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" v Behavioral and social scientists have tended to rely heavily on

. " statistical analyses, because of their substantial applicability to be-
havicral and social science problems. Hewever,.there are certain basic
. limitations in applying statistical methods to these problem areas.

. Statistics cannot be used to describe formally the system of relationships
"within a class of phenomena. Statistical techniques can indicate levels
a of intefactions among variables, but they cannot be used to depxct the
form or quality of these lnteracﬁlons.

Algebraic theory contains concepts and principles which can be Qaed
to articulate the structural properties of classes of behavioral phenomena.
It refers to the study of classes of behavioral rule systems, each of which
has a set of elements, operation(s) defined on the set, -and rulds deter-
mxnxng certaxn 1nterrelatlonsh1ps among elements and operatxons.’

Algebra provides a language which is preciSe, intultive, and formal.

. : ‘ Algebralc systegs have been used to syntheslze separate models and theories.
S Synthe31s of the proliferation of seemingly dfsparate and expanding bodies
<%’} of behavioral science knowledge is greatly needed. Algebra as a field can

P become as useful to‘the behqyloral and focial scientist as statistics. Its

utility*will be st evident in the activities of descrlption and conceptu-

alization. As in the case with statistics,\the use of algebra does not

require any substantive theoretical commitéznts. ‘

-

In this book, a variety of Wwses @f algebra in. t§e behavioralrand sfgcial
sciences is provided along with descriptions of several algebraic systems.
This volume is intended to be a sourcebook for theoretical conceptualiza-
tions for professionals in the behavioral and social sciences. This publi=- -
: - cation with its emphasis on descrlption, application, and utility should
‘17 be a valuable aid to the behaviéral and social science researcher. ~ -

This book is presented in eiqht chaptere.. The first four chapters
present the foun@ational material on algebralc concegts and should be read
before ajtempting to examine the rematining chapters. The following para«

' graphs provide a brief summary of the content ofgeach chapter.

‘ In chaptar 1 the basic terminology- and elementary concepts of set
theory are introduced. The discussion presupposes ro knowledge of mathe-
matics; the explanations are presented in a quite thorough, yet highdy in-
tuitive manner. Amp&e examples are presented, many of them having dxrect
psychological relevance: .

We all shave an intuitive idea of what is meant by a "relation."” A
relation reflects some type of assoglatlon oreconnection between two en-
tities. 1In erder to be more precise in describing this vaque idea of a
bond between entities, a mathematical formulation of a relation is needed.

‘ Chapter 2 serves this, function. - . ¢

.

i * . )
‘ (/ , One of the most 1mportant 1deas in all of mathematics fs that of :a

. function or mappimfg. This term 1s so fundamental that it is commonly: used
in most dlsciplines. Chapter 3 defines and discusses ths role of’ funckions
in algebraic systéms. o v

¢
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A class of algebraic entities useful in psychology "is grcups.

The

fspace. or under certain special conditions, in defining a field.

presenﬁatxcn on groups will be made in chapters 4 and 5. Chapter 4 in-

cludes a discussion of thq definition of a group and other related terms.
er key terms such as subgroups, generators, homorphisms, isomoxrphisms,

and semigroups are introduced. The chapter “concludes with examples of

. several important types of groups.

Chapter 5 1s concerned with the application of groups to psychology.
Examples are ngen from Piagetian theory, the theory of kinship relations,
studies gf measurement, perception, language, and automata theory. -

Chapter 6 introduces rings and fields. It is a relatxvely short chap-
_ter, because presently there are very few applications of these concepts
to psychology: Thedr applzcabilxty has not really‘been tested yet. ;9
this chapter important tarminolcgy is def;ned and. 111ustrateé tgrough

exampl s). ’f
7( P ' C -

Chapter 7 introduces ancther major algebralc system. 'A’vecthk space
‘has structural sxmilgrxt;es to the other systems already considered, but
introduces a new operation. The value of particular vector spaces in
statistical and.measurement. analysis of psychological phenomena has been
recognized. Many of these techniques are based on vector space theory.
The examination of vector spaces proceeds in two parts. Chapter 7 intro-
duces the concept and discusses linear combinations, linear independence
and ‘dependence and bases. .

Chapter 8 is directéd at the concept of a matrix. The matrix is an<;
excellent concept to conclude the book with, because it will be proved that

. the set of matrices may be. used in defining a group, or. ring, or a vector
This will

| sexve as a review of the key structures introduced in the bcck. Matrices
also are valuable to discuss Because they have a wide range of appllcations
outside of mathematics. iy .

-
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PREFACE '
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) . ,‘ X . : - . c . - ‘ -
. " In dealing with Army problems over the years the Army Research
_ '  ~#Institute for the Behavioral and Social Sciences has always 1nsisted
:ii- on bringing to bear a scientific poi t of view. This poxnt of view

hypotheses,  reliance on.empirical datg rather: than armchair &stimates,
and use of mathematical and statistical methods of analysis. 1In par-
ticular the Institute has drawn heavily upon the formal systems and - 7
methods found in the’ disciplines of psychometrics, statlstics, linear .
algebra, probabxlity theory, and gperatlons research

‘ The current volume presents for %ehavioral scientists, both ingide °
and outside of the Army, an introduction to another set of mathematical S
systems with potentially lntefestlng applications. These systems, ST
often referred to as "modern ‘algebra" and here called "algebraic sys-
tems, " have potential, not so much for purposes of data analysis, but .
rather for descrlblng formally the system of relationships within a
class of phenomana. As is typical of mathematical systems, the ideas
, and structures presented here have great power and genevality. They
T could well be useful in constructing models ofssocial and behavioral
rhenomena. .

d/) }%t& l/%m—-

" J. J. MELLINGER

- -

- J. E. UHLANER

Chtef, Sgsearch Statistics ’ . Technical Director, ARI -and

and CompRiter Science Office Chief\ Psychologist, U.S. Army .
~ o
ﬁﬁf‘ ~ [y "o
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This'book is an 1ntroducticn tc the uses of the branch oﬁ mathe-'
matics calléd algebra“in the behavioral sciences. Basxcally, there
are three branches of mathematxcs——qeemetry, analysis, and algebra‘
Geometry. is the field concerned with the properties and relationships - .
of points,"lines, angles, surfaces, and solids. Analysis is the field - ° .
concerned, with functions and limits and 1nclu&es the calculus. Algebra

is the field conceyned with sets that have sums ané/cr products defined -
..on their elemepts and ‘includes arithmetic and set theory. As opposed = =
‘to the preconceived views cf many. behavioral’ screntists, algebra is not" o,
* merely the study of polynomials as a remembrance of high school algebra - g

could effect. Of the three branches of mathematics, algebra 15 the

most abstract and foundational branch. .

Each of those branches has been found to have suhstantial utillty.
Geometry is a very useful field to architects and civil engineers.,

_Analysis is probably the branch of . mathematics that is used the most
"and this is reflected in the fact fhat training in the calculus is re-

qulred for an education in practically every scientific and engineerxng
area, Algebra, though being the most abstract. branch of mathematics,
has,manifested its utllity to the sciences in a variety of ways. TFor

"‘example, the ‘algebraic theory of groups has been very useful to th
retical physicists in their formulation of quantum mechanics and Boolean

algebra has been cfuc;al to computer science theorists in their exposi-

tion of digital circuit theory. What§is to be indxcate& ic!iﬁat al- .

‘ “~gebra has a host of important uses in the behav;oral scie

. . . i
It may seem strange to one interested in the behavioral sciences A\?;

‘that. being acquainted with algebra woyld be an aid in his work. He may

think that he studied algebra in high school and it was found to be

useful in determining roots: of quadratic equations and the like but it

certainly is not the methcdologlcal "tool chest thatﬁstatistics is for
rebearch in ‘the behavioral sciences. So why study, of all things,
algebra?‘ E Y ' . . .

Well, statistics is a field which has substantial applicability

| to the behavioral sclencei. However, it does have limitations. Statis-

tics cannot be used to describe formally the system of relatxonshlps
within a class of phenomena in a manner, that is as exacting and rich

~as algebra can. Though statistical’ techniques can be used to indzcate ' v

the leVel of interaction Of two or more variables, they cannot be used

to depict the form or quality of that interaction. On the Jther hand,

within the corpus of algebra there is a rich réservoir of concepts T
and prznc%ples which can be used td‘artlculate the structural proper- '

ties of classes of behavxoral phenomena as it refers to the study of a )

. - . -

-
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wide class of rule~systems, each of which has-a set of elements, op~
eration(s) defined on the set, and rules deteqminxng certain interre-

,rlationshlps elements and operations. .Also this branch N -
" mathematics is Yaden with concepts and principles as it is centuries
' old and has grown‘et an ektraordxnary raté in thig' century . Q\

operty of algebra that is ‘often overloocked is that 1t i's quite

natural Much of our éveryday thlnkxng is in conformance with algebraic
prznciples. To a great extent, algebra is a rigorous articulation and
logical extensiontof patterns of ,reasoning that are common to people. ‘
For example, muc¢h of set theory is merely a 'formal exposition of modes
of mental organization that are evidenced in everyday life. Thus, be-
“havioral scientists may rightly view algebra ndt as an exot{c, arbi-
trary, abstruse fleld but as g field which provides a feaningful dls-
cussxen of patterns tha; are very immediate, common, and even obvxous.'

There is another quality ef‘algehra that ‘should be of interest te
~ behavioral science devotees. Algebra, especially with the development
of algebraic logic, provides a language which is very precise, primi-
.tlve, and rich, and nearly perfect in its 1uc1d1tx Such a precxse'
language should be of use to behavioral sc;entxsts.

|

Anether property of algebra relates to one of its primary uses
in mathematics. Elements of algebra such as its constituent systems
and structures have been used tp tie parts of mathematics together and
to show how different entities in mhthematics are interconnected and
related. In other words, algebra has had and will continie td have a -
decisive synthesizing effect on the proliferating corpu¥ of mathematics.’
Presently, the algebraic theory of categories is being used in this
regard to depict the forms of integratioch amidst mathematical systems.
' It' is contended that algebra, When appl properly, would have a simi-
- lar influence in the behavioral sciences. Negedless. to say;” synthesis ‘
- is greatly needed in the beMavioral sciences as most of the research in
the behavioral sciences is directed to experimental analyses of theories
and models-and this emphasis on analysis has resulted in a. preliferatlon
. of seemingly disparate and expandxng bodies of behavioral science
" knowledge. For example, there is a variety of‘psychologles of scheoql ;
" learning that have resulted in a multitude of empirical studies, many
of which remain’'trivial and disconnected., With synthesis, more direc-~
tion will be grovided to allow for more ;Eeeerch in the behavioral
sciences.- X s

IS

4

Algebra is a field that should become as useful a field as statis-
tics is to the behavioral scientist. Its greatest utlllty will be evi-
dent in the activities of description and conceptualizatidh in the. be-

- havidral sciences. As is the case with statistics, the use of'@lgebra
does not require any substantive theoretical commitments. Thus, in _
the area of psychology, algebra should be as potentially, useful in the
areas of operant conditxoning or assoc1ationistlc psychology as_it would
be in the areas of cognltlve developmental psycholaegy from a angetlan
vxewpolnt. . .
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. ™ already important uses of algebra in the behav10r31 sciences have ot
been made. For example, Jean Piaget,-a noted pioneer in developmental
psychology, has employed the algebraic theory of lattices to describe

- \<the system of cognltlve pProcesses proper to adolescepce. Also, 'Neamp
v Chcmsky, seminal thinker in the gsycqplogy of language, fias used al-

. { Sebralc concepts and'principles to articulate the structural proper-
ties of grammars which.refér to thg systems underlying human lxnguxstic \ o
7 capabilities. : . ;

I thxs book, a variety’ of uses of .algebra in the behavxoral sci-
ences 1s provided, along with descriptions of several algebraic systems.
This volume is intended to be a sourcebook for theoretical conceptuali-
'zationsnxor studen®d and prdfessidnals in the behavjoral sciences.

o

N WNh the use, of algebra, the physical sciences have made donéid-
erable progress~-much more than the behavioral sciences. It is lx&ely
that the behavioral sciences can also make profound progress if it
makes greater use of-algebra. This volume with lts emphasis on de-

g . scription and utility should be -an aid in that endeavor to behavioral ,m’ .
: ‘science students and professionals.
-
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In tnis chapter the basic terminology and elementary notions of

. ' 3 - 2 ! [y

‘set theory are introduced. The discussion presupposes no knowledge of v

mathematics; the explanatioms will be presented in a quite thereugh,
yet highly intuitivef manner. This dxscusszon is not a rigorous study

- of axiomatic, set thebdbry, but rather a concise overview of a very ele-’

gant tﬁeery. There will be an ample number of examples, many of them

psychologically relevant, to assist the reader in his understanding

of what may at first be rather abstract material. , .
LS .

- The idea basic to the entire text will be that of a set. " The no-
tion of a set will not be formally defined, but will be: taken tO mean.
any ccllectlon of entities, chjects, or stimuli. These ohjects may
have\epme cemmen preberty, such as each object in a collection of ob-
jects is red, or there may be no apparent mutuality among. the items.

__The individual objects belonging to the given set will be called ele-

megts. For example, a red triangle would be an element in a collection

of red objects. A convention that will bé adhered to throughout the -

book is to denofe-Gets by capital letters, and use Iower case letters

to represent elements. If an ‘element, x, belongs to a set A, we write ‘

x € A. If x doe5 not belong to A, then we write x £ A. Suppose »
represents a red trlangle, s denotes a silver circle, and R is the set
of &ll1 ;ed objects, then r & R, but R. The set consisting of no

- elements is called the null set and is denoted by ¢. An example wanld

be the set of all triapgles with. 3600,

we may xndicate a set by listing all of its elements. In the case

—of infinite sets this is impossible, and often it is also inconvenient

to list all thé elements in a large firjte set. In this case we use

,what is called the-set bu;lder notation.,iThe following examples illus-

trate the situatxon -
- N Pl 14 a

., Ex les

-147 If A consists of the numbers 1,2,3,4, and 5, then A may be wrltten

_‘as A= {1,2,3,4,5}.
2. If B equals all the countjhg (natural) numbers frodm one to one
. hundred; then B may be denoted as B = {1,2, 3,...,100}, or equiva-
"lently, B = {n{n is a nafmral number and 1 £ n < 100}, which is
read "B equals the set of all n, such that n is. a natural number ¢
and 1 is less thap or equal to n and a¥so n is less than or equal
to 100." ‘ .
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~ and B C-A. . . -

~r

8

-3

, o8

v

th

of

subset of B if every lement in A is

el

th

If € ='4{Connecticut, Rhode Island, Massachusetts, Vermont, New
_ Hampsh:.re, Maine}, then C may .be more conc:lsely representeé as -
C = {x]x is a New Engla.nd state} o, : .
Suppose D = {signak iearning, S=R learning, c¢haining, wxerbal as-
soc;ation, multipde dlscr.uninaticm, concept learning, principle

{rule) learning, problem solving}. A person famxl\ar with Gagne' s

- work would-describe D by saying D = {x|x’is me‘ﬁtha elght types;‘ o
. rg ‘

of 1earning déscribed by Gagne}. .

-
N’

m order to make ompar‘:.sons bet'(veen sets we mast first defxne .
e equahty of two sets. Two sets A and-B are equal if and only if

‘Mene_ver?f A,.then x € B, akd conVérsely whenever x € B, then x € A,
'»e., when t;he two sets consis® of the same elements. ‘I‘he set consist-,

1§ of Hubert’ Humphrey and Walter Mondale is’ equal o tRe set 'of United "

ates Senators from Minnesat.a, becau§e ‘Both sets. have exactly the same

i‘s. A-is a subset of B if every element in A is also an element
 This is denoted by A C B or ec;uivalently BD A. Ais a EroEr

B and there exist “additicnal

ements in B not in i This is alent tor AC B and A # B. We-

ite this as A S B. The set of States consisting of Vermont and Maine
proper subset of the New England states. The reader should note

at\a second form of notatien is also widely used. We could write - ~ -

A ©-B to Yepresent A is 1 subset of B, and write ACB to’ represent A

is
ta
ou

a proper subset of B. Therefore, it is important to check which no-
tion is being used in the text which is being read. Returning to.
r discussion, we see that we have an alternative definition for the

equality of sets A and B. We may define A = B if and only if AC-B

o | | | . " | /{\ | \
Ca { B Examples
Let E = The set of fifty states in the United States

{¥|x is a state in the United States};

~

{all states in the United States having a location with
> an elevation of at jeast 3000 feet)}.

f

let E

\ . ' ¥

Then we may conclude that F € E, and more specifically that F & E,
because there exist states with highest elevation less than 3000
feet, e. g. » New Jersey. We have Colorado € F, New York € F, and
California € F. . Hence, we could define 'a set G as G = {Colorado,
New York, California}, where G 8§ F. But, for example, if H =
{Colorado, New Jérsey , then H¢ F even though H& E. One final

. related example is designed to illustrate that a set of one element

+ is not identical with that element. - We can speak of Colorado in
two ways, Colorado € E, or {Colorado}! & E. 1In the first case we

are talking about.Cold%‘c:o as an element of the set E; in the second

case we ‘are talking abo Colorado as a set of one element which is
included in but not equal to-the set E.

b »

-
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2., "A more mathemt.i\cal example is the following: B
- J*Define B= {172} o . : :
o .- R = {positive multx.ples of . 3} = {3 6 9,...}; ¥ -,
- ' A = {positive multxples of 2} = {2,4,6, 8,...}. .
g{even natural numbers} = {2 4,6 8,...}. and
natural numbers} , e R
/.\:\.\g". Clegly, R' A‘ .

I are proper subsets of N. ; Also, ohserve that

A = I since both. have the same elements. . A € R because, for
example, 4 € R, Also R ¢ A since 3 € A, Therefore, it is oftan the
case that when cons:.der:.ng two sets, neither ‘get is a subset of

the other. It i$ also interesting to notice ‘that B ¢ N. This is
an illustration where a set with infihitely 'many elements, such &s
Ay,is a subset’of N and where sets w:.th one element, such as- B, &

. are not a subset of N. .
Ay .

‘. . . . [ “ . s o . . . ‘
' " E Basic rations ° : e

¥ 3 '

Set theory would be of little worth\ if there were no ways of form-
an new sets from the given ones. We will define several operations on
sets. The definitions will be for twd sets, but they can be easily
generalized to . any finite number or an lpfmite number of sets.

Definitlon 1. The intersection of two sets, A and B, denoted
AN B, is the set consxstz.ng of those elements belonging to both A and

VB, Symbolically, this may be expressed as

- »

. An'B:{x{"x'CAandxCB}A. - l/

4

Two sets, A and B, are sald to be dxslomt or mutually exclusive if
AN B = .

- 4
We may g'e;‘leralize this definition. For three sets, ¢, D, E,

L

CADNE-= {x{xscland x € D and x € E}; and
. .h. L

fer N sets, Al, ‘Az,...,AN,

}

N ~
MNA, = {xixE A. for every i; i = 1,2,...,N}
i i .
i) , ,
. ‘= AlO Azﬁ ..-n%.' ‘

A ,
The intersection of two sets A and B may be pictorially represented by
Venn diagrgins as illustrated in Figure 1. '
b ' ’ g
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In discussicms of psychological space, two st:unuli are often cen-
'gidered to have a psychological distance between them. If the d;--.’

mension of .color,. ehape and size are involved, where color is @

black or white, shape is trlangle or square, ang sxze is small or
large, then Aif 4

" = {white, square, large};

"M = {black, square, small}; and

, D -"{wtxite,.equare, sn\all}} v .

it may be obsgxted that and Dare closer tha.n d . in

sion of size,Mi.é., their 1ntersection shows a common' color and
shape. "Therefore, any discussion of psychological distance between
stimuli implies an understanding of the intersection operation..

Another illustration is in considering similarity between words.
Suppose in a free association test, the subject is told to give
five associations to words A, B, and C. - If A and B have four com-
mon words, B and C have two common words, and A and C have one
common word, then this would be one index of claiming .there is
greatest similarity between A and B. Notice that the consgderation
of commonality implicitl{\requires the use of the intersection
operation.

.
.

Definition 2... The union of two sets, A and\s, is the set consist-

ing of elements belonging to A or to B or to both A and B. It is de~
noted by AU B, with AU B= {Xx|x€ Aor x€ Borx€ A and B}. The
word "or" will be taken to include the possibility of membership in
both sets. Thus, “or"” will be interpreted in an inclusive manner.
The union operation is pictorially described in Figure 2.

15




-but usually we just write

B R - - .

< . . . - o
. t . N ) - e— .

. . ¢ . N ot ) L

The definition may be generalized tb N sets:

" VA =AU AU .LUA = {x|x€ A

ry

. - )
. Example - ‘. - _ ‘;;.# -
1. If in one issue of psychological Journal A, Ehe contributors are.
Bruner, Gagne, Mandler, Piaget, and Simon, and in one issue of- 'psy-

- chological journal B, the contributors are Berlyne; Egkznd, Gagne,
Jenkins, and Simon, then:the set of contributors to.the two jour-
nals would be Bruner, Gagné, Mandler, Piaget, Simon, Berlyne, Elkind,
and'Jenkihs. This is{precisely the union of the two table of con-
tents in that it inclydes all those individuals in journal A, in
journal B, or in both journals A and B, .

«

~
L]

Definition 3. The universal set\J'con31sts of all those gelements

‘under comnsideration. Then the complement of a set A, denoted X or ~a,

consists of those elements in the universe that are not elements of A.
The cqmplement is represented pictorially in Flgure 3.

/0

-

. ¢ Figure 3 : ) ' .

!

The set notational definition for the complement is

r

= {x|xeV and x ¢ A};

- : -

\D
|
og

oy . Y . . A

for some 5 i = 1,...8f.
. i::l ‘ - o . 0 " ‘ S o . a

3
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/ ' ; -may ‘think of the 100. subje s‘ag..be he upiversal set:'U', the 59 e ,‘_‘
VAN ’ individuals regeiving tre nt A @ t A, and.those in the cqn-" :
' v trol group as“A. | .- : . : '

s - . Y
. n . - . N .

Definition 4. 'I‘I‘ie ' ference of A and B, dem}:ed A - B,\ :.s .the- set e el
'/consisting of those el ts helonglng to A and not belqngmg to B. °
This operatlcn is p:l.ct N Lo, /

. L. ] r ’ - . o N O ..

2
R

¢
\A - B'=F{xlx€ Aand x4 B} *

" is thHe. ‘Set notational defmxtion for the dxffereﬂce operation. Clearly,
y say that A - B = AF\B. .

Exa.m/ple )
The newsp_.aper carries an adve ment that there is a ]Qb ‘availa- .
ble for a person with a B.A. in psycholeogy and specifies that the
person must be under 30. If P represents all those individuals

“with a B.A. in psychology, and T denotes all those people 30 years
old andg over, then P - T consists of those‘mdl\uduals who meet ,
the minimal qualifications for employment. _ _ _ .

.

' Definition 5. The symmetric difference of A and B is defined to
. be those elements in A, but not in B or those elements in B, but not
in A. Figure 5 is a Venn diagram for the symmetric difference of A -

angd B. : .
» , ' ) .. *
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" AAB . Y,
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YQ ! ) e ,T. - .. ¢ N .
. AbB={x|x€Arand x€ Bor x€ B and x¢ Al. :

ikergfofé, ',,; R . E O * v |
! . .

: AbLB=(a -3 U (ﬁ - A}. .
> Example

and is punished if he does not.-
ment” never go together.

In conditioning'efperiments a pigeon-is rewarded if he pecks g.key

Therefore, key pecking and
If K denotes the times a pigeon pecked

ish-

the key, and P represents the times the ‘pigeon was punished, then
‘K A P would describe the principle involved in conditioning,.i.e.,
if the pigeon pecks the key he is not punished and if he is punished
he dld not peck the key. ‘ .

L

-

' As a means of review1ng and interrelating the five defxnitlons just
given, an example with sets of numbers is. lncluded. :

1.
A
B
¢

Then,

P Pl P

+4]

Let U =+{1,2,3,4

~
Examples

’
+5,6,
1

11 - 1

7,8,9,10041,12,13,14,15};

9,11,12,15} = {6,12};

,4,5,7,8,9,10,12,13,14,15}

=\{21416180 012014}5 ..

= {1,6,11}; -~ : ¢

= {306:9112015}- .

we have ’

N B={6};. b

vc={1,3,6,9,11,12, 15}-

= {1,3,5,7,9,11,13, 15};

N (8 U ¢), = {2,3,6,8,10,12,14} N {1,3,6,

-B=ANB= {2,4,6,8,10,12,14} N {2,3
= {2,4,8,10,12, 14}:

AC = (B -QC)uU (C-B) = {1 113 UV {3 9,12,15} = {1,3,9, 11,12,15}.




J-

you.

With the 1976 presidential elecuon approaching there is much con-
jecture as to whom the Democratic Party will nominate, 1In déter- :
Mining who the nominee will be, each candidate will be weighed as v
to his strengths and wea}u\esses on various_ personal qualities, * ‘ .
. political views, electability, etc. It would be an interesting.. o T

‘exercise to define or compile a list of criteria most desirable to R
Then derivg a rating system involving uniecn, intersection, . C

L3

‘. PR . ; - . . §
. . . e
o - . . R R
. . ' )
‘ 2
. . . . . - ey
. - - \
S : . . .
. . , R

and complementation to évaluate each contender m~and see if your . > o
personal choice and your highest rated ind.widual are the same 7 T
person. : . -

. In order to aid the reader in his undexstanding of the set theo-
- retic termino‘logy, several elementary: proofs using the new'abstract -

]

* : ey

lanquage are included. The analogy to learning a language is a mean- :
- ingful one, because for a perscm to really understand a wor‘d, he must L
_bé’able ®o'use it in app:;ap’flate situations. The folldwing proofs SR
serve a. similar purpose for the words, mtersection, un!.On, complemen-

1.

*‘.

. tatxon, difference, and syxmpetric dxfferenc:e.

[ - -

]
1

Proofs

ACBifandonlyifAf\B . R ™~

Proof:

One must first realme that an "if and only ¥er proof re=
quires two proofs.  We must show that A € B implies that’

.AMNB = A, and also that if AM B = A, then AC B. As an

aid in the proof, draw a Venn diagram similar to the one
in Figure 6. .

-5

Figure 6

. " )

In proving results such as this one, accompanying pictures

may aid in visualizing the problem, but one must realize .
that even if a picture's intuitive worth may be a thousand

words, it is not a formal proof. With this thought in mind

we begin thé€ proof. ]

Suppose A C B.

(i)

- .
Let x € A, then by hypothesis x€ B, and we have x€ A
and Xx€ B. Therefore, we have x€ AN B, but x€ A im-
plying x€ A N B is precisely AC A M B. ‘



. .

s

{ii) ILet X€E AN B, then we have x g}and x € B, but in par-
" Micular x € A. Hence, xE ANEB implies x € A. or equiva-

lently AN BC A

ot
-

D ' Combining (i) and m), AC.ANSB and AN ac A, yield that -
.- Ar\ 3 = A, which is the des;.red resu,lt. =
RPN b. Suppose AﬂB-A. | | . _
PR < e -
* . :

S S If Aﬂ B = A, we my say that AC A n § E‘m:ther. by the )
v '~ definition of -intersection AN B C B, d thus we have . .
-« 7. AC ﬁBCB, whzchimphesac.a . A :

,Proof:_
s \ ) *
Y
*ﬁ-«
°»
3. A AB-=
i Proof:

‘f

‘-—(AUB}nann. b ST / L
' : o, o : -

a. Ifx€ —(AUB), then x ¢ (AUB), which means that

x¢ A and x ¢ B, since x € AUBitheloqgs to
either A or B or both of thenm. Butxdnandxﬁ B
is equiyalent to x € A and x€ B, which by. clefz.n.zticn
:.sx( Ar‘\B. '

-

bl 1f x € an B, then x € K and x € E, which implies x¢"A. '

~ and x ¢ B, from which it follows that x cannot belong
. to the union of A and B, i.e., x € (AU B) or
" x¢ -(AUB). A picture of this is presented in
Figure 7. S A S '

e

Figure 7

B AA.

By definition A A B = (A - B) L 4B ~ A}, which equails

(8 - A)U (A - B) which equals B A A. Therefore, ‘
AAB=BA4A., Notice that for sets P, Q, PU Q = QU P.
The reader should prove this, because in the proof of
AAB=5B8BA A it was needed. In this proof P corresponds
to (A - B). and Q corresponds to (B — A). Figure 8 demon-

_strates' this pictorially.

P4
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. RN A .
‘e .

* 1 N I3
Figure 8
o : ?*’ . - ¢ ¢
o4, AU(an c) = (Au a)n (AU C\ Lo .
[ ‘ [
' Prooi_: a. Let xE AU(B!’\ C), then x € Aor x & (Bﬂ ).

R
Y
i)

(iii)

If xQ!A and x€ Bﬂc this implies X € A,

'X€ B, x € C,,and clearly x € AUTNB and
x€ BUC, i.e., xﬁv(AUB)ﬂ (AUC:)

1f x € Aand x € (BN C), then x€ (AU B) amdk
x € (AL C), regardless of whether x € B or
x € C, and therefore, x € (AU B) N (AUQC).

If x‘.-A and x"€"(_B"\.C)“, then x¢€ A, x€ B, *
x € C, % again x € (AU B) and x'€ (AU Q),
or equiv_?ale.ntly x€ (ALVB N (AL C)._

-
-

.b.%t x€ AVBN (AU C),vthenxé (AU B) and

"x € (AUC); x€ AU B implies that x€& Aor x € B
* . and similarly, x € AU C implies that x € A or x€ C.

(i)

(ii)

If x€ A, X€ B, X € (¢, clearly x € A U (B C).
In fact, if X € A, then x€ A U (BN C), i:egard-
less of whet.her x€ Bor x € C.

Suppose x ¢ A, then we must h&&e x € B and
X€ C, since"x € AU B and x &€ AU C. There-
fore, x€ BMNC, and finally, x€ AU (BN C).
A picture of this is presented in Figure 9.
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* The first chap@gk xntroduoed the fundamental idea of a set, its
terminology, and theﬂtypes of operations that may be performed on’ sets.
.The fundamental natu:g\of a set should be clear from the many and '
varied uses of it 1nﬁ€hxs chapter. Sets of numbers, ‘red objects, '
states, types of learning, United states Senators, states with eleva-
tions above 3000 feet, wqords, noted psychologists, people over 30,
etc., were con51dered. “The rich diversity of areas covered is an il-
- lustration of .the generallzabillty "of the term. The operatxons on
" sets,™such as union and intersectior, allow us to generate new sets.
or describe set$ with more spec?glg propertzes.

S o

4

An appropriate way of concluding. the cthapter 'is to.review the set .
,theoretic terminology in relation to the problem of goncept learning.
. In concept learning, an xndlvidual who knows a given concept, say red-
ness, can be shown a collection of stimulus oh;ects,.i.e., a set of -
$timuli, and can determiné which stimuli are exemplars of the concept
redness. He will select only those.objects that are red in color.
He is manifesting an_understanding of the operation of intersection,
pecause each ofﬁzgese objects is 1nd1yldually -réd. Those objects that
are not red are nonexemplars, and require the application of comple-
mentation. If a second c¢oncept is introduced, say triangle, and .
individual is asked to choose all objects that are red or triangleg \,
then he will select those st;mulx that are red, are triangles, or are
both red and trlangles. This‘'would refer to a grasp of the operathp
of union. To find all the objects that are red, but not triangles
utilizes the difference operation. Finally, in choosing cobjects that
are red, but not.triangles, or objects that are triangles, but not red,
.the operations of symmetric difference is referred to. Interesting
research is being carried out to determine if there exists a hierarchy
of difficulty among operaxlons such as those just described in thls '

chapter. . .

- -
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There is one further operation involving sets that we would like
to consider. The notion of a Cartesian praduct of two sets will be
I fundamental to this chapter. ' We will need to introduce the notion ®f

) - ‘an ordered pair. We will take an ordered pair to be two objects giwven
in a fixed order. Therefore, (a,b) is generally not equal to (b,a).
If the first position represents the number of ten doll:g bills in
your wallet, and the second position the number of one dollar bills.
.in your wallet, ‘then Bob has (7?2) and Dave (2,7), this means that
‘Bob has $72 and Dave has $27, which certainly are not the same. We

- could define an ordered pair in.a more formal mannexr, but an intuitive

idea of the concept will suffice for our purposes. The ordered pa;rs
(a,b) and {c,d) will be equal if and only if a = ¢ and b = 4. '

-

.
.Definition 6. ThérCartasian product of two. sets A and B is‘de-

L fined to be the set of all ordered pairs, (a,b), such that a€ A and
b€ B, and is written A X B. AX B = {(a,b) | a€A and b€ B}.

' T e Examples

1. Let A = {1,2,3} and B = {0,5,10,~2}, then \
Ax B={(a,b) | a€A and b€ B} S o

‘ T = (1,9, (1,5), (1,10),)(1,-2), (2,00, (2,5), (2,10,
‘ '(21_2)1 (310)1 <3l§)‘l Q_3:1Q)_: v(3l-2)}’ ¢

‘™ . ’ AXA-= {(lllll (1,2), (1,3), (2,1}, (2}‘2)1_(2:3)0 (3'1)"
- (3,2), (3, 3)} ' , .

y
\

' 2. Anx graphical data from a psychological exper ment may be inter-
- . "preted in terms of ‘ordered pairs. For example, in an intelligence
test, each individual has a particular score, or in a discussion of
S-R theory, the theory is described in terms of stimulus-response -
- pairs called associations.

e
We all havedan intuitive idea of what we mean by a "relation.

A "ralation" reflects some type of association or connection between
: two entities. In order to be more precise in describing this vague
SR idea of a bond between entities, we want a mathematical formulation
'+ of a relation. Two objects either have this defined bond or they do
not. Therefore, we can erfimerate the set of all orgered pairs of

7 23
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1. If A= {1,2,3,4,5,6,7)} and B = {3,6,8,11,13,14,19,22}, then the

lection of ordered pairs.

/ .

. . | . , o o
Definition 7. let A and B be sets, then a relation R.on the Car-
tesian produc#h A-X B is any . subset of A X B, i .e., RCA X B, 1f (9,b)
-is an element of the collection of ordered.pairs determlning R, then
we may either write (a,bD)€R or a Kb.

»

;7‘ o Examples . A

1

Cartesian produpt A X B has 56 ordered pairs. Examples 'of rela-

tions would be, o ' ‘ o
o Ry = {(1,3), (5,19), (7.6)} | o -
| R, = {(3,6), (4,8), (7,18} )
- Ry= {13, (2,4), (4,8), (6,8)) | .
™ | . R, = {(1,18), (2,13), (5,8), (1,6)}. Ty

As may be observed, not all relations have a clear connection be-
tween elements .in the ordered pairs. Often it is impossible to
come up with a rule defining the relation. 'In Ry we may observe
that the ordered palr satlsfles b = 2a, but Rl does not have any
such well-defined bond.

2. The notion of a relation has wide applicability. For example, any
verb phrase in a sentence indicates a relation. Consider the set
A to be composed of the cow, the moon, and the Pied Piper. Let
our relation R be designated by "jumped over." Now, only the cow
jumped dver the moon, and no other elements in A are related by
"jumped over"; thus, the ordered pair (the cow, the moon) in
A X A determines our relation R. Notice that (the cow, the moon)’
is not the same as {(the mooh, the cow), the latter being the moon
jumped over the cow.

A}

- . -“—properties of Relations

L 8

We will. discuss various important préperties of relations on A X A,

ie., AX A= {(a ,a,) ,! a,€ A and a,€ A}:

-

‘ - N \ p,
‘ entxties having this bond. Thus, we may. think of a reldéion as£§ col- -
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Definition 8. °

- {i) “Let A be a set and R a reiatidn. :‘i.‘e. , RCA X A, then R’
- is reflexive if for every a€A, .(a,a)&R.

‘{‘ii) ‘R is *irreflexive.if for every a€A, (a,'a)CR.j

(ixi) If R is neither reflexxve or :u:reflexive, then R is called

nonreflexive. - . .
* ) . . 7N

Y

*

RN o “ N Examples

[3 : . .
“e .

. -
. L

te : . E o o

Equality e in the discussion of mﬁnbers is reflexz.ve, because
for every number, it is equal to itself. i . c
The relation ¥is less than,® "<," is irreflexi’ve, ‘since for evéry

number, it is not less than itself. A more conc:sﬁte example is the .

relation weighs' less than."” Even though many dieters wish it were
true, no one wexghs less than hunse}.f,fso “wexghs less than is
irref lexive N e :

]
s

Ho_weqer, the relation "is less than or equal to," "<," is reflexive,
- since for instance,. every number is less tfn-or equal to itself‘. A

Another irreflexive relation is being a mother, because no one is
her own mother. . : ..

In compari’%ons’ such as "is as intelligent as," "is es‘ kind as,". (.
"is as tall as," etc., we have examples of reflexive relations
from everyday language. - ﬁ _ ‘ . i
There exist relations that are neither reflexive nor’ irreflexive,
Let A = {x,y}, hence A X A = {(x,x), (x,¥), (y,x), (y,y)}. Define
R = {(x,x), (%,¥)}, then we may observe that R is not reflexive |
because (y,y) ¢ R, and R is not :ereflexlve because (x, x)E’R There-
fore, R is nonreflexive. '

t

Definition 9.

“ A

*
{1} Let A be a set and RCA X A, then R is symmetric i;\icr,-
every a,b€a, (a,b)€ R igplies (b,a)e R.

(ii) R is asymmetric if for every a,b€ A, (a,b)E& R impl;ies
(b a) ¢ R. ) - ’

(iii) R is antisymmetric if for every a beA, whenever (a, b)E R
and (b,a)€ R, then a = b. .

19
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1. Equality f? symmetric, since if a = b, then clearly b‘- a. ‘ ;J
- 2. Hawevek, *is less than," “<" is not symmetric, sinde for example,
o ' 5 < 6 does pot imply 6 < p. Actually, "<" is asymmetrlc. e

R 3. An example of an antis tricofglation is less than -or equal to,
RN ng." It is qeither symmetric asymmetric. Because 5- <'6y. hgt
o ' 6 £ 5, we’'see that "<" is not symmetrlc. Farther, since 5 g 5,

lmplles 555, "<" is hot asymmetrlc T vg" is antxsymmetrlc because

the “only way one number can be both greater than or equal to, and
less than or equal to another number is if it equals that number.

4. "C" or “is included in"‘is another example of an antlsymmetric
reflation.  We made use qfuthis assertion in several proofs in
‘Chapter 1. In proving that two sets were equal, for instance,

‘A = B, we praved that, ACB and” that BCA, from whzch we concluded
that A = B. , \ -

5. An example that each of us can identify with is the relation "loves."

e sam loves Sally, but Sally does not love Sam. Poor Sam, loving is

.7 not symmetric. i%%ﬁ;ally loving is not symmetric or asymmetric .or
antisymmetric. s not-asymmetric, since fortunately for.us all,
there“exist cases where, for €xample, Romeo loves Juliet, and Juliet
loves Romeo. Loving is not antlsymmetrlc, since this would imply

. that if one person loves a second person, and conversely, then the
two people must be the same person. This would mean a world without
‘any couples in love. Romanticism aside, the relation "loves" would
be an instance of a nonsymmetric relation. ‘ ‘

6y More concrete examples of a symmetric relation would be "is exactly
as tall as," "is exactly as intelligent as," etc., while relations
such as "is taller than" and “welghs more than" would be asymmetric.

7. The relation "is the next door neighbor of" is an exampfe offa sym-
metric relation, since if Jones lives next doo6r to Smith, Smith
- lives next door to Jones.

‘8. A psychological example of an asymmetric relation would be "is rein-
forced if he ¢ sses.” In a partictular trial an individual is rein-
forced if he makes the correct choice, and is not reinforced if he
makes the wrong choice. Suppose A is correct and B is incorrect,

» then Tom is reinforced if he chooses A over B, but Tom is not rein-
forced if he chooses B over A. :

Definition 10. Let A be a set and RCA X A, then

(1) R is transitive if for every a,b,c€A, if (a,b) and (b,c)E€ R,
then (a,c)€ R;
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3.

is tal exr than Harry, then Tom is taller than Harry. -

N

- (ii) R is intransitiwe if for every a,h,cEJA‘, if (a,b)ER and .

: (b,c)e R, :hen it is not the case that (a,c)€ER; . Ca

(iii) If R is neither transitxve or lntransitlve, then R is
nontransitive. .

‘Examples . \
Equality is'eranSitive. 2If a=Dband b = ¢, then we have a = c.

-
\ .

Another transitive relation is. "is less ¢han," "<," for is a < b

~and b < c, then a< c. - L

‘Set inclus:.on, "¢, vis trans‘it'ive. If ACB and ecc then ACC. |

'Returning to our discussion offlove, if Sa:d}gves Sally.end Sally -

loves Jim, it is most unlikely that Sam lo Jim. However, under
some conditions Sam may love Jim. Therefore, "loves" is a nontﬁgp-

"sitive relatlon:

if Ann is Mary's mother, and Mary is Befty's mother, this does not
imply that Ann is Betty's mother. "Is the mother of" is an ex-
,ample of an intransitive relation. '

The hexght of people designates, many relations. For example,'“ie

talley than" is transitive. If Tom is taller than Diok, and Dick

)

Suppose R = {(1,2), (2,3), (3,4), (2,4)}, then R is not transitive,
becaise (1,2)€R and (2,3)€R, but (1,3)¢ R. Also, R is not in-
transitive, since (2,3) € R and (3, 4)€R but (2,4)ER, contrary to

‘the defxnition of 'intransitivity. Therefore, R is nontransitive. .

Piaget déscribes four levels of operations in his theory; sensori-
motor, pre-operational, concrete, and formal. The ages of transi-
tion to 'a higher level may vary, but the order isx§g§ed. There-
fore, the relation "is a prerequisite to" is an exdmple of a
“.transitive selation.. If sensori-motor operations are prerequisite
to concrete operations, gnd concrete operations are prerequisite:
-to formal operations, then sensori-motor operations are prerequi-
site to formal operdtions. . ..

-

Those properties of relations discussed in Definitions 8, 9, and

10 are the ones we are most interested in, but for completeness we will
include several additiomal ones. : ) -7

| Definition 11. If A is a set and RCA X A, then R is connected
if for ery a,b&€ A, whenever a ¥ b, then (a,b)E R or (b,a)€ R. ‘

' N
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Examples e

- 1. ‘The relation’ "is less thén,“ "< is connected. If at‘;"'b, then
o a <borbc«<a. '

2. Set inclusion is not connected. If A # B, it is not necessariiy .
. . the case that ACB or BCA., It is possible that AMB = §, or
> that we do not have inclusion, but rather partial overlap.

3. " The relation "loves" is not connected, because it is conceivable
that Alan does not love Ellen, and Ellen dces not love Alan.

." Definition 12. If A is a set and RCA X A, then R is circular
#f (a,b)ER and (b,c)€ R implythat (c,a)€R. S

N
Examples ’ ‘ -
1. E:quality is a circular relation. If a = b and b = c, then c = a.

2. ({The relation “is a sibling of" is another ¢ircular relation. If
» . Fred is a. sibling of Harvey and Harvey is a,sibling of Morty, then
'~ Morty is a sibling of Fred. ’ ‘ : '

3. Proper set inclusion is an example of a relation that is not circu-

lar. If A§B and BSC, it is not true that CHA. '
For those readers who would like to see the newly introduced

properties used in a more formal way, ‘the following two problems are

included.
S sy . |
_ Problem 1. Suppose that a relation R is transitive and symmetric.
s w2’ - Give an-example to show that R need not necessarily be reflexive.

One may try to argue as follows: .For a,b&A, by symmetry (a,b)ER
implies that (b,a)€ R. But if {a,b)€R and (b,a) €R, then by transi-
tivity (a,a)€ R, from which it is tempting to conclude that R is re-

) flexive. We must investigate why the above argument is fallacious.

: Let A = {a,b} and R = {(b,b)}. In this example (b,b) is the only ele-
ment in R. R is not reflexive b@cause (a,a)¢ R, and for R to be re-
flexive both (a,a) and (b,b) must belong to R. , However, R is trivially
symmetric and transitive. e ' h

. problem 2. Show that a relation is reflexive and circular if and
only if it is reflexive, s;mxmetr,ic, and transitive. (This is a problem
in A Survey of Modern Algebra by Birkhoff and Maclane, 1964.)

' | . 28
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Proof: (i) Suppose R is reflexite apd circular. Therefore,
for every a,b,c€A, {(a,a)€ R, and further (a,b) €R and (b,c)ER 1;np11es
that {(c,a)€ R by c1rcularity. )

Show R is symmetric. Suppose (a,b)€ R; by the reflexivity of R,
e (b,b)E R as well. Now by circularity, (a,b)€ R and (b b)ER imply
- (b,a)€ R. Thus, (a,b)E€ER J.mplies (b, a)€ R. N

o Show R is transitive. If (a b)€E R and (b, c)E R, by circularity
\ we have (c,a) € R, but by the just proven symmetry, it follows that
{(a,c)€ R. Hence, if (a,b)€ R, and (b,c)€ R, then {(a,c)€ R.

, (1i) supposé R is reflexive, symmetric, and transitive.
T We must show only that R is circular, since it is given that R is al-
ready reflexiye. If (a,b)€R and (b,c)€ R, then (a,c)€ R by the
transitivity.” Next by symmetry (a,c)€R implies that (c,a)ER.
: Therefore, (a,b)€ R and (b,c)€ER imply that (c,a) ER.
_ To help clarify the descriptive capaﬁ.lxties 9; the properties
that have been discussed, Table 1 has be constructed to indicate
the properties of ten relations. 1In Tabie 1 a set of elements for
which a cited relation is to be operative is indicated for each rela-
tion. The relations in Table 1 tend to fall into groupings according
» to their properties. BSome relations such as "equals™ and "is exactly
as Kind as" arzreflexive, symmetric, and transitive. Relations with

N

' those properties are termed equivalence relations. Other relations

such as "is greater than,"™ "weighs more than," and "is less intelli-
.gent than" are irreflexive, asymmetric, and transitive. With the

v twelve propertiegycited in Table 1 the logical qualities of any re-
lation can be,richly articulated. ,

Y

Equivalence Relations

- Definition 33. If A is a‘set anleCA X A, then R is an equiva-
lence relation if: \ .

o *

‘ (i) For every a (a:,a) € R (reflexivity);
- o ‘ / ~

(ii) For every a,b€A, (a,b) € R implies (b,a) € R (symmetry);
~ i

. : (iii) For every a,b,c €A, (a,b)€ R and ‘(l‘),q,)ER‘imply (a,c)€ R
(transitivity). '

* »

[

Examples
1., Equality for numbers is an equivalence relation, because "=" is
reflexive, symmetric,\and transitive.
\ »

.
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‘Table 1

¢

A Classification of Some Relations by Their Order Prcpertieé,

(S .

]

30

~
v ¢ aa
. * Order -
properties P4
. 2 ’ . i
t . Q oo w?t [3) ]l e g“
v | > R - R
> ! 13 L I @ -4 &
) Y] Lal X 13 Lol - &b > L vl
. > | % @ [ M - lw |8
\ - (] — LR ] E E &~ o a
~ - Nt Lo -4 g 4w
 |w | @ @ @ =
_ AERERE eI SERL RERE RN
Set Relation IR - N - g, g. s1ara
.E ) . o s :
‘1, real numbers = - €s yes yes yes o
. « 3 T g '
© 2, real numbers > lyes yes .iyés ' g‘ i
. ‘ . N - ] e._’J . _l . .
3. real numbers 2 yes yes yes j{"yes / o
’ ) i . {75:.:' K )
8. v sets of people includes (c) yes yes yes # " . /
9., women is a mother of yes yes yesft i ) j Al
o C N f (: 7 / qé -
0. people is a sibling of yes yes yes| |: f yes |
: . has a different : / ‘ /
~1. buildings height than - yes yes © lyes SR
’ ' . ' b ' SN f
2.  Americans loves lyes es ‘_"} . .
3. Americans weighs more than - yes yes. ves| ‘ l L ;:
4. people is as k as yeo yes yes ‘lyes
is less int igent
5. people than yes yes | yes
[a,2,2,3,1,3), i
4. [1,2,3,4] (1,4),¢2,4),(3,4)] yes yes yes yes
f(1,1),¢,2),(2,3),
5. [1,2,3,4] (2,4),(3,4)] yes yes yes
' 6., natural numbers |[(1,1), (2,1) ,{1,2)] yes jyes yes1
N © L]
7. natural numbers fa,n] yes [yes yes yes yes|
™ X A -«
. \./ -
‘ ‘.
14
A
24 .



¢ g

e

'
2. The relation "is less than" is not an equivalence relation hecause

H<" ig not symmetric. " - : .

3. Let the states of the United States form the set under considera-
"tion. Then we could define a relation R by (x,y)&€ R, where x,y
e are states, if both states x and y have governors whose last names
' begin with the same letter., For example, if the letter was §, the

: : states would include Massachusetts (Sargent), Pennsylvania (Shapp),

- Pexas (Smith), etc. The relation would be reflexive, because for

' ' instance (Texas,/Texas)élz The relations woyld be symmetric, be-
cause if for instance (Texas, Pennsylvania) € R, then (Pemnnsylvania,
Texas) € R. The relation is transitive. ‘Cansider, if we look at
(Texas, Pennsylvania)€ R and (Pennsylvania, Massachusetts)& R, then
(Texas, Massachusetts)€ R. Therefore, R as defined above would be
an equivalence relation. ‘

. Actually we would be able to divide the states up into mutually
disjoint groupings because each state would fall into only one
category, depending on the initial letter of the state's governor's
name. Granted that this particular partitxoning does not reflect
any real division according to national importance of political
ideology of the individual governors, but it is an example of how
we can often divide a collection of items or people into disjoint

_ subcollections with each subcollection repgpesentakive of ‘some
~ unique property. The actual significance of such a representation
,t‘f<ﬁ depends on the impo¥tance or value of the defined relation. We
will follow up this idea of partitioning in a more precise and
mathematical presentatlon later in-the book.

4. Let Zbe the set of all integ ie.,Z=1{...,-3,-2,-1,0,1,2,3,
7 ...}. Define for m,n, €€, (m,n)€EWR if m -~ n is a multiple of 5,
i.e.,-if m - n = 5t for some integer t. R is an equivalence

relation.
:g‘:; C .
(i) . (m,m)ER for every m€ €, because m - m = 0 = 5(0), where

o€ £. Therefore, R is reflexive. ‘
- | 3 : ’
(i1} If (m,n)€ R, then there ‘exists an integer t such that
. " m -n = 5t. Therefore n - m = -5t, but -5t = 5{(-t) and -t
’ is an integer. Hence, {(n,m)E€ R and R is symmetric.

. (iii) If (m,n) €R and (n,p) € R, then for some integers k and j,
‘ ‘ we have m - n =5k and n - p = 5j. Therefore, m - p = (m - n)
+ {n - p) = 5k + 5§ = 5(k + j) = 5i, yhere i = k + j is some
integer. Hence {(m,p)& R and R is,tr!ﬁsitive.

5. The next example will at first appear to be quite difficult, but

. at a closer inspection, it may be observed that we are merely es-
' tablishing the equivalence of fractions such as 245, 4/10, 10/25,
etc., by statiing that the product of the means equals the product

L
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) of the extremes. For example, 2/5 = 4/10 because 2(10) = : 5(4).
- Now to the example, let a,b,c,d€€, and let M = the set of all
LI ordered pairs of integers (a,b) with b # 0. Defime R as ((a,b),
R {c,4))E R if and only if ad = bc. (Notice this is the same as
saying ((2,5), (4,10)) €R if and oaly if 2(10) = 4(5). '

It must be sho_wn' that R is an equivalence relation.

- (1) If (a,b)€ M, then ((a,b), (a,b}) is ah element of R, because -
ab = ba. Thus, we have proven that R is reflexive.

(ii) If (a,b)€EM and (c,d) €M, and suppose further that ({a,b),
- {¢,d))€ R, then by definition we have ad = bc, which by re-
arrangement implies cb = da, and the:efore, ({(c,d), (a,b))E R,
and symmetry has been demonstrated. - L
(iii) Let (a,b), (c,cﬁ, and (e,f) be'elements of M, and suppose
7 . that ({a,b), (c,d8))€R and ((c,d), (e,£))E R, then we have
that ad = bc and cf = de. Therefore, upon multiplying
= bc by £ we obtain adf = becf, and multiplying of cf = de
1 by b, we obtain bcf = bde. Hence, adf = bcf and bef = bde,
: and by the transitivity of the efuality relation, we have .
adf = bde, which we may rewrite as afd = bed. By ghypothesis
4 # 0, and therefore d~1 = 1/ exists. Multiplying both
sides of the equality afd = bed by d~1 we obtain af = de,
i.e., ((a,h),ﬁ,f)_)ER. Hence, R is trar_xsitivg.

- . ‘ ' ' . ;

In the example about states having -governors whese last names be-
'gin with the same letter, a brief description was included of how the
states could be broken up into disjoint groupings. This is a very
. valuable procedure in considering sets, and will be now presented in a
more thorough manner. ‘

} B L.
. = . .-
. . . ‘ . .

[ 4
,. Definition 14. Let A be a set and RCA X A, therv the equivalence
EATISES class of a A is the set, {x€A } (a,x) € R}, which we shall denote by
‘ either [a]l or ¢ 1 (a).
. 5 N )
. Lo : )
- Examples
< 1. We have already shown that equality is an equivalénce felation.
A If a€p, then [a] = {a}, since (a,x)€ R if and only if a = x.

2. Let £ be the set of all integers. Define for m,n€Z, (mn)ER if
m-n is a multiple of 5. We /demonstrated already that R is an
equivalence relation. Then for a€Z,

‘ | 32



[a]={x€Al (a,x) € R}  W;'
=={xEA I‘a-x=51,1-—0+1+2---}.
;5 : ' Therefore, we may divide the integers into five distinct equiva-

lence classes, [0}, {1], [2], [3], [4]. Note that, for example
[2] = [7], since both areé equal to {°*°°,-8,-3,2,7,12,---}. Thus,

o« ~ we may divide the integers according to whether the remainder
o is 0,1,2,3, or 4 upon division by 5. Hence,®Z = {[0], [1], [2],

3% Joseph Scandura has created a new language to describe what (rule)
e is learned in a particular task. He calls this language set func-
‘ . tion language (SFL), and it utilizes the term equivalence class.
His theory is as follows: A particular stimulus is obsexrved, and@
it is then assigned to the appropriate class of stimuli, on the
basis of its defining properties. A rule is then a mapping from a
class of stimuli to a class of responses, from which the required
response is selected from the class of functionally equivalent re-
.sponses. An example would be the following.: Let [l + 3 + 5] con-
" sist of elements such as 1. apple + 3 apples®™ 5 apples, $1 + $3 + §5,
1 dot + 3 dots + 5 dots, etc. Let [9] consist of elements such as
9 agples, $9, 9 dots, etc. Then the rule is an operation between
equivelence classes of number series and their sums. An example,
in computing $1 + $3 + $5, it is first recognized as an instance
"of [1 + 3 + ] which by a rule is mapped into [9], from which the
" appropriate response $9 is selected. A more detailed account of
the theory may be found in Scandura (1970). ‘/

4. Equlvalence classes are used as part of the underlying structure
in a paper by David H. Krantz (1964), "Conjoint Measurement: The
Luce-Tukey Axiomatization and Some Extensions. "

* In Example 2 it was shown that the integers could be divided up

o iibe, fiye equivalence classes, [0], {1], [2], [3], and [4]. This
S ’“prccess of dividing up a set is referred to as a partition.

Definition 15. A partition of a set A is a ciflection of nonem?ty
. ' subsets of A that are disjoint and whose union is

There is a theorem in mathematics that describes the relationship
between the equivalence Slasses of an equivalence reldtion and a par-
tition of a set. This theorem is most useful in mathematics, because
of the way it allows a set to be divided into meaningful subsets.x;Ft

be equally valuable in psychology as a means of dividing up experi-
mental data, stimuli, concepts, etc. into impor}ant, distinctive sub-
categories.’ The theorem will not be prgven in this book, but may be
found in any standard abstract algebra k, such\as ersteinl(1964)
or Dean (1966). '
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The’ distinct equivalence classes of an equivalence

L

Theorem (i)

relation on A provide us with a partition of A, i.e., they provide us

with a decomposition of A into mutually dlS]Oint nonempty subsets whose
union equals A. ) _ * :

L .
"

o g | -
¢ (ii) Conversely, given a partition of A into mutually.dis-

joint nonempty subsets, we can defipe an equivalence relation on A, for

* which these subsets are the distinct- equivalenee classes.

' 4.

| equlvalence relation:

*

. Examples
¥

We have glready discussed that the integers may be divided into

[o], [1]1 {21, [3], and [4], if
(m,n) €R if m - n is a multiple
tegers according to whether the

the relatiop is, for m,n€Z,
”pf 5. That is, we divided the in-
remainder was. found to be 0, 1,

2, _3, or 4, upon division by 5.

If the relation had been, for m,n€é&, (m,n)€R if m - n is a malti-
ple of 7. Then the integers would-have been partitioned into
o}, [1}, f21, [3], [4]; [5], and [6].

In a used car lot, if ‘the owner divides his cars into groupings,
where all the cars in one grouping are one make, all the cars in

_the next grouping are another make, etc., then he is partitioning
the cars into disjoint nonempty subsets.

' For example, there is a
grouping of Fords, Pontiacs, Plymouths, etc. We could define an
equivalence relation on the set consishing of Friendly Freddie's
Forever Lasting Cars. If a,b are cars .An Freddie's lot, then
(a,b)€ Rif a and b are the same make. we now show that R is an

© o

(a,a) &R, because clearly & car is the same make as itself. .
Therefore, R is reflexive. .

(i)

(1i) 3f (a,b)€ R, then (b,a)€ R, because if a and b are the same

- make, certainly b and a are the same make: ' 4R is symmetric. .
If (a,D)€R and (b,c)€ R, then a and b are the same make,
also b and c are the same make, and therefore a and c are
both the same make, or {(a,c)€ R, from which we conclude that
R is transitive.”  In this example we have illustrated the
converse of the theorem, i.e., according to the way the set
of cars was divided up it was possible to define:an equiva-.
lence relation on the set of cars.

(iii)

.

An application to psychology would be in a conditioning experiment.
The animal is conditioned to push one of two buttonrs. His responses
may be divided into two disjoint sets whose union consists of all
his responses. The animal either presses the correct button or
the wrong button.

~
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'S5. In a discrimination task, the individual may be asked to divide

up the stimuli according to color. Therefore, the set of stimuli

are divided into classes, with each class consisting of stimuli ’

of a particular color. .

( , _ , o

6. In a rule-oriented subject matter such as mathematics, a person

' learns to.ggggzﬁy problems on the basis of one rule. He must
analyze a problem, decide which rules are relevant, and then ap-
ply the rules. Therefore, each individual problem is not treated.
as an isolated case. ‘ ’

The examples have hopefully given further .illustration of how funda-

‘mental this theorem is and how relevant it is to questions in psychology.

The theorem essentially describes a person's ability to organize and

classify.

\ o , ot .
S ~ Types of Ordering

£

with the completion of our discussion of equivalence relations, we
begin a discussion of various types of ordering. The names attached
to these orders vary in th¢ literature, and one must be careful to make_
note of the possible didtihctions between texts. The definitions and
names that we will usé in this book seem to be the most common. We
begin with a list of definitions, and then follow the definitions with
relevant examples and references as to where in the psychological
literature agglications of ordering may be found. 4

: 3

o

Definition 16. A relation "4 " is a partial ordering for a set A &
if £ is reflexive, antisymmetric, and transitive, i.e., .

e

(i) for every a€ A, a £ a; .

(ii) for every a,b€A, a4 b and b< a implies av = b; and
(iii) for every a,b,c€A, a4 b and b 4 ¢ imply a<£ c.
Definition 17. A relation "< " is a strict partial ordering of A

if € is antisymmetric and transitive. Therefore, we could call a par-
tial ordering a reflexive strict partial ordering. \

Definition 18. A relat‘i‘e;m “{ " is a linear ordering (also called «

simple or total) of A if £ is reflexive, antisymmetric, transitive, and
 connected. That is, if £ is a partial ordering and in addition for

every a,b€A, if a # b, then a b or b a.

| e
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Definition 19. A relation “<“ is a strict linear ordermg if

" < is antisymmetric, transitive, and connected.

We may use diagrams to indicate the different types of ordering.

- For example, ,if one can reach one element of a set from another ele-

ment in. the set in a continually ascending manner, then the elements ;,
are ordered. let us consider a set A, where A = {a,b,c,d}. Suppose _ >
that the elements of A are related as indicated in Figure 10. We may 1
observe that a<{ b, a<c, a€d, bg d, and ¢ € d, but b4 c and

c 4 b. Therefore, the order defined by Figure 10 would be a partial
ordexing or a strict partial ordering, depending on whether we allow
reflexivity. However, this ordering is not linear, since neither
b <t or c{b. The diagram for a linear or simple ordering would
have to be along a single vertical line such as in Figure 11, where
a<b, a<c, a<d, b<Lc, b<d, and c < d. Therefore, the connec~

tivity property is satisfied, unlike in the previous illustration, : R

where there existed a pair where b4 ¢ and cq b. : -
/ - ‘

| Fiqure 10

. . Figure 11

~

The figures were ;.ntroduced as a visual aid in understanding the
concepts of partial and linear ordenng. We now give _a series of ex- , ‘
amples to indicate the kinds of relations that are partially crilinearly

ordered. We will begin with a few relations that we have discuSssed in .
detail already. \
Examples —

1. Consider < for integers. This is a linear ordering, because for
any integers m, n, and p, L .

(1) m < m for all m, iv.e., for any integer, it is less than or
equal to itself;

. {ii) if m ¢ n and n < m, then the only possibility is that m = n;
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' (iii) if m's n and n £ P, this clearly implies that m’s p (for. .
‘ example, if 3 s 5and 5 5 11, then 3 5 11); o

(iv} for ahy m,n where m # n, then eitherm < n or n < m (this
. means that if two numbers are not equal, then one of the two
:is the larger). Combining (i), (ii), (iii), and (iv) we
"have shown that s is a linear ordering. ' |

2. If we consider "<," we immediately notice that "less than" is'nqgh
‘ t

reflexive. The dthe: properties hold. Therefore, < is a stric

“linear ordering. N
. ‘ “ -

3. Set inclusion, “é}?_is a §artial or&eri!é.-but not a linear Qrderiﬁg,
fi) | For any set A, ACZA.  Every‘set is a subset of itself.‘  o
REEY "For any sets A and B, if ACB, and BGA, then A = B.
.-"rv(iii). For 'any‘A, B, and C,J iE ACB-and B cc,lzthen ACC. This is

cbviously true, but if there are any nonbélievers, the_Venn" 
diagram in Figure 12 gives an intuitive deiinstration.

Figure 12 CA

(iv) For any sets A and B, where A # B, we need not have ACB or
-BCA. 1In fact we could eveﬂ have ANB = ¢, If A = {1,3,5,7}
and B = {2,4,6,8}; then AnNB = ¢. Therefore, set inclusion o
is not connected, and the relation "€" is a partial ordering.

4.3 Proper set inclusion, "&," is a strict partial ordering, since it
is not reflexive. No set is a proper subset of itself.

5. Examples 1 through 4 served to illustrate the four new definitions.
There are analogous real world parallels. For example, "is taller 
than" is a strict linear order. It is not reflexive, because no *
one is taller than himself. ' = % '

6. Within many branches of psychology such as developmental psy-
chology, there is discussion of hierarchies of events. For ex-
ample, in the developmental psychological theory of Jean Piaget
(Piaget & .Inhelder, 1969) there is elaborated a linear hierarchy

¢ a .
Vi :g?’ ‘ -
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of cognit ve operations. Piaget contends that a cognitive pre-
operationgl schema such as gr53pxﬁg precedes “the cognitive concretwe
operation of classification in development which in turn precedes
the cogn&t;ve formal operation of hypothetico-deductive thinking
in developiient. A sequence of behavioral forms of thig type has
the mathematlcal properties of a linear ardering with the relation - T
being "is a prerequisxte to" or “is a necessary condition for.“
To Piaget, classes of cognitive behavxors—-preoperational, concrete, _
and formalw-are reflexive, antisymmetric, transitive, and connected ‘ \
for the rejation of "is a necessary condition for." To demonstrate .
that a class of behavioral phenomena comply to some ordering for
some relation, empiricdl conditions must be formulated that will
allow for qhe.testxng of the defining properties of the relation.
For example, in the case of the Piagetian cognitive theory one may
consider two types of cognitive operations and if one operation is
not demonstgated to be a prerequisite to the other operation, then
the connected property cannot be attributed to that relation and
the relation is thus not a linear ordering. The terminology'of re-
lations and arderzng can be used not only to describe qualztatxvely
the structural properties of argays of behavioral phenomena, but
also aid in the formulation of the empirical conditions by which
one can test the structures and hierarchies attrlbuted to an ,array
of behavioral - phenomena. :

Airasian and Bart (1971) have introduced ordering theory, fcrmally
referred to as tree theory, as an alternative measurement model. ~
Ordering theory has as its. primary purpose the testing ?f hypothe-
sized hlerarchles among items, or sometimes the determination of
such hierarchies,. Orderxng theory is similar to other classical
models in thatlit utilizes the item response matrix, but it differs
in that it doed not use summative scores. Alseo, the classical ap-
proaches assume that the trait measured is linearly ordered, which
usually is neverftested fnr. Order theory does not use summative
scores as a startxng point for statistical analysis, but rather is
used to determine’ logical relationships between items represented
in the item response matrix.

The next example 15 again a more mathematical one: It serves the
purpose of illustrating the new terminology in a more abstract way. )
Let &* be the positive integers, i.e., {1,2,3,...}. Define "|"

to mean divides: Therefore, aib means at = b, for some t€ &', ‘

We will show that'“j” is a partial ordering. o .

: ' + .
(1) For any m€& Z‘._, m[m, ‘since m*1 = m.

(ii} For m,n €L+,._i_f m|n and n|{m, theg there exists t and s in
Z +, such that mt = n and ns = m.' Therefore, by substitution
(mt)s = m, which we may rewrite as m{ts) = m. Hence, ts = 1,
but both t and s being positive integers {mply t=s5=1,

Therefo;é, mt = m = n, and antisymmetry is proven.
- S

I
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{(iii) For m,n.pe l+, if m|n and n{p, thgn there exist t and s
' in €* such that mt = n and ns = p. Which upop substitution
yields (mt)s = p or m(ts) = p, hut ts equals an integer, say
q€ £*%, and this impliés mq = p., Thus, we may conclude that
< mlp and *|® is transitive. We ve now proven that *|* is a
~ partial orxdering. We may show ¢ "l is not a linear
" _ ordering. . '}« ,
) *>
{iv) For example, consider 3,7 CZH but 3)’7 and’ 7}’3. Therefore,
) divides is not connected. a

The last example that we will consider is that of lexicographic
ordering. Suppose that sets A and B are linearly ordered. Con-
sider the Cartesian product of A and B, i.e., A X B. It _may be
proven that A X B pay be lineaxlg o:dered by <, where we define
(a,b) < (a ,b‘) if and only if a <y a4, or if a = a“, then if

b <2 b', We are denoting the strict linear order for A by < and '

_the linear order for B by <;. The proof that < is a limear ordering

is not that difficult, but requires much cumbersome notation and
the consideration of separate.cases. Because of this fact, a proof

“will not be included. Instead several interesting applications

add

of
has

will be discussed. Suppose that 'set.A equals sgf B, ‘and that the
members or elements of the set are the letters of the alphabet,
i.e., A= B = {a,b,c, - ,X,y,2}. The ordering of A (and B) wil]}
be the normal alphabetical oxdering. Then lexicographic ordering
is a precise and elegant way of describing how a dicticnary ig put
together. If two words are compared, and if the first letters are
different we order the two words on the basis of the alphabetical
order of the first letters of the two words. If the first letters
are the same, then we order the two words on the basis ofrthe second
letters, and SO on. ¢

.
A second useful application is that lexicographic ordering offers
a method of comparing points in the plane. The points could be
compared by looking at the first coordinates, if they are the same,
then we compare second coordinates. Therefore, one could say
(1,4) < (3,1), £{2,7) < (2,9), (1,1000) < (2,2), etc.

!

If a set is linearly ordered by a relation £, we may consider an
itional property that certain linearly ordered sets have.

“pDEfinition 20. Let A be a set and suppose < is a linear ordering
A, then A is well ordered if and only if every nonempty subset of A
a least or smallest element, i.e., if for every nonempty Subset

BC A, there is an element b € B, such that bo < b for every b€ B.

[}

\
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Examples

‘1. The set of all pdsitive integers is well ordered by <, because
every subset of the positive integers has a smallest element.
.This assertion is-equiiglent to Peano's axiom.

2. The set of all integers is not well ordered by <, because, for
example, € itself has no smallest element.

r
. .

3. Clearly every fxnite set with a linear ordering defined on it is
also well ordered, because there are orily a finite number of ele-
ments to consider at a time, and the smallest one may always be
picked out. .

4. If the set under consideration conszsts of scores on an achlevement
test, then these scores are linearly ordered by "less than or equal
to." Also the set is well ordered, because any subcollectlon of
scores will always have a léwest score.

' [N

We have completed our discussicn of relations and the special
properties of relations. We have also examined equivalence relations
~and different types of orderings. The richness of these ideas should
' ' be evident from the ease with which they handle both abstract and real
considerations. Psychologists have been utilizing these ideas in their
 justifications of various enomena, so it would be reascnable to in-
corporate these terms into t language of psychology as a means of
precise description. '
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Jet us consider the following.

CHAPTER 3
MAPPINGS
.;\-\ : - .‘ o .

One of the most important ideas in all of mathematics is that of
a function or mapping. This term is so fundamental that it is in com-

' mon usage in most disciplines. Almost ‘anyone will with great regularity

refer to one thing as‘'being a "function" of something else. In a very

_ narrow mathematical sense, a function may be viewed as a formula that .

associates to a number another number.  For example, according to a
formNa the number 5 may be associated with the pumber 7. This is a

restricted definition of ‘a functiam, dd is highly limited in terms .

of its applicability. Therefore, as a a first definition of a function,

2 ; —

y Definition 21. A function or ma EE g f from one set U to another

set V, is a rule that associates with each element x in a certain sub~
set Dg of U, a uniquely determined element f(x) in V. The set of values
in.Dg¢ i5 called the domain. The element y = f(x) is called the image of
f at x, where x€D¢. The: set of all image values of £ is referred to
as the range anﬂ will be denoted by Rf :

~ Even though this def;n;tion is more general than the previous one,
in that the sets U and V do not have to be sets of numbers, there is
still an ambigu;ty bullt into the definition.

-In mathematics, as’ wel} as in psyohology, ‘when dealing w;thaab~

‘stract ideas, it is important ‘to be precise with one 's language. 1In

the definition of a function or mapping the key word is rule. A mapping
from U to V is a rule, but what is a rule? The definition is highly in-
tuitive and ylll ‘be made use of in the book, but in order to be as
rigorous as possible, ‘another definition of a function will be given.
The new definition, interestingly enough, will be in terms df the lan-
guage introduced in the first two chapters.

Definition 22. Let U and V ;\\honempty sets, then a gging or .

function from U dinto V is a set f of ordered pairs in the Cartesian

profuct U X V, such that if (x,y) and (x,2z) are elements of £, then
y= 2. In other words, a mapping £ is a relation between sets U and V,

‘such that for every admissible value x in U there is a unique Yy in Vv,

such that (x,y)€ £. The collection of all first components, denoted
by Df, will be called the domain. Therefore, D¢ is the set of all
admissible values in U. The range,_Rf, consists of all those values
in,V occurring as second components in the ordered pairs.

-
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first Member.

A function, then, is a special.type' of relation. It is a subset
of the Cartesian product U X V, with the added condition that the
‘second member of an ordered pair in f is uniquely determined by the

In order to take advantage of the - intuitive nature of

Definition 21, rather than writing (x,y) € £, we will adhere to the
more commonly recegnized notation of y = f(x), and will refer to
y = £(x) as the image of f at x. :

-

i
o

Examples

Let U = {1,2,3,4,5} and V = {3,5,9,16,17}, and define f = {(1,5),
(2,3), (3,17), (4,16), "{(5,9)}, then f€U X V, and further for 1S
every Xx€ U, there is a unique y&€V. Therefore, f is a function. '

Let U= {1,2,3,4,5} and V~= {3,5,9,16,17] and define f = {(1,5),

(2,3), (3,5, (4,9), (5,9)}, then £CU X V, and again for every
Both 'l and 3 are associated with 5,
but this is not contrary to the definition of a mapping, since
each x€U still has only one value in V associated with it. Notice
also that in this example the {ange ‘is {3,5,9} and is not equal to

x €U, there is a unique yeV.

all of v.

Letu- {r1,2,3,4,5} anda v = 3,5,9,16,17} anddefinef= {(1,3),
* (2, 9),! (2,5), (3,16)}. £ is a subset of U X V, but f is not a
.function, since there are two different image values 5 and 9 as-

signed with 2.’

r

Suppose Miss Nice is a second grade teacher in a small school and

that she has ten students:

Tom, Mary, Bill, Lola, Frankie, Jim,

Paula, Farnsworth, Betty, and Tony. She gives therf a spelling test
of 20 words and makes a chart for the results like the one in
Figure 13. This is an example of a furnction. Let

.

1

Betty, Tonyl; and

v

Define £ = {(Tom,12), (Mary,16),
{(Jim,14), (Paula,20),

(Tony,19) }.

{Tom, Mary, Bill,-Lola, Frankie, Jim, Paula, Farnsworth,

{0,1,2,---,18,19,20} = possible number of correct answers.

(Bi11,17), (lola,ll), (Frankie,b19),
(Farnsworth,16), {Betty,1l5),

f is a subset of U X %dv also for every element in the domain,
there is a unique element in the range, namély for each child

{11,12,14,15,16,17,19,20}.

36

there is a test score associated. The range in the example is
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- Maxry - 16 . Paula -, 20
Bill o 17 .~ 'Parnsworth. 16 ‘
‘Lola , 11 : Betty. = 15
Frankie' 19 . ' Tony o 19 :

-

2

Figure 13

' A function may be thought of in teyms of a machine. There is an ¢

input, an output, and a machine f performing the change. For in-
put x, £(x) would represent the output. Put a quantity of heavy .
cream in a blender £ and the result will be whipped cream. Put a
_coin in a bubble gum machine and out comes a piece of bubble gum.
The parallel to a machine is indicated in Figure l4.

A}

x— |[f]—> vy = £(x)
o f is the machine, f(x) is the output
. ‘? e PR
- ] | R {’
Figure 14 = , | )

: Tﬂg idea of a function as a collection of ordered pairs seems to

indicate that it may be helpful to consider a function in terms of
its graph. We will do this in-a separate section at the end of

. the chapter.

The idea of 3 function may ilso be given a geometric interpretation.
Consider the description of a mapping, £, in Figqure 15.

13
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There are certain functions that are worthy of'specific'menﬁgon.
&ne of them is the identity mapping. -
mapped into itself, that is the map ,
We would write this as f(x) = x. ox instance, £(3) = 3, £(-271) =
271, etc. The set of values thyt are left unchanged by & mapping
are often said to be invariant with respect to the mapping. Jfhe
idea of invariants i§ valuable’ in psychology. For example, If

one understands what types of transformations leave an entity or
concept unaltered, then cne has acgcod g?derstandingfof what that
entity or concept is. ‘ S |

g doés not change anything.

The constant function is another very basic mapping. For this map-
ping, regardless of which element in the domain is selected, the .
function always assigns the same range value. Examples. of a con-
stapt functgin would-be.f(x) = 5, where regardless of what the x

value is, it/ is always assigned the value 5. Another example is

in a store where every item costs the same amount, or in a condi-
tidning experiment, where an animal is conditioned to always pick
the element in the left position, regardless of whether the ele-

ments are balls, blocks, colers, etc. . '

In Scandura's (1970) SFL language mentioned before in chapter 2,

the idea of a function is basic to the discussion. He distinguishes
between a rule, a concept, and an association as follows. A rule
he defines as a function whose domain is a set of stimuli and whose
range is a set of responses. A rule is then a mapping between
equivalencesclasses of stimuli and responses. A concept is a
constant function, i.e., each stimulus in a class is raired with

a common response. An association is a function whose domain con-
sists of one stimulus and whose range consists of one response, s
i.e,, an association is a singlé‘S~R pair.

Anyone who has debated whether ‘it was necessary to put an addi-
tional stamp on a letter is familiar with the post office func-

- tion. It is an exam le of a mapping where the domain is broken
D

12,

up into several parts as in Figure 16.

8¢ if 0 < x < 1 ounce
£(x) = 46¢ if 1 < x < 2 ounces
24¢ if 2 < x £ 3 ounces
etc.
' Figure 16

Addition is another example of a mapping: . Let Z be the set of

integers, and define U = & X &, to be the Cartesian product of

, the integers with themselves, i.e., U consists of}all the ordered

pairs of integers. Define f as a mapping from U into ', and denocte

" -
4q
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it be £: U—» ¥, where £((m,n)) = m +'n, with m,n € Z There-
fore, £(110,4)) = 10 + 4 = 14, £((11,3)) = 11 + 3 = 14, etqd

'13. Another interesting function is called the characteristic function.
Let U be any set, and suppose® S is a subset of U, then define

. . 1 if x€s
. | ) = g | .
'i ‘ (o if x¢s.
This means that if x€s,. the function value is l,‘otyerwise

the function is.0. We could think of 'a discrimination problem in
these terms. 'If the subject makes the correct discrimination he
receives a reward, and %f he does not, then he receives nothing.
It is just necessary to think of 1 as reward and 0 as no reward.

. »

S
14. Sequences are uéﬁa with great frequency in psychology. " An article
may refer to gpe 1001 subjects as so,él,sz,---,slooo, or in statis-
tics one may be interested in the multiple correlation between
variables Xp,Xp,°°*,Xx. A sequence is a special case of a function.
The domain of'the mapping consists of 0,1,2, ----, and the range =
‘ consists of whatever is being described. Rather than wxite "
s(0),s8{(1),s8(2),-** we write 501511521";‘1 but nevertheless, a .
sequence is a special case of a function. ? o

We have considered a rather extensive 1ist of examples of func-
tions. But, if one considers the frequency with which the word func-
tion occurs in daily life, in addition to its more technical 'uses in
the sciences, 4t is clear why it is important that the definition and
types of functions be discussed in this text.. Keep in mind that a map-
ping is a relation, with the added condition that for each element in
-, the domain there is associated a unique element in the range.

'We have looked at examples where the range was the entire set V
« and others where Rg & V. Those mappings that have Rg = V are of special
interest, anddggve been_given a special name.

*

v . Definition 23. 1If £ is a mapping from U into V, then f is said
* +o map onto v if Rg = V, i.e., the range of f is all of V. This may \ o
43150 be stated as, f is*a mapping from U onto V if for every vEV,
there exists an x€Dg, the domain of f, such that (x,y)€ £, or equiva-
lently, v = £(x). An onto mapping is also called a surjective mapping
or a surjection. . . . ) .

~
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Examples

1. Consider the first two examples of functions. We were given that
- U ={1,2,3,4,5} and V = {3,5,9,16,17}. 1In example 1, the range
. was equal to the set of elements 3,5,9,16, and 17. Therefore, the
mapping is onto. But in example 2, the range was only 3,5, and 9.
Therefore, Rg 3V, and this function is only a mapping from U into
V. not onto V.
. ¢ - .
2. The example of the 2nd grade spelling test results is a case of
another function that is not onto V. V equals the numbers :
0,1,2,+--,20, i.e., the potential number of correct answers, but
the actual results only were Rg = {11,12,14,15,16,17,19,20}, and .
Re&V. | | . ‘ : 0 -

3. If we consider the identity fupction, and suppose the domain con-
sists of all the real numbers, i.e., all the numbers alon the num-
ber line. Also assume that V is equal to the real numbers.) Then
the identity mapping £(x) = x is a mapping onto V' since every real
number is simply mapped into itself. S -

4. If we again consider the identity mapping, but suppose that U = V =
Z, Zrecall is the set of integers. Then f(x).= x is a mapping onto
V because every integer is mapped Onto itself. ‘However, if the
function were f(x) = 2x, i.e., .each number is associated with ,
twice itself, then the.mapping would not be onto, because, the range -
would consist of only the even integers, and not all of the integers.
For example, f£(3) = 6, ,£(9) = 18, etc. It is impossible to find an
integer x, such that for instance f({x) =.3, since 2x = 3 would imply
that x = 3/2, whicgﬁis'nct an integer. : ‘ ‘
. ot * .
AR
5. If we again let U = v*= &, we see that the constant function is
— not onto, since the range of the constant function is only d@e
element., '
6. The post office function is not onto because the price of mailing
letébrs is always a multiple of 8¢. If the letter weighs too much,
another 8¢ must be put on the letter. ‘

7. The SFL theory of Scandura defines a concept in terms of function .
language. The domain is a set of stimuli, the set V is a set of
responses, but the xange of a learned concept consists of only ane
response, namely the correct one. -Therefore, a concept is not
onto. ' - ‘ :

8. On a true-false test, the dqpain consists of & set of questions and
- the answers are to be selected from the set V = {T,F}. 1If the
answers to the set of questions consist of both true and false an-

, . Swers, then the mapping is onto; however, if all the answers arxe

true or all the answers are false, then the mapping is into.

40 © R
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[_,ég.' A matching test (like the one Y Fi§ure 17) would be an example of
an onto mapping. The function consists of the following ordered
pairs: (New York, Albany), {(Minnesota, St. Paul), (New Jersey,

Trenton), (California, Sacramento), (Pennsylvania, Har:isburg),

.'.

A. New York . 1. Sacramento
B. Minngsota 2. Trenton
o  C. New |Jersey o 3. Albany
o D. <Calpfornia ‘4. Harrisburg
E. Pennsylvanita 5. St. Paul ///
Figure 17 N *

L4 ) . X :
There is another important type of function that is useful is es~
tablishing a correspondence between two sets. °These mappings are called
'l - 1, or one to one. ‘o -

Definition 24. A function f is 1 - 1, or one to,one, if for any
and ‘x5 in D¢, where xj # x3, then‘f(x ) # £(x5). Equivalently, if
f%xl) £(x2), then x; must equal x,. In other words, no element in
the range of f, Rf, may occur more than oncee A one to one. mapping is
also called an injective mappl;g or an injection.

; éxamples
1. 1fvu={1,2,3,4,5} and V = {3, 5,9,16,17}, define f = {(l 5), (2,3},
(3,5), (4, %i (5,9)}. This function is not 1 = 1, because both .4
and 5 are mapped into 9, i.e., 4 # 5, but £(4) = £(5) =

2. However, i€ £ = {(1,5),.(2,3), (3,17), (4,16), (5,9)}, then P is
one to one. - g ' , \ -

3. The example of a mapping corresponding to the results of a spelling
test given before is not a 1 - 1 mapping, because both Mary and
Farnsworth scored 16. ;

&

4. The identity mapping from one“set to itself is an obvious example
of a 1 - 1 function. .Since this mapping is defined by f(x) = x,
then trivially if x, # X9, then f(x ) # f(x ), because f(xl) =%
and f(xz) = Xj.

5. The constant function is 1 - 1 only if the domain consists of one
element; otherwise there are many elements mapped into the same
element. Therefore, a concept is generally not a 1 - 1 mapping.

o«
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6. A true-false test generally is not a one to one mapping, because
‘more .than one of the items is true and more than one of the items.
is false. For example, in a five question test it is 1mpossible
to. have al-1 mapping. ) v

-
~ 7 7. A matchxng test is, however, 1 - 1, because each answer corresponds
to only one question. , L e '

J
,‘7\; -4

'Some mappings are onto, but not one to one, others are 1 -1, but
not onto, and there are also mappings that are both 1 - 1 and onto.

Definition 25. A mapping f is a 1 - 1 correspondence between sets
U and V if £ is a_1 - 1 mapping onto V. A 1 - 1 correspondence is
also called a bijective mapping or bijection. Thus, a mapplng that
is an injection and a subjection is a bijection.

- o Examples
- .

‘1. The identity mapping is a 1l - 1 corfespondence, since we have sﬁown
if U = V =% eal numbers, then f£(x) = x is'both 1 ~ 1 and opto. -

2. The mapping f(x) = Zx,'where U =V =%, was shown to be into, not
onto, but f(x) = 2x is 1 - 1 since if x1 # xj, then f£(x3) # f(X2).
This follows because 2x) # 2x3.

3. 1IfU=1{1,2,3,4,5}and V = {3,6,9}, then for £ = {(1,3), (2,9),
(3,6), (4,3), (5,9)}, the function is onto, but not 1 ~ 1, since,
* for example, both 1 and 4 are mapped into 3.

4. - Another example of a l - 1 correspondence would be a matching test.
- We have shown that this is both a 1 - 1 and onto mapping.

5. In any theory designed to desgribe the human mind such as automata
theory, the psychologist hypothesizes a 1 - 1 correspondence between

man. and the simulated model. -

, Before we begin a discussion of different operations between map-
. pings it is a good idea to define the equality of two functions. ‘.

~ Definition 26. If £ and g are mapplngs of U into V, the f equal
. g, 1. e., f =g, if £(x) = g(x) for every xX€ U,

3

% v

/
B We may define a sum, dlfference, production, and quotient of two
functions f and g: In other words there exist methods of producing new .
functions.

»
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‘Definition 27. Suépose f and g are mappings from U into V, with

.Pdomains Dg and Dg respectively. Then we make the following definitions:

‘(i) (£ + g)(x) f(x) + g(x);‘

Y

(i) (£ - @) (x) = £(x) - g(x); and

um (£ - @) (x) = £(x)g(x).

]

In (1). (ii), and (iii) the domain of the new function is fo\D i.e., .
those elements common to both domains. | _ , ~

£ (x)

", |
S G () ) = T where x_e:-nfrxng - {Dglg(x) = 0}, i.e.,

those elements in common to D¢ and Dy with the exception of the ele-‘
ments in Dg, where g(x) = 0. This way the problem of division by zero -

. is avoided, and the new function is defined everywhere on its domain.

o

Example

1. If f(x) = x2 + 1 and g(x) = x - 4, -and suppcse the domain consists
of the real numbers, i e., all the numbers on the number line.

Then, ]
~ .
(f - g) (x) = f(X) - g(X) = (x + l) - (x - 4) =] x2 - X 4 5

(£ - g)(x) = £(x)g(x) = (x2 + 1) (x - 4) = x3 = 4x% + x ~ 4;

J B x2 + 1
(f/g)(x) = () Y where x # 4.

-

The operation that will have.morg psychological relevance than the
others is probably the composition of functions.

Definition 28. 1Iet £ be a function with domain in U and range in
V. | Let g be a functipn with domain in V and range in W. Then the com-
Egsition gof is the fgnction from U into W, defined-as

¢

gof {(x,2) Ithex'e exists ayeEv such that (x.Y) €f and (v,z)€gl.

‘x

The domain of gof conSLSts of all those x in U such that £(x) is in V
and the range consists of all those g(f(x)).

‘A few examples may help clarify this definition. Notice that a
composition of functions is a means of going from one set of entities
to another set, and th rom this set, then going to a third set. An

important warning to the reader is that in some textbooks and journals

43 :
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' gof is taken to mean first applying g and then applying,f. However, ' T
in this book gof will always be understood to mean that f is applied -
- first, and then g is applied.: As will be pointed out, gof need- not ’
* - equal fog, so it is important to determine which convention is being
- adhered to in the article you are reading. : .
.

“~

Eg@mples

1. Suppose f is the mapping that associates 1 yard with 3 feet, and
‘that g is the rule that associates 1 foot with 12 inches, then gof
is the mapping that associates 1 yard with 36 inches. The domain
of ‘gof is yards, and the range_is inches. For example, (gof) (4
yards) = g(£(4 yards)) = g(12 feet). = 144 inches. L,

2. Suppose f(x) = x2 + 1 and g(x) = x - 4; and suppose the domain of
£ and of g is the real numbers, then ' ,

L 3 (gof) (x) = g(£(x)) = g(x2 + 1) = (x2 +1) - 4 = x2 ~ 3, but
| (fog) (x) = £(gg)) = £(x - 4) = (x - 4)2 + 1 = x? - Bx + 17,
’ N\
This is an example of where gcf # fgq, since x2 - 3'_#~x2 - 8x + 17
. for all x, except when x = 5/2. Recall that for two functions to
' be equal they must be 1 for all x. . o
3, Suppose a psychology class has an examination. ILet £ be the mapping
_ that assigns a numerical score to each student. Let g be the ‘grade-
line mapping, i.e., certain scores receive an A, others a B, and so
on. Then gof assigns each student a grade on-the test. -\ ¥

4. Consider Harlow's oddity problem, Given three .objects, with one of

' the objects different from the other two. The odd item should be
‘selected. Let f be the function which represents the decision as
to which element is the odd item. Let g be the function of select-
ing this item., Then gof is the successful performance of an oddity
problem task. '

-

13

-
.

An interesting theorem regarding‘the composition of functions will
be stated without proof. ' '

Theorem. Let f be a function with domain in U and range jm V.
Let g be a function with domain in V and range in W. Thenrfféu}

(i) if f and g are each onto, then gof is also onto; and
' (ii) if f and g are each 1 - 1, then gof is also one to one.
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when we discussed a4 - 1 mappings. we pointed out that there were
no elements in the range occurring more than once, i.e., if f£(xy) =
£(x3), then x; = x3. It may then be cbserved that if the ordered pairs
constituting the function f have their first and second entries inter-
changed, then this new set of ordered pairs would also describe a func-
tion. Because of the 1 - 1 nature of f there is correspondence between
a domain element and a range element, or conversely a matching of one
element in the range with one element in the dgmain. The function ob-
-tained upon this interchange of components is called the inverse of f.

' Definition 29. let f be a 1 - 1 function from U into V: If f_JL _
is defined as £-1 = {(y,x) |{x,y)€ £}, then £-1 is a 1 - 1 function from
V into U and is called the inverse of £.

3xamples : N g
1. If U = {Tom, Betty, Bill, Sally, Peter} and V = {18,17,20,15,16}
represents their respective scores on a 20 question test, then £
is a mapping from U onto V such that f = {(Tom,18), (Betty,17),
(Bill,20), (Sally,15), (Peter,16)}. £ is a 1 - 1 mapping, there-\
fore the inverse function £-1 may be defined. £-1 = {(18,Tom),
(17,Betty), (20,Bill), (15,Sally), (16,Peter)}. Here, each score
is associated with a particular person, rather than assigning for
_each -person a particular score.
2. Consider the matching test in Figure 18 which was introduced earlier
: in the chapter. We have already shown that this is a 1 - 1 mapping:

Therefore, an inverse exists. If £ = {(NeﬁYork Albany), (Minnesota, .

St. Paul), {(New Jersey,Trenton), (California,Sacr to) , (Penn-
sylvania,Harrisburg)}, then f-1 = {(Albany,New -York)y (St. Paul,
Minnesota), (Trenton,New Jersey), (Sacramento,Californid), (Harris-
burg,Pennsylvania) }.

A. New York 1. Sacramento
B. Minnesota 2. Trenton
. , C. New Jersey 3. Albany ‘

D. California 4. Harrisburg

'E. Pennsylvania 5. St. Paul

. .

2
Figure 18

3.. If f£(x) = 2%, then £ is a 1 - 1 mapping. We may show thls easily;
if £(x) = £(x2), i.e., 2x1 = 2x3, then this implies x; = x,, or
£ is 1 -~ 1. If f is defined as y - 2x, then x = y/2 would define
the inverse function £-1. For every y value, the x value is one
half of this y value.



* The ideas of the composition of functions, a 1 - 1 correspondence,
-and an inverse of a function may be connected by means of a useful
theorem that will now be stated .
Theorem. The mapping f from U into V is a 1 - 1 correspondence,
i.e., a 1 - 1, onto mapping if and only 'if there exists a mapping £-1
, ‘from V into U such.that f-lof and fof-l are the identity mappings on
LI U and-Vv respectlvely, ce., (f7lof) (x) = £71(£(x)) = £-1(y) = x and
(fof~1)(y) = £(£71(y)) = £(x) = y. | o
\ T ~ )

Examples

1

1. 1In other words, if ‘a function and its inverse are consecutively o
applied, one ends up where one started. If an individual travels
from New York to Boston and then from Boston to New York, he ends
up where he started. The person's trip may be described as

f (New York) = Boston
£-1 (Boston) = New York,

then (f'lof)(New York) = f"l(f(New Yorw)) = f‘l(Boston) = New York,
or (fof~ )(Bcston) f(fr {(Boston)) = f£(New York) = Boston, -which.
would describe the trip from Boston to New York and then a return
to Boston.
2. Another example would be if we define y = f(x) = 2x. We have al- .
ready proven that f is 1 - 1. The inverse function was shown to
be x = £-1(y) = y/2. Then, {f’lof)(x) = £f-1(£(x)) = £ l(y) = x
"and specifically thls is (£~ of)(x) = £l (f(x)) = l(_2x) = £ (y) =
X. Similarly, (faf )(y) §%} .

A

B

.We conclude this chapter with an elementary discussion of gg\phing
techniques, and to illustrate these procedures we will graph some of *
the functions descrxbed in this chapter.

. ) Lo .

Our examination of graphing will be on a rectangular coordinate - Y
system, which has-two axes, a horizontal one called the x axis and.a .:
vertical one called the y axis. Any point in the plane may be located ' !’ oy
in this system. The directed distange along the horizontal from the NN
point of intersection of the»akes called the origin is referred to as
the x coordinate or the abscissa. The directed distance along the ver-
tical is called the y coordinate or ordinate. The abscissa and ordinate
of a point*are indicated by an ordered pair called the coordinates of a
point. The graphical representation of the follow1ng ordered palrs,

(7,3), (-2,4), (5,1/2), (-1,-4), (2, l), is illustrated in Figure 19.
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-

The connection between a function and its graph should be clear.- - -
The function consists of all those ordered pairs or points indicated
in the\gxeph.‘ In other words, every point satigﬁginq a function lies v
on the graph of the function, and conversely, every point on the graph
and only those points are points that satisfy the function. That is,
therg is a 1 - 1 correspondence between those points satisfying a
function, and the points of the graph,of the function.,

, A " :

Examples

N , o s .

1. letU={1,2,3,4,5} and v = {3,5,9,16,17} and define £ = {(1,5),
(2,3), (3,17), (4,16), (5,9)}. - This function is graphed in Fig-¥
ure 20- . N

& -\\\\5 | °  Figure 20

2. Let\u = {1,2,3,4,5)} and V = {3,5,9,16,17} and define £ = {(1,5),
(2,3), (3,5), (4,9), (5,9)}. Figure 21 illustrates the graph of f.

L~
o
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A class of al aic entities useful in psychology is groups. The
presentation on groups will be made in two chapters. The first chapter
includes a discussion of the definition of a group and the related
terms of groupoid, semigroup,- -and monoid. Elementary examples from
mathematics are included to illustrate the relevant terminology. .The
ube of multiplication tables for finite groups will be explained and’

‘then used in the verification of certain sets as groups. To gain famil-
‘iarity with the new concepts 'a number of direct consetpfences will. be

proven. Other key terms-such as subgroup, generators, and different’
types of mappings such as homomorphism, isdgorphxsm, and automorphism
will be introduced and thé chapter will be cencluded with an examlnation
of several important examples, or types of, groups.

The second chapter will be concerned with the application of groups
to psychology. Examples will be given from Piagetian theory, the theory
of kinship relations," the studies of measurement, perception, language,
automata theory, habit family hierarchies, cross-context matching, sym~
metric choice- experzments ang the use of groups in the app11c§tlon
parallel tasks. -] , LA

We now define a group. First, a group, is more than a set of ele-
ments. It is a set for which there is defx&ed an 0peratzon such that
certain propertles are satisfled. :

*
H

Defin;tlon 30. A grou E is a nonempty set of elements G together
with an operation * deflned on ordered pairs of elements in G, such
that the following four properties are satlsfxed

(i) For every a,bE G, the element a*b€G, i.e., the"product of
any two elements a and b in the set G gives an element a*b
that is-also in the set G. This property is called closure.

(ii) For every a,b,c€G, (a*b)*c = g*(b*c), i.e., whether we
first perform the operation {a*b) and then combine it with
c, or if we- first perform b*c, and then combine a with b*c,
the final outcome is the same. This property is reéerred -
to as the associative property g !

(iii) For every a&€ G, there exists an element e € G, such f_Lat
a*e = e*3 = a, i.e., there exists an element e, such 'that
regardless of which element of G is considered, when e is
combined with that element, the element is unchanged,’ or
in other words, is identical to the way it was before the
operation was performed. This element e is called the

identitx element.




- {iv) For every a€gG, there'exiSts__a.nr element a~lg G, such that.
; a*al = a~l%3 = ¢, i.e., for every element in G there exists
‘ - ’an element a~1l" such that when, the two are combined, the re-
‘ sultant product is the identity element. This element a~l |
N _ . is called the.inverse element. o L .
LY
_ Reeapztulating, a.group is a nonempty set of elements G together :
with an operation *, such that G is closeq, associative, has an identity " -§
element, and every_elément in G has gn inverse. A group is an example C P
" of a mathematical system. Actually a group G should be written as (G, *)
' to indicate that if is a set, of elements and a Specific operation, but |
for simplicity of notation a ¢group will be written as G. The reader o
‘should, however, also remember that the operation is implicitly under- ‘
stood. Certain sets when combined with particular operations will satis-
fy only ‘some of the properties. We give names to specific subcollections
- of the four properties. . \ : _ ‘ s Aﬁ ) '
' Definltron 31. A groupgld 1s a nonempty set G together with an
. operation ¥, that has closure, i. e., for any a, bEG than a*b :Ls also .
~an element of q o -

-,

-

‘ Definition 32. A semigroup is a nonempty set G together with an
operation ¥, that satisfies the“closure and associative properties. , R
In other words, a semlgroup is an assoc1ative groupoid. - - S J,xg\fgig

Defrnition 33. A monoid is ‘a nonempty set G together with an oper-
ation *, that satisfies the closure and associative properties, and
further has an identity element. That is, a monoid is a semigroup that .
~ has an identity element,, I ST : p

v There is one more important property concerning groups, or for
’ "that matter groupords, semigroups, and monoids. The commutative prop— _
erty is not a requirement of being a group, but it is very important T
. in a discussion of groups. As will become evident in the examples of.
" the following pages, it®is not always possible to interchange the order
. of combinfng two elements and obtain the same element. We earlier saw
that the composition of two functions £ and g gave dlfferent results
in considering fog and gof. - )
Definition 34. The operation * defined on the set G is sald to
fbe commutative or abelian if for every a,b€G, a*b = b*a., * Therefore,
a group satlsfylng the added property  that a*b = b*a for every a,b in
G, is called a commutative or abelian group. Similarly, an abelian
gtoupoid, semigroup, or monoid could be §J£rned

,,pv, .

We will encounter groups that have a finite number of elements and
étherSMthat have an infinite numbgr. Naturally, the question of how .
- many elements are in a group is more interesting in the finite case.

-

Definition 35. The order of a group G, denoted o(G) or* G 1is 4
the number of elements in the group. .
.50
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In the case of finite groups a ﬁultiplicationltable may be made

to indicate all the possible products. Suppose the group G is defined

as G = {x7,Xy,+--,%,}. List the elemefits X]1+X2,°++,X, across the upper-

most row and down the farthest left column, as in Figqure 27. The ele-’

ment "appearing in the ith row and the jth column would be the element

X; * %3, which equals some x; in G, since G is a group, and is, thereg

fore, closed. We will make use of the multiplication table in some of -

theée examples. ' N .

- ~ »

Xk p
' *2
5{-
i % .

xj e

X , :
. n

- ;\Qﬁﬂ,- Figure 27 ’

’ S Examples

1. Suppose that the set G equals the elements 1 and -1, and the opera-
tion is multiplication. A table of the products is shown in Fig-

“ure 28.
’ Q{l -1
. 101 -1
r -1 -1 1
Figure 28

«
-

(i) G is closed, because every product is 1 or -1.° N

(1i) G is associative, because with multiplication it does not
.matter which way the elements are grouped.

{

(iii) G has an identity element, namely the element 1, b ause
1-1 =1 and (-1):1 = -1.

51
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(iv) Each element has an inverse; -in ‘fact, each element is its
own inverse; 1<l =1 and (-1)-(-1) = 1.

_ .Therefore, G is a group,’ and G is actually an abelian group since

. the erder of muItzplxcatxon does not matter. . , . e
2. let & be t.he integers, ie., Z=1{"",-2,-1,0,1,2. +++} and let the - e
" 'operation be addition. Z is-an abelian group. The sum of any two e
integers is another integer; therefore, € is closed. & is associa- \\ B
£iveyw because for a,b,c € Z, (a+b) + ¢ = a + (b+c). The'identity
,elemeht\;zef because any integer plus O is still the jsame integer.

The inve of an integer a is -a, since . a + (-a) = 0. For example,
the inverse of 3.,s -3, Finally, G is abelzan, since a + b = b + a.h'

3, If, the set was changed to be the natural numbers or ceunt;ng num-. °
vers, N = {1,2,3,-+-}, then, if the operation is again addition,
N is an abelian semigroup. It has no identity, because O€ N.
Also, since the negative integers are not included, there are no
inverses. If we consider 5€N, the inverse would have to be -5,
but -5¢N," - , | ' | |

_ 4. If we modify the set. of natural numbers*by adding the element O,
, then the set under consideration is G = {0,1,2,---}. Thls set is
an example of a commutatlve monoxd undex addltlon, s;nce 0 is the
" identity element

5. In considerxng the set of natural numbers, but ‘now with the opera- .
tion of subtraction, it may be observed that the set is not even
closed. . If, for example, we consider the natural numbers 5 and 9,
5 -9 = -4, but -4 is not a natural number. Thé reader's immediate

. reaction may b® to ask, suppose instead of the natural numbers) we
considered the integers with the operation of subtraction. We
still would not be able to get a group, because the associative
property does not hold. Fox'instance, if we consider 15, 8, 12,
noctice that (15 - 8) - 12 = 7 - 12 = =5, but 157~ (8 ~ 12)A 15 -~
(-4) = 19 and -5 # 19. Neither is there an identity elemeht. It \
is' true that, for example, 5 - 0 = 5; but 0 — 5 = -5 and -5 is not a
equal to 5. Recall that the identity property required that are =
a. Therefore, we have an example of a groupoid.

N

6. Perhaps your cur1051ty is aroused as to what would happen«ff we
looked at the integers together with the operation of multiplica-

?\\glen. Closure, associativity, and the existence of an identity,
nanely e = 1, are all complied with, however, 1 and -1 are the
‘only elements that have an inverse. If we consider 6 as an element
of the integers, the inverse of 6 is 1/6 since 6 - 1/6 = 1, but
1/6 is not an integer. This set is then a monoid under
multiplication.

1
¢
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7. If we would enlarge our set to the rational numbers and again
',  consider the ‘operation'of multiplication, we then may cobserve that

/' we have an abelian group. The rational numbers are the set ‘con-
' sisting of all fractions. A whole number is a special case of a
e . fraction, e.g., 3 = 3/1. Therefore, the integers are contained in

o the rational numbers. The only property in question would be the .
'  inverse, but with the inclusion of fractions in our set, the in-
el ' verse of a fraction is just its reciprocal which again is a frac-
: tion. The inverse of 3 is 1/3, the .inverse of 5/8 is 8/5, etc.

8. The next example is used to illustrate that for the same set G =

{e,a,b,c} (see Figure 29) we may indicate multlpllcation tables of
two distinct groups.

(i) . ' 1e a b c

Figure 29 ,

It is a group. Clearly there is closure, the identity is e, and the

U inverse of e is e, of a is a, of b is ¢, and of ¢ is b. _The assqgcia-
tivity requires verification,'leftlto the reader. For example
’ ax(b*c) = a*e = a and (a*b)*c = c*c = a; therefore, ax{(b*c) =

{(a*b) *c. Tpe other products of this type should be examined. -

‘

e

. : (ii) : e a b c

‘i - ;

Figure 30

Figqure 30 describes a group. 1In this example each element is its
own inverse. ‘

Y <«
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Example (i) is an example of a.cyclic group and a more de-
tailed discussion of cyclic gxopps will be given at the end of
the chapter. Example (ii) is usually referred to as the "4-group.”
The discussion of Pidhjet'd INRC grgup (Piaget & Inhelder, 1958)

. will be based on the "4~-group,” and will occur in the next chggtgr

10.

.as an applloat1en -of groups to psychology. N S

\ /"A

, SR F v£§~--

Consider a square, and observe that the center of the square 1S'J~;¢i,ﬁ”g
- the point at the intersection of the diagonals of the 'square. Let' °

the set G consist of the rotations of the square around its center
through 90°, 180°, 270°, and 360° in the clockwise direction. De-
note these rotations by Rgg°, Rygp®s R270°, R3g0°/ respectively.
Define A#B to be the rotation A followed by the rotation B. For
example, Rygge # Rpyp° = Rgge, because Rgs50° = Rgpe- ' The multipli-
cation table for G is given ip Figure 31. Notice that Rgeqe is

the identity rotation and thelinverse of any particular rotation

is that rxotation needed to complete a 360° rotation. G is a group

and if one compares Example 8{i) with this example with the corre-

spondence of e with Rygpos b with Rgpe, '@ with Rygge, and ¢ ‘'with
70°+ One sees that they are éessentially the same group. Notice

further that 90°, 180°,.270°, and 360° were chosen “for the square -

because these rotations leave the vertices :0x corners in the same °
positions. In the case of a triangle these invarlant rotations
would be 120°, 240°, and 360Q°.

A
¢

R

R 270°“R360°

90° R180°

90° 1R180° R270° Ris0° Rooo
R180° [F270° *360° Roo® Fiso®
Ry70° |R360° Rooe Rigo® Ra7o°

R360° |*e0°  Rigo° 32709 R360° ’

2

o Figure 31 ' ,
; 4

A related but more complicated example that hashgeomet:ic and visual
significance is that of the group of the symmetries of.a square.
Consider a square, and it may not be a bad idea to actually\&ée a
square piece of paper to aid in the verification. Impose a coordi-
nate system on the piece of paper with the origin at the intersec-
tion of the diagonals of the square and the sides of the square
parallel to the coordinate axes, . A sketch of the situation is
given in Figure 32. Let the set under consideration consist of
eight motions of the square. These motions are all rigid, i.e.,

the square is not in any way distorted or folded or squashed.

S 59
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Further, notice that each motion is such that the square always = °.

coincides with its initial position aftex any one of the motions.
' Let the,f;rst four motions be clockwise rotations of the square

through 90°; 180°, 270°, and 360°. Denote these motiens by

Rgoo, ngao, R27°°, and R360°' respectively. ‘ .”

T

A
¥

Figure 32 o \
Let X represent the reflection of the equare -around the x
A axls, and let Y represent the reflection of the square around
. its y axis. Let D] represent the reflection of the square around
".-the diagonal going from the upper left corner to the lower right
' corner. - Finally, let D be the reflection of the square arouhd
the dlagonal going from the lower left corner to the upper right
corner. Thérefore, G = {RQO +Rygp® rRp70>Rygge rX#¥,D1,D2}. De-
. ~ sy, .o fine AxB to mean perform motion X and then motion B on the square.
.+ :~ For example, Dl*RISO° would mean reflect the square around the
: diagonal going from the upper left to lower right and then rotate
through 180°. The résult in ‘this ease would be Dy. The completion
of the multiplication, taiT& may be greatly simplified by using a '
square piece of paper with the nufbers 1,2,3, and 4 in the corners
on both sides of the paper. Perform the 1nd1cated motions and

- determine what new mption is obtained. - From Table 2 it may be
. . verified that G _is a group, but net an abelaan group.-
. ' The identity element 1s Riyen®s and jalso observe that Rgye and

. ' R27Oo are each other's inverses. Otherwise the other six elements
are self inverses, i.e., Rfsoo =, R%soe = X2 = y2 = D2 = D% = R3gp0e <=
identity element. In general, g&oups of the symmetries of regular
(equal 51ded) n sided polygons are called dlhedral groups.

11. Let G be the colldction of all subsets, which is alsd often called
the power set, of some set S. Define an operation. * oﬁ‘G,_where
"A*B = (A - B)U(B - A), i.e., * is the symmetric difference, opera-
tion discussed in the first chapter. Recall that we proved .
A AB=B AA in Chapter 1, i.e., A, the symmegrlced%fference, is
commutative. The closure of * (or,A) is obvious. The identity

x . '
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element is the null or empty set, bevause, for every ACS, Axp =

(A - $)L($ - A) =AU = A. By the commutative property ¢*A

- . also equals A. The'inverse of any set A is. A itself, because .

K . a*a = (A - A)U(A -A) = ¢U¢ = .¢. The only property that re-

: " mains to be demonstrated is the associative property, i.e., that
o . for arbitrary sets A, B, and C in S, (A*B)*C.= A*(B*C). The-veri-
" -+ ficationigets guite messy, and requires more computational exper-

E tise than would be expected of the reader. Observe that (A*B)*C

;_5' # = [(A*B) - cJU[C - (A*B)] = [({(A - B)U (B - A)) - clvic -

. ((A-BU(B - A))] and, A*(B*C) = [A - (B*C)JU[(BxC) ~ A] =
Aa-((®-c)U(c-B))]Ul[((B~-cCU(C - B)) - A] and these two *
expressions must be proven to be the same. As a means of intuitive

* justification, but not an actual proof, the,probfem will be con- '
~sidered in terms of Venn diagrams in Figure 33. Therefore, we have
., an abelian group. This particmlar group will be used by Bart
(1971) in his discussion of Piaget's model of formal Operatioms,
and how that model may be generalized, which follows in the next
chapter. * - o | t

g

A*B

BaC A (BxC)

Figure 33
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~equal, i. e., there/ls only one 1dent1g§ ei@ment. If e is an Ldentlty

-inverse. ' ' AR
. . /

‘ . - : o
Before we begin to examine several useful consequences of the con-

cept group, a& small table is included reviewing the examples concern;ng
the integers and rational numbers with the operations of addition, sub-
traction, and multiplication. 'Table 3 indicates that a particular set
may be a group under one.operation but not another, or that a particu-
lar operation’ meoses a group structure on some sets but not on all
sets. : . : ‘

Consequences

. In thxs section we xnclude some‘ditect consequences of the defini- _
tion of a grqqp. v : : : ‘ N

»
-

. - . ) —_— -

Lemma. If G is a group, then the identity element is unique.

e
&

Pyoof: We must show that if there “&re two elements e and s such
that e*a = a*e = a and a*s = s*a = a for every af& G, then e and s are*

element then"e*a = a for-any a€ t s is an element of G, there-
fore, exs = s. 1If s is an: identlty elemént then a*s = a for any a€ G.

In particular, since e £G, (b*s = e. Thus, we have shown that exs = e .
and exs = s, from which we may conelude that e = s. . o

" -
. . Y .
", ,
s [N

Lemma. If G is a group,~ﬁﬂen every element a in G has a unique

-

- Proof: Suppose that'thére exist element a"l and b in G such that .
axa~l = a”lsa = e and axb ﬁQb*a = e, we must prove that a1l = b.'

a~l = a 1*e, because, any element comblnéErylth the didentity is

itself. Therefore, by sgbstltutlon, -1 = a- *(a*b), 51nce we have . 3

assumed atb = e. .By the associativity of », a”l = (a= lxa)#b = exb = b,

Hence, a~l = b and the dinvérse of a is unigue.

. ‘
. ¥ ‘ ® - ¢
K ) s

There are several other basic results that we state without proof. .
They may be in an introductory text in abstract algebra such as Her-
stein (1964), Dean (1966), or Burton (1965). 7 o

»

I

Lemma. (i) If G is a group, then for every: aﬁ&; g = (a'l)_l.

i e., “the inverse of the inverse itself is the element you began with.

a % (ii) If G is a group, then for any a,b€G, (asb) ™ =
b lxa~l, and if G is abelian, then (axb)~ 1l = a=lip-1,

L]
S

~

We conclude this section with a typical group theoretic eiercise.

Gy .
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- . Table 3 '
‘ a l ‘ Mswi&- ) ‘ 3 ‘r l
Set Operation | |[Closure tivity Identity Inverse Groupoid Semigroup Monoid Group Abelian
Integers + YES ~__VYES YES' YES YES YES YES  YES YES
Natural . _ - o |
numbgrs + YES YES NO NO YE& YES NO ' NO YES
4 s ’ . _
Natural _ . ' . .
numbexs + YES YES YES . NO YES YES YES NO YES
s*{a} '
Natural , | ¥
numbers - NO NO NO NO NO NO NO NO NO
¥ e
Integers - _YES NO /7~ No NO YES NO NO. KO NO
Integers . YES YES YES NO 'YES YES YES NO YES
Rationals . " YES YES YES YES YES YES YES  YES YES
‘<., . Groupoid * YES NO NO .NO YES NO.- NO NO - .
~:Semigroup * YES YES . NoO NO YES YES NO NO :\\
. Monoid e YES YES YES . WO YES YES YES  'NO i-
" Group * YES YES _YES YES . YES. YES YES  YES -
L@ N
h 4 -
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Theorem. If G is a gfoup, .satisfying the property that (as«b)‘ =
a2*b2‘for all a,b in G, then G is an abelian group.

. Proof: We must show that for every a,b&€G, arb = bxa, which would
- : establish that G is commutative. By hypothesis, aZs«b2 = (a*b)z, where
——--—the-operation is understood o be *. If a2p? = (ab)2, then since
— (ab)2 = (ab) (ab), we have-€2b2 = (ab)4ab). Upon multiplying both sides -
" -of the equality by a~l, we have a-la2b2 = a-l(ab){ab), or a~laabb =
(a~la)b(ab) by use of the associativity. Therefore, we obtain eabb =
eb(ab), or abb = bab, Next multiply on both sides by b~l, to obtain
abbb~1l = pabb-l, from which we conclude that abe = bae, or ab = ba,
i.e., G is abelian. ‘ - |

Subgroups
r : After we introduced the idea of a Sei, we followed it up with an
examination of subsets. We will analogously now introduce the idea of

a subgroup.

‘ Definition 36. A subset H of a group G, is said to be a subgroup -~
i of G, if H itself is a group under the same operation * that is defined
/. on G. ' . .

.

, | .
< , _ _ o . - '

-

Examples

1. Under addition we have shown that both the integers and rational
numbers are groups. Therefore, the fntegers and rationals could
be considered as H and G, respectively, in the above definition, -
and we may say that the integers are a subgroup of the rationals

" under addition. Notice that if the operation were'multiplicatiop,'A

‘the integers would not form a group, and thus would not bg“;;ﬁg-~-‘

subgroup. : . N Rt IAR 3
2. 1In our discussion of the square, we first. idered the set,
- {Rgp®, Rygp®s Rp70°, R3gp°} and proved it was a group. Next we

examined {Rgo", Rig0°s R270°, R3g0°, X, ¥, D3, Dz} and proved that
it too was a group. Hence, the set of rotations would be a sub-
group of the set of motions.

On first inspection it would appear that in order to prove that a
subset H of a group G is a subgroup, i.e., is actually a group itself,
it appears that the set H must be tested for the four basic properties.
Actually the situation is simpheswthan this. Since the associative
property holds for the larger set G it certainly holds fer H. There-
fore, the associativity doces not have to be verified. Two lemmas will
be stated that indicate what must ip actua%}ty be tested. T




Lemma. A subset H of a group G is a -subgroup of G if and only if,
(i) a,b€H imply that asb€H; and - | SN
(ii) A€H implies that.a L€ H.

By tombining (1) and (ii) the existence of the identity element *
may be demonstrated Suppose a€ H, then be (ii) a~l€H, but by §i) we
have a€ H and a~l€ H implies that a.a'l = ¢ is also in H. In the case’
‘of a group of finitec order, i.e., H has only f:mitely many members, the
-verification is even essxer.

[ A

_ Lemma. If G is a finite group, and ¥ is ‘a subset of G7 then\H is
.a subgroup if H is closed under the operation of G, 1 €4y if a,b€
then a*b EH.

“ s

Suppose we consider a group G, and G has subgroups ftand K. Th
question may be posed, is HMK a subgroup of G? The answer is yes bu
the questlon still remains, why? e . </

-

Theorem. If G is a group and H and K are subgroups of G, then
HNK is also a subgroup of G. ' : . )

suppose x and y are elements of HNK, we kiist show x*y € HNKX. The

t that x€EHNK implies x is an element of H and of K, similarly -
YEEH and y€ K. Because H and K are subgroups, x€ H and y€H imply
x*y€H, and x€K and vyE€K imply x*yeK, but x*y€ H and x*y€ K together .
imply, x*y€ HNK. Secondly, if x €HNK, we must show that x~l€ BNK.
X € HNK implies X &H and x€X, but the fact that H and K are subgroups
implies x~leH and x"lgK, from which deduce x -l¢ HNK.. Therefore,
- HNK-is a subgroup by the stated lemma. :

Procf: HNK ;s nonempty because e EHNK, since e€H and e€ K.
z

A useful result concernxng subgroups is called Lagrange s 'l‘heorem
for finite groups. .
s
o ( ‘ , \ i . -
" Lagrange's Theorem. If G is a finite group and H is a subgroup of
G, then the order of the group IG{ is a multiple of the orxder of the
 subgroup }zﬂ _ ’ ; : '

For example, if a group has eight elements, then there can be no
subgroup of three elements. Be cautious in applying the theorem. Just
because a group of eight elements has-a particular subset of four ele-
ments, it does not imply that this set is a subgroup. What the theorem
guarantees is that if H is a subgroup of G, then the number of €lements’

_ 61 8
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in H must divide the number of elements in G. 1In other words, this
theorem is a necessary, but not suffic1ent, condition for being a

sﬁbgroup. . S . o ..

S o GENERATORS

A cencept related t& the ideas ef gx:oups and subgroups is that ef
generators. It would be most desirable if the group could be produced
by ‘considering a subset of the elements éf the group in various
cambinations. -

L)
A\

’

Definition 37. "Let G -be a. gréup* and suppose 8 = {gl,---,gn} is
a sybset of G, such that all the elements in G may be produced-as
products involving only the elements in S, then we call the elements
of S the generators of G.

4

' : !
Definition 38. Let G be a group and suppese that there is'a single

generator a, i.e., G {alll o, l,--5-} or 1nnother words, for every
X€ G, there exists an integer n such that x = a = @a#a---#%a. G is written
: \ ' B n times ‘
.as G = (a), and G«is called a cyclic gropup with generator a.
Ncammg 3 o » o
o v, " Examples . s

v v

1. We have shown that G = {Rgoo,Rlsoo R270 'R360°}' i.e., the rota-
tions |of the square leaving the vertices fixed is a group,. This
is a cyclic group with generator Rgoe, because any other rotation
may be obtained by repeated §§pllcatlon of R9Q°' '

2. Consider: the set of even 1ntegers, i.e., G= {¢-.,-4,-2,0,2,4,...}
. with the operation of addition. It may easily be shown that G is.

a group. The set of even integers is a generator group. § = {2, -2},_
.~ where we mean that any element in G is a multiple of 2 or -2.

K
Definition 39. If G is a group, and a€G, then (a) = {al]i =

0,%¥1,----} and (a) is called a cyclic subgroup of G. (If there exists
.an element, a, such that G = (a), then G is a cyclic group.)

-

' Ly
Definition 40. IfG\is a group and a€ G, then the smallest posi-
tive integer X, such that aK = e is called the period of a.

N

a— i

¢ -
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Example

‘1. In the case where G = {Rg0®,R180°/R270°,R360°}, K = 4, because
 (Rgp°)? = Rgp°*Rgg°*Rgp®*Rgp® = R3g0° = e.
e

HOMOMORPHISMS AND ISOMORPHISMS

fn this sé2€§3h .we\will relate two groups by means of mappings be-
tween them. These mappings will indicate the similarities of sbructure
of the two groups. : -

)
«

Definition 41. A\homomorphlsm ¢ is a mapping from one group Gj
into another group G2, ‘such that for all a,b in G1, ¢{axb) = ¢(a)o¢(b),
where ®* is the operation for Gj and o is the operation for G2. If Gy
and G, are the same group then the operations * and o are the same.

R
o
-

v+ .. Examples

1. Suppose ¢ is a mapping yom G into G, defined by ¢(x) = 2x, and as-
sume addition is the o atjon involved, then ¢ is a homomorphism.
"This /s true because, for\g and y:in G, ¢(x+ty) = 2(x+y) = 2x + 2y =

Cex) + 9 (y). ‘ '

2. “'Suppose ¢ is a mapping from Gy into Gz, ‘and that Gl is the real num-
bers together with the operatdion addition and G, is the real numbers
together with the operation of multipllcatian. Define ¢ by ¢(x) =

X_ Then, ¢(x+y) = 2%X+Y = 2X.2Y = ¢(x)-¢(y). Therefore, ¢ is a

homomorphism. -

3. Sugpose ¢ is a mapping from G into Gy and G equals the integers,
and the operation under consideration is addition. Define ¢(x) =
x+1, then ¢ is not a homomorphism, because

?

: ¢ (x+y) = + 1, but

x +.y
3

$(x) + o(y) =x+1+y+1-= g +y + 2.

f

Qeflnltlon 42. A mapping ¢ from Gl into Gy, with G; and G2 belng

groups, is an isomorphism if - -

;é?:

-

* PR

5; is a homomorphism, i.e., ¢(a*b) $(a)o¢ (b) , where * and

¥ are the operations of Gl and G2 respegtively; and

(ii) ¢ is 1 - 1. That is, an isomorphism isal-1 homomorphism.
An automorphism is an isomorphism of G onto itself.

S~
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Definition 43. TWOo groups Gy and. G, are isomo¥phic if there exists
an isomorphism of G, onto Gy, i.e., there exists a mapping that is a
1 -1 and onto mapp}ng such that ¢(a*b) = ¢(a)o¢p (b), where * and o are
the respective operations for G; and G,.

It is important to realize what it means to say that two groups
are isomorphic. It does not mean that the two groups are equal or iden-
ticai They may be, but they don't have to be. It does, however, in-

" dicate t the two groups are structurally alike or parallel. To es-
‘tablish an' isomorphic relationship between a man and a computer does

not say that the computer Is the same as the man, but that there is a

1 = 1 correspondence between actlons of the man and simulated actions
of the machine. ; ~

In a poker game you are given a chip for every dollar you have;

therefore, there is a 1 -1 corrzspondence between the amount of chips
you have and the amount of money you have, but a chip is not the same
as a dollar. Try getting one chip's worth of gas at your local service
station.™ The key idea of speaking of isomorphic sets or groups is to
say that a structural parallelism exists between them. .

Example

1. If we let G = {R90°'R180°'R270°'R360°}f i.é., the rotations of a
square, and for G, consider your watch. Set it at 12 o'clock.
Define feur elements: changing the watch to 3 o'clock, 6 o'clock,
9 o'clock, 12 o'clock, and denote these changes be Ay, Ag, Rg,

Ay, respectively. We may find a 1 - 1 onto mapping between G, and
Gyt ¢(Rgge) = A3, ¢(Rygge) = Agr 0(Ry9ge) = RAg, ¢(R3ggo) = Byj.
Also, ¢(xx*xy) = $(x)od(y), e.qg., ¢(R90°*R180°).= ¢(R270°) = Ag =
Aj0Ag = ¢(R90°)°¢(RI$O°)' Therefore, G, and G, are isomorphic, but
certainly a square plece of paper is not a watch, yet the imposed
structures on Gy and G, are the same.

We close this section with a few descriptive lemmas concerning
homomorphisms. <

Lemma. If ¢ is a homomorphism for G; into G,, then ¢ maps the

identity element of G; into the identity element of G,, i.e., ¢(eli= @.

Proof: Let x G, then ¢({x)& = ¢{x), 'since € is the identity ele-
mept of Gy. But ¢(x) = ¢(xe), since e is the identity element of Gy.
Therefore, ¢(x)€ = ¢(xe), but ¢ being a homomorphism implies ¢(xe) =
¢(x)d(e). We thus have ¢(x)e = ¢(x)¢{e), from which we deduce that
¢{e) = €. We make use of what is called the cancellation law.

tay
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‘A valuable term related to a discussion of homomorpiisms is tha:\j>
of the kernel of the homomorphism. : '

Definition 44. The kernel of a homomorphism ¢, denoted ker¢ is
defined for a homomorphism ¢ from Gy into G5, to be the set of elements
in Gy that are mapped into the identity element of G,. ker¢ =
{x€Gy|¢(x) = &},

- .
Recall that an isomorphism is a 1 - 1 homcmorphism. An alternative
to proving that ¢ is 1 - 1 is the next lemma. ‘ _

Lemma. A homomorphism ¢ from Gi into G, is an isomorphism if and
‘only if the kernel of ¢ consists of the identity element of Gi alone,
i.e., kerd = {el.

"
ADDITIONAL IMPORTQFT GROUPS

We finish up this chapter with a discussion of a few very important
groups that deserve special mention. 1In chapter 3 we examined mappings.
In particular we investigated 1 - 1 mappings of a group, or actually at
that time we just spoke of a set, owto itself. A result we stated with-
out proof was that the composition of two 1 - 1 functions was a 1 - 17
mapping and similarly, the composition of two onto mappings was an onto
mapping. - Therefore, the composition of two 1 - 1 onto mappings would
be also 1 - 1 onto, i.e., composition of mappings is a closed operation.
Tt turns out that the domposition of mappings is associative as well.
There exists an identify mapping, namely f(x) = x, and this function
we could denote it i wbuld be the identity element for the set of 1 -1
onto mappings. Finally, a 1 - 1 onto mapping has an inverse function

" that is also a 1 - 1 onto mapping. “Therefore, the set of all 1 - 1
mappings of a set onto itself together with the operation of composi-
tion of functions is a group. It is not an abelian group, because if

. we return to the discussion of Chapter 3, it is clear that fog and gof
generally are different.

A closely related example concerns the set of automorphisms. An
automorphism was defined as an isomorphism of a group G onto itself.
Therefore, an automorphism is a 1 - 1 mapping of G onto G, such that
b(axb) = ¢(a)+p(b), where % is the operation for G. It turns out that
the set of automorphisms which are a subset of all 1 —ﬁ} onto mappings
are also a group.

‘ »
The last example is tied in with the discussion of 1 - 1 onto map-

pings. We will briefly examine permutation groups.
’ -

s 7]




Definition 45. Let S be a set, then a permutation, denoted by m,
is a 1 -~ 1 mapping of S onto itself. ' '

Therefore, a permutation is a mapping. The distinction between a
\ Permutation and an automorphism is that S does not have to be a group
for permutations. We have just shown that the set of all 1 ~ -1 mappings
" of a set onto itself is a group, i.e., the set of all permutations of
a set forms a group with the operation being composition. This group
is referred to as the symmetrié group. -

$ f . _
~ Definition 46. The symmetric group is the group formed by the
Set of all 1 - 1 mappings of’a set S mapped onto itself under the opera-
tion of composition. - -

L
¥
Pérmutation groups are most valuable when ‘the set under considera-
tion is finite. If s = {aj,--..,a,}, then the pexmutation 7 is described
by P | -

) ] : . o ( al a2 e @ - . an >
N : T infa,) n(a.) n(a,) )’
2
‘ 1 Jg_ n

i.e., the action of 7 on the element s in § is indicated in the second
row. We will g%ve-a detailed analysis of the symmetric group S. on

the three elements aj., a2, a3, which for convgnience we denote 9,2,3.
For example if 7 is such that 1 goes to 3, 2 goes to 2, and 3 goes to 1,

4 v

. then
| . <1 2 3) -
= . '
T"\321 ; -
Forﬂfﬂg<?;:ée elements 1,2,3 there are six possible permutations,
namely S '
S : SN

e « .

(1’2 3> <1 2,3> 12 3 12 3
Ny g3 2 Ny 33 3 \1 3 4 N\ 3

GG e

321
S~

=1
1l

3

We now will show that483 = {Wl,ﬂ2;33,ﬂ4,35,ﬂ6} is a group. The opera-
tion will be composition and will be performed as follows. If we compute

20 .
6? e | \\b
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123 123 :
TOTs = ( )( ), we start with the 1 in the left permutation.
132 231 Q

Below the 1 is another 1, so we say 1 goes to 1, and then go the second
permutation in the 1 sgot. Here, 1 goes to 2. So we have 1 » 1 - 1 » 2,
and therefore, 1 - 2. Next we start with the 2 in the left permutation,
2 » 3, so we go to the 3 in the right permutation, and see that 3 goes
to 1. Thergfore, 2 >3 » 3 » 1, or 2 goes to 1. Finally, we start at

3 in the left permutation. 3 - 2 and so we go to 2 in the right permu-
tation and 2 - 3. Therefore, 3 +2 + 2 > 3 or 3 > 3. Combining our
results we have

o, - (1 213> (1 2 3) =<1 2 3>= .

132 231 213

Another example would be

¢
<l 2 3)(1 2 3) (l 2 3)
TFOTT= = =Tf,
> 3 3127213 321 6

where 1 » 3 >3 >3, 2>1*1>2,and 3 *»2~*>2 > 1. ’

‘A complete table would look like the one in Tabless Notice that

123
ﬂl = ( ) is the identity, because it maps each element into itself.

123 ) , .
From the table it may now be verified that<g3 is a group. We have al-
ready proven that the set of all 1 - 1 onto mappihgs of a set onto‘iﬁF
self is'a group, but it would be interesting practice for the reader to
try to .verify some of the entries in Table 4. )

The terms transitive and regular permutation group appear fre-
gquently in the literature. ¥

pDefinition 47. A permutation group is said to be transitive if it
has the property of containing a permutation which replaces any given

_lettexr, or aj, by any other letter, i.e., each of the letters of the

group may be replaced by each of the other letters of the group.
Our group<g3 is an example of a transitive group.
Definition 48. A regular permutation group is a transitive group

whose order, or number of mappings in the group is equal to its degree
of elements or letters beingitransformed.

67
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. ' Table 4
‘ [ S L "4' s Tg >
)
"1 L T T
2 T2 M "y Tz Tg g
3 s 0 Ts | Ty Te Ty - Ty
T4 s e T2 s Ty Ty
s s T3 Mg Ty My T,
“6 ws ‘ﬂ4 “S T, L Ul -

We now have completed a fairly rich description of elementary groug
theory. The examples were included to 1llustrate the new definitions.
The prec151on and elegance of the theory hopefully impresses the reader.
If there would be any way that psycholagy could draw on this theory, it
would be most desirable. The next chapter includes an impressive list .
of examples of how group theory has already entered the domain of
psycholoqy

*
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CHAPTER 5 '

' THE APPLICATION OF GROUPS TO PSYCHOLOGY

There will not be any new mathematical terminology introduced in .,
~ this chapter. The chapte® is devoted to the description of various
applications of group theory in the behavioral sciences. —

. In order to understand Piaget's theory of formal operations (Piaget &
§§2e§$$r, 1958), the reader should be familiar with basic propositional

-1 &7 which is an area outside of the discussion in this book, and-the
INRC group, which is now within the realm @f our understanding. There
are four elements in this group, namely, ’ ;

(1) I, the identity operator, which when applied to any proposi-
' . tion leaves the proposition unaltered; )

(ii) N, the negation or inverse operator, which means one can
» return to the starting point by cancelling an operation
- already performed;

(iii) R, the reciprocal operator, which means that one may return |\
' to the starting point by compensating a difference, i.e.,
the product) of two reciprocal transformations is not the.
identity but an equivalence; and .

. - (iwv) C, the correlative operator which is the negation of the re-

ciprocal operator.

" The multiplication table in Table 5 is the same as that of the "4-
group” discussed in the preceding chapter ' E

\

Table 5

4 I N R C !
I I N R C
N N I C R -
R R C I N -
C ¢ R N I
- To fully appreciate the role of the INRC transformation would re-

quire a discussion of propositional logic and Boolean algebra, but we
can give an illustration of how the INRC group would be applied in the
task of establishing equilibrium for a balance.



i

Suppose that a balance is in equilibrium, we may cause disequi-
librium by changing one of the weights or altering the distance of one
of the weights from the fulcrum, or forming some combination of a
weight and distance change. Assume we replace a weight of five pounds
with a new weight of ten pounds. Then the negation or inverse of this
action would be to remove the ten-pound weight and replace it again with
the original five-pound ‘'weight. An example of a reciprocal operation .
would be to replace the weight on the other arm of the balance with a . -
weight of twice the original. This action compensates for the original

~action, but does xeturn the balance to equilibrium in the exact same

way as it originally was.  The correlate would be the negation of the
reciprocal transformation. ‘ :
’ 4

The most important ‘changes for Piaget are the negation and recipro-
cal transformatlons. They are the two forms of reversibility, i.e., the

‘original situation may be restored by either cancelling a performed opera-

tion or by compensating for the operation. An understanding of the role
of reversibility in Piagetian theory cannot be whole without an appreci-
ation of the underlying mathematical framework of his theory.

There are certain weaknesses and limitations in the Piagetian

logical-mathematical model for the stage of formal operations. Bart

(1971) points out that the INRC transformation group is inadequate in
explaining how certain logical propositions that are operations can be
transformed into other element operations. Therefore, Bart has formu-

- lated a generalization of this model. The generalization presupposes

an understanding of the ean algebraic structure of combinatorial

-thinking and the regular Boolean permutation group structwuze of

hypothetico~deductive thinking. The method of designating the formal ‘
transformations in the groups descriptive of formal thought is in terms
of the symmetric dlfference operation that we have already examined in
detail. : .

One weakness in Piaget's theory is that it does not distinguish the
level of cognitive complexity of one level of combinatorial ability Yrom
another level. Suppose Iy represents one individual's level, and Tx+1
another individual's level, then the second person would be at a higher
level. A type of mapping or transformation ¢ defined on x will be a
permutation, and will be called the symmetric difference transformation.
These transformations form a group, in fact a regular permutation group.
From this frameworkfa method of positive intersection generators is em-
ployed to indicate/ the primitive formal transformations prgper to a
level of formal thought.

The generalization model can describe any situation that Piaget'
INRC model can, and in addition those cases where the Piagetian approach
is inadequate. Alsc the generalization has qualitatively distinct levels
within the stage of formal operations.

-
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Group theory may be used to study the kinship of different primi-
‘tive societies. Boyd (1969) has written an article on this topic. He
offers a justification for applying groups to model marriage class sys-
tems. For example, iddone group Gy evolves into a second group Gs,
then Gy and|G,. are related through homomorphic images. The actual kin-
ship sys are génerated by means of grammars and the kinship system
may be clarified by componential analysis through the use gf Cartesian
products. ~Boyd points out that if the dimensions are gene ation and
sex, then (+1, female) would be someone's mother. His goal.is to use
a mathematical model to bring seemingly different problems |into a larger
all-encompassing theory. The theories of kinship grammars and componen-
tial analysis are related by a regular permutation group-

Boyd gives a study of the Arunta tribe, an Australian tribe that
has marriage classes. The Arunta make distinctioch between older and
younger siblings, and the sex of the speaker influences which kinship
term is required. The set of one word kinship terms are: a man's
father; a man's mother; a woman's father; a woman's mother; elder brother;
- elder sister; younger brother; younger sister; a man's child; a man's
son; a man's daughter; a woman's son; a woman's daughter; wife; and hus-
band. Boyd calls this sety. Any other relatives may be formed by com-
posing some of the above terms. ‘

- The Arunta tribe may be partitioned into eight marriage classes.

All the fathers of children in a particulaf class, themselves came from
th&Vsame class, and conversely all the children of men in a given class
belong to the same class. This relation of fatherhocod, F, describes a
permutation, and similarly the relation of motherhood, M, describes a
permutation. Other “§lations may be derived from M and F. The set of
all possible compositions of the permutations F and M generate a permu-
tation group. 1In fact, the group is a regular permutation group. From
this group the other kinship terms may be incorporated into this network.

For Boyd, the meaningful way to apply groups to psychology is to
study the permutation oy transformation groups of a structure onto it~
self, because it 1is the study of actions or transformations that' offer
insight into problems. o

Group theory has been applied to questions in perception. Hoff-
man (1966) demonstrated that perceptual constancies such as image loca-
tion in the field of view, size constancy, shape constancy, and others
may be described in terms of Lie groups of transformations. Our dis-
cussion of his articulation must df necessity be rather superficial,
since a Lie group is moregfhan a group. It is also a differential mani-
fold, and Lie theory is on a much higher plane than our elementary ex-
amination of groups. The interested reader would have to consult mathe-
matical textbooks on Lie theory.| Hoffman offers an explanation of how
a Lie theory of visual perceptioﬁ may be used to account for complemen-
tary after-images, i.e., th%.aftgr-effect of seen movement, and the
visual analog of relativistic length contraction.



Groups also have application in the theory of measurement. Luce
and Tukey (1963) provided a theory for interval measurement based on
the ordering of objects, so 'long as the contributions of at least two
distine{ factors are simultaneously considered. This theory is called
conjoint measurement. Krantz (1964) considers an approach in which an
equivalence relation may be defined in a Cartesian product in such a
way that the resulting set of equivalence classes form a commutative
group. Different group structures in the same product .set will be iso-~

- morphic, i.e., there exists an isomorphism of one gr?up onto the other.

Krantz introduces an ordered group, which is defined’as a group with a
partial ordering on it, such that for x,y€ G and x<{ vy, then for any

2 €G, x*z2<y#*z and z*x<{ zxy. Further, if £ is a linear or simple order-
ing, tRen G is a simply ordered group. An Archimedean simply ordered
group is defined to be a group where for x # e, e the identity element,
and y any element in G, there then exists an integer n such that XNy y,

He then establishes that an Archimedéan simply ordered group is
isomorphic to a subgroup of the real numbers under addition, which in
turn then lgads to interval scale measurement. '

‘ Cross-context matching is the situation where an observer states
that certain stimuli in one context match other stimuli in another con-
text. KXrantz (1968) points out that the changing from one context $ to
another T, describes a function he denotes by gg o, where gS'T(A) = B,
if A is a stimulus in context A and B is a stimulus in T. 1In perce%ﬁing

‘/something it is not enough to ask about the particular stimulus; the
spatial and temporal context must also be considered. If there exists
a. set of transformations of. the stimulus elements such that these map-
pings form A& semigroup, i.e., a closed associative set, and if the col-
lection of mappings are context-invariant, then the g are transfor-
mations of commutative groups, and knowledge of certalh context effects
may be utilized for predicting other context effects. What makes this
article fairly involved is that the discussion is going on at three
levels: ‘

(i) transformations of stimuli;

-

(ii) isomorphisms of transformation groups; and
{¢ii) ‘functions from'pairs of contexts Into the group of auto-
morphisms of a~transformation group. This third level ‘is

where the predictive power of context changes is richest.

In psychology it is crucial to be able to replicate a test or task,

"~ and for ﬁhis reason Levine's (1970) article on transférmations that

produce parallel curves or sets should be of intere&t. 1In stimulus gen-
eralizatﬁon studies, Thurstonian psychophysics, mental test theory, JND
scales, land Fechnerian psychophysics and utility theory, Levine points
out the value of comparison between two tests, two curves, etc. He

see5 the finding of all the functions that render a given set of
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functions parallel to be a major task. These functions are referred
to as scales. Any scale that renders a Set of scales parallel is called’
a solution for the set, and a set having'a solution is called a uniform
system. As an illustration, a set of two scales is a uniform system if
and only if the set is uncrossed, i.e., if F and G are the scales,

F(x) < G(x) for all x, or F(x) = G(x) for all x, or F(x) > G(x) for all
x. This is then generalized to any 'arbitrary number of scales, More
precisely, each scale may be thought of as a 1 = 1 continuousg mapping
of the real numbers onto themselves. The operation involved is composi- -
tion, and each set of scales is associated with a unique ‘group under
the operatlon of composxticn.

It turns out for example, that if two sets of scales. have the
same- assocxated group, they also have the same set of solutions render- -
ing them paral}el By an associated group, Levine means that for each |
pair of scales'F and G in a set of scalesf:;, the associated group of" f"
that set of Bcaies is the group generated by Flg. |

By following Levine's procedures, the psychologist can determine
whether his sets of curves may be rendered parallel or if he must modify -

“his approach. . .

-

A relatively new area in péychalogy where mathematics is used is

- the study of language and communicatjon. Chomsky (1963) has been con-‘

sidering the question of how is it that a person has the ability to
comprehend sentences that he has never heard, and on other occasions,

' provide appropriate novel responses. Chomsky describes the flow of

speech as a sequence of discrete ataoms that are concatenated, i.e.,

. xight after each other.

He defines a system, with L being the set of all finite sequences
that can be formed from the elements of some arbitrary finite set V.
He defines an operation~, that represents the result of concatenating
two sequences ¢ and x € L. " If ¢—~x = , where y€L, i.e., § is a new
finite sequence, then L is closed under ~. The operation — is also

. associative (¢—~x)—¢ = ¢ ~{x~y), provided that one carefully formu-

lates, what he means by associativity. Thé empty or null sequence is
the identity element, so L under ‘the operation-~ may be viewed as a
monoid or semigroup with an identity element.

Chonmsky gives an example of why associativity must be carefully
defined. Notice that "theyf&(are«~4flyingfﬂplanes))" has a different
meaning from "they-~{are~—~flying)~planes). This difficulty is
avoided by assuming that a language has-several distinct levels. Lower
levels are specified by how they relate to hlgher levels. It is neces-
sary then to have several concateénation systems. These systems are used
in the attempt to characterize a grammar in such a way that an exp11c1t
enumeratlon of grammatical sentences is possible.

[
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The process of coding is the mapping of one meonoid into another.
Chomsky illustrates this by considering one monoid to be all the strings
that can be formed from the characters of a finite alphabet A, and the
other monoid to be all the strings that can be formed by words in a
finite vocabulary. A code would be an isomorphism of U into a subset
of A. The theory is then extended to states, where a state of a coding :
system represents the memory at a given moment. The memory is augmented "

\

Arbib (1968) has edited a book on the algebraic theory of machines
and languages in which the discussion is in terms of semigroyps. In
one particular chapter, Assmus and Florentin (ibid.) explain machine
theory using semigroups as the fundamental connection between algebra
and \machines. The semigroup is used to form a standard version of any
machine, methods of decomposing semigroups describe parall€l decomposi-
tions of the machine into components, and also the definitions of irre-
ducible component machines are in terms of the decompositions of semi-
groups, and then these irreducible component machines are used to build
all other machines. If the state transition maps are permutations,
then a machine with only permutations as mappings has a semigroup that
is actually a group. The set of permutations are transitive, i.e., any
state can be reached from any other state.

with time.

An examination of the book clearly revéais that the parallel study
of machines and the theory of semigroups is necessary to have any real

_appreciation of the foundations of machine or automata, theory.

Y
o

Berlyne (1964) has a chapter on group structures and equilibrium
in his book. He begins by’ talking-about habit family structures, i.e.,
there exist parallel strands joined together at their beginnings and
ends, which indicate that each has the same stimuli situation, and each
led to the same response. He thern describes how the habit family hier-
archies in thinking must be more complex, and suggests that the study
of transformation groups may be helpful. He draws on the work of people
like Piaget and Poincaré.

For- example, a group has an inverse, which may either be a compen-

_sation or a cancellation. The importance of reversibility in thinking

and questions of equilibrium is of the utmost. The ability to consider
an action, and then determine whether it is appropriate or not, without
actually carrying it out, is fuyndamental to thinking. Any behavior sys-
tem possessing a group structure also would have a habit family hierarchy,
but Berlyne points out that the converse is not true. The system may

for instance have a groupoid, semigroup, or monoid structure.

In situations where group structures are relevant, a transitive
transformation group is the most desirable, because it always allows
the possibility to get from any one element to any ofher element by
means of one transformation. This offers great efficiency and economy

" of effort in assessing any situation. For this reason, the considera-

tion of transitive groups should be applied to questions of equilibrium.
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In a transitive group structure, no starting point is needed, because
no matter what situation a person encounters, the person has the abil-
ity to compensate or modify it.

Natapoff (19%0) illustrates how groups may be used in synnetrxc
choice experiments. He defines a symmetric choice experiment as an
experiment where the way the distribution of choices among alternatives.
that appear almost identical depends on those minor differences among
the alternatives. The seeming equivalence reflects the symmetry o
problem, while the differences indicate the restrictions or limitations
of the symmetry. Group theory is helpful in analyzing such'experiments.
N -

1f Sy,-+-,Sy are N similar alternatives, he calls them states, of
some fixed quantity that is to be symmetrically distributed,’ tHen £(8y)
will represent the fractional share of the quantity that is given to
the ith choice. 1If two states are the extent of the choices, then
f(sy) + f(sz) 1, w ere 1 represents the entlre quantzty under consid-
eration. In genera f(Sl) + ... + £(Sy) =

Suppose that all of,the states are essentially the same; the choose
one as a reference state and form a set G, G = {g1,---,gy}, where the
gy are transformations mapping the reference state intd each of the
original N states. Therefore, one of the g; w1ll be the identity
transformation.

The focus of the task is no longer on N states, but one reference.
state and a set of transfqrmaqgons. G reflects the symmetry of the set
of states, and the set of transformations g form a group. Actually,

- which state is used as the reference state is immaterial. The set G
"will always produce the N states S1,...,Sy, only the order for 9185, .
9284,.--9gNSy may be different. For example, g3Sj may be Sg and gzsj
may be Sy. . _
" From here Natapoff shows that every symmetric choice function may
. be reduced to a simpler type of function, from which greater amounts of
information may be extracted than if the bullt in symmetry of the ex-
periment was not taken advantage of. :

Hopefully, the.11-examples of the application of groups to psy—-
chology have illustrated the broad range of uses of groups already ln
the psychological literature. Yet the value of mathematical analysxs
has not been fully appreciated. 1If this chapter has served as a moti-
vatlon to begin a closer examination of the potential power of mathe-
matleal structures, then thls book has fulfilled its purpose.

4
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" are very few applications of rings and fields td psychology. This

.ax- a+ (-a) = (-a) + a = 0;

“ +- CHAPTER 6

RINGS AND FIELDS

This' chapter willwbe‘:elaﬁively short, begc wuse presently there . .
doés not tean that rings and fields will not be helpful in analyzing
psychological questions, but rather that their applicability has not
really been tested yet. In this chapter we will define the important
erminolagy and illustrate these definitions through fairly elementary

thematical examples. A few basic properties of rings and fields
w1;1 be proven to give the reade: a greater feeling of how these new
ccncepts may be used.

‘All the algebraic structures that will be introduced have the

common quality of having two operations. Remember, the group concept
hds only dne operation.. The ring is the most fundamental of the two-

‘operation structures.

\ . | : o
\

\ oo
B b

Definition 49. A ring R is a nonemptyf’set of elements ;with:two

‘operationsg defined on 1t, for convenience they are denoted by +. a.nd *
' such that : ' -~

-~ ’ N = -~

(i) For all a,b&R, a + b&R; - '

-~

(ii) For all a,b,cSR, a+ (b + c) = (a +b) + ¢c;

(ili) 'I‘here ‘exists an element O in R, such that a + g 0O +a=a

for” all ag& R;

\

(iv) For every a in R there LXlStS an element -a :Ln R, such that

. 2

: (v) For every a,b&R, a + b = Db + a; -
! ¢

"{vi) For every a,b€R, a-bg R,@ ¢
(vii) For all a,b,cE€R, a-(b-c) ‘= (a-b)-c;

(viii) For all a,b,c€R, a-(b‘-&- c) = a*b + a-c and (b + ¢)+a =
bra + cra. This law is called the distributive law.

In reading through these, eight conditions that must 'be satisfied
for a set to be a ring, perhaps the reader observed that this definition
may be- wrxtten more compactly.
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| > . Definition 50. A E&Eﬂ.R is\a nonempty set of elements with two
L operations, denoted by + and -, such that = . @% -
. " (iY.R'is an abelian-g;oup under +;- ‘ ! W | ‘

‘: ‘ . ' . N «! ! o
! {ii) R is a semigroup under -; and’ . :
{iii) R satlsfles the dlséglbutxve property, i. ey for all a, b,c€R,
e (b + c) ‘a:b + a-c and (b + c):a = b-a + c-a..

. h ‘

e

L]

° . The\ other algebralc structures that we will consider are bullt up
from a ring by ad additional prepertles. :

-. . ‘a " : ’ . ‘. ) ' . . . au ' f‘ . .
Definition 51. A ring with an identity R is a ring where.the opera-
tion ¢ has an 1dent1ty element,\l e.'~there exists an element l€LR such

w: “ ry

-that for evexy aE:R\ asl = 1l-a = . Therefore, R is a monpld under the
L operation -,. ‘ S .. " , . .
.»- . . ‘_ N T ': ) . -
o i ) ~ " ' o
ey . Defjnition 52. A commufative ring R is a ring for which the opera-
tion - 1g commutatiye, i.e., for every a,b&R, a-b = bra.
. \. !

. s o L

[ — Deflnlﬂlon 53 A r{ng is. called an integral domain if ‘it is a
SR commutatlve ring with an identity and satisfies the additional property,
i that if for a,b&€R we have a-b = O, then either a = 0 or b = 0 or both’
» a and b equal 0. | . ' : “k.
(3 . ’ . . . *‘Q I
B ‘.‘ o : . . ‘ , : ;
* * ' B u‘ .‘

This added property has a name.

LIPS o . . . > ' : , -
- - - ) ‘ . .t ) ' Co \ . f .
) , Definition 54. -In a™ptmmutative ring} if for a ¥ O there exists
¢ an element b # 0, suc¢h that*a:b = 0, then a is called a zero divisor.
“ ‘ ! ‘ o “ . ‘ ‘ .
.
Deﬁinltion 55. A lelsipn ring R is a ring where its nonzero ele-
ments form a group “under the operation % N K .
o _ . RN ) ( . \
& " The f:'mai‘ related definition is that of ‘a field.
. . $ -t ~ e N - . N

s
- - ¥
. .

g whosé nonzero elemgnts form.a
) or “in other words, a fxeld As

‘ Defipition 56 A field F is a T}
. commutatxve group under the operatlen .
Yo a ccmmuﬂethe dlvﬂllon Llng.,, -

. ;]
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Figure 34 in a sense indicates an orderlng among the related con-
cepts and méy aid in learning the new definitions. Arsxm;lar diagram
appeats in Dean (1966). In his figure a line from one definition A to
a deflnltlon B, higher on the figure, indicates that every system in A
is also a systim in B.

" Groups

Abelian Groups

T Rings | .
. - ‘. Commutative "
Rings with Rings '
Identity N
Division Integrel Docmains R
Rings '

Fields

Figure 34

Before we begin to look at some examples, it shoyld be pointed out
that the operations + and * do not have to be normal arithmetic addition
and multiplication. They may represent any pair of operations satisfy-
lng the 1ls§ of conditions.

5 oo . * -

- ) .

' 1
Q\ Examp es ~— .

l. Consider the 1ntegers w1th the operations of arlthmetlc addition

and multiplication. We have already proven that the integers form
& group under addition, in fact in abelian group.' The integers -are
closed under multiplication and are also associative and commutative
under multiplication and the distributive property holds. "There is ,
an identity element, namely 1, since any intéger times 1 is the same
integer. However, the integers with the exception of 1 ang -1 do
not- have their multiplicative inverses 1n the integers. F example,
the inverse of 5 is 1/5. Therefore, the integers with + and{- form
a commutative ring with identity element. If we now cbserve t
there are no zerc divisors in the integers, i.e., tHe only way the
product of two 1nE§ger§ can be zero is if at least one of them is
zero, then we may conclude that the integers are an integral domain.
2. The even *ntegers w1th the operatlans of addlélon and multlpllcatron
wollld be a commutative ring., The even integers are equal to {~--',
-4,-2,0,2,4, .+++}, and therefore, there ig no. multlpllcétxve ideritity.

T
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An example of a field would be the rational numbers with the opera-
tidns of addition and multiplication. The multiplicative identity
is 1, and the rationals have the multiplicative inverse of any ele-
ment. For example, the inverse of 9 would be 1/9, of 2/3 would be
3/2, etc. Therefore, the rationals form a coammutatiye group under
addition, a commutative group under multlpllcatlon, and clearly the
dlstrlbutive property holds. .

If the set under ccnsideration‘is'the set of functions from the
real numbers into the real numbers, and the operations are defined .

R, - o
“i

, ‘ (f-+gﬁ£x) = £(x} + g(x) |
(f-q) (x) = £(x) - gix), ‘ . .

then~
(i)'Closure ‘under + follows from the deflnltlon.

(ii) ((f + g) + h)(x) = (f + g)(X) + hix) = £(x) + g(x) + hg;)
' f({x) %« (g + h)(x) = (f + (g'+ h)) (x). Therefore, + is as-
sociative., . '
(iii) The identity element%for + is. the funetion that is identi-
cally 0, i.e., (£ + 0)(x) = £4x) + 0(x) = £(x).
« (iv) The lnverée of a funct1on f will be -f under addition, sgjpe
C(E 4 (=£))(x) = £(x) - £{x) = 0. W
- {v) The set of,fuqctions is abelian; since ?E'+ g) (x) = £x) +
g(x) =g(x) + £{x) = (g +.£){x).

(vi) Closure under - follows from the definitiorn.
' ' N , _ '
(vii) ‘similarly, the associativity of - follows. |
{(vidi) The distribqtive lawd ‘hold. We prove one of them, and the
other fdllows in the same manner. Q

I

(€. (g+h))(x) f(x) (g+é)lx) = f(x).-{g(x) # h(X)] = .
f(x)-g(x) + f(x) hix) =7(f.g + f h) (x).

herefore, the set of functions ‘from the feaI nhmbers into

the real numbers 1s a ring.
/ ~
There is an identlty element, namely the functlon identical to

| 1, since (f-1)(x) = £(x)-1(x) = £(x}. The commut1v1ty of - follows

immediately from the definition. The set of fundtion is npot an in-
tegral domain, because there exists a function mot equal to zero,
whose product is the zero function. For exampke, if £ is defined as-



_ ~ \
l if x 2 0 . 0if x 20
f(x ) = g; ifx <0 and g is defined by g(x) = é; ifx <0’ then\
the product function (f g)(x) - f(x)g{x) = 0 for all x. _ N

o
In the chapter on relations we owed that the relation, the re-

mainder‘upon division by 5, partitioned the integers up into five
classes, namely, [0] = {---- -10,~5,0,5,10,-y.-1}, [1] = {---.,=9,
-4,1,6,11,-..-}, [2] = {----,rs -3, 2 7,12, -2}, [3] = {eeee,~1,
-2,3,8,13,:v-.}, and [4] =*{..~.,-6,-1,4,9,14,-+--}, Let R=- .
[o] (13,02],[3],[41}; we will show that if [m] + [n] is defined L
to be the remainder of m + A upon division by 5, and ‘[m]-[n] is :
defined to be the . .remainder of . m-n upon dlvxsion by 5, then R is
a commutative ring with a unit element. In fact, we will be able
to show that R-is a field. That R 2s™a’ring is easily wverifiable
from the definitions of the operationg. For example, [0] would &0
sexve as the identity element in addition, The additive inverses '
of [0] would be [0}, of [L] would.be [4], of {2} would ke [3], of
[3] would be [2], and of [ uld be [1], since in each case the
sum is equal to-[0]. The distxibutive property may be- verzfied
rather easily. One illustratiqn of thé dis utive law is .
[2]1-¢[3] +[4)) = [2]-[7] = [2}-[2] = [4], and [2]-[3] +.[2]- [4] =
[6] + [8) = [1] + [3] = [4]. erefoxe, [2]- (~13] + [4]) = .
[2]-[3] + [2]-[4]. 1If we now as tha is a ring, we observe
that [1] serves as the multiplidative identity. “The commutativity
of - is.ah immediate consequence of the commutativity of the in- ’ g
tegers since_ for two integers n‘and m, n.m = m.n. Each element
has a multiplicatlve inverse; the inverse of 1] is [1], of [2]

is [3], of [3] is [2], and of {4] is [4], because -in each.case the &
product equals [1]. ¥hegyefore, ﬁki“\a field. As a means of re- , 3
viewing the example, we Z?clude product ‘tables for the two opera- . -

tions in Tables 6 and 7.

o | ‘ | : ) o — ‘-’ :,:;:
o - e e

\ ‘ Table 6

+ 4} o1 I 21, 31 I

ool JIoror 21 Csl (4]
| [
{

[ERTNN IS5 B - N &) B C)
[2] [21  [31 (4] (0]
[3] (33 (a1 [0l QI [2]
[4] [41+ [0} 1] [2] (3]




Table 7

1] (1] (21 [31 [4]
SRy 21 131 (4]
R € B €3 I ) RN 6§ I £

[31 || 3}« [1] 1[4 [2]

(4] || 141 131  [2] [1]

~

An interesting observation is that if we defined the relation to

. be the remainder upon division by 4, then there would have been

four classes [0], [1], [2], [3]. However, in this example, the
nonzero élements do not form a group under multlpllcaticn. There
is a zero divisor, namély [2], because [2]-[2] = [0] and [2] cer-
tainly is‘not the zero element. The multiplication table in
Table. 8. shows that [2] does nots have an inverse for the operation
of multipllcation. What are the differences between division by 4
and by 5 that cause such a drastic difference in the structures of
the two systems? As an exercise, the reader should dqgé similar
alysis. for division by 6 and 7 and then on the basis of these
results, try to generalize when a system will be a field. and when

it will not/i . Ry
» P . \.“‘f

Table 8 - o oy

BN 5 T T I £ 8 B -3 I -3 .
| 1y k21 mBr - .
e 2] [2] [0] [21 - |
B O R R E I S R 68

-

If we consider odur ‘set to consist of all the subsets of some given-

set, and let the two operations be the symmetric difference .and ‘
intersection, then we have a commutative ring with identity (Bur-
ton, 1965). We have 'already proven in the chapter 'on groups that .

.for the set of all subsets of some universal set,” the symmetric

difference yields a group structure. he interseétion operation

.is closed and associative. Therefore, if the distributive law

| holds, then we have a ring. ANM(BAC) = AN[(BR - C)U (C - B)] =

[AN(B~ C)JU [AN(C - B)]. By.an arqument analogous to those of
the first chapter, AM(B - C) = (ANB) - (ANC) and AN ({C - B) =
(ANC) - (ANB). Therefore, AN(BAC) = [AN(B -O)]JU[AN(C -B)] =
[(anB) - anc] U[aANC - (ANB)] = (ANB) A (ANC). Similarly,
that (BAC)NYA = (BMA) A (CMNA) may be démopstraQ\d. Therefore,

* ®
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‘without proef

" the ring 1s not the ring consisting of, O alone. .

P

our system is a ring. The ring is commutative because ANB =
BMA, and the ring also has an identity, namely the universal set,
since ANU = A, where U is the unlversal set.

-

An interesting problem that may be proven by an application of the

.distributive law is that arly number times zero is zero. If someone

asked you why a-0 = 0, you would probably say because anything times
zero als zero, and he would again say why, and suddenly you are in
the pidst of a vicious circle. Let us actually prove that a0 = 0.

-

Lemma. Let R be a ring, then for any a€R, 550 = 0.

Proof: Let a be any'element in R. If o is the identity element 3
under addition, then in particular O = 0 + 0. [Jherefore, a-0 = a(0 + 0)
a.0 + a-0. . But, since R is a group under addition, each element has an
inverse, and we may cancel out an a.0 from each side of the equatlon.
Therefore, 0 = a.0, or equlvalently a.0 = 0 ,

‘ - . _ Q@ t ‘

A rather important result that we hinted at in our discussion of

the various rings or fields formed on the basis of the relation defined

by the remainder upon division by a particular number w111 be stated
! .

I

-

RS
o

{ ’.

Theorem. A, flnlte lntegral domain, i.e., &n 1ntegral domain w1th a
finite number of;elements, is a fleld .
“\ . o ~
In the example based on division by 5, we had a field structure, -

- - -
.

' however, with division by 4; there were zero di@isors, hencg we dzé

not have an integral domaxn, and consequently we ‘did not have a field.
Notice that this thearem only ‘holds. for flnite sets. - ;o .

A third interesting_ questlon is would it be pc531ble in a, rxng to
have the identity element under addition' andinder multiplication be

the same element? The answer is no; they are distinct’ prevxded that
8

ot

Theorem. Let R be a ring w1th an ldentlty, and assume R # {0}, )
then the\elements 0 and 1 are distdnct. // LA

Proof: Let a be a nonzero @lement\of R, If l is the” 1dent1ty ele-
ment, then a.l £ a. We also have just Qroven that for a€ R, a«0 = 0.
Therefore, 0 is not p0551b1y equal to 1, unless a§ 0, but by assump-
tion’ a # 0. v - - "



In the discussion of groups we spoke of subgroups, and it is
" reasonable that in our examination of rings we would like to have
the corresPQndlng 1dea of a ‘subring.

Definition 57. ILet R be a ring and suppose that S is a subset of
" R, such that under the same operation, + and .-, that are used in R,
that S is 1tSelf a ring. then S is called a s ring.

It is not necessary to check all the properties of 'a ring, because
several of them are built into the ring structure. For example, if R
is assocxatlve, clearly a subset of R, namely S, is associative. It
turns out the crucial properties to check are essentlally three in

number. | : “-SE

/

Theorem. A nonempty subset S of a ring R is a subring if and only
if . | o ST
(i) For all a,b&sSs, a + b€s, wl}Ere + is the additive operation
of R; ‘ -

(ii) For every a€sS, -a is also an element of S, i.e., the addi-
tive inverse is in S for every element of S; and

(iii) For all a,b€S, a-b& S, where - is the muitiplicative opefatiq_n.

It is not necesséry ¢o have a separate condition that 0 bélon§ to
S because if a€ S, then by (11) -a also belongs to S. Now applylng (1),
since a and -a both belong to S, then a + (~a) = 0 also is in §.

- & - -

Examples

1. The even 'integers are a subring of the 1nteger$1under normal addi-
tion and multiplication. If we apply the previous theorem, we see
+hat the set of even integers is closed under addition, has an
additive inverse for every element, and is closed under multiplication.

2. The odd integers Wwould not be a subring because they are not clised

v under addition. For example, 3 and 5 are both odd integers, but

3 +5.= 8, and & is .not an odd 1nteger

"3. ‘Another example of a subring is the ring (or actually the field)
of rational numbers which has the integers as a.subring.

<
By -~ ‘ ' .
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We irntroduced the concept ©f a homomorphism in the discussion
on groups. We will now introduce a parallel idea for rlng theory.
The distinction being that the ring has two operations and the group
just one, so that the definition of homomorphlsm must 1nvolve both
operations.

-

Definition 58. Let R; and R, be two\rings- A mapping ¢ from Rl.

into R, is called a homomorphism if for all a,b&R

(1) ¢(a+b) = ¢(a) + ¢(b); and

(ii) ¢(a-b) = ¢(a) - ¢(b).

L

It must be stressed that the + and + in ﬁ and R2 need not neces-
sarily be the same operations. ° . \

Examples

1. The identity mapping ¢(x) = x from the real numbers onto the real
numbers is a ring homomorphlsm '

2

(1) ¢(a+b) = a+b =,6(a) + ¢(b); and ~ \
: IR e
- (1i) ¢(a-b) = a-b = ¢(a) - $(b). NEL e

‘e ~ -
2. The mapping ¢(x) = 5x, however, is not ‘& ring homomorphism. 1In Y
fact, ¢(x) = kx, where Xk is any number other than 1 is not a rxng
homomorphism: . B ——-f.

(1) ¢ (a+b) 5(a+b) = 5a + 5b = ¢(a) + ¢(b); however,
(ii) ¢(a-b) = 5a-b and ¢(a) - ¢(b) = (5a)-(5b), and clearly
S5a-b = 25a.b, or in other words ¢(a-b) # ¢{(a)-¢(b).

3. We have proven that the relation, the remainder upon division by 5,
defined a field consisting of the elements [0}, [1], [2], [3], and
[4].. If we consider the mapping ¢{(x) = [x], then ¢ is a ring

homomorphism:
]
(i) ¢(a+b) = [a+b] = [a] + [b] = ¢(a) + ¢(b); and
(ii) ¢(a-b).= [a-b] = [a] - [b] = ¢(a) - ¢ (b). 1

This example is an illustration of the difference between the
operations in one ring and another. The + in Ry is normal addi-
tion, while the + in R, is the addition of equivalence classes of .
numbers. For instance, 27 + 16 = 43, while [27] + [16] = [43] = [3]
with respect to the relation the remainder upon division by 5.

*+ 85



There are several related definitions that we now introduce.

N\ “ . : L
Definition 59: If ¢ is a homomorphism from ring R; into ring Rp.
then the kernel of ¢ is defined to be the set of all elements in Ry
such that ¢ applied to any of these elements yields the additive iden-
tity of Ry, i.e., if a is an element of the kernel, then ¢(a) = O.

Examples

' .
1. 1In the case of ¢(x) = x, the kernel consists of only the element.0,
since every ‘other element is mapped onto a nonzero value.

2. In the example ¢(x) = [x], where [x] represents the class déter-
. minéd by the remainder upon division of x by 5, the kernel consists
- of all multiples of 5. This is trQe, because any multiple of 5 is
‘ mapped into the class [0], and [0] is tfie additive identity for the
field consisting of [0}, [1], [2], [3], and [4].// ‘

N\ . .A -/
Definition 60. An isomorphism ¢ is a homomorphism of ring R, -
- into ring Ry such that ¢ satisfies the additional condition of'be}ng
al-1mapping. o

S 1f we carry the analegy of rings tc groups one step further we
may now define when two rings.are isomorphic.

- - Definition 61. Rings R; and R, are isomorphic is there exists an
isomorphism of R; onto Rz, i.e., there is a 1 .~ 1 mapping from R; onto
R, that satisfies '

6 (a)+¢ (b); and

(1) ¢(a+b) .

]

(i1) ¢(a-b) $(a)-¢(b).

-~

S

‘The overall discussion of rings and fields was not as deep as that
of groups, the reason being that the chapter on groups could be followed
up by a rich collection of explanhatory examples from the behavioral sci-

© ences. Unfortunately, 'little work has been done in psychology that uses
rings and fields. Perhaps the difficulty is that rings and fields re-
quire two operations and in addition these operatjons® are. interrelated .
by the distributive properties. It, therefore, stands to reason that
any behavioral system that may be described by a ring.or ¥ield structure
must be quite involved. Only after the.fuil’potential of group theory
S is realized in the behavioral sciences will we really be able to pass

3

judgment as to the applibative value of rings and fields. /

“

2 \3-



CHAPTER 7

o | VECTGR SPACES AND LINEAR TRANSFORMATIONS

N

LY

In this chapter we introduce another algebraic system. A vector
space will have structural similarities to the other systems that we
have examined in preceding chapters, but it differs from the other sys-
tems in that it has an operation that is defined with'respect to a field
whose elements sexve as operators on the vector space.

The value of particular vector spaces in statxstxcal and measure-.
ment analyses of psychologlcal~questlons has been widely recognlzed
as may be indicated by the fact that many graduate psycholodgy depart-
.ments required s;udents to have training in statistics and‘measurement.
.+ In these classes the students learn techniques and methods that are
‘. based on vector space thquXL The examination Qf vector spaees will be
in two parts. The first chapter introduces the concept of a vactor -
space, offers examples of vector spaces, and then includes a discussion
of linear combinations, linear independence and dependence, and bases,
that serve in a sense as the building blocks, structurally speaking, of
a vector space. A detailed study of linear transformations follows, in-
‘which, among'other things, it is shown that the set of linear transfor-
mations is itself a vector space.

The second chapter is directed at the concept of a matrix. The
matrix is an excellent concept to conclude the book with, because it N
will be proved that the set of matrices may be used in defining a group,
or a ring, or a vector space, or under certain special conditions, in
defining a field. This will serve as a review of the key structures
intreduced in the book. Matrices also are valuable to discuss because
they have a wide range of applications outside of mathematics. °

'
*

We now begin the examination of vector spaces by giving a defini:;;\-‘/
tion of a vector space. .

b }
. *
e

‘ Definition 62. A nonempty set.V is called a vector space over
. field, F, if V under the operation + satisfies the following conditions: -

(i) For every v,wE€V, viw is also an element of V, i.e., V 'is
closed under +;

(ii) For every u,v,w in V, (u+v)“i w=au + (viw), i.e., V is
associative under +; -

(iii) There exists an element O in V such that for every v€ V,
v+0 = v, i.e., there exists an additive identity in V; S




{iv) For every &Ev, there exists an element =v in V such that
v#(-v) = 0, i.e., each element in V has its additive inverse,
in V; and '

.(v) For every v,wEV, viw = w+v, i.e., V is commutative under +.
In addition to (i) through {v), there is defined for every A€ F and
v € V, an element Av belong;Pg to V that satlsfxes the followlng four
‘conditions: . j :

(vi) For every AEF, vE€V, WEV, A(viw) = Av + Aw;

L

‘ '(vii) For every A€F, S_EF., vEV, (M8)v = v + Sv s
(viii) For every A€ F, §€F, ~vaV, A{(Sv) = {Ad)v; and

- (ix) For the multiplicative identity of F, denote it by 1, and .,
-_ foranyvev lv=’v. - .

A Few 1nstruct;ve remarks about the deflnitlon of a vector space
may prove helpful.” Conditions (i) through (v) are equivalent to saying
that V under the/éperatxon + is an abelian group. - Conditions (wi)
through (ix) r;igte the vector space to a particular field, and to em-

. phasize the connection between the set of elements V, referred to as a
vector space, &nd the partlcular field, V is often called a vector
' space over a field, rather than just a vector space. The operatxon
joining the elements of V and those of F is often referred to as the
, operation of séalar multiplication. A'convention that will be adhered
~to in’'this book is to use Greek letters such as A, 8, §, to represent
" elements in the field. This should reduce the possible confusion of

* whether a given element is to be considered an element of ¥, or of F. L
. ] L 9 .

o
-

Examples
1. If we consider V to be the set of all ordered pairs of real numbers, |
i.e., all pOlné§ in the plane,,and take the field F to be the real
numbers, then We may show that V is a vector space of F. We define
the addition to be, for a,b,c,d real numbers, {a,b) + (c,d) =
(a+c, b+d), i.e., we are defining the operation of addition of or-
. dered pairxs in terms of ‘the sums of the'individua} components.
~ Notlce, therefore, that the plus sign on the left and right hand
‘ side of the equality has a different fiéaning. Scalar multiplication
is defined in the following manner. For a,b real numbers and A a
real number, A(a,b) = (Aa, Ab), or in other words, the scalar mul-
tiple of an crdqred pa;r is the multiple of each coordihate. The

verification that V is a vector space is a simple one. -~

[

. (i) (a,b) + (c,d) (a+c' b+d) , wthh is another po:.nt in the

plane. There‘fore, we have closure. } : ¥
| . ¢ J *s L3 . . - . . :'
Q . ' o v E ' '
EMC ’0 : - < e ‘F o ' l ~ ' L"
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(ii) [(a,b) + (c,4)] + (¢,f) = (a.h) + [{c,d) + (e,f)], because
s of the underlylng associgtiviity of the real numbers.

(iii)lmhe -identity element.:s the q;dered pair (0,0).

. (iv) The a&ditive inverse of (a, b) is (-a,-b), because (a,b) +
R . {(-a,-b) = (0,0). . . B ‘ . -

Lt © i~

' ' (v) The commutative property is a consequence of the commuta-
tivity of the real numbers.

’ _

(vi) A{(a,b) + (c,d)] = A(a+c “hid) = A (at+c), A(bid)) =

(Aa+ic, Ab+Ad). = (Aa,Ab) + (Ac, Ad) = A{a,b) + A(c,d).

(vii) (A+8) (a,b) = ((A+8)a, (\#8)b) = (Aa # a, Ab + 6B) =

‘ {(Aa,Ab) + (8a,db) = A(a. ) + 8(a,b). * o
Lot i) (&) (a,b) = (A8a,A8b) = A(sa, 6b) = () (8) (a,b). R
(ix) 1(a,b) = (la, 1b) = (-a,';),.- " ﬂ | ‘_ o
Therefore,'v is a vectef”spaee; . . ‘ ‘ o T h

2. For those readers familiar with vectors, (a D) would correspond to
the vector with x component a and Y, component b, emanating from the

- ofigin. Therefore, the addition of “(a,b) and {(c,d) is actually the
operation of vector addition. Scalar multiplication is the same as

miltiplying a Vector by a scalar. This is indicated graphically in B

Figure 35. Anyone who has taken coursges in physics must realize
the importance of vectors in physics.

-
. - . 2{a,b)
e (c,d) (a+c,b+d) . &
: ‘ ‘ N TN — o (a 'b)
(a,b) )

. -{a,b)

< . .
' . Figure 35
‘ *
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7..we need to only prove that the additive inverse also belongs to S, in

L

3. Another example of a vector space is the set of all ordered triples
of real numbers; i.e., all points in 3-dimensional space, with the
operations, (a,b,c) + (d,e,f) = (a+d, b+e, c+f) and Af{a,b,c) =
(Aa, Ab, Ac). Three dimensional space is precisely the world we
are a part of. The verification is identical to that in example 1.

4. If we consider the set of functions from the real numbers into the,

real numbers to be V and define addition by (f+g) (x) = € (x) {x),
for any real number x, then V is an abelian group under +.£f§;qggﬁh.
already shown this in an earlier example on groups. The operat4on

of scalar multiplication is defined by (Af) (x) = A(f(x)), where A is

an element of the fi2ld of real numbers. That properties (vi) through
. (ix) of a vector space hold is simple enough to show.

5. An interesting way of defining a vector space is\pyrégnsidering two
fields F) and Fp, where Fy is a subfield of Fj. Then F; is a vector
space over Fp. Clearly, F1 is' a group under addition if Fj is a
field. If scalar multiplication is taken to be multiplication in
F1, then the product of an element in Fp and in Fj is certainly. in

- F1 because F2 is a subfield of Fj, 'and further multiplication in
F1 is closed, Property (vi) and (vii) correspond to the distrilg~ *
tive laws in the field, (viii) to the associative property for
. multiplication, and (ix) to the existepce of a multiﬁ}icative‘iden—
tity in a field. 3 :

After introducing*éoncepts such as a group or a ring, we followed ;‘
by defining a suhgroqﬁ/and subring. We have a corresponding term in
the .algebraic syste?/called a vector space. ,
_ , , -

‘. / ‘ - ) ,
Definition 63. A subspace S of a vector space V over field F is a

subset of V, that itself is a vector space unde®™%he operations of V. .

In actuality it is only necessary. td prove that S is closed under
addition and that for A&F and ve€ S, AvE€S. The other properties of a .
vector space are consequehces of these. TFor example, (vi) through (viii)

- hold in S because they already hold in the larger|set V. Similarly,
{(ix) holds because we are considering the same field F, and, thus, the
same .multiplicative identity. Further, if § is closed under addition;

-‘order to prove that S is a subgroup of V under additiom. But, if veg S,
then -v = (-1)v is also.an element of S by the scalar multiplication.
Therefore, we‘$AVe an alﬁérnative way of.proving a set to be a subspace,,

k)

«

© ~ Theorem. S is a.subspace of V a vector space if § is a subset of

hx“md . “ . . . v . .

h L]

.
3
R

. '
w 4
, ' 'fgr FWES, viw€S; and '
. " . . o R . '
. (11) if €S z;‘ﬁd,kez“ imply~Av € S.
] N e Q .o Y ( ~ <
L] N .: . , -~ ¢ .
A Uy 5T -
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: Example o ' \

1. We proved that the set of all functions from the real numbers into
the real numbers may be defined to be a vector space over the real
numbers. If we take a subset, namely all the continuous functions

' o from the real numbers into the real numbers, then we have a sub-
space. This follows because the sum of two continuous fuhctions
is a continuous function, which means additive closure. Scalar
miltiplication of a continuous function is again a continuous
function. :

we shift gearé a bit now and rather than discussing the structure
called a vector spacé, try to describe how this structure is built up.

. " In a vector space, a series of elements'are often added, and by
the closure property these sums yield new elements. Sums of this type
have a particular name. . . ,‘ T
¢ Definition 64. Let vy,--+,VN be elements of @ vector space V and

‘suppqu A1 AN belong to the gield'F, then an element Ajvy+ipvaot
= +ANVN is called a linear combination of vy ,¥p,cr VN~

3 i

-

If we form all the possible combinations of the elements
vl,vz,---,vN,mwe form a new .set.

N -
«

ggfinition 65.?5§f vgfvz,-s—,vn are elemeéts of a vector space V,
then the linear spar™ of vl,---,vN:is the: set of all possible linear.
combinations of wvq,: =, Vy- If {vl,...,vﬁ} is. such that its span ex-
hausts all the vector space V, i.e., every element in V is expressible
a@s a linear .combination of vi,**-,va§then {yl.--~,vn}“sgans.v.‘

*

' ‘ 'QELja\\«f*\~\3
if we can find a subset of Vv that spans V, then we are able to

describe all of V by means of the information gained from a subset of
V. This is certainly economical in terms Of time and effort in study-

.

ing the set V. But, we are not content at this even; we are greedy
enough to ask if we can £ind an'even smaller set that will give us as
much information. Perhaps there is still some built-in redundancy of
information. Keep in mind that the question we are asking is really
~the one we are posing in cognition. How does one utilize what he knows
in, learning something new? “We will offer an analysis of cognition in
a later section. { \\ )
" STt : B ) T
. As a step inm the direction of answering whether there is-still re—
dundancy in tha‘informatién Wg‘leaﬁh from a ¢panning set, we introduce
the important concepts of llhe§r independence and dependence.

- ~

) . R

3.
J
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. -+ Definition 66. A set vy, v2,°+-,vy in a secter gpace V is said '

to be linearly dependent if there exist elements Ay,°:-,Ay in the ' «

field F, some of which are not zero, such that A1v1+A2v2+---+ANvN
Definition 67. A set vy,--,vy in a vector space V is said to be =
~linearly independent if they are. not linearly dependent or ‘equivalently
if for Al,Az,--c'AN in the field F, Alvl+---+A ™ Q'lmplles that . . 4
’Almlzza.onknﬂo- . o d . . . . )‘»
We will state- a number of ‘theorems that show how independence and - S
dependence of a set of vectors reveal informition about the structure

of a fecter space, but first we lnclude a few examples to clarlfy the j'-ffﬁfi
stract sounding defxnitions. . o o] ',;nha
~Examples v . o R

. {, . -
1. We have proveﬁ\that the set of all ordered pairs may be’ mqﬁe ;nte é‘v
vettor space. Suppose vy = (1,0) and vy, = (0,1), we wlll show that
- vy and v, are linearly independent. Let Ay and X, be real numbers,
-andsupposeA + Av, =0, i.e., A (10)+A2(01)s (A1,0) +
v (0,23) = % } = (0 D), since (0,0) is the zero element.  There—
. fore, if (Al,Az) =.(0,0), we must have A; = A, = 0O, wh;eh by deflni-
. tion means that v, and v, are llnearly independent. ;1 ﬁ}l :
] - | s S
) 2. Suppose Vl = (2,5), vo = (1,-2) and vy =, (4,4), and 1et xlifxz, ‘
_ and i; be real numbers. If A v +i,v, +Aywe = 0, or equivalently,
€§> g) +. A (1,-2) + A (4 4) = %0 o), then (ZAl,SA )+ (A ~2A ) +
| (%A 4Ag) = ?(0,0), and’finally, (2A1+A2+4A3, 5Ay- ~2% +4A3) = (050).
., Notlce that if for example, Ay = 4, Ay = 4 and A5 =‘-3 ‘we have
. that (2Al+k +4A3 SAl 2A +4A,) = (8 + 4 -1 20 -8 =12)'= (0,0),
A but this means that there exlst X;y,3,45 nqt all zero, 'such that
‘Klvl+A2v2+A3v3 = 0. Therefore, VYo and V3 are llnearly depenqent

]
. . -

We give the following theorems without preof but we want some of

these results to be at the reader’ s dlsposal. ‘ - .

‘Theerem. A set VieVo,© -e,vN i’ a vector space V is llnearly de-
pendent if any one ef the follow1ng condxtlons is met:

»
+

(i) The set includes the zero Vector;
(ii) The set contains & nonempty Subset thet ig llnearly depen-

. dent or , _«/ e
! N :

!

. _ {iii) There exists at least one element, say vl, that is exprEssx-
- ble as a linear combination of the remaining elements.

+ ¢ : B

A ' ‘ - S ' \ *
| | 92 S .
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‘tion‘and spanning set, and,then the<§dea of independence and dependence.

from some subset of the space. But ;

..
Qv
RS

We do not include any proofs, but;phg*reader is invited to con- .
vince himself that:these statements g&%”tkue. : For instance, suppose : .
one of the elements, say vy is the'zérq éleme#t‘ Then it is possible '
to find a linear combination of vy,€<:,vy that equals zero, but has at
least one A not equal to zero. An’obvious choice would be AViHe ..+ .
1vi+...+Anvy = O. "Since vi = 0, any nonzero' \; may be selected, be- ’
cause whatever value is chosen foqﬁki, Ajvy = é. . Thus, it is not )
necessarily the case-that Ay = A3 = --- = Ay = 0. Therefore, ) o Y
Vireto VY areé linearly dependent. ’

<

i 1

\

Theorem. If a set Viet® VN of elements in a vector space V over
F is- linearly independent, then every 1§hear combination of vi,***,Vy
has a unique representation of the formii,vy+e--+AgVy.
’ : ‘ o

» - . ’ )‘\'« '
.It may be proved that if the repggsentation,were assumed to be not
unique, then the independence of “l'fﬂS'VN would be contradicted.
' | ~ 5 _
v, . .
We have introduced two new concapts, the idea of a linear combina-

ing for the entire vector'space
he question remained as to whether -

3 N

A spanning set was capable’ of accoun

an even smaller’'set could be foundjghat still spanned all of the vector .

space V. The examination of lifieay’ independence offered a way to remove -
redundancy or duplication. If the set.was dependent, then certain ele-
ments were expressible as linear qdmbinations of the others, so in ef-

- fect these elements offer no infp#@ation that could net have been ob-

tained by other mgans without theh; It would be wonderful if a set

could be found that spans jall of ¥ and at the same time is as small as ‘
possible in terms of the nuymber of' elements in it. Well,.such a set . s
exists, and is called a bass. '

r

o -

! -
.

\

befinikion 68. A vector space V is of finite dimension 1if it has .’

a épanning'set with a fihite'number of elements? _ - .
. Y _

3 "
. 1
Definition 69. A subset B ¢f a vector_space V of finite
sion is called a basis for V if B-spans all. of. v and B is a X

independent set. S

.~

\ ' Examples oo
1. We earlier proved that‘vl =‘{&,Q) and ) Wgs‘é{kinearly L
Wting of vy,v; a§§o o

Vi

b

. ' independent set in the plane.: The set co
spans the plane, since for &ny point {x,y)
x(1,0) + v(0,1). Theréfore, (1,0) and (¢,
plane. : ’



. 2. As you might gquess (1,0, G) (0,1 o), and (0,0,1) form a basis for

\ - 'three-éimensienal space. " The set consxstlng of (6,0,0), (0,-5,0),
- and (0,0,1/2) would be, another basis for three-dimensional space.

' A particular vectdr space V may, have moye than one basis, but any

two bases for V must have the number of vectors.

‘Definition 70. The nﬁl :
space V is called the i sién of V.

. set for a.vegtor eee V A smaller set of minimm size that still spans
~ vi: This set" is the basis, or perhaps better stated a basis for V.
m/

- 4

. 'An intes sting applxcatlon of these tems is in the area of eegnf;
stian. Sup e that there is a set of information from some subject

matter tiat must be learned. At first the student has no idea of which L l

f‘fs are.- the relevant and irrelevant dimensions relating to the /task. He

‘. s has';’certaln body of knowledge that he draws from in various cembxna-

o e’- ¥is to learn individual items. As he gains a greater understandinq
.~ of the task he is considering, he begins to integrate qhe learning of

‘ 1ndivxdua1 items into a more cohesive and structured roach. By L

- learning a specific rule, he may ‘be able to master an’entire class of .

items without mastering each 1tem individually. The//goal of learning

a particular subject matter may "then be described as the precess of

in the given area, but at the same time free of any unnecessary everlap
or redundancy. , ‘ o L 4 <

One of the most important concepts that we have‘exemined in pfevious
chapters is that of a homomorphism. There ris an analogous cencept for
vector spaces, but it is called a linear transgormatlon.

a

~

* Definition 71. Let V and W be vector spaces'-ovér-a field ¥, then
a mapping T from V into W is called a lineay transformatxon if

*

(i} for vl,vzélv, T(vl+v2) T(vl) + T(vzl;;and(f”
Y
(ii) for*vevVv and )«EF, 'I‘()«v) = )«’1"(“\()'.' o E _ 3

We will denote the set of all lxnear transformatlons frem V into
W by LT (V,W).
| N

)

’ ) ,Exampiesﬂ
’L
1. An obvious /exa,mple is lf V‘ = W and T is defined by T(x) = 5x, then

-

-

-

(iiT.T Av) S(Av) A(Sy) = Xt -

2 . -
A S p

tending towards a cognitive basis capable of understanding- any. questieq,:/



. 2. B more involved example requires us?ﬁb make a few assumptionS.
let the field be the real nimbers and let F[x] denote the set of
all polynomials £, where £ A0+Alxﬁ§%x2+---+>\k , and the A's are

A}

. real numbers. It may be s that Fx] is a vector space. Der
* fine an operator D on f, such that -Bf ﬂAA1+2A2x+m--+kAkgk'1. For

8 .- 7 those readers who have had an intradiictory calqulus course, you
. might realize that D is the derivative. We will verify that D
% is a linear transformation. If f3¥ AO+A1x+A2x2+...tAk and g =
L +d x+8ox%+.. . +8kxK, then DEf = AjF2hpx+. . .+kAxk~1 ‘and’ Dg-=
, 81¥28ox+. . . #k8yxk=1, so Df + Dg =2(A1+8y) + 2(Ag#85)% + <-- 4
k (A +8; ) xk"1. “Onthe other handyf+g = (Ag+Sg) + (g#8y)x + o +
(Aj+8,)x", which implies that D(f¥g) = (A1+87) + 2(AzH+83) 4o
k(kﬁiﬁk)xk’l. Therefore, d(f+g)= Df + Dg, and similarly it may

P o be demonstrated that d(3f) = 8(DE). *
: ‘ ' Ao ‘
> An interesting point about the set of all linear transformations

from V into W, where V and W are vector spaces, is that LT(V,W) is it-
. ‘self a vector space. = g - | -
| Theorem. Let V and W be vector spaces over a field F, then ¢
3LT(V,wl‘is.a vector space over F, if the operations are defined by
, ‘ . - {i) for §,T€ LT(V,W), (S+T) (V) = S(v) + T(v), where v€ V; and
- Y (ii) for S€ LR(V,W), (AS)(v} = A(S(v)), where A€F and veV.

s .

P ‘ 'f +  We will not dgive a detailed prqef, but will sketch some of the im-
portant arguments. In order to prove that LT(V,W). is a vector space,
we must show that if S and T belong to LT(V,W), then S+T also is an ele-
ment. In other words, it is necéssary to prove that (S+T) {vi+va) &=
(8+T) (v1) + (S+T) (vy) and that (S+T) (Av) = A (8+4T) (v). This would es-.
/f/ tablish closure. The remaining properties with respect to the operation’
of{gddition are rather elementary. The only more complicated step re-
",. maining is to prove that if S Belon&k to LT(V,W), then XS is also in
vt LT(V,W). In other words, AS(vi+vy) = AS(vi) + 'AS(vy) and AS(&v) =
§(AS) (V). o a
v ’
One of the most impressive qualities of algebraic systems is how
* " they all are nicely interconnected. Each structure builds upon the
others. We have defined vector spacels, and now have just demonstrated .
that the set of linear transformations from one vector space VvV into
another W is ‘itself a vector space. If the vector spaces V and W are '
the same, i.e., V = W, then a new ‘operation between linear transforma-
tions may be introduced, namely the préduct of two linear transfoymations
ST. The product trénsﬁormation ST is another linear transformation.
Therefore, LT(V,V) has both an addition and a multiplicat/ion operation.
If ypu are thinking "Could LT(V,V) be made into a ring?", the answer
i es. : '

51



\V g

tant in some cases to know just how much of V is mapped into by T

Theorem. Let V be a vector space over a field F, and LT(V,V) be
the set of all linear transformations of V into itself, then LT(V,V)
under the operations of addition and multiplication is a ring.

while we still have Lm(v V) under consideration it is a good idea | -
to introduce a few more terms. . :

Definition 72. linear transformation T’ in LT({V,V) is called
reqular or invertible if there exists another transforpation, denote
it be T1, such ‘that TT"1 = T-1lr = I, where I is the identity trans- _
formation. If no such transformation exists, then T is called
singular. ',

- - L4

The linear transformation T maps V into itself It may be impor~

Definition 73. If T€ LT(V,V), then the range of T is denoted by E ,
v, and is the set of all elements in V that are mapped into by T. -

. .
4 . . ' Al

One way of comparing V and the range of T is by examining the basis

fqQr the range to see if it has fewer elements.

£

-pefinition 74. For a finite dimensional vector space'V, the rank

‘of V is the number of elements in the basis of the range of V. That .

is, the rank is the dimenszon of the range.

-
¢ -

The nexf{ Lhapter will begin where this one leaves off. A connec-

vtion will be pstablished between linear ‘transformations and matrices.

Most Of the erminology of chapter 7 is needéd in the development of -
the chapter on matrices. Once the connection is clear, an examination

of matrix operations is included in order to better understand the- \
techniques applied in the various psychological illustrations.

i‘(' Q



CHAPTER 8
: . .
MATRICES AND THEIR APPLICATICNS |
RN D | e e
The final chapter concerns itself with the study of matrices.

The trahsition between linear transformations and matrices is a smooth

ong, because a matrix will be defined in terms of a linear transforma-

tion's action on a basis of a vector space V. The action of the trans-

formation on any particular basis element will be expressible as a .
linear combination of ‘the basis elements of a vector spade W.' Having -
defined a matrix it will be necessary to examine its' structure, and

in due course we will be able to form a group of matrices, a vector

.. space matrices, a ring of matrices, and’ with special consideration,
_a field of matrices. We will then shift our emphasis from theory to
application, and study how trices make many types of statistical

analyses tolerable. .va S B o '

. Let T be a linear transformation from a vector space V into a ,
~wvector space W, i.e., TE€LT (Vv,W). .Suppose that V is of dimension n

and that W is of dimension m, and that vi,vp,-°-,Vy and wy,Wo,c e Wy
are bases of V and W respectively. Fuorther, assume that both V'and W

_are. defined over the same field of F. If we know how T acts on a basis

. of V, then in effect we know how T acts on any element in V, since every
element in V is a lipear combination of vy,v2,°¢-,Vn- ' B

Y hd

~ »
Let the action of T on V1,V2,° sV be described as follows:

= + o, W, ... 4
Tvy) = &)%) “\\12"’2 % n®
Al

T(vz) = & w R G +‘¢e. +~ O

| - 2(—1_ 222 2m°m,

- ¢ e « e o « = a o o o o e o -\- . «

. L] - . . - . - - [ - . - . . . . .

L] L L] - - - - - . - e L - . L] - - -

T(Vn) =a,w + “h%wé o to W

. t ! .
That is, T-maps an element of V into an element of W, and any ‘element
in W is expressible as a linear combination of Wy,...,Wp, the basis of
" W. The uig are elements of the field F.< The double subscript is,used

to locate the particular entry. The first subscript indicates what row
the element is in. For example, if it was a 4, this means we are in
the 4th row from the top. The Second subscript indicates the column -
under consideration. This means that the 7th column, for instance,
would be the 7th ctolumn over from the left. So, Q44 would be the ele-
mant iv the 4th row and the 7th colamn.

%.1(]23, . ‘
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* 4
. . Y
There are' n rows and m columns in our system of equations. The
-array of a,. elements completely describes the action of the linear
transformation T. The rectangular array of ‘the 043 is called a matri§.
- . . ’ : . Y bt .
\ . , | - , -
Definition 75. let V and W be vector spaces over F of dimensions ’
n and m, respectively, and assume that vl,vz,...,vn,is a basis for Vv _ -
and Wy,Wy,...,W, is a basis for W. ILet T be a linear transformation ' oo
of V into W, the matrix of T with respect to the given bases is * ’ ¥
. ' ®
. { \
. . all ulz. L] L L) L) ﬁlm W '
3 ) , ‘ ‘uzl‘ 322. .. L] L] L] L] L] L]
i . | o
u‘3l u32 a33 .- L] L] L] L]
L ’ . R
I‘. ] | - - - - L] - L] L] ‘. . .
. \Gnl Qng Gn3 . - e« e - am J
wheré T(vi) = ajjwy + ajowy + ... + aj.w , for ‘éach i, 1 < i < n. Thé
magfix is an n x m-matrix. * |
[ ' ,‘ ’ “ '
' Before we go any further, a less abstract illustration of the defi- -
nition of a matrix may be helpful. If we have, '
.- , T(v.)
s | T .
) r(vz)
‘~ ’T(VB)
then the matrix of T would be ' | S
N
/s 7 -3 "1 <~1 )
1 0 ‘5 -4
v -
[ 2 1 -1 o T

We will be most interested in the structure of square matrices,
i.e., matrices having the same number of rows and columns. In fact, the
‘study of transformations T from a yector space V into itself will prove
- to be Of the most theoretical value. N :

LY @ - 2

) o,
Q / :

" .

'98.163:3 o . | | 3
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: 1 | '

: Suppose that T is\a-linear transformation of a vector space V.

.into itself. Let V be an n dimensional vectdr space with basis
vl,..;,vn,‘and define the action of T on V by

\ - .
| 1 . )

-

. ] [ + o /
\ Tlvy) =¥y ¥ %2% ¥ %1n'n ¥
i‘ ) ' - : ’ + .;‘.-
- : T(v,) = &)V ¥ yuV¥y * * eon'n {-, ‘

*« & . LI . . . . . L] - - - - . . -
\
A

., My ) =" v, ta Vv, * ... F v . v
( n) ‘nl'1l n2 2 , i %nn n . ' .

‘\,

Then the matrix associated with this sytem would be the following:

..‘ . “ . i , . r . ' ) . . . _
L - Qll \ ulz - L) L] L) ul;] . .
. Gyp %22 ¢ ° * %2p ‘
{ , <
‘ N ”
\?nl LI e o f
- . . , - > ‘
| ' . 3
which is an n x n matrix. . : RN
* . 75 ask 'what the matrix for a particular linear transformation looks

1ike is an ambiquous question unless the basis of the vector space ig
specified, Suppose T is a mapping from a vector space V into V, and
let U be the set of all ordered pairs of real numbers, i.e., the Car-
tesian plane.. Also assume that the field is the field of real numbers.
. A basis for V would vy = (1,0) and v, = {0,1). If the linear trans-
formation. T is definefl by T(vy) = v and T(vy) = v}, then the matrix,

24

of T with respect to this basii\is ) .
o SR
. N . . ‘
) o -1 : [ *
~ ~ . ! ~
. \ 1 o} .

. P Y AN : - .
Another basis for V would be wi = (1,1) and wp = (1,-1). It would be
good practice to verify that wy and wy are independent and that they
span all of V. . We may describe the action of T on this basis as well.

\ | . . o

T({wy) = T(vy+v2), because wy = vi+vy, since (1,1) = (1,0) + (0,1).

But since T is a linear transformation, T{wy) = T(vitva) = T(vy) +

T(¥p) = v ¥ W = Vp t vy = Wi similarly, T(w3) = T(vy =~ v2), becaus

wy = vy - v, and further, T(wy) = T(vy - v2) = T(vy) = T{v2) = y

e o '

- 104
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v -¥y1= "Vr‘ﬁzr = -w2.

. t}f‘.s basis is \

- . \

' Clearly, the two matrices are different, eves. though both are for the

same linear transformation. This is why it is so important to know

]: .

0

-

0

" =1

what the basis for -the vector space is. ~

LY

+ Having established what.a matrix is, and hbw it ties in With the
theory of vector spaces, it would be fruitful to examine various opara-
example, what is the sum of twé matrices? In
twd matrices, they must be of the same size, °
cannot be added to a 4 x 4 or a2 3 x 5 matrix,
Syppose we have tﬁo n X m matrices

tions on matrices.  For
order to be able to add
‘that is, a 3 x 3 matrix
‘but only with another 3

ﬁ‘ll

'.[621 . . e

¢ a . e «

\unl

-

For simplicity we

- the sum of [0y

r

If [ogs

X 3 matrix.

] and [y,
.] and yl]gsthema

ﬁli |

Y21

] are two n x m matrices, then
ix obtained by adding their cor-

-~

- - . .-

1)

4

¢

respondmg el ents. Therefore, [“:.j] + [ylj] = [uljﬂlj]. or

&

l + - - :‘. - ‘ \

| K“n*"n. ®12%12 * %1 Vim

%121 %%V ¢ - - e T B FYol

- Q:::::::f::::::::::
\anlwnl un?. Yn2 R ﬂrmu)

| o 05

Therefore, the matrix of T with respect to

. €

will dénote ‘them by [a ] and [y. j] respéctively.

&)
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If we consider the set of all n x m matrices together with the, opera-

tion of matrix addition, t\his
s . the study of mathematigal syst

interwoven.

an ab&.ian*group. ;

-~

Proof:

(ii)

(114)

wili

+ (i) Closure follows di

have
(aij+yij) + Sij =

The identity

are 0, -;ne..

dition and the asspc
equali

L

Theorem. If Mis the set of all n x m matrices whose matrices have
real number entries, and if the operation is matrix addition, then Mis

{

rectly from the definition, since the sum
of two n x m matrices with real elements in another n x m
matrix with real elements.

w

[+ o)

/M forms a group.

)

-

. )
L}

101
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L 3

[as0 540

343 ~242

4+0 144

¢

b4

| 2+#3 0-1

-7+1

/

0+4

s

This is what mgkes
so nice; they have a way of becoming

b

The associativity is a consequence of the definition of ad-
tivity of the rgal numbers.
between expressions of the type

13t a0y

ement is the matrix, all of whose element$
T ) . | ,

Each entry
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(iv) The inverse of the matrix ‘[-ui ] is the matrix {-ai ]. In
other words, that matrix whosg elements are the nefative of

Pl

) ‘the corresponding elements in [¢i5]1. : )
. (;11 . e o e e um\ r“all . ; - -’ i . -le\‘ ‘ | . )
(!21 e o . o o (lzm -azl . * e e :Ctzm - .
L] [ ] [ [ ] [ ] [ ] [ ] L ] +. [ ] [ ] [ ] L] - [ ] L] [ ] [ ] =
o - [ ] - [ ] - . ® - L ] - - -» 4 - [ ] [ ] [ ]
o, - a -&;::::::-é\,\ ]
\ nm W p _) ,

(X.ll-all alz_al2 e« o @ le_ulm‘ 0 0 e o o o .a -
- — - Y
Q51 ™%y a2259-‘22 SRR LSl PO 0 ‘O B ¢
L] - - - - - - “ . - - L] L] L ] } = L] [ ] L] - - - - R
- - ® [ ] [ ] - L] L] L] L] L] } L] . \ - [ ] [ ] . L] L]
- - - - - L] L] .‘ L] L] - - - [ ] L] - - - - -
Lanl_anl an"cxnz . e . Qm—umJ go ) O . e . . . 0 ] R
P : ‘& '
] oo Therefore, M is a group. .

(v) The commutative property holds because it holds for the ‘real
. numbers, and, -therefore, Gga * YL = vy4 0t Qij' for each ele-
) " ment in the matrices. giexicé, ‘ .g. an gelian group.

Another operation that we have.examined in the last chapter is
that of scalar mult};_’lication. .

Q ' 102° , ‘ '
| | \ 2107 | - .




3 - : . e R ) . - ‘ . "
e ' L " .
. Definition 77. If {« j] is'ann xm matrix whose,entrles are reail
-*»numbers and if A is a real humber, then the scalar produ,pt of X and the
matrix, denoted by Afa j] is that matrix-whose entries are ohtained by

[ mltiplymg each entry of [uij] by Ar In other words,

» _ . ,
B f rﬁll . a e - [ ] ulm\ Gull- . e . - - Aulm‘\
- LY .
( azl.....uzm )\uzl.....qum ) ,
. A L) - L) - - . L) o« = e » o . . - L) . .‘ \ -~ .
\nl""'ahmJ kmnl . ..Aam) |
- . “ ‘ . -
;_ Examples
1. 2 4 1 6Y)- (10 20 5 30
~ . o ' ' '
s \3 -2 4 9| = {15-10 20 45| . :
. N |

N © 0 -2 -4} 0o 0 -10 -20 | .

) . | -

- .
2. . 6 2 -1 -2 -=2/3 13\ . ) .
" -1/73 1 -5 4 12 5/3 =-4/3 -4 .
[ (-
-
3 0 8 -1 0 -8/3
. . By forming a stem consisting of the set of all n x m matrices
' with real entries,’% and the two operations of matrix addition and

> . .scalar mz_xltiplicatlon, we ha%e‘ a vector space.

reae

Theorem. If Mconsz.sts of all the n xﬁmatrlces with real number
‘entries, and there are two operations, matrix addition and sca.lar multi-
plication, defined on M, then | is a vector space.

K'Y
- | Proof: We have already shown that M under matrix addition is a
‘ _ commutative greup. Also A[aj4] is-a well defined operation that yields
another element inM, There%ore, only conditions (vi) - (ix) of a =~
vector space must Be substa.ntlated.
To verify. thaQ‘ property (v1) is valid, we must show &
, that A([a + [ ) = Aa., + A
oy ) + [vgy] [j];h‘}
S ] .
~ . |
b 198 .
Q- IR 1103
ERIC . i -
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N
2192y -

= Aoy + Ayl

+*

w
Properties (vii) and (viii) may be verified in a manner

to that above. Property-(ix), liuij] = [uij], holds because

<

4
analogous
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'~ 'rhei—eforé.M is a vect.or space.
ff ‘ Before going any further it would be’ advisable to formallY'deflne

. what may. already he intu;tively clear. -
o -

» . . “ .o ‘ - ) ' '
#& 4 . . . (
) -~ . . . . »

‘ , Definition 78. - Two matrices [ui ] and [Yi , both n x m, are,
. gg al if and only if all thazr correspoqding entries. are equal.

« : Therefore, even though the following two matrlces are very similar
-, they aré not equal. . \ (
) <« : . 2.
i L - ‘ . o e
3 2 1y 3 2 1) . é?ﬁ

'1'5=-1 4] and |5 '2 4| aiffer only in the @y position.

'8 2 -5 . \s 2-5
. ‘ ‘ N 4 ‘ .
- \ K - '
. Another important term in matrix theory is that of the transpose
of a matrxx..- . ) o \

¥ . . ' .« . N 3

Definitibn 79. lLet [ui ] be an n x m matrix, then the tr spose
of CISE denoted by [ay 17,”is the.m x n matrix obtained by interchang-
ing the rows and columns of [og In other words, the rows of [313]
are tse columns of [“iJ] and’ tge columns of [aij] are the rows of
. [ai} ‘ N \
’ The.operatian of matrf& miltiplication is more complicated than
matrix addition or scalar multiplicatief. It is interesting that the
+wo matrices do not have to be of the same size., It is only necessary

Nt

that the number of columns of the first matrix be the same as the number -

of*rows of the second matrix. In other words, we may compute the matrix
prcduct of annxmand am x p matrix but not the product of amxp
and n Xxm matrix. - -

.- : o -

A

Definition 80. Suppose [aij] is an n x m matrix-and [y44] is an’

: m x p matrix, then the mat¥ix product [834] of [cg4] and [yi4 ? is an

n x p matrix, whose elements are determined by the following rule:

The entry in the ij position is obtained by multiplying the firgt entry

in the ith row of [o;s] by the first entry in the jth column of [vi4]
o and then adding to it the greduct of the second entry in the 'ith row
T - of [ay5] and the second vy of the jth column of [y lef and so on,

' . until zhe product ofsthe mth element in the ith row of [aj4] and the

{ mth element of the j€h column. A formula for this would be

?

- -

8 + a

15 = %1%ay *F %i2¥23 T o0 Y YumVmgy

. .
- - \l
' ) @
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< " The double suhscr" ﬁaslcause.scme readers difficulty,.so we -
incliEe several’ canck ﬁ}lustratzcnq‘ \ .o
N N
A ;: - Examples .
5 3) [~a 70 1Y - [sc-are305) ,5(1)+3(8) :
-1 -2 Ls -8 | (—1)(-43+2(5); (-1) (1)+2(8) ‘
[ 29 . | T
- JER ~ The entry in the 11 posxtion is ébtaxned by

I

3.

14 'u'1
N ] , .
taking the- first row of the first matrix times the first column of
the second matrix. The entry in the 12 position is obtained by o
taking the first row of the first matrix times the second column I

. of the second matrix, and so on. The resultant matrix is a 2 x2
. matrix since it is the product of a 2 x 2 matrix and ‘a 2 x 2 matrix.

‘. .

14 -2 0) . [imw@-22) - 1(0)+(-3)=2(-2)
5 ‘0 3 -3 ] \5(3)+0(4)+3(2) © 5(0)+0(-3)+3(-2)
-2 )
~ f15 -8
21 -6] . ) .

4

The product of @ 2 x 3 and a 3 x 2 matrix is a 2 x 2 matrix.

f; 0 | 1 4 =2 | $(1)+0(5) 3(4)+0(0) 3(—2)+0(3{\

-

4 =35 0 3] = |4(1)-3(5) 4(4)~3(0) 4(-2)-3(3)

{2 -2 ' 2(1)-2(5) 2(4)-2¢0)  2(=2)-2(3)

~

The product of a 3 x 2 and a 2'x 3 matrix is a 3 x 3 matrix. It

is important to notice that the matrices in examples 2 and 3 are

the same, but the order of multiplication is reversed. The size

of the matrices is not even the same, ohe is 2 x 2 and the other
: - : e ‘ \
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L s 3 X 3.. In genex:al, tge product of two matrices is not commu-
" tative, _that is the orda.‘s of mltiygsl;.cation makess}a difference.

4. An important -matrix .is thef identitx matrix, which has 1's down the

. Lo - ' 'diagonal from upper.left to lower right inan x n‘mtrix, and ( ,
SRRy ‘8very other entry is a zero. A3 x3 1dent1tgpmatr1x would Be |

| - B .. 101 o \ E e,

SR U NS ‘

/ . 2(1)—3(0)+1(0) 2(0) 3(1)+1(0) 2(0)—.3(0)4—1(1)\,

[/ = l-s+0(0)+4(0) ~5(0)+0(1)+4(0)  =5(0)+0(0)+4 (1)

H L LALO43(0)  1(0)+1(143(0) 1(0)+1(0)+3 (L) |

{ 4
2 =3 1
- 3 _5 : o 4 ' ',\‘ }‘- ,
)‘/"‘ .
1 1 3 .

If we restrict our consideration to ther set of all n x n matrices
v w:.th real entries and define the operations of matrix addition and
' matrix multipllcatmn on it, then the set is a rxng

v .

Theorem. Let Mbe the set of allnxn matrices with real entries,
and suppose that the operations of matrix addition and multiplication
" are define? on M, thenM is a ring with a m\,tltﬁ.pllcative identity.

4




. ," Proof: We have already proved thatMis an abelian group under ,
/ - matrix addition. The closure of matrices under matrix multiplication A .
A follows because the product of an n X n matrix with another n x n '
’ matrix is an n x n matrix. The associativity of matrix multiplica—.“
tlon requlres a great deal of paperwork, but does follow dlrectly from .
the definftion of matrix multiplicatlon and the associativity of the '
real numbers. The distribut ve law requires’ the proof that e
[aij]([yl 1+#[645]) = [ui 1 ?ﬁ + [“1 1163 3]. This, too,-;s(a rather
lengthy,calculaglqn. On the eft han sxde, [Ylj] and‘{ ij ] age added,
.and” then we compute ‘the product of [aj4] and the maﬁrlx-we obtained _
by addition. The rlght hand side of tge equallty requmres the, product
. . of [al ] and [yl ], and [ai ] ‘and. [8 ]s-and then -the twoAresultan;
. matrlces are added.. The results of tﬁé left and right hand §ides w;
;i", be ‘the same. - The identity element is the matrix . ?} P

o s | ﬂ 0 0...0)

The ring is not commitative.

' T A relgted_remark_ congerns_the existence /o zer {3ivi . For
L 1 0 ¢ 0 0 0 ‘ 0 0
example, / i= , but neithédr is
! 0 0 1 0 0 0 | 1 ©
, the zero element. v / 'ﬁ‘

. : i

) ' The only question that remains is that of the multiplicative in-

+verse of a matrix. To begin with, only square matrices possess an

_ inverse, and not even all square matrices have an inverse. The usual .

, approach to finding the inverse of a matrix involves the study of de-

' - terminants. A rather formal approach tg)determlnants is very messy
because of the great amount of notation required. For this reason the
topic of determinants will not be examined in this book. However, there

exists an alternate approach to finding the xqverse of a matrix. This
. procedure involves what are called elementary row operations. We state -
. ‘these operations without a thorough description. A matrix may-have a
particular row multiplied by a nonzero constant, two rows may be' inter-

" ¢hanged, and ‘the multiple of one row may be added to another. If the

, n x n matrix [ai 1 is altered by performing a series of these elementary

e - ' row operations and at the same time we are performing each one of these

operations on theﬁ’\crxldentlty matrix. Once our original n"x n matrix

has been altered until it is now the n X n identity matrix, whatever the

LY
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matrix that was erxginally the identity matrix locks now is the inverse

,-' ‘ of ia If it ssihle to reduce [cij] to the identity matrix..
?.'v : ' This entire discussxon may seem incredible, but keep in ‘mind just 1’.

' “how eompl;eated it ‘should be to find the inverse of not one nnmber, hut '
i{" . - an entire array of. numbers. - . _ \\* . P .
R . ’ - . ) o - N Y ] * \

‘ « ‘ a R « « T ."' .
~ _— Example , ; S
.- ) - ' 2 -l Aad
. We;gtart-w1th
£ Y -1 '1
{ Now we add the second row to the first row and dc the

~

. 1 1 !
. . Now again, add the first and second rows, but this time "
‘ . 0 1 \ .
0 1\ .1 S
. rewrite the second row as the sum of and v . Then the .
N . . 1 _ 1 21 ‘
1l ' ‘ :
’ inverse of should be Do you helieve it? et
o ’ 1 ‘ ’
1 251y 2(1)—1(2) A
us check: = - Lo S
2 (-1) (D+1(1) (-1 $1(2) ) .
' 1 0 @@ 1ensaary 1 o)
o 1 1(2)42 (-1  1(=1)42(1) o 1

* It works!
An amazing result is that if we restrict oufselves to the con-
. sidﬁf thp of all 2 x 2 matrzces with real entries that are of the
Y . Y £
form — ol and we take the operatlons of matrix addition and
.
- - matrix~multiplication, then this set under thngivéﬁ operations
' ' forms a field. The reader is urged to go through the verification
that the set is closed under both operations, that it has an addi-~
tive and multiplicative identity, additive and multiplicative in-
verse, and all the &ther required properties.

Before we make the transition from theory to the practical and ap-
plled use of matrices, we show how matrices are helpful in solving sys-
tems of equations. We will give an illustratxon for a 2 x 2 case, i.e.,

when we have two equations in two unknowns,_but the method is technically
the same for a twenty equation in twenty unknown systems. Consider,

Q _ . - 109
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| .. équality of matrices, 2x ~y = 3 and -x + y = -1, '

%

We could easlly show that x = 2 and y = 1 by using the normal proceéures ' Q *

m-yes e

'_—x;yn-l.

.

of solving simultaneous. equatians An alternative progedure uses ma-

' tric&s. We can rew::.t.a the -system of equations as S C e ’
- 2 -1} f=x 3 ' N L4
. ( -1 1)y -1.]." | :
- * ~ ' T . e ' . ! . o
: L : {2x -y 13} - PO
because this is fhe same as ‘ = ¥ , and by the definition'of '~ . =~ .~
- A=x+y -1 o ot ' SR

2 =ly{x

-1 1|y
!\

‘would have ( v all alone on the 1eft hand side of“ﬁhe—equality and. wﬁ\

could read gff the answer to problem. We have€ already cmuted the
. v 2 -1 1 l N
~ inverse of | . It is . Therefore, multiply both sides
-1 lJT. 1 2 ’ , o ,
. 1 1 . ,
of the equation by :
| 1 .2
» -
' 11 -1)(x 1 1)( 3 .
1 2J|-1 1}y 1 2 {1
1 o)fx) 1 1Y 3) : ]
o 1j{v| 12 f|-1])
x\ G 1 "3\
y) A1 2J{1)
~ J .
X 1(3)+1(-1)
(v 1 (3)+2(-1).
- 4
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 Therefore, we have that x = 2 and y = 1. =
; e

‘ The appl lications of matrices.are fairl‘veli known.~ The value'of
matrices in ‘any statistical analygis of expeximental data will be il- .

lust:ated.with A series of examplee. Other applications will also be
Cited. £ 7 . . . . . . “

oo : . S : - RN
Examples

1. The theory of‘Markav chains concerns itself with the study of an

- .experimental gituation where the outcome on any given trial de-
pends only on the outcome of the immediately preceding trial.
Therefore, an ‘outcome E; does not have a fixed probability, but
rather a conditiqnal probability, Pi which represents the fol-
lowing. Given that outcome E; has oZcurred, the prohab;lity that

- outcome Ej will occur on the next trial is Pij- For example, if

T we have outcomes Ey, Eg, and Eq occurring on Buccession, then the

"~ probability of this,event- is p1Py1sP59, where p; is the prohability

that E; occurs on the first trial. The autcames, E;, are generally

-+ referred to as the states of the system, and the Pij are called .
the transition probabilities. An array or matrix can be formed ’
that includes all the transition probabilities in an expariment '

that has El""'EN as possible states. -

]

P‘ézz-“”PzN | T,

. < . -

' Dbilities. From this matrix we mdy determine the probability of
going from any state to any other state on the next trial. A
necessary condition concerning the rxrows of the matrix is that the
sum of the transition probabilities across any row is egual to one.
Markov chains have many applications in probabillty, physics, and
genetics. Recently they have also been used in forming models for
classical conditioning, paired associate learning,‘and recall
learning.

st sl is called the matrix of transition proba-

L]
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-of a rabbit beginning the experiment in a particuylar state. °

" before the UCS occurs.

‘Theios and Brelsford 11956) have written an article concernmng the

use of a Markov model to describe eye blink conditioning in rab-
bits. They developed a theory to describe the changes takingrplace

" in the trial by trial probability of eliciting a response by the
. rabbit.

The experiment used a tone as the conditioned stimulus .
(CS), an air puff to'the eye served as the ‘unconditioned stimalus

(UCS), and the desired response-was an eye blink to the conditioned

‘stimulus. Theios and Brelsford used the following Markov*hndel to
reflect the changes §n the probabilities durlng the experxment.
The, matrices that we will consider are - oA ,
c.” A N. - TP .P_ (start)
e. r ) P r ' ‘ y .r.“-‘ ' 1
c 1 0 0 AR D S W {0 |
: o . ‘ C _ \ b
A | c 1-c Q ‘ PA 0 .
N lO a l-aJ \PN 1 o

There are other areas in psychology where Mark

The remaining discussion is intended to qlarify Theios and Brels-
ford's reasoning and choice of notation. The rows.of the 3 x 3

- transition matrix are the states of responsiveness on.any" given

trial, while ‘the columns are the possible states on the next trial..
The entries in the matrix are the probabilities of moving from the
given state to another during N, the intertrial period. ‘The first
1 x 3 matrix has entries representing the probability of a response
during the observation interval for each of the three states of
responsiveness. The second 1 x 3 matrix gives the prohabilitles

\ The rabbit begins the experiment, in the naive state, N, where
the probability of a response to the conditioned stimulus is Py.
After each application of the unconditioned stimulus (UCS), there

is a probablllty, a, that the rabbit will become aroused. We
represent this by saying the rabbit moves to state A. Once it is
activated, e rabbit may give a response to the CS. We denote the
probability of this by Py. After arousal, there is then a certain

likelihood Lhat the response will become conditioned to the CS.
Let us ca¥l this probability, ¢, and this represents the€ transition
into the Ahird state, C. Once conditioning has otvcurred, there is .

a probability P that the rabbit will respond by blinking to the Cs
Therefore, there are actually three distinct
levels of pérformancgl Py, Pa, and Po in a conditioning experiment.
models are being
used. These models are valuable in studies of paired associate
learning, recall learning, and avoidance conditioning. 1In the .
list of references at the end of the chapter, a number of articles
are included that contain discilssions of these topics.

’
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Hay (1966) pcses the questxcn as to how many different ocbject dis+ =

placements can produce the same optical motion at the eye. He

uses a matrix model to aid in determ;nlng how many different ob-
ject displacements are/Optically equiv the same transfor-
mation of the optical array. The main fccus, no pun intended, is

on the characteristics of these classes of opfical stimuli., There
is a mapping of a three—dxmensicnal cbject into an qptécal array

at essentially has a two-dimensional !structure.” Hay feels that

cptically equivatggt object displacements have certain commonali- - °

ties, and the optical nctions that they produce ‘give information
about these common featurés. Object displacements are in some

- type of correspondence with optical transfermatxons.

- 1 N ¢
G. A.. M;lle; {1968) uses matrices in an- examznation of the value
of algebraic models in psychellnguistlcs. He includes ingidence
matrices fer‘clustering that are associated with the hierarchical -

semantic system as part of hi!hdiscussion of methcds for anvesti-
. gating semantic relations. . e

\
The ‘'use of matrices in the study of linear and multiple regression
is of amount importance (Draper and Smith, 1966). 1If data is

- studi®d by the method of least squares, in order to draw conclusions

about dependency relationships between variables, then this approach
is called regression. 1In the case of linear regresdion we try to
show that for a given value X, a corresponding value Y may be pre-
dicted that is an estimate of the actual cbserved value Y. For

each trial we could describe the observed value Y. .as a linear
function of X5, Yy = og + alxj + , where ¢4 is ghe error. 'If

" we were to do"this for a large n r of trials, N, we would have

a system of equations for which we would like to find those esti-
mates aO and a; for ®q and @y that produce the smallest value
of s% ese + ag. We could express our systel for estimates a, and
a, as o .

1 @

b -
-

& - Yz 1 X2 a, ‘
In matrix notation we could write this as| . B - e al .




N + [ ] [ 2] [ ] [ ]
,+yn+

X1Y1+X2Y2+'.

. [ -

r | -
D T x;} > )
IR | 1 x2 . '
. w e, .
|1 %y |
AN A
1
Y
: L2
1 1.... 1Y{.
IR . v |
. R \

which wimplifies to

+
YN

NN

.

»

V | ' ~ |
Let us next multiply both sides of 'the equality by the transpose
: ol | ne he PO

11.... 1

| Xl xz e ‘o.- ._)XN

N

1

# oo 4K, X

-
-

1
A
X1+X2+...+XN a,
2. .2 2 v
l+x2+*"+gﬂ | al

»  we can observe XX is an example of a square matrix.

. matrix.
system for a.

\
those values for a

- . t

brépgr and Smith also use matrices in the
and the variance and covariance of ag and a;.

R0

e
-

a

-

If we compute its inverse (X

ij *

that give us the least square estimates

N\

analysis of vq;iéﬂie
The regression ana v

For, convenience, let us denote the equality as X’Y‘ﬂ_(X’X)a. As
It is a 2 x 2
’%)~1, then we can solve the
Therefoxe, (x’X)‘lx’Y = a,. from which we can find

of

sis may be shifted to an examination of correlatioens between vari-

ables.
tween -1 and 1.

.

’

rh A
11 T12
¥a1 Ta2

Lrni N2

from which we may analyze the

In general, we may

L] L L] r
' ZN

o

k;NN.J

Correlations are desirable because their values range be-
form a matrix of correlations,

.zi$w'

infé?dependence of variables.

1l4
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: A real strength of the use of matrices over gther techniques
of solving systems of equations,is that the'approach is general and
theoretically is the same for 30 equations in 30 unknowns as it is
L , for 3 equations in 3 unknowns. This means tha it is easier to
. 3 write a computer program that can analyze the data. SN
o ’ A
7. A similar use of matrices is in the technique of faétor analysis
(Guilford, 1959). A corxrelation matrix has as many rows and col-
“umns as there are tests .or variables; however, a factor matrii‘
has as many rows as there are tests, but only as many columns as
- _ there are common factors. These two matrices aré related by the
: equation'FF/ = R, where R is the correlation matrix, F is the
. factor matrix, and F/ is the transpose of the factor matrix. A
: . further result shows that the number of common factors is’equal to
the rank of the correlation matrix. other words, it is equal’
to the number of linearly 1ndependent rows in the correlat;on
matrix. '

'\

-
This concludes the chapter on matrices. Matrices were interesting
' to study because of the theoretical systems that sets of matrices may
be formed into. For example, a group, ring, or vector space. The .
properties of matrices served as a nice transition from the theoreti-
‘cal to the applied, and the applications revealed the rich potential
~ ofr matrices in questions of learning and in data analysis. :

. Before we end the book a few concluding words may be in order.
Mathematics is a fascinatlng subject in .itself. there are thousands
. of theoretical mathematicians who will attest to this. But it is also
potentially a rich instrument in structuring and analyzing questions
in psychology. The algebraic systems we have examined are most worthy
'of close scrutiny as to how and where they should be used. A mathe-
matical model is like a fashion model, it locks good no matter what
you put on it, but remember you are selling the clothes, not the model.

e . /
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