAs remarked in Exercise 1 of Part A
on th k! following page, studeritS should remembe; the definirion in these
terms, rather than in' terms oi 'b'sy a'nd ,'es. 1 Exercise pf
Part B can be:used to justify the' sirnilar i)ixpressionb of a tliird order,
ciste,rminant with respec,t to!_the elementeof its second or third row;
Exe rcise I, ehen justifies expanding such a determinant according to the.,
elements of sny of its columnA. You may wish to indicate these applica-
tions of Exercises -1 -and Z and tb giv.e the usual mnemonic tor recalling
what signs .to use in such-an expansion:

For example:

a 2 43
b1 b2 b3

ci
+ a

= -

2

C 2

a2 a 9

C 2 C3

lbi

, etc.
It is probably better ,not

a3

b3

- a2

P2

b2 el

introduc Vibe mnemonic:
a2

b

1 3 CC

in which'products indicated by arrows elan ing down'to the, right are
added and those indicated by arrows slantin down to the left are
skilltracted. A somewhat similai dey,ice doe ork for second attier
determinants, but there is no nalogous devic or determinants of
higher order. So, if the device in question.is introdueed for evaluating
third order determinants, students axe, bound to formulate an incorrect

_generalization which y.ou will not have ansippartunity ta carrect.
$1,7 We recomi-hend that you use Part A as? alass,plustratiop of the
Use of third order determinants. Parts B and'; C e'an then be used for
homework. Including Part D tn.this assignment will make it rather
long hut since Part, D alone Is rather short you may wisli to combine
these three parts.' One way to .make the combination of Parts B - D
wore 'reasonable for homework would be to liave students do only one
of Exercises 1, 2, and 4 of -17-art C. 9

\
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As a basis for the following exercises' we need a definiiion of the
. determinant of the triple ((a ar ad), (b b, b1), (C e cd)) [3-ternaedj

sequences. In analOgy with the definition on page. 434 Of ,the deter- .

miriant of. ((a a ,), (h b ,)), this new definition is usually stated as:1

C1 C2 C3

4
--- al

.

b; .

C1 C2

!Note that the ' -' on the right side of this definition can be replaced
by ' +' if one also interchanges the columns inthe middle determinant.]
The determinant, we have dealt with- Up to pow are called second
order determinants; the new ones are called third order deterniinanis.
As in the case of second order determinants, the rows of the third
order determinant given above are the sequences (21, 0:2, as), (1)0 b b)
and (c c); its column.s are the sequences (a b c1), (ar b2, c.,), and
(a.1, b, cs). 'As you Will see, third order determinants have all the
properties you established in Part B of Section 10.08 for second order
determinants.

Exerdses

Part A
1. Use the definition cif third order determinants to show that

bi

+ cl

[Hint: Instead of making replacements like `b' for 'a: in the
definition, interpret the definition in teTms of rows and columns.
f or example, in applying the definition to any determinant, you
begin by multiplying the first term in the first raw by the deter-.

minant ef tbe sequences obtained by deleting the first terms from
the second and third rows. Now, look at the definitiob and describe

. the seeond step.)
2, (a) ShoW that

Answers ror Part A
1. By definition, and wh'at

c 2
a

,

ai

IC 462 (2)

we know

b2 C2

1)3. C a

b2

b3 C 3

= left side of (9).

of .second order determinan

- b
-1

+ bs.

e 2

a3

C2 a2

a3 3

b2
+ 6 1

a3 b3

a2 b2

a3 b 3

+ Cl

[The second step in evaluating a third order determAnt is to
subtract the product of the second term in the first row by the
determinant.of,the sequences obtained by deleting the second
teims from the seconlpand ihird rows; the third step is to add

. ,the product of --- etc.]

(a) 2 3 -4
-1 -2 6

7 2

4

z 1-2
1 7 2

- 3
-1 6

±-4

= 2.-46 - 3.-32+ -4 3
-8

7
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(b) Use Theorem G'to find the solution of the system:

i(c) Check file
equations:

3. (a) evaluate the determinant:

2x + 3y - 4z 1

x - 2y + 6z 4 2
5x +.7y,+ 22 3

result of part (b) by substituting, in the given

.TC 463 (1)

(b) By Ttieorern C an-d the result in (e), we have that
1 3. -4 2 -4 2 3 1

2' -2 6 -1 2 -1 -2'.
3 7 2 5 3 5 7 3

*-8 Y -8 z.=

so that the solutan of the system is (21/2,*-7, =1/4)..
, 21 12-2-'+ 3 -7 - 4--i- = 21 21 + 1 = 1 .

21 1---r - 2 -7 + b --q. = -7 + 14 - -.7 = Z
-

105 11-4--, 4 r-
2

2 ,-1 5.7
3-2 7

3, (a) Z

4 3

-4(b) Compare the determinant in part (a) with that in Exerftse
2(a). If you have evaluated both correctly, the results should
not surprise you. Explain.

Part II
Prove each of the following,

1. a, 1), c

a b2

a b 3 c3 ers

[Hint: Use the definition or (") ta; express the left side in terms
of three second order determinants. Transform your result into
the -similar expression or the right side given in the definitiOn
or (").)

C2-

For parts (a) and (b), Proceed as in Exercise 1, recalling
Exercise 2(a) of Part B in Section 10.08. Part (c) can be estab-
lished in the same WO. It can also be ilerived from parts (a)
and (b).]

-1 5

41-2

6 2

.=

-2 7
+ 1

3

6 2 2

= 2. -46 + 14 + 5. 10 r -8.
(b) The resUlts are the same. The determinant in 3(a) is

obtained from that in 21(a) by interchanging the rows with
the columns in 2(a). This [as we should have expected]
results in a determinant of equal .value.

+.5

Answeri for Part
,

1. a1 bl cl
b2

b3 C 3



Answers for

L, (a) a2

11'2

c2

(b)

(C)

Part B [cont.)

al
b

Cl

TC 463 (2)

1 b,
= a;

c '3

b bl
:42

C 3 1

- (al
C 3

.r

J11

a3 a2

1
b, b2

C1

ag a2 al
b3 b2 b1 .-
C C3 2

= al
b3

C 3 C2

a1
b2 .b3

c,
b2

+ a

b 3 b,
-4! a3

C C

b2 b,
a.1

c2 C3

b b1
"2

C 3 1

b2 bl

- a2

Ci + a2
2 C

b3

C3

ba

3

C 1

b2

2 CL

+ a 3

+ a 2

cl

bi

el

b2

C2 1 ba

a2
b21

C2

=

a1.
131

a2
b2

C2

Au indicated in the commentary for page 460 Exercies 1 and Z.,
together with the- definition, justify the 'expansion of a third order
determinant witb respeet to the elements of any row or column.

109
14,
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3. In Exercise 3 of Part A, you evaluated the determinant:

Without doing
the following:

2 1 5
3 2 7

TC 464

Answers fcir Part 13 [cont.)/ .3. z.i) 8 -thy 2(aft
(h) 8 [by Z(c)1

c) 8 [by 1 and,d(a)]
.4. Intercfianging two rows of a given thir4 order determthant r'esults

in a ,deterrninnt z,vhose value is the opposite of that of ;he given
44

--4 6 ..2 .

any more extensive compu ing, evaluate each.of

(a) 1 2 5 (b) 5 1 2 (C) 3 2

2 3 7 7 2 -3
6 4 2 2 ' 6-4 7 5

2 1
4

6

..

. 2
4. In Exercise 2 you have seen that interchanging two columns of a

given third order determinant results in a cjeterininant whose
value is the opposite of that of e given determinant. What other
pro'perty "must third order d rminants have in consequence of
this and the result 'in Exercis41?

5. (a) a, + .cle, a2 + cl, ; + el,

b,

C, C., C3

(b) What follows from this together with Exercises 1 and 2.
6. (a) Evaluate theie deterininants:

1 3 1

3

1 2
2 2 3.22

.(b) Make use of the results in part (a) to evaluate,the followin
5 0 1

5

3 2

2 3

(iii 2 5

5 3

(ii) 1 2

3

2 2
2 , 1 3

(iv ) 145 9 18

2 .3 2j 13 2 2
. 7. (a) What can you say about a third order determinant which has

the same sequence for two of its rows?,
(b) About a determinant which has the sequence (0, 0, 0) as one

.., ,

5.

determinant
4

(r) + d1

C.

a
1

412

+

4+ d,

1)3 b1

+ d

d1)

b1
'+ d)

C2

a2 + d2)

(b a 1 + a4 a& a a 2i4
`....b1 + b4 b2 bi b2 1-13 + b4 b2

+ C 4 , C - I. , c C23 C1 C2 C3 4 3

[Anil four similar results in which th'e te.,rms of the Second or
's third row or column are indicated stuns. 1

6.. (a 2 1

1 = 2. 6 + 1. 4 + 3 13 F: Z.3
I

d
1 d2 d

b1 b2 b3

C
1.

C2 C3

of its rows?

1 $ )

13 1 .Z
5 1 Z = --h + 1 4+ 2.13 = 40
3

(b ) (i) 17 [23 + 40, by Ex. 5(a)]...
(ii) 40 [by Ex. 1]

(iil) 40 [by Ex. 2]
(iv) Z07 [23.9, by repeated use of Ex". 5(b)]

Is.

"

7 (a) Suc,h a determinant has value 0 [for by interchanging these
rows, we see that it is equal to its oPposite].

(b) Such a determinant has value 0 [for it is eqUal to or the
opposite of a deterMinnt Whose first row,is (0, 0,0), and,
from the definition, such a determinant iS easily seep.to
have value 0]

)
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Pakt C
. I -0..4nswers for.part C. Nib

$Here is an important corollary of the first part of VT heorem C on 1. Clearly, the given system has the So1ution10, 0,0). By.Theorempa Te 461:
,

C, this solution is ullique qiat is, is the only solution .if and
only if tht_. given determinant is not 0. Thus, this solution is-not

)
Coeblhary * - unique that isr there are other'solutions if and only if fhe

gWen determinant its 0. I3ut, any solution different from ,,,(0,.0;0)The system of equations: `- is nontrivial..

-4: biy + c z
1

a.,x +. b.,y + c,,z =
- --

ci3x bo fe.42 =

has a nontrivial solution - that is, has a solution
other:than 0, 0, 01- if and only if

al bi

a2 b2

a3 b3 c3

0.

I. Show that this corollary is implied by Theorem'C. [Hint See the
discussion preceding Part C of Section 10.08.1

2. Prove:

Theorem 10-18 For (u1, u.,, u:dlinearly independent,
.

+ u,,a2 + u" ± u202 + ub,ic1 + u2c2,
+ u,

islialearlyidependent

Om.

a2

,2. (u1a1 +U- 2a2 + u3a3, u'ib1 u,,b 4u1b3, u1c1 uc2 u
linearly dependent if and only 'if there are numbers y, and z,not all zer that

+ u2az, t u3a,)x + (111(3 +

(u ic + 112C2 u ncl)
The latter is the case if and only if

ul(aix + bly + c/z) + u 2(a., bor + c2z)
u3(alx + by + c9z

Since
only if

+ u3133)y

0.=

- 4 .k 2 U ) ia linearly independent, this is the case if and

= .-.alx + bly f. 0

az,x t'b2y + c2z = 0
a3x + 16y + ciz = 0.,

And, by the corollary to _Theorpm C and Exercise 1 of Part A, this
a/ a2

system has a nontrivial solution if and only if b1 1:), b =

cl. c2 c

04.4

Hence, the theorem.
"3. (a)

. ,41

3 So, the givefi vectors arc linearly independent.s
a 4

a

(b)

3 4 -2
5 -6 3

1 14 -7
= 3.0 + 4 38 - 2.76 =

So, the given vectors are linearly dependtight.

3 -2
1 0

4 6 -1
= 3.712+ --L9 6;6 =. -18 0

4.

%.

[Hint: gee Exercise I of Part B in Section 16.09.]
3. In each part you are given the components, with respect to some

basis, of three vectors. Decide whether the given vectorg are
'linearly dependent of linearly independent
(a) (3, 4, (5, -6, 3), (1,,14, 7)
(b) (3, t 2, 6), (1, 0, 2), (4, 6, -1)
(c) (1, -2, 3), (0, 3, 5), (0, 0, -2)

4-2

3 = 1. -6 + -2 0 + 3 0 = -6 * 0
,

0 0 -zI
So, the' given'vectors are linearly, independent,

(4) -2 3 -1
3 -1 -21 = -2 -7 +. -7 + -1 -

-1 3

So, the given vectors are' linearliclependent.
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4. Use Theorern,C on page 461"andsits corollary to show that three
planes intersect in a single pOint if and only it' theS7 are not all
parallel to the same line. [Hint: Suppose that thlanes are de-
scribed, with.respect to some"oordinae system,by the equations:

1 1x + 1 2.1C, + 1

)In 1,1C r n :X -=

1 72 IX f n2x2 + flX; = g

What (x)nditions must bZ satisfied by oomponents (p1, p, p3) of a
st.

vector which belongs to each of the directions of these planes?!
5. Which of the following systems of equations have nontrivial

solutions'?

(a) x, + 2x2 3x 0
4x, fix, 2x, = 0
2x, 3x,, i- x -.- 0

(b) I-2x, + 3.x,
12x, - 9x,

4x1 61,

4x, =
7-. 2x =
+ 8x =

0
0

.0.

(C) 3x, '5x, + 7x -- 0
2x, + :ix, 4x, 0

2x1 - 5x, x = 0
,,

*

(d) x,
x, 4 2x2 = 0

Suppose that Tr and cr, are planes which are described by the para-
metric equqitions:

= c.'i + pir + qis
.

x, = c,, + p,,r + q2s ana.
+ p,,r + q.5

xi di + a,r + b is
x., = d., + a,,r + b

.2

X3 = d3 aar + b

One way to determine whether or not .7 o- is to obtain single equa-
tions for ir and o- and proceed from there. I Explain how, having done
this, we can decide whether or not 7 c.] Another way is to note that
[Tri tp, gt1, where 7) and have components (p, p0, pi) and (q 1, q)
and that, similarly, jai = [a, bi, where -ii)and b have comp910mts (ay

a,i) and (b b, respt.ctively. Now, since,Sa, -6) is lineally indepen-
dent, we can show that [71-] [al and, so, that 7 a- by showing that

- --* 4 -
{a, 9} [p, ti]. Since (p, q) is linear1y independent, this will be the
case if and only if each of (a, p ) and WI p is linearly dependent. As
we are now in a position to make use of third order determinants to

r. check the linear dependence of these.sequences [see Theorem 10 18],
we can make use 9f the information in the parametric equations to
decide whether or not ur 11 cr.

'-'$f

14

-TC 4646

Answers for Part C [cont.]

4. Using the equations in the hint the three planes are parallel to a
line whose direction is thal of the non715 vector with components

p3) if and only if

111'1 + 121'2 + 1:31D:A

+1112P2 +.17131D3 = 0, ant!
nipi + n2p, + pip3 = O.

The condition that this system of equations not have a non-n
solution (pi, p,r, p) is the s me as the condition that the equations

, in the hint have 8 unique sol tion. So, the planes are not parallel
to any line if and only if they intersect in a singlic point.
In each case all we nee.d to do is make use of the eprollary to
Theorem C.

(a)

4 -6
't a -.3 1

(c )

7, 0

System has a nontrivial
solution,

3

-a

-5 7

3 -4
-5 -1

= -147 # 0

(b) -2. 3 -4
12 -9 -2
4 -6 8

a nontrivial.iSystern-has
solution.

(d) I 0 6

1 -3
0

System has no notitrji ial System has a nontrivial
solutions. solution.

A

0
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In each of the following you are given parainetric equations for
planes-Tr ahd r. Determine, in each part, whether or riot rr 0- by
evaluating two third order determinants,
1. x 2 + 3r - s

. , + .r
= 17 r 2s

5 - r 2.s

x., +- 5r + s
-3 - 3r - 5s

. = 4 2r + s'
-= 5 -4- 2s

16.12 Chapter Summary
Vocabulary Summary

n-dimensional vector space
basis for
dimension of a vector space
'components of a vector'
determinant

second order
third order

, rows
mlumns

Pas uiates

I. (a) - A e,./-
2. (a) A 4- (B - A) =
3. (B, - A) + te B) = C
4. (a) tit (b) ,7
41. (aP+ 1-y) +

44. h.+ -a.

-1, r -+ 3s
2 + r +-13s
3 4- r 5s
2 + 2r + s
-4 - 3r
3 + 2s
2 + r s
2 4- '3s
1 4- 5r s

3-dimensional space of points
spLi`ri

'coordinate system
coordinates of a point
parameter
parafnetric equations

of a line
of a plane

nontrivial solution

(b) A + (141E?i,'

(b) (A 1- - A

-
(a) -a (d) äi e

4"' . , under function conivosi ion,,is a commutative group.
4s. al = a
4s. a(b + c) = ab + ac
47. (+ = ac + b!C

4u. ia)c albc)
11 4m. , under function composition, is a' vector spa&, over
42. There are three li:nearly independent members of f.
4ts. Tiere are not four linearly independent members of g".

4'. T, und functiop composition, is a 3-dimensional vector space
over

i)g

TC 467

Answers for Part D
1, Let g and q be the vectors whose -components a

ico
(3 1, -1) and

(-1, 3, 2), respectively, so that [71 = p, S larly,
[rJ where '2a. and have components (-1,1, 1) and
(3,,13, 5), respectively.

-1 1 1 ;

Since,
3

3 '1 -1 = 0 and 3

-1
So, r

-1 3

it follows that J S,

[We use the

-1
-2 1

it follows that

notation established in 'Ex.ercise 1. Since

,Since
1

1

5

0

01

it follows that CS,

= -45 * 0 and
1

-1-
-2

0

5

1

1-S1 o, 7r

ZO 0 anth

-1
2

1

3

0

2

1

0

0

g 1 [13, 4]. So

2

-3'
-5

= 4 * 0

r,
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Definitions

10-1: . . . iA a basis for .7 if and only.if (i) (a*,, . . , an) is
linearly independent, and (ii) La7, . . ,aJ =

104. Ifku,u, u.,) is f( basis for _I and a = u,a, + un, + athen
ao 0,, and a, are, respectively, the first, second, and third
components of a- with respect to the given basis. Also, (a , a.,,
a,) -is the cariiponent-triple of a with respect to this basis._ -10-3. HO ( Ul, 14.1, U3) is a basis for , andA = () + (u,a, + u.,a.,
+ u1a,1 then a,, a. and a, are, respectively, the first, second;
and third coordinates of A with respect to the given point and
given basis. Also, (a,., a a,) is the coordinate,triple of A with
respect to this point and basis.

Other Theorems

10-1. There are four noncoplanar points.
, 10-2. The intersection of two nonparallel planes is a line.

10-3. A line which is parallel to each of two nonparallel planes is
pariallel to their intersection.

10-4. A line and a plane which are not parallel inlergect at a single
point.

-
Corollary 1. A line which is a transversal of one plane is a trans-

versal of any parallel plane.

Corollary 2. Parallel lines are transversals of the same plane.

10-5. plane which intersects one of two parallel planes inter-
sects the other, and the intersections are parallel lines.

1,0 -6. (a) (7- 11n- 4.-0 = n- or a- II 7r = 0)
(b) 1 77 (1 777" or 1 11 = 0)

10-7. Each 3-termed linearly independent sequence of translations
is a basis for ,[7.

10-8. Each basis for :-.7" is a 3-termed linearly independent sequence
of translations.

10 -9. [at, a = - (a a2, ai) is linearly independent.
10-10.^ta) Each non-01translation-is a term of some. basis for ,(7.

'(b) Each two linearly indepindent translations are terms of
Sonic basis for .7.

10711. For any basis for (a).each cOmponent Of iYis 0, Op each corn-
.. ponent of-a is the opposite of the correspOnding component of

a*, (c) each coinwnent of.i; + bis the sum of the corresporiding
components of a and -b (d) each dompement ofru0s the product I
of the correspondkng component of- x by a.

.10-12. If -"a, -6*,--"c, and -dare position vectors of'honcoPlanar points and
a + b ± c+d= 0 then aa + +-c7c + cid =.-Cif and oily if
a 0, b = 0, = :0, and d = 0.

10-13. For

linearly

10-14.'For
0

a

(u

(UV

b, +
a2 a3

b, 61

u2)

dependent

u2,
u2

1

linearly

u ) 1inen-1y
Tt14-4b u3b

a3 a,

b3 b,

if

independent,

and only

independent,
) is linearly
a, a 2

b, b2

10.12

if`

(0;

Chaiiter

(U*ia, +
al a2

b,
(a,a,

dependent

0,

Summary 469

u2a2, u,h, +u3b3) is

0.

+ d2a3 + u3a3,,
if and only if

10-15. Suppose that, with respect to a given-coordinate system, the
coordinates of A are (a a2, a3) and. the clomponents of p and q
.are (p,, p2, pa) and (.q,, q2, (id, respectively. With respect to the
given coordinate system
i a) the parametriC equations:

ix,' = a, + p1s + qlt
x2= a, + p2s t q2t
x3 = a3 -f p3s f qi

describe the set 41p,, q); and this set is a plane if and
only if

(t)

(Pq2 q3

(b) the single equation:

(x ad + (x2

Pg

q2 q

(12 q 3

represents Ag, if and only if the condition (t) is
satisfied.

10-16. Suppose that, with resaect to a given coordinate system, the
components of in and n are (m in2, in) end (no nv n3 -17E

spectively. WiVi respect to the given coordinate system, the
. equations:

f(x, - a)rn, + (x2 - a2)7n,3 + (x3 - a3)m3 = 0
((x, - + (x2 - b2)/12 + (x3 - b3)n3 Q

describe minparallel planes if and only if (77i, is linearly
indepindent; and, in this case,

P2

q 1 q2

(0, 0, 0),

+ (x3 -.a3
q,

ins TiJ P3i

71.3 tt
A

are the components of a non-TY vector in the direction of the
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Corollary 1. The equations (1). describe parallel planes if and only if
in and n are non-0.and iS linearly dependent.

Corollary 2. If (m, n) is linearly independent then the lineof inter-
section of the planes described by tbe equations (i) is, itself,
'described by thesystem:

n, n2

where (e1, c c3) are tlie coordinates of any chosen point C
which is common to the two planes.

10-17. Suppdge that, with respect to a given coordinate system, the
components of land p are (1), 12, 1,1 and (p,, pv p,), respectively.
With respect to the given coordinate system,,the equations:

and:

11x1 + 11-x1 = e

x, = a, + p1r
(ii) x, = a, + p2r

= + pir

describe a plane and a line which are parallel if and only if
-rand Pp are non--6 and

1,p, +-12. 13= 0;

and, in this case, the line is a subset of the planeif and only if

a +1,a, + = e.

Corollary: The equations (i) and (ii) represent a plane and 'a trans-
versal to this plane if and only if 11p1 + 12p2 + 13p3

10 18: For (-17 74, -1.1) linearly independent, (ii;ci, rk,a, +
+ ub4 + 11bv u1c1 + u1e2 +. u3e3) is linearly dependent if

Theorems About Equations

A. The system of equatiolis:

10.12 Chapar Summary 471

jalx_+ b1y ct
tax +

a 1),It
has a unique solution if and only if

the given system of equations is equivalent to:

el b)

Corollary. The system of equations:

ja,Z + biy = 0
ta,2x + b2y = 0

has'a nontrivial solu ion if and only if

arx + bo + c2z = 0) if and only if 3: (x

a, b
a2 b,

C. The,system of equations:

a)

0; and, in this case,

0), (alx + bly + c)z = 0 and

aix + Ecy +:c1z
a2x + e22 =

+ c3z d,

bi

has a unique solution if and only if jav

e a
t, and

02



472 DIMENSION

case, the given system of equation); is equivalent.to:

Corollary. The system of equations:

la,x -#- b y + c1z = 0
art +, ky + cv = 0
0,1x + ky + c7,z = 0

co

b,

02
112.

b, d
al bl Cf

(1- 1)2 c2

03 b 3

has a nontrivial solution if and only if

Chapter Test
_,

1. Given that (a, b, c isz basis for iT tell whether or not (a - b,-1; +7,
6 a + b) is a basis for Justify your answer.

2. (a) Show that [a, bl is a vector space (over the real numbers). .

(b) Tell what is needed in order to say that is a 2-dimensional
vector space.

3. Suppose that the coordinates of points A, B, C, air!ci D with respect
to the cpordinate system determined by basis ('a,b, c5 for ._6{- and

origin 0 are as follows:

A: (2, -1, 3) B: (4, -5, 7)
C: (-1, 4, 72) D: (-3, 7, -5)

(a) Give the coordinates of the point which divides thle segment
fr9rn A to B in 2 : 1.

(b) Write paratactic equations for the line Xd.
(c) Write parameirivequations for the line 101'
(d) Exactly oue,Lf tliese stotements is true:

(i)
(ii) Ad and are skeW lines.

(iii) n Mi {P}, for some P
If iou feel either (i) ar'(ii) is true, tell why it is: If you feel that

is true, give 'the coordinates of P.

TC 472,473 (1)

Key for chapter Test
1. Let a, b, and c be numbers such that (a. 11)a +1.(1-; + C.)b

(a + b)c & Th'en, c) + g(-a + b + c).+.cb 6. Since
(-1,g, C.) is linearly independent, a +- c 0 and -a + =

and b 0. So, c. = a and,a O.' So, a = 0, h .,11b, and
c 0. Hence, (a -11, + c, a + i.:)) is a basis for 'T.

2. ( a ) To show that [ I is a vector space ,over the real numbers,
it is enough to show that the closure postulates are satisfied.
This is so, for the remaining postulates must be satisfied by
virtue of the fact that ra., b.] 't,Let c and a belong to ra., 13.1. Then,"-c. -,ac, +17..)c2 and

C.1 = ild + 1102, for some real numbers c 1, c-, , d , ,sind,d2.4 ri.
So, c + d = 1(c1 4 d1) + 11(c 2

+ d2). Hence, c + d [1, b 1.
0

r e'[a, i; ], for 6 1--. -10 + gO.. .

Let C' E ral', g j. Tb 4en -.c = --alc tic2,1 or some c 1 and- - -. , ,- -
c 2 . So

' -c = a -c]. + b -c so that -c e [a, b J. Also,
-. ,-ct = a c lt + g c2t so that t e [-1,1). I.

(b), In order to say that Fa., g ] is a 2-dimensional vector space
(over the reals), one would have to know that (a) there are
two linearly independent members of [-a., b.] and (b) there
are nof three linearly independent members of [a*, r ].

(c)

(d)

110 11, 171
3 3 ' 3

2 - 3t
X2 z --1 f 5t
xs = 3 5t

= 4 7s

= -5 + 12s
xs = 7 - 12s ,

p fTh BD if and only if there are'nurnber,s s and t such
that

,

[There are many answers possible
here'. We gave the more likely one]

2 3t 4 - 7,s
-1 +.5t = -5 + 1Ls
3 - St = 7 - 12s

Solving this systern yields the solution t = 4 and s 2.
(iii) is true. The opordinates of P are (-10,19, -12).

(e) xi -= 2 + Zs - 5
-I 4s + at

x3 = 3 + 4s - St
To tell wihether ABD is a plane or not, we must check whether
{A, B, C) is collinear or not. The components of B - A are
(2, -4, 4), and the components of I) - A are (-5,8, -8,1, Clearly,
neither of .B - A or p - A Is a multiple of the other, So, it*

(B A, D - A) is linear independent. So, {A, 13, D) is
noncollinear. .Hence A D is a plane.
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(e)
.

4. Suppose
T
(a)
(b)
(c)
(d)

linear
5. Evaluate

(a)

6. Use

7. Here

Write parametric
How do

that
R +

Are all the
Determine
Show that
Given that

combination
these

-3 5

6 -7

determinants

are equa

equations
you knoW?

(a; -6) is linearly
U R +

Aescribed
whether
U is the
A is the

of
determinants.

(b)

to hqp

i ns for planes

77-1:

7r,:

4-

points
or

midpoint
centroid
a

solve

5x
l-ax

4x
6x
2x

plane or not?

S = R .+
U +

A R as a

16 9 5 9

16. 7 5 7

4. (a)

(b)

is

(c)

(d)

5.`,. (a)

6. x =

Answer:

7. (a)

(b)

(c)

Yes.
{R, U,
and (-S

the
Ca' +

and a
U S
definition,
A R

-9
1Z 7

Z 5

They are all in the plane
W} is noncollinear since

+ g, + 1;2) is linearly
case, let a and b be numbers
gZ)b .6. Then, -aPta + b)

-213. So, a = b and
g -a. and T U g

U is the midpoint of
= ay+ by.

(b) 36

60 - 14 46

,
W
show

gra
that

U.

+136

R :a* +

the 4.tter

a = -b

By

triple.
-1).
of the

R(R
U

independent.

+ T6*(a

b =

ST.

+ -;)(R
R

such
+ lb)

0.

So, U

(e)

5 12.

-3

+ g).
a + b,

[To
that (1+

- -6 so

S T

10

for AAD.

independent
6), V = S -b2andW=

coplaniir
not 417, U, W

of
of ASVT,

andb.

5 4 0

H3 5 5

6-7 --f7
this system

+ 7,9 12
+ 5y - 2

7rs, 7r2, and

+ 2y - 3z =
+ 3y + 4z =
+. y 6z =

Is AED a

and that

or not? Explain.
} iS

express

(c)

of equations.

ira:

9
5
9

5 7

-'3 5

wi not,

= (-9,18,0)
(r7, -34.
One point
The line
non-0
equations

12.5 + 21 '

(1,1)

parallel to 73, since (

(0,0, 0).
0), ,or any nonzero multiple
common to 12 and 2.3

of intersection eif r2
vector with components

fur 172 rv'w3 are:
xi = -22r
x2 = 3 +

y =

-3

1 -6

has
and :T9
(-22,

44r

-3

of
coordinats
has

44,

715

-3 4

z-6

this component

the
0).. So,

direction

.

4 2

2 1

(0,3,

parametric

(a) Use determinants to help tell whether or not 771 is parallel
to

(b) Give the components of a non-0 vector in the direction of the,
line of intersection of 7Ti and

(c) Give parametric equations for the line of intersection of 7T 2
and (d)

(d) Use your results in parts (b) and (c) to tell whether or not
n Tr, is parallel to Tr, n L.

8. Here are the components of vectors a, and C'svith respect to a
given basis: 8. (a)

(6., 9, 34.)".

(8) Use determinants to help show that (Z, -61 is linearly inde-
' pendent,

(b) Write parametric equations for the plane which contains'the
point with coordinates (-7, -19) and has the bidirection
[93,-61

(c Determine whether or not (Zs -6°,:c-) is linearly independent.

1 oc.:9

(b)

(c)

=Lx3-1
Answers will, of course, vary among students. What must be
checked is that the student las found the coordinates of a point
in 12 n an and that the direction of the line described by his
equations -is that of the vector with component& (-22,44,0).
The vectors with components (17, -34,0) and (-22,44, 0) a.re
clearly linearly dependent. So, the lines wi n r2 and 12 n
are p1ralle1.

8inc e
9 4

sequence

2 3

6
) = (21,-14,0)* (0, 0,0), the

is linearly independent.
The " easiest" such parametric equations are:

2

6

-4

-12 + 3s + 9t
= -19 - + 4t



Index

Absolute value
application of, 166
definition, 165
of ratios, 333
symbol, 165

Addition
of real numbers, 144-145
of translations, 176-178

Algebra
conventions of, 55
of points, 51-56
postulates for, 64-65
of ratios, 331 -332
ofrreal numbers, 55, 106, r2 6 -127,

134 - 135
of translatiqns, 48 -56, 64 65,

106 -107, 115, 126 127, 134
138

Alternation sentence
analogy to existential generaliza-

tion. 264 -265
denying, 163
form, 160
rules for, 161-163

Analpgy
between real numbers and trans-

lotions, 106, 126-127, 138, 192
Angle, 35'
Antecedent

of conditional sentence, 77, 93
denying, 152

Application, function,54, 107
Argument of funetion,.12
Arrow notation

"triangle" method, 344 -:-346
position vector method, 346-352

Assertion, 86-87, 245, 246
Associative principle -

for addition of real numbers (APA),
85

for addition of translations, 115
Assumption, 85, 245
Axes, coordinate, 418

r

Bargain in theorems, 134-138
Base of trapezoid, 356
Basis for .1", 409,-412
Betweeness, 29
Biconditional sentence

'appl9ing rules for, 100
form of, 97-98
rules for, 98-101
theorems ab.out, 101-10:3

Bidirection
of plane, 386-387
proper, 386-387

Binary operation
for group, 128-129
on d?, 128-129
on 1, 128-129

Bisection of interval, 343
Bypass Postulate, 103, 1'04 ,

Cancellation principle
for multiplication of translations,

186 189

4

(Cont. -Conditional sentence)
and biamditional sentences, 97
converse of, 93-94
equivalent form, 95-97
ruleS for, 78, 83
symbol, 97

Conjunctiott sentence

tion, 264 -265
form, 101
rules for, 101

Consequent of.
tence, 77, 93

Constant mappin
Contradiction rul
Contraposition, i-

-contradiction, 15
symmetric, 155

Contrapositive, 1
Converse

of conditional
154-155

function, 24, 26
of ordered pair, 17

Convex quadrilateraL 354, 357
Coordinate axes, 418
Coordinate planes, 419
Cbordinate system for 415-422
Coplanar points, 212, 372-375
Correct answer, 77

7
analogy to universal generaliza-

conditional sen-

g, 110
e, 156

ules of
6

54-155

sentence, 93-94,

for points and translations, 72-73 Counter-example, 94
proof, 73

Cartesian conrdinate .system for Deduction rule
see Coordinate system for e application,' 89

derivation, 83-88
Definitions, 126, 271t
Denial, 151-155
Dependence, see Linear l6pendence.
Depenslent ation, see

Linearly dependent equation
Derivation

inyalid, 247
trepiforin, 82

Determinants, 175, 273 L274, 396 -
398, 434 -467

columns, 434 Or

computations, 434-436
and equations of lines, 448-457'
'and equations of planes, 438-447
operation, 175

(

Centroid of triangle, 343
Ceva's Theorem, 367

converse, 367
Closure

group, 129
for traqations, of if, 46

Collinear points, 36, 215, 275-278
Column proof, 107
Commutative group, 128-130
Components

vector, 412-415, 450
triple, 413, 416, 417

Composition, function, 19-24, 54,
107, 404-405

Conclusion, 75
Concurrent lines, 335, 361, 365
Conditional sentence, 77-78

1,

rows, 434
Second-order, 462
symbol, 175
theorems, 436-437
third-order, 458-467
of a triple, 462
value, 175, 434

Diagonal, 353
Diagrams, use of, 59
Differences between real numbers

and geometry, 60-61
Dilemma, simple, 160-161
Dimension, 399 7,402
Directed trip, 194-198
Direction

given, 290
of lines, 288-293
of planes, 385 -386
proper, 289, 290
of translations, 288-290

Direction numbers, 426
Distance, sensed, 363
Division

eirterior, 328
points of, 327-331 i

Division of real numbers, 144-145
Domain of function, 12, 13
Double denial, 153, 154, 225

44

Edge of half-plane, 30
Elimination of parameter, 431
Elimination rule, 1,01

for V, 250, 253
for 3, 250

Endpoints, 29, 308
Equations

dependent- systems of, 173 -175,
433

inconsistent systems of, 173-175,
433

independent systems cif, 173-175,

linear, 273, 422-430
parametric coordinate, 423
parathetric vector, 425
of plane,'430-433
of planes *and determinants, 438

447
in proof, 72 41
replacement rule for, 73 -74



terms of, 72
two-point coordinate, 423-424,

429
vector, 346

Equivalent form of conditional
sentence, 95-97

Euclidean geometry, 33
Excluded middle, lam; of, 165
Existential generalization, 239
Existential quantifier, 237, 240
Experiments

with force table, 1, 2, 5
with mirrors, 4-5, 6-10
with velocity, 2-4, 6

Exportation rule, 101
Exterior division. 328

Fallacy, denying the antecedent,
152

Field
not ordered, 169
ordered, 167 -168
properties, 166-167
S-field, 1682169
subfield, 167

Figure
notion of, 27
translation of, 41-44

Flatness of plane, 31
Force

components, 204 -205
diagraM, 202-205
problems, 1, 2,.5, 201-205
table, 1, 2. 5

Free-variable generalization, 61 -
66

Function
application, 54, 107
arguments, 12 .

composition 19-26, 46, 54,
115, 404-405

converse, 24, 26
definition, 12
domain, 12, 13
inversion, 18-19
linear, 14, 37
notation, 13
notion of, 11
range, 12, 13
real number, 235-237

.

107,

subSet, 15
value of, 11, 12

Generalization
analogy to alternation sentence,

264-265
existential, 239, 264-265
free-variable, 61-66
instanc'e of.239, 242
multiple universal, 252
placeliolders for, 241
quantified, 61
rules, 244-245 '

: sentences, 242
statements; 240 241
universal, 239, 243-245, 264-265

Geometry
Euclidean, 33
hyperbolic, 33
introduction to, 1, 37
Lobachevakian, 33
meaning of, 27
through poinaand translations, 60
of space, 26
using new techniques of, 56

Group
closure, 129
commutative, 128-130
operation, 128 -129
properties, 128 130

Half-line
definition, 305
diagram, 303
notion of, 29, 30, 304 -305
opposite of, 307
problems, 310
symbo4 305
vertex, 29, 306

Half-plane
closed, 30, 392-393
edge, 30
notion of, 392-393
union of two, 30

Hyperbolic geometry, 33
Hypothetical syllogism, rule of, 90

Identity mapping, 25, 52-53
Identity translation, 52-53, 117
"If and only if", 67

Image
of figure, 41-44
mapping, 11
mirror, 4 -5, 6-10
of point, 39'
of segment, 40-44

Importation rule, 101
Inconsistent lineaivaquation, 113

175, 433
Independence, linear, see Linear in-

dependence
Independent linear equations, see

Linearly independent equations
Index for quantifier, 23$
Inference, 78

invalid, 80
valid, 81

Instance, 230:239
Intercept, 335
Intersection of lines and planes,-

406 -408
Interval

definition, 29, 308
diagram, 303
problems, 310
ratios of, 333-335
symbol, 308
theorems, 309

Introduction, 1
Introduction principle for oppo-

siting (IPO), 85
for V, 260, 253
for conjunction sentences, 101
for a, 250
for equations, 74-76

Invalid derivation, 247
Inverse

of mapping, 139
multiplicative,'147
of translation, 44, 50, 116, 118 -120

Inv!raiatLiunction, 18-19,, 24-26

identity, 71
membership, 71
symbols for, 72

Law of excluded middle, 165
Law of noncontradiction, 164
Lemma, 379
Lines

concurrent, 335, 361, 365

411/

containing 2 given points, 282 -287
definition ot 28, 278 -279, 284-281
direction of; 33, 288-293
in e , 275
equations of, 423 -430
equations of, and determinants,

448 -457
in given direction, 290
intersection with plane, 406 - 408
notion of, 27, 275
parallel, 33-34, 292, 293, 295-299
skew, 294
subsets of, 303-311

Linear combination- of vectbrs,
211-216

Linear dependence, 211, 276-277,
280, 282-284

and coplanar points, 374
and determinants, 396-398
proof, 258 - 264,266 - 269, 273 -274

Linear equations
dependent, 173 -175, 433
inconsistent, 173 -175, 433
indeRendent, 173-175, 433
notion of, 273 23-430
solution of, 175
substitution in, 173-175
systems of, 173-175

Linear function, 14
Linear independence, 211; 268

269, 273-274
and determinants,,396 - 398

Linearly dependent
equations, 173-175
sequence, 219-226, 235, 238
subsequence, 223

Linearly independent
equations, 173-175
sequences, 226-231, 238

, set, 230
-aubset, 230
vectors, 230-235

Line-plane separation property, 31
Lobachevskian geometry, 33
Locations, 27
Logical answer,t7

Mapping
constant, 110
figure, 11
identity, 25,, 111

=e



inverse, 139
linear, 14t*,15

. notion of, 11, 12, 27
one-to-one, 116
onto, 12
.permutable linear, 15
of points, 37, 39
*Zrf real numbers, 37
translation, 16

Mean proportional, 319 ,.

Meaningless expressions, 123
Measure vectors

1-dimensional, 206
2-dimensional, 206-207
3-dimensional, 207

Median of triangle, 336 4

Membership sentence, 71, 77
Menelaus theorem, 363

converse, 363
Midpoint of segment, 315 -316
Minus isign for opposite of transla-

tion, 118
Minus sign interpretation, 54, :123
Mirrori, 4- 5, 6 - 10
Modus ponens, 77-84
Models tollens, 152
Multiple of translatiohs, 192
Multiple universal genekalization,

252
Multiplication

of' real nuinbers,,144-145
of translations 176-179. 182, 190

Multiplicative inverse, 147

Noncollinear Points, 36, 378-384
Noncollinear subset, 378
Noncontradiction, law of, 164
Noncoplabar points, 401
Nondegenerate

set, 308 .

subset, 311
Nontrivial solution, 397 -398,, 437
"Not," 1-50-156
Notation, arrowaiee Arrow notation
Number direttion, 426
Number -line, translations of, 15

17

Oa...parameter family, 468
One4o.one correspondence

between paints and translations,
1391-140

between .9- and triples of real num-
bers', 413

Operatign
binary, 128 -129
determinant, 175.
singulary, 128 -129

Opposite
of half-,line, 307
of ray, 307
of translation,' 118

Oppositing
of Tioints,,140
for real numbers,. 144 = 145uor.
exclusive,161
non-exclusive, 161
rules for, 160-165

Order
preservation of, 158 - 159
for real numbers, 144 -145, 157

159
symbols, 157

Ordered pair
convtrrse of, 17
proportional, 319

Orientation 4
bf line, 8, 10
of plane, 9, 10
of space, 0, 10

' Origin of coordinate system, 418

Pappas theorilni, 341
Paragraph proof, 108-109
Parallel line

0: assumption, 33
definition, 33
direction_of, 33
in plane, 383
problems; 34-36, 295
segments, 33-36, 320-326
symbol, 292
theorems about. 296-299 -

Parallel plane% 388,. 404, .44:8, 456
Parallel segments

notion, 33-36
ratio of, 320-326

. Paralleliam, 311 -312, 383 -392
Parallelogram

definition, 356 - s
problems, 357

'theorems, 357 -40-

A,

Parameter. .

definition, 423
elimination of, 431 :

family, 458
Parametric coordinate equation,

Parametric 'equations, ,423-483,
442-445

Parametric vector equation, 425
Permutable linear, mapping, 15
Permutations of sequences, 2=-

224
Physics experiments, 1-7, 199 -

205
Placebolders

for generalizations, 241
for sentences, 78, 241

Plane
bidirection of, 386-387
containing 3 noncollingar points,

378-384
coordinate, 419
coordinate description of, 446-447
definition, 376
description, 455
determination of, 380-381
direction, 385 -386
equations of, 430-433
equations of, and determinan

438 -447
-intersecan With line, 406-408
nonparallel, 404
notions, 27, 29, 375
parallel,. 388, 404, 448, 455
parallelisin and, 388-392
point definition, 372
problnms, 376-378
proper bidirection of, 386-387
properties, 31-33
quadrilateral, 382
skew, 403
_symbol, 376
union of half-planes, 30
transletions of, 37-39

Phis sign interpretation, 54, 107,
, 123

'Point

cancellation principle, 72-13
collinear, 215, 275 278, 280

_colplanar,_21.%_372 -875
of division, S271-331
image dr, 39

a

mapping, 37
noncollinear, 378-384
set of, 27 ,

symbol for set of, 62
variable, 61
unit,_418 . _

Position vector, 346-352
Postulate, 60, 126
Premiss, 76
Principle for adding zero (PAO),

85
Proof

column, 107
linear dependence, 258-262
paragraph, 108-109
quantifiers in, 254-257
study of, 262-263
free-form, 108

Proportion for real numbers, 319

Quadrilateral
convex, 354
definition, 352
diagonals, 353
plane, 382
problems, 354-355

' sides, 353
simple, 354 ,

vertex, 352, 353
Quantifiers

existential, 237, 239 240
index for, 238
in proof, 254-257
similar, 253, 267
symbols, 237 -
Universal, 61;12 125, 237, 239 -

2110

r-point, 336;360

Range of fanetion, 12, 13
Ratio

absolute valUe-of, 333-
algebra of, 331-332
of intervals, 333-335
and parallel segments, 320-328
and pointa of division, 47-331 .
cif segments, 179, 180
of tranalationse012-316
in triangle, 335-344

Ray
. definition, 305 .

&Agra= 303



notion of, L304 -305
opposite, 28, 307
problems, 35, 310
as set of points, 21
sense of, 28
symbol, 305
vertex of, 27, 28, 306

Real number
addition, 144 --F145
algebra of, 55, 106, 126 -127, 134 -

135
commutative group.of, 144 -145
division, 144 -145

-functions, 235
mapping of, 37
multiplication, 144 7145
as operators, 183-185
oppositing, 144-145
order, 157 -15.9
ordered pairs of, 206
principles, 85
properties, 125, 157
and proportion, 319
reciprocating, 144-150
restrictions on; 145 7149
review, 144 -445 '

sentences, 125
switch property of, 55
tpeorems, 146-150
translation properties, 37
variables, 61
vector space oVer, 191-193.

Reasoning rules
cancellation, 72-73
introduction for,equationa, 74
replacement fer equations, 74
substitution, 67

Reciprocating, 1441150
Reflection, 8, 9
Reflexive rule, 99, 113
Replacement rules*

for bieonditional-sentenoes, 99
for equations, 74

Restrictions on real numbers, 145
1.49

Resultant of function composition,
20

Rotation, 9
Rules

for biconditional sentenees, 98, 99
for conjunction sentences, ;01
for double:denials, 153

for hypothetical syllogism, 90

S-field, 168-169
s-point7 336, 361
Segment

diagram, 303
definition, 29, 308
midpoint of, 315-316
parallel, 43-36, 320-326
problems, 310
ratios of,.179, 180-
symbol, 308
theorems, 309
translations of, 40-44

Sense
of line, 8
negative, 8, 9
opposite, $, 9, 28, 300-303
positive, 8, 9
of ray, 28
of rotation, 9
same, 300-303
of twist, 9
of vector, 300-303

Sensed distance, 363
Spparation

of line byl*nt,' 29.
of plane by line, 29, 31

Sequence
of distinct terms, 218 .
linearly dependent, 219-226
linearly independent, 226-231
n-termed
permutations of, 223, 224
subsequence of, 223
terms of, 217
of vectors, 217-219

Set
linearly independent, 230
nondegenerate, 308
of points,. 27

Shape, 27
Side

of point, 28
. of quadriltileral, 353
Of triangle; 332

Similar. quantifiers, 253, 267
Simple dileinma, 160=161
Simple quadrilateral, 354,
Singulary operation

oh .42, 128 - 129
on Li, 128 - 129

4

Skew line, 294
Skew plane, 403
Slope, 14, 37
Space

geometry of, 26, 27
n-dime4sional, 402-403
notion af, 27, 399-402
3-dimensional, 9, 402-403
twist in, 9
vector, see Vector space

Span .1, 410
Speed, 198-199
Subsequence, 223
Subset

of function, 15
linearly independent, 230
of line, 303-311
nondegenerate, 311

Subspace of vector space,19J
Substitution rule

application of, 70-73
consequences of, 68-69
in implidations, 68
instances, 69
proof by, 70
for real numbers 67, 68 .

for,trarislations, 68-70
Subtraction

of points from points, 64
of real numbers, 144-145
of translations from points, 123
of translations from translations,

123
Summary of translation proper-

ties, 47
Surface, 29
Switch property, 56
Symbol

absolute valtre, 165
conditional sentence, 97
existential quantifier, 237
function, 13-
haIf-line, 305
interval, 308
inverse translation, 50

, inverse function, 19
"is", 72 "
order, 157
tarallél, 292
plane, 375
points, set of, 62

4

7

quantifier, 237
ray, 305
segment, 308
translation, 62
triangle, 332

Symmetric rule of contraposition,
155

Terni
of equailon, 72
of sequence, 217, 218

Tetrahedron, 428
Theorem

bargain in, 134
. Cella's, 367

Menelaus', 363
notion of, 60, 66, 126
Pappus, 341
about points and lines, 1307132
proof of, 66-67
twice-around, 340

Thinness of plane, 31
Third order determinants

columns, 462
definition, 462
notion's, 458-467 .

rows, 462
tracing, 38
Transit, 341 -342
Translations

addition of, 64, 104, 115, 176
algebra of, 48-56, 64 -65, 106-

107, 115,,126-127, 134-138
cancellation principle foe, 72-13,

186-189
definition, 16
direction of, 288-290
of if, 37
of figures, 41-44
geometry of, 60
identity, 52-53 -

inverse, 44, 50, 116, 118-120
magnitude'd
multiplicitiori,of, 176 1.141,9( 182'-

185, 190
'notation for, 49, 50
of number line, 15-17
operated on by real numbers, 183 -

185
opposite of, 118
of plane, 37-49



postulates for, 64, 65, 105, 119, 120
proper, 181
propertiesof, 37; 41-47, 56, 59
of vf, 37
ratios of, 312 -3(5
resultant, 104
of segments; 40-44
sense of, 16
set of multiples of, 19,2
substitution rule for, 68-69
subtraction Of, 64, 123
summary of properties, 47;48, 57
switch property, 55
symbol for set of, sg
theorems for, 120-121
ypriable, 61
0-products, 186-189

Transversal, 335, 391
TrapeiOid

base, 356
definition, 356
problems._357?,360
theorems, 357

Tree-form
derivation, 82
proof, 102,, 108

Thangle
a-point, 344
centroid, 343
definition, 332
median, 336
problems, 333-335
r'-point, 336
ratiog, 335 -344
s-point, 336
Sides of, 332
symbol, 332
vertices of, 332

Trip, directed, 194-198
Twice-around theorem, 340
Twist, 9

116

Uniqueness of plane, 31
Unit points, 418

Universal
generalization, 239
multiple, 252
quantifier, 237, 240

Valid inference, 244-247, 249, 250
Valid sentence, 75, 76
Value of function, 11, 12
Variable

for mappings, 48
for points, 48, 61
for real numbers, 61, 125
for translations, 61

Vector -
addition, 224
components, 412-415, 450
equation, 346
linear combination of, 211-216
notion of, 191-194
paiametrie equation, 425

posikion; 346-352
properties, 232-234 14
sense of, 300-303
sequence of, 217-219
subsequence of, 223

Vector space
dimensional (1 -,4), 404 -405
and function composition, 404-405
notion, 403-405
properties, 409
'over real numbers, 191-193, 206-

207
over .1, 194 -205
subspace of, 194

Velocity, 2-4, 6, 198-201
Vertex

of half-line, 28, 306
oppdsite, of quadrilateral, 353
of quadrilateral, 353
of ray, 27, 28, 306
gf triangle, 332

S-products, 186-189
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