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<. B | -
- ] Chapter I )
. ‘ Supplmént A

: - ’ * ’ ‘I\ '\-

. If we suppose that this syetem of equations has a ' solution: -
' “ o jpx+qy=r;?
- 1t can be found by elementa.fy.r meth to be: . ; - .
] LY | | _,.-x‘,c b _sr-cp —.
‘ ) . \8a - bp ’ ag - bp \

These numerators and de‘nominetors may be written in a form which helps to

develbp a useful algebraic concept and notation:

. c‘."‘y' L y ‘ .lq b‘ 8 ¢ '\'\ T LN .
L . _Ar . - lp ri ' )
s . -* a by’ ¥y a b «

»
2

r

An expression of the form [e‘ 13‘ 18 called a determinant, and its
- p gof O T/

r

» “value, as suggested by the example above, 18 defined: ./‘ = )
a-" ‘t) ~ ¢ -
. . ‘_ = ag =~ bp
. ~ |p aq ) : ‘

-

" This detéryinent has two rows: a,b;_ and P, q; and tvo colums: &,R4

~and b,q . It 18 called a seeond order determinant and has &4 = 2? terms

or élements.. A third. order determinant hee three mws and three colgmns , and

9 = 3 elements. A determinent of o\rder L has n rovs and n columns, ‘
so on. We frequently use "A" to indiecate either a determinant or its
ue. Note that the tirst order determinant fe! has the value a .

We 1ist a number of theorems, all of jyhich are true for determinants of
emt order, snd indicate briefly proofs fpr the secona order. In most cases
the proof- for higher orders 13 a stfaightforwerd generelizatien of the proof

Zor the ,second order.

. ' oLy .

o 1 Y
poal lpoal g | .. ..

(¥ 3

1-.
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THEOREM 1. A is unchanged if we interchange rows With columms.
r - - -
R B b p,’,‘aq-bpfé
. P a b -q C

Note: All these theorems remain vaﬂ.id if"ue 1nterchange the words "row",
"eolumn. " ' =
<

. -t .

[

THEOREM 2. If two rows of A are interchanged, the: sign of & ie changed.

s e
' >~ ¥ Y evprag=-(ag-bp)=-a. .
- a b , o wt
. - L 3 .
‘ ¢ ] ) ' #
THEOREM 3- If every element of a row of A is,multiplied by k , then sgt
is Ao. ‘ ' /- ' . ’
a . b : e * .
) 8 KD . xaq -fkbp = k(ag - bp) = kA . e
| . P q - T o
| . '

THEOREM 4. If, tyo rows of A are equal or proportional, then A =0 .

~eb-ba=0, | Pl_gl®?P
y ka kb a b

‘0 Z\ | R " 1"\,‘

THEOREM 5. Two detem?mts may be added 1 they aghee 1n’ all the elements of

a b

s n -1 rows. Thefr sum is then a determinant with these same n-1
" rmm, and the elements of the remaining row are the sums of the carres- >§
ponding elements in the original determinants, ’
| a bl e d,=/gq-bp+eq-dp='(e+e)q_-{b+d)p u,_
. P qf .i{p g - - . - : ‘

. | .
-
a,+¢ b +4d .

P , q

-

-

THECREM 6. , A determinant is unchanged if, to the elements of any row we add

& common multiple of the corresponding elements of another row. e

' a+ﬁcp b + kq a b+}§p kq =A+0=A.
/[ P - q P q P q " o
R - " i '( -
- ¢
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: : ) | . .o ‘ o
S Notation., It 1s co venient, for purposes of senm‘a‘-imtion, to use ’. o7
K "double substript natati n;t . ' N ' a

. * i € . : - : N

L. . . . 7 ‘

T

B | <3 - a ees 8 ' : ) 4 -

. ' € - " a \\‘\ ‘ 21. 2 - . an , - v
: . { d\ ) - ! anl : 8 eee aﬁn. _ * .
\ . L3 . . " e

L] "

wnere” "s, " designates th element in row i and colum j '.

* . \s . . - r . . -
-

Exercise. Rewirte the ﬂrpofs of Theorems 1- 6 ﬁsing double subscript

notstion. R ‘,‘ o . , \

g nm'm'ﬁIon. Minor of, ai ) (Notation ﬁi ;) 18 the detferminant of
» ” ‘ Co . : ,
. the square- arra.y obtained by redpving frop A - all elements of row

. 1, and of column J ;. we sometimes use the seme wofd to indicate '

the value of that determinant. Note thai Ay 18 of order n - 1.

. . . . .\\ - ) . i + J
ON. Cofactor of 84 (NotﬁoY( qm) Q= (-1)" aAig
Note that am " 18 the saze as- Ai.‘) if tﬁe'sum of its row and col’umn

number.s is even, and qls is the negative df Aij if the sum of it.S.
_-row and column numbers is bdd. As above, we use "cofactor” to. 1ndi-

cate the expression ds well as its value. . -
4 “t : . :
- - ' : ' ) ) . - j

'

. P q ’
'Ifilexii,ncx_ro"f s 18 q;of.p is b. -* | - b
The cofactor of a is gq; of D 1s <b.. L ol

g .. ' ‘ . . -
Example 2., a- b c
) . . P e r . '
U- v “ . . .‘

( Jo  ef I q .

'I‘he‘minor of- P is, v , of ¢ 1s a vl . -
2+1 |b ¢ b e ‘
The cofactor of p 1is, (1) v ool =y Wl . -
The cofactor of c¢ is (-l)l +3 4p 9 _ [P 97, . -
. SRS £ I ¢ u, v p
] N
. " .
i . - i .
’ . - . . “ : . 1 :
R . . : »
' ' . 443 ) - '
. N ,
H .8r ,
- - } | ) *



. The mipnor of 8 is

value -3,

The minor of 9 is tg ‘#l which has the value

-
-

3
6

13

2 3 &
5 6.7
8 9’10

" The cofaétor of 8 is (-1)3~* 1 times the minor of 8,

The cofactor of 9 is (-l)3 + 2‘ times the minor of 9,
value 6 . ‘

Exercise,
] . _——_-
‘.above,

e

1k - 20

and sf:d“hsa¢gpe7

M

;‘l which has the value 21 - 24 = -3 :

6. .

and haq the,

-

Find the cofactors of each of .the nine elements of

evaluate, thus:

(1) Write the same ‘second column, than sdd* ( 2) times these elements
to the corresponding‘elément of the third _¢olum; then edd (-k)
times these same elements to the corresponding element of ‘the first

.. column: !

u(-i)’+3‘ N
. ! 3(-uY.472‘\ 3
. 1(-k)‘+.k

oA

which yields the equal determinsnt

{

h{-a) ;,1'
3(-3) +.5( -
1(-2) P ‘
-11 8 ) Y e
-10@. -1 a

.0 l,t‘ 0

t

.

.

If we nov evaluate by using the .element of thelthird.éﬁw, we get

o]

i

13

57
-1

-1

213 7
10 -1

61‘

13
10

4
3

[,

: -

(3)
or by applying Theorem 6 to write the determinant in a form simpler to

t!_: d‘-:1(13'4 70) + 0 = -1(-57) =

'

-~

DEFINITION  The value of any determinant is equalfto the- sun of the -
© products of the elements of the first row by their corresponding co-

_factors.

Application:
+ T a
» c

-

Cramer'g Rule?

b

alal L olef

.

‘=

- ]

= ad - bc .

-
.

-

.

*
.



: a c , ) . L
e r|l. . |p T P ‘q N e
.- (P T = 8 wl'bu' wi T Cu _v| . v .
u v W ’ . ‘ f,
. ' =a(qv-’rv)-b(pw-ru)+e(pv-qu),"etc.‘
. ‘ . ' ’t .
Example. - 3-4 1 . 1
2 3 5| s3] 5‘-h‘?'5+1?.3 ‘
‘ 1 2 1 2 y 2 y L -

5 i A

= 3(6 - 5) - MY -.20) +3(2 - 12)

S0 =3(1) - W(-16) + 1(-10)
=3 + 6k - 30 =57

,--. . 3 ” /\ * . -
. . . .. A PR
.  Notation. = = = . i ' ] ' . :
R ———— . ‘ N . ) .
v . . Q . . .
. | J=l“e‘kdid“ . A

) - - . LI - .
- . . . .o .

MATN THEOREM. The value of & determinant is equél te the’ sum of the’ products . :
.. | ~Qf the elements Of any row by their corresponfiing cofactors.m :, ' (ﬂ‘ ‘
' A . ‘ ) ‘ “o ) (-
The.proof of this Main theorem nmat be carried en by. indueticm arfd 18
._sufficientiy difficult to be put off ‘to another course, but the student 18 -
~urged to write any . third order detex&ninant and to evaluate {t in a number
of ways. Note that by a ‘judicious application of the theore.ms ahove, the
process of evaluating a djteminant can be considersbly shortened by ob- .

o

taining equivalent determinants with some 2zero elements.

o ' ‘Notation. From the Main Theorem: IR
. ; r——-———— ' . ... ) . "
L " n ' 'm . . . .
"\ o Z Afdoﬁ = Z AiJ?iJ Y < | 2
s 1 =.l “’ J = l . “
' ’ ~A . 'y ' » R .
! : MIe. We may evaluate the determinant of the example sbove by uaing
" the element cf the aeeond row: A [} v
' ‘ \ . * * N . .
PN L | 3 1 3 4|- . ~
-?1.21'+3h o~ Olh l.—-2()+3(2)-‘5(13)—-1h+6+65
oL ) . . . ; - . r b3 "\
or of the third column: ! ¢ ‘
-‘ - P 1‘
2 BL j:s f+23"§l 10)-5-13)+2()=-10+65+2=‘5(‘
<. 4
! II « ¢ . ' »
i ) Exercises. [T can supply as manv as we think necessary.] ~
. £ 1 »
N l . . 2411\5 .‘ ‘ . . .
J \ S 1o -2 C
N B | . | 2N )
P . . ‘.,\. . . 7. W » ¢



‘.‘ . [} . [ Y (.
. f‘ .‘ ‘ - ‘ R ¢ ;
. - , ' . -T . -
. 2 - 5
. « v Chaptex 1I .
. | : o Smleéen"t B« . .
X . ) ‘ L4 ¢ a f . .. L
- <« . « " . )
; ’.« . FLOW CHART FOR TWO LINEAR EQUATIONS IIW X AND Y . | v .
" ~> < * . . . . L * ..
. o ) . o ' o« g} e .
) o, Suppose ve mnt to study t.he possible geemetric relations bet
" graphs ‘'of two linear equations : e ‘ ""!ﬁu ?
. SoLprepebyaee =0 LT
"'." ’ * Y ! *. “. r
';_." ‘ L '£a2x‘+bg+c2‘=° ,

4 . .2
. .
O

o . : ' . o ’
. Suppcse further that we wdkg the.study to cover all pairs of ordered tripl'es
' of real numbers (al bl, and (ae,be,c ) If we agree to inelude A11 /.

¢ e

/\_'- such pairs, the study can eagily be comrert.ed ‘t.o A computer program and the.
" coefficients t}lemselves can even be gen ated interrl‘uy in the computer as a

partcﬁ‘alergetpmgmm e e >

 If we kénov that the equations are not degenerste (1. e. , either the x or’

i‘ coefficient 1e different _from zéro), each represents a line in the plane,
" and. these lipes may be identical parallel or intersecting. What we want tq
canat&ruc‘t is an oréered a‘Et of questions we can asl? about tlge coefficients of

l‘.er:d L2 4hich will distinguish fcr us how the graphs would have looked if
‘ &

we had.\dr them. . Our ques:bione must be phrasq in such a way that gaeh Y

[

answver wi be eithe:r “yes or "no.!
: 3

of e e many different patterms of questio:';a possible. In general
we vant the psttern to b;raneh 111:9. & tree with each question go that if an
e.n.swer ig*® yes ,' the wec*eeding path will be different dhan it would have been
had the angker been "mo." At the end of each path will be a messige stating -
the correc geometric Q:onfiguration for the gair of equations with which we "5
- started, . This type of pattern. is often F:Lled a flow chart and is a useful
tool' in computer programming, If you think a little yougwill see tha% thé
well knptm game of Tventy Questione uses a kind of oral flow chart to sol\re

_the pmbzlm "Rxat am I think.ing of?"

3 . . t . - o ‘ ]
) Let us consider vhat the first. question in our series should be. If at

’

‘e

£
least one of the given equations is degenerate, thejn do not ieally have

tw lines to stﬁldy. We want to design our, pattern to chénnel,such equations

.' . s - r// */ .*_A ’-
~ a ¥ - . >
| R . ) g 2
B - e M “ i T .
. - . ¢

o



»

. D ¢

- \ SR )
. aside. * Accordingly the first qgesﬁonk te . . . .

. gs‘(!allw'?l (lagl #lo,1) =02 | S
. ) .gg:,a.n S S

- 1e the, ans¥l3r 15‘ "yes"t then, ve know that eit.herg [all + |b { 0 ar ’ /_ =
el #Jbal 0. ¥n ot‘her words at least one equation is not redlly linear. .
L . -
. We pl*e:-the mess Degensmté equation" and end this path. ,If’ the ansver -,
¢ , to the queé\:ion was ‘"no 5. We are a.ssured of two linear equations. What shall-
, we ask next‘i A.possihlc \eecond question 1is _ )
A 3 .. e r - : o : P
’ { . \“ . b
’ (1 . s ) - .\ .
. ; . Is a‘]_bg b8, ,4“0 ? . ’

Notice that this time we ask whether a certain expreasion 15 dif‘ferent from

zero. Of the answer is “yes", then we know the lines L, ap L 1ntersect B
in a point. We write a message to this..eff_ect_and close the path.- sIf the U
answer tp the gecond queBdidn is "no", then the {wo lines’must be either.
parallel or coincident. We need s third question which-will distingaish be-
. tween -thes? two cases. One such question is Sy .
\-rl . ! : * ‘j ' by
Is Ialc - a cli + [clbg— ceb = Sy | o017
v ‘N
. - \ b . .
: o ' e b I - . .
An answer of "yes!' guar&nteeé that "1 1. 0 and 1 _'1 =0. oo
e b S LB b2 .
Therefor'e we have a pair of coipcident lines. An answer of "‘fna" 1?n 8 simjlar
‘ way insures that L, and L, are parallel. { - ]
t ‘ . .
Let us repeat these- three questions together with the message Pattef'{‘:
R S ,we have indicatéd. -~ - ) .o, Y
. . ’J *
- . ‘ ~
N ' -
. d ‘ -
- . | “«
. , “ , . ¢ - E . ¥
v (.2 * ’ “
. - .
. 3 b «
. ' foc 8 - N -
. . A < 2@ o
> ~ ] * 7 L e ) : - .
. . 448 T,




|

:."...“ ] R - - .

‘ _ . alx+b1y+cl L .
ft-*" o ”P ' '
" : E :a'x+b2y+ c

~

.. Is ( all b l]) (Ja l) =0? —es

‘ \: [
r . l i LY I - . s, -
. ‘: NO‘- At . '.,
a « * ) C et . - . .

., I:s a b, - bya, #O?r‘—_‘y_es‘

. -
N . .
’ [ B
. . \
.
- 4
' -
. & & -
.
.
r .
£ 0 ¢
L] e
B
=0 N ¥ “
= 2 .
r- .
- .
4 a . 4 . )
b

,e L [

'Q .‘ ‘4_'_

Fither L

1

or LQ: ig ‘degénergt':e'

t

. )

-

-

I;} and L’é are ‘inters.éctiﬁg Tines -,

"
‘ &
' v
-
ri A
.
T
-
L)
.
- LY
[
;

=

" - .

. "

~

| S
- e T,

Ll".and‘ b, sre, coincident lines

.
* a . -
-
oo P
A ] .
¢ .
N
-8

LV



N b
) systen of reference in vhich ’q,he axes are perpenqrculea:’to each other, but a
P ‘different unit is used on each a:d@. . Fdr éxanile, if, t.he rahse of a ﬁmctiqn
. fs v very large conwared to thé dqinkin, any unit ‘small enough t:o-&llow the range

- - . . ” _i_
Y * ’n N - R ~ ’ * . ] ' - a
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. In practtce, it 49 sometimes neeessarwto grsph a- functi’cn !f(x,y) in &

l

¢o be graphed on § piece of pqper- \H.l]/ eompress thé’ domain toQ nmch to be -

_helpful. We can study mmv propertiea, of suc.h a. grsphq%ut we must bz&reﬁl ‘ - .
- never” to read sldpes :‘rcsm 1t v’i,thout taking ,the dii"ference of - scale i .

v r .‘P

' \ .
.Other 1nterest1pg miations of graphing £{ x,y;) using perpendicula.r R

secount.

bt}

" . aXes are semi-logaﬁthmic aﬁd loge,rit.hmic ‘graphs uhieh prové t9 be helpful ine

applicﬁtions of- msthemtics to biolo&y, ecorfoniics s -804 other aciencesﬁ ) IR
especialhr vhere grarw'hh is imrolved. As example, let us look at t.he graph Y (

T

vof_ y=¢e first in regul&r rectangulnr and then 4n’ semi-‘logarithmic coordi-

nates. : - . . ) . : Y , .

An

(a) ' b
Graph (a) 1s the familiar exponential function studied in Intermediate Mathé?-

¢ . , . .
matics, If ¥y = e* , then x i« the ns'tura.l 1ogarithm of y_or x-= log y .

- Clearly there is a linear relation, not betveen X and y , but Between x

and log ¥ . If we treat x as usual, and graph not y but log y on the
vertical axis, we do indeed have .« straight line. (See graph’ b .) " Thise is
called a semi-logarithmic graph because hne' of t.he ‘axes messm:ea the logarithm

3

of 8 va.riable, rather than the variable itself. . .



‘e
4]
-

- Ly

If wb go one sﬁep further and® lot the logarithm of X on one axis and
* the logarithm of" y (to the same :base)mthe other 'exls, v%hav)ea.log.arit -
mic graph. This. type is uaeﬁ-extensively An finding equations to fit experi-

mental data when there is reasod'to bel{eve the relaﬁionéhip is of the form

1
-
. &

- A} . '
y = xk‘ - 'I‘a.king the 1ogarithm of each si we ‘have e . T
jfﬁg y=k log x. - - e et

—08 y
on the other we should be able to fit a étraight 1line to ‘the data, and
determine +k as the slope of the line.. )

If we graph 6ur exponential daté”by measuring "on one scale and loé X

As a.matter of fact, if a scientist suspects his data coulll be de%cribed
) i ¢ . . ‘
- by' elther y = 8t or y = x* s he can plot the data using semi- logarithmic
and £ull logarithmlc ceordinates. & straight
' line, his problem 1s solved. If the semi- -logarithmic graph is = straight line,

(log a)x., the slope is the logarithm of. the base

If either grsph appears ‘to be

then log y = a ,. and the

data is related by y = a* . If the double 1ogarithmic 8 ylelds 'a straight

line, then the slope, a , determings the exponent in the equation y = x>

which relates the dats. . R .

* .
. * L '
-

Problem. Suppose you have experimentally determined the following data
and want to discover th§ mathemat{cal ;elation between x and y .
L4

. \ 2,50 6.20

~11.6 1.4 ¢

12.9

’

Suppose, . further, you guess that y 1is elther an exponentiasl function in- -

vl 3.61 12,9 | 30.9

volving x or that it is a power function of x . .
. i P ’
¢ ) 1 ‘
Solution. Using common 10garithms we fi11 out a table and plot the

ordered psirs (x,log ) (1og x , log y) on & second. Then

we study the points and if either graph is approximately a straiéht iine, we

on one graph and

measure 1its slope. Finally we use this to express the relatidn hetween x
« and y . : -3 . S
’ : x 2.50 ¢ 11.6 21,4
. Tog x | .398 | .192 | 1.06'1 1.33
Y 3.61 12.9 30:9 72,9 . 4
log » - 557 1.09 1.49 1.86
52 \
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PHe first graph seems to be linear and 1ts slope %% is approximatély
¢ ¢ .
xl‘LL is the relation we ¢

130 .
5 ~ 1.4,
are seeking.

' Therefore, log y = 1.4 log x or y =

¢

.
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o ‘f‘hdhnmnnzms AND THE LINE - L
. ' ' o . . - * . Te 'y ’ .
- 82"1(: ‘ . ’ . " L] - . f - X -

N " .. From the postulates of geametry weé deduced {muedistely tHat. any pofut gn !
. & line may be chosen as the origin for, 8 coordinate systan and that. the posi- *°
1tive coordinates may be assigned t?o the interior points of <lther rsw deter- B /
mined by the origin. However, 1ncour “developmerrt of the SMSG G metg there . -
- need be no mention of units, in terms of which: thege measurements ame mede; | .
“the }ntir,e development depends upon‘one intrinsic scale of measure. For thia _
reason we she.ll describe such coordinate systema as 1ntr1nnie coordinate o

- «

sxstems. It would be very convenient to be free to choose coordina.te eystems
with different scales of measure. It is easy to show that we have thia <

. -

freedomo -t \ ’ .

The coordinate system is an unusua.l type of funct;on whose domain 1s H:he
et of points on the line rand whose range ia the set df real mumbers. Iet uE
denote this function by  f, whose“value at each- pcﬁnt X 1is the number
£(X) = %x. let us consider a linear function, g, on the real numbers, f . ‘
defined by the eqﬁation x' ="g(x) = ax + b, where a _ 1s any non zero real
number ;nd b 1s .any real number.. The co@osi‘he function which assigns to .
each point X the number g(f(‘x)) is aldo a one-to-one correspondence between
the points of the line and the real numbers. We shall gescribe such corre-
spondences as linegr coordinsate systems. We shall conﬁrme to describe theé
n vhich correspcrids to a point as the coordinate of the pgint, since this -

phrase has meaning only with reference to a particular coordinate system. We

¢

shall denote the composite function of f by g as g(£).

We shall consider the description o:t‘ the geometrici pmperties of the
.line in terms of such a linear coordinate system Is there e.nything in a
linear coordina.te gystem compa.rable to the measure of distance between two .
N points,’” R a.nd .8 , whose coardinates in an intrinsic coordinate system on
the 1ine RS are 'r and .é respectively? The new coordinates r' and s',

« of R end 8 respectively, are related by the, equations

a |

N 455 ﬁ




e T "
"k - 8| , the const.a.nt heing independent of she choice d¥f point.s . .

e
. .

Y distance in t.he intrinsic coordinate syatem‘ However, we do ~mta that in the ..

: -‘distenee between its endgoints ands that congruent segments were Geﬁned as

, - t e

Unless [al =1, | -8 ,13 not equal'to |r - s[ » the messure of "

linear coo::dinaﬁe gstem,. rele.ted to the intr.lnsic coerdi@.te syst. ‘by t.hi

- P oy
. . . .
- . . . -
B . s . E . €
~ £ * .*F. . R F . »
. T ‘ ) r' = ar + h . . -
- . = s"=§s+b‘, 9 ‘ T i
-' ] 7 -~ , N . . -
- We discover that ( ' , , ..
< - ) . X . .t .
L. . - |I" s'l = !8“ + b) - (as + E)l . ‘
f : ‘ <« T« = lar - as|] . R ' ..
_" LN . . . ¢ . i o'_.
‘: g i [13l lr' _ s[ - : . .‘ X

equation x' = ax +b , the mmber Ir‘ 's'] 1s a consta.nt miltin®e of Y J

-,
We recall tha.t the. length of & segment was deﬁned to,he 'the masure of‘

: 'segnents havi e same length. ']:hus the statement RS = *T .18 equivelent

“40 the statement, 5 - sl 5 Tt - uf ,fvhere r,§,t,ad u are |
«
intrinsic cooniinatea ?f R, s, T/, and U respec‘tively‘

1 ‘ : }r-s[:[t-\x[,A .
then  aldr-sl=lal- ]t “ul, s ¥ ~
g - ‘I{a‘r‘—‘as| = |at - au| , S L .‘
and L ;(ar#b‘l)-(g“b);: :gatfb)-(a“b')y, )
.' or o |rt.- s} =J1;' - u'| , vhere r! , st , t', g?d W o

are éoor&inates in eny linear coordinate system. -Thus the corfdi tion defining:

congruence for sefments applies in any linear coordinate 'sysf.em. »

® ' , ) :
The student should think through all the details of the' argument that

a.:';y linear, coordinate system is & one-to.-or;e coyrésporxdence betweenvthe points
of the 11ne\&nd the real numbers. Let £ be an intrinsic coordinate system
onaline L and let X by any point of L . Then f£(X) 1s'a unique real
number and so is g(f£tX)) = af(X) + b . %o far we have not used the assumption
that a £0 . Now let r be s real number. Sinch”“a £ 0, there is a unique
numb er Xy such that ax, + b =r’ Since the original coordinate system is

a one-to-one correepondence between the points of L <angd ‘l:he real number:,
there is a unique point X, such that f(xo) = X, . Hence there is ‘a unique

point 7{0 on L such that g(f(xo)) =‘g(x0) = 8% * =1, ,

, 1;56‘
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| M}_ Let P, d,R_, aod S ‘be four pointks\on a line with, intrinsic
coordinates 2, 5°, 8, e.nd 11 respectively. Since’ |2°-.5| =18 - lll
'I-T'Q RS . Leta 1in‘em§ eoordinste system be defined by the equation -

-ax -1 .. Then the.new coordinatesaof' P,Y, R,and S ere 3,9,

l'j , and 21 respectively. Since |3 - 9[ = ll‘j 21[ , the congruence of

PQ and RS is siﬁilarhr described in terms of the nev coordinatea.

3

»

. . %xe other geometric property described in terms of intrinsic coordinate ot

+

systems on & line,is betweenness on ~tHe line.- He recs.ll that the poin.t § isv "
-betVeenRedeifa.ndonhrif r<s<t or r>s>t,where T8,
' and t. are the coondina.tes of . R ) and “T ;‘espectively We dbserm that

-

» ' : e B .
."c'ii‘ ‘ . r<s<«<t L ‘- -
. - A ' ( - N - ) y
thep .« A&r <.as <e® if a

) oF a:r>s.s>'- <0

.
I L

and v 'arrrb<'s_+ <at+b it &> 0

or ar+b>as+b>a.t+b 1% a.<0,."' *

[N ! 'y L

- The membem of these inequalities are ;precise]y‘the coordinates r', s!

’

_and t! 7, ‘which would be assigned to the pqints R, S, and T byea linear
Sq'ordinate sysyéx-defined by a linear equation x' =ax +b . Thus the last

two lines of the above development Way be replaced by ¢ X

-

h!

\ rt<s'’<t' if a>0,o0r rt2s'>t! if a<O0. N )

A similar e.rgument obtains if r > s > t . Inall cases the condition |

' deseribing betweenness on & line holdy if T, 8, and t are replaced by
‘ ’the corresponding cmordinates in any linear coordinate systemn.

The geometric properties of "ongruenee for segments’ gnd betweenness on ™
a line are_ described in exactly the seme way in terms of linear coordinate
¥ systems as in the intrinsic coordinate systems. We sumnari ze these results

v B

A’ny»intrinsic‘ coordinate system will not be changed under composition
with the trivial linear function defined by the equation, x' = x , and

from the preceding two paragraphs as follows.

conseguently is included among the linear coordinate systems on the line.

ese are the coordinate systems whichrare of use a.nd interest to us.

Henceforth, we shall usually consider only linear coordinate systems; where ve
\ there.is no chance of ambigulty we shall call these systems coordinate . {

gzstems‘.

R | 457
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}

<. mmsa-l. ﬂ' a nate system on a line assigxis the coordinates r,
A s,mdttothepotnts R,S,and T, then § is be R
o and T if end only if r<s<$t or r>s>t . . |
.*!‘ "' : * T . . 4 r"'. ' “‘ ‘-s. ' .
THEOREM S2-2. t P and : Q be any bvo distinct points on a line. Ina ' .

coordinat8)system C onthe line, the coordinates 'of P a.nﬁ Q are
‘ P ngl q respectively Let r and be any tvo distinct real

-

mnnbers. . Then there exigts a coordina system C' ‘on t.he linet in ~ .'\'
_" v which the scordinatés of P and Q are r s.nd s Tespectively
‘e A.. . ! .- - ! . - ‘ k

. . &5 We wish 136 discover whether. ;hgre exists & linesr ‘Function whi
¥ relates C' t& C° by. c?mpolitibn. If thére 1§ such a functicn, thﬁ-e exmfs

" an’ equation -x! = ax + b deﬂning the function. The following eduations - N
. would hsveto be satisfied.. . - g ) RN A
' | , ;/;-qs +'b ' |
(1) e : ) -
. ot ‘ «
v and s =ag+b . . . LA
- o . . . . »
Combining equations, we obtain A -
\ ' r-s=alp-q)
. ‘-g . - = ) ) - . .-- . ]
or ' ' a =5, '
' . ‘P-a
Substituting in Equatiord (1), we obtalm ! , . ’ ' .
4 . ] r . ' ’ .
Y - g .
r - e———_—— & 'h b M <
N P-4q b S E
‘ or b=r - RS ' . ‘
BT
N ’ _Pr-Qqr - pr+ps
ﬁ . =L ‘
* _ps -‘gr .
Pp-q ° ‘ ‘ g
L] * ¢
« The solution set for a and b of this pair of equations is
' {(; - : , 2; - gr)} . The coordinate sy}stpm ct formed by the composition / ,

i

of C b( the linear function defined by -

x! r-s)x-f-us-
P-q '

. . } ' - } -
Coo . R (U . 458 ' i '
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: ". ) § - - ) . T .‘ . \‘ .l' L

,.  does satisfy. the conclusion of th theorem. Since P ;é q, this eqgustion,
?f‘éy

. and consequently the coordinat stem C', is alvays diﬂned. In ¢ the-
coordinates of P and Q are given r’qspec‘tivaly by . T i
R v = (B er S
s 7 . .P y PH . s Ly . + o
..i ﬂnd , . ' . . LI - - A -
T ’*\Q' F(r'- :) +L_q_8 - gr nms 8 = 8 . { . N
| . B’- P-4 P-4 . ‘ )
In faét, ‘the coordinate s;mt.en c' is unigue, - though we have not Wit

) . . N - v
. . . i . T : ot
oo .hgre. e : N o S / .
o ) . ] ‘ -~ ’ . . ) S -
.t : . b - N ' - a '

-

o Coroll. _g §2+2.1. If P and Q are any two distinct points on a Une U
. with coordInates 1] and q respectively in & eoordinage systen C , then
the coordinate system C' which is rela%ed to" C by thc linear equation,
‘ ‘ : ‘ i .

x': &x-——l-—, ‘
., T T a-3° ,

« r

.
P

‘ assigné the coordinates O and 1 +to the points P and _Q mspeeti{rely._
It 13 sometimes convenient in latex compubations-to write this result in the

] ‘
; (
) | - L O ,
« . form x'=:—:-§-. . s : .

_ In order to make intuiti\c;sl\v n}ore clear the role @layed by the constants
-a and b 1in the introduétion of a
new coordinstes are assigned to the origin and to the unit-point under

new coordinate system, we consider what

4

[ . .
composition by the linear -function defined by the equstion x* = ax + Db .
. '] . .

.

e o /
A ' B Q U
C < -+ + 4 +
o & .
-E : ‘l'b 0 1 -
', a a
4 !.P . R
A B 0 U
e + — -+~ +
: I
© 1 ' b . a+b
. S . % " Figure 82-1
¢ « ° .
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The potnt which was the arigih now has cocrdinate b 'eqd . d(o U)

b vhich vas 1 1is ntw |a us t.he 0le of b is to shift the origin,

‘and’_gne_' role of & may pe to incréase or decrease theaeale of distance.,

Ir la] > 1., we say the new system is senle-decreasi_ng; if Iaf <1, the

ew.system is scale-increas.ug if |a| = 3 ,.the new system is scale-

mgerﬂg. We obsexve thaf, if d> 0 and the orlqina.l chdinates -3 a.nd

"4 q ‘of two distinct point.s are unequal in the order p<gq ’ then “the new

.o coordinates ' p' and q' Lare unequal in' the order p'.< q’ wh‘i‘le if

| "a<0amdp<q,then p‘ and _ q' areunequalintheorder‘f o

( q! <p'. For thesé reasons We say that the new -system és ogﬁer-preserving
if a>0 ‘and order—re‘versing if a < Q : -

- . -
- - . X .
‘. * ¢ ] -

«”

L - . . #.'Exerc‘ises 82-la, N '

o A ’;,.L, _ . R . ,

K Let P .Q and“¢§ be points on a line with coordinates 5 , 3, and 7T
respectively In I“ro’blems 1-6 find the coordinates of these points in

" the s:rstem given by composition of the origina.l system by the linear mnction

¢
"defined by the given equation. Is the new system scale~increasing, scnle—

decreasing, or scale-preserving? Is it order-preserving or order-reversings

‘.l_ x|‘=_x+3ﬂ ' * . ‘t

: 2. x'=bx-2 . o | g
;\ 3" x'ﬂ%?r"f')l: .
Lt x! = -3x , , . A
6. x' =x+T. . :

ar

T. For the systems -desci'ibed in Problems 1 - 6 , find the coordiﬁatgs of
the polnts which were the origins and unit-points in the original system.

8. Find the original coordinates of the points which become the origin and
unit-point of the systems deseribed in Problems 1 = 6.

4 A Y

-

9. The equation. x!' = ax + b defining the linear fu.nction which relates
coordinate systems was subject te the condition a ;é c . W}w? 4

- . : N . . : ®

o

.«




L ‘. . ¢ : g
. We have not considered the cgae in whibh ve employ & non-linear equa qn
%o deﬁ.ne & new coordinste esystem on & line, but it is interesting to do 50\;
In Pmblms 10~ the rul ‘def‘ining sevéral functions of other types arg
given. mfsmine the c ndte system obtained by the cmositiun q.f %
1ntrinsic qnordingte system and the ftmction deﬁnegi by the giVen equation.

Does the réinste system still describe Betwaenness on the line? Does 1t\

- . . . .

.

" describe ‘the congruent segments of t.he line adequately? -‘_" o, . { :
, - . ) ’
. x - aé‘ .’. b | ‘ . _,\ cv ) . , N ) ) \ R -" -N
9 * ) . - ’ . .
11, x! = .ex . . ‘ : ) <. .‘ ‘ .
x!' =3 wvhere® x £ 0. ‘ "
., X . .
12" 3 ') . L3 '
x' = X where x =0 T Co- . ’ )
[N t - ' * -
_13‘. x' = logmx - . * “ , - .
. . t . ‘ . .. &

An 1morta.nt mathematical structure which you mdy have encountered only
briefly is the group. A group is = sét of elements with a binary
operation which has the following pmperties:

Let S denote the det, a , b , and c , any elements of S,and'O.‘x

_the binary operation. = . ' J '
‘ (1) (Closure) " ‘mob is a unique element of & .
(2} (Associa‘&i\;iizy) (aed)oc = aofboc) : ‘ o
(3) " (Igentity) . S contains an element e such that .

a0e =08 =8
(4) (Inverse) For, éach a there exists a'/ such that

aoa'i= s'ocoa=¢e .
[ -

+

*An element e described in is called an identity and an element a'
described in b&) is called an inverse of a . ~

Some fanﬂ_li‘ar‘ examples of groups are the integers, the m’cio‘h&l numbers,
. . br the resl numbérs with addition as the operation. Other eiamples are the |
non-zero rational numbers or non-zero real numbers with multiplicationr as
the operation. ‘ . ' .

Let us consider theé set whose elements are the functions whose domains’
are the set of real numbers *and which are defined by the equations -

f(x) = ax + b where a is any non-zero resl number and b is any real number,

This set of functicns forms = group under the binary operation of composition.
-

461 N
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y— ‘ at+b4_-}:+t=b."

) ft ,“ ‘; o '
ﬁe shall prove tgnt the identity vand inverse pmper@ies are“satisﬁed,\
bu‘ we leave the discuss!on of the closure dnd assoeiat“i\;‘e properties as
exercises. = ° o : ) ' . '
: N )
If the set contalns an identity, it must ve « fu.ncticn de:f‘ined by a

linear equa.tion g(x) sﬁ +t . If this fyn'ctiOn 4s an identity’, It m must

satilfy the ﬁollowing gguation. f . G
L) " b ‘
r(g(x)) = e(£(x)) = f(x) “e 1 .
‘ This becomes a(sx +t) +b=s(ax+b) +t=ag+b 1
[y . f) ;
or ! asx + &€ +¥p = sax +sb+ t =ax ¥ b . \;
oo (I -~ [ 4 . ! 8,
. This W11% be true if ‘ ‘ , Rt
. '] - * . . - i B .
(1 - esX = 58X = ax , and " ‘ .
3 |
(2) " at+b=sb+t=Db:

v

Since a £ 0, Equation (1) will be true only if s =1 . Eguation (2_)~thu's'

s

becomes ’

Thig equality implies that t°= O . Thus, the desirda function
g(x) = sx + t = x . There.is only one function of ‘this form. It is in the
set, and it can be seen that it is an identity. ‘

'3
Now we want to find inverses. If‘ an element, f(x) = ax + b, of the
set has an inverse, it must be a f\mction defined by a linear equation
g(x) = sx + t , If this function is the inverse of f(x) , 1t must satisfy

f g(x)) = g f(x))

This becomes ° a{sx +t) +b =s(ax +b) +t =
« - s

or asx + at-+ b =gax + sb +t = x . /\

This will be true if

(3) - | asX = sax = x , and
. . L4

(%) . at +b =s8b +t =0 .
Since. a # O , Egqation (3) will be true if 5 Equation (4) becomes

a.t+b=(-l—)'b+t—0,(

2 R

which is true 1f t = b i vhich is deﬂned since a £0 .

1
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° ' ST * N T no- A Coe o v T
. R : ‘-,{1( - - | N
., the desired. /?unct.icn g{x) = sx + t = (—) “Thete is only ome

. fun of ths,s ford. Tt {e-dn the set, anrtt cap readi]ar Rej showm +o be .
kan inverse of (x) Insﬁ‘ 1&41tities anfl iﬁverses‘&ve Ws unique,g y °-

_bu}‘ va leas }'pese q;xestions as exétc;ts&s./ g . > /
. . ‘ . v ) ‘ - - . . "'
v . | v e ' l. ‘. ¢ .t : | ; \- ¢ “-
‘ -0 . A . } A T R IR .
T ) -~ Exercisas- sa-rua : o e
- ‘l
1. Show that t.he get’ a.nd binary operation “aéseribed above \he.v’e the closure /
PRy .. , ' )
‘. wn. { . * [ R - ., ke -
- ’ . . " % . - T r-. ,
Show that the.set dnd binary &mtion described ebove have the " .
asdociative property . } T ‘;h . S ' ﬁ"& . g
3.4 Show that set and bing;:'y ppemtion described‘ abovaad.o ot have the
- tive perty. "/ - , - 4
. L
/ ’
4. ‘Show that in any érpup the idmtity 1s unique. oY,
5. Show tha.t in any ‘group the inverse of A:w given element is unique. *
! t
6. Show rtha.t in "“group‘ the inverse -ef the i8entity 1s the identity. y
7. let f(x) = axy+d and 'g(x) =Px+ Q. We denote the ipverse of .
\ £(x) by £(x)’. Fina . . 7& Ve s
. & « ~ b
. 1 v e
(a) fgr;(x»' . (@) e ) b ;
. * . - - . Y . -
(0) £(g(x) (m) £ (=) R
. ‘ - - {' .
(e). &(e(x) o e M) f
(a) S(s(x)) . ' (b the inverse of f(g(x)) ~
- v l . *
(o) 2(e(e(x)) 2 Y sk (x) -
® afs (gtx))) | ) £ l(x)) L
»8° Find the function (or functions) h(x) such 'that . ~
. §f i
h(h(x)) £(x) = ax + D .
" Discuss the possibility end number of solutions for h(x) -
- ) ¢ N N
! *
- - \ Sy
- | /7 : ,
-
y \‘ )
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¢ 52-2, Msppings'and Linear Transformstions., - <o

A‘ A function whose domain is a set A and whose ranée is a set B (\;hich
amey be the. same as A )-is frequently called a happing. An element of* the '
range which eorresponds to a given element of the damain is said te'be the

“ "image of ‘that elemen}. An element of tire donfln kﬂch corresponds to, or {s’«, .
_M ontg, a given elennent of the ra.nge is called a L—i@e of thdt . '

" element. :
. ; - - = a -
~. « In describins a mapping the semnd set mentioned ‘may not a.lweys be ltbl .

range of . the f‘unctien, but 1t always conte:l.ns the range. If it.is the rs.nge
the mapping ie¢ said to be onto the second set. If the range of the function
. is a proper 'subSet of the second set, the fiappihg is said to be into the .
. " second get. A mapping {s also called a transformation, especially vien 1tds °
a m'ap from a set of geometric entities into a set of geometric entities.
The set of images coﬂ‘ponding to the elements of a giVen set in the domain. .
.1s called the image set;. the set of_pre-images correspending to the elements ‘

~

of a given set in the;ange is called the pre-image get. - -

c

The ma.ppings which ve consi_der in this section j-e.one-to-one tra.r:sfor- ¢
mations of & line onto itself. We consider this lind to have a fixed
coordinate system. We need such a eoozzdinate system to describe tirte
tra.nsfbrms_.tion. We shall leqnsider four types of transformations; translatioms,
reflections,A expansions, afd contractions.

Intuitiv'e_w, we may think of a translation as a shifting of the line
along itself. A reflection is a ha.lf-rotatior; of the line about the origin.
Expansions and Mntractions are uniform stretching from and shrinking toward
the origin. We may describe these more explicitly.

: f \ \‘ ‘
TDEFINITIONS. Let £ be a line with a coordinate system; let
P be a. point on the line with coordinate p ; let the point

Pt with coordinate p! be the im.g.ge of P under a transfor-

mation of the line ¢ ento itself.

A transformation T(P) = P' 1is a translation if and only if
there exists a real mdmber b such that for every point P,

L J
re 1 = + . B
, P p+b 7

»

A transformation R(P) = P' 1is a reflection if and only if N\
for every point P, p' = -p . .




‘ _ C o e _?‘6- - Y - ‘ o l/f
_ A transformation E(P) = P' is an expansion 1f ‘and only if |
there exists a real mmber a > I such that for every point
'P,p' =ap . 4 | .
o -

-t
-,

ta -
-A-transformation C(P) = P' 1s & contraction if and only 1f.
there e'xistsy a positive real number & < 1 such that for - : BRSE

o

every point P, p' = ap’ -

... It should be intultively apparent that in any of the above ‘transfor-,
" metions an image is between two other images if and only if its pre-ims‘ég 7
' 1g:between the pre-images of the other'two images Therefor#, . the imageﬂset
,‘ . of & segment is also a segment. It should also be apparent that in a trans-
lat:lon or a :eflection, image segments are congruent if and only if the pre- -
: .'mage segmehts are congruent. It may or may nqt be clear that this is falso . .
the case in an expansion ozj contraction. We \eOnsider two cangruent segments
T3 and FS . Thelr congruence depends upon the equality of |p - g| and e
|r - 5 . The congruence of the imege segments depends upon the. equAlity of
lp-q[' [I:'-s'[ .'Ihesqmaybeex;:reséede.s ap - aq [=a§p—q[ )
lag - aal =.a]r - 8| . These latter numbers are €ertainly eun if the ‘
origina.l gsegments were congment. Thus, the imge segments Qf congruent ‘
,segments are also congruent. R

: ,‘ o
We continue our’ development by consiaering cm@ositions of these‘
transformations. A reflection maps & point X onto a point whose coordinate
| ‘iav . =X ; & translation will nov map the new peint onto a point whose
_coordinate 18 -x + b . An" éx;:amsi‘on msps a point X ontao a point with e

. coordipate ax ; a translation now maps this new point onto g point vhose

coordipate is ax +b ., e .,
- . . - . '
. Buch s sequence of transformations may be indicated in s diagram: °
- ‘ ‘ '
i . _
E oU P Q e : i ‘ L
- A S | it 4 : :
- -y o] 1}2) 3Y NN - D ~
For o v . BN ‘
-1 ‘ vt S : '
] { ) \ N L -
d M ~ . ,
t‘; ?-I-a \ .
-8 \\ & \ a& \ 3&-\ . o R * 9N . .
\ [ \
& ‘ L \
" . : \ ' I.l"
ﬂ — 4 : - A L
-a+b atb 2a+d 3a+b . ax+D '
- ~
: L‘6§ .
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: . )
It should be understood #tat L , L', and 'L" are the same line, drawn in
separate positions to shﬁﬁ.yﬁe transformations clearly. L' 1s the result of
an egggésion.transformatio; of L., with the equation x' = ax, (a > IL,;

~ IF is the resuli of a tfanslation transformation of L' , with the equation

=x' +b ; finally, L" can be consf'dered as theiresulﬁ-of a composition
of two transformations of L , with the equation. x" = ax +b .

e

«

We consider the suctessive application or com@osition of two of these
‘ : transformations and display the results by means of the table below. We
employ the notation used in the definitions given above. The‘labgls at the
top indicate which transformation 1s perforﬁed first; the labels on' the left
) indicate which traﬁsforgation is performed sgcond. The entry is the
. coorﬂinaté of the imaée of a pdint X , subject to the restrictions of the
glven transformations. The subscriéts of the constants indicate which

e transformation introduced them. o ‘ N
: _ : : o L
. |l R |E (s >1) S}(o_<&l<1)
A 3 T . . x + bl + b2 -x + bg a X + b2» & x + h2
‘ ’ R -X - bl x 0, i‘aalx , :alx |
. | E (a§.>.}) -¢' aEx + aEb -8,X 8,8,% 8,8,%
: R by | x| e 58

N
¢
-

We summarize by obsé}ving that these %ransférmations"énd the transfor-'
-— mations that may be obtained from thm by composition may be included in the *

set of transformations defined as follows:

DEFINITION. Let £ be é'line with a coordinate systeh; let P )
be a poiﬁt on the line with coordinate p ; let the point P!

with coordinate p' be the image of P ‘under a transformation

of the line Aztontq‘itself. L - B | .

2 . T

A transformation 7(P) = P! is a linear transformation if and

only if there exist a non-zerc ﬁeal number & and a real
p nnmher b such thatqfor every point Py, p' =ap + b .

a1




. ‘
/ . o ’ . L

We call th¥se mappings linear transformations becshse the defining .

equations are linear. - ' ’

. - Y -

-, .
If this argtmenthasmtbeguntosoundfamuar, yuushouldgohr}to .
Section 2-1.

S ™ ' ]
B T S
“»

The set of linear tmsforﬂfﬁtténs of a line onto itself under the

binary operation .of ‘composition is another ipgtancé of a group.

In the followin.g exereises, you may fipd that the form of the pmofs you are

J : - ) . .
i ; .
. Exercises 82-23' " '

asked to give are remarkebly similar, if not identical,- to those in
Secti:bn 2.1. 'mey are different only in interpretstion and terndnology

1.

Prove that ‘1f Q is between P and R , then in a Iinear tx:.anafor-

"mation of PR onto itself, the image of Q 1s between the images of
P and R. o

Pl 1

Prove that if P and FS are congruent segments contained in a line,

then in A lirear transformation of the line onto itself | P'Q’ = R'8!
where P', Q' ,R' ,and S a.ratheima.gesof B,Q, R, and 8

respectively. : ’
. ‘ o

“Prove that the set of linear transformations of a line onto itself is

closed undexr composition.
' ¢

ve that the operstion of composition is associative £or, 11 near
transformations of & line onto itself. -

" Prove that the set of linear transformations of a line onto itself

céntains an idem‘;ity with respect to composition.

Prm}e that esach ele;neht of the get of linear transformations of a line
onto itself has an inverse wi'tgh"respect.‘to composition.

-

Prove that the-c&mposition of linear tra.nsfomtions of a line onto
itself is not commtativg, -The. qomposition is commtative if cert&in
restrictions are placed on the’ linear transformatiens. What are these

R BRI
- R

restrictiens? - - N, &

Prove that any linear transformation may be _expressed as the cmnposite
of not more than three transformstions each of which is a translsation,

" a reflection, a contract.’:on, .pr ‘an ?xpansion.

r
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Although there is ho unique way of "Tactoring” a linesr transformation
in the way sugBested above, it may be that for @ given transformstion
every such expression must include a translation, a reflection, &an
expansion, or a contraction. In this case we shall say that the. linear
étransformstion ifdcludes a translation, reflection, or expansion.

*”

. L | . b

We have discovered that the linesr transformations of a line onto itself
under the binary operation of composition form a group which seems similar to,
the group of linear functions vhich deéescribe changes of" coordinate system on

a line under the binsry operation of composition ,f

, 0
This kind of -gimilarity is of some importsnce in msthemstics and is

called an 1somorphism (from the Greek, t¢ogos, meening same, and #op &y »
‘ meaning f&m). An i i somoxphi sm is a one-to-one correspondence between twg,
mathematical structurés which relates not only the elemeﬁts -of the structures

but also the operations between the elements. A familiar example is found in

the relationship between the multiplication of positive real numbers and the
addition of their logarithms. Another exsmhle is found in the relationship
.between the addition of vectors and the addition of complex pumbers. The
impqrtsnce of isomorphisms stems from the fact that statements made sbout
one structure mey suggest corresponding statements about the -other.

In this case the isomorphism 1s between the group ) of linear transfor-
mations of the line onto itself under composition and the group of changes of
coordinate system on the line under composition. The correspondence is
established by i1denthcal linear functions which occur in the definition of
each group. Since our descriptionsjof each group are in‘ierms af -linear
functions deflned by equitions of the form x' *‘sﬁ + b , we may makg" "
comparisons of dur descriptions when the conditions on a and. b are the

same.

A change of coordinate system which shifts the origin corresponds to a
linear transformation which includes a translation. A‘chsnge of coordingte
system which is measuyre-preserving corresponﬂsgto a linear transformation
which incluées only a trsnsletion or a reflection. A change of coordinate

system which is messure-incressing corresponds to a linear trsnsformstio

which includes a contraction, and a change of coordinate system which 1s ,,fﬁfﬁ

messure-decressing corresggnii_to a linear trsnsformstion which includes &n’



~”u’*’ﬂ- . »

It is .customary to say that such numbers or points are fixed or invariant. . -

- "“-a&.*
) . ' ‘ - ) *‘in-vu 2 . ) (‘.“
- expansion. . change of;/coordinate sybtem which is oxﬂer-preserving corresponds IS }

to a linear tmnsfomtion vhich does not include a reflection, and a che.nqb
of coordinate system which is order-reversing corresponds to a-linear transfor-
mation which includes a reflection. '

Iestly, we consider whether a point may be' asaigned the same coordinate
after a change of coordinate system. The comparable situation for a

transformation is that a point is mapped onto itself. In either case, where

x' =.ax + b , the situation occurs if x' =x .

S '3
If - - x' = x r ‘.‘ . . L
b . e, .
then . B x! =ax + b
becomes ‘ f‘.f_ oYX ‘n ax + b )
or : (a -1)x = -7

~

If :'a =1 and b =0 , we have the identical coordinate system (or the
identity transformation) in which all coordinates {or points) are unchanged ;
if a=1 and b £ 0, there is no coordinste (or point) which is, un&mnged ' R

-b
a -1

If a;‘ 1, the coordina.t.e {or point with coordinate) 1s unchanged.

~

A

0

e o Exercises §2-2b
a L C

1s.-bProve that a change of cocfdinate system is order-preserving if and

rl_st

only if

r £
' . * : «
coordinates of points' whose original coordinates were mf and s \; .
respectively; prove that a change of coordinate system-is order-

is positive, where r' and s' are the nev

t _ gt
vreversing if and only if I -2 iys negative. -

. r -
‘ \ _ ﬂ
2. Consider a linear transformation ¢f a line onto itse¥f which maps the ‘
points R and § , whose coordinates arg r and s respectively, onto A
the points whose coordinates are r' and  s' respectively. Prove

tl{at the transformation dncludes: ' ‘ a
rt . g!'
(a) a contraction if and only if O < —?—-—2— < 1.
[ ]
: PR ‘ I
(b) a c?:tmction‘and a ref;ec«hiOn if and only if -1 < %ﬁ— <0
o " p’-‘ = v .
469 a
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(c) An expansion if and only 1f “———>1

. , to_ gt
(d) an expansion and a reflection if and only if rr : <-1.

3; Consider a linear transformation‘of a line onto’itself which maps the
points P and Q, whodé codrdinates are p and q respectively, Qnto

. the points whose coordinates are p' and . q respeetively Prove that °
the tremsformation includes: - ﬁﬁ H
F.
(a) & translation 4f and only ir (B4 Yo

(b) & reflection 1f and only 1f PP—-—%-

[
4. Show that the intrinsic coordinate systemssﬁn & line are identical to the

! linear’ coordingte systems whose defining functidns have the form’ .

"x' =x +b and %' = -x + b , where b 4s any real number.

r

5, Consider a line with a coordinate system, let P bea point of the 111;{T
and let I(P) = P' be the image of P under a transformation of the
line onto 1tself; let p &and p' be the,eoordinaiea of P and p?
respectively. ’

Consider the transformation defined by

I(P) = P' vwhere p' = % for p£0,end p'=p for p=0.

X . . . )

Chodée an appropriate scale and make a graph for the coordinaxe system;
write the coordinates of severak'rmages below. Write the coordidates

of their corresponding pre-imageﬁ above them.‘ A transformation.of this -
type_is called an 1nvereionlpf the line. . "

6. Consider the composition F(G(H)) of transformations of a line to
| itself, where W , X , Y , Z are points of the line with ccordinates
. W, X,y ,and z respectively, and

3 . e
‘ L .
. F(Y) = 7 ‘where 2=% for -y;é(l, and z =y for y =0 s
@(x) 2 Y wherF y=x+1, and e
}
» - H(W) =X where x = o%-. ’

(a) Describe the set of pré?&ﬁgges,‘or domain, and the set of images,
or fange, of the composite transformation in terms of the
coordinate system on the line. Is this transformation into or onte

the 1ine? Is this a One-to-one mapping?

1" T ¥70
33
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. \:\j_;\_ T *j -
- |
(h) onse an apmpri\w scale for the coordinate system{:nd make a
graph of t.he set of {mes pf this composite transformation. Write
" the toordinates of sevexe.l imges below them. Write the eaprdinates
_of their corresponding pk\en\imgee sbove them. :
(c) 'I\m sets are é&fﬁ"to have %he . cardinal number or the seme
nality if Weir elemeﬁ may be put in one-to-one corre- -
spondence. What can you sey &ou‘h '&he cardinality of the interio:: o
~ of & segment of & line? ’e\ \\ . -

\

-

7. Consider the composition D(E(F)) of tmg ﬁmct.ions vhose domains are. .
the set of real numbers, where | R ’\

- i 3’.@{ rﬁ;ﬁ " )
2 = p(y) = ATy

&

y for ¥y= 0 2

<\~

AV )
) y=B(x) =x+1 forall x:‘p - .
e x:F(w)::a for all w . \\ -

(a) Describe the domain and range of the composite functien. Is this
mapping into or onto the set of'-'.z:eal muwbers? Is this rmapping
one-to-one? . . SR

o(b) 'I’he cardinality of a set is sald to ‘be infinite if and on]y if the
‘-“;qa' eIements of the. set may be put into one-to-one .eorrespondence with
the elements of a proper subset of the given seti mxat can you sy
%  about the cardinality of: the set of real numbers? '

O
8. If P,Q, R, and S are points, with R £ 8_, whose re’syectﬁre
coo:‘dinates in two diffetrent coordinate gystems are p s A, T E 8

am‘i ', aq , vt , s' , prove that
-4 _R-4d ., A
rt -8 r -8 _
" Bach member of the equation 1s called & d_ifference* qubtien_tJ and in this

case expressés the ratio of a pair of directed distances. The content
of this theorem migh# be expressed in this way:

Difference quotients of directed distances.are invariant

under a change of coordinate system.

*

Or.this way:

The ratio of directed distances depends upqn the points s
involved, but not upoffthe coordinate system. :

I3

~ 4 i . . \ .
’ " k71 ‘ v
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9.

10.

11.

-
IR .
.

If' A,B, and C have respective'coordinateﬂ 3455 ,~and 10 in one. N

coordinst;e system, and 2,3 ) and . x 1in another coordine.te system,

[+

find X . (In how ma.mu vays can }_ou do - this problem?)

Ifs A B and X~ are distinct’ points with respective coordinates

e s b, x,and 8, b' , X' Q§n two- different ccordinate systems

express x* intemsof a,b,a. NDb! andx.

- \\.-/ -~

Show ths‘t; if two points are fliea under a linee.r transformatian, it must
be the identity transfomtion. '

%

)
[
7o,
«
8
w
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(or 11 o lynmie.la in one mria.ble_. or ordered n-tuplak of mmbers, etc)

il

,';f’

'r

o - . | Supplement to Cha.pter 3
{*-' Lo -
We have der:lned & Zero vect-or, 3 and, for a.ny number k and véctor X,
the seala.r product kX . We may, in the samé way, define a zero linear poly-
" nomial 1n one vnria.ble, o+ Qx and, for a.tw number k and linear poly-.s *"?"m
nmia.linanemisbla, a+hx ‘the "scalar pmduct" k(a + bx) =ka+§tsx«-s—~
Ve muld, in the ‘sgﬂe wsy, ‘define a zero n—tuple of mumbers, and, for any
mqi‘ber k and any n-tuple of numbers, the "scalar pmdu&" '
k(s,b,:l.,n) = (ka, kb,...,kn) ’

ﬁa donsider now a set B = {A, B,...,K] , whoge members, may &ll 'be vec’tors,

We may see that, ‘with sultable definitions along the lines suggested e,
mbers of S might all be linear expressians in twa variables, or polynomials

_in x of{legmenotgreatertha.n S,Manymlynmi&lsitfx,andsoon.

A set Gf such expréssions s = (A B,...,K} is sald to be linearly
dependent i;,\n.) 1f there exists & set of mumbers W = {a,b,...,k] ,. no& all
Zero, 'such that @A + DB + «ee + kK= 0 . ‘ .

~- ‘ ;—“s.

Example. 'n:e set [2p +3q, 6p + 9q) 1s L.D. because there 1g. e}se‘t of -
munbers {- 3,11 not all zero, such that -3(2p + 3q) + 1(6p + 9q) =0.

._,r‘f . ¢

oy

. If a set of e*‘pressims is not line&rlﬁr dependt, it is-said to be.z

__lx_ms_d_&(u)

. 473 . .
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Examplo. The set (2p+3q, 6p+10q} is L.I. 'bw 1f there were
a set of mmbers (a,b) such that a(Ep +.3q) + b(6p + 10q) = Q0 , then we
wuld have J ‘ |
(2a:+ 6b)p + (3a +10b)g'= 0
for all p a.nd.q_,ér ' o - _ : | If"'
".2_a+6b=0 and 3a +10b =0 .
The only solutions for these equations are a = 0 , b = 0 ; therefore, the o
original set is not L.D,, it is L.I. ’ |

In view of the example above, it 1s possible to define linear independence ‘
first, as some authors do.

A set of such expreasi’oz;; as 8 = {A,B,...,K} is said to be linearly
jndependent (L.I.)°if, for the set of numbers N = (a,b,see,k) , the statement .
&A+bB+\‘O + kK ‘0 mueﬂ 8 =D = o0 =k=0 ‘. . e

. \‘ “ LR
4

, ‘l‘emincloﬁ ‘Ihe property of being L.D. or'L.I. 1s & .collective dne, and,
a.ttaches to the set, rather than to the separate individuals; however, we
follgw general usage in wiiting, ‘sometimés, "The vectors A , B, T are L.."
“Tor the lonsen "Ihe set of vectors {3,8,C) 1s L.I." <

™

o
-

© We state some u‘seful theore,a_ns‘whose proofs are left to the reader. -

. - N L]
¢ ) R

THEORAM 1. A set is L.D. 1f any subset of it 1s L.D,

"

. THEOREM 2. If a set with at least two members 1is L.D., then one member can be . g

expressed &s a linear combination of the others. - +
. Corollary. 1If the set {A,B,...,K} 18 Lo I., and the set {A,B,)...,K,L}
Y, - is L.D., then L can be expresaed as a8 linear ccxnbination of A,B, «ec ,
K.
-
- ]

* THEOREM 3. If the set of rows (or columns) of a determinant is L.D., then the
value of the determinant is zero. .

& . _

- 3{; b - |

LT :
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‘ Proof. If the set of rows is [.D., then one row, say, the first, may by
Theorem 2 be-expressed as a linear combinatdon of the. others. '

.

L

The illus'emtion below, vith & detemina.nt of order 3 is easily ex-
tended to any order. .

£, = =y .kazlf’asl kay *fay, kayy +Jlag

o1  Bop  Bo3| = 81 8 8o3
31 %32 %33 ) 831 83p "833

But, by Theorem 5 of Supplement A, this last determinant may be written a a
sum of determinants, and equals !

C o [emay ken, kel |fag, Lag, fag o
By 8 ‘_’:a + :21 850 - Bag| ., ¢
83y ' B3s ¢ %3 83 83 83 o
The applica of Theorem n of Supplement Ashows that both of these are equel
to zero, and therdfore, so 1s the original determinant. i
’g.pglication to vectorgx |
THEOREM A 'Any set of vectors which includes the zero vector is ;.D_-. a

THEOREM 5. Two ﬁon-zem vectors are L. D. if and only if they are col_l_inear.

(a) AT 5 and @ are collinear,, then, from Chapter 3, t.here exists a
umber k such that P = kQ . Therefore 1P - kQ =0 , therefore

‘ and Q a.reLD. . .
‘ () If\P -and Q areLD- then there exist numbers a and b net
bothy= O , spuch that &f + bQ = O . Suppose & # O , then

1Y

§=-%'Q., that is F-—-—ka which means that P and aare

)

cbllinear ..

'

Corollarys, [p,a] , [r,s] are collinear 'if and only if

B ‘% b
H N £
: . & A
' -

—

1‘;
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THEORRM 6. In the plane, any set of three non-zero vectors 1s L.D.
(a) 1If any_tm'a:ée collinesy, they are L.D. and then % is the set of

three. = ° . .
(b) If no two are vollinear, then, for any c , we will show that we

\ c&naluaysfindmlﬁes for a and b such that A
| . ' ‘ . a.'§+b'5+c§'=.5; . L
thatiswecanﬁnd\-a,b,formyp,q_,r,s,t,u,c
such thsat .

.

alp,ql + b[r,S] + ¢lt,u] = [0 0]

This requires unique solutions for a , a.nd v ’ in the. ec[uations '

. a ' pa + rb -ct - ‘
S & | ' ga +¥8b = -cu . - ' o
But, from the hypothesis that F and §  are not eollinear, we have
' P
qa s
L ‘.} solutions for /2 and b 1in the equations above. )
<‘: ’_ Corollary. n the plene, any vector can be expreq& /as a linear combi-

'nation, of any palr of non-collinear vectors. That ig; 1f f and § are not
'colnnear,then,foramrXVacanﬁndnmhersa;ndbsothat
af +1§ = ¥ . .(Compare with Theorem 3-5). ‘ ’

L)
'

NEC . Temiﬁo_]ga. If ﬂ‘\vector of the plane can be expressed as a linear
combination oXthe members of spme set § = (%,3,R,...), then S 1is said to

. span the pl@e. A set of vectors which is L.D. and which spans the plane is
called a basis set, or simply a ba.sis for the’ plane.

Note: (1) Any pair of nan-comnear vectors forms a. basis for the plane.
(2) These concepts gegemlize in a natural and interesting way to
higher d.imansions- j,‘ T s
The set of vectorsy ({1,0l- [0,1]} is what is called the
"natural basis" for the plane, since, [a,b] \[1 0] + b[ﬁ,l]
« .g,«} ‘The natural basis for three dimensions is the set
A {{1,0,01, 10,1,01, [0,0,1]} ; ete.

(3) The number of vectors in the basis is the same as the dimension of
1 the space., Thus, we may define a space of four dimensions as one

in which there is at least one set of four L.I. vectors, but in

vhich every set of five vectors 1is L.wlar definitions may
be stated for five and higher dimensions.

\\; | ‘ 476
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Applications to Geometry
1. The lines ax + by = ¢ , amd- px+q_v=r interseetinapointifa.nd
—cnly if the correspond yuations have & wique solutfon for x and
. ' . e 3 -
v , that is, 1f and only & * bl Lo, This 4s true 1£ and only if the
P ¥ ;
left members of these eq tions are L.I. If the left members are _L D.
th‘én the lines will be parallel or coincident, as can ea.sily be sﬁmﬁn -
- 2. The concept introduced above generalizes easily. The pla.nes'
ﬁ/—'\f - - - .
| 8% * Dy *ejz =dy - | ;
' o ax + By + c52 = &
. * (A ’ - ‘-

]

an + b3y + c32 d3

~

meet in a single point if apd only if the left members of these equations
are L.I. If they are L.D. thentneplanesm&rberyiatad in various vays.
All three mAy be parallel, two or three of them ey coincide, two may be
parallel and intersect the third, they may interﬁect in t.hree pa.rallel
lines, etc. We leave the intqrested student to discover, either by his
- own research or by reference to other boocks, the comnection i:etween the
- ' aispositions of the planes, and the relationg,among the coefficients in
their equations.

-
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e | ‘.-Supplémen'; > SN

. ‘ Supplementsg to‘ C.mspters 2, 3, and 8 :
. . ‘ .

" g  roms, LINES, ABD, FANES o
- : O ' N\
e The material’ in this supplement previously appeared as Chepter L in the
preuninary edition. Parte of that chapter were retained in the text you are
now using. These sections include significant mnterinl which may be of in-
o ’ terest to you. ' s

]

LJ

D-1. Choice of Methods . - -~
?

. In this chnpter we ahall consider same questions about the undefined
élanantsrof try - points s lines, and plnnes.“‘-!When do theydnterseet?
How are they eparated?. What about betweenness? For answering these and other
qnestinns , wek have demloped the basic tools in the enrlier chapters; it will

.be part gf ot task fo gelect from among these tools those appmpriate to the
solution of a pa.rticula.r problem. . | .

. - !

’ Ca

- -

Sometimes we shall start with the gemeral case and then take special Pag
cases. You may recall proving. Desargues' 'I‘hecran in 3-spa.ce, and then showing
that 1t holds in 2-space. At other times, we stnrt with a more limited case -
~ and then generalize.’ 'ﬂ:us we consldered distance first on a line, then in 2~
space, and SO ©on. " . ) : ‘
‘We nﬁe available different forms of representation. In & problem about .
a particular line, our regresentation of Mt may depend on what 1s known about
- 1%, what we want to prove about it, or other considerations. For example, if
you Bre told that the x'-intereept for a certain line 1s , 2 and &e y-intercept
: -3, you might choose as its equation -,;; + _'g— =1 . If you are concerned with
the amount of mte.tinn of & line about a fixed point, you might want to use
that point as pole cf a polar coordinate system and write for the line 8 =

A relation such as T = g , expressihle most simply in polar coordinates, -
. by ‘ . *
» . \&,-‘ .




*

- -

. .would be much more complicated to 1bok ‘@t and to graph in rectangular co-
: c- - ordinates. ou might want to try this.) In Chepter L vector methods are

used to prove t.heorems of gecmetry that ynu proved esrlier in other ways.

s Our point here is‘th%; in this text fram this point on-you can expect to
see & variety of represeptations and methods. In Sections D-2 and D-3 , for
— example,” rectangular coordinates and the eqpstion ax + by + ¢ = 0 for a line
: lare chosen because it is desired to emphasize the relation of the geemetric
problem to an algebraic problem of solving systems of equations. In the same .
fashion, you have freedam to select \3)? form of representation and the method
. that seems appropriate in a particular preblqn. Sometimes a few"
minutes spent first in deciginig how to lo&ate & coordinate system.will save
much time in solving & problem. Often there is no single simplest or best
*method. ‘

o *

&
f e i

e XY -
kit
Sag

’ D-2. Collineari Y- .

The geometric probIEm of whether three points are collinear corresponds
~  to the elgebraic problem of whether three pailrs of values of two variablés are
.solu$iens of the same linear equatron in two variables.

'Consider distinct points C = (xl,yl) 2 = (XE’YE) ’ 3 = (x S;Yé)

Usiq& the tw -point form ef the equstion of & line derived in Sectien 2- 5, the
o, equetion of e line P2P3 canh be written J ‘
.y Y27 %3 y
. YAy s oAx - x3) : 2
, T : ‘ /%o 3 : .
This we rewrite as - ‘i'"'. B

(y - y3)( -:x3) = (ye - y3)(x - x3) .

“

LR I we multiply out snd eollect terms invelving X and Yy , we have §

iy

. o e' - - + . = .
(l) e - ( 2. y3)x 2 x )y (x2yj ) ‘ 0
- If we write the terms in perenthesqs as second order determinents (Appendix A),
(1) beccmes T . ~ P
| y v, 1 ¥ L1 Y '
- x| ¢ -y ’2. D % =0 .
. . N ’
Y V. t )
‘e ! \ -~
J ».‘ [
o BRI - C .
f ; . . F
480 -~




terminant, we ean then write the equation in the form

L4
LR *
A

Using ‘;, Y s a.nd. 1 ‘as-‘{i;téﬁ: elements of the first row of & third order de-‘.

. X y <1 ‘ . ‘ .i )
o 3 X . * ¥
(2) 12 YE .l = 01. . |
! ‘ : 1 o '
*3 93 |

Since (2) 1is an equation‘lvo'f'the 1line }?2P3 ,-thq point Pl is on this line

' .
_— . -

if and only if . ‘ : . B
, . - X ¥y 1 7 ]
(3 | ' X3 ¥y 1]1=0-. . .
. . f"“ 1 '
S “X4s
Yoy *3 Y3 oF o
{v %)

Thus (3) is-a campact.forn in which to w:it;e the condition that three points
f -
dre collinear.

If thyee given points are not collinear, they determine a triangle. We.
choose & i‘acta.ngula.r coordinate ‘system so that the tria.ngle is entirely in the

- first quadrant ®nd name the points I.)l 2 P2 P P3 s in.a counterclockwise order

. around the triangle, as shown in Figure B-1. ot o . . . T
. . ) R : Y"
Ir the‘point.s Pl 3. P2 » P3; are - s : .
‘not collinear, they determine a triangle. ' )
To . find its ared we draw perpendiculars i
PlFl s P F 3 3 to the x—a.xis. We
) ]
can find the area X of AP1P2P3 by ‘ i :
~ subtracting the area of “trapezoid’ 3 !
: i i
'FLP133 from the sum of the areas . E | E
of trapezoids FlPl o 2 and -~ ' ——b- —t- .
.8 Fa [ F2 - Fl X
F.PP.F . 3 .. L
2,2 3 3 c Figure D-1 .
. K = Area FlPlPe- o + Area F2P2P3F3 Ares F1P1P3F3
= - +
K —(xl xE) 3‘1 +y,) ¢t (x o= Xy, t —(x - x3)((yl,, ¥3) —
.1 L3 - -
oo =5k ”'2 Xo¥y + XYt Xg¥p - XYy E "33"1) ’ .
o . ,
(4) K =500y, - y3) +x,(yg - yp) + x50y - ¥p)l .
f : /‘ . .

=

v 481 L
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. "'q'
Y= (y5¥5,) 5 1s

P, 5r

LS "

. %
ol

N ’C"’J L o Yy \myt‘.

K
y-l l : .~ Al
v, 1 T
2
y3 1l .

The student should verify that Equations (h) and (5) are equivalent The
yalue of the detemina.nt in (5) will bé" positive 1f the vertices are named
a8 in Figure D-1 so that traverse of the perimeter in the order P1P2P3

- counterclockwise. If 1t is clockwise, the value of the determinant will be-

negative. St - -

ot

We notice that the. determinant in {5) 1s the samp a.s‘ the one uged to -

"write (3) , the conditién that three points are collinear. ‘his is rdot sur-

priging ’ M 1 intuitively obvious that three point-a are collinear if and
only if the area of ‘the “tyriangle” they determine is zero. - .

F’omula (3) cdn be obtained in a different wey by using veﬁtét‘s In

Section 3-8 we spy that the area of the”trisngle OXY , where X = (x),x,) and -
. e R ) ‘ .

1 _ ,
K= gy - x|

We usq this result to find the area of an arpi’é;;hry trgangle.
;“_ﬁ‘e Jpeme the vertices P, = (l_L,}rl), L |
= (xe,ye) , (ra,ya , 80 that our .
results shall have the same notation as
the preceding development. We add khe Py
vector -P;L to each of the vectors |

»
]
-

P

§3 . to otz‘l‘&in the vectors

'
th

w.ﬂ' I-'m' l-:m(
]
g/

| and

Trianglé WE’PB' , 18 congruent to trtapgla PlP2P3 . Thus the area of tri-

angle P,PPy 1s X

43 ‘1+82.

A
F_Ji?

Y
N
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. L8,
&:ercises n-e g

f

' i, For each of he following find out vhethar the points vhose eoordinates
are given are eomnes:, if not, find the &rea of the tringle thet 1s .
determined. ' '

) (a) (7,0) , v(h:"l) ’ (13,2) (c) (;:b) s (-8,<d) , (e,d)
2 () (3,2, (-2,-7) 5 (35,5)  (4) (p,0) 5 (0,D) (a;, a-b)

. COneider the tri with vertices P, = (O, o) y Py = (a,D) , = (b,e)

“gnd the value (not the absolute mue) of the determina.nt in ( 5) -~

evaluate this determinant for Pl » By P3 . Evaluate it for Q = (O 0),
Qgs (b,e) , Q; = (8,0) ; for R, = (8,0) , R, =(b,c) , R = (0 0) ;

also for 8, = (bye) , S, = (2,0) , 83 = (0,0) . Does the wmy you go ,

around the triangle make a difference? Does the x:;ertex at which you ‘ y

start make a difference? Try to state some general conclusions. - )
34 Prove- that the area of the t;‘iangle with vertices Pl = (x’l,yl) ’

Rpe (xv) s Pymlapy) 10

-’

- . . . . ¢ ‘ ‘ . )
. - . e » * . .
. . Y 3 - . . - B
L. . -
. .
N . .
. A k N N
.
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Note: The equation aﬁore may be wriften‘ C o

‘,ﬁ\\3 - xi . Yi °

K = :E:: . g N @Q.

. vk le=1 P Yiall,
- : )

AF s

¢ Lo

wh i ‘ ‘
ere we interpret x\\\as xl and Y, 88 ¥y'. 4

f%
This generalizes immediately giving the following formula for the area
of a polygon with n vertices Py = (xi,yi) :

L R : ’ ‘ %

n xi yi .
; X Y N
. i=1 + )
\‘ C ¢ v i+l 1*“ ?;3“E
A where we interpret x f;? as X, and y as y, -

4., Find the area of the quadrilateral vhose vertices are P = (&, l) s

P, = (-1,3) , = ( 3,-28), Ph (2,-1) , first by adding the areas of

APy ‘P.P. snd AP Fh , and then by using the formula in Problem Saabove.;

172’3 ® 3 ,

5. Prove that points A = (-2,1) , B = (2,-2) , and C = (6 -5) ?re

collinear.
.,

(2) Use condition (3) .-
(b) Show that 8 - X = k(€ - X)

?

3 (¢) Show thad, a(a,B) + afB,c) = da(a,c) . ' . ¥y
¥ ' ” » o . 2 ) ‘
't“ A\ -
. 1
D-3. Concurrence. s . o *

The geometric problem of whethér three lines are concurrent corresponds
to the algebraic problem of whether one pair of values of twe variables -
isfies three different linear equationy in two - deriables.

We consider.ggyee lnes L , L, , and Ly, with equations

N

e ’ ] “. ° FFT
. . e e ﬁ—mﬁ - . —— e e el
- TyTEy e
(1) | L, : 8% + by + ¢, = 0
. + b +c, =0 -
B I

. ‘ ) 1481} Yo g
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€

" These lines may be related in emy' one of the folloi:l.ng ways; we shall consider
the ana.lytic eonditions for each\ @ _ :

(e.) The lines may be concurrent. 'ﬂus is the case of most int.erest'to
‘ug since it }epresents the .usual situation in which there 1s a unique solution
of t.he three equations. The- equa.tions represent three distinct lines with one
. andoﬁ.‘g'vanepoint in common. For | -
‘this, any two of the lines must inter-
sect in a point, and- that ﬁoint must
lie on the third line. an our study
_ "of Intermediate Ma_tg@ tics we Know
* -that this first requirement means thati
. we must have
| & By 1™ . ‘
(2) ‘ aé 'l:ze’éo’.a.:s by ’éo’. ag 153 £o.

The second condition requires that the intersection of, s8Y, 1’..1 and 1.2 ’
lmust lie on L3 If P = (rl,yl) r.epresents the intersections of I(]_ and .

La s W m write Zs coordinates

-e, b “la. s -
~ 1 *17 "
. ~¢. b -k,
2 2
f::\e_p ‘ Xl = - 2_ 3 yl = —_.2_-,_2— . -
% S 8 ‘bl VoL
& Y \H by

The condition that Pl is on L3 is

-c., b a8, -C

i 1 1 1}
-c ) a. -C i
0 2 21 , b 2 2l L e = a,
' 3 a, b 3 a b, | 3
1 1¢ . 1 1
H
N ' 8, B &, b,
)
which can be written more compactly as
a.l bl cl
* (3) ’ M 32 be CE = 0 .
b
83 %3 %3
<)
e .
"& :x - A}
. g 16
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Thua the condition that three disti:i’& lines be concurrent 15 that the deter-
nminant of their coefficients is zero.

(b) Two lines may“coincide and be L,
intersected by the third lim®. In this
case the third order determirant 1s zero
and .thare‘ig a unique solution of the -
three ‘equations, but this case may be I'l*'IE
distinguished from (a) by noting that )
one of the determinants of' (2) 1s zevo. & .

(c) Mo lines may be’parallel and 3
be intersected by the third line. The

| stident must be careful to distinguish I,
this case t'rm‘case (b) , because here
there 15 not a unique solution. This B
case resembles (b) 1in that one of the -
determinarits of - (2) 1s zero, but the
detemina.nt of the eoeff‘.teients is not zero.

(d) The three lines msy‘ ccincide.

. There is not & unique solution in this =~ &

case since"‘a.ny ‘solution of one equation
15 also a solution of each of the bthers. LysLys Iy
_'.'L‘he third order determinant is zero as
are all three determipants of (2) . There are two other custingxusha.ble
cases which have these seme algebralc eonditions. The student may be interested
in ‘Sescribing these cases dnd discovering how to lstinguish tiem from case (4): f

(e) Each line may intersect each - \ 3 . 2' /
Lothers in a single point. Condi- Ll
Fion. -(2) #olds, but the third order -

"&a*bkaminant is not zero This is the

¢ase one is most likely to observe from
three randomly chosen lines. . , 12

% )

;. We might appmch the question of concurrence in a. ‘8 t different
fssman., Let L, and L, g:e lines with equatiuns given in (1) . Then if

Jm and n are any 'numbers not both equal to zero, ' the e(quation N
() | "_‘1(&1" +* gy +e)) +mlax + by + éa) =

is the equation of & line, since it is a'«fizjst-dégree equation in x and y .
-~ . - L. . . .

Al . -~
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‘ ‘ * i Tow ey
. . ‘ P. . .
, . . . S,

i‘i’ Ly ~and 1.2 ietersect in P = (zl,yl) ’ then (k) reprepents, for sait- -
&blechoicesofmanda,e.nylinethmugh Pll. Ifllandnea.re

parallel, then (4} represents, for suitable ehoices of m and n’ , 8ny line ‘
para.uelto L]‘ -and I‘Z If 1'1 and’ ‘ ceincld.e, ‘then (k&) represents

that same- line. Proof of these‘la.st statements will be left to the :mt.erested
| student. - | N \ |

Equnt.ion (W) repmsents vha.t is of‘ten c&l_'Led a_family 8f lines; that 1s,

for ‘suitable values of m end n it repmseqts all :t.he lines containing the,
? intersection of L and L, . Thusa " condition that three distinct lines
(with equations in the form ax + by + ¢ = 0) be conpu;rrent 18 t.tw t.he left

g

s

v member of the qution of one of them 15 & linear cmbination of the lef't men- ot
‘bers 'of the equgfions of the other two. yo o ’““:x ' .
e ) i . & \_
‘2 . . . . . - . .t ’ '.\.
. Example 1. Find a  value of k for which Iines with tne&'oqloumg m
/
equations vill ve concurrent. (Assume kK £ -1) '
. 'l ¢ ’ ‘ - —‘ o . x = Y = o . . ‘ .\:‘\' -
. . N ":“\’ 3x + 2 = 0 < 3 ";:\..:‘;Q' . '_{.
"kx+y+1=0, . ‘ : \‘ '*'
0 . X - $\
- . ) : . ANLe
. . S *i' -
Solution. We observe that the lines are not parallel (they setisfy con- \
A dition (2) ); we then use condition (3) « it 55.#\.\
7 ALY
( 1 -1 0 o
e .
: 3 o0 2f=0 i
k 1 1 ‘
“Wesfind that K == - ‘ B
L -1 IR ‘
:':g
Example 2.
‘ v
\
(a) Find an equation that represents a line through the intersection
, of lines with equations x + 3y - 3 =0 and 2x - 3y - 6 =
. (b) Find an equa.tion Qf the member of this family of lines
: (1) that has slepe equal to % . '
, / - (2) that contains the point (0,3) . ' é
- s -
487 \ '




r,_ _.
© Solmtden: o L - -
) ! -
(a) t!aing Eqmuon(lt):m mte m(x #. 3) + n(ax 3y < 6) - o,- _
- or (m+20)x + (3 ~ 3n)y+ (-3m - i =0.. |
. (b} (1) From the last eq:uation in (aY we have an expression for
" the slope, vhich ve set equal to 3 aid stmplify. e
B ‘ \\Q
_m+ én 3 g
h - 2 T
-m - ln=gn-on i
] e oo
. - l.lm +5n = O ' S .
-‘43\'5’ ( ' :
We let m=5 ,n-= ll and substitute t.hese v&lues in t.he =
A
equation in (a) ' | s
\
. x-y-81=0 »
Or, more simply, x - ar ~9=0. -
(2) If the line is to eontain the point 249.3) these eo-
ordinates must-satisfy the first eq;uation’ “in (a) , therefore
EY '
- m(0+9-3)+n(0-9-6)=0.
o . hd : .
- Simplifying, we have ,
: . “, f~150=0. - -
| " ¥elet m=5,n=2,andobtain . .
~ : x+y-3=0 "
\' as an equation of the desired line. ' .
” v
Exercises gg_
i 1. Are the lines with the siven equaticns concurrent? If so, what.is their
.qommon point? , ' o - a
(8) 2x -3y +6=0,3x+by-~-12=0,x~4=0
‘(b) x+y-3-= Og3x-y+l=0,‘2x-1=o
) (c) X-y=4,y=x+7,3x-3y+5=0 _
, 2. For each of the following, determine & real mumber k such that the
TR equations represent concurrent lines. ’ _ _ o _
;:\‘:‘ '. . . « . .
Ya ‘(.a,)x-3y-iz0,3x+y+5=‘0,kx-3y-2=0/c—
et " (b) x+ky-3=0,kx-Ty-6=0, 2x-y-3%k-=
.\. * : .
e "‘E. : .“u . . h88 49 .
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3. . Giver lives L, , L, ~with equations f3x-2y+.5-6. and x + by - 1= 0;
\_ . write an eq,mtion mt repmmm any line through the point of intersec-

tion of Ll and 1.2 Then ﬁn%zthe memher of thisfmﬂyof lines that
o

v “‘

o (a) hias the elépe 1}

‘  (v) isperpenﬂie\ﬂnrto 'Ll. g Ty .
| (¢) eontains the Qrigin o ' . ‘
(4) contalns the point: (5,2) w. | o '

(e) has & y-intercept of 1.
l£ ~Find an equation of the 1ine parallel to the line whose equation is

-y +T »;}o ’ a.nd containing the point of intersection of the lines
whoseeqtm‘tionsare 5x-y+3-0 and x+yz2=0.

W “Given the tﬂansle detemined by points “%'= (a,0) , B = (e,ha ’ c-(c,o)

~(s) Show that the medians are eoneurrent, and their point of in-
tersection. (This point’ is called the centroii. It was discussed -
and & vector proof of concurrency given in Example 2 , Be.ction 3«8 )

B (D) w"t.hat the altitudes are concurrent, and ﬁnd their point at’win-
- tersection. (This point is called the orthocenter.) . oo
gyf A (e) Show that the perpendiculm bisectors of the sides are cancun'ent, -

and $ifd their point of intersectign. (This point is cxlled the
ciremcentey; it is the canter of the ciremscribed circle of the . T
_ triangle.) ' e
(d) Show that the centmid, t.he orthocenter, and. the circumcenter of
this triansla are collinea:r . ' ’
(e) Do you think that vhat you t;e.ve proved for triangle ABC 1is txge

for any triangle? Give reasons for your a.nsvut;

-

6. Prcwa that, in a trapezaid, the dia.gonals and the 1ina drawn th;:ough the
/ . midpoints of the pa.rallel sides meet In & po.tnt.
- D-bk. Q&m__a_g’ tions'snd Parallelism )
If two sets have at least one member in cc&nn they are said to intersect . '.;
We considex :Ln this section, points , lines and' planes, and their possible in=

tersectiqns. If sat 8 1s & subset of set T , then their intersection is -
all of S,andwesmnetimessayth&t s lieson,orm,T,orﬁS is em-~
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bedded in T+ Thus & point may le on a line, or a line may be embedded in
& plane. Our analytic representations of these sets mskes it possible to
develqp simple criteria fpr many of these relgtwships.

Point and Point: l,Pe._ This-ca.seiséa.sytoanahrzebutagoodplace‘

f‘
P " to start. Two points intersect 1f a.nd only if they coincide. Their analytic-

representations are s:lmply their coordinates, which gust-be identical or -
eq_nivnlent in accordance with the definition of equivalence given when the
coordinate systems were int‘;odumd :

In rect ar wordinatea P =(3,5) differs from P = (5,3) . In
mﬁe polar coordinefes P = (6;%) 1s the same as Pn(éo) amIP—(63n)

Point and Idne: P, L. A'point 1s on & line if and only if & set.of
‘ coordinates of the point satisfies an equation of the line. The pf:irit
‘ ' P, = (’1’5'1) lies on the line L : ax + by + ¢ = £(x,y) = 0 , 1if and only if

. . -y
f(xl,yl) = 0. The point P, = (xl,y‘fi lleson L : x=a+ft,y =4b +m,

if and only if there is some value of t , say tl,suchthat X, =8+ g,
P T

ma.nd y:=b+mtl. If P1 and L had been gimnrel;tivetoapola.r co-

ordinate system, the discussion would require simple modifications, which are
left to the stude.nt. The extension of the dlscussion to 3-space can also be ~

\
made, ‘with mifo#" revigiona which grd also left to the student. :
J
. ‘ i .
: Examples. N . " i
.. (8) P=1(1,3) 1son L:3x-2y+3=0, because 3(1) - 2(3) 4+ 3 = O,
W 5 . 4.
% (b) P=(1,4) thnoton L:x=3+t,y=2w3t, becsuse the
equations 1 = 3 +t , 4 = 2 - 3t impose contradictory conditions .
. on t . -"‘ ; - e ————
(¢) P= (12,600) ison L:r = 6 , because 12 = 6 .
cos (o] s
: cos 60 N
Simtlerly, Q= (6/2,3) and R = (12,-60°) ‘me alsd on L,
(¢) P.=Y2,5,-1) is on ’:‘x=3+t . y“/=2-3t, z=l_-;-2t, since
the equation 2 = 3 1t gives a valpe for t , namely t T » |
. v amely
L 7 which 1s consistent with the equations: 5 = 2 - 3t and |
. “-1=1+2¢t . i : -
> . " . - .
L W ’ ’
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: fef.eneg Yo the paragraph above.

. ‘M"\ o -
o . -
S,

Point gnd Plane: P, , M . The discussion 1s left to the stulest, vho is

/ L

HL:Lne and Line: Ll s 1‘2 « 2-space. Two lines in the same plane may have

(D Just. omre, br (2) ~all, or (3) .’ no-points in common. If the linas are

-Ii.:alx+hly+c1'=f(x,y)=0,ﬁ\nd L :-&2I+b2y'+c =f(I,Y)=0,

the analytic counterparts of these '3’ cases are presented below. Proofs,

-
which are not difficult, are left to the student. '
(1) I  jL, ictersect in just one point 1f and only 1f - ..

5 B # - T~
o : |
' 8 P
.« | N Y

| (a‘jﬁ""f'Ll » L, coincide if and only 1f . .

. by i a.l ey ) b : | ——-\—4
b 82 %

2

2 2 )

Note that if any two of these determinants are equal to zero, so 1s the
third. Note also, that if this condition is satisfied, there i6 a nom- .
zeyo number, k , such that fl(‘x,y) = kfa'(x,y) .

(3) ,,L, a;;epmllelifandcnlyig

(a) Fote that, if either of these is differentv frani:;sero, so 1is the ‘
) i - .
ﬁther- : ' ®
(b) Botd that, for any mumbers p and gq , the equation ' ' '
. . Pf (x,¥) + af,(x,y) =0 is, in gemeral, an equation of & line, Ly .

If L, 1.2 intersect, then L, will go through that point of
intersection, 1f Ll ]'..2 colncide, then L3 will eoineide with
than, a.nd if Ll and L2 are pa.rallel, then 13 will be parallel

‘0 both of them. .

&

Lol

@)
'OV
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If equations for L, emi L, had been presented in parametric or vector
form, then the analytic representations of the three cases above would have a

'mewhat different appearanpe. The development of these mpresentatibng is "
eal]adiorinoneoftheexerciseaattheendofthissection. o ‘

. }-sﬁce. Two lines in 3-space may ha.vg (1) Just one point in common,
( .‘ (2) allgoints in common, or no points in common. In 2-space, this last -
e cdndition ‘requires that the lines be para.llel, but in 3-spHce, s that have
no point in common may be (3) pmuel, 1f they lie in one plane, or (%)
= skew, .tf they do not.

_— ' The discussion of the first three cases is anslogous 'bo the correspond
1ng discussion of the lines in 2-apace , but the equations are more complieated

s}ppose L., ‘goes through P, = Qal, l‘,t‘__‘_) with direction m.unbersx
(4,,m,m,) , and T, through P = (32, 5sCp) With airectiol numbers
(sg,mz,e). merefamwehaveequaticns I..l:x=a.l+xs,y-b +ms
z=¢ +nys ; and La-x—a.a-kst,y—b +m2t,z=c 4.0t .

@) Ir L, L, . intersect a.; a unique point P! = (x',y',3') , there must be

values of the parameters, say s' and st' » such that

-f! =‘ + T B
. x s.l £ls = 32 + tgt' )
T -
y - bl + nﬁ-s' - b + nbt' ¢
z'=cl+nls'=c +n2t'.

These ,are three linear equations in s' and t' , which we may write:

- | S t = -
L L T
| ‘ L LI -
. ) & «j ‘ . xn‘lg m'at b? bl .
. T _ N ' = _ § : - .
nls n2t Cp = C . E -

' imgre is.a unique cammon solution if and only if there is a unigue solu- .
. " tion to any two of these eqma.tions which will also satisfy the third. The
.solution, 1if 4dny, for the’ first two equations, say, is: p

8 - &1 &1 . 31 8y - 84 2 .
F -
h - - ~ p—
SRR - il - PR o W -l
t ‘l -32 ‘l -4 .
’ e T T '
° ‘)492 - ‘1 .
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(Note that these solutions require L ;4.0 ) The correspanding re-
o * m'l' ma S - '
. *  quirements thaﬁere‘be unique solutions for any two of the sbove three
... equations are ' : o
.t ‘ R £0, and 1. m2 { 0.
B B : , .
. If the s' , t' values found above are substituted in the third equation we
. have: . . - ' .
W : - ‘ ) .
’ ¥ 32 a].. 32 ‘GI 32 - a.],_ - ¢
y ’ * l b b na > ‘ ".‘ ’
, ' 2 "0 . my by =By ' e R
- - = e, - C ;
o . | 5H “4 H o4
. m Wy ym m '
- | : ’ )
- therefore, T : ‘ ' ) p
~ .
. £ L : ' ’
‘n 1 8'2 a']_ _ (c - e ) 1 2 -0 ) -,' .
1 b, b, - - 2 "1, - : )
- 2 ma 2 l m]. mE //,' "

 This pay, after some e-lsebraxﬁlgusslins, be written in she form / ,

oy - ayMmy, - gny) - (0 - )by = gmy) + (e - e)(hmy = Aomy) =

snd this in turn may be written in dstemina.nt form:

. ae-al bz_bl ce-c
. - ¢ 3
I ™ o= O
ik m2 )

Q

-Note ‘bhat the elements of the rows are direction numbers for P 1o s Ll Ly« ~.

-
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(a) ’. (3) If Ll a.nd Ié ai'e..parallel or coincident, tixeir d.irecticm numbers

‘ , . are equivalent,aand all the ‘second order mfgors of the, la.st two. rows nﬁlst '

A

-t

' equal zero, a.ndtherefom A. m%qua.l ZBro0. If- L1 and I? '(ﬁincide,
E t.hey coincide a.lso with 5"2 ’ vhose direction mmbere mubt be eq,uiva—-

- ‘lant to those of T.Ll and N\:nd 1n tha.t case a.ll the second order

"mimrs'bf, A ms‘t.eqtml zero.. If L, and ’ 1'.. are pe.rallel, then they

"

< boﬁh intersec_b PZLP2 vhose direction numbers may not be equivalent to

,.: thosé Of Ll a.nd Le and 17 that case the Qecond:« order minors of A

)

which inelude membfars fram “the first rov may not all equa.l Zero.

(h) Finally,if Ll, and L, aresxew,a,éo.

L. | . ‘
;-.‘.g.‘;._ ém_lg Consider the lines\ - | | ‘ é
: "*,., | Ii'gx"=a+3t,y=3-'r<‘z=h+5t,
.‘ . e-12';::=-.2+:§1:,‘,y=-1+t;,z=,o‘+3t,
, x.sféx=3*+‘6t,y=g‘-2t,z=1+1m,. .
) Lh:§=-l+§t,r=‘+-‘3t,z;-l+15t. ..

bk o
-1 - 5| = -2k ;é 0« ~ 0, Ll and I.E are
a3 ‘

-1 5
=0, J. Ll and 1. cannot
-2+ 10 o, 3
an y
X .
’ ’ ) ~ N i
) 5 5
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intersect 1n Just one poix;t, .but must de parallel or coincident.
Cbineidenﬁe requires all second order minors of A to equal zero,

and, since - * .
’v T - l .-l * . . A
P =2 # 0 , the lines sre not coincident
. 3 - =1 . ‘ * [ ‘ '
"and must be parallel. - ,
- AU I T | ‘ )
it : , I :
(e) For L, amd L, ,A=|3 -1' 5 =0, qmalsa.'alltharseeomf
) ] ‘ : 9 "3’E ,‘hi‘.ﬁ '
 order minors of A equal zero. Therefore. I‘l a.n_d. Lh coincide.
‘ . o e,
3 1 T :
(@) Forl L) end Ly ,A=12 1 3'=0, S.L, and Ly are not

6 .-2 10

-y
St

skew, but may intersect in just one point, or be parallel or coin-- .\"

cident. These last,two possibilities are’ eliminated by the fact |
that =~ - ) ,. A

“ {

=-540. i

2 1 y 1
=-1040,
N AR (R ‘i‘%nd 2 1

Tharefore 142 and ]‘..3 intersect‘ in just one point, which can be )

found by the methods in the section above to be P(6,1,6) . . \
. 4 .

The, sketch below suggests the relative positions of the four lines. |

] Ll *
— . Lll- . - €
N

3
& -
Exercise. Show snalytically that
(a) L, and L, are skew. -
(b) J;Lj and aré parallel. 1

495
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Line gnd Plane: L, M. Al_'lnemy (1) bepara]leltoapla.ne, (2)
beemheddeainaplm or (3) . 1ntersectaplaneinjustonepoint. In this
last case we sometimes say that the line plerces the plane. We develop the
- analytic counterparts of these three cases. |

(1) suppose L goes through By= (ao,bo,co) wvith direction numpers
;'..::‘ : : _(‘go,mo,n‘o) ; then équations for L are L : x=a0+£'ot, yzbofmo?,
z = ¢y not. Supposewehavetheplane l

M: px+qy+urz+s=f(x,y,z)=o. )

-

Then L wil_lbep&ralleltb M ifandonlyifnopointof L lieain.
M, that is, if there 1s no value of - t such that '

p(a +3t)+q(b +m0t)+r(e not)+s—0. 'mlisisanequationinf,

whichmaybe writtecn ‘ ’ , ¢

‘ (pa°+q,b +rco+s) + (pey + amy +egmy)t = 0 .
The. coefficient of t 'resemhles: the algebraic form of the immer product ~ °
-  of two vectors. (8ge Section 3-5) Tt 1s convenient to borrow the algebraic
symbolism of vectors and represent this coefficient as the "inner product” of

. the "vectors" [p,q,r] and [lo,mo,no] With thié symbolism, the above
equation beccmes,

\» f(ao}ho}cc) + [p}q.}r] . [‘O’ED’HO]t =0 . \‘(‘\
Foi\his linear equation in_t +to have no solution, it 1is necessary and

” sufficlent that both: fagsbyscy) £ 0 5 and [p,a,r] «f2o,mo,ng] = 0, which

are the conditions for L to ‘be parallel to M . These may be wecognized &s b
requiring that P. , which is a point of L , mot e in M ; and that L be

o)
. perpendicular*boanqnnﬂ lime of M , &8 esta.hlished earliér.
[ . .
» . Example. Show that L : x=3+2t ,y=4-t,z=1+3t, is parallel

to M:3x+3y-2z-5=f(x,y,2) =0+

) e
e, 'a -

R
Solution. The criteria developed in the text are satisfied, since:

'

(1)-f(3,u,1)=9+12-1-5=m#‘0,and | -
(2) {2:“113} ". F5:3:‘l] = 2(3) - 1(3) + 3('1) = 6 - 3 - 3;?‘

We might also substitu¥®, in the equation of M , the expressions for x ,
¥, z €8 functions of t , and get 3(3 +2t) + 3(4 - t) - (1L +3t) -5 =
0 , vhich leads to the contradiction 15 = 0 . Therefore L doe?/t intersect
» M.
‘. ‘ ‘ . 496 ) '
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.The x-é.xis, or any Jine.pa.mllel tov it, has‘equations: x'= 89 + ‘0% 3
Y =Dy, % =¢, with direction mmbers (so,@,o) If & plane has an equa-
tion such as M : gy + rz + 8 =0, 1its mma.llines havved.ireetionmmbers

(0,9,r) « & M is paralfel to the x-axis or contains it, since
[‘O’O’OI . [O,‘q,r} ‘= 0. ¢

Al

-;}3

In the same way, if a p]aﬁe has an equdtion in genersl form in which the
y texm is missing, then the plane is parallel to, or contains the y-axis, and

80 0N«

(2) If a )ine 1s embedded in a plane, then coordinates of every point of the-
1ine’ must satisfy an equation of the plane. Ifx"’-:L ~a.nd,’ M are given as

hefor&""“l’..-x—ao+£ot,yA"bo-i-ﬁDt,z=c +n6t,and

M:px+qy+rz+s = f(x,y,z)-O’ thenthisrequirmentismtif,
forall T.,p(a,o+5t)+q(b 4+mot)+r(c +nt)+s=0.‘ This may

“

f( Sbo’c ) + [p’q,r] ’mo,n ]t \. Q

If this expression is to equal zero for all vn.}ues of t then we must
have: f(ao,bo,c ) =0 and [p;q,r] -2 ,mo,nol =0. "

These conditians for embedding ms.y be recognized as requiring that
= (& 0*Po’Co) + ¥hich is a point of v, also be & point of M ; and alss}thn

L , with direction mmber ( o,mo,no) be perpengicular to a normal to. M .

We have previously used the fact that.such a normal has direction numbers -
(p,ayr) - v -

-

Exsmple. Show that L:x=3+2t ,y=1+t,2z=3-1t, lles vholly
in M:2x -3y +2z -6 = f(x,y,z) =0, ) A

'Y

Solutlon. Both conditions in the section .above are satisfied, since

a) the point (3,1,3) is on’ M, since £(3,1#3) =0 , and , -
(b) & normal to M has directian*mnnbers (2,-3,1) ; and L. is perpen-

: dicular to such & normal, since [2,-3,1]-(B,1,-11=4-3-1=0.
A‘, o - . -

Lg7
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(3) Ifwe suppose L. and M given as in the two cases above,/tan, if L
' intersects. H in Just ane point, there must be a unique value of t ,
say, t', such that P! = (x',y',z') on L isa&lso on M, That is, if
]
x* = ao.+ sct' y ¥y' = b6‘+m0t" y 27 = o +not' » then .
P(&O + gotv) + ?(b0»+ mot!) + r(co +nOt‘) +s5 =0, This is & lineu

v

“equation in t' which may be written: ”

hox . ) .
(pa°+ q_bO -Frgb +.g) + (p‘o + qmo +m0)t' =0, or

w f(’*o“’_“’o""o) + [p,a,r] '-.[ﬁoxmo,nolt'. =0

¥

A unigue solution will exist if and only if the coefficient of t' 1is A
different fram zero, that is, [p,q,r]- [zo,mo,n ] ;éo « JIf this condi-

tion is latisﬁed, we may find the unique value of tt

f(ao,bo,c )
" Tp,a,r] - “0*“0’“07 ‘ a®

i ) . . .

" with this value of t' we find the coordinates of P!, the unique point

of inteérsection of I, and M .. .
' . Fug

Example. Pind the point in which L-x=3+2t,y=2-3t,le+t,
intersects M : 2;:-3y+hz—5~f(x,y,)=0.

- o© -~

Solution. Either by direct substitution of expressions for x , ¥y, 2,
in equations of L into the equation of M ’ or by application of the formula
above, we obtain- ‘ "

_ %3,2,1) o 2(3) - 3(2) + 1)e-
2,-9{, * 2,-3’1 2 2 - 3 —3 + l

-1 "1' 5_3_ 31 18
t = - = ee 1 =
('17) v AR A S 1'()
We may’ szmﬂnriza the deVelopnent in this section so far b}gobservidg* that
much of the a.n.a.lysis depends on the possiblity #nd nature of the solution of
f(a.o,bo,c y + [p,q,r] - [Eo,mo,n Jt = 0 . We exhibit the results of our

't

A"



annlysisinthetablebelcm‘ L - , ;

Case - f(ao,bo,cd) [p,q.,r] . “O'%’“o] rpmbers of solu-
| tions for ¢
(1) L, 1s parallel to M ,éo‘ - =0 : * gdone
. , . K @ % .
. ., % . A
,(2),1?1sm1‘mdea1nx . =0 =0 . | infinitely many
‘ Iy . L
{3) I'l piereea M any %a.lue : fO o cne

_ A significa.nt problem, related to the pmhlm of fipding the d:lsta.nce
W betwaentwoskew]ines, istofindparallelp]mes which conbatntwskew“~
lines. Suppose the lines aré Ly :.x =8 + 4ty ,¥ =b) +ms, , C .
2= ey gt ;‘andﬁI‘E:x=a' +;2t2,y"=b +m21';(‘,z=é" +n,2t' R

Iftheplanes Ml "and M2 aretobep&rallel,theirnomlsmsthm

equ:lmlent direction ‘numbeis, and we may write the:tr equations,
Mi‘:pxi-qyivrz--l-sl:fl(x,y,z) =0 ; and e >
l&a :px+qy*rz+32=f(x,y,z) =0 . THe problem is to find p,"q, r,
{ﬁsl,and 55 intemsoftheeonstantsmiehgimusl.lmdlé under the
conditions imposed by the problan. Since I.1 and 142 a.re embedded respec-.
tively in. M, &dd , we have from the previoua éection ,
if(a'l’bl:c)=f( ,be;ce)no,a.ndalso‘ T
Ip,q,r] - [Al,ml,nl] = [p,q,r] - [£ ,m2 n2] = oF, ‘I‘hese fcmr equatians are not
sufﬁcienttofixﬁitheﬁvamhes p,q,r,sl and . sg,butvareeogniza'

tha.t direction numbers need not be found undiquely; any equivalent set will do

as well, to wrj‘te equations for M’.L and M,z . Waas;&tme that ngt. aFl of '

(p,q,r) equal zero, and, in pe.rticulm- that, aaqr, T ;éno , in which case we
- N

have an equivalent set (2 2 ‘,1) and the algebrgic “problen of sol\ring .

.‘ A‘D

four equations in four va.riables.

The algebraic conditions for solvability have their geametric counter-
parts, corresponding to the relative positions of" L.L and L2 . We consider

" here only the situaéicm in which L, amd L, are skew. The general alge-

: braie treamem of this case inwolvaes extensive algebra.ic manipulation, which
s we shall not go through. We yill carry through the details in an example. .

k99
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M Mpma.uelplmes |
11 ;\ 3 - tl,yaa+3t1,-z=1+2tl,ma 12:x=-a+3geﬁ,c

and Ma vhiuheontu.nthelines

(
&

: . + e - . X L Y .
g y 3 Qta s 2 1 2’(:2 e . ) K R
somtton. . fi
e . P : y Lo ot B » ‘ et -
S (1) L 1is not parallel to.L, , because their direction mmbers are not
| ‘. " eguivalent. . L - “ : ) : ,-‘7;'-"_., - ‘
‘:g,a (2) L and L, do not meet, becsuse the assumption of & common ‘
| imposes contradictory ‘condt¥ions on tl and t, . If we try;'%o .
" solve the systan ' \ - | | S
. - : 5 3 - = - + . - A ’ . )
: S EA . (
. s 2 321 3+ 2t2 |
~__ A EET AR L -~
o N : . v
e e -~the 1ast two equstions mquim t 5 » By = - —;— ’ ~these do ngt
satisfy the first ~equation.” . 1 ‘ b / C
(3 Therefore, L gud L, are skew. Then, as in the section ahbﬁr_e;,
| “' we consider planes M ip+qr+rz+se = l(x,y,z) =0, and L.
. B b{a"px+qy+rz+s -f(x,y,z)=0. The eonditions that L
andlzheperpendiculuMacmnmmﬂntoPMnesﬁlm
,.A“ ) : - : . &
S (-1)p +3(q) +2(r) =0 |
(3)1»dr 2(q) - 2(x) =0 .~ L -
“ ' We may mrwrite these as -
i (R ay .- = . -
B +3d) ra=-o0 JF
3(2) t2(3) -2=0,
2 EN
L _ and these yield, by elmenta.ry meYhods, the solutions, 'E = -i—% ’ "
' %/= « We may therefore use either the direction numbers
A , « o .
10 -h- " ‘ ) o -
(53 id 1) or the equivalent (10,-4,11) .' With these values of
. - ‘ [ ]
5006 ”
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) p,q,r,,vaﬁ.nd slaﬁndse easilyf:mtheconditionsthst

M) &ud M2 contain points | P, = (3,2,1) and P, ='(-2,3,1) of

2.

L ‘and L2 respectively, i.e. B ‘
‘ 7 p(3) +a(@) +r(1) +s, =0, “Nsy=-33,
- p(-2) #q(3) ¥ (1) +s,=0, S s, =21.

2.
Final_ly we have the ecmations of the pla.nes
Ml.“le by +11z - 33 =0 ; M, : 1ox 1&y+1lz+21=0.

‘ﬁ N . ' . L]
Nt o Ivo Planes: M, , M, . Suppose these planes have respective equations:
S~ e M :px+qytrzte = f(xy) =0, - ;
‘ M taytTzts, fa(x,y,z) =0 .

b I . v A

PO

. The pla.nesmay (l) coincide, (2) ve parallel, or (3) intersect.

-

(1) The planes’ coincide if and oﬂy if every point of one of them is 8 point
of the other, a.nd this will be the ce.se if and only if there is some non-
zero number k such thet f| (x,y,z) = kf (x,y,z) » 8s may be easily.seem.

(2) +*he planes will be parallel if and only if they ha.ve a common normal, but
no &ammon point. . These conditions villj,both be met if there is ammber
’ 4
k;éo,suehthat P, =kp, , 4, =kq, , » =kr, but sl;@ksa.’l‘he

S
proof that this is so is left to the student. .

s
|

_ earlier postxu.a.tes of geametry requires that they 1nterseqt in 8 line
t ‘containing P

. {3),
0 -
“that this is so, and find the line, given the planes. .

‘The geseral trestment would involve tédfous computation, and would prob-.

ably not be as e&ﬁightening‘ as 8 speci'ﬁc' efxample’. /

I

Example. Suppose two planes, M) 2x-3y +z- L =~fl(x,y,z) =0, and

M, :x+2y - bz - 1 =vf2(x,y,z) = 0., have the polnt P, = (3,1,1) 1in common.

Show that they have in common a line containing 'Po .

) , 501 5‘2

If tm*distinet.'planes intersect in & point Py = (x,,¥,,%, ) , one of the

We show, fram the a.na.lytic repreﬁentation and condition



Solution. If p and gq mmmbemhbbth m,théequation

pf; (x,y,z.) +af,(x,y52) = Y 18, in general, an;gquation of a pla.ne containing

A 'mis emntionmybemttena.s-

0 .. o
. Jeprx +(-3p+aqly+(p-Ugz+(-bp-g)=0 -

If, inparticulm';, p=1l,q=-2, this equa.tionbecanea Ty + 92 = 2 =0
or Ty - 92 +2 =0 . The loeus, in 3-spa.ce 6f this eqmwm is, as shown in
the previous section, a plane, p&rallel to the x-axis JNote that this plane ’

contalts P, = (3,1,1) , since 7(1) - 9(1) + 2 = 0 . If we subtract corres-

ponding members of these two equations we get, as another equation of this

” plsne,; T(y -1) - 9(2 - l} = O .

- %
Irxthesamewy ta.king p=2,q'=3,wagettheequation

Tx - 10z ~ 11=Q representsaplanepama.ueltothe y—e.xis,andalso

containing - Py .= (3,1 1), 8ince 7(3) - 10(1) - =0 . If we subtract

corresponding members of thege two equations we gef 7(% - 3) - 10(z - 1) =0 .

These equations of the t& plane'ral.lal to the x- and y-axes, respectively,

may be written: . . . .
'f—.—"—_4 ) ' oo ) : ’
. y-1_z-1 )
‘ 9 7.7 .
l s K ,
N s ) ’ . X - § Z -1 ' ,

s 10’7-'

o

Note that these three Z-aetiona.l expressions are all equal ami can be set
'equaltosmeeommﬁd Jue t , from which we get x=3+lot,y=l+9t.,-‘

(.an%d E_':'l"'?t- / ‘

i

~ N
These are clefrly a set of parametric equations for a line L containing
the point (3,1,1) . To show that L Ilies wholly in M, we must show, that

for all values ?/f t, « , . ’

| C2(3 +106) - 3(1+9t) 411+ TE) - K=
that is, . 6+20t~3-27t+1+7t-§=0,
r , ¢ . e ‘ ‘
which becomes, for all ¢t , 0 =0.
‘ . . . A ]
In the same way, to show thet L lies wholly in M, , we must show,that
. . - ‘f .

/

3

for #£11 values of t ,.

; 1{(3 +10t) +2(1+9t) - ¥1+T7¢t)-1=0,

' that is, 3+10t+2+18t -4 -28t-1=0,"

and, for all t , this becames, 0 =0 « ..
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- . .‘é.'a« '.Z =I.l|' - 2tl z =1 + l}té ’ \ <d= 13." -8t3 o

' : -
Brercises D-b D-h R
"Comnsider the four 1ines given b;r the equations belnv for Enarciaes 1 to 6.
-’*";x=-a+3t - x=3-6t2” (=53t |

Lij¥y=3-4y L

'Yf'.‘5.+2ta 1-3:- :56_- 21;3

A (e LA A
P : : : o : . , _
: ' K L, i AV -6+ l&tk\.‘ﬁ"' :

;9" 5tu

1. Determins fpr each pair-below if the lines (a) intersect in:just’ome
point, or - () are pa.ra.llal, or (c) are coincident, or .{d) are skew,

-
)

*
- -

, If & pair intersect in Just one point, fimk that points SE e,
WLl L e @ N
o) L, 1 S O A
(c) Ll L, | T € L3 Py ',

2, ‘Write an equation for the line wuich contains " P = (1:;,3) and is

/ psrallelte- ' _ "
(&) .. -~ - | ’ (c) Ig -
'(b)r-a-', S @

' ' -

3. Write equations of pe.rallel pla.nes Ml and M, whieh cont&in mspeétivehr

./(a) By e I‘afﬁ | ) L he o
/\h Write an equation .of & plane which: ' o DN
(e.) cont.a.ins I, and is parallel to 13 .o .
(b). contains L, and is parallel to L » ‘ |
5. Wrfte an equatioh for the plane which coritains the orlgip and
(8) Iy - | (e) Ly « a '
- : . .o
(b) Ly | . (@) I « <
. A
£
. +
L, is sa.id to go over LB if LA‘ and L.B are disjoint (@ve no poin
in common) ;' and thers,-is & point P, on LAf which is gbove & point PB on

‘Ly § that 1s, such that -xA'= Xy s ¥y = yﬁ and z, >z . There is a
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corresponding definition for a line lmder'- anothqr i.{he. We show that
ngoesomhsbecsuseii’il X3 vy =¥y weha.ve o
.',-2+3t=-5+3t_and3 %) =6 - 3,tharek'om t) =1 and ty =2 .
For these;mlues of t, and t3_ we-have,zlne-a,m_l, z3=-3,'"‘ _z;->‘z3 s
a.ndt.harefore Ll goesovver 1'..3 . ..
& ‘ .

6. Determine t.he over or under relationship for these pe.irs of lines

<a>11~m1»u o (o) 1, ma 1, S

S

11. Write an equation of the plane which contains the origin, ‘and is parallel

(B) 1.2 and 5 _'(d)‘L3 and Lh"
7.' If L goes over LB’ a.nd LB goes over Lc , is it al y_a_, sopetimes,
or never true that LA goes over LC ? e

( ) W . :
8. Trye or false?! Ome of two d:lgjoint lines is over the other. Explain.

4

'ke:ax'+y-3z+1+=o;m3:x+'3y—ez-1'=o,.and-

M, iax +y ¥22+3=0.

« r

9. Find in pérametrie form, equations of the 'line of intersection of‘

’(8) 'Ml"&a‘ l b (d) ;2:M3' .’

- (b) f&l » M3 « . . (e) HE ) M}-f . n N ::‘ |

(c)ml M. (£) My, M, .

A0. Find the common intersection point, if any, of

(a) Mll,ug,my‘ O L R
{b) Ml’M‘E’J.Mk'r' : (d’),M‘E’M3’Mh'

Note that we may use the results of Exerci#e 9 to facilitate the computa-
.. t1A in Exercise 10. ' |

to: ‘ ~— .
(a) M, " (o) my : :
(), M, B @ %,

. [

-t

65 50k o o

“Conmsider the four planes M, : 3x - 2y +.z - 5=0, forvExer'cises-Q to 12. .

-



o . .
FY r . * )

1

"~ 12. (Refer tonthe liges at the top of this group of exercises.)
Findthepoint, ifeny, in which -

| | (e) L, meets M, . \ (c) Ly meets Ms .
('q,) o meets M, . (@) I, meets M, .

13. d&uppose equations of two lines in 2-space are given in parametric fomm.
‘ Develop criteria, in terms of ‘the comstants in these equations, for the

A .
y - vardous geametric relationghips that may exist between the lines, as in
Section 4-6D ,‘where the equations were given in gemeral form.. L.
< i} ’ ‘ - ‘ . s
L ¢ .
vn;5- Pemendiculari y endween Lines and Planes .

We have used quite freely in this chapter the definitions and tests for -

i perpendictﬂarity that had been developed in Chapter 2 . For the purposeés of

\ this chapter we coneider angles between lines end planes in generel, and per- 1 .
: pendiculm-ity as the special relationship that exjsts when these angles are '
right &nglas. We recall thaj a,n anigle bas been defimed as the union of two
'mn—.coll_inear rays with a common end-noint. ‘ 2

Iwo __g, Ly » &y + We do not define angles bétween pgmllel or

" coincident lines. Although there mey be scme va:l‘ne in t&le consideration of i
,_-' $traigh't angles", or’ zem a.nglés ' we feel that there 18 not sufficient -
‘applicetion of these concepts in this text to wvaryent the time and effort tha.t
. their treatment would entsil.  We have’ e;ready developed 1in earlier seetione
: anaﬂytit: criteria to distingulsh cases of pe.mllelism or coincidences

‘ -

If I‘l and I.2 are neither puallel ncr coincident we define the angles

Jbetween t.hem to be the angles’ formed by lines L'l end L' which contain

sofie common point ,-8aY, the orig‘ln, and are - respectively coincident with or
. pa::allel to Li and 12 ' Note that t.hie definition covers any intersecting

* . or skgw lines. Such lines determine four e.ngles, which éan be a.nelytically
- distinguished only if there is scme way ‘of 1ishing, ‘implieitly or ex-
e

- ~

plicitly, a sense en Ll and I.,2

2—.€52§Ace: Consider t.he intersecting linee I‘i T X ﬂ;al + 7\:&1; s

. ¥ Eb gty end I s x eyt 7\at’3r=11)2-‘l.rl.'?t“‘merze A s Ky }‘2: N

N HE- , are direction ‘cosines. ‘Then the lines L'. and L', which go through .

l 2 , . ) . Ax)

R : S




» ' -

the origin and are respectively perallel to or coincident with L, and L,
have the equations: .
L', : X = Mty = u.lt/; L‘g':ux ='7\2t s V= ot
" Note. that 7\1 P establish a sense a:long Ll and L'l ; the "positive"
part containing points for mch t>0; and so on. ‘If, on L'l and I.-2 )

we ta.ke t =1, we ggt the points P —(K_L “1) and P, ==( ’“2) on the positive

—l

* .
QPl ’ 032 . We define. the a.ngle between Ll and ‘1‘2 as given abd\re,

the angle formed by 0P ang ,OB, , which we designate as 6 . Fote

1
that if we hed taken for L, °the equivalent direction cosines -A , -W ,

« these woud have bee:irestabushed on L, a sense oppositq to the original,

and in that case the’ angle between L, and I, muld ha.ve the supple-

»

ment of 8 . It is n}t difficult to seg that, i‘br any choices
direetion cosines for I.1 and I..2 the angle between I.1 and

equivalent
). ‘would be.

Nr® 1ts supplanent. These are the angles
by two lines. : ! \

congruent either to *0
we sgea.k of the angles form

Fram AQPIPE a.nc_i the

2 o, = 2 ' o '
d (Pl,Pa = d (q,pl) i;§?£2*257€_ Qd(O{Pi?é(O,PE)‘cos’f'.“ Nope that : \
e -‘ \ . ! . ’ Ty

a(0,p,) = a(0,R,) = 1 , and de(Pl,Pe) - (’1_‘ 12)? iy : u2)2

w of cosines we get

- ’ g .2 2. o
=7\l\—"§7\l)\2+7\2 +p,1 -a_j_lp,e +“?

C e

. ‘ 7t ' ‘
~ ‘ . 2 - a 7\ aLl“‘E .
Therefore . 2 - 2, - 291“2 =2-2cos o
(1) enda - Cos 6 = A\, +*5P§ .

-

This is an uhambiguous determination for one of the angles between, I’l
and 1.2 , namely ‘phat between the positive rays on - Ll' and I.2 determined by
the given direction cosiges and t >0 . Anéther of the angles bet}men Ll

and 1'..2 is elearly the supplement of 6 « .

- *

06 .
/ .
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. thaa d.i;'ection cosines: " Note that when we set - i

. | /-

. 4.‘ . - :
Note that 'L, | L, 1f and only if the engles between them are right

'angles, that is, if'and only 3f A, ‘qﬁ“a =0 . This is & familiar criter-

ion- for perpendicula.rity. L \

°  We may indicate the eorre‘spo:xding results using direction mnnbers, rather

-

A = —
« ' fﬂa + m2 --/32 + m ’
there is an ambigw.ty introduced vwith the choice of sign for the radical. A
p&rticu.lnr pair of direction numbers entails an implicit sensing of the.line,

ag with the case of di,rection “cosires; the positive sign for both radicals
preserves “the original sensing. In terms of direction numbexf 'Equation (1)

becomes o . .
' (= £, é + m1m2
(2) 2 é‘ [ 2 ’
. . 3
° /‘1 * byt om,
. . “ ’ "~ P A .
and the corresponding condition for perpen‘dicularity becomes . o
- ! B v ‘ ‘g + m.lnb t) . . \ [N

The develoﬁnent here resembles, as it should, the corresponding develop-
ment with vectors s glven in Section 3-7 . We ma:;, in these formulas, use the
gymbolism of vectors, to simplify their representations. We recégnize thatJ
‘the vector op = “1’“1] and QP = [A ""‘a]' 'meref_om we may write

Equation (l) in vector formy ‘ .. : : .

] [A,u.l} [Ayohp] = OB, « OF, -

rIn the same way, although we have not used vec‘lgrs whose. ccmponents are direc-
tien numbers, wé may extemd our,_symbolism and tréas-the expr,ession (2,m] °
algebraically as if it~ vere a vector, in which case we maey write Equation (2)

»in "vector" form: . °

/

. (gm0 ] " X

Cose ﬁmﬁ%ﬂf _— | -

and tlge Sorresponding condi‘tion for perpendicula.rity as -

[2 gni') Egeylng} = 0 ., ~

-

N
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Txample 1. Find the

between leic?e?st_,y-h_-t,smg
1.2;;1:=3"+t.,y—

-

.
b - ' A

- e . . ‘ . : . U ¢
= Solution. | * gos 6 = (3l(lL+ (-1)(2) ‘.
o SR f2L R oy
ey L p=3E g, -
. .. o /6 5 Ao .. :
‘ . ) . . ’ ' [
' ' e em&° R : -
] Example 2. Show that Ly':x =3 -5t , y=2+3t is perpendicular to.
. Bhl,: x-=l+3‘t ,y:)ﬁ._{_ 5t .‘._ A : ’ ‘ . ;
‘ l ' - \ * T
, . Bolutiom. (-5)(3) + (3)(5) =0, ~ u LML . ‘
..\‘ : ¢ . ‘ ‘ .
) " Example 3. Find the angles between L a:?d L, , vhere L, con¥bins
the points® (3,4) , (-1,-1) : za.nd"L2 confains the points (-4,6) , (3,0) .
) S SOIM Since no sense is impotsed on L1 and I'E we will find their
) . angles of intersectioﬁ. - . » _
. | We may take as direction nimbers for L1 s (h,ii) and for La s (-’(,6) .
(Why?) Therefore: . . ;e - o
. . ;F . - A ] \.
. . cos 6« (WD ONE) o
. M2 o2 Jen? s 67 '
, A 0 .
. S0 =880 .

.

We may, most siniply, find -the other angle of intersection as the supplement of

\ 6, but it is instructive to use equivalent direction numbers for L, which
) ‘ . )
have the effect 'of reversing the sense induced by the first choice. We use

now (®4,-5) ,-and (-7,6) as pairs of direction nunbfrs and \ge:t

(4)(=0) + (-5)(6)

\N “. 003‘& ’ — 7

.f' Css O =
e 2 2
. J2 (52 NP v 6
) o ' ) ’ ' ‘.‘. ot 'm' 920 \ e * . ‘n LY
’ which is, as we expected, supplementary to O . : .,
4 L] i -
! Y ‘ -, 508 . - f ' »

- “ []
5
~ v ‘ .
’ ° .
. ' . .
A \
. A

LY
s~




: | , i | .
- | §§§g2;g_£.' Fnd the 1iee‘,L5 , to contain the point (1,2) and de E§¥'
,:andicul&fto Ll=x==2+;3th‘,y=h—t. |
! o ' '
Solution. Suppose - L meets L, at P-= (e,b) Then ve take direc-

-4 . 4

tion numbers for L5 as (a~1,b - 2) From' the perpendieularity reletion-

ship we have 3(a - 1) - (b -2) =0. From the fact that P = (s,b) 1s on
Ll',.we have & =2 + 3t,b =4 - t . Substituting these expressions for a

gnd b 1into the first of these three equations yields 3(1 + 3t) - 1(2- t)=
from which t = -.1. Therefore P = (17!\\1) and I has the equations:
x=l7+.Ts,y 4,14 2.8 .

. -

Two lines:. 3-space. The development here is a straightforward generali-

zation fram that given for 2-space. As before, the-EzEEIricant formula comes
' .
from the consideration of ADPlPE ’ where L, and L, either eontein

-

& or are parallel o QP ’ 652

proofe, vhich are not at all difficult, are left to the student.

ACOSQ 1)‘2 ulp2+vv

The results are 'indicated below, but the

. ‘ .. £ z + mm, + 1 n2
e '0059=/ 2 f2 ]
- 31 +m1 oy * 0y |
. Y
As before, the test for perpendicularity becames } )
= 3 = e
A A + HQ + vlvg 0, or 1% mlm2 nln
ﬂ '
These may be represented simply, in vector fbrm, as i .

* .

LRI A h,vy) =0, or (2 oy 58y ]+ [pomyyn j-0.

Ele 1. Find the angle between two lines having direction cosines as
follows:

, and A, = , ; .
2 p? ’/-3- 2 1/-3-

Sl
S |-

;_, Xl=-§’p'l=9"vl=

— e,

¢ ’ . . ' \_/

v




Solution.

2 1 1 1 1
Cos 8 =[-=,0,=] [=, =, =]
R
1 ; .
="_§-0258
r & 15 .

J. 6 s 105°
. : 3

el b‘ I . .
Example 2. Show that the lines Lyix=2+3t,y=3-t,z=2+Ut,

1'.2:x=5+t,y=6+?t,z=7+t,m’eperpendicula:rtoeachothar.#

Solution. [3,-1,4] - [1,7,1] = (3)(1) + (-1)(7) + (4)(1) = 0

Beample 3. Find the line L, which contains P = (7,4,5) wand is per-

pendicular to Li of the previous exercise.

Solution. If L; heets L, at P = (a,b,c) then we may take, as direc-

tion pumbers for %,(a-?,b-h,c-s)‘. 'Ihecondi’bianforp;:mdi-
cularity"'requires 3(;1 -T7)-1b- L) +U4c-5)=0. Since P = (a,ﬁ;‘c) is
on L ,wehave 8 =243t ,b=3-t, and c=2+MUt ., Ifwe substitute
| f these e.xpréssions for the coor.dina.tes 11'1to. the MQM equation&ug get:
3(-5+3t)f1(—l-t) +1+(-‘3+1+t) =0, from yhich t =1 .

Therefore P = (5,2,6) and has the equations: x =7 +2t , y = 4 + 2t ,
f) > ’

t

[

' “Ezﬁ‘t-

Iine and Plane: L, , M; . It is convenient to consider the line

: x = = - e ; !
Ll.x al+£lt,’y bl+m1t,z cl+nlt,andt.heplane B
M, :px +qy +rz +.8 =0 . We have already developed criteria for Ll to

be parallel, or perpendicular to Ml N Suppdse it is neither, and intersects
M, -at polnt P, . Then any other point of. L, , say P, determines, with
M), a uniquexxe ¥ , perpendicular to M, , and meeting it at, say, PE .
We define.’the angle between 1;.l and Ml to be the angle P0P1P2 » designated

as O . Note that this definition requires 0° < g < 90°




Since N has direction nmumbers
(p,q,r) and L, hes direction mumbers

(435m,43,) 5 W can find the angles be-
tweer. L and N, from Equation (3)

of the previous section. We need the
acute angle, desigmated ¢ , and there-
fore use the absolute value of the right
member as cos ¢ . But, from right
&ol’la,since 6 and ¢ are comple-

mentary, we have sin @ = cos ¢ , and / I'n .
_the equation we want: o Ly ‘ : o

°

(%)

Example. Findthea.nglebetveen I‘.L £=2+t,y=3-2t,

z=1+t ; and M1 3x +hy - 122 +5=0. : v
Solution.
sin O = [1(3) - 2(%) + 1(-12)] | E

/3?-‘%(2) +1 f+h2+(12) % /169

sin6=—§jrgw.53 s?a32°

|

Two planes: NE Consider the planes, Ml’ Py + qu + rlz + 8, = 0,
Ma:pax q2y+rz+s\2—0,andapoint P, _(a.o,o,c) notlyingin
e¢ither plane. ?O‘ and Ml determine a u:ique normal line Nl , and PO and
MEI a unique normai line NE . We define the angles between planes Ml 'and
Mg to be the angles between lines Nl and N? . If N1 and Ng coincide,

~

then the planes are perpendicular,to a commQn l1ine and must be parallel or coin-
cident. The analytic conditions are easy to find., GSince Nl and Ng contain

a conmoh point Po , and have direction numbers (pl,q_l,rl) and (‘pagqa,re)

they will coincide if and only if these direction numbers are equivalent,
that is,if ther_el 1s a number k # 0 , such that Pj = kp, , 4) = kg, ,

511 .




r) = kr, ; and these are the conditlons that Ml be parallel to or coincident

with M, , as has been noted earlier. Of course M, and M, will coincide

'1f and only 1f, further, 5, = ks, , othervise M, and M, are parallel.

- -

If Nl. and Ne do not, coincide, the angles between them can be found

from Equation (3) of the previous section, and these aye preclsely the angles
between M and M, 1

P,p, + q;q, + r.T

(5) Cos 6 = Bt N7 e W~

- . 2

2 2 2. 2 2
“ng Yo T Jge ta, *trp

If one of these angles is designated as @ ', another must be the supple-
ment of 6 , and the remaining two angles cangfuent to these. Then the right
member of Eqpatibn (5) gives the cosine either of @ or of 1ts supplement.
We are usually interested in the acute angle, in which case we use the abso-
lute value of the right member of (5) .

-

Example. Find the angles between the planes My : x - 2y + z - L =0,

: §
cand. M, : 2x + 2y -z +3=0. , . '
Solution.
Cos 6 = 1(2) - 2(2) + 1(-1) -
/12 + (-2)% +1° /P o+ 2? r (-1)°
== ~-.m ) .
RCR -
6 =~ 156°

7. The angles are 156° and ‘24° .

Example. Find an equation of the plane, perpendicular to line
L:x=2+t,y=3-2t,2z=1+%3t, andycontaining the point A=(3,1,2).

Solution. If P=(x,y,z) 1is eny point of the plane, then direction num- ,

bers for §§ are (x -3, y-1, z-2) . The condltion of perpendicuiar-
ity requires that
{x - 3) -2(y-1)+3(z-2)=0,

and this is the solution, whieh may be written more compactly as
X-2y+3z-'(=0-

! 912

s
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2.

\ Exercises D-5

Consider t.hesé three lines for Exercises 1 to 4.

L o:x=3-t7y=24+3t" S

12'.'x=2+t,y=1(-ét

Ly :x =

(a),‘Find the angle between L, and L, .

1+3t,y=3+2t. RN

(v) Findthea.nglebetween L, and L3.

(c) Find the angle between 12 and 13

Find the line through the point (3,5) and,. perpendicula.r to o

(a) L, (b) - I, CTRA

P

Find the ’biseétors of the angles fonned by Ll and ]'..2 » using the locus

definition of lan a.ngle b ector, (po:lnts equidistant from the given lines),

""" then show, byt Sthods of this section,that the angles have been cut

Se

into qongrueny palirs.

.If Ll,IE'neeta.t P3;I‘2."L3 meet at Pl;snd L3,L1.at'P2,

(g) find the coordinates of Py , Py ; Pya-

(b) Use these results to find the I1ines which cm:ﬁ:_a.ii;\xib the three altitudes

of :;SPI‘PQP3 o

At what angles does the line determined by (1,3) , (4,-2)", meet the
line determined by (-1,2) , (2,-3) ? - \

Consider these lines for Exercises 6°'to lk. -

.

- L1:x=2'-3t.~'¥=3+t,zﬂ*+2t
N I.E:x=3+t,y=l#-t,z=’2~+3t
L%:x=l+2t,y=2+t,z=l+-3t

Find the angles

(a) between and . L
\ L e T,

(v) between L, and L3 .

(¢) between. L, and Ls. .

%



7. Find the equstions of a line through P = (1,2,3) and perpendieular 4o
(e} 1. SR N () L.
8. Findequa.tia;xs of & line )
" (a) N mgcummm L ad Ly .
b) K, -perpendicular to both Jy and Ly .
% () §g perpmdimartobotpr.lamt.e. ‘

L ¢

9. Find an equation of & plane which contains the point P = (3,5,7) angpis
¥  perpendicular to _ N

(a) L . (®) L. () 1L .

10. Find an equa.tion‘of & plane vhich

. m

a.ndispamllelto La.
an:l:I.spa::&iL‘LelLtoI.l3
'a.ndispa.mneltonl
and is parallel to 1.3.
a.ndis.p.amllelto Ll:
- {£) contains and 1s parallel to L, » | .
L P t ;
lnei\der these plane- o
R M iBxt3y-z+5=0
‘_P_ - bia.3x—y+22-h=0

. (8) contains
() . contatns
(e) .\eo‘nta:lns
(d) contains

(e) contains

CoF P nE W LE L

M3:,x+2y+32+7=0

.
' : A
M ’

"

11. Findthennglssﬁétwean _
(a) My, M, L) w (o) My, M

12. Find the plane which

. - (a) contains L, and is perpendicular to M
() Icont.a.ix\ls L, and is perpendicular to M, .
(¢) contains L, and is perpendicular to M, . &
" (a) contains I, and is perpendicular to M, .
() contains L end is perpendtecular to u, -

| o o




D (£) contains L, end is perpendicular to My .
(g) contains L, and is perpenclicularto Ml | v
W"‘(‘h) containslaandisperpendiculartome |

PO

" (1) contains’ Ly, and is. perpendicularto u3

" .13.. Find the plane which contains the o.rigin, and 15 perpemdiﬁlar to the
1line detemined by ' : Y

Py

"(a)ulna (b)mlu3 . (c)nau3

14.  Find the angles. between each of the lines 1.1 1‘2 L3 , given above, '

a.ndeachoftheplanes, M, M2 M3 ( S °
o, (&) LM () LM - (&) L3M1 .
| M) 1y () Ty ) Iy
S ey my @ N
15. Find the a.ngle that each axis makes with each plage. /j.__ ‘ o
@y ) My . (c) My

16. Consider two imtersecting lines in 2-5p§ce, whose equations are

o arw R g o, e |
- L2 : 8 t by + ¢y fé(x,y) = 0 . Develop a formula for the cosine of.

- one of;t-.‘?q angles between th.em‘, in terms of 8‘1’ bl 1 C o 32‘, ba » Cp -
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. Supplement to Chapter 7
VA R " CONIC SECTIONS \
r . .

ST—f COnés and ‘Sections of' conés {

- . In your study of gecmetry you learmed that. a circular cone may be defined

'._astheunionofansegments VP where P is any point contained in & cirdu- « -
la.r region c and V is any point of space not contained in the plane of C .
Tha resulting geametric configura.tion is a solid. If O is the center of C

and 1f OV 1s perpendicular to the pla.ne of ¢ ’ t.he resulting solid 1s &
Rght circula.r cone, . '.\" ST ;'\"- '
- ; EERRA Lo

An al‘erna.tive idea ‘of & cone 1s 85 an unbounded guﬁ‘ace rather then as
.aboundedsolid.'.\' T ot

. N ¢ N P .
{ . . - . o

“.‘ ! : Y Ve . ..l'..

@;R_I . IatDbeacurvecontainedinaplaneEandla;tV‘be
\a.hypdintnotin E . 'I‘htheunionof&lllinas v sere P 1w

'poin‘tf D,is a ccme. . Vo ‘ R “

' .

o ’I.“he curve D 1s a plane curve and the directrix cf the éone, the point
v is the vertef of the cone; the lines ﬁ are the elementa of the cone.

: Note, that aceording to this definition of a cone the sm‘ﬂace i‘al_ls .
natumlly into two pe.rts. o

«

. . ‘ ‘ N : ) f‘
DEFIRI'EION. If v 15 the vertex of & cone, s D 1s the directr:lx ef
the cone, a.ad P 1% rany point. of ‘D , then the union of the Tays W

is a __m of the coneﬁ the union of the rays oppesite to V& , 1s a.lso
. -& na 2@ of the cene. \‘ ‘

» S| A




It becomes apparent that while & given cone has & unique vertex,'. it has
infinitely mm possible directrices.

Cones msy be named “ter curves which are their directrices. Thus a .
cone which ha.s & circle as a directrix isNed a ¢ircular cone. The line
containing t.he vertex of the cone and the tenter of the circle is called the
axis of the cone. I¥ the axis of the cone is perpendicular to the plane of

:} " the circle, then the cone is caslled a right circular come. The right circular
cones are the cones which we shall cénsidei-.“‘ We state two theorems with ‘the, o
;f,‘pr_aufs suggested as exercises. -

~

TRIBOREM ﬂ’I 1. A circular cone is a right circular cone 1f and only if the

points of a directrix are eq_uidista.nt fram ‘the vertex. \
|

e

LY

THEORFM 87-2. The points of the axis of a right circule.r cone are equidista.nt
from the elements of the cone.

.

The intersection. of a surfage and a plane is called a section of the
,‘surfaee. If the surface is directed or generated by & plane curve (as are
* o cones, prisms, cylinders, and pyramids), then the sections of fhe surface
| ,'i formed by planes parallel to the plane of the generating curve are cg.lle;:l .
cross-sections of the surface. If the surface has an axis, then the sections
'of the surface formed by planes perpendicular to. the axis are ca]%& ggt-
sections-l Since the axis of a right circular cone is perpendicular to the
. Plane of the directrix, the cross-sections and right-sections are identical.‘
The secticns of a right circular cone are ,calléd conic sections. They may
also be obtained from other cones and surfaces. This will be made clear in
Chapter 9. However, we shall confine our approach here to sectiops of right
circular cones.

" . What we plan to.do is to use geametric metheds to discover certain
characteristicé of the conic sections. These characteristics enable us to
use analytic 'methods® to study the cvonie sections as curves in the intersecting

e
plane. ‘ . »
g ne : ~ -

§
Exercises S7-1

-~

4

1. Prove Theorem S7-1,
‘2. Prove Theorem S7-2.

3



87-2. Tangent Spheres and Cutting Planes

‘ Let us consider the sections of & right eircular cone. For the time -
‘being we shall not consider those sections which contain th¢ vertex of the
cone. Such sections are classified as degenerate conic secfions and will be
studied separately Let V be the vertex of the cone, & the axis of the
cone, and E the intersecting or cutting plane. There are associated with
“@ach section one or more spheres with center on the axis a which are tangent

~ both'to E and to all the elements of the cone. It is our tirst task to

prove the existence of such a sphere or spheres.

From the definition of a right circular cone, it follows that any two
elements of the ,cone form congruent acute angles with the axise. We'deffhevthe

*measure of thede acute angles to be the elemental angle of the cone, which we
dengt by X e ‘ .

- a‘ecall that the distance from & point to & line is the length of a/
segment Which 'is perpendicular to the line and of which the end points are the
"glven point‘and a point in the line. Also, the distance from a point to a|
‘plane is the length of a segment which is perpendicular to the plane and o
 which the end points are the given point and & poiht iﬁ the' plane. _:;'

e T

The axis of the cone is the set o all points wyich a.re eqp.iddstaqt
the elements of the cone.. We say therefore that each point of the axis is ﬁﬁe_‘“
same distance from the cone and that this distance is the distance between he
point and the ¢one. ' ‘ -

[ [ . ,"' P ) oo .
' vt ’

.. Given any real ‘number: except zero, there exist two points on the exis ' |
which are this meesure of distance ﬁ;gm the cdne, one on either side ef the
vertex. Fbr bﬁe~real number zero there exists only one such point, .the vertex
of the eﬁne..'Fbr each of’ these points on the axis, the points of the cone at
the given distenee lie in the same Plane and form a, c1rcle. Since these are
the elosest points of. the, cone, there i§ a sphere with center at the given -
point end redius eqpal b the given distance, which is tangent to eaeh elementr
of the cone.. Fbr this ree50n<we say that the sphere 1s tapgent to the cone.

The union of the peints of tangeney is & cmrcle,-called the cirele of tengency.

We turn our ettention to the plane intersecting the cone. This plane may
be parallel tc the exis of the cone, but -in all other cases 1t intersects ‘the
axis, either in the axis 1tself or in & set conteining e.single point. We
first consider 1ntersections in a single\point« '




. If the cutting pla.ne is not. perpand.icu.lar to tha axis of t.he cone, then a
pair of eong:ruent acute vertica.l angles is formed by the axis of the cone and’

itNm,jection in ‘the cutting plane. We define the measure of these a.eute
angLes to ‘be the cutting angle of the plane. If the cutting plane is perpen-

.diculm' to the axis of the cone, we define thg cutting sngle to be '—Z— in

radia.n measurg or 90 1in degree measure. If the cutting plane is parallel to
. the axis of -the cone (in-this case it may conta.in the axis), then the cutting
angle is defined to be zerd. (We could avoid defining these angles in such an

unnatural wey, were e to consider pa.ra.llel planed containing the vertex of b
. the cone. Hovever, we are interested sole],y in the measures of these a.ngxes
and a&opt these definitions.) !

" : ‘ ' “ . . ‘ «
o , Exercises S7-2

1. Prove that any two elements of a riglrt circula.r ecne form congruent acute

\

<, angles with the axis of the cone.

% 2. Prove that the axis of’'a right. circula.r gone 1is the 1ocu.s of points equi-
dista.nt from the elements of the cone.

Y

| 3. Prove that, given any rea.l number except. zero. as a measure of d.istance,
there exist two distinct points on the a.xis of a right circula.r cone
which are this measure of distance from the cone.

Q
L]

b Prove that if & point P on the axis of a rig)@:ular cone is at & ‘
distance ;4 from the cone, then the locus of points of the cone at a
distance 4 from P is & circle. : ¢

2 * ‘ , . ‘,,. ‘ .

57-3. g;nli&res of Tangency

Flgure iis a schenntic' representation of a plane cutting a cone fram a
point of view para.llel to the cutting plane. V is the vertex of the cone,’
a- iq the axis of the cone, f and #' are elements of the cone, & is the
elmnental angle, ,3 is the cutting arlgrle, P 1is the poin{: of intersection of
the cutting plane and the axis.of the cone, and m is the projection of the
. axis in the cutting plane. : ' ‘ )

S &

L]
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T e |

We consider three differentx eoordinate systems on line a . In the first
coordinate system X the origiqx is at V the coordinate of . P is positive
and is denoted by xo The coordinate of an arbitrary point 1s de.noted by

X e

The seeond coordinate system x' is oriented froam V to P a.nd_a.ssigns
to each point R as its coordinate x' the distanee from R to the ‘cone,
and consedquently the 1‘8 of the sphere tangent to the cone with center R .
“This is the case to the: right of V. The origin is.at V . To the left of

_ V the coordinate is the riegative of this radius. This coordinate system is '
* related to the first cpordinate system by the” fo]_lmr.tng linear equa.tion' )

x!' = x sina( .

———

fhe third coordinate system x" on & is oriented from P to V and

ma.ssigns to each point S as its coordinate x" the distance from S to the

cutting plane, and consequently the radius of a sphere tangent to the cutting
plane with center S . This will be the case to the left of P . The origin
is at P « To the right of P the coordinate is the negative of this radius. .
This eoordins.te system is related to the first coordina.te system by the *
following linesr eiuation: ‘ '

' ’

LI

- (xo - x)x" = 'sin,_é . "

_ We observe that, 1f x' & x" , the corresponding point on & 1s the ‘k

center of the sphere :ta.nge'nt tosthe cone and the cutting plane. This is the

_ desired sphere mentioned in Section §7-2. v ‘
| -
|
¢ ) 4 .
. 52l




— , ) >
. We equate these two expressions apd solve for x :
- ’
(x0 - x)x sin = sin 8 _
£ , '
y = X5 sin 8 - x sin/B :
. * . , - i
¥ + = (
. . ) x sinol xsi.nﬂ. X, sinp P
‘ I < = sin 4.
K . *o Fine + sing

We note that we origsfed the first coordinate system in such a way that

‘ xo was positive and Mat, ina.smuch as o, and B are measures of acute

angles, (éinat-"sinp)\ ‘ig between 0 and l . Hence x is the coordi-

-

nate of & point betwveen V and P and the -racmu.s of the dphere is
sinel sing \ . ' T . "
(sino( + sinp/ ) _ ‘ -
I8 >, then sin?> sino{ , and we discover a second. sphere tangent
‘both &o the cone hnd to the cutting plane, but with Its center to the right of
?. ‘I'oﬂthe right of P t;hfa radius of a sphere tangent to the plane is -x" .

. | If x* =-x", " B . .
.‘ : f . .. ' \ - .
L, mefd el demg e T
| « - _ “sing
. ) : - xF xo(sinoc - smp) ’

sin
(sin g -’gsina() >1,

 since x 1s the coordinste of & point’to the.
\ e - ‘

-
: . sind sinf
right of P . .The radiu;s Of,. the,sghgre is "o(smp - sd.nd.) . %_

. . ‘ . i ' .. ’ -

‘ If B<o, then sinp L s&nc( ; we discover a second sphere with center
tS the left of V « To ghe left of V the radius of a sphere tangent to the
.me;s -x' » If -x& = x" F} . . * ? '

’ . 0

\ . -x sina(.=(x0-x)§inﬁ e

' : | = - sin - |
e.nd . \\ ! T * xo(sinat_ -’sin;) .

.o sinf &
WieTe T eTng ) >¥ . Tus x is the coordinmste of a point to the

left of V , the center of the sphere is more remote from the origin than was

sinal sinB
O\sine( - sinp

ol

»

..

N that of the first- sphere , and the radius is x (

-t

¢ 1r B.=ol , sin,B = sine , and the search for other spheres is in vain.

The coe;‘ficicnts of X, are not defined outside the segment VP .

. v -
. Haeg .
s . . : ‘ ) .
O ‘ ) &




. ta ‘ ' © )
I.astly, ve consider the possibility that the cutting pla.ne mey be
Q;l. tc the axis of the cone. In this gase the distance fmm & point
the axis to the plane is constant.’ Thus x" = k¥, and followitg thet above .

\,o
argument' ve 'discover that x =3 iia(- ; there ere'tm sphems} OPW E!‘ther

«
bty o
-~
-

side of v and each with radius k .. We res:ell that the cutting angle is
" zero in this casg, for the cutting angié is not really }he a.ngle itaelf, byt
rather a measure essociated with the e.ngle. R .

. .2 - . . - N . .
. « )
L [ . . . .
. . )
' .

. . Te
[ Y ¢ . [y -

’ % erete C.‘dnie Seetions

. Before continuing with our discussion of the more ela.borate cogic sec-
. 'tions, we may difFess to consider what happens if the cutting plane contains
‘the ‘vertex of the cone. A gecmetrie ﬂescription shbu.lc‘ be sufficient. If

g -@>n( then the vertex 1s the only point of” the gection.” If B = ., , then
.the section 1s'a single element 'df the cones that is, a line. If B < ol ,' the
section is the union of two elements of Yhe eone, that is, the “union of two

- intersecting lines . 7 B ) o

. . ) ,
Some sections of ¢the surfaee celled e right circular cylinder are sec-~
'tions of right_ circule.r cones. The excep;bicms ape ghose sections obtained by .
‘& cutting Plane pardllel. to -the e.xis of the cylinder, with distance fram the
axis less than: the rddius of the cylfnder. ' (The _plane may contain the axis.)
d l’l’hese sections are the union of two parallel lines- 'I.'hough not obtainahle as
eections of; cones for algebraic reasons they are included among the degenerate
- conic-.spetions. - . ) . ‘ 9

! -

-

@ ST “Sa (‘}eometric Prgperties of the Conic Sections

.
- - -

. -
_ - Frmn our considéretion of the cogic sectiens s0 fa.rdwe nay make certaln
. genei'al obsemtions. va ,B =L (in redians) or- 90 (in degrees‘), it 1s in-
.o tuitively obv:lotfs ,and mot difficllt to prove that this, section is a gircle. A
If 2,> B>, 1t 1s apparent that the 'plape cuts every element of one nappe .

¢ and that the resulting secticn 13 & closed curve. If B =of, the plane cuts -
gdhe, but not all, of the elenents of otie nappe. Lastlf, if’ A <o, the plane .

= - cuts same, ‘but not &a11 th& élements of each nappe and ‘the- eurve has two dis- “

' t’inct branches. . ?f b T {
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cutting &nglep . The conic'section is the curve s « The tangent spltere
th center -0 1s tangant to the cone in circlem c and to the cutting plane
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But % continue our study we need mcre information. We consider Figure
£ :
ST 2.. W %given a right circulsr cone with vertex v, qf'x:.s ‘8, and ele-
pental ol . E is = cutting plane, not cont,a.ining V with an acute

v

-



¢

and perpendi

-~

'angﬁtis ccmplanentw‘fo the cutting femgle and has mea.sure (— -B) -

LY . -

let G be the plane containing circle c . G 1is perpendicular to the
s &, and since E is assmednottobeperpendicul&rto a , G and E
mist form a dihedral angle with edge d . The plane angle of the dihedral

-

Let

1 be. afy point of the conic section s . The plane containing P
dt ‘to''d' “intedsecter hd_dihedral angle in a plane angle of the

. dihedral &ngle which has vertex\ C and measure (- -,s) Iet A be the

foot of the perpendicul&r from P .to the gqther side of the Wane angle. ‘PE
is perpendj,cular to G *d APAC is a right. t«ria.ngle. Since ‘

mAPCA—v(— -;5) ,m /_APC¥/B a.nd o : ~
o - -t . -dAP i,
(1) . o cosp 6 K

- 7 \l". '»4:.

: We observed that’ AP mpe;pendicul&r to G . The _axis e 1s also .

i-pendicular to G, s0 & and ‘KF sre parallel,™ Consider t.he eldment of .

 §
the cone PV which intersects the circle of ta.rfgency c in point B (whieh
is in G) . Since the ta.ngent sphere is between V. and the cu ting plane, B

-is between V and P . ‘I'he elemental ahglg a.nd £ APB are a pair of alter- .
nate interior angles formed by a transversal of two perallel lines, and conse—

L]

quent.ly m £LAPB =e¢ . OAPB 18 a right triangle and

\ a(A,P
(2) . o c:os‘?t. 'e‘d %) Y 2 .

L

Both PB &ﬁd PF are tangent segments to the sphere from the same point.
and hence d(P,F) < d(P, B) Substituting in (2) , obtain -

2

. (AP
(3) e cosed =3 PoF .
Dividing, (I) by '(3), we, obtein - . T .
3
F ~ . - - ‘
(k) ( COSé - d P F "‘ . .
* ) cOse¢ a\p,C

-

¢ .
" *Since ‘both A a.nd ol . are constant ior a given conic section, his quo-

tient is a constant. It ls%lled the eccentricity of the conic saction and

is denoted by the sgpell letter e ‘“ JGecmetricai;[} this means that for any “

point of a given conic gection the ratio,of’ its dﬁt&nce from & well-definéd
poifit to 1ts distance fr\pxq a well—defined line i a-constant. Both tﬁe point,

. . . .
N ¢ ' .
['S - . '
-

hes L

)_.:

¢
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wvhich 1s called the focus orfocalm ,a.ndtheline, which is called the
.t directrix, lie in the plane of the eonic gection. Since we have taken both
the elemental angle.and the cutiing angle to be the measures of acute anglea )
the eccentricity e will be & positive real number . .

We“hsve observed that it i1s perfectly pés_dible for the cuttiné plane - -

to be perpendicular to the axis of the cone. In this case E and G are

& parallel and the section has no directrix. It does have a focus which 1
] inte:rsection of the cutting plare and the axis. The seetion 18 a8 ciy€le and

the center 1s at the focus; 1f ‘U 1s the focus, then thé. redius of the circle

£ 1s 4a(y,V) - tano( . In this case the expression for the eccentricity would be

[ - -

s which 1is zero.

cos(i) |

QOSO(

Sinca this is distinet from the other cases s wa may accept it /dthout "
i . incomsistency. . | ‘

: ‘weobserve‘thatif -§>.,8><,cosp<éoso( And e <1 ( if B=e(,
cosB =cose¢ and e=1; 1f 0<PB<a,1>cos8 >cosa and € >1 .
We take these pro?erties to be definitive for the conic sections. 1

. ° N ‘
- DEFINITIONS. Given'a ‘conic section with eccentricity e :

. 'The conic gection is an eliipse if 0 <e <1 .

~ The conic section 1s & la if e=1. } ,I
The conic section is a bola if e > 1 . . )
The conic section is a circle if e =0 . -

L] 4 -~

On the other hand, we have shown they may be described. by their geametric
v properties. A cirele is the locus of points in a pls.na at a given distande

_ from & given point, called the center; an ellipse 1s the locus of poipts in a
- Plane such-that for each point the ratio of its distance.from & given point to
its d:Lsta.nce fram a given ‘line is:a constant which is less than .one;"a parabola ‘
i1s the .lomzs of,points :Ln a plane such ‘that for each point the ratic of its |
dist&n#e frcxn & given point to i.ts distemce from a gtven line\is one; & hyper-

bola is the ‘locus of points in & plane such that for each pdint the ratio of

its distance from g givan point to its distmce f‘mm a given line is a constant -
: which is greater tha.n one.

’

L




Exercises S7-5 : N

l. Prove that 1f & .cutting plane 1s perpendicular to the axis of & r;[ght
circula.r cone, tHen the sphere of tangency is tangent to the plane at a
point cn‘ the axis. Prove that in this case the conic gection is a cirele
which centers on the axis.

*2. In-Section S7-3 wé‘dis;cm\rered that if & >o¢, there exists a second sphere

7% of tangency such that its center is on the other side of the cutting plane
from the vertex. Let this sphere t.a.pgent to the cutting plane at F!' .
Prove that if P 1s & point of the 'section, then d(P,F) + a(P,F') 1is a
fixed constant. In other words , Prove that an ellipse is the locus of

points in a plane such that for each point, the sum of its distances from
two given points in the plane is & fixed constant. (Hint: Ih Figure 37-2
the second sphere lies below the cutting pla.ne, let c' be its circle of

te.ngency Let B' be the intersection of VP and ¢' . Then prove

' \-‘h“\d(f ,F) + d(P,F') = 4(B,B') . Then prove that this distance is the
’ same fO a.ll P.) . ! . +

3. In Section ST 3 we discovered that if g <«, there exists a second _
spkare of tangency such that the vertex lies between the centers of the two
spheres. Iet this sphere be ta.ngent to the cutting plane at F' . Prove
that if P is a point of the section, then |a(P,F) - a(P,P)] 1sa
fixedr constant. In other words prove that a hyperbola is the loqp.s of -
points in a plane such that for each point, the absolute value of the
difference between its distances from glven poiﬁts in the plane is a
fixed ccnstant. innt In Figure S57-2, the seeond sphere 1ies vi.’chin the
upper nappe of the cone; let c' be its circle of tangcncy. Iet B' be

. the intersection of VP and c' . Then prove that®
. i e .
~ “Jd(VP,_F) - a(P,F')| = d(B,B') . Then prove that this distance is the same
forall P .)

#U. let C bea circle contained in & plane E . The union of the lines
perpendicular to E which contain points of C is & right circular
cylinder. -The lines are called elements of the cylioder; the circle is
ct{lled & directrix of the cylinder. Prove that the sections of & right
cireculsr cylinder are Jeonic sections. Show st:hart; in the case of the right
~circula.r cylinder there are also spherég of tangency (1.e. ta.ngeni to the
cylinder in & circle and to the cutting plane a} a focal point of the

-

‘eonic section) ‘ ,
. —— ‘ R
In general, the sections of any cone or cylinder, wlth a conic

‘ )
‘aection as directrix, are also conic sections. -

3 -
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Part 2 . ' '
‘ THE GENERAL SECOND-DEGREE EQUATION Y
87-6. The General Second- Dgg{ee Eqnetion- Rotetions and Translatiors 2 .

N
The conic sections which we have studied have been represented in
tquulan ccordinates by second-degree equations in” two variables. 1t seems
natural to ésk whether all equetipns of second degree in x and y have
*.Joci which are.conic sections. «In.ﬁits most general form such an equation may
be written as ’

- » L
-

(1) Ax2+Bxy+Cy2+Dx+&r+F=0 where A , B, and C are not all zero. : -

TQ}S general form may be difficult to identify, but some techniques which
we have used in the preceding ‘sections will permit us to simplify it. The
mador stumbling block {ds posed by the xy-term. The only previous equaéion
conteining-en'xy-term,-which we have cons%dered in detail, was that of.an
equilstéral hyperbola. We also have another equationvforran'equilateral
- ) ‘ - 2 2 :

- .S _.L&.l ’
. hyperbola. Let us consider the graphs of Xxy = 1 end of ¥ 5 = .

r~

/

L 2 ' y_e_ :
* EX-a =
. oo . Figure S7-6a Figure,_ﬁ?-()b

The graphs of these two equati'ons seem remnrkably'eimflar. Not only are
the asgnptotes perpendicular in e&ch case, but also the transverse axes age
‘congruent. In fact, it‘wauld appear that the graph in Figure 57-6b may be

obtaines frcm that in Figure S87- fa by a clockwise rotation of axes through &an
A\

[
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‘anglé of h5°‘. The first equation contains an xy-term, while the second
does nat. The suggestion is that a rotation of axes as described in Section
4.8 might result in the eli.minafiox} of the xy-term.. It turns o,\int thhat this
is the .case, but we are now faced with a second question. What size rotation
should we consider? TLet.us consider the effect of any rotatiom of axes on
the general sef:'cnd-degree equation. We recall that the eqﬁations of |

" rotation are:

=
I

=x'cos @ -y'sin8 = - .

x' sin 6 + y' cos 6 .

If we substitite these values in Equation (1) and expand, wg obtain

}

T-,A(x"e cos2 6 - 2x%y' sin 6 cos § + y'e s:{nz- )

£

y 1

e + B(x' sim @ wy' cos 8)-4-'_'1"' =0, '

4

© x'yleterm. c If L. T TR
LR - -

-
o

. r N . S . r .
~!;B(x"2 sin 6 cos § - x'y' sin” @ + x'y'ﬂcose 6 - y"3 sin @ cos 8)
N . i R o . K ‘ . .
R C(xl2 sin2 6 + 2x'y' sin 6 cos 6 + y'e c:os2 8) + D{x*' cos 9‘\- y! sin 6)

\

. A [ 3
i& "‘\ ’ ]

-2Al sin @ dos: 0 + Ii(co’s2 6 - sln',E 6) + 2C sin 6 cos 6 . 1%

Lo ! tw k .. ‘
If this goefficient ig ,ze_ro,' transforméd equation will not contain any
R ! S
“ .
v oA sin 6 cos O + B(cose 6 - sin® 0) +2C sin G -cos 6 = 0, " :

then . . :

. ‘ ot it.f:‘ “'B(casg'e - §in2 g) = 2(A - C) sin @ cos. 9 . o Py

[
AY

\ .
Thus we may write -~

13

* _i,f\e recall that} cos? G'-‘sinz 6 = cos 20 ‘and that 2 sin 6 cos O = sin 26 .

N ‘.“\".', 2. B cé Eé’:l\ —LC) sin 28 ,.
< * ‘

A

or, if A G .
A - B in 20
{ R ° sin .
R A -C <c5529 ) 'Y
. ‘~ - “' .

.
} »,

or

L} ¢ B _ 5
- .' A = C tml &.9..

Y : . B ces 2U =0 A'/"‘

‘ « cos 26 =0 .

". Howeyer, we want to krow is the coefficient of the x'y'-term. This '

t



. . S

- . : o i
\
(we recasu that if B were zero, we would ‘not ha.ve hed to go to &ll this

trouble.) In either cese, all require is a-single value of 6° which

8atisfies the approPriate "eonditioN. If- cos 26=0", 26 nay. be 900 HEN

thus 6 may be 45° e If t&n 20 :fieg—a ’ which is not zerd, we recall

' that the tangent aﬁsumes all non-zero real values once and. only once between
0° and . 180° Thus, there exists ‘a unique acute angle 6 euch that e\\\‘

A-C

. « oA
Thus we. have shown that in every case in which the second- degree

equation has an xy-term, it can be- transformed, by a rotation of “axes through

a unique acute angle, to an equation without an xy-term. e transformed

equetion has the form A'x'e +-C-'y'2 + D'x! + E'y. +F' =0, Or,'dropging the

:j"~‘§rimes, the form ’ o ' ‘., .

(2) Ax2 + cy + Dx + By +'F =0 . (A end C are never both zero. )

o Now the equation is in a form which be identified more easily .We~Paye
2 already developed techniques for simblifying equations of this form..“It is
- proper.to drop the primes only when \the form of the equation is being studied.” -
T 2
_ If AC 1is not zero, we first cogiplete the, squares for the x - and
* x-terms and y°- and y-terms to obtain .
. | | . _ , E2 A
2 p I 2 E ,E\_D )
ATt Ku + -—é) + CG; o cé) b TR ] F, AC £0
. 2+A [N k
(" .- &‘ s .
. .or

3

2c

. A(x+_2%)2-+c(y+_§_)2=CD2+AE2«hACF’AC#O. i

. : T , ' ~
Now a_tra::Xation of axes, as introduced in Section 10-2 and described by the

equations . .
i o D
X=X T 2A -
' B
Y =Y-ago
gives the transformed equation . <£n .
. K
. ) A o ‘ . ‘
r Axt? 4 gy'© o CD + AF® - LACF wAC £ 0, .
-* LAC _
in,which the primes have been omitted for simplicity.
- ) o ~-Q /
\. ] L )
- Ct ~
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Ve recognize th&t“if AC 1is negative

cn"’-‘me

or if A, C, ‘are all positive or all‘nega.tive, the

-~
a.nc'i CD2 AE2 {uicr is not zero,

. ")

| tre.nsfoxfed egation is the ition of s conic section. If A es\;ala c,
the mnie section is a eirzl.e* 1t AC is positive and A 1is not equal to
c, t,he e@nic gection is an ellipse, if‘ AC " 18 nega.tive, the conic section

15 an tw'%erbola. o ) ‘ %

We must, also consider. the case in which AC =0 1in Equation (2).
Suppose A is zero. Then C is not zero, and we may complete the square ~
for the y and y-terms. Equation (2) is now

’ ' * . ‘ . ‘ P aad
Lo : cy+.nx+m,-+p=o’
° which becomes.
‘ , 2 h B
e : : oGy t By = -Dx - F } }
\ or . ~ Lo ‘ o
y . . . .
T I A FoTE '
RN _Cy‘+ '+——'=-DX+‘- s
< o ( ‘ uc"’) ( b~ koD S
or ' - ' .
= -/
'(_+.E 2 _D _E‘?(-hCF
W el I )
. : o ; -, . ‘ BN . -

A translation of axes Jdescrived’ by the equations ¢

| x = x' + —W—Ee - mx
. . S o )
+ ] _‘ "' _ _E—.
y‘ "‘ y. gq 2 - .
gives the tfansformed equation N .
: ] . 2 _ _, _D.x ] : .
y =-@x - ‘ ) \

We recognize this as the equaf,ion of a parsbola, with the vertex at.
thg origin and the axis on the x-axls. *

-

If C is zero, a similar development may be made. The resulting
.€quation will again be of.a parabola wilth the vertex at the origin, but the
‘ ‘axis will be on the y-axis. - g ) '

1

" . . ‘ -
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AT . Exe'rcises 87-6

s

1. Through what angle must the axes be rotated to eliminate "the xy-term

from each of the following equations % oot

(a)- ng-:J}Hwa-‘m-?':O SR ' - (
C o | ST . ‘ |

) ey eyt -3=0

. 2 2 N ~ . * «

(e) x" -3y +by"-9=0 : '

[ . . . - ‘\.r
- (a) Xty x+y-1=0 . g

(e) §x2+‘2/§w‘+y2-2x-gl§-16=
(£) 1oxy + 9y° - 2x -3y -10=0

. 2\ ‘For each of the following, siuplify the equation, ident#fy the conic.

\ section, and draw its graph: v
. - . !

(&) 5x° -Gx.v+5:f -8=0 = ° N ,. \ I3

(v) ”5x - bxy + 5¥r t U +L4y s bh=0

(c) 7*2 W+5y2= 16 = 0 ' - PN '

(a) 3x +2xy+3y +ur+ by =0, . L Y

() x -6xy+y +1kx+10y+1u I |
(£) 11x° + 2lay + hy - Wb ,.hsy ‘*.@}t -0 ) ‘ i ‘;;
(e) 2§Q"+hx—1+y—9:.’_ o ( : o

(n) 9x° - 2kxy + 16y° '+ 90x + 130y =
o ‘

This treatment of the quadratic equations which describe conic sections
‘has been solely concexmed with techniques employed in simplifying the
equations. It is important that we also consider what we have done from a

-

geometric point of ylew. ‘ o

L]
R / .
B irenw -o..-& - -

. In Section 6-2 we have stressed the importance of recognizing symetries

in figures, both as an aid in the sketching of graphs of equa.tions and as a s
- guide in the selection and orientation of /s CO rdinate system to deseribe a
o gmph by an equatiLn. In particuls.r weyhave cansidered axes of symmetry and
points of symmetry. We have observed that in rectangular coordinates the

- B q A
7 y-axis 1s an axis of symmetry for a locus describved by f(x,y) = 0 i§ .
£(x,y) = £{-x,y) and that the x- -axis is #n exis of symmetry if
£(x,y) = £{x,-y) . The origin is & point of symmetry if f(x,y) = (- x,—y) -

r 4




- ' - *
r

" The origin is alwaye a point of symmetry if both the x-axis and the y-axis
k3
are axes of symmet;y- However, the converse of this last statement is not .

true. (Gonsider y = x3 .5

It was in SectiOn 10 2 that we first overtly considered translations
‘of axes as a means*to simplify the analysis of the graph of an equation.
However, we have really used this technique before. Do recall that in
Chapter 2 in our discussion of direction angles and direyjzo

n cosines for a )/
line we found !.llnnvenient to consider a parallel line through the origin? )‘

In our rather mechanical treatment of quadratic equations in this
settion we have been guided by symmetries An, the graphs of the equations.

« The rotations of axes which we performgd in Section 10- 3 made an axis of Sy~
metry parallel to a coordinate axis. The trahsiations of axes made a point of
symmetry also.bé the origin. (In the case of the pafhbola there is no.point of
-sxumetry. The translation of axes made the vertex be the origin as well.)

. It is possible to deseribe pointe and axes of symmetry quite‘generally..

“ DEFINITIONS. Let S be a set of points. The segments joining
"points of S ®re chords of the set. If there exists'; point _ ¢
P such that, for.each point X of S5 , the eegment with end<
point X and mid«point P 1is a chord of the eet, then P 1is a
Eeint of s _ymmet;x or center of 5. : oot

v Let S be a set of poiﬁts in a plane and let L be a line in \ ’
the plane.g if, for every point X of §° , the segment which

* S (1) has end-point X . «
(11) 1is perpendicular to L', '
and (iii) has its mid-point on L ,
is a chord of S s then L is an axis of symmet ry of S .
\ \

-
:

-

‘ S7-7." The General Secorid-De_gree Equation, Translation and Rotation “-

In simplifying second- degree equations, it is in some cases more con-

venient to translate the axes iirst to eliminate the x- and y-tergs. Then

we rotate the new axes to eilfminate the xy-term. ¢

533 e\ ~ ’
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.

‘If we start again with Equation (1) of Section S7-6 and use the e&uatiégs
‘of translation ‘ o ,‘ o ‘ "
’ X' + h « . ' toe

=y' +k,
Y

]

-
s
1

we' obtain . ‘ .
L aef e D) - s vt )\ 1K) o+ Oy S + 2hy? 4 K0)
4 D(&' + h) + E(y +K) +F 20 . ' : :

If we col_lect terms, this becomes

(1)3; 4 Bx'y' + cy'? + (eAn + Bk + D)x' + (Bh + 2Ck +‘§ﬂy
- ] .
p ot (A + Bhk + Ck +Dh + Ek + F)
8 . :
We note that the coefficients of the second- degree terms will not be changed

by a franslation of axes. If we can fdmd values of h and 3.4 such ‘that 1
] !

)

DAh + Bk ¥ D = 0 .
?nd Bh*:c?Ck+E=dr -

' «ve shall be able to substitute these .values in Eciua.tion (1) to obtain a '

transformed équation free of first-degree terms. We gan solve this paix: of

-
4

equations to obtain . .
-D" B A 26  -D -
B - - «.|B -E
2A B 2Ty B ‘
.| B & B 2C o
! .
jaa B 2,
g= |5 = bAC - B° 40 .
B 2C -

L
4

- e : '
The determinant ©& is ef some interest in the analysis of the second-degree

equation and is sometimes called the characteristic.

You should sense that, ‘hen it is possible, it is edsier to translate
the axes first and then perform a rotation of the new axes. Thim fewer terms
there are in an equﬂ;iiiri"'the. easier it is to perform a rotation. Howeve:,
if the characteristic is zero, we crmnot f‘md the appropriate values of h

and k . We have no choice but to follcw the prot.eclure ot Section 6 8.



-
.
444444‘4‘4*‘1IF\>\
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If the characteristic is no? zero, the transformed equation is

~

-

AX' +Bxly1+0y' +Fl=0
: where : IOb Ah + Bhk + Ck + Dh +Ek + F .

It is easy to remember what F!' 1is if you notice that. when we represent the
_ original equation by f(x ,y) =0 then F' = £(h,k)

-

. " ‘Exercises S7-7a
c . . .
1. Find h and k such that a translation oi; axes described by
- . ‘ j
L \A".;': ‘ ‘.‘:"" . ',_ox"=x+h . )
. ' y .= y + kK -
o f' will elim%nate the first degree ‘terms of - ~§\
\' - L;;c +y -8x+h§r+h£0 . »

Verify for this case that fine constant term in the transformed equation
is equal to f(h, k) .

‘. 2. Transform each of the following equations by i’irst tmnslating the axes

so as to elimipate the" firét -degree terms.’, Then rotate the axes to 7
¥4
remove -tHe xy-term. Sketch the curve, .ahkowing old and new a::es.
o (a) 8x° - hxy + 5y2 - 24x + 24y = O S
) 2»4"'. 2 ’," 2
. i,(b) 3x7 + 10xy + 3y -‘d7<~+22¥-53= ‘
. f‘l N ‘-
(c) 7x2/»‘- Dlixy + 120x + 14k = O . o
. : « \
a) xy+’hy21—9f§x+7/§y+lh=§l' .
©, - ‘Once again it's important that we consider this method of simpl-ifying
the second- -degree from a geométric point of view. Why can't we find an e

-

appropriate tran!ation of axes when the’ characteristic is zero? You .:hould
Fecall that in the previous se_ction we obserWed that the translatiom of axes
ms.}fer.the new origin a poin_t of symmetry. Our search for values of " h and

k 1is in fact a search for the coordinates of a point of symmetry. éiﬁc; the

~ .
, .parabola has no point of symmetry, the characteristie of its eguation turns -

e’

out to be zero. The converse of this statement is not necessatdily true, b

we shalk'defer the consideration of this guestion. ) .
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If #e approach the analysis of the second-degree equation from a geometric |
“wpoint of view, we can develop methods which may be applied to more complicated.

e

problems. - "’ o a .
First we observe that if a set of points 4n a plare has an axis of, sym-
metry, then the axis of symmetry is the Perpendicular biseétor of chords

Aoingng pairs of points of the set. . In fact, every point of the set is an .
en&point of such & chord. We have already noted that the equation of a locus .

Ms frequently simplified if an axis of symmetry of the locus- is parallel to’
one of the coordinate axes. We'shall first find an axis of symmetry for the

graph of the second-degree equaﬁion and then rotate the axes to make one of
them parallel to this axis of symmetry. Since the chords in the definition
of an axis of symmttry are all perpendicular to the axis of symmetry, they !

. 4 Aare parallel to each other. Then the lines-&etermined by,the chords have

parameﬂ%ic‘representations in terms of a fixed pair of direction cosines
(). Let (x',y') be the midpoint of & chord: ‘' Then the parametric

'nepresentation of the line containing the chord is ’ . .
x=x~+7\t e
Ly =y +;ﬂ§ ‘ oo ‘

When (x,y) is an endpoint of the chord the coordinates should ‘satisfy
the sesond degree equation. If we substitute the parametric representation
of- the endpoint in.the second< degree equation, we obtain

A(x' + E)tx' + A tg) + B(x'y! +- ptx' + Aty' + At )

)

+C(y'? Euty’ + 262 +D(xt 4 t) + B(y' taqu) + F - -
h +
If we collect terms In t‘ , & and .yt , we obtain '

(2) (ﬂ?+ By + Cp. )t + (2Ax'""+ Byl + DAt + (Bx' + PCy' + E)ut

Now we ohoerje that bozh endpoints of the chord must satisfy the equation.

Furthermore, if t, 1is the valge of the parametér at cone endpoint, -t is™

1 1
the value of the p'ara.meter at the other endpo.l.nt.v This must be the case fof

any chord. and - any equation "~ This implteo'that the form of the equ&tlon in ..

t must always be - ( , st e

St ™
, = A Y
3 ) 936
A [ y
4 ‘o' f?f} .
\ Ay * ‘ "

+ LAx' + Bx' y + Cy ( +NDN’(+ Ey' + F) T



Thus in Equa.tion (2) tqe coefficient of *t , or .
(3) : " (2Ax' + By' + DA + (Bx' + 20y +'E)i,

must be zero. Now A .dnd p are fix;a fogf angr particulax pecond-degree .
equation, but x' and ¥' are variables ’ designating the coordinates of
the midpoints of the chords perpendicular to the axis of symetry. But the - »
) midpoints of the ‘chords are on the axis of symmetry. Thus the condition on
E)qﬁ‘ession (3) written as a linear equa.tion in x' and y' 1is the egmation

of the axis of symnetry ' . Y
’ - ‘ -
‘ L) .
(4) ' (LA)\ + BU)x' + (BM+ 2cuw)y' + (DA + EM) =0 & ; "
This equatitfl is fn the general form. Hence, (2AN + Bu,BA + ECIJ.)' is a S b
pair of direction numbers for normals to the axis of symetrx But so is . ) .
M-L) Therefore, for some non-zero real mumber ¥ . b o7 -
R = .- ° * o . Coe
sy - 2A7«+Bp=k7\ . RS Vo
and . CBA+2Cp = k. ! ' ® - 'l,;“',- o >
. ) . R
L 3 , C ' A ?l‘
JIf we soltve Qh% second equation’for i , we obtain . ~ St
. - e .
. B L - .
' ST -x M . T ) o
We substitute in the first equation, which becomes ' ° - ot v ‘ . .
. . i . X . .
r. . » . ’ Bg » ' S, o [ Y -
2 - —— = ' . -
= * . ‘ - (J k))\‘ OEC }\ ° ’ . ' . ‘s "
' . y 2 - e
or & . (hac- 28k - 2¢k ¥ kS YN-B" =0 = v
) £ 2y . '
@pr - 0 - 2(a Ok (bhe - BT -0 - '
. . . : v ' ’ PR ! T 0 :
: Nowreither A or the coefficient must be zero. But if A were-zero, u © 0 {=
v would also be z&ro, vhich is. impossible, since’ (A1) 14 'a padr of direction’ -
T ! ’ ~ . <. ’ ' T .
o o ~ . ' .~ *
, cosines and A + gy =1 . Therefore, . ) . - . ..A/’
Q . _ 5 . - e r \
(6) ) K"« 2¢A +C)k + (LAC - BY) = 0 .. SN .
. * [ I £ o .
. £ . e L] .
Eguation ('6) is called the charac:terlstié equation for the gkven secom: d ty
degree equation a,nd its roots are called eharacteristid mlues!' f.or the ' * o T

quadratic equation. We note that the sum of th&mots is 2‘(A + Q) while'

. L - ¢
] . . - ]

LI

the product of the roots: is 1+AC - B‘ ' o B , the characteristic of the P :
quadratic equation. L . " I * - . . .
‘ . . - . 4
. . SO . ‘ . o,
¢ - ‘ . . .
L3 N . ' ) J ‘
-( . . LI o \ - .
‘ | o A ,_ :
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We may then solve Equation (6) for k and substitute these vaiues in
. Equations (5) to determine the pairs of direction cosines (A,l) . These -
Ly pairs oY .values may then be. substituted in (L) to obtain the equaﬁions of
d&es of symmetry We note that if the characteristic is zero, Equation (6)

~ la
/ nas only cne non-zero root. In Equation () k_ must be non-zero; hence,
. 3 only one pair ‘of direction cosines may be obtaindd, and the graph of »the
'quadratic equation will have only one axis of symmetry. This is consistent
with our.previous’observations that the parabola hits only one axis of
¢ . _ - \
symmetry and that the charécteristic of its equation is zero. We also note
that the characteristic equation will have eéual roots onty if
- 2 s .
L . (A +0)° = bac - B° .
. or . . - A% + 2aC +AC‘?=1&AC-BQ' ' i,’
2 . ) . 0 ' : . 6
. of e | . A -oacs - B° ] p :
. ) < \) A 2 ) h
‘or . ' . (A'C)L :--,B . . ]

. § »
‘ This may only be true if B 1s zero and A equals* C .’ Whgn this is the - /
case, you will regall that the graph of the quadratic equation is a circle.
Equations (5) are satlsfied by any pair of direction cosines, and there are
S infinitely‘many equations (h) This is not surprislng lnasmjch as every ‘

'diameter of a circle determines an axis of symmetry. It is 4 fact that the
characteristic equation of & quadratlc equation always has real roots. *
- Furthermore, if these roots determine two axes lﬂ'uymmetry, these axes gre = -
> perpendicular. We are familiar with the fact that the intersect;on of two '
' perpendiculafluxes of symmetry is a point of syhmotryi ' This supgests one
o " way tp find 4 point of symmetry. ‘ f ,

r ¢ ¢ - - ¢ .
We may also discover points of"symmetry from the definition of point of -

. ' ’

¢ .
‘symmetry given lo Sectlon‘ﬁ-B and from the conditions on Exﬁresslon (j)labuve: ,

. ((PAx" + By + D)+ (Bx' L2ey" + E)u 0 . i -

You should recall that (x',y') is the midpolnt of a° chord, of the graph
2

while \G%,p) ls a pair of direction cosines in Lhe parametr:; reprcncn-'

. ‘ . N\
tation of the chord. en we wunted to fimd an axis of uymmetry, A and .

] -
‘u were fixed while (x ,y’) weLs vazxuble. However, here we wnn& Lo iind a "”

alxed point (x',y ) thch will satisfy Equation (7) for all palts (A, M)
. This will be the c&ue‘only 1f the coeffictents of A nnd ‘w are both zerp;

that is, if : s
LS . ‘
(8) A ‘ :‘AX' + By, + n = O . . -
and ' - Bx! k‘PCy' 5 AN *
. | . ] . . .
3 ! '
. ) 58 . ¥ . .
L} . ¥
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‘A solution d'f thi's pa.ii- of equations vill be a point of symetry or center !
of the graph.of the second~degree equation. * The pair et‘ equations will have

a unique solution if ’ y d -\ T
- L3N . e
' ‘ L - * a& a ,B 2 . N : . . ‘
. - =uAc-Ba-6f0- - |
. 'l . - .
. O .
M 1. Find the axes of smetry and center of the graph of /

ng:&w+5y2-36x+18y+§= ¢

¢

-

Solution. The characteristic equation [Equation (§}] becomes

‘. 2 Se . . ‘. 2 d
, 28+ 5) +u@)5) - w2 Lo
2 ot “ B
or ' . © - 26k + 1hk4 = .
. or - ' (k-S)(k 18)_0. ' '
The cHaracterlstic values are’ 8 sand” 18 . Now Equapions (5) become
. . . *
28I + (-B)u = 8N ° L (BN + (< - 18h
, - . and ,
(-1)p + 2(5)u =By . (-4)n + 2(5)u "18u
or T . L o ~
8N - b= o0 : X +Mp =0
. &nd ‘ ' -\ .'*-
' -h;f« 20 - 0 ‘ ba+ 8u= 0. )
The_sle palrs of eqﬂatifohs n.?.e depen'dent, but since 7\2 +.|J.?-, =0, we may {
o - 1) - ! ~* ' N
obtain the solutions L , —| and -2 , SN : '
' ’ ,/5.. E 6‘ . J:E . .

If we.‘substitute these values in Equation (4), we obtain the equations
of the axes of sy‘mnet‘ry:- o . - .
\ ' i /r .
[] ‘ . . . 1Y . LX)

[2(8).—}:— FAEgx k) 22(5)_/%}:,, £ [(=36) 1842 =

... 5 5 5 5 5
or ¢ 8x + 16y =0 ‘ .
ror . x + 2y = O, .
and . . ~
-7y e 1 . -2 1 1°
[2(8)(Z2) +*(-b)=]x # [{-B)(=2) + 2(5)—ly + (-36)(= 2) +18. 3] = 0
_ 2" oy -\ P 5* ) 5 5 8
' or -36x + 18y + 90 = 0 . - ; T . "
or ?x—y-IS-:O. . . ’ . ., ‘
: . . .
- - L .

. ’ "5"59 . l 90 ‘ ( ‘

»r
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‘Equatiodg (Si/rill enable us to find the center.. Thé pair of equations

- 2(8)x + (vb)y + (-36) = N . .
o ) (h)x+\2<5)y+1&-0' : |
A B \ bx'-y = P :/ S .
. -bx + 10y = -18 - ' T

has the unique solution (2/-1) . The pdipt is the center or point of 536-4 \l
- metry for the graph. We note that this point.is®also the intersection of the

axes of symmetry. L ., * ‘ C
Cot . . : - s

. .. . ! -\

; . - ) Exercises SY- .

Pl

L L

0 *Pindlthe axes gf symmetry and centers; if any, of the graphs:
. .. . . . L

- . s ,
' ) : 1. :‘W + 5x - Ey. - 10 =0 N ' ° ' : , ': + ( , L]
_ 2. 28 +xy 6® s m-wes-o e LT
: . , . . . .
/ M “ I * . . . “ I3 d
-l . ‘
V \
! 87-8, Deﬁengte and Imeginary Conics ﬂg the Discriminant A P "
[ .
;o In our treatment the second-degree or quad.ra.t?c equation in the
‘/ previous two sgctio we have restricted our discussion to gguations witﬁ 2

‘/‘-  grapha which are proper conic sections. We have made certain restrictions - '
’ on the constants of the equation. 1In this section we shall relé._x these
- restrictions and Fonsidcr thcrloci 1f any, of- the resuliing equatiocns. We
shall also develop means of identifying and clasuif‘y-ing 'va?ious’
co

.. possibilities. We shave already encountered the d_@ncrs,te c sections

\vhocc graphs are single points, or pairs of lines' which miy be para.]_lel,

con'current, or t:oincident. We have also copsidered equations whose loci are p

empty, but which are called imagina.ty circles and imaginarx ellipses because
' of the form of their equat*ions. . - s . A

In Section 6 3 we have considered the probiem of factoring f:mctiQns. Ir
" ve caur faetor the left member of the equati@

2

(

(1) MAx +Bxy+Cy +Dx+Ey+F o, where A ,‘B , and C are not all zero,

'

. \¥ ‘
into two linear factors, we would know thct the .graph is the unton of two
+ '1jnes. Undet what condjtionsyis this expression factorable? You should v)
recall that gwadratic 'equatioM‘ a singl® variuble often may be so)jved b) «

L]
s




. . [N . - ". > e

.

’ - < factoring the quadratic expression\ into linear factcrs. Such an equation -
' may alwa.ys be’ aolved by completing the: sguare or’ by using the: quadra
- formule, which is. equivalent to completing the square. Imr all likeli ood on
.' m&occas@n,mu have failed. to detect the linegr factors in: the quadratic
. r of an equati®n’ and mve resortad to the quadratic formula, only to - )
: discov‘&r that the equat.ion really could have been solved by factoring.' This " -
- suggests tha.t the quadratic formula may be ar §%d in finding linear factars. |

AR

I)l faqt, ,the, quadratic expression, ax? +.bx +' ¢ may always be expre.:sed as

[

#¢Yhe product of linear factors as
s . 4

L2 ~ .-b + C hac, -b —.Jge - kgo' : ‘ j
. X-( 2 } X'( ) ) i . :

ax +bx + ¢ =8 =
. a <8

i%le allow the use of complex numbers when nec:essary. : T - s -
Now' Equamon (L) may be conSidered to be a quadr‘ sequation in  x
if. A 1$ not zero, or in Y £ C is not zeno. Let us agsume t,ha.t c is' '

not zero and write Equation (1) as

R o ! B
(2), ) Cy'+(Bx+E)y+(Ax’+Dx+F)=O,C;£O. . ‘
‘Then' \ s L
R X ' * ‘ D e, N
. : b -(Bx + E) +’i(Bx + E)8 - 4o(ax” +Dx + F)
- (3) - ) y = : 2c . ) X
! ‘ * . .

‘- . X S . o

.The discriminant. imrolves terms in x° and x , vl if 1t is a perfect
square,* we oy ellminat,e the radical to ptain two expres rsiops fOI“ ¥y , say.

-(1 and fj , which are linear in x {(i.e. a and P involve dnly x to ‘.
the, t‘irf‘t)power and ¥arious const,ants). Then Equm,i@n (?’) ﬂnd, if C 1is,

A

net. zero, Equation (L) may be ‘wr xtton as .

] N :
(%) . | Cly - cl)(y - B) = ‘ ‘
where the fuac t,q;n of the left membc*r" fU‘t‘ “inear in x and _y . The graph -
&)f‘hquutl@_r% ’ ﬂ.nd cong t‘quently ui Pqnn tion (2), is $he union of the .
-~ . .

yrraphs rof

L - .
- : y -a-0 .

. :f-:j"'o,

‘ which are lines. However, the conclusion of this argument does not hold
. ‘.

}nlcm; the discriminant of Equation (») is a perfect squire. The discrim- .
, .

: + inant is . ' .
' ',,, . .;‘ . ’ . .
) (Bx ¢ E) - he(Ax ¢+ Dx + F) %)




. o - g ' . .
. . ) / 3 . 0
<, . ( et . .

'seen xn Exﬂression £3), or: - E
(;}‘ Ca (% -uAc)x +etBE-2m§)x+(E KCF) . | o

¢ - -

_'Again we make use of the quadratic formila as an aid in factoring
'Expression (5) will be a perfect square if and only if the roots of the

equation _ o - , : ' ' : .
\k (-B - uAc)x-- + e(BE-- (zcn)x + (E° -"UgF) - \ o

. . \ '
are equ&l . These raots will be equgl if and ohly i® the disériminant of
Equation {6) is zero.. This discriminan ‘is o _

AT L 4(BE - 28D)3 - 4(F - BAC)(ES" = 4CF) ,- ..
( ‘ . 3 N . ' '
which wgu be zero if and oply if } ot
o .. [ }
! S o L0 Te A
o FE - sBeoE + 4c”” - B%E° + 1°cr + uacE? - 16ac%F -
or’ ’C(?BDE - ecn\ - oF° F - PAES + BACFN= 0 1 e |
or (1)  8ACF - oAEC - 'PBLF + BDE + BDE <20” =0 , o’
B : q B 1]
or ' CA(MCF - E°) - B(2BF - DE) + D(BE - ‘2CD) = 0 :
. ar A - u.”'a ¢ . ' L3 ‘t - o \ =
! R B”D 'B'D| , o
¢z 2A |/ -B | +D =0 . ° :
f "E OF E 2F 2c-E | .
. > B . . -(} . /
or B 2 E|-4a-0. | . )
S : < . L LI

This determinant A is,malled the discrimipant of the second-degtree equation.

If A is zefo, the roots of Equation (6) are equnl and the Expression ())'r .
which is the Hiscriminant in Fquation (2), is a pgrfect square. Thus the *
grap? OI Equation (#) is thg union of two ‘lines; Af C 1s not zero, thi's set

is 'nlso the-gruph of ‘Equation (1).

Ity C is zero nﬁd *A Is not zero,we could go through a similar ‘a
'ﬂpﬁuﬁc t, treating Lhe'sccond-deéree equution #8 8 gquadratic equmtion in  x.
]ﬁvvntu:?;h.wo should discover that 1if Equatlon (() holds and A  1s not Zero,
then the graph of unxtxon (1) is the unign of two lines. But Equation ()

is equlvaient to A 1 g. . ‘

" 7 L,If both A and G are zero, then B cannol be sero (ur else the

t .
Lquation would no longer be of second degree), and Equation Cl) rgguces Lo

d ) o~ i : ' s -%

- Bxy ¢vDy+ky +F-0,8 Lo,

.

. N ’ A/
“

-« L]

-

& : ‘ ' ‘ e ‘ .
N 192 -

-

‘e

e

Y
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The graph will bé the union of two Lims if o ) :
, ' Bxy + Dx #. By~+ F° '

.

:

’ . . ¢ i .
may be expressed as the product of linear factors, or as B(xyt+ a)(y + b)

Now R ) . .
‘ '.‘ e " »
‘ ., Bxy+Dx +Ey +F = B(x + a)(y + b} for ell x eand y
) vooe ; . ‘
or : N ‘ e T
. B)qr*'Dx+Ey+F=Bxy'+Bbx+Bayj~Bab for 411 x and

if and only if D = Bb E ="Ba- a.nd F Bab . In this case ‘{

DE = BF or BF -;fxfz’o . g ‘ ' )

}iXC/,md BF - DE are all zero, then,ﬂ—/

éﬁﬁw‘.* ) 2A B D 0 B D /
A = B 2 ‘E|=|B o E|. - ]
\ D E oF D E “F| » "
B D |~ B‘D / ‘ »
- - +D = -B(PBF - DE) + D{BE)

E OF o Ef. -

= ~OB°F + BDE + BDE = -2B(BF - DE) = 0 . - ., - "¢
\ ' s . a
In sumhary, if the graph of n.second-ﬁegme equhtic'm ;s thei)fmion of —
twp lines, then the discriminght i zero. The argument ich we have N ¥

developed are reversible, although ke hnve\not attempted to show this here.»

Hence; the converse of the above As also trues It the discriminant of the

 §
general second-degree equatio 1 zero, the left member of the equation may
be expressed as tht product of linear factors.

. v

We have not considered carefutly“what lines, If gny, the factors might

represent. If Expressicn (%) is a pexfect square, tiWilfactors arc linear, .
: N

<1

bqt suppose that B - LAC , the cOeffchént of xL‘ijL% ncgnfﬁve? We note
that this is the condition when the characteristic U 18 positive. In this
case the coefficlents in the square root ure compl ex numBers, &Sélrﬂ the
coefficients in the Linear factors. s What sort of “iges" could these frictors
possibly represent? We shall not attempt to explere thi&_quéstion in dctniL.A

It is sufficlent for our necds to observe that even thmuyh the coafficientg

are complek numbers, there still are real values which ‘utl iy Lh((-nrrenpouding.

-

equations. For example, the pair of Pquutluns ' R
- - . .
L ] » - - »
y + (% 1)x = 10
° LA '
y - {h-0l)x v § -1 0 ( .

. ]
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-

hes;the solution (l,-é) This is aluays the case for the linéar factoré
which we encounter nere. The velue of x whiph satisfies Equation (6) is
real, as f( the correspdmding ve.lu!of v . . These rea.l* values aré the

< cSordinates of the poinﬁ of inters®ction of the graphsqof the corresponding
linear eqnations.' Thus, | when the &iSCriminant is zero and the chn;acteristic
is positive, the locus of a quadratic equation is a point.' It is not

\\\ - possible tﬁgt the "linear factors represent degendent or inconsistent L

e
equations, for the toefficients of. x and y camnot be proportiOna;L. (Wny2)

-

If voth the dfécniminant and the_ characteristlc are zero, Expression (5)
\\ is a perfoct square only if it reduces to E° « 4CF . (Why?) 'The locus of
the equation will be empty,.two coincidest lines, or two parallel lines
_according as E® - LCF  is negative, zero,\ér_positive. - .

It the siseriminadt is zero and the chhracteristic is negative, we note
that E - LCF mst *be non-negative. Otherwise, Expressivn’ (5).would only’
be a perfect square if the coefficient qf x» were camplex Which is ﬁ“
. impossible. The linear factors cannot represent. dependent or inconsistent
equations (Why?), ‘and the locus of the second- ~-degree equation ile;P inter-

. "ecting lines. , - “ . . } : .
L] - . ’ 3 ? ? . o
’ Example. Find the locus of 2x" + xy - 6y* + 7x - 7y + 3 =0. = .
)] ’ F » * ’ ‘-
; — Solutiog. " We deterrdline that A = 0 , and seek {c factor the left
* . ‘member of the equation by grouping the secondedegree terms ' . 4
- . Lt -
. P'xﬂ’r’:y-f)y +fx—’i’y+j
. v (2x - 3y)(x + oy) + (7x - Ty) +3.

By inspection and trial we discover the factods

.

] (iox - 3} F(x +2y +3) . . g

. L]

Hence the guadrgtic equation may be written .

+ H

v .
' (Ox = 3y + D)(x + 2y + 3) ,
) ) \: -
The locus of the cquation 1s two intersecting llnes. If we had not. been able

to f'ind factors in this way, we tould hnve tonfidered the equatiofi to be a
quédrntic enuutxon in one variable, uuy Y as ubove, and could have used th&

quadratic formula to dete;mine the factors. .




\\ Exercises §7-8 v -

\ 3

1. Qetermine whether ‘the foﬂ%owing eqaations represent degenerat conic
- sections. If so, find the \inear faqfors of the left member sni the'. a

- graph.' = T CL '
o (8) 5xy+3x,ay-a;o‘ '
« (v) ox° +8xy - x+ by -1'=0
() &xg - r3:3:/‘*‘ 9¥2 -I'=0
\ ' -
(a) ox” - Xy J‘Sy = . \

[ e,
2, If the discriminant of a second degree

_characteristic is qot sero,\dw'csnnot the line

- .

ve’ i
equation is zero, but the
Tactgrs of the left.

{ member of theg equation represeﬁf dependen€15r incdonsistent linear

’bquations? o . é ) -

- .

3. If both the discriminant snd the characteristic of a quadratic eguation
epe zero, show why Expression 15) mist redud® to E - LCF,. Why must

the linear factors represent dependent

.

K ' 2 -

879

Inv&ri&nts of the Segond-Degree Equa uation . .
f

or anonsistent equaticns?
] .

£
.

¥ €.

We have made many observations ‘and, devised several tests for the second-
degree equstion. - Wé have obtained these results with the eqﬁtion written

in special forms.

We shall show that the ve.lues of the characteristic & '

<t

aanthe discriminant A,,.as well as certain othsr slgebraic expressions are-

bt changed by the transformations E hich a%

" these values are invariant under t

have used.

We s l say that
ation and ratatien of .

&

We consider a translation g% axes '‘as described in Section S7-7. If we
denote the new coefficients b&vpndmes, we have
2 A'—zA )
. \ -
£ “ Bg :B a ’.
S cr = ¢ T - ‘
D' = 2Ah + Bk + D
E' = Bh + 20k + E " *
« : R Y . .-
’ : F';An2+snx£«~‘c1s"ynh+;m+r’. :
[y 3 ' .
» 7 ‘ , o0 - J
( 4 : » 545 ° ¢ )

-



*

.and we have shown the diﬁ‘cx"imi'nant. to be invpriant under translation of axes:

p .
‘denote€ the new coefficients by primes, we have

We note ths;t

shgw that h.he discriminant is uncﬁanged we consider

o A
A =| B2
« | p E

L . '

A,B,C, A +C, a.nd consequently 5 are invariant. To

-

., .1
L BTN B " 2Ah + Bg .+ D
EV] = B ¢’ Bhi-ECk+E

oF'{ | 2Ah + Bk + D Bh + 2Ck + E 2(Ah + Bhk + Ck° +Dh+Ek+F)

We recall thqt adding & linear combinatioén of severa.l rows or col@s to. yet
another row or column does not cflnge the value of the determinant. We first
try to make the upper right element ‘be D ) We miltiply the-elements of the

first column by '-h s Jthose of bthe, secénd column\hy -k , and add the sum to

‘)the third Qelumn to obtain P /‘ | ”

- -

-

| L g N
A".t B h . 1 2C /'A JE \ ) &
PAh + Bk +D Bh +2Ck +E Ph+ Bk + oF | . '

‘ . . ., ) 3
To make the rower left element be - B-, we multiply the elemants of the first -
row by -h , those of the second row by -k , and add the sum tc™the third

row. Thus

').

2ZA B D . ‘ ‘
. . . -
a'=| B 2 E|l=a, ' ..
' D' E oF . ,

<

. . . .
qu we conslder a rotation of axes gs deseribed in Sectfio.!}S?-g; I we

At

B!

-
«

-

1l

A cos® 6 +Bsin § cos b + C sin® 0 '

. ‘y " ‘.,
-2A sin g cos © NN cos” 6 - Bgin® 6 + 2C sin 8 cos ¢~

1

a o .
= Blcos® § - sin” iR 2(A - C)sin 8 cos ©

B % 10 - (A - C)sin 2¢

:A).LnG—B in@ﬂ«kczwu } ' ~

=Dcos U+ E sin U -
- -
= <Dgin{ + E cos & - .
- F- .
! \
‘QQ < ‘.
' /

.

Fi

. -



In this case the coefficients in §'
. - . L 3
will first consider certain simpler expressiocns involving the coefficMefits. -

t

e

-

~

and A' become quite complféated. We

We shall then use these results to prove that. 6 and A are invariant.
We notg that "# is inverfant. A + £ is alse imvariant, for .

B "(A’ _ C|)2 +-B'2-

Also

.31 nce

2

l
WA

)

D° + B

is ;gvariant,,for

A' '@ =T (A .-_C)cos2

-

.

il

[t}

1

Hl

ﬁ(cos
A+C

(A - C)(cosg
N

8 + sin 8) + C(sin .6 +¥cbs” 9)

T o

6 - sin

¢

2‘9) + B(2

(a -,CLCOS.E 6+ Bsina 6

I

[
[3

f’ | .
- C)Lcmsg 26 + 2B(A - C)goe 26 sin 20 + B
N ' .

v

sinve cos 8)

e
“~

T (az o) .
1# invarient, for ~ .
‘2 D . 2 ’)\ .
B = D° cos” @ + 2DE"cos G sin g + E° sip” 6
& D° =1n£ ‘0 - 2DE cos O sin G + E2 cos2 6
Y
, "
= De(eas“ 0 + in 0) . g (uLn 0 + cos® 0) i
it D .
R =D + E ;‘\ ! ~
. ! - @ P . o
s p- Mo -8 . ) . ‘
a : ‘3 . .
= (A+C) - (A- C)a'- .
¢ 4 -y e
o (A c)‘_; [a - & +8] .

(a_+ )

(& F£e)-

{ and
is the characte lSLiL,_lu invariant under rotation of axes.

2]

l‘) . <
sint)EO) + B?( 1n? 26 + cos ?G)

O+ 2Bsin B cos O + (T - A)sin2 6";,

.

e sin2 26"
2 2 . - . e . 2-
+ B cos” 20 <" 2B(A - C)cos 260 sin 26 + (A - C)° sin” 20

[ 3 L]
(A%- C) (s 2p +

&

o ‘ -
+ B ‘are fhvariunt their difference, which'

It re£§lps.to show tLhat,. the di,azlmlnantf A 1s invariant under

rolation. . We recakl from Section S7-8, Equutlun

Aag

We rewrite thi%

. -y [
A = BACF -<OB'F + PBDE - (AE

L3

)

)

-

LI
as

(7) that

b
AR - “B 4 JBﬁﬁ - 200

-

[ 4

. .
VAN T
- \7‘\ }
- Y S
g ‘ ! . i 4.

f

*

- vy, AEN I 0
+ AD., + c§ ‘+ CD") - (AR
[ 3

A

?

-

-& AD{ - CF

-

BN

L4 . ¢
+ CD )

L)

/7

@
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[

C o o e
:} . . \ -““ . 3 “)*k - ‘ -
.'- . ' & ' .

or A= 2F(kAC—B)+2_EDE-(A+CT(E2 )-(A-C)(EE-D) :

We have &lre ote‘that F Mé ‘B o A +fC " and 'ﬁ.'c + D e;re- ‘)
inmr!m}b@"'mus., the first a.nd hird terms are imra.riant. We sthl musty

shdw that. 2@3 (.p, -.'c) ()32 - D7) - is invariaft . v _ : . —

Now EB’D'Eb = Eﬁajs 26. - (A - C)sin 29](D CcOS 9 + E sin 9)(-p sin 6 + E cos 9)

. ™)

.= 2[B c@é 20 - (A #fin 26]&—5 sin © cos 9+E2 sin @ tos 0 +DE(cosu‘?‘9- sin” 9)]/
o

[B LOS 28 (A C)sin GI[C'F..? -D )(2 sin 9 cos 6) +mE(cos -sin 6)] ’ )

= [B cos 3&- (A < c)§1 23][(}32 - D°)ein 20 '+ 2DE, dos 26} S e
E‘Q-D'L =‘ (-D sin g +4€ cose) CDeoss+Esin 9) . '_’
- oDE sin . 2 - -F°
= D sin ¢ -2DE gin @ cos 6 + cos 29 -p 29 -QDE sin 6 cos 6 - sin g
= (E2 - DE)(COSE e - sin2 8) - 2DE(2 .sin @ cos 9)- * )
: Ny : . . : T :
= (E2 - De)cos 26 - 2DE %in 26, N ! k
. . o ¢ . .
and . . . L. _ ;
‘. AY - ¢ = (A'- é}cas 20 + B sin 26 . . ,
. [’, ' T - . . N “f‘ L} *
Thus, e . . . Ly * .

£

I

.2B'D'E! - (A" -‘c')(E'E-D'Q) [B cos 29 (A-C)sin 29][(E2 D )sin ee+3m: cos 2@

C)cos 29T[(E -D )cos 20 - 2DE sin 261 Lo~

" _ [B sin 26 + (A
«

¥ = coszlae[éxsnﬁ - (8 - C)(E - D )] . . i

2, R N
+ 8in” 2 [-(A - C)(E ; D})). + 2BDENY .
"+ sin 26 - cos 26[B(EF - D7) - (A - C)(2DE) - B(E® - D7) +<A-c)ijb§)1
- (sing\%é + cos® 26)[BDE - (A - C)(E° - DY)] : . v,

- " - 0y ~ -
= ZBDE - (A~- C){E® - D) .
o * ‘ ! & - i -

Thus the diseriminant of the second-degree equation is alsoc invariant under. '

rotation. ' N\
! L o :
We note thgt if the graph‘of the second-degree equation has & polnt of &«

symmetry, or refpreqent', a. c‘(’ntral copic, then after a tr‘ansldtlon of t,he

‘-axe., which makeu the new origin the, point of symmetlry, the new equation is
o i -\r ‘
- . A'x + B'xy +C' +F =0, - _ C
for whith e e T ' )
2R B 10 "
." i At =, B 2¢c' O

s
‘ed . \ ..
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- . . * . , - N ' - o*
- LI, At - : . -
.. e 2 e “ [§
. et T L LT : o .
» t’ ‘ P : . -
but sinQ K&and 5 gr;e invaria.nt under translation, R
- . o n_ ) ‘: A " i . ot \
. « - ° . el - Sl = emm— -~ - ’ ‘ - T ' ' . -
E Tae A ) F * 25 ’ - ' G" ’ ‘ - - .
“ - . . . [ .o .. . . ) ‘ -
" and the, tragsiormed gquatipn is F T
B ) . A“ .l - . . o,
—_ = . ° .
RY X
v -~ )

empty, therr the graph is "eijfther a proper conic section or a degenerate canic
section. We havcf developed many methods and cmteria for analyzing -Men '
equations and have found certain inva.riant called the characteristic and
discriminant particularly Iéportant. We sumaorize some of {;hese results

‘in the” form of a (table. ‘

; - - i < ‘ ' *‘ o
v :
§ < O’ H =0 & >0
intersecting cmpty, or ‘ ‘pointf-elllpi:e
A=0 ) ‘
. lines parallel or or point-cirele.
, coincldent tines’ '
ANEO hyj.perbalr.i - Dnrablola ' girz;;{yellipse, T
§ * . *
Example. Discuss the locus of .
A e * ya *
B - hxy + Hy" - 36x + 18y + 9 . 0. Y
/ .
Solutipn, Here A - -10,368 and § = 144 . - . .
. Since B f 0 , the locus may not be a circle, Jut may be an ellipse.
' A -\ .
| TR AT,
so the locus is a real,cllipse. . N o,
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. [ 4 4. ‘_ .ot X ¢ - — L . ]
- - rf\ b A - . £ ‘ A .
. f .. ) F - ' o ' . - x
. . . . : , “ ‘. . ‘ .
. If we shbstitute coeffieients in th{-: eguations ’ . . . ‘
£ - “ . ’ ) - . . )
.. R SN .
R > 2Ah + Bk +D = o7 . _
.- \ .- . » Bh +m * B < P . / P ‘ »
- ot « . ot . . - . ' . v « \ .
v we ot;t:ain : v . : ., s & . ’
. . .' 16.1'1 -u,k - _ﬁ.’z O : " -
— ‘ . -uh+lok+18—=o ‘
IS -" . '; " . . - . ‘. . .
. Vi Q~ v
-«  which give- (2,-1) gs. ] "the center-of the ellipse. R -
‘. The characteristic equation_ - . « =
| . S T (!mc 2 Bg) '
. g . , ‘ A . 2 . » . .
s ~.~' T, 26k+11+l+_o,,.
) ] - RIS . & t - -
"+ which gives 8 and lv8- as the chamc,teristic values. ‘ ' ,3.
These are suhstltuted in the ei;yations . Sl o ’
., .
. U amtau W : . P
' ' B7\+2’Cu-—k+; : PO
‘. té obtain - . . :387\_'—.4u=0‘ and - 2N+ W1 20 '
. ) . PR ¢ - .. N R
\ R o -%+2|.L=b . h7\+8uQO,__,'
which give [-==
p 5 .
' of symmetry ‘
or <
< -
_ The translation of axes gives the equation =~ . - -
. . 2 . P . . s o
8x.-h)qr+§y,-36=0,
while the rotation of axes througp an angle 6- such that tan 20 = 3 1_3 T )
gives the” transformed equation ' ' ' '
. % '
) : - P2 _
- x A :-
. —()— ¥ : =1
Primes have be_en ‘omitted consistently in {lxe interest of simpl i‘city. .
I | \ o . ;
. \ . . - ‘ ’
N ! (
k -
|
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‘ Exercises” §7-10 5

-y - . ‘ )
Identify the grapl{s of the follow[ng equa.tions. Obtaj.n the .trésf&med
“equation reduced to, sta.nda.rd form. ‘Skgtch the, gi‘aph, locatine the center

> .

‘(if any) and indicate a.xes ff symmetry. - - A ’
- 1. 8 - lexy 41T - @0 = O ' | Lot
- -,- " ‘ . . . R . . - .
- 2. 3x% ¥ 12xy - 13y2 -13% =0 - " | . : " ’
" 3. .5x2 - bxy + 5y - 16x + 16y + 8 = R ,
e 9x2-21$)q.r‘+16y -”Ox—l‘j’y:O ) . . ’
5. 9x2‘"-.2#)qr+16y +60x-80y+100=0' B v -
6. 3% + 10y + 3y° + 16x + 16y + 2k = 0 ' . "
7. )x2+6xy+)y2—16x-16y+8=
8. 27x% - UBxy + 13y - 12x + bhy - 77 = O o ,
’ > 2 o
9 2x° - Txy - 12y° - blx + 38y + 22 =0
10, 13x° + WBxy +2Ty° + blix + 12y - 71 = '
2 o2 . .
* 11, Ox° - 2ixy + 16y~ + 90x - 120y + 200 = O . .
12. ley+hx-l§y«6=O . /. ‘ ' .
¢
“?
Ll L] ‘ vier
/- )
f-
.“ nf’
L ] . ¢ -
&
\
’ H51
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c . . ... Supplementyto Chapter 10 ' ) 3
.‘ . ‘ L. . - N . l‘ - ) . \ \ )
-, > GEOMETRIC TRANSFORMATIONS A
: ¢ - ‘ - .
S10-1. JIsometries of "the Line . €/ : 5 o . .
. ‘ [ ] . M . ¢
' - In previous chapters we ha.ve seen examples of ma.bpings' of a line onto a

. . 1line end of a pl&ne onto & plane. -Same of these ha.d the property of preserv-
ing the disftance between 'any two poip‘bs and s.re therﬁfore called "isometries,"
(frmn Creek, tgos meaning same and’ ye‘rpeul meaning to mea.sure) Therefore,
an isometry, havj,ng this property » will map-any configuration onto & congruent,
configuration. In fa ‘this amounts to a definition of gongruence. In this
qhajgtér we want to (fnvestigate the isometries of the line and of the plane and
eor}sider other t of mappings or tra.nsform‘ations.

.,

let us consider in more g .rality the isometric transformations of a
line.- Fach poinf P with coordinate x will be mapped onto its ima.ge' point
P' with coordinate x! - f(x) . Furthermore, for any two points with co- ¢
ordinates x." and Xy 5 we have

l -
. ’ . [ . ’ [ 2
- : - .
We distinguish two cases according as the origin is a .fixed point or is not a.
fixed point. - £
If zero is a fixed point, we have t('?) =0, so that with Xy =0, (1)
' t -
becomes ‘ |
-~
%, - ol ¢¥tx) - @] -
or

Ixf = (x| ;

- ‘ .
This implies that:j&her t{x) =.x or f(x) = -x « In the former, cach pint
is mapped onto itself and this is-c&lled the identity tr&nsfonuation I . In
the latter we have a. transformaticn whic.h can be described as a reflection in
the point O , because each point 1is mapped onto its mirror-like image with

respect to 0O .

4
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. L) ( .l ' & M * ‘ .
- g zero ¥ not a fixed point, 'it is ma.pped onto some point with.a mn-

“.  zero coordina.te, aniN\we can write f(q) =a+% 0 . Thus with X, = 0, (l)

-

A

-

bemes\ e L o ’ . _ N
. ;<‘ - . f' le - 0] = [f(xl) - 510)[ . .. co .
. or ‘ . - - . ) E -
. T T L I £ 15 JE | e
é _This, :melias that either f(x) - a“ or Pex) & ; = -x . ’Ihe'fomar :L‘s,e " -
" f(x)=x +a which ig a translation and t.he latter 1§ °f f(x).= -x fa°, "The ,
'Y . tion| rgpresehted,ﬁy’ f(x) = -x + & can be descr:tbed by say‘ing tt’;a.t :‘. .
ot \ of_ariy point is- obtiingg by'a reflect:‘Lon in the origin followed by & |
We now have ; ’ | .- . '
. | ! oo L v
. - _ . , - L
" THEOREM S10-1. ‘An isometry of fthe line is either - ' ' - R
} (1). the identity transformation - L. e
. (2) = translatian . - . T B o L §

(3) a reflection in the origin
°T' (4) a reflection in the origin followed by a translation;

- - . . -
and conversely. - . _ -

- , . [
) N
: 'Ilhe fourth possibilidy in Theorem s10- -1, raises tHe general question of om;.f.. L

4
trans formatiom followed by another. If the first transformation is £ and
the second is g , we defink the product or composite tmnsfomatipn.to be_‘th,e“' )

trans formation
. .

gf -1 x—= x! =s[f(x)}, _
Y L]

where Xx—m x' means that the im:‘i of x"under the mapping gf 1s x' .
As we have seen, the tmfonnation x—-—- -x + a is ‘Pcomposite of -
. I(x) = -x followad by g(x}) = x + & since g[f(xﬂ = -x + & . From the de-
finifion of an isometry, it seems reasonable to expect that the product of two
iscmetries should be an isometrys We show this, to be- true in the following

case. | ¥ ~L

oy

[N

. .~ ¢ 1 -
Examffle. Show that the translation f(x) = x + a followed by the trans-

L3

lation g{x) = x + b~ is an isometry. .




o

» . . .. R “ o . ‘
. L . . - fﬂ .
Solution. We have . .
. ) . “\Q\. ) ‘ - « ¢ "' «
gf(x)l (xta)+b=x+(a+b) -
Hh,ich represents & tr&nsla.tion.. sThus the cmnposi,te transfoma%ion is an ™,
i_sametry o~ , S
.’.,n ” o . . .. . . . .
| - b K8 . .A ]
A ] N . . . ‘\ ) 0 X
’ PR Exercides S10-1 P _ |
N - e

. the composite of any. two isometries of the 1ine is agidin an fsometry.
/ e . .

2. Prove the converée of- Theerem Si()-l - -, ’ P e - R
. w N <o - Fe ' . - e
Y I . . e ‘ -~ ’ * ' !

.In the first exercise above; it,wds necesdury to consider & translation
followed by a reflection. If g(x) =x+a 4s f?uowed by f‘(x\) = -x , the

composite transformation is : . . ) I

4 - fg : flg(x)] =‘-(x+'a)='-x~a.. .

This is certain]y an 1lsometry sifce it is & reflection Sollowed by & transla-
,tion -8 . We see that camposition of f({a.nSfomat:uons is not necessarily com-
mu.ta.ti_.ve since in this case fg ;@ gf . . However we can generate any isometry

1. By considering the remaining possibilit‘ies’ in s lar fa.shion, show that.

by an aﬁpmpria.te sequence of compositions using only translations’ and reflec- -

tions. It is not difficult to show that the isometries of a line form & group
since the operation of ccmmsition is associative a.nd to each isametry f

there exists an inverbe isometry f -1 such that f lf . . As 'we ha.ve

observed, this group is non-comgutative.

Y
.

.

sm— Isometries of the Plane
iy .
In previous chapters we considered t‘m chzmge.; of ccordinate syhtems in

the plane called translation a.nd rots.tion. The same effect can.be produced by
mappings of the plane onto itgelf‘, which leave thg coorfinate axes unchanged.
The ccmtrast to this is the previeu.: approach in which the plane remained
fixed a.nd the coordi t(; fi.xes were changed. )

~7

N

Y-
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In this context, &' t;anslation is a'mapping' of the form-
[ . , . '
(x,5) = (x*,y') = (x+n, y+ k)

’) A rota.tion is a mappﬁxg ih which ea.ch point issma.pped ofhto a point the sa.mé
" Y- qlstanfe from the origi . Thes& points determine rays from the origin which
form an s:;ngle in stgaliard po.;iticm whose meadure is increased by 6 .

‘ *
\ -* .
)
-
C . »
&
. b - A ¢
“A“lf
4 < !
- ' ' . ,
- ' .
. - L]
&
A 3
- . P L]
t . o+
. ) ‘_:
,\ * [

. . ’ P . . N ) o *
Let (r,¢) be a point P described h polar coordinates where the pplar axis
“is the posltlve side of the x-a.xis\ The rotation mepping ca.n now be written

. aS .
’ - !
. L : (I‘,fb)—-h (r:¢.+ 9) .

L

In terms of rectangular coordinates, we have

" x! =1 cos,{®d+ €)) =r cos dcos ' -r sin ¢ sin #
\ . 9 . . :
=X cos O -4y sin 8_«;’;_ : , .
\ * : . ! }
. ¥y ' =rsin{o+¢) =rsin ¢cos 0+ r cos ¢ sin ¥
L] . ot . .
[ . ot
-xsin 6+ y cos ¢4 !
L] ) ) . - ‘

The proofs that these mappings are isometries are leff as exercises.
N *

'
] ' . .
~ ) A
Y .« N . £
o / | y F RS
'j‘ l)r/G f -~ ') [N
.. wt: , ’
LW . ]
l\‘?\%‘ . . ¢ ‘
. AL [
. \‘dyx\, -



ry

i The previous discussion of reflect.ion with respect to & ‘point ‘can be
ex,tended’ ‘+o the plane. A ;flection in the origin can de defined by the

trapsformation ' e e, ‘
. . ‘ (
t * ‘ N t _ 3 . -
. . . X,¥y)—» (X = (=X,- . .
. Lo (,3;) (x',y") = (=x,-¥), ‘ ,
- ' » )
y o
L} ) ] ¢
2 ‘
. \ 4
" P ’ ' . -3
- N '
. ’ - ' - N
. . A , :" .
ﬁsue/z/lme o .
« » " R F. M

* «Theé descri&ion bf this transfomation is particularly simple in terms of

polar coordinates since P(r,Q) +»P!(-1,0) . By using the distdhnce forrala
\
" for t.he appi-opria'ﬁe coordinate 'system, it is easy to verify that this trans-

fox;mation is an isometry of the plane. owever a rotation of n rmdians is

the sqm% transfomation. This can be seen by letting 6 = n ‘in the rectangi-

lar descriptien of a rotat'ion to obtain ~
! ‘ b ! P 4

" x! =xcos nn - ysinx = -X S

-

1
ry

or by letting € = n in the polar description to obtgin

“

* .

X sinn + ycosn = -y,
E ]

o (£,8) = (x5 0 Hox) . .

cordinates which can also

L
The last ordered pair represenys a point in polar c

be represented as (-r,8)

9%y



. We nov.introduce another transformation which can be describéd ‘ag a re-
flectibn'&n A line. The image of a point is .found. by cogatructing & perpen- /‘
dicular to and extending it on the other side a distance equﬁ.l to thé

*distance of the péint frmn!the.l_ine. i . o ! o
‘ £ ) . . . o f '
‘ o Y -
. —~ o
. _ At N
L] ¢ \
}? Lo "

-~ . . + -

-t i - .

. - - - - . -

The transformation equations f8r ref’)zctions in cert&in. lines cs.n be
written down :Lxmnediately For inf$tance, for reflection in the x-a.xis s
. we have (x,y) -—p-(:f:',y ) (x,-y) .
{ . . ',., [’i . ’ .
r *‘? , _ : .
\ y & - ! *
. ) e P {
. eyl
- 5 )"’\: K
P | . . ¥
1 _
" 4{ ¢
. ] ;
]
{1 .
e ‘
P
D ‘(xt_!) M
* . ! £
- : ?  Plgure S¥0-4
.For reflection in M y-axis, we have
& A ¢ . ’ « . .
. o G = () = ). D :
- [ . . - \‘_ * ‘
(e ‘ - y . -
* ‘ I3 . ' B - \‘
) » pr / &
v b X !
TR -
- A\' {-x:.y) (xt‘y) 3 .
(. ’ ) . e
' Figyre S10-5 ‘
$
‘)? 1
Fey
Q « f




i ~
’ Bt
We can simila.rly define the product ¢f two transformations of t.he plane
onto itself, 'and again woyld expect the product of “two isometries to be an )
isametry. In fact we *will show thal any 1stmetry of the plahe can be des-
cribed solely in terms of reflections. Thus the group of isometries ofs the
platte with composition cen be generated from the set of .reflect:tons glone.

B | .
' ‘ ’ f ) ) ’ .
4 Example. Find the isometry composed of reflection in'the 1%he ‘x=1
followed by reflection in the libe . x =4 .® | ' . -
. " . =« /" K
Solution. “ ' . ‘ _ i .
¢ : ' .
. - { v
* y - ! ’
l‘ ‘ . N ' ) l ‘K‘ . . -k
B | : [ B ’
‘ . ‘ -
{ 'N . -l .
’ P : P“ £ : py. [
x.y) | (. §) 1 (x.y)
i | -
—1 l L - : L ‘_',
AL
- - . e /| 2 3 & & 6 X,
! ro
[} ' . . ‘
R >l | [}
- [ ‘
! !
: . F i . i .
I, ! .
* { 4 I
* !
Figure §10~6 - . ;

) ¥
The first reflection m'a.ps P(x,y) onto Pt(x',y') = (-x +2 , ¥) and the

second maps (x',y ) cnto (—x" y") = (-x* + 8 , y') . By composition of the

mappings, we immediatel have .
, . X ™
X" = x! + 8= (-x+2) +B8=x+6.
=y =y ' '

and we recognize-wigese as the equations of a translation which ms.as each point
onto the point six units to the right. S

-
-

4
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* 810-3. Reflections and Egsmef}ies ' € “

S A

. ] ) . - -
. Exercises S10»-2 ) / . '
- . e - - ' ¢ L] ‘ Y " - at
1. Do the two mappings in the example commute under composition? \

4
2. TFind the 8quatidbns w{ de‘scribe the mapping of reflection in an arbitr!n-y

vertical line "x = h. and in an arbitrary horizontal line .y = k em .

'Y -
3. Using Exefcise, 2 find the’campbsxte mappEng given by. successive <
: refleotion in either .2 horiaontal or 2 vertical iines. ) -
Pl -

L. What is the camposite mapping given by reg}ection in the line\\ = h

~ﬂolh|wed by reflection in.the 'line yjJ k.7 .
: !’ - l
te under camposition? ,.

5. Do the mapplngs in Exerciség j and

- N ' h
< c N

The above exércises illuét;ate the propesition that any‘translation or
any feflection in a point can be obtained by a succeééioﬁ of reflections in
appropriate lines. We obskrved pyeviodsly that a reflection in 0O {s
equivalent to a rotation of n radiasms, so that a rotation of n radians
can be obtained by a successioﬁ bf reflections. Let us try to establish
further connections between reflect;ohs and rotations by describing a reflec-

tion in & line L in terms of polar ecoordinates. Choose the pole of the

“eoordinate system'oﬁ the 1ine in which the refleétion is to be made angd

the equati? the line I be 6 =k , & constant.
From ¥Fligure 510-7 it can be seen that ‘r' = r und that a measure of &t

is O+ (6 = ¢) = 201 - & for this particular diagram. We can show this in
general ifr wefifg;% with the anglo 20 and subtract the aAgle ¢ to arrive
at the termninal side of'| the angle >§* . thp the reflection in the line L
is t}rt: mapping : o

(1) ' . RL : (r:'i;);’ (r":’ﬁ') s {r, 20 '.Q)

\ i



R | a .

. } ‘ . i F:
P . FigureSlO'(‘ ) 5,

Suppose we now Ccerry out successive reflections in two lines L and M .
through' O with equations ¢ =6, , and ¢ =6, . By (1) we can denote the

: 1 2
reflections by -\ , : N
L Rtme s e = (r s 20 -0 B |
. Ry ¢ (r7,0") — (r",0") = (', TB,4q ¢') - -

@&

The composite transformation R followed by Ry can be described as

i R, : {r,o) = (x",0") .
. ! 'ﬁ
where . , " =7t =1 ’
‘el - 08 _ ¢! =20 - g o = + 0 - 8 . )
and R (20, - 0) = 6 +2(0, - ) !

We recognize this-as the description of a rétation of 2(92 - Hl) H thus’ ~‘

the composite mapping of two reflections i{n’ intersecting lines is a rotation.

'
“ L)

Exercigses S510-3 ' .

1. By Yeversing the above argument, prove that any rotation is thé product

of line reflections.

2. Using the notatlon of the preceding .discussion, determind R/R, -

~ i : . ( ‘ “
R <4
. . ) ‘
) / ‘)Gl A
| 124 .

e



. an . ¢ ) . L) \
. s . ‘\.f , ’ ./ - LA . .

. . , . ' )
P ) . Fe ‘{ ~ . . " ¢ - L~ . (

- , A . )
RN PSS ‘ Y S .
) . » are row in & position <o prowve - ) - ) o A
" ' ’ i /?‘o “ea T o — - - (? ¢
. ; L R L y . ' | R ¢ '(’n‘ : '
. : . 4 m - o | \'a . - y "7
THEOREM S1Q/2. Am_i,i of the plinf is compqsed,‘of at ‘most three 1’1x1e .,
- o ! :
. F . .

& . . .
. - 4
i 7 re c:tiz‘?ns . .‘, - . ,‘c 1 .‘ X

< | . A\ .
) < . ‘ " . ‘- ‘
- Brvof. Assume we ha.ve} some dis_tance-grgserviﬁg % R}mt‘;igﬁ wilich will
L S . ) . - r
-~ tghe.refore)ma};_ a.n“&r‘bi%ra:r:v triengle * ABC ;onto & coperue triangle A'B'C'ys
The,,line through-the points A “and B .mxy er may.not inPertect the line
< - L]

Y ¢ . ]
‘ *

f[
th " the-points A' ahd B' . Henge wg qomsider two cades.
;J t . v ' R | ‘ ’ "L R

R » * -
. . \J't _ . ] a 4 ‘. - [
‘ . -e ¥ ST ® . .-
Case I. The lines "AB aud 4'B', intersect. 4 7 a
r ' ‘, - s ' ‘ “A i “\ L ] -
. )
LI ' ‘
f
A
.
v
N :
‘ Y *

-

.ﬂ . Figure S10-8 R - p

From Fiéﬁre 510-8 we see there are tm‘possible positvions fol® the i)oint ct -dt
‘PPints of intersection of the edrcles given by the conditions

a(Af,c') = a(A,c) and d(B',C') = d(B,C) . TFor one position of C¥-, the
tre.risfomation is a rotgtion ¢ about O ,ywhich can be represented as the

L]

>

product of two line reflections. For the other position of (' , the trans-
formation 1s the same rotatlon followed by a reflection in the line through SR

A' and B', and therefore is the product of three lir1é¢rei’lections. -

.
1




[ ]

Figure S10-9 .
. A ] - .
. Once aga.in‘ there are two possible posi'tions for the point C' , Consider

., - . N : L o L e ol

the line L midway befween the lines AB and A'BT . Then for one position
‘of C' , tHe trénsformation is a refléction in L . For the other position of
Cc! , the transformetion is = reflection in L followed \by & reflection in the

vy

line A'B! , which completés the proof of the theorem.

g‘ . )

810-%. Non-isometric Pransformations

_ -+ In Section 82-2; in adﬁitio& to the transformations of a line orztc itself
called translation and. reflection, the tgzansformation's expansions and contree-
tions were defined. An expansion is & mapping x -» x' = ax where a >1

and a contraction is & mapping x = x' = &8x where 0 <a < 1.. It is
gpparcent that neithér of these is an isometry since the<origin is mapped onto
itgelf and the point whose coordinaie is *1 is mapped onto the poinf

e *




whose ccp’n‘linate is a, but [l - O[ ;é Ia - G[ We may consider the coh—
’positions of these transformations with themselv'es and with isometries to
obtaln & general ofass of transformations of the form

. X~=x' ax +b afO. -

known as the class of linear transformations. As we neted in Section S2- 2, this
¢

€ set of llnear tm.nsfonnatioﬁs with the operation of composition forms a gmup.

The ‘idea of a8 linea.r transformation extends natural]y to the plane by
‘considering the mapping (x,y) —= (x',y') where

ax +by + h, la] + |[b] F0, &

x!?

it

. L4
y' =ex +dy + k, [e| +a] o0,

-

We see immelliastely that ,this mapping is the camposition of the mapping

(,9) == (x5y") = (ax +%y , ex +ay)

followed 'by." the translat iqn
Sy e ) = (xR, b))

Therefore we conolder a subsc,t of the sét of linear tf:?‘.mfomation'f)of the

- plane, namely those transformations of the form . \
(x,y)— (x',y') = (ax + by , ex + dy) which leave the. origin flxed. This
subset includes the rotations and reflections in the pla.neé previously’ dis- ‘
cussed in this chapter. One of the things that can be done in general with.

| this subset is to investigate whether it forms & group under composition. . The
1dent\1y mapping is an identity e¥ement for the operation of camposition.
Hence a given mapp.mg_ will have an inverse if it can be followed by a mapping
which will map . (x',y') back onto fx,y).. To tind whether such a mapping

. existd) we consider the compocite mapping (x,y)—=+(x",y") = (ax + by, cx + dy)
followed by (x!,y!)—e (x",y") = (px! + qy* » rx' + gy) . ‘We obtain the
mapping (x,y)—e (x",y") where ‘

-

x" = (ai+ by) + (cx +dy) = (ap + eq)x + (bp + dq)y
y" = r(ax + by) + s(ex + dy) & (ar + ts)x + (br + du)y ,

~vhich is a mapping of .the same torm. Thus, given & , b , ¢ , d , we want to

" detemmine p, q , Iys S 50 that the compocite m&;;ping. dis the ldentity

mapping; that is, so thate - -
\ ap +eq =1 ' .
) ‘ > . ‘bp + dg 3 0
ar + cu ¥ 0 o~ i !
- " br o+ ds 1
< \ e
? b l Qrf
o, T
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. <f_,.r\f
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- . . . ! v
This is actually twd linear systems, each consisting of two equations in two

unknowns, which can be solved.to obtain

-

-
-

p.:—d‘_ __‘qb—-—"r\; _-_—c_— s‘:.g——a—— . {
y _g.c:-bc"‘1 ad - be” ad - be-’ ac - be ’ .
if ad - be £ O . Thus, a mapping will Imvea.ninveme if amd only "if-

ad - be # 0, It is left as an exercise to prove thFat this set of ‘trapsforma-

———

tions is associative. We «ombine these rgs}ults in

IS

THEOREM S10-3. The set of linesr transformat#ons of the form )

(x,¥) - (x',y') = (ax + bi’ , ex + dy)

/ . where ads- be # 0 , formé a group under the operatien of camposition.
‘. We now consider examples of linear transformations which are not
-isometries. . .
' ) .
3 * ‘ ”
- Example'l. Discuss the linear transformation < : \

x (x;7) = (x',y") = ("x + 3y , x - y) .

Disgus.,ion. (We start by exemining what happens to points on certain

lines uner thise tmnsformation. For instance, a point on the x-axis, (a,0) »

*4's mapped onto the point §29,,a) , which lies of the line y = %x . A point

on the y-axis, (0, a) is mapped onto the point (3a,-a) , which lies on the

#

 and

Hdne y = - =x . 1f a point Mes on s line‘*whose equation is

A

I

ax +by +c =0, 'we can find a condition on the woordinates of its image by
expressing X and "~y 1ih terms of x' and y' and substituting in the

equation. From the equations of the t_ransfomation wve get Ao,
>

(X‘ + .5y') o . :.'

»
il
N"‘lr-

[§
Nl

y.==x" - 2y). ¢

(This'elso shows that any point (x',y') 1is the image of some {(x,y) - Thus
a point on the line is mapped onto a point (x',y') such that

a(x' + 3y') *+ b{x' - 2y') +5¢c =0
or S (a + b)x' +(3a - b)yt +,5%¢ = 0.

. - ot

which is an equation,of a lined Hence a liné is mupped onto,.n line, and 1f
the line contains the origin (i.e., ¢ = 0) , so does itc ima.g‘e. The images
. of other locl caff be similarly-determined.

- S60 .
1/94

. e e
P T AL
«




%&g. - Discuss the linear transfométion .
() = (x'y') = (x +yrg 2x + 2y). \

-

Discussion. We first observe that this transfarmation does not/felong to
thé group described in Theorem S10-3 since 1.2 -1.%2 = Q. Hence it does not
" possess an inverse mapping under camposition. We investigate this transforma-
tion geoméfrically. A point (a,b) is mapped onto ‘the point )
"(a +b ,,2a +2b) . This image lbes on the line .y = 2x , so that the plane
is mapped onto a single line in ‘c.he plane. Furthemrmore, infinitely many points
in the pla.;le are mapped ontc each point on the line y = 2x., Thus the
mapping does not have an inverse mapping in t:he sense of assigning a unique

pre-image to each imsge point.
/£ . . .

-
e

L Since there is a one-to-one correspondence between points in the plane
r and complex numbers, it is not surprising that mappings of the pla.ne can be
" related to camplex numbers . Rec:a;%. that if we have a rectangular coordinate .
system, this correspondence is e-é%ablished by associating the point (a,b)
and the complex number a + bi . Thus any of the mappings we have discussed .
50 far can be considered as mappings of the set of complex numbers into itself.
That is, if (x,y) is mapped onto (x',y') , we consider the camplex number
x + yi mapped onto the complex number gx' + y'i . Since ﬁmctioﬁs are
mapbings, functiaons whose damain and range are the set of complex numbers give
a 'mapping‘ of the set of camplex nimbers into itseli'. For example consider the
funetiom defined by t(z) = &z ,-Or the mapping z -» z' = 2z, where
z=x+yl and 2' =x'+ y'i . This PlnctiomemAps x + yi onto 2x + 2yi ,
- which corresponds to mapping the point (x,y) onto the point
ja(',y') = (2x,2y) . An investigation of this mapping is left for an exercise.

<

-y T
We give another example of this relationship.

# . ‘ ~ .
Fxemple 3. Discuss the mapping define@ by the equation f(z) = 2 .

1

Disc¢ussion. From the equatiqn we have

‘ 13 ‘3 2 - v ¥
.

‘ ozt = xt byt o= = (x4 yl)T - XY - ¥+ oxyl .
Hence, in tems of coordinates the mapping is the non-llnear trunsformation

2 e

x' = x° -

é*..;': o ¥y xy Y
e
960

@ - . ) ‘_. I ‘?..s:;?.‘ | . .
r . .



We see fram these eq_uations that the hyperbola £ - y2 =k 1is mai)ped onto
the line x! =k and the hiperbola®2xy = k 1is mapped onto the 1line y' =k~ 7.
' (It is convenient to think of the functions as a mapping of the z-plane, Wit
x and y coordinates, into the z'-plane, with x' and y' coordinates. ) \ ;

We also have > . _ L -

X'E + yt2 - xh‘ - 2x2y_2 _': yh_*_ hx2y2 = (x2 + y2)2

so.that the circle X + y2= rg‘ in the z-plane is mapped onto the circle
‘ x'? +y! 12 s rh in the z'-plane. We see that in trying to de\r.elop a geometric
description of a ma.pping, it is sometimes more fruitful to discuss e maém
of certairf loci rather than the images of individua.l points. This ping is
an example of an importsnt olass of functions of , z knpm/ as confornal
mappings which have the property of preserving the angle of iAtersection’of
{wo ourves. This property is of mndamantal importance in the general theory
- oi: functions of a ccmplex varieble z ., In particular polynomials in z and
. their quo't:ien#sA will provide conformal mappings. -
- Smnetimas information about a mapping can be obtained by using the polar
representation of a canpi,ex‘nmnber. Thus, if 6 is the angle in standard
position which contains” "(x,y) on its terminal side, we can writé

! z=x+yl =1(cos g +1 sin g)

- * .

~

where r = J:c2 o yE . De Molvre's Theorem glves us

' P) ZE = IE(COS 28 + 1 sin 29)

Thus, in the mapping z - 2' ="22 , the point (r,@) is mapped onto the

‘point (r2,29) , which gives a general geometric description of the mepping.
- ‘ -
‘ -

z!
(V.28)
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- ' Exercises S10-4 e

1. Show that a.ny transformation belonging to the group in Theo‘rqﬁ £10-3 will
nap & line onto & liae. ’

]

“ ).2.‘ Discuss the trarl;sfomatioqs (x,y) == (2x,2y) , (x,y) —» (%x, -é—y) y -

and (x,y) - (2x,3y) by finding the image of x° + y° =1,

3. In Example 2, find those poirdts which are mapped onto the same :iqunt on
y = 2x . 3 ‘ ) l

L., Show that the angle between two lines through the origin is preserve&‘

under the mappiﬁg z = z' =kz ,

' 5. Discuss the mapping z -» =% .

P . . , . .
6. “Find various equations to represent the mapping called "inversion in &
cirecle," in which a point at dista.nce d from the origin is mapped onto

d the point at dist&nce % from the origin lying on the same ray Trom fhe

origin. Therarigin is mapped gntg it elf. \

7. Prove thaf the set of linear transformation!
(x,y) — (x',y') = (ax + by, ex + dy) 1is associative, - \

510-5, Matrix Representation of Transformations

-In the previous section we saw th&t the pmdﬂct of two linear transfor-

ms.tions is a.gain a L'inear trans formation. It is convenient to Intmduée a

. r.

- B

notation to represent a .linear traneformation

xl

i

ax +-by

e

y' = ¢cx + dy. »

Since the coefficients of x and y “determine theﬂing, we represent the
1 ’ :

L a b - .
c d 7‘ 4

where a matrix in general is simply a re;tangular array of numbérs arrsmged in

mapping by the matrix

TOWS @rlzontally) and columns (vertically). ‘I‘hé g:ompoﬁite mapping fg 1s
the mapping g followed by the mapping f . Thus, as we saw in the previous

section, the mapping whose matrix is

-
-

. &a b . ]
2 w
i . v ‘ c'd .

‘G“l ") *‘f

A




/ .
followed by the mapping whose matrix is

¢

.\/ (i :)'

is the mapping whose matrix is

[ . -

~ . (P&+qc .Pb+qd)' ~

ra + sc rb ¥+ sd

. Hence, it is natural to defiPe a binary opgration on these matrices as follgws.

. 3 M T e
. o
{ . . .

DEFINITION . x»x(katrix multiplicatiom)

2 - [P qd\/a b pa + qc pb+qd ‘ \'. )
(r s)(c ci) (ra Fsc b+ sd) )
Observe that each entry in the product matrix is the imner product of a: .
. rov in the left factor by & column in the right factor. Because of this 3
matrix multiplication can be described as "row into column" nmltiplication. ' /

Fxample 1. Find the matrix which represents & m’ppm;deééribed by

rotation g . : _ s\!& S o R
< & .
% I
Solution. The equations of this mapping using recta.ngula.r' coordinates e
are "
L x' = x cos 8 - y sin 8 - T .
- . ]
y' =xsin g+ ycos 8 .° -

»
The corresponding matrix is

\ , cosg -sing ) \
) « \sin8 cos 6 .
]
Example 2. Using ‘matrices find the mapping composed of & reflection ig'™ .
the x-axis followed by a reflection in the y-axis. - ! '

} .
Solution. As we have-seen, the equations for a reflectiow. Bx' in the _
. . ‘
x~axis are .

-~

X! =x =1+x +0 ¥y

sy = 0ex * (-1)y

<
fl
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) s0 that the corresponding matrix is .
' ’ W
< Panl - \ -‘ l Q
FEN s» Py Bl TN
' ,5. .\'\ \ ‘3. 0 "l .
P i \ \ l . . ) . ‘
v . The eqlmtions for a reflection \Ry in the y—a.x:ls are
. »
‘ o X' = -aE (—l)x +0-y
. ~ ! = + l .
y'=y= *Q“ i\ y '
with matrix ~
4 P ) - >
(-l ‘d} ." \\
. ¢ . .o)_ 1/ ) t. . . /
’ . E © ' (W
The matrix for the composite mapping Rny i T
N * ' .
- o ey o F ]
-1 o\1 o o). [ N\ ‘
0 /\o - 0 -Lfy,
' . &
which corre,sppnds to the ma.pping (x,y) = (<x,-¥) &'lhis, as we ha.ve seen,
is a reflection in 0 or a rotation of n radians. ) .
' ' \
£ ‘ “
Exercises 510-5a _
(Use Matricds) : L - e i
1. Using the notation df the example abeve, find Rny‘. . -
- ’ , . W
2. Find the matrix for , ' ‘
. (a) reflection in the line y = x . _ ,
ol : (v) reflection in Ahe line y = -x ,
- - , .
. \
3. Find the matrix for, and interpret geametrically, a reflection in the
line y = x followed by & rotation of g— radians.
L, Dacribe’the mapping which resudts from a rotation 91 followed by a
rotation 92 . SR
‘ 5. Show that matrix multiplication is associative but not commutative.
* *6. Show that the matrix for a reflection 1n a linﬁz through O with inclin&—
’?’{_jg’;, ' tion @ is
ST

' " fcos 28
- . . " sin 29

1

sin 26
-cop 26/ . " ' <
510 R = -
e o
129



TN
(Hint: Whilg this can be done directly in rectangular coordinates using
trigonometry, it 1s also interesting to solve the problem using polar
coordinates.) Verify that this matrix includes the previously discussed

cases 6 =0, % and %g- radians.

1
« Find the matrix for a raflection in & line through 0 with inclination

91 followed by & reflection in &-line through 0 with inclination 6

z
2 D2

Show that the'answer agrees with previogs results.

X -
# .
We have a one-tqQ-one rrespondente between two-by-two matrices (2 rows
and 2 columns) and linear transformations of the plane which leave the .

origin unchanged. We also see, by the definition of matrix multiplice%ion,

. that the product of two matrices, corresponds to the mapping composed of the
_mappings corresponding to the matrices. Thus, the two systems are isomorphic

‘in the sense that any operations on mappings can g&lso be interpreted in terms

of operations on the corresponding matrices. Hence Theorem 810-3 has an

anal ogue for matrices as follows.

. THEOREM S10-%. The set of matrices of the form' o
b .
. : . -

a b : ’
c d , . N
“‘where ad - bc ;’0 s, forms a group under the opexation of matrix multi-
plication.

"The number ad - be 1s called the determinant of the matrix and the: o
metrix {s éalled non-singular if ‘'ad - be'# 0 . Thus the set in the theorem
Ps
is the set of non- singular two- by-two metrices.

‘Since we found the inverse of & mapping in the proof of Theorem S10-3, we
may write the inverse ¢f a hon-singular matrix under matrix multiplication as

d- ~b

et s bY? «f/ad - bc ad - be
c - a) -c a

¢ d - bec ad - bo ?

We now consider the matrices of isometries of the plene which leave the
origin fixed. By Theorem 510-2, any such matrix;is the producgt qf at most-
fthree matrices each of which repregsents a reflection. By Problem 6 in Exercisea
‘ 10-55, the matrix of a\reflection ¥n a 1ine through the origin can be wrltten

. 571 .
T 13(} '

- f




 for some q . We define two matrices to be equal it and only if they are:r:f

‘ A .
: cos a sin g : o
» . éin @ =-Ccos a : .
for'same ¢ . By Pmblem T in the same set of exercises 5 the matrix for the
product of twu line reflections , which is a rof.ation, can Qe writ.ten as

cos 3 -sin B
sin B cos B A .

for scﬂ;xe, g . Since m‘a.trii multiplication is assog¢iative, the matrix for the
product of three line reflections can be written as & reflection matrix times

.

a votation matrix; that is, as !
] cos @  sit o\ fcos B -sin P!
sing ~-cos af\sin B cos B - -
for app';%’pria.te a and f—} . This product is ™

cosd cosfp + in a sing sifng cosPB - cosa sinp
/ ' )

stna cosf Fcosa sinp -cosa cos B°- sina sin

cos (a - B) sin (a - B) !
‘ “\sin (a’- g) -cos (a - B) .

»

-

~
b ]

g

Thys we have the following theorem. .

THEOREM S10-5. Any isometry of the plane with O &s & fixed point can.be '

represented by one of the matrices _ ‘ p

) ) . X3
cos Q sin cos ¢ =-sin a
. ] or
sin a. -cos @y "., \sin a cos Q
. ¥,

for suiteble a .

-«

Corollary S10-5-1. The determinant of a matrix which represents an
ugma:t.ry &' the plane with Q0 as a fixed point is either 1 or =-1.

T

Let "-s be the set of matri.ées which can be written -in‘gither of the

i

SRR cos g sin a) s cos ¢ -sin ¢ Eoa
- or ‘?'19‘ -4
S sinaq -cos sin g cos \ : 2 i

. ' : [ A

“identical, that‘i‘s, 1f and only if their corresponding entries are equal.

Thu.s the same matrix may arise from different values of (1', but we consider

‘)7?131 - | | .

&_;;:‘ ;‘é / . -



the matrices themselves and not the 'va.lueé of a - As we have seen, each such
matrix represents an iscmetry (eithe}' a .'Line reflection or a rotation), and
by Theorem S10-5, any iscxnetry vith Q a fimed po:Lnt. can be repre/gented by

such & matrix. A S ‘ R _ ;

‘ s X
" * . N ! ",

* The set s forms &. gmup, under the opera‘trion of ms.trix mthiplication, ‘
| which is a subgroup of the group described in Thetrem S10-k. ' _ \ y
i.,~\\ . ~ ‘ ,v ""‘v(.'( | ‘ ‘. . -. | . ’ -
o /7 ' Exercises S10-5b '-‘ |

-
i

l.: Prove that the set s 3 :just described, is & groupe.

/

2. Show that the deteminant of the pmduct of two square mtrices of .m:der

2P equals the pmducf, of their etermlnants, i T
o s :

3. Show that th:e axist mtrices |

th determinent 1 or -1 which do not
represent is etries. ;_‘-’ oo : ) '_ C P . A
- & . .
4, » using the dist&nce fonnula, that an isgmetry 'u'ith 0 as a fixed.
point 5&6 & matrix whose detemina.nt is 1 or -1. : :

\ R} —
‘ .

5. Any matrix in the set /s’ in ad&ition to having deternulmmt . —lj BN
the property that. thefsum of the squares of the elements in a.ny or ¢
in any column is 1 . “‘Prove thst if a matrix has det.ermina.nt T and’

has thé sum of the squares.of elements in ea.ch column (or in each mw)

* equal to 1, then it is g member of s . ', . - - g .. .
& .
. . ’ * e ' "! : ¢ .
§10-6. Symmetry : . -
( L
N

The symmetries of a gecxmetric figure can be interpreted very nicely in
temns of mappings. If a figure is mapped. into itself by a particula.r iscxnetry, _
then it has the partieular kind of symmetry described by 't:hen isometry. Thus &
;{‘igy.re may have symmetry with respect to a point if it is mepped into itself .

. upbﬁ refection in that point; 1t may have symmetry with respect to a line if
it is.amapped into itself upon reflection in that line. The a.lge‘bra.ic tests
for symmetry arise from the equations of the varlous mappings-

.‘\ As ymﬁxave seen, it is possible to simplify the equations of various
loci by using appi'ogriate transformations. In pasticular it is possible to
eliminate by tranélation the temms involving x and y in an equation for en
eliipse or a hyperbola. Then a suitable rotation will eliminate the xy term.
Geametrically, what this 1é.st step involves is the determination of g suitable

rotation so that the x e.nd ¥ &axes became axes of ‘symmetry of’ the figure.

. . | 573 139
{ . ~




. We now wantto solve this problem by means of the algebra of matrice‘s.. Ve
assume that a suitable ttra.nslgtion has been made so that the hyperbola ‘;r\
ellipse has its center at the' origin of a rectangula.r coordinate system.
Hence its equﬂ\:ion is

o 2 2
(1) £(x,y) = Ax" + By + Oy =
We want to determine a rotation so that the 'poinjtsvhich satisfy f(x,y) =D

- Since the constant term #s unaffected by a rotation, ye consider only the qua-
dratic portion f(x,y) of (1) . If we extend our notion of matrix multipli-
cation slightly, we can get a mat}-ix representation of f(x,y) . We introduce

product of one of these times a two-by-two matrix.

DEFINITION. | H -

A ' a b\fx\  fax + by

B : _ 6 4-\C a/\y ) cx'f+ dy
c | a, b ' ax + cy\ -
o ‘ , (x .v)( ) ={ . )
- " ©\e d bx + dy

(0 Q) =(pr +a)

. \ , .
v Notice th®t the one-by-twe (oz%two—by—one) matrices must occur in the

proper position but that the multiplication is st.ill oW 1nto column multipli-
We now a.ssocia.te with f(x,y) the matrix

B -
’ A 2
. ' B
] 2 C
and verify without difficulty that i
| B\ )
\, - A 21/x
(2) ', f(x,y) = (’xf yNB oAy

«.We can similarly express & rotation 6 as

L et T x! cos 6 -sin B ‘
o (3) ' = . . -
- y' sin O cos G/\y/ . )

will be mapped oﬂtq points which satisfy éame equspion not having an xy term.

A _ matrices with one row and two columns or two rows and one column and define &



K

By Theorem 510-4 this retation matrix les e.n,inverse; The Equation (3) is'a
statement of equality of matrices and hence each member can be multfplied on

the jeft by the inverse matrix to obtain equal® matr}cas.

cos 6 sin B\[x% 1 0\fx X
(%) . -sin 6 cc;s 6/\y" B o 1/\y y
_ - g

('fhis assumes assoclativity of a matrix product involving non-square matrices
and the proof of this is left as an exercise.)

e -~, From the definition it is not hard to see that 1f : E .
. \ ‘é: . ] . N )

. ax + by) _ (8 bB\[x
P (cx + dy (e...-ifi)(s’)
}hen
' (ax + by ex +dy) = (x y)(: g)

. N -~
Thus from (4) we have - . '

RO RS Gl B
in 6 cos O . :

Substituting (L4) and (5) into (2) we see that\ﬂé rotation will trans-
form f(x,y) .into

-

, : cos 6 -sin 6\(a 2 6 sin 6\fx*
glxt,y") = (x'y") ol . .
‘ sin @, cos Gf\= * C/\+sdn B cos G/\y!
'j,.h.‘." a
A B B ¢
cose-§sin9‘,..§-cose -C sin g\ f cos @ sin g\[x
= (x'y?*) : .
gin @ +§cose‘§sin9 +C cos 6/ \sin 6 cos B/ \y!
2 2
AY 3 .-
"-V( 1 2 1o 12 tyty! 1 12 =
="(x'y" - = A'x'" + B'x'y' + Cly' . .
5 C'Y/\y! v ~

* :\',‘

We now wapt to determine 6 so, that g(x"iy') remains unch&ged when

x' 1is replaced by -x' and also when y' 1is replaced i)y -y.' . This will
ocey 1f g(x',y') does not have an x'y' term.

e coefficient of x'y' in g(Xx",y') 1s

. B ( 2 2°
B' = 2{(A-C) §in 8 cos 6 - E(sin 6 - cos” 9)}

- . \
(A-C)sin2g+Bcos26.

- s AW

]

(RS
o



o © Thus . B"“T 0 if
A T e“:l’-f:radians, when A =C
’ R N )
lv . B e -
@ = -2— arc A » when A # C ¢ ' . :.

.’
-

In Chapter ST the latt a.ﬁ'gle 6 was é arc tan -(-—-:-—)- s since there,

the axes were rotated, whereas in this treatment ; the axes remain fixed and
: the plane is mapped onto itself. The caleulations hene do not differ fram -°

those in Chapter 57, but tt is of interest to see t.hem carried ‘mut in a
. different framework.

. We may‘na.so use this appma.ch to prove tha.t the determinant of £( ,y) ’

>

which is A} T is invariant not only under a rotationm, bu; also under any

iscmetry which leaves O fixed. For this we use the fact that
i

s B\fp «a a d\llfr a\}L Ya?
‘ ¢ d/\r 5/ c & r sj/|,

which was shown in Problem 2, Exercises S10-5b, Thus if M 1s the matrix of
su;:h an isometer, we have

2 a ¢

B
AIC’ -
» 0 b d

S >

AC - -}i— since ad - be

H
.

T
n
jo 7

i
+
[
.

1

Exercises S10-6

|

1. Describe (in terms of reflections i
'&‘L'Lo_ne) the isometries of the plane E

which in addition carry the outline l

| » of a given rectangle into itself, N

I-1. reflection in v axis ¢ (x,%)—= (-x,¥)
I-2. reflection in x axis : (x,y)—= (x,-y)
I-3. reflection in the origin {zyy) — -x,—y)
I-4. identity (x,y)— (x,¥)

I-1 followed I-2 has the same result as I-3.

-




Y . -

2. Describe (in terms of reflections B N

alone) the iscmetries,of the plane N
. . . m— e a
* . which in addition carry the outline - ” IF:\ < } Coe
. , , 7 b P
of a given square into 1tself, ' : N :
- . 1 R N 1 »
- “ : N "' :
I N ~
. S o e
« I-1. reflection in the x-axis (x,y)— (-x,y) ,
142: reflection in the y-axis (x,y)—— (x,-y) -
I-3. reflectlon in the origin (x,y)i- (-x,—y)‘ ) \
? identity (x,y)— (x,¥) '
and’ in addition. ~ ‘ R
. I-5." reflection in the 4%5° 1ine (x,y) — (y,x) ,,{; SN

I-6. reflection ir the 135° line (x,y)— (~y,-x) '

. ) . . | .
3. Describe the isometries of 3-space which in addition carry f glven cube
into itself. ' :

*

~ o 4

A’ ¢
- . L}
[
- P ~
~ J
‘
-
’/-’\ t
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