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Behavioral and social scientists have tended to relY heavily on
statistical analyses, because of their sUbStantial applicabilitY to be-
havioral and social Science problems. Ho*everthere are certain basic
limitations in applying,statistical methods to these' problem areas.
.Statistics cannot.he used to describe formally the system of relationships
within a class of phenomena. Statistical techniques can indicate levels
of intekactions among variables, but they cannot be used to depict the
form or quality of these interactions.

Algebraic theory contains concepta and principles which can bellI6d

to articulate the structtiral properties of classes of behaviorar phenomena.
It refers to the study of classes of behavioral rule systems, each of which
has a set of elements, operation(s) defined on the. set, -and rules deter-
mining certain interrelationships among elements and operationS.

Algebra provides a language which fs 'precise) intuitive, and formal.
Algebraic sYstems have been used to synthesise.separate models and theories.
Synthesis of tlie.proliferation of seemingly dlsmarate and expanding bodies
of behavioral science know?edge is greatly needed. Algebra as a field can
become as Useful, to'the behlioral.and dOcial scientist as statistics. Its

mtility'will beymost evident in the activities of desoriPtion and conceptu-

alizaeion. As in the case with statistics, the use of algebra does not
require any substantive theoretical comitnts.

In this book, a variety of.lbses of algebra in.ilpe behavioral.and roeial

sciences is provided along with descriptions'of several algebraic- systems.
This vOlume is intended to be a sourcebook for theoretical conceptualiza-
tions for professionals in the,behavioral and social sciences. This publi-

cation with its emphasis on description, application, and utility should
be a valuable aid to the behaviOral and social science researcher.

This book is presented in eight chapters._ The first four chapters .

piesent the foundational material on aagebraic conce,4ts and should be read

before a4tempting to examine the remeining'chapters. The following para.-

graphs,provide a brief summary of the content ofoeach charker.

In chapt9x 1 the basic terminology-and elementary concepts of set

theory are introduced. The'discussion presupposes Ao knowledge of mathe-
matics; the explanations are presented in a quite thorough, yet highiy, in-

tuitive manner. Ample examples'are presented, many of them having direct

psychological relevanc'e,

We all 'have an intuitive idea of what is meant by a "relation." A

relation reflects some type of asseioiation or..,connection between two en-

tities. In order to be more precise in describing this vague idea of a

bond between entities, a mathematical formulation of a relation is needed.

Chapter. 2 serves this.funetion.

One of the most
function or mapping.
in most disciplines.
in algebraic systems.

important ideas in all of mathematics is that ofa,
This term is so fundamentalthat it is commonlylased
Chapter,3 defines and discusses the role oefun4ions
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A class of algebraic entities useful in psychology.is groups. The

presentation on groups will be made in chapters 4 and 5. Chapter 4 in-

cludes a discussion of the definition of'a group and other related terms:

er key terms such as subgroups, generators, homorphisms, isomorphisms,

and semigroups are introduced. The chapter-concludes with exahples of

several impoAant types of groups.

Chapter 5 is concerned with the application of groups to psychology.

Examples are given from Piagetian theory, the theory of kinship relations,

studies gf measurement, perception, language, and automata theory.

Chapter 6 introduces rings and fields. It is a relatively short chap-

ter, because presently there.are very few applications of these concepts

to psychology. Their applicability has not reallyibeen tested yet. , pl

this chapter important terminology is defined"and illustrated through

exampl s). 10/.

Chapter 7 introduces another major algebraic system. A vectbk space

has structural similarities 'to the other systems already considered, but

introduces a new operation. The value of particular vector spaces in
statistical and.measurement analysis of psychological phenomena has been

recognized. Many of these techniques are based on vector space theory.

The examination of vector spaces proQeeds In two parts. Chapter 7 intro-

duces the concept and discusses tinear combinations, linear independence

'anddependence and bases.

C;Chapter 8 is directed at the concept of a matrix. The matrix is an

excellent Concept to conclude the book witil, because it will be proved that

Ithe set of matrices may be.uS'ed in defining a group, or ring, or a vector

space, or under certain special conditions, in defining a field. This will .

serve as a review of the key structures introduced in the pook. Matrices

also are valuable to discuss because they have a wide range of applications

outside of thathematics.
1.
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PREFACE

4

,..

In dealing with Army problems over tile years the Army Resorch
..*Institute for the Behavioral and So4al Sciences has always insisted
on bringing to bear a scientific po t of view. This point of view
includes objectivity, use of theorpti al models and their resulting
hypotheses, reiliance on,empirical dat ratherithan armchair dstimates,
and use of mathematical and statistic4 methods of analysis. In par-
ticular the In9titute has drawn heavily upon the formal systems and
methods found in the disciplines of. psychometrics, ptatistics, linear .

algebra, probability theory, ana werations research.

The current volume presents for be.:havioral scientists, both inside'
and outside of the Army, an introduction to another set of mathematical
systoms with potentially intgFesting applications. These systems,
often referred to as "modern Jalgehre and here called "algebraic syS-
terns," Ilve potential, not so much for purposes of data analysis, but
rather for describing formally the system of relationships within a
class of phenomena. AS is typidal of mathematLal systems, the ideas
and structures presented here have great power and generality. They

could well be useful in constructing models of.social and behavioral
phenomena.

J. J. MELLINGER
Chref, esearch Statistics
and Comlibter Sciee Office

f

J. E. UHLANER

Technical Director, Am and
ChiefkPsychologist, U.S. Army
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ALGEBRAIC SYSTEMB: APPLICATIONS IN TiE
BEHAVIOR4L AND socIAL SCIENCES

ezmotecirfai

This'book is an introduction to the uses of the branch of =Atilt-.

maiics called algebra`in the behaviorai:Isciences. Basically, there

are three branches of mathematicsgeometry, analysis, and algebra.
Geonetry.is the field concerned with the properties and relationships

of points,-lines, angles, surfaces, and solids. Arialysis is the field

concernel,witk functions and limits and includes.the calculus. Algebra

is the field concerned with sets that have sums andior products defined.
..on their elements ara.includes arithmetic ari4 set theory. As opposed

to ihe preconceived views of many behaviorarscientists, algebra is not

merely the study of polyndnials as a remembrance of high school algebra

could effect. Of the three branches of mathematics, algebra is the

0,most abstract and foundational branch.
.

Each of those branches has been found to have substantial utility.

Peometry is a-very useful field to architects and civil engineers.

Analysis is probably the branch of mathematics that is used the most

'and:thi:s is reflected in the fact plat training in the calculus is re-

quired for an education in practically every scientific and engineering

areal Algebra, though being the most abstract.branch of mathematics,
hasmanifested its utility to the sciences in a variety of ways. For

example, the algebiaic theory of groups has been very useful to theb-e.

retical physicists in their formulation of quantum mechanics and Boolean

algebra has been cLcial to computer science theorists in their exposi-

tion of digital circuit theory. Wha4is to be indicated is t al-

L-.gebra has ,a host of important usei in the behavioral scie

It may seem strange to one interested in the behavicral sciences
that,being acquainted with algebra would be an aid in his work. He may

thi'n Jc. that he studied algebra in high school and it was found to be

.useful in deternining rootstof quadratic equations and the like but it

certainly is not the methodological tool chest thatsgtatistics is for

retearch in the bellavioral sciences. So why study, of all things,

algebra?

Well, statistics is a field which has substantial applicability

to the behavioral sciencet. However, it does have limitations. Statis-

tics cannot be used to describe formally the system of relationships

within a class of phenomena in a manner, that is as exacting and rich

as algebra can. Though st,ptistical techniques can be used to indicate

the leVel of interaction of two or more. variables, they cannot be used

t6 deiict the form or quality of that interaction. On the ether hand,

within the corpus of algebra there is a rich rlservoir of concepts

and principles which can be used tearticulate the structural proper-

ties of classes of behavioral phenomena as it refers to the study of a

Ab



wide Class of rule-systems, each of which has*a set of elements, op-%

. exation(s) defined on the eet, and rules deteTining certain interre-
lationShips among elements and operations. .Also this branch otr'

'mathematics is Yaden with concepts and principles as it is centuries
old and has grown Astt an ektraordinary rate in 4.4,centurii.

.

A woperty of algebra that is bften overlooked is that it id quite
natural!' Much of our everyday thinking is in conforMance witA algebraic
principles. To a great extent, algebra is a rigorous articulation and
logical extensionsof patterns of,reasonin9 ytat are common to people.
For exampte, muCh of set theory is merely a formal exposition of modes
of mental organization that are evidenced in everyday life. Thus, be-
havioral scientilts. may rightly view algebra nbt as an exotic, arbi-

4trary; abstruse field but as 4 field which provides 0 teaningful di,s-
cussion of patterns th4p. are very immediate, common, and even obvious.

There is another quality of'algebra that should be of interest to
behavioral science devotees. Algebra, especially with the development
of algebraic logic, provides a language which is very precise, primi-
tive, and rich, and nearly perfect in its lucidity. Such a precise/
language should be of' use to behavioral scientists.

Anether property of algebra relates to one of its primary uses
in mathematics. Elements of algeb'ra stich as its constituent systems'
and structures have been used to tie parts of mathematics together and
to show how different entities in mhthematics are interconnected and
related. In other words, algebra has had and will continde t6 fiave a
decisive synthesizing effect on the proliferating corpa of mathematics.'
Presently, the algebraic theory of categories is being used in this
regard to depict the -Ica= of integratiqi amidst mathematical systems.
It' is dontended that algebra, Uhen applited pronely, wo,uld have a simi-
lar influence in the behavioral sciences. Naedless.to say1' synthesis '

is greatly needed in the beifavioral sciptces as most of the research in )

the behavioral sciences is directed to experimental analyses of theories
and models-and this emphasis on analysis has resulted in a proliferation
of seemingly didparate and expanding bodies of.behavioral science
knowledge. For example, there is a variety of' psychológies of. school
learning that have resulted in a multitude of empirical studies, many
of which remain'trivial and disconnected With synthesfs, more direc-
t4ion will be provided to allow for moreire rch in the behavioral
sciences.-

. X

Algebra is_a field that should become as useful a field as statis-
tics is to the behavioral scientist. Its greatest util.y will be evi-
dent in the activities of description and conceptualizatikk in the be-

- havi*al sciences. As is the case with statistics, the use of \algebra
does not require any substantive theoretical commitments. Thus, in
the area of psychology, algebra should be as potentially, useful in the
areas of operant conditioning or associationistic psychology as_it would
be in the areas of cegnitive developmental' psychology frorw a Piagetian
viewpoint%



41ready important uses of algebra in the behvioral sciences have

been made. For eKampl, Jean Piaget,-a noted pioneer In developmental

psychology, has employea the algebraic theory of l4ttices to describe

\-the system of cognitive processes proper to adblescence. Also, Voamp
,

Ctiomsky, seminal thinker in the psyclIology of language, Aas used al-

"geb:raic concepts and'principles 'to articulate the structural proper-
ties of.grammars which refer to the, systems underlying human linguistic

capabilities.

0
Iv this book,, a vaxiety'of uses of,algebra in the behavioral sci-

ences is provided,along with descriptions of several algebraic systems.

This volume is intended to be a source:book for kheoretical conceptuali-

zations,for students ahd prd'fessionals in the behavi.oral sciences.

Utth the use of algebra,Vie p4ysical sciences have made donild-

erable progress--much more than the behavioral sciences. It is likely

that the behavioral sciences can also make profound progress if it

makes greater use of.algebra. This vplume wifh its.emphabis on de-
scription and utility should be-an aid in that endeavor to behavioral

science students and professionals.

Ii
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CHAPTER 1

sET THEORY

4.

\

In tilts chapter the basic terminology and elementary notions of

set iheory are introduced. The discussion presupposes no knowledge.pf
mathematics; the explanatiods will be presentbd in a quite thoiough,

yet highly intuitiv4manner. This discussion is not a rigorous study
of axiOmatigeset th(kpry, but rather a concise oVerview of a very ele-

gant tieory. There will be an ample number of examples, many of them,'

psychologically releVant, to assist the reader in his understanding

of what may at first be rather abstract material.

The idea basic to the elltire text will...be that of a set.-'The no-

tion of a set will. not be formally defined, but will be taken tO mean

any collecion of entities, pbjects, or stimuli. 'These objects moy

havevme c9mmon prolperty, such as each'object in a collection of ob..

jects is red, or there may be no apparent mutuality-among the itens..

The individual objects belonging to the given set will be called ele-

ments. FOP ekample, a red triangle would be an element in a collection

of red objects. A convention:that will be adhered to throughout the A
book is td denoets by capital letters, and use fower.case letters

to represent elements. If an 'element, x, belongs to a set A, we write

x C A. If x doeb rpt belong to A, then we write x IVA. Suppose n'

represents a red triangle, s denotes a silver circle, and R is the set

of dll red objects, then r R,'but R. The set consisting of no

elements is called the'null set and is enoted by . An example wmOld

be the'set of all triangles with.360°.
4

We may indicat'e a set by listing all of its elements. In the case

of infinite sets this is impossible, and often it is also inconvenient

to list,all the elements in a large figl.te set. In this case we use

.what is calltd the-set builder notation. h-The following examples illus-

trate the situation.
.4

Examples

I) If A consists of the numbers 1,2,3,4, and 5, then A may be written

as A

2. If B equals. all the counbOlg (natural) nuMbers froeone to one

hundredi then B may be denoted as B = (1,2,3,...,100), or equiva-

'lently, B = {nit' is a. nakeral. ntiMber and 1 s n 100}, which is

read "B equals the set of all n, such that n is. a natural nuMber

and 1 is less thav or equal to n and also n is less than or equal

to 100."

5



3. If e {Connecticut, Rhode Island, Massachusetts4 Vermont, New
Hatpshire, Maine}, then C may le more concisely represented as
C = {x x is a New gngland state).

Suppose D = {signal learning, S-R learning, chaining, verbal as--
-; sociation, multip0 discximinAtion., concept learning, principle,

(rule) learning, problem solving)., A ersOn faftiAar With Gagne'?
work would-describe D by sayilaq D = {:mix Pis eight tl'rple0
of learning ddscribed by Gagne ).'

.1h order to makeompaiiSons betWeen sets, we mnst ffxs1 define
' the e7quality or two sets. TWO sets A and-B hre equal if and onli if

@nevorr -114( Al then x E Bp Alia conyersely' wiienever x E B, then k
e., when the two sets'con'sidrof the Same elements. The set consist-,
'4 of Hubert' Humphfey and Walter Mondal,e is equal to the set 'of ,Unifted

S. ates Senitorg from .Minnesota, becaue &eh sets, have exactly the same
is. A-is a subset of, B if every element in' A is also ai element

of This is denotedfr py A C B or eipivalentyB .3 A. A is a proper
)- subset of B if everyTemetA in is B and there exist 'additional1

4
elements in not in , This is q4alent to- A C B and A 71 B. We

7 wrte ibis as A $ B. The set of states cpnsisting of Vermont and MaineV

is proper subset of the New England states. The reader shoUld note
thatu second form of notation is also widely used. We could write
A 4E13 to idpresent A is b. subse( of B, and write A C B to'represent A
is a proper subset of B. Therefore, it is important to check which no-

,
tation is being used in the text which is being read. Returning to
our discussioli, we see that we have an alternative definition for the
equality of sets A and B. We may define A = B if and only if A C-B
and B C- A.

Examples

1. Iet E = The set of fifty states in the United States
= {klx is a state in the United States);

. .
let E = {all states in the United States having a location with

an eleV
//'

ation of at east 3000 feet).

1 ,

Then we may conclude that F C. E, and more specifically that Fl-,1. E,
because there exist states with highest elevation less than 3000
feet, e.g., New Jersey. We ha've Colorado C F, New York F, and
California E F. Hence, we could define'a set G as G = {Colorado,

,

NeW York, California), where G $ F. But, for example, if H =
{Colorado, New Jersey , then Ht. F even though H E. One final
related example is designed to illustrate that a set of one element

. is not identical with that element. We can speak of Colorado in
two ways, Colorado C E, or {Colorado} 5 E. In the first case we

%t
are talking about.001

cl

ado as an element of the set E; in the second
case we'are talking abo Colorado as a set of one element which is
included in but not equal to-the set E.

,

43
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2. 'A more mathematical example is the ollowing:

B f1/21;
3)
2) =
= {2,4,6,8,...}; aid

fpositive multiples of
fposAive multiples of
{even natural numbers}
natural numbers).

Clearly, R, A, are proper sabsets of N. iA,Iso,.observe that

A = I 'ince both e have the same elements. A 1R because, for

example, 44 R, a so Rt A since 3 tit A,. Thereforeit is ofin tha
case that when considering two sets, neither.set is a subset of

the other.- It id also interesting to notice'that B 4 N. -This is

an illustration where a spt with infinitely'many elements, such is

Ak1is,a subset'of N and where sets with one element, such as B,

are' not a'subset of N.

Basic rations
.*

Set theory would be of little wortH if there were no ways of form-
/

. ing new sets from the given ones. We will define several operations on

sets. The definitions will be for tw6 sets, but they can be easily

generalized to.any finite number or an lrifinite number of sets. '

Definition 1.. The intersection of two sets, A and B, denoted

B, is the set consisting of those elements belonging to both A and
A/ B. Symbolically, this may be expressed as

fx C A and xc B}.

Two sets, A and B, are said to be disjoint or mutually exclusive if

Arl B = (p.

We may generalize this definition. For three sets,

for N sets,

C, Du E,

C D'f E = {xix C C and x C D and x C E}; and
go

rIA.={xix E A.
il

for every i; 2

1, 2

The intersection of two sets-A and B may be pictorially represented

Venn diagrps as illustrated in Figure 1.

by

4



f-, Figure 1

EXamples

1, In discussions of psychological space, two stimuli are often con-
sidered to have a psychological distance between them. If the,di-.
mension of .color, papa, and size are involved, where color is
black or white, shape is triangle or square, anO_size is small or
large,.then if

1:::I= {white, square, large};

AIL = {black, square, small); and

Ca ift Awhite, square, sMall);

it may be obs ed that and E:lare closer than d II in

terms of psy4hological space, because they differ on only the dimen-
sionof,siie, .e., their intersection shows a common'color and
shape, 'Therefore, any discussion of psychological distance between
stimuli implies an understanding of the intersection operation..

Apother illUstration is in considering similarity between words.
Suppose in a free association test, the subiect is told to give
five associations td. words A, B, and C. If A and B have four com-
mon words, B and C'have two coalman words, and A and C have one
common word, then this would be one index of olaiming.there is
greatest similarity between A and B. Notice thdt the con4deration
of commonality implicitl,requires the use of the intersection
operation.

Definition 2.. The union of tWo sets, A and B, is the Set consist-
ing of elements belonging to A or to B or to both A and B. It is de-
noted by AU B, with At.' B = {x(x C A or x C B or x C A and B). The
word "or" will be taken to include the possibil.ity of membership in
both sets. Thus, "or" will be interpreted in an inclusive manner.
The union operation is pictorially described in Figure 2.
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1

Figure 2

0

The definItion may be gen'eralized tb N sets:

N
' L.) A. = {kIx e Ai for some i; i =3.

. Example

9

3.

. ,

1. If in one issue of psychologi.6al journal A, ehe contributors are
Bruner, Gagne, Mangler, Piaget, and simon,,and in one issue of.psy-
chological journal B, the contributors are Berlynei Eptind, Gagne,
Jenkins, and Simon, thentile set"of contributors to.the two jour-
nals weild be Bruner, Gagn41 Mandler, Piaget, Simon, Berlyne, Elkirid,

and.Jenki4. This is precisely the union of the two table of con-
tents in that it incl des all those individuals in journal A, in

journal B, qr in both journals-A and BL:

Definition 3. The universal settrconsists of all those elements

under colisideration. Then the complement of a set A, denoted A
consists of those elements in the universe that are not elements of.A.
The cqmplement is represented pictorially in Figure 3.

Figure 3

The set notational definition for the complemen.t is

but usually we just write

= {xIxeli and x 20;

X

9
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In an experiment with 100 sub ects, 50 individuals ieceive treat-
ment A, and the remaining 50 subjects-form the contrca grottp. We
may think of the 100 sabje s upiversal setll, the 59
individuals reuiving tr nt A it A, and those in'the'con-..
trol group astA. r .

ppfinition 4. The
consisting of those el
Thiii; operation is,4-plet

ference of A and Be denoed A. - the-set
ts,belonging to.A and not belonging to, B. '

ially described in Figure

\A

-Figure 4

{xix e A and x B} 4

L

ela

is t e set:notational definition for the difference operation. Clearly,

we y say that A =.2111

4

Exarrpole

The newspaper carrieS' an adveg444qment that there is a job 'availa-
ble for a person witlka B.A. in pdychology ana specifies that the
person must be under 30. If P represents all those individuals
with a B.A. in psychology, and T denotes all those people 30 years
old an4 over, then P - T consists,of those individuals who meet
the minimal qualifications for employment.

Definition 5. The symmetric difference of A aild B is defined to
be those elements in A, but not in B or those elements in B, but not
in A. Figure 5 is a Venn diagram for the symnetric difference of A
and B.

Ft

10



, A A B

erefore,
; .

Figure 5

A A B = {xlx C A and x B or x.0 B and x

A A B -B) LI (A -- A).

4.006'
Example

r '
4

A.

1. In conditioning experiments a pigeon-is rewarded if he pecks a key
and is punished if he does not. Therefore, key pecking and ish-

ment- never go together. If K denotes the times a pdgeon pecked
the key, and P represents the times the'pigeon was punished, then
1( A P would describe'the principle involved in conditioning,,i.e.,
if the pigeon*pecks the key he is not punished and if he is punished
he did not peck the key.

As a means of reviewing and interrelating the five definitions just

given, an example with sets of numbers is included.

1.

,

,Examples

'get lor= '111213,4 10 5 1! 7 f 8 11/ 9 II

A =,{2,4,6,8,10,12,14);
B.= {1,6,11};
C = {3,6,9,12,15}.

Then, we have

le,41.1,12,13 44,15);

An B = {6 ;
Pk

B U C = {1,3,6,9,11,12,15);
= {1,3,5,7,9,11,13,15};

An (B U C)..= {2,3,6,8'40,12,14} n {1,3,6,9,11,12,15} = {6,12);

A - B = All B ams {2,4,6,8,10,12e14)fl {2,3,4,5,7,8,9,10,12,13,14,15)
= {2,4,8,10,12,14};

B A C = (B- C) Li (C.- B) = {1,11)(J {3,9,12,15} - {1,3,9,11,12,15).

11
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2. With the 1976 presidential election approaching there is much con-
jecture as to whom the Democratic Party will nominate, In dater-
dining who the nominee will be, each candidate will be weighed as
to his strengths and weaknrses on various personal qualities, '

political viewselectability, etc. It would be an interesting,.
exercise to define or compile a list of criteria most desirable to

you. Then derivgja rating system invol'ving union, intersect,ion,
and,complementatioh to evaluate each 6ontenderp.and see if your,
personal, choice anh your higheSt rated individual are the llama
person.

Si

In order to aid the reader in his understanding of the pet theo-
retic terminol.ogy, several elementary proofs using the new"abstract
language are included. The analogy td learning a language is a mean-

- ingful one, becatise for a Terfion to reallY understand a woid, he must
be"able lb-use it in appx;pgiiate.situations. The follatwing proofs

serve a similar purpok for the words, intersection, union, complemen-
. tation, difference, and sympetric difference.-

qle

Proofs

1. A C B if and only if A n B = A.

Proof: One must first realize that an "if And only ff" proof rel.

quires two proofs. We must show that AC: B implies that"
B = A, and also that if An B = A, then AC. B. As an

aid in the Rroof, draw a Venn diagrim similar to the one
in Figure 6.

\

Figure 6

In proving results such as this one, accompapying pictures
may aid in visualizing the problem, but one must realize
that even if a picture's intuitive worth may be a thousand
words, it is not a formal proof. With this thought in mind

we begin thd proof.

a. Suppose A C B.

(i) Let x C A,

and x C. n.
plying x C

then by hypothesis xE B, and we have x A
Therefore, we have xeAn B,' but x C A im-

A B is precisely AC A r) B.

19 12
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,

t

-(ii) Let xC A B, then ye have x C.1?and XC B, but in par-
Aflicular x C A. Hence, xC A n't3 implies x E A, or equiva-
lently A rt B C A.4

'COmbining .(i) and (ii), A C a and All BC A, yield that
A n B my A, which. is the desired result.

b. Suppose A ( ill A.

\, 4If B. = A, we may say that AC A 9 Further, by tlie
defA.nition: of inteesection B C B, and thus we have
A C r1B C B, which implies A IC

k

0.

. - (A L) B) A fl B.

Proof: a.

Mo

If x C - (A U ,xAandxtB;
either A or B or
it equizalent to
is xC A fl B.

b: Ifx0;,r1g,thenxEZ
and x 4 B, from which it
to the union of A and Br
X (A U B) . A picture
Figure 7.

then i 0 (A U B) , which means that
sfnce xE AUB if x belongs to
both,of them.. But x 0 A and x B
x C, A and x C g, which by definition

and x E g, which implies x ot A
follows that x cannot belong
i.e., x (AU B) or
of this is presented in

Figure

3. AAB=BAA.
Proof: By definition A A B = (A B) U 'fB Aj, which equals

(B - A) U (A - B) which equals B A. Therefore,
A AB=BA A. Notice that for sets P, Q, PU Q = Qt./ P.
The reader should prove this, because in the proof of
AAH=BAA it was needed. In thisproof P corresponds
fo (A - B) and Q corresionds to (B - A). Figure 8 demon-

. 4r.

strates this pictorially.

13
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a

40"

Figure 8

4. A Li s(Bn C) = (Ay f)rt (A U C.
P

Proof: a. Let x E A Li (Bn C) , then x E. A or x C (B C).

(,i) If x dA and x E Brit C, this implies x C A,
x E B, x C C, ,and clearly x C A/14B and

C BU C, i.e., x C t(A U B) n (A U .

(ii) If x C A and x (B (' C), then x C (A U B) and

x E (A t*.i C) , regardless of whether x B or.

x C, and therefore, x C (A U B) n (A Li C)

(iii) If x4..A and x (B 11.C) then x t A, x C B,
x e c, NO again x E (A U B) and 3CE (AU C) ,
or eguixialently x C (A U B) r (Au C).

b.11114k x C (A U B) 'n (A U C), then x E (AU B) and
x (AUC);xE AUBimpliesthatx AorxEB

. and similarly, xe AU C implies that x E A or x C C.

(i) If, x C A, x B, x C C, clearly xe AU (B rt C).
In fact, if x E A, then x E. A U (B n kegard-
less of whether x C. B or x e C.

(ii) Suppose x t. A, then we must h e x 13 and
xe C, since xE AU B and x E. A U C. There-
fore, xt Bn C, and finally, xE AU (B ( C) -

A picture of this is presentecl. in Figure 9.

Figure 9

14



'The first chap#0# intrt;auceid the fundamental idea of a set, its
terminology, and tlitypes of operations that may be performed on'sets.

-

The fundamental nat*of a set should be clear from the many and
.varied uses of it 1is chapter. Sets of numbers, rect objects,,
states, types of learning, United States -Senators, states with eleva-
tions above 3000, feet,' words, noted psychologists, people over 30,
etc., were considered,.---The rich diversity of areas covered is dm il-
lustration ol,the generalizability-of the term. The operations on

'sets,'such as union and interseccion, allow us to generatepew sets
or describe set6 with more speciac properties.

An appropriate way of concluding the thapterds to.review the set
,theoretic terminology in relation to the problem of Roncept learnina.
in concept learning, an individual who knows a given concept, say red-
ness, can be shown a collecion of stimulus objects, I.e., a set of
6timuli, and can determine which stimuli are exemplars of he concept
redness. He will select only those.objects that are red in color
lie is manifesti
kecause each of
are not red are n

an_understanding of the operation of. intersection,
hese objects is indiyiduallyred. Those objects that
nexemplars, and require the application of comple-

mentation. If a second 6oncept is introduced, say triangle, and
individual is asked to choose all objects.that are red or triangle
then he will select those stimuli that are red, are triangles, or are
both red and triangles. Tniwwould refer to a grasp of the operatign
of union. To 'find all the objects that are red, but not triangles
utilizes the difference operation. Finally, in choosing objects that
are red, but not,triangles, or objects that are triangles, but not red,
the operations of symmetric difference is referred to. Interesting
research is being carried out to determine if there exists a hierarchy
of difficulty among operaions such as those just described in this
chapter.

15
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CHAPTER I

RELhTIONS

There is one further opeAtion involving sets t4at we would like
' to consider. The notion of a Cartesian product of two sets will be

fundamental to thiS8 chapter. We will need to introduce the notion
'an ordered pair. We will take an ordered pair to be two objects given
in a fixed order. Therefore, (a,b) is generally' not equal to (io,a).
If the first p?sition represents the number of ten dollar bil1s in
your wallet, and the second position the'number of one dollar bills,
,in your wallet, tien Bob has (7'12) and Dave (2,7), this means that
Bob has $72 and Dave has $27, which certainly are, not the same. We
could define an ordered pair in.a more formal manner, but an intuitive
idea of the concept will suffice for our purposes. The ordered pairs
(a,b) and (c,d) will be equal if and only if a c and b = d.

r't

.Definition 6. TheliCartesian product of two sets A and B is'de-
fined to be the set of all ordered pars, (a,b), such that LICA and
bZB, and is written A X B. A X B {(a,b) I aCA and bC:B}.

Examples

1. Let A = {l,213} and B {0,5,10,-2}, then

44)

A X I3-"a-{(a,b)

= {(i3O),
(2,-2),

A X.A = ((1,1).,

(3,2) ,

aEA and be ri}

(1,5) , (1,10) , (1,-2), (2,0), (2,5),

(3,0) (3 5) (' 10)

(1,2), (1,3), (2,1), (2,2), (2,3)
(3,3) }.

(2,10),

3,1),

2, Anx, graphical data from a psychological exper ment may be inter-
préted in terms of,ordered pairs. For examp1, in an intelligence
test, each individual has a particular score, or in a discussion of
S-R theory, the theory is described in terms of stimulus-response
pairs called associations.

We all have/an intuitive idea of what we mean by a "relation."
A "rAlation" reflects some type of association or connection between
two entities. In order to be more precise in describing this vague
idea of a bond between entities, we want a mhthqmatical formulation
of a relation. nit, objects either have this defined bond or they do
not. Therefore, we can eAmerate the set.of all or ered pairs of

17 23



entities having this bond. Thus, we may,think of a relition asig col- -N---

lection of ordered pairs.

Definition 7. Let A and, be sets, then a relation R.on the Car-
tesian product A.X B is any subset of A X B, RCA X B. If (1,b)

1.s an element of the collection of ordered.pairsdetermining R, then
We may either.write (a,b)t7R or a g'S.

Examples

1: If A = {1,2,3,4,5,6,7} and B =
Cartesian prodAct A X B has 56
tions would be,

.{3,6,8,11,13,14,19,22}, then the
ordered pairs. Examples'of rela-

S.

= { (1 , 3 ) , (5,19), (7,6))

= (4,8), (7,14))

R3 (2,4), (4,6), (6,8))

R4 (1,8) , (2,13), (5,8), (1,6)}.

As may be observed, not all relatioris have a clear connection be-

tween elements In the ordered pairs. Often it is impossible to

come up with a rule defining the relation. In R2 we may observe
that the ordered pair satisfsies b = 2a, but Ri does not liave any

such well-defined bohd.

2. The notion of a relation has wide applicability. For example, any

verb phrase in a sentence indicates a relation. Consider the set

A to be composed of the cow, the moon, and the Pied Piper. Let

our relation R be designated by "junped over." Now, only the cow
jumped Oyer%tte moon, and no other elements in A are related by
"jumped Over"; thus, the ordered pair (the cow, the moon) in

A X A determines our relation R. Notice thatAthe cow, the moon)'

is not the same as (the mooh, the cow), the latter being the moon

jumped aver the cow.

-`---Properties of Relations

G.

We will,discuss various important prgperties of relations on A X A,

i.e., A X A { (a
1, a 2) I alC A and a

2
E, A).

18
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Definitietn 8.

(i) %Let A be a set and R a relation, i.e., RC A X A, then R.
is reflexive if for every aE A, .(a,a)g R.

.(ii) .R is irreflexivR if for every aEA, (a,a)(R1

If. R is neith9r reflexive or irreflexive, then R calle4
nonreflexive.

Examples

1. Equality "=" in the discussion of ntimbers.is reflexive, because
for every number, it is equal to itself.

2. The relation "is less than," "<," is irrefleAe, since for every, '

nmher, it is not less than itself. A more concefte example is the
relation "weighs' less than." Evep though many dieters wish it were

.

true, no one weighp.less than himse,lf,,so,i"weighs less than" is
irreflexive, ,)

3. Howexer, the relation "is less than or equal to," %," is reflexive,
since for instance, every number is leSs t411. or equal to itself.

Anothdr irreflexive relation is being a mother, because no one is
her own mother.

5. In compari-soné such as "is as intelligent as," "is as kind as,".
"is as tall 'as," etc., we have examples of reflexive 'relations
from everyday langvage.

6. There exist relations that are neither reflexi4e nor irreflexive.
Let A = {x,y), hence AXA={ (x,x) (x,y) (y,y)}. Define
R = {(x,x), (x,y)), then we may observe that R is not reflexive
because (1,,y)f. R, and R is not irreflexive because (x,x)E.R. There-

fore, R is nonreflexive.

Definition 9.

(i) Let A be a set and RCA X A, then R is symmetric iNor
every a,b A, (a,b ) R iip1iës (b,a)E R.

(ii) R is asymmetric if for every a,bE A, (a,b)E R implyies ,

(b,a) t R.

(iii) R is antisymmetric if for every a,bA, whenever (a,b)E.
and (b,a)e R, then a = b.

19



. Equality

Examples

ymmetric, since if a b, then clearly V- a.

a

Howe7v, "IA less.thlin "<" is not symmetric, sinde for example,
,

5 < 6 does .lot.imply 6 < "<" is asymmetric.
,

3. An example of an ntshnetrjc r ation is less than-or equal t6,

"s." Itfis neither symmetiic asymmetric. Because 5-g'64 Nit

6 5. 5, wesee that "<" is not symmetric. Fiirther, since 5 5_

implies 5 5, "<" is hot asyminetric. "e is antisymmetric because
the-only way one number can be both greater than or equal to, and
less than or equal to another number is if it equals that number.

P

4.
1.*"C:" or "is included in_ 'is another example of an antisymmetric

relation. We made use qpis assertion in several proofs in

Chapter 1. In proving tTE two sets were equal, for instanCe,

A = B, we proved tihaMiC:B and'that BCA, from which ye'donc113ded

that A = B.

5. An example that.each of us can identify with is the relation "loves."

Sam loves Sally,,but Sally does not love Sam. Poor Sam, loving is

not symmetric. ,Ltually loving is not symmetric or asymmetric or

antisymmetric. not-asymmetric, since fortunately fcmus all,
there'exist cases where, for dxample, Romeo loves Juliet, and'Juliet

loves Romeo. Loving is not antisymmetric, since this would imply
that if.one person loves a second person, and conversely, then the

two people must be the same person. This would mean a world without

any couples in love. Romanticism asidt, the relation "loves" would

be an instance of a nonsymmetric relation.

6* More concrete examikles of a symmetric relation would be "is exactly

as tall as," "is exactly as intelligent as," etc., while relations

such as "is taller than" and "weighs mcire than" would be asymmetric.

7. The relation "is the next door neighbor of" is an examp e of-a sym-

metric relation, since if Jones lives next door to Snit , Smith

lives next door to Jones.

8. A psychological example of an asymmetric relation would be "is rein-

forced if he chwtus." In a partictlar trial an individual is rein-

forced if he makes the correct choice, and is not reinforced if he

makes the wrong choice. suppose A is correct and B is incorrect,

othen Tom is reinforced if he chooses A over B, but Tom is not rein-

forced if he chooses B over A.

Definition 10. Let A be a set and RCA X A, then

(i) R is transitive if for every a,b,ce A, if (a,b) and (b,c)E R,

then (a,c)E R;
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(ii) R is intransitive if for every a,b,ceA, if (a,b)e R and
(b,c)e R, then it is not the case that (a,c)E

(iii) ;f R is neither transitive or intransitive, then R ie
nontransitive.

Examples

1. Equality is transitive. af a = b and b = c, then we have a = C.

- 2. Another transitive relation is. "is lesi than," "<," for is a < b
and b < c, then a < c.

3. Set inclusion, "C," is transitive. If ACE and BCC, then AC:C.

4. Returning to our discussion of rlove, if Sam leves Sally and Sally
loves JIM, it is most unlikely thht Sam loviS Jim. However, under
some conditions Sam may love Jim. Therefoke, "loves" is a non
sitive relation,.

S. If Ann is Mary's mother, amd Mary is ilefty's mother, this does not
imply that Ann is Betty's mother. "Is the mother of" is an ex-
Ample of an intransitive relation.

6. The height of people.designatesmany relations. FoF example, "is
talleF than" is transitive. If Tom is taller than Dick, and Dick
is tailer than Harry, then Tom is taller than Harry. -

7. Suppose R = {(1,2), (20), (3,4), (2,4)), then R is not transitive.
becaUst (1,2) f: R and (2,3) E: R, but (1,3> t R. Also, R is not in-
transitivej since (2,3)E R and -(3,4)ER, but (2,4)ER, contrary tO
the definition of 'intransitivity. Therefore, R is nontranSitive.

B. Piaget describes four levels of operations in his theory; sensori-
motor, pre-operational, concrete, and formal. The ages of transi-
tion to a higher level may vary, but the order is fjaed. There-.

fore, the relation "is a prerequisite to" is an exiMPle of a
transitive faelation.. If sensori-motor operations are prerequisite
to concrete operations, ind concrete operations are prerequisite
.to formal operations, then sensori-motor operations are prerequi-
site to formal operations.

Those properties of relations discussed in Definitions 8, 9, and
1P are the ones we are most interested in, but for completeness we will
include severai additional ones.

Definition 11. If A is a set and RC:A X A, then R is connected
if for grery a,b6:A, whenever a 71 b, then (a,b)E R or (b,a)C R.

21
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Examples

1. 'The relation "is less than," "<" is connected. If a # b, then

a < b or b < a.

2. Set inclusion is not connected. If A # B, it ii not necessarily .

the case that ACB or BC.A., It is possible that Ar)B 0, or

that we do not have ilnclusion, but rather partial overlap.

'The relation "loves" is not connected, because it is conceivable

that Alan does not love Ellen, and Ellen does fiot love Alan.

Definiticin 12. If A is a set and RCA X A, then R is circular

if (a,b)ER and (b,c)C R imply-that (c,a) C R.

Examples'

1. iquality is a circular relation. If a = b and b c, then c a a.

2. ?rile relation "is a.sibling of" is another circular relation. If

Fred is a sibling of Harvey and Harvey is a,sibling of Marty, then

Marty is a sibling of Fred.

3. Proper set inclusion is an example of a relation that is not circu-

lar. If AliB and BiC, it is not true that CIO'.

For those readers who would like to see the newly introduced

properties used in a more formal way, the following two problems are

included.

AeA/

Problem 1. Suppose that a relation R is transitive and symmetric.

Give an example to show that R need not necessarily be reflexive.

One may try to argue as follows: For airbEA, by symmetry (a,b)CR

implies that (bra)E: R. But if (a,b)eR and (b,a)E:R, then by transi-

tivity (a,a)ER, from which it is tempting to conclude that R is re-

flexive. W must investigate why the above argument is fallacious.

Let A - {a,b) and R t(b,b)}. In this exampe (b,b) is the only ele-

ment in R. R is not reflexive because (a,a)t R, and for R to be re-

flexive both (a,a) and (b,b) mus.4 belong to R. (However, R is trivially

symmetric and transitive.

Problem 2/. Show that a relation is reflexive and circular if. and

only if it is reflexive, symmetric, and transitive. (This is a problem

in A Survey of Modern Algebra by-Birkhoff and MacLane, 1%4.)

28
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Proof: i) Suppose R is reflexilre akld circular. Therefore,
for every a,b,c E A, (a,a)e R, and 'further (a,b) R and b,c) E R inplies
that (c,a)C R by circularity.

Show 12 is symmetric. Suppose (a,b)4:11; by the reflexivity of R,
(b,b)C. R as well. Now by circularity, (a,b)C R and (b,b)E R imply
(b,a)C R. Thus,. (a,b)C R implies (b,a) R.

Show R is transitive. /f (a,b)C.R and (b,c)C R, by circularity
we have (6,a)CR, but by the just proven symmetry, it follows that
(a,c)e R. Hence, if (a,b) ER, and (b,c)C R, then (a,c)e R.

SuiLse R is reflexive, srmnetric, and transitive.
We must show only that R is circular, since it is given that R is al-
ready reflexive. If (a,b) E R and (b,c) C R, then (a,c)C R by the
transitivity.-I Next.. by symmetry (a , c) C R implies that (c,a) E R.
Therefore, (a,b) R and (bloc. R imply that (c,a) R.

To help clarify the descriptive capagalities cl the properties
that have been discussed, Table 1 has be constructed to indicate
the propertties of teh relations. In Ta 1 a set of elements for
which a cited relation is to beapszative is indicated for each rela-
tion. The relations in Table 1 tend to fall into groupings according
to their properties. Some relations such as "equals" and "is exactly
as land as" are eflexive, symmetric, and transitive. Relations with
those properti s are termed equivalence relations. Other relations
such as 'is gre ter than," "weighs more than," and "is less intelli-
,gent than" are irreflexive, asymmetric, and transitive. With the
twelve propertiesocited in Table 1 the logical qualities of any re-
lation can be,richly articulated.

6

Equivalence Relations

Definition 13. If A is a'set and RCA X A, then R is an equiva-
lence relation if:

(i) For every .1-3-C-14%, (a,a) C R (reflexivity) ;

(ii) For ever* a bE A, (a,b) C R implies (b,a)E R (symmetry);

(iii) For every a,b,c EA, (a,b)E R and (b,q,) E R imply (a , c) C R
(transitivity).

Examples

1, Equality for numbers iS an equivalence relation, because "-" is
reflexive, transitive.

Tgiu
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2. The'relation "is less than" is not an equivalence relation because
"<" is not symmetric.

3. Let the states of the United States form the set under considera-

tion. Then we could define a relation R by (x,y)4:11, where x,y
are states, if both sfates x and y have governors whose last names

begin with the same letter., For example, if the letter was S, the
states would include Massachusetts (Sargent), Pennsylvania (Shapp),
(Texas (Smith), etc. The relation would be reflexive, because for
instance (Texas,tTexas)C.R. The relations be symmetric, be-

cause if for instance (Texas, Pennsylvania) , then (Pennsylvania,

Texas)E:R. The relation is transitive. Consider, if we look at
(Texas, Pennsylvania)ER and (Pennsylvania, Massachusetts) E R, then
(Texas, Massachusetts)E: R. Therefore, R as defined above would be

an equivalence relation.

Actually we would be able to divide the states up into mutually
disjoint groupings because each state would fall into only, one
category, depending on the initial letter of the state's governor's

name. Granted that this particular partitionAg does not reflect
any real divition according to national importance of political
ideology of the individual 4overnors, but it is an example of how

we can often divide a collection of items or people into disjoint
subcoilections with each subcollection repwseptative of some

unique property. The actual significance of such a representation
depends on the impiAtance or value of the defined relation. We

will follow up this idea of partitioning in a more precise and
mathematical presentation later in-the book.

4. Let Z.,be the set of all integ

...}. Define for m,n,E.., (m,n)C if m n is a multiple of 5,

i.e.,-if m n = 5t for some integer t. R is an equivalence

relcion.
'1;!;

(i) (m,m)E: R for every mEZ, because m m = 0 = 5(0), where

0(:2% Therefore, R is reflexive.

(ii) If (m,n)ER, then there exists an integer t such that

m - n.= 5t. Therefore n m = -15t, but -5t = 5(-t) and -t

is an integer. Hence, (n,m)eR and R is symmetric.
qr

(iii) If (m,n)E:R and (n,p)eR, then for some integers k and j,

we have m n = 5k and n p = 5j. Therefore, m p = (m n)

+ (n p) = 5k, + 5j = 5(k + j) = 5i, /here i = k + j is some

integer. Hence (m,p)ER and R is.trEsitive.

5. The next example will at first appear to be quite dbfficult, but

at a closer inspection, it may be observed that we are in:erely es-

tablishing the equivalence of fractions such as 2/5, 4/10, 10/25,

etc., by sta ing that the product of the meahs equals the product
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of the extremes. For emmAple, 2/5 = 4/10 because 2(10) !. 5(4).
NOw to the-example, let a,b,c,dEZ, and let M = the.set of all
ordered pairs of integers (a,b) with b # 0. DZfine R as ((a,b),
(c,d))4:R if and only if ad = bc. (Notice this is the.same as
saying ((2,5), (4,10))ER if and only if 2(10) = 4(5).

It must be shown that R is an equivalence relation.

(i) If (a,b)EM, then ((a,b), (a,b),) is ah element of R,
ab = ba. Thus, we have proven that R is reflexive.

(ii) If (a,b)ELM and (c,d) EL and suppose further that (

(c,d))G R, then by definition we have ad = bc, which
arrangement implies cb = da, and therefore, ((c,d),
and symthetry has been demonstrated.

because-

(a,b),

by re-
(a,b))E R,

iii) Let (a,b), (c,d), and (e,f) be elements of M, and suppose
that ((a,b), (c,d))E:R and ((c,d), (e,f))E: R, then we have
that ad = bc and cf = de. Therefore, upon multiplying
ad = bc by f we obtain adf = bef, and multiplying of cf = de
by b, we obtain bcf = bde. Hence, adf = bcf and bcf = bde,
and by the transitivity of the etniality relation, we have
adf = bde, which we may rewrite as afd = bed. Byilypothesis
d 0, and therefore d-1 = l/d exists. Multiplying both
sides of the equality afd = bed by d1 we obtain af = de,
i.e., ((a,b),,.,M))E:R. Hence, R is transitive.

In the example about states having-governors whose last names be-
gin with the same letter, a brief description was included of how the
states could be broken up into disjoint groupings. This is a very
,valuable procedure in considering sets, and will be now presented in a
more thorough mpnner.

Definition 14. Let A be a set and RC A x A, them the equivalence
class of a A is the set, {xE A (a,x)E R), yhich we shall denote by
either [a] pr e 1 (a).

Examples

1. we have already shown that equality is an equival4nce ielation.
If a A, .then [a] = {a}, since (a,x)E:R if and only if a = x.

2. Leta:be the set of all integers. Define for moi,CiE, (m,n)ER if
m - n is a multiple of 5. We/demonstrated already tbat R is an
equivalence relation. Then for aCE,
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[a] = {xEA I (a,x).11}

= bcCA a - x = 5i = 0,±1

Therefore, we may dtvide the integerS into 'five distinct equiva-
lence classes, [0],[1], [2], [3], [4]. Note that, for example
[2] = [71, since both are equal to fs,-8,-3,2,7,12,---}. Thus,
we may divide the integers according to whether the remainder
is 0,1,2,3, or 4 upon division by 5. Hence,E. = ([0], [1], [2],

[3], [4]).

Joseph Scandura has created a new language to describe what (rule)
is learned in a particular task. He calls this language set func-
tion language (SFL), and it utilizes the term equivalence class.
His theory is as follows: A particular stimulus is observed, and
it is then assigned to the appropriate class of stimuli, on the
basis of its defining properties. A rule is then a mapping from a
class of stimuli to a claSs of responses, fram which the required
response is selected from the class of functionally equivalent re-
,sponses. An example would be the following. Let [I + 3 + 5] con-
sist of elements such as 1. apple + 3 applesd+ 5 apples, $1 + $3 + $5,
1 dot + 3 dots + 5 dots, etc. Let [9] consist of elements such as
9 apples, $9, 9 dots, etc. Then the rule is an operation beiween
equi lence classes of number series and their suns. An example,

in cam ting $1 + $3 +,$5, it is first recognized as an instance
of []. + 3 + 61 which by a rule is mapped into [9], from which the
appropriate response $9 is selected. A nore detailed account of
the theory may be found in Scandura (1970).

4. Equivalence classes are used as part of the underlyir;g structure

in a paper by David H. Krantz (1964), "Conjoint Measurement: The

luce-Tukey Axiomatization and Some ExtenSions."

In Example 2 it was shown that,the integers could be divided up
e equivalence classes, [0], r1], [2], [3], and [4]. This

.

process of dividing up a set is referred to as a partition.

Definition 15. A partition of a set A is a coillection of nonempty
subsets of A that are disjoint and whose union is Af.

There is a theorem ip mathematics that describes the relationship
between the equivalence d'lasses of an equivalence reldtion and a par-
ition of a set. This theorem is most useful in mathematics, because
of the way it allows a set to be divided into meaningful subsets. t

car,. be equally valuable in psychology as a means of dividing up e eri-

mental data, stimuli, concepts, etc. into impor nt, distinctive sub-

categories. The theorem will not be pr ven in ts book, but may be
found in any standard abstract algebra k such as erstein (1964)

or Dean (1966).
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Theorem Ci) Theidistinct equivalence classes of an equivalence
relation on A provide us with a partition of A; i.e., they provide us
with a decomposition of A into mutually disjoint nonempty subsets whose
union equal,s A. 4. ,

(ii) Conversely, given a partition of A into mutually dis-
joint nonempty subsets, we can define an equivalence relation on A, for
which these subsets are the distinctequivalence classes:

Examples

1. ,We have already discussed that the integers may be divided into
[0], [1], [2], [3], and [4], if the relation is, for in,n4:72%

1/(xn,n)ER if m n is a multiple of 5. That is, we divided the in-
tegers according-to whether the remainder was. found to be 0, 1,
2, 3, or 4, upon division by 5.

2. If'the relation had
ple of 7. Then the

[0], [1], [2], [3],

been., for m,n0EE, (m,n)ER if m- n is a multi-
integers would-have been partitioned into
[4], [5], and [6].

3. In a used car lot, if'the owner divides his cars into groupings,
where all the cars in one grouping are one make, all the cars in
the next grouping are another make, etc., then he is partitioning
the cars into disjoint nonempty subsets. For example, there is a
grouping of Fords, Pontiacs, Plymouths, etc. We could define an
equivalence relation on the set consist4.n4 of Friendly Freddie's
Forever Lasting Cars. If a,b are cars Freddie's lot, then
(a,b) E: R -if a and b are the same make. We now show that R is an
equivalence relation:

(i) (a,a)E.R, because clearly a car is the same make as itself.
Therefore, R is reflexive.

(ii) If (a,b)E.R, then (b,a)C R, be'cause if a ahd b are the same
make, certainly b and a are the same makevAR is symmetric.

(iii) If (a,b)!Ii and (b,c)E7R, then a and b are the same make,
óalso b and c are the same make, and therefore a and c are
both the same make,.or (a,c)4:R, from which we conclude that
R is transitive.--In this example we have illustrated the
converse of the theorem, i.e., according to the way the set
of cars was divided up it was possible to defineran equiva-
lence relation on the set of cars.

. 4. An application to psychology would be in a conditioning experiment.
The animal is conditioned to push one of two buttonr. His responses
may be dilded into two disjoint sets whose uilion consists of all
his responses. The animal either presses the correct button or
the wrong button.
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S. In a discrimination task, the individual may be asked to divide

up the stimuli according to color. Therefore, the set of stimuli

are divided into classes, with each class consisting of stimuli

of a particulat color.

6. In a rule-oriented subject matter such as mathematics, a person
learns to do 901hy problems on the basis of one rule. He must
analyze a tor-Oblem, decide which rules are relevant, and then ap-

ply the rules. Therefore, each individual problem is not treated.

as an isolated case.

The examples have hopefully given further illustration of how funds-
\

mental this theorem is and how relevant it is to questions in psychology.

The theorem essentially describes a person's ability to organize and

classify.

Types of Ordertng

With the completion 9f our discussion of equivalence relations, we
begin a discussion of var us types of ordering. The names attached

to these orders vary in thk literature, and one must be careful to make-

note of the possible dittiictions between texts. The definitions and

names that we will use in this book seem to be the most common. We

begin with a list of definitions, and then follow the definitions witb

relevant examples and references as to where in the psychological
literature applications of ordering may be found.

Definition 16. A relation "4" is a partial orderin% for a set A 4,

if 4: is reflexive, antisymmetric, and transitive, i.e.,

(i) for every aC A, a 4 a;
4

(ii) for every a,b E A, a < b and b < a implies a b; and'

(iii) for every a,b,c EA, a4 b and b A c imply a.< e.

Definition 17. A relation "4:" is a strict ,artial ordirin2' of A

if4( is antisymmetric and transitive. Therefore, we could call a par-

tial ordering a reflexive strict partial ordering.

Definition 18. A relatiOn "4".." is a linear ordering (also called

simple or total) of A if< is reflexive, antisymmetiic, transitive, and

connected. That is, if< is a partial ordering and in addition for

every a,bEA, if a b, then a< b or b4( a.



Definition 19. A relation "<" is a strict linear ordering if
4;is antisymmetric, transitive, and connected.

We 'may use diagrams to indicate the different types of ordering.
For example,,if one can reach one element of a set from another ele-
ment in the set in a continually ascending tanner, then the elements
are-ordered. Let us consider a'set A, where A = {a,b,c,d}. Suppose
that the elements of A are related as indicated in Figure 10. We may
observe that a4( b, a < c, a.< d, b.< d, and c <d, but 134, c and
c.f. b. Therefore, the order,defined by Figure 10 would be a partial
ordering.or a strict partial ordering, depending on whether we allow
reflexivity. However, this ordering is not linear, since neither
b < t or c <b.. The diagram for a linear or simple ordering would
have to be along a single vertical line such as in Figure 11, where

b, a 4C:c, a < 4, b < c, b 4,4, and cd< d. Therefore, the connec-
tivity property is satisfied, unlike in the previous illustrition,
where there existed a pair where b.4.c and cdit b.

a

Figure 10

a

Figure 11

The figures were introduced as .a visual aid in understanding the
concepts of partial and linear ordering. We now give,a series pf ex-
amples to indicate the kinds of relations that are partially or linearly
ordered. We will begin with a few relations that we have dis"ctsed in
detail already.

Examples

1. Consider < for integers. This is a linear ordering, because for
any integers m, n, and p,

m < m for all m, i.e., for any integer, it is less than or
equal to itself;

. (ii) if m < n and n < m, then the only possibility is that m n;



(iii) if m s n and n p, this-clearly implies that m'i p (for
example, if 3 s 5 and 5 s 11, then 3 S 11).;

(iv) for any m,n where m n, then either m s n or n < m (this
means that if two numbers are not equal, then one of the two

.is the larger). C6mbining (i), (ii), (iii), and (iv) we
have shown that S is a linear ordering.

2. If we consider "<," we immediately notice that "less than" is not
reflexive. The other properties hold. TherefOre, < is a strict'-

linear, ordering.

3. Set inclusion, is a partial orcieritg, but not a linear ordering.

(i) For any set A, AC:A. Every set is a subset of itself.

(ii) For any sets A and B, if AC:B, and BCZA, then A = B.

(iii) For any-A, B, and C, if A 4:B and BCC, then AC:C. This is

obviously true, but if there are any nonbelievers, the Venn'

diagram in Figure 12 gives an intuitive de

li
nstrAtion.

I

d. implies

Figure 12

or.

(iv) For any sets A and B, where A / B, we need not have AC:B or

BC:A. In fact we could eva have Ar1B = 0. If A = {1,3,5,7}

and B = {2,4,6,8}; then ArIB = 0. Therefore, set inclusion

is not connected, and the relation "C." is a partial ordering.

4. Proper set inclusion, "5," is a strict partial ordering, since it

is not reflexive. No set is a proper subset of itself.

5. Examples 1 through 4 served to illustrate the four new definitions.

There are analogous real world parallels. For example, "is taller,

than" is a strict linear order. It is not reflexive, because no

one is taller than hAmself.

6. Within many branches of psychology such as developmental psy-

chology, there is discussion of hierarchies of events. For ex-

ample, in the developmental psychological theory of Jean Piaget

(Riaget & Imhelder, 1969) .there is elaborated a linear hierarchy
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of cognit ve operations. Piaget contends that a cognitive pre-
operatio 1 schema such as graspiAp precedes the cognitive concrete
operation of classification in development which in turn precedes
the cognitive formal operation of hypothetico-deductive thinking
in developOent. A sequence-of behavioral forms of this type has
the mathematical properties of a linear ordering with the relation
being "is 4 prerequisite to" or "is a ii-Oessary condition for."
To Piaget, classe's of cognitive behaviors--preoperational, concrete,
and formalr-are reflexive, antisymmetric, trapsitive, and connected
for the r4ation of "is a necessary condition for." To demonstrate
that a claSs of behavioral phenomena comply to some ordering for
some relation, empirical conditions must be formulated that will
allow for tthe testing of the defining properties of the relation.
For example, in the case of the Piagetian cognitive theory one may
consider iwp types of gognitive operations and if one operation is
not demonstrated to be a prerequisite to the other operation, then
the connectql0.property cannot be attributed to that relation and
the relation is thus not a linear ordering. The terminology.of re-
lations and :ordering can be used not only to describe qualitatively
the structural properties of arrays of behavioral phenomena, but
also aid in the formulation of tIle empirical conditions by which
one can test the structures and hierarchies attributed to an,array
of behavioral phenomena.

7. Airasian and Bart (1971) have introduced ordering theory,- formally
referred to as tree theory, as an alternative measurement model.
Ordering tIleory has as its primary purpose the testing 4 hypothe-
sized hierarchies among items, or sometimes the determination of
such hierarchies,. Ordering-theory is similar to other classical
models in that\it utilizes the item response matrix, but it differs
in that it doed not ,use summative scores. Also, the classical ap-
proaches assume that the trait measured is linearly ordered, which
usually is neverftested for. Order theory does not use summative
scores as a starting point for statistical analysis, but rather is
used to determinelogical relationships between items represented
in the item response matrix.

8. The next example is again a more mathematical one: It serves the
purpose of illustrating,the new terminology in a more abstract way.
Let 2:4' be the posit ive integers, i.e., {1,2,3,}. Define "I"
to mean divides: Therefore, alb means at = b, for some te t+
We will show that "I" is a partial ordering.

(i) For any mee, mim, since m.1 = m.

(ii) For mtnEi:
4-

, if mln and n m, thelithere exists t a nd s in
al+, such that mt = n and-ns = m.". Therefore, by substitution
(mt)s = m, which we may rewrite as m(ts) = m. Hence, ts = 1,
but both,t and s being positive integers imply t = s = 1.
Therefoz:e, mt = m = n, and antisymmetry is proven.
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(iii) For m,n,peltt, if min and nip, then there exist t and s
in X"' such that mt = n and ns = p. Which upon substitution
yields (nt)s = p or m(ts) = p, but ts equals an integer, say
qi:iE+, and this implies mq = p.I'Thus we may conclude that
mip and is transitive. We hve now proven that "I" is a

partial orderin4. We may show iat "1" is not a linear

orderisng. / .

(iv)
a01-/'

For example, consider 3,7 4:A- , but 347 and 73. Theiefore,

divides is not connected.

9. The last example that we will consider is _that of lexicographic
ordering. Suppose that sets A and B are linearly ordered. Con-

. sider the Cartesian product of A And B, i.e., A X B. It_may be

proven that A X B rilay be linearly ordered by <, where me define

(a,b) < (a',V) if and only if a <1 a', or if a = a 1, than if

b <2 b°. We axe denoting the strict linear order for A by <1 and
the linear order for B by <2. The proof that < is a linelr ordering

is not that difficult, but requires much cumbersome notation and

the consideration of separate.cases. Because of this fact, a proof

will not be inCluded. Instead several interesting ap/Aications
will be discussed. Suppose that'set. A equals set B,'and that the

members or elements of the set are the letters of the alphabet,

i.e., A = B {a,b,c,...,x,Y,z}. The ordering of A (and B) will

be the normal alphabetical ordering. Then lexicographic ordering
is a precise and elegant way of describing how a dictionary is put

together. If two words Are compared, and if the first letters are

different we order the two words on the basis of the alphabetical

order of the first letters of the two words. If the first letters

are the same, then we order the two words on the basis of'-the second

letters, and so- on.

0
A second useful application is that lexicographic ordering offers

a method of comparing points in the plane. The points could be

compared by looking at the first coordinates, if they are the same,

then we compare second coordinates. Therefore, one could say

(1,4) < (3,1), 42,7) < (2,9), (1,1000) < (2,2), etc.

If a set is linearly ordered by a relation4, we may consider an

additional property that certain linearly ordered sets have.

'ANifistition 20. Let A be a set and suppose 4:is a linear ordering

of A, then A is well ordered if and only if every nonempty subset of A

has a least or smallest element, i.e., if for every nonempty subset

P.C.A, there is an element b0E:B, such that bomG b for every be B.
a
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Examples

.1. The set of all positive integers is well ordered'by. <, because
every subset of. the positive integers has a smallest element.
This assertion is equivalent to Peano's axiom.

2. The set of all integers is not well ordered by s, because, for
example, Zitself has no smallest element.

3. Clearly every finite set with a lihpar ondering defined on it is
also well ordered, because there are ohly a finite number of ele-
ments to consider at a time, and the smallest one may always be
picked out.

4. If the-set underconsideration consists of scores on an achievement
test, then these scores are linearly ordered by "less than or'equal
to." Also the set is well ordered, because any subcollection of
scores will always have a lawest score..

We have completed our discussion of relationseand the special
properties of rela9ions. We have also examined equivalence relations
and different types 9f orderings. The richness of these ideas should
be evident from the ease with which they handle both abstract and real
considerations. Psychologists have been utilizing these ideas in their
justifications of various enomena, so it would be reasonable to in-
corpqrate these terms into t language of psychology as a means of
precise description.
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CHAPTER)

MAPPINGS

One of the most important ideas in all of matherdatics is that of

a function or mapPing. This term is so funotamental that it is in cam-

mon usage in most disciplines. Almost anyone will with great regularity

refer to one thing aptheing a "function" of sonething else. _In a very

narrow mathematical sense, a function _mey be viewed as a formula that

associates to anumber another nunber.) For example, according to a

forma4 the number 5 may be aSsociated\with the ;lumber 7. This is a

restricted definition of a function, a0d is highly limited in terms .

of its applicability. Therefore, a L first definition of a function,

let us consider the following.

Definition 21. A function or mapping
sef V, is a rule that associates with each
set Df of U, a uniquely determined element
in.Df ib called.the domain. The element y

f at x, where xeDf. The' Set of all image

as the.range and will be denoted by Rf.

f, from one set U to another
element x in a certain sub-
f(x) in V. The set of values
= f(x) is called the image of
values of 1 is referr'ed to

Even though this definitiOn is more general ihan the previous one,

in that the sets U and V do not have to be sets of numbers, there is

still an ambiguity built into the definition.

In mathematics, as° well as in psychology,'when dealing with .ab-

stract ideas, it is important to be precise with 9ne's language. In

the definition of a function or mapping the key word is rule. A mapping

from U to V is asule, but what is a rule? The definition is highly in-

tuitive and will be made use of in the book, but in order to be as

rigorous as °possible, another definition of a function wil/ be given.

The new definition, interestingly enough, will be in terms af the lan-

guage introduced in the first two chapters.

Definition 32. Let U and V be empty sets, then a mappin9 or.

'function from U into V is a- set f of ordered pairS in the Cartesian

prodUct U X V, such that if (x,y) and (x,z) are elements of f, then

y z. In other words, a mapping g is a relation between sets U and V,

such that for every admissible value x in U there is a unique y in v,

such that (x,y)E f. The'collection of-all first components, denoted

by Df, will be called the domain. Therefore, Df is the set of all

admissible values in U. The range, Rf, consists of all those values

in,V occurring as second components in the ordered pairs.



A function, then, is a special,type of relation. It is a Subset
of the Cartesian product U X V, with the added condition that the
second member of an ordered pair in f is uniquely determined by the
first install:6er. In order to take advantage of the intuitive nature oT
Definition 21, rather than writing (x,y)Ef, we will adhere to the
more commonly recognized notation of y = f(x), and will kefer to
y = f(x) as the image of f at x.

Examples

1. Let.0 = {1,2,3,4,5} and V = {3,5,9,16,17}, and define f
(2,3), (3,17), (4,16), '(S,9)), then fcv x V, and further for
every x EU, theie is a unique yE:V. TheFefore, f is a function..

2. Let U,= {1,2,3,4,5} and 3,--ftw {3,5,9,16,17) 'and define f = f(1,5) ir
(2,3), (3,5), (4,9), (5,9)), then fC:U X V, and again for every
xEU, there is a unique yes/. Both'l and 3 are associated with 5,
but this is not contrary to the definition of a mapping, since
each xell still has only one value in V associated with it. Notice
alSo that in thig example the range'is {3,5,9} and is not equal to
all of 11.

3. Let U = {1,2,3,4,5} and V
(2,90 (2,5), (3,16)). f

Junction, since there are
signed with 2.'

={3,5,9,16,17} and define f = {(1,3)
is a subset of U X V, but f is not a
two difgerent image values 5 and 9 as-

4. Suppose Miss Nice is a second grade teacher in a small school and
that she has ten students: Tom, Mary, Bill, Lola, Frankie,
Paula, Farnsworth, Betty, and Tony. She gives thed a spelling test
of 20 words and makes a chart for the results like the one in

/- Figure 13. This is an example of a ful4ction. Let

{Tom, Mary, Bild-r-Lola, Frankie; Jim, Paula, Fainsworth,
Betty, Tonyl:pand

V = {0,1;2 48,19,20) = possible number of co;rect answers.

Define f = {(Tom,12), (Mary,16), (Bil1,17), (Lola,11), (Frankie,19),
(Jim,14), (Paula,20), (Farnsworth,16), 1Betty,15),
(Tony,19)1.

f isasubset ofUXV dalso for every element in the domain,
there is a unique element in the range, namely for each child
there is a test score associated. The range in the example is
{11,12,14,15,16,17,19,20).

0
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Mary
Bill
Lola
Frankiet

.12

16
Jim

20

17
.Paula

Farnsworth 16

11 Betty. 15

19 .
Tony 19

Figure 13

.5. A function may be thought of in terms of a machine. There is an

input, an output, and a machine f performing the change. For in-

put x, f(x) would represent the output. Put a quantity of heavy

cream in a blender f and the result will be whipped cre-wm. Put a

coin in a bubble gum machine and out comes a piece of bubble gum.

The parallel to a machine is indicated in Figure 14.

x y f (x)

f is the machine, f(x) is the output

(
Figure 14

6. TI4 idea of a function as a collection of ordered pairs seems to

indicate that it may be helpful to consider a function in terms of

its graph. We will do this in a separate section at the end of

the chapter.

7. The idea of A function nay Ilso be given a geometric interpretation.

Consider the description of a mapping, fs in Figure 15-

Figure 15
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8. There are certain functions that are worthy of specific men4on.
One of them Ss the identity mapping. n effect an element is -a
mapped into ittelf, that is the map g does not change anything.
We would write this as f(x) = x. or instance, f(3) = 3, f(-271) =
-271, etc. 'Act set of values t are left unchanged by a mapping
are often said to be invariant4with respect to the mapping. the
idea of invariants is valuable in psychology. For example,
one understands what types of transformations leave an entity o4
concept unaltered, then one has atgood Iderstanding of what that
entity or concept is.

9. The constant function is another very basic mapping. Fo;iiiir-map-
ping, regardless of which element in the domain is selected, the ,

function Slways assigns the same range value. Examples of a con-
stapt function would-be.f(x) = 5, mhere regardless of what the x
value is, i is always assigned tbe value 5. Another example is
in a store rhere every item costs the same amount, or in a condi-
ti6ning experiment, where an animal. is conditioned to always pick
the element in the left position, regardless of whether the ele-
ments are balls, blocks, colors, etc.

10. In Scandures (1970) SFI. language mentioned before in chapter 2,
the idea of a functiori is basic to the discussion. He distinguishes
between a rule, a concept, and an associatibn as follows. A rule
he defines as a function whose'domain is a set of stimuli and whose
range is a set of responses. A rule is then a mapping between
eguivalenQgNclasses of stimuli and responses. A concept is a
constant function, i.e., each stimulus in a class is paired with
a common response. 'An association is a function whose domaim con-
sists of one stimulus and whose range consists of one response,/
i.e" an association is a sing1P1S-R pair.

11, Anyone who has debated whether it was necessary to put an addi-
tional stamp on a letter,is familiar with the post office func-
tion. It is an example of a mapping where the domain is broken
up into several parts as in Figure 16.

if 0 < x < 1 ounce
1E4 if 1 < x < 2 ouncesf(x) =
241 if 2 < x 4 3 ounces

etc.

Figure 16

12. Addition is another example of a mapping: Let Z be the set of
integers, and define U = Zx Z, to be the Cartesian product of
the integers with themselves, i.e., U consists of tall the ordered
pairs of integers. Define f as a mapping from U into , and denote
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it be f: u-er, where f((m,n)) m + n, with m,n E . There-

fore, f(110,4)) = 10 + 4 = 14, f((11,3)) = 11 + 3 .4 14, et4-

13. Another interesting function is called the characteristic function.

Let U be any set, and supposeilS is a subset of Xi, then define

1 if x E S

0 if x4S.

This me-ans that if x ES, the function value is 1, o4erwise

the function is-0. We cZlahink of-a discrimination problem in

these terms. *If tW.subject 'makes the 'correct discrimination he

receives a reward, and .t.f he does not, then,he receives nothing.

It is .just necessary to think of 1 as reward and 0 as no reward.

14. Sequences are used wih great frequenicy in psychology. An article

may refei'to the 1001 subjects as S0,§1,S21--- PS1000, or in itatis-

tics one may be interested in the multiple correlation between

variables Xl,X2,.iKk. A sequence is a special case of a function.

The domain ofzthe mapping oonsists of 0,1,2, .--, and the range

consiats of whatever is being described. Rather than write

S(0),S(1),S(2),". we write S0,S1,S21.... but nevertheless a

sequence is a special case of a function. '

We have considered a rather extensive list of examples of func-

tions. But, if one consides the frequency with which the word func-

tion occurs in daily life, in addition to its more technical'uses in

the sciences, is clear why it is itportant that the definition and

types of functions be discussed in this text.. Keep in mind that a map-

ping is a relation, with the added condition that for each element in

the domain there is associated a unique element in the range.

We have looked at examples where the range was the entire set V

waild others where Rf.%V. Those mappings that have Rf = V are of special

interest, and have been.given a special name.
ANN*

.Definition 23.
s* to map onto v if Rf =
4a1so be stated as,4f
there exists an ,KCDf
lently, y = fix). An

If f is a mapping from U into V, then f is said

V, i.e., the range of f is all of V. This may

isNa mapping from U onto V if for every yeV,
the domain of f, such that (x,y)E f, or equiva-

onto mapping is also called a surjective mapping

or a surjection.

1.
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Examples

1. Consider the first two examples of functions. W were given that
U = {1,2,3,4,5} and V = {3,5,9,16,17}. In exTople 1, the range
was equal to the set of elements 3,5,9,16, and 17. Therefore, the
mapping is onto. But in example 2, the range was only 3,5, and 9.
Therefore, RJ,iV, and this function is only a mapping from U into
V, not onto V.

2. The example pf the 2nd grade spelling test results is a case of
another function that is not onto V. V equals the numbers
0,1,2,,20, i.e., the potential number of correct answers, but
the actual results only were Rf = {ll,12,14,15,16,1749,20}, and

.

Rf.V.

3. If we consider the identity function, and suppose the domain con-
sists of all the real numbers, i.e., all the numbers along4he num-
ber line. .Also assume that V is equal to the real numbers. Then
the identity mapping f(x) = x is a mapping onto V'since every real
number is simply mapped into itself.

4. If we again consider the identity mapping, but suppose that U = V =
frecall is the set of integers,. Then f(x) = x is a mapping onto

V because every integer is mapped 873to itself. 'However, if the
function were f(x) = 2x, i.e., each number is associated with
twice itself, then the.mapping woad not be onto, because;the range
would consist of only the even integers, and not all of the integers.
For example, f(3) = 6, ,f(9) = 18, etc. It is impossible to find an
integer x, such that for instance f(x) =)3, since 2x = 3 would imply
that x = 3/2, which is not an integer.

106.
,1

5. If we again let U = V-= 2% we see that the constant function is
not onto, since the range of the constant function is only lie
element.

6. The\gost office function is not onto because the price of mailing
leteers is always a multiple of 8. If the letter weighs too much,
another must be put OA the letter.

7. The SFL theory, of Scandura defines a concept in terms of function
language. The domain is a set of stimuli, the set V is a set of
responses, but the ange of a learned concept consists of only one
response, namely the correct one. Therefore, a concept is not
onto.

8. On a true-false test, the domain consists of a set of questions and
the answers are to be selected.from the set V = {T,F}. If the
answers to the set of guestions consist of both true and false an-
dwers, then the mapping is onto; however, if all the answers are
true or all the answers are false, then the mapping is into.

40
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L,9. A latching test (like the one Tin Figure 17) woUld be an example of
an onto mapping. The function consists of the following ordered
pairs: (New York, Albany), (Minnesota, St. Paul), (New Jersey,
Trenton), (California, Sacramento), (Pennsylvania, Harrisburg).

A. New ork
B. Minusota
C. New Jersey
D. Cal fornia
E. Pe ylvaniU

Figure 17

1. Sacramento
2. Trenton
3. Albany
4. Harrisburg
5. St. Paul

There is another important type of function that is useful is es-
tablishing a correspondence between two sets. 'These mappings are called
1 - 1, or one to one.

Definition 24. A function f is 1 - I, or one totone, if foi any.-
xl and x2 in Df, where xl # x2, then,f(x1) # f(x2). Equivalently, if
f(x1) = f(x2), then xl must equal x22 In other words, no element in
the range of f, Rf, may occur more than onceo A one to one mapping is
a1s0 called an injective mapping or an injection.

Examples

1 . If u. = {.1,2,3,4,5) and V = {3;5;9,16,17}, define f = (2,3),
(3,5), (4,1i, (5,9)}. This function is not 1 - 1, because both.4
and 5 are Mapped into 9, i.e., 4 5, but f(4) = f(5) = 9.

2. However, if f = {(1,5),. (2,3), (3,17), (4,16), (5,9)}; then P is
one to one.

3. The example of a mapping corresponding to the results of a spelling
test given before is not a 1 - 1 mapping, because both Mary.and
Farnsworth scored 16.

4. The identity mapping from oneiset to itself is an obvious example
of a 1 - I function. Since this mapping is defined by f(x) = x,
then trivially if xl x2, then f(x1) 4 f(x2), because f(x1) = xi
and f(x2) = x2.

5. The constant function is 1 - 1 orily if the domain consists of one
element; otherwise there are many elements mapped into the same
element. Therefore, a concept is generally not a 1 1 mapping.
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6. A true-false test generally is not a one to one mapping, because

more than one of the items is true and more than one of the items

is false. For example, in a five question test it is impossible

to have a 1 1 mapping.

7. A matching teSt is, however, 1 - 1, because each anAwer corresponds

toonly one question.

'Some mappings are onto, but not one to one, others are 1 - 1, but

not onto, and there are also mappings that are both 1 1. and onto.

Definition 25. A mapping f is a 1 - 1 correspondence between sets

U and V if f$ is - 1 mapping onto V. A 1 - 1 correspondence is .

also called a bijective mapping or bijection. Thus, a mapping that

is an injection and a subjection is a bijection.

WO" Examines

1. The identity mapping is a 1 - 1 correspondence, since we have shown

if U = V =4eal numbers, then f(x) = x is both 1 - 1 and onto.
7Ne

2. The mapping f-(x) = 2x,ewhere U = V = Z, was shown to be into, not
onto, but f(x) = 2x is 1 - 1 since if x2, then f(xi) f(x2).

This follows because 2x1 2x2.

3. If U = {1,2,3,4,5} .and V = 13,6,91, then for f = (219).

(3,6), (4,3), (5,9)1, the function is onto, but not 1 - 1, since,

for example, both 1 and 4 are mapped into 3.

4.. Another example of a 1 - 1 correspondence would be a matching test.

We have shown that this is both a 1 - 1 and onto mapping.

5. In any theory designed to describe the human mind such as automata

theory, the psychologist hypothesizes a 1 - 1 correspondence between

man, and the simulated model.

Before we begin a discussion of different operations between map-

,
pings it is a good idea to define the equality of two functions.

Definition 26. If f and g are mappings of U into V, the f equals

g, i.e., f = g, if f(x) = g(x) for every xEU.

We may define a sum, difference, production, and quotient of two

functions f and g: In other'words V'iere exist methods of producing new.

lunctions.

8
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Definition 27. Suipose f and g are mappings from U into V, with
bdomains Df and pg respectively. Then we make the following definitions:

(i) (f,+ g)(x) = f(x) + g(x);

(f g)(x) = f(x) g(x); and

(iii) (f - g)(x) = f(x)g(x).

In (i), (ii), and (iii) the domain of the new function is DfrlDg, i.e.,
those elements common to both domains.

1.4 f(x)
(iv) (f/g)(x) = -----

g(x)
where xEDfrDg - {Dg lg(x) = 01, i.e.,

thoSe elements in common to Df and Dg with the exception of the e1e-
ments in Dv Where g(x) . 0. This way the problem of division by zero

4 is avoided, and the new function is defined everywhere on its domain.

gxample

1. If f(x) = x2 + 1 and g(x) = x - 4, ,and suppose the domain consists
of the real numbers, i.e., all the numbers on the number line.
Then,

(f + g) (x) = f (X) + g(x) = (x2 + + (x 4-) = x2 + x - 3;
(f - g)(x) = f(x) g(x) . (x2 + 1) (x - 4) = x2 - x + 5;
(f g)(x) = f(x)g(x) = (x2 + 1)(x - 4) = x3 - 4x2 + x - 4;

f x x2 + 1
(f g) (x)

x - 4
where x # 4.

g x

The operation that will have more psychological relevance than the
others is probably the composition of functions.

Definition 28. Let f be a function with domain in U and range in
V. , Let g be a functien with domairl in V and range in W. Then the com-
position gof is the ftnction from U into W, defined.as

,

= {(x,z)Itheexists a yEV such that (x,y) C f and (y,z)E:g1.i' ,;.,

1

The domain of gof coAtists of all those x in U such that f(x) is in V,
and the range consists of all those g(f(x)).

A few examples may help clarify this definition. Notice that a
composition of functions iS a means of going from one set of entities
to another set, and th904rom this set, then going to a third set. An
important warning to the reader is that in some textbooks and journals

43
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S.

gof is taken to mean first applying g and then applying/f.* However,

in this book gof Will always be understood to mean that f is applied

first, and then g is applied. As will be pointed out, gof need-mot

equal fog, so it is important to getermine which convention is being

adhered to in the article you are reading.

4

Eximples

1. Suppose f is the mapping that associates 1 yard with 3 feet, and

that g is the rule that associates 1 foot with 12 inches, then gof

is the mapping that associates 1 yard with 36 inches. The domain

of gof is yards, and the range.is inches. For example, (gof)(4

yards) ="g(ft4 yards)) = g(12 feet). = 144 inches.

Suppose f(x) = x2 + 1 and g(x) = x - 4; and suppose the domain of

f and of g is the real numbers, then

(gof) (x) = g(f(x)) = g(x2 + 1) = (x2I + 1) - 4 = x2 - 3, but

(fog)(x) = !(glic0 =.:f(x - 4) = (x - 4)2 4- 1. x2 - Sx + 17.

This is an example of where gof yi fog, since x
2

- 3.54 x
2

- 8x + 17

for all x,, except when:x 5/2. ,Recall that for two -functions to

be equal they must be e4ual for all x.

suppose a psychology class has an examination. Let f be the mapping

that assigns a numerical score to each student. Let g be the'grade-

line mapping, i.e., certain scores receive an A, others a B, and so

on. Then oof assigns each student a grade on the test. 1

4. Consider Harlow's oddity problem Given three-objects, with one of

the objects different from the other two. The odd item should he

selected. Let f be the function which represents the decision as

to which element i the odd item. Let g be the function of select-

ing this item. Then gof is the successflit performance of an oddity

problem task.

.40"-

An interesting theorem regarding the composition of.functions will

be stated without proof.

Theorem. Let f he a function with domain in U and
Let g be a function with domain in V and range in W. Then

(i) if f and g are each onto, then gof is also onto; and

(ii) if f and g are each 1 - 1, then gof is also one to one.



When we discussedcl - 1 mappings, we pointed out that there were
no elements in the range occurring more than once, i.e., if f(x1)
f(x2), thktn xl is x2. It may then be observed that if the ordered pairs
constituting the function f have their first and second entries inter-
changed, then this new set of ordered pairs would also describe a func-
tion. Because of the 1 - 1 nature of f there is correspondence between
a domain element and a range element, or conversely a matching of one
element in the range with one element in the domain. The function ob-
tained upon this interchange of components is called the inverse of f.

Definition 29. Let f be a 1 1 function from U into V: If f-I

is defined as f-1 = f(Y,x) l(x,y)4:f), then f-1 is a 1 - 1 function from
V into 0 and is called the inverse of f.

Examples

1. If 0 = {Tom, Betty, Hill; Sally, Peter) and V = {18,17,20,15,10
represents their respective scores on a 20 question tpst, then f
is a mapping from U onto V such that f = {(Tom,18), (Betty,17),
(Bil1,20), (Sally,15), (Peter,16)}. f is a 1 - 1 mapping, therel
fore the inverse function f-1 may be defined. f-1 = {(18,Tom),
(17,Betty), (20,Bill), (15,$al1Y), (18,Peter)}. Here, each score
is associated with a particular person, rather than assigning for
each perspn a particular score.

2. Consider the matching test in Figure a8 which was introduced earlier
in the chapter. We have already shown that this is a 1 - 1 mapping:
Therefore, an inverse exists. If f = {(NelloYork,Albany), (Minnesota,
St. Paul), (New Jersey,Trenton), (California,SacrameRpo), (Penn-
sylvania,Harrisburg)), then f-1 = {(Albany,New-York)7 (St. Paul,
Minnesota), (Trenton,New Jersey), (Sacramento,California), (Harris-
burg,Pennsylvania) }.

4C-

A. New York 1. Sacramento
B. Minnesota 2. Trenton
C. New Jersey 3. Albany
D, California 4. Harrisburg
E. Pennsylvania 5. St. Paul

Figure 18

3.. If f(x) = 2x, then f is a 1 - 1 mapping. We rty show this easily;
if f(x1) = f(x2), i.e., 2x1 = 2x2, then this implies x1 = x2, or
f is 1 - 1. If f is defined as y - 2x, then x = y/2 would define
the inverse function f-1. For every y value, the x value is one
half of this y value.
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The ideas of the composition of functions, a 1 - 1 correspondence,
and an inverse of a function may be connected by means of a useful
theorem that will now be stated.

Theorem. The mapping f krom U into V.is a 1 - 1 correspondence,
i.e., a 1 - 1, onto mappinc4 If and only if there exists a mapping f-1
from V into U such-talt_ f-lof and fof-1 are the identity mappings on
U and-V respectively,-r:e., (f-lof)(x) = f-1(f(x)) = f-1(Y) = x and

(fof-1)(Y) = f(f-1(Y)) = f(x) = Y-

Examples

1. In other
applied,
from New
up where

words, if'a function and ite inverse are consecutively
one ends up where one started. If an individual travels
York to Boston and then from Boston to New York, he ends
he started. The person's trip may be described as

f(New York) = Bostori-
f-1(Boston) = New York,

then (f-lof)(New York) = f-1(f(New York)) = f-1(Boston) = New York,
or (fof-1)(Bosto,n) = f(frl(Boston)) = EJNew York) .= Boston,,which,
Would describe the trip from Boston to New York and then a riturn
to Boston.

2. Another example would be if. we define y ='f(x) = 2x. We have al-
ready proven that f is 1 - 1. The inverse function was shown to

be x = f-1(Y) = Y/2. Then, (f-1of)(x) = f-l(f(x)) = f(y) =. x
and specifically this is (f-iof)(x) = f-1(f(x)) = f-1(2x) = f(y) =
x. Similarly, (fof-1)(y) = Y-

_We conclude this chapter with an elementary discussion of g2:4hing

techniques, and to illustrate these procedures we will graph some.of
the functions described in this chapter.

-*

Cur examination of graphing will be on a rectahguliar coordinate ,

system,, which has-two axes,-a.horizontal one called the x axis ancLa
vertical one called the y axis. Any point in the plane may be located'

in this syStem. The directed distance along the horizontal from the
point of intersection of the aies called the origin is referred to 'as
the x coordinate or the abscissa. The directed distance along the ver-
tical is called the y coordinate or ordinate. The abscissa and ordinate
of a pointare indicated by an ordered pair called the coordinates of a
point. The graphical representation of the following ordered pairs,
(7,3), (-2,4) , (5,1/2), (-1,-4), (2,L1), is illustrated in Figure'19.



Figure 19

Th, connection between a function and its graph should be clear.-
The function consists of all those ordered pairs or points indicated
in theNxeph. In other words, every point satisaing a function lies
on the graph of the function, and conversely, every point on the graph
and only those points are points that satisfy the ftnction. That is,

therp is a I - 1 correspondence between those points satisfying a
function, and the points of the graph,of the function.

Examples

1. Let U {1,2,3,4,5} and V sw {3,5,9,16,17} and define f {(1,5),

(2,3), (3,17), (4,16), (5,9)). Ttlis function is graphed, in Fig-V

ure 20.

rik

Figure 20

2. Le\li 7 {1,2,3,4,5} and V = (3,5,9,16,17) and define f i(1,5),

(2,3) (3,5), (4,9), (5,9)). Figure 21 illustrates the graph of f.
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CHAPTER.'4

A class of al aic entitied useful in psychology is groups. The
pretentation on groups will be made in two chaP ters. The first ehapter
includes a discussion of the definition of a group and the related
terms of groupoid, semigroup, and monoid. Elementary examples from
mathematics are included to illustrate the relevant terminology. _The
ube of multiplication tables for finite groups will be explained, and
then used in the verification of certain sets as group4. To gain famil-
iarity with the new concepts i number of direct conseeplences will be
proven. Other key terms such as subgroup, enerators, and different'
types of mappings such as homomorphism, is.p.rphism, and automorphism
will be introduced and the chapter will be concluded with an examination
of several important examples, or types of, groups.

The second chapter will be concerned with the application of groups
to psychology. Examples will be given from Piagetian theory, the theory
of kinship relations, the studies of measurement, percepLon, language,
automata theory, habit family hierarchies, cross-context matching, sym7-
metric choice experiments, and the use of groups in the applicition
parallel tasks.. ':

We now define a group. First, a groupis more than a set of ele-.
ments. It is a set for which there is defihed.an operation such that
certain properties are satisfied.

Definition 30. A group is a nonempty set of elements G together
with an operation * defined on ordered pairs of elements in G, such
that the following four pl'operties are satisfied.

(i) For every a,beEG, the element a*b4EG, i.e., the'product of
any two elements a and b in the set G gives an element a*b
that is'also in the set G. This property is called closure.

(ii) For every a,b,ceG, (a*b)*c = a*(b*c), i.e., whether we
first perform the operation (a*b) and then combine it with
c, or if we-first perform b*c, and then combine a w th b*c,
the final outcome is the same. This property is re erred
to as the associative propeity.

(iii) For every af:G, there exists an element eEG, such tLt
a*e = e*a = a, i.e., there exists an element e, suchthat
regardless of which element of G is considere-d, when e is
combined with that element, the element is unchanged,\or
in other words, is identical to the way it was before the
operation was performed. This element e is called the
identity element.



(iv) For every aeG, there exists,aprelement a- 67.G, such that,
ge, = e, i.e., for every element in G there exists

an.element a-1-such that when.the two are combined, the re-
sultant produat is the identity element: This element a-1
is called the.inverse element.

Recapitulating, a,group is a nonempty set of elements G together
with an operation *I such that G is closed, associative, has an identity
element, and every elment in.G has in inverse. A group is an example
of a mathematical systec. Actually a group G should be written as (G, *)
to indicate that it is a. set,of elements and a dpecific operation, but
for simplicity of notation a group will be written as G. The reader
should, however, also remember that the operation is implicitly under-
stood. Certain sets when combined with particular operations will satis-
fy only.some of the properties. We give names to specific subcollections
of the four properties.

Definition 31. A groupoid is a nonempty set G together with an
operation *, that has closure, i.e., for any a,b EG, than ath is also
am element of go

Definitlon 32. A semigroup is a nonempty set G together with in
operation ff,7 that satisfies thgclosure and associative properties.
In other word's, a semigroup is an associative grouppid.

s,
, s

a

Definition 33. A monoid is a nonempty set G together with an oper-
ation *I that sAisfies the closure and, associative properties, and
further has an identity element. That,is, a monoid is a semigroup that
has an iftntity. elementr

There is one more important property concerning groups, or for
that matter groupoids, semigroups, and monoids. The commutative prop.=
ert is not a requirement of being a group, but it is very imporfant

, in a discussion of groups. As will become evident in the examples of
the folloiang pages, itebis not always possible to interchange the order
of combining two elements and Obtain the same element. We earlier saw
that the composition of two fqnctions f and g gave different results
in considering fog and gof.

Definition 34. The operation * defined on the set G is said to
ri5 commutative/or abelian if fpr every a,bEG, a*b = b*a. Therefore,
a group satisfying the added property that a*4= b*a for every a,b in
G, is called a commutative or abelian group. Similarly, an abelian
groupoid, semigroup, or monoid could be ds.f.ined.

We will encounter groups that have a finite number of elements and
c\pthers-that have an infinite numbilir. Naturally, the question of how
many elements are in a group is more interesting in the finite case.

Definition 35. The order of a group G, denoted o(G) or. G is

the number of elements in the group.
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In the case of finite groups a multiplication table may be made
to indicate all the possible products. Suppose the group G is defined
as G = fx11x21...00. List the elemeAts xl,x2,.,xn across the upper-
most row and down the farthest ldft column, as in Figure 27. The ele-'
ment-appearing in the ith row and the jth column would be the element
xi * xj, which equals some xk in G, since G is a group, mid is, there;
fore, closed. We will make use of the multiplication table in some of
the examples.

7

Figure 27

Examples

1. Suppose that the set G equals the elements 1 and -1, and the opera-
tion is multiplication. A table of the products is shown in Fig-
ure 28.

-1

Figure 28

(i) G is closed, because every product is 1 or -1.

(ii) G is associative, because with multiplication it does not
.matter which way the elements are grouped.

(iii) G has an identity element, namely the element 1, b ause
1-1 = 1 and (-1)-1 = -1.
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(iv) Each element has an inverse; infact, each element is its
own inverse; 1.1 = 1 and (-1)-(-1) = 1.

Therefore, G is a group, and G is actually an abelian group since
the order of multiplication does not matter.

2 Let Ebe the integers, i.e., Z= {,.-21-1,0,1,2..} and let the
operation be addition. Z is a abelian group. The sum of any two
integers is another integer; therefore, Zis closed. Zis associa-
eive because for a,b,c0C3Z, (a+b) c = a + (into). The'identity

eleme is 0, because any integer plus 0 is still the dpame integer.
The inve of an integer a is -a, since a + (-a) = 0. For example,

the inverse of 3,is -3. Finally, G is abelian, sin6 a -1. b = b + a.

3. If,the set was changed to be the natural numbers or counting num-
bers, N = {1,2,3,...}, then, if the operation is again addition,'
N is an abelian semigrbup. It has no identity, because 0(N.
Also, since the negative integers are not included, there are no
inverses. If we consider 5EN, the inverse would have to be -5,-
but -50.N.

4. If we modify the set of natural numbereby adding the element 0,
then the set under considera4on is G = {0,1,2,---}. This set is

an example of a commutative monoid under addition, spce 0 is the
identity element.

5. In considering the set of natural numbers, but now with the opera-

tion of subtraction, it may be observed that the set is not,even
closed. If, for example, we consider the natural numbers 5 &id 9,

5 - 9 = -4, but -4 is not a natural number. The reader's immediate_:\
reaction may bt to ask, suppose instead of the natural nuAberskwe
considered the integers with the operation of subtraction. We

still would not be able to get a group, because the associative
property does not hold. For'instance, if we consider 15, 8, 12,
notice that (15 - 8) - 12 = 7 - 12 = -5, but 15v- (8 - 12)= 15 -
(-4) = 19 and -5 19. Neither is there an identity element. It,

is true that, for example, 5 - 0 = 5, but 0 - 5 = -5 and -5 is not

equal to 5. Recall that 'the identity property required that a*e =

a. Therefore,,we have an example of a groupoid.

6. Perhaps your curiosity is aroused as to what would happen%Er we
looked at the integers together with the operation of multiplica-
tion. Closure, associativity, and the existence of an identity,
napely e = 1, are all complied with, however, 1 and -1 are the
'only elements that have an inverse. If we consider 6 as an element
of the integers, the inverse of 6 is 1/6 since 6 - 1/6 = 1, but

f/6 is not an integer. This set is then a monoid under
multiplication:



,7. If we would enlarge our set to the rational numbers and again
consider the 'operation'of multiplication, we then may observe that
we have an abelian group. The rational numbers are the set.con-
sisting of all fractions. A whole number is a special case of a
)fraction, e.g,, 3 = 3/1. Therefore, the integers are contained in
the ratlonal numbers. The only property in question would be the
inverse, but with the inclusion of yactions in our set, the in-
verse of a fraction is just its reciprocal which again is a frac-
tion. The inverse of 3 is 1/3, the ,inverse of 5/8 is '8/5, etc.

8. The next example is used to illustrate that for the same set G =
{e,a,b,c} (see Figure 29) we may indicate multiplication tables of
two distinct groups.

(i) a b c

eabc
a a. e c b

b b c a e

Figure 29

a

It is a group. Clearly there is closure, the identity is e, and the
inverse of e is e, of a is a, of b is c, and of c is b. ,The associa-
tivity requires verification, leftoto the reader. For example
a*(b*c) = a*e = a and (a*b)*c = c*c = a; therefore, a*(b*c) =
(a*b)*c. 711e other products of this type should be examined.

b c

a b c

a a e c. b

b b c a

b a

Figure 30

Figure 30 describes a group. In this example each element is its
own inverse.
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1.

Example (i) is an example of a.cyclic group and a more de-
tailed discussion of cyclic groups will be given at the end of
the chapter. Example (ii) is'usually referred to as the "4-group."
The discussion of Pigtjete INRC greup (Piaget & Inhelder, 1958)
will be based on the "4-group," and will occur in the next chapte-r
as an application of groups to psychol6)y.

...it: 41`...3i.

Consider a square, and observe that the center of the square is .

the point at the intersection of ttie diagonals of the-square. ,1,-et
the set G consist of the rotations of the square around its center
through 900, 180°, 270°, and 360° in the clockwise direction. De-

note these rotations by R900, respectively.R180°, R270°, R360°,
Define A*B to be the rotation A followed by the rotation B. For
example, R1800 * R270° = R900, because R450° = R900. The multipli-
cation table for G is given ii Figure 31. Notice that R3600 is
the identity rotation and the inverse of any particular rotation
is that rotation needed to cam ete a 360° rotation. G is a group
and if one compares Example 8'i) with this example with the corre-
spondence of e with 13360°, b with R900,'a with R1800, and c with
11270°, one sees that they are essentially the same group. Notice
further that 900, 180°, 270°, and 360° were chosen'for the square
because these rotations leave the vertices or corners in the same
positions. In the case of a triangle these invariant rotations
would he 120% 240°, and 369°.

R
900

R
180

R270

R360

R900 R1800 R2700'113600

R
1800

R
2700

R
3600

R.
90°

R2700 R
3,60°

R
90°

R
180°

R
360

R
900

R
1800

R
2700

R
90°

R
1800

R
2700

R
360°

Figure 31

10. A related but more complicated example that has-geometric and visual
significance is that of the group of the symmetries of a square.
Consider a square, and it may not be a bad idea to actually 4se a

square piece of paper to aid in the verification. Impose a coordi-
nate system on the piece of paper with the origin at the intersec-
tion of the diagonals of the square and the sides of the square
parallel to the coordinate-axes.. A sketch of the situation is
given in Figure 32. Let the set under consideration consist of
eight motions of the square. These motions are all rigid, i.e.,
the square is not in any way distorted or folded or squashed.

yt're-)

54

lae



Further, notice that each motion is such that the square always
coincides with its initial position after any one of the motions.
Let the first four motions be clockwise rotations of the square
through 90°, 1800, 2700, and 360'. Denote these Motions by

R90o, R180" R2700, -and R3600, respectively.

a

Figure 32

c.

Let.X represent the reflection of the bquare around the x
, axis, and let Y represent the reflection of the square around
its y axis. Let D1 represent the. ;reflection of the square around
the diagonal going from the upper left corner to the lower right
corner. Finally, let 1)2 be the reflection of the square arouhd
the diagonal going .from the lower ieft corner to the upper right
corner. Therefore, G = (R900,R-1800,R270.,R3600,X#W,D1,D2). De-

. fine A*8 to mean perform motion A;a9d then motion B on the square.
For example, 61*R1800 would mean reflect the square around the
diagonal going from the upper left to lower ;11.ght and then rotate
through 1800. The result in "this eape wouldle D2. The completion
of the multiplication,tabfrtmay be greatly simplified by using a
square piece of paper with the nuAbers 1,2,3, and 4 in the corners
on both sides of the paper. Perform the indicated motions and
determine what new'Mption is obtained.' -FtfOul Table 2 it may be
verified that G,is a group, but not i abelian group..

The identity element is R3600, andjalso observe that Rwo and
R 0 are each other's inverses. Ctherwise the other six elements,270
dre self inverses, i.e., Rine =Ri600 = X2 = Y2 = Di R360*
identity element. In general, groups of the symmetries of regular
(qual sided) n sided polygons are called dihedral groups.

11. Let G be the collection of all subsets, which is als6 often called
the power set, of some set S. Define an operation * ort"G,where

'A#B = (A 8)1)(15 A), i.e., * is the Symmetric difference.opera-
tion discussed in the first chapter. Recall that we proved
AAB=BAAin Chapter 1, i.e., A, the sym6etsic_a4fterence, is
commutative. The closure of * (or,A) is cibvious. The identity



Table 2

500. R3.80 R270° Ri60°

R180° R2700 R3690 900

R180° R2700 R3600 R900 .R1800

1/
R904

270° R-360° it1800 R2700

k Tit

-360° 90 R1800- R2700 R3600

X D2
1

D2,
1

X

D2

,

A,

2

X

D2

X
R3600 R1800

Y
R1800 R3600

1 R2700 R900

D2
R900 R2700

^4--

Al
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R2100 R900

R3600 R180°

R1800 R3600



element is the null or empty. set, because, for every AC.S, A.;10 =

(A - U (cb - A) =. AU 0 = A. By the gommutative property 0*A

also equals A. Thet inverse of any set 'A is.A itself, because
.A*A = (A - A) t.) - - u = The only property that re-
mains to be demonstrated is the associative property, i.e., that
for arbitrary sets A, and C in S, (A*B).*C = A*(B*C). The-veri-
fication4gets quite messy, and requires more computational exper-,
tise than would be expected of the reader. Observe that (A*B)*C
= [ (A*B)- U IC - (A*B).1 = I ( (A - (B - A)) - Cl [C -
( (A - B) (B A)) and, A* (B*C) = [A (B*C) [ (B*C) A)

( ( - c) U (C - B))] ((B - e) (c B) ) A] and these two

expresSions must be proven to be the same. As a means of intuitive
justification, but not an actual proof, the probfem will be con-

sidered in terms of Venn diagrams in Figure 33.. Therefore, we have

an abelian group. This particular group will be used by Bart
(1971) in his discussion Of Piaget's model of formal operations ,

and how that model may be generalized, which follows in the next

chapter.

A*B

B*C

(A*B)*C

A* (B*C )

Figure 33
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Before we begin to examine sever'al useful consequences of the con-.
cept group, a small table is included reViewing the examples concerning
the integers and rational numbers with the operations of addition, sub-
traction, and multiplication. 'Table 3 indicates that a particular set
may be a group under one.op'eration but not another, or that a particu-
lar operation imposes a group structure on some sets but not on all
pets.

Consequences

In this section we include some dikect consequences of the defini-
tion of.a graap.

- -7

Lemma. If G is a group, then the identity element is unique.

Prpof: We must show that if there-4re two elements e and s such
that e*a = a*e.= a and a*s = s*a = a for every aE..G, then e and s are'
equal, i.e., there/is only one ident4y eltment. If e is an identity
element, therCp*a =,a for,any s ,is 'an element of G, there-
fore, e*s = s. If S, is anlidentity elemdnt, then a*s = a for any aC G.
In particular, since efEff,7b*s.= e.. Thus, we have shown that e*s = e
and e*s = s, from which we may conclude that e = s.

41
.

Lemma. If G is a group,pSen every element a
inverse. / 111,4

n G has a unique

Proof: Suppose that t re eXiSt elementr a-?L. and° b in G such
)

that
a*a-.1 = a71*a = e and altb =7..b*a = e, me .must prove that a-1 = b.'

4
.

a-1 = a-1*e, because,any element combineurlInth phe identity is
itself. Therefore, by s4bstitution, a-1 = a-1*(a*b); since we have
assumed a*b = e. .By the associativity of *, ,a-1 = (a-1*a)*b = e*b =' b.
Hence, a-1 = b and the/inverse of a is uni4ue.

There are several other basic results that we state without proof.
They may lie in an introductory text in abtract algebra such as Her-
stein (1964), Dean (1966), or Burton (1965). 4

Lemma. (i) If G is a group, then for every aG, a

.i.e; the inverse of the inverse itself is the element you began with.

(ii) If G is a grotip, then for any a,bEG, (a*b) -1 =

b-l*a-1 and if G is abelian, then (a*b)-1 =

We conclude this section with a typical grov theoretic exercise.
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Set

Integers

Natural
numbers

Natural
numbers
"vgal

Natural
mumbers

Operation Closure

Table 3

Associa-
tivity Identity Inverse Groupoid Semigroup Monoid Group Abelian

Integers

Integers

Rationals

Groupoid

SamigrouP

.Monoid

Group

YES YES'

YES NO NO

YES YES YES NO YES yES

YES

YES

YES YES

NO NO

YES NO

YES

YES

1,

NO NO. NO NO NO NO NO NO NO
-

YES NO ,/'-' NO NO YES NO NO. NO No'

YES YES YES NO YES YES YES NQ YES
.-

YES YES YES YES YES YES YES YES YES

YES NO NO .NO YES . NO, NO NO

YES YES NO NO YES YES NO NO

YES YES YES 140 YES YES YES NO

YES YES YES YES YES, .YES YES YES _
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V
2Theorem. If G is a giafig, satisfying the property that (a*b) =

.a2*b2 for all a,b in G then,G is an abelian group.

Froof: We must show that for every a,bELG, a*b b*a, which would
establish that G is commutative. By hypothesis, a2*b2 = (a*b)2, where
the operation is underst:14to be *. If a2b2 (ab)2, then since
(ab)2 = (ab)(ab), we hav b2 = (ab)iab). Upon multiplying both sides
of the equality by a-1, we have a-1a2b2 = a-1(ab)(ab), or a-laabb =
(a-la)b(ab) by use of the associativity. Therefore, we obtain eabb =
6(ab), or abb = bab. Next multiply on both sides by b-1, to obtain
abbb-1 = babb-1, from which we conclude that abe = bae, or ab = ba,
i.e., ,G is abelian.

Subgroups

After we introduced the idea of a set, we followed it up with an
examination of subsets. We will analogously now introduce the idea of
a subgroup.

Definition 36. A subset H of a group G, is said to be a subgroup
of G, if H itself is a group under the same operation * that is defined
on G.

Examples

1. Under addition we have shown that both the integers and rational
numbers are groups. Therefore, the integers andsrationals could
be considered as H and G, respectively, in the above definition,
and we may say that the integers are a subgroup of the rationals
under addition. Notice that if the operation were multiplication,
'the integers would not farm a group, and thus wou.ld not
subgroup.

2. In our discussion of the square, we first_conlidered the set,
{R.90°, R1800, R27001 R3600} and proved it was a group. Next we'
examined fR900, R-180°, 1127001 R36001 X, Y, D1, D2} and proved that
it too was a group. Hence, the set of rotations would be a sub-
group of the set of motions.

On first inspection it would appear that in order to prove that a
subset H of group G is a subgroup, i.e., is actually a group itself,
it appears that the set H must be tested for the four basic properties.
Actually the situation is simpterwthan this. Since the associative
property holds for the larger set G it certainly holds for H. There-
fore, the associativity does not have to be verified. Two lemmas will
be stated that indicate what must in actuality be tested.
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A.

Lemma. A subset H of a group G is a subgroup of G if and only if

(i) albEH imply that aftbEH; and

(ii) aEH implies that a-1C H.

By-combining (i) and (ii) the existence of the identity element
may be demonstrated. Suppose aC.H, then be (ii) a-112H, but by ii) we

have ad:H and a-le H implies that a*a-1 e is also in H. In the case

of a group'of finitekorder, i.e., H has only finitely'many members, the

verification is even easier. \

Lemma. If G is a finite group, and H' is a subset of G, then H is
A subgroup if H is closed eunder the operation of G, i.et, if a,be

then- a*b(E.H.

Suppose we consider a group G, and G has pubgroups It'and K. Th

question may be posed, is Hru a subgroup of GF? The answer is bu

the question still temains, why? LI
Theorem. If G is a group and H and K are subgroups of G, then

HriK is als6 a subgroup of G.

fiti

proof: HnK is nonempty because e EHr1K, pince e C H and ee K.

N , suppose x and y are elements of Hr1K, we tuust show x*yE HelK. The

ot that xE'Hr1K implies x is an element of H and of K, similarly

yEB and yE K. Because H and K are subgroups, x EH and yE H imply

x*ycH, and xEK and y eK imply x*yEK; but x*yCH and x*ye K together
imply. x*yc H nK. Second17, if x EHrIK, we must show that x-1 Hfu.
x,E HrIK implies x CH and xK, but the fact that .H and K are ,subgroups

iMplies x-1E H and x-1c K, from which deduce x-1 Hnx._ Therefore,

HrIKis a subgroup by the stated lemma.
4: k

A useful result concerning,subgrou'ps is called Lagrange's Theorem

forfinite groups.

%
. ,

Lagrange's Theorem. If G is a, fitite group and H is a subgroup of

G, then the order of the group IGI is a multiple of the order of the

,subgroup !HI.

For example, if a group has eight elements, then there can be n9

subgroup of three elements. Be cautious in applying the theorem. Just

because a group of eight.elements has a particular subset of four ele-

ments, it does not imply that this set is a subgroup. What the theorem

guarantees is that if H is a subgroup of G, then the number of elemmts
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in H must divide the'number of elements in G. In other words, this
theorem is a necessary, buX not sufficient, condition for being a
saigroup. .

GEN.ERATORS

A concept related tItthe ideas of groups and subgroups is that of
generators. It would be most desirable if the group could be produced-
by 'considering a subset of the 'elements_4f the group in various
coMbinations.

Definition 37. *Let G )51e. a group-, and suppose S = {g1,-,g0 is
a Subset of G, such that all the elenents in G may be produced'as
products involving only the elements in S, then we call the elements
of S the generators of G.

Defimition 38. Let G be a group and suppose that there
generator a, i.e., G = {aili = 0,±1,..:.), Or innother words
xt7G, there exists an integer n such that x = a

n times
as G = (a), ana G\is called a cyclic voup with generator a.

N.womml, A

Examples

is'a single
, for every
G is written

1 We have shown that G = {R90o,R1800,R2700 ,R360°}, the rota-
tions c)f the square leaving the vertices fixed is a group,.. This
is a cyclic group with generator Rgoo, because any other rotation
may be obtained by repeated ?plication of Rgpo.

2 Consider the set of even integers, i.e., G =
with the operation of addition. It may easily be.shown that G is,
a group. The set of even integers is a generator group. S = {2,-2),
where we mean that any element in G is a multiple of 2 or -2.

Definition 39. If G is
0,±1,---) and (a) is called
an element, a, such that G =

a group, and a G, then
a cyclic subgroup of G.
(a), then G ip a cyclic

(a) = {aili =
(If there exists

group.)

Definition 40. If' is a group and ac G, then the smallest posi-
tive integer K, such that aK = e is called the period of a.
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Example

1. In the case where G = {Rge,R1800,R2700,R360°}, = 4, because

(R900)4 . R.900*R90**1900*R900 = R360° ' e.

1116'

HOMOMORPHISMS AWD ISOMORPHISMS

fn this sefrah.weNwill relate two groups by means of mappings be-

tween them. These mappings will indicate the similarities of structure

of-the two groups.

Definition, 41. A. homomorphism 0 is a mapping from one group G1
into another grbuP G2, such that for all a,b in Gi, 0(a*b) = 0(000(b),
where * is, the operation for G1 and o is the operation for G2. If G1

and G2 are tile same group then the operations * and co are the same.

Examples

1. Suppose 0 is a mapping rim G into G, defined by 0(x) = 2x, and as-

sume addition is the o aton involved, then ,0 is a homomorphism.
'This/ts true because, for g and y;in G, 0(x+y) = 2(x+y) = 2x + 2y =

0(x) + 0(17)-

2. Suppose 0 is a mapping from G1 into G2, and that G1 is the real num-

iers together with the operation addition and G2 is the real nun9coers

together wl,th the operation of multiplication. Define 0 by 0(x) =

/x Then, 0(x+y) = 2x+Y = 2X-2Y = 0(x).0(y). Therefore, 0 is a

homomorphism.

3. SuRpose 0 is a mapping from G into G/ and G easials the integers,

and the operation under consideration is addition. Define 4)(x) =

x+1, then 0 is not a homomorphism, because

0(x+y) = x +. but

O(x) + 4)(y) =x+1+y+ 1 =x+y+ 2.

efinition 42. A napping from G1 into G2, with G1 and G2 being

groups, is an ,isomorphism if

is a homomorphism, i.e.p 0(a*b) = 0(a)00(b),,where * and

are the operations of G
1
and G

2
respectively; and

(ii) 0 is 1 1. That is, an isomorphism is a 1 - I homomorphism.

An automorphism is an isomorphism of G onto itself.
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Definition 45. Two groups G1 and.G2 are isomorphic if there exists
an isomorphism of Gl onto G2, i.e., there exists a mapping that is a
1 - 1 and onto mapping such that 0(a*b) = 0(a)o0(b), where * and o are
the respective operations for G1 and G2.

It is important to realize what it means to say that two groups
are isomorphic. It does not mean that the two groups are equal or iden-
ticlil. They 'may be, but they don't have to be. It does, however, in-
dicate Jokt the two groups are structurally alike or parallel. To es-
tablish isomorphic relationship between a man and a computer does'
not say that the computer is the save as the man, but that there is a
1 - 1 correspondence between actions of the man and simulated actions
of the machine.

In a poker game you are giv n a chip for every d011ar you have;
therefore, there is a 1 - 1 correpondence between the amount of chips
you have and the amount of money you have, but a chip is not the same
as a dollar. Try getting one chip's worth of gas at your local service
station.° The key idea of speaking of isomorphic sets or groups is to
say that a structural parallelism exists between them.

Example

1. If we let G1 = {R90,R180,R270o,R360}, i.e., the rotations of a
square, and for G2 consider your watch.. Set it at 12 o'clock.
Define faiur elements: changing the watch to 3 o'clock, 6 o'clock,
9 o'clock, 12 o'clock, and denote these changes be A3, A6, IN9,
Al2 respectively. We may find a 1 - 1 onto mapping between G1 and

G2' 4'(R90°) = A3' 0(R180°) A6, 0(R270°) = A9, 0(R360) = Al2.
Also, 0(x*y) = 0(x)o0(y), e.g., (1)(R90**R180o).= 0(R270°) A9
A3oA6 = 0(R900)o0(R400). Therefore, G1 and G2 are isomorphic, but
certainly a square piece of paper is not a watch, yet the imposed
structures on Gi and G2 are the same.

We close this section with a few descriptive lemmas concerning
hamomorphisms.

011

Lemma. If 0 is a homomorphism for G1 into G2, then 0 maps.the
identity element of G/ into the identity element of G2, i.e., 0(ea.=

Proof
mept of G2
Therefore,

0(e) =

: Let x G, then Oxre-= 0(x),'eince is the identity ele-
. But 0(x) = 0(xe), since e is the identity element of Gl.
0(x)e-= 0(xe), but being a homomorphism ip1ies 0(xe) =
We thus have 0(x)F= 0(x)0(e), from which we deduce that
We make use of what is called the cancellation law.
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A valuable term related to a discussion of homomorpHisms is that

of the kernel of the homomorphism.

Definition 44. The kernel of a homomorphism 0, denoted ker0

defined for a homomorphism 0 from Gi into G2, to be the set of elements

in Gi that are mapped into the identity element of G2. ker0.=

(xf.G110(x) =

0

Recall that an isomorphism is a 1 - 1 homomorphism. An alternative

to proving that 0 is 1 - 1 is the next lemma.

Lemma. A homomorphism from G1 into G2 is an isomorphism if and

only if the kernel of 0 consists of the identity element of G1 alone,

i.e., ker0 = {e).

ADDITIONAL IMPORT.r GROUPS

We finish up this chapter with a discussion of a few very important

groups that deserve special mention. In chapter 3 wy examined mappings.

In particular we investigated 1 - I mappings of a group, or actually at

that time we just spoke of a set, Oato itself. A result we stated with-

out prooif was that the composition of two 1 - 1 functions was a I -

mapping and similarly, the composition of two onto mappings was an onto

mapping. Therefore, the composition of two 1 - 1 onto mappings would

be also 1 - 1 onto, i.e., composition of mappings is a closed operation.

It turns out that the 4mposition of mappings is associative as well.

There exists an identi y mapping, namely f(x) = x, and this function

we could denote it i,ybuld be the identity element for the set of 1 - 1

onto mappings. Finally, a 1 - 1 onto mapping has an inverse function

that is also a 1 - 1 onto mapping. 'Therefore, the set of all 1 - 1

mappings of a set onto itself together with the operation of composi-

tion of functions is a group. It is not an abelian group, because if

we return to the discussion of Chapter 3, it is clear that fog and gof

generally are different.

A closely related example concerns the set of automorphisms. An

-automorphism was defined as an isomorphism of a group G onto itself.

Therefore, an automorphism is a 1 1 mapping of G onto G, such that

4)(a*b) = e(a)*(p(b), where * is the operation for G. It turns out that

the set of automorphisms which are a subset of all I -11 onto mappings

are also a group.

The last example is tied in with tlib discussion of 1 - 1 onto map-

pings. We will briefly examine permutation groups.
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Definition 45. Let S be a set, then a permutation, denoted by n,
is a 1 - 1 mapping of S onto itself.

Therefore, a permutation is a mapping. The distinction between a
permutation and an automorphism is that S does not have to be a group

for

permutations. We have just shown that the set of all 1 -1 mappings
of a set onto itself is a group,.i.e.,'the set of all permutations of
a set forms a group with the operation being composition. This group
is referred to as the symmetriC group.

40/et of all 1 - 1 mappings ot a eet S mapped onto itself under the opera-

/Definition 46. The s tric group is the group formed by the

tion of composition.

Permutation groups are most valuable when the set under considera-
tion is finite. If S = {a1,--,an}, then the permutation n is described
by

7 =-
& . a

n
a
1

a
2

) n(a)
1

(n(a ) n(a
2

i.e., the action of n on the element s in S is indicated in the second
row. We will Ave a detailed analysis of the symmetric
the three elemeats al, a2, a3, which for convenience we
For example if R is such that I goes to 3, 2 goes to 2,
then

Fo
namely

2 3\
\
3 2 11-

group S1 on
denote 1,2,3.
and 3 goes to 1,

three elements 1,2,3 there are six possible permutations,

2

2

2

1

3\

3 /

3

2)

2

7
6

=

=

2 .3

1 3 2)

3 2 1

3
2

2

1

3

3) 2

2

3

3\

1

We now will show that413 = {71112,73,7417517T6} is a group. The opera-
tion will be composition and will be performed as follows. If we compute
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/1 2 3) (1 2
thth

IT2°74
, we start wie 1 in the left permutation.

1 3 2) \2 3 1

Below the 1 is another 1, so we say I goes to 1, and then go the second

permutation in the 1 s.liot. Here, 1 goes to 2. So we have 1 4 1 -0- 1 4- 2,

and therefore, 1 2. Next we start with the 2 in the left permutation,

2 4 3, so we go to the 3 in the right permutation, and see that 3 goes

tb 1. Therefore, 2 -4- 3 4 3 4 1, or 2 goes to 1. Finally, we start at

3 in the left permutation. 3 4 2 and so we go to 2 in the right permu-

tation and 2 4- 3. Therefore, 3 4. 2 4 2 4- 3 or'3 4 3. Combining our

results we have

n4 )

(1 2,3\1(1 2 2

n.o= = n3.

3
'

2
\
2 3 1 2 1 3

Another example would be
4

2 3)(1 2
sor3 = . 7

6'
3 1 A2 1 3 3 2 1

where 1 4 3 4- 3, 2 4- 1 -0- I 2. and 3 4- 2 4- 2 4 1.

A complete table would look like the one in TablePee. Notice that

2

= is the identity, because it maps each element into itself.
7
1

1 2 3
From the table it may now.be verified that3 is a group. We have al-

ready proven that the set of all 1 - 1 onto mappings of a set onto itt-

self is'a group, but it would be interesting practice for the reader to

try to,verify some of the entries in Table 4.

The terms transitive and regular permutation group appear fre-

quently in the literature.

Definition 47. A permutation group is said to be transitive if it

has the property of containing a permutation which replaces any given

letter, or ai, by any other letter, i.e., each of the lettrs of the

group may be replaced by each of the other letters of the group.

Our group33 is an example of a transitive group.

Definition 48. A regular permutation group is a transitive group

whose order, or number of mappings in the group is equal to its degree

of elements or letters beingitransformed.
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Table 4

n
1

n
2

7
3

n
4

n
5

n
6

n4 w
6

n
2

n
5

qr
1

n
3

7
5

113 7
6

n
1

14
112

n
6

114 115 n
2

nj 71
1

We now have completed a fairly rich description of elementary grou
theory. The examples were included to 'illustrate the new definitions.
The precision and elegance of the theory hopefully impresses the reader.
If theri would be any way that psychology could draw on this theory, it
would be most desirable. The next chapter .includes an impressive list
of examples of how group theory has already entered the domain of
psychology.
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CHAPTER 5

THE APPLICATION OF GROUPS TO. PSYCHOLOGY

There will not be anx new mathematical ;terminology Introduced in

this chapter. The chaptei is devoted to the description of various

applications of group theory in the behMrioral sciences.

In order to understand Piaget's theory of formal operations (Piaget &

e404pr, 1958), the reader should be familiar with basic propositional

iNrwhich is an area outside of the discussion in this book, and-the

Inc group, which is now within the realm af our understanding. There

are four elements in this group, namely,

(i) I, the identity operator, which when applied to any proposi-

tion leaves the proposition unaltered;

(ii) N, the negation or inverse operator, which means one can

return to the starting point by Cancelling an operation

already performed;

(iii) R, the reciprocal operator, which means that one may return \

to the star ing point by compensating a difference, i.e.,

the produc of two reciprocal transformations is not the

identity ut an equivalence; and

(iv) C, the correlative operator which is the negation of the re-

ciprocal operator. ,

The multiplication table in Table 5 is the same as that of the "4-

group" discussed in the preceding chapter

Table 5

INRC
I I NRC
NN I CR
R R C IN
CC RN I

To fully appreciate the role of the 1NRC transformation would re-

quire a discussion of propositional logic and BoOlean algebra, but we

can give an illustration of how the INRC group would be applied in the

task of establishing equilibrium for a balance.
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Suppose that a balance is in equilibrium, we may cause disequi-
librium by changing one of the weights or altering the distance of one
of the weights from the fulcrum, or peeforming some combination of a
weight and distance chang. Assume we replace a weight of five pounds
'With a neW weight of ten pounds. Then the negation or inverse of this
action would be to remove the ten-pound weight and replace it again with
the original five-pound'weight. An example of a reciprocal operation
would be to replace the weight on the other arm of the balance with a
weight of twice the original. This action compensates for the original
action, but does return the balance to equilibrium in the exact same
way as it originally was. The correlate would be the negation of the,
reciprocal transformation.

The most important 'changes for Piaget are the negation and recipro-
cal transformations. They are the two forms of reversibility, i.e., the
original situation may be restored by either cancelling a performed opera-
tion or by compensating for the operation. An understanding of the role
of reversibility in Piagetian theory cannot be whole without an appreci-
ation of the underlying mathematical framework of his theory.

Theie are certain weaknesses and limitations in the Piagaian
logical-mathematical model for the stage of formal operations. Bart
(1971) points out that the INRC transformation group is inadequate in
explaining how certain logical propositions that axe operations can be
transformed into other element operations. Therefore, Bart has formu-
lated a generalization of this model. The generalization presupposes
an understanding of the Boccean algebraic structure of combinatorial
thinking and the regular Boolean permutation group structure of
hypothetico-deductive thinking. The method of designating the formal
transformations in the groups descriptive of formal thought is in terms
of the symmetric difference operation that we have already examined in
detail.

One weakness in Piaget's theory is that it does not distinguish the
level of cognitive complexity of one level of combinatorial ability Nrom
another level. Suppose rk represents one individual's level, and fk+1
another individual's level, then the second person would be at a higher
level. A type of mapping or transformation 0 defined on Fk will be a
permutation, and will be called the symmetric difference transformation.
These transformations form a group, in fact a regular permutation group.

eY
From this framewor a method of positive intersection generators is em-
ployed to indicat the primitive formal transformations p per to a
level of formaa thought.

The generalization model can describe any situation that Piaget
INRC model can, and in addition those cases where the Piagetian approach
is inadequate. Also the generalization"has qualitatively distinct levels
within the stage of formal operations.



Group theory may be used to study the kinship of different primi-
.

tive;societies. Boyd (1969) has written an article On,this topic. He

offers a justification for applying groups to model marriage;class sys-

tems. For example, iikone group C/ evolves into a second group G2,

then G1 and G2,are related through homomorphic images. The actual kin-

ship systemA Are generated by means of grammars and the ki ship system

may be clarified by componential analysis through the use f Cartesian

products. -Boyd points out that if the dimensions are gene ation and

sex, then (+1, female) would be someone's mother. His goa is to use

a mathematical model to bring seemingly different problems ;into a larger

all-encompassing theory. The theories of kinship grammars and componen-

tial analysis are related by a regular permutation group.

Boyd gives a study of the Arunta tribe, an Australian tribe that

has marriage classes. The Arunta make distinctioil between older and

younger siblings, and the sex of the speaker influences which kinship

term is required. The set of one word kinship terms are: a man's

father; a man's mother; a woman's father; a woman's mother; elder brother;

elder sister; younger brother; younger sister; a man's child; a man's

son; a man's daughter; a;woman's son; a woman's daughter;. wife; and hus-

band. Boyd calls this setkR. Any qther relatives may be formed by com-

posing some of the above terns.

The Arunta tribe may be partitioned into eight marriage classes.

All the fathers of children in a particular class, themselves came from

th4lasame class, and conversely all the children of men in a given class

belong to the same class. This relation of fatherhood, F, describes a

permutation, and similarly the relation of motherhood, M, describes a

permutation. Otheritlations may be derived from M and F. The set of

all possible compositions of the permutations F and M generate a permu-

tation group. In fact, the group is a regular permutation group. From

this group the other kinship terms may be incorporated into this*network.

For Boyd, the meaningful way to apply groups to psychology is to

study the permutation or transformation groups,of a structure onto it-

self, because it is the study of actions or transformations that offer

insight into problems.

Group theory has been applied to questions in perception. Hoff-

man (1966) demonstrated that perceptual constancies such as image loca-

tion in the field of view, size constancy, shape coristancy, and others

may be described in terns of Lie groups of transfortations. Our dis-

cussion of his articulation must of necessity be rather superficial,

since a Lie group is moregOan a group. It is also a differential mani-

fold, and Lie theory is on a much higher plane than our elementary ex-

amination of groups. The interested reader would have to consult mathe-

matical textbooks on Lie theory.; Hoffman offers an explanation of how

a Lie theory of visual perception may be used to account for complemen-

tary after-images, i.e., thet after-effect of seen movement, and the

visual analog of relativistic length contraction.
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Groups also have application in the theory of measurement. Luce
and Tukey (1963) provided a theory for interval measurement based on
the ordering of objects, solongs the contributions of at least two
distinet factors are simultaneously considered. This theory is called
conjoint measurement. Krantz (1964) considers an approach in which an
equivalence relation may be defined in a Cartesian product in suCh a

way that the resulting set of equivalence classes form a commutative
group. Different group structureS in the same product.set will be iso-
morphic, i.e., there exists an isomorphism of one grlip onto the other.
Krantz introduces an ordered group, which is defined as a group with a
partial ordering on it, such that for x,yEG and then for any
z EG, x*z<y*z and z*x<z*y. ,Further, if 4, is a'linear or simple, order-
ing, t4pn G is a simply ordered group. An Archimedean simply ordered
group is defined to be a group where for x e, e the identity element,
apd y any element in G, there then exists an integer n such that xn>y.

He then establishes that an Archimedean simply ordered group is
isomorphic to a subgroup of the real numbers under addition, which in
turn then l9eds to interval scale measurement.

Cross-context matching is the situation where an observer states
that certain stimuli in one context match other stimuli in another con-,
text. Krantz (1968) points out that the changing from one context S te
another T, describes a function he denotes by gs T, where gS,T(A) =

\ if A is a stimulus in context A and B,is a stimulus in T. In perceilAng
'Isomething it is not enough to ask about the particular stimulus; the
'spatial and temporal context must also be considered. If there exists
a\sSet of transformations of.the stimulus elements such that these map-
pings form th semigroup, i.e., a closed associative set, and if the col-
lection of mappings are context-invariant, then the g T are transfor-

,

mations of commutative groups, and knowledge of certain context effects
maY be utilized for predicting other context effects. What makes this
article fairly involved is that the discussion is going on at three
levels:

(i) transformations of stimuli;

(ii) isomorphisms of transformation groups; and,,

Tunctions from'pairs of contexts Into the group of auto-
morphisms of a4transformation group. This third level is
where the predictive power of context changes is richest.

In psychology it is crucial to be able to replicate a test or task,
-and for this reason Levine's (1970) article on transfdrmations that
produce paxallel curves or sets should be of intere§t. In stimulus gen-
eralization studies, Thurstonian psychophysics, mental test theory, JND
scales, /and Fechnerian psychophysics and utility theory, Levine points
out the value of comparison between two tests, two curves, etc. He
see§ the finding of all the functions that render a given set of
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functions parallel to be a major task. These functions are referred
to as scales. Any scale that renders a'het of scales parallel is called
a solution for the set, and a set having a solution is called a uniform
system. As an.illustration, a set of two scales is a uniform syStem if
and only if the set is uncrossed, i.e., if i and G are the'sc&les,
F(x) < G(x) for all se, or F(x) = G(x) for all x, or F(x) > G(x) for all
x. This is then generalized to any'arbltrary number of scales. More
precisely, each scale may be thought of as a 1 - 1 continuous mapping

, of the real numbers onto themselves. The operation involved is composi-
tion, and each set of.scales is associated with a unique group under
the operation of composition.

It turns out, for.example, that if two sets of scales.have the
same-associated group, they also have the sate set of solutions render-
ing them parall,e1. By an associated grdup, Levine means that for each
pair of scalessF and G in a set of scalesrj, the associated group of'
that set of bcales is the group generated by F-1G.

By following Levine's procedures, the psychologist can determine
whether his sets of curves may be rendered parallel or if he must modi
his agproach.

A relatively new area in psychology where mathematics is uied is
\

the study of language and copmunicaton. Chomsky (1963) has been con- '

sidering the question of hoW is it that a person has the ability to
comprehend sentences that he has never heard, and on other occasions,
provide appropriate novel responses. Chomsky describes the flow of
speech as a sequence of discrete atoms that are concatenated, i.e.,
right after each other.

He defines a system, with L being the set of all finite sequences
that can be formed from the elements of some arbitrary' finite set V.
He defines an operation--, that represents the result of concatenating
two sequences 0 and x C L. -If = ;G, where tpE LI i.e., 11) is a new
finite sequence, then L is closed under,-,. The operation also
associative (,,x)--.1,G = 0-,(x,,1), provided that one carefully formu-
lateswhat he means by associativity. The empty or null sequence is
the identity element, so L under 'the operation,- may be viewed as a
monoid or semigroup with an identity element.

Chomsky gives an example of why associativity must be carefully
defined. Notice that "they--k(are,--(flyingrplanes))" has a different
meaning from "they,--(are,--flying),-Nplanes)." This .difficulty is
avoided by assuming that a language has-several distinct levels. Lower
levels are specified by how they relate to higher levels. It is neces-
sary then to have several concatenation Systems. These systems are used
in the attempt to characterize a grammar in such a way that an explicit
enumeration of grammatical sentences is possible.



The process of coding is the mapping of one monoid into another.
Chomsky illustrates this by considering one monoid to be all the strings
that can be formed from the characters of a finite alphabet A, and the
other monoid to be all the strings that can be formed by words in a

finite vocabulary. A code would be an isomorphism of U into a subset

of A. The theory is then extended to states, where a state. of a coding
system represents the memory at a given moment. The memory is augmented

with time.
A

Arbib (1968) has edited a book on the algebraic theory of machines
and languages in which the discussion is in terns of semigrolips. In

one particular chapter, Assmus and Florentin (ibid.) explain machine
theory using semigroups as the fundamental connection between algebra
andOachines. The semigroup is used \to form a standard version of any
machine, methods of decomposing senigroups describe paralldl decomposi-
tions of the machine into components, and also the definitions of irre-
ducible component machines are in terns of the decompositions of semi-

groups, and then these irreducible component machines are used to build

all other machines. If the state transition maps are permutations,
then a machine with only permutations as mappings has a semigroup that

is actually a group. The set of permutations are transitive, i.e., any
stAe can be reached from any other state.

An examination of the book clearly reveals that the parallel study

of machines and the theory of semigroups is necessary to have any real
appreciation of the foundations of machine or automata,theory.

4
1

Berlyne (1964) has a chapter on group structures and equilibrium

in his book. He begins by,talking 'about habit family structures, i.e.,

there exist parallel strands joined together at their beginnings and

ends, which indicate that each has the same stimuli situation, and each

led to the same response. He then describes how the habit family hier-
archies in thinking must be more complex, and suggesth that the study
of transformation groups may be helpful. He draws on the work of people

like Piaget and Poincar4.

For-example, a group has an inverse, which may either be a compen-
sation or a cancellation. The importance of reversibility in thinking
and questions of equilibrium is of the utmost. The ability to consider

an action, and then determine whether it is appropriate or not, without
actually carrying it out, is fundamental to thinking. Any behavior sys-

tem possessing a group structure'also would have a habit family hierarchy,

but Berlyne points out that the converse is not true. The system may

for instance have a groupoid, semigroup, or monoid structure.

In situations where group structures are relevant, a transitive

transformation group is the most desirable, because it always allows

the possibility to ge from any one element to Any other element by

means of one transformation. This offers great efficiency and economy

of effort in assessing any situation. For this reason, the considera-
tion of transitive groups should be applied to questions of equilibrium.
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In a tkansitive group structure, no starting point is needed, because
no matter what situation a person encounters, the person has the abil-
ity to compensate or modify it.

Nitapoff (1910) illustrates how groups may be used in symmetric
choice experiments. He defines a symmetric choice experiment as an
experiment where the way the distribution of choices among alternatives
that appear almost identical depends on those minor differences among
the alternatives. The seeming equivalence reflects the symmetry o
problem, while the differences indicate the restrictions or limitations
of the symmetry. Group theory is helpful in analyzing such experiments. .

If S1,-..,SN are N similar alternatives, he calls.them stateg, of
some fixed quantity that is to he symmetrically distributed,'tfien f(S)
will represent the fractional share of the quantity that is given to
the ith choice. If two states are the extent of the choices, then
f(S1) f(S2) = 1, w ere 1 represents the entire quantity under eonsid-

.,
eration. In genera f(S1) f(S) = 1-

Suppose that all of,the states are essentially the same; the choose
one as a reference state and form a set G, G = {g1,-..,g}, where the
gi are transformations mapping the reference state intO each of the

original N states. Therefore, one of the gi will be the identity
transformation.

The focus of the task is no longer on N states, but one reference
state and a set of transfermayons. G reflects the symmetry of the set
of states, and the set of transformations g form a group.. Actually,
which state is used as the reference state is immaterial. The selt G

will always produce the N states S1,...,SN, only the order for glSj,

g2Si1...gNS may be different. For example,' g2Si may be S5 and g2Sj

may be S7.

From here Natapoff.shows-that every symmetric choice function may
be reduced to a simpler type of function, from which greater amounts of
information may be extracted than if the built-in symmetry of the ex-

,

periment was not taken advantage of.

Hopefully, tbe,11.examples of the application of groups to psy
chology have illustrated the broad range of uses of groups already in

the psychological literature. Yet the value of mathematical analysis

has not been fully appreciated. If this chapter has served as a moti-
vation to begin a closer examination of the potential power of mathe-

\

matical structures, then this book has fulfilled its purpose.
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CHAPTER 6

RINGS AND FIELDS

Thid.chapter will be'relatively short, bectuse presently there
axe. very 'few applidAtions of rings and fields tol psychology.. This
dogs nOt thean that rings And fields will not be helpful in analyzing
psychological questions, but rather that their applicability has nck
really been tested yet. In this chapter we will define the important
terminology and illustrate these definitions through fairly elementary
m4thematical examples. A few basic properties of rings and fields
wil.1 be proven to give the reader a greater feeling of how these new
concepts may be used.

4110

All the algebraic structures that will be introduced have the
common qualitY of having two operations. Remember, the group concept
has only dne Speration. The ring is the most fundamental.of the two-
operation structures.

\

Definition 49. A _ring P. is a nonemptyfset of elementsiwth two
'operations, defined on it; for convenience they are denoted by + and .,
such that

Oft

:
It

(i) Forall a,bE.R, a + b R;

(ii) For all a,b,cE:R, a + (b c) = (a + b) + c;

(iii) There exists an element 0 in R such that a + = 0 + a = a
for-all aE.R;

(iv) For every a in P. there .3cists an element -a in R, such that
a + (-a) = (-a) + a = 0;

(v) For every a,bER, a + b b + a;

(vi) For every a,bR, a.bE R;*

(vii) For all a,b,c(2R, a- (10-c) '= (a-b).c;

(viii) For all a,b,,c R, a- (b + c.) = a-b + a-c and (b + c)-a =

b-a + c-a. This law is called the distributive law.

In reading through these, eight conditions that milst,be satisfied
for a set to be a ring, perhaps the reader observed that this definition
may be.written more compactly.
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a.,
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Definition 50.
operations,. denoted

(i) R is an

A ring R is% nonempty set of elements with two
by +and such that

abelian grpup under +v

R is a semigroup under -; and

(iii) R. satisfies the dis6ibutive property, i.e for all a,b,cR,
(b + c) = a-b + a-C and Co + = b.a + c-a.

The\other algebraic structures that we will consider are built up
frai a ring by ad. .. additional properti:es.

Definition
4
5l. A ring with an identity R is a ring Where,the opera-

tion has an identitty element,,i.e.;kthere exists an element l(E.R such
-that for every aE:R.', a-I = 1-a = a." Therefore, Ris a monpid under the

operation .

Defirgtion,52. 'A commutative ring R is a ring for which the opera-

tion A commutative, i.e., for every a,bEIR, a-b = b-a,
N.

Dinfinftlion 3. A ring is called an inte9ral domain if.it
commutative ring With an identity and satisfies the additional
that if for a,bER we'have a.b = () then either a = 0 or b' = 0

is a:

propertY,
or Voth.

ja and b equal 0., 9
a

.This added property has a name.

,OY
2Definition 54. -In a701.10mmutative ring; if for'a Othere exists

an element b Op suth that'a.b = 0, thep is called a zero diN4sor.

4,

Definition 55. A division ring R is a ring where its nonzero ele-

meAts form a group'`under the opgration

ThJ4, flinal related definition is that of a, field.

,
DefinitionA fieldxF is a r

commutative igroup under the operation

a com*-Ntiy divItion ring.
/

&

g.rhosd nonzero elemOnts form a
cx in other words, a tfieldjs

.1

r'



0

Figure34 in a sense indicates an ordering among the related con-
cppts and mAy aid in learning the nem definitions. ilo,similar aiagram

) appeats in Dean (1966). In his figure a line from One definition A to
a definition B, higher on the figure, indicates that every system in A
is also a systtm in B.

.

Rings with
Identity

_Division
Rings

*Groups

Abelian Groups

Ripgs

Field4

Figure 34

Commutative
Rings

Integral Domains

Before we begin to look at some examples, it should be pointed out
that the operations + and do not have to be normal arithmetic addition
and multiplication. They may represent any pair of operations satisfy-
ing the list, of conditions.

Examples

1. Consider the integers with the operations of arithmetic addition
and multiplication. We have already proven that the integers form
a group under addition, in fact in abelian group. The integers %are
closed under multip;ication and are also associative_and commutative
under multiplication and the distributive property ho,;.ds. 'Them is
an identity element, namely 1, since any integer times 1 is t.he same
integer. However, the integers with the exception of 1 an -I do
not.have their multiplicative inverses in the integers. F. example,
the inverse of 5 is 1/5. Therefore, the integers with + an -'form
a commutative ring with identity element. If we now observe a zt
there are no zero divisbrs in the integers, i.e., the only way the
product of two inger§,can be zero is if at least one of them is
zero, then we may conclude that the integers are an integral domain.

2. The even 4,ntegers with
wo4d be a commutative

and

the operations of addition and multiplication
ring'. The eVen integers are equal to
therefore, there ip nomultiplicative ideritity.
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3. An ekample of a field would be the rational riumbers with the opera-

_ tibns of addition and multiplication. The multiplicative identity
is 1, and the rationals have the multiplicative inverse of any, ele-

ment. For example, the inverse of 9 would be 1/9, of 2/3 would be

3/2, etc. Therefore,,the rationals form a commutatiNe group under
addition, a commutative group under multiplication, and clear1V the

distributive property holds.

4. If the set under consideration'is the set of functions from the
real numbers into the real numbers, and the operations are defined

ji2:45

then

( + gAx) = f

.(f.g)(X) = f(x

xi + g (x)

g (x)

(i) Closure under + follows from the definition,

(ii) ((f + g) + h)(x) = (f + g)(x) + h(x) = f(x) + g(x) + h4) =
f(x) * (g + h)(x) = (f (g + h))(x). Therefore, + is as-

sociative..

(iii) The identity element*for + is. the function that is identi-
cally 0, i.e., (f + 0)(x) = f4x0 + 0(x) = f(x).

(iv) The inverSe of a function f will be -f.under addition, sillpe

(f + (-f)),(x) = f(x) f(x) =

(v) The set of functions is abelian; since + g)(x) = f(x) +

g(x) =, g(x) +.f(x) = (g + f)(X).

(vi) Closure, under - follows from the definitioa.
ss

(vii) Similarly, the associativity 9f follows.'

:N7

The distributive lawd 'hold. We prove one of them, and the

other follows in theasame manner. 4'

(f.(g+h))(x) = f(x).(g+hipx) = f(x),Ig(x) h(x

f(x)-g(x) + f(x).11'(x) = (f.g + f.h)(x).

=

therei9re, the set of functions 'front the ileal numbers'into

the real numbers is a ring-,

There is an identity element, namely the function identical to

1, since (f.1)(x) = f(x)1(x) = f(x). The commutivity of follows

immediately from the definition. The set of fUn'tion is not an in:

tegral domain, because there exists a function 'no equal to zero,

Whose produCt is the zero function. For example )if f is defined as

t
.s()
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a.

I.

if x > 0
0 if.x < 0-

and g is defined by g(x) = , then
0 if x O.

f(x)

the product function (f-g)(x) = f(x)g(x) 0 for all x.

galh.

In the chjapter.,on relations we 9howed that the relation, the re-

mainder won division,by 5, partitioned the integers up intdfive
classes, namely, [01 = {--..,-10,-r5,0,5,10,./..}, [1] mg

-4,1,6,11,....), [2] = [3] = -7,

and [4] -6, Let R =
{[0],[1],[2],[3],[4]};-We will show that if [m] + [n] is defined
to be the remaInder of m + A upon division by 5, and'[m].[n] is
defined to be.the.remainder of m.n upon division by 5, then R is
a commutative ring with a unit element. In fact, we will'be able

to show that R-is a field. That R is'a'rng is easily verifiable
from the definitions of the operations. For example, [0] would
serve as the identity element in 'addition, The adaitive inVerses
of [0] would be [0], of,[ would.be [4],,of12] would be [3], of
[3] would be [2], and of [ uld be [1],''Since in each ..case the

sum is equal toe[b]. The dis ibutive property may'be verified
rather easily. One illustiati n of th distEibutive law is
,[2].([3] +14]) = [2].[7] = [2 -[2] = [4], arid [2].[3] +.[24]-[4] =
[61 + [8] = [1] + [a] = [41. erefox, [2]-(-13] + [4]) =
[2].,[3] + [2]+11. If vie now as thatR is a ring, we observe
that [1] serves as the multiplidative identity. \The commutativjty,
of is-A immediate consequence of the commutatiNilty of the in-
tegers since,for two integers nNand m, n.m = m.n. Each element
has a multiplicative inverse; the inverse of '[1] ia [1], of [2]
is [3], of [3] is [2], and of [4] is [4], because4n each.case the
product equals [1]. the efore, li-fa field. As a means of re-

viewing the example, we nclude product'tabl9s for the twd opera-

tions in Tables 6 and 7.

Table 6

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

[1] [2] [3] [4] [0]

[2] [3] [4] [0] [1.]

[3] L4] [0] [1] [2]

[4] .[0] [1] [2] [3]

I
a

)'P,-74:1,
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Table 7

[1] [2] [3] [4]

[1] [2] [3] [4]

[2] '[4] [I] [3]

[3], [1] [4] [2]

[4]. [3] [2] [1]

6. An interesting observation is that if we defined the relation to
be the remainder upon division by 4, then there would have been
four classes [0], [1], [2], [3]. However, in this example, the
nonzero elements do not form a group under Multiplication. There
is a zero divisor, nam0..y [2], because [2] -[2] = [0] and [2] cer-
tainly is'not the zero element. The multiplication table in
Table 8 shows that [2] does not, have an inverse for the operation
of multiplication. What are the differences between division by 4
ind by'5 that cause such a drastic difference in the structures of
the two systems? As an exercise, the reader should do.,06 similar
arialysi.a for division by 6 and 7 and then on the basis of these
results, try to generalize when a system will be a fieaand when
it will notL

0

Table 8

[.] 11 [2 ] 13]

; [1] 1].: [2]. [3]

[2] [2] [0] '[2]

[3] [3] [2] [1]

7. If we Consider bur'set to consist of all the subsets of some given
get, and let the two operations be the symmetric difference and
intersection, then we have a commutative ring with identity (Bur-
Ion, 1965). We have'already proven in the chapter'on groups that.
,for the set of all subsets of some uniVersal set,',.the symmetric
difference yields a group siructure. Ve intersection operation
.is closed and associative. Therefore,'if the 'distributive law
holds, then we have a ring. Ar)(BAC) = An[(H - C)I.J(C - 13)] =
[Ar(B C)](..) [Af)(C 8)]. By.an argument analogous to those of
the first chapter, A(1(3 C) = (ArNB) (Ar)C) and Ar)(c B) =
05,()C) (ANC)B). Therefore, An(BAC) =,[iki)(B - C)]V[Ael(C - B)]
[(AnB) AnC] WArIC (70-113)I = (1x?)B) A (Ar1C). Similarly.
that (BAC)r)A = (BrIA) A (cr)A) may be démoipstrad. Therefore,

1
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our system is a ring. The ring is commutative because Ar)B
B()A, and the ring also ilas an identity,'namely the universal set,
since Anti A,,where U is the universal set.

An interesting problem that may be proven by an application of the
distributive law is that any number times zero is zero. If someone
asked you why a-0 = 0,'you would probably say because anything times
zero ruals zero, and he would again say why, and suddenly you are in
the ipidst of a vicious circle. Let us actually prove that a*0 = 0.

Lemma. Let R be a ring, then for any a.EIR, ,e0 = 0.

Proof: Let a be any 'element in R. If o is the identity element
under addition, then in particular 0 = 0 + 0. perefore, a0 = 410 + 0) =
a-0 + a-0. . But, since R is a group under addition, each element'has an
inverse, and we may cancel out an a.0 from each side of the equation.
Therefore, 0 = a-0, or equivalently a-0 = 0.

A rather important result that we hinted at in our discussion of
the various rings or fields formed on the basis of the relation defined
by the remainder upon division by a particular number will be stated
'without proof. !

4

Theorem. A.finite iiitegral domain, i.e., an integral domain with a
0

finite number ofwelemets, is a field.

in the exaMple *based on division by 5, we had a field structure,-
however, with dimision by 4; there were zero dilAsors; henoe'We dia

,

not have an integral domain, ar;d consequently ya did not have a field.
Notice that this theorem only,holds for finite sets.

I.

A third interestIng.question is would it be possible in kring to
have the identity glement under additiontandrdrinder multiplication be
the same element? The answer is no; they are distinct provided that

A
the ring is not the ring consisting of 0 alone.'

:
Theorem.. Let P. be a 'ring with an identity, and assume R

then the,elements 0 and I are disttnct.

Let a he a nonzero ,elementof R. ,If 1 is the'identity ele-
a-1 I= a. ye also have just.**6ven that for aE.R, a-0 = 0.
0 is not possibly equal to.1, unless ,4= 0, but by assump-

Proof:

ment, then
Therefore,
tion a 0.

a

,
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In the discussion of grolips we spoke of_subgroups, and it is

reasonable that in our examination of rings we would like to have
the corresponding idea of a 'subiing.

Definition 57. Let R be a ring and suppose that S is a subset of
R, such that under the same operation, + and ., that are used in R.
that S Is itself a ring, then S is called a subring.

It is not necessary to check all the properties of a ring, because
several of them are built into the ring structure. For example, if R
is associative, clearly a subset of R, namely S, is assooiative. It

turns out the crucial properties to check are essentially three in

number.
'144tit

Theorem. A nonempty subset S of a ring R is a subring if and only

if

(i) For all a,bES, a + bES, 4re + is the additive operation
of R;

(ii) For every aeS, -a is also an element of S, i.e., the addi-
tive inverse is in S for every element of S; and

For all a,bCS, a-bE S, where - is the multiplicative operation.

It is not necessary to have a separate condition that 0 belong to

S because if aE:S, then by (ii) -a also belongs to S. Now applying (i),

since a and -a both belong to S, then a + (7-a) = 0 also is in S.

41011

Examples

1. The,even integers are a subring of the integers under normal addi-.

0 tion and multiplication. If we apply the previous theorem;'we see
4 -that the set of even integers is plosed under addition, has an

additive inverse for every element, and is closed under multiplication.

2.* The odd integers Would not be a subring because they are not closed
under addition. For example, 3 and 5 are both odd integers, but
3 + 5.= 8, and & ismot an odd integer.

3. 'Another example of a subring is the ring (or actually the field)
of rational numbers which has the integers as azsubring.

t*,

84



We introduced the concept tf a
on groups. We will now introduce a
The distinction being that the ring
just one, so that the definition of
operations.

homomorphism in the di-scussion
parallel idea for rinq theory.
has two operations and the group
homomorphism must involve both

Definition 58. Let R1 and R2 be two rings. A mapping 0 from R1
into R2 is called a homomorphism if for all a,bE:R

(i) 0(a+b) = 0(a) + 0(b); and

. (ii) 0(a-b) 0(a)

It must be stressed that the+ and in and R2 need not neces-
sarily be the same operations.

Examples

I. The identity mapping 0(x) = x from the real numbers onto the real
numbers is a ring homomorphism:

(i) 0(a+b) = a+b -=,0(a).+ 0(b); and

(ii) 0(a-b) = a.b = 0(a) -...0(b).

2 The mapping 0(x) = 5x, however, is not:d ring homomorphism. In \
faCt; 0(x) = kx, where k is any number other than 1 is not a ring
homomorphism:

(i) 0(a+b) = 5(a+b) = 5a + 5b = 0(a) + 0(b); however,

(ii) 0(a.b) = 5a.b and 0(a) 0(b) = (5a)-(5b), and clearly
5a-b = 25a.b, of in other words 0(a.b)

3. We have proven that the relation, the remainder upon division by 5,
defined a field consisting:of the elements [0], [1], [2], [3], and
[4].. If we consider the mapping 0(x) = [x], then 0 is a ring
homomorphism:

(i) 0(a+b) = [ai-b] = [a] + [b] = 0(a) + 0(b); and

(ii) 0(a.b).= [a.b] = [a] [b] = 0(a) . 0(b).

This example is an illustration of the difference between the
operations in one ring and another. The + in R1 is normal addi-
tion, while the + in 1R.2 is the addition of equivalence classes of
numbers. For instance, 27 + 16 = 43, while [27] + [16] = [43] = [3]
with respect to the relation the remainder upon division by 5.
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There are several related definitions that we now introduce.

Definition 59a If is a homomorphism from ring Ri into ring R2,

then the kernel of 0 is defined to be the set of all elements In R1

such that 0 applied to any of these elements yields the additive iden-

tity of R2, i.e., if a is an element of the kernel, then 0(a) = O.

Examples

1. In the case of 0(x) = x, the kernel consists of only the element.0,

since every tther element is mapped onto a nonzero value.

2. In the examplec0(x) = [x], where [x] represents the class deter-

mined by the remainder upon division of x by 5, the kernel consists

of all multiples of 5. This is trtie, because any multiple of 5 is

mapped into the class [0], and [0] is de additive identity for the
field consisting of [0], [1], [2], [3], and [4].

Definition 60. An isomorphism 0 is a homomorphism of ring R1 .

into ring R2 such that satisfies the additional condition of being

a 1 - 1 mapping.

If we carry the analogy of rings to groups one step further we

may now define when two rings,are isomorphic.

Definition 61. Rings Rl and R2 are isamorFhic i4 there exists an
isomorphism Of R1 onto R2, i.e., there is a 1,- 1 mapping from Ri onto

R2 that satisfies

(i) 0(a+b) = 0(a)+0(b); and'

(ii) 0(ab) =

A

The overall discussion of rings and fields was not as de9p as that

of groups, the reason being that the chapter on groups could be followed

up by a rich collection of explahatory examples from the behavioral sci-

ences. .Unfortunately,little work has been done in psychology that uses

rings and fields. Perhaps the difficulty is that rings and fields re-

quire two operations and in addition these operationsware.interrelated

bY the distributive properties. It, therefore, stands to reason that

any behavioral system that may be described by a ring or lield7'structure

must be quite involved. Only after the full potential of groUp theory

is realized in the behavioral sciences will we really be able to pass

judgment as to the applibatiVe value of rings and fields.
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VECT9R SPACES AND LINEAR TRANSFORMATIONS

In this chapter we introduce another algebraic system. A vectOr
space will have structural similarities to the other systems that we
have examined in pieceding chapters, but it differs from the other sys-
tems in that it has an operation that is defined with"respect to a field
whose elements serve as operators on the vector space.

The value of particular vector spaces in statistical and measure-
ment analyses oi psychological -questions has been widely recognized,
as may be indicated by the fact that many graduate psychology depart-
Aments required students to have training in statistics and fleasurement.
In these classes the students learn techniques and methods that are
based on vector space theo_g The examinition of vector spaces will be
in two parts. The first chapter introduces the concept of a vector-
space, offers examples of vector spaces, and them includes a drscussion
of linear combinations, linear independence and dependence, and bases,
that serve in a sense as the building blocks, structurally speaking, of
a vector space. A detailed study of linear transformations follows, in*
which, among'other things, it is shown that the set of linear transfor-
mations is itself a vector space.

The second chapter is directedat the concept of a matrix. The
matrix is an excellent concept to conclude the book with, because it \
will be proved that the set of matrices may be used= in defining a group, 4
or a rin4, or a vector space, or under certain special conditions, in
defining a field. This will serve as a review of the key structures
introduced in the book. Matrices also are valuable to discuss because
they have a wide range of applications outside of mathematics.

We now begin the examination of vector spaces by giving a defini-
tion of a vector space.

Definition 62. A nonempty set.V is called a vector space over
field, F, if V under the oyieration + satisfies the following conditions:

(i) For every v,wEV, v+w is also an element of V, i.e., V.is
-closed under +;

(ii) For every u,v,w in V, ,(u+v) 4 w = u + (v+w), i.e., V is
associative under +;

(iii) There exists an element 0 in V such that for every v:
v+0 = v, i.e., there exits an additive identity in V;
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(iv) For every vtEV, there exists an element -v in V such that
v+( -v) = 0', i.e., each element in V has its additive inverse,:

in' Vr and

(v) For every\ vlwEV, v+w'= w+v,,, i.e., V is commutative under +.

In addition to (i) through (v), there is defined for every XEF and

v E V, an element Xv belonging to V that satisfies the following four

oanditions:

(vi) yor every X E F, \rev, vi Ey, (v+w) Xv + AW;

(vii) For every AEF, 6EF, v ev, (A+&)v = Xv + 5.v7

(viii) For every AEF, X(6v) = 1X6)v; and

(ix) For the multiplicative identity of F, denote it by 1, and

for any vEV, IAT = V.

tilik °few instructive remarks about the definition of a vector space

may prove helpful./ Conditions (i) through (v) are equivalent to saying

that V under the/Operation + is an abelian group. Conditions (vi)

trhrough (ix) r2"ate the vector space to a particular field, and to em-

phasize the co ection between the set of elements V, referred to as a

vector space, and the particular field, V is often galled a vector

space over a qeld, rather'than just a vector space. The operation
joinlng the elements of V and those of F is often referred to as the .

operation of sCalar multiplication. A'convention that will be adhered

to in thit book is to use Greek letters such as X, 6, to represent

elements in the field. Mils should reduce the possible confusion of

whether a given element is to be considered an element of Vor

Examples

1. If we consider V to be the set Of all ordered pairs of real numbers,

i.e., all poii-qp in the planeand take the field F to be the real

numbers, then e may show that v is a vector space of F. We define

the addition to be, for a,b,c,d real numBers, (a,b) + (c,d) =

(a+o, b+d), i.e., we are defining the operation of addition of or-

dered pairs in terms ofthe sums of the individuaq. components.

Notice, therefore, thatithe plus sign on the left and right hand

slae Of the equality has a different Eidaning. Scalar multiplication

is defined in the following manner. For a,b real numbers and X a

real number, A(a,b) = (Aa, Ab), or in other words, the scalar mul-

tiple of an ord9red pa4,:r is the multiple of each coordinate. The

verifibation that V isca vector space .is a simple one.

'(i)* (a,b). + (o,d).= (a+c,, b+d), whiCh is another point in the

plane. Thereffore, we have closure.



[(a,b) + (2,d)] + (1p,f) = (a,b) + [(c,d) + (e,f)], because
of the underlying associAi ity of the real numbers.

-The.identity element .1.13

The additive inverse of
(-a,-b) = (0,0). .

the fLrdered pair (0,0).

(p,b) is (-a,-b), because (a,b) +

The comMutative property is a consequence of the commuta-

tivity of the real numbers.

Xi(a,b) + (c,d)] X(a+c b+d) (X(a+c), A(b+d)) =
(Xa+Xc, Xb+Xd) = (Xa,X1)) + (Xc,Ad) = A(a,b) + X(c,d).

(X+6)(a,b) = ((X+S)a,(Xt)b) = (Xa 4.\ &a, Xb + 6b, =

(Xa,Xia) + (da,c3b) = X(1,b) + 6(a,b).

(viii) (XS) (a,b) = (X6a,X6b) = X(da, = (A) (c5)(a,b).

(ix) 1(a,b) = (la, lb) =
V

Therefore, )i is a vectoi space.

2. For those readers familiar with vectors, (a',.b) Zuld corresPond to

the vector with x component a And yicomponent b, emanating from the

ofigin. Therefore, the addition of 4(a,b) and (c,d) is actually the

operation of vector addition. Scalar multiplication is the sane as

multiplying a Vector by a scalar. This is indicated graphically in

Figure 35. Anyone, who has taken courses in phydics mudt realize

the importance of vectors in physics.

-4

-(a,b)

Figure 35
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3. Another example of a vector space is the set of all ordered triples
of real numbers; i.e., all points in 3-dimensional space, with the
operations, (a,b,c) + (45,e,f) = (a+d, b+e, c+f) and A(a,b,c) =
(Aa, Ab, Ac): Three dimensional space is precisely the world we
are a part of. The'verification is identical to that in example 1.

4 If we consider the set of functions from the real numbers into the%
real numbers to be V and define addition by (f+g)(x) = f(x) x),
for any real number x, then V is an abelian group under +. We ha
already shown tilis in an earlier example on groups. The o erat on
of scalar multiplication is defined by (Af) 00 = A(f(x)), where A ks
an, element of the field of real numbers. That properties (vi) through

, (ix) of a vector space hold is simple enough to show.

5. An interesting way of defining a vector space isInsidering two
fields F1 and F2, where F2 is a subfield of Fl. Then F1 is a vector
space over F2. Clearly, F1 is' a gralp under addition'if F1 is A
field. If scalar multiplication is taken to be multiplication in
Fl, then the product of an element in F2 and in F1 is certainly in
F1 because F2 is a subfield of Fl, 'and further multiplication ift
Fi is closed. Property (vi) and (Vii) correspond to the distri4u7
tive laws in the field, (viii) to the associative property for
multiplication, and (ix) to the existence of a multilicative'iden-
tity in a fiela-.

After introducing concepts such as a group or a ring, we followed
by defining a subgroup and subring. We have a corresponding term in
the .algebraic syste7/called a vector space.

,

Detinition 63. A. subspace S of a vector spage V over field F is a
subset of V, that itself is a vector space undermthe operations of V.

In actuality it is only necessary tdic prove that-S is closed under
addition and that for Ai;Ji and yE 5, AveS. The other properties of a
vector space are consequehces of these. 'For example, (vi) through ('viii)
hold in S because they already hold in the larger\set V. Similarly,
(ix) _bolds because We are considering the same field F, and, thus, the
same,multiplicative identity. Further, if $ iA closed under additioni

. we need'to ;only prove that the additive inverse also belongs to S, in
order to prove that S is a subgroup of V under addition. But, if v S,
then -v = (7-1)v is also.an element of S by the scalar multiplication.
Therefore, we40:ave an alternative way of proving a set to be a subspaceo,

V.

Theorem. S is a.spiospace of V a vector space if S is a subset of
)41 'and

t I
V

; A 74111: kor V,w £ S, .v-fw e s; and

(ii) if 74 S4 X F imply-Av
k -f

A.
9,*5
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Example

1. We proved that the set of all functions from the real numbers into

the real numbers may be defined to be a vector space ov'er the real

numbers. If we take a subset, namely all the continuous functions

4 from the real numbers into the real numbers, then we have a sub- ir

space. This follows because the sum of two continuous functions

is a continuous function, which means additive closure. Scalar

MUltiplication of a continuous function is again a continuous

function.

We shift gears a bit now and rather than discussing the structure

called a vector.Space, try to describe how this structure is built up.

In a vector space, a series of elements'are often added, and by

the closure property these sums yield new elements. Sums of this ype

have_a particular name.

1

4
Defini4on 64: Let v1,---,vN be elements oflp vector space V and

suppo.5p A11-:-,XN belong .to the field F, then an element A1v1+A2v2+

is called a linear combination of vl,y,...,vN..

If we form all the possible combination's of the elements

vl,v2,---,vN,,we form a new zet.

Dgfinition 65. 'If vji,v2,

then the linear sparlhof
combinations of If

hausts all the vector space V,

as a linearcombination of v'1,

,

,vN

are elements of a vect space V,

-s the.set of all possible linear.i

fv3,...,VN1 is such that its span ex-
i.e., every element in V is expressible

v ly1,---,vN),spans V.N,

If we can find a subset of V that spans V, then we are able to

describe all of V by mearis of the information gained from a subset of

V. This is certainly economical in terms of time and effort in study-

ing the set V. But, we are not content at this even; we are greedy

enough to ask if we can find an'even smaller set that will give us as

much information. Perhaps there is still some built-in redundancyof

information. Keep in mind that the question we are asking is really

the one we are posing in cognition. How does one utilize what he knows

in, learning sowet.hing new? Wd will offer an analysis of cognition in

a later section.

. As a step ti.ri .th9 direction of answering whether there is-still re-

dundancy in the, informatin iga learql from a Spanning set,'we introduce

the important concepts of li1e5r indeliendence and dependence.
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Definition 66. A setvi,v2,..-,vN in a sectdi Space V is said
to be linearly dependent If there exist elements in the
field F, some of which are not zero, such that A1vl+A2v2+--.+ANvN = 0.

Definition 67. A set in a vector space V is saiiia tg be
linearly independent if-they are. not linearly dependent, or"equivalently
if for A1,A2,---,Au in the field F, Alv1+-+ANVN 0 implies that
Al

/11 A2 AN '1m °

We will state a number of-theorems that show how independence and
dependence of a set of vectors reveal inform4tiOn about the structure
of a fector space, but first we include a few examples to clarify t46
strict sounding definitions.

Examples,

1. We have proverthat the set.of all ordered pairs may be m4de *Irto A-
vebtor seac. Suppose vl = (1,0) and v2 = (0,1), we ShoW that
vl and v2 are linearly independent. Let Al and A2 be real,numberb,
and suppose Aivi + A2v2 = 0, i.e., A1(1,0) + A2(0,i),= (A1,6
(0,A2) = (A1,X2Y = (0,0), since (0,0Y is the zero element. There=
fore, if (A1,A2) =.(0,0), we must have Al = A2 = 0, W1lip4:1?y defini-

. tion means that vl and v2 are lipearly independent.

414. 7,

2 Suppose vl = (2,5), v2 (1,-2) And v3 =,(4;4), and
and A. be real numbers. If A1v1+A2v2+A3e113.= 0, or equivalently,
A1(2,5) + A2(1,-2) + A3(4,4) = (0,0), then (2A1,5A1) t (A2,-2A2) +
(4A ,4A ) = (0p0), and finally, (2A10,2+4A3, 5A1-2A2+4A3) = (0,0).
Notice, that if for example, Al = 4, A2 = 4 and A3 = -3, we have
that (2A1+A2+03, 5A1-2A2+4V = (8 + 4 -12, 20 42)'= (0,0),
but this means that piere exist A11A21A3 nqt all zero, 'such that
A1v1+A2v2+A3v3'= 0. Therefore, v11v2, and v3 are linearly dependent.

,4, .

We give the following theorems without proof, but we want some of
these results to be at the reader's disposal.

Theorem. A set v1 ,v2,--,,vN ill' a vector sPace V ii linearly de-
.

pendent if any one of the following conditions is met:

(i) The set inclUdes the zero vector;

(ii) The set contains d'nonempty subpet that ig linearly depen-
.dent; or

(iii) There exists at least one element, say vi, that.is expressi-
. ble as a linear combination of the remaining elements..
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We do not include any proofs, but, #114,e reader is invited to con-

vince himself thatthese statements We trUe. For instance, suppose

one of the elements, say vi is the zero elemeiit/ Then it is possible

to find a linear combination of v1,.';-,vN that equals zero, but has at

least one A not equal to zero. An-obvious choice would 'be X1v1+...+

0. Since vi = 0, any nonzero' Ai may be selected, be-

cause whatever value is chosen for tAi, Aivi = 0. _Thus, Lt is nbt

necesSaFily the case'tha A1 A = AN = O. Therefore,

ar6 linearly 4ependent.

Theorem: If a st v1,-.,vN of elements in a vector spade V over

Y is,linearly independent, then every linear combination of vi,-..,vN

has a unique representation of the forrivAlvli-...+ANvti.

i'
.It may be proved that if the reprIpentation were assuned to be not

unique, then the independence of 11,..1.,yN wbuld be cOntradicted.
,^

We Ilave introduced two new conce,kts, the idea of a lineai combina-
1

tion and spanning set, and,then the .,c4ea of independence and dependence.

i
A spanning set was capable'of accoun ing for the entire vector.space

from some subset of the space. But he question remained as to whether

an even smaller'set could be found:ihat still spanned all of the vectdr

space V. Thd examination of liglealr: independence offered a way to remove

redundancy or duplication. If thel set.was de,pendent, then certain.ele-

ments were expressible as linear Ombinations of the others, so in er-

fect these elements offer no infoOation that could net have been ob-

tained by other means with ut theitt It would be wonderfUl if a set

could be found that spans 1.1 of ii, and at ihe same time is as pall as

possike in terms of the nniber of elements in it. Well, such a set

exists, and is called a.bas s.

DefillAion 68. A vector spice V is of finite dimension if it has/

a spanning"set with a fihite number of elements: .-
1

Definition 69. A subset B cf a vectorpace V of finite

sion is called a basis for V if .spans all. ay. V and S is a

independent set.

EXamples

1.. We earlier proved that vi .--='44,0.) and

.
independent set in the plane. The set co

spans the plane, since for hny point (x,y)

x(1,0) + y(0,1.). Therefore, (1,0) and 4)
plane.

;

men-

ea4Y

0 waea,Linearly
0

ng.of v1,v2 also
n the plane, (x,y) =.

form .a basis for, t



1

2. As you might guess (1,0t0),(0,1,0), and (0,0,1) form a basis for
three-dimsinsional space. The set consisting of (6,0,0), (0,-5,b),
and (0,0,1/2) would bevanother basis for three-dimensional space.
A particular vecta space V may,have'more ttlan one basis, but any
two bases foi V must haVe the 'number of vectors.

Definition 70. The n r4of elements in a basis fox a vector
space y is called the siOn of V.

i

We have accemp shed our original goal of finding from a spanning
set for a vectdt ace V 4 smaller sei of minimum size that still spAns
VI- Tfiis set'is fo'basis, or peihaps better stated, a basis lor V.

An inthtsting application of these terms is in the area of cogni-.
,tion. .Sup e that there is a set of information from same subject
matter at must be learned. At first the student has nb idea of which
are 'the relevant and Irrelevant dimensions relating to the;task. He
has a(ceitain body of knowleige that he draws from in various combina-,
ti s to learn individuail items. As he gains a greater understanding
o the task he is considering, he begins to integrate tAe learning of
individual'itett into a mare cohesive and structured Oproach. By
learning a specific rule, he may be able to master an/entire class of
items'without mastering each itim individually. Thefigoal of,learning,
a particular subject matter may then be described as the process of
tending towards a cognitive basis capable of understanding-any. question,
in the given area, but at the same time free of any unnecessary Overlap
or redundancy. 4

.

One of the most important concepts that we have,examined in previous
chapters it that of a homonorph.ism. Thereiis an analogous concept for
vector spaces, but it is called a linear trans;orma.pion.

Definition 71. Let V and W be vector spaces over a field F, then
a mapping T from V into W is called a linear trantformation.if

(i) for v1,v24:V,,T(v14-v2)'.= T(v1) + T(v2);rand

(ii) for4vt:V and XEF, T(Xv) = XT(y).

We will denote the set of all lineal: transformations from V into
W by LT(V,w).

\\

.Exampies

1. 'An obvious /example is if V W and T is defined by T(x) = 5x, then

(i) T (i+v2) = 5(vi,+v2) 7 5vh.4- 5v2 = T(vi) T(v2);. and
T (ANT) = 5(Av) = A(5y).= Tt(v).

or.



ib

A

2. A more involved example requirea us to make a few assumptions.

Let the field be the real n
all polynomials f, where f

real numbers. It may be s
fine 'an operator.D on f, s dh

ers and let F[x] denote the set of
and the X's are

tha,tr,Lx1 is a vector space. De7.-

that Of = X +2X x+---+kX xk-1. F'or

those readers who have had an intrpOUctory calqulus course, you

might realize that D is the deriva*.ve. We will verify that D

is a linear transformation. If fk Xo+Alx+X2x2+...+Akxk and g

60+61X+62x2+...+6kxk, then Df = X?-2X2x+...+kXkxk-1 and.rig.=

614f262x+...+k6kxk-1, so Df + Dg =,(X1+61) + 2(X2+62)x +

k(Ak+Ok)e-1. Qn'the other hand,f+g = ('X0+So) + (X1+61)x + +

(Ak+8k)x, which'implies that D(f+d) = (X1+61) + 2(A2+62)+...

k(qk)xk-1. Therefore, d(f+gr= Df + Dg, and similarly it may

be demonstrated that d(6f) 6(Df).

An interesting point about the set of all linear transformations

from V into W, where V and W are vector spaces is that LT(V,W) is it-

self a vector spase.

Theorem. Let V and W be vector spaces omer a field F, then *

1,T(V,W) is.a vector space over F, if the operations are defined by

(i) for S,TC LT(VW)r. (S+T) (v) S (v) fr (v) where v( V; and

(ii) for SC LT4V,W), (XS) (v),t, = (S(v)) , where Xe F and vV.

0 . Wks will not dive a detailed propf, but will sketch sone of the im-

portant arguments. In order to prove that LT(V,W). is a vector space,

we must show that if S and T belong to LT(V,W1, then S+T also is an ele-

ment. In other words, it is necessary to prove that (S+T)(vl+v2)

(S+T)(v1) + (S+T) (v2) and that (S+T)(Xv) = X(S+T)(v). This would es...

tablish. closure. The remaining properties with respect to the operation'

of addition are rather elementary. The only more complicated step re-

..
maining is to prove that if S belongli to LT(V,W), then AS is also in

111"(V,W). In other wordt, AS(vl+v2) = AS(v1) + 'AS(v2) and AS(dv) =

(5(AS) (v) .

Cne of the most impressive qualities of algebraic systems is how

they all are nicely interconnected. Each structure builds upon the .

others. We have defined vector span*, and now have just,demonstrated

t4at the-set of linear transformations from one vector space V into

another W is itself a vector space. If the vecior spaces V and W are

the same, i.e., V = W, then a new operation between linear transforma-

tions may be introduced, namely the prOduct of two linear transfovmations

$T. The product tr&nsformation ST is another linear transformation.

Therefore, LT(V,V) has both an addition and a multiplication operation..

If ypu are thinkind "Could LT(V,Y) be made into a ring?", the answer

is es.

14)0



Theorem. Let V be a vector space over a field F, and LT(V,V) be
the set of all linear transformatiolls of V into itself, then LT(V,V)
under the operations of addiLion arid multiplication is a ring.

While we still havit LT(V,V) under consideration it is a good idea
to introduce a few more terms.

4

Definition 72. A linear transformation T'in LT(V,V) is called
regular or invertible if there exists another transfoilaticA, denote
it be T-1, such that TT-1 = T-1T = I, where I is the identity trans-
formation. If zio such transformation exists, then T is called
singular.

The linear transformation T maps V into itself. It may be impor-
tant in some cases to know just how much of V is mapped into by T.

Definition 73. If TELT(V,V), then the range of T is denoted by
TV, and is the set of all elements in V that are mapped into by T.

One way of comparing V and the range of T is by examining the bisis
for the,range to see if it has fewer elements.

Definition 74. For a finite dimensional vector spi'aegV,.the rank
'of V is ihe number of elements in the basis of the range of V. That *
is,'the rank is the 4mension,of the range.

Thd nex hapter will begin where this one leaves off. A connec-
tion will be:- stablished between linear,transformations arid matrices.
Most df1 the erminology of chapter 7 is needed in the development of

. the chapter on matrices. Once the connection is clear, an examination
of matrix operations is included in order to better understand the
techniques aprilied in the various psychological illustrations.

'
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CHAPTER a

MATRICES AND THEIR APPLICriONS

The final chapter concerns itself with the study of matrices.

, The traAsition between linear transfoTmations and iatrices is a smooth

one, because a matrix will-be defined in terms of a linear transforma-

tion's'aCtion on a basis at a vector,space V. The'action of the trans-

formation on any particular basis element will be expressible as a
linear combimation,of.'Ithe basis elements of a vector spade W. Having

defined a.matrix it will be necessary to examine its structure, and

in due course we will be aOle to form a group of matrices, a vector

space oiimatrices, a ring of matrices, and'with spedlal consideration,

a field of matrices. We will then shift our emphasis from theory to

application, and study how natrIces make many types of statistical

analyses tolerable.

Let T be a linear transformation from a vector space V into a

vector space W, i.e., TeLT(V,W). Suppose that V is of dimension n

and that W is of-dimension m, and that v1ev.21-..,vn and

are bases of V and W respectively. Ftrther, assume that both V sand W

are-defined over the same field of F. If we kndw how T acts on a basis

of Ve then in effect we know how- T acts on any element in V', since every

element in V is &linear combination of 111,v2,--Ivn.

.s
Let the action of T on be described as follows:

T(v ) = a
11
w
1
+

12
w
2

+ + cfplawm

T(v2) .+
22
w
2

+ + a
2
Al,

T(v ) = a
nl

+ a./w + + a w
n n2 2 nm m

,

That is, T-maps an element of V into an element of W, and any element

in W is expressible as a linear combinati n of wi,...,wm, the basis of

W. The aii are elements of the field F. The double subscript is.used

to locate the particular entry. The first subscript indicates what row

the element is in. For example, if it was a 4, this means we are in

the 4th row from the top. The gecond subscript indicates the column

under consideration. This means (that the 7th column, for instance,

would be the 7th column over from the left. So, a47 would be the ele-

ment ill the 4th row and the 7th coluqn.
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There are' n rows and m columns in our system of equations. The
.array of ai4 elements completely describes the 'action of ihe lfinear
transformation T. The rectangular array of 'the aij is called a matr4.

Definition 75. Let V and W be vector spaces.over F of dim:ensions
n and m, respectively, and assume that v1 ,v2,...,vn is a basis for V
and wi,w2,...,wm is a basis for VT. Let T be a linear transformaion
of V into WI the matrix of /I with respect to the given bases is 1

I.

wherb T(v) = ailwi ai2w2 + + a. wm, for 'each i, 1 < i < n. The
matrix is an n x m matrix.

Before we go any further, a less abstract illustration of the defi-
nition of a matrix may be helpful. If we have,

T(v
1
) = 7w

1
,- 3w

2
N

T(v ) = w
2 1 N

+ 4w
4

T(v3) = 2w
1

+ w
2

then the mat!rix of T. would be

( 7 -3 1

1 0 5

2 1

We will be most interested in the structure of square matrices,
i.e., matrices having'the same number of rows and columxis. In fact, the
'study of transformations T from a yector space V into itself will prove
to he Of the most theoretical value. %

ft
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Suppose that T is,a linear transformation o a vector space V

'into itself. Let V.be an n dimensional vector s>ace with basis

define the action of T on V by

a

T (v1 )
11
v
1
+ a

12
v2 + + .ct

ln

T(v2) = 21 1
a
21112

+ +
2n
vn

T(v
n

v + a
n2

v
2

14 + annv
n

.

nl 1

-4

Then the matrix aSsociated With thie sytem would be the following:

all al2

21 a22

[

1

. .

anl an2 '

which is an n x n matrix.

alt

iraa

* Tb ask Vhat the matrix for a particular linear transformation looks

like is an ambiguous question unless the basis 01 the vector spade ie
specified; Suppose T is a mapping from a vector space V into V, and

let U be the set of all ordered pairs of real numbers, i.e., the Car-

tesian plane., Also assume that the field is the field of real numbers.

A basis for V would bp vl = (1,0) and v2 =.(0.1.). If the linear.trans-

formation.T is defin* by T(v1) = v2 and T(v2) =,v1, then.the matrix,

of T with respect to this basils

-1 1

1 0

giur

Another basis for V would be w1 = (1,1) and w2 = (1,-1). It would lA

good practice to verify that w1 and w2 aie independent and that they.

Span all of V. We may describe the action of T on this basis as well.

T.(w1) = T(v1+v2), because wl = v1-4-v2, since (1,1) =, (1,0) + (0,1).

But since T is a linear transformation, T(w1) = T(v1+v2) = T(v1) +

T(2) = v2 + = vr + v2 = wl. Similarly, T(1,..) = T(v1 - v2), because

w2 = v1 - v2, and further, T(w1) = T(v1 - v2) = T(v1) T(v2) =
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v? -(vrkAr)' -w2
this basis is
1-

Therefore, the matrix Of T with respect:o

(3:
-1)

Clearlyithe two matrices are different, even though both are for the
same linear transformation. This is why it is so important to knOw
what the basis for-the vector space is.

. Having established what-a mektrix is, and how it ties in.iith the
theory of vector spaces, it wceld be fruitful to examine various Opera-
tions on matrices. For example, what is the sum of tw6 matrices? In
order to be able to add twd matrices, they must be of the same size,
that is, a 3 x 3 matrix cannotlbe added to a 4 x 4 or a 3 x S
but only with another 3 x 3 matrix. Slippose we have tiAlo n z m matrices

fte

4

For simplicitY we will denote.them by laii] and hiji.respdctive17.

cA

Definition 76. If [aii] and [y44] are two n x m matrices, then
.the sum of [aii] and [yii] is the matiix obtained by adding their cor-
responding eleients. Therefore, [aii] + [yid] [aij+yij], or

I:

all"11
a
12

+y
.12

a
lm

a +y a
21 21 22 22

a
2m+Y2m

C.,

,

. , .

._

a
n1

+y
n1

a
n2

+y
n2

a. *le
nut 11/11

a 5



Eimpples

4 ik 2+0 5+0 0+4 1+6

1 5 34- -2+2 -7+1 2+5

4 -2 -3 410 1+4 .5-2 3-3

-5 6 1 2+3 0-1 -4-5 -1+6

5

104
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If we consider the set of all n x m matrices together with the,opera-

tion of matri:f addition, t..2lis stAlforms a group. This is what rapes

the audy of mathematical syst&s so nice; they have a way of becoming

interwoven.

Theorem. If Mi's the set of all n x m matrices whose matriN3s ha4e

real number entries, and if the operation is matrix addition, then tlis

an abqiian*group.

Proof:

'('1.) Closure follows directly from the definition, since the sum

of two n x. m matrices with xeal elements in another n x m

matkx with real elements.

1/4

(ii) The associativity is a consequence of the definition of ad-

dition and the asaoc tivity of the rOal numbers. Each entry

sail have equali between expressions of the-type

(a.j+y ) + e

(14i) The identity ement is the matrix, &la of whose elements

are 0,frre.,
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1

'0 111 00

11V

(iv) The inverse of the matrix [(114] is,the matrix [-aii]. In
other words, that matrix whosd.elements are the ne4ative of
the corresponding elements in [aij].

4

Thereforedl is a group.

=0.

0 0

0 0

(v) The commutative property holds
numberd, and., t.herefore, ail +
ment in the matrices. Hence,

.4.

because it holds fpr the'real
= yii + aij for each ele-

a an a6elian group.

Another operation that we have.examined in the last chapter, is.
-that of scalar multiplication.

102-10
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Definition 77. If rao Is'an n'x m matrix whose.entrtes are real

4'numiers and if A is a rial nuhber, then the scalar proNt of A and the
matrix, denoted by A[aij] is that matrim.whose entries are cdiptainea by

multiplying each entry of [aid] by AI In other words,.

-2

(I

6 2

-1/3 -5. 4 12.

3 0 8
.i

0

Examples

10 20 5

15 -10 20

0 0 -10

30

45

-2 -2/3 1/3

5/3 -4/3 -4

-1 O. -8/3
461

a

By forming a sAstem consisting of the set of all n x m matrices

with real entries", and the two operations of matrix addition and

scalar multiplication, we hAe a vector space.
4

-

Theorem. If Mconsists of all the n x m matrices with real number

entries, and there are two opeAtions, matrix addition and scalar multi-

plication, defined on/l, then PI is a vector space.

Proof: we have already shown that Munder matrix addition is a

commutative grQup. Also A[aii] is a well defined operation that yields

another element in M. Thereore, only dOnditions (vi) (ix) of a

vector space must li4e substantiated.
A

To verify,thlf property '(vi) is valid, we must show 4
that X((a. ] [y. I) = A[a. ] +

3.jt 1J ) 13
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' Properties (viiJ and (viii) may be verified in A manner analogous
to that above. Property-(ix), liaii] = (aii], holds because
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4

Theiefore,Alis a vector space.

Before.,going Any further it would bi advisable to formally.define

what may already be intuitively clear.

, Definition 78.'
equal if and only if

Therefore, even
they.arb not equal.

5 -1' 4

'8 2 -5)
A

Tlao.matrfces taij) and tYii); both: n x m, are.
all their corresponding entries.are equal.

though the following two matrices are very simi ar

14

differ only in the a
22

pdeition.
.

Another important term in matrix theory is that of the transpose

of a matrix7. 4

Definitibn 79. Let [aii) be an n x m matrix, then the transpose

of [aij], denoted by [aij]/, is the, m x n matrix obtained by interchang-

ing the rows and columns of [aii]. In other words, the rows of (aii]

are t4e columns of [aijli and tfie columns of tali] are the rows of '

(a..V
3.)

The operation of matrik multiplic4ion is more complicated than

natrix addiiion or scalar multiplicat . It is interesting that the

two matrices do not have to be of the same size: It is only necessary

that the number of columns of the first matrix be the same.as the number

or'roms of the second matrix. In other words, we may compute the matrix

i5roduct of annxmandamxpmatrix, but not the product ofamxP
and n x'm matrix.

Definition 80. Suppose [aii] is an n x m matrix'and [yi..0 is an*

m x p matrix, then the matix product [Qii] of (aij] and (yiil is an

n x p matrix, s..those elements are .determined by the following rule:

The entry in the ij position is obtained by multiplying the first entry

ih the ith row of Eajj] by the first entry in the jth column of [yij]

and then agding to it the groduct of the second entry in the 'ith row

, of [aii] and the second ehEry of the jth column of [yijj, and so on,
until the product o4the mth element in the ith row of [aij] and the

nth element of the Sth column. A formula for this would be 4

1

lan

... a y + a.
1

y + + a
ij lj 2 2
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The double subscrOts m4cause some readers difficulty,,,so we
incluge several-conckete Vaustration44

qmp,

MI

Examiles

,5.(1)+3(8)

(-1) (-4)+2(5) (1)+2 (8)

14 .

J

taking the. first row of the firet matrix times the first colcmin Of
the second matrix. The entry in the 12 position is obtained by
taking the first row of tile first matrix times the second column
of the second matrix, and so on. The resultant matrix is a 2 x 2
matrix 'linos it is the product of a 2 x 2 matrix and a 2 x 2 matrix.

entry bd the 11 position i i &tained by

*

f.
2. 1 4

0

(-
15

21

-2

3

-8

3

4

2

1 (3)+4 (4) -2 (2)

5(3)+0(4)+3(2)

10

l (0)+4 (-3) -2 (-2)

5(0)+0(-3)+3(-2))

-

The product of a 2 x 3 and a 3.x 2 matrix Is a 2 x 2 matrix.

0

-3 (1

4 -2 c(1)+0(5) 3(4)470(0) 3(-2)+0(3)-)

5 0 3 = 4(1)1-3(5) 4(4)-3(0), 4(-2)-3(3)

2(4)-2(0) 2(-2)-2(3)\2(1)-2(5)
....

The product of a 3 x 2 and a 2'x 3 matrix is a 3 x 3 matrix. It

is important to notice that the matrices in examples 2 and 3 are
the same, but the order of multiplication is reversed. The size

of the matrices is not even the same, ohe is,2 x 2 and the other
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'is 3 x 3.' /42 general, 40 product of two matrices is nop commu-

tative that is the ordes of Multip4cation make.t)a difference.

.An importantinatrix is the/identity, matrix, which has l's down the

diagonal from upper.lefte to lower right in a n x nematrix, and

every other entry is a zero. A,3 x. 3 identitwatrix wouad-be
-

It i called an identity matrix becausee for example,

2(1)-3(0)+1(0) . _2(0)-3(1)+1(0) 2(0)-3(0)+1(1)

-5(1)+0(0)+4(0) -5(0)+0(1)+4(0) -5(0)+0(0)+4(1)

0(1)+1(0)+3(0) 1(0)+1(1)+3(0) 1(0)+1(0)+3(1)

2.

= -5

1' 1

If we restrict pur consideration to the.set of ail n 'x n matrices

with real entries and define the operations of matrix addition and

matrix multiplication on it, then the set is a ring.

Theorem. Let /toe the set of all n x n matrices with real entries,

and suppose that the operation of matrix addition and multiplication

are define9 on)4, thenil is a ring with a multiplicative identity.



#

Proofe We have already proved thatMis an abelian group under
matrix additiOn. The closure of matri8es under matrix multiplication
follOws because the product of an n x n matrix with another n x n
matrix is an n x n matrix. The associativity of matrix multip4ca-
'tiah requires a great deal of paperwork, but does follow directly from
the detinftion of matrix multiplication and the associativity of the
real numbers. The distributive law .requires'the proof that

= [aii][yke + [aii][60. This, too,ds(a rather
lengtliy,calculafi9n.' On the eft hanlrside, ['rij] and'plj] aFe added.,
and then we.compute 'the product of [aii] and the matrix-we obtained .

by additi6n. ,The right hand side of the equ'ality're-quIres the, nroduct
of [aii] and [yii], and [aij] and,[81.0i-and tlitn.the two,reguAtar4
matiices are added.. The results of tfi4 _left and rivht hand sides''wi
be the same. The identity element.is the matrix

The ring is not commatative.

A related. remark con e ns the existence
0 oì 0

example,
0' 0

, but neith

the zero element.

erQdivisoLS. For

)

0

nor is
0.

'The only question that remains is that of the multiplicative in-
.

'verse of a matrix. To begin with, only square matrices possess an
inverse, and not even all square matrices have an inverse. The usual
approach to finding the inverse of a matrix involves the study of de-
terminants. A rather formal approach t.d)dete4-minants is very messy
because o'f the great amount cif notation requited. For this reason the
**opic of determinants will not be examined in. this book.' However, there
.exists an alternate approach to finding the inverse of a matrix. This
iprocedure involves what are called elementary:row operations. We state
these operations without a thorough descriptiOn. A matrix may,have a
particular row multiplied by a nonzero constaht, two rows nay be'inter-

.

changed, and the multiple of one row may be added to another. If the
n x n matrix [aij] is altered by performing a series of these elementary

4 row operations and.9t the same time we are performing each one of these
operations on theTwx n identity matrix. Once our original n'x.n matrix
has.been altered until it is now the n x n identity matrix, whatever the
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matrix that was orianally, the identity matrix looks now is the inverse
of NA]. If it i&kbsaib1e to reduce [aij] to the identity matrix,
then Id

i
.] has no in pe..)

no.
,

,This enttre discussion may seem incredible, but keep in mind just
how complicated it should be to find the inverse of sot one number, but

.

an entire airay 49f numbers. -
.

,

. .
4

f 4
Exankple

,

1. ,,,,..,, -. f . We start with 4. and
-1 1

i .

.
-1 '

(I

11.
t Now we add the second row to the first row and do the se for the

1 0

identity matrix, and rewrite the first row as this sum and
. -1 1

1.

(-1, 11

1

. Now again, add the first and second rows, but this time

rewrite e second row as the sum of and
7

. i 1 2I
Then the

,

th

t

4

inverse o

us check:
-1

1

0 1

1

2

' It works!

should be
2

Do you believe it? Let
1

i/

2(1)-1(1) 2(1)-1(2)
IS

(-1) (1)+1(1) (-1) (1 +1 (2)
1(2)+(1)(-11 1(-1)+1(1). 1 01.

1

. w

1: 1(2)+2 (-14 1 (-1) +2 (1) 10 1

An amazing result is that if we restrict ourselves to the con-

(

side]: tiqp of all 2 x 2 matrices with real entries that are of the
r a !

form , and we take the operations of matrix adaition and_y a

l
matrix.,multiplication, then this set under the-Iigivezi operations

forms a field. eThe reader is urged to go thiough the verification
that the set is closed under both operations, that it has an adai-
tive and multiplicative identity, additive and multiplicative in-
verse, and all the Other required properties.

Before we make the transition fram theory to the practical and ap-
plied use of matrices, we show how matrices are helpful in solving sys-
tems of equations. We will give an illustrattlon for a 2 x 2 case, i.e.,
when we have two equations in tWo unknowns, but the method is technically
the same for a twenty equation in twenty unknown systems. Consider,
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.«

-x 47.y =

,

We could easily shim that x = 2, and y = 1 by using the nampal procedures

of solving kimultaneous equaticms. An alternatiVe procedure uses ma-
trices. .We can rewrite the.sysiem of equations as

,

beCause this is-t

1

he same as and by, the definition' of

elualit f matri se 2x - y = 3 and -x 4. y = -1, In sidenlng,

il
y

if'we could find the inverse o
1)

..1. /

-1 1
.1

1

would have flan alone on the left hand side of-the-equality and
Y

cOuld read f the answer to tjie p oblem. We have already computed the

rf

.inverse of
2 -1 fl 1

-1, 1

pf the equation by

1 a
Therefore, multiply both Sides

il i) .1 1
1 2 1 y 1 2 -1

1 x 1

CO [y 11 2 1-1°

3

[yl

1

2 [11)

1(3)+1(-1)

3.(3)+2(-1).

'WAIL



Therefore me have that x w. 2 and y

The applications of 'matricesqare,fairlApell known..' The'valueof
matribes in"any statistical analysis of expemimental data will be il-

lustratedqwith h series of examples, Other applications will also be

cited.

Examples

1. The theory of 'Markov chains concerns itself with the study of an
exterimental situation where the outcome on any given trial de-

pends only on the outcome cif the immediately preceding.trial.
Therefore, an'outcome Ej does not have a fixsd probability, but

rather a,conditignal probability, pii, which represents the.fol-

lowing: Given that outcome Ei has o6curred, the probability that.
outcome Ej will occur on the next trial is pij. For example, if

we have outcoMes El, Es, and E9 occurring on succession, then the
probability of thislevent is p1p15p591 where pi is the probability

that E/ occurs on the first trial. The outcomes, Eif are generally

, referred to as the states of the system, and the pij are"called

the transition probabilities. An array or matrix can be formed'

that includes all the transition probabilities in an experiment

that has El,...,EN as possible states.

P12
. p.

,P22
p
2N

is called the matrix of transition_yroba-'

pN2 .

Nre,

bilities. From this matrix we mAy determine the probability of

going from any state to any other state on the next trial. A

necessary condition concerning the rows of the matrix is that the

sum of the transition probabilities across any row is equal to one.

Markov chains have many applications in probability, physics, and

genetics. Recently they have also been used in forming models for

classical conditioning, paired associate learning,dand recall

learning.

1, 6
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2. Theios and Brelsford (1966) have written an article concerning the
use of a Narkov model to degcribe aye blink conditioning in rab-
bits.. They developed a theory to describe the changes takingyplace
in the trial by trial'probability of eliciting a response by the

, rabbit. The experiment used a tone as the conditioned stimulus .

(CS), an air puff to'the eye served as the unconditionea stimulus
(UCS),:' and the desired response,was an eye blink to the conditioned'
stimulus. Theios and Brelsford used the following Markov-:moclel to -4
!reflect the changes tn the probWAlities during the diperiment.
The,matrices that we will condider are

C,

1

A N .P
r'

0 %0
PC

1-c PA

a 1-a PN

.P (start)
.r.

Thd remaining discussion is intended to clarify Theios and Brels-
ford's reasoning and choice of notation. The rows.of the 3 x 3
transition matrix are the states of responsiveness on any' given
trial, while'the columns are the possible states on the^ next trial.
The entries in the matrix are the probabilities of moving from the
given state to another during NI the intertrial period. 'The first
1 x 3 matrix haslentries representing the probability of a response
during the observation interval for each of the three states of
responsiveness. The second 1 x 3 matrix gives the probabilities
of a rabbit beginning the experiment in aparticular state.

# The rabbit begins the experiment,in the naive state, N, where
the probability of a response to the conditioned stimulus is PN.
After each, application of the unconditioned stimulus (UCS), there
is a probability, a, that the rabbit will become aroused. We
represent this by saying the rabbit moves tostate A. Once it is
activated, the rabbit may give a response to the Cs. we denote the
probability f this by PA. After arousal, there is then a certain
likelihood at the response will become conditioned to the C.S.
Let us caL this probability, c, and this represents thd transition
into the hird state, C. Once conditidning has occurred, there is
a probability Pc that the rabbit will respond by blinking to the CS
before the uCS occurs: Therefore, there are actually three distinct
levels qg performance, PN, PA, and Pc in a, conditioning experiment.

3. There are other areas in psychology where Mark** models are being
used. These models are valuable in studies of paired Associate
learning, recall learning, and avoidance conditioning. In the
list of references at the end of the chapter, a numbeF of articles
are included that contain discissions of these topics.

112 -1-1.
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4. Hay (1966) poses the question as to how many diffvent object dis.-
placements can produce the same optical motion at: the eye. He
used a matrix model to aid in determining,how many different ob-
ject displacements areAptically equivalent_ the same trihsfor-

li
mation of the optical array. Th; main focus, no pun intended, is
on the characteristics of these classes of op cal stimuli. There

. is a mapping of a three-dimensional object into an optical arrAy
. 'pat essentially has a two-dimensionalistructure. Hay feels that

optically equiv&ient object displacementd have certain oommonali-
ties, and the optical motions that they pToduce'give information

' about these common fe'aiures. Object disp_lacements are in some
type ok correspondence with optical tkansformations..

t ir
5. G..A.,Miller (1968) uses matrices in.an-examination of the value

of algebraic models in psycholinguistics. He lncllides incidence
matrices kor clustering that are associated with the hierarchical
semantic system as part of hi4Odiscussion of methods for Avesti-

,

gating semantic relations.

%

6. The'use of matrices in the study of linear and multiple regression
is of_Baramount importance (Draper and math, 1966). If data is .

studiga by the method of aeadt squares, in order to draw conclusions
about dependency relationships between variables, then this approach
is called iegression. In the case of linear regresW.9n we try to
show that for a given value X, a corresponding value Y may be pre-
dicted that is an estimate of the actual observed value Y. For
each trial we could describe the observed value Y. as a linear
function of Xj, Yj = et + miXj + ei, where ej" is the error. If
we were to do this for a large numBer of trials, N, we would have
a system of equations for yhich we would like to find those esti-
mates ao and al for ao ind al, that produce-the smalledt value
of ei + ... + qt. We could express our systek for ei!timates ao and
al as

Y =a +aX
0 , e 1 1

Y = a
0

+ a1X2
2

+a
1
X
N

4

In matrix notation we ,could write this as

143



Let us next multiply both sides of' the equality y the transpose of

[I]C . .

I

which Ilimplifies to

1 .3. . .

1----
a

X
1
X2 . XN t.

al

For convenience e let us denote the eqtiality as Xi*Y (X1X)a. As

we can observe XfX is an example of a square matrix. It is a 2 x 2

matrix. If we compute its inverse (XIX)-1., then we can solve the

system for a. Therefo e, (X1X)-1X1Y = a,,from which we can find,

those values for a that give us the least square estimates

a
1

Draper and Smith alSo use matrices in the analysis of v iance

and the variance and covariance of ao and al. The regression.ana Y-14

sis may be shifted to an examination of correlations between vari-

ables. Correlations are desirable because their values range be-

tween -1 and 1. In general, we may form a matrix of correlations,

.4 0. U...

r
11 r12

.

*

r
21 r22 r2N

rN1 rN2 NN

from which we may analime the intdependence of variables.

1 9
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A real strength of the use of natrices over 4ather %e iques
of solving systems of equations,is that the.approach is general and
theoreticaily is the same for 30 equations in 30 unknowns as it is
for 3 equations in 3 unknowns. This neans thaf it,is easier to
write a computer program.that can analyze the data.

7. A similar use of matrices is in the iechnique of factor inalysis
(Guilford, 1959). A correlation matrix has as many rows and col-
umns as there are tests,or variables; however, a factor matrjx"
has as many rows as there axe tests, but only 4:any columns as
there are common factors. Thpse two matrices ar related by the
equation'FF! ms RI where R is the correlation matrix, F is the
factor matrbs, and F1 is the transpose of the factor matrix. A .

furt.Oer result shows that the number of common factors is'equal to
the rank of the correlation matrix. 3n4...other words, it is equal'

to the 'number of linearly independent rows in the correlation
matrix.

This concludes the chapter on matrices. Matrices were interesting
to study because of the theoretical systems that sets of matrices may
be formed into. For example, a group, ring, or vector space. "The .

properties of matrices served as a nice transition from the theoreti-
cal to the applied, and the appliCations revealed the rich potential
of,matribes in questions of learning and in data analysis.

Before we end the book a few concluding words may be in order.
Mathematics is a fasc.natimg subject in.itself. There are thousands
of theoretical mathematicians who will attest to this. But-it is also
potentially a rich instrument in structuring and analyzing questions
in psychology. The algebraic systems we have examined are most worthy
'of close scrutiny as to how and where they should be used. A. mathe-

matical model is like a fashion model, it looks good no matter what
you put on it, but remember you are selling the clothes, not the model.

J
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