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Chapter I

6upplement A

DEFERKENATS

k

If wg suppose that thri sYstem of equations has

Nax + by

j pc + qy r ,..7.

6.4kit can be fOuneby elementary meth11 to be:

Nag - bp aq -.bp

wip
a solution:

These numerators and den ominators may be written in

develbp a useful algebraic concept and notation: '

.X ='

An expression of the form
a -

lers I

a form Which helps to

is called a determinan

A °value, as suggesied by the example apove, is defined:

b
aq - bp

P q

This detiryinant has twd rove: a,b;_ and p,q;

and h/q . It is called a sesond ELIE determinant,

pr elementir.. A third,order determinant has three re

fP

and its

and two columns: a,plir

and hap 4 = 2
2

terms.

vs and three e.olymne,

9 .32 elements. A determinal:It of 04-der h has n.

and
:

rows and n columns,

so on. We frequently. use %.6" to indicate either a determinant or its

::'- ue. Note that the first order determinant lal has the value a .

It

- We list a nuMber of theorems, all Ocwhich are true for determinants of

any order, and Wicate briefly proofs for the second orde. In most cases
. .\

, d

the ptooffor higher orders is a straightforward generalization of the proof

jor the.second order.

Is
441
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THEOREM 16 A is unchanged if we interchange rovs9Vith columns.

bl

P q

11: 1 aq bp 7

Note: All these theoiems remain valid i4we'interChange the words "row", :

"column.."

THEOREM 2. If two rove of

IP` q

a b

A are interchanged, the', sign_ of A is changed.

. bp - aq = -(aq - bp) = -AN .

THEOREA 3.1 If every element of a'row of A is multiplied by

is A .

= kaq -01kbp k(aq - bp) = kA

THEOREM 4.

ka kb

13 q
4

then so

It-tip rove of A are equal or proportional, then t. 0 .

.
a

.
1 = ab -*be = 0

a b
= kla

ra b d 1

.b

ka kb
. ..'

--,

.

THEOREM 5. Two determijants may be addea if they ag6e. in
1,
all the elearts of

n - 1 rove. Theg sum is then a determinant with these same ,T! - 1

rove; and the eleme:nts of ihe remaining row are'the 'sums of the correa-
,

ponding elements in the original determinants.

b

P q

c d

q

- bp + cq - dp =.(a + c)q - 4b + d)p

a.+ c.b + d

P

THEOREM 6. ,A determinant is unchanged if, to the elements of any row we add

a common multiple of the corresponding elements of another row.

C

+klep b + kq a

P

b I

1 .11

P Q

14 142
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Notation" It is co

"houtle substript-notati
t

k

venient, for purposes of geteralization, to use

1,1

whaire- "a
ij

", designates th element in rOw i- and column j

e

Eiercise. ReWirte the *yofs of"Theorems Asing doUble subscript

notapion.

nmnainthxs. Minor of a
ij

\ (Notation kii ) to the detrermin.ant_of

*
, ij

,
-

i r And of column j vire eiomet mes use tge.saMe voikEld:to indicate f.

lp,the squerearray obtained by r vitg fro* A,all elements of row

.
th value of that 'determinant.. Note. that A

ij
is of order t . 1 .

. .

,

COfactor bf a
ij

(

.

takoi oqii) au m (-1)1 4-N.
,

Note that au Is the sal* as. Au if the'sum of its row and column

nuMbers is even, and bs.;j is the peptive, df Au if the sum oflita

.raseand column nuMbers is ba. As Oove, Ne use "cofactor" toindi-

cate the eXpreseion ds well as its value.

Examzle 1. b

The diipor Of a is q ; of p is b. -

.

The cofactor of a 'is q ; of p is -b..

ExEunple ,

The minor of p

The cofactor of
(4)2 4- 1

The cofactor of c is, (-1)
1 + 3

a b c

P q

U V W

c is

$

14143
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A . ,Exampls 3.

#

1/4

The midor of 8 is
13 4
6 7

2 3 4

5 6 ...

8 9' 10

which has the value 21 - 24 =

C
2The cofaCtor of 8 is -1

1
). tilmes the ndnor of and alod'haa the.

value

The minor of 9 is

The coactor of 9

value %6

which has the value ,14 - 20 . -6 .

+ 2
times the minor of 9 and has tha,

4

-
Exercise. Find the cafactors of each of.the nine elementi of (3)

%above, or by applying Theorem 6 to vrie the determinant in a form simpler to

evaluate, thus: I

(1) Write the same second column,, thin' add° (-2) times these elements

to the corresponding.eiement of.the third.c6lumn; then add (-4)

times these same elements to thecorrepporiding element oft.he first

column. .

which yields the

*

equal deterniinant

,

;13. 4 1-27

111§. -1

0 1 . 0 . .
.

.

If we now evaluate by using the.element of the third row, we get

4 7
3 1

-1 -13 77

-10 -1 3

-..1(13.- 70) + 0 = 57

DEFTRITION. The value of any determinant is equal/to the-sutn of the

products of the elements of the firpt rov by their corresponding co-.

factors. Application: Cramer'p Rule?

a b

c d

a1d1 = ad - be .

446 S.



Notation.

3 1

2 3

4

a( -

2

:+ e

b(pv ru) c(pv - qu) etc:

3 5

1 2 4 4 11

3(6 - 5) . 4(4 . 20) +.1(2 - 12)

= 3(1) - 1(.16) + 1(-10)

= 3 + 64 - =, 57

j . 1 l'klcicgij

16

I.

.

MAINTEDDIKKM. The value of a determinant is equS1 to thee= of the-products:

of the elementsof any row by their corresponding cofactors...

The.proof of this Agin theorem miast' be carried on byAnduction and is

sufficiently difficult to be put offto another course, bUt the.student is

urged to vrite any.third order deterbplant, and to evaluate'ft in a nuttier

of ways. Note that by a'jUdicious application Of the-,theorema above, the

Process of evaluating a d'herminant can be considerably shortened, by ob-

taining equivalent determinants with Some zero elementa.
A

Notation. ,From the Main Theorem:

4 E ijuy, A fic.11.1

EXaMple. We may evaluate.the determinant of the example above by using

the element of the second rev:

14 121
12,1

or of the'third column:

4H -2(7) + 3(2) - 5C-13) 57
1 .

r

i:(-10) - 5(.13) + 2(1) . -10 + 65 + 2

4.

/

Exercises. (I can supply as.m ny as we %think necessary.)

I
z

.

.

,..

445 .
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Chapte.r,'SI

Sunlement B

FLOW CHART FOR TWO.LINEAR IWATIONS IN .X AND Y.

& .

. Suppose ve,want tostudy the possible geometric relliona bet

graphsof two linear equations

.. L, : aix + bly + cl 0
4-

..

.1, : a.,x-+ b2y + c2 . 0
c c.

I
V

IP

Supppee further that ve w the.study to cover all Pairs of ordered triples---
.?

of real 'nuMbers (a1,111,c1 ) and (42,b2,c2) If we wee to include ill /

I.

N: such Fairs, the stu4y can easily be converted to _a computer program and the.

coefficiente tpemselves, can even be gen+ated internilly in.`the computer tura

part 0 a larger program. lor

4 ,., ..
.L (If we know that the equations are not degenerate (i.e., either the x or

4
y coefficient'is difierent froth' zero), each'represents :line in the plane,

#

'eand these limes may be identical, parallel or intersecting. What ve want tft
. .

.

construct 143 an O'rdered gkt of questions we can asitaboui tie coeffiCients of,

/

L1 . and L thich will distinguish for us flow the graphs would 12!aye looked if
0

we hddan them. .Our question's 'Last be phraaq, in iUch a way thataeach

answer,w4, be ether "yes" or "no."

LeOf p e many different patterns of questiolts possible. In general

ve want the pattern to bianch lika a tree with each question so that if an

answer is'"ys", the,aacceeding path will be different than it would have been

had the a eerbeem "no." At the end of each path will be a messAke ng,statiat
the correc geometric 'configuration for the viir of equations with which we

started. Ws type of ,13Lttern,is often failed a flow chart and ii a useful

toolin computer programming. Iof you think a little youpvill'see thee the

well knetn game of Tinty Quest1on4 uses a tind of oral flow chart to solve
. .

.the probAm'"What'wn I thinking of?" .

,
. , -,

, ,.

Let us consider what the first-question.in our s ries should be. If at
,

x.

.
least ane Of the given equations is degeneratep.thT ie do not.ceally have

-

two lines to stny. .We vent to design our.pattPrn to chAnnel,atich equations
, ,

A)

111C-'-

3



6 Is a1b2 121a2 pO ? 1

4

4 .

w

k
abide. Aceprdingly the first cpi,estoniMill*

(1111._1 4- 1# 1' (1.a.1 Or lb 1)rs. '73. 2 2 .

If the
0A
answer it "yes% then, we knows that eith.e.re 1, 1b14: 0 ors -

. 4.,. 1
1a2'

issJb 0 . n other vords'at least one equation,is not really linear.
.

= ?

.. .
.

i4e plafipthe mesa "Degenekte equation" and end this path. ,If 't),e answer ...

.
"to the qUettion iitaa '"no".,,, Vt are assured of two line,Wr equations. What silall.

...

we ask n'ext 'IA:potsillle Ipecond question is .
,

. 1 ,

.

. , -
.

.

) ..

0

Notice that thts time we ask whether a certafn eiaitasion is diif.erent from
'4.

zero. Of the answer is "Yes", then we know the lines 1.1 apd ,L2 intersect

in a point. We write a mees4ge t o this..effect,and close the path..; 'If the

answer tp the pcopcf quelltitin is "no", then the two lineemaist be either.

parallel or coincident. We need a.third question Whichtwill distingnish be-

,tw9pn thes9 two capes. _One such question is

IIs la1e2 - a2e1 4- 1c1b2 .e2b --', e2b11 ',.-- 0 ?

1

An answer of "year guarantees that

Therefoee we have

waY insures that

4.

Let us repeat

we have indicated.

el

a2 c2

a pair of coincident lines.

L1 and 1.2 are parallel.

these-three questions together with the message vette' ,

b
1 1

= 0 and 0 .

h
2

c
2

An answer of "tno" in a similar

'

1

1214
M

.,011111

ip

448
0. 1
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FLOW CHART

'61y + e 0

42.7 bky c2

V.

8
' .

tbei) = 0? 1.,A HEither L1 cr L2: ip,deginerate

yes

2 1
::,

-= 0 ?

e parallel lines.
2.

*a.

1449
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1
and t7 are 'intersecting rines -.

. ,

!ft

2,
are do i nc d e nt lines
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Scipplememt p

el

MA! WITH1RW-MttRM =LES

.7*

, r .... .. I .0
In practice, it .is.softeem.es t?ecessary,to.grsph a'-fanctron I(x,y) _in a

..
..

, -..111
.

. .
. ..

systosof raference.1A which Ve axes are perpenattularlo each other, but a
..

.. /

different'unit,is wiled on eseh axip.! Fdr exaSele, tf....ihe rShge of a fundtidn'

fs very larse'compared to the d;phin, aniumit. 'Mall enLugh to-allow the range

to be graphed on 4 pieceof paperviily coMpress thedomatn tool spch to be
- A. A. o ft

.bmapful. -We caq studY many propertitell of such a.grapk,lput ve must-

. .
.0

neverto read sldpes pdm it Athout takiiag.,the differenceLof-seale

r
aceount.

. 4 0.

,Other tnterestipg vtriations of graphing. ftx,a1 'using'perpendicular

. aies are semi-logarithmic at!
IlogAilthmic'graVas vhich pros+ t9 be heapful ime

applicttionayof,mathematics to biology, ecorfonitcs,And.ezther scienes.,

especially vhere'grovth is involved: Ask example, let us look at theAvimph-

of y
V.

first in regular'rectailgular and thedIn'semislogaiithmicacoori-

nates.

.A11

. s

(4) Ci)

Graph (a) is the familiar exponential function studied in Intermediate Mathe.

matics. 'If' y = ex. , then x tithe na'tural logarithm of y..,:or x . log y .

%early there is a linear relation, not betveen x and y 1 but tetvren x

and log y . If ye treat x as usual, and graph not y but log y on the

vertical axis, ve do indeed have .a straiiht line. (See grapIC b .) 'This is

called a'semi-logarithmic graph because/one of thee.xes measures -die logarithmr.of a variable rather than the variable itself.

dle

451
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4

If wb go one rdWir further allOplot the logarithm of
. x on one axis and

the logarithm oft y (to the same:base)-04, the other tais, ve)ipaVle a iogarith-
't a

miegraph. This type is useifextensiyely tin finding equations to fit experi-4
mental. data when there is reasorito belfeve tOe relWeiondhip ts of the form

;1/' Taking the logarithm 'Of each sidOlwe'heve

4

")!Ok y = k log x .

e
If we graph our exponential data by measuring iog y 'on one scale'and log x

on the other, we should be able to fit a dtraight line to 'the data? and

determirie k as the slope*of the line..

As a.matter of fact, if a scientfst Suspects his data coula be des cribed
tl

aby'either y a
x

or y = x he can plot the data usilg semi-logarithmic'

and fUll "logarithmic coofdinates. If either graph appears.to be g straight

line, his problem is solved. If the semi-logarithmic graph is a Straight line,

then log y - (log a)x. , the slope is the.logarithmof.the base a ,.and the

6

data is related by y = a
x

. If the double logarithmic

line, then the slope,

which relates the data.

yields'a straight

determines the exponent in the equation y x
a

to

Problem. Suppose you have'escperimentally determined the following data

' and want to discover the mathematical relation between x and y
* *

.

2.5o 6.20 -11.6 21.4 °

.

3.61 1249 30.9 72.9

Suppose0.further, you guess that y is eitker an exponential function in-

volving x or that it is a power function of x
.

Solution. Using common logarithms we fill out a table and plot the
i

ordered pairs (x,log y) on one graph'and (log x, log y) on a second. Then

we study the points and if either graph is approximately a straiglat line, we

measure its slope. Finally we use this to express the relatiOn ytween x

, and y .

x
..:

2.50 6.20 11.6 2-1.4

roi x
.

.398 ..792 1.061'
.

1.33

Y 3.61 12.9

p

30;9

-

72.9

log y.. .557 1.09 1.49 1.66

5

V.



GRAM II

,r

a

Y

Tht first grapli seems to be linear anOts slope 27i. is approximataly

1.31 .41.4 . .Thenefore, log y = 1.4 log x or y = xl is the relation we

are seeking.
Mis

453
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'Supplement to Chapter 2

irldielNATBS AND THE LINE.

4

4
,

Frpm the postulates of geometry wi deduced immediately tWat,any point 9n

a line may be Chosen as the origin for a co6rdinate system and tbat the pool.-

itive coordinates may be assigned -06 the interior.points of.either ray detSr-

mined by the origin. HoweVer, intourtlevelopment of the MSG Geometry there

need be no mention of units0'-in terms oi which-these measurementb ane made;

the fltire development depends Upowone intrinsic scale of measure. For this

reason we shall describe such coordinate systeMb as intriniic coordinete.

systeMa. It would be very conv;nient to be free to choose coordinate systems

with different scales of meaeure. Ii is easy to show that we have this

freedom.
A

Thp coordinate system is.an unusual type of funclon Whose does:An is the

:set of points on the line/end Whose range is the set off real numbers. Let'uil

denote this function by f, whosevalue at each pAnt X is the nunber

f(X) = Z. "lot us consider a linear function, g, on the real numbers,

defined by the equation x' 2g(x) = ax b, where a is any non zero real

number and b ts:any real number.. The composite function which assigns to

each point X the number g(f(X)) is aldo a one-to-one correspondence betlieem

the points of the line and the real numbers. We shall pscribe such corre-

spondences as line& coordinate systems. Ne shall contnue to aescribe the

which corresponds to a point as.the coordinate of the paint, since this

phrase has meaning only with'reference to a particular coordinate system. We

shall denote the composite function of f by g ea' g(f).

I.

We Shall consider the description of the geometrii properties of the

,line in terms of such a linear coordinate system. Is there anythi4 in a

linear coordinate system comparable to the measure of distance berween two

points, .R and JS p whose coordinates in an intrinsic coordinate systenTon

the line Ire are 'r and i respectively? The new coordinates r' and s'

1
of R and S.'respectively, are related bi ttleequations

1455
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We discover that
a

4

rl = ar + b
= ts+b.

i =leaf .
. - *..

Unless fal F 1 s Irl - s'l is not eq414to ir - sl , tile meEksure of- .
. %. - ..,

distance in the intrinsic coo-rdinixte 8ystem.1 Royever, we .do.'nota that 1.n the,..

linear coot4inate rl.tesili` ., related, to theinti-insfc ccierdii4.te system*by the
equaticin xl = ax + b , the number Ir - 'al I is a Consta-nt militia of
IT - si y.the constant being inslepetident of the Choice Of points.

.4;

We recall that the.length of e segienf gas defined to,be 'the measure oi.
. . ,..,

Ilistanece between its endRoinis ands that congruent ,segments were defined -ae

*segments havi. e *same length. Thus the Statement BB 7.. t' . is -equivalent

to the statement, pf .. @I 7-ft - uf yf where
4

r , El , t , and u are
4intrinsic coordinates Ff. R ; S y 1/, Euad U respectively.'

issIf
then

and

. = -"u

lal. -,si = fat ft

asi = tat - auf

b) - (as + = f(at + b) - (au +1))1

or fr'-,- =411-tt - where r' s' t' , and

are Coordinates in any linear coordinate' system. Thus the contition defining
congruence foi- segments applies in any linear coordinate system.
0

The student she:mid 'think through-all the details of the' argument that
any linean coordinate system is a one-ta-one correspondence betveenwthe points
of the line and the real numbers. Let f be an intrinsic coordinate syseem

4

on a line L and let X by- any point of L . Then f(X) is a unique real
number and so is g(f(X)) ai(X) + b . o, far we have not used the assumption
that a '4-0 .Now let r be a real number. Sin'a i4 0 , there is a unique
number xo such that axo + b r '. Since the original, coordinate system is

a one-to-one correepondence between the points of L e.and*the real numbers,,

there is a unique point X0 such that f( X0) = x0 . Hence there is 'a unique

point ko on L such that g(f(X0)) 'g(xo) =text) + = r



4

,Faceset1e; Let "P , A ,..R., wail S be four pointe on a line irith.tntrinsie
coordinates .2 5- , 8 , and 11 re.spectively. Since I-?'-.51' =t18 - 111.

Let a liikes5
;

Ooordinate system be defined by the equation
2x (2.1 , Then the-ne- w coordinates ,oft: P , 4 ,R , and S are 3 , 9 ,

. .

15 and. 21. respectively. Since :13 - 91 '.1-15 - 211 , the congruence of
PQ and RS is siailarly described' in terms of the new eoordinates.

-

.
. -...s.-

L other 'geometric property described in terms, of intrinsic coordinate ..

systems on a line. is Eretweenness On thei line . We recall that the point. S 1.61

, between R T if and only if i < s < t or er > s > t, where r .s

: and t. are the coordinates of S , and 'T respectively. We dibserNak.that
't

:ift r < s < t
,

'

then <.as < -cad ar > as >- <

-

and 0. ar b < <I at + b 'a >

or ar + b > ü + b-> at + b. if a <

The membeys of these inequalities-are precfsely*the coordinates r" s'

and t' . which would be assigned to the peints S and T byloa linear

saordinate sysA-defined by a linear equation x" ax + b Thiis the last
two lines of the above development \nay be replaced by

< if a >0 or r' > s' > t' if a <0 .
1

A similar argument obtains if' r > s > t In all cases the condition
describing batweenness on a lime holdh if r s , and t are replaced by

Pthe corresponding coordinates in any linear coordinate system.

The geometric properties of lkongruence for segments`, and betweenness on

a line are described in exactly the same way in terms of linear coordinate
systems as in the intrinsic coordinate systems. We summarize,these results

frgm the preceding two paragraphs as follows.

Any,intrinsic' coordinate 'system will hot be changed under composition
with the trivial linear function defined by the equation. x' = x and

sionsequently is included among the linear coordinate systems on the line.
Mese are the coordinate systems whichfare of use and interest' to us.

Henceforth, we shall usually consider only, linear coordinate systems; where

there is no chance of ambigui ty we shall call these systems coordinate
s

systems'.

1457
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MOM 82-1; 11,er,coordinate Aystem on

eland t' to the points BIS,

and T if amd s

le
i

a line asaigna the'coordinates r

and then S is be

or. r > s t

00MORIN s2-2. Iet P and:Q be any two distinct points on

coordinat system C on the,line, the coordinates.,of

p *Ad q respeptively. Let r and be apy

numbers."Then there exists a.toordina wyatem

which thp.poordinat4s of J? anp Q pre r and

ttbof.

relates C'

an'equation

a line. In a '

Q are

two diitinot real
,

C' 'on the line, in
a 'respectively.

-. .

We wish &discover whe:ther Ovre exists a Linear'fwtion'whiech
iss: C' by.compdaite6n. If thcire il such a functicin, A.. exisVa

I

ai + b defining the fuaction. The following e4uatipns,
would have* to be satisfied..

1. and

Comb4ning equations, ve obtain

#

Or

Y ).
/..1=7Iff + 'b

= aq +b

r - s = a(P - q)

r -
a = p q

Substituting in Equatica (1), we obtain

Or

The solution set

ffr"p / "

of C btr the linear fUnction defined by

(rp q

r - s
r = g b

P
-

P q

R - qr - Apr + ps

P - q

ps - qr
p q

0.

for a and' b of this pfir of equAtions is

The coordinate systpm C' formed by the composltion

Psx +
p _ q

or



does satisfi.the co6cluaion of

and consegventlt the coordinat

coordinates of P and cl are

thy theorem Sinoe p p

e/gistem C' y is always dtined. In

given retspeaively by

k rw
q 01

Pt
cst)p

r :), ps qr as r
In

- P

on,

the -

coordinate system C' 11 unitlue -though we tave not provtit
-

In fact, the

. ,here.

0orollorx S2+2-1. If

. Iwith coordlnates p and q respeciveIy in a ecordinae system C , theti '

..
,the coordinate gystem CI which is relay to' C by thtt linear equation,

.

'k .
r 1

It = --"-L"-- .q - p q - p '
(

is

P and '41 are any tlio'distinct points on a line-
.

. ."

.4

assigns the coordinates 0 and 1 to the points I' and Q respectively.

It i; sometimes convenient in later computations...to write this reault in the

form x' = .
q p

In order to make intuitivsIy Ipre clear the roleelayed by the constamté

a and b in the introduction of dnew coordinate system, we consider what

new coordinates are assigned to the origin and to the unit-point underide

composition by the linear.function defined by the equation 'x' = ax + b .

C
A

1 - b
a

A. B

0 1 b, a + b

Figure 52-1
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,

The pant whieh'was te origift nr has.coordinate b d(010.

which .Was 1 is nev us the zoile of b ip o shift the origin;
,

)and'one role of a may fte to inerease-or decrease theiscale of distance.

.4" laF> 1.2 we say the new.system is seaIe-decreaainf; if lal < 1 0 the

new:system is ectle4nereaainv if fat ..the.new system ie. scale-

reeerving. We observe that if a > 0 and the orlqirial epeWinates p and

q 'of two distinct points.are unequal,inthe order' p < q 2 then-the qew

'coordinates 'pl and' ce,' are unegnal inCthe order pi.< q$ .2 While if

<0 and 'p < q 2 then and. cit are unequal in the-order

0,
q' <p$ . FOrthese reasons' 4e say that the new systeMia orper-preserving

if a >1) and.order-rArersinA if a Q

oft

-Exerciees 82-1a:

X- *

Let P 24 2 aad41k. be points on a line with coordinates , 3 , and, 7

respectively. In Aviblems 1 6 find the coordinates of these points in

the System given bY composition of the original systemby the linear function

defined by the given e4uation. Is the new system scale,increasing, scale- .

v.

decreasing, or scale-preserving? Is it order-preserving or order-reversingi

= 3

6..
.414

7. For the systemsdescrioed in Problems 1 - 6', find the coordlnates of

the points which were the'origins and unit-point's in the original System.
I.-

B. Find the original coordinates of the points Which become the origin and

unit-point of the systems described in Problems 1 - 6.

9; The,equation. xi = ax + b defining the linear function which relates

coordinate systems was subject te the condition a ,L 0 . Why?

460
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We have not eppsidered the case ln whibh ve,emploY a non-linear equa4iq :
, ,. -

to define a new coordinitg Ixstem on a line, but it is interesting to do soil

4
In PrOblesslIT-.1.14he rule4defining sevdral functions of otigi types ar7

given. &amine the 615rdinate gystem obtainea by the composition 0 904
. . b ,

intrinsic spordinate.system and the function defined by the giVen, equation.

.Bees the oo rginate gystem Still ciscribebereenness on the line? Bees ii\-
. . . e

describe the congruent segments of the line adequately?

10. = a, t b

11. xl =
4,

.e

12.

1
/xi = ldwrea x A 6.

= x Where x = 0

' 13- x' = logle

.

An important mathematical structUre which you mAy have encountered only

briefly is the group. A group Is a sSt of elements with a binary

operation which has the following properties:

Let S denote the Aet, and c 0 any elements of S 0 and 0.

,the binary operation.

.(1) (Closute) 'a o b is a unique element of 20

(2) (Associati...h.V ) (a op) oe=ao (b c)

(3) (Identity) , S contains an element e such that

a'oe = eoa =1 a

(4) (Inverse) For,each a there exists a' such that

a0 = !Ova = e

*
An element e described in is called an identity and an element a' .

described in '04) is'called an in tse of a . gr

Some familiar exampleis of.groups are the integers, the rational numbers,

pr the real nuMbérs with addition as the operation. Other examples are the

non-zero rational numbers or non-zero real numbers with multiplication-as

the operation.

If

Let us consider %he set whose elements are the functions whose domains'

are the set of real numbei-s and which are defined by the equatfons

f(x) = ax b Where a is any non-zero real number and b is any real nuMber.
4

This set of functions forms a grotp under the binary operation of composition.

1161
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iie shall prove tilt th'e identity 'and inverse properties .arellatisfied,

but we leave the discUssion of the closure dnd assOeiaV.4ce properties as
... e

exerci se s .

..
'

If the set contains an ideniity, it must be EC faction defined by a

linear equation g(x) = si 4- t . If this fyinction -is an identity-, -it mu.st

.. *

-
. 4
satisfy the following tauatiop: f

'This becomes
1. f(g(Z)) ''''

g(f(x)) = f(x)

a(sx + t) + b = s(ax+ b) + t = ax,+ b,

. if-

or asx + 6-6 4:tp = BEM + sb -It = ax #1rb .

I , P

.......:.....Thi s 'wili be true if
.

().) ask = sax = ax , and.

(2) at +b= sb +t=be

Since e 0 , Equation (1) will be-true only if s = 1 . Eguation ( 2), thus

becomes

at+b=b+t=b.
.

Thig. equality implies that t.= 0 . Mus, the desirld function

g(x) ex + t = x There,is'only one function of this form. It is in the

set, and it can be seen that it is an identity.

Now we want to find inverses. If an element, f(x) = ax + b , of the

set has an inverse, it must be a function defined by a linear equation

g(x) = sx + t . this function is the inverse of f(x) it must satisfy

f(g(x = ig(f(x = x .

This becomes

or

This will be true if

(3)

a(sx +,t) + b = s(ax + b) + t = x
A

asx + at. + b sax sb + t = x

asx = sax = x , and

(14) at + b = + .t = 0 .

Since, a 0 Lipation (3) will be true if 3 = Equation (14) becomes

-b
which is true if t = 'which is defined since a 0 .a A

at + b = (let) b + t = 0
P

1462
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.1

aft

.the dOired

fUn of tkets %fora.
. ,0

40
an invfirse or (x)'... In

but IA lea these vest
"I k

g .

'

PP

1-041e

t$o'n gx) .= EX t = '. MI

0117-/. a .1%-the sets t cap readily Tt

2 aeptities anti ifiverses 111'e
is

ions as exdtsie*s.
0 , 4

I : /4 4.
N

*

*
l

k

) .114,
0.

'ititerciseE**P2V)
4 6 * a.4

* , k:, ..

1. ,Ohow that-the get and binary operation described abovecave the clo'suie

, ,'91' (
, -

is. only one

shqwn

nrs 1
1, .

,)*!'

*I * t

Show t hatothe.set and binary

ty .5 f

a
,* * 4, b,

''' r ';'" 4
tationidescribed above nave the

ashociative properpy. . A it ,
. - .

4 r
. Sh6w that set and binvt-,ppeiVion.deectibed" abovaodosot have the

.

connutatl.ve petty. 1

v

4.

f_!

4. Show that in,any ttpup the identity ieunique. 1

Show that in any'group the inverse of)apy"given element'is unique.
-

_ft.t. .
t. ! ,

,

Show-that in grourthe inverse.of the iaentity is the-identity.
6.

Let f(x) = emit+ b. and og(x) -1 px + q . 144 denote the in tso of7.
.

. . ,

5.

f(x) by el(x)'. Find '

(a) .fc;.(x))

(b) r(g(x))

(c ),

(d) (g(x))

(e) f(f(F(x0.0

(f)

Find the fUnction

g-1(x)

ono ,i,-1,03-1(4

(1)
13710.710

(3114;the iAverse of

(k) g -1( X))

(t) f(e-L-(x))

(or functions) h(x) such 'that
4(

h(h(x)) = f(x) = ax + b

Discuss the possibility end nUmber of solutions for

463
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S2 g. M4pings'and Linear TraneformWona.
4

A function Whose domain is a set A and Whose range is a set B (which_

may be the.same as A ) is frequently called a bapping. An element orthe.

range.which dorreponds to_a giVen eierient oS the.domain is saidtowbe the

lc *image ofthat elemeq. lin element of.the donikin iiich corresponds to, or4,...s..

mapped ontq, a given element of the range is calla a at-ime*ge-of that
,

element.
.---

,...
A .

. , .

.". -. In describing a mapping the second set mentioned ivay not always bell*, *.
- t

. .

range of.the function, but it always,contains the range. If it-is the range,*
-the mopping le said to be onto the second set. If the range of the function

is a proper su bseVof the second set, the toppling is said to be into the

'second et. A mapping is also celled a transformation, especially en, itis

. a mappih,g from a set of geometric entities into a set of geometric entities.
4

The set of images cotlitonding to the,elements of a given set in the domain.

,is cailed the image set;.the set of4ore-images Corresponding to,the elements

of a given set in theopange is coiled thelre-image set.

The mappings Which w e consider in this section . one-to;-one transfor-
.

Mations of a line onto itself.. We consider this ilud to have a fixed

coordinate system. We need such a coordinate system to describe the

tranSformation. We shall consider four types of transformations; translations,

reflections, expansions, ap contractions.

IntuitiVely, we may think of a ,tlanslation as a Shifting of the line

along itself. A reflection is a half-rotation of the line about the origin.

EXpansions and tbontractions are unifOrm stretching from and shriniing toward

the origin. We may describe these more explicitly.

\

-7621NITIONS. Let i be a line with a coordinate system; let

P be a point on the line with coordinate p ; let the point

P' ;with coordinate p' 'be the imkge of P under a transfor-

motion of the line 2 onto itself.

A transformation T(P) P' is a translation if and only if

there exists areal ntrmber b such that for every point -P ,

p' p + b .

A transformation R(P) = PI is a reflection if and only if

for every point P pf -p .

464
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4.4k

A transformation E(1) P' is an expansiOn if end only if

there exists a real number a > 1 such that'fdr every'Point

13 pl = ap

.Alransformation c(P) = PI is a contractton if and 0Mly if.

there exists,a positive real number- a < 1 suCh that for

eveTY PAnt P., P' 2a,a1r.

It Should be intuitively apparent that in any of the above transfor-,

mations an image is betwe4n two Other images if and onlytf its pre-1m*

.isipetween the pre-images of the other'twO images. Therefort the image set

of a segment is also a segment. It Should also-be apparent that in.a trans-

lation or a reflection, immge segments are congruent if and only if thexpre-

image segments are congruent. It may or may,nqt be clear that this* is also -

the case in an expansion rOr contraction. We 4neidei7 two congruent segments

and RS 6 Their congruence depends upon'the equality of ip ql and

Ir - sl The congruence of the image segments'depends upon the equhlity of

Ipl q'l And lr' - s'i ThesI may be expressed as. ap . alp - qi %

rN
aaa.lar asl =.air - $ l These latter numbers are ertainly equ2if.the

original segments were congruent. Thus, the image'aegments f congruent

..segments gre ale° congruent.

We continue ouedevelopmetlit by considering cottositions of these

transformationp. A reflection maps a point X onto a point Whose coordinate
_-

is. -x ; a translation will now.may the new point onto a point.whose

_coordinate is -x + b An!'ftpansl,on maps a point X onto a point with

coordinate ax ; a translation now mays thit new point onto a point Whose

coordimate is ax + b

Such ailequence of transformations may be indicated in a diagrams

eto

NOUPQ , lof
-34 01 11 211 3\

....

II

%i i t . , %.

-I t 't N '

- -..
r %

, Ls
1 1

.
.11 % a % 2a\ 3a-\

% %

%

,S1i. 6 It 1

-a+b b a+b.2a+b 3a+b

ax

%
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;fahould be understood, phat, 4 , Lt $ and -L" are the same line) drawn in

Separate positiona to shoW the transformations clearly. L' is the result Of

an expansion transformation of Til,) with the equation x' = ax (a

L" As the result of a ti'anslatfon transformation of L' ) with-the equation

x" +b flnally) L" can be eonsfdered as the"resnli-of a composition

of two transformations of L 0 with the equatfon, = b .

We consider the suctestave application or composition of two of these
-

transformations and display the resultS by means ok tiie table below. We

employ the notation used in the definitions.given above. The).abels at the

top indicate which transformation-is performed first; the labels on'the left

indichte which transformation is'performed second. The entry is the

coordinate of the image of a point X subject to the restrictions of the

given transformations. The subscriPts of the constants indicate Which

transformation introduced them.

T ' R E (ta.> 1)
ty°- < al < I)

T
.

.

x + b
1

+ b
2 7x * 12 alx -t b2 alx -t b2

R

,-.

-x - b x .
alx

-a
1
x

> 4,-) ,a2x * a2b1 -a2x

-

a1a2x a1a2x

C 0« 1) a2x * a2b1

-

a1a2x a1a2x

We summarize by observing that these transformationsand the transfor-'

...- mations that may be obtained from tirm by composition may be included in the

set of transformations defined as follows:

DEFINITION. Let i be a"line with a coordinate systet; let P

be a point on the line with coordinate p ; let the point Pt

with coordinate p' be the image.of P -under a transformatiOn

of the line itonto' itself.

A transformation T(P) = P' is a linear transformation if and

only if there exist.a non-zetp, 4eal number a and a real
a
ft number b such thetlfor every point I)), PI = ap + b

466
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We Call tatemappings linear transformations' becatse the defining .

eqqations are linear.

If this ar4ent heist not begun to sound familiar, you should go baokrto
e /

Sectibn 2-/.

Th4; set of linear transformatiipns of a line onto itself under the

binary operation,of Composition is another instance of a group.

.4

EkertisedS2-2i

In the following exercises, you may find that the form of the proofs you are

asked.to give are remarkably similar, if not identicaleto those in

SectLbn 2-1. Thei are different only in interpretation and terminology.

1. Prove that.if Q is between 13 aMd R I then in a /inear tnansfor-

'nation of PR Onto itself, the imege of ,Q is between the'images of

1P and B.

- 2. Prove that if and /65 are Congruent segments contaihed in a line,

A",
theft in a linear transformation of the line onto itself 747.710 FUT $

where 1" Qt y and g, are...the images of #; , R , and S

respectively.

3. Prove that the set of linear transformations of a line onto itself is

closed under composition.

tve that the operation bf &opposition is associative fdr;linear

transformations of a line onto itself.
,er

Prove that the set of linear transformations of a line onto itself

contains an identity with respect to composition.

6. Propie that eaCh element of the det of linear transformations of a line

onto itself has an inverse wit4-respect:to composition.

7. Prove that the.composition of linear transformations of a line onto

itself is not commutativ$. Tbe.gomposition is commutative if certain

restrictions are placed on the linear transformations. What are these

8. Prove that aiktr linear transformation may be.expressed as the comtosite

of not more than three ti.aniformations each of which is a translation,

a reflection, a contraction, ='an expansion.

restrictions?

6.

. 467
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Although there is ho unique way of nactorines. linear traniformation

in the way saggested above, it may be that for a given transformation

every such expression must include a translation, a reflection) an

expansion, or a contraction. In this case waaball say that the,linvar

transformation idcludes a translation, reflection, or expansion.

We have discovered that the linehr transformations of a line onto itself

under the binary Operation of composition form a group which seems similar to

the group of linear functions which describe changes or coordinate system on
A

a line under the binary opetation of composition. //

.-
This kind of aimile

7
rity is of some importance in mathematics'and is

called an isomorphism (itom the Greek, gear, meaning same, and PA) P1011

meaning f66). An isomorwhism iS a one-to-one correspondence.between two,

mathemaiica1 structuris which relates not only the elementsof the structures

but also the operations between the elements. A familiar exampleis found in

the relationship between the multiplication of positive real numbers and the

addition oftheir logarithms. Another example is found in the relationship

.between the addition of vectors and the addition of complex numbers. The

importance of isomorphisms stets from the fact that statements made about
41-

one structure may suggest corresponding statements about the.other.

In this case the isomorphiam is between the group of linear transfor-

mations of the line onto itself under compositions.nd the group of changes of

coordinate system on the line under composition. The correspondence is
p.

established by identical linear functions Which OCCUT in the definition of

each group. Since our descriptions,Of each group are in terms of-linear

functions defined by eplations of the form x' = ai + b , we may

comparisons of dux descriptions when the conditions on a and b are the

same.

A change of cOordinate system Which shifts the origin correspUnds to a

linear tranSformation which includes a tran4ation. A change of coordimitte

system which is measure-preserving corresponds to a linear transformation

which includes only a transfation or a reflection. A change of coordinte

aystem which is measure-increasing corresponds tO a linear transformAtio

Which includes a contraction, and a change of coordinate system which is

measure-decreasing correapond s to a linear transformation which includes an'

A
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.expansion. A change of dordinate.sYntem which is order-preserving corregponds

to a linear transformation which dpes not include a reflection; and a chan4b

of coordinate'system which ke order-reversing corresponds to a-linear transfor-

mation which includes a reflection.

ve considei whether a soint may be-assigned thp same coordinate

after a change of coordinate system. The comparable situation for a

transformation is that a point is mapped onto itself, In either case, where

x' ..ax + b 0 the situation occUrs if x1 = x .

If

then

becomes

or

If a 1 and b . 0 ve have the identical Coordinate system (or. the--
..

identity tranbformation) in which all coordinates (or points) are unchanged;
eh

if a = 1 and b 0 0 there is no coordinate (or point) which isfUnclanged.

If a 1 , the coordinate (or point with coordinate) -b
a 1

i unchanged.
-

It is .customary to say that such numbers or points are fixed or invariant.

---, .Ekerrises S2-2b
1

l...AProve that a change of ce"Orfdinate eyptem is order-preeerving if and

- 81
only

r1
-

if is positive, where r' and s' are the nAr
r s

coordinates of points' whose oriiinal coordinates were and s

.
respectively; prove that a change of coordinate gystedis order-

2' 1 - s'
reversing if and only if is negative.

r - s
%

2. Consider a linear transformation ?f a line onto its f which maps the
,

points R and S , whose coordinates are
,

F and s respectively, onto

the points whose coordinates are r' and a' respectively. Prove

At the transformation.includes:

(a) a contraction if and only if 0 < rf s < 1.
1

r - a

. ihi AI -
(b) a cl5stract1on'and a reflecUon if and only if -1 <

rl

r - 8
< 0

469 4
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a 4
(e) An expansion if and only i

r - l
r - 1

r s

(d) an exPansion and a reflection if and only if

3: Consider a linear transformation of a line

points P and Q j whode codrdinates a.re'

the points whose coordinates are pl. and .

the transformation includes:

r s

onto itself which maps the

p and q respectively, onto

redpectively. Prove thatq'

(a) a translation If and only if '21-=--21. . 1p q

(b) a reflection if and only if 2-1--=--31- , 1p q

4. Show that the intrinsic coordinate systems '*'n a line

linearrcoordinate systems whose:defining fUnctiens have the form.

= x + b and xt = -x + b where b. is any real number.

5. Consider a iine;with a coordinate system, let P be a point of the liair

and let ,I(P) = P' be the image of P under a transformation of the

are identical to the

line onto itself; let p and g' be the coordinates of P and

respectively.

Consider the transformation defined by

I(P) = PI where p' = -1 for g A and g' = g for

Chooye an appropriate scale and make a graph foil the coortilnate.system;

write the,coordinates of severalllages below. Write the coordijniates

of their corresponding pre-imagelrabove them

tygg_is called an inversionef the line.

6. Consider the composition F(G(H)) of transformations of a line to

itself-, where W,X ,Y.Z are pOints of the ling with coordinates

and z respectively, and

Pt

A transformation-of this

1
F(Y) = Z 'where z = for -y A 0 ,

:0(x) Y whery

H(W) = X where x 214;

(a) Descrie the set of pre..=Itages, or domain, and the set of images,

or range, of the composite transformation in terms of the

coordinate system on the line. -Is'this iransformation into or onto

the line? Is this a One-to-one mapping?

y = x + 1 , and
#

4,

and z y for. y = 0

470 .
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(h) Choose an appropriscale for the coordinate grstem and make a

graph of the set of f6ges pf this composite tranaformation. Write

the Coordinates of sever's" images below them. Write the =ordinates

of their corresponding 9kas4smage8 above them.
,

t j Tv:, sets are fililtto have sme cardinal number or the same

(cardinaliV ift6ir e1ement may he fiut in one-to-one corre-

spondence. What dan you say 494 3,e cardinality of the interiom

of a segment of a line?
-

7. Consider the composition D(E(F)) of the fUnctions vhose domains are
s ....t

the set of 'real Midbers, Where

T y 0

z = 5y) = ly
for y = 0

3

y = (x)=x+i for all 20.s:

x = F(w) = 2" foi all w .

(a) Describe the domain and range of the composite functien. Is this
s

mapping into or onto the set of real numbers? Is this mapping
. 1.

one-to-one?

The cardinality of a set is said to be infinite if and only if the

elements of the.set may be put intp one-to-onexorrespandenee with

the elements of a proper subset of the givvm set.,3.1that can YOU PV

about the eardinality of the set of real nUmbers?

8. If P , , R , anq S are points, with R Sp whose respective

coordinates in two diffeient coordinate systems are p,q1r,s
!

and p' q' 1 r' St # prove that

rt a.' r -

Each member of the equation is called a difference quotient, and in this

case erpresses the ratio of a pair of directed distances: The content

of this theorem mighrbe expressed in this way:

Difference quotients of directed distances.are invariant

under a change of coordinate system.

Or,this way:

The ratio of directed distances depends upon the,points

involved, but not upor.the coordinate system.

1371
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A

9. If A 9 B 0 and C have rewpective coordinates 3 5 ,.'and 10 An one,

coordinate system', and .2., 3, and 0x in another coordinate system,'

find x (In hnw.many, ways can,ypu do:this problem?)*.

10. If..A B and X Iare distinct'points With'resPective coordinates

a. b x and ft' x' n two'different coordinate systems,

express x' in terRa°af'a b b' ,-and 'x .

0

Show thEt if two Points are,f(iOunder a linear t ansformation, it mast

be the identity transformiatiod.

1*,

t.
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Supplement to Chapter 3

Imam DEPENDENCE ANIX#DEPENDEICE

We have defined a zero rctor, 6, and, for any number k and Vector Is
the scalar'product ir . We May, in the same way, define a zero linear poly-

nomial in'one.variable 0 + Ox ; and, for any nUmber k and linear poly-fs

nomial in one variable, a + bx the "scalar product". k(a bk) =-Ita kbi:.1-1

We.pould, in the.Aaite wayi'define a zero n-tuple of numbers, and, for any

nuper k and any n-tuple of numbers, the "scalar produgt",.

= (ka,kb,...,kn)

is donsider now a set S = , whose imilmwamay all be vecltpres

or liner polinOmiale in one variable, or ordered n-tup3.0 of numbers,

We day se that,.wit2Lsultable definitions along the lines sunggested\---66ve,-

members o S might all be linear expresions in tson variables, or polynomials

in X of degree not greater than 3 , or any -polynomials Jog. j and so on.

A set Of such exPassions. S = (A,B,...,10 is said to bejinearly

dependent103.) if there exists a set of nudbers = p. not all:

zero, Such that aA + bB + + MC'. 0

EXample. tbe, set (ep + 3q 6p + 9q) is L.D.1.s.svauss there set of.

numbers (-3,1) ,not all zero, such that -3(2p + 30 + 1(6p'+ 9q) = 0 .

t,

4

If a set of sions is not linearly dependent, it is-sald to
4411ear1y, independe4 (L.;.)

.473
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Example. The set (2p + 3% + 100 is L.I. be if there were

a set of nuMbers (a,b) suth that a(2p +30 + b(6p + 10q) =00 then we

*mad have

(2aA- 6b)p + (3a,+l0b)%c= 0

for.all p and % or

.'2a + 6b = 0 and 3á + 1043 = 0

The only solutions fbr these equations are a = 0 y b =_O; therefore, the

original set ia not L.D.0 it is L.I.

In view of the example above, it is possible to define linear independence

first, as some authors do. '

A set of such expressions as S = (A,B,...,K) is said to be'linearIy

ilmdependent (L.I.)'if, for the set of nuaibers N = (alb,.....A) the statement

aA + bB + kK ; implies 0 b = k = 6 ,
"

Terminologhe property of being L.D. or'L.I. is a.collecti one, ear%

attaChes to the set rather than to tio;i3eparate individuals; however, we

follow.general usage in visiting, sometimes, "The vectors ,13. ,-e are L.I."

'tor the longer "The set of vectors (A,S,6) is L.I." 4

We state some usefUl theoremsvhose proofs axe left to the reader.

THEOREM 1. A set is L.D. if any subset of it is L.D.

THEOREM 2. If a set With at least tWo members is 1.D., then one meMber can be

expretied as a linear catbination of the others.'

Corollary. If the set (AA,...,K) is L.I., and thepet (A,B,...,K,L)

is L.D., then L can be expressed as a linear coarbination of A B

K .

THEOREM If the set of rows (or columns) of a determinant is L.D.othen the

value of the determinant is zero.

^Rot
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Proof. If the set of rows is L.D., then one row, say, the first, may by
.

Theorem 2 be.expressed as a linear combination of the others.

The illuvhation below, wlth a determinant of order 3 is easily ex-
-

tended to any order.

a
21

31

a
12

a22 a23

632 a33

k1121 If. a33.
ka22 /8,32 ka2

3
+ I a

33

a
21

a
22 a23

a
31

a
32

a33

But, by Theorem 5 of Supplement A, this last determinant may be written as a

sum pf determinants, and equals

ka21

a
21

a31

ka22

a
22

P32'

1.ca23

23

a33

a31
a
21

531,

a32

a
22

a32

a

a

a33

V.

.t.

The applica of Theorem 4 of Supplement ;Allows that both of these are equal

to.zero4.and ther4fore so is the original determinant:

ApPlication to vectoils?..

THEOREM 16 'Any set of vectors which includes the zero vector is L.D.

THEIMA012.. Two lion-zero vectors are L.D. if and only if they are collinear.

(a) and a are collinearl.then, from Charter 3, t#ere exists a

umber k such that rs = . Therefore 15 - 1E4 = therefore

and -4, are L.D.
e#

(0 If P 'and Q are L.D. then there exist nuMbers a and b net-

both = "6" sAch that el' = . Suppose a 0 , then

= - .124 that is Ir. ka which means that r and
a

obllinear.

CorolLary*1 [p,] r,s] are collinear'if and only if P q = 0

1475
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. . .

THEOREM, 6. In the plane, any set of three non-zero vectors is L.D.,

(a) If any two'are collineat, they are L.D. and then 18,1D is the set of

three.

(b) If no two are collinear, then, for any c we vill show that we

can always find values for a and b such that

+ ;

7t.

that is we can fink -alblfor mOr

Buda that

a[p04.1 + blrls] + c(t,u) = (CIO] .

This requires unique solUtions.for a and b , in the.equations

tlu,c

pa + rb . -ct

lig 4k'sb = -Fa .

Mut, from the hypothesis that 11 and' 4'are not collinear, we have

Fp r ,

I

f 0 ; and t 146 exactly the condition that'there-be unique
lq s

.

solutions for/s and b in the equations above.

Corollary. n the plane, !km:vector can be expret5Op8 a linear coibi-

nation,of any pair of nen-collinear vectors. That iti';'14' and 4 are not-

collinear, then, for any X ve can find numbers a and b -so that

e ,(Compare with Theorem 3-5).

_-

Terminology. If mt vector of the plane ean be expressed as a linear

cosibinatiOn kthe medbers of pme set S = then' S is said to

spen the plape.' A set 6f vectorsvhich is L.D. and vhieh spans the plane is

balled a basis 221, or stmply a baais for the'plane.

Note: (1)

(2)

( 3

'106

Any pair of non=copinear vectors forms a.basis for the plane.
:

These concepts geperpaize in a natural and interesting way to

higher dimensions:7; 0

The set of vectorsi ([119).°J0,11) is what is called the

"natural basis" for the plane, since, fa,b] =1141t1pol 4-::010,11

.The natural basis for three dimensions is the set

(11,0,0] f0,1103 (0,0,13) ; etc.

The nuMber of vectors in the basis is the same ea the dimension of

the space. Thus, ve may define a apace of four dimensions as one

in which there is. at least one set of four L.I. vectors& but in

Vhich every set of ?ive vectors is L. Similar definitions may

be atated fof five and higher dimenslops.
,
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Applications to Geoftetrir,

1. The lines ax + by = c y and. px + qy.= r intertect in a point if and

__Jolly if the correspond tions have a inique solution for x and

y that is, if and Only

la :1

r O. This is true it and only if the

2.

a

left members of these eq tions are L.I. If the left members are,L.D.

till& the lines will be parallel or coincident, as can easily be shoin.

The concept introduced above generalizes easily. The planes:
gag

"etix + biy + clz = di

a2x + b2y + c2z = d2

a3 x+b3 y+c3 z= d
3

meet.in a single point if and only if th'e left members o these equations

are L.I. If 'they are L.D. ,then tbe planes iakv.be r94sted in various ways.

All three may be paraljel, two or three of them,..y coincide, two may be

parallel and intersect the third, they may inter4lect in three parallel

lines, etc. We leave the interested student to discover, either by his'

own research or by reference to other books, the connection between the

dispositions of,the planes, and the relations:among the coefficients in

their equations.
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. ..Supplement,11-

Supplement? to Chapters 2, 3, amp 8
#

POINTS, LINES, ABELAANES
. ,

w

. The Material'in'this supplement pre*iously appeared as C4apter 4 in the

preliminary edition. Farts of that chapter were retained in the telt you are

now using. These sections include significant material irhich may be of in.,

tereát to you.

r61.. Choice of Methods

Ih this Chapter we shall coniider some,questions about the undefined

try -.points, lines, and planea.-,When do they.intereect

Bbw are they eparated?. What about betweenness? For answering these end other

questionl, we have developed the basic tools in the earlier Chapters; it will

be pert of c4 task to pelect from among these tools those aPpiopriate to the

solution.of a partichlar problem. 1

Sometimes we shall start With the general case and.then take special

cases, You may recall proving.Desargues' Theorem in 3-space, and then showing

that it holds in 2-space. At other times, we start with a more limited ease

and then generalize. Thus we considered distance first on a line, then in 2-

space, and so bn.

We Mice aVailable different forms of representation. In a problem about

a particular line,,our reBresentation of4hit may depend on what is known about

it, what weyant to prove'about it, or other considerations. Fbr example, if

you are told that the x-ittercept for a certain line is ,2 and le y-intereept

-3 1 you mdg# choose as its bouttion, + = 1 . If you are concerned with

the amount of'rotation of a Iine about a fixed point, you might want to use

that point as pole of a polar coordinate system and write for the line 0 k .

A relation.such as 'r = p ; expressible most simply in polar coordinateq,

479
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. WouIdbe mu more complicated to Ookt and to graph in rectangular co-

ordinates. ou might.want to try this.) In Chapter 1 vector methods axe
;

used to prave'theorems.of geometry that you proved-earlier in other imys.

r 04.7 point here is-th4 in this text from this point on-you can expect to

see a variety of reprftentations and Methods. In Sections 1>-2 and rd-3 1-for

emmnPle,rrectangular coordinates and the equation ax + by + c = 0 for a line

are chosen because it is desired to emphasize the relation of the geometric

problem to an algebraic pi.oblem of solvjng systone of equations. In the same

fashion, you have freedom tO select e form Of representation and the method

that seems appropriate in a particular problem. Sometimes a few-

minutes spent first in deciaing how to lo6ate a coordinate system,will saVe

much time in solving a problem. Often there is to single simplest or best

'method. 10.

D-2. Collinearity.

The geometric probItM of whether three points are collinear corresponds.

to the algebraic problem of whether three pairs of values of two variables are

.solutions of the same linear eqnation in two variables.

!Consider distinct points Pi = 04.10-1) P2 = (4y2)
411,

..

Usirig the tw -point form of .the equation of a line derived

f
equation ,of e line Pg3 cdi be written

This we rewrite as

I 2-1 Y2- 1 3
x .

x2 x 3

y3)(x2 -.x3) - Cy2 Y3)(x x3)

P = (x y )3 35 3

in Section 2-5, tke

If we multiply out ancfool1e6t terve involving x and y , we have

-(Y2

. If we wiite the terms i

(1) becomes.

- (x2 - x3)y + (x2y3 x3y2) = 0

parentheses_as second order determinants (Appendix A),

Y3 1.

-
xf 1

3
, 4-1

1180
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.:

Using x,y,and 1 as:t00 elements of the first row ofathird order de-
.

.

terminant, we can then write the equation in the form

(2)

x y 1

12 I
=

.x2

x3 13

Since (2) is an equation,of'the line P2P3

if and only if

(3)

x
1

x2

x3

11

Y2
6

I 3

1

1

=

the point P
1

is on this line

0.

Thus (3) is a compac orm in which to urite the condition that threg points

are Collinear.

If thkee given point's are not collineai-, they determine a triangle. We_

Choose a reitangular coordinate-systeM so that the triangle is entirely in the

first quath-ant 'and name the points Pi A P2
3

ina counterclockwise order

around the triangle, as shown in Figure D-1.

If thevointsP1 IP
2
,P3 are

not collinearl.they determine a triangle.

To.find its area we draw perpendiculart

P
1
F
1
,P

2 '
F' P

3
F
3

to 'the x-axis. We
2

can find the ar:ea K of 01P2P3. by

subtraCting the area of-trapezoia'

IV P
3 '3

from the sum of the areas

of trapezoids r1P1P2F and

- aFPP
2,2 3,F3

F F
3 2

Figure D-1

K ---, Area Area F P
2
P
3
F
3

- Area F1P1P3F

K 1
= foci 4 Y2) +

32-( x1Y2*- x2Y1 x2Y3

2

2 xlY3 x3YI)

(Y2 13) x (Y Y.)2 3 1
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(5) or K

Me student should verify that Equations (4) and (5) are equivalent. The

ealue of the determinant in (5) will bepositive if th; vertices are named

as in Figure 1)-1 so that traverse of the perimeter'in the order P1P2P3 is

counterclockwise. If it,ls clockwise, the'value of the determinant 1011 be

negative.
0

We notice that the. determinant in (5) is the same am the one ueed to --

write (3) 1 the condition that-three points are Collinear.. This ire lot sur-

pricing, Agit is intuityelybivioui that three pointig axe collinear: if and

only if the area of'thel"htrianglen they determine is z'a'ro.

Fbrmula (3). can be obtained in a different way by using vectOte. In

,Section 3-8 we Bpi/ that the.prea of thtetriangle OXX 1 where X = (x111(2) and

Y 7 (ila2)

11

-K x2Y11

We usi this result to find the area of an arbitrary tr4ang1e.

l',Vejaame the vertices P1

P2 (x2PY2) 2 113 (r3PY3)
p so' that our

results shall have the same'notation as

the preceding development. We add 4e PI

vector -PI to each of the vectors

fl p tra , P io olitaila the vectors

4
3

-
1

= . where c

P21=. [X2 xl 1 Y2 Y1J

F31 [)C3 x1--1 13 Yll

ti

Triangle OF2TP3',.is congruent to triafIgle
f'

angle P1P2P3 is

43 482
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a

e X1)() 3 " Yi) - 1i)(x3 - x1)1

ablarelses 1)72
...,

4

Pbr each of the following find out 'whether the points Whose coordinates

are given are collinear; if not, find the area of the triargle that is .

n

41.
1*-.1

determined.

(s) (7*0) * (4,-1) (1312)

(b) (3,2) , (-2,-7) (15,5)

2. Consider the tri

.11.6-.-

44

(c) (a,b) (-a,-b) (c,d)

(d) (b,0) y (0,-b) (a., a - b)

with vertices P (0,0) , .P2 zi y P3 (b,c)

':IWad the valde (nnt the absclute value) of the determinant in (5) ''61

evaluate this determinant f'or Pi-, P2 y P3 . Evaltiate it for Qi . (0,0),

422-= (b,c) , Q3 . (a,0) ; for' B1 = ,(a,0) R2 =-(b,c) = (0,0) ; and

also fOr Si = (bye) , S2 . (1a,0) , Si = (0,0) Does the vey you go

around the triangle make a kfference? Does the vertex at whiCh you
.

start m4e a difference? Try to state some general conclusions.'

Proveothat the area of the triangle with vertices Pi .
!

102= (x2y2) P3,P.,(x.3,Y3 ) is

,.

a

1
K =

N't

483
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Note: The equation abort may be written

1

NIO

where we interpret X4.as xl and y4 as y2'.

This generalizes immedi4fe1y, giving the following formvla for the area

of a polygon with n vertices .Pi = (x10y1).:,

x
1+1

where we interpret x as xi and
n-gy

Y1
4. Find the area of the quadrilateral whose vertices are

P
2

= (-1
!
3) . (-3,-28), P4 . (2,-1) first by adding the areas ofP3

AP P P and AP
3
P F

1
and then by using the formula in Problem NL:hove.

pl = (4'1)

Prove that points A . (-2,1) . (2,-2) and C (6,-5) are

collinear.

(4Ei) Use condition (3),. 4

(b) Show that g- =

(c) Show th.. d(A,S) + d IC) = d(A,C) .

/

Concurrence. I.

The geometric problem of whether three lines are concurrent correeponds

to the algebraic problem of whether one pair of values'of two variables -t

isfies three different linear equatiorikin two-kriables.

We consider. ee lines L L
'

and L
3

, with equations

15
1'
-r-+ c --=-0

1 rx , 1

L2 : a2x + b2y + c2 = 0

L3 : a3x + b9 + c3 = 0

484



These lines maybe related in any one of the following ways; we ahall.consider

the analytic conditione for eadhZ.:

(a) The lines may be concurrent. This is the case of most interest:to

wa since it represents the.usual situation,in
whiCh there is a unique solution,

if
ot thethree equations.. The7equations represent three distinct lines with ona

and 4* one point in common. For

this, any two of tlie lines,musit'inter-

sect in a pOint, ini-ihat point must

lie on the third line.. Fmm our study

ofintermediste MathOatics We knoW .

that this first recluirement means that

we must have'

a b
1

b2

/ , 1a3 b3
1

a
1

b
1 b2

a3 15
3

The second*conditiOn requires that the intersection of, saY,
111 and 12

inuat lie on If P1 . represents the intersections of and

L2 p we may write s coordtnates

-c
1

b
1

2
b
2 =

lal

2 6.1
-
2

*
a
1

a
2

b
1

b
2

yl
b
1

b
2

The condition that P
1

is on

-e
1

-c
2

L
3

is.

a
1

-c
1

,
a3

a
1

a
2

b
1

b
2

al

a
2

bl

b
2

which can be writteawre cpmpactly as

( 3)

b
1

b
2

O.

b
3
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'Thuothe condition that three dis

kinant of their eoefficiente is zero.

(b) Two limes mayqoinciderand be

intersected by the third lift. In this

eaee the third order'determinant ia zero,

and there iS-Z. unique Solution of the

three'equatiOnsj but this case may be

distinguished from (a) hy noting that

one of the determinants of' (2) is zero%

(c) Two-lines day be'parallel and

be intersected by the third line. the

student must be careful to distinguis4

this case fromtease (b) j beeause here

there ii not a unique solution. This

ease resembles (b) in that one of the

determinaits of (2) is zero, but the

determinant of the ooeffieients is not zero.

(d) The three lines nmki-Ooineide.

There is not a uniqwa solution in this

case since any solution of one equation

lines he concurrent is that the deter-

is also a solution of each of the Others. It1L21 L3

The third order determinant.is zero az

are all three determinants of (2) . There are two Other Ustinguishable

easels which have these same algebral5Ohditions. The student may be interestMd

inleseribing these eases ind discovel:ing how to,distinguish them from ease (4).
4

(e) Each line may interset each

others in a single point. Condi-

.tion.,(2) +holds, but the third order

"j'aestle'xminant is not zero. This is the

dase'one is most likely to observe from

three randoily chosen lines.

WO might approaok the question of concurrence in a

fashiont .Let L1 and L2t. pm lines with equations given'in
4

and n are any numbers not both equal to zero, the equation

( )

t different

(1) . Then if

m(alx + bly + e-22 +8n(a2x + 112y +
2
) = 0 .

is the equation of a linej since it is a'first-degree equation in x and y .



-

LI, and it 'itieiisect in P1 = (xial) then (11.). representsp.for snit-

ible 'choices of m and' a any. line.through L. and It are

parallel, then (14 represents, for suitable ehoiees of m and t 1 any line

'parallel to LI -and . If Li1 and Coinelde, then (4) represents

that same line. Proof.of these last statealents will be left to the interested

Eitudett.

Squation (4) represents what.is often Called a,family df'lines; that is,

"for:suitable values of m and n it represelts allAhe lines containing the
vri-s

intereection of L6 and It ThUs a oondition that three distinct lines

(withy eqnations An the form ax + by + e = 0) be concurTent is 40 tiallt left

member of the sgrtion of one of them is a linear Combination of the left mem-
.,

beri-of the eqiiaglone of the other two.

4

Dcample 1. Find a volueof k for which -lines

equations will be gancurrent. (Assume k A -1)

x y = 0

' 3x + 2 = 0

kx + y + 1 = 0

Solution. We observe that the,lines are nat parallel (they satisfy con-
".'"

ditian4 (2) ); we then use condition (3)

with thw.falowing
Kv%

1 0

3 0

k 1 1

1
'Wefind that k = .

Mcample 2.

= 0

(a) Find.,an equation that represents a line through the intersection

of lines with equations x + 3y 3 = 0 and 2x - ay - 6 = 0 .

(b) Find an equation-of the member of this family of lines

(1) that has slope equal to

(2) that contains the point (0,3)

487



4

sOksr:

Stalktion
k

kt
(a) tiaing ftlationk,(.4)i,Ve vrite m(x +\ 3) + 11(2x 3y 6) 0

(7, (1* + -20x + (3m 307-+ (-3n it2 0
( 1)) j.) Frail. the last equation in (a Tie have an expression for

the slope, which ve aet equal to 11 ahd

.xm

3m - 3n 2

- 2m - Lim = 9n - 9n

llm + 5n = 0

We let . m ft 5. y n = 11 0 and saltitute these values in th

equation in (a)

27x - 18y - 8i = 0

Or, more simply, 3x-2y4=0.
v

(2) If the line.is to cohtain the point0,3) , these co-

ordiwates must-satisfy the firstequatidd in (a) $ therefore

M(0 + 9 - 3) + n(0 - 9 - 6) . 0 .

Simplifyini, we have

15n . 0

We let m = n = 2 y and obtain

x + y - 3 = 0

as an equation of the desired line.

a.

Ekercises

1! Are the lines with the even:equations concurrent? If so, What.is their

:common point?

(a) 2x - 3y + 6 = 0 , 3x + 4y - 12 = 0 x - 4 . 0

(b) x + y - 3 0 , 3x - y + 1 = 0 ,412x - 1 = 0

(c) 'x 7,33( 3y + 5 = 0

2. For each of the following, deterMine a real number k such that the

equations represent concurrent lines.

(a) x -* 0 0 3x + y + 5 =.0 p kx 3y - 2 = 0 r_

(b) x ky 3 , kx - 7y 6 0 2x - - 3k
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.Given lines LI p 1t2 'with equations .3x - RY 5 e 0. and x + Ity 0;

erite an equation'thet represeftts any line through the point of intersec-

tion of 14 Nur Then finttthe member of pis funny of lides.that

(a) has the slope

(b) is perp!ndicular to Li .

(0) contains the origin.

(4) contains the point- (5,2) Alc.

(e) has a y-intercept of L.

4. Find an equation of the line parallel to the line vhose equation is

3x - y + 7 p., and containing the point of intersection of the lines

'Whose equati6ns are 5x - 7 + 3 a 0 and x + y % 2 = 0 .

Given the triangle dptermined by points AN.," (a0O) p B p

Show that the medians axe concurrenti and ftnd their point of in-

tersection. (This panels callTd the centrotk. It yes discusaed

and a vector proof of concurrency given in Examgle.2 p Section. 348.)

Shoekhat the altitudes are concurrent, and find their point ofAn-

tersection. (This point.is called the'orthocenter.)

Show that the perpendicular bisectors of the sides are poncarrent,

and find their point of intersectipn. (TLs pantie celled the

circumeenter; it is the center of the circumscribed circle of the

triangle.)

Show that the centroid, the orthocenter, and the circumcenter of

this triangle axe collinear.

Do you think7that What you have-proved for triangle ABC' is tve

for aey triangle?' Give reasons for your.answeti

6. PrOVID that, in a trapezoid, the diagonals and the line drawn through the

midpoints of the parallel sides meet in. a Point.

Interiections'and Parallelism

If two seats have at least one,member in cAlon they are said to intersect

-

We =Bid= in this section, points, lines and'paanes, and their possible in-

tersectiens. If sat S is a subset of set T p then their intersection is

all of S 4 and we sometiMes say that S lies on, or la, T or- S isem-

e
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bedded in T., Thus dipint may lie on a line, or a llne may be enbedded in

a plane. Our analytic representations of these seta nakes it possible to

develpp simple criteria for many of these relptioships.

Point and Point: Pi P2. 1 This.case is easy to analyze but a *pod place

to start. TWo points intersect if and only if they coincide. Their analytic-

reivesentationd are simply their coordinates, whieh must'be identical or.
0

equivalent in accordance wIth the definition of equivalence given when the

coordinate systems were intrfoduced.

In rectangylar coordinatft P = (3,5) differs from P = (5,3) . In

polar coordinaGs P = (6;1) is the same as P = (.600) and P = (6,3y) .

a

Point and Line: Pi L . A point is on a line if and only if a aet of

coordinates of the point satisfies an equation of the line. The point

P1 = (rlai) lies on the line L ax + by + c = f(x,y) = 0 if and only if

f(xial) = O. The point Pi.= lies on L x . a + ft 0 y = b + mt p

if and only if there is some value of t I say ti y such that xi a + It

s a

and y = b + mt
1

If P
1

and L had been given relittive to a polar co-
1

,

ordinate systeml the discussion would require sipple modifications, whiCh are

left to the student. The extension of the discussion to 3-space can also be

made,'with mii1-6evip1ons which tr4also left to the student.

Af

Examples.

(a) P = (1,3) is on L : 3x - Ry + 3 = 0 , because 3(1) - 2(3) + 3 = O.

(b) P= (1,4) fki not on L:x= 3 +t,y4.'2 3t because the

equations 1 = 3 + t 4 . 2 - 3t impose contradictory conditions

on t .
0

(c) P (12060°) is on L r =
6 because 12 =-6

coe.6o°

Similarly, Q = (64, ,4 ) and R = (12,-60°) am tiled on L

(d) P.="(2,5,-1) is -on #:, x = 3 + t p 51:= 2 - 3t y z v. 1 + 2t y since

the egnation 2 = 3 ; t gives a value for t 1 namely t t -1 ,

which is consistent with the equations: 5 . 2 - 3t and

-1 = 1-+ 2t .

cos
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do"

% I. . .

Point and Plane: P M Ihe discussion is left to the student, who is

ref:erre:to the paragraph aboisi.

I4E21 and Line: Li 0 L2 . 2-spaeg. TWo lilaaa in the same plane may have

(1) '.juat one, br (2) all, or (3) no-points in common. If thd linda are

*II aix + bly + . f1(x0y) = 0 and L2 : a2x b2y + c2 = f2(xsy) = 0 s

the.analytic counterparts of these :3 'cases are presented below. Proofs,

which are not difficult, are left to the student.

(1) L14'..142 intersect in just one point if and only if

e(23L, ,

al

a
2

b
2

coincide if and on4 if .

b"
1

a2 b
2

b
1

c
1 =

b
2 02

Note that if any two of these determdmants are equal to wimp, so is the

third. Note also, that if thiacondition is satisfied, there JO a non-.

zep number, X p such that f1(,x,y) = kf(x,y) .

(3) Li , L2 are parallel if and on4 if
4

Snd either
or t;

1 1

a
2

b2
2 2

= 0 0

(a) Note that, if either of these is different froxisero, so is the

'ether
(b) liotb ihat for any numbers p and q p the equation

pfi(x,y) qf2(x,y) = 0 is, in general, an equation of a line, .

If Li It intersect, then L3 will go through that point of

intersection; if Li Lt coincide, then 143 will coincide with

them; and if LI and L. are parallel, then L3 will be ;parallel
41111P

'to both Of them.
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A

Ifequations for Li end L2 had been presented in parametric or vector

farm, then the analytic representations of tie three eases above would have a

eamewhat different appearance. The development of these representations is

called for in'one of the exercises at the end of this section.

,3rePace_. Two lines in 3-space maY have (1) just one point in =maim,

(2) .ailAoints in common, or na pOints in,common. In 2-space, this last

eanditionrequires that the lines be parallel, but in 3-spdce, lie, that have

no point in common may be (3) parallel, if they lie Ln one plane, or (.4)

Skew, if they do not.

The discussion Of the first three cases is analogous to the correspond-
e

ing discussion of the lines in 2-space, but the equations axe more camplicated.

sypose I, zoes throug4 Fi = (ai,bipci) vith direction nuMbers

( 1,Misni) and. ?2, through F2 . (d2,b2,,c2) with directiotrnumbers

(120m2'n2) . Therefore we have eqations Li : x = ai + iis y = bi + mis

z = el + nis ; and L2 : x = a2 + 22t y = b2 + m2t = c24 n2t

(1) If Li , L2. intersect at a unique

values of the parameters,,say

z
xi al 1st

y' = bi + mist

1
+ n

1
s'

point P' = oyt

And t' iludh that

2 2

= b2

c2 + n2t' .

llhesesare three linear equations in

There is,a unique

1
2
tl

m2t

nis' n2t'

there must be

s' and t' 1 which we may write:

common solution if and onlY if there is a unique solu-

tion to any two of these equations which will also satisfy the third. The

solution, if Any, for th'first two equalions, say, is:

- al

b
2

- b
1. 73's'

, \

r

2

1492
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(Note that theie solUtions requi

quitements thirthere be unique

equations are''

22

1.1 .21

2

in2

olitions for any two of the abave three

The corresponding re-

0 and 121' 221 0 0 .

n1 n2

If the s' t' values foundAalolie are substituted in the third equation we

,bale:

a2 al

b2 bl -221

21 -22

1111 -112

therefore,

al

.11b
2 :

b
1

-*2

2 1:21 a2 all
nR

b
2 1

This par, after some aagebratjuggling, be

(e2 - al)Imin2 - 13;2n1) - (b2 - b1)(13:n2 - A2n1) 4- (02 - 01)(11m2 - el)

and this in turn may be written in d2terminant form:

(c2

2
c
1 '

- 01)

11
1

-2
2 = 0 .

written in the form //

=

a2 al b2 b1

m2
n

.0 a

ci

liote that the,elements of the rows are direction numbers for P1P2
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,
.112 iparellel or coincident., their direction numbers

ere..equivalanteand4ell tke .seeond order mipors of the:laet two.rovs m4s-C'

eTial,zerov:a1;id therlebe Zaro. If. LL, and Li 4iiincides

they (toincicle 'also with
,

P1P2 whoee direction 'numbers mat be elpiva-
,

lent io those of Li and L2 and in that case all the aeccnd order

'illinore,T&i4- MuetequeLl zero., If Li and. L
'2

are parallel, then they

7biryit.i-intsec:i? P P whose direction ntimbers may not be equiValent to

,, ,,
. .

. thos0 0:.- it and L2 0 and igr that case the lecoth.order minors

:which include.members from the first row may not all equal zero.

4xampie.

L2 are skew , A

Co6ider the linai)

Li x = 2 + 3t 1

I2 x = 2 +,2t ,

: x = 3 4'

L x = -1 +
4 ti

(a) For Li 'sod L2

skew.

0

3

2

41!

I .40

skew but

Hoveyer,

63

= 3 - tcz = 4 + 5t ,

of .6

y = -1+t,

y = 2,- 2t

14.

-4 -4

rl 5

z..043t

z = 1 it ,1Crt

43t z = -I 15t,

. -214 0.
1;1 and Ic2

.1 3

-1

-1 5 Li and L
3

are'not

-2 10

y intersec n just one point or bp parallel or coincident.

3

6

5

55
.14914

= 0 , L
1

and L
3

cannot

19)
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intersett in just one pointo.but must he.parallel or coincident.
4

Cancidenee requires all second order minors of A to equal zero,

and, since

1 -1

3 -1

must be parallel.

(c) For Li
114 P A

ent= 2 / 0 ., the lines are not coincid

-3 -5

3 7,1,

9 45

= 0 p and also.' all the second

r Order minors of A equal zero. Therefore Li and. coincide.

(d) Fork L2' and A =

3 1

1 3

6 . -2 10

= 0 L3 are not

skew., but may intersect in just.one point, or be parallel or coin--

cident. These laStvtwo possibilities are'eliminated by the fact!

that

2

6

Therefore L2

-2
= -10 / 0 l!c.nd

, 2
5

I .

and L3 .intersect in lust one point, which ean bel4

found by the methods in the section above tc be P(6,1,6).
k

Thesketch belae sugieste the relative po Mons of tile four lines.
LI

10

Exercise. Show analytically that

(a) I. and

,(1)) and

L are skew.

parallel.
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Limeled;Plane: L , X A line, mai' C1) be parallel to a plane, (2)

be embedded in'a plane, or (3) ,intersect.a plane in just one point. In this

last case we sometimes'aay that tbe line pierces the plane. We develop the

anelytic counterparts of theae three cases.

(1) Sdppose L goes through P 0,b0,00) with direction nu4,

(20im0,no) then tIquations for L are L x =

z = co + not . Suppoee we have the plane

: px + qy +i;vz + s = f(zc,y,z) = 0 .

y b
0
+

Thee t. mill be parallel to ,M if and'only if no point of L lies in

N6 that is, if there is no 4alue oft such that

P(a0' ACM glb0 "0° 4. r(c0 +110t1 4. a
This is an equation in t

which may be written

(11a0 411)0 +.ren 8) (1320 q4iio tOrndt n
.

m

The coefficient of. t /esembles the algebraic form of the inner product

of two vectors. (pee Section 3-5) lt is convenient to boiraw the algebraic

sydbolism of vectors and represent this coefficient as the "inner product" of

the "vectors." [p,qjr] and [20,m;:no] With thli symbolism, the above

equation becomes,

W
( 0,b0,c0) + [p,q,r) (20,m0,n0]t = 0 .

Irio:Ithis linear equation in, t to have no solution, it is necessary and

sufficient that both: f(a0,b0,c0) j 0 , and [p,qjr], Voimo,no] = 0 , which

are the conditions for L to'be parallel to M . These may be recognized as

requiring that Po 0 which is a point of L , not lie in M ; and that L be

perpendicular toa nermal lime of M ee.5established earli6r.

Ekample. Show tHat L 2t

tO M : 3X 4' 3y - z - 5 = f(x,y,z) =

Solution. The criteria developed in the text are satisfied, since:

y 4 - t , z =1 3t , is parallel

(1) f(3,44) = 9 + 12 - 1 - 5 = , and

(2) , [2,-1,31 .13,3,-1] = 2(3) 1(3)-+ 3(-1) = 6 1 3 - 3 =

.04

We might also substitutb, in the equation of' M , the expressions for x

y 2 z as functions of t and get' 3(3 + 2t) + 3(4 - t) - (1 + 3t) - 5 = o ,

which leads to the contradiction = 0 Therefore L does t intersect

M.
4 1496
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,The x-axis, or any line parallel to it, has-equations: x = ao +

y =b z=c with direction numbers (10,00) Ifaiaane has an equa-

tion such as Id qy + rz + s = 0 , its, normal lines have direCtion numbers

(0,4Jr) 14 is paialiel to the x-axis or contains it, since

[0,q,r] = 0 8

In the same way, if a pldie has an eggition in general form in which the

.
y term is missing, then the plane is parallel to, or contains the y-axis, and

so Cin

(2) If a cline is emhedded in a plane then coordinates oef every point of ihe

line'mnst satisfy an equation of the plmne. IfçJ.. and M aregiven as

beforer, x = ao + lot , yogabo + z = Co + ,n6t and

0

M : px + qy + rz + s = f(x,y,,z) = a , then this reqpirement is met if,

fox all t 1 p(ao + lot) + q(b04. mot) + r(co + not) + s = 0 This may

be written as:

f(ao,b0,c0)

(Pao rso + s) (140 + qmo + rno)t

[15,(1,r] :[jOrPm0$.110]t
0. 44.

or as:

If this expression is to equal zero for all vapes of t then we mnst

have: f(a0,b0,c0) = 0 and [pm,r1. (20,mo,h0] = .

These conditions for embedding may be recognized as requiring that

.aopbo,co) Which is a point of L s also be a point of M and alsihat

0 with direction number (.80,m0ln0) be perpepOicular to a normal to M .

We hawe premiously used the fact that.sudh a normal has direction numbeas

(p,q,r)

E*ample. Show that L:x= 3 + 2t,y=1+t,z= 3 - lies wholly

in M : 2x - 3y + z - 6 = f(x,y,z) = 0

Solution. Both conditions in the section above are satisfied, since

(a.) the point (3,1;3) is on M , since ,f(311,3) = 0 , and

(b) a normal to M has direction-nufthers (2,-3,1)'; and L is perpcn-

dicular to suCh a normal, since [2,-34] [2,11-li = 4 - 3 - 1 = 0 .
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(3) If we suppose L. and M given as in the two.cases abovef'Q, if L

intersects. YC"..in just 'one point, there must be a unique value of f 2

say: t' suth that P on L is-also on M. That As if

xl = ao + Aof y' '= bO + mot' z' = co + not' , then .

14,0 4: 26t9 .1:1(b0_+ VI) 4. r(c0 4- V') + s =
.151is is a linear

equation in t width may be written:'

(Pa0 0 +.2"05 ,$) (PA0
+ rno)tT

f(a0,a0,c0) (1)," [20/me01tl

0 or

A unique soaution will exist if and only if the coefficient of t' is

different from zero, 'that isf fplqjr]. (100m0,120) / 0 1f this condi-

tion is satisfied, we may find the unique value of t'

t' =
[P,LlyrT [400101n0]

f(a6 b c )' 02 0

''With this value of t', we find the coordinates ofP' the.unique point

of infdrsection of L and M

E5cample. lind the point in which L = 3 2t

intersects M a.qc - 3y + 4z - 5 . f(x,y,z) = .

r.

- 3t z =1 + ty

Solution. Either by direct substitution of expressions for x ,y z .

in equations of L into the equafion*of M or by application of the formula

above, we obtain:

f012.1l) 2(3) - 3 (2) 4. 40,)

t2,-3,4 -[2,-3,11 2(2) - 3 (-3) 4(1

41
(21 31 81

`1.7 /17 17

Wb may'sumdarize the devkopment in tkis section so far'byiobserviii?that

much of the analysis depedS on the possibliti ind nature of the solution,of

f(a
02
b
02

c
0
) (p2q4r1 -[i

02
m
02

n
0
]t = 0 . We ekhibif the results of our
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anaiyais in the_table below.

Caee t( a0N, 60) Cpycipr] °Awn()
(1) Li is parallel to 14

(2) Lo. embedded in M

(3) Li pierces Di any ;mine

= 6

0

timbers of soli-
tions for t

none

tely many

A significant problem, related to the problem of fipding the distance.;

between two skemrlines, is to A.nd parallel planes which contEdm two skew

lines. Suppose the lines are
Li al t bl

z = cl + niti and L2 : x =.a2 + e2 t
* 2 Y.= b2 DIA P 62 t a2t2

If the planes Mi :and M2 ,are to be parallel, thSir normals must have

eqpive.lent direction'nuMbers, and we r401 write their egnationS,

loor ollY 4 re4 01 = fi(X,y,z) =:0 ; and 40

14 px + qy rz + = f2tx,y,z) = 0 . Tlie.problem is to find p., q $ r

$ and s2 in terms of the conAtants whieh give us Li and L2 , under the

conditions imposed by the problem,. Since'Lis and 014..
e

are embedded reSpec--

tively in. MI hid $ we have fran the previous section $

fi(arbipci) = f2 b c
2

= 0 and also

[pAir] tlism1$2211 = [p,q,r) 122,m2,n2) = Or. These four equations are not

sufficient to find the fire values p q', r $ si and s2f but we recognize

that direction nuMbers need not be found uniquely; any equivalent set will do

as well, to:in./its equations for MI and My; . ifta.Spume that not,all.of

(p,q,r) equal zero, and, in particular that, say, r / 0 , in which ease we

have an equivalent set '(f413.) ; and the algebraic-groblem of soling
e

,

four equations in four variables.

The algebraic conditions for solvability have their geometric counter-

parts, corresponding to the relative positions of' LI and lar, We consider
e

here only the situ-iron in which Li and L2 are skew. The geheral alge-

ch.

braic treatment of this case involves extensive algebraic mandiulation, whiCh

we shall not to through. We yill carry through the details in an example.
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,f2;

bthlaek rind parallel p.1a.n and ,ithich.contain.the' lines
. ,gx,..= 3 - y y ist 2 + 3t1 z 1 +

1 and X =11 -2 + .3t2vA''

= 3.+ 2t
2

z ..1 2t
2

SoUtion.

is not parallel to .It bect!une their direction numbers are not

evivalent.

. (2) i and L2. do not meet, because the assumption of a common

imposes contradietniir.Conditioet on ti and If ve trttO
,solve tha.system

.3 ti = -2 + 3i2.

. 2 + 3ti =

1 + 2t
1

= 1 -.2t2
P4

...the-last"typ equations require 1 y nd. tiume do n9t
r

satisfy the first-equation.'

(3)' Therefore, Li and It are skew. Then, at in the section above,

we consider planes Mi I px + qy + rz + si = fi(x,y,z) = 0 , and

114 + qy + rz +
C

sn =.fn(x,y,z)'= 0. The condilions that- Li

and 14,2 -.;b9 Penendicular to a common normal IT to planes AI and

bedome:

(-l)p + 3(0 + 2(r) = 0

(3)p,* 2(0 - 2(r) = 0 .'

We may renirite these adi

-1(i") + +.2 = 0

2(1) - 2 = 0 y

t

and these yield, by elamantary me hods, the solutions

We may therefore use either the direction nudbers
r 11 ..4

) or the equi,:rad.pnt (104:4 1i ) .. With these values of
,;

.
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7'1:t

rosq,r,we find, si. and 82 easily from the conditions that

ind 2.12 containloints .PI = (3,2,1) and .P2 ,mmh(-2,3,1) of

t and L
2

reepectively, i.e.
1

p(3) q(2) + r(1) + si

p(-2) 441 q(3) *r(1) + s2 = 0

0.* = -33

62 = 21 .

Finally we have the equations of the planes

MI :010x - ily talz - 33 = 0 ; NI2L: 10X t 112 t 21 = 0

TWo Planes: MI M2.. Suppose these planes have respective equations:"

141 plx rlz sl fl(x/Isz) =43

p2x + q2y + r2z 82 = f2(x,y,z) = 0

?
.The telanes maY, (1) coincide, (2) be parallel, or (3) intersect.

(1)' The planes coincide if and Only.if every point of one of them ia a point

of the other, and this will be the case if and only if there is some non-

zero nUiber k such that f1 '(x,y,z) = kf
2
(x,y,z) as may be easily,seem

(2)'.4nie planes will be parallel if and only ii they have a oommon normaI, but

no %arra= point. .41bese conditions willpooth be met if there is atnudber

k fr.() s'sugh that pl = kp2 = kq2 vi = kr2 but sl ks2 . The

proof that this is so is left to the student.

(3). If two distinct planes intersect in a point Po = (x0,y0,z0) , one of the
1

earlier poitulates of geometry requrres that they intersect in a line
,

containing P
0

We show, from the analytic repreSentation and condition

-that tbis is so, and find the line, given the planes.

The eeral treatMent would involve -Capons computation, and-Would prob-,

ably not be as ailightening.as ',specific eXample'.

Exaule. Suppose two planes, M1 ; 2x.--3y z - 4 =4f1(x,y,z) = 0 , and

N2 :.x + 2y - 4z 1 = f2(x,y,z) = 0, have the point Po = (3,1,1) in common.

Show' that t4py have in oammon a line containing Po .
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Solution, If p and q are numbers 21.:44XbOth zero, the equation,

pfl(x,nz) + qf2(x,m) 0 165 is, in general, an.,squation of a Plhne containing

P This equation may be written as:

(2P+.q)x + (-3p + 2q)y + (p.- 40z-+ (-4p q) == 0
0

If,,in particular) p = 1 p q = -2 p this equation become°. + 9z - 2 0

or 7Y - 92 4 2 . 0 The locus, 114.3-space, df this mint* is, as shown in

the prilvious section, a Plane, parallel to the x-axis). 4.Note that this plane

contains Po = (3,1,1) , since 7(i) - 9(1) + 2 = 0 , If we subtract corres-

t

ponding members of these two equations we get, as another equation of this

plane, 7(y - 1) - 9(z - 1) . 0 .

4 10111
In the same war1y taking 'p = 2,q= 3,we,get the equation

7x - 10z - 11 = 1044,4, 'represents a plane paralls1 to the y-axis, and also

contokinirg Po (S0101) Since 7(3) -,10(1) - 11 = 0 . If we subtraet

corresponding members of these two equations we g4 7( x, - 3) - 2.0(z - 1) . 0 .

These equations of the A planeillOrallel to tbe x- and y-axes, respectively,

mai be witten:
,t

- 1 1-

9 7 .

z 1
10 7--

,7

Nbte that these three 'fira6tiona1 expreesioip are aii equal and can be set

'equal to same cammoelt4lue t , from whieh we get x = 3 + lOt p y.= 1 + 9t 1

]

and E := 1 "I' 7t . /

2 Th

the point (3,1,1) . TO Chow...that L lies Wholly in Mi we must show, that

ese axe clelirly a set of parametric equations for a line L coptaining

for all va1u4s oi' t ,
/ 6

2(3 + 10t) 7 3(1 + 9t) + 1(1 + 7t) - 1:= 9

that is, 6 + 20t - 3 - g7t, + 1 + 7t 7 i.= 0
,

f .

which becomes, for all t , 0 . 0 .

In the same way, to show that L lies whol1y in M.2 p we must showthat

for 411 values of t pA

1(3 100 4. 2(1 90 " 4(1 7t) ^ 1 = 0

that ip, 3 + lOt + 2 4- 18t - 4 - 28t- 1 .

and, for all t p this becomes, 0 = 0 .
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'Exercises

Coneider the four lines givnp by the equations below fOr &erases 1,to 6.

:1C= 3 - 6t2

z =

y =,-5.+ 2t2

1 +

= 7 j- 3t4

-6 '+ itt4*

I

4X = -5 4- 3t
3

y = 6 - 2t
3

4, 13 - t3

f
Deternion; fOr each pair'below if the lines (a) intersect injust'one

Point, 61- (b) areparallel pr (c) are coincident, or -.(,d) are skey.2

If a pair intersect in just one point fing'that pointi

(a) Li L2

(b) , L3

( d) L2 L3

L'h.

(r) L3

'Write an equation for the line villa contains'

parallel to

(a). It
(0.-

(b) 12 . (d) L4 .

3. Write equations of parallel planes Xi and M2

a) Li and

1,2,3) and is
f

htch

(b.) L2 and .

A. Write an equation:of a plane whichl

contains Li and is parallel to

contains L and is parallel to

L3

contain .respeetivaly

5.. Wm.. '6111,equatiok;or the plane which contains' the ori4and

(a) Li :(c) L3 .

(b) J. (a) L4 .

s

LA
sai'd to la oVer L. if

V
and It are disjoint (havefno point

in comoon)yand theraris a point PA
on I

A
'. which is above a point P

B
on

qtro.; that i suCh that xA = xB yA = yB and zA > z.B . There is a
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1

corresponding definition for a line under wafter line. WS show that

Li goes over Li, because if 11 sz x3 y
1
= y

3
we have

,-2 + 3t1 = -5 +- 3t3 , and 3 - t 6. -
1 3

, thereiore t ° = 1 and t
3

. 2 .
1

..,

Rirthasecvalueacift1 and t3 lm have ,z 51, 2 and z3 = -3 y
1

z .> z ,

1 3 '

and therefbre Li goel,over L3 . .

A.

6. Determine the over or under relationship for these pairs of lines:

I

(a) L1 and 1,4 (c) L2 and 1.4

(b) I12 and (d) 13 and 1,4,

f
7.. If Lit goes over Lt, and LA, goes over Lc 1 is it elways sometime:b.,

or never true that Lk goes over
c

?, L,

True or Alse;? One of two ditjoint lines is over the other., El-plain.

-Consider the four planes MI : 3x - 2y +...z - 5 .02forExercises.9 to 12.

M2 : 2x + + 4 . 0 ; 143 : x 4-'3y 7 2z - 1 = 0 14=1

144 : -2x y 4:2Z + 3 . 0 .

9. ,Find;in parametric form, equatioms of the line of intersection of

(a) .1143u M2 (d) 2 y 143 .

(b) Ai , 143 .- (e) M2 144
t

(c.) M1 M4 (;)
143 M4

'Find the oammanintersection point, if any,.of

(a) MI; M2 143

(b) M1 M2 ,,M4

(c) 141 1143 , 144

(d) N2 , 143 4

Note that we ms4r use the results of Exercite 9 to facilitate the computa-

tilt in EXercise 10.

,11. Write an equation of the plane which contains the origin,.and is parallel

to:

(a) ) 143

b ) m2 (d) 144
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.12. (Refer to%the lines at the top of this group of exerdises.)

Fina the point, if any, in which

'(a) Li meets MI

(14 1St,* meets M2

.(c) L3 meets 143

(d) L4' meets M

auppose equations of two lines in 2-space are giVen in parametric form.

Develop criterie, in terms of'the constants in these equations, for.the

vari:ous geometric relationships that may exist between the lines, as in

Section k-6D lewhere the equationa were given in general form.

.e.,

DIA5. ,Perpendiculdrityand..Aaglesj4Iween Td.nes and planes,

We have used qnite freely in'this4chapter the definitions and teats for -

perpendiculaxiti that had been developed in ChalAer 2 ... Pbr the purposes of

this Chapter ve consider angles between lines and planes in general, and per-

pendicularity as the special relatiotship,that exists when these angles axe

rl.ght angles. We recalI,that an angle Das been defintd as the union of two

non,:po4inear rarp with a common end-noint.'

alliAel?: LI ,,L2. . We do not define angles b4tween wallel or

. coincident lines. Although there may be same 4alue,in ae cansideration of

listraiiht angles", or licao Lngles", we feel that thE;re je not sufficient

application of these concepti in thiaitext to warrant the time and effort thap..

. their treatment would entail.. We have'a;ready.developed 'in earlier sections

snalytit criteria to'distingulsh cases of parallelism or coincidence:

3

4,

If LI and L2 are neither parallel nor coincident we define the angles

between tktem to be the angles'formed by lines L' and L'
2

whidh contain

sake =mon point,,say, the ori6n, and areHrespectively coineident with or

parallel to Li and .1.2 .2 Rate that pis deflation covers any intersecting

or sk4v,lines. Such lines determine four angles: whidh 'Can be analytically

distinguished only if there is same way'of

plicitly, a sense on LI and Lt..

lishing;'implicitly or ex-

,27S24de: Consider the intersecting lines x al 7'1

x E at + Att y = bt +41)pt y wherp Ai 1 1,11 A2

4 are direction cosines. lhen the lines
.

L'
1

and I.'
2

whi'ch go thro4gh
2

505

66

6-2



the origin and are respectively parallel to or coincident with

have the equations:

LI : x = xit y 4iti; L x = N2t y= g2t

Note, that, Ni ill establish a sense along Li and L'i ; the "positive"

part containing points for which t > 0 ; and so on. af, on L11 and L12

we take t = 1 , we gpt the points P1=(?i,fli) _and p2=(?,2,11,2) on the positive

raç
-..

OP , OP2 ife define,the angle between Li and ,L2 as given abNe,

te th: angle formed by 811e

1 '
'and d which we designate as . Note

s 2

LI and 142

that if we had taken for Li 'the equivalent direction cosiss

these woad have beetestablished on Li a sense opposit to.the original,

and in that case the',angle between Li and L... would have bei the supple-.

ment of 9 It is n)t difficult to sep that, fbr any Choices equiva:lent

direction cosines for' Li and I.2 the angle between Li and I signad be.

congruent'either to '9 eits supplement. These are the angles

We Speak of the angles form by two lines.

From LOP
1
P
2

and the wof cosines we get
-

2
,P2) d

2
(Q,P1) + d (

d(0,P2) = 1 , and'

Therefore

(3,) and

- 2d(0,1c)d(0,P2),cos 0 Note that

d
2
(I)

1

can' When

,

"1 1A2 1. A2 41 41142 42

= 2 -
1
A
2

- 21.4
'1 2

2
2117\2.- 24142 2 2 cod

Cos 6
7\17\2 4142

This is an unambiguous determination for one of the angles between. Li

and L2 , naftely that between the positive rays on: Li and L2 determined by

the given direction costr_sand t > 0 Another of the angles between L
1

and L2 ls clearly the supplement of 0



A .

Note that' 1,1 Lt if and only if the angles between them are right

angles, that is, if'an4 only if X22 = a . This is e:lamiliar criter-

ionfor perpendicularity.

We may indicate the corresponding results using:direction nuMbers rather

than direction cosines;'..Note that when we set

.
.

A

f)77477 +p----1Y- i + m
v

A .
iihere is-an ambig*ty introduced.vith the Choice of sign for the radical: A

particular pair Of 'direction numbers entails an implicit sensing of thealnel

ao with'the case of digrection'cosines; the positive 4gn for both radicals

preserved-th6 originalfsensing. In terms of direction number/II:Equation (1)
.

becomes -0

(2)
+s (

1 2 1Y°2Cos e
1212 in! fe-27-1.7222

and the corresponding condition for perpendiCularity becomes

THe Aevelopment here resetbles, as it should, the corresponding develop-
,/

mgmt with vectorol.given in Section 3-7 . We may, in these formulas, use the
a

symbolimm of vectors, to simplify their representations. We recognize that
*

.the vector, OP1 Ptill4.13, and 602 = (A24y, . Therefore w6 maywrite

Equation (1) in vector forii fr.

Cos e = fX1,41 [72,p;] = 6P1 672 .

rIn the same way, although we have not wed vecirs whose. components= are direc-
.

tiron numtersl, wi may extend ouroymbolism and tr'eat,the expression [ilm]
r

algebraically as If it'were a vectorp.in wfiich catie we may wr"e Equation -(2)

(,in "vector" form:

cos 0 -

and tie dprresponding condition for perpendicularity as

[21'43 [22,m23 ° -
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T5cataRle 1: Find the between Li : x =

L2 x = 3'+ t y y

.1

Solution.

S.

(3)(1.) _11)(2)'

42 (...1)2 1777

Cos 0 = ..14
VTo V5 ,155

.

820..

= 4 7 t y and

Example 2. Show that L3-: x = 3 - 5t y = + 3t is perp:endicular.to

Lh.]: x-= 1 + 3t y = 5t

A
Solution. (-5)(3) (3)(5)1= 1,3` I L24.

V

FXample.3: Find theangles between and ,L2 , where Li conftins

the points',(3,4) (-1,-1) : and' L2 confains the points (-4,6) s (3,0) .

Solairra.Since no -sense is imposed on Li and L2 we will find their

angles of intersection.

We may taXe aa,direction numbers for Li y (4,5) and for

Wtiy?) Therefore:

COS 0 (4)('- )' (?)(1

)7-7 4_1)2 6

We may, most simply, find the other angle of intersection as the Supplement of

e, but it is instructive tO 1.1S.d equivalent direction numbers for Li which

have the effect'of reversing the sense induCed by the fiiSt ehoice. .We uSe

now (114,-5) ,..and (-( 6) as pairs of direction numlArs andri

Cdt 0!

44)2 (_7)2 4_7)2

5z, 920

which, is, as we expected, supplementary to 0 .

.o34



r. Example 4. Find-the line

,pendieular to
11/2

to contain the point

x = 2 + 3t 0 y = 4 t .

1,2 and be

Solution. Suppose, L5. meets L1 at P = (a,b) . Then we take diree-

tion numbers for L
5

as (a - 1, b - 2 ) . From-the perpendicularity relation-
. ,

-

ship ve have 3(a - l) 1(b - 2) = 0 . From the fact that P.. (a,b) is on

L. " we have a = 2 -1-'3t 013 = - t . Substituting these expressions for a

,nd b into thd first of these three equations yields 3(1 + 3-6 - 1(2-.0= 0,
4

fram whidh t = -.1 . Therefore P = (1.704.1)- and L bras the equations :.

x = 1.7 + .78., y = 4.1+ 2.1s .

Two lines:. 3-sRace. The development here is a straightforwei.d generali-

zation frOm that given for 2-space. As before,' the7s7.ficant formula comes

fram the consideration of 40P1
P2

'
wh?re Li and La either contain

.411.

tor are parallel ti) OP
1 '

OP
2

The resultt are'indicated below, but the

proofs, which are not at all difficult; are left to the student.

COS eF.: A1A2 4- 111)42 V V
1 2

( 3)

4
or cos 9 21 2 + mlni2 n1n2

2 2 2 2 2

1 + n1 2 + m2 + n2
*

AB before.the test for perpendicularity becaMes

+ V = or 2-2
1 2

+ 1 e 1
V
2

+
1 2 mim2 n1n2 -42 °

These may be represented simply, in vector form, as

[7%,,P,I,V1P 4
2"
v2]=.00or l' 11 42,m2In

= 0 .

)3xamp1e 1. Find 't angle between two lines havt1-$ direction cosInes as

follows:,

a

509



AOP

Solution.

cos 9 2 lq r1 1 1]

13113,A 4T

= gs -.258
it trr5

:. 9 w 105

4
EXample 2. qhow that the lines Li :x= 2 + 3tpy= 3 -tlz= 2 + 4t,

x= 5 +tly= 6 + 7t 7 + t y are perpendicular to each other.

Solution. [3,-1,4] [1,7,1] = (3)(1) + (-1)(7) + (4)(1) = 0 .

Fkamplel. Find the line 1,3 which contains P = (7,4,5) 'and is per-

pendicular to LI of the previous exercise.

Solution. If L3 beets Li at P = (a,b,c) then we may take, as direc-

tion.pumbers for L31,(a 72b- 42c- 5) '4, The condition for perpepdi-

cularity'requires 3(a - 7) - 1(b - 4) + 4(e - 5) =-0 Since P = (a011c) is

on Li 1 we have a = g'+ 3t y b 3 - t 2 and c=2+14t. If we ffubstitute

these expressions for the coordinates into the previous equation we get:

3(.5 + 30 - 1(-1 - + 4(ip + 14) - 0 , from which t = 1 .

Therefore P = (5,2,6) and L3 haa the-equations: x = 7 + 2t 9 y = 4 + 2t p

z = 5 - t .

Line and Plane- Li Mi . It is convenient to consider the line

Li x = al + lit 17 = bi + mit 0 z = el + nit ; and the plane

: px + qy 4-*rz = 0 We have already deireloped criteria for Li to

be parallel, or.perpendicular to MI Suppo'se it is neither, and intersects

Mi -at point P1 . Th6 any other point or. LI y say Po determines, with

) a uniqu:Sne y perpendicular to Mi and meeting it at, say, P2 .

we define*the angle between Li and MI to be the angle P0P1P2 1 designated

4111,

as 9 Note that this definition requires 00 < 0 < 90
o
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Since N has direction numbeas

(pjqjr) aPd L1 has direction numbeas

/ we
can find the angles be-

tween Li and N s from Equatien (3)

.0f the Previous section.' We need the

*cute Angles desigtatjd p and there-

fore use the Absolute vallie of the right

Member as cos . Buts fran right

AVii°2 p since e and are comple-

mentary, we have sin e- cos and
Li

the equation we want:

(4) tin e
+ miq + n1r1

2 + 2 /2
4- g

&ample. Find the angle between Li :x= 2 +t,

z = 1 + t ; and MI 3.1r ity - 12z + 5 . .

Solution-.

Y = 3 2t

sin 0 -
11(3) - 2(4) + 1(-12)1

42,4. ?_2)2 12 .42 42 2 lb

o
ein e = Al .53 9 32

13

TWo panes: M1 , M2 . Consider the planes, Mi: pix + qly + r1/ + si

1.12 p2x q23 + r2z + s2 = 0 , and a point po = (a0,b0,c0) not lying in

either plane. Po and Mi determine a unique normal line N1 , and Po and

0

M2 a unique normal line N2 . We define the angles between planes Mi and

m
2

to be the angles between lines N1 and N
2

If N and N
2

coincide,

then the planes are perpendicula1vto a commcn line and must be parallel or coin-

cident. The analytic conditions are easy to find. Since N1 and N2 contain

a.ocisoloh point Po , and have direction numbers (p1sq1,r1) and (p2,q2,r2

they will coincide'if and only if these direction numbers are equivalent,

that issif there is a number k ,t4 0 y such that P1 = kp2 j ql = kq2 1
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r1 = kr2 ; and these are the conditions,that Mi be parallel to or coincident

with M2 y as has been nd earlier. Of course Mt and M2 will coincide

if and only if, further, sl = ks2 y otherwise MI and M2 are parallel.

If N and /41

2
do not coincide, the angles between them can be found

1

from Equation (3) of the'previous section, and these are precisely the angles

lketween

(5)

'Ml and M2

P1P2 clic12 r1r2
Cos 0 -

2 2
111 12 q12

r
1
2

)1
fp
2
2 4.

q2
+ r

.2

If one of these angles is designated as 0 y Another must be the supple-

ment of 9 y and, the remaining two ahgles coligruent to these. Then the right

member of Equation (5) gives the cosin0 either of 9 or of its supplement.

Ve are usually interested in the acute angle, in which case we use the' abso-

lute Value ofthe right member of (5)

Example. Find the angles between the planes : x - 2y + z - 4 = 0 y

and M2 : ax + 2y z. + 3 = O. ..

Solution.

1(2) - 2(2) 4- 1.s-4
cos

112+(_2)2+12 122 22

= .41

vg.

0 AI 156°

:. The angles are 156° and '24°

I

EXample. Find an equation of the plane, perpendicular to line

L : x = 2 + t y = 3 - 2t z = 1 + 3t androntaining the point A= (3,1,2).

Solution. If P-(xly,z) is any point of the plane, then direction num-

bers for PA are (x - 3 y - z - 2) . The condition of perpendicular-

ity requires that

1(x - 3) - 2(y - 1) + 3(z 2) = 0 y

and this is the solution, which may be written more compactly as

x - 2Y + 3z - = 0 .
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Exercises a2

Consider these three lines for Fliercises 1 to 4.

Li x = 3 - t y = 2 -I- 3t

'42
x 2 4-t,y=1-

x 1 + 3t , y 3 + 2t

1. )(a,, Find the angle between Li, and

(b) Find the angle between Li and

(c) Find the angle between L2 and

2. Find the line through the point (3,5) andperpendicular to

Find the bisedtore of the angles foTed by Li and L2 using the locus

definition ofan angle b ector, (points equidistant fram the given lines

then show, by- nethods of this.sectionsthat the angles have been cut

into dongruent.

4. If Li , L2 meet at P3;I,L3 meet at P
1

1,3 $ Li at
2

(a) find the coordinates of Pi 0 P2 0 P.

(b) Use these results to find the lines Whieh contain the three altitudes

of 6P 13 Pa 1 2 3

At what angles does the line deterp4ned by (1,3 ) , (4,-2)''., meet the

line determined by (-1,2) (2,-3) ?

Consider these lines for Exercises 6.to 14.

: x = 2 -.3t y . 3 + t , z = 4 + 2t

112

L4

.6. Find the angles

:x= 3 +t,y= 4 -t,z= + 3t

:x= 1 2t,y= 2 +tlz.= 4 - 3t

(a) between Li and L.
e'

(h) hettme4 and L.,

(c) between L2 and

53.3

ati

40

,..
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7. Find the equations of a line through P tind perpenaieultir tø

0e b). L2 . (c) L3

Find equations of a line

(a) pi Periltculsr to both L2 and L3

11Rb) 1q2.,10ergendicular to both and

41.
(c) 113 gerpendicular to bola Li and L2 .

Find an equation of a plane which contains the goint

perpendicular to

(a) Li .

(3,5,7) and is

(b) L2 . (c) L3 .

10. Find An equation-ora plane which
. . .

4
(a) contains Li and is parallel to

e
../

(b) contains' LI and is parallel to,.-1,3 .

(c) contains L2 and is parallel to IL
1

(d) contains L2 and is parallel to Li,
.3

(e) contains L.5 ., and is parallel to IL
1

(f) contains I.,
Q

and is parallel to Li_
e

')

ider these planes

: 43E + 3y z + 5 = 0

M2 : 3x - y 2z - 4 = 0

143 x 2Y 3z + 7 . 0

1

U. Find the angles between

. (a) M1 / M2 (b) .Mi 1 M3 (c) M2 , M3

12. Find the plane which

(a) contains Li and is perpendicular to

(b) contains Li and is perpendicloar to

(c) contains Li and is perpendicular to

(d) contains 1 2 and is perpendicular to

(e) container and is perpendicular to

*



( f) contains L2 and i.e perpendicular to Ni

(g) contains L3 and is perpendicular to Mi

(h) contains 1,3 and is perpendicular to Mt .

(i) contains and is. pemTendicular to 114

Find the plane which contain's the origin, and is' periendiAilar to the

ltne deteriined by

) M1 M2
(b) M1,M3 M2 M3

14. Find the angles _between each of the lines Li $ it given above,

and' eaàh. of the planes,
/11. M2 M3

,. (f.i. ) Lima:
(d) 1,2mi (g) Limi

"(b) 1,242 .

0 (!) -(h) /!37142

(o) LiM3
/

(f) Igli
0

(i)

1 . Find the aritgle that each aXis makes witll each plane.,

( a)' MI (b) M2

16. Consider two intersectIng lines in 2-spe;:cel whose equations

six + cl = fiCx$y) O' , and

Lt : I2x + c2 = f2(x$y) = 0 . Develop a formula for the, cosine of

one of thq angies between them, in terms of si 1)1 $ c1 ; a2 b c
2 2
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Supplement to Chapter 7

Part 1

CONIC SECTIOWS

Cones andSections of Cones

In yeur,study of geometry you learned that a circular oans may be defined

-ek,s the union:of all segments. VP where- P is any point Contained in a cirdh- 4

Imr.region C and: V is any Point of space not oontained in the plane of C . .

The resulting geometric configuration is a solid. If p is the center of C
/

and if sir is perpendicular to the plante..cl' c , the resulting solid is a
46.

ot, circular cone;

An alternatiVe'ideazot a cane is as'aia unbounded O'IrinCe rather than as
6

- a bounded.eolid.

':DEFiNITIOBS. Let D be a curve contained in a pIane' E and let V. be

anrpoint not id E . 'Then the unidn Of allainms /"F ere. P,

D p is a cone..

The cut'Ve D is a plane curve and the directrix of the alone,;.the point

V is the vert of the cone; the lines IqF are the elements of the cane.

Norte that according to this definition of a oane the sUrlace falls

nntura11i into two parts.c

,

aturiv1TIONA'' If._ is the vertex of a cone, D is,the directrix of

the cone, and P i% 'Any point of D then the union of therayis

iS a nappe of the cone; the union of the rayz opposite to /r 1-is also

a nappe of the cone.
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It becomes apparent that while a given cone haS a unique vertex, it has

infinitely mani possible directrices.

Cones may be named iper curves whiA are their directrices. Thus a

cone which has a circle as A directrix Ised a oircular cone. The line

containing the vertex of the cone and the Center of the circle is called the

axis of the cone. If the axis of the cone is perpendicular to the plane of

the circle, then the gone is called a right circular cone. The right circular

cones are the cones Which we shall consider.- We state two theorems with the,

Alrobfs suggested as eXercises.

WORM 87-1. A circular cone is a right circular cone if and only if the

points of a direokrix are equidistant fram the vertex.
,

fa.

TIMM flag. The points of the axis of a right circular cone are equidisttnt

fram the elements of the cone.

The intersection.of a surfage and a plane is called a section of the

surface. If the_surface is directed or generated by a plane curve (as axe

cones, prisms, cylinders: and pyramids), then the sections of pe surfaee

formed by planes parallel to the plane of the generating curve are called .

cross-sections Of the surface. If the surface has an axis, then the sections

of the surface formed by planes perpendicuMm to.the axis are caliea right-

sections.' Since the axis of a right circular cone is'perpendicular to the
0

. plane of the directrix: the cross-sections and right-sections are identical.

The secticins of a right circular cone are called conic sections. They may

also be obtained from other cones and surfaces. This will be made clear in

Chagbw79. However, we shall confine our approach here to sections of right

circular cones.'

What we plan to do is to use geometric methods to discover certain

characteristic's of the conic sections. These characteristfts enable us to

use analytic'methodeto study the made sections as curves.in the intersecting

1. Prove'Theorem S7-1.

Prove Theorem 67-2.

Exercises S7-1
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57-2. Tangent erMLi Planes

het us consider.the sectiOns of a right circular cone.

'being we shall not consider those sections which contain th

cane. Such sections are classified as\degenerate conic sec

Fbr the time -

tvertex of the

ons and will be

the axis of the

associated with

,which are tangent

first task to

studied separately. Let V be the vertex of the cone, a.

cane, and E the intersecting or catting /aane. There are

)3ach section one or moTe spheres with center on the axis a

both to E and to all the elements of the cone. It is our

prove the existence' of....euch a sphere or spheres.

From the definition of a right circular cane, it follows that any two

elementa of the 'cone form congruent acute angles with the axis. We:deftne the

*measure of thede acutetangles to be the elemental :angle of the cone, which we

den te'by x .

Rep Wecall that the distance fram a point to a line is the length of al

segment Which is perpendicular to the lint. and of which the end points areLthe

given point'and i point in the line. ,Also the distance from a point to a.

plane is the length_of a segment which is "perpendicular' to the plane and o

.which the end points are the given po t and a poiht

The axis of the cone is the.set:0, 'ail points w4ich are ecNidietant

1

the elements of the cone., We.dal;--therefore that each point of the axis.:is te
, -

same distance from the 4ane and;that this distance'ls 'the 'distance''between he
,.

point and the cOne.
" F

Given any realnumber.except.zerd, there exist two pointa.on the axis,
0

which axe this meaturp:af:distance tiepa'the,copPe:one.on either side of the

vertex. For tee'real nuiber zerothere exists only gne suCh point, the vertex

of the eone. '2);1- each orthese Points on the axis, the points of the'cone at

the given distanee lie i4 the same plane and form'a circle. Since these are

the closest points of, the,Cane there iS a sPhere with center'at the giveh
k .

point and radius-'eqUal'torthe given di!tance which is tangent ta each element

of the con4. .Ftior this reasOn say'that the sphere is tanent to the cone.

The union of the points'af taiagency is a circle, the cir6le of tangency.
f

We turn our attention to the plate intersecting the cone. This plane may

be parallel to the axis' of the cone, but-in all other cases it intersects'the

axis, either. in ,the axis itself or in 4 set containing single point. We

first canSider intersectianOn a singlespointv

11'41
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If the cutting plane is-not,perpendicular to the gads of the cone, then a

Nair of congruent acute vertical angles is formed by the axis of the cone and'

itONkrojection inthe cutting plane. We define. the Measure Of these acute

anglgs to be'the cuttingangle of the plane. If the cutting plane is perpen-

dicular.to the.axis of the'Cone, we define the cutting angle to.be in

Xediat measurp: or 90 in degree measure. :If the cutting plane is parallel to

the axiS of.the done (in-this case.it may,contaih the axis), then the cutting

angle is dpflned to be zerb. (W ; could avoid defining these.angles in such an

unnatural may, were-me tb consider parallel.planes, containing the vertex of

. the cone. Boit/ever, we are interested solely in the measures of these angles

and aaopt these definitions.)

EXercises 37-2

1. Prove that agy two elements.of a rigHt circular done form congruent acute

tingles with the axis of the cone.

* 2. Prove that the axis ofa right.circular sone is the locus of points egni-
. .

distant from the elements of the cone.

Prove that, given any real nuMber except.zero.sz a measure of distance,
6

there exist two distinct points on the axis of a right circulpx cane

Which are this measuxe of distance fraM the cone.
0

Prove that if a point P on the axis of a rih circular cone is at a

distance-0 fram the cone, then the locus of points of the cone at a

distance d fram p is a circle.

S7-3. Opheres of TangeneY

Figure i is a schematic representation of a plane cutting a cone fram a

point of view parallel'to the cutting plane. r is the vertex of -5he cone,'

a itif the axis of the cone, / and / are elements of the cone, 0( is the

elemental angle, A3 is the cutting ang1e, P is the point of intersection of

the cutting plane and the axis.of the tone, and m is the projection of the

axis in the cutting plane.

A
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We conSider three diffaraat, coordinate systens on line a In the first

000rdinate system X the origin is at V.; the coordinate of P 'is positive

and is denoted by xo . The coordinate of an arbitrary point is denoted by

x
V' a

The second coordinate system x' is oriented from V to P and assigns

to each point R as its coordinate x' the distance from R to the cone,

and consequently the if14s of the sphere tangent to the cone with center R

This is the case to the rigiit of V . The origin is at V To the left of

V the coordinate is the'ne agtive of this radius. This coordinate system is

related to the first coordinate Iiistem by thef011owing linear equation: )

x' = x sinc4

A

The third coordinate system x" on a is Oriented front' P to V and

assigns to each point S as its coordinate x" the distance from S to the

cutting plane, and consequently the radius of a sphere tangent to the cutting

plane with center a This will be the ease to the left of P . The origin

is at P TO the right of P the coordinate is the negative of this radius.

This coordinate system is related to, the, first'coordinate system by the. '

following linear edUation:
_

(x0 - x)x" = sinie

_ We observe that, if x'fx" , the corresponding point on a is tbe

center of--ihe sphere;tangent to.the cone and the cutting plane. This is t)ie

desired sphere mentioned in Section 51-2,

v
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We equate these tIlo exgressiops aed solve for x :

(x0 =x)x s1oc4 = sin/9

g .

= xo sinA - x sin/g
,

.
x since., -f-'x = xo sin/3 i

sin g.
1 .

xo sittoci- sin/3

p
We note that um ori ed the first coordinate systan.in such a way that

ti
xo was positiNM and t, inasmuch as pl... and # are measures of acute

angles, 'is between' D ,and 1-. Hence x .is the coordi-s

&toot& sinig ..

nate of ti'lloint between

x0(111.12: +sini0

V and P and the-radtas of the 4here is

le0-419 >c< lhen sinp >sine< 0.and we discova- a second.sghere tangent

'both to the cone knd to the cutting plane, but with its-center to the right of

. P To the right Of P the radius of a sghere tangent to the gIane.is -x"
4.8

w

x sfitot = -(xo. - x)sin#

41f
-0(ainot.-BillIsitnp)-7 X = X

.

Since, (sinp - sino0> 1 2 X is the coordinate of a point'to the .

a .

'right of P .The radius of the,sphere is x 0(sin$3 - ainpt
sindi sini9 ) .

---

tt

If 0<:*;., then sin$g < ainoC ;.we discover a second sphere with center

td the left of V ... To ple left of V the radius of a sphere tangent to the

. 0 ( i

.
oone is -x' If x 0

-x sinc4 = (x0 - x)sinig

and =X
-(

sinig
A At. Thus x is the coordinate of a point to ttga's)(einec - sin

left of V 0 the center of the sphere is more remote fram the origin than was

siod4 sin0
tat of the first sphere,- and the radius is ,x

0 sin - eint3

-where

lak

If 4g.=c4 $ sinB .simo4, , and the search for otger spheres is in vain.

The-aoefficients of xo not defined outside the segment VP .

522
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Lastly; we
para114 .to. the
-the itaris tO °the

consider-the Rossibillity that the cutting plane may be

axis ,of the cone. In this case the distance from a point fp
plane is constant.' Thus xn = and f011owiaigithe above

kargument"; we t-iscover that '5c = there are'two spheres;sinoC 11 Nher
side of V ; and each with radius k We repall.tliat the cutting ankle is
zero in this caap; for the cutting angle is 'not realii the angle itself; btit

,. rather a Measure associated with the angle.

-

S.

Degenerae Cdhic Secti'ons

Before continuing with our discussion of the mord elaborate- co4ic see-
.`pions; we may dis to consider wilat happens if the cutting plane contains
the 'vertez . of the mite. A geometric description shOu14 be sufficient .

..
-(13>*(.1 then the vertex is the`only point of 'Vie Erection. If. = o4. s then
the section is 'a s-lngle elementk'Of the coneis that is, a line. If 18 <o., ' the-
section is the union of two 'elements of the cone; that 'the*Union of two
intersecting lines.

Some sections of *the surface craned a' right. circular cylinder are sec-
tions of right_cirCUlfir cones. The exceptiOns ay Schose sections obtained by
a cutting plane parillel. to -Me axis of the cylindery,With distance from the-
axis less than the radius of the cylfnder. (The plane may contain the axis.)..

.tilse sections are the union of two parallel lines. Though not obtainakle as
seetiOns of cones for algebraic reasons they are included among the degenerate
conic,s0ctitons. f)

S7-5, oeometric properties of the Conic SeCtions
r

Fram our considbration of the C9R1c sectiops

gensisl observations. oIf B = (in radians), or-..

tuitively obvious and mot di'fficrat to prove ihat
90

If >13..e.., it is apparent that the 'plane euts everSr element of one nappe, 2,-

t and that the reaulting section i a closed curve. 'If 8. = o, the plane cuts
vie} but _nCrt all of the elements of ode nappe., :Lataitic; if 14. c'ot; the plane

_

cuts scnb, but not d1 thit éleme s of each nappe mid 'the curve has tub dis-
gnct branes:

1-

so far we may make certain

90 (in degrees); it is in-

this.section is a circle. `

-
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e

Bt.it to* continue our study we need taore inTormation. "fie consider Figure

given a right circulir cone th*ith vertex V ats I , and ele--
Fental . E is a cutting, plane, not containing V with an acute
cutting angle is The conic.section is the curve s . The tangent sp/tere

. e

lath center -0 is tangent to the cone in circle, c and to the cutting plane
4 /a

ar at point F.

*

Figure 37-2
, ,4
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Let G be the plane containing circle c . G is.perpendiocular to the-

Ihs a, and since E is assgmed not to be perpendicular to a,G and, E

niast form a dihedral angle with edge d The plane angle of the dihedral

.angkis camplementareo the cutting:angle and hges measure -19)

Let be-alli point of the conic section s The plane containing P

and perpendi
tesevinteAsOecto-ti*dihedraliangle in a plane angle of the

.dihedral angle Which has vertex C and meadure -08) Let A be the

foot of the perpendicular.fram r ,to the ether side of the pi5ne angle.

is perpendicular to G 61'AC is a rightAc;iangle. Since

m L PCK = $ M APN )8 and ,

(1)

d

coso
d P2C

\ . 0 .

W e
oa.

We observed that' AP Imes pegoendicular to G . The axis a is also

'pervendicularto 0 $ so a ani'.47 are parallelConsider the'eldMent of

, t
the cone PV which intersects the circle of tadgency c in poiit B (Which

AO.

A

is in G) Since.the.tangent sphere is between V. and the

is between V and P ;" The elemental ahglp ana APB are
I%

nate interior angles formed by a translersal of two parallel

quently m LAPB =04 6APB iflo a right triangle.and

( 2 ) cosoe. %.
4

cu ting plane, B

a-pair of alter:

lines, and conse-

Both PB' and. PF are tankent segments to t'he sphere fram the same point

-

and hence d(P,F) d(P,B) . Substituting in (0, obtain

Dividin (It- by

'YSince

tient is a

is denoted

A

COSce =

) we, obtain

coso( d P,C

oth 08 and cd. ,are constant for a giVen conic section04Xhis quo-

constant. It iditiled the eccentricity of the conic sectic;n.and

.by the amall letter e JGepm:etricaiJ),-this mearla that ffor anY Eso

point of a given conic aectpp the rstio0of'ite d tance fritm a well-defined

point to its distance frpRi a-well-defined line is a-constant. Both tOle point,

.7254
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Villa is caIled the focus or focal Voint, and the line, which is called the

directrix, lie in the plane of the conic- section. Since 1014 have taken both

the elemental angle,and the cutting angle to be the measures of acute anglee,

the eccentricity e will be a positive real ntiMber.

Whew observed that it is perfectly pOsdible for the cutting plane E-

to be perpendicular to the axis of the cone. In this case E and G are

parallel and the section has no directrix. It does have a focus which i

intersection of the cuttipg,plane and the axis. The section is a c le and

thescenter is at the focus; if '11 is the focue, then the radius oithe circle

is d(11,11).tanc4. In this case the expression for the eccentric ty wouldbe

cos(1-)
2

g which is zero.
coso(

a.

!` Since this-is distinct from the other cases, we may accept it

inconsistency.

We observe that if

thout

# > 04 , cos fi < dos 04 And

cosA = Cosa( and e = 1 ; if 0 < 04:04 , 1 > cos,9 > case( and. e > 1 .

We take these proyerties to be definitive foi- the conic sections.

DEFINITIONS. Given'a'oonic section with eccentricity e

The conic section is an ellipse if 0 < e < I .

s The conic section is a

lhe conic section is a 4 Jr

la if a = 1 .

bohl if > 1 .

The conic section is a circle if, e 0 .

On the other hand, we have sheWn they may be desCribed by their geametric

properties. A circle is the locus of points in a plane at a given distande

fram a given point, called the center;`an ellipse is the locust of points in a

plane sUch.that fo'r each point the ratio qf its distance.from egivet point to

itadistance fram a given line is:a constant which is less than,one;"a parabola
-

is the locus of.points in a plane suCh'that for each point the ratio of its

distanee from e given 'point to its distance fram a given linAs'one; a hyper-

bola ie the 'locus= of points in a plane such that for each point the ratio of

its distance fram a given point to its distance filam a given line ip a constant'

Which is greater than ;mei

IP
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Exercises S7-, Y 1

1. Prove that ii a cutting plane is perpendicular tO the axis of a rIght

circular cone, tlien the sphere of tangency is tangent to the plane at a

point on the axis. Prove that in this case the conic section is a circle

which centers on the axis.

4E2. In Section S7-3 weodiscoyered that if >cg, there exisis a second sphere

Of tangency iudh that its center i on the other side of the cutting plane

fram the vertex.. Let this sphere tangeneto the cutting plane at F' .

PrOve that if P is a point of the section, then d(P,F) + d(P0,1") is a

fixed constant. In other words, prove that.an ellipse is the lacus of

points in a plane such that for eaCh point, the sum of its distances fram

two given, points in the plane is a fixed constant. (Hint: In Fiore 67-2

the second sphere liet below the cutting plane; let c' be its circle of

tangency. Lft B' be the intersection of VP and c' Then prove

. at d(P,F) + d(P,F') = dLB,B9 . pen prove that this distance is the
44-

same fo all P )
3. In Sect4on-V-3 we discovered that if 6' <4, there exists a second

silere of tangency sudh that the vertex lies between the centers of the two

sphe;res. Let this sphere be tangent to the'cutting plane at' F' ProVe

that if P is a point of the section, then Id(P4F) - d(P,F91 is a

fixed, constant. In other words prove that a hyperbola is the lOcips of-

points in a plane such that for each point, the absolute value of the

diffe'rence between Its distances from iro given poiAts in the plane is a

flied constant. fifint: In Figure S7-2, the second-sphere lies within the

upper nappe of the cone; let c' be its.circle of tangency. Let B' be

the intersection of Vf and c' Then prove that"'
,

IId(P,F) d(P,F/ 9I = d(B,B') . Then prove that this distance IS the same

for all P .)

*4. Let C be a circle contained in a plane E The union of the lines

perpendicular to E which contain points of, C is a rightcircular

cylinder. .The lines axe called elements of the cylinder; the circle is

called a directrix of the cylinder. Prove that the sections of 4 right

circular cylinder ere (conic sections. Show *that in the case Cif the right

'circular cylinder there are also spherbq of tangency (i.e. tangent to the

cylinder in a circle and;tO the cutting'plane at a,fonal point of the

conic section).

In general, the sections of any. cone or cylinder, with a conic

section as directrix, are also conic sections.
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Part 2

THE GEWERAL SEMWD-DEGREE EQUATION

S7-6. The General Second-Degree Equation; Rotations and Translations

The conic sections Which we have studled have been represented in

rectIngular,coordinates by second-degree equations in two variables. It seems

natural to s\sk whether all equations of second degree in x and y have

ocj which are.conic sections. InAts most general form such an equation may

be written as
.

(1) Ax2+Bxy+Cy2+Dx 4- +F= 0,where C are not all zero.

Iles general form may be difficult to iilentify, but some techniques which

We have used in.the preceding sections will permit Us to simplify it. The

major stutbling block ds posed by the xy-term. The only previous equaiion
.

Containing an xy-term,,which we have considered in detail, was that of an

equilaterei hyperbola. We also have another equation for an equilateral

- x2 2

hyperbola. Let us consider, the graphs of xy = 1 and of -7§-, -Yri. 1

2 2

xy = 1 X- =
2 2

Figure S7-6a Figure:E7 -6b

The graphs of these two equatiOns seem remarkably similar.. Not only are

'b

the as 10totes perpendicular in each case, but also the transverse axes ay

-congruent. In fact, itipould *appear that the graph in Figure 87-6b may be

obtaineS fil'om that in Figure S7-6a by a clockwise rotation of axes through- an

528



angle of 45°. . The first equation contains an xy-term, while the second

does na. The suggestion is that a'rotation of axes as described in Section

4ght result in the elimination of the xy-term.. It turnS it ttikt this

is the case, but we are now faced with a second question. What size rotation

should we .consider? Ilet.us consider the effect of any rotation.of axes on

the gerieral second-degree equation. We recall that the equations of

rotation are:.

.x = x' cos 0 - y' sin 9

y = x' Sin 6 + y' CO& 6 .

If we'subaitlite these values in Equation (1) and expand, wv obtain.

cos e
.
- 2x4dy' sin 0 cos 0 + y'

2 2
0)

-1

+ 111 '2 sih 0eos g - x'y' sin'- 0 4- x'y' cos2 0 .-, y'2 sin 0 cos 0

(
v+ C(x'2 sin2

.
..

i 0+ 2x'y' Sin.9 cos 0 + y' 2 cos2 e) 4 D( eos e - y' sin 0)
.,

IN

. + E(x' sift 0 6) + F L- 0,
\

HOweyyr, we want to know is the :coefficient of the x!y'-term. 'This
IL,

is.
-210sin d'Cos:0 + B(c0s2

2
- sing 0) + 2C sin, 9 cos 0

,
, .... ..,

IllrIf this wefficient ii.zero, transformed equation will not contain any

x` y! vtermi. ' If

-2A sin 6 cos 0 b(cos
2

e - sin
2

e ) +2C sin 0 os U =

then

JAcos
2

- sin
2

0) 2(A - C) sin 0 cos 9 .

We recall that cos
2

(Y- sin 0 = cos ?(9 land that 2 sin 0 cos 0 . E!in 20 .
%

Thus we may write

or, if

or

If A=O,then

or

B cOs 2E14; IlkA sin 29

B sin 26 (I
A - C 7;775

A---7 tan 29**

B ces Pt) = 0

cos 20 = 0 .
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t.
(We recall that if B were zero, we woulenot have had.to go to all-this

trouble.). In either case, all wrequire is)a single value of 0'Which

satisfies the appropriate-conditio . If. cos 20 . 0', 1?0 may.be 900

thus 0 may be 45° If tan 29
A

which is not zerk, we:recall7.C/

that the tangent assisines all non-zero real values once ind.only once betwe n
0

00 and :180° . Thus, therd exists-a uniqUe acute angle 9-such that::

.tan 2e=
A -

Thus ve.have shown.that in every case inwhichthe seCond-degree

equation has an xy-term, it can be.transformed, by a rotation of-axes thro4gh.

a unique acute angle, to an equation without an xy-term. 414Ittransformed

form . A'x
,2

4-0/30 4 D/x! + Etyl + Fi = 0equation has the or,:dropping he
2

r-lorimes, the form

(

Ita

(2) Ax + Cy2 + Dx + Ey + F =4) A' and C are neVer both zero.)
.

Now the equation is in a form which 1:;e identified More easily. .We have
_ n

already developed techniques for si lifying equations of this form. It is

- .proper.to drop the primes only When he form of tile equation is being studied.'.

If AC is not zero, we first e4plete the,squares for Ihe x
2
- and

x-terms and y - and y-terms to obtain

A ( 2
A

or

'7:12)
4A
g

(__2 E B2\
2 0

C F u F, AZ / 0

A(x,+ 12.4_ c(r A)2 CD? Al? - 4AC1
, AC 0 .

4AC

Nov a tra:Iation of axes, as introduced in Section 10-2 and described by the

equations

X =x

S. Y Y

gives the transformed equation

r- 2 ,2 CD
2' _2

At; 4ACF
,4AC / 0,

Ax CY 4AC

in,which the primes.bave been omitted for'simplipity..

1r

.R i '

a

t
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D CF4T AEF
We recognize thatAef A is negative cutu is not zero,

CDF AEF ItACF
or if, A, C, and

+ ,are all politive or lall negative, the
A

transfoxrd elpation is the tion of a iltnic settion. If A eras C,

thq,conic section is a eiiile; if AC is positive and A is nbt.equal io .

C. tollema9ni.e section is an ellipse; iftAC 'is negative, the conic section

IA an hariprbola.

We =is* also consider.the case in which AC = 0 in Equatlan (2).

Suppose A is zero. Then ,C is not zero, and we may complete the square

flr the yF- and y-terms. %Equation (2) is naw

Cy
2

+ Dx + Ey + F = 0,
9

whieh. becomes .

1

\ or

or

Cy
2
+ Ey = -Dx F

.c(2 gy-4- 46)
4c2

E )2- = -
e4;4

Y
491

,gu

A translation of axesIdescribed,by the equations,

E
p

- 4CF
+

4CD
0

E
Y6 -=.Y Te-

givees the tilansformed equation

2 D
I -C-1(

We recognize this as the equaiion of a paraSola, with the vertex at

tho. origin aria the axis on the x-axis.
OA,

If C is zero, a similar developMent may be made. The resulting

,équation will again be of.a parabola with the vertex at the origin, but the
,

.axis will be on the y-axia.
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ic6-cises 67-6

1. Through what angle must the axes be rotated to eliminate.the' xy-term

fram each of the following equations ?

x2 4y2
4x - 7.= 0

(b) x2 +`-sq xr t'2y2 - 3 =

(e)
x2

3xY + 4Y2 - 9 = 0

(d) x2 + 3xy x + y 1 = 0

\K2 21q NY 4' Y2 - 2x - 2.1q - 16 = 0

(f) 12xy + 9y2 - 2x - 3y - 10 = 0

2.\ For each of the following, siMplify the equation, identify the conic

section, and draw its graph:

f 2
(a) 52c

2
- 6xy + 5y - 8 . 0

\

'(b) 5x
2

- 6xy + 534. t /ix + - = 0
2

(c) 75c

2 2

2

11x2 + 24xy + 4y2. - 44x 48y

.
+ 5Y

2
- 16 . 0

(g) 2xy'+ 4x - 4y - 9 = 0

(h) 9x
2
.- 211.xy + 16y

2
'+ 90x +,130y = 0

1:

- - b._ es 1 j:

Tills treatment of the quadratic equations which describe conic sections
. 17.1

'has been solely conceimed with techniques employed in simplifying the

equations. It is important that we also consider what we have done fram a

geometric point of yiew./ ..
In Section 6-2 we have stressed the importance of recognizing symmetries

in figures, both as an aid in the sketching of graphs of equations and as a

guide in the selection and orientation of a co rdinate system to descrthe a

&mph by an equatilan. In pirticular weihave Considered axes of symmetry and
*

points of symmetry. We have observed that in rectangular coordinates ihe

y7axis is an axis of symmetry forea locus described by f(x,y) = 0 ii

f(x,y) -='f.(-x,y) and that the X-axis is sin axis of symmetry if

f(x;Y) = f(x,-"Y) . The origin is a point of symmetry if f(x,y) ='f(-x,-y



0.

The origin is always a point of symmetry if both the X-axis and the y-axis
4.

axe axes of symmeta... However, the convpbese of this last statement is not .

true.. .(Oonsider- y = x3 .1

It NUS in Seetibn 10-2 that we first overtly considered translations
4

' of axes as a:meanwto simplify the.analysis of the graph.of an equation.

However, we have really used this technique before. Do ye.i ,recall. that in

Chilpter 2 in our discussion of direction angles and dlrec ion cosines for a

line we found Illhonvenient to consider a parallel line through the origin?

In our rather medhanical treatment'of quadratic equaiions in this

settion we have been guided by syMmetriesdn,the graphs of the equations.
A

The rotations of axes which we performed in Section 10-3 made an axis of sym-

metry parallel,to a coordinate axis. The trensiations of axes Made a point of

symmetry also.be'the origin. (In .phe case of the parabola there is no.pofnt:of

.symmetry. The translation of axes made the vertex be the origin, as well.)

Il is possible to describe points and axes of symmetry quite generally.

DEFINITIONS. Let S be a set of points. The segments joining

'points of S gle chords of the set. If there exists a point
4

F such that, for.each point X of S , the segment with enci

point .X and mid-point F is a chord of the set, then P is a

-pointof symmetry or center of S.

Let be a'set of poIrits in a plane and let L be a line in
. A

the plane., If, for every point-. X of S , the segment which

(I) has end-point X ,

(li) is perpendicular to

and' (iii) has its m1d7point on L ,

is a chard of S , then° L is an axis of symmetry of S.

The General Second-Degree Equation, Translation and Rotatioil-L-

. In simplifying second-degree equations, it is in same cases more con-
/

venient to translate the axes first to eliminate-the.x- and.yteros Then

0we rotate the new axes to elfiinate the xy-term.

I.
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'If we start again with quation (1) of Section Stm-6.and use the .equa

'of translation

x = + h

we'obtain
.

+ 2hx' + h2) +B(x y' +A +11k ).+ 0 + 2'
4- Da' + + E(y' k) +'F ='0

If we collect terms, this becomes

Baly' + C3+-12 + + D)50.'+' (Bh + 2Ck Ilsrt
2

We late that the coefficients of the second-degree terms will not be changed

by a translation of axes. If we.can femd values of h and .k such that t

and

aAh + Bk4 D 0

Bh±2Ck

4wwe shall be able to substitute these.values in Equation (1) to obtain a

transformed equation free of first-degree terms. We qan solve this pair Of

equations to obtain

-D B

if, 1

A= 3A 13

B 2C
=4A0-

ands_

2A

B -Ek=

B 2C

AP

The determinant 5 is Qf same intrest in the analysis of the second-degree

equation and is sometimes called the characteristic.

You should sense that, then it' is possible, it is etfsier'to translate'

the axes first and then perfozma rotation of the new axes. TAILfewer terms

there are in an equati-6ntha-easier it is to pentorm a rotation. However,

if the characteristic is zero, we cannot find the appropriate values of h

and k . We have no choice but to follow the proeecipre of Section 6-8.

A
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If tfie characteristic is not zero, the transformed equation is

.wherg

It is easy to remellibler what F' is if you notice that when we

original.equation by f(x,y) . 0 then F' = f(h,k)

Axf2
Bx'y' + Cy'2 + F' = 0

F' = Ab2 + Bhk + Ok2 + Dh + E( + F

Find 11. and

,,.;

.

'Mcercises 67-7a

represent the

k such that a translation of axes described by

'.= x + h

=y + k

'Will eliminate the I'irst-degree terms of
4

4x
2

+ y
2

- 8x + 4y + 4 0 .

Vez4fy for this case thaAhe constant term in the transformeoi equation

is equal to f(h,k)

, Transform each-of the following'equations by first translating

so as to elimipate the7fiht-degree terms. Then rotate the axes to
e

'remoVve--ta xy-term. Sketch the curve,,a4owing old and new

(a) 8x
2 ' 2

- 4xY + 5y - 24x + 24y = 0

1.,(1,)
3.1(2 ioxy ,3y2

(c) 7x
2

24xy 4- 120x + 144 = 0

the axes

.1d) y +'4y2 x + 717 y

axes.

Once again it's important that we consider this method of simpifying

the.second-degree from a geometric point of view. Wily.can't we find an

appropriate tranikation of axes when the'characteristic is zero?' you should

;recall that in the previous section we obseilled theft the translation of axes

maregol,he new origin a point Of symmetry. Our search for values of'.h and

k is.infacta

jerabola has no

out to be zero.

search for the coordinates o1f a point of symmetry. Since the

point of symmetry, the characteristic. of its equation turns

The converse of this statement is not necessatily true, b

we shalX'defer the consideration of this question.
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If Ite. approach the analysis of.the second-degree equatioA fram a geometric

. 'point of view, we oan develop methods which-may be applied to more compliFated.

problems..

First we obsere that if a get of points -in a plane has an axis ofsym-
,

metry, then the axis of symmetry is the' perpendicular bisstor of chords

/Soippg pairs of points'of the set. .. In fact, every point of th e. set is an

endpoint of such a chord. We haVe already noted that the equation of a locus .

\is frequeitly siMilified if an axis of symmetry of"the locus:is parallel to

one of the coordinate.axes. We'shall first find an axis of symmetry for the

grap)3 of.the second-degree equation and then.rotate the axes to make one of

them parallel to this axis of symmetry. Since the chords In t:he definition

of an axis of symnittry.are all perpendicular to the axis of symmetrY, ihey

. Nam parallel to each other.' Aen the linesditermined by.the chords have

parame*ic representations in terms of a fixed pair of direction cosines

' ()up). Let (x1,30) be the midpoint Of a chord. 'Then the parametric

40-presentation of the line containing the chord i

x

. Y

When 1Y) is an endpeint ot the chord,Yhe coordinates shouldlsatisfy

the sepoAd=degree eollation. If we subititute the paTametrie representation

the endpoint in.the second4degree equation, we obtain

AC)02 + 2Ntx' + t2) + Xx'y' +-ptx' + +

, 2 2 .
+ Corl + 2pty' 4- pt

2
) + D(x' +.0 + E(y' tfpt) + F = 0

4

If we collect terms.in and .pt , we obtain

(2) (10% T5.7cp + C4t2 + (2Ax's-+ Byt. + DYAt + (Bac' + 2Cy + E)pt

+ 2 + Cy'2. +Dxce'+ Ey' + F) - 0 .

Now we obserJe that both endpoints of the chord mUst.satisfY the equation.

Furthermore, if t, is the-valte,of the pammeber at one endpoint, -ta. is

the value of the garameter at the other endpointrt This must be the case for'

This impliesfthat the form of the equation inany -chord.and.any equation.

t must always be

0 .

-



Thus in Eqtfttion (2) tir coefficient of 't , or.

(3) (2Ax' + By' + D)X + (Bx' + 2Cy' 4-#4.41 ,

mus.t be zero. Nor X .abd

equationbut x' and yt

the midpoints of the chords

midpoints of the'chords are

Ex&ession (3) written as a linear equation in x' and y' is the egnation

p. are fixea.1006;irparticulars,pecond-degree

are viriables desitp,iating the cooranates of

perpendicular to the axis of symmetry. tut the"

on tilt axis of gymmetry. Thus the condition 6

of the axis of symmetry:

(4) (altx + Bp)x, + (Bx + 2c1.L)y' (119 Ep) 0 ,

This equatibris in the general form. tence, (2Al + B.11,1110+ 2CO: is a

pair sit' direction numbers'f9r normals -Co the axifs of symm;etr. tut so is

(1)... Therefore, foi Same nOn-zero real nuMber le .

(5)

and

RC

2AX + Bk = k?

, B X +2C kp.,

/

If we soltire th second equation'for p. , we obtain
roe

-B

2C k

We substitute in the first equation, which becomes '

or

or

B2
(2A - =

(4AC 2Ak - 2Ck t' k2)X -

[kk' - P(A 0:AC - B 1N = 0 .
. .

. .

Now'either T or the coefficient must be zero. But if' were-zero, II
,

_ .

4ould also be zero, which is-tmpossible, since Mil) iCa patr of dii-ection'
6, i . 4:

. 1 . _Therefore,cosines and

(6)

.8

r

14,4

2( 'A + C)k + (14AC - B
I .

Epuation (6) is called the characteristi6 equation for the gdwen seem*.
'

degree equation and its rOots are called characteristic" valued-tor the
-

quadratic equation. We note thatithe sum of the.rpots is 2(A'+ C) while

, ',
, . -.

%

the product of the roots-i 4AC - B'' or. b , the characteristic of the

quadratic equation.

le

5.37

9

1 II'

11.
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We may then'solVe Equation (6) for k and substifUte'these valu es in

Equations (5) to determine the pairs of direction cosines' (k,4) . These .
Wm.

pairs dr.values may.then be.substituted,in (4) to obtain the equations of
# 4

Aces of symmetryi.. We note that if the characteristic is zero, EqUation (6)

/ has only one nen-zero root. In Equat4on.(5) k must be non-zero; hence,

onlk one pair'ek direction cosines may be obtairld, and the graph ofthe
/.

quadratic equation will have only one axis of symmetry. This is consistent

with our previoub observations that the parabola hhs only one axis of
_g

vmmetry andr thatthe characteristic of its equation is zero. We also note

that the characteristic equation will have equal roots only if

0

or A2 + 2AC +
*C2

= 4AC -

A - 2AC + -B
2

11
or 02

's

This may orgy be true if B is zero and A equals. C When this is the

a case, you will regal' that the graph of the quadratic equation is a circle.
,

Equations (5) are satisfied by any pair of direction cosines; and there are

infinitely *many equations (4). This-is not surprising inasmlch as every

'diameter of a circle determines an axis of symmetry. It is A fact that the

characteristic equation of a quadratic equation always has real roots.

Furthermore, if these roots determine two axes *of symmetry, these axes are

perpendicular. We are familiar with the fact that the intersection of two
,

perDendiculaelaxes of symmetry is n point of syMmetry. This suggests one

*way to find 9 point of symmetry.

6
- -

We may al-so discover points of-symmetrx from the definition of point of 7

( %

'symmetry given in Section..-8 and from the conditIons on Expression (3), above:

(7). . t
211.x' + By' + D)A + (Bx' +,20y' + E41, -, 0

.

..

.
.

YoU should recall that (x',y!)' is the midpoint of a-chord, of the graph
\A

. '

while kkA,p) is a pair uf direction cosines in the parametric! represen.--

Lation of Lhe chord. W1n we wante4 LC) find an axis of symmetry, A and
, .

were fixed while

Afixed point 00,y9 which wild satiffy Equation (7) for all paits (A,p)

'Ns will be the case,only'if t!he ooefficrents of A and '4 are r)oth zero;

that Is, If

was variable. Huwever, here we wa4t tc; find a

8) + By' + D 0

and Bx' f.PCy' f E 0 .

t

e



.

'A solution dr thIS pail of equations will be a point of symmetry or center 4

of t he graph.of the second-degree equation. 'The pair GO equations will,have

a unique solution if

1

,

:

17:
:

2
1. 4AC - 13 9 6 0 .

.

.

J r
)Asp* .1... Find the axes of b etry aria center of the graph of

4xy + 5y2 - 36x + 18y + = 0

Solution. 'Vle characteristic equation [Equation 1 becomes

k2 - 2(8 + 5) + 4(8)(51 - (4)
2

or k - 26k + 14 = 0

or (k - 8)(k -11 18) 9,0 . A

The cnaracteristic values are* 8 8nd9.18 . Now Equapions (5) beCome

Or

2(8)N + (-4)4 - 87'

(5)4 =

87' 4p, -9- 0

_ ,

These pairs of equations a?e dependent, but since

obtain the solutions , and

, .

and,

and

s .2(8)7k + (-10p. = 1_8?

(-4)7' + 2(5)11

+'141,.---

+ 0.

+ .9 0

If we.substitute these values in Equation (4), we obtain the equations

.
of the axes of symmettry:-

, u (-

[2(8 (14)]x 4- [(-4)i. + 2(5)
Y. r

_36)1- 4-- 18

15
. 0

15

or ... 8x + 16y = 0

or . x + 2y 0.,.

and '
or

or

15

[2(8)(=,--)) I x r(-14)(-=--'

ir;
-36X + 185r I 90 9 0.

Px - y - 5 9.0 .

ir)

-2
+ -36)( ) +1.8-

154 17
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r

rEquatioriS (8)./ill enable us to find the center.. Th r,pai2of equations
41.

2(8)x + (,-14.)y +.(-36) . 01

(-4)x + 2(5)Y + i8 = 0

or

kx- y 9#± V
N

-4x + 10y -18

has the unique solution (4-1) . The pobilit is the center or,point of syr

metry for ihe graph. We note that this point,isfalso the intersroction of ihe

axes of symmetry.

Exercises S72110

Find the axes 9f symmetry and centersi if any, of the graphs:
IA

,
a

.. N
1., xy + 5; - 2y - 10 . Co

2. a + Xy AY2'-/- 7x - 7y + 3 = 0
,

. .
'

.
(

S7-8.

pre vious two et1on we have restricted our discuss on to equations vritti

graphs which are proper conic sections. We have made certain restrictions

on the constants-of the equation. In this section we shall relax tlese

4 restrictions and:&rnsider the loci, if any, of. the resul ng equations.1 We

shall also develop means of identifying and classifring the lousr

.. possibilities. tie:lave already encountered the demeneraie con c sectionsgi

yhose graphs are single points, or pairs of lines which,MW be parallel,
4 4

con current, or boincident. We have also considered equations whose loci are

Depnerate and Imaginary Conicsoltd the Discriminant A .

In our treatment the second-degree or quadratp equation in the

A

empty, but yhich are called imaginary circles and Ira/minry elli ses hegause
A

,

of the form of their equations.

In Section 6-3 we have considered the problem of factoring fonctiQns. If

we carr factor the left member of the equati9h

(1) 'Ax
2 +Bxy+cy

2
+ Dx+ Ey+ F=0 , where ,A 13 , and C are not fill zero

-into tun linear factors, we would.know that the.graph is the union of t̀wo

'llnes. Undet what coriditionsalis tihis expression factorable? You should

recall that qtadratic-equation a singlt,varlable often may be so)ved

5 0 ,

4 1-.Lill)

a



S.

'4

:7.,factoring the quadr,atic expression.irito linear factors. 81101 an equat on

May always be'Solved by completing the.sqAare Or'by using the.quadra.

formula, which isequivalent'to completing the aluare. Irk all likeli ood on
. . .

oCca on/you have failed to:detect the ainev:factors in:the quadratic

r of an equatten'and'have resorted to the quadratic formula, only to

discoV'tr. that the equation really could have been solved by factoring This

, .

.JElligePts plat the quadratic formula may be an itd in finding linear-factors:

.
In .fact,".the, quadratic ,expression ax

2
+ ,bx c .may always)pe expressed as

the produet of linear, factors as

A

4-

2a

1.*011&e allow the use of complex nuMbers when necessary.r,
Now'Eqdation (ly may be ,conSidered'to be a quadrA11/}equation in

(-b -.11e - 40)

if, A ia not zero, or in is.not zero. Let uS apgume that q ib'

not zero and vrit'e Ecluation (1) as

.(2) /

.

CY (Bi + E)y Ax2 + Dk + F) 0

Then
\

(3 ) - Y
(13; + E)2 4C_SAx +-Dic + F)

.2c 4

a

.The df x
P

andscrimtnant-inwolves terms in x , b if it is a perfect

square,!we pay eliminate the radical to eltain two expresgiops for y , say,

a and 0 which are llnear in x (i.e. a and D invblv,e oinly x to

the, t'irstJ power and t:rarious constants
Then Equation (2) nnd, if C is,

not zero, Equation (L) may he.writtep as .i
where. the fact(4ws of the Left memberlar'c linear in x and .y . The graph

of.Equatiwi (4), and consequently of EquntIon (1) s 1,he union of the
)41

traphs.of

- - 0

,

which are 1.ines. However, the conclusion or this argument does not hold

delcos
the ddscriminant or Equation (; ) Ls a perfect squAre. The discrim-

.

inant is

(Bx 4C (Ax

vs



4

-eeri in' Exilression 13), 014 1

\III-(5) .

, ,,
%

k (IC ..:liA0)x + 20E
4.

- 2C.1))x + (B2 - 4CF
2

'Again we make,Use of the quadratic"formula as an aid in factoring.
4.0 '
Expression (5):wi11 be a perfeet square if and only if the roots of the

'e udtion

( 6
4AC)xg, + 2CD)x + (E2 -'4gF) = 0 \

v, ,\
are equal, . These roots will. be equql if and dhly the disMminant of

Equation'(6) Is zero., This discilminan

..r.
0403E 2VDYA - 4 - 4Ac)(0'-, 4cF)

2

which wial be zdro irand only 1f :

4

9B2E2
4BCDE + 4c

P
7. 132Ec- + Wat'-cF + 4AcE2 - 16Ac2F = 0

Of L2C 2BDE -*KT/4'k- 2B2r -
72

+ 8ACP$.., 0

or C

or 2A 4C,F,- E - B(2BF - DE) + DOE --'2CD 0

or . I. ' 4

8hCF. 24E2 2B2F + BDE + 2CD2 := 0

or'

2C E

aF

B D
+ D

E 2F

amil

LA B D Ps

B 2C E = = 0 .

D E 2F

B D

2C E
= 0

.44

This detjrminant A Is..called the discrDpi9ant of the second-degree cquEition.

If A is zeto, the roots of Equation (6) are equal and the Mcpres"jion (5)".
%

which is the Iiiscriminant in Equation (2), ts aSrfect square. Thus the

grapll of Equation (P) is the'union of two line's; If C is not zero, thrs set

is'also 61e.graph of-Equation (1).

Ifi C is zero and 4A is not zervwe could ro thr,out;h a similar

arGume t, treating the' second-degree equai,ion 4s a vadratie equation in x.

4.".4)Eventual 1we should discover Lhat'if EqLlation (y) holds and A ic, not zero.,*
then the graph of Equ!rtion (1) 1.1; the union or two lines. But Equation (14,_ ./

Is equivalent to A 4 0 .

,If both A :11-1,1 C are zero, then B cannot be zero (or efte the
..uation would Po lorwer be uf second degree) , and Equation (i ) rlituces to

- Bxy f fb* 4. Ey f F , 0 B /.0 .

A



4 p

t
0' - /

The graph will bd"the union of two liets if

Bxy + Dm J- Er+ F

may be expressed as the.product of linear factors, or as ,B(xle a)(y + b)

Now

Bxy'+ Dm + Ey + F B(x + a)(y + bl for all x and y
6

or

Bxy +.10x + Ey + F = Bxy.+ Bbx + Bay t Bab for 61111 x and Y.

if and only if D = Bb and F = Bab In this case

te . BF or BF - 0 .

.
1.-

I C i and BF - DE, are all zero, ther;.---------

/
-

B D

B 2 C .E

--D E '2F

B
-B.

E .2F

o B D

B Q E

D E

1

I

".4- D 13'P . -B(?BF - DE) + D(BE)
0 E

= -2B-F + BDE + BDE -. -2B(BF - DE) - 0 .
. t

1
a < -'-.

In sumMary, if the graph a.secondtegree equittiem ig the;iinion of

twp lines, then the discrimin Ar zero. Me argument ich we have

developed are reversible, although e have not nttemPted to show this here.*

Hence,
.

the converse of the above s also true.,;If the discriminant of the

general second-degree equa lo zUro, the left member of the equation MRSr

be expressed as tilt product of linear factors.
0

We have not considered carefully'what lines, If Iv, theç factors might

represent. If Expresslon ((')) isra peeect square, .t1 'actors are linear,

bd% suppose that 12.'- - !AC 1 the cbefficient of x ;live? We note

that this is the condition when the characteristic b in posItive: In this

case the coefficients in the svare roo arv cainplex minters, us(are the

coefficients in the linear factor-II.. What. ort of 'Iir4es" could these frIcLors

possibly represent? We shall not attempt to explore his..question in detail.

It is sufficient for oar needs to observe tha even thomh the coefficients

V

are complex numbers, there still are real values which satisfy the ) respondini;,

oquatIons. For example, the pair of equations
p.

- ii
y 4- + i)x =L-b

,

y (4 - -

ss

1

4



haa the solution 0.1-0 . This is always the case fol" the linbar factors.

which we encounter here. The vulue of x whi.ch-satisfies Equation (6) is

real, as. A the correspOnding valu of i ., These reali values ari the

l' eSordinat fes of the Ixpin.(of inters tion of the graphsolof the corresponding
.

i

linear equations. Thusl\when the discriminant is zero and the chvacteristic
4

is positive, the locus of a quadratic equation is a point. It is not
, \

possible that the.linear factors represent dependen t. or inconsistent

equations, for the Coefficients of. x and y cannot be propoi-tional. (1Q,1)
,

..

\
If,both the dZEcziminant_and the characterIstic pre zerO7EXpression (5)

.

,
$

is a perfe,et square only if it reduces to E2 A 4CF (Whyll 'The locus of e

the equation will be emptyl.two coincideit lines, or two parallel lines

according as E
2

- L#CF is negative, zeroNr positive.
a

ei
If tfte discriminarit is zero and the chhraeteristic is negative, we note

0
' that E( - 4CF must'bq non-neOtive. Otherwise, 4pressibn.(5)%would only'

be a perfeet square if the coefficient qf 4% were complex, %$rhich is

. trIPOssible. The linear factors cannot represent.dependent or inconsistent

equations. (Why?),..end the locus of the second-degree equation-is two inter-
.

11160
secting lines. . ..

a

Example. Find the locus of 2x + xy oy + 7x - 7y

. Solution.. .We deterline tlkit t = 0 , and 5eek to 'factor the left

member of the equation by grouping the seebnddegree terms.

. ,

(2x 3Y)c. 2Y) f (7x 7Y) 3

By incpecti!on and trial we discover the factAS

Hence the quadrytic equation may be written

(:)x - y + 1)(x + + 3) :

- 4- 1)(x + 2 Y 3)

The incur, of the equa tion ts two intersecting lines. If we had not, been able

to find factor:1 in,this way, we tould have considered the evatiolf to03e a

quadratic equation In one variable, say y as above, and could have used the'

quadratic formula tp determine the factoro.

`I

'014



Exercises 57-8

,

1. ceterMine whether tile fo owing evationg represent ,degeperat cpnic

bections If so, find the Vnear 'Pelona; of the left meMber ahd the'.

4

6xy + 3x 7 8y - 4 '
2 n

2x oxy x + y - 13= 0

2
+ 9y2 -

2
2x

2
- xy -"h6y 0 .

2. If the discriminantof a second-degree. equhtion is zero, but the

:characteristic is not zero, 'why c'annot the iin4r fact9rs of the left .

4.

MP

member of the equation represent dependennr inconsistent linear

/ lequations?

3. If both the dis6riminant and the characteristic of a quadratic eguation
\

ime zero, sl.low why Expression 15) mUht reduKtO IN, must

the linear factor's represent .dependent o 1,nconsistent eque:tions?

P _..s

S7-9, Invartants of the pepond-Deii-ee Equation,
.

.

..

We,have made many observations'and.devised several tests for the second-

degree equation. W.0' have obtained these results wtth the eqlition written
. ft

in special forms. We shall show that the values of the characteristic 6.
.

r '
and/the discriminant A ,.as well as certain otIler"algebTaic expressions, ale.

,

dbt changed by the transfOrmations yhich N have used. We s 11 say that

these values are invariant under trn tioll and rotation of e .

i
We consider a translation of axes.as described in Section 57-7. If we

1(
denote the new coefficients by pndmes, wp have

AI- A

B

py ,C

Dr =. 21114 + Bk + D

.E' = Bh + 2Ck + E
2 ' ! 24

F' - Ah + Bhk_.+ Ck

a

545

Dh a F

i 95-



We note that A ) B ) C 0.A + C , an d consequently 6 are invariant. 114
*

sh9w that the discriminant is unchamied we consid;rr
. 4

2A' . B' D' 2A B 2Ah + Bk D

B'.2C' .E'. B 2C Bh.i-`.2Ck -,:!..E

D' .E' 2F' 2Ah + Bk + D ill + 2Ck + E 2(Ah2 +.13hk + Ck2+ Dh.4- Ek+ F)

We recall tha4t,adding a linear combination of several roys or colliVto.yet

'another row or columndoeS not cAnge the value of.the determinant. We first.

47 to make the Upper right elementebe D 4 We metiply the'elements of the

first column by -h ,those of tihe.secOnd colUmn\by. -k , and add the sum to
.. .

the third 9olumn to obtain o .

-.

4
2A B Q,

B
X

2Ah + Bk + D Bh + 2Ck + E ph +. ;x 4- 2F

To make the hpwer left element be D-, we multiply,the elements of the first

row by -h ) those 9f the second row by -k , and add the Eiiina torthe third

raw: Thus

2A B. D

a = B 20 =

D E 2F

.and we have shown the d riminant to be invariant under translation of axes*

*

Now we consider a rotation of axes as described In
P

denotd the new coefficients by primes, we have

L

A' .- A cos
2

0 B sin cos + C sin

Seqlorr7-6: If we

9 ,

in.0 cos 0 t913'cos - 6 + 2C sin cos 0-B' = -2A
c

- B(cos 0 - sin2 840 (A - C)sin 0 cc:is 0

13 cos ''() - (A : C)sin 20

A sin
2

0 B in 0 + C cos-10

4

D' D co 0 + E V

-D sin O + E coo 0

F' F.

4

) 6



1,

In 'this case the coefficients in 5' and PO become quite compllcated. '1de

wilf first consider cgtain simpler expreasions involving tkie coeffic%hts.

We shall then usj these "results to prove that. 6 and A re invariant.

We not7 that F is invariant. A + C is also invariant, for .

0. 2 % 2 . 2
+ = ( COO 0 I- sin e) + Ctsin .6 +cbs eitt

A 7, C)
24

+ 13"- is izvariant, .for-

= A + C .

4
and

IA

1

A' -'Q' . (A .Clcos 0 + 211i sin 0 cos 0 + (6 - A)sin2

= (A - C)(oos2 0 - sin2'01 + sin 0 cos 0)

C1)2

.

(It - ,C)gos. 2 0-.+ B sin a 6 ...

-, 2 2
rc- + B2 sin2 20.- Crces 20 + ZB(A - C)co44.-20 sln 20

) 2
P .

+ BL cos 20 2 2BCA C)cos 20 tin 24 + fA -
02 Sin2",.,

. 2 ,., 2 2
. . (A'- Cricoos' Po + sin 2u) + B sin '20 + cos2 20)

%IP

f= (A C)2 + .

AI so D. + E') invariant, for

Now

Since
is the

*2 2, 2
D' + E' D cos 0 + 2DE' cos

2-`
sin 0 + E si 0

D2 s1n
2'0

- 2DE cos 0 sin 0

) + sin , 0) +t"ksin-2T,2
k(u eels

D'
p

+ E

5 PAC - B2

.2
(A + - (A C)

CA c) L [(A 4- ] .

f

( A C find (A C) f 13- ',are iSivariant, their difference, which°

+ E
2

cos
2

0

cbaracteistic, is invariant under rotation of axes.
1

41 It reAips.to show thut,thC dieriminanti A is inVariant under

rotation.. We recall from Section S7.28, Equation (7) that

4 p

. Igo rewrite thit as
4

= IACF --2B-V + 21pE

- .?AE - PCD'

a

4
a

11

AD 'D

41.

*



.0^

a

. 4.
' 114

or A 2F(4AC - B2) 4- PRDE (A 71- Cr(4,-4- (A - c)(E2 - IT)

4

r

We have aireepaoteerthat F 14A - '32 r C EP + are t)
'n

invartaliphusl the fiist and. thi*rd terms are invariant.

shOw that.:,`21ND1' (.ily/C)(,E2 - D -

*
Now 2B7PFAI... 2 s 2a - C)sin 20)(D 'cos e + E sin e)(-;,p sin 0 + E cos 0

is invariant.

We stlil'anisV

. = 2[B fe.e.i 20 ;. ( din 20] 6-152 sin 0 cos g+E2 sin_0 *coSy0 +DE(cc:Err e- sin2. 43
-. . . ..,...

= [B.cos:e-.(A -C)sin 201 [tE2 - D2)(2 sin e cos 6).+2DE(cos2 0 - sin2 0)]
6 f I %

= 3 B cos aa = -(A C)P T '261f (E2L - D2)s'in 2e 11- 2DE, dos 20) .1

0 -

D'` -D sin 0 -1-.E cos O.)" ( 6 + E sin 6)2

= D2 sin2 - 2DE pin e cos +E2 cos2e -D2 c.082 e '-2.DE sin e cos e -E2 sin20

= (E2 D )c*os2 e - sin2 e) - 2DE(2 .sin (i cos 0) .

= (E2 - D2)cos ?6) - ?DE sin 20'
1 .

and .

Thus,
,r

- = (A `- c)cos 26 B sin 2e

s

J

.2B'D'E' - (A' -C')(g,2-D [B cos 20 (A - 2e-j[(E2- D2)sin ?et

- [B sin 20 + (A - 261[ (E2- D2) cos 2e - ADE sin 26]

cos- .e[m3DE - (A,- 6).,(E2 D2)]

+ sin2 [-(A - C)(E2 - D2) -+ 2BDEN

+ sin 20 cos 2e[B(ki - D'2) - - C)(2DE) - B(E2 - ,D2) +(A- C)21:),

4".

0
sin'"V +.cos` 2e)r2ma - (A -

.
= ATE - (A-- C)(Ff -

-A ' aft.

Thus the discriminant Of the second-degree equation is also invariant undef..*

rotation.

e
We note thilt if the u,i-aph'of the second-degree equation has a point or A

synirrketry, c5r represent5 a-c entral Fopic_, then after 14 translation of the

I-axes 14.hith,makes the new origin the,point of symmetry, the new equation is

A' + .131 xy +. 0' 4- F' = 0 ,
%

for whrt-h

0

a



0

4

III:

JetreAk

g_
,, --,

bat sinct 2( and 5 .Ie invariant under translation,-
: ifx

- , .., .

. . .

. ' A ' -
.

-

5
-

' -

2FI

,

FT. 26"

e

1

B 2C'

I

a.

.' Ana the frasforred 644t4On is
4

4- +-Bky
4 -

..,,
,

-

-

f 4

We half that ir the locusjof a secqnd-degree equation is.not

empty, their the graph is either a proper conic sec.tiori or A degenerate Conic

section. We hairdideveloped many metflods and criterih fer analyzing:drch

equatioris and have founa cgrtain invariants Called the characteritic and

ortant. We summarize some of these resultsdiscriminant,particularly

in theforM of a -iable.
ep

b - 0 5 > 0
-.

,A 0

,

interoectin6
lines

c

empty, or

parallel or
coincident Lines

point-ellipbe .

or point-;circle.

A / 0 hyperbola ex, parabola

'

circle, ellipse,
or empty

.

Example. Discuss the locus of

,
- 4xy:+ - )6x f- 18y 0 .

IDSolu 1 n Here A - -1.0,368 and 5 - 1411 .

Since B / 0 he locus May not bea circle, itidut may be an ellipse._

411

so the locus is a real,ellipse.



die

f
. #

If stibstitute coefficients in ti* eguations

b.. 2Ah +.16k + D ..pr

we obtain

Bh t B .0

. .$.

- 4k -.4 -=

a -411
,
+ 104

e.

k + 18 ..0
17-7- a

( , ., ..."a

which give-12 -1) ,s:the cenfer-of the ellipse..

The'characteristic equation. . e
.

...

2 . .1

, **- k .- 2(.f.. + C)k g,(4AC
. o ,

is k
2

-.26k + 144 -200 ,l.
1

f
..' -I i

which giArks 8 and 18. as tlie.charaqperistic vaXues.

These are substituted in ihp ezatigns ,..... ,
. .

. e.

2? t,Bp.= V.

Bi+ 2tii, ='1(41,'

, 4.

'. tA5 obtain . , 8) :-- ifil = 0 and .- 2? + 14 j 0
. .

.

.. j% + 2p. = b
..

4A + 8p. . 0
,

2
-

. .

which give

115

1 2
and A'

)5 )5
s pairs of dirVion cesines for the axes

15) .

of symmetry

.`
4.

'*.

*

(2AN + B

or
e

-
xs* 0 jilt_ 47

The translation of axes gives the equation

.

3x2, 4Ny + 5y.
,.

- 36 = 6

while Ae rotation of axvs througp an angle 0'- such that tan 20 .

gives the"transformed equation
1111W 4

= 1 .

Primes hal;e been omitted consistently in 07 interest of simplicity.

4

B
A - C
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Exerciset4740

Identify the graP1L of the following equatiths. Obtain the-trAlhafc?)rmed

.equation reduded to,standard form. !Sk7ich the.04aph, 11;cat,Ing the center

(if any) an4 indicate axesiof eymmetry:

2 2 /
1.. ox 12xy + 17y - = 0

2
2. jx 12xy - 13y

2
- 135 . 0

3. .5x2 - 6xy + 5y2 16x + 16y + 8 = 0

4101

9x2 - 16y2 - 20x - 11;y . 0

5. 9x2 24xy,+ 16y2 + 60x 80y + 100 =
a

6. 3x
2
+ 104 + 3y2 + 16x + 16y + 21+ = 0

7. 5x2 6xy +
52

- 16x - 16y + 8 = 0

8.
10272 13y2 - 12x 44y - 71 0

9. 12x
P 7xy - 12 - 4Ix + 38y + 22 . 0

10. 13x2 + 48xy +.27y2 + 44x + 12y - 77 = 0

2
lb

4 11. 9x`-' - 24xy + 16y + 90x 120y + 200 = 0

12. 10xy + 4x - 15y - 6 = 0

4

S.
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Supplement*to Chapter 10
. ."

GEOMWRIC TRANSFORMfiTION

e
810-1. Tsometried of the Line

1
4.

. In previ ous chapters we have seen examples of meitTingerof.a line ontb aof
line and Of a plane onto a plane. -Some of these had the property of preserv-

ing.the didtance between'any two poipts.and are therlibre ;ailed "esometriede"

.(fram Greek, Wog meaning same and'perpetv meaning to measure). Ttierefore,

in isometry, having this property, will mapjeny configuration Onto a congruent.

configuratiok In fa9t *this amounts to a definition of congruence. In this

chapter we Uant to nvestigate the isometries of the line and of the plane and

consider other typa of mappings or transforMations. *,

!

Let us consider in more g rali omty the isetric transformations of a

line.- Each point P with coo iIfnate x will be mapped onto its image point
0

P, with coordinate x' = f(x) . FUrthermorepfor any two points with co- (

.oi:dinates x: and x2 5 we have

(t) - x21.= ff(x1) - f(x2)1 .

f -I .

lie distinguish two Cases accordink as the origin is a fixed point or is not a

fixed point.
A

If zero is a fixed point, we have fe0 = 0 ; So that with x2 = 0 , (1)

t f ,

becomes

- 0 1 1Y(.x3.) - f ( 0) 1

or

1x1 = tf(4x)1

This implies that e her f(x) =,x or f(x) = -x In the fOrmereach pant

mapped onto itself and this is.called the identity transformation I . In
,

the latter we have a transformation which can be described as a reflection in

the point 0 , because each point is mappbd onto its mirror-like image with

respect to 0 .

r10



46"

a
* .

01
OPT zerot-not a fixed pOintp'it is mapped-onto some pOint:with.a nan-

.

zero Coordinate andNue can write f(0) = 0 . Thus with, x2 4= 0 (1)

becomea\

or

"

.01 = 1 fqxi .110)1 6

Ix1 = If( ) el
11

.
. .

This implies that either- f(x) - aillik or 'ftx) -"a = -x . The former is., . 4
.

.

f(xY = x + a whfch ia a translation and the latter is t(x).= -x -r a'. 'The..
'It trans!Orviion represdht,ed,hY' f(x) = -x 4-, a

,.
ean be described.iy saying that *.

the ,.z : 1- a any paint 'id-obt;kine,ii. by'a reflection in the oVgin followed by .a.

,.
' trans1a

,.

1,

: We now have
- I

THEOREM S10-1. An isetnetry of/the line is either

----)74 the identity transformation

(2) a translation

(3) a reflection in the origin .

or.(4) a reflection in the origin follOwed by a translation;

and conversely. -

. 4I
. Ate fourth possibility in TheoremS10-1, raises tHe general question of one,A

e
transformatiorlifollowed by another. If the first transformation is f and

' s ,
the second is g p we defimt the 2roduct or composite trensformation.to be.t*w

,

transformhtion

gf,: x = ef(x)1 *

where xl means that the:J:1ES oT x'"under. the mappin§ gf is x'

Az we have seen, the transformation -x + a is w,composite of
n

. f(x) = -x fellowed by g(x) = x + a since g[f(.60j = -x + a . Frob 46 de-

finilion. of an isometry, it seems reasonable to.expect that the product of two

isometrics should be an isometry% We show this,t4 be,true in the following

case.

Examine. Show that the translation

lation g(x) = x + b- is anA.sometry.

f

1 3

x + a followed by the trans -:



Qolution. We Lave

,.gihicti represents a
4
irsometry.

(31f(x)) = (x * a) .4- b = x + (a + b)

r.

translation.. *Thus the compogite transformaion is an P.

EXerciag0 510-1

By considering the remaining .ossibilitiee in s la. r fashion, show that'
.

/

.the composite of anaftwo isametries pf the line is again an sametry.

/ 'Irlb e' A, : .. .

..2. Prove the converie of-Theerem.-biO7l.

/11-

In the first exercis

.

above, it,was n ecesdarrto consider tranBatlon

followed.by a reflection. If g(x) = x + a -is folloyed by f(x) 1 the

fg fig(x)] =`-(x a) = - x

compoite transfornation is

was

This is certaini_y an isometry si4ce it is a reflectioh gellowed by-a transla-
.

:otion -a We see that composition of ansformatlons is not necessarily com-

mutative since in this case fg 4 gf Abyvver we cangenerate any isometry

by an appropriate sequence of compositions using only,translatiens'and reflec-

tions. It is not difficult to show that the isometries of a line form a group

since the operation of compeition is associative and to each isometry f

there exists an inverse isometry f
-1

such that f:
1
f = I . :Az 'we have

observed, this'group iv non-computative.

ISOMetries of the Plane

In previous chapters we considered two changes ofcoordinatesystems in

the plane called translation and rotation. Tte same effect canips produced by

mappings of the plane onto itself, which leave thp coorAnate axes unchanged.

The conttast to this is the previous approach in 'which the plane remained

fixed and the coord.ixite axes were changed.
*

-A

114



I

In this conteXt.i translation i; a mapping.of
1
the form.

(x2y)-4p (x'ly') = (x k)-. A.

A rotation is'a mapping ill which eacii point isThapped o4to a point thc.sam

distaWC'e from the origi These ppints detesmine rays fram the origin which

.form an Tgle in st ard position whose' measure is increased.by 0 .

I.

0

Figure 31,07l

Let ( r, ct) be a point P described ph polar coordinates-where
,
the pplar axis

41s the positive side of the x-axis The rotation mappipg can now' lie written

as

(r e)

In terms of rectangular coordinates we have

x' = r cos,(0 * 0) = r cos 0 cos 0 r sin 0 sin 0

#
x cos 0 -ler sin

y' =rsn 4 0 A- r sin 0 cos 0 A- r cos: sin 0

x sin 0+y COS

The proofs that these mappings are isometries are lef't as exercises.

1



lbe previous dfscliseio of reflection with respect to apoint sean be

eXtended,.to the plane. A rf1ection in the 'origin can bp defined by the

transfOrmation

)0,Y1) = WI

.

.

Figur la-2

'

,The descriltion 61 this transformation.is particularly simple in terms of

polar coordinates since P(r1) By uding the distInce fordula

'for the appcopriE4e coordinete isystenZy it is'eav. to vqrify that this tran-

foviation is an isometry of the plane. rrever a rotation of n radians is

the sa4transformation. This can be seen by letting e = it 'in the rectene-
1 .1.

lar dsscription of a rotation to obtain

x' = x cos n y sin it = -x'

y i = x sin n + y cos n = -y
4 *

or by letting 0 % in the polar description to obtain

4
The last ordered pair represents a point in polar coordinates which can also

be represented as (- 0)

.`!

1 G



OW

Wo noli.introduce another transformation whigh;can be describie a re-

flecti.on'Ain a line. The image of a point is tvand.by coestructing a terPen_
dicular to theAlbm and extending it Cui tici other side a distaned eval- to thel

:distance of'the pOint

1

The transformatibn equations r reNctions in .certainlites can be

.R ,

-

S.
/

gurSlO-3 74t.

I

t
written down immediately. For in tance, for reflection in ..4he x-axis,

we have

Figure S10-4

,For reflection in tht y-axis, we have

a(x'f) (-x,y)..

°

Sl0-5

E

04



Ub. can similarly defin; the produbt Of two transformations of the Plane

onto itself, end'again womld expect the product of 'two iSometries to toEi an

isometry. In fact we'will show that' any istimtry,of the piaile can be des-

)

cribed solely in terms of reflections. Thus the group of is'an'aetries ofthe

p1a4e with,composition can be generated 'from the set of reflections alone.

EXample. Find the isometry composed of reflection in'the 116 'x'7. 1

followed by reflection in the lii x 4 .11 ..Nir

Sokution.
f

Figure S10-6
0

The first reflection m'aps P(xly) pnto Pt(x',50) = + 2 y) and the

second maps (x'ai) onto (-x",y") = xt + 8 , y') . By composition of the

mappings, 1,7e immediatedhaVe

x" = + 8 -= + 2) + 8. x +

yq yl , y

and we recognize-tioRse as the equations of a translation which maiszach point

onto the point six units to the right.

t'

a

1'



Exercises SlOrp-2

1. Do the two mappings example commute under composition?
4

2. Find the quatiOns ti ddacribe'the MaPping of reflection in 'an arbitrkry
0%

vertical line 'x - h and in an arbitrary horizontal lihe oy F k -

Usl,ngExotcise.2 find the-compb;ite mapp1444 given bir.successive
e 1 4.

reflection in either ,2 bor izontal or 2 vertical lines.

I. What is the composite'mapping glven by reaeetion in the line\kx h
a

followed by reflec-Ition in.the line y

5. Do -61e mapiings in Exerciset 3 and

S10-3. Reflections and Isopetries
. .

The above exercises illuhrate the proposition that anytranslation or

any reflection in a.point can be obtained by a succession of reflections in

appropriate rines. We obsIrved previo4sly that a reflection in j) is

equivalent to a rotation of n radians, so that a rotation of IT radiaris

can be obtained by a succession bf reflections. Let us try to establish

further connections between reflections and rotations by describing a refle&-

tion in a line L in terms of polar coordinates. Choose the pole 'of the
, .

'coordinate system on the lane in which the reflection is to be made anci, et

the equation' the line% L be e = k , a constant.

From Prre 010-1 it can be seL that r - r and that a measure of o'

.4

is 0 I- (t, - 1,) ---, '.'0 - $ for this, particular,diagram. We can show this in

general If we-.15:71:Z with the angle 20 and subtract the arigle kt to arrive
-

te Under comPosition?

7.
at the terminal side of,the anglo . MIAs the reflection in the line L

.411I
0

( 1)

tilt mapping

)60

( )

, 20 -.1))

V.

A



MIR

FlEure 510-7 V %

Suppose we now carry out successive refleetions in two lines- L, and*N1

throuer 0 witb equations

reflections by

111,

1114

wherp

and

= 0 and t = 0 . By (1) we can denote the
1 2

(r1,0

(rs,o1) -ON. (r",0") (r'

1

2'32*. )

The composite transformation RL followed by Rt.4:. can be described as
-

YL
( Pit f)

0" = 22 - (20 - 2(0
2

- 0
1
)

) 2
lie recognize this.as the description of a rotation of 2(P 2 - 1

) ; thus
4

the cOmposite mapping of two reflections A'intersecting lines is a rotation.

Exercises 310-3

1. By Feversing the above argument, proye that any rotaEion is the product

1
of line reflections.

2. Using the notation oC the preceding.discusSlon, de e

4

561

Rm
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I. P

aare now inr,a7-vosition .to prove
..., ")-0 k

16 r ii. 1 e:TIMMS' . 4115rJAI101119 0; the inane is.compcised,pf 4:mpst three Ilne
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From Figare 310-8 we see there are tw o%possible positions foethe point

points dr intersection of the TAKs.les given by the conditiots

d(A,C) and d(V,C') d(B,C) FOor one position of the

transformation i., a rotqtion 0 about 0 ,;.which can be represented as 'the

product of two line refleCtions. For the other position of the trans-

formation is ttio same rotation followed by a reflection in the line through

A and B' , and therefore iu the product of three line,reflections.

e

1 g

"I(
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Case II. The lines 17

4

141

110,-.11
Alp' are parallel.

0
I.

Figure

Once again there are two possible posAions for the point C' s Consider

- .

the line L midway between the lines AB and A'B' . Then for one position

1 'of, C' , the triinsformation is a reflection in L . For the other position ef

C' , the transformation is a reflection in L followed\by a reflection in the

line A'B' which completes the proof of the thenem.

Sl0-4. Non-isometriccransformations

In Section 82-.2 in addition to the transformations of a line onto itself

called translation and reflection, the tAansformation's expqnsions and contrAC.-

tions were defined. An expansion is a mapping x x' = 0.4 where a > 1

and a contraction is.a napping x x' = ax where 0, a <1 . It is

apparent that neither of these is an isometry since the,origin is mapped onto

itself and the point NhOse coordinate is *1 is mapped onto the point

56.;
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(1.

whose cal6dinate is a but 11 - 01 / la - 01 . We may consider ihe oam-
.

Tositions of. these transformations ylth themselves and with isometries to

obtain a general oeiss of'transformations of the form

x x' = ax + b a / 0 .

known as the class of linear transformations. Az ve noted in Section S2-2; thip
0 set of lin4r transformatiorts with the operation of oamposition forms a'group.

The.idea of a linear transformation extends naturally to the plane by

.considering the maPping (x,y)--0.(x1,y) where

x' = aX + by + ht, lal + lb1 / 0 ,

*

y' =acx + dy + k y lel Idi / 0 y

We see immediately that ,:talis mapping is the composition of the mappind

(ax-+Nby , ax + dy)
)

iollowed by-the translation

= (x' + h , y'

Therefore wu coniider a subset of th'a sel\bf linear

plane, namely those transformations of the form

ormatiom of the

(x,y)--1*. (xl,y,) = (ax + by , cx + dy) yhich leave the origin fixed. This

subset includes the rotations and reflections in tile plane previouslY dis-

cussed in this chapter. One -of the things that can be done in general yith

this subset is to investigate whether it forms A group under composition. :The

fdenkyjmapping is an identity Sament for the operation of ciamposition.

Hence a given mapping will have an inverse'ir it can be followed hy a mapping

which will map (xf,y') back onto (x,y). . To find whether such a mappihg

existst,' we consider tiler composite mapping (x,y)--111.(x',50) = (ax + by, ex + dy)

followed by (xl,y1)--- (x",y") = (px' + qy' , rx' + sy) . We obtain the

mapping (x,y)-- (x",e) where

x" = p(ax + by) + i(cx + dy ) (ap + cq)x + (bp + dq)y
.11c

y" = r(ax + by) + s(cx + dy) (ar + ts)x + (tor f d13)y ,

amapping of.the same form. ads, given a,b,c,d, we want to
determine. .p, q r., s so that the composite mapping.is the identity

maPp.J.ng; that is, so that-.

ap 1- eq - 1

,bp + dq 0

[

41-ar + es 0 -

br + ds 1 .

--',, ,

v."



This is actually twto 14.near symtems each oonsisting of two equations in two

unknowns, which can be solved,to obtain

n.= =
ac - bc ! ad - be ad - be ac be 2

.

if ad - bc 0 . Thus, a Mapping will have an inverse if and onV'if.

ad - bc 0 . It is left as an exercise to prove thfat this set of transform-

tions is associative. We.aombine these resultEi in

THEOREM S10-3. The set of linear transformatelons of the form

(x0y) -11.(xl,yt) = (ax + by l'ox + dy)

where ad,- bc 0 formA a group under the operat4on of composition.

We now consider eXamples of linear transformations which are not
4

'isoMetries.

Example,l. Discuss the linear transformation

(x;y) (x',y') (x + 3y , x - y)

Disqussion ,We start by examining what happens to points on certain

lines 9npr this,transformation. For instance, a point on the x-axis, (8.10)

,

mapped onto the-point '2a a) which lies A the line y = x
2

A point

on the y-axis, (0,a) is mapped"onto the point. (3a,-a) y which, lies on the

1
line y = --x . If a point lles on a llhowhose equation. is

mx + by + c = 0 ) we can find a condition on the iloordinates of its image by

:

expressing x and' y ih terms of x' and y' and substituting in the

equation. From the equations of the transformation we get

(This'also shows that any point (x'ly') is the image of some xly). Thus

a point on the line is mapped onto a point (x',y1) such that

a(x' + 3y1) + b(x' - 2y') + 5c = 0

or (a 4- b)x' -4-1'(3a - 2b);r +.5c -.. 0.

which is an equat on,of a iine4 Hynce a line is mapped onton, line, and if
-

the line contains the origin (i.e., c - 0) so does its image. The imuces

. of other loci cud' 4oc similarly,determined.

U.,



tallple 2. Discuss the linear transformation .

(xly)--10(x',y') (x + y 2x + 2y).

Discussion. We first observe that thie transfOrmation does not/Welong to

the group described in Theorem S10-3 since 1. = Q. Hence it does not

'possess anlinverse mapping under composition. We investigate this transferma-

tion geometrically. A point (a,b) is mapped onto the point

+ b 4.02a + 2b) . This image lles on the line .y = 2x $ so that the plane

is. mapped onto asingle line inthe plane. FUrthermore, infinitely many points

in the pla'ne are mapped onto each point on the line y =,2x.. Thus the

mapping does not have an inverse mapping in the sense of assigning a unique

pre-image to each image point.
/

Since there is a one-to-one corretpondence between points in the plane

Jr and complex numbers, it is not surprising that mappings of the plane can be

related to complex numbers. Recall that if we have a rectangular coordinate

system, this correspondence is established by associating the point? (a,b)

and the comvlex number a + bi Thus any of the mappings we have discussed

so faF can be considered as mappings of the set of amililex numbers into itself.
t

That is, if (x,y) is mapped onto (x',y') $ we consider the complex number

x + yi mapped onto the complex numberivi + y'l Since functiens are

mapkings, functions whose domain and range are the set of complex numbers give
\ .

a mapping of the set of complex numbers into itself. For example consider the

functiomdefined by f(z) = 2z $.or the mapping z -111. zt = 2z, where

z -= )i+ yi and z' = x' + y'i . This PLctionpmaps x + yi onto 2x + 2Yt

which corresponds to mapping the point (xly) onto the point

(2x,2y) . .An investigation of this mapping is left for an exercise.

/7ac .%
.

We give another example or this ralationship.

,Fxainp1.e 3. Discuss the mapping definya by the equation f(z) = z2 .

DisCussion. Fran the evaticln we have

7,1 y'i = = (x + yi

Hence, in terms of coordinates the mappine

2
x x

= 2xy.

A
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4

We see from these equations:that the hyperbola x
F

- y = k. is mapped onto

theline. xl = k and the hYperbola2xy = k is mapped onto the line y' riAj.

(It is convenient to think of the functions as a mapping of the z-plane,

x' and y coordinates, into the z'-plane, with x' and y' coordinates.)

We also have

102 y,2 x4
, 2x2y2 + y4 4- 4x2y2 =

(x2 3,2)2

so.that the'circle x2 + ;2'.= r27-1n the-z-plane is mapped onto th'e circle

x'2 + y'
2

-- r
4

in the z'-plane. We see that intrying to develop a geometric

description of a mapping, it is sometimes more frultfUl to discuss e *ages

of certairirloci rather than the iwes of individual points. This mJpping is

an example of an important class d functions of. z knpwnlas conformal
. . 7

mapsiNfa which have the property of preserving the angle of iiite.rsection,of
r

'4WD ourves. This property is of fundamental importance iu the general theory

of functions of a oamplex varia1141 z In partimilar, polynomials in z and

their quolients will provide' conformal mappings.

Sometimes information about a mapping can be obtained by using the polar-

representation of a comAexAnumber. Thus, if 0 is the angle in.standard

position which contains- (xly) on its terminal side, we can write

z = x + yi - (cos 6 + i sin e)

where r = 17717 De MOivre's Theorem gives US

z
2

r
2
(cos 2e + i sin 20)

Thus, in.the mapping z z' 4'z
2

the point is mapped onto the

'point (r
2
,20), which gives.a general geometric description of Ue mapping.

6

Figure SlO-l0
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EXercises S10-4

1. Show that any transformation belonging to:the group in TheoteM 810-3 vill

map a line onto a line.

1 1
?. Discuss the transfortations (x,y) -111. (2x,2y) Tx0Ty

and (x,y) (2x,3y) by finding the inage of x
2

+ y
2

= 1 .

3. In Example 2, find those poidts which am mapped onto the same point on

y = 2x .

Shaw that the angle 'between two lines through the origin is preserve4;

under the mapping z z' = kz

5. Discuss the mapping zi-1. 4111 =

*7

6: Iind various tquatonc to represent the mapping called "inversion in a

circle," in *which a point at diitance d fran the origin IS mapped oAo

1
41 the point at distance 7 from the origin lying on the same ray from ?hp

..
origin. Therorigin is mapped auto itsalf. .

7. Prove that the set of linear transfermationi

(x,y)----s- (x',y') , (ax + by, cx + Ay) is associative

S10-5. Matrix Representation of Transformations

.In the previous section we saw thdt the proctact of two linear transfor-

mations is agaip%a.linear transformation. 'It is conVenient to Introduce a

notation to represent a,linear transformation

x' ex +-by

y' = ex + dy,

Since the coefficients of X and y determine the g, ve represent the,

mapping by the matrix 1

where a matrix in general is simply.a reFtahgular array of numbers arranged in

row, (tprizontally) and columns (vertically). Vitfivomposite mapping fg is

the mapping g folloWed by the mapping f . Thus, as we saw in the previous

section, the mapping whose matrix is

4



followed by the mapping whose matrix is

(

is the mapping whose matrix is

(pa + qc .pb qd

ra + sc rb t sd .

Hence, it in natural to define a binary operation on these matrices as follwes
4

DEFINITION. 4katrix multiplication)

+ qc pb + qd)

r s ra + sc rb + sd

Observe that each enfry in the product matrix, is the inner product of a.
#

,
row in the left factor by a column in the:right factor. Because of this,'

matrix mmltiplication can be described as "row into column" multiplication.

Example: 1.

rotation 0

Find the matrix which represents a mairppedescribed by
s

Solution. The equations of this mapping using rectangUlar coordinates

The corresponding matrix is

x' x cos 6 - y sin 13

y' = x sin 0 + Y cos 0

cos

(sin

40

Example 2. Usinvmatrices find the mapping composed of a reflectiOn

the x-axis followed py a reflection in the y-axis.

1

ution. As we have-seen, the equations for a reflectioW, lc in the

4

.are

= x = 1 x + 0 y

yi = -y = 0 x 4- ( -1)y

569 s
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;

so that the correspondihfmatiix is

o

. The

)\ 0 -1 .
,

% \ N..`k

eggations for a reflectionlitM \in ihe y-axis are

.30 = - '(,:61 )x -f. 0 y

with matrix

yl = y = 41, + 1 y
4 - 4,

Nr. 1.4

.d
(

The matrix for the composite mapping R R 4 is
Y x((-a. o) a. to)._ 7-J. \;t)

\ o I/ o -al 0 -1A,
,

a
which corre;Ronds to the maPping (x,y) -op (=x0-y) AThis as we have,seen

is a reflection in 0 or a rotation of A radians.

EXercisès S10-5a

(Ube Nthtrie)

1. Using the notation bf the examPle above, find R R
e X y

2. Find the matrix for

(a) reflection in ihe line y = x .

(b) reflection in the line y = 7x p

3. Find the-matrix for: and interpret geometrically, a reflection in the

line y = x followed by:a rotation of j radians.

4. Describe'the mapping which resua,ts frap a rotation 0
1

followed by a

rotation 0
2

.

"1r

5. Show that matrix multiplication is associative but not commutative.

*6., Show that the matrix for a reflection in a linp through 0 with.inclina-

tiOn 19 is

(cos 2 0

sin 20

sia 2 e

-cos 20).

570
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(Hint: Whilethis can be done directly:in rectangblar coOrdinates using

trigonometry, it is alao interesting to.solve the problem using polar

coordinates.) Verify that this matrix includes:the-previously discussed

n . 3g
cases y and radians.

Find the matrix.for a reflection in a line through. 0 with inclinatio

e
1

followed by a reflectio'n in a'line through 0 with inclination 0
2'

Show-that the answer agrees with previop results.

#

We have a one-tq:z136rrespondente between two-by-two matrices (2 rows

and -2 columns) and linear transformations of the plane which leave the

origin _unchanged. We,also see, by the definition ot matrix multiplicition,

that the product of two matrices,correlponds to the mapping coMposed of the .

Mappings corresponding to the Matrices. Mils, the two syStems are isomorphic

'in the sense that any Operations on Mappings can also be interpreted in terms
"--

of operations on the corresponding matrices. Henee Theorem Sl0-3 las'sn

analogue for matrices as follows.

THEORHA Sl0-4. The set of matrices of the form'
IL

fa

'.where ad - bc forma a group tinder the operation of matrix multi-

plication.'

The nuMber ad - be is called the determinant of the matrix and the .

matrix is Called non-singular if ad - bet 0 Thus the set in the theorem
of

is the set of non-singular two-byt-two matrices.

Since-we found the inverse of a mapping in the proof of Theorem Slb-3 we

may write the inverse 9f a hon-singular matrix under matrix multiplication as

b ad - bc ad - bc
d- -b

c dJ c a
ad - be ad - ba,/

We now consider the matrices of isometries of the plane which leave the

origin fixed. By Theorem 510-2 any such miriis the product 1 at most'

.-three matrices eaeh of which represents a refle'ction. By Problem 6 in Exi:rcised

-',910-5a, the matrix'of aVeflection in a line through the origin can be written
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a

sin a

. -

sin

-cos a

for:some a . By Problem 7 in tile same set of exercises, the matrix for the

product of two line reflections, which is a rotation, Can ke written as
0

for some,

p

sin p

-sin

cos p

. Since matrix multiplication is assoliative, the matrix for the

product of three line reflections can be written as a, reflection matrix tijnfli

a rotation matrix; that is, as

)(

cos a sid coi p -sin p.

sin a -cos a sin p Cos .13

.,--

for appro, priate a and p . This product is 413

4 -;..

..eir

a

sin

COS in a sin p

a COS

A

a

w

cos a sin p -cos a cos p - sin a sin 01.

sfn a .cos p. - cos a sin p

(cos 0) sin (a

sin (a*- 0) -cos' (a - 0) .

p)

Thui we haft the following theorem.

THEORMS.1.0:2. Any idometry of the plane with 0 as a fixed point can,be

represented,by one of the matrices'

(cos a sin a
.). or

a. -cos
47_

oos a

sin a

-sin

cos a

for suitable a .

Corollary S10-511. The.determinant of a matrix Which represents an

lAmetrynOf.the' plane with 0 as a fixed point is either 1 or -1 .

Let s be the set of matrices which can be written lleither Of the

fiermn
J,- j

.

sin a
or

cos a -sin

sin a 7cos a sin a cos a k ,,:-...(.,1

for some a We define two matrices to be equal if and only if they arie.1

'identical, that is, if and only if their corresponding entries are equal. -
,

Thus the same matrix may arise from different values of , but we consider

^



thematrices themselves and,nOt the valueS of 4 . As we have seen, each such

matrix represents an isometry:(either 4::line.reflection or a rotation), and

by Theorem S1O-50 any isometFy with 9 a flied point can be'rerpepented by

such a matrix.

The set s forms' 4.group, under the operation of matrix multiplication,
. -

which is a subgroup of the,group descrihed in TheareM.

1. Prove'that the Sei

$Xertisei (410-2 0

just deseribed, is group.

2. Show.that the determinant of the product of two'square _matrices of .oxiter

22 equals the prod4of their

Show that thve existImatr.ices

represent ,isclinetries.;, - ,

A

4 PYe, using the distande farMula, that an isemetryith 0 as a fixed

ermiinapts.

th determinant 1 or -1 .which-do not

point _t_pe ,a matriX whose determinant is 1 or -1 .

Any matrix in the set/ ih'egition to having determinant

the property thatthezum of the.squares of the elements in anY

in any column is 1 .!T*1,6yA that'if 4 matrix has determinant t 1 and.
.

has the sum of the squares.pf elements in each column (or in each raw)

equalto. 1 0 then it is &member of s .

or

S16-6. Symmetry

The symmetries of a geometric figure can be interpreted vary nicely in

terms of mappings. If a figure is mapped.into itself by a particular isometry,

then it has the particular kind of symmetry described by tWisametry. .1hus a

figure may have symmetry with respect to a. point if it is mapped into itself ,

.0 refiection in that point;_it May have symmetry with respect to a line if

it isalappekinto itself upon reflection in that line. The algebraic' tests

for Symmetry arise fram the equations of the various mappings.

Az yolikave seen, it is possible to simplify the equations of-yarious .

loci by using approRriate transformations. In pasticular it is possible to

eliminate by translation the terms involving x and y in an equation for an

ellipse or a hyperbola. Then a suitable rotation will eliminate the xy term.

Geometrically, 'what this'144 step involves is the determination of 4 suitable

rotation so that the x and y axes became axes of,symmetry.of the figure.



We now want,to solve this problem by MetIMS of the algebra of matrices. ,We

assume that, a suitable Aranslition has beep Elide go that the tziperbola or
*

ellipse has its center at tile-origin of a rectangular coordinate systeEt

Hence its equ4ion is

(1)

#11
We want to deterMine a rotation so.that the points.which sdtiafy f(xa) = D

will be mapped mho points which satisfy some equation not having an xy term.

Sincethe constant term is unaffected by a rotation, we consider only the qua-

dratic portion f(xa) of (1) . If we extend our-notion Of matrix multipli-

Cation slightly, we dan get a matrix representation of f(x,y) * We introduce

matrices with one row and two columns or two rows'and one column and define a

product of one of these times a two-by-two matrix.

f(xly) = Ax2 t HXY Cy2 = D .

(c d (y

a fax 4-

cx dy

. b fax cy

Y d bx dy

(P .0(:) =(Pr cls)

Notice that the one-by-two (or-two-by-one) matrices must occur in the
-

proper position but that the multiplication is still rcw into column multipli-

cation. We now aasociate with f(x,y) the matrix
,

'
c

2

C

A

and verify without difficulty that

(2) f(x,y) = (x y) B

-ye can similarly express rotation 0 as

(3)
( (

x' cos 0 -sin '0

5r, sin 0 cos 0

574



By Theorem SlO4 this rotation matrix bea an,inverse. The Equation (3)* is'a'

statement pf equality of matTices and hence each mamber can be multitplied an.

the left by the inverse matrix to obtadn equal'matrices.

(4) ('

Ms S sin e x 1

-sin e cos e y' 10
/

(This assumes associativity of a matrix product involving non-square matrices

and'the proof of this is left as an exercise.)

- From the definition it is not hard to see 'that if

\....

(ax + by b X

CX + dy o, ',.. y

(ax + by ex + dy) y) (:

Thus from (4) we have

el

(x = y0
e e

in 0 .cos 0

Substituting (4) and (5) into '(2) we see tht4 5*.el rotation Will trans-
-

form f(xly) .into

gix1,50) =

JWe now war to determine 0 so, that

5,4)

fyt

50)

(cos e -sin e

)
sin 9. cos 6

4

A cos 9

-

tose sin

ain cos

- 2 sin 0 cos e

BnO + cos e 8211

B'
A'x'2 + B'x'y' +

I

)

-C sin e cos e sin e

4-c one 0 sin 0 cos e

remains uncAlged when

is replaced by -x' and Also when y' ib replaced by -y'.., This will

oc if g(x',50) does not have an x'y' term.

e coefficient of x'y' in g(50,y9 is

2((A C) in e cos 0 - tsin2 e - cos
2

e)1

(A 7 0 sin 2 + p cos 2 e

575
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Thus r-.1 0 if

air= radians, When A = C

A
B- when A C
-

In Chapter S7 the iattdr migle e yes arc tan B s since there,

the axes were rotated, wheTeas in this treatment, the axes remain fixed and

the plane is mapied onto itself. The calculations hene'do not differ fram -

those in Chapter S7s but it is of interest to see them carried-mit in a

diffei-ent framework.

We .maydaiso use this approach to prove that the determinant of f(xa)

1 4

which is Vr- is invariant n'ot only under a rotation, buI also under any

isometry which leaves 0 ilxed. Fer this we use the fact that

fa

.1:14)(13F (Pr cls)F

-

which was shown in Problem 2, EXercises S10-5b. Thus if M is the thatrix of

such an ieamety, we have

B1
2

A'C' - 4-- =
(:

IA

:-)1.

B
2

= AC - since ad -

Exercises S10-6

1. Describe (in terms of reflections

alone) the isametries of the plane

which in addition carry the outline

of a giVen rectangle into itself,

b

c d)

1

v

I-1. reflection in y4-axis (xat) (-x,Y)

1-2. reflection in x axis : (xly)--0- (x,-Y)

1-3. reflection in the origin 14,91-) -x,-y)

-4.. identity (x,y)--4- (x,y)

I-1 followed 1-2 has the same result as I-j.
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2. Describe(in terms of reflections

alone) the isometries\of the plane

. which in addition carry the outline

of a given scipare into itself,

I-1. reflection in the x-axis

1-2: reflection in the y-axis

1-3. reflection in the origin

identity (x,y)--- (x,y)
-

411a,t1 addition,

(-x,Y)

(x,Y)--- (x,-y)

(-x,-y)

F-7 1
I.\-N

I

I-5. reflection in the 45° line x,y)--- (y,x)

1-6. reflection ill the 135° line (x,y)---

3. Describ'e the isametries of 3-space:which in addition given cube

into itself. 4

drip
1

a


