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1 &heCompomﬁom
: - o\fForces R

1.1. Principal Amumiyti ' ,
In this chapter we shall prove several theorems of geometry using the
»fundamental concepts and g¢drtain laws of statxcs We will define the
terms immediately.
1. Force is a vector and is charactcnzed by magnitude, a direction,

and a point of apphcatmn The lme along whxch a force acts is called its
*line of action.

~ 2. A body which cannot be deformed—that is, whxch always keeps

its and shape—is said to be absolutely rigid.

Actually, every body is capable of being deformed to some extent,
but these deformations are frequently so small that they can be neglected.
The concept of an afjsolutely rigid body is an idealization. One fre-
‘quently omits the word absolutely and speaks simply of a ngzd body.

3. A collection of acting on a body is called a system of forces.
A system of forces is said to be in equilibrium or an equilzbnum system

- if no motion is causcd when the system xs applied to an absolutely rigid

.

body at rest.

4. Two systems of forces are said to be equivalent if they cause the
same motion when applied to ag dbsolutely rigid body.

From this definition it follows that, for all practical purposes, a
system of forces acting on a rigid body can be replaced by any equiva-
lent system without altering the discussion.

5. If a system of forces is equivalent to a single force R, we say that

the force R is the resultant of this system.
‘Note that not ever¥ system of forces has a resultant. The simplest
example of such a system of forces is cailed a coupl? of forces, as illus-

trated in figure 1.1, -

In addition to the above concepts, we use the following rules (axioms)

of statics:




. s \
2. ' . “The Com‘?osiﬁon of Forces

« Ruie 11, Nofbrces F, and F, acting at the same point have a re-
.sultant R which acts at the sante point and is represented by the Hiagonal
of the parallelogram having rhe farces F, and F; as xd;acent sides (ﬁg
1.2). _ S

A<~

Fig. 1.1 Fig.12 . . |

-

-

¥

This construction is often called the parallelogram law for forces.

" The rule allows one to exchange the forces F, and F; for the force R -

and, conversely, to exchange a given force R for forces F, and F,, In
the first case one speaks of the composition-of forces, and in the second,
of the resolution of the ferce R into the components F, and F,. (This
resolution can be carried out in an infinite number of ways," since it isy
possible to construct mﬁmtely many parallelograms with a given
dxagonal R.) , )

-

RULL 12, If we add any equzlzbrmm system to a system of farces orif
we remove an equilibrium system from a system of forces, the resulting
system will be equivalent to the original one.

In particular, this fsmplies that a collection of equilibrium systems is
an equilibrium system,

: ~
RuLe 1.3. Two forces are in equilibriyum if and only if they have the
same. magnitude, opposite directions, and'a common line of action (figs.
1.3 and 1.4).

Fy Fo | Fy : Fa
f«'ig. 1.3  Fig. 14~ .

<
]

RULE 1.4. A force acting on a ngzd body can be arbitrarily sfufted
along its Ime of action.
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. . 7 In other words, if forces F and F' have the same magnitude and direc-
tion and a common line of action, they are equivalent (fig.’1.5). The con-
verse is also true: If the forces F and F' are equivalent, they have the

. same magnitude and direction and 4 common HKne of action.? ‘

o Rule 1.4 implies that for forces acting on a

rigid, b6dy, ,the point of application is un-

important; rather, the line of action détermines '

the resultant force. The vector of a force

acting on a rigid body is thcrefore called'a
sliding vector.

. Rule 1'4 thus enables one to add forces

¢ -.whose points of application ‘are different,

providing their lines of action intersect. Sup-

pose that we have to add forces F, and F;

~ (fig. 1.6). Since the vectors of these forcey are

. sliding, we can translate them to the point O

- and then use rule 1.1 to obtain the resuitant
R of the forces F, and Fj, by complctmg the
parallelogram

Fig. 1.5 From rules 1.3 and 1.4 we deduce the

following important proposition:

-

ProposiTION 1.1, If three nonparallel and coplanar forces acting on a
rigid body are in ethbrmm then the:r lines of action intersect at a single
point, ’é

For suppose that the forces P;, P, and Py, are in equxlxbnum with one
another (fig. 1.7). Translatmg‘the forces P; and P, to the point O, we '

4 . ‘
Py :
”
~
| ; /‘f<
Py
£ P2
. Fig. 1.6 Fig. 1.7

1. Rule 1.4 can be deduced from rule 1.3. We have ndt done this® however
since both rules are equally intuitive.
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. obtain their msuitant Ry The forces P; and R;g ane now in equilibrium.

= But this is possible only if they have a common line of action. Thus, the
line of action of the force Py passes through the point O—that is, the
lings of action of all three forces megt one another at this point.

R T Using this proposxtmn, we shall’ new prove some theorems of geom-
: etIy. ~ .
. \ ' * ) -
S 12 Ammmmemmmonmmm\b :

N
- Let us consider six equal forces F, F,, .. .,'Fg acting along the sides
of a triangle, as shown in ﬁgure 1.8.: Smce these forces cancel one
anpther in pairs, they are clearly in equxhbnum and, therefore, the
resultants R, ¢, Rys, and Ry, are also in equilibrium. 'Buf the forces
Rie, Ras, and Ryq are directed along the bisectors of the interior angles
r _A,’B, and C. (The parallclograms are thombi, and the' diagonal is an
‘ angle bisector. ) This leads, conscquent]y. to the following theorem: -

TH‘BOREM 1.1. The bisectars of the interzar .angles of a triangle inter-
sect at a point.

Fig. 1.9

1.3. Another Theorem on the Angle Bisectors of a Triangle

Let us consider the six‘ez;wzl forces F,, Fy, . . ., Fg shown in figure 1.9,
These forces are in equilibrium since each of the three pairs of forces,
taken consecutively around the }nangie, are in equilibrium. But the re- -
sultant of the forces F, and Fg is directed along the bisector of the
exterior angle A4, and).he resultant of F and F; is difected along the

-

*
* .

11
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bisector of interior angle C. The resultant of F; and Fyis dxrectcd along
the bisector of interior angle B. “*herefore, the follcwmg theorcm.holds

TueoREM 1.2. The bisectors of two exterior angles and an interior
angle of a :riangle intersect at a point. -~

.14, A'l‘heorem ontheAlntndesofaTriangle
In ﬁgurc 1.10 we have drawn a triangle ABC, with the forces Fy, ¥,

..., Fg acting along the sides. We have chosen these forces so that the

' foﬂo)ving equalities hold:
\ F,=F,=Fcos 4, T o
F, = Fy = Fcos B, W)
F5=F5=FC-OSC, . ~ *

. where Fis some convenient unit dimension for force. (Note that we are
using the convention where an F denotes a véctor, and F its corre-
sponding magmtude ) Since the forces Fy, Fy, . . ., Fg are in equilibrium,
the lines of action of the resultants R,, Rj, and R shown in the figure
must intersect. We shall find the directions of these resuftgmts

Fig, 1.10 Fig. 1,11

For cxample, let us add the forces F, and F,, which act at the vertex
B (fig- 1.11), To do thxs we resolve each of these forces into two com-
- ponents, one paralle] to the side AC, and the other perpendicular to it.
» The first of these components we shall call Morizontal, and the second,
vértical. From figure 1.11 it is clear that the hafizontal components of
the forces F, and Fy are equal to £, cos € dnd Fg cos 4. But from (1. 1)
it follows that

&

Ijl_cosA
Fy ~cosC’
IO
-~ £, -

’
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A Ficos C =Fgcos A.
Thus, the hprizontal components of the forces F, and F are the same.
From this fact we conclude that.they cancel one ahother-and, therefore,
| the resultant’f the forccs F, and Fs is perpendicular to side AC. There-
T fore, the force R is directed along the altitude perpendicular to AC.-
B Analogously, we may deduce that forces R, and R lie along the two -
other altitudes of the triangle 4 BC. We thus arrive at the following:

-

. T . ' * .. ) L4 A
. ¥ THEOREM 1.3. TQe altitudes of a triangle intersect gt a single point. . N
o "' 1.5. A Theorem op the Medians of a Triangle ~——

. / s

Let us consider forces Fy, Fy, . . ., F, acting as shown in figure 1.12.
Suppose that each of these forges has a magnitude equal to one-half the .
length of the corresponding side of the triangle. Then the resuitant of the
i forces F, and F, will be represented by the median drawn to side BC; L

the resultant of fogees F; and Fg will be represented by the median drawn

to side AC; and thNéresultant of forces F, and F; will be ropresented by *

. the median drawn to side 4B, since similar triangles are formed by the
parallelograms of forces shown in figure 1.12. The forces Fy, Fy, . . ., Fg

are in equilibrium, and this Ieads o the follgwing theorem:

-

. “THEOREM 1.4. The medians of 7 triangle intersect at d'sinLg[e point.
! ' .

Fig. 1.12

8]

‘: . - »

1.6. A Generalization of the Theorem on the Bisectors of the Interior
Angles of a Triangle

Suppose that we are given the triangle A BC. Let us draw a straight line

» adividing angle 4 into parts «; and «y, a straight line b dividing angle B
into parts 8, and f,, and a straight line ¢ dividing angle C into parts y;
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and' y (fig. 1.13 We apply to point 4 an arbitrary fome.Rx directed . .

~ ajpng the line a and resolve this force into components P, and Q, direc-
- ted dlong the sides AC and AB Similarly, we.apply forces R, and Rs
directed along the lines b and ¢ to the points Band C, and resolve these
forces into compohents Py, Q, and Pj, Q.. ‘We require, howe"ver, that
the component P, cancel the component Q, and that the component Py
cancel the component Q,. In this way we obtain a system of forces -

, 7 Ry Rs, Rq) ﬂmvmeﬂt to the system (P, Qs)
Consxder now th owing ratios:

Sinrx., Sinﬁ‘\ Sin'y; ' ) s -
$in ag’ smﬁi sinys”

From the paraliclograms at the vertices 4, B, and C, we deduoe.that

Lo -sl.ﬂ_ﬂﬂgz

i sine; Py’

N O
sinfy Qs .

0" smchg . 2
siny, _ Qs
siny, P’

and, therefore, timt

sin a; sin By siny; _ Q1 Qa Qs :
sin%sinﬁgsin}’g P1 nga‘

Fig. 1.13

But since P; = Q, and Ps = Oy,

sinay sinBysiny; _ Qs (1.2)
sinoagsinBgsiny, Py~ .
X .
Two cases are possible.
Case 1.

sin «; sin By siny;
sin «g sin By sin vy

. (13)

 Then P, = Q. That is, the forces P, and Qg are in equilibrium; conse-
quently the forces R,, Ry, Ry which are equivalent t¢ B and Q,, arein

" equilibrium, From this*fact we then conclude that the lines @, b, and ¢
intersect at a single point.
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Case 2 .
1 -
sina,sinﬁ,sinylgéi. .
- sin ag sin Bg/sin yg ) "

. Then, aocordmg to equation (1.2), P, # Qs We shall prove that in this
_) .case the litya, b, and ¢ cannot intersect at a single point. Suppose that -
they intersect at a single point O (fig. 1. 14). Then, translating the forces
R;, Ry, and R, to the point @, we find their resultant R, which will also
- act at O. Furthermore, since the system (R,, Ry, Ry) is equivalent to the
system (Py, Qs), thé resultant R must be equivalent to the nonzero
resultant of the forces P} and Q,. This is impossible since the resultant
of the forces P,, Qs lies on the line AC, and the line of action of the
. force R cannot coincide with the line AC (since the point O does not lie
on this Jine). From this contradiction, we conclude that the lines g,
b, and ¢ do not intersect at a single point.

Thus, the lines shown in figure 1.13 intersect at a single pomt only
when equality (1.3) is valid. In other words, the lines a, b, and ¢ mtersect
at a single point if and only if condition (1.3) is satisfied.

The theorem just proved may be regarded as a generalxzanon of the "
theorem on the bisectors of the interior .angles of a triangle. [In that
theorem, not only does condition (1.3) hold, but also each of the
individual factprs (sin e, /sin ag, sin B, /sin B, sin y,/sin yg) is equal to
one.] . . ' )

This theorem also implies the theorem on the altitudes of a triangle
(fig. 1.15). If lines a, b, arfl ¢ are drawn as altitudes, then

sine, cos’C sinf; cos A siny, c¢cosB
- = , . = , and = = ———,
sinae; cos B sinf; cosC siny, cosA

Fig. 1.15
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Taking the product we find that

-~

_ s.m.alsmﬁ,smy;__co'chosAcosB
e Sinegsinfgsiny,. cos Beos CcosAd

=1,

. .
Consequently, the alﬁmf;s of a triangle intersect at a single point.
. . ‘ . . .

1.7. Ceva’s Theorem

‘Consider th: triangle ABC (fig. 1.16). Suppose that forces Fl and Fg
act along the sides AC and 4B, and that their-resultant acts along line
AA,. We draw. the line DE parallel to side BC and resolve F, into,

compqnents F;’ and F,”, and F, into components F;’ and F,". Prom the , -

- similar triangles formed, it is evxdent that *

_ are satisfied.

F _4C . Fy _ B,
RTtA Y RTE
Therefore, '
, A,C , BA
4 Fl F]_"E}X’ and F2 F2 A_Bl .

But since the resultant of the forces F; and F; is directed along 4A4,,

F,' = F;; consequently,

A,C BA,
Freq =g

or
F, _ CA BA,

o . | (14)

F, ABAC"

This relation will be needed later. (It is easy to remember because the

right side of this equation can be obtained by circling the triangle CAB

clockwise.)

Let us now determine 4,, B,, and C, on triangle ABC (fig.«.17). At
the points 4, B, and C we apply forces R;, R;, aad R; directed along
lines AA,, BB,, and CC,, and we resolve these forces into components
directed along the sides of the triangle. The force R, is chosen arbi-
trarily, but the forces R; and R; are chosen so that the equalities

) Py =01, Ps3=( ' (1.5)
*
Applying relation (}.4) to each vertex, we have that

P, CA BA, P, ABCB, P, _ BC AC,

0, A4BAC ,Q, BCBA’ Q, CACB

A
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e n

. A ™~ . .. 7&' \
Fig. 1.16 Fig. .17 * s,
We next multiply these equalitics to obtain e b
P, Py Py _ BA, CB, AC; - ‘
A Qs Qs A.CBA Czﬂ/ o
or, canceling equals given in (1.5), and comr.;}n@ng, &y
AC, BA, CB, _ P, ./ . © (L6)
CBA,CE A =Q3 S :
, . >
We again consider twe cases. .
Casel. ST
AC, BA, CB; _ T -
“ Czsqusl . (1.73
| /

Then P, = @, that is, these fgrces are in equxhbrmm Consequently,
the forces R,, R,, and Ry are jn equilibrium; and, thus, the lines A4,,

» BB,, and CC, intersect at a ngle point.

Case 2. -

AC, BA, CB,
o ' C,B A,C B, A ’
Then according to (1.6) the forces P, and Q are different. Repeating
the argument of the preceding theorem, we deduce that the lines AA,,
BB, and CC; do not intersect at a poing.
Thus the following theorem: ‘ _ \

THEOREM 1.5. For the lines AA,, BBy, and CC, to intersect al a single

&+
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point, it is necessary and sufficient that equaan (1. 7) be valid. This resulr
isknawnasCemstheorem’ .

. The theorem on the medians of ‘§' triangle is a spectal case of Ceva’s
t.heorem, since, inr the case for n@* ) Lo

S . Ac,amz,c&:l -, . v
GB AC Bd : _

_ In bther words, Ceva’s theorem can be considered a generalization of
the theorem on the medians.
From Ceva’s theorem it is alsb easy to obtam the previous theorem on
the bisectors of the interior angls of a triangle. In this case

R 3
B }g_cx_ﬁg B4, _AB * CB, _BC
- % o B~ BC’ A,C AC® BA 4B’

: and consequcntly,

. AC, BA, CB, _ ACABBC _ |
C,BAICBIA—BCACAB— :

* Equality (1.7) is satisfied, and we may apply Ceva’s theorem.

1.8. The Resultant and Its Point
. of Application

ah D ' 8 We should make one more re-
E ( " mark concerning the concept of
the resultant, Suppose that the
force R is the resultant of forces

_ applied at different points of a
rigid body. Since the vector R is a
sliding vector, we can change its
point of application by trapslating

it along its line of action. But since
the force R haso actual point of
application (as it is not directly
apPlied), any point on its line.of

, action may be.taken as itg point
oL Fig. 1.18 of application, Thus, the resultant
. of forces applied at various points

2. By extending the lines forming the sides of the triangle, Ceva's theorem may
be generalized to the case where the lines A4, BB, and €C; intersecf outside the
mangle ABC The same is true, by the way, of the thebrem of section 1.6.
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of a rigid body has a definite lmg of action, but not a definite point of
application.

To illustrate this statement, let us consider forces F,, Fg, and F, as
- shown in figure 1.18. To find their resaitant, we first add the forces F,

and F; and then add their resultant R,; to the force Fs. In this way we
finally end up with a resultajt R applied at the point 'C. We now proceed
in another way’ First we add the forces F, and F;, and then we add their
resultant Ry, to the force F,. We then obtain a resultant R’ actmg at the
point D. Thus different methods of adding the forces F,, F,, and F,

give resultawts with different. p@mts of application. (One can _assert,
“however, that the forces R and R’ hav’e})e same line of action and that

R=1R)
From this argurpent we deduce the followmg rule:

RuLe 1.5, Suppose thaz by adding fo orces in vanious. orders we obtain
different points of applicatian for, their resultant. Then these points will be
collinear, and the line formed will comcxdg with the line of action of the
resultant.

'We shall now use this rule to prove two theorems,

1.9. A Third Theorem on the Angle Bisectors of a Triangle

Suppose that the forces F,, F,, and F have equal magnitudes and act
along the sides of triangle 4 BC (fig. 1.19). We shall find their resuitant.

Fig.-1.19

Composing the forces F, and F,, we obtain the resultant R, ,, which is
directed along the bisector A D, Composing the force R,; with the force

F;, we then find the resultant of the forces F,, F,, and F;, and this.

resultant will act at the point D.

. If we add the forces F, and F, first, we get the resultant R,q, whnch will
lie on the extension of the bisector CE. Next we add the forces Ry; and
F,, and again obtain the resultant of the forces F,, F,, and F,. This
time, however, the resultant acts at the point E.

]

.
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" Suppose we combine the forces F;.and Fy gﬁrst. We then have the
résultant R, which will lie along the bisector 'BK of the exterior angle

B. Composing the foroes Rog and Fl, we obtain a resultant which acts‘

at the point X,
Thus, addmg the fomcs F,, Fg, and E; in three different ways, we

;ob resultants acting.at the poufts D, E, and K. Conscquently, the

~ points D, E, and X are collinear. By defining the base of an aggle bi-
sector to be its point of mtcrsecnon with' the oppos:te side, we have the .

- theorem:
- TueoreM 1.6.- The bases of the b:sectars of two intenor angles and
. one exterior tmgle of a truzngle?‘omz a strazght iine *"c.ﬂ
‘*i -* £ \ 7 SN

1.10. A Fourth Theorem on the Angle Bisectum‘gf a Triangle

By carrying out a similar argument-for three forces of equal magni-

tude, Fy, F,, and Fg, acting as shown in figure 1.20, we may then prove
the theorem: »

TueoreM 1.7. The bases of the bisectors of the three exterior angles

of a triangle are collinear (fig. 1 21).

Fig. 1.20 Fig. 1.21

3, We assume that the bisector of the exterior angle intersects the opposite side
—that is, is not parallei to this side. This remark is also applicable to the next
theorem.

te



»
-2

. The Perpeﬁlal

Motion

Postulate -

S~

v' AR

Itis possxhlc to px& caert.am gcomemc theorems using thc postulate

* that perpetual motion is impossible. 'I'hxs chapber will dcmonstmte

several theorems of this sort,

21 The Moment of Force .-
’  In'addition to the postulate on the lmpossabxhty of perpetual motion,

we will need the law of moments. We shall first state this law. e
Suppose that a body is under the in-

Fig‘ 2.1 ,

fluence of a force F and can revolve about

the z-axis (fig. 2.1). The rotational motion -

caused by. a force F is determined by its
moment with respect to the z-axis, To com-
pute this moment, we resolve the force F
into components F*-and F*, with the first
component lying in a plane perpendicular

to the z-axis, and the second parallel to the -

axis. The rotational motion caused by the
component F" is clearly equal to zero, amtd
the rotational action of the component ¥’
is measured by the product of vector F’ by

‘the scalar d, where d is the distance’between

the z-axis and the line of action of the force K. This pmduct, deoted
by F'd, is sometimes referred to as the rorque, and ig this text (for
clarity) will be called the moment of the force ¥ with respect to the z-axis.

.Since the force F’ is the projection-of the force F onto the plane 2,

we can give the following definition of moment:

3

-

14 : >
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-+ DesiNmioN 2.1, The moment of the force F with'respect to the z-axis ‘
‘e is the product ¥'d, where F' is the projection of the force F onto the plafle -
perpendicular to the z-axis, and d is the distance between the z-axis and
the line of actian 0 the prajectmn Fl.o

. 'Thuss : ) ’ . R ¥

. M/(F) = Fd,
L . \
where M. ,(f‘) is the moment of thé force F vnth rcspect td the z-axis

It follows from the definition that the moment of force is equa.l to
Zero in only two cases: when the life of action of orce F mtemects
‘the z-axis, or when it is parallel to the axis.

If, as fegquently occurs, the force F has a line of action that lies in a >

plane pe.rpendxcxﬁar to the z‘-axxs, then F* = F and, therefore,

bt

.

~ . . .-
N B .(F) S
o . In this case the distance.d is called the arm af the forw";;_':‘

"" We assign a definite sign to the moment of force. For this purpose

. #  we designate one of the directions of rotation s positive, and the other

as negative. Then if the force tends to rotafgfthe body in the positive

- direction, we consider its momentum positiv a.nd in thc opposite case,
negative. Therefore, we can write

M,F) = +F4d,
where the sign is determined by the direction of rotation. ae .
The following two rules will be needed:

“RULE 2.1. If R is the resultant of the system (Fi, Fa, ..., F,), the
moment of force R is equal to the vector sum of the individual moments of
forces ¥y, Fg, ..., F,.! .

This rule may be written in the form

M;(R) = M,F.) + MAF2) + .-+ ML(F,), (2.1

where M, (R) denotes the moment of the force R w1th respect to the
z—a)us ¢

v , 1. This proposition is known as Varignon's theorem. Varignoﬁ’s name is also
given to the theorem about segments joining midpoints of the sides of a quadri-
lateral.

v 4
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RULE 2.2. (The law of momenfs.) Suppose that a rlgld body can rotate
aboidt a fixed axis. In order Jfor fa&:&actmg on it not to cause rotation,
it is necessary and sufficient that tke vector sum of their moments equal

Z€ero.
A

(In other words, the moment of the forces tending to rotate the body
in the positive direction must have the same magnitude as the moment
of the forces tending to rotate it in the negatxve dxrectlon )

¥

L
. 2.2. A Theorem on the Perpendicnhr Bxsecturs of the Sxda ofa *
. . Triangle -

Consider a confainer havmg the form of a right triangular prism
A,B,C,A4;3B,C, (fig. 2.2). Imagine that 1t is filled with gas and that no
external fome§ not even gravity, act on it. (We can assume, for example,
that it is located far from the earth and the heavenly bodies.) Tt we
consider all the forces exerted on the container, we conclude that the
net resultant must be constant since no external force is applied. Since
we have postulated that perpetual motion is impossible, this constant
resultant must be zero. Thus, the container will remain in- its initial
state at rest. Consequently, the forces that the gas«exerts on the walls
must be in the equilibrium.

But ;mce the pressures on the two paranei faces cléarly balance one

-another, the forces exerted by the gas against the side walls of the con-

tainer must be in equilibrium. We may represent these forces by F g,

-Fge, and Fy¢, which lie in the plane defined by triangle 4BC, and have

points of dpplication at the midpoints of their respective sides. Since these
forces are in equilibrium, by our first proposition, their lines of action

" must intersect at a single point. Noting that the vectors F 5, Fge, and F.c

are perpendicularto the sides of the triangle A BC, we have the following:

TueoreM 2.1, The perpendicular bzseczors of the sides of a triangle
intersect at a single point.

|
2.3. The Pythagorem Theorem

Consider now a right triangular prism whose base is the right triangle
ABC (fig. 2.3). We fill the container with gas and allow it to rotate about
the vertical axis'Q0O’ (the 4BC plane is considered horizontal). Since
perpetual motion is impossible, the container will remain in its initial
state at rest, and the forces caused by the gas on the side walls of the
container must be in equilibrium. Each of these forces tends to rotate the
container about the,00’ axis: the forces F, and F; counterclockwise,

m e
‘g ‘
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and the force F; clockwise. Therefore, the sum of the rotational mo-
ments of the forces F, and F, must equal the rotational moment of the
force Fs. Since the arms of these forces are equal to AB8/2, BC/2, and
AC/2, respectively, we may use our formulas for rotational momcnts

* and equate magmtudes to obtain

-

AB - BC AC

Fl 2 FQ 2 = Fg'_i— . (2;2)

But

F, = p(AB-h),
F; = p(BC-h),
Fy = p(AC-h),

where p is the pressure of the gas and # is the height of the container.
Substituting, we find that equation (2.2) now takes the form ,

p(.mh)i;-3 + p(BC-W) BE = pac-m A /

Multiplying by the constant 2/ph, we have
. AB? 4+ BC?® = AC?, = . oA

THus, we have proved the following theorem:

THEQREM 2.2. The surh of the squares of the legs of a right triangle is

proy
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It is possible to generalize to the law of cosines by substituting an
arbitrary triangle for the right trianglc used in this proof. However,"we
shall now turn to a cquple of gcom‘_etric theorems dealing with circles.

! s

2.4. A Theorem on Tangents and Secants

Suppose that a gas-filled vessel has a base whose shape is the figure
ABC (figure 2.4 shows the view from above; the plane ABC is hori-
zontal) The vessel has height 4 as mgasured along any of the vertical

sides joined to the lines A8, AC, of the arc, BC. Thus the vessel is a
boxlike container with cross-sectional shapgllBCeluppose, further-
more, that the vessel is"tightly fastened to the rod OB, and that this rod
»is fastened fo the vertical axis ©. In this v&éy, we allow the vessel to
rotate about this axis, As in the preceding section, the vessel will remain
at rest, and, therefore, the sum of the moments of all of the forces
acting upon the container must be equal.to zero. But only two of these
forces create rotational moments; the forces F; and F, of the pressure
of the gas on the walls ABand AC. (The forges of the'gas on the curv
wall BC do not contribute to the rofatiq oment, since each force
has a line of action that passes.through the axis 0.) Using the fact that
the moments of forces F, and F, have opposite signs and that the arms
of these forces are equal to BK and LM, we know that

Fy-BK = P{LM. o g

But BK = AB/2 and
LCHLA LD+1LA A
. M=
24
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~ Consequently,
. A .
thatis, 3 .
F,-AB = Fy-AD. ’ (2.3)"
Furthermore we have that * - % .
= fAB-k) and F; = plACH), - LS

where pis the pressure of the gas and 4 the height of the vmscl. Subsh-
thting theee cxpmsmns in (2.3), we cbtmn . -

KAB-HAB.= p(AC-B)AD,

hence, © o ! ‘

 AB? = AC-AD. . 2.9

Returning to the circle shown in figure 2.4, we see that the segment 4B
is tangent to the circle from point 4; segment A D is a secant; and the
segment AC is the external part of secant A D. Thus, equation (2.4) ex-
presses the well-known geometric theorem:

THEOREM 2.3. The square of the tangent to a circle from a point is
equal 1o the product of a secant from that point times the external part of
the secant.

)LS. A Theorem on Two Intersecting Chords of a Circle

Let-us replace the vessel just considered by the vessel ABD shown
_in figure 2.5. Repeating the arguments used in the beginning of the
/ : ‘ '

Fig. 2.5

preceding théorcm, we obtain the relation
. . FiKL = F; MN.

2

[N




20 - The Perpetual Motion Postulate

Furthermore, since ) .
- 5
KL= AL Ax=4C 4B _AC-45_iC

2 2 2 _,2 ’

MmN = DM — DN = DE _ DB _ DE — DB DB=BE

2 2 2 2’
. « '
therefore, o
' BC' BE :
| Fy 3 = F;- F )
f.hat iS, N . ' . "
« : !
F;h-BC_= F3-BE, A "y

As before, however, |
F, = p(AB-F), F; = p(DB- h),
_and,‘ cénsequcntly,
 XAB-H)-BC = p(DBR)-BE,
hence, |
AB.BC = DB-BE.. . ," ‘ @.5)

-

Equation (2.5) expresses a well-known geometric theorem on two
intersecting chords of a circle.

.
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3 The Center  «
| - of Gravity,
- Potential Energy,

-~ an;l Work

~ In this chapter we shall compute the volumes and surfaces of certain
bodies. Our discussion will make use of concepts involving potential
~ energy, work, and properties of fhe cepter of gravity.

3.1. The Center of Gravity
The resultant of two parailel forces F, and F, (fig. 3.1) is represented

by a force R acting in the same direction, with a line of action passing -

through point C. This point, which may be considered as the point of

+ application of the resultant R, is defined by the relation
. . AC_F R

CAL-F. 3.1

X -

‘ Now let Li consider a system of several parallel forces. For example,

- we shall find\the resultant of four forces (fig. 3.2) by adding them one

by one. Upon combining the forces F, and F;, we obtain a force R’

)
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acting at some point C’, which may be determined by relation (3.1);
adding the forces R’ and F;, we obtain a resultant R" acting at a new
point C”; and, finally, adding R" and F,, we have the resultant R, acting
at some point C whose position may be determined by repeated use of
equation (3.1). The force R will have magnitude equal to £, + F; +

- Fy + F,. |

In this manner, it is possible to add together any number of parallel
forces to find their resultant and a point C at which the resultant acts.
It can be proved that the position of C is independent of the order in
which one adds the forces. This point is called the center of the given

- system of parallel forces. | '

Let us consider a rigid body located in
the vicinity of the earth (fig. 3.3). If the
dimensions of this body are small in
comparison with the radius of the earth,
the forces of gravity acting upon its par-
ticles are essentially parallel. We may
~ therefore find a limit point C of a se-
quence of centers of arbitrarily large se-
lections of parallel forces. This point is.

Fig. 3.3 called the center of gravity of the given
. body. We may consider it to be the
point of application of the force P, which represents the weight of the

" body.

- We should make a couplc of observations that follow directly from
this definition of the center of gravity. Firgt, if we translate or rotate
a body, the center point C is similarly tranglated; hence, relative to the
body, the center of gravity remains fixed,/or-* firmly attached”’ to the
body under rigid transformations.

Second, it follows from equation £371) that a proportional increase or
decrease of all the forces in a s‘ﬁtem of parallel forces results in no
change in the position of the center C. In other words, the center of grav-
ity of a homogeneous body depends only on its size and shape. For this
reason, the center of gravity is sometimes called the center of mass.

L., The center of gravity of a line and a square. In mechanics, one
speaks of’a material point, which is analogous to the geometric concept
of a point. ,

A material point is a point possessing a definite mass.

The theoretical idea of a material point is a body having some measur-
able mass, but no dimensions. (Sometimes these concepts actually occur.
For example, in studying the motion of'the earth about the sun, we can
treat the earth as a material point.)

Iy

¢
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o~ Szmxlarly, we can introduce the concept of a material line. By this we -
+ -~ shall mean a curve of finite length possessing a certain mass.;We shall

represent this mass by its distribution dlong the léngth of the curve.
In the same manner, we can speak of a material figure. By this we shall

- meana plane figure possessing adefinitemass distributed throughoutitsarea.

A material line may be visualized as a thin wire and a material figure

‘as a thin plate. The thinner the wire or the plate, the closer xt approxx—
_mates the material line or material fi SRS

We may extend certain physical opertm tc “our discussion of
material lines and figures. By determhining the weight of a material

object per unit Iength, or per unit area, we may speak of the specific
weight of the body. If the mass of a material curve is distributed _

uniformly along its length, the specific weight of this curve will be the
same at all points. We shall call such a material curve homogeneous. In
the same sense we can speak of a homogeneous material figure. A thin

homogeneous wire of constant diameter serves as a prototype of a

material curve. Analogously, & thin homogeneﬁus plate of constant
thickness is a prototye of a material figure,

Since a material curve and a material figure possess mass and conse-
quently weight, one can speak of the center of gravity of a material line
or a material figure, If the material curve or the material figure is homo-
geneous, the position of its center of gravity depends solely on its shape,
and is independent of its specific weight. Therefore, the center of gravity

. of a homogeneous material curve can be called the center of gravity of

the curve, and the center of gravity of a homogeneous material figure
can be called the center Qf gravity of the area (or the center of grauity of
1hé figure).

2. The center of pressure. It is not necessary to limit oursclvcs to
forces of gravity when discussing the center of gravity of a thin plate.

Suppose that the pressure p acts on
‘one side of a figure of area S (fig. 3.4).
Since the forces associated with this
pressure are parallel, their resultant
is equal to

F =pS,

and acts at some point C, which is
the center of these forces. This point
is, therefore, called the center of
Fig. 3.4 pressure. To determine its position,
‘we must know the magnitude of the

[



kY

4
. ) o SN
.

-

}
24 The Center of Gravity, Potential Energy, and Work

force on any arbitrarily small area. But this force is equal to pAS, where
AS is the area of the cell on which the pressure acts (sometimes called 2
gaussian area). This is numerically equal to the weight of the cell, given
that the material figure has a specific weight equal to p. Consequently,
any partition of the figure yields forces of pressure having the same
magnitudes as the forces of weight for a homogeneous material figure S.
From this we may conclude that the point C coincides with the center
of gravity of the figure S. .

Thus, the center of a uniform pressure on a material figure is the same
point as the center of gravity of the figure. This result will be needed in

* the proof of Guldin’s first theorem.

- 3.2 Potential Energy |
tential energy

We shall assume the following propositions about
in a gravitational force field:

PROPOSITION 3.1, The potential energy of a material point is equal to
Ph, where P is its weight and h its height.

PROPOSITION 3.2. The potential energy of a material system is equal to
the sum of the potential energies of its points.

ProrosiTiON 3.3. The potential energy of a rigid body~equal to Phe,
where P is the weight of the body and h is the height of its center of
gravity. : ‘

The first two of these propositions are the definitions of the potential

=gnergy of & material point and a material system. Itis impor?ant to note
that the third proposition may be applied to material curves or material_
figures since these bodies have weight.

3.3. The Centers of Gravity of Certain Figures and Curves

To find the center of gravity using the method suggested by the defini-
tion, one must carry out the addition of a large number of parallel
forces. In certain cases, however, the center of gravity can be found by
an indirect method. We shall do this for several simple tigures and curves.

I. A rectangle. It is known that if a homogeneous body has a plane
of symrhetry, its center of gravity lies on this plane. Similarly, if a figure
or a curve has an axis of symmetry, its center of gravity lies on this axis.
Conseduently, the center of gravity of & rectangle is located at its geo-
metric center.

1. Consequently, the cenfer of pressure of a rectangle is its geometric center.
This fact was used several times in chapter 2 (for example, in the proof of Py-

thagoras' theorem).
'3 l A) ,
’ 'Y
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. 2. A cirele. By a similar argument, the center of gravity of a circlé
lies at its center.

3. A triangular region. Before

8 o c generalizing to "the case of a

triangle, we will ‘decompose a

)

£ '; \ -  trapezoid into a large number of
y = i3 N narrow strips of uniform width
[— +— \A - (fig. 3.5). Each strip has a center of
A 0 - D gravity lying on the segment PQ
Fig. 3.5 " - which joins the midpoints of #he

- . bases AD"and BC. Making® the
width of each strip infinitesimally small, we deduce that the center of
gravity of the trapezoidal region lies on the line PQ,

. Now suppose that the length of the upper base of the trapezoid<on-
verges to zero. Then the trapezoid approaches a triangle, and the line
PQ becomes a median (fig. 3.6). Consequently, the center of gravity of a
triangle lies on its median. But since this is true for each median of the

- triangle, its center of gravity C coincides ‘with the point of intersection

of its medians, :

- 4. A circular sector. We now consider a circulaf sector 4 BO, viewed

as a material figure lying in the vertical plane (fig. 3.7). Suppose that,

Fig. 3.6 Fig. 3.7

we have rotated the sector 4 BO about the center O by the angle 8, and
that its new position is 4A’B’O. Let us calculate the change in its potential
" energy. Suppose that the point C is the center of gravity of the region
ABO, and the point C’ the center of gravity of the region 4'B'O. The
difference in potential energy between the positions 4'B’0 and A BO is
expressed by the formula ™

»

Weso — Wiso = PugoHc o (3.2)
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where P s0 is the weight of the sector and Hy. is the héight of the point

C' above the horizontal line OD. (We have assumed that OC was

originally horizontal.) But
e . Y P
= QC’-sin§ = OC-sind and PAB0=#-R2—'}'."—‘R cxy,

where y is the spemﬁc weight of the sector, and 2« measures the arc

vlength of the sector, in radians. Thercforc, , P
Wano — Waso = Riay-OC-sin 8. (3.3)
On the other hand,

Waso = Waao + Waso @d Waso = Wano + Wiso -
From these equations we get

W’A.'s'o — Waso = Wauo — Waso- 3.4

But since the regions A’AQ and B’B& are congruent, the difference . -

W10 — Waso represents the change in potential energy of the sector
B’BO after being translated to the posmon A'AO. From the symmetry
of the dlagram we have

WA 'AO T Wsa'o = 2HS'PA'AO (3-5)

where P4 40 is the wexght of the sector 4’40, S is its center of gravity,

and Hy is the height of the pomt S above the line O D. Furthermore,

since
2
Piio = RTS y (8 is in radians) ‘
and

Hg = OS'Sin(a + g) .

Tquation (3.5) takes the form

-

‘ : 8
Waao — Wago = R2&0S-sin (c: + i) .

14
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Combiring this result with equation (3.4) and (3.3), we have

Riay-OC.-sih = Ridy-OS.sin (« + g) :

or,

~

This equation allows us to compute OC. Since equatipn (3.6) is valid

write

_ for arbitrary 8 and, in particular, for 5 as small as wg/ploasc, we may

PO .

e foesin@+ 82 8
oc._m[os @ 3.7

.

But

fim ST (« j 3/2) sine ’
30 « @

and from calculus we know that

¢

fim ~o = 1.3
‘-.aﬂlns

Therefore, equation (3.7) becomes

ocC = (lim os) sin o (3.9)
40 &

Furthermore, as 8 — 0 we can substitute the chord 44’ for the arc A’ A,
and the triangle 4’40 for the sector A’40. Therefore, as 3 — 0, the
point § approaches the point of intersection of the medians of this
triangle. Since the medians of a triangle intersect at a point one-third
of the distance from the base to the opposite vertex along the median,
we may conclude that

IimOS =% R.

§—0

W b

2. This equation is contained in many textbooks on trigonometry (it is usually
written in the form lim, .o ([sin 8)/8) = 1). It expresscs the intuitive fact that as an
arc of a circle converges to zero, the ratio of its length to the length of the chord
spanning it converges to unity.

34
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Equanon (3.8) now takes the form

OC__RSma

(5 9)

Formula (3.9) deﬁnes thc posmon of the center of gravxty of a circular
sector.
5. A half- dise Settmg ¢ = /2 in formula, (3. 9), we obtdin
4R

oc=3 - . G0

This eq%anon defines the position of" the center of gravity of a haif-dxsc
(ﬁg 3.8). .

Fig. 3.8 Fig. 3.9 '

6. A circular segment. Suppose that 2 homogeneous material figure
has the form of a circular sector and is located in a vertical plane (fig.
3.9). The sector OA4 DB is divided into the triangle OA4B and the segment
under investigation; A DB.

We allow the sector to rotate about the horizontal axis OD, and
compute the moment of the forces of gravity acting upon it. Denoting
the moments of the corresponding figures by Moane, Maps, and
Mo s, WE may write

Mouvs = Mups + Mous . (3.11)

But the moment of any system of forces and, in particular, of the forces
of gravity, is equal to the moment of the resultant of the system (refer to
rule 2.1; specifically, equation (2.1), on p. 15). We employ the formula
M (F) = Fd, to obtain

Moaps = YSOADB'OC’ ’ )
MADB = ‘)’SADB'OC’ (3.}2)
Mgy = vSous oc’,
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where S is the area, y is the specific weight, and C, C’, and C! are the
centers of gravity of the segment, the triangle, and the sector, respec-
tively. Substituting (3.12) into (3.11) and canceling y, we havc\

Soapa- OC" = Syps- OC + So.p-OC'. (3.13)
Furthermore, we kitow that ‘

SQAE = 1{2 Sin a COS o, SOADB = Rgtx s
’ A .
OC’ = $Rcosw, and OC" =3R=".

. In the last equation we have used formuld (3.9). The others are derived

from simple geometry. Relation (3.13) now takes the form
R’a(§R §“;—a) = Sps OC + R3sin a cos (4R cos «) ,
or, simplifying, |
. SAQQ‘OC = §R3 sin G—(l — cos? (Z) = §R3 sind « ,
2R¥sin® a
oC = 57—~ 3.14
3o @14

The equation obtained defines th/‘c position of the center of gravity of

‘the\Segmcnt, Since Rsin« = 4 B/2, we may write our formula in the form

_ (4B)®
oc = 12808
or, more briefly, 2
13
oC = VS (3.15) |

where S is the area of the segment and / is its chord.

7. An arc of a circle. The center of
gravity of a circular arc lies somewhere
between the arc and the center of the
circle defined by the arc. We may locate
its position in the same way we found
- the center of gravity for a circular sector.

Let us rotate a homogeneous ma-
terial arc 4B lying in the vertical plane
about the center point O by the angle 8
(fig. 3.10). The new position of the arc 1s
_A’B’, and its center of gravity shifts from

C to C'. The potential energy of the arc
is increased by an mount o

WA'S’ - WAB = PHo, (3~16)

36
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where P, is the weight of the arc AB and Hc is the height of the pomt
K C’ above the line OD. But -

He = OC'sind = OC-sin 8 and Pe = 2Ray,

where y is the specific weight of the material arc."Thcrcfore, equation
-(3.16) may be written in the form

Wes — Wis = 2Ray-OC-sind. (.17)
As before, wc also have that

WA’B‘ = Wys + W
and
: Was = Wagr + Was ;s
hence, )
Wosg — Wig = Wos — Wga. (3 18)

But since the arcs. 4’4 and B'B are congruent, the change in potcntxal
energy may be expressed as '

Waa — Wy = 2P Hy ,
where P, isthe wexght of the arc A’ A, S is its center of- ‘pravity, ariid Hy
is the height of the pomt S above the line OD. However,
. 8
PAIA = RS}! and Hs = (8. sih ((X + E) .

Therefore, from equation (3.18), our formula for potential energy
becomes -

Wig — Wag = 2R8y-0S-5in (o: + -g—) - (3.19)
Equating (3.17) and (3.19), we have
2chy-0C~sin§ = ‘2R8y-OS-sin (cx + g) ,
or

sina '+ 8/2) 8

ocC = 08 . .
« sin 8

Taking the limit as 6 — 0, we obtain

8—0

oC = (hm 05) sine . (3.20)

37
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- But as 8 — O Ahe point § converges to A and, therefore,
| | lim OS = R.

e \.‘ 3-+0 . &

. Y
- Thegefore, siibstituting this value in (—3;&)), we find
’ _ . ~ ‘ OC = R.T . (3.21)

8. A semicircle. In the case when
a = w/2, formula (3.21) becomes

ocC = gg (3.22)

-~

Equation (3.22) defines the position of
the center of gravity of a semicircle (fig.
Fig. 3.11 3.11).
: We have now derived a number of
formulas for the c:entcr of gravity of some simple figures. We will use
these to compute surface area and volume of certain bodies. ‘

- 3.4. The Volume of a Cylindrical Region
Suppose we generate a cylinder perpendicular to a closed curve lying
in a plane. If another plane intersects the cylinder so as to bound a
single region, we have a rather special cylindrical solid with at least one
base perpendicular to the generator. We wish to find a formula for the
volume of_this type of ‘solid,
In figure 3.12, we have drawn a cylindrical solid
0" of this type, with a vertical generator and a hori-
zontal base. Suppose that we have lifted it by a
o 2 certain height A, so that it now occupies the posi-
.C
Denoting the potential energy in the original
posmon by W and in the final posmon by W', we
where P is the weight of the solid and 4 the increase
in the height of its center of gravity. Clearly,

E{ ya tion A'B'D'F’. Let us calculate the change in
4 . }
have P
Fig. 3.12 h=AA" = BB'.

/ potential energy.
\’L_) F W' — W = Ph,

b{‘ipib.

»
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Furthermore, supposing the solid to be homogeneous, we can write

P=Vy,

P

where V is the volume of the solid and y its specific weight, Conse-
quently,

W' — W =¥Vyh. _ (3.23)
On the other hand, .

R

W o= W‘rmr + WRB\‘DD, !
W = Waspr +WMFF: '

a_nd, therefote,
W - W = W BE'D'D — Waarr, (3-2@

- that is, W' — Wis equal to the differehice of the potential energy of the
bodies BB’ D’ D and AA'F'F. The volumes of these two regions are equal
and we may denote this valume by v. We will then have ‘

Wu py = vyHg,,
(3.25)

Wispp = ”)’Hcg '
where Cy and C; are the centers of gravity of the volumes AA’F ‘F and
BB'D'D, and H, and H, are the heights of the points C; and C; above.

the plane AF. Substituting the expresszons (3.25) into equation (3.24),
we get”

W"“ W:!)Y(ch —_ HC;)‘
Furthermore, since the body AA4'F’F is a right cylinder, v = Sh, where
S is the area of the base AF. Therefore,
T W' — W = Sh{H, — H). (3.26)

We how have two expressions for the change in potential energy.
Setting them equal to one another, we obtain

V)’h = Sh}’(HGﬂ - Hc;),‘ .
or

V = S(Hs, — Ho). (3.27
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We are not finished, however, since equation (3.27) is valid for arbi-
trarily small &, and ¥ does not depend on h. We proceed by taking a
limit: - , . '

V = lim [S(H¢, — Hc)] = S(lim He, — lim Hc,) . (3.28)
A0 i N—+0 h—+0
We shall compute the last two Iifmxts First of all, it is-clear that

lim He, = 0. | (3.29)

A-Q

Furthermore, if & converges to zero, the points §’ and D) converge to
the points B and D, and the body BB'D'D converges to a plate of
constant thickness constructed on the base BD. Therefore, as h->0,
the point C, converges to the center of gravity of a homogeneous
material figure BD, or, in other words, to the center of gravity of the
figure BD. Denoting this center of gravity by C, we get

‘ ilﬂ'é ch = Hc N (3.30)
S by - ~ *

where Ho is the height of the point ¢ above the plane AF. Substituting
(3.29) and (3.30) into (3.28), we now find .

V = SHe. €3.31)

In other words, the volume of the solid is equal to the area of its base
multiplied by the Height of the center of gravity of the figure bounding
the solid on top. <

This relation will be useful for the computation of certain volumes.

We should make one further remark concerning the derivation of

" equation (3.31). In this derivation we have assumed that / can be
chosen so small that the points of the figure A'F’ lie below the points
of the figure BD. There are, however, cylindrical regions for which it is
impossible to do this for any & >, 0. This will be the casc when the’
figure BD has a point in common with the base AF. An example of such
a solid, labeled A BDF, is shown in figure 3.13. The proof given cannot
be applied to this type of solid, and this case must be consi’fdered sepa-
rately. ) 2 . ,

' However, we may extend ABDF to the solid A'B'BDF” (fig. 3.%‘ We

f

Vaispr = Vaswor = Vegsrs = S CC"-- §:C'C" = § cc’,
. ; : I X
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. Fig. 3.13 Fig, 3.4

where § = Susr = S,,r, and C is the éenter of gravity of the figure
ABD. But CC” is thg height of the point C above the plane ABF. Con—
sequcntly, equatan (3.32) becomes’ it

s #

* VABD!' SHC )

-

(2
" where H, denotes the height of the center of gravity C above the base
. of the solid ABDF. Thus, relation (3.31) is valid for cylmdncal regions
of the form shown in figure 3.13, as well as those previously considered.
' Computmg the volume of a solid by means of equation (3. 3I)posesa
particular problem—we must locate the center of gravity of the upper
‘ ace. The following the?tem may help make this task éasier.

REM 3.1. Suppose that a cylinder is bounded by a surface per-
péndicular to the cylinder, with a center of gravity at C, and by a second
surface with a center af gravity at C’', Then the line CC' will be parallel
to the generator of the cylinder.

Proaf. Suppose that the line CC’ is n9t parallel to the generator.
- Then the cylindrical region may be positioned so that the generator is
horizontal and the line CC’ mchned as shown for the solid ABDF in
. ‘_ ._.-_....MW«....A._MA,_ 8 h—t—p{ g8
‘ \ A Y
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—e - '
figure 3.15. If H, and Hg. denote the heights of the-points C and C’ -
above some horizontal plane, then, by this construction,

Hc # Hc ' (3.33)

Let us now displace the cylinder by a distance fin the direction of its
generator. The new position will be A’B’'D'F’, and since the shift is
horizonfal, the potential energy of the solid remains unchanged. Thus,

Wanor = Waspr - T (3.39)
But r - o

Wasor = Wasor + Wasoo,
and
‘ Waspr = Wasow + Wasrr,
and, therefore, equation (3.34) takes the form
. Waa'o'p = ,W;u‘rfr . (3-35)'

Using the notation as before, we have that

Wesoo = Pss and Wourr = PM'F'F.HS' S
where S and S’ are the centers of gravity of the bodies B8'D’'D and
AA'F'F, respectively. Since Pggpp = Puusr, substituting these
.expressions into (3.35) yields

-

Hg = Hg. . (3.36)

" Now let / be very small. As / converges to zero, the body BB'D’D
will approach a homogeneous ‘material figure BD, and the center of
gravity C will converge to the center of gravity S of the figure BD. Con-

sequently,

‘ ﬁm }{s = f]c . (3.37)
1—0
Similarly,
Yim Hg = Ho-, (3.38)

i—0

and from equations (3.36), (3.37), and (3.38) we conclude that

-~

H; = He .
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But since this result contradicts relat:on (3.33), our original assumptlon

that the line CC' is not parallel to the generator of the cylindroid must

be- false.

. This proves that the center of gravity of the upper base of a cylindri
solid lies direktly above the center of gravity of the bottom base.?

Wc shall now compute the volume of two special cylindrical solids.

1. We shall compute the volume of a prism,

which may be viewed as a cylindrical region with a

" triangular base. Let C and C’ denote the centers of
gravity of its bases. Then, by equation (3. 31), we will
have

v =5§.CcC’, (3.39)

where §'is the area of triangle ABD. Furthermore,
since the center of gravity of a triangle is located at
the point of intersection of its medians,

Fig. 3.16 | C'F =387,

and, consequently,

C' = 4KB'.
Therefore,
CC’ = FF' + 88 - Fry = LL B
Y4
But since
= A4 + DD,
we have that
CC' - AA' + BB’ + DD’
. ¢ 3
Substituting this expression into (3.39), our formula becomes
V=SAA + BB’ + DD (3.40)

3\
t

3. This proof is not applicable to the solid shown in figure 3.13. However, the
same trick used in figure 3.14 allows us to claim the result for the general case.

”
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In general, for a triangular prism with at least one of the two end
faces perpendicular to the length of the body, if § is the area of the

> cross section, and H,, Hy, and Hj are the measures.of the heights along
the length of the body, then the desired formula f6r volume may be
written as "

L3

(3.41)

2. We next consider a regiog obtained from °
a circular cylinder by a plane section passing
through the diameter of the lower base (fig.
3.17). Its volume is equal to

" wR3 #R3
- , =T-CS=—§—-OC-tana

-

where C iS the center of gravity of the half-
disc which forms the base of-the solid. But, as
we found earlier,

4R
oC = 3,
7
(see formula (3.10) and fig. 3.8). Consequently,
. ’ 2 *
'V=71§—43—~§tancxz§R3tana. (3.42)

It is interesting to note that this formula for volume does not use the
value of pi. -

3.5. The Volume of a Pyramid

’ Let us consider a triangular pyramid, one of whose sides is perpen-
dicular to the plane of the base (fig. 3.18). Since this is merely a special
case of the prism shown in figure 3.16, we may find its volume by using
formula (3.41). Setting H, = H, = 0 and H, = H in this formula, we
have - '

L)

V= iSH.

Now suppose that we have a pyramﬂ’»\fft‘;{ a more general base, that
is, any arbitrary polygon lying in a plane (fig. 3.19). We may then divide




~

.
-

38 The Center of Gravity, Potential Energy, and Work

‘ 8. - . ' . . ‘
. 5 . .. .
. | . . A
R \ "D ‘ 4 .
a ] . 8

¢ Fig.3.8 ; Fig. 3.19

it into se\&ral triangular pyramids of the form shown in figure 3.18.
The pyramid shown in figure 39, for example, can be divided into four \
such pyramids having the edge 00’ in common, Computmg the volume

- of eac.h of these pyr@mlds, we hdve
. ) ' ‘ Vi= iSIHx.:.
. T _ Va=18:H;,
i <, C Ve = 48:H;, -,

- B | . Va=38,H,. !

Therefore, ' ‘ ‘
V=V +Va+ Vab V=385 + 8, +S; + SOH,

or, : . -
' V= 4SH, . (3.43)

where S is the area of the base ABCD. Formula (3.43) is the familiar
cxpres\sion for the volume of a pyramid.* .

L 4

3.6, The Volume of a Body of Revolution (Guldin’s First Theorem)

Let us comsider a body obtained by the rotation of a plane figure 0
about an axis lying in its plane (half of such a body i is shown in figure
3.20). We assume the axis 0@’ to be vertical. Let us construct a new
’ structure by adjoining to the body shown in figure 3.20 a cylindrical
pxpe, and assume the entire pipe structure to be hollow and connected

4. We divided the pyramid shown in ﬁgurc 3.19 mto four pyramids of the type

’ shown in figure 3.18. However, if & pyramid is very * oblique,” the point O can lie
outside"®™he base ABCD and such a decomposition will not be possible. We will

. thenneed to consider the "algebraic’ sum of pyramids rather than the ** arithmetic
sum"” (that is, take the volumes of several of the pyramids with a negative sign).

-
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by a narrow neck (figure 3.21 shows the top view; the axis Q0’ is repre-
. sented by the point O). We insert a piston A BDE in the cylindrical part
of the pipe and the piston KLMN in the circular part. We fill the cavity
between the pistons with an incompressible liquid. Suppose that the
force F acts on the piston ABDE, forcing it to assume the posmon
A’'B'D'E’. We compute the work performed by this force \

L
‘8 A B
Spplhugpinagk
. I==9
0 =] |
EE=
e E DE
= 3
0

Fig. 3.20 Fig. 3.21

Since the path traveled by the point of application of the force Fis
equal to BB', the work is equal to .

A=FBB <= FA4'. (3.44)

The forciF is equal to the pressure of the liquid on the wall AD. There-.
fore,

L

I;‘ = pSAD L] (3'45)
£ '}' ‘
where p is the pressure of the liquid and Sy, is the area of the piston
face A D. Substituting this expression in (3.44), we have .
A = pSAD'AA’ . . (3.46)

and since S, AA’ represents the volume of the section A"A ¥ D,
A = pVA‘AD’E) . . (347) '

This is the expression for the work performed by the force F.

Let us now compute this work in another way. We shall consider it to
be the work performed by the force R pressing against the piston
KLMN, We then get

! -

A=RCC',

.-
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where C is the point of application of the force R and CC’ is the length

of the arc described by this point during the motion of the piston. But
*ﬂ
C | -~ R = pSg 3

where S,y is the area of the piston-face LN, Consequently, :

* .

A = pSyy-CC’. | (3.48)
Compafing expressions (3:47) and (3.48), we will have
VA‘AD.'D — SLN CC’ . (3.49)

But since the volume described by the piston ABDE is equal to the
volume descrébed by the piston KLMN, equation (3.49) can be written
in the form . v )

¢

Viww = Sun-CC’. O (350)

Note that S,y is simply the area of the figure Q in figure 3.20, and
V. .xy i the volume of the region obtained by the rotation of this
. figure. Since formula (3.50) is valid for any arc length CC’, in general,

Y= s-g:c" v -+(3.51)

where ¥ is the volume of the region generated, and S is the area of the
figure Q. - g -

"The value of CC”’ is determined by the length of the arc described by
the point C as the figure is revolved. But the point C has a simple geo-
metric interpretation. Since it is the center of pressure of the wall LN
and the pressure is uniform at all points of this wall, the point C coin-
cides with the center of gravity of the figure Q. Consequently, the arc
CC' is the arc described by the center of gravity of this figure.

Let usipply equation (3.51) to the body drawn in figure 3.20 (half of
a body of*rotation). In this case the arc CC’ is equal to 7R, where R
is the distance of the point C from the axis of rotation. Consequently,
the volume of the body under consideration is equal to S=- R.. But
since this volume is half that of the complete body of rotation, we can

write

14
5 = ’S;wRC s
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hence,
V = 2aR.S . (3.52)

We now have the following theorem:

THEOREM " 3.2. The volume of a body of revolution is equal to the area
of the figure from which it is obtained multiplied by the length of the
circumference of the circle described by the center of gravity of this figure.

This theorem is known as Guldin’s first theorem.®

Another proof of Guldin's first theorem.

. ' Suppose that the plate Q is free torotate
,* . about the horizontal z-axis (figure 3.22
shows the view from above). We shall

assume that Q is a material figure of -
weight P. The plane of the plate is hori-
zontal and passes through the z-axis.

Rods 1 and 2 are assumed weightless, -
The weight of the plate creates a rota-
- tional moment with respect to the z-axis.

% ‘ : This moment is equal to

- . —

Fig. 3.22 M(P) = PRz, ~  (353)

‘where R is the distance from the center of gravity of the figure Q to
the z-axis. But '

P=yS, . (3.

where S is the area of the figure Q and y is its specific weight, (We
assume the figure is homogeneous.) Consequently,
H

M(P) = ¥SRc. (3.59)

The product SR, is called the static moment of the area S with respect
to the z-axis. We shall denote it by M (S), that is,

MAS) = SRe. (3.56)

L
5 Paul Guidin (1577-1643), Swiss mathematician known for introducing the
centrobaric method.

b
&0
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Before proceeding with the proof we should investigate this new term
carefully. Comparing equations (3.53) and (3.56), we see that formula
(3.56) is obtained from formula (3.53) by the substitution of S for P.
Looscly speaking, therefore, the static moment of area is the moment
“created by the area” of the figure under consideration. Moreover,
from equations (3.55) and (3.56), it is clear that the static moment of
+ area can be viewed as the moment credtcd by the weight of a figure for
*which y = 1.
‘From equations (3.55) and (3.56) it follows that

M(P) = yM(S) . | (3.57)

This relation serves as a conversion formula for the momgent of weight
and the moment of area.
Let us divide the plate into several parts. We will then be able to write

- ML) = M(P,) + M{Po) + -+ M{P,), (3.58)

where Py, P, .. ., P, are the weights of these parts. (Note that we have
used the rule that the moment of a resulitant is ggual to the sum of the
moments of the forces of the system.) Using the conversion formula
(3.57) for each moment, we obtain . :

'.sz(S) = yMAS) + yMS) + - - + yML(S,) .
Finally, dividing this equation by y (or. setting y = 1),,we arrive at the
following rule:

RULE 3.1. If the area S consists of the areas Sy, S,, . . ., S‘,,, then
MAS) = MA(S) + MAS,) + -+ MLS,). (3.59)

We shall now dse this equation for the proof of Guldin’s theorem.

Suppoéc in figure 3.22 that the plate Q is a rectangle with one of its
sides parallel to the z-axis (fig. 3.23). The volume of the body of rotation
which is obtained is expressed by

. : V =%wRj2h — wnR%h ,

or

\ V= 2n(R, — Ryp Bt R

(3.60)

A()
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‘But- . o o ‘

R Ry -RJh =S,
and ) ' :
R+ Ry _
7 =K

where. S is the area of the rectangle and C its center of gravity.
Consequentlyy _ _ :
V =2aSR;, = o
that is, ‘ | |
V = 2aM(S), @3.61)

where M_(S) is the moment of area of the rectangle with respect to the
axis of rotation. N

Let us now substitute an arbitrary figure Q for this rectangle (fig.
3.24). We divide this figure into a large number of narrow strips and

-

z ‘i : . z
. . ~
o A
Re {
Ry
- 7 -
Fig. 3.23 Fig. 3.24

?

approximate each of these strips by the rectangle inscribed in each strip.
. If n denotes the number of strips, and we allow this number without
bound, the approximations become successively better. We then have

V=llm(0V1+ V2+"'+ Vn):

fn—+ @ r

where ¥ is the volume of te body obtained by the rotation of the
figure Q and ¥y, V,, ..., ¥, are the volumes of the bodies,obtained by
the rotation of each of the rectangles. But according to (3.61), -

V, = 20MAS,)

Ve = 20MA(S)).
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Consequently, | . * |

*

V=2n lim [MAS) + MS2) +---+ MAS)  (362)

-~

where S, S, ..., S, are the areas of the rectangles. But according to
(3.59) the sum inside the square brackets is equal to the static moment
of the area of a cross section (the arek bounded by the boldface lines in
ﬁgm;c 3.24). But since this figure converges to the figure Q ag n — oo,

lim [M(S)) + Mu(S) +-+ -+ M(S.)] = MLS),

where M(S) is the static moment of the area bounded by the ﬁgufe 0.
Therefore, equation (3.62) takes the form

V= 2aMJS). : 3.63)

Formula (3.63) shows that the volume ‘of the body obtained by.the
rotation of a plane figure is equal to the static moment of its area multi-
plied by 2. Using expression (3.56), this impljes

V = 2nR.S, \

which proves Guldin's theorem. )

3.7. The Volume of a Sphere

The region determined, by the rotation of a semicircle about its
diameter forms a sphere, Substituting into the formula given above, .
the volume of the spliere may be expressed as

4
A

, 2
.V=2n Cﬂa\

where C is the center of gravity of the semicircular plate (see figure 3.87/
But according to formula (3.10)

and, consequently,
-~
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that is,
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VR, o

3.8. The Volumes of. Certhin Other Bodies of Rotation

The strength of. Guldin’s theorem lies in its apphcabmty to a largc
number of dxﬂ‘ercn@iw'c will give scveral further exgmplw.

" 1. A circular cylinder. Referring to figure 3.25, it is clear that the
volume of a circular cylinder may be given by
V= 2eRcS = 2n 5 RH = nRH,

.~ . , . R L
where R is the radius of the cylinder and H is its al&g

ﬁg,s_,zs Fig.3.26

2. Acone. Ac ular e can be viewed as a body obtained by the
rotation of a righf triangle’ about one of its legs (fig. 3.26). The center
of gravity of a triangle is located at the point of intersection of its
medians. Consequently, R is equal to R/3, and we obtain the familiar
expression for the volume of a cone: ‘ @

RRH =~R3H
V=‘ 2‘!TRQS~2TT§—2—-— ——3-——'

3. A4 torus. A torus is a body obtained by the rotation of a circle
about an axis lying in the same plane as the circle (fig. 3.27). In accord-
ance with Guldin’s theorem, the volume of a torus is equal to

V = 2rR.S = 2nRnrd = 2m°Rr4.

52
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Fig. 327 Fig. 3.28

e 4. Suppose that a circular segmeht rotates about the diameter parallcl
. to its chord (fig- 3.28). The volume of the ring-shaped body-obtained is

equal to .
_ ‘ . ¥V =22.0C-S§, - ..
- P where OC is the distance from the center of the circle to the center of '
gravity of the segment. But according to (3.15),
| 5 .
4 . e

where ! is the length of the chord of the segment, Therefore,

N al®

V=g \ $ |
It is interesf@g to note that the volume wﬁch we have found depends
only on /. ot '
o We have, by no means, exhausted the applications of Guldin’s
) . : theorem. For example, figure 3.29 shows a solid obtained by the rotation
' of a circular egment about its chord. Since we know the location of
" the center of gravity of a segment, the reader might want to determine

the volume of this solid.

5 Guldin’s theorem is often useful to substantially reduce the num-
ber of necessary calculations. Suppose, for example, that the square
ABDE can rotate about the axis Q0 (fig. 3.30). The volume of the
corrgsponding solid of rotation can be found by computing the differ-
ence between the volumes of the two inclined edges which form slices
from a cone. This, however, is comparatively complicated, since by
means of Guldin’s theorem, we can immediately obtain

)i‘_’ =3,

Q
V=27rRCS—2ﬂ'(a+— =3

2

where'a is the diagonal of the square.

[~
92

]
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A smnlar example is iuustmt.cd by t}wfollowmg problem. A triangle
rotates once about the axis z, ‘and once about the axis z,. Given that the
axis’ z; is parallel to z, (fig. 3.31), how are the volumes of the corre-
‘sponding bodies of rotatiog related?

Guldins theorem allows one to solve this problem thhogt—mrrymg

out any computatmns ..Sifice thé medians of the triangle Thtersect at a

point which is twice as far from the axis z; asitis fromz,, V;: V; = 1:2.
6. Suppose that a homogéneous material figure Q lies in a horizontal

planc (fig. 3.32). If we allow it to rotate about the horizontal axis 0O’

passing through its eenter of gravxty, it wxll remain in equilibrium,

~ Consequently, - Rk

ySiRy = yS;Rg,

-~

where vy is the épeciﬁc weight of the figure, S; and S; are the areas of the

Fig. 3.31 Fig. 3.32

a7
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two parts divided by the line 00’ and R, and R, are the distances of
the centers of these parts from the line OO'. Multiplying the above.
' equation by 2a/y, we will have ‘ '

§ : . 2aR,S; = 2nR;S2. " (3.64) .

Equation (3.64) shows that the volumes of the two distinct solids
_obtained by rotating the left and right halves of this figure about the
axis Q0" are the same. -

" This result is valid for any plane figure and any straight line passing
through its center of gravity. Suppose, for example, that the triangle
ABC rotates about the median BD (fig. 3.33). Then the volumes of the
bodies described by the triangles ABD and BDC arc equal.

7. In all the examples up to this point, Guldin’s theorem has been
used strictly for the calculation of volumes. It is possihle, however, to
use it in another way. Knowing the volume of a bedy of revolution, we
‘may find the center of gravity of the figure from which the hody is
obtained. Let us consider two examples.

 Fig. 3.33 Fig. 3.34

>

~ a. Suppose that a triangle with sides g, b, and ¢ rotates about an axis
lying along the side a (fig. 3.34). The volumie of the resulting solid can
be easily computed by adding together the volumes of the two cones.
In this way we obtain the formula )

V = &nha,

where hy is the altitufe dropped to the side a. Applying Guldin's theo-
rem to this triangleswe now have

s {mhia = 2fn—>}’2giefzfzrl .
D " o,
Rc = &’la‘c
l4
f" e
D)
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 Thus, the center of gravity of this triangle lies at a distance 34, from o
side a. Arguing in the same way, we may deduce that it liés at distances

+h, and 44, from sides b and c, respectively, But only one point of the

triangle possesses this property—the point of intersection of its medians.

b. As a second example, we shall find the center of gravity of a half
disc. Applymg Guldin's %heorcm to the sphere, we obtain ‘-

4 | '.':'R2

-3- TTRS = 217 OC '——
where O is the center of the disc and C the centcr of. gravxty of the half-
disc. Consequentiy, ‘ R
- ,. 4R -
0C =~ (3.65)

Formuia (3.65) defines the position of the center of gravity of a half-
disc.

7 o  Of course, if we denve formula (3.65)in th:s way,

we may be accused of circular reasoning if we use the
formula to compute the volume of a sphere. We can,
however, use it to compute the volumes of certain

"~ 317 (see equation (3,42) on p. 37). Thus, Guidin’s
theorem allows us to compute the volume of this body
starting from the formula for the volume of a sphere.
We can find other gxamples of this kind. Suppose; for
example, that a half-disc rotates about the z-axis (fig.
3.35). The volume of the resuiting body of rotagf‘on can’

Fig. 3.35 be found by computing the difference R, = R — OC, .

‘ applying formula (3.65). Consequently, by assuming

the formula for the volume, we can compute the volume of this body of
rotation. (Note that this body is not the “sum™ or “difference™ of
solids whose volumes are known. For this reason, a.direct computation

\ of its volume turns out to be difficult.)

“

3.9. The Surface of a Body of Rotation (Guldin’s Second Theorem)
Let us first introduce two new congepts.

1. The tangent. let us take points M and M’ on the curve 4B and
draw the secant MM’ (fig. 3.36). We now fix the point M and bring the

- ! -
«

. other bodies, for example, the body shown in figure
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- Fig, 3.36 Fig. 3.37

- point M’ arbitrarily close to M. The sccant MM’ will then approach,
y ' as a limit, the position MP. The line MP is called the tangent fo the

' curve AB at the point M. , ' : . -

2. The normal. Let us take a point M on a plane curve (fig. 3.37). = "

. We drdw the tangent MP and the line MN perpendicular to MP through.» = -
the point M. The linc MN is called the normal to the given curve at the
point M. Loosely speaking, we may refer to it as the perpendicular' to
the curve AB at the point M. :

" Let us now consider the arc AB-of a plane curve (fig. 3.38). We take
an arbitary point C on the curve, draw the normal through this point, .
and mark off a small segment CC’ of given length d along the normal.
Drawing such segments at each point of the arc 4B, we may definc a
curve A’B’ as the locus of the endpoints of these segments. It is possible
to prove that each of the segments CC’ is normal not only to the curve

" AB, but also to the curve A’B’. Therefore, the distance CC ' can be
viewed aé the width of the strip AA4'B'B. Since this width is the same
at all points along the curve, we will say that the strip AA'B'B has

+ constant width. - ‘ : \
. Suppose that a narrow,strip AA’B"B has constant width d and rotates

. about the axi§ 00’ (fig. 3.39). Denoting the volume of the resulting
body by ¥; we may apply Guldin’s first theorem to write

oy s
V = 2nRC'SAA'E'B . -— = 27TRC"M b
’ d~ d
¥ L
where C' is the center of gravity of the figure A4'B'B. Let us now fix

the arc 4B and begin to decrease d. We will then have

.V
?Ta?__ 27

Vx Saed, Saawn ~ Lagd,

&~~~
Qo




e ~ Fig.3.38 Fig. 3.39

where S,; is the area of the surface obtained by the rotation of the arc
AB and l; is the length of this arc. From these relations we conclude

imY < 8,5, fimSaes g \
. a0 d - ] 4 )
. and ‘equation (3.66) takes the form ’
iy , . ; v
S = Zﬂ(hm Re )I_m o (3.67)
d~Q E

LI X ~

,Fui'tlxermore, since th&'strip AA’B’B has constant width, for very small .
d its center of gravity will be close to the center of gravity of the arc 4B~
Therefore, as a limit we have

. lim Ree = Rg, - (3.68)

d—=0

> ‘where C x,) the center of gravxty of the arc AB Substxtutmg @a. 68) into
(3.67), we have . o ‘ i

Sup = 27Rgl4p ,
or, dropping the index AB,
S = 2aRl . | © (3.69)

Equation (3.69) cx.presscs the-foﬂowi\ng theorem: ' \
g,
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THEOREM 3 3. The surface of a body of rotation is égual to the Ierzgth

of the curve from which this surface is obtained multiplied by the circum- "~

ference of the circle described by the center bf gravity of the curve.

The theorem just proved is called Guldirts second theorem.

Another proof of GMdin’ s*3econd theorgm. Just as in section 3.6 we
introduced the concept of the static moment of area, we can introduce
" the concept of the static moment of length. ~ "

Let us consider a material plane cucve L (fig. 3.40). We place it ma

horizontal plane and ﬁ it"to the horizontal z-axis lying in this plane
by means of weightless rods 1 and 2. We allow it to rotate about this
axis.

The force of the weight of this curve creates a certain moment with
respect to the z-axis. This moment is equal to

Mz(P)L_PRC’

where P is the weight of the curve L and.R. is the distance from its
center of gravity to the z-axis. But ‘

P =qyl

.

2

where y is the specific werght of the curve and [ is its length Conse-

quently,
* M:(P) = )’[Rc .

The product /R is called the static moment of the length / with respect
to the z-axis. Denoting it by M (/), we can write

M) = IR.. . . (3.70)
The static moment of length is equivalent to the moment created by the
weight of a curve wheny = 1.~ :
If we divide the curve into parts _{1, Iy, ..., 1., we will then have
Ml = ML)+ M) + -+ ML) (3.71)

: ?ﬁrx{mn (3.71) allows one to prove Guldin's second theorem without
difficulty. '

We will use a formula for the surface arca of the side of a truncated
cone to compute the arca of the surface generated by the segment A8
(fig. 3.41). This yiclds the cquation

- SA;,; == TT(RI {' RB)[AB .

54
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. | Re \ .
Y &,
Y . R4 Rz
.  Fg.340 * Fig. 341 @
This may be written ih the form ' _ ‘ _
SAB = 217143 &%R_a y . ! . € ‘\ . ?)
. and since - T e, <« -
"\ R+ R ’
| v ;i___’ = Rc,
™ <
~ we have that .. . A
] SAB = 21TIABRC ’ « . ] *
that is, i . y *
“Sip = 2Milig) . R & ) )

where M.(L.;) is the static moment of the segment AB with respect to
_ the axis of rotation. - . .

Let us now substitute an arbitrary pane curve
for the segment AB (fig. 3.42). We approximate
it by a broken line consisting of n segments and .
suppose that n goes to in%nity and that the £
lengths of the segments converge to_zero. We

then have .
N ]

: S.= lim (.SI 4+ Sz +-+ S:) s ?3'73)

%,

where S, S,,.S,, ..., S, are the areas of thé sur-

. faces obtained By rotating the given curve -and
egch segment approximating the urve. The areas
Sy, Sa, .. ., Sy, however, can. be represented in ,
the form (3.72), which permiits us to write (3.73) .

Fig. 342 a8 C 3
X S = 2 lim M) M) + -+ ML
.o

n—+x

©

5
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- that is,

S = 2eM]), ‘ (3.74)
where M (/) = lim,..o [M.(,) + -+ MI)]is the static moment,of
the given curve with respect to the z-axis. Substituting (3.70) and (3.74),
W€ can now write ‘ ‘

S = 2aRel.

This equation expresses Guldin’s second theorem.

_ 3.10. The Surface of a Sphere"*

Suppose that a semicircle is rotated about 1ts diameter. Applying

 Guldin’s second thecorem, we may write .-

S=2n0CaR

where O is the center of the circle and C is the center of gravity of the

_semicircle (fig. 3.11).. Furthermore, we derived in equation (3.22) that

F .
OC = 2—-R L]
7
and, therefore, .
. .
| | 2R e ‘
- S = 2r—aR. -
n .
.. . 7} ;
Consequently, the surface area of a Sphere is equal tv - N
S = 4nR?,

DS W
- w

-

~ 3 11, ;The Surfaces of ( ertain Other Bodles of Rotation

Usmg Guldin's thmrcm we can compute L,hc area of a number of
surfaces of rotation. Let us consider sevéral cxamplcs : '~

1. A torus. Since the center of grav;tyafa cfrde lies at its geometric

- center, the surface area of a torus (67 3.27) is equal to

S = 2nR-2ar.— 4u°Rr

51
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2. A spherical strip. This surface is ob-
tained by the rotation of the material arc
AB about the diameter PQ (fig. 3.43).
From Guldif’s theorem we have

S=2-CC-l,
where Cis the center of gravity of the arc

AB and [ is its length. Furthermore, as
is clear from the sketch,

7 ¥ig. 343 S _
KU ' C'C = OC-sinf and I=2Ra.

.

Therefore, | o s,
| § = 27-0C-sin B-2Ra.
Equation (3.21), however, tells us that OC = R(sin «/«). Consequently,

-~

S = 2wR§x—?sm 8.-2Rx = 2zR-2Rsinasinf. .

Since . | '
C 2Rsine =1,
we now have o '
| S =27R-IsinfB.

Again referring to the sketch, we note that the second factor of this

product is. equal to the altitude of the spherical strip (that is, the projec-

tion of the chord 4B onto the diameter PQ) Denoting this altitude by -

H we finally obtain the formula T 3
b Y

S = 2aRH.

]
-y

3. Suppose that the square shown in figure 3.30 rotates about the
axis QO'. The surface_areaeof the resulting solid is equal to
! _ S = 2aRf = 277(0 + %)‘491/5@‘: 6my/ (2.

4. Guldin’s theorem allows one to determine the center of gravity of

certain curves. For example, knowing the surface area of a sphere, we can
“find the center of gravity of a semicircle. In the same way, by assuming

K2
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L2
the formula for the surface area of a spherical strip, we can easily derive
the center of gravity of a circular arc. This permits us to compute
the area of the surface formed by the rotation of this arc about an
arbitrary axis. In this way, in particular, it is possible to find the surface
area of the body shown in figure 3.29. ‘

3

3.127 C;mclusion

13

' Tke proofs presented in this book ‘might suggest certain questions.

For example, one might ask whether or not we have used circular

reasoning in any of the arguments. In the proof of Pythagoras’ theorem
we assumed the law of moments. This law is derived in physics with the
‘htlp of certain physical and also geometric cpneepts. We can therefore
" ask whether or not Pythagofas® theorgm was used in its derivation.
: Fortu_n’!ely, an analysis of the usual derivation of the law of moments
shows that it is based only on the axioms of statics and on certain
theorems of similar triangles. In this instance, at least, ‘we have avoided
_circular reasoning in the proof. We need to say the same thing about the
. other physicalJaws which we have assumed in this book* We have not

V- assumed a law that is based on any of the theorems which were proved

by using that law ’ A
We might ask/a second question: To whit extent are the idealizations

A

. s . . . ey .
which we ‘have used orr various occasions pgymissibie? In the third

chapter, for example, wg,bjﬁan with the concept of a line having weight

but no thickness, which s admittedly impossible. To* answer this-

question, we should point, dut that these idealizations are essentially
the same as those used in-gedmitry, where one speaks of a point ** with-
out length or width,” and of a lise ** without thickness.” Aine having
weight but not thickness is ari/a;bstractidn of the same kind, arising
from the representation of a thin derved rod with a definite weight, but
a thickness so slight that it cay be neglected. In this respect, it is p<)‘s§ible
to make further abstraction(g, and rather than usidg weight as the
central property, assign {o ,a/ line some otler physical property, such as

. flexibility or elasticity. In this sense it would, for gxanple, be possible
to speak of d line having no thickness but having elast opropertics. A
prototype of such a ling would be 2 thi;\l rubber filament.®

~a

1
6. Theidea of a ﬂu.x'ih‘lu line oceurs in V. A, Uspenskii's book, Some Appliva-
tions of Mechanics 10 Mathematics (New York: Blaisdell Publishing Company,
1961). The concept of an elastic line occury in L. A, Lyusternik’s book, Shorftest
Paths: Variational Problems (London: Pgrgamon. Press, 1964) [translated and
adupted by the Survey of Recent Bast EAlropean Mathematical Literagure] In
these books these concepts are used for the proof of certain §comctric tﬂgurems.

i

s
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We might, finally, ask a third question: ®o we have a right to use

“such nongeometgic axioms as the rule of the parallelogrédm of forces or
- the postulate on the impossibility of perpetual motion? Since we intro-
- ducé nongeometnc objects (such as forces), however, we must mtroduce

axioms describing the properties of these objects. Therefore, the use of
nongeometric axioms in this case is natural. We can say that the proofs
presented in this book are based on a system of concepts and postulates

- from the realm of mechanics, rather than the usual system from the

redim of geometry. The fact that we are able to prove purely geometric

.theorems from these unusual postulates testifies to the comsistency of

our ideas of the physmal world.

"

LY
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