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1.1. Principal Assumptions

In this chapter ws shall prove several theorems of geometry using the
fundamental concepts and ctrtain taws of Statics. We will define the
terms immediately,

1. Force is a vector and is characterized by magnitude, a direction,
and a point of application. The line along which a force acts is called its

lirie of action.
2. A bOdy which cannot be deformedthat is, which always keeps

irs si.4, and shapeis said to be absolutely rigid.
A6ually, every body is capable of being deformed to some extent,

but these deformations are frequently so small that they can be neglected.

.The concept of an a olutely rigid body is an idealization. pne fre-
quently omits the wor absolutely and speaks simply *of a rigid body.

3. A collection of acting on a body is called a system offorces.
A system of forces is said to be in equilibrium or an equilibrium system

if no motion is'caused when the system is applied to an absolutely rigid

body at rest.
4. Two systems of forces are .saifi to be equivalent if they cause the

same motion when applied to an tibsolutely rigid body.
From this definition it follows that, for all practical purposes, a

system of forces acthig on a rigid body can be replaced by any equiva-
lent system without altering the discussion.

5. If a system of forces is equivalent to a single force R, we say that ,

the force R is the resultant of this system.
'Note that not everV system of forces has. a resultant. Thc simplest

example of such a system of forces is called a coulA of forces, as illus-

trated in figure 1.1.
In addition to the above concepts, we use the following rules (axioms),

of statics:

4



2 . -The Composition of.Forees

Rutz 1.1. Two forces F1 F2 acting at the same point have a re-
sultant R which acts at the sante int anti is represented by the diagonal
of the paranelogram having the forces F1, and F2 as tdjacent sides (fig.
1.2).

F'

Fig. 1.1

This construction is often called the parallelogram law for forces.
The rule allows one to exchange the forces F2 and F2 for the force R
and, conversely, to exchange a given force R for forces F, and F2. in
the first case one speaks of the compositioirof forces, and in the second,
of the resolution of the force R into the components Fk and F2, (This
resolution can be carried out in an infinite number of war,- since it isl
possible to construct infinitely many parallelograms with a given
diagdnal R.)

a .

RULE 1.2. If we add any equilibrium system to a system offorces, or if
we remove an equilibrium system from a system of forces, the reSulting
system will be equivalent to the original one.

In particular, this 4mplies that a collection of equilibrium systems is
an equilibrium nsysteM.

RULE 1.3. Two forces are in dquilibrium if and only if they have the
same magnitude, opposite directions, and a common line of action (figs.
1.3 and 1.4).

2

Fig. 1.3 Fig. 1.4

RULE 1.4. A force acting on a rigid body can be arbitrarily shifted
along its line of action.

9
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The Composition of Forces

In other words, if forces F and F1 have the same magnitude and direc-
tion and a common line of action, they are equivalent (fig.,1.5). The con-
verse is also true: If the forces F and F' are equivalent, they have the,
same magnitude and direction and a common tine of action.1

Rule 1.4 implies that for forces acting on a
rigidib6aTthe point of application is un-
important; rather, the line of action determines
the resultant force.- The Vector of .a force
acting on a rigid body is therefore called' a
sliding vector.
. Rule 1(.4 thus enables one ,to add forces
whose points bf application .are different,
providing their lines of action intersect. Sup-
pose that we have to add forces F, and F2
(fig. 1.6). Since the vectors of these force* are
sliding, we can translate them to the point 0
and then use rule 1.1 to obtain the resultant -

R of the forces F, and F2, by completing the
parallelogram.

Fig. 1.5 Fr6m rules 1.3 and 1.4 we deduce the
following important proposition:

PROPOSITION 1.1. If three nonparallel and coplanar forces acting on a
rigid body are in equilibrium, then their lines of action intersect at a single
point.

3

For suppose that the forces P1, P2, and Pr3 are in equilibrium with one
another (fig. 1.7). Translating the forces P, and P2 to the point 0, we '

0

Fig. 1.6 Fig. 1.7

I. Rule 1.4 can be deduced from rule 1.3. We have nbt done thisr however
sintz both rules are equally intuitive.

4



4 .4 The Composition of FOrces

obtain their restiltant Rut. The forces P3 and %%are now in equilibrium.
But this is possible only if they have a common line of action. Thus, the
line of action of the force 1.3 passes through the point 0that is, the
lines of action of all three forces Meet one another.at this point.

Uaing this proposition; we shall now prove some theorems of geoni-
etrY.

0 Ai

1.2. A:Theorem on the Angle Bisectors of a Tdangis--)

Let us consider six equal forFes F1, F2, acting along the sides
.ef a triangle, as shimi in figure 1.8. Since these forces cancel one
an.other in pairs, they are clearly in equilibrium, and, therefore, the
resultants 1?-169 11239 and R45 are also in eqWlibrium. 'But" the forces
R16, R23, and R44, arc directed along the bisectors of the interior angles
A,' II, and C. (The parallelograms are rhomlai, and thy diagonal is an
angle bisector.) This leads, consequently,, to the following theorem:

,

THEonal 1.1. The bisectors of the interior angles of a triangle inter-
sect ca a po)nt.

Fin. 1.9

1.3. Another Theorem on the Angle Bisectors of a Triangle

Let us consider the six etpal forces F1, F2, . . Fe shown in figure 1.9.
These forces are in equilibrium since each of the three uairs of forces,
taken consecutively around the yiangle, are in equilibrium: But the re-
sultant of the forces F1 and F6 iS directed along the bisector of the
exterior angle A, and he resultant of F, and F is difected along the

p.
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The Composition of Forces 5

bisector of interior angle C. The resultant of F2 and F3 is directed along
the bisector of interior angle Bilerefore, the following theorem.holds:

Tr-rEoRat 1.2. The bisectors of two exterior angles and an interior
angle of a triangle intersect at a point.°

s 1.4. A. Theorem on the Altitudes of a 'Mangle

In figure 1.10 we have drawn a triangle ABC, with the forces F1, F2,
Fe acting along the sides. We have chosen these forces so that the

following equalities hold:

F, = Foos A ,
F1, F cos B ,

F5 = Fe = Foos C,

where F is some convenient unit dimension for force. (Note.that we are
using the convention wheie an F denotes a vector, and F its corre-,
sponding magnitude.) Since the forces F1, F27 . . Fe are in equilibrium,
the lines of action of the resultants RA, RB, and Rc shown in,the figure
must intersect. We shall find the directions of these resultlitits.

I, A

Fig. 1.10 Fig. 1.11

For example,det us add the forces F, and F5, which act atthe vertex
B El 1), To do this, we resolve each of these forces into two corn-
ponents, one parallel to the side AC, and the other perpendicular to it.
The first of these coinponents we shall call Ilbrizontal, and the second,
vertical. Fiom figure. 1%11 it is clear that the hegizontal components of
the forces F, and Fe are equal to F1 cos C dnd F6 COS A. gut from (1.1)
it follows that

Fl cos A
Fa cos C
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The CompOsition of Forces .

F1 cos C .'="' F6 Cos A .

Thus, OF horizontal components of the forces F1 and Fe are the same.
From thi?fact we conclude thatthey cancel one aftotherend, therefore,
the resultant't)f the forces F1 aqd F6 is perpendicular to side AC. There-
fore, the force Ra i directed along the altitude perpendidnlar to AC.-

Analogously, we mi4 deduce that forces RA and Re lie along the two -
other altitudes of the triangle ABC. We thus arrive at the following:

THEOREM 1.3. Tk altitudes of a triangle Intersect kt a single poMt.

1.5. A Theorem op the Medians of a Triangle
/

Let us consider forces F F2, ..., Fe, acting as shown in figure 1.12.
Suppose that each of these forces has a magnitude.equal to one-half the
length of.the corresponding side of the triangle. Then the resultant of the
forcei F2 and Fg will be represented by the median drawn to side BC;
the resultant of fotkoes F2 anl F, will be represented by the median drawn
to side AC; and tfillresultant of forces F4 and F5 will be t-epresented by
the median drawn to side AB, since similar triangles afe formed by the
parallelograms of forces shown in figure 1.12. The forces F1, F2, . Fe
are in equilibrium, and this leads f the following theorem:

-THEonEm 1.4. The medians of aitriangle intersect at a single point.

1.6. A Generalization of the Theorem on the Bisectors of t.le Interior
Angles of a Triangle

a

Suppose that We areiiven the triangle ABC. Let us draw a straight line
a dividi,ng angle A into parts a, and a, a straight line b dividing angle B
into parts pi. and fiu, and a straight line c dividing angle C into parts yi



The Composition of Forces 7

and' y2 (fig. 1.13) We apply to point A an arbitrary force 111 directed
ajpng the line a and resolve this force into components 1), and Q1 direc-
ted along the sides AC and AB. Similarly, we,apply forces R2 apd
directed along the lines b and c to the points Band C, and resolve these
forces into components P29 Qg and P3s Q. We require, howeirer, that
the component P2 cancel the component Q1 and that the component Ps
cancel the component Q. In this way we obtain a system of forces

R2, Rs) equiimlent to the 'system (P1, (23).
Consider now th owing ratios:

sin al sin /31 sin yj
Sin (X2 ' sin 13i' sin y2

From the parallelograms at the vertices A, B, and C, we deduce.that

and, therefore, tbat

sin ai` sin fl, sin y, Q, Q2 Qs
iinTi; sin gs sin 72 P1 P2 P3

But since P2 = Qi and P3 Q22

Sin al sin gi Sin Q3
sin a2 sin f32 sin ya Pi

Two cases are possible.

Case I .

sin ai sin g1 sin Yi
sin a2 sin '92 sin y2

Fig. 1.13

(1.2)

(1.3)

Then P1 = Q. That is: the forces P, and Qg are in equilibrium; conse-
quently the forces RI, R2, R3 which aiz equivalent tg A and Q3, are in
equilibrium. From thiNict we then conclude that the lines a, b, and e
intersect at a single point.
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Case 2.

gin ai Pl Yi ;
sin as am Pa/sin 7/2

Then, according to equation (1.2), F1 0 Q. We shall prove that in this
case the alba, b, and c cannot intersect at a single point. Suppose that
they intersect at a single point 0 (fig. 1.14). Then, translating the forces
R1, R2, and Rs to the point 0, we find their resultant R", which will also
act at 0. Furthermore, since the system (R1, R2, R3) is equivalent to the
system (131. Qs), the rqultant tt must be equivalent to the nonzero
resultant of the fos.r, and 03. This is impossible since the resultant
of the forces P1, Q3 lies On the line AC, and the line of action of the
force R cannot coincide With the line AC (since the p-oint 0 does not lie
on this line). From this contradiction, we concludg that .the lines a,
b, and c do not intersect at a single point.

Thus, the lines shown in figure 1.13 intersect at a single point only
when equality (1.3) is valid. In other words, the lines a, b, and c intersect
at a single point if and only if condition (1.3) is satisfied.

The theorem just proved may be regarded as a generalization of the
theorem on the bisectors of the interior ,angles of a triangle. (In that
theorem, not only does condition (1.3) hold, but also each of The
individual factors (sin al/sin as, sin f311sin igs, sin yjain ys) is equal to
one.]

This theorem also implies the theorem on the altitudes of a triangle
(fig. 1.15). If lines a, b, ant c are drawn as altitudes, then

sin al cos.0
sin as cos B

sin /31 cbs A
and

sin f3s

sin yi cos B
sin ys cos A

Fig. 1.15
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Taking the product, we find that

a

Consequently, the altitud9 of a triangle interseFt at a single point.

sin .a, sin R. sin x, coS C cos A cos B
sin «2 sin /32 sin 7,2 cos B eos C cos A ,1

9

1.7. Ceva's Theorem

Consider tile triangle ABC (fig. 1.16). Suppose that forces F, and F2
act along the sides AC and AB, and that theirresultant acts along line
AA,. We draw the line DE parallel to side BC and resolve F, into.
components F,' and and F2 into components F2' and 172. From the 4;
similar triangles formed, it is evident that 4

Therefore,

A =

A 1c.
-C7' an d

BA,
F2 AB

A1C BA,
and F; = F2

CA AB

But since the resultant of the forces F, and F2 is directed along AA1,
F1' = F21; consequently,

or

A,C BA,
CA AB

F, CA BA,
F2 AB A,C

This relation will be needed later. (It is easy to remember because the
right side of this equation can be obtained by circling the triangle CAB
clockwise.)

Let us now determine A1, B1, and C, on triangle ABC (fig.41.17). At
the points A, B, and C we apply forces 12.1, Rg, and R3 directed along
lines AA,, BB1, and CC1, and we resolve these forces into components
directed along the sides of the triangle. The force R, is chosen arbi-
trarily, but the forces R2 and R, arc chosen so that the equalities

P2 =" Q1 P3 = Q2 (1.5)

a're satisfied.

Applying relation (1.4) to each vertex, we have that

P, _CA BA, P, AB CB, P3 BC AC,
Afi A1C' BC B14' Q3 CA C18'

C
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We next multiply these equalities to obtain

P1 P F3 BA C'B, AC1
Q1 Q2 Q3 Ale B1A Cx.11/Y-

t'
or, canceling equals given in (1.5), and comunting,

./
Q3 fr.

AC1 BA1CB1
C113 A1C B1A

We again consider two cases.

. Case

(1.6)

AC1 BA, CBI
, C1B A19 B1A

Then P, = Qa, that is, these f rees arc in equilibrium. Consequently,
the forces RI, R,, and R3 are n equilibrium; and, thus, the lines AA1,
BB and CC, intersect at a single point.

Case 2.

(13)

AC BA CBI I 1

C1B A1C B1A

Then according to (1.6) the forces P1 and (N are different. Repeating
the argument of the preceding theorem, we deduce that the lines A1A1,
B81; and CC, do not intersect at a poinii.

Thus the following ttkorem:

MEOREM 1.5. For the lines A Al, BB" and CC1 to intersect at a single
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point, it Ls necessary and sufficient that equation (1.7) be valid. This result
is' known as Ceva's theorem.'

The theorem .on the medians of I? triangle is a spatial case of Ceva's
theorem, since, the case for .

A. BAi
C18 4cT 7 B1A 1

In 'bther words, Ceva's theorem can be considered tt generilization of
the theorem on the medians.

From Ceva's theorem it is ass() easy to obtain the previous theorem on
the bisectors of the interior angles of a triangle. In this case

4 .7 4
AC BA, AB CB, BC

,B BC A1C AC B1A AB'

4

and, consequently,

AC, BA; CB; AC AB BC
C11B A1C BiA BC AC AB

Equality (1.7) is satisfied, and we may apply Ceva's theorem.

1.8. The Resultant and Its Point
of Application

We should make one more re-
mark concerning the concept of
the resultant. Suppose that the
force R is the resultant of forces
applied at different points of a
rigid body. Since the vector R is a
sliding vector, we can change its
point of application by translating
it along its line of action. But since
the force R haskno actual point of
application (as it is not directly
applied), any point on its line.,of
action may be .taken as it,5 point
of application. Thus, the resultant
of forces applied at various points

2. By extending the lines forming thc sides of the triangle, Ceva's theorem majt
be generalized to the case where thc lines A 41, BB., and CC1 intersects outside the
triangle ABC. The same is truc, by the way, of the thebrern of section 1.6.

8

s..
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12 The Composition of Forces

of a riiid body has a definite lin of action, but not a definite point of
application.

To illustrate this statement, let us consider forces F1, F2, and F3 as
shown in figurF1.18. To find their resultant, we first add the forces F1
and F2 and then add their resultant R19 to the force F.. In this way we
finally end up wfith a resultant R applied at the point'C. We now proceed
in another wa)(.' First we add the forces F1 and F3, and then we add their
resultant Rii3 to the force F2. We then obtain a resultant R' acting at the
point D . Thus, different methods of adding the forces F1, F2,. and 1 3 -

give retqltasts with different. points of application. (One can,_assert,
howeVer, that the faces R and 4, same line of actiQn and that

Prom this argurvent we deduce the following , rule:

RULE 1.5. Suppose that by adding f?ices in various.orders we obtain
different points of applicatian ft;their resultant. Then th'ese points will be
collinear, and the line formed will coincidg with the line of action of the
resultant.

We shall now use this rule to prove two theorems.

1.9. A Third Theorem on the Angle Bisectors of a Triangle

Suppose that the forces F1, F2, and F3 have equal.magnitudes and act
along the sides of triangle ABC (fig. 1.19). We shall find their resultant.

Fig..1.19

*a,

Composing the forces Fl and F2, we obtain the resultant R12, which is
directed along the bisector A D. Composing the force R12 with the force

we then find the resultant of the forces F F2, and F3, and this
resultant will act at the point D.

If we add the forces F1 and F. first, we get the resultant R13, WhiCh will
lie on the extension of the bisector CE. Next we add the forces R13 and
F2, and again obtain the resultant of the forces F1, F2, and F3. This
time, however, the resultant acts at the point E.
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Suppose we combine the forces F2 .and F3 ,firit- We then have ttle
resultant R22, which will lie along the bisector 'BK of the exterior angle
B. Composing the forces R23 and PI we obtain a resultant which acts

at the point K. .

Thus,, adding the forces F, F2, and Es in three different Ways, we
obin reilultants acting.at the poiirts D, E, and ICConsequently, the
p'oks E, and K are collinear. Ily defining the pase of-an a4gle bi-
sector to be its point of intersection with' the opposite side, we have the .

theorem:
r L.

THEoaam 1.6; The bases of the iisectors of ,tivo inter. ior angles and,

one exterior finile of a triangleform a straight .
. F .

1%.

1.10. A Fourth Theorem on the Angle Bisector* tf a Triangle

By carrying out a similar argument for three forces of equal magni-
tude, F1, F2, and Fs, acting as shown in figure 1.20, we may then prove

the theorem:

THEOREM 1.7. The bases of the bisectors of the three exterior angles

of.a triamgle are collinear (fig. 1.21).

er -

Fig. 1.21

3. We assume that the bisector of the exterior angle intersects the opposite side
that is, is not parallel to this side. This remark is also applicable to the next
theorem.

.4101,

I.
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The PerpettO

Postulate
4,

It is possible to p ve certain geometric theorems using the postulate4

that perpetual motion is impossible. This chapter will demonStrate
several theorems of this sort:

. .

LL The Moment of Force

In 'addition to the postulate on the impossibility of perpetual motion,
we will need the law of moments. We shall first state this law.

Suppose %hat a body is under the in-
. flue= of a force F and can revolve 'about

the z-axis (fig. 2.1). The rotational motion
caused by. a force F is determined by its
moment with respect to the z-axis. To com-
pute this moment, we resolve the force F
into components F' and F", with the first
component lying in a Wane perpendicular
to the z-axis, and the second parallel to the
axis. The rotational niotion caused by the
component F' is clearly equal to zero, anti
the rotational action of the component F'

Fig. 2.1 is measured by the product of vector F' by
'the scalar d, where d is the distancebetween

the z-axis and the line of action of the force F'. This product, denoted
by F'd, is sometimes referred to as the torque, and i this text (for
clarity), will be called the moment of the force F With respect to the z-axis.

Since. the force F' is the projection-of the force F onto the plane I),
we can give the following definition of moment:

14



The Perpetual Motion Posudate 15

DEFINnioN 2.1. The moment' of the force F with'respect to the z-axis
is the product Fid, where Fi is the projection of thelorce F onto the plat,
perpendicular to the z-axis, and d is the distance between the z-axis and
the line of action projection F'.

* Thus, (.1

where M is the moment of the force F with respect tb the z-axis.
It folloWs from the definition that the moment of force is equal to

zero in only two cases/. when the Hie of action of thJorce F intersects
'the z-axis, or when it is parallel to the axis.

If,,as freimently Occurs, the force F hai a line of action that lies in a
pline perpendicular to the i-axis, then F = F and, therefore,

M4= Fd .

In this case the distance d is called the arm of the for
We assign a definite sign to the moment of force. r this purpose

we designate one of the directions of rotations positiVe, and the other
as negative. Then if the force tends to rota he body in the positive
direction, we consider its momentum positiv4 and in the Opposite case,
negative. Therefore, we can write

vs

M(F) = + F'd ,

where the sign is determined by the directioh of rotation.
The following two rules will be needed:

.4RULE 2.1. If R is the resultant of the system (F F2, ..., F), the
moment offorce R is equal to the vector sum of the individual moments of
forces F1, F2, . . . F.'

This rule may be written in the form

lk

M(R) M(F1) + M(F2) + + MAFO (2.1)

where M(R) denotes the moment of the force R with respect to the
z-axis.

1. This proposition is known as Vorignon's theorem. Varignon's name is also
given to the theorem about segments joining midpoints of the sides of a quadri-
lateral.

e 4

411P

2 0
4.,
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16 The Perpetual (Ai= Postulate

RULE 2.2. (The law of mom s.) Suppose that a rigid body can rotate
aboat a fixed axis. In order for fo cepacting on it not .to cause rotation,
it is necessary and sufficient that t vector sum of their moments equal
zero.

(In other words, the moment of the forces tending to rotate the body
in the poSitive direction must have the same magnitude as the moment
of the forces tending to rotate it in the negative direction.)

-/---
, 2.1. A Theorem on the Perpendicular Bisectors of the Sides of a

Triangle :

Consider a container having the form of a right triangular prism
A1B1C1A2B2C2 (fig. 2.2): Imagine that it is filled with gas and that no
external forcep, not even gravity, act on it. (We can assume, for example,

../ that it is localed far from the earth and the heavenly bodies.) If wep

consider dll the forces exerted on the container, we conclude that the
net resultanr must be constantsince no .external force is applied. Since
we have postulated that perpetual motion is impossible, this constant
resultant must be zero. Thus, the container will itmain in its initial
state at rest. Consequently, the forces that the gaS.exerts on the walls
must be in the equilibrium. .

But since the pressures on the two parallel faces clearly baiance one
anotherr, the forces exerted by the gas against the side walls of the con-
tainer must be in equilibrium. We may represent these forces by FAR,

F BC, and FA,, which lie in the plane defined by triangle ABC, and have
points of pplication at the midpoints of eir respective sides. Since these
forces are in equilibrium, by our first roposition, their lines of action
must intersect at a single point. Noting that the vectors F AR)F BC:, and F AC

are perpendiculaf to the sides of the triangle A BC, we have the following:

THEOREM 2.1. The perpendicular bisecwrs of the sides of a triangle
intersect at a single point.

.7=s

2.3. The Pythagorsin Theorem

Consider now a right triangular prism whose base is the right triangle
A BC (fig. 2.3). We fill the container with gas and allow it to rotate about
the vertical axis.00' (the ABC plane is considered. horizontal). Since
perpetual motion is impossible, the container will remain in its initial
state at rest, and the forces catNed by the gas on the side walls of the
container Must he in equilibrium. Each of these forces tends to rotate the
container about the,OCY axis: the forces F, and F2 counterclockwise,

,
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and the force Fi clockwise. Therefore, the sum of the rotational mo-
ments of the forces ri and F2 must equal the rotational moment of the
force .F3. Since the arms of these forces are equal to ABI2, BC/2, and
ACI2, respectively, we may use our formulas for rotational moments,
and equate magnitudes, to obtain .

But

AB BC AC
2

+ F2 = Fe

Fl = h) ,

F2 -=' p(BC.h),
F3 = p(AC. h) ,

(22.)

where p is the pressure of the gas and h is the height of the container.
Substituting, we find that equation (2.2) now takes the form

AB BC
?(A B h) + p(BC. h) y- '(A C h) AC .

2 2

Multiplying by the constant 21ph, we have

, AB2 + BC2 ---- AC2

Thus, we have proved the following theorem:

THEQREM 2.2. The stun of the squares of the legs of a right triangle is
equal to the square of the hypotenuse.

4
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It is possible to nneralize to the law of cosines by substituting an
arbitrary triangle for the right triangle used in this proof. However,,we
shall now turn to a couple of geometric theorems dealing with circles.

2.4. A Theorem on TaNents and Swags

Suppose that a gas-filled vessel has a base whose shape is the figur.c
ABC (figure 2.4 shows the view from above; the plane ABC is hori-
zontal). The vessel.has height h as rapsured along any of the vertical

4

A

, .

Fig. 2.4.

a

sides joined to the lines AB, AC, a: the areBC. Thus the . vessel is a
boxlike container .with cross-sectional sharOBWuppose, further-
more, that the vessel is'tightly fastened to the rod 67and that this rod

, is fastened AO the vertical axis O. In this Way, we allow the vessel to
rotate about this axis. As in the preceding section, the vessel will remain
at rest, and, therefore, the sum of the moments of all of the forces
acting upon the container must be equal.to zero. But only two of these
forces create rotational moments; the forces F1 and F2 of the pressure
of the gas on the walls AB and AC. (The for of the'gas on the curv
wall BC do not contribute to the rcrtatiQ oment, since each force
has a hne of action that passesthrough the axis 0.) Using the fact that
the moments of forces F, and F2 have opposite signs and that the arms
of these forces are equal to BK and LM, we know that

F,,BK LAI .

But BK ABI2 and

LC LA LD + I,A ADLM =
2



Consequently,

that is,

The Perpetual Motion Postulate

A. AB F2- AD .

Furthermore, we have that

F1 = p(AB.h) and F2 XAC.h),

19

(2.3

when p islhe pressure of the gas and h the height of the vesseL Subsii-
arting these expressions in (2.3), we obtain'

p(A B h)A B. = p(AC h)A'D ,
4

AB2 AC.AD . (2.4)

Returning to the circle,shown in figure 2.4, we see that the segment AB
is tangent tp the circle from point A; segment AD is a secant; and the
segment AC is the external part of secant AD. Thus, equation (2.4) ex-
presses the well-knowp geometric theorem:

THEolusi 2.3. The square of the tangent to a circle from a point is
equal to the product ofa secant from that point times the external part of

-the secant.

hence,

a),,2.S. A Theorem on Two Intersecting Chords of a Circle

Let-us replace the vessel just considered by the vessel ABD shown
in figure 2.5. Repeating the arguments used in the beginning of the

Fig. 2.5

preceding theorem, we obtain the relation

F1KL = F2 MN .

?e;
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Furthermore, since

therefore,

that is,

,The Perpetual Motion Postulate

AC AB AC AB BC
2 2 2

DE DB DE DB Bi
2 2 2

BE
,

F1. BC. = Fgr BE

As before, however,

p(AB F9 = ADB. h

an , consequently,

p(A B. h). p(DB.h). BE ,`

hence,

AB. BC DB. BE (2.5)
-

Equation (2.5) exPresses a well-known geometric theorem on two
intersecting chords of a circle.

411

.10
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#11 The Center
of Gravity,
Potential Energy,
and Work

I

In this chapter we shall compute the volumes and surfaces of certain
bodies. Our discnssion will make use of concepts involving potential
energy, work, and properties of the cexter of gravity.

3.1. The Center of Gravity

The resultant of two parallel forces F1 and F2 (fig. 3.1) is represented
by a force R acting in the same direction, with a line of action passing
through point C. This point, which may be considered as the point of

1, application of the resultant R, is defined by the relation

A1C F2
CA

(3.1)

f,

Now let tif consider a system of several parallel forces. For example,
we shall fintthe resultant offour forces (fig. 3.2) by adding them one
by one. Upon combining the forces y, and F2, we obtain a force R'

21

P

Fig. 3.2
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acting at some point C', which may be determined by relation (3.1);
adding the forces R' and F3, we obtain a resultant acting at a new
point C"; and, finally, adding R" and F4, we have the resultant R, acting
at some point C whose position may be determined by repeated use of
equation (3.1). The force R will have magnitude equal to F1 + F +
F3 + F4.

In this manner, i* is possible to add together any number of parallel
'forces to find their resultant and a point C at which the resultant acts.
It can be proved that the position of C is independent of the order in
which one adds the forces. Tbis point is called the center of the given
system of parallel forces.

Let us consider a rigid body located in
the vicinity of the earth (fig. 3.3). If the
dimensions of this body are small in
comparison with the radius of the earth,
the forces of gravity acting upon its par-
ticles are essentially parallel. We may
therefore find a limit point C of a se-
quence of centers of arbitrarily large se-
lections of parallel forces. This point is.

Fig. 3.3 called the center of gravity of the given
body. We may consider it to be the

point of application of the force P, which represents the. weight of the
body.
- We should make a couple of observatio s that follow directly from
this definition of the center of gravity. Fi t if we translate or rotate
a body, the center point C is similarly tran ated; hence, relative to the
body, the center of gravity remains fixed or" firmly attached" to the
body under rigid transformations.

Second, it follows from equation .1) that a proportional increase or
decrease of all the forces in a stem of parallel forces results in no
change in the position of the center C. In other words, the center of grav-
ity of a homogeneous body depends only on its size and shape. For this
reason, the center of gravity is sometimes called the center of mass.

1.. The renter of gravity of a line and a square. In mechanics, one
speaks oft material point, which is analogous to the geometric concept
of a point.

A material point is a point possessing a definite mass.
The theoretical idea of a material point is a body having some measur-

able mass, hut no dimensions. (Sometimes these coneeptsaetually occur.
For example, in studying the motion orthe earth about the sun, we can
treat the earth as a material point.)
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---, Similarly, we can introduce the concept of a material line. By this we
shall mean a curve of finue length possessing a certain mass.(We shall
represent this mass by its distribution along the length of the curve.

In the same manner, we can speak of a material figure. By this we shall
mean aplane figure possessing a definite mass distributed througlwut it.garea.

A material line may be visualized as a thin wire and a material figure
as a thin plate. The thinner the wire or the plate, the closer it approxi-
mates the material line or material figuc. . ,,

We may extend certain physical operties to our discussion of
material lines and figures.. By deterriining the weight of a material
.object per unit length, or per unit area, we may speak of the specific
weight of the body. If the mass of a material curve is distributed
uniformly along its length, the specific weight of this curve will be the
same at all points. We shall call such a material curve homogeneous. In
the same sense we can speak of a homogeneous material figure. A thin
'homogeneous wire of constant diameter serves as a prototype of a
material curve. Analogously, a thin homogendjus plate of constant
thickness is a prototy& of a material figure.

Since a material curve and a material figure possess mass and conse-:
quently weight, one can speak of the center of gravity of a material line
or a material figure. If the material curve or the material figure is honk,-
geneous, the position of its center of gravity depenas solely on its shape,
and is independent of its specific weight. Therefore, the center of gravity
of a homogeneous material curve can be called the center of gravity of
the curve, and the center of gravity of a homogeneous material figure
can be called the center #f gravity of the area (or the center of gravity of
tht 'figure).

2. The center of pressure. It is not necessary' to limit ourselves to
forces of gravity when discussing the center of gravity of a thin plate.

Suppose that the pressure p acts on
one side of a figure of area S (fig. 3.4).
Since the forces associated with this
pressure are parallel, their resultant
is equal to

Fig. 3.4

F pS ,

and actis at some point C, which is
the center of these forces. This point
is, therefore, called the center of
Pressure. To determine its position,
`we-must know the magnitude of the

3 o
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force on any arbitrarily small area. But this force is equal to pAS, where
AS is the area of the cell on which the pressure acts (sometimes called 3
gaussian area). This is numerically equal to the weight of the cell, given
that the material figure has a specific weight equal to p. Consequently,
any partition of the figure yields forces of pressure having the same
magnitudes as the forces of weight for a homogeneous material figure S.
From this we may conclude that the 'point C coincides with the center
of gravity of the figure S. .

Thus, the center of a uniform pressure on a material figure is the same
point as the center of gravity of the figure. This result will be needed in

the proof of Guldin's first theorem.

.2. -Potential Energy

We shall assume the following propositions about otential energy

in a gravitational force field:

PROPOSITION 3.1. The potential energy of a material point is equal to

Ph, where P is its weight and h its height.

PROPOSITION 3.2. The potential energy of a material system is equal to

the sum of the potential energies of its points.

PROPOSITION 3.3. The potential energy of a rigid bodyiierqual to Phc,
where P is the weight of the body and hc is the height of its center of

The first two of these propositions are the definitions of the potential

:.energy of a material point and a material system. It is imporTant to note

that the third proposition may be applied to material curves or material_

figures since these bodies have weight.

3.3. The Centers of Gravity of Certain Figures and Curves

To find the center of gravity using the method suggested by the defini-

tion, one must carry out the addition of a large number of parallel
forces. In certain cases, however, the center of gravity can be found by

an indirect method. We shall do this for several simple figures and curves.
I. A rectangle. It is known that if a homogeneous body has a plane

of symthetry, its center of gravity lies on this plane. Similarly, if a figure

or a curve has an axis of symmetry, its center of gravity lies on this axis.
Conseguently, the center of gravity of a rectangle is located at its geo-

metric cent.er.'
1. Consequently, thecerifer of pressure of a rectangle is its geometric center.

This fact was used several times in chapter 2 (for example, in the proof of Py-

thagoras' theorem).

3
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. 2. A circle. By a similar argument, the center of gravity of a circle.'
lies at its center.

3. A triangular region. Before
generalizing to the case of a
triangle, we will 'decompose a
trapezoid into a large number of
narrow strips of uniform width
(fig. 3.5). Each strip has a center of
gravity lying on the segment PQ

Fig. 3.5 which jpins the midpoints of The
bases A D.' and Be: Makint the

width of each strip infinitesimally small, we deduce that the center of
gravity of the trapezoidal region lies on the line PQ.

. Now suppose that the length of the upper base of the trapezoidvon-
verges to zero. Then the trapezoid approaches a triangle, and the line
PQ becomes a median (fig. 3.6). Consequently, the center of gravity of a
triangle lies on its median. But since this is true for each median of the
triangle, its center of gravity C coincides 'with the point of intersection
of its medians.

4. A circular sector. We now consider a circuLd sector ABO, viewed
as a material figure lying in the vertical plane (fig. 3.7). Suppose that4

Fig. 3.6 Fig. 3.7

we have rotated the sector A BO about the center 0 by the angle (5, and
that its new position is A' ITO. Let us calculate the change in its potential
energy. Suppose that the point C is the center of gravity of the region
ABO, and the point C' the center of gravity of the region A`B'O. The
difference in potential energy between the positions A`B`O and ABO is
expressed by the formula

W WABO P 413011C.

3 o

(3.2)
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where PA,90 is the weight of the sector and II of is the height of the point
C' above the horizontal line. OD. (We have assumed that OC was
originally horizontal.) But

2ix
1/0. OC' sin 8 = OC. sin 8 and PAB0 w R2 -17.7 R2. a'y

where y is the specific weight of the sector, and 2a measures the arc
length of the sector, in radians. Therefore,

W Apo = R2ay OC. sin 8 . (3.3)

On the other hand,

W A'WO W A'AO W AB' 0 and WAB0 = W AWO W BB'

From these equations we get

WA`WO WABO = WA'AO 4BEPO (3.4)

But since the regions A' AO and B' BO are congruent, the difference
W A' AO W8,80 represents the change in potential energy of the sector
B' BO after being translatgd to the position A' AO. From the symmetry
of the diagram, we have

W A'AO W BB'0 2Hs.PA'AO (3.5)

where P AO is the weight of the sector A' AO, S is its center of gravityz
and Hs is the height of the point S above the line OD. Furthermore,
since

and

R28
I) A' AO 4= y (8 is in radians)

8
Hs = OS sin(a + ,

equation (3.5) takes the form
4.

W A' AO W B' BO le&yOS- sin (a + 28)
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Combining this result wit4 equation (3.4) and (3.3), we have

fflay. OC .sifi 8 ' R24. OS. sin (a + ;)

=
n (a +,8/2) 8

QC OS a sin 8
(3.6)

This equation allows us to compute QC. Since equatiOn (3.6) is valid
for arbitrary 8 and, in particular, for 8 as small as w9,iplease, we may

Write

Hut

OC = OS
sin (a + 8/2) 8 1

Inn
1-60 a sin Si

sin (a + 8/2) sin a
g

a

and from calculus we know that 1/4_,
um

8 = 1 .-
sin 8

Therefore, equation (3.7) becomes

sin
OC = (lim OS) ---a

e-o a

(17)

(3.8)

Furthermore, as 8 --,- 0 we can substitute the chord AA' for the arc A' A,

and the triangle A'AO for the sector A'AO. Therefore, as 8 -40, the
point S approaches the point of intersection of the medians of this
triangle. Since the medians of a triangle intersect at a point one-third
of the distance from the base to the opposite vertex along the median,

we may conclude that

2
lim QS

2. This equation is contained in many textbooks on trigonometry (it is usually
written in the form lima_.0 ((sin 8]/8) = I). It expresses the intuitive fact that as an
arc of a circle converges to zero, the ratio of its length to the length of the chord
spanning it converges to unity.
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Equati On (3.8) now takes the form

2 sin a-
3 eg

(3.9)

Formula (3.9) defines the position of the center of gravity of a circular
sector.

5. A half-disc. Setting er = 7/2 in forpuila, (3.9), we obtain

4R
OC -yff- (3.10)

This e4iiation defines ihe position of the center of graN;ity of a half-disc
(fig. 3.8).

Fig. 3.8 Fig. 3.9

6: A circular segment. Suppose that a homogeneous material figure
has the form of a circular sector and is located in a vertical plane (fig.
19). The sector OADBis divided into the triangle OAR and the segment
under investigation; ADB.

,We allow the sector to rotate about the horizontal axis OD, and
compute the moment of the forces of gravity acting upon it. Denoting
the moments of the corresponding figures by MOADB, M ADB, and
Af QAB, we.may write

MoADa M ADB MOAB (3.11)

But the moment of any system of forces and, in particular, of the forces
of gravity, is equal to the moment of the resultant of the system (refer to
rule 2.1; specifically, equation (2.1), on p. 15). We employ the formula
M(F) Fd, to obtain

AfOADB VSOADB" OC°

M AnR ySAflBUC,
MdA1). YSOAB. OC`,

(3.12)
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where S is the area, y is the specific weight, and C, C', and C." are the
centers of gravity of the segment, the triangle, and the sector, respec-
tively. Substituting (3.12) into (3.11) and cancvling y, we hay\

&MOB' OC" SADEr OC + S0AB. OC" a (3.13)

Furthermore, we khow that

ScaAB = R2 sin a cos a, SOADB 1?2« ,

OC' fR coS a , and OC'' iR sin 4
a

In the last equation we have used formula (3.9). The others are derived
from simple geometry. Relation (3.13) now takes the form

R2.(*R sin Apa oc + R2 sin a cos tx(iR cos a) ,

or, simplifying,

SADS OC = /V sin a(1 coss = R3 sins a ,

2R3 sins
OC (3.14)

3S 400

The equation obtained defines the position of the center of gravity of
thelegment. Since R sin a = AB/2, we may write our formula in the form

(A B)3
OC

2SADB

or, more briefly,
/3

OC (3.15)
12S

where S is the area of the segment and I is itS chord.
7. An arc of a circle. The center of

gravity of a circular arc lies somewhere
between the arc and the center of the
circle defined by the arc. We may locate
its position in the same way we found

D' the center of gravity for a circular sector.
Let us rotate a homogeneous ma-

terial arc A B lying in the vertical plane
about the center point 0 by the angle 8
(fig. 3.10). The new position of the arc is
A' B', and its center of gra.vity shifts from
C to C'. The potential energy of the arc
is increased by an AmountFig; 3.10

WA'ir WAS P ABH Cr I

36

(3.16)
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where PAB is the weight of the arc AB and H. is the height of the point
C' above the line OD. But

= OC' sin 8 = OCsin3 and FAB 2Rcry,

where y is the specific weight of the material arc. Therefore equation
(3.16) may be written in the form

WA,B. WAB = 2Ray. OC. sin 8 . (3.17)

As before, we also have that

W = W A1A WAD'

WAB = WAX' 4- W5'8 ;
hence,

WA'B' WAD WA'A WB'S (3.18)

But since the arcs,A'A and B'B are congruent, the change in potential
energy may be expressed as

WA'A 14/8'48 = 212,4,4,14

where PA,A is ihe weight of the arc A' A, S is its center of travity, add 115
is theheight of the point S above the line OD. However,

P A = R8y and Hs = OS. sin (a +
2

Therefore, from equation (3.18), our formula for potential energy
becomes

or

W A'B' W Ali 2R8y OS sin («

Equating (3.17) and (3.19), we have

2)

8
2Ray OC. sin 8 = 2R8y OS sin (a +

sin (a
OC' = OS

8/2)

Taking the limit as 3 -4- 0, we obtain

a sin

oc = 45OS
sin a

-6 0

)

3 '

(3.19)

(3.20)
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But as 8 -4- 0 e point S converges to A and, therefore,

lim OS = R .

S4L

Th ore, s bstituting this value in (3.210), we find

sin a
a

Fig. 3.11

31

(3.21)

8. A semicircle. In the case when
c& = 1r/4. formula (3.21) becomes

2Roc = (3.22)
A.

Equation (3.22) defines the position of
.the center of gravity of a semicircle (fig.
3.11).

We have now derived a number of
foimulas for the center of gravity of some simple figures. We will use
these to compute surface area and volume of certain bodies.

3.4. The Volume of a Cylindrical Region

Suppose we generate a cylinder perpendicular to a closed curve lying
in a plane. If another plane intersects the cylinder so as to bound a
single region, we have a rather special cylindrical solid with at least one
base perpendicular to the generator. We wish to find a formula for the
volume ophis type of 'solid;

In figure 3.12, we have drawn a cylindrical solid
of this type, with a vertical generator and a hori-
zontal base. Suppose that we have lifted it by a
certain height h, so that it now occupies the posi-
tion A'B'D'F'. Let us calculate the change in
potential energy.

Denoting the potential energy in the original
position by W and in the final position by W', we
have.

W' W = Ph ,

where P is the weight of the solid and h the increase
in the height of its center of gravity. Clearly,

h = AA' = BB' .Fig. 3.12

3 s
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Furthermore, supposing the solid to be homogeneous, we can write

= Vy, ,

where V is the volume of the solid and y its specific weight. Conse-
quently,

On the other hand,

and, therefore,

W = .Vyh . (3.23)

HI:4'3Zr +. WRIVD'D

W = WA'BDF AA'F',

W W WBB'D'D WAA'r7 (3.24)

that is, W' W is equal to the differetce of the potential energy of the
bodies BB' D' D and AA' F' F. The volumes of these two regions are equal,
and we may denote this volume by v. We will then have

WAA'F'7 vYlk,

WBB'D'D= OYAriC2t

.
where C1 and C2 are the centers of gravity of the volumes AA'F'F and
BB' D D, and lici and are the heights of the points Ci and C2 above
the plane AF. Substituting the expressions (3.25) into equation (3.24),
we get

W' W = vy( 1 I c2 ci) .

Furthermore, since the body AA' F'F is a right cylinder, v = Sh, where
S is the area of the base AF. Therefore,

W' W = Shy(11, Hc,) . (3.26)

We %ow have two expressions for the change in potential energy.
Setting them equal to one another, we obtain

Or

Vyh = Shyg-k, Had

V = Hc,) (3.27)
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We are not finished, however, since equation (3.27) is valid for arbi-

trarily small h, and V does not depend on h. We proceed by taking a

V lim [S(Ha lic )1 S(lim Ha, Ern H,t) . (3.28)
h-t0

We shall compute the last tWo 1iiiits. First of all, it is.clear that

lim I-1c = . (3.29)
h...0

Furthermore, if h converges to zero, the points 4' and Di, converge to

the points B and D, and the body BB' D' con'terges to a plate of

constant thickness constructed on the base BD. Therefore, as h -4 0,

the point C2 converges to the center of gravity of a hornogenous
material figure BD, or, in other words, to the center of gravity of the

figure BD. Denoting this center of gravity by C, we get

lirn lic2 =
74-.0

,(3.30)

where Ha is the height of the point ((above the plane AF. Substituting

(3.29) and (3.30) into (3.28), we now find

V SHc . (3.31)

In other words, the volume of the solid is equal to the area Qf its base

multiplied by the Height of the center of gravity of the figure bounding

the solid on top.
This relation will be useful for the computation of certain volumes.

We should make one further remark concerning the derivation of

equation (3.31). In this derivation we have assumed that h can be

chosen so small that the points of the figure A' F' lie below the points

of the figure BD. There are, howevei;cylindrical regions for which it is

impossible to do this for any h.>, 0. This will be the case when the'

figure BD has a point in common with the base A F. An example of such"'

a solid, labeled A BDF, is shown in figure 3.13. The proof given cannot

be applied to this type of solid, and this case must be considered sepa-

rately.
However, we may extend ABM; to the solid A' B'BDF' (fig. 31f. We

will then have

V ABDF V A'B'BDF` A'B'BFF' ===. S S ---= S. CCw .
(3.32)
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Fig. 3.13

A'

Fig.. 3.14

F'

where S SABI, SA.wir, and C is the einter of gravity of the figure
ABD. But CC' is thg height of the point C above the plane ABF. Con-
sequently, equation (3.32) becomes

VARDP

where Hc denotes the height of the center of gravity C above the base
of the solid ABDF. Thus, relation (3.31) is valid for cylindrical regions
of the form shown in figure 3.13, as well as those previously considered.

Computing the volume ofa solid by means of equation (3.31),poses a
particular problemwe must locate the center of gravity of the upper

ace. The following theifrem may help make this task issier.

REM 3.1. Suppose that a cylinder is hdunded by a surface per-
p dicular to the cylinder, with a center of gravity at C, and by a second
surface with a center of gravity at C'. Then the line CC' will be parallel
to the generator of de cylinder.

Proof $uppose that the line CC' is n?t parallel to the generator.
Then the cylindrical yegion may be positioned so that the generator is
horizontal and the line CC' inclined as shown for the solid ABDF in

Fig. 3.15

41.
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figure 3.15. If Hc and H. denote the heights of ther-points C and C
above some horizontal plane, then, by this construction,

Hc 96 Hcr (3.33)

Let us now displace the cylinder by a distance I in the direction of its
generator. The new position will be A'S' D'F', and since the shift is
horizon(al, the potential energy of the solid remains unchanged. Thus,

But

and

WA`lrlY7'

WA`i'D'F' 's= W + VD

WALaD, "="" W .4171D.F. W AA r

and, therefore, equation (3.34) lakes the form

/VBirD'D
4

Using the notation as before, we have that

W Ba s and W AAr, = PAA,F,p1 s,

(3.34)

(3.35)

where S and Su are the centers of gravity of the bodies BB' D' D and
AA'F'F, respectively. Since PBB`D'D = PAA' F72 substituting these

expressions into (3.35) yields

Hs = (33)

Now let I be very small. As I converges to zero, the body BB' D' D
will approach a homogeneous material figure BD, and the center of
gravity C will converge to the center of gravity S of the figure BD. Con-

sequently,

Similarly,

lim Ifs = Ifc .
t-.0

(3.37)

lim H. = He., (3.38)
1-.0

and from equations (3.36), (3.37), and (3.38) we conclude that

Hc = Ifc..
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But since this result contradicts relation (3.33), our original assumption
that the line CC' is not parallel to the generator of the cylindroid must
be. false.

This proves that the center of gayity of the upper base ofa cylindri
solid lies direictly above thc cen,s of gravity of the bottom base.3

We shall now compute the volume of two special cylindrical solids.
B' 1. We shall compute the volume of a prism,

which may be viewed as a cylindrical region with a
tilangular base. Let C and C' denote the centers of
gravity of its bases. Then, by equation (3.31), we will
have

Fig. 3.16

and,.consequently,

Therefore,

V --, S. CC' , (3.39)

where Sis the area of triangle AB D. Furthermore,
since the center of gravity of a triangle is located at
the point of intersection of its medians,

F'

LC' = fICB' .

2FF' + BB'CC' = FF' + 1(BB' FF') =

But since

we have that

FE' = RA A' + D D')

CC' AA' + BB' + DD'
3

Substituting this expression into (3.39), our formula becomes

AA' + BB' + DD'V (3.40)

3. This proof i not applicable to the solid shown in figure 3.13. however, the
same trick used in figure 3.14 allows us to claim the result for the general case.

tss.

A 4'
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In general, for a triangular prism with at least one of the two end
faces perpendicular to the length of the body, if S is the area of the
cross section, and Hi, lig, and H3 are the measures.of the heights along 6
the length of the body, then the desired formula r volume may be
written as

Fig. 3.17

H + H
2

+
V S 4 (3.41)

2. We next consider a repo% obtained from
a circular cylinder by a plane section passing
through the diameter of the lower .base (fig.
3.17). Its volume is equal tcl

R2
V CS ----- OC. tan a

2 2

where C ig the center of gravity of the half-
disc which forms the ,base of- the solid. But, as
we found earlier,

in," 4R=

(see formula (3.10) and fig. 3.8). Consequently,

77 le 4R
V = T-7. tan a = Ra tan a . (3.42)

It is interesting to note that this formula for volume does not use the
value of pi.

6

3.5. The Volume of a Pyramid

Let us consider a triangular pyramid, one of whose sides is perpen-
dicular to the plane of the base (lig. 3.18). Since this is merely a special
case of the prism shown in figure 3.1.6, we may find its volume by using
formula (3.41). Setting Hi = 11.4 0 and fi, = H in this formula, we
have

V = iSH .

Now suppose that we have a pyrarnfwith a more general base, that
is, any arbitrary polygon lying in a plane (fig. 3.19). We may then divide
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'Fig. 3.18 Fig. 3.19

it into selral triangular pyramids of the form shown in figure 3.18.
The pyramid shown in figure 3,1,2, for example, can be divided into four t
such pyramids having the edge 00` in common; Computing the volume
of each of these pfrkmids, we hdve

= 1S1111
Vs, =
V3 amt iS3H3

V4 = iS4H4
Therefore,

V = V1 + V2 + 173 ±, V4 = YS1 + S2 + S3 + SOH ,

or,

V ----- , (3.43)

where S is the area of the base ABCD. Formula (3.43) is the familiar
expression for the volume of a pyramid.*

.3.6. The Volume of a Body of Revolution (Guldin's First Theorem)

Let us consider a body obtained by the rotation of a plane figure Q
about an axis lying in its plane (half of such a body is shown in figure
3.20). We assume the axis 00' to be vertical. Let us construct a new
structure by adjoining to the body shown in figure 3.20 a cylindrical
pipe, and assume the entire pipe structure to be hollow and connected

4. We divided the pyramid shown in figure 3.19 into four pyramids of the type
shown in figure 3.18. However, if a pyramid is very "oblique," the point 0 can lie
outsiderMhe base ABCD and such a decomposition will not be possible. We will
then need to consider tlit "algebraic" sum of pyramids rathcr than the "arithmetic
,sum" (that is, take the volumes of several of the pyramids with a negative sign).
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by a narrow neck (figure 3.21 shows the top view; the axis 00' is repre-
sented by the point 0). Ne insert a piston A BDE in the cylindrical part
Of the pipe and the piston KLMN in.the circular part. We fill the cavity
between the pistons with an incompressible liquid. Suppose that the
force F acts on the piston ABDE, forcing it to assume the position
A' B' D' E' . We compute the work performed by this force.

Fig. 3.20

A 8, A 8

Fig. 3.21

Since the path traveled by the point of application of the force F is
equal to BB', the work is equal to

A = F. BB' --- F. AA' . (3.44)

The forcF is equal to the pressure of the liquid on the wall AD. There- .

fore,

PSAD
9

( 3. 4 5 )

where p is the pressure of the liquid and SA, is the area of thc piston
face AD. Substituting this expression in (3.44), we have

A pSAE, AA' , (3.46)

and since SAD' A A' represents the volume of the section A' AD: D,

A = P VA'AD'D (3.47)

This is the expression for the work performed by the force F.
Let us now compute this work in another way. We shall consider it to

be the work performed by the force R pressing against the piston

KLMN, We then get

A = R. CC" ,

r
)
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where C is the point of application of the force R and CC' is the length
of the arc described by this point during the motion of the piston. But

R

where SLN is the area of the piston-face LN. Consequently,

= pSix- CC' . (3.4S)

Comparing expressions (3:.47) and (3.48), we will have

V.VAD"D SLN . (3.49)

But since the volume described by the piston ABDE is equal to the
volume deser4bed by the piston KLMN, equation (3.49) can be written
in the form ,

VL,LNN, S LN CC' . (3.50)

Note that SLN is simply the area of the figure Q in figuTe 3.20, and
is the volume of the region obtained by the rotation of this

figure. Since formula (3.50) is valid for any arc length CC', in general,

V = .(3.51)

where V is the volume of the region generated, and S is the area of the
figure Q. -

'The value of CC' is determined by the length of the arc described by
the point C as the figure is revolved. But the point C has a simple geo-
metric interpretation. Since it is the center of presiure of the wall LN
and the pressure is uniform at all points of this wall, the point C coin-
cides with the center of gravity of the-figure Q. Consequently, the arc
CC' is the arc described by the center of gravity of this figure.

Let ils4pply equation (3.51) to the body drawn in figure 3.20 (half of
a body of-rotation). In this case the arc CC' is equal to irRc, where Rc
is the distance of the point C from the axis of rotation. Consequently,
the volume of the body under consideration is equal to S7T R. But
since this volume is half that of the complete body of rotation, we can
write

S7TR
2
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V 21TRQS (3.52)

We now have the following theorem:

THEOREM' -3.2. The volume of a body of revolution is equal to the area

of the figure from which it is obtained multiplied by the length pf the

circum erence of the circle described by the center of gravity of this figure.

This theorem is known as Guldin's first theorem.'

Another proof of Guldin' s first theorem.
Suppose that the plate Q is free to rotate
about the horizontal z-axis (figure 3.22

shows the view from above). We shall
assume that Q is a material figure of
weight P. The plane" of the plate is hori-
zontal and passes through the z-axis.
Rods 1 and 2 are assumed weightless.

The weight of the plate creates a rota-
tional moment with respect to the z-axis.

This moment is equal to

MAP) = PRc., (3.53)

'where R, is the distance from the center of gravity of the figure Q to

the z-axis. But

P yS , (3.54)

where S is the arca of the figure Q and y is its specific weight, (We

assume the figure is homogeneous.) Consequently,

M(P) --= ySRc . (3.55)

The product SR, is called the static moment of the area S with respect

to the z-axis. We shall denote it by Ma(S), that is,

Mi(S) = SRe . (3.56)

5. Paul Ciuldin (1577-1643), Swiss mathematician known for introducing the

centrobaric method.

1.
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Before proceeding with the Proof, we should investigate this new term
carefully. Comparing equations (3.53) and (3.56), we see that formula
(3.56) is obtained from formula (3.53) by the substitution of S for P.
Loosely speaking, therefore, the static moment of area is the moment
"created by the area" of the figure under consideration. Moreover,
from equations (3.55) and (3.56), it is clear that the static moment of
area can be viewed as the moment created by the weight of a figure for
which y = 1.

From equations (3.55) and (3.56) it follows that

M(F) = yMAS) . (3.57)

This relation serves as a conversion formula for the moment of weight
and the moment of area.

Let us divide the plate into several parts. We will then be able to writc

MAP) = MAP,) M(P2) + + MOO , (3.58)

where P Pu, . . .,P, are the weights of these parts. (Note that we have
used the rule that the moment of a resultant is equal to the sum of the
moments of the forces of the system.) Using the conversion. formula
(3.57) for each moment, we obtain

yM(S) ril2(S1) + yMAS2) + + yM(S) .

Finally, dividing this equation by y (or. setting y 1)we arrive at the
following rule:

. RULE 3.1. If the area S consists of the areas Sl, ..., S, then

M(S) = M(SI) + WSJ + + M(S) . (3.59)

We shall now tise this equation for the proof of Guldin's theorem.

Suppose in figure 3.22 that the plate Q is a rectangle with one of its
sides parallel to the z-axis (lig. 3.23). The volume of the body of rotation
which is obtained is expressed by

or

R22/I 7TR12h ,

V = 2 R2 + R1
7T(R2 R1)11 (3.66
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- R2)11 -

R1 ± R2
2

svhere. S is the area of the rectangle and C its center of gravity.
Consequentlyv

V ---- ZITS& ,

that is,
V 27M(S) , (3.611

where M(S) is the moment of area of the rectangle with respect to the
axis of rotation.

Let us now substitute an arbitrary figure Q for this rectangle (fig.
3.24). We divide this figure into a large number of narrow strips Sand

Fjg. 3.23 Fig. 3.24

approximate each of these strips by the rectangle inscribed in each strip.
If n denotes the number of strips, and we allow this number Without
bound, the approximations become successively better. We then have

v + + + 11,)

where V is the volume of tie body obtained by the rotation of the
figure Q and V1 V29 Vn are the vOlumes of the bodies,obtained by
the rotation of each of the rectangles. But according to (3.61),

V, = 2uM(S1)

V = ZuM,(S).

ror,
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Consequently,

V ==. 27r lim [M4(=S1) + M02) + + AUSR)]
-4 CO

(3.62)

where .51, S2, S are the areas of the rectangles. But according to
(3.59) the sum inside the square brackets is equal to the static moment
of the area of a cross section (the arel bounded by the boldface lines in
figure 3.24). But since this figure converges to the figure n co,

lira [Al2,(S1) + Af,(4) + + M(S))

where Me(S) is the static moment of the area bounded by the figuie Q.
Therefore, equation (3.62) takes the form

V = Znif,(S) . (3.63)

Formula (3.63) shows that the, volume 'of the body obtained by the
rotation of a plane figure is equal to the static moment of its area multi-
plied by 21-r. Using expression (3.56), this implies

V = 2n-RcS

which proves Guldin's theorem.

3.7. The Volume of a Sphere

The region determined, by the rotation of a semicircle about its
diameter forms a sphere. Substituting into the formula given above,
the volume of the sphere may be expressed as

irRa
= 2.77 OC =

where C is the center of gravity of the semicircular plate (see figure 311
But according to formula (3.10)

and, consequently,

4R
7

37r

4R irR2
31r 2
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4
YrR3

3.8. The Volumes of.Certain Other Bodies of Rotation

The strpngth of, Guldin's thedrern lies in its applicability to a large
number of differentl2Idt We will give several further exeples.

1. A circular cylinder. Referring to figure 3.25, it is clear that the
volume of a circular cylinder may be given by

V = 2117/ZcS = 27r R RH = 7TR211,
2

where R is the radius'of the cylinder and H is its alti

Fig. 3.26

2. A cone. A cifular cape can be viewed as a body obtained by the
rotation of a right' triangle about one of its legs (fig. 3.26). The center
of gravity of a triangle is located at the point of intersection of its
medians. Consequently, Rc is equal to R/3, and we obtain the familiar
expression for the 'volume of a cone:

V 27TRoS 27T 14 7'R3211

3. A torus. A torus is a body obtained by the rotation of a circle
about an axis lying in the same plane as the circle (fig. 3.27)1 In accord-
ance with Guldin's theorem, the volume of a torus is equal to

27r&S = 277Rwr2 = 27r2Rr2 .

52
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Fig. 3.27 Fig. 3.28

OW 4. Suppose that a circular segment rotates about the diameter parallel
to its chord (fig. 3.28). The volume of the ring-shaped body obtained is

Nual to
V = 277.0C-S

where OC is the distance from the center of the circle to the center of
gravity of the segment. But according to (3.15),

I a
OC 12S

where 1 is the length of the chord of the segment. Therefore,

7rP
V

6

It is interesag to note that the volume Which we have found depends

only on 1.
We have, by no means, exhausted the applications id Guklin'i

theorem. For example, figure 3.29 shows a solid obtained by the rotation

of a circular gegment about its chord. Since we know the location of
the center of gravity of a segment, the reader might want to determine

the Niolume of this solid.
5. Guldin's theorem is often useful to substantially reduce the num-

ber of necessary calculations. Suppose, for example, that the square
ABDE can rotate about the axis 00' (fig. 3.30). The volume of the
coripponding solid of rotation can be found by computing the differ-

ence between the volumes of the two inclined edges which form .slices

from a cone. This, however, is comparatively complicated, since by

means of Guldin's.theorem, we can immediately obtain

V = 2vBcS = 2r(a + a) a2 3 a

whero-a is the diagonal of the square.
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a

,Fig.,3.29 Fig. 3.30

A similar ctample is illustriited by the-following problem. A triangle
rotates once about the axis z1 and once about the axis z2. Given that the

, axis" z2 is parallel to zt. (fig 3.31), -how are the volumes of the corre-
sponding bodies of rotation related?

Guldin:s theorem allows one to solve this problem withotpcarrying
out any cornputations.,Silice tbé medians of the triangleifitersect at a
point which ii twice as far from the asis z, as it is from z1, VI: V, = 1: 2.

.6. Suppose tilat a hOmogemous material figure Q lies in a horizontal
plane (fig. 3.32). If we allow it to rot4te about the horizontal axis 00'
i)assing through its center of gravity , it will remain in equilibrium,
Consequently.,

yS1R1 = yS2R2

where y is the Apecific weight of the figure, S, and S2 are the areas of the

Fig. 3.31

0

Fig. 3.32

4
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two parts divided by the line 00', and R1 and R2 are the distances of

the centers of these parts from the line 00'. Multiplying the above
equation .by 224y, we will have

27TR1S1 = 27)-R2.52 (3.64)

Equation (3.64) shows that the volumes of the two distinct solids
obtained by rotating the left and right halves of this figure about the

axis 00' are the same.
This result is valid for any plane figure and any straight fine passing

through its center of gravity. Suppose, for example, that the triangle
ABC rotates about the median BD (fig. 3.33). Then the volunies of the
bodies described by the triangles ABD and BDC arc equal.

7. In aJ,tlie examples up to this point, Gulciin's theo6rem has been
used strictly for the calculation of volumes. It is possible, however, to

use it in another way. Knowing the volume of a bcdy of revolution, we

.may find the center of gravity of the figure from which the body is
obtained. Let us consider two examples.

ft.

Fig. 3.33

fib

Fig. 3.34

a. Suppose that a triangle with sides a, b, and c rotates about an axis

lying along the side a (fig. 3.34). The volume of the resulting solid can

be easily computed by adding together the volumes of the two cones.

In this way we obtain the formula

V = 47rh2a

vgpere h is the altituae dropped to the side a. Applying Guldin's theo-

rem to this triangle,,we now have

frrh2a ZuRciak ,

Or,
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Thus, the center of gravity of this triangle lies at a distance fha from
side a. Arguing in the saMe way, we may deduce that it lids at distances
ihb and ihe from sides b and c, respectively. But only one point of the
triangle possesses this propertythe point of intersection of its medians.

b. As a second example, we shall find the center of gravity of a half-
disc. Applying Guldin's theorem to the sphere, we obtain

4
5 77R3 = 27T 0C.

r.R2
2

where 0 is the center of the disc and C the center of gravity of the half-
disc. Consequently,

4R0c =
31r

4

(3.65)

Formula (3.65) defines the position of the center of gravity, of a half-
disc.

Of course,jf we derive formula (3.65).in this way,
we may be accused of circular reasoning if we use the
formula to compute the volume of a sphere. We can,
however, use it to compute the volumes ,of certain
other bodies, for example, 'the body shown in figure
3.17 (see equation (3,42) on p. 37). Thus, Guldin's
theorem allows us to compute the volume of this body
starting from the formula for the volume or a sphere.
We can find other examples of this kiud. Suppose; for
example, that a half-disc rotates about the z-axis (fig.
3.35). The volume of the resulting body of rotation can
be found by computing the difference Re = R OC,
applying formula (3.65). Consequently, bx assuming

the formula for the volume, we can compute the volume of this body of
rotation. (Note that this body is not the "sum " or "difference" of
solids whose volumcs au known. For this reason, a direct computation
of its volume turns out to be difficult.)

Fig. 3.35

3.9. The Surface of a Body of Rotation (Guldin's Second Theorem)

Let us first introduce two new wnceptg.

1. The tangent. Let us take points M and M ' on the curve 417 and
draw the secant M M ' (lig. 3.36). We now.fix the point M and bring the
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Fig. 3.36 Fig. 3.37

point M' arbitrarily close to M. The secant MM` will then approach,
as a limit, the position MP. The line MP is called the tangent to the
eyrve AB at the point M.

2. The normal. Let us take a point M on a plane curve (fig. 3.37).
We draw' the tangent MP and the line MN perpendicular to MP through..
the point M. The line MN is called the normal to the given curve at Pie
point M. Loosely speaking, we may refer to it as the perpendicular to
the curve AB at the point M.

Let us now consider the arc AB.of a plane curve (fig. 3.38). We take
an arbitary point C on the curve, draw the normal through this point,
and mark off a small segment CC' of given length d along the normal.
Drawing such segments at each point of the arc AB, we may define a
curve A'B' as the locus of the endpoints of these segments. It is possible
to prove that each of the segments CC' is normal not only to the curve
A.B, but also to the curve A'B'. Therefore, the distance CC' can be
viewed ag the width of the strip AA'B'B. Since this width is the same
at all points along the curve, we will say that the strip AA'B'B has
constant width.

Suppbse that a narroKstrip AA'B'.B has constant width d and.xotates
about the axiS 00' (fig. 3.39). Denoting the volume of the resulting
body by V; we may apply Guldin's first theorem to write

27TRC"SAAWB = 2 R tCAA'B'B

d

where C' is the center of gravity of the figure AA' B'B. Let us now fix
the arc AB and begin to decrease d. We will then have

lim -7, 27r(lini RC.) imV

But as d becomes very small, the folio

V SALtd

s'

g approx

SAA'YB /Aid

(346)

lations hold:
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0

Fig. 3.38 Fig. 3.39

where SAB is the area of the surface obtained by the rotation of the arc
AB and JAB is the length of this arc. From these relations we conclude
that

. V
Inn SAB

S
hm = 1ABdr0 ci.0 U

and equation (3.66) takes the form

SAD = 24lim Rc.)/. (3.67)
61.0

+6.

Furthermore, since the, strip AIA'B'B has constant 'width, for very small
d its center of gravity will be close to the center of gravity of the arc AB!'
Therefore, ag a limit we have

lim Re, = Re ,
d-60

(3.68)

' where C 1 the center of gravity of the arc AB. Substituting (3.68) into
(3.67), we have

or, dropping the index AB,

SAB = 21TRCIAB

S 277,R1 . (3.69)

Equation (3.69) c;presses the followipg theorem:

5 s
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THEOREM 3.3. The surface of a body of rotationis4ial to the length

of the curve from which this surface is obtained multiplied by the' circ'um-

ference of the circle described by the center bf gravity of the curve.

The theorem just proved is called buldirrs second theorem.
Another proof of GiRdin's,lecond theorgn. Just as in section 3.6 we

introduced the concept of the static moment of area, we can introduce
the concept of the static moment of length.

Let us consider a material plane Clitve L (fig. 3.40). We place it ita
horizontal plane and jdifii(to the horizontal z-axis lying in this plane
by means of weightless rods 1 and 2. We' allow it to rotate about this

axis.
The force of the weight of this curve creates a certain moment with

respect to the z-axis. This moment is equal to

M(P) = PRc ,

where P is the weight of the curve L and .Re is the distance from its
center of gravity to.the z-axis. But

P = yl

where y is the specific weight of the curve and / is its length. Conse-
.

quently,

M(P) =

The product 1Rc is called the static moment of the length / with respect
to the z-axis. Denoting it by MAI), we can write

Mz(l) IR, . (3.70)

The static moment of length is equivalent to the moment created by the

weight of a curve when y 1.

If we divide the curve into parts 1, 12, .,1, we will then have

M(l) = M z(l1) M (l2) + + Alf ,(17) (3.71)

rqztrrT..uation (3.71) allows one to prove Guldin's second theorem without

difficulty.
We will use a formula for the surface area of the side of a truncated

cone to Compute the area of the surface generated by the segment A B
(fig. 3.41). This yields the equAion

Tr(Rt +. R2)4413
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Fig. 3.40

This may be written Iii the form

and since

we have that

that is,

Fig. 3.41

R1 + R2
SAB 27r/AB ,

+ R2.
2

Re ,

SAB 27rIABRc ,

AS = 217313(1AS) g.. (3.72)

where M MAO is the static moment of the segment AB with respect to

the axis of rotation.

Fig. 3.42

S = 2ir tim + - M (12) + +
n

(1$

Let us now substittae an arbitrary plane curve
for the. segment AB (fig. 3.42). We approximate
it by a brokeri line consistini,pf n segments and
suppose that n ccgoes to innity and that the
lengths of the segments converge to,zero. We

then have
9

S = lim (.31 + S2 + ' + Sn) r.73)
co .

where S. S1,S2, . S, are the areas of th6 sur-
, faces obtained ky rotating the given' curve ,and '

(g
each segmcnt approximating the 6.irve. The asreas

S2, . .
S,, however, cart, be represented in

the form 43.72), which porniits us to write (3.73)

as

1 4

6

is7"
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that is,

S 27TAI3(1), (3.74)

where M(I) = lim,, [Al + ; + M (I)] is the static moment,of
the given curve with respect to the z-axis. Substituting (3.70) and (3.74),
we can now write

S = 27TRci .

This equation expressos Guldin's second theorem.

3.10. The Surface of a Sphere

Suppose that a semicircle is rotated about .its diameter. Applying
Guldin's second theorem, we may write ,

S 277. OC7TR

where 0 is the center of the circle and C is the center of gravity of the
semicircle (ft. 3.11). Furthermore, we derived in equation (3.22) that

and, therefore,

2RS 7TR .
7r

AO"

Consequently, the surface area of a sphere is equal to

_3., ir's2r 47R2 .

3.11. ,The.,Surfaces of Certain Other Bodies of 'Rotation-
Using Guldin's theorem, we can compute the area of a number:of

surfaces of rotation. Let us consider givtlrai examples.
.

1. A torus. Since the center oehgravitysof a circle lies at its geometric
center, the surfact area of a torus (V. 3.21)- is -equal to

S = 27TR.27Tr= 447-2Rr.

f.;
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Therefore,

2. A spherical strip. This surface is ob-
tained by the rotation of the material me
AB about the diameter PQ (fig. 3.43).
From Guldiffs thedein we have

S 217. C`C.I
where Cis the center of gravity of the arc
AB and 1 is its length. Furthermore, as
is clear from the sketch,

C'C=OCsinfl and 1.= 2Ra .

S = 2ir OC. sin 13 2Ra .

Equation (3.21), however, tells us that OC R(sin a/a). Consequently,

sin
S = R

a sin p2Ra 277R 2R sin a sin p .
a

Since

2R sin a =

we now have

S 2.77.1? 1 sin f3

Again referring to the sketch, we note that the second factor of this
product is equal te the altitude of the spherical strip (that is, the projec-

tion of the chord A B onto the diameter PQ). Denoting this altitude by
If, we finally obtain the formula

S 27,Rli.
-

3. Suppose that the square shown in figure 3.30 rotates about the
axis 00'. The surface area.of the resulting solid is equal to

S 277-Rct 27r(a -2 4 4 67,V(2)a2 .

4. Guldin's theorem allows one to determine the center of gravity of
certain curves. For example, knowing the surface area of a sphere, we can

find tlie center of gravity of a semicircle. In the same way, by assuming
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the formula for the surface area of a spherical strip, we can easily derive
the center of gravity of a circular arc. This permits us to compute
the area of the surface formed by the rotation of this arc about an
arbitrary axis. In this way, in particular, it is possible to find the surface
area of the body shown in figure 3.29..

3.12. Conclusion

Tke proofs presented in this book 'might suggest certain queStions.
Fur example, one might ask whether or not we have used Circular 16

reasoning in any of the arguments. In the proof of Pythagoras' theorem
we assumed the law of moments. ThiS law is derived in physics with the
litlp of certain physical 'and also geometric cvncepts. We can therefore
ask whether or not pythagoias' theoram was used in its derivation.
Fortuntely, an analysis, of the.usual derivation of tile law of moments
shows that it is based only, on the axiom; of -statics and on 'certain
theorems ofsimilar triangles. In this instance, at.least, we have avoided
circular reasoning in the proof. We need to say the same thing about the
other physical flaws which we have assumed in this boolC't We have not

'asstimed a law ?hat
,
is based on any of the theoierns which were proved

by using 'that. law: A
We might ask/a second,question: To whXt extent are the idealizations

which we have 'used on v'arious occasions pepnissible? In the third
chapter, for example, wc.,btan with the 'concept of a line having weight
but no thickneSs, which 'is admittedly inipossible. To answer this -
question, we should point, )ut that these idealizations are essentially
the same as those used in -Anttry, Where one speaks of a point " with-
out length or width," and of a fiat) "N-Vithout thiclness." Aline having
weight but not thickness is an/abstractio'n of the same kind; arising
from the representation of a thin tvrvei.I rod with a definite weight, but
a thickness so slight that it, cap be neglected. In thi; respect, it is possible
to make further abstractimh., and rather than us+ weight 'as the
central property, assign toA' line some otHer physical property, such as

, flexibility or elasticity. In /this sense it would, for eaisknFle, be possible
to speak of a line having' no thickness hut having elast p74 properties. A
Prototype of such a line: wbuld be a thin rubber filament."

6. The idea of a flexike line occurs in V. iV Uspenskii's hook; Some Applita-
lions of Mechanics to Alathemafies (New york : Blaisdell Publishing Company,
1961). The concept of .an ehisrie line' occur in L. A. Lyusternik's book, Shdilest
Puth.s: Variatiwial PrOblems (London: gamon. Press, 1964) [translated and
adtpted by the Survcy of Rreent Last lOropean ,Malhematical Literatytel. In
,t hese books these concepts are used for t e proof of certain ixontetric tlThorems.
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We might, finally, ask a third question: Do we have a right to use
such nongeomettic axioms as the rule of the parallelogrttm of forces or
the postulate on Ihe impossibility of perpetual motion ? Since we" intro-
duce nongeometric objects (such as forces), however, we must introduce
axioms describing the properties of these objects. Therefore, the use of
nongeometric axioms in this ease is natural. We can say that the proofs
presented in this book are based on a system of concepts and postulates
from the realm of mechanics, rather than the usual system from the
realm of geometry. The fact that we are able to prove purely geometric
theorems from, these 'unusual postulates testifips to the coasistency of
our ideas 01. the physical world.

q4
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