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C - 6-1. Introduction ¢ - - R
L We have by this time made & beginning in the ami:sm of sets of
poi.nta and their anmalytic descriptions. We have introduced gnd used variocus
coordinate systenps, h‘e have used parametric representations, fimling theq -
particularly ugeful in physical applications im‘olving rotation or other
motion, and in 1oqat1n3 positions on g path. Nov we investigate more of the
details and tryto develop more competence (and confidence) in-this powerful
_ language of analytic geame‘t.ry ‘ o ’ . o

a

. 6-2. Genera.l Principles ' ' .

. The study of snalrtic gecmetry has two :1301- concerns. One of these
. fs the relation of geometry to algebra; the other is the relation of algebra
' to geometry. We must, therefore, consider two basic situations. '

* A. Ve are given a set of points. . What would de a good e
representation of that set? If we had two sets of points -
would their geometric felationahips ;:e revealed in thelr ic
representations? (geavetry to algebm.) \ ) -

B. We a.re' given an analyfic representation of s set of pointe. What
can we now say about the geometric properties of that set? -If we

N ‘ had a.nalytic repregentgtions of two sets, how could we use these

‘ to reveal and develop theirlgemetric relationships? (algebra to

geometry.) -

-

e Th the first situation ve mist distinguish imediately betueen the cases
' we shall treat in this text and those we Aedve for later work. If a set of.
points comes,to us, say, from a chart of the resu.lts of -an experiment or a
curve drawn by an antmaﬂ.c recording device, it might be useful to have a

‘ . simple analytic representation of that set. We do not treat such matters in

1) _ this book, although they have important spplications in ‘cieh‘ce., and are the

, " subject of much current mathemstical research. » '
Q ' Ty 201 e .

. .



6-2

The sets of points with which we 8 concern ourselves nmst come. |
alread.v structured by some gemnetric condf\tion or property. Our ‘task wil!l
be to trazaslate this condition into ammic terms through our choice of T~
‘coordinate system and mode of. algebraic or \trigonmnetri¢ representation.”
For example we may be interested in the set|of all points equidistant from
two given points. What type. of coordinate . l(stem is best suited to describe
‘this situation? Can we simplify the descrip{ion by a wise -choice of axes and
anits? ' . . _ - ° .
Qn the other‘hand suppose we meet the eigfession 2x + +520. .
L. What set of points does 1t descrive? s it & &onfiguration can visualizet . '
Wha.t are its properties? ., | :

\ \
. v

In this second situation the variables come to us already named, and i
context and notation usually indica®e the type of coordinste system and the
choices of axes and units. "The analytic representation may exhibit some
special algebraic or trigonometric pmperties whiésh we expect to see reflected
in certain geometric propertieg of the corresponding graph. We do not define ’
the general term, "property" , but illustrate and comment on thoscf we shall

. consider. . . X .
?

»s

.
L

N _ Example 1. Discusa the equatim\ y = si:x and its gre.ph.
. ) . ) . / -4

; Discussion: We assume that the domain of vx 1s the set of read numbers-

{ and note immediately that, whatever the value of x, we ‘always have [yl <1l .
* If a graph of this equation were drawn on the usuai recta.ngular coordinaté .
grid the geometric interp tion of this statemént is that the entire graph

is ' contained in a é:brip wo units wide, centered on the x-axis; and of =«
infinite length to' right and left. We sometimes describe such resjzictipns?\L

sides.
Any ‘comment iné.ica‘ting what regions of the plane may or may not be occupied

on :.the graph by saying it is bounded above and below, but not at t

by ph is part of the discussion of what is called the extent of the
.« . .S:pai)h. X Ty - , s A. a
we fnbte also from the given relationghip, that for each value of X
there {s a unique value of y , but’not vicé versa: .That is, ¥ 1s e.xp{essed

as a function of x , but x 1is not a functicn of ¥ - The geometric
version™sf this cament is that, 1f the graph wére drawn on t.he usual
rectanguler coordinate grid, each line parallel to the y- axis would intersect
the, graph exactly once. What can you saor about iﬁtersections of the graph
‘with lines parallel to‘the x-axis?- . - -

\‘l' ‘ - 02
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* We note afsc that, since sin(x + amt) = gin x for integral -values of |
,othe ¥ valuee will repeat’endlemhr throuéh the range -1<wgl . '
We say in this case that y isa geriodie ﬁmcﬁion of x . If,-in general,
f(x) so that, for some £1xdd p ;4 [} and for all x ; f(x +p) = £(x) ;
then we say that y 1s a periodic function of Xx . In that case
L £(x + 2p) = £((x + p) + p) = £(x + p) = £{x) .
‘I’herefore, foﬂsuch functiohs, f{x++ np) =\f(x) for integral velues of .
If p > 0 .and there is no smaller pesitive number which eatisfies the
'reqpirement» f(x + p) = £(x) for all X then ve say thet f(x) isle
periodic function of x, of period E o . ‘.

Speeificelly, ; y = sin x 'is 8 periodic finction of x. of period ox .
What-are the periods of the periodic ﬁxnctione, y=cosx and ¥ = tan x 7 .
'Note that it is the function which is pericdic, nqt the graph. A-particular
mnction may have quite different‘looking graphs, depending on our cHoices ‘
of coordinete eyeteme .The periodicity of a functior may be more readily o
~geen in some” graphs than in others. The graph in Figure 6 1 can be inter- ‘

preted to give the same ‘information about ¥y = sin x 8B j&s given when we
,smr that, y is.a ’bounded (peried.ic mnc-bion of x‘ of period 2n . What ]
other informtion about the function can be inferred fronk_the graph? ’

' ! \
.

. Figure 6- . > _ X
. #’ | | .
We have chosen ythe usual rectangular coordinete system, using x and

+'y 8s sbscissa and ordipate respectively, and* obtained the familiar and= ‘L
"beautiful sine curve. Do you see “the relation between the shapé of thie

curve and the related words: - sinuous, M4 instpuate?
y
- _) g t l 1
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We could have chosen a polar coordinate system for a graphic representation
of ¥ = sin x . : We may expect a different looking graph on a differemt gyid, .
but we Ehn&ld expect also to have some geometric counterparts' of the algebraic
- ,
properties we mentioned earlier. R . .

When we use pola.r ¢oordinates we custu?.rily use as varj.ahles not x dnd
y but r and 6. r 1is mwaneasureofthe polar distance to the point
iJe) ,and @ is & measure of the angle betyeen the polar axis and the polar

through- “(r;8) . In this context some muthors say that r 1s & Measure
of the d:i.stanee or mdnlus, and that @ 1is a measure of the _m, or

E&itude . . ,
' ]

A stmng note of caution mst be made in dismmsions of polar graphs of
eq_uations. From. the faet that a point does nnt have a unique representation :
in polar coordinates we expect that a set. of pointsom&v have several, perhaps
quite dissimilar analytic representationn. Any discussion of the relation . *r
: between a grﬁph and its analytic refresentation in polar coordinates must take
account of this lack of ‘uniqueness.** We rmember that a point .18 on the -
graph of r = #{e) if P.has at least one pair of polar coordinates which
satisfy this equation: Thus. the point P= (10,5) is on the polar.graph .. oo~
of r =20, because 10 = 2(5) , but the same point could algo have been |
located by the coordinates (10 5+ 2x) ,,or (-10,5 + =) , or others, where
the coordinates do not satisfy the equation Jr <20 . '

.

),‘ The polargraph of T =s8in 8 1is ' _ ';‘1.
given in Flgure 6-2. “can you now . ([,.;.) : - -,
interpret thesgraph to show that r '
is a periodic bounded function of 67
We may note that“the related polar
eq_u&t:km for this graph is

T=-sin (6 + n) = sin 6y, hence is

: Vg
« ‘identical \iitf{ the originél pglar
equation. |
3 . K]

F:Lgure 6-2

.

Both Figure 6- l and 6-2, which are graphic representaticns of *y = sin x
exhibit.'a gemetric pmperty {called symmetry. The &lgebraic counterpart of
‘this property will be discussed in detail after the fa}lawing exercises.

o ( (‘ ) T &’ / f‘

e a © ey
. 10"201}‘\.5.‘.‘,
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L TP -.' . x'xnrciaes‘ 6-2{:[‘ .
‘\Give bounds rorthemphaoftnefmm.ng equations.
. (a) y=2n1tfx.. (£) ¥ =0.6stax+0.8cos x _
¢ (b)) y=sinax* - (=) y:.ﬁsmx+3cosx‘. o
(¢) y=2-5in2x "(h) y=aeinx+Ddcosx
7T () yezetozx © . (1) 'y = s10® x - :

- ~——

4 + 2"sin (3x+-;-) (&)'y:sinex_- cos® x ° -
]

n
-

e ‘-(e) y

2, Express in \erms of & ;-b ,[c—,\d the" uias,andtne period of -the
.gmph of y ~a+b sin (cx ¥ a)

¢

~ e

* s

6-2(b) Symmetry | . ] -
. . The ‘graph. in Figure 6-1 1@ symmetric with respeet to the.origin (and’
B . m other points), 'and to thesline X = % (and many other lines). The

graph in Figure 6-2-is symmetfic with respect to ’qhe point ('é" 5) , and to

‘the line 6 <% (and many other lines). We shall concern ourselves with only

-~ —

the types gf symmetry you have already met in earlier courses. H’e*ive their

k] N

definitiona here for ,the sake ‘of eompleteness. .
( 8 is

. Point Symmetry. Given a set of points 8 , and a fixed polnt, X
¢ symmetric with respect to M 1if, for each point P of 5§ there is a .
» corresponding point P! of 6§ such that M 15 the midpoint of TP . (The
- point P' is mue'd the point- t¥c. image of ‘P with respect to M , or,
- ( when the con‘text makes the mfex:: clear, the image of P with rgspect to

L)

‘M.) - L ) - 1'

Line Symmetry. Given a set of points 8 , and a fixed line L . & if
symmetric with respect to "L if, for esch point P of S .there is a
eomspending%‘om Pt- of'.§ euch thet L s the perpendicular bigector
of TR . L ie sometimes called an axis of symetr[ of the -et S , which
may have more than -one sych axis. We sometimes borrow teminology from {he ‘
applioations, and call L an axip of reflection, in tha.\‘, case we may slso ,
call P' the réflected image of P uitp rés?;bt. tcﬁry or simply-, the
. . reflection of ™ in- L . “" r .- ‘.-a. r /«:

. - ' ) R s

. | | 0 205 11. ST ,
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In rbctamlar morﬁtes e nreadj.ly establish an alsebra@e test fo;: .
o aymatry with regpect toehe ergin. ’;The Jpoint P, « (xl,yl) has the x.ﬁase .

= (_xl,_yl), vith rgspect'to the rigin. I‘f P, 1s on the graph ot S

. f(x,y) = 0 then f(xl,yl) %0 . -If the mp?x is symetric with re&pect to
the origin& for pach poini: .ﬁ -n(x‘l,y ) ron it, the graph must aleo contain ;

\ 22 -
tbe\ point 1" = (-xl,-yl ) . That fs, “4henever f(xl,y'l) =0 we mnst alsQ

nave f(-xl,-yl) - 0. This ylelds our test:

*

. -

. The graph of an equatiod in rectangular codrdinates is symmetric .o
wiﬁ_t; respect to the origin if an equivalent eq;uaTion is obtained by
rePlaeinS (IAY) by ("xp'y') L I . : . .

- .
*

- . A-

R . We may now test the eq’stion ¥y = sin X , vhich may be written : oA
¥y - 8in x = 0.. If we designate the left member as £(x,y) , W& have:
£(ex,-Y) = -y ~ sin(-x) or- -y +sinx, or -(y.-sin x) , or -f(x,y) .
\ This is-clearly equal to zero whenever f(xJ) 18 “equal to zero; therefcxe,
- the g:aph 1s symmetric with respect to 'hhe origin.

- As 8 seeond example ve may t;est the eq\mt.ion ¥= x3 vhose graph is-
ealled a eu'bic para'bola. . Tf' e write tWis equa’tzion s Y~ x3 = Q a.nd
- wall the left‘mhe;- £{dy) , then we find f(-x,-y) = (-¥) - (-x)3 = -y + x3

s = -(y - 3) = -£{x,y) Clearly this is zero whenever f£(x,y) = 0, thus
ourf‘est‘for symetx; is satisfied and the graph is symmetrid with respect
to the origin. . =

L

&
) The test for symmetry with respe to any ot M = (b,k) other.
tha.n the origin, is not at .all d.ifficult tSut will not be preaented here. if
a curve has’such synm‘&f'y we ean usua.lly find a simPler analytic representaﬁon
for it aﬁ we ulle the center of symetry as'a new origin.

‘8
N
3




’ ; ‘ gymnetry* vith reapet:t to the ms.‘e LA
. ‘m:.epoint -P:: (x,ﬂ h&stﬁeimse

Q 3 ,. t: | .QUTQ J.Ei‘

. . 3 _!‘- 1 .
e . :n (-x,y) with regpect\to the - ©° '~ ':,_____‘L_e _____ *.(x,y)
o e . . o N B
_ Y0 y-als, aud P"‘a (x,—y) th respect ‘Q_"‘*’)N-’_ : ! -
T .tothex-axia._ ' - . i 1 -
T ' ' - -0 . : e x-
s LT Thege 'relations- lead,to our. test. O N W
LR ' . B - " :
I * 3 t'he graph 1e exmetric with redpeet . e -2 - ‘ ‘3: ‘”‘-‘
. ) . ' ~ P ' ‘
e tothey-a.xis, tpen-, fnreachpoint - e v :
C “P, = (xl,yl) on’the graph there t A S .
* be'a peint ?Pl' = (‘xl’yl) aleo on *- : ~.’ - Figure.ﬁ 3
" the graph; that 1s, if u) = b ,.80 also st £(- "1”:"1) =, o ’ Thia‘
' " means that the equations £(x;¥) =0 an‘d f(-x,y) =0 gme‘b be eqagvalent
. equations. We show that the graph of y = sin x 1n r’ectangular eqorinateﬂ
R does not have this type of symmetry. This equation ea.n be written as.
y --sln,x,= 0, or f£(x,y)'= 0 . Then f_ﬁf-x,y) is ¥ - sin (-x) or .
* 'y + 8in x , which clearly need pot equal zero when f(q:!y) y - sin x does. ..
The test for’ symmetry with re%"pecrt to the x-axis is enalogaué end we
summsrize these two tests: =
. ' - N - . . ‘.
‘ ., The graph of an equation in rectangular coordinates ‘s symmetric
with respect to the R T
(a) x-axis, if an equivalent equation is obtained by replaeing
A(x;Y) by (xx Y) 3 “ '
X (v) y-axis, 1f an equivalenf equation-is obtained by xeplacing .
s - A .
Ax,¥y) vy (-x,y) AR ST
- ’ ) - 'y ‘-( ] .‘_ . _Q':’ j.
3 It is quite po&sibl for a gréph to be symmietric with respect to both
axes. The greph of x2 fhye =36 1is en'ellipee'ah& i£ exhibits such
) _double symmetry both algebraically and geometrically.
!- - . ‘
.
. - v
=S . : .
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Ir -y ee.nbeexpressednsane.mlidtmnetmﬁog x,ynf(:)k, '..

wchthat f(:) qontainsonh'evenpomsof x thmwsqtht 'y s

.+ dn even function df “x , emd.redognize that tthgrapﬁ 1o symgbric with Tespect .t
4. tothey-ms. o

'

Ebte.tham'the

e

3x Y=

.

of x,or X’ asaﬁmctionof ¥y .

as “two (even) ftmctions of x, the.t 15, ¥y = 5-66--.: and y = -% - x

Jx -3::2,.;;" 2:

o
¥ K
* *

Scme exmnples of even functlond of ‘x aré: -
& \

2", f.
--6‘,
- X

tion x° +h:r =.36 ﬁnesnotderina gr asaﬁm&tion

?

Rather, it yields e:cpressiona for y

The graphs of these i’unctions are semi—circulax arcs each of which :Ls,

fact, aymetric with respect to the x-axis. .,

Where x and ¥ are related i.mplicit}.y

we msx atill use the concepts above.
of x then £(x,y) = £(-x,y) , and the graph of f(x,¥) = 0 will de
Thus we may stm relatethesymtry

symetric \d.th respect to t

y—axis .

23N

If f(x,y) contains

ax"ggaticm

x;Y) =30 ,

-

even povers

of the mph to even functions even when thegse functiom are 'j.mplicit.
examples of even implicit functions are: .

4 2

'(a) xey +xy =10,

&

L

Some

whose graph is symnetri.c with respect to the y
y«axis but not the x-axis,

<

the x-axis but not the y-axis;

(c) xeyh+ Ex + 3y

" both axes.

Note that the graph of x° + ly®
Qr.igin also, since f(x,y) = £(-x,-¥) .

& -

=4,

-

~

14

.

A

f.

Loy
"

te

(v) xy +33qr +2x=0,whosegraphissyﬁetricwithrespectto

wvhose graph fs symetric with,respect to

= 36 1is symmetric with respect to the

Which, if any, of the. graphs of
8, b, and c , abovey are symetric with respect to*the origint

»
O

¥
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Symetry u:tt.h respect to otaer lines vill gt be aenerally discussed
- here, Yut' there is a ai.nple ‘test for symety, v:lth ?espeet ‘to the lines Which

©° Djsect the e.nsles £érmed by the axes. . y
' These lines are L]. Y=x, and ) L P .
4 ' N L. s
N - . ‘&1.!3 ‘ *
1.2 y s =X . The :eflection of : SN, e
S AN K
TN P = (pr) in L.l. 13 Pt = (382‘) , 7 \\‘ ‘ ) }f“ \\’&' )
. LA - D \Ba¥i-
© - endin L, 1s Pt = (-y,-x) as may : N o
. - N R
- be seen in tHe figure o )F\ s X
. - ¢ . . . Pk h / .
S . ) The ccrresponding tesﬁ follovs o " ’.,/, : ,’\\ : -
. ' [ p N f
* . as before and may be stated thus: L7 - ‘,’ AN
" . -t \
' . | . . - .
'. ! | ‘ v B
. : . (-y~x}' . '
. o 3 - Figure 6-4 -

The graph of an equation in rectangtziar, coordinates 1s'symietric with
* .. . 7respect to the line, -
(a) y = x, if an equivalent equation is obtained by repl.ncing

(x,7) vy (¥,x);

() y-

.-x , if an equivalent equation is obtained 'by replacing

(x,¥) by (-y,=x) -
Exmnples-

$

. -

.

‘.

-

i 'I'he graphs of the following, equatitms are symunetric with

respect to the line ¢y = x

E

(a) xy =6 ' ’
(v) =‘x3 + y3 , : o -
111
. 2 3 3
< (¢) x" 4y == ' '
X (@) x+y<10 ‘
(e) x2+y?-6x-6y=12.
2. The graphs of the following equations are symmetric with- )
'\respect to the line y =.-x ;
. (a) xy =6 g «
‘ (b) y=x+3
5 () @+yP-6xrby=10 °
\j ' .
(8 s =3 +xy ¥
(e) ¥y = xeye + x . ) )
. * /
' Al -~
9 15
.

.



"

If a grgp;x has'an axis,.of symuetry parallel o the x-axis or the y-axis
St it oy have a plupler snslytic representation if we use ney coqfdimates
based on this axls of aymmetry. Such trangformations of coordinates are
» considered in detail 4n Chapter 10. Teste for symmetry with respect.to
“other lines thap.#ofe memtioned sre available, bt they arg beyond the
‘scopMof this book.. ' ° ' ‘

a
r

SR These comments on syﬂmetw«in.rectangular coo:ﬁinate) haye their

+® counterparts in polar’ coordinates. Point symmetry with respect to ‘the pole '

req_uires that the grpph of f(r,8) = O contain, for each point P = (r 1-,91)
(o | y
the corresponding point P (-r TN ) . This ogndition will be satisfied

“if £(r,0) 1is an’ even function of r . Note that the condition is °
sufficient to establish such symmetry but’it 1s rmt necessary. . Thus, the
greph of r =5 1is a circle with radius 5, and ‘it does « have such-

symmetry, but this equation does not define an even function of r . We will

not analyze the 5enera1 situation, but note that r = 5 and r = -5 are-*
related polar 'equations for the same circle. These equations may be writ‘ten
as r-5=0 and r+5=0,andthencombinadasin()hapter:ﬁby r

multiplying corresponding members to get 2. 25-0. This equation does
give an even f‘unction of r and its graph, which 1s the same as that of
=5 and of r = -5, ¥s therefore symmetric with respeqt to the pole.

The point P = (r,0) has, as its image with respect to the line
containing the polar axis, the point P! = (r,-6) . We will not treat line
symmetry in general, bdut we note an easy test for symetry with respeet

”~

'\__ to any line through the pole, say- the line 8 = . In this case the rolints
P=(r,k+a) and P'= (r,k - @) are line-symet. c inpges for any value
cof a.

P
plrken).

! »
Pl’f' ' -
- (r,k-a)
e ) —
* / ,
Figure 6-5

210 r



’%stateatestforsuchsmem R
- Thepola:graphntaneqtmtiopis"symetncwithrespectto e line
8=k if, an equivalent equation 1s obtained by replacing (r,k + a) by
c (r,k a) . In nart’ieular, the graph will-bde symmetric with respect to the
. " line along the polar axis if. f(r, 8) = £(ry-0) . -

; )
. These smml& sgain be recognized as suffieient but not necéssary
conditions Si.nee we~have 1nf1n1t.ehr mguy polar representations of the
Bymetric pofnts. P- and P' | we could Have in.fini‘bely many* t.est for Buch
aymetry. The. test we have presented is the.simplqit to.apply, and, with .
the contept of mlated polar e‘q_uations, is ade@e.te fox' the work of this
course. - : .- C. '

- L]

Efvegobacktoane@ationfmmmplel r = sin 6 , we may write
{6 T-6n6=0, and cill the left mezber of this equation f(r,a) _The- °

'diagram there suggests thst the 1ine 6 = 5 is ¢n axis of symmetry a.nd we
(] £ £
ccmparez f(r, +a) and f(r,— -a) - _ The first of these becomes

) T - sin(— +Q),o0or r-cosa. The second of these becomes .- sin(% - a)
. .’. v . . o
or r -‘*coe @ . The identity of these expressions establighed the line

- symmetry of the graph, as indicated. We may have stated, in corresponding

manner, that the poimt P = (r,-g- + a) is on the curve if and only if the

4

. : : :
corresponding point P?' = (r,X - a) 1s on the curve. This is, in effect,
a [

-~

‘uhat we have silown. ‘

.

| - ’ ¢ !
2 .

P : Exercises 6-2(b) -

1. May a set os points have two centers of symmetry? Discuss jour answer,

with examples.

2e Give*an example of a spt of points -thich has exactly 2 axes of symgetry;
sxa.etl:f 3; exactly y . :

P

1]

3. Giye an example of & set of points which has en infinte pumber of axes
g of symmetry.

4, If a- graph is symmetric with respect to both axes must it be symmetric
< - with respect to the origin? Illustrate. :

5. If a g;aph is symmetric with respect to the origin must it be symmetric

X

with respect to both axes? .. /‘k
g . 211 b
Q. | 17
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(Q)5:+y3-16 : .
(v) B iPexry "

' : - (ed y:x-,‘al: +5:;6 ']

(amh+q%-ﬁé+ﬁ)

N ’ () x2y+:w¢1 |

L * s . 5

T3
%
A r

: (f)_ "(I 4"1"):? +F2Ax+y) =1
: T ()
A ‘ . o » . 2 « 2

. (B) x +y° =¥ +x3

x2'2 + y z X + rya

(3) S+y"=1 0

(1)x+

‘(1)rnain9v S
“(m) r=2+4m(9+g) | 'f’;

(p.) r° cos

(x+y)es=+y)=1

6. mmsmmmd@mmmxumummmmunﬂ. ,

I

(k) ‘x:unef | L

v 6 P Y K ‘ ) o
IS eemr—— * . . 3
'E) T=T+cos 8 _ SRR I
. ‘6 e i . fad . _-.l - ,‘.

-(o).‘\r‘g - _ - . . i - - ) ',.

‘ L]
3 - 005(9“@). .
2 a_é.-"m .
() *° =sin20* - :
, - -

(r) -»=281n 36 °
(s) r

(t). T ¥>a +d sin’e

I

3+2 cos(8 + 3)

¥ . . - '

’ - Challenge Problems ST c r
1. (For adiscussion) By amlogr with line eymetry in two dimensions,

congider s‘ymetry with respect toa pla.ne in three dimensions. We

are familiar with our reflected images in.a mirror and accept thefact

o " that there is a "reversal” of gome aor'bi The reflection of my riglrt
hand is the "left hand" of my reflected image, Wy is this rewersal f‘ e
only left-right? Why is there mot also a Teversal of top-bottom, so

that my reflected image would appear to stand*on its head? . '

-

2, Oiven the line L: ax +by + ¢ = O and the point P = ("1"‘1) not
on the Iine. Find coordinates for P, = (;E"yE)' the symmetric image .

7 of By, with respect to L-. S

6-2(c) Extent. . .
We dlscussed the equation K ¥ kye = 36 earlier from the point ot
view of symetry. We use it now to discuss the extent of & graph. This
equation ylelds two equations which define y as a function of X,

y:—Jl36-x and ¥=-l ;XEO

2 2

-

We see that if we take values of

” - ’ '

1 . .
o . 18 212 '
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2 .
* |x| large we shell have in &aescomsmn@insvuuesof y
" which are if Y o Bincemgmphsdeomideronlymlmuesaf/x and

-

/

' ..appuea to the gra?m of bgth fuhctions

¥y memMmsiWMmd x vhichvi.uleadtorealvalues /
ofo,andﬂeeveraa. thes.ecsseswnmthave -65::56,0:.
|x| < 6 . For these restricted.values
of x thecnrrespon&tngfaluesof Yy ..
rangefm -3 t¢ 3 . 'I'hegeanetric
versions of theae restrictim can be

of x deﬁne&mbm,butitmmre
useful to consider the ugnon of these
gmphs, that ia, the grap‘h of . the

i
.

original eq;uation P -
/ R
xe + hy = 36 . P

. From the dlscussion ebove we see that
the- points of the graph all lie in &
rectanguler regien 12 units wvide
and 6 units high, centered at thg’

origin, If, in genen.il. we can express -
¥y as a'function of x , dnd there are Figure 6-6 .
such restrictions on values of X :as wil_l yield. only resl values for Y s
-we say that the of the function is bounded. Thus, a.ll points of the

graph of the function ¥y = —Jé 36 - x° are confined to & strip&ounded_by two
. .

vertical lines, x = #6 , ag indicated in Figure 6-6. If, in general, the

possidle t+al values qf y are similarly restricted, we sdy that the range

"of the function is beundeld. Thus, all points of the graph of :r = -4; 36 - xi'

are confined to & strip bounded by two horizontal lines, y = $3 , &s indicated
in Figlme‘G-é. ~ If both the domain and fange of a fumction are bounded, we
say that the Miun is bmmded, in which case 1ts graph is confined to the
intersection of a vertical and horizontal strip, 'and is therefore confined

to a rectangular region. These terms are usuelly .applied to equations apd
thelr graphs even when the functions sxe only defined implicitly. Thus,

vhen we gay, that the graph of X+ hye =, 36 1s bounded, we indicate that
it 1s‘confba,.i}ped in d rectargle, as mentioned earlier.

. '313 X ‘
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Iftheemutfmwm\_;.-hy, 36 wemldo‘btain. -

:.‘ ' "' -‘:_A._ ‘. - ygf(x) -_t.. ;5——_ 36-"'/ .‘ ‘A.k. .

.Hemvmtethntwemattm uesof [xl. lax‘geeno&shtomhethe

- ‘ gadicand‘ non\aegative, t.hat is,

ot x| >6, vhich will be tmpe if either,

. ';>s.or\xg-6 uemiem@auy, .
N . this means- that vy is defined only ..
T for pbim on the.edges or cutside .
o' % thesvertdcal syrip bounded, by the, - -
="+ lines which are'the graphs §f = 6 .

! ed x= -6 . With thése restrictionk
S onxwemxiovhaveanyvalueof
'y .  The original equatidn ylelds two'
equations which define x ‘és & function

- e
of ¥y, ‘xad36+ by’ and

Figure 6-7 . .
\ x,:-J‘36+ky‘2 and we see that 'x-inhothcasesi.sdeﬁ.nedforallvaluesv
of ¥ ., It-is not custmaryi,i,nthis'casie,g_t-o speak of ¥y = % 142 - 36
as & bounded fuhction, but merely <o say that the domain of. x excludes

N certain values. ) . ¢ 3

. ' K
& '«

Another concept emerges when we consider y =«-f:§ . The domain of x is,
a : ¥ “ . -

also restricted here since x cannot equal zero. With this exceptiom, y
.+ 1s defimed for all values of X . Geometrically, polnts of the graph are
' availsble except at the places where the sbscissa is iem", therefore this

" ‘graph does not toucl or cross the y-axis. If we write ‘the equation

¥

X = -i; , we see that the graph does not touch or cross the x—axis. Also,

_from the fact that xy =1 , we mist have x and y either bort):% positive;
or botR negative, which means, geometrically, that we are confimed to the
first and third quadrants exclusively. Frtm the equation xy = l we see
also that &s we take points of the graph nearer the x-axis we must teke them

' farther from the y-exis, and vice-versa. A line, such as the x-axis in this .
case, to which points of the ph epproach more and more closely, but which
\t\ontains no point of the graph, 1s called an asymptote of the graph. The

’ . ‘ N ,
<0

214




gnghet Prn—- mmwﬁeﬂ

M,m:m:mmy-am
mremmplieswnlumtﬁtethe

tmmengbf .symtntea in everal “
X gitmtim, bq.t we make a. generel s ‘
o Qbsmatioh. If our asalytic repre- -
- sentation ean be wrif:ten as’ - !
) o . ‘fﬁx‘ .o .
. ; y = -
N T, < ' & .

uhare g(p) msequalzerororsme.
' wvalue of x,s@ x=4a tb,en,-for ’

" this value of “x , ¥ 1s nop deflied. '
¢ Alse, if, £(b) § O  then, in general, '
aeuefakevaluesof x closer to b
thseorrespondingmluesof y become
greater {n ebsolute value. Gecmet- - S
emlytmaumulymeanéthatuuemepomsuoaenmtnem xdb
' tpeymatbefnrtherfmthax—axis. Thus, the line x = b is & vertical

u,Fynpto‘te; If g(x) = 0 has ropts bl,be,'...,mat.hesemmt 8

T of f(x)ao,therewﬂl -
4
xﬂbg,.... Thereism

Flawre 6-8

in general., be vertical aaymptotes X = 791 s
difficulty in revising these| mnts to e

tohgrlzontalssymptoten. vaecanwrite xx—ix% and k(y)mo hasroota

L Y
PAY 1‘ , #es 5 804 these are not roots of h(y) =s0 , then, in general, R o “._
theré wiil be horizon‘ta.l asymptotes, ¥ = c1 y T =y y een s
‘ ‘Jr ~ ‘ . L -
. 9 ‘ A
I mﬁé“ Piscuse and sketch the graph of 1
4 ' . : .
( y = . |
) 'f ' ( x"+2x -3 ‘ )
Vo 2 |
s . ,* ' ' . X N - ‘
’ Solution: The equation can be written as = ; hence
=t TR S VR - 1) ’
Lrod the discussion above, the curve has as vertical asymptotes the lines ..
x=-3 atd x=1. 'y is not defined ‘these values of x , but™ . ' )

1‘71‘

.y 1is definedforallothervﬂueeof x. If x>1 mdincreasingthen

. ) 215...' 21



6-2 - e
- S
Y ispnsiuve,maecmsing For | : R R
large values of x thevuuesof - ‘
x+3 and* x - 1 aremlativel;fr
glosetovnluesof X, and y 18 !

| ; ¥ ¢
: relatively close t I , vhich s . l% ’
positive; th egore , the corresponding =1
nointsofthe "areclos‘etot’he . ,‘: -
o xeaxds. 2 0<xgl 1-.ne:mm:emm-E o e
il 18 popiti've and the dendminator négative; 1 X
t.f' |  therefore, y , is negative. The curve: ‘ E .
) still approachea the line x =1 as iK
‘ an asymptote, but from the otlier 'side. )
L If -3<x<0 the mulerator snd _ 3 |
€  denominator are both negative, there- ' ' .
. fore y 1s positive. As before, the . B
m::ve approaches the line x = -3 as ’ - nm 6-9 ' ,.. I
- anmwtote If x ¢ -3  then the
) numerstor is. negative, the denomifiator positive, and y negative. The .
| cummappmenheune x = -3 as &n asymptote, but from the,left
e Y side. ‘ |
., For negative values of x with large absolute value the velues of
'x+3 gud x - 1 are relatively close to x‘,s.ndtnee;o‘mspondingm“
of ¥y 1s relatively close to -i— » which 1s now negative. That 1s, as we
\ take points of the graph farther to the left, they must be .closeI“to the
| x-axis,’ from below. The graph, pictured in. Pigure 6-9, shows that
.y algebraic and geometric relationships we have discussed.

» “

A discussion of the appearance of a graph for large values of x
. or lﬂ » whether we take x and y positive or negative, is part of the
discussion of the extent of the graph, and is sometimes referred to as a
, discussion of the behaviour of the graph for extreme values of the variables.

.

The concept of excluded values because of & zero denominator has one
further applidation. Coansider

, .

x> - 4
*¥=Xx+2,and y= ~ -2 °

22 | -
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It would not dbe correct to write the setond eqn;_{;ian as

“" . - . . e .‘g x+ 2){x -2 e
- R AV N
r . e ‘ ‘ . - Coad N
mdthenmtﬁdmonmcbor : : .

. ' ’ (x+e§y__ ’\/
- - y= - - . -

». e ‘ -
s ¢

 to arrive at the first equation . © . - R

y=x+2. . ' ‘
Aé'a.mstter'cxf fact, the b equstiond and their graphs are different in @ -
small but significant way. In the Pirst equation, ¥ 1is defined for all «x ;
inthesecondeq_uationyisdafinedforeu‘x, except X =2 4 |
Geometrically, the graph of the first equation is a line;. themphatthe
second eq_ustion is _g. 1ine except for a m:l.ssins point at the place vhere
x = 2, that 1s, 1t is an intervupted line. (Couldyou interrupt this line
at the place where x = 1 , also?) . )

The -dil;cussio;x of these excluded points, lines, or regio'ns» is useful ia
describing the extent of the graph. It's all very well to know where the
graph does not go, but we are still concermed with the points through which
1t doee go, that {s, with drawing the graph. " The most streightforvard -y

‘of drawing the graph of an equation is t,o plot a number of points on 1t and

draw a curve through them. If the equation has the fomm y = £(x) you can
mi:e a table showing the value of y corresponding to‘ gach of a number of
values of x . You have dona this many times in‘the 'past, and there is no
need to go into detail agein here. However, it is vorth reminding you that
wou should think about how mn;v values of x to use,k' and which onea, and.

\

. dow to Join the corresponding points. '

Aa in an election poll, we ta.ke enough samples, wvith special attention

‘to certa.in eritical spots, until we have some reasonablm clear idea of how

the whole picture will look. There will always bg some disagreement about how

many" are "enough”, and vhat is "reasonsbly clear”. Our sampling can start
at sogie easily svailable points. On our grid ve can most easily find the
places where the graph crossee the axes. Since the x-axis, for example,
bas the equation y = O, wemysolvesimzltanemsly y=0,y=£(x;
that is, we may find the roots of the equation f(x) = 0, in order to find -
the absciesas of these crossing poimts.’ If f£{x) = ‘haa roots 8, , &, ,

ees 4 then these mumbers are the x\Lntercepts of the e;raph, which goes
through the poInts (5.1,0) , (32,0) y eee o These points are easily plotted
e ; *
!
aT -

23
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v ., onthegrid,asa.rethé’pointsofintersectionofthegmphHiththey‘ el
- T M,mmtterhovmn:pointemplot,thmalmmimthequei ' '

Lo
Pt of how &he curve hehaves* eldevhere. It 1s to cast mrtherftight mi this Lo
' question that you should 1nvestigate,,.before &mr extensive ecmputafgion, the -

- o properties of the curve and its analytic representation in the mner ve ' !
f haeve Just uluatratﬁd We summarige this type of investigation in mnemon?.c \
. l Porm: "Check ‘the m first (gymetry, Extent, Penodicit.y, In‘tg;rcepts, :

4 s Aamtotem) ‘ ;S - s

i

“ \4

The cu.r\re's and eq\ﬁntioﬂs uith which we deal in this course are reasonnbly i

wellbehaved andthapoi:msofthegmishmusuulym - conneaged, .

with certain notable exceptions. We heve alrealy dealt with hraphs of in-

A\ equalities in Chapter 5 , end will not deal with them at great length here, . ‘
h but will consider eem in the examples whenever there is any matter of .

épecial interest. . K ‘ a

e

“ A curve usually geparates the pl€ae locally into_‘tm regions (above and *
belog instde and cutside, ...). In many cases in this text the'poguts tn
- S these two regions “are precisely thnse whose c00 tes satisfy one or th‘
other of the inequalities we obtain from the original equatfOR. Thus the

. {raph of x° + y° = 25 1s a*cifcle of radiys 5 , centured at the origin.

. . 4 -
' The graph of X% + y2 < 25 1s the interior of that circle, and the graph of
:l:2 + .ye >25 1is the exterior. ' p t .

» We have used rectanguler coordinates in this general disctissiom, but

mech of it can be a ed tc; polar coordinates, though the grapBy will not

have the same geamefri¢ properties. In polar coordimgles the graphINgf ]

inequalities are Metimes .unexpected. Thus the graph of r=5 isa

circle, the graph of r > 5 1is the reglon outside that cgcle, put the

of f <5 xgﬂfe en‘tire p}e.ne. ‘The grgph of r= -é is only a remote cousin
# to the graph of y =3 . The rectangular graph (a hyperbola) has a vertical

*

asymptdte, the;line X = 0 s &nd this is a geometrlc conseguence af the
fact that y is not defined for x =0 . PFrom the equation r E' ’

. we see that r 1is not defined for 6 = 0 ; nevertheless the line 6 =
contalins the point P = (- = L 0) . mis pc;!,nt has infinitély meny other
polar representati@s, including particularl;r P = ( % ’ ) , and since

- these coordinates satisfy the e}\mtion r = é , we must allow P on the

. - ™ (‘J

. - ' 24 A . .
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'as;mptote t‘or.\the sraph iﬁ x -%..

or any other that seens eppropriaﬁa to the problen a.nd our purposes ’ and .

1

/
pqints for whic} vg \em qm.ja.ﬁr of palar gaordinates that satisﬁr o

' b4 E g ’ ‘." . y - a . ¢ ! ¢ E 3
f b - - ‘//“'— _ . - I . - R '
. . - . O B - ( l(.‘
graph of & ; 0 . There ﬁ - a8 -8 mtm f&bb Miniteﬂqr 'ma.ny otmr ‘ .
) R

_ ‘6 -, and which lie_on the li.ne 6 = 01‘. Fherefore this line is. Pot dn = ¢

C -

The graph of ’»r ﬂé'- does, JE S~
neve'rtheless, }rue awtote,

o .
the line co ‘ mmr_me, )

but the discussion of this must cogsider
the valud of ._s%_e_ as O gets closer f‘

to 0, and this discussion is beyond the

¥ * K i . . 07
scope of this book. 3 - Figure 6~10 .

* *

We will, “in the examples W that follow, use polar ,repmsentatiou
N [ 4

carry ‘the discu.ssion to the level and deta}l’ ths,;c. seem fitting.’ Oug exemples /
will {1lustrate the genera.l principles abpve, and smme ideas of less gener&l

applieation, but the studeéc is urgéd to extend his own experience 'ny doing

: es many of the exercises as he can.: One suggeetion we have found veluable: &

- an equation and ifts graph should be considered in a dynamic, rather than a

-, e

#
statie way. If _we have ¥ = £{x) ,"what heppens to ¥y when X I1ncreases a -

little, when x appmsches 0, wvhen x é:ets very -ls{ge?_ If'wé:have 8

point P ,yp) of the graph, hoﬁd/oes the curve look, near that point? . -
1S
Thirk of th& pcint as moving alégg the curve, and our analysis as a mving

plcture of the point ra?her than a snapshot of the entire curve.

B
a

- .
6-3; Conditions and Graphs (Rfctangular Coordinates) -

" In this section we shall discuss a immber of examples in detail. This
discussion will bring together and apply a number of topics you first ~

studied separately. We shall illustrate also some useful appreaches that may
—_— .

-
be new to you.

. = 1
Example, 1. Discuss and sketch the graph\c\)f y=x+2.
. _ b '
21 s A
° 25
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g tiop, There {s no symmetry with respect to either axig, since we
domtsetequivalent equations by-replacing x . by foX or_y by -y .
There is sx'\stry with respect td the origln because we do get an equivalent

A .

. equation by replacing - x by -X a.nd.yliy Y Rereis'bvertical .
e asmptcte,theyma,whoaeemtionie x = 0. For large |x[and
' x either positive or negatfve, y and x become nelativel.y equal, *since
& bécomes relstive.ly smallt, Gecnetricalhr this maa.ns that the_ graph °
o approaches the 1ine y=x metﬁticallx, from e.hove, oh the right and
V > ,from below, on the left. - S .

+ ot . L4

weahallgmpht semtmninamum-.hmhe nevtoym,.byad&tm

- -

v - of ordinates. You can draw fairly acch%e graphs of y.='x and y=z

' with aimost no effort. - Do so, with respett ‘to the same axes. 'men, for ech

" of & mmber of different values of xw, add the y-coordinates ofthepointaon ‘
the two curves with that x-coordinate. 'The result is the y-coordinatg of the .

' * correspohding point on the graph of y'-x‘+%. The addition cen done
.using marks on the edge of a.piece of pdper, but you must pay attention to the
algebraic signs, The sketch belov illustrates mro_cess.; - '

« -

B ¥ 1 234 58
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We su@est this sequence. of steps-

_ _l.inravtmnmiliueurvea®and® o
¢ 2 At%several points along the x-axls erect perpendiculars to meet the
" "~ “two curves. In Figure 6-11 the ordinste-segments, &, b , c , were
Lo found this vay at :'J:n%-,,x“-l,x-.-'e. (we shall refer to
T these ordinste segments simply as the ordina.tes.) .
, - 3.7 Add the corresponding ordinates for the two curves with due
o regard_tosign. In Figure 6-11, a,theordinateat v
,  %xs3 is ralsed to a'_'ahovethehyperhola;b 1s raised to
b' above the hyperbola; c. is raised to ¥ abcve the line;
and so on.

ke Gonnectthenevpointstlmsfmmd,togetthenevcpm

-

o Mé(az,&etchthemphof-yzx2+'2 . - ‘ /‘
) Example 2(b) Sketch the grapif of y = sin'x - 3 . ‘
y
L “q!\\ . TN\
3 ',; \ i K \\\, " einx f \Q *
A 4 +\
i: \“ "!0 \\ "l
\ AR R
\ (
- — | -\:>--7M---3 14-t "%, -3
S \/" | é\/
. v )
o
N T, ﬁtgure 6-12 \ '

. 4 x ’
Selutiot 2(x). Draw the familiar graphs of y, = x° , indicated by
’ ] & . . . -
* @. in #» figure &nd of Y, = 2 , indicated by (@ 1in the figure. Then -

- "raise" every point of () 2 units, as indicated by the dashed lines, to get

/N




©

P

6-3

4

-

", 2(b) The selution should be tlear fm the ﬂgure and is left to the

maent .

*

. o
- . -

The process of mphing by subtraction of ordinatee is relnted to the

. processo::graphing y--f(x) from the gmphof “yo= £{x) .

The discussion

symetry in the previoua section indicates tmmediately that these two

'sraphs are symmetric :nges of each other with respect to the x-axis. That

-

is, graph of ¥ ¥ —f(x) is the reflection of the gra.ph of' y = £(x),
with spect to the xqaxis, :

Eiple 3(s). Sketch the graph of ¥ = - X° .

 Exsmple 3(b). -Sketchtheéraphaf_'ya-.gosx.'

|
« . Solutiont

D | =t

h_ N ."‘llﬂ,

(Refer to Figure 6-13)

Figure 6-13

-

3{(a) Construct the familiar graph @ o’f Yy - x? N
of each point of @ down its own length tnmugh the x-axis to get the .

4 .

- r L + "
then extena the ordinath

reflected poirrt.s, whigx we connect to eb@ the solution, &) . L

&~

3(b) The solution, indicated in Figure §-13, is left o the-class.

-

We may now sket

'y = £(x) - g(x) , then ¥'= £(x) + (-g(x)) .

graphs by subiracting ordinates, since, if ¥

28
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- Y, ’\ |
M‘L_e_h“a!. sketc‘.hthegrdphof-y‘-sl-‘..‘xag .. ' - N
Wk(b).-ma‘m'mmo; yw=l-ginx. -
. : Py
Solution 4{a). {(Refer o Figure 6-14). ‘ | (" .
'4’1.“‘. | ysi-sinx.
7‘- ..@.g.:l

L% X
. % .

\ ’ ‘
ey, ®einx

P ' %= - sinx

. .

© Figurd 6-14
.o _,.: We suggest these steps’:.

/ {1) nmvthefamilia.rgxfaphs@: yl-xe,a_nd@ya-:-].
b .
(2) Reflect (D with respect to the x-sxis to get. @: Y, =

R

/ (3) Add the ordinates for @) and (D to get ®: y=3=x .
This last step is equivalent toadding31m1tstoeach ordinate of
‘ ®, es indicated on the -graph. R -

We may extend these graphical methods to the mzltiplication of ordinates.
We have already done this in some cages but not with this terminology. The
~° ‘graph of y = 2 sin x illustrstes & simple application of thigmethod. We
. compare this graph with the graph of ¥, = sin X and recognize that vhen

y, =0 then y =.0; vhen y, > O then y> 07 and vhen-y, < O, then

¥y <0 . We Just draw the graph of Y1 = gin x , and double the ordinates fo

j’"‘-\f‘ /Jt‘_l-‘.



L3
3

« SN
. . _

find corresponding ordinates for y = 2 sinx . It is as if the graph were
stretched, vertically, away frém the x-axis. |

. | e
~ Example 5(s). - Bketch the graph of y = 2 sinx . _
Example 5(b). Sketch the graph of y:&eTBY o ,
b : g e ’
.‘ v . , _‘-‘ . ) N . , | . .
l
Solution 2‘&2. We sketch the familiar g:caph,_@: yls'sinx, then
| o ' :
w* ) - : ‘ l -
doublewchcrdimteof@togetthemph,@: y =2 sinx . Note that
) . : ‘ *
-

. "for 0 < x < x we have 0<y-1<-l,therefare O<éyl<2.,'mua ®1s

bounded between 2 and -2 . If, more genérally, y=8s8nx, then ¥y

is bounded between f{a| and -|a| ., In this case |a| is called the

amplitude of this sine curve. 1¢ 15 the measure of the maximm departure

of points of the curve from the x-axis, and.has important physical applications.
Solution ésbl.‘ We have illustrated the sequence of graphs: . :

@_: ¥y = x"’ ,'.@‘:' ¥, = x2 -4 ;@: ¥ = E(x2 - 4y . We could have found

the seme graph with the sequence (@D : ¥, = x° ;@: ¥y = ox?

30 a2, - .



®: ¥y = 2x

" the x-a.xis. In this lgtter case we graph ye = lbl f(x) ’ then neflect this

€

*  We may

= 4 . We leave the details to the smdent

. .
mg&amlmlatetnegmpnor ¥ = be(x): to that of y, = £(x)

if b 48 a constant. Both gnphs cross the x-aXis at thesamepoints. Ir
b>0 thenbothgraphsareahoveorbeldrthex-sxis together. Ifb<0
thanthe graphs of y = -bf(x) and n = £(x) aretogether above or below

mph in the x-axis to get the graph of y = bf(x) .

erdinates, which in this case are all non-negative, to get (@: ¥y =axt

Bxample 6(a). skétch the graph of -y = -2x" .

a2 7§

. Example 6(b). &ketch the graph of -3 gin x .

y @ N -,'

Figure 6-16 S

*

2

sfhution 6(a). Sketch the familiar curve (O): ¥, = x” . Double the

~ Fimllermflect @ in the x-axis to get'@: Yy = -2x" ,

2

2

Solution S(b) fnfe leave the solution.to the student. Note that in

2 e e

Exanmple 6(a) we ceuld have used the sequence ¥y =% yy3= %", ¥ = -2x° .

That is we could h&ve reflected, then stretched to get the final curve, ip
both 6(a) and 6(b) . We leave these details to the student.

A

O

=3
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L Our £insl cases concern mlﬂplieaﬁinn of ordimtes‘ith variable fectors.
» o These are the most difficult, the most interesting, and the ms‘t useful of
k T the applications of these methods ‘of sranhing by canbimticns of or&:nntes. ey

- .

Example J. Sketch the graph of yext-x.

. * ] -
‘ : Solution.
] "
- [} .'
o+ , R
! » ‘ ‘
- ) @
’ R
PA
| . S @
’ . . . 7/ (g
' p v
. ,f r' . )
Sl i A A Rt
N . : 1 (I Yt
t,
[RPPRP W - = -
] 1
i £ | .
. - . :
':
/ . C% Bg
' 2 . . .
| L ooz ¥
' 1, p : R
N * l V4 4 ’ .:
‘ e R L e Ml
£ . - f,
/ { s : i ‘
i . . ' g .
. i R , i i}
o ) V7 PR BN H ..
; ' _ 4 . -~
. ‘ e
, ‘ K _
. - . Flgure 6-17 3‘4

We could sketch the graph t;y‘ suhtract.ioh of ordinates but we choose to
{1lustrate the method of graphing by muitiplication of ordinates. Thus '
y = x(x - 1) , and we draw the graphs @: y, =x, and ®: Yo=x-1;

two parallel linds. When x < O then y, af y, are both negstive and ;

*

their product, ¥y , is positive. If x <0 and decreasing then y 1is )
positive and increasing, and corresponding pointg of § are in the -
third quedrant. .

Since y = ;,'lye , clearly y must equefl zero vhen either Yy or ya

| N\
equals gero, thus the graph B intersects the x-axig at A and B . Between:
O and A we have 0< x <1, vith @.\bmre and @ below the x-axis. In

ERIC - 32 226 -
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this interval y. >0, ¥ <0 and therefore y(ﬁ)i"Qtidtheﬁsi‘aph ie below,
1l 2 ¢ - : \

. the x-axis. Between ‘A’ and B wehave 1< x <2 W v, end

1+

: j:'oaif.ive, therefore y > 0 . The graph indicates that s hee @ and @ are '

abmthex-axipthen@matbealso. Howeverinthatin 0<y2<1

i.‘"\ ‘\"\ e .
therefore yayl is & proper fractional p&rt of ) thus y & y\& < yl 1

Q\
therefore @ 18 above @ but below @ . - | P

n,;.‘)‘
.

As x increaaea beynnd B we have x>1, Yy and -ye pos!.tive emd

increasing, and y increasing even m@mpidly, thus @ is above bqth
@ and @ v “ r\:\nr B
We have taken this time to discuss the graph of/vhat is, afeer all, \5'

only a parabola, because the apalysis and method will help in more difficmlﬁ‘
and unfamiliar situations. '

<

Mﬂ_&_@_. Sketch the graph of y = .lx sin x .

Bolution. We are familiar with the graphs of ¥, = .1x ; and ¥, = sinx .
Since sin x is a bounded periodic fundtion of x we have hrel <1 and
hrll g_t.lxl' . The graph of this last condition is the pair of lines () and

@ in Figure 6-18,

J , Figure 6-18

227.
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6-3 - : g . “ - ) : . ’ ( ‘ .
We have cmdssea the scale along the x-axis for the parpose of mﬂns AN
enocugh of the graph ¢n the page to I1Tustrate the discussion. L,

" When x}Q,sllpointsofthegraphliewithin,ormtheboundaryéf
the angular region formed by the right half-lines.of QO and @ . Since

Y = ¥y, » then ¥ will equal zero vhen either y, or ¥y, equals Zero. ¥
' 1s zero only et the origim, but y, is zero at integral multiples of =).
Also,vheﬁ yes'l we have ¥y = .lx and when y2=-l we have ¥y = - ’
which mesns that the greph (B) vill touch alternately the lines 1 and 2

at points where x =% ;32,1 , ,521 y ees o .

[] ) P
+

We leave the rest of the discpssion of this graph to the stydent but
mention an i.nporbant application, ° ’ o '

]

Ifweeonsiderhowthegmphqf yauainx is chansedbythevariahle
factor yln.lx,wemsythinkofthegg__of ya,aschangedbythia

mriable factor: In this exnmple we may say that the amplicude of sin x :ls’
_incmasinglinea.rly. If Wwe had y3=f(x)sinx then we also have's gine = -

vave whose amplitude is béing changed or constrained by  evariable factor | |
f(x) The graph of Y3 would be constrained bJ the symmetric curves:

y = £(x) and y = -£(x) and would oscillate between them, touching them
alternately whén x = n , 3x , 51 , ... , as before. .
This systematic changing of thg amplitude is‘ called arplitude modulation ‘

and is the basis for AM radio repeption. A typical ‘equation here would be
¥y = sin 1000wt sin 1000000mt .

This graph would show & rapidly oscillating curve (the carrier or .
radio frequency, or RF wave) modulated by & less rapidly oscillating curve
- (the signal, or audio frequency, or AF wave). . ‘
y

; Aol ﬂq/\ﬂﬂn,nﬂﬂk ‘
LIS |

‘ Figure 6-19
This sketch, not tp scale, illustrates the idea.
*/ ' 228
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The methods just discusbed, for relating graphs of equations to graphs
.of more familiar equations by cambining ordinates are called by same authors,
composdtion of ordinates. We apply similar techpigues in poler graphs .in some
examples later. . I | R

We consider now some further examples of graphs of equationa 4dn rectangular
emminates- .

-

Example 9. i 9y+8x+36y+h O. From this equation it is not

obvious whether the curve is symmetric with respect to any point or line, or

" Whether it has any asymptotes. Nor can we easily see what parts of the plane
" it does or does not enter. We can find.as many points on it as we have the

‘ patience for,-since picking a value for x gives us a quadratic equation. for

y . ( @
L} ( . . ) ‘ : . )
The sensible approach, however, is to use a trick you learned in algebra:

complete the square in “x and y . We get
Cou(xPe2x+1) -9(y° - by + b)) = W+ k36
or '

(- 2)?  (x+1)® |
9

These mmemtors are related to distances from the lines y= 2 and
X = -l , and we might expect a considerable simplification.in the discussion
of this graph if we had new coordinates based on these lines as axes. BSuch
transfonmtions are carried out more generally in Chapter 10, but we show
the dstails here in order to contimue with our disgussion of the graph.
It we‘let u=x+1 and v =Yy - 2 the equation beccmes

- M 2 '

ORI F-5-1-

! m‘ﬁ:c"
This eq;.mtion ;s considera.bly easier to ha.ndle, and is recognized as - R

an equation of a hyperbola. You fnow someﬁ-hing, about hyperbolas, bg,i;t we "
continue “with our genersl approach 8o et af‘ter you have seen it work in “
familiar situations you may be able to use it in unfamiliar ones.

"The graph is symmetric with respect to both new axes, and hence with
respect to the origin. 'If we solve (1) for v in terms of u we get

y=1 % ,4:2 + 9 ., This makes it c_:[legr that for & large, positive value of u,

the two values of v are one large and ~,‘;\oszli'.iw: , the other large and negative,
(1) also shows that if (u,v) is any point on the graph, then vl >2 . For

~

s | . | ‘229 . '
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~ other words, v =

. | | .
2 ) 2 ' v2 .

u : : :
—9-._20,andsince‘ -if‘-u—‘:l,-rzl. Thus no point of the graph lies
ghove v = -2 andbelov v =2, : o \
Hovletuaconsiderthepartof;he eumwhichlieainthe first quadmnt.

For this we can use the equation

vhere u >0 . It seems almpst cbvious that vhem u is 1§z:ge, v is very
nearly equal to %ﬁ . We can confirm this guess quite simply. (learly

2 | . |
‘v >-3-u, 80 let ug consider v - -g-u\', in‘the hope that we can prove dt ap-

proaches O as ugrowsv%ylarge.;_":‘
v-%'u -4%2 9-%11. ' ‘ .

%Ju2+9- u)

2(v‘u * 9 + wy( +9 - u | o~
{u2+9+u ‘ A‘_.'

By taking large eriough values of u we can make V - %u as near to zero
as we like. Thus we have shown that in the first quadrant, the graph lies

- .

above the line v = %u but a.rbitrar:ltly close to it for large enough ~u « In
) N

%u is an asymptote of the curve. By similar arguments we

can show that v = %u is also asymptotic to the part of the curve in the
. )

third quadrant, and that v = - %u is asymptotic to the parts of the curve

in the second and fourth quadrants. ‘

N
. -

3 6 230
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« _ - o B 6-3
. " ‘
. memuﬁammhmsmmmtmofthemwhmue
.,mmi]ybemtatedintemso‘(theom. For exampl®, theasymtoteam
the lines x-..a-‘_-g(x*'l).
. " . - * - . )
‘ 'ﬁmiJve consider the intercepts. Setting u,"qd:l.n‘ (1) we get
P .
{—al,sothev-intereeptsmeand- Setting v = O we get’

(2

,-—§-=1,vhichhnanosomticn. Henca.thecurve'dpashotmtarsectthe

7
u-axis. m:-andy-intercepts canbefomdhythe aamesortot pmcedg.re,
bat - -since we are chiefly mterestedinsketchinsthemmve, J.et'smtbother

withthm . ¢ o e
‘ - vy

EERS

|
|
|
E.

Figure 6-20

.The hyperbola is sketched above. Notice that we cen drav a fairly
accurate graph without finding the coordinates of any points bdt the vertices.
(What ere the vertices of & hyperbola?) S o

.




S |

. .. . . . '
_‘;:’ menmfﬁstam&edthehypermkmlmmntheumtomof
. the hwparboh T o

- S . r

are given by the eguation

m’"ro

fz'"" S

This is an 1llustretion of a principle which is sometimes useful in sketching

_loet, Itmbeexpressedlmselyinthefoﬂmingm. 1t ) '

f(mr) = g(x,y) « h(x,¥) , the graph of £(x,y) = O 4s the union or the
phsor g(x:Y)-Ohdh(x,r)-O."muaainee )

-xa-y2-1c+§y Sw(x-y+2)(x+¥ 3)

the graph of -
| ‘xg-vya-.z"-iy’-ﬁso : ' -

1s the pair of the lines which are the graphs of

e

x-y+2e=0

, Y x+y-3=0, -

i Befaretryingtom‘ovatheprineiplewahaﬂbetberﬁndoutmrqm
rstaly-vhat it says. let's "factor” x + ¥y :

x*r-(xa-ye)

e /

. . x-¥
-;..lmfcrt\mateiy, the graph of
vy x+y=0

is a line, the graph of

B 232




T 6-3

' The difficulty 1ies in the notion/ of factoripg. Whén we speak of factor-
ing & positive integer, we mean expressing it as product of two smaller
.positive integers. Hhep we speak of factoring & polynamial, we mean expressing
1t ‘ss the_ product of two polyncmials each of T 4 than the given poly-
nomial and having coefficients of some specified ‘type (sty rational numbers ).
There is no such agreement as to what it means to factor p arbitrary function.
- For-our present purposes it is enough to say that we have a factorization of
f(x,y) 4if, for every (x,y) in the domain of £, '
/ ) £(x,y) = g(x,y) *h(x,y) .
. - S S
Of course, this allows uninteresting factorizations like
P a1 V).

but it excludes the sort of thing that gtt us into trouble above, since

x +y 1is defined for every x and  y , while ly is not defined if

X -
'x=‘y| ._‘ - ) ]

-

With this interpretation of "factor" we can state the principle referred

to above. b - >
THEOREM 6-1. If f(x,y;) has the factorization ‘

»

£(x,y) = &(x,¥) + h(x,¥) .

&

The graph of f£(x,y) = O is the union of the graphs of g(x,¥y) = O

and h(x,y) =0 .
|

Proof: The point (a,b) 1is on the graph of °

f(x,y) = 0
if, and only if, .
/ ’ h £f(a,b) =0 .
But
#(a,b) = g(a,b) * n(;‘,’ﬁ),
a;xd hence )
. f{a,b) =0 '
. if, and only if ‘
- gla,b) =0

S o 39
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3 ‘.'6-3 . | | )
. or

v
h(a,b) = 0 , b

that is, 1f, and only if, (a,b) lies on the gragh of  °.

. | glx,y) =0 ~ ' - </
'cort.heg:mphof'; ‘. | ' - | ' |
: v k) =0,  ° ! - '.t
Example']0. The graph of L |
T e lyexe®)(P P a2y r13) =0 - :
. 18 mddeupof the graph of o ' T A \‘, ) ce
. | ' .?" y-x¢2=0 L T
" and the graph 4f -~ . _ e
R T R e n® x4 16y +13 =0 .
o The former is & stralght-line. If we rewrite the equation of the latter in
| the form ,
‘ OV T S

. " . ‘ .
. we see that it is an ellipse, with center (1,-2) ; symmetric sbout the lines -

3

- - x =.1
\ . . > . A
' y=-2 ‘
. ' . \ . . .
and with major and minor axes of lengths vh and 2 , respectively. Both
. grarhs age sketched below! .

- a Yoo,
- .
} _ | , J
- '
o - x
l. y .
k -
]
‘e
I
40 | -




. ) ‘ - 6-3
® \If we are‘given two parametric equations for a locus in aplane, there
. are two methods of skat.c.hing the locus (unless the equations are too compli-
csted) + Wescan eliminate thg paremeter. hetween the two equations and g:mph
the msulting equstiun in " amd ¥y , or. we c&n choose same values of the

- parameter, emp\rt.etheeo ppnd.ing values of x and y‘-,apd‘drawacum
through the points thus determined. We illustrate bot.h methods in the next
examp.:'l,e.

Example 11. Draw the grepheof the parametric equations
. . ) 5/ . .
(l) X=?“t2'2;y=h‘th- - o
Solution. First let's eliminate the parameter and graph the resulting
- equation., From the first equa.tion ve find that 2t. 3‘-——— . substituting'
. this in the second'equation gives s R
I i ) ) . L e
.(2) w' - yz%‘.(x,+2)2. - .
Q\‘ ' . ~ . ) “
. The graph' of (2) 1s a parabola. It is sketched below.
L - N ] .Y‘ ‘
. 2
. iy .
-« ‘ .
-1
’ ’ *
. ¥ -
X
» ’ ~ )
Now let’s use the second method described above. The table below shows -
. ° the results of our computatlonse
: tl-2 -1 0o 1 2
» X 1k 2 ~2 2 ih
- N
X y | 64 4 0 L &L
'~ We notice at once that 1{3 have 'fouixd no values of x smaller. than -2 o ]Et -
would, be natural to jump to the conclusion that we had chosen the values of
5 t foolishly, but that is not the tion. Since x = 4% - 2 and
l&te >0 , it follows that. x > -2 f{r every point on the graph. The tTouble
. 235
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.

1s that Equations (1) and (2) are simply not equivalent. The graph of (1)
is half & parabola. It is the intersection of the grafhs of (2) and the ,.
ty x>-2. If@ulmkhackommrressoningyouuiuseeit

» 8 t the locus of (1) is contained in the locus of (2) ,but‘.itdoas

mt prove t.hey ara identical. o

. - Obviously the elimimﬁion of t was not as hamless an operation as it

lookeda.ndlwemmtstwumreeammlh Ate.cértainpointvefoundfrm

the fizst equation’tn (1) that 2t° =X 32 | Then we squared, getting, the

C o o
- equation htk = -Qt-%-a-l— . These two are not equiviilent, since indthe first,

x > -2 -while the second puts no restriction.on x . This 1s no surprise
‘since the same port of thing comes up in the aolution of equat.iona involving
radicals., In future we shall bde carefulnottu sq;uu’e, ordividehy zerv, Or
do anything eilse of that sort when eliminsting a parameter, e.nf! then perhaps
we'll not get into trouble 88 we did abovve lhﬁ)rtunately it isn't that sinple

) M g. ‘ What locus is represented by the _paremetrie equstionsf .

(3) ] X=g8ilnt y=s5int ? o o e

*

Solution. Eliminating t in the only sensible: vev givas the ex_ust.ton
y = x o The graph of this is a line, while the locus Of (3) 1s the ﬂemant
determined by (-1,-1) a.ud (1,1). Equations (3) are an analytic cond1tian -
for a segment stated H:lthout inequalities. S o

~ . -

V/ There is no simple way out of this difficult?,,r, and we end our discussion

with the warning that vhen you eliminate the parameter from a pair of, para- . "

metric equations for a curve, you must then check to see whether the locus of

the resulting equation is the locus of the driginal pair of equations. | o . 

“ag

~ The nature of ‘the parameter.may impose certain natural restrictions or
bounds on the values ofr the variables inmfved. In some problems we may wisn '
to impose such restrictions, and in that case we have, not a di—ffimxlty, but
a special tool, It is importapt that we learn the udes and limitations of e
our tools, 8 t.h#we do not try tobuse a serewdriver to drive nalls.-

- A1l t.ha &n&lytie conditions we hava eonsi.dered so far in this section'
_ have been equations. Our last t'im emples deal with inequalities. , -,

by .
+ * L N
. € _

~

] “ ‘ ‘ . -\' . N “‘ ) . ) '\..

Ve

" ':' . ° yoe ¥ C
12 = e T e

¢

[

-
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Exanmple 13. Disucss gnd sketch the locus of the inequality

/

-

. o | .2x-'-3y+h<0.v

. )
. N - . :
. . - , . ’ . . . _
. . . - ~a . @ .o - »

. Solution; We shall use simple arguments sbout inequalities. Suppose
 (x¥,) 18 6n the gﬁe 2x - 3y + b 0, 50 that axo- g + b =0.
Ro‘w:'eomside‘r.a po&nfb (xo,yl) , with ¥y >¥g ¢ i Then 3;}1 >3y° and
2x %y, * b <2xy - 3yg +h=0. Thus (xpy;) s @ point of the locus.
" gimilarly, if Vo <¥g s X5 = 3y2 * b >0 and (xo,yg)- is-not a point of

. the locus. Thus enw goint directly above a point of the line is in tﬁherlocus,
- vhile any point directly below & point of the line is not. “Therefore the locus

1 g paspis sttt bl \\\\\\\\\\\\ o

y

e & “2 -l I z
. '
, " Figure 6-23 ; J
m 1k, Discuss ani sketch the locus of the inequality
. W 4 ¢
. . - _‘ .

(v 2 - Bx-y+T120. S e
Solution. By campleting thelgquare we can rewrite this‘inequa.lity in the

fomm _ " |

* 2% -2°-y-1>0.

, ( : f
. r2 - .
Fow suppose 2(xo - 2)° - Yo - l=0. If vy, <Y, then ] ‘
2(:{0 - 2)2 -¥ ~-1>0. Thus if (xo,yo) is on the graph of the gqustion -

(5). : ) 2(x - 2% - y+1 =0 a
. . 4~




B T

and ' y; £, ve see that ‘(xo,yl) 1g'A point of our .loéus.it:’@y a similar

argument ve can ghow €1f y, >y, , then (x,,¥,) 1is not a point of our

‘locus. Thus ou; locus is the set of poihts below or on the parabola repre-
sented by Equation (55. - It, or rather some of it, is shaded in the sketch
bele ‘ ' ’ - " ‘e

o

«
~

£

\l ¥

‘Figure 6-24

.
,"""

.
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Exercises 6-3

“-‘
In these exercises discuss and -sketch the graphs of the .conditions

given. In your discussion ybh may find 1t uséful’%o ¢onsider symmetry,
extent, periodielpy, intercepts, and asymptotes.  ,When the condition is a
pair of parametric equations, eliminate the parameter if you can, but be sure

then to indicate any restricticn§ on the values of the va;iables. * ' ;:k\
e = "3

Yy . ‘,
3. x=-1 .
lh." X 514 v
5. ¥y = =x + 3 ‘
6. y=2}E" 1
7. x_2y+3 =0 - . ' o
s xr3r-5e0 gy

xX_X-
9' 2 3 l ¢



10. -xﬂf'*--ll ( .‘ : | “
"12. x=at, y--a t | e
13. th-u“eyn-ox m
15. x +f+a-a+a-m
.16.. y = x{x - 2)(x - 3)

17. = = (y + L)ty - (y - ¥)

I’D

18, ﬂa y-x=8' | o
190 y.ema . p B ’
2. x=siny ‘ , -
. al. ¥ =33 sin x . . s -
- ]22. X = cos ¥y : ' ‘ N
' - 23. y=1+cosx .
jah._y-ma. : : N . —
25, y=2 =
26, yne-x .. . .h‘ > . . “\
.- 2 ) .
T | . :
!* 28, ¥.=3x3 | . - L
29. y=mx (Rote: This may also be vritten ynfagéx.)
. , : L
30, y= mx° (See above.) ]
31. y-los2x
.32-‘-x=t2‘+1,y-5t2+1+ -
3. x=%,y=3t ‘
34 x=2cos ®,y=2sin 0
35, x=2cos ¢, y=1L4sin ¢
1 - 36. x.=3c083¢ s y=3ain3‘¢ ’
| 37. x=sin2é,'lf=eosav¢t .
_38.,x=sac29,y-tan29 ¢
_39. y>x2 )
o -
x,"O- %—+é<l . 45 .
Q. " ) 239 .
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6-k. _mand cond.ttionn (Pol gcoorainatee) | ' f e

In this section we discuss the mbl.m of sketehins the mpha of
analytic conditions in polar coordinates. fhe most.importantesuch conditions
&reeqtmtiom, aniweghﬂ.leonﬂneournttention‘bathumumptforn
fev exercises. . _ - . '

memstsn-aishtronmﬁmtodmthemrhcfmmuonmmm o (
'mm'd:lnam1staplotammberofpointaof»thelocusanddmamthmsh
them. If the equation has the form r = £(§) , we can construct a table giv-
_ ing the values of r eormspondingtoamherofvahmof -8 . No matter
mmmpomtsmmt,theregmamimm@emonofmtth
_mmmmm,mtia,mmpomﬂmmapmm If the
equation is not too complicated, we cen get a good desl of informaticn by
studylng the functicns imvolved. '

As was the case foremﬂonsinrectanguhrmrdimteﬁ,uamoﬁen
get useful information about the curve by considering symetry and extent. .
. Asmtotes of curves given by equations in polar coordinates are not easy to - - -
find from the equations, and we shall not discuss the probla' However, if
‘the curve has a fairly simple equation in rectangular eoordinatea, we may be
able to find its asymptotes by studyins that.

As you lmov, given a polar coordinate systeminaplme, each -point has - . -
infinitely many pairs:of coordinates. This fact gives rise to certain a1fee-
culties that we have already met in Chapter 5 but we now consider them in
greater detail. As in the previous mection we shall develop additional
theory and useful methods of approach in -our discussion of a number of

- examples, |

* 46 M 't
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. ' : . s
ml. Mmmupmnthemhofthemﬁcn r-ame.

A Behxt:len. Btrictl;r swm.ns,unnhoum state explicitly. t.hnt r and O
mmmmmm“mmmmm weam.lmtaosommmtj
- 'ofthiu seetion,.aincethm_isnodmgerofmhig\uty-
Since |eos9|<l for all 8 , the graph is bounded. Since
coa(e)-me for all e,ift.hepoint (rgs6y) mmthegraxh,sois,

the point (£s8p) . Thus the greph is symmstric with respect to the 1ine

contdnins ‘the polar axis. It is also symetric with respect to the point
(1,0) , but it is much easior to show this by using an equation in rectangular
coondimtea forthelcm The table below shovsthemnes of r .

mrmpmﬂlngtosevemlmuesof e . ‘.Iheeosinenmctionhaapenod x ,
.80 any e—intml_otlength 2 will do. :

’ -ﬂ N L
8 0 | t]; I f—;- | f%” l .5 .

o’

Figure 6-25

Itlmkslikeacirele (pmbahlybecause itwasdrmwithacmpe.ss) but
all we know so far, even if we make use of our knowledge of the cosine func- '
tion, is that it is roughly circular.

Pad
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" number of values of

- 6l

'That the graph really is a circle can be proved. as follows. The graph of
2=2rcosa isthemeasthegraphof r=2cos 6 . For the only points
‘matmsntmmthemmermm@mmfmmpomtsﬂm r =0, and
the origin, which is on the latter, is theonh‘such point.” If we take-a
rectangular coordinate system with its axes 1n%the usual positions with re-
specttothepolar&ads,veﬁndthatthegr&phhastheequation

24y oy, . | |

-

Example 2. Sketch and discuss the graph of the equation rim sim30. g

Solution.. /This gtaph, too, 1is bounded, ‘since |sin 3 6] <1 for m
6 . Whether there is a point or line abqut which the graph 15 symetrie is X
not obvious from the equatiocn, so we postpone the discussion of symmetry tm .
we have sketched the graph, It will prove nothing but it will "suggest vhat. ’.~‘-\f'§ .
is probabl,\( true. The table below shows the values of r corresponding to a

7 If we peeded a fairly accurate graph of the equat:lon -«

wewuldhavet-ocensdermoremlnes of 8, butsincewelcmwhaw sin 3 @
varies wvith 0 , this, table will do. .

- ) . o

Sa

.\‘.

JHBEHEBEREUEIREIEEE:
I Bl l 0 I-l l 0 t 1 l‘ol -1"”1 0 ‘1‘1 I 0 ! -1
(5 7) \(7 -/ o :
.(%!;_/) ! / (-5‘-/) _ . |
4

/ (£ & o

- Figure 6-26
The sketch suggests there 1s symmetry about each of the lines 0 = % ’
A= .

8 = %‘_ ,and 6= %ﬂ- . Ie‘t. us check the first of these conJectures. If we

58 22



6-4
wish to compare f.(-’é +q) and f‘(% - @) . ¥e obtain in th”‘e/ first case
resin 3(34-::) and in the second case r = sin 3(-5-(1) These become
r=sin(§+3u),and‘r' sin(—n?;q),michinturnbecome r::cnsSa

and r = cos 3a . The identity of thele equations establishes the symetry
we were checking. The same method can be used tq deal with the other lines.
. The graph is not symmetric sbout any point, but we shaell not prove this.
" Example 3.  Bketch and discuss the graph _of the equation r =1 - 2 sin §.

. Solution, Once more the graph is bounded and we ;stpone the discussion L
of sfmmetry until below.

This time we shall sketch the graph without making a table(, introducing
first an auxiliary graph of a kind that is often useful In graphing polar
equations. This au:dlia.ry graph is the graph of the equation y =.1 '~ 2 sin X,

‘arewn on & plane vith # rectangular coordinate system. Ve have learned to do
this reedily by the addition and multiplica.tion of ordinstes, as shown 1in
Secticn 6-3, and illust.rated below for the values 0<x< 2 . For the
purpose of illustmting certain details of the discussion we will sometimes

use different scales on the axes in tie graphs’ 1n this section.

, Q , y
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TN

-~  We suggest the-fonmﬁé sequence: | 5 S

: (1) Skefcbmermn&eme@ : yeeinx.,
( | - -
& (2) Ezpand @ awvay from the x-a.xis to.get @ ¥ = 2 sin,x .

@) Reflect ® mthex-mstoget ® : ra-asinxg

(h) Raise @ 1 unittogetom'gr@h ysl-em,nx. _ . \

Vemvusethiagrs of the equation- ynl-es:lnx to give us
coordinsteé.ofpointsof' polar graph of r =1 ~ 2 8in @ , andobtad.nthe
polea: grn;' given in Figure 6-28, . ‘

7 um
| | | .

(3.4

Figure 6-28

This curve is celled a limagon, We have indicated with the same letters

carresponding points on the two graphs. Note fhat the lack of a unique pola:r )

representation of a point is shown in the fact that points P and Q of,
Figure 6-27 (and infinitely many more not shown) all correspond to point}

of Figure 6-28. Also, points A and E of Figure 6-27 (and infinitely many
more not shown) all correspond to poirt A of Figure 6-28. The inverted .
arch below the x-axls of Figure 6-27 co;responds to the small-inside loop of
Figure 6-28,

Figure 6-28 suggests that the graph is symmetric sbout the line through
the pole perpendicular to the polar axis, that 1s, the line for which one

equation 1s 6 = 2 . We cheek this by comparing f(-— - @) and f(-— + Q) .

In the first case r

1-2 sin(§ -a) end in the second case
r=1-2 sin(%“+ a) . -In both cases we obtain from familiai trigonometric

relationships r =1 - 2 cos a. vhich means that the two cases give equ.ivalent
equations, and the symmetry is proved.

on e
o o,

~-
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 TFinally, the related poler equation 18 r = -(1 - 2 sin(6 +1))e
-(1 + 2 8in ) . To show that the polex graph of this equation 1s the same

“11mgon&5theonemobt&inedmli’ime6-28 veuseamethodamile.rtothe

method of a.ddition of nates for grspb.s in rectangular coar&ina.tes. The

‘methoa, called addition of radii, ‘viich may be new to you, 1s useful in

aketching certain nev graphs related to familiar ones,
&
Wehave seenmliu'that the polar graph of r-2sin9 is acircle

of radius 1 , with 1ts center at (1, %) Indicated a8 (I) 4in Figure 6-29(a)
. t : ‘ . .
Consider a number of rays drain from O to points of this circle, 351 ’ '652 2

.553 " vee » Find points Q5 Gy Gy e on these respective rays, so_t".ha;t

(P,4) = a(Pyp) = (F5,Qy) s +ee 5 ='1 , as shown in Figure 6-29(a) ,

which shows the graph of r =1 + 2'sin 6 .

*

]
I
:
| . t"e‘ : ‘\\\\ ’ -
- @l‘ 1 \\\ \
] [ \
@ 0 : i\ ' -
t ¥ -
1 £ £
. U
. - ———‘—& *
°® - ‘!
Figure §-29(v) ,
Note that when x < 8 < i’i we have 0> 2 sin § > -2 , therefore
1> (1 +'2 gin 6) > -1, gnd the Q points of Figure 6-29(a) are on the ..
right half of the inside loop of the graph. In the same Way when : .
%’-‘ <8 <2t we get the rest of the inside loop. .

Va

Thus'the locus”of all the ¢ point 1s the graph marked (@ which is
a lima.gon whose polgr representation 18 r=1+2sin 6. This process of
using the P points to find the Q points and the graph @ 18 called the

addition of redii.

\ . oo ol —
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Sincevemtthegrqphof r=-(1+31n6) veqnvﬁndthesymetric
image of (@ 'with respect to the pole. Itiagrgph ® Mchwerecos;mize'

nstheamﬁnganminﬁgwes-aa S |

1. -8

L J

m_k msmsmdaketchthegraphoftheemticn r-m.

So Onle Mmismtbounded,sinee reanbemdearbitmﬂy
la.rsebypieking @ so that siné® is surficiently ‘close to -1, By the
nethodusadinE:mnples_2&nd3,-weﬁnd§he phis-symetricgbcmtthe«.‘

4

1 :
dine ==, ; .
e 3y It ea.nbe ske*-behw the table below

’.’f\..:‘;
x g o 5t
6lo § % F F F  F I o
. rl -
;

Figure 6-30

The sketch suggests the graph may be a pa.rabola. That it is may be shown

as follm The equation
e, -« .

‘ N S
1 +sin6

246



" 48 equivalent to the eqm.t.im
1If we introduce & rectangular coordinate mmﬂﬂium located as
usual, ,the graph has the equation

T B Py,

. \«‘
"1!:13iaa.neqmtienofthepambolsmsistingofanpointsasfn.rn'tnthe

originastheymfrmthehne y=1.
]

\ o szzrciaea‘ 6-1}‘ | o

' . In each of the exercises belov discuss end sketch the graph of the
" condition given. In your discussion, consider whatever geometric Troperties
you can infer from the equations. Write the relsted poldr equation’ for each.
If you can, find a tfon 1in rectangular coordinates for the same locus and
1dentify t.hg:bécua. . ’ o

© o AETre3 - .
e 2. r = -2 o A ' ‘ -y .

3. 6=% ~
| .3
be = -2

5 r=38in @
"6, r=sin2 8 .
oTe = cos 2 6
8. r=sin586
9. rcos §=-3

10. r cos (e-%)_=3“~ .
L. r=1—ipp S | -
T 12, rsx-_—ga—g . .e”‘

r .

2(1 + sin @)
2 tan 8 » (There are vertical aaymptotes, tryto find them, )
4 : 4
5. r g | © . -‘ . ,
160 re=2cos 8 - 1

L
17- by 2 - 3 cos 9 . ' ©

2 +sin g , '

]

o

e

- -
H
o1

]

.g_
H
]
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19, **acos28 e~ |
-, 20. F*mbam2e - . - A
0 21, rektang sece - o -

-4

. g8, r'-'a(;"fnmee),
S #horg2 " P T
N . |r] <2 |
'_26'. 2-<r‘§'3 - | ‘ . 1
- 27 65'95% ' o o S

\ - 28, 0g0gF,E20 . |
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65 Intmecﬁmofgm_(_mmme_s) A
The intersection of two sets is the callegtion of objects that belcms to
" botn the sets. How the graph of the equation £(x,y) = O 1s the sk of points
o . . vhose coordinates satisfy the equation, fie. ((x,¥y) : £(x,y) = 0} .. Hence the
P intersection of the aphs of. £{x,y) =0 amd g{x,y) =0 1sthesetof.‘
- points whose eoommz; satisfy both equatioms, 1.e. {(x,y) P £(x,y) = 0
and ‘g(x,y) =0} . If £ and ‘g are linear functions, the intersection of
the graphs of f(x,y) = 0 and g(x,y) = 0 is the set of points which lie on
two lines, in other words the intersection of the two lines. In gmml, thq

intersection of the graphs of f(x,y) =0 and g(x,y) = 0 is found by solving
the two equations simulteneéusly. s j

%

o

& ) Example 1. ‘meintaraectionofthelineswithmtions Xx-2y-1=0
- andx+ys=2 isthepoint (2 —). : !

m le 2. The interseetion of the lines with eqmtiona X -2y -
,and "2x 2 by -3=0 isthenul;get. In other words, the lines are el. .

oy . .

Example 3.. The intersection of the graphs of y = sinx end y = cds x
'iasbit?rd'artoﬁnd At each point (x,y) where the curves intersect we
\

have sin% = cos x . Thus x=E+ks: ‘where k isminteger. Then \
A AR

‘ . . : < : . \
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.' - . . a » ‘6-5
. i E ‘
‘,y-% vhmkism, y--fg uhenkisodd m m‘b@tm
 be \n'ittegmore mﬂs ina.fm‘n'equmly u.ggd by nt : cim

“<

.

‘-(-l)kig,: mere K- naninteger... . ‘.""" * -7

' .
«

mh. minte:rsectikonofthemphagf X - y+3<0 and
-2x - x;r+k>0 is the‘'set of points on or above ‘the line x-y+3=0mﬂ.
‘on or belgw the:line 2x - y+hio.-1tisthedoublyslrdalmin ’
ﬁgmbelw,anditsbomdmdﬁmpm?nfthelmes

/ y
— { t x-;-r.-:-o
. ' " e . F 4 ‘ .
é v ' b - 4‘ : .
PR
- b ‘ 333 4 Y@‘
¢
’ L
+
- 'Figum 6-31 .. . .

“The problem of finding the mersection of two graphs can be very cmpli-‘

_ -cated, and we ‘shall not spend-mu more time on it here. ikmever, there is

amthm-emlevhichisofintereat . /,f

- . .
- r‘r‘ B -

] X . ‘
Exsaple 5. Find the intersection of x° +y° - 2x - by - 4 = ) and

x2+y2+a:+2y-2ﬁ0. Vedaulclmnsiderthafirstemx&tionasaquad-

ra.ti'c equdti’on #n y and use the quadratic formula to expu:es- y in terms
of b S W’eempﬁget y=2+48+2x-x /Hecouldthensubstitutethia

:Ln the second equation and . solye for x. ({(Carry the work a bit furthér so

" you wilt appreciste the aifficulties.) ‘ 4 o
. . - R .* *

.‘ﬁ‘ B

This problem ca.n_):e solved auch more easily by using the prineciple of
linear mbimtion'; vhich you studied in algebra. The system

S .o+ ix-lyaba0

(1) "~ R
x +ya'br2x+gy-g.-.o

_ 249 - '
g 55 .

“ - e . . ] \

Ay



: ‘.1& equivsle;ﬁ. to, the s:mm

2y &(xa-&-y& 21. hiy - 4) +b('x~+‘y2+a:+83-2) =O e
Y S o, : : |
e ;’ ,.:;,"‘ .v. “/' X +y2+2x+ay -2 -0‘ ‘- e

aslcmgaa s.;‘o. If a-«l and b-l,thesecondayptunbegms

NN
TR o -

S g o ' hx+6y+2:-ov‘ S

(3) T - el L .
R +y2+2x+2y-2-6. :

i - . ! <
’Rovtheﬁrstemmtimin (3) 1s linear. Usingit,veea.nexprese ¥y in
terms of x , substitute the result in the second equation, and have left

nothing worse than 8 quadmtic equation in x . " The points of intersection «°

(h | 11, o
are  (1,-1) m‘m“( %'E")" o T

\

‘ "miis solution has a ggcmétriednterpntation which is worth investiisting.

£

Figure 6-32 )

The graphs of the equtions in (¥) -are circles. (How can you check this?)
They are shown sbove. Now the graph of the first equation i (3) is é;lixie
and that equation is & Epecial cade of the first equation in (2). But if
the coordinates of a. point satisfy the two equstions in (1), they clearly
sstiefy the first equat}on in {2) , RO matter, wha‘c? a and b are. (Thus the
graph of the first equation in ' (3) passes through all points of intersection

N ¢

of the two circle:s and must be the line contsining the common chord, which is -

. shown 1n the sketch above. If "a # -b which implies that & &and b are not
both zero, the first equation in (2) 1s that of a circle. passing through the
points of in'te;'secticn of the two original circles. (As a matter of fact,

- each such circle may be obtained by some choice of a and b , Can you
prove this? Y . .

/ ‘ 250
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.

| ~ This result ¢an be generalized. TEw f(x,y) = 0 and s&x}y) =4 are
< equations of two loci, then the locus of af(x,y) + bg(x,y) = 0 contains the
vintersection pf the two original loci. For suppose’ (x,,¥,) ‘1ies on the |
original loci.. Then f(xof.yo) 20, g(io;yo) = O:', and hence
. af(xo,yc) + bg(:;o,yo) =0 . (Thie is true, though not very interesting, even
vhen 8 =1b =0.) _ ’ | .

.

< o Exercises 6-5 - O
 .In each of the exsrcises’below, find the intersection of the Yoot de-
termined by the conditions ‘gi\nem Use both algebralec and geometric methods.

. ' e f
.lc X'ﬂE,VX-.Q}"=2A :

ot 2. x-y+i=0,2x+y-"(-0
. | | e ’
3. x+'y-.l==0’,21.+y=0 ' "‘ .
b x-2y+3=0,20+y~2=0 '
1 ‘ . .
5.“ x.-gy-+3‘=0’ag'-hy+§=‘o . . v
6. x2+y2=h,y=gx ]
7."x2+“y2=2:,x*¥=0 . ‘ ’
2 2 PI R ° ’ v
8, xX“ +y -X+hy+5=0,30+y-1=0
.\ | < . b ’ .
| é 3 * - . / Y
0. ¥y =bx , x-2¢#3=0 T .
M. lbee—3y2r-'l,x'-:;l'=() s "‘
s ‘ ‘ 2‘) 29 '.’ - - ," - .
12. -x +2y' "h"'x-'Y‘lﬂo .
. 2.2 2 2 _ , »
13. xX“ +y =1,x +y -2x-8=0
:’.‘ lh‘o §2+¥2 =15’2x2.~+ YEQEI‘ " ) - e,
2 " ' :
15. xy. -xy-Uyt+tdh=0,y=x
' 2
16.‘x2+3f2=2,,y‘=x
L j
' v
17. y—x2>0,y‘—x;l<0
e
251 o7




lso'xa-l'-yaslt";x-;y?}()

2

~ % Y
© 19, x+2r+3<0,3x-3+5>20,2x-3y+1<0

6-6. Intersect{Si ST Ioei (Polar Coordinates)

In the mﬁous section we discussed the intersection of loci given by
emtionainrectang\ﬂar coordinates. memethbdwusedwrks farloc:lde- .
tenninad by eq;mtim in ypolar eogrdinates, but, as ve shall see, ‘there arec '

added’ bamplications, ‘Let us ‘take up firat & smﬁ case. .
3 % ) o |
’ MCJ;. ansi&erthegraphqof rim 1 and rnecosQa. &ay&re
the ¢ircles shown below. : ' . o
y-\
v
Y=/
. .
-
» -
) ‘ _ : Figure“é-33 !
. ~ K >
—~Q Solvingtheeq\mtianssimﬂtaneouslnget 2c086=1,c059n%,9=§-

(S

or 32 “ (There are infinitely many other soluti(ms of the eqm:tiens ’, but
sincé"the sine and cosine functions have éﬂod 2n , we need ccnside‘r ofly

solutions with 0< ¢ <2r,) of course, r =1. Tis 1s consistent with
v  our sketch, )




L . . - . ) . . .
. , . . . . . 66
. - [ € . Co : .
.t L

ma. nuwmiderthaeguatim r-aeoee and . r-asine/
7’. Oneemorethairgmphsa.recirem, vhiehmsmunintheﬁgmbelow

¢

- Figure 6-34 ,( >

There sppeér to be two points of intersectign, Let.us solve the two equations
simultaneously and compare our answer with the figure, Setting

e
. £

2cos 8§=25in 0 we find @ -% or % . (As before, we need consider

»

‘ox.ﬂ,y solutions with O <6< 2¢«%) The first gives r = /8 R the .second

~r = -/2 . We have not, however, found the two points of intersection shown
in the figure. We have found two sets of-polar coordinates.for the same point,
This reminds us,once more that while a rectsngular coordinate system 1n a ’
plane is a®one-to-one correspondence 'between the points in~the plane and the =
ordered pairs of real ntmbers, every point in the plane has infinitely many ¢

E

different‘pairs of pole.r e-coordinates. . :

This 18 also the source of our oﬂﬁr difficulty. cleg.rly the pole lies
on both curves, but our algebraic method did not find ‘mia intersection. The

»

H RERD e .
trouble 1s that the coordinates r=0, 6 =2 satisfy the first equation

nol=

but not the second, while the coprdinates r =0 , 6 = 0 satlsfy the second
but not the first, Both pairs, of course, représer}t the pole, whose coordi-
nates require special comment. If P 1is any point other than the pole, its
eoordimtes,. (r 6 +'2nx) , allow infinitely many, but nét all numbers as
second coordinate. For the pole, however, the coordinates (0,6) allow any
number &8 & possible replacement for 6 . Geometrically this means that, 1if
there 18 any 6 for which r = £(@) becomes zero, the graph must contain
the pole, We have already found in this example that (0,5) satisfies the
. ) _
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, fmt)éqmmn, and . (0,0) the second, which that the pole lies on,both
gr@he and is therefore & point of intersection? '

'Ihis leads to & small but important caution yhen ﬂnding Antersections
of polar graghs of r = £(@) , and r =,g(6) .' Check first to see 1f each
graph contains the pole by seeing 1f there 18 any 6 for which r = f(e)
equals .zero, or any ¢ tor vhich r = g(¢) equals zero. If both conditions
can be satisfied, {'.he.n, whether or not @ = ¢ , both graphs contakd the pole,
whhch 1s theérefore an intersection pofnt, Then you can proceed’ vith the
usual eimultaneous solution of the t\ro: equaticns e

o4 4

Exampte 3. Find the points of intersectidh-(.ef_the graphs of '
| . '_._1___..‘@&"‘ 2 cos 6+ 1"
. w T EFT¥2ocos 6 T =ecos < !
Solution, These graphs, which are related to some #e have diseuased
earlier, are shown below, The pole is on the. second gre.ph but not t.he first, 3
henee is not a point of intersection. «

Figure 6-35

There appear to be four points of intersection.

R

Now let us solve the two equations smzzlta.neoqsly.’ Setting the expres- .
slons for r 1n the two equations equal to each other, we get '

. 1“
N 2 +2 cos 8

='2c053+l.
Simplifying, we get
um§e+6cos9+1=o

from which we find that S _ o

£

cos 6 = %(-3 + /5

i TR




N

., T =2co8 § -1. Jf wvenow solve similtaneously the equations

0% -1.31 or -9 . _ .

-

| mmtisaperfectlyaeodmatctmmadraﬂemﬂmfor mae,'tmt
;tiamtaposaihlemluefor'm 8 . (Why nott). From & table of values of

the trigonometric functions we find that if " cos = - .19 , then

. . . . -

/— 6 =101° or = 25°

‘Then o | .

r=.62.

It 1sclearthatmhave found the points A and B of thd figure, but what

about C and D¢ Itismttoohardtoguesstheansmifvermherthat

' a polar graph may have other analytic remesgntat{ons. In our e.lsebraic

\]

. solution we merely equated two of the infinitely many equivalent polar equa-

tions avallsble for each curve, Fortunately we need not try them ail; for

the purposes Of the course we can glvays find all the intersections of two
polar graphs from the sinmltsneoug golution of an eguation of one of them
Jrith both of the related polar gquations of the ot¥er., The limagon
re=2cos 6 +1 has the relate&lar equation r « -(2 cos (0 + x) + 1‘ or .

¢t

< 1
r-m and r=2cose-l

‘we get the coordinates cf pointa C and D in our figure. They turn out to

be spproximately, (.30,49°) and .(.30,311 ).
The difficulty is not a simple one, so we shall take another look at it.
consider' . 2

{ (.62,101°) {r=?,c03'9+1 N
(--62,2310) rew2cos f -1

_ We have two pairs of coordinates for the same point, and two equations for

the same curve.,. The first pair of coordinateg satisfies the first equation
but not the second and the second pair of coordirmtes satisfies the second

but not the first. This situation should occasion not anxiety but care, and
1s entirely consistent with our definition ¢f the polar graph of an equation
as the set of points each of which has some pair of coordinates that satisfy .
it. o
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Exerciseg 6-6 6—6
- , | " In each ot the exercises belmr, find the intersection of the locl de-
' termined by the conditions sivun. write the related polear equntion for each,
“to make sure you find all points of intersection. Sketch both 10::1, as a
check on your algebra, '

-

4 2 o ' _

lo T=77osg’ 8% : , e o
. 3 o o B ‘

2 re=yreme’ 871 '

3, r=2¢e @, r=28in6

~
4, r=w8 6, r=1-co8 8 o g
5: i‘.n'cme,lrnsit},Ee

6,. rnl—ain.a,hreine‘gg]_ ' T

7. r=1+co86,T =7

- cos 0 - .

. ‘
6~7. Families of Curves.

In Section 6-5 we mentioned the collection of u.nea*through the inter-
section of two lines ‘and the collection of circles (snd the 1line) through the
intersections of two cifclem. These are emnmles or what aye called families
of curves. The collection of all circles in s plene and the collection of all
tangents to a parabole. are other examples. In this section we shall proceed
a bit further with this topie.

If & and b are not both zm, then

. (1) " ",a(x-y+3)+b(3x-r+?)=0

is an equation of a line through the intersection, P , of
. vx-y+3-0&nd3x-y+7=0. .

Can we choose a sad b sat.hatthelineisvertical‘z Yes ¢ Fcrifwelet,
a=1 and b = -1 , the eguation beccmes

2x -4 =0

orx

xz-EQ
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© This ismamthodmlmm&%hb;amr solving pairs of linear equstians“
~ in two unknowns.’ maemwmmmwemmmummm@

the intersection, which 15 equivﬁmtm ﬁndins the y—eoordinate of P . It
turnsoutthat Pn(-e,l) ., -

. mwunethmm (-2,1) mybgobtaimdhypdeking a and 'b
A a4+
a+d °

then (1) has no slope, & fact we noted sbove in case a =1, b= -1
_ for any real mmber w , & and b may be chosen so that

~

suitabl;r. For the slope of (1), 1if it has one, is Ir a= «bf,

a+b e
(Thiaisnot obvious. .Can you prove 1t%) |

Iet us lookatt.his family of lines ﬁmenntherpoint ofview._ T™he line
through- (=2,1) with slope m has an equation N } '
(2) g - r-l=m(x+2) ‘ . .

Fbreaehre&lmlﬁh mgetaune,anddiﬁemtvumof n give
.d1fferent lines. Thus, (2) 1is almost the same Mlyas (1) , the only
differmcebeingthattheline x--e,sinceitmmslope,isnota
" member of (2) ‘ ’ , S _ .

MOn.gthememhemofthéfamily (2) th should be two which are

+tangent to the eircle xa + ye =1, (One of is obvious, but let's solva,

’mepmblmastmughmdmmtmwmem?‘nr) Intyitively, 1t is clear
'thatatangmptcacircleisslinewm& ntersects the cirele in only ome
point. Let us solve (2) simultaneoisly f¥ith the equaticn of the circle, and
,thentrytopicfk m so that théere is cm],yone'solntion. Fram (2) ,

. . &
y= mx+£n+l.' , '
‘Subsﬁtuting this 1n x* + r"-‘ 1 we é/et < ’
x2+ (mx +'2n+l)2
or \ ‘

x2+m2x2+hm2+1+lun2x+anx+lm=1

o~

or

(1% o2)x> + (bm> + 2n)x + 4o + 4m = O
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This quadnticvillhmonlymeroot (tﬁatis,aﬁmxblemot) if, and only
1f, 1tsdiser1m:lnm15 zero. The discriminant turns out to de -lm(Smidl-),

vhichiszemif,sndonlyif, m=0 or‘ms-',%‘.

!

\(‘2.1) - ‘ L ' /<.

-«? -
Fisure6-36 Lot

Ca .

™~

The figure shows the tangent lines’ for each case. Their equations are
y‘!l=0 and hx+3y+5-0. ' '

Letususathesameneﬂmdtoﬁndthemuyoftmgentstothepambom

ysxe . let (a.,a) bea.nypointontheparabola. The familyofsllbut
one of the lines through this point can be represented Py ‘the equation

L

/ o y-aa'fm(x-e.).-

(which one irm;,tsing?) m:.'essins y in terms of &, m, and x , and -
substituting the result in the equation ¥y = xe , We get , . -

. o &

x2_m+m_a2=0~. ‘ '

This eguation has a doui:lé' root 1f, and only if, m2 - 4{ma - 32) =0, 1.

if, and only 1if, m%.- Thus the slope of the tangemt to ymxe iat
| ¢ .

(s,82) 1s 2a, and the family of lines tangent to thé pavabola can be repre-

sented by the equation h

‘,y-a2=ea(x-a.)
& =

(
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" ' . Laid ( ’ . ‘ . ’ )
‘or, in smewhat simpler form T _ Y

(3) . 5 y = 28k - a° , _

The "a” /3) aboveiscalledam ('mamnimmed'
earlier in the text in & different sense. That s, in a way, unfortunate, but

"bothusas are very common.) It is difficult to define tbat word, but you must

nnders‘tandhcw at iausedhere Wemigfxtsw “]:et é beanymlnm

Then (3) is s.n’eqmticm of the tangent to ¥y = x at (a.,ae

hand, when we a;'r'that (3) g'epresenta the family of all

parabola y=x2,vemeanthatmchtsngenttothemmhohmanequation
obta.ix;edbya.ss‘lgni’nge.sui?eblerealmm a,andeachemtionsooh—
tainsble 4s an equation of a tangent to the parabola. In other words, (3) 1is
, 'Y \ ,

aninsenious Mtiﬁg infinitelymnyequtions masmllspa.ee.*

, You have considered many other families of ‘curves in earlier courses,

wheﬁﬁefynuusedthisphmseo:mt. The equation Ax +By+C=0 repre-
- sentsthefagﬂ.r,ofanunesinaplane The equation y = mx + b repre-

sents\_t.he family of all lines which have slopes, thst\:!.s., all lines which are

pot perpend:lcula.r to the x-axis. The equation Xy = k represents the|family ‘
. of all rectangular hyperbolas with the“coordinate axes as their as '

(and the t@ axes themselvea, obtaimd by' gsetting k = 0 ‘amd sanet-imes called

a degenerate hy‘perbola.) The equation (x - h) + {y ~ k) .= r2 representa
the family of all circles in 'a ple.ne (and the point (h,k) ’ cbta.inad by
setting r = 0 'and scmetimes called a point circle)

mtimes 11t 1s useful to ecnsider 8 family of curves snd select fram 1t
those which have some additional property. For exq:ple, at one point in the .

~ discussion above we congidered the family of linea vhich pass through a point

2

cof y=x, “and tl_xen selected firam this family the mber having the a.ddi-

tional property of“being' tangbnt to the ;arabola.. Let's consider an analo-

-~

gous problem.

. ﬂa\Mily of all the circles in the plane can de repu:esented by the
equartion

- ae

K S O LR T

-

The center of each suleh circle is at (h,k) . Which members of the family are
tangent to both axes? If a circle is tangent to both axes its center is on
the line y = x or on the line y = -x « The family of circles with centers

-5

o’ 785
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on the line y = X can be represqxted by the equation .
. (x-n n)2 + (y - h) 2-' ,
Suchaeirclevinbetangenttobothéxesif,a‘ndoquif, r = |n ar v

-

/

2 an?. mﬁemuofdmmmmeﬁmtortﬁimqmdmtm

tangenttobothmamberepresentedhythe equation

CxenPe(y-nPail,

-,

.
L]

An equatiom ;senting thosé in the second or fourth quadrant can be found’
in @ similar vay. , T I ) . ' :
marcises 6-1
In ea.ch of the first l‘B‘Pexercises, find an eq,uat.ion representing the
m:l.ly of curves descri‘bed . , '
1._A11ve:-§1ea.1nnes.- . ; T s
2.  All horizoptal lines. s | o \ |
/3. ALL nonvertieal liries through (2,-1) . ‘ S P
¥, A1l nonvertical lines. g ) '

5. All ciréles with center (-1,2) .
6e All circles with radius 1+

7. All pa.rs.hclss vith vertices at the origin a.nd axes horiz.cmta.l
SZAJJ.linespmfallelto 3x -by +5=0.

9. ALl 1ines ﬁérpeng{ieula: to 2x +y -3 =

10, AL lines tangent to tt;e.circle x° + yg = é‘j .
ll.v A1l lines that do nob meet the circle xa-'+‘:,r2 =25 . : :

12, All circles’of radius 6 +which go’ through the origin.

-
13.. All circles of radius -1 such that the origin is not a poirj of the circlg

' -~
or .its intertor, ) ~ P
14. .Find an equation of the line through the intersectiops of the Yines .
. x-y+6=0 ad 2 -y =0 and having x-intercept equal to 3. - -
/ .

15. Find an equation of the line through the intersectionof x +y - 4 =0
and 2x - y + 8 = 0 and having slope "1 .

-

\
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' 16. Mnd an equation of the line pagsing through the intersection of the
N4 11nesx+y+1-0;ndx~3y+2no endhe no sibpe.

- -

.19._Findaneqmtienofthelinethmughthe intersection of the lines
2x+5y 10&0 and 3n-y+19=&andperpend;culartotheseemd .

20, Findanequationofthe\l;nethnghtheintereeetionof x+y h-o

'17. Find an equation of the line through the intersection of the lines

x-2y+3=0 add’ x +3y - 2=0 aod the point (1,1) , without
finding the {ntersection of the two lines. ’

4

18, Find an emxstion of the family of circles through the intereections of

the circles x2+;r2 2x - 35:0 ‘and xa+y2-+2x+hy-1&hn0 .
., without finding the intersections of the two eircles.. ' '

/

of these l.tnee

A v . . X ’ TN

and x-y+2=0 endperellelto 3x+’+y+7=0 .

2, Fipd equatiena of all .unes passing thmu@h the :Lntereecticm of R

5« -2y =0 and x-2y+8=0 endcuttingfmthefiratqued.rent
triangleewhoeeeressare 36. é; ’

224 Find equations of all linesg through the intersection of y - 10 = 0 and

<

ax -y = Owhich&re5unitsfmthe)b~ -

6-8, ‘Sumiary. . .

We hq,ve explored in some detaill in. thi ehe.pter “the
geometrie properties of a set Qf poirrts en the algebral
a.nalytie representation. It vas convenient to discuss tme eametric prepe.r
ties mider the heeaings of symmetry, extent, pexriodivity, in
esymptetes. We pald partieuler attentien to the speclal situations that ,
ariee in- pol&r cobrdinates fiom the lack of uniqueness in the eorrespon&tnce :
between points and their polar eoordinstee, and the consequent lack of
uniqueness in the correspondence between curves and their analytic represen-

. Our aiseussion considered re.letienahips between graphs and their eond:l-
tione, ﬁrst in rectangular and then 15 polar coordinates., We developed .

several uséful technigues, notably the method of sketching a graph by-sddition

and miltiplication of ordinates in rectangular graphs, end by addition of .
radii in pcl_e_r graphs,

-«
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These techniquee me then epplied to pairs of graphs and their inter- *
seetions, &nd the eerreepending pairs of enelytie repregentations and their
.simulta.nec&s solutions, ' We investigated in. some detail ‘the difficulties that _‘
arise here with poler coortiinates and found -the con!ept of related moler

quetiona p&rticu.la.rly useful’ :Ln these. cases. *
: \

. Our considera.tion of more than dvo gr&phs at a time-wvas conﬂned to RN A

. ccllections of gre.phs related by some comon fepture, These age ¢ called ‘ :

\ . ‘fe.milies o1 graphs, and' ve developed some ueef;ul eoncepts In defining such & .-
f‘e.mil:r, and then selecting a particular menﬂ)er of -1t to fit some" special - : :\ .
_requiremert. . I . o RS -"n‘._‘.j”.;’ ‘n S e

. ¥ '.r‘ 5

In our next chepter Ve . ehe.rpen our foeus e.nd diecuse pertieula;;l.y a / ’ -
! certain classification of graphs® and their equetions. Theeé: ‘the’eonic’ ™ :
Cow '. 'seetions, have & valid claim to our spedal attention," both ‘bece.use the'y have IS
L been e’xtensi.vely -gtudied for over’ 2000 .years, and because they * have 1m‘porte.nt
end interesting é.pplieation in mamr aspects of our 1lives today. e

.:-'I' ‘,. . - . 3 ' N . ) ' : g v a’n {‘ ) . ‘.Z;
““ ) B .. ‘. . . - 0 ‘,‘. . . 1 R ix
\“_' \ o . . ‘ <" e, . oo
. Chapter 6 - Review Exercises . R 7
u" l :
R P ‘I«‘ind' t.he lacue qf the midpoint of all segmepts perallel to the x-ead.s, ‘
NSRS o N T
R .ghd terminated by the lines x +y - 8 = O,2x=-y=-1=0, .. o
> = 2, Find the locus of the midpoint of all segments parallel to the y-exi.s
. . o o
o : " and termine.ted by the lines x+y-8-= ax - :,r -1=0, .
."\ /r‘» *
A% L 3, I£-A = (-4;0) and B~ (%,0) f£ind an equation for the locus of .
e (x,y)‘ ELER -
ST {p) dlb,a) = 2a(R,B) . . o
L ~ (b) ‘a(p,A) + &(P,B) = 10 ; . e
. {e)" &(P,A) - &(P,B) = 2 ; N ' 3 ‘ I
(@ W, - e s
o ' : - . . : ‘-, .

n

.{e) slope of PA = twice the slope of FPB ;

L

(f) slope of A = 1.+ slope' of B ;

(g) measure of LAPB 2 45° o )

(h) ‘sum of tpe ‘measures of - [A and /B 1s 120° ' \\
a e ' {1) area of AABP = H . e

LT () a(R,A) <d(P,.B} . . -

Jl




4, The circle whose equation is xe + y2 = 36 contaihs the poi;:'t A = (6,0).

. s

§ | If P=(x,y) is any other point of the ei.rcle, find wtion for the
,l - locus @f the midpoints of AP. * ‘

S. The circle whose equa.tion 18 x + y2 25 contains the point B = (0 D) e

A If Q%= (x,y) 13 amx other point of the circle, find an equation- -for the

" locus of points P such that Q 1is the’midpoint of 5P .

6. The cirpleﬂhose equation is X + y £ 100 containd the point

* ¢ =(-10,0) . A line through - ‘meets t:he circle sgain at D , ‘and the
. line x =20 at E . Find an equation for the 1dcus of the midpoint of
. IE, for all posttions of the line through ‘c . i

Find an equation for the locus of the midpoints of dl1 chords of the

'circle*x2+ye-hx+8y=0 vhid:areparaueltotheline y=3x+§

- 4

" - '8. Pind an equation for the line containing the midpoints of all chords of
. the ellipse xe + 9y = 36 .whj.ch are parallel to the line x-+y =10.
‘ 9. Find. equations Yor the familtes of curves deséribed'helow:

) A1l lines wﬁigh, with the pdler axes, ?orm & triangled?hose areas
.~ 1s 12, ' -
(b) "A11 lines, the sum of whose intercepts is 6 .

e (e) s

(@)

: (£)
“(“)

. (n)
)
| (9

(x)

o~

(2)

(m) All circles tangent to the lines

[

(e)

All circles
All circles
All circles
bx + 3y - 2
A1l circles
A1l circles
All <ircles
All circles
- ecireles

circles

A1l

ax + by + ¢

ll-xu- 3y +9 =

3

tangent to the y-a:cis.

-

ta.ngent to the x-axis.

=0 .,

tangent to the line

of radius 6
vhich ge through the origin.
'ﬂpien go through the point .{(12,5) .
vhose intex;ior contain the origin:

bx + 3y - 2

=0
such that the origin.is an interior poifit. .

with radius 1 that ere tangent to the line

—

-

of radius 5 , such that the origin is not a point of

circles of radius

=0 .

circle or its interior,
d which are ta:ngent ta the line

¥

-

)

3x - byt 5 =

éﬂl circles’ ta.ngent to the lines a x + by + ¢
x +

O and

1

_O s.nd



(p) ALl circles which a5 not intersect or touch the y-axis.
- (q) All circles which do not intersect or touch the line
ax + by +e=0, .

(r)-f A1l circles in t.he interior of 1:2 + ye = 100 ., E

(s) All circles wvhich mte'rseet or touch the circle x2 +y° =1,

(+) a1 lines shich intersect or touch the circle x° +y“ =1,

(u) A1 circles in the interior of the triangl determined by the points
o=(oo) ,A=(100) and B=(01o) .

(v) ‘a1 circles; whose interiors contain the points A, B, and 0. of

LN

the previous exercise,
. . . _ \ .
(w) All circles which are tangent internally z) X +y% <100,
(x) All circles which are tangent eibern&lhr‘to x> + y2 =100 .
' 2

(y) ALL circles to which the circle x° + y° = 100 1s tangent internally,

‘(z) A11 Mrcles tangent to the line ax + by + ¢ = O and passing through -
‘ the point (I‘,B) ol . .

t

10. Sketch the graphs of the following conditions, - | o
" (a) |x| =3 ‘ _. (k) xy+2x>1}+2_ .
() |y + el =7 - ’ () xy +3x + by > -12
“fe) vyl <5 C(m) Sx-y+10>%
() 1x-3l <k : ‘ (n) wy=3r-x+3
(e) 'x,'e+y2>'1 | o (0) 3x+2y -6 <xy
(£) €<y ' p) ©+x°=9x
(g) |x| < |yl : (@) ¥ +x° =x N
(m) fxl + |yl =6 ) (x-3)2=(y - 5)°
" (1) £<x+20 - @) oy
(1 ¥>3% Jnlﬂ o
] ‘ P
., . ’ .
7“0




11.

12,

.13.

T

15.

16.

if.

() x>t ,
{ dy:ﬁ:.
. (8) 'x‘<t ,'
zy:tve. ¥X=t.+-15.
(c) {x=‘2t-3_{ (n) i‘x>ec , |
ly=3-2t. ) yot? . ,
(ﬁd) {x=t+l‘,‘ (1) {x>t,,
' y=s8int., , y<t .
(e) (x=t2 Y h (3 x<t ,
) 3y=cost2.‘ {y>t2.

L} Y

Sketch snd discuss the polar graphs of the following conditions. -

_(a) r=cos 26 - (e) T=3sin286

() r= cos (@ +2) (£) r=1+sin@ ’
(c)r:sin(e-%) : (g/rze-cose

(3 r=2sin3 ¢ . (h) r>1 + 2 sin 6

Sketch the graphs of y = x2 and y = xl+ with respect to the same axes.

-Generali ze.

Sketch the graphs of y = x , y=x3 and y=x5 with respect to the
same axes. Generalize. .

Sketch’the__graph of y=3sinx+ 4 cos x . What does it remind yoa of?
Note tiit this equation can also be written in the form '

4.2
5 =1,

. ’ 2
‘ y:i(%sinxf%cosx) and that (%) + (

1

-‘ i?ina]_ly, use these facts and a well known trigondnetric identity to write

a third form of the original equation. »

Generalize the result of the preceding exercise by considering the equa~
tion y =a sinx +b cos x , where a and b are arbitrary real num-
bers.

1

Prove analytically that if a set of points~ in a‘pla.ne is symmetric with

3y
respect to each of two mutually perpendicular lines, it is symmetric with
respect to their intersecticn. ' -



"

18,

19,

-

Y,

2,

U
Vg .- K X

o o .1 _ -
Prowe that the greph of the pair x = at + b, y = f(t) of parametric
‘equations 1s identicsl with the graph of the equation

X «b
a

are cases in which it is possible to eliminate a parameter without getting
into trouble.. ) '

y = £

) obtained by eliminating t 4in the natural way. Thus there

Mske a graph of ¥y = & + b sin (cx + d) foreachofthefouowinsséts

of values of a, b, ec, d.

() a=2,b-3,c=2,a=53. B .

. , J
(b) a=-3,b=2,cM,d=xn,

.(c) a=3,-b=-2,c=2;§=22£‘a'

(@) a=-2,b=2,¢c=3,4a=0. .

-~

Challenge Exercises __ .

Sketch the rectangular graph of y = sin bx sin x . Discuss the gr&pb 'Sr :
y = (6 + sin x) sin , .and generalize suitably. Consider "

¥y = sin 1000xt » sin 1 t , vhich is related to equations which
describe amplitude modulation, in radio broadcedting.

r discussion and experiment, if an oscilloscope is availsble, Adjust
the controls to get & stationary sine wave on the screen, thén alter one
control at & time to change the amplitude, the wave-length, the frequency,
etc.. If availsble and possible, find the constants of the oscilloscope ‘
and write the actual equations of the curve,

b .
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Chapter 7

CONIC SECTIONS L |

T-1., Introduction

This chapter is intended to give you & better understanding of the curves
‘called cghic sections., When you studied geometry, you investigated properties
of & circle. In your study of algebra you worked with equations of the Farious

,éopic'sectibné and their properties. Here we shall first consider briefly the

history of conic sections. Then we shall give a formal definition"of_& conic
section and use polar coordinates to obtain a standard polar equation of &
conic section. We shall see how equations in polar form are related to the

‘equations in rectangular ferm that you have already studied. We shall derive

properties of “these curves and work with some o6f their ‘many applic&tfons“

\ -

In studying conic sections you will- use the knowledge and techniques

acquired so far in analytic geometry, Both rectanguler and polar coordinates

will be used; often parametric representation will be helpful. Idegs of locus
and curve sketching will be used. :
<

It is assumed that you have studied the definitions, e§u3t10§s, and prop-
erties of the conic sections; brief summaries will show you what you are

expected to know. I you find that you need more detail, you will find it in
_"the following sections of Intermediate Mathematics: ‘ © e

6-3. The Parabola (pages 315-321)

6-4. The General Definition of the Conic (psges 326-331)
6-5. The Circle and the Ellipse (pages 333-336)

6-6. The Hyperbola (pages 342-348)

7-2. ' History and Applications of the Conic Sections

The, curves called* conic sections were so named after their historical
discovery as intersections of a plane knd & surface called a right circular

cone. A riggt circular cone is the surface generated by a line ﬁoving about

8 circle and containing & fixed point on the normal to the plane of the circle

-
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at ‘the center of tﬁ; circle. The fixed point, called the vertex, separates
the surface into tyo parts called nappes. BEach line determined by the vertex
and a point of the circle is called an element of the come. The ncnﬁai to
the plane of the circle containing the veft?x is called the axis of the cone.

' The proper conic sections are circles, ellipses, parabolas, and hyperbolas.

~ The discovery of the conic sections is attributed to the' Greek math-
ematician Mensechms (circa 375-325 B.C.),‘who was a tutor to Alexander the
Great. He apparently used them in an attempt.tofsolve three famoua‘problems,
the trisection of an angle, the duplication of a cube, and the squaring of a
circle.~ Although the Geek mathematicians were primarily interested in the
mathematical applications of the conic ‘sections, they did know some of the
optical proPerties of the curves. The definition of the conic sectieons which

we shall use is attributed to Apollopius who flourished before 209 B.C.
S N
Further discoveries of the phys?cal applications of thé conic sections

did not.gccur'until the conjectures of ‘the German scientist and mathematician(
Johannes Kepler (1571 - 1630), who hypothesized that the plenets moved in
elliptic orbits with the sun as a focus. The theoretieal development of
Kepler's conjectures followed the gravitation theory and calculus developed
by Iseac Newton (1642 ~ 172%). In fact, it may be shown that any physical

object QHRJeCt to a force which is described by what is called an inverse
square law‘will move in an orbit which is a conic section. Gravity is such a

force; the electrical force ngﬁsen charged bodies was found to be anothgr
such force by Charles Augustin de Coulomb (1736 - 1806).

Today we find applications of the fheory of conie sectione in the orbits
of planets, comets, and artificial satellites. The theory also applies to
t%&nses of telescopes, microscopes, and other optical instruments, weather
predictiqp, communication by satellites, geological surveyling, and the con-
struction of buildings and bridges. Conics also occur in the study of atomle
_structure, the long range guidance systems for ships ‘and aircraft, the loca-
tion of hidden gun emplacements and the detéction of approaching enemy ships
and sireraft. The surfaces of revolution formed by the conic sections, which
will ‘be considered in Chapter O, find application in the sciences dealing with

1Y

light, sound, ang I‘adio waves.

It is helpful to visualize the four conic sections formed by the inter-
sectiong of & plane and a right circular cone. We illustrate'ime physical
possibilities below. '

-
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Figure 7-1b: Ellipse

Figure T-lc: Parabolas Figure 7-1d: Hyperbtola

A circle (Figure 7-1a) is the intersection of a cone and a plane pefpén-
dicular to the axis of the cone. An ¢llipse (Figure 7-1b) is the intersection
of & cone and a plane which forms an %Fute apgle with the axis. The measure -
of this acute angle 1s greater thanthe measure of the angle formed by the
axis and an element of the‘cahe. A parasbola (Figure 7-)lc) is the intersection
of a cone and & plane parallel to an element of the cone, A hyperbola
(Figure ?—ld) is the intersection of a cone and a plane which forms an angle )
with the axdis whose measure }s less than &he measure of the angle formed §¥

~ the axis and an element of the cone. These descriptions suggest that circles.
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and el}ipses are the sections formed when planes cut every element of the

cone; parabolas are formed when planes cut some elements 1in one nappe of a=

cone; hyperbolaé are formed when planes cut some elements in both nappeé of

the cone., Although the drawings of Figure 7-1 are limited, cones are infinite
_”ﬁ in extent; what is 1llustrated is only part~of the parabola or hyperbola..

e " For a more cdﬁplete and systematic geometric development of the conic
sections, leading to the definition to be given in the following secﬁ&on,
see Supplement to Chapter 7. '

B S ‘ ‘ . ; : L.
T-3. The Conic Sections in Polar Form _ -
3 .

We shall choose as a defining characteristic of the conic sections that
geometric property which leads most readily 4o their analytic descriptlon.
This property relates all the coPic sedtions except the circle. .

DEFINITIONS. A conic sect&&n is the locus of points in & plane

* such that for each point the ratio of its distance from a given -
_point F 4n the plane to its distance from a given line D 1in the

plane is a gfven constant The given point . F 1s called a focus

. orgﬁoeal‘pgigg of the coni§z;:%ttbn; The given line D isa
directrix of the conic section. The given constant e 18 the
eccentricity of the conic section. If 0 <e <1, the conic sectibn
is called an elligse. If e =1, the conic section is called a
parabola. If e > 1 , the conic sectitn is cslled a hyperbola.

A circle is also a conic section and is the locus of points at a:
given distance from a glven point. The given distance is called the
radius of .the circle and the given point is called the center of the;

circle.

In some ways it is simpler to describe the conic sectipns in polar -

coordinates. We are already familiar with the polar equation, or eguation

in polar cé@kdinates, of a %ircle with center at the originas r =Kk ,

where k 1is the radius. -

We shall assuﬁe that the focal point does not lie on the directrix. Let
the focus of the conic section be at the pole and let the directrix be per-,
pendicular to the polar sxia. Let the polar axis be oriented away from the
directrix; that is, the ray that 1is the polar axis does not intersect the

?6 270

,
i P '
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»

directrix. Let . p . be the distance from the pole to the directrix and let
g = (r,e) he a p@in‘t‘. of the:eonic section.

. “ . \

R

[D Moy.":‘ f‘f‘rma o - Pu(rL8) - .
r | > . . - '
T \ . \ .
g ‘
\Q ’
' , ARG rawe 4
- a . .
‘-——-P————ﬂ ‘ .

Figure 7-2 . .

Then the dis%!nce from P to the focal point is r , and the distance
from P to the directrix is P+ r cos € . Thus,
L " * .' ‘I .
. r - : i [
: =e .
P+r cos B

Expressing r in terms of @ , we obtain
4 ) - ~ ep .

. .»_ i . o - - B

(1) - T =TT e oo P

~-

In the above discussicr:';re have assumed that the focal point did not 1ie
on the directrix., If it does, we obtain certain figures which are called

degenerate conics. Geometrically, they are the intersections of cones and

]
planes containing the vertex of the cone. . {For a more complete discussion, o
s , : : | , 3
see Supblement to Chapter 7.) = . .
f' ’ . B

If the focal point is on the directrix, then p = 0 , and we may not
perform certain slgebraic operations, since division by zero would be indicated.

o

We may express the analytic condition as §o?lows:

T = er cos é . ,
If 0<e<1l, we have r <rcos 6 ,Lwhich\is never true, If - e = 0, we
have r = 0 ,-which 1s an equation of the polé. This is sometimes callgd 8
point-circle. .(It is sometimes convenient to think of a circle as a speéial
case of the ellipse. Thie is not consisten& with our _approach’ here fbut ite

suggests why one may encounter the descripthon of this 1ocg§ as 8 point-

- ellipse.) i .

v .

271
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If p=0 and e =1, we obtain r =r cos 6 . From this we may infer
elther r =0, or 1 =cos 6 . The graph of r = O has Just n discussed.
.The graph of 1 = cos @  1is the line containing'the polar axis:fgigg,we cali
‘a degenerate parsbola. If p =0 and e >1, the equation r = er cos @

will be sétisfied when coé 6 = é . Thus'the locus isetwo distinct lines

: through the pole and 1s called a degenerate hyperbola. (There vill be further

discussion of degenS§até conics in the Supplement to Chapter 7.)-

Thus far we have considered the equation of a conic only in the case in
which the focus is at the pole, the directrix is perperdicular to the polar
axis, and the polef axis is orlented away from the directrix. Certain other’
.cases will be considered in Example 2 and the exerciées but we sﬁal} not, take
up’ the, case in which the directrix is oblique to ﬁhe polar ‘axis until we have
‘studied rotation of the axes in Chapter 10. ) '

fExample 1. A §ixed point F is U units from a given line L . Write
an equation. for the locus of points equidistant from P and L.

* “-. ‘ N

\ - Solution., ~ We place the pole of P = (r,e)
oﬁ; polar coordinate system at F , and :
the\pplar axis perpendicular to L and ‘
dire&ﬁed away from L . Then far any . ( N
.point \P = (r,8) on the locus, L A r {
) =4 +rcos b, s
which becomes . , ‘ h " Ffa r;chglﬁ ..A

r = Y . ) L ©

—~

This equation is in the form of

Equation (1), apd represents a parabolas

Y

-

Example 2. What “1s a polar equgcion of a conic section with focus at the
pole and directrix parallel to the polar axis and p units below it?

[ -



ot . - p
golution. let P = (r,8) te a
. - polnt of the curve., Then the distance . ‘
from P to the fodal point 1s r , and N
 the distance from P to the directrix
- " 18 p+r dno. Thizé,' '
N\ N ,;
| 57171:3111_5: e .
Eqﬁréssi-ns r in terms of 6 , we
" obtain | '

- ‘ r' = €p . '.. .
i . TZe BIHI 6
o ‘ \\\ \ 5

M 3. wGrgph 1‘-&":& —os
Solution. This equa.ti‘or; is'in the
form of Equation (1) with & =1
P = 2. Hence its graph is a parabola ~
- with focus at 0 , and directrix D.
‘perpendicular to the polar axis 'and 2
units to the left of the pole. The '
vertex must be midway ‘ne‘l‘.vga_enf 0 and

D . Location of one or t¥d more points
--say (h,SOoa) and (2,900) --and use
of symmetry tken permit making a
sketch, ‘ -

Y
Example 4, Graph r = 5T Toos D

e

I3

A
2

o - - | c 213 73

]

[ e
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Solution. To obtain the form of Equation (1), we divide numerator‘and
denomingtor of the fraction by 5 , and write the numerator as the product of
e+ and a number which must be p . We
cbtain ~ e .

.r=-T_—__' ‘@
l l-gcoge‘

Since e=5- and p = 2, the graph is

an ‘llipse, one vertex divides the
normal segment joining the focus to the
directrix in the ratio 3 to 5 . We : |

" obtain a few more points-—sa.y (3,0%) ’

(-7-,500) , and (5, 90°) --and use symmetry to complete the g;:a,ph, )

p— : . N Exércises T-3

Graph ®each of tné following: \
1. r - 5 12__ \2

. T~ cos 6 . y T -5 cos 6

6 Cooh |

2. r = - o5 6. r = — VT

g ok ) - ; "

* T oo ® S
e r —“ 6 8, r= é :

* T 3T s 0 ' - 2&ln

-

9, What is a polar equation of a conic section with focus at the pole and
directrix parallel to the polar axis and p units above 1t? '

10. #hat is a polar equation of a conic section with focus at the pole and

. directrix perpendicular to the polar axis and p units td the right of
the pole?

11. Using the results of Exercises 9 and 10, graph the following:

(a) r-.r——gk (¢) r= 8
+ COs8 + S‘R
() * = 5T G JE— -
"L +5 gin . 5 + 3 cos

o 80

..
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4 In Bxeraises 12-19, revrite the equations in a form convenient for
grqphing, 1d.entify the conic section, and sketch the graph.
'12,.r-6-reoseco - .16, rm'2+rain9
13, r-10-rsing =0 . 1T, r=3-2rcos§

.‘3 . /
14, 3r -12 - 2v'cos 8 = O

. 37
18. cos B =1 n}-

15. .3r-12-l+rcose=0 JQ.'sin-aa-.r';E .

—

20, An artificial satellit{k the nter ef the earth as 1ts focus. For
& polar coordingte system in the plane of its orbit the distance of the
satellite from the center of the earth at’'§ = 180° is 5000 mi. and

- at 8= 90° 1s 6000 mi. Assuming that the axis is along the line
S = a° , find the equation describing the- orbit and the greatest dista.nce
of the s@.tellite from the center of the earth. '

)

!’l>.'5 .. - 8 ./

\7-#. Conic Sections in Rectangular Form
\ A ;

-

We have developed polar equations for the co c seetions in certain .
. specified positions. For a ciro_le with eenter at/the pale, w'ha.ve

- '
r=ko s

Fcr the other conic sections with focus at the pole, a.hd directrix perpendicu..
"lar to the polar axis and ‘' p units to the left of the pole, we have

-~ i
.=

: e parasbola if e =1,
. . r = I-_eeg?fs'*é ’ “ representing ! an ellipse if 0 <e <1 "
a hyperbola if e > l .

¢

-
.

. We sha.ll Tind the correspo?ding recte.ngular equations by using the f‘olloving
equations, develcped in Section 2-k: ' ¢

. x;rcose ) 1'2=:ac2+y2
y = 8in 8~ - tan&:{-,x;éo..
LY ‘\ ‘
Circle: If .
- ' r=k, ' )
then N r2=k2 . ~ ¢ ’/
‘ T
\
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7-4 o . n L
. . : il ‘ r
‘ - C- ‘ . e r .
(This s equivalent to multiplyiﬁi “the memhers of ¥ -k=0 by the corres-
; .  ponding members of r + k =0, Since these gre both equations of the same
§ ) circle, the graph of the resulting equation is the same as that of the origfinal
AN equation. ) h I S L . R ( e ‘
~ ) ’ ) . - . : .
i * ® %
Since r2 = xe + QE.; ,
- . . Je @
we may write ' xg +‘y2 = k2 . ~ (
< * . We now considef the general equation " - : .
. . N - “‘4 .
' : . . ' ep ~ . '
@ A e A | ,
- . \ - .
Hé qpltiply both members of the equation byt 1 - e cos 9 to obtain ' Sy
< 3 . . ‘ T - erts 9 f* ’ b ‘ Py
y . - s ,
vor - = er cos 6 +1p), . ,
and square both members of, the latter equation to obtain
(2) ' r2 = e (r cps ’9 + 2pr cos'ﬂ.+ D ) . v o« .
\\ ‘ R ~ 6 .
(Wheneyexr we square both members of an equation we must be capeful of the in«
terpretafion of theiresult. We have in effectamultiplied both mﬁﬂbé&s of
't - e(r cqgrp + p) =0 by. the corresponding members of T +e(rcos 8 +p)= 0.
‘ We recall fram Section 5 -2 that T - e(r cos 8 +p) =0 has the related polar
. : \
equation 3 . \
-r - & «-r) cos (6 +g¢) + p) = 0. ' ) o
- ' .-
Since cos (§-+ n) = - cos 6 , this is equivalent to
oL e -r - e(r cgg 6+p)=0 .
} - ’
or (3) ' r + e(r cos 8 +p) = ) ‘
Since the "factors™ of Equation, {2) are equivalent to Equation (1) and its
related polar equation, it has~k§f’éame graph as Equation (1). We‘may,nog
proceed with the original discussion.) Usiq‘ﬁ r? = xa‘+ yE and rcos & =x ,
we haﬁgtl - ° | S
. 5 o
™~ (L) ! A X+ y2 = eg(xa + 2px + pe) .

~

We now have our equa%}on in rectanéulér qoordin&tes and wish to examine it

r the different velues of e .

-
- .- »
o - '

: N




. - q - . o 1y —'
. ‘ ° b ’ ’
~ .;.- - 1‘\ o . i'
- . ] ‘- . . ?—h 3
r ‘ , ‘ ‘e - - . . -
Parabola: Since e = i » Equation (L) becames ¥ b ",Ai
< e . - T
. - . Xy T=x" s 2x + p - - S I \
.‘ . . . . g.‘. . o ‘ \‘J’
for - - ¥ = 2p(x + B). S |
-:"?,“- ‘('.i . . F . ‘. : . -. . ’; -

'mis equsticm, as you may recognize frmn your std&y of a.lgebra, repnespnts a T v

' parabo].a with focus aat the origin and ‘vertex st (- %, 0) . ,ﬁ' )
3 ’ LTS :.' / \I T
! & 8 ~ _ ‘ . . : .
. : Mectangular form and sketch the graph of . - ( :
. ‘ - ' [N ' A
- Y . r —_ 6 \ . . v
y p. 1 =-cos 6 ° - . -
e o | .'_ . . ‘ ' .
Solution. The given equatidn yields Y - r cos 6 = 6 , which after ’
- tmnsformation beccmes c : . D Pl ' :
. ’ BRI y = N .
- .‘ R - ot P . : - .. . .
L * A Jxé + y ) ) ) . . . . ‘
or d/ =x + 6, ) e -
- .. ) r [N
2 Therefore x o~ y 'xg + 12x + 36 ; ¢t ¢ et
x
and’ f&nally‘ ' _ - » .o
. . 2 . Lo . « v
.. yoi= 1™ + 36 . ;
* cor ‘ Tt y2*= 12(x -+ 3) . . (
g Ellipse: Here. O < e <1 : We rewrite Equation (4) as - ' : :
.. - '~_'xe+y2=.2 ,+2epx+e2,p2. o
He rea ‘gnge %he terms to- obta.in CL i_' ) . ) \‘ a
il é». ' o (1 ~ e )x ' - 26 p}é + y2'= e\ep2 . R . e )
- ‘~ R . - ‘
~ o ' . . . N
Simce;we are,looking fow form tha.t’ -can recognize as the equatio‘n %or ]
hY
T ganfc that hgs a center, we use the teg:hniqhe of campleting the square. . : N
Di,viﬂing by the coefficient of' x2 , Wé have S T )
- . v < :
" ' N ‘ S o '
. v ]'-.-3\‘ . 2 e2 . 2 ! . e2 g . - C . - '
- . " axt - 28R :-;'-»-';y - = v o e
S, > ¢ 1 - e, 1l.- l1-e o ©,
. - o . ~ ’ -
- - - "
w- " . . . ~ * . L] -
. - - 3 . “ N . -~
[ * - . * ] . .
S - ‘. , . 2 ' ﬂ_’ i ‘ ‘? 1




form thus :

3(x e 8x +. 16) + hy = b4 o+ 48

s ® . :
or { - , 3 - 807 7 =192,
o - : o ‘ 2 . 2. | .
or : T Tf&'h),+%g=l., ' . )
[N : ) . g — . e

You may reeogni;e that this equa.tion represents an ellipse wif:h ceq@er at

(’4 0)' , . g

- *. .'. . fl ) e
a ' ¢

< "f'f' o LT R (O

Finally, this becomes 3x2 + l&y - 2bx - Y = 0, h fyou magar recognize as
an equa.tian for an ellipse in reotangular farm. write this in standard

R - \ 1 3
L ’ - .
£ ' =
7 . i
- . » . “ ) ’\"‘
\ 3 . ;L P )
2 \2 2 . 22 > \2
or ¢ . Q_Lx 4 .—e—&a- . +—L—2. = <2 __ + __e..%
| I Co §.-e_‘g l-e ',_l"-.‘e l-e 1-e
.\ ' i . ) ' . ’ L " . ) .
| - e o2 - 22 ea,’c‘ .
Or‘ X = ——-—-22- + y 2 = - " p 2 + - EE M i . . .
! l-e pf "L-e 1l=e \k-e S ‘ ,
Since. 0<e <1 , 'e? T -fngwi -"82 > 0" .+ Tus the coeffjcients of
x> Tnd y° ere both positive. 'Althqugh the equation bove is quite
cluttered with comstants¥it.should be epparent ‘that it has the form of the
. . . =~ . ¥ s B 2‘ . .
equation of an ellipse with center at - DY R T
¢ € Qp . 1 - e ! *
v - R
) - i l‘ . . ' .
Example 2. Write in rectanguiar form: ' . ¢
B y . ' -t ~
. e ) : s .
. et L
. : _ 1. 5 cos* g . ) ‘ : .
+ . - ] L - . N . ' - r .
- r w . v -
Sclution. The givgn equat yields r - § recos O = 6 which, by .
substitution, becomes . - ’ |
“0 ' ‘m—%x =,6‘a ) ‘.\‘
P ’ . o o : .
Therefore | . ST - 2K+ 56 ;
. L -~ .
. . . L -
hence * .- .'x2+ye=11‘-'2‘+61+36 R



Hyperbola: The algebraic manipulation involved in expressing “the
equation of a hyperbola in rectangular foru is identical with that for the
ellipse. However, when we reach the form ' , L

-

| 2 \e ' 2 .een'e . ea%g2
X = 1 + - + - 3 ) e
- A { : :L-e2 l-e3 1 -'ef.

&

we note that since e >1, 'ee >1 and 1 - e2"< 0 .\ ‘Thus the coefficlents .

. : »~
‘of x~2 and yE have opposite signs. ' * ‘ .
. ‘ . ) . ; ) -
L should be apparent that this is the equa\ion'of & hyperbols with
o ‘ . | : ~ Ly o by -~
2 : : PR v
center at -—e-LE, o} . . . : -
e _ A - Exercises Tal ' .7 ?‘p . . [ .
- ‘ \ . . - - ' ' ‘ ‘.
.y For each of the polar equations below you are asked to do Ehi’ee thidgs: - 3 S
(a) Sketch the graph. N T T L
(b) Write & corresponding equatibn ifn.,re'ctangula;' coordinates.
(¢) Write the related polar equation. ) - T,
» ‘ . '
. l. * I = 3 . 2 8 r = 6 . : Y
. ) - : - - 5 E‘ -
2. r =9 ‘ ,
- : 5
: 3. r=2cos 8 © 9'r:3-§c0$§.. LA
:‘J, \ " y ’ ’
b, = + sin. ©
r'=cos @ + sin. © 0. = pl \
¥4 - cos )
S e L ( ‘ .
7 : "T-cos 8 . . 11. r =1+ cos 8 R
' 6\x‘= 3 _ . 12, v -rsin @ =2
; T +cos @ ' : - - .
o # 13. br - 3r cos 0 =12
7- T = 3 A N (. . ~ ) 1 "
: I -2 cos 6 . i, U4r + 5r sin 8 = 20 o '
¢ ﬂ‘ [ []
4 N
. ' ". - u‘ - Z '
/ o .
/ » ¢ ' .
~ - :
- -~ ¥
. * ‘ '
» ' ‘ '
' r" * -
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. P to a fixed line, is a constant e , ¢

;‘7-5. The Parabola

In this section and the following three we consider the four main kinds
of conic sections: parsbola, circle, ellipae and hyperbola. There are
brief euhmaries of the important definitions and properties. 'EquationS'in,
rectangular coordinates--often called standard forms--are given for these
curves with axes omn or perallel to the coordinate axes. Much of this ‘
information is not new; it is placed here because of its importance, and for

your convenience.

¢ The parabola 1s defined as the get of points equidistant from a ‘fixed
‘point “(the focus) end a fixed line (the directrix). A‘parabola is symmeiric
with respect to the linme through the focus perpendicular to the directrix.
Thia line of symmetry is called the axis of the parabola, and its pcint of
1ntersecﬁion with the parabola is called the vertex of the parabola.

In Figure 7-3 P, V, and D indicate thé focus, vertex, and diréctrix, .
respectively, and |p| 1s the distance between F and V. If p >0,
the parabola extends upwdrd or to the right as shown; 1if p €0, it extends
devngard or to the left. -
In.making a quick sketch of a parabola, it is convenient, after locating
V, ¥, and D, to find the length of the latus rectum. This is the chord of

“the parsbola through the focus perpendicular o the axis. If in Equation (a)

~ v

‘Figure 7-3we set y =p , we find x = % 2p ; Mwus, the length of the latus
* rectum 1s [bp| . (The student should verify that for eaéh of the other

standard forms of the equaticn given in Figure 7-3 the length of the latus
rectum is also |up} . ‘
: ro :

- In general a conic section has been defined as the set of points P such

-

that the :atio‘of the distance frbh»”?' to a fixed paint; to the distance from

ed the eccentricity. For the
parabola e ='1 .. - - i .
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*

() y* = .
.
v
h
AIE
]
\
Q

- d

) (X -h]'= #p(y-4)

W) Ty-k)* = £p(X-4)

Figure -3 .

' Our definition of the parabola makes no restriction on the position of
the fixed point and line. What if the point is on the line? Our knowledge
of geometry tells us that the locus must be the line perpendiculesr tc the

. L L
directrix at the fixed point. If we let p = 0 in, say, Equation (d) of v

L

Figure T-3, we obtain -

¢

2 N o y-KwF=o0. :

t . Fy -
This équation represents g straight line. This locus is often called & -
degenerate parabola. : T ) *

', ' - .
. ‘ 281 4 87




7-5

N The parabola has 1mportant geometric prcperties, some of which concern
tangents; these you will be able to derive more easily when ynu have studied
I’ ‘ calculus. One og the best known is the reflective property light rays
' parallel to the sxis of a parabolic reflector are concentrated at the focus,
and light rays emanating,from the focus are reflected psuallel to tHe axis,.
This property, slthoqgh usually illustrated in two dimensions, has more in-
terest and physical gpplications in three dimensions. Such parabolic reflec-
tors are used not only for i&ght rays, but also for heat, sound, and micro-
- _ wavess You may have seen such reflectors used with microphones, or radar
' entenna, or as parts of artificial sstellites. |

LY

"The parabola 1is also important: +in analyzing trajectories; the-path of a
projectile can be appfoximated by a. parabola. Under certain conditions of |
loading, the eable of a suspension bridge hangs in the form of e parabola .
Arches of bridges sometimes have parabolic form. - ‘

Example 1. Rewrite the edustion 'i + Ux + 8y - & = 0 in standard form,
Write the coordinates of the vertex and focus and the equations of the axis

and directrix.

Y

Solution, Since x2 is the'only second-degree term, we group the

- .

x-terms and complete thé squsre;

x4 bx = By + b4 ' e
\ -ig equivalent to _ x2 + bhx + 4 = -8By + 8,
Y- )
. or _ (x"42)° = -8(y - 1) .

‘ ~ This last forﬁ\we may compare with™ (x ‘--uh)2 = 4p(w - k) , and recognize
N €5 an equation of the parabdla with axis parallel to the y-axis, and vertex
| ‘é“f; (-2,1) . Since b = -2 , the parabola opens downward. The axis is a vertical
w§line thfough the vertex; hence its equation is x T -2 . The directrix is a -
norizontal line 2. units apoge the‘gertex and has the_equa@ion, y - 3.

5 the focus, (-2,-1)5 is two .units below the vertex.

- s .

' ;4]' Example 2. Write]an edu&tion of the parabola with vertex (3,2) and’
directrix *x = -1 . ’ . "
. - ,
. g . N
AW i 1.
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Solution. BSince the directrix is wertical ; the axis is horizontal;
an ‘equation will be in the form (d) of F1 7-3. .The distance from V
to ‘the diréctrix is P; here p=L4 . Thus an equation is

1]

N Ay - 2)? - 16(x - 3) . -
N

Exercises 7-5

1. Rewrite each pf the follmrins equations in standard form; write the
coordinates of vertex and focus ,tand equations o axis a.nd directrix;

thegra. . . ;!
T (a) L (@) y2 - 5y + 6x - 16 = 0
. '(E) y = 16x . <\F (e) exe - Bx’- 3y +ll=0-
‘\' | (<) ‘5x° -3y = 0 o0 | (£) y = ax© + bx . ¢ | L

A ]
2. We have noted that a8 special or degenerate ca.se of the payabola oceurs
" when the fixed point is on the fixed line. 1In ‘this.casg Equation {d)

of Efigure T-3 becoqes & <~ k) = 0’ the 1'. is a straight liqe .
peirallel to the x-axis. '

Ve - 3

(a)s Find the degenerate case of each of the other standard fonns of, the
‘:’ . equahon of tl'g pe.ra.bola, and state what the locus ia.

- &

(b) If s p&rs.bolet‘ is a section of, @ cone by a plane p&rs.llel to an’ f

A

element of the ‘cone s €an you expl%@n these ”'degenerate parabolas

8 limiti cases? -
8 ng = . ) [ ) v N

3. 'Derive &sn equation of a parabolas to fﬂ. each of £he following. conditions
by using the locus definition of a parabola.

o . « ' S s

(b) Focus- ‘(—1,3) s directfi)& y =2, ’

o D . )
) (a) iF’ocus (-1,-2) s directrix X =.2 .. . -

a® . N

(¢) Vertex (0,0) , focus. {-5,0) — . . -
y Rocus . (

(d) Vertex (4,5) , directriz x = 3 ' .

k. Obtain an equation for each of the pakabales for which canditions are

e

" given ertise 3 by using the standard forms of the equations.

E . - -» . s
‘ - » ‘ .




(2 , .

-5 .
5. " Find an equation of a parabola to #1t each of the following conditions.

o . v “ "‘:(a) ‘Vertex ,(Q,O)., directrix  2x -.5‘ = 0

L. (b) Vertex (2,-3) , directrjx the x-axis | - EERENS
(¢) Vertex (0,0) ., axis of symmetry the x-axis, passing through the
" point (2,7 e ~
A o (4) Latus rectum 16 , open down, vertex (-2 3) .
: s ' 6. Cross-sectfon paper and a compass can be
used ‘as follows. Mark one of the printed be L & & : -
. , lines Lb .and mark successive parallel - " 5 L
: lines Li s LE g eeea Seleet any po F( :A‘Ji L
‘on the same side of L as Li ith é} <
. _ . d .
enmpass measure on one of the printed ‘ +.
lines the distance d2 from L0 to L2 .
! With d, as radius and F as center, ‘~;¥
J . . ’ ’ -' -
locate points P, and P,’ om L, . In —% j .
\ a similar fashion, using d; as radius, —y— | .
e 4 —

locate P3 and P3‘ on 'Lj' . Prove that
the éointp"Pé,, Pe' , +++ lie-on a parabols. {\

. ;7. To construct & parabola mechanically, place
R traight ‘edge L perpendicular to the
T line MV . Attach cnshghd of & piece of
string of length ST to point T of right
triangle RST , and ‘the other end to a
point F on MN . With a pencil, hold the
string against the side ST of the.briangle
8s the side SR siides along ML . Prove
that the point P of the penc}l describes
a parabola as the triangle slides.

ol

L]
L
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Challenge Problems

A\

[\
o -

. 1. In Sectidn 6-7 it was shown that the family of tangents to the parabola
y = x> at any pgint } = (a,aa) on the parabola can be represented by

the equation R4 =8y - a 2 . Prove the reflective prop::rty of the
parabola for this casey (Hint: Show that the tangent mkes‘l equal angles
with the line frm P to the focus and the line through P parallel to
the axis of the parabola, ) ’

3

£. wAgain using the results df Section 6.7, prove the following statements

for the parabdla y = NG .

v (g) The points of ‘tangency of two pex:penclicule.r tangents are collines>
with the focus.

(b) Theé loeus of the intersections of‘ pa.irs of %erpendicular ta.qgents

is the __direc/(ﬁ : -

7-6. The Circke - . o ] | ::

Ry

/

A A circle is the set of points in a p@. e ea.ch of which is at a given

. distance from & fixed point of the pla.ne.' If the fixea point, called the

center, 1s C = (h,k) , and the given distance'is r , for the required set
of poimts = (x,y) we hgve

, (x-$)2+(y-k)‘?=r2.

. ‘ . -
If r = 0, the solution set is the single point (h,k) ; such a locus

)
is often called a point-circle, If re <0, the sﬁution‘set is the empty
éet' in this case the locub is sometimes sald to be.en imaginary circle.

S‘nee there are three arbitrary constants ‘hy k, r in the stamdard
equa}}nﬁ of a circle, it is in Qnere.l possible to impose three geometric
conditions on a circle. The folloWing example will illustrate this.’

N .

Example 1. Fing van equation of tt;e_ cirele ﬁhich passe._s through ths

three poinfos (1,2) , (-1,1), (2,=3) . ‘

¢

-

‘e

Ty -




“fn tuxg the condition that each of

.

T A
5

' Soiution A, Using the equat%n x2 + ya +Dx+EBy +F=0, we write
e given points satisfies the equation.
: ‘;j*h+n+2n+r=o,¢r D+2E*+FL-45.

1+1-D4 E+F=0,o0or D+ E+F = -2

l;.+9+'2n-3E+‘F=o,oren-'3E+r=‘-13 LT

We now have a system‘ of \3\equé.tiong in 3 unknowns; solving these by any
" .
desired method, we find that ‘

D =\ E I a.nd‘ -F = T - . - .
We substitute these vnlues in the equa.tion and multiply by 11~ to obtaiq "
] \ A

A

l.lx +11y--23x+13y §8=o~. IR

Solution B. Here we use the condition ths.t ‘the cter (n,k) is.
-equidistant from any two points of the eircle. We select the. ﬁrst 0.

pomte and write this condition. . . - '
. (h - 1)° +(1;- )2'=(h—+1) +(k-1) ,or kn+ 2k =.3 .
! aphar ®  wem W - M ..)' -
We then do the same thing for the last two points. ' ST
r~ ) ’ oy
- (h+l) +(k-1)2.—(h-2) +(k+3)2,or 6h - 8k =
¥

The cogrdinajes of the ,c;g.n:t.er of the desired circle must sa.tisf‘y both gf
these equations; solving t.hem,_ we have s

)

.

f

Now, we find the ’radius r , the d:tsf)ance between C and any“of the given

e , r— ‘.
points, say the firstl ~==-=*" -

Y . L)

. 2 . g}_ 2 H e
i c-G-g R ”‘
. . A 2 2.1‘\ ' “y

1
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\ ' ‘ : T - ' .- % S -~ :
© ' Thus the equation of the circle is " s ' _ ) .

.

13) 3250

(x - ) + (Y + —EEE . o .

‘nie-‘ét.ndent should satisfy himselg that ‘this equtiun, vhen simplified, 15 the

'\ same as’the one obtained in Solution A. What bappens tp the solution of thig
.
prohlem if the three points are coliinear?

L]
* . ‘.\:

Ex;ample 2. What is thé locus of 36::2 + 36;*%-‘36;: + hBy\+ A=01 ° o

_
4

Solution. We regroup the terms and apply the distributive law to obtain
4 ‘ » h . ) R .
36(x2 - X) + 36(-y2 + §y) = <24, - °

We complete the squa.l-es by adding the same numbers to eech memher of the
3

equatidn, obtaining R

_‘ _
‘ ' ”35(2& ~X+K)+35(y +§y+—)_-21&+9+16 * .
o ¢
which is equivalent to ' o . - e
. -‘ 2 - 2 .
1 2 1
(x - §) +y + 3) =35
- ;o , : . . N . , e ' 1 2 . 1
Hence the locus is a cjircle with center (E" - 3) » and radius T .
F. T .
Exercises T<6
- 1. Rewrite the following equations to show what each locus is; if it.1s e e
., . &8 circle, find the center and radius. * C .
4 f) .
(a) P +y7 -8 =0 \ wo (e) X2+y2-x+y=

(b).x2+y2-6;-:10y+§3='a (f) x +y2-23x,-2by+32+b2=

s ~

(C):' x2+y2-;¢ hx .+8y'+20=0 (g) "52( +5y2 - 6X+hy+2=0

(a) iw‘?;m"'%’*@ﬂ (h) 2x° +2y° - 2ax + 2y ~ab = 0"

P ¢
-

.

)



and T represent center and radius. )

(a) é=(3:"5):r“7 _
(b) ¢ = (-5,12) aid passing thmugif the! origin

. (®) Cc= (3,2) and tangent to an axis

(d) “t = 3 -and passing through the points ;(-1 1) , {2,4),
(e) ¢ = (1,2) and tangent to the line 3x - by - 12 =0

(£) Pasain& thmugh the Points (?-;3) ) (5:1) ’ (O;l)

-
(a) Use tke fact that a tangent to a circ;e 18 perpendicular to the
redius 8t {hd point of comtact to me of & t&ngent

to the circle x% + y 25 at the point - (S’ -4) . , N ', ;
(b) Prove that an equation of the tangent to the circle‘ ke + ;,r2 - x0
' 3
2
.at the point (xl,yl) of the circle 1s XX +y,¥y =T .

.

(a) Find the length of a tangent from (3,7) to the circle x2+y =25 .

(b) Show that If "t 15 the length of a ta.ngent fram the point- (xl,yl)

K
t.othecircle x2+y +nx-'+mr+Fv:0,
2 2 2 x 3
eneneng rBy T
(¢) If in using this Kfomzla.ycufind fhat t° = 0., how do you

interpret this geometrically? Wha*b if t. < o

In Section 6.5 we considered the family cf circles through the common
points of two circles; such a famil,y 1s somstimes called a coaxial family

o~

or a pencil of circl®h,
. !

'v(a.') Find an equation of a pencil of circles through the intersections

s P

of the circles with equa.tions . .

. x2+y2-10x-2y-35.=°; and
ey b by b9 =0 T e
(b) Find an equaticn of a circle of this pencil which passes thmugh
’ the point (0,-6) . v

" {c) Find an eguation of & circle of this pencil which has its center

‘on the 1ine x4+ 5 =01 ‘ \

4 ' .
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6. In Section 6-5 we found the equation of @_thmugh the common points
of 'tvo circles; the same algebraic technique gives us the equation of a
line, whether the circles intérsect or not. This line is called the

« radical .axis of the two circles. 'Prove that the té.ngent_,a drawn to two
' circles from any point in their radical'axis are equal in length.

7. Find the googdinates of a point from which equal téngents can be drawn

to the three circles with equations xé + ye =4, © + yg -6x +y="12,

x2+y.2+1£x-3;,r=15.,_, - . o

. ‘ ‘ { LI
8. Prove that the radical axis of twodcircles is perpendicular to the e

of ‘centers of the gircles. ' . ' '

* l 9. Two intersecting ®ircles are said to be orthogonal if the tangents .at ™
each point of }ntersectioga.r,é"perpendicular. Prove that4if circles

2 2 . 2 2 .
x +,y. +Dlx+Ely+Fl-0 and x + y +D2x+EEy+F2=o are

.

-crthogonal, then DD, + EE, = 2(F) +F) .

10. 'Show that the following pairs of circles are oxvéhogonal. T,
: r

(a) x2‘+‘y2+3x-'§y+5=°:x?+y2+lQX+9'=o

2

(b) 2x +2y2+'2x+l%0,2x2’.4/25r2-‘*2£+5¥-3=6 7

11. Determine the constant -k so that each of the §ollowing pairs of

£

circles is orthogonal. , - ‘ oo .
| / . ) ’ f .
J‘ . i L *
(q) xg+y2-3x+ —3§;O,x?+y2+2x-y+k=0
() 3+ 3y +Rx e oy =b, 5x° 4557 - x 4+ 2y = 2
F 3 . . ’ n l . ,
\ .Challenge Problems . .

1. The vertices of triangle ABC #®e the centers of any three circles which
intersect each gther. Prove that their commcn chords are cofturrent.

-

2. :I'he vertices of triangle ABC are the centers of any three clrcles.

> .Prove that théir radical axes are concurrent. (Does your prdor also
hold for Chaliemge Problem 1 ?7) . .
3 <. / ' o , )
o . .
« .
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7-T. The Ellipse : | . i
. B ‘The ellipse-is defined as the get of points P 'such that the dista.nce";. ‘
BT from P to a fixed point (the focus) is equal to the prodnct of & eo_xist&nt

e and the distan@® from P to a fixed 1 (the directrix) The constan?
¢ , the ecventricity, is such that 0 <e <1 . In our earlier study we found *-

. that if we take\as focus F = (¢;0) , and s directrix the line x = -‘-% , and
. -

let & = —z- and, b 4 an. e‘petion for the ellipse can be written

mln

» .
* - < .
»

({—’

. » £ “ . . . . N .
We mote from these rela.tions that ‘the equation 'of the directrix can also be

8- a “ 2 22 2..2
vritten x ==~ or X =g. Anotherusefulreleticn-is c“ =ae =a i‘n;

:
= .:. -~ s

L

Ol
+
Tl <o

. < . From Equev‘bn (l) we\‘sj%het the graph of the ell-ipse is lymnEtric with g

‘respect to Jthe origin and both of tﬂe coordinate axes; hence the point .

F! = (-c o) and the line x = - 22, also serve ‘as focus_an® directrix. 'me g
e .

. . ‘
- chord of the ellipse which contains the foci is cilled -the. ma“jor exis, its '

endpoints are cHlled vertices. 'I‘he midpoint of the major axis is called the
center of the ellipse ;. the ehord perpendicular to the meJor axis at the center
’ is called the minor exie. < n ey

-

In Figure 7-4, parts (e.) a.nd (c) summerize infontnation about the elligse
wit‘h~ Equatioh (1), and also the comperable case with the role of the x- and
. . N ‘ X . . )

: y-&xesz interchanged. C -
'l‘he equati‘cmek “ . ‘ o - -
A .l . ) 2_ 2 | . . 3
L@ - il ooy,

if M and N are poeitive, is in the form of’ en equation of an ellipse with
center C = (h,k) . Whether the 'me}‘br e)?is is parallel to the x-ﬁorethe
(y-axis depends on whether M or N. is larger. Using 'V, V s F F' , and
- D,D' to indicaté vertices, ‘foci, and 8irectrices, we can summarize in .
R Figure 7-4, parts (b) and (d), information about &n ellipse with center (h,k)

<nd axes parallel-to the coordinate axes. N Q N .

.
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® tg & circle. You can see why the circle is spcken‘of as an elﬁpse .of eceen-

‘.,‘ . ‘ “ : . . T
™ If in Equaticn (2) M cnﬁ R are negative, there 18 no locus, some-

tim in this case we epesk of an imginary ellipse. 'me equation
p A _

.

Pas as its locus only the pei;;t. (h,k)*. Such a locus 1g’ spoken of as & |
deg"enei'ate ellipse or a point-ellipke, since its equa:t:iox_x resembles that of
‘an ellipse., . ° S ' ' : '

In discussing the ellipse ‘and’ its properties and graph’ we havwe, in this
secticn, viitten the equations in reetangular coordinates. All of the work '

: could have.been,done using polar coordinates. If the equation of ln ellipse,

or any, conic section, is in polar coordinates, you may leave it in that form
in order to graph\g} and obtain such information as hrdinates of foet’ ‘and  ” '

L3

Vﬁertices . , . . . 7
: ‘ﬁ

The- shape of an ellipge varies with its eccentricity. As you see in -
Figure 7-5, the-nearer e 1is to zero, the closer the shape of the ellipse is

- - «

. O o

(\ e = cl . e = ’9
- , Figure 7-5 .« ®
. . * . p

trieity zeré, For inereadingly large values of- e , the ellipse is more and
more elongated, Can you exphin this result fram the fact thal

'

ba—Jl-eésal-e? o ] L - . .

-

Perhaps best known of the pmperties of an ellipse. 15 tha.ﬁ fér any paint
cn an ellipst, the’ sum of the distances to the focl is a constant equal to the
lengt.h of the major axis. 'I.‘h_e reflective propfrti has Jmpoxrtant applicat{ion_s
in,optics and xadar: Bince a tangent at any point of an ellipse make)d. equal’
m&.es with the raﬂ.ii drewn to the two feci, rays are reflected from one focus

" to the o‘her. This property explsins the "\mispgring gallery™ effect:., in some .
halls, vflere a, whigpér at one spot, though not audible near’by, is easily heard
at some more, remote spot.’ The orbits of planets and the paths of electrons
sbout the nucleus in an atom are appmximately e111p5fs with the sun and the
nucleus respectively at ox:}e focus. The elliptic form akpo opcurs in arthes

. gnd gears, .

L . . ,. ' 
. . . 9§8 * . .



M_ 1. Discusa and e%setch the ellipse with eq_ustigm

LY
Qx.hy +5kx-16y+51=0. , .
4 ' .‘Sa/lu;ion. ‘He'proeeed to rewrite this equation. . o ..
. . — ,
b -
9(x?+6x+9)+h(y2fz+ ‘)-8 4166
1s equivalent'to ’ 9(x + 3 4 Wy - 2) = 36
or - u+£)+gy}a . & -
.‘ . N 2 N 3 ) . .
*- Since 3 .is larger than 2 , we see that & = 3,b= and~t1'1e mjor axis

_is parallel to .the y-axis, The curve is an e!.lipse such as (d) cf Figure
T7-b with center (-3,2) . The eccentricity .

‘ | | o o, _
v‘az L 5 ‘ | - Was) |
S

e = =5 hence ae = ¥5 and

‘ %=§f’. We use these values and the .
formulas of Figure 7-4 (d) to obtain the

" coordinates for the'vertices, V = (-3,5), .
V! = (-3,-1) , and focl, F = (-3,2 + ¥5),

§¥ = (53,2 - 5) , equations of the axes

(x

1

-3 , ¥ = 2)° and’'directrices
(y=212 g@:) . In making a sketch we

. . ' ‘ .
usually locate the genter first, and mark off frcm it the semi-&xes, the
Yalues used for this (h,k,a;b) may all be obtained iirectly from the >
equatlion in farm (d) of Figure T7- L, o

¢ ]
. * o L4 X .

Example 2, . Write an equation of the ellipse with foei F = (2,4) and
b () ettt e -2, g

-
-

_Solution. Since fom this ellipse the major axis is parasllel to the
x-axis, we shall use form (b) of Rigyre 7-4. The distance.between the

foei 14 . %
~ 2ae = |2 4 (-b)] £6;
fherefpre ge = 3 . K oo ’
] . l
&ince e=§-, _ a»='%e.=_%_'_—_§ . * '
.- - - ‘ 5

®
LA)
_(O
)




SN

R T R
o o .J . ) . \( : _'- . . R
» - Using the relation. o _,neee - 52 - h2 s -,
. ‘. ‘we have T ba = & r*&eeg P ' S0
) , . . 3 . b =25 -9’ t/ ) 'R .; . '
y and ‘ v = 16 . : , ‘
D e .
Thus L. .. b=k, L . .
. TR ) [ .
. Since the center is the midpoint of I"Fr , €= ( .1,4) . We now write the
equation ‘ : . , s ‘
, .‘ : e A . C .
. e x o2 w0t -
, . ’ .(\/ B «® r3 -
: . . . st .
‘ - O 5§
- ' 1 “
' - . ) o . ‘ . . . . ~
o « Exercises T-T° ro. ’

1. Write an equation of the ellipse with ;enter (3,2) , major axis equsl

. to 12 and parallel to the x-axis, and minor axis 8 . Find the g
* ) eccentricity, the coordinates of the foci and verﬁiced emd the equations
\ of the directrices. Make a sketch. .

-
«

2, Write an equa.t.ion ‘of the,elupse with center at (Qt()) , ong vertex
’

(3,0) , and one focus (2,0) . ' ) - C .
¢ t . . . LI .
3. Rem'it.e the following equations in the forms of Figure 7-4. For each,
; '<.find the eccentricitn, the coordinates of foci and vestices, and

equations of &irectriees, make a sketch.

2 : ' *
)
H .

'(&, hx +y = 4 } , | R
2 ‘ -, (v) kxS + 25y° = 100 , , . . "™
. (e) 3x'?+2y2-_1-6' _:"\ . )
. - . F'y N .l» e " . "
T L) Byt ' RE |
) 4 h(e) 36(x - h)2.+‘2§(y +3)% 2900 . ' .
. (£) W(x+ 5% +9(y +1)% = 36 - -
T 02 a1l o 26 B
(g) ox° & by .- 36x = O ' . \

- (h) bx® + y2-+ 8x - 1y +13 =0

(1) 165+ 25¥2-32x+159y—+ 41 = 0 . \ ’

o .. e | o 294 .




. H . ’ ) . ‘ e ) ‘ r
« ' S = _ - a-7
) . . - ' ‘ ° h . c
b, Hrite\m equation of‘an ellipse— to £it each of the follming conditions
. (letters afe used as in Figure T4Y, _ ' ‘

-

s (&’) C= (0,0) ;mjor axis, 8 , parallel t.o x-8xis; minor axis, 6
(x) ¢ = (0:0) 3 V= (0:3) i F= (0:2)
(c) C = (3,5) » directrix X = 10 s 8 = 5

(@) F=(3,4), P = (-u) ,e =3

5« What change must be made in the definition of latus mctum given for the
. - parabola to make it apply to the\ellipse? Find a formula for the length
of the latus rectum for an ellipse, theck that 'youp formulh applies for
all four cases in Pigure 7=k, .
. ‘ S
6. A focal radius of e.t(ellipse is & segment, drawn from a focus to any
~ point of the ellipse. Prove that the sum of the 1engt.hs ‘of the focal
) ) radii for any point on an ellipse is a constant, and equa.l to the.

*

length of the major axis. . : .

L4 e

/

T. Eyove that an ellipse is the locus of points the sum of whose distances
. from two fixed points is’a constgnt greater tha.n the dista.nce between -,
_ ‘ ‘the two fixed points., . : v
‘8. Construct some XQints’ of an, I ‘f7ﬂ< % ’
L ellipse from given vertices ‘
. V,V' and foci F,F* as - ' :
e | follows. Select any point ) .

. ¢ P Of the segment V'V'. N P ‘4 .
. v LI T T 1
. - With F as center and PV 1 4 F P F 4

- ag mdius, strike arcs above
and below VV . with F
.as center an# PV' as 4 R
radius, describe ‘arcs inter- . _>R< )54
secting the ones firss. dmwn s .
and locating points R a.nd R' of ;.he ellipse. Then interchange F
and F' and repeat, loca.ting two more points, S and S' . Thus

[ for any. point Auch as P on the segment four points can be -located. .
! Why do the points so located lie on the ellipse with the given foel and
.. . ';\rertices? ' st : \ 4
“ \
v y




9. Construct an ellipse ss follows. . . Y
‘Tle “the ends of a piece of o ol
string to two thiitnbtacke. Stick,
_ the tacks into a plece of card-
' boerd at, ¥ and- F' . Draw the
string teut with a pencil point
(P) and trace a curve. ,‘ H?hy is ‘
~ the curve an’ ellipse? Keeping ‘|
. ' tﬁeﬂfl'gngth of the string the - | '
< same, change the distance ‘ e
P between the tacks and repeat the construgfion. What do ybu observe? ; :

1.0; Use the locus definiticn in Exerclse T in deriving equa.tions .of

(a) an ellipee with fixed points (2, 3) and (6,3) and sum of focaL e

radii equal to 6. { | ‘o
(b) ¥ an. ellipse with fixed points (1,1) and (3,5) end sum of focal
. radii equa.la“to gi ' ' . '

9

“11. Some writers like to include the circle as & special ease of an ellipse.,
Ir a ciréle witir Ats center at- the origin 1s to be{, though} Qf“as an .
ellipse, then a="> . Whe.t, then, is e 7 - Is this consistent witlr . ‘*‘ v

the focus-directrix definition qf a cbnic? : 9 ,
L ’ ’ ) - 4
12. Show that Lhe ellipse with focus F.=(c,0), eccentricity e, and  directrix .

e -’

. x = ie has another focus F'= (-c,d‘) and another directrix x = - _ﬁé .
e N . T .
\ ’ . s I “ 6 .
. 13. Discuss and sketch the gfaph of r = <3575 * including ‘coordindtes

. == of the vertiéee, foci, and center; the lengths of the hajor and minor, '

‘axes and of the latus rectum; eccentricity. 5
. . [N ! ( »
. 14, Prove that in an ellipse the length O the major axis is the mean _
proportional between the distance between.the foci end the distance ‘
between the directrices.. ) N 7
‘ ' . F_ . ) -
, o . p .
7-8. The Hyperbola - i’

[ . ‘ '
., The hyperbola is defined as the.set of points P such that the distance
- -~ ’ '
from P to a fixed point (the fopus) 1is the product of the eccentricity, e,
and the diste.nce from P to & £ xed. 1ine (the directrix), with e greater

N than one. In ouk earlier study we iound th&t if, as with the ellipse, we take
. $—

4’\
“as focus F= (c, 0) andtgs directrix the line x =7—c§ s and let a - E and * i
i €

Q . \ . 296 1,)9 '. v . .
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((b) gx -24h) - (I -ekf =1 o (d) - Q.- h) + ,(y = kle =1
a b ‘ bg 82 .
. - ) - 2 - e . a 2
(Asymptotes: {x Eh) - (y Ek) = 0) (Asymptotes : - {x -g_h) + (v "eé() =0)
a boa b . 8 :
3 ¥ F ) 'fag' [ b2 . .
. or all figures,,,e === -1
L b .
Figure 7-6 - . (
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—
Unlike the ellipse, the hyper la is not a boundéd curve, In part (a)

of Figure 7-6, for example, we see that if we take fncreasingly large values

for x , the com;pmding mlues f y -are incReasingly large in absolute
' f ‘ vglue. On the other hand, there are \values of x (in this case -8 <'x,<-'s)
for which there are no real values of\ y . ]_:f‘we solve ‘(1) for, y. we get

J)t: -'a '.’ﬂ

For very large values of X, the valueé of y 1in the first qmdmnt arg » '

-

iy «

. . A
. B ) y=-

ﬂlo‘

| very nearly equa.l to %x ( ecrresponding ccments gppl& in, the other quadnnta)

Thus- e see intuitively that for- values of x that ard sufficiently large in -
absolute value, the distance between’s point “on the curve and the line with

equation ¥y = Bx (or ¥ = —x) can be made afbitmily mall. ,‘mua these

lines are asymptotes of the hyperbala in Figure T- 6 they are marked A and -
A' . Yopu may wish to refer to Section 6-3 where there is a detailed. dis-

cussion of the asymptotes of a particular hyperbola., it applies here.

To meke a éketch of a hyperbols we first 1ocat.e the vertices, and then
.draw the asymptbtes, They are drawn easily since they are d.iaggnala of the

rectangle ‘with sides 2a and 2b , located as in Figure 7-6. The segment

(The‘line segment joining the points (0,b) and  (0,-b) , of length &,
of part (a) of Figure 7-6 is scmetimes called the conjugate axis.) From the

| O ~relationship c2 = &2' +‘b.2 ,' we gee that the length of the diagonal ‘of the
'\rectangle is also the distance between the foci. ‘We may use this fact to
locate the foci, . ) .

VT, of length 2a , is called the transverse (or major) axis of the hyperbola:

@

4

. . L . )

4



.._ ¥ f‘ . - ‘ ‘..
> - + 7-8
Conjugate -_g_y'pe:helas are concen- ) S .0
trie hyperbolds with the roles of they . o S

:.rsnsverse n.nd con:jﬁgnte axes 1nter-\
changed. 'Ihe equations \
2 2 - | \(

. 2
ﬁe'xzfl"““ - f?

"‘
.represgnt cnn.jusste hypotholas As
- shown 1in Figure -'L, they have the
aame &smptote and their f\oci 11e on
a circle with center at_the. aentgr of

. the curvea. < Figure 7-7 ‘ '

/ . N . -

A Hyperhola, is called gggihtersl (or, rectangular) if the trmsverse
ugate axes are equal, In this case tle r;\:th.nsle we have used 1n ‘
sketchdng 18 a square, ‘and the asymptotes (vhich are disgonals) are per- | S
pendicular You' m have studied the famNy of"équilnteral hyperbolas sith ‘
equation xy = k .+ These are hyperbolas with the coordinate ax‘es as

_asymptotes. G . N .. S

'pmlu

" Fohamr potnt of a hy'perbolp, the ‘absolut.e va.lue of the differetée of . C
its distances from two fixed points is a domstant, Tbis property {s some- ‘
times uséd to define & hyperdola; «it hae applimtiona in range fin‘.ng and .
LORAN (Long Range Rsvigdtion) Both of these use intersections of femilies - +
of hyperbolgs. *As with the gllipse, a tangent at any point of a hyperbola . '
mekes equal angles with radii drawn to the foci; fprr the mrperbola however,

the radii are on opposite sides of the t&igent.‘, N
. ) ‘ . N $
m Find the equatie? of the zy_ymp'tot.es of the hyperbola with ¢
\ . . ‘
eque.tion 9'x - L‘Y + 5’*1( + 8 ¥kl =0, Sketch the curve apd its
asymptotes. . r ’ ,
" ' , ’ . t
* .
~ N * )
[ - -
' - .
] o~ S
L |
. . » -
* . e PR T t £ »
u - N \ ' -
e . “ - .
v i



N

8 e - e
h . - - . : C. "‘- e )

- - . .

Solution. We revrite the equation, following the same pmee@m a5 in
R S

Example 1 in Seetion 7-7, getting the O P
. equation - . ’ - ' ‘

This is in form (b) of Figure T~ 6
with transverse axﬂs having p length
of k-, the conjugate axis 6 ; the
center-i§ C ="(-3,1) . To obtain
the gqua‘t;ic;tns of fhe asymptotes, we

write . e,.

Y'l) ..0
2 . 32"

Py -

oﬁ Ix + Ey.+ 7 =0 a&nd 3x - Ey +11 =0 . To make fne s]&tch, weviocsﬁe

the center { , draw through C. lines parallel to thé coordinate axes, and
mark ®Pf on them the ‘lengths of the Semi-axes. Nexb we draw the reetangle,—
its diagonals give the asymptotes, and’we can sketch the curve.

. -
* ]

Ve

A . . -

. b Exercises 7-8 ‘
, . ?_L_ , _ - .
l.. Write an equation of a hyperbola with semi-axes 2 and 3 , center ?@ Y )
the ogigin) add transverse axidom the x-8xis. Find the eccentrieiﬁy, .

+  the coordinates of the vertices and foci ’ and equa.tions of the direc-
- trices ‘and asmtotés.‘ Sketch}the curve. ! -

2. ,Repeat Kxercise 1, bht this time let -the transverse axis "be :{n the

', y-axis. , - , : L . ]

3. Writf an qquation of a lwpertfbla with center (-2,3) , semi-axes 4.
I’J' ,and 3, dnd ,gmnsverse axis paraTlel to the x-axis. Mnd the

eccentricity, coordinates of vertices and foci', and equations of “
g'directrices and’ as:mptote . Sketch-the curve. T Y
PR Y ' . .
‘ 4. Repesat _Exerqiae 3, but this time have the transverse axis parallel to o
t the y-axis. ‘ ‘
: —~ J .
b .
. . ( 4
- ¢
[ S : ‘ . /
)" ) 1‘0 6 . ] <
; Y} . ‘, *



« . * - - Yo - 'y
o - |
- - ] ~* R 2
. - s
) 5. For each hyperbola whose equation is, given, £1nd the eccentricity ]
e -the length of" the semi-axes, the coordinates of center, foei and

&\ ’ curves. . ; : R

@ e . SR
* 4 (b).ye« - xfoy o ) 7 T . S : “
(e) a® - 9% = 36 B : ) . . 3
(@) 1bby® - 25x° = 3600 — o '
) " A{e) 2 - ? - uy s 2y - 16 - S ‘ "
) 6. FO{ each p&;'t‘ of Exer,cise 5, wr'%?e an equ;tion of the cor;-Jugate' - | !.
hyperbola. ) ‘ .

€.

7. Find an equs.tion of the locug of a point such that the absolute value

of the difference of its distances from the points (5,0) -and (-5,0)
is 6 .. - ¢

8. Find an equations of the locus of a point such that the absolut@ value
of the' difference of its distances from the polnts (1,1) and (-l -1)

1§ 2 . What is the chentricity of this curve? /-
. t . T ' &
9. Prove that a }wperbo:fa is the locus of & point such .that the absolute '

value of the difference of ite distanses from two fixed points isa °*

s constant which is less than the distance between the *fixed poeints’ '
¢ . . -

10. What is an sgpmpriate definition of the latus rectum of ‘hyperbola? ¢
Find a formula for the length of the'"étus rectum of a hiyperbols;
chetk that your formula applies in all four cases of Figure T-6. .

. 11. Construct some.pgint's of a.}w'perb:)la as follows. Select fixed points .
F,F' and a lengt} 2a O [

(2a < a(r, 7)) ~ VYith F as ' ' '
sFenter and any ¢ sired radius r ,

AN . - .
. describevan arc. With F' as . -
‘center and radius of length
‘ r+ 2a, desc?ibe gh arc i’nt_er.— B .
. secting the farbt arc’al points: 1 .
) P and P' . Thenuse F' as : s . \
8 center wft‘b' radius r , and ' o
. F, vith radius r +r2a , bbtaini poim;sl R and ‘Rf ., Thus for & “
particula.r chojeéd of" re, fpur ints’ ﬁn be located. jwlhy do the points 7 -y
. s0. located liedn a erbols? - . //*‘
: . — . ’ doon
. . b~y . - )
Q ‘ . ‘301 1 O ( ot 'l.

- ot ¢ ‘. > L f‘- ‘ N / ‘ . ' "": : ‘,.-~



z 19 ' SR T . 4
- .
4
- Provethatt @im’xneeecedy btan"e a.reepa.rametrie /
*\' 4 represen of a h;rperbola o S cw ST
: S
; '13. See if yokg.b deviee eﬁnet,bpd of constructing a bynerbola vhieh uaes DI
the eq;ua.t (Eint. See Seeticn 5-4.) . - ‘
'I
b, Find equati'ons oﬁ uilet-er&l h;:perbolas through the paint {3 ,-T) ,
) _ . «a) with the coord;nahe ue\qe asympfotes, _ "
e (b) with axes o‘f.the‘hyp%rbblialong the coprdinate axes. : e
R - N
L N x° 2 & . « - . E
15. Just ag’ -5 + E‘E =0 was considered q.n‘ equation of a degenerate ellipse,
- . - a 'b « . - - )
‘e b xel ye ’ ‘~ . ' . ﬁ ‘ ’ =
. we may speak £ - - = 0 as the equation of a degenerate hyperbola. el
* a b ‘ ’ :
. . N . ‘ -
What is the locus in this cage? -' ~ .

' ' . . ¢ - 1‘ -t b
] : - . \t - . .
« - T, }
¢
.A conic_section is th® intersection of a plane and a right circular cone; -
? 1t is a circle, ellipse, parabola, hyperbois, or, in a degenemte case, a &

point line, or pair of 1ineé :

~— . In polar coordinates e‘ circle vith center at the c:rigin has the equation
. r = k . Any other conie seetion may be defined as the locus of points in &. -

.'Lane sueh that for efich point the retid of 1ts distance from a given point Y
in the plane to its ‘distance from a given line in the plane is a constant e , / '
called the eccentricity. Such a.conic, if the center is at the pole and ,/“
G&reetrtx perpendicular te the polar axis and P units to the left aof 1it,
hae ‘the equa‘c.ion P “

. - ‘ \ *( a parsbola if e =1, ~
e
) T = I"Te_PccE—é y P representing an el}ipse 1f. O0<e<i,
R : a Hyperbola if e >1 .

. ‘ ] ..A : ‘ - i

. e equations thet relate poMar and reéﬁanguler coordinates were used to i- A
N~ . a - :
- * find porresponding rectangulhr equations. These were seen to be equivalent

to the equations d&velcped in earlier work i@ algebra. Since the information
~about the conics .in rectangular Form 1§ smarized ‘at the beginning of the
sections (7-5 through 7-8) dealing vith each type, it is not repeateid(g.gain

here. v . —~— . .




- - - T . & ..“‘ . ““ ) e+ ., ‘1’ . :t R * *
. - . 3 ‘ ‘ : ‘ ) . - * . : - A} .
- ' . .“ - - .‘ ~
-, N . ' . . R - . <, i . - .
. sGoalc t«icms have wide usemlbnesa in thceretical work atn mathemtics oo
o« apd scien  in npplicat:l, 'bo & grést.varfety of problems in .science N -
. . t I
and industrx, 11: ‘hss been poa le tq, men‘bion only a. few herec o - . i
e ‘ .ot S
A w:lt.h’ this- chayter.we conciude‘, .for the time be:lng, our stnd,y .of thg N 1‘ .
Fa dnalytic ge?metry of, t\m--pace._ _ire sﬁall tnke up next the analytic gecmetryh “
of three-,spaﬁe. \Lgter, if .sime permitq,. thcre my be an opporttmity to ) .
_ o feturn again to .conig sectiqns in oMder 0, c’onsid.er t.he genez'al ‘problem of* . - .
’*‘.'" . shmd.g_ that mll equations of second degree in* x snd y 'have loc:l vhich o e
s gie conic sechcms L and- tben “tOn relete the corresponding algebraic &nd geemetric f
P :‘ properties. T - ‘ . ‘.' ' f 7.. T
. - < L M - . ) R C R T .
N i ' s T Al : v . N
o RS L \ - Revi ercises - T
.. , . ) - o - . e‘in . ‘ .- — '. . o
1. Sket e gmpn of each of the fql.lowing equsticms. . Iglentify each | _ {.
conic section, give f.he a.pprcpriate lnformatian.( foci , vertices 5 v
ceater, eccentricity, direqtrices, a.symptotes, etc ) e Ny
() Fr-2=0 .7 - . g
’ ?b ’ = 2 - .‘ ‘ - N ‘ . o . K
. ‘( or cos'e 0 ) . g |
(€) r-y—opg o | ~ o
h - CO8 ) * . . e
s h o - : ' - '
(d) . r = - cos ] Y
: (e) 2-esg=3 ° _ . s .
- . . . A .
. -" . : .o’
(£) - ,lzcos | \ .
. (g) 4r = 3r cos g + 24 ’#,,g .
#h) r=h4-rsing U ‘ . "
- 3
(1) r=3+2r cos 6 .
) l,(J) x‘? - hx +y2“+ 6y + 13 =0 ' N 4 * ) .
] CGRE S Yo - - ' a ‘
¢ 4 - -
_ (1) y2+ -6y +25 =0 v -
i ., . ) - vo#
- (m) 25x° + 36y° + 100x + 288y - 224 = 0
N >
(n) 3XL+5¥2-6x+20y+8=
(o) x2+y2-6x+10y+3h'= ’ ‘
(p) 22 - 3%+ 8x - 6y - 1b,=0 " ' : ¥
‘l (q) 1hkx - ?ﬁye + 576x + 150y ;0.39!49 =0 . -
¢ ) . 3




e -

.t

&

(e} An ellipse 'with center (2,3%;

. S LN & ‘)' - MR
' - ‘. '! . N * - " .“ , r.- . ) r " - ‘ - ‘. .4“‘*7
. ‘ r V- L . _ o . . + Coa
v _ : oo w0 Y '\-“." A
e * " * ) .. .-l‘ . \ . ' . A ‘
Write an. equaticn :or each. of f.he follouing and pketch the g?ph L
(§) A pmholq with vextex (0,0) md focus (-5 0) oo B

(o) A parabola with vertex (:[,6) and directrix Y 2.,
“{c) A circle wit!! radite 5 and tament to $pth axes.: )
td) 'A circle with center ¢ = (1 7&) md pass.i,ng through (3,-2)
“{e). ‘A circle tangent to the line X - ey 20, psss:lng th.zmgh .

. poipt (%2,0) , and vith cegter on t.he y-a.xis. ~ .
. (f) A cirele passing throughr,ife polnts {o k) y (6,6), and (v2,-10) .
a vertex (5 3)., and a directrix

x:—h L . PR ) '-

- {h) An ellipse with a foeus ( 3,5) , apd directrices ¥=6 emd t.he 5 o

3.

(k) A parsbola with a.xi.s paranel £0 -the y—ax;.s‘, psssihg th‘rough the

\ ]

' xGBXiSu . " '\ "‘ “\ * L or e
(1) A hyperbola with foci ( 1*1) and (5% 1) s fnd & vertex (0,1)
(J) A hyperbola with asymptotes. Sx < by = o 2 3xM+ hy = -n “and

passing through the point, (3,5) ,‘_' . ST .

pothts (2,11), {0,5), and (- L,8) .t T -

Find an equation of the locus of ‘a point whose distan e from the point . .

(-1,4) 1is 2, units more than its d'is‘ta,nce frofm: the ine ¥+ 2=0 .

center of a circle which s tangent...
(1,-1) . Explain from geametric

e e

Find an equa.tion of the locus of‘ th
to the lirfw x =
considerations why this locuq_

j and passes

Fimd the eccentricity of an ellipse whose‘ major axis is twice the leréth l

C o
of its minér ax{.sx . | . . -

13
.

b 8in 8 are a parametric

J
Prove that the equations x =,a cos 8, y =

representation of an ellipse.

Find an equation of the ldeus of & point which moves so that its distsnce-
Trom thé point (0] 2) is bne-half its distance from the point (3,1) .

"Prove that the Pr oduct of the distances frcm any point. qm a hyperbela

to the asymptotes is5 a consta.nt.

(a) If the ratio of the length of the conjugate axis tclne length o;‘
co. P .

the transverse axis of a hyperbola 1is 2', vhat is ®he eccem}ricity‘r '
(n)-. If the ratio is k , find'g formula for e .

‘

) S 1in '

‘30‘l|- . y



12,

13.

1k,

+" - more precise way to state (a) 1in this_ ex&rcise?

y . oo~ X .
g_'-g“iﬂ*“_‘d - S+ L

" not be zerot® : b

. from supporting towers

- £
.. .‘. . ‘ . . e 14
. {'t : “. , .
- ; - . ; “
. € - - s
té) Show i:ggt x 2 , ye= v a.re pammtric eq_uations

:!'1/51+1;?.v 1J1-pt§ - :

(These équstiona are sometimes uséful in’ cal(:ulus.)
What 1s the.gmaph of the equations in (a) 1if only the positiva .
" signs before the Padicals are used? If only the negative signs?
Show that these parametric equations do not represent the polnts -
”cr,o) and (-r,0).p Sincg this 1is the case} what would be & 0

: oi’ a circle.

(v)
(e)"

Prove that, for the con,jugate hy‘perbolas whose equatians are

[

2 2 2 2

=1 ,-the sum of the sq-uares of the .
< 8" b r '

.

reciprocals of the eccentricities is one. _ .. o .

.“l /

A curve 1s defined by the parametric equstions X =8 + k cos 9 R
y=b+k sini 6,
(k £ 0) . Pind

and identify it.

ere g, b, and -k are arbitrary constants
. equation of the curvg in standard rectangular form

what is-the significance of the requirement that k

An archway is in the shape of & semi-e.llipse.
base of the archway is - 30 feet, and its max{mm height from the base
ts .20 féet. Wnat should be the limit on the beight of vehicles using
placed 20-foot wide road under the archway? (The posted
1limit is such that a vehicle of that height aﬂ the edge of the road:
but not off the road, will have clearance. ) . ’

; \

The cable of a suspension bridge
600 feet .

The distance across the'

a cen

, U

hangs in the form of .a parabola .

apa.rt'. The points where the cable | _
is suspended from the towers are S i l;.;;“
100 feet above the roadway, and

Y U —

the lowest part of the cable is
10 feet sbove the roadway. If
there a.re supporting. structures ,

to the cable from the two points '
on the roadway each 200 feet ,
from the bage of the towers, how
high must tk;ese supporting

structures be?

305



l?., Prove that theproduct of the foeal rsdii rrcma poin.t. onanequilateral

hyperbola 1@ equal to the squ&re of tha dist.ance from, the pcd.nt %0 t.be
/ Center. . . B - ) * r.

-f . »

16. vrite an equation of the famil,y of ell:lpses uit.h the origin as
- center, ma.Jor axis gIong theﬁ-axis s and eccentrieity equal to g-,

(b) ~wnte an equation for the member of this fa.mily with the length

b of the mixior axis equal to 12 A

t . e
(c) Write an equation for the member of this famiu 'th.cn passes .

through the point (1+, ) , : , .

- 17. Pzove the following stat.'epents-e;nalytically. - . *

*

(a) A md[us pemendicular to a chord ‘bisects the chord. ,
(b) The .perpend;cular fmm any point of a cirt:le to a dimeter is the
; ‘rmes.n proportional between the segmentq of the dia.mter.

+ {c) The locus of a point such that its distarte from one £ixéd. point
ie a constant multiple of its distance fmm a second fixed point

.., 1is a circle. (th,t restriction must there be on the value of the -
constant for this to be a correct statemept?) o W
f" / ’ . ‘ :
- 3

Challenge Problems

‘.. Prove that in a hyperbola an asymptote, a d.trectrix, and a line from-the ’
corresponding focus perpendicular to the asymptote are cencurrent.

2. On a map marked with § réctangular grid using a mile as a unit, three
listening posts are at A = (0,0) , B = {2,0) , and € = (0,4) . An

* explosion is heard at A 5 seconds after it is heard at B, and ‘8
seconds after it is heard at C . ‘\ihere -did the explosion take place?
(Use 0.2 mile per second as the speed of sound. Find equations of the
tm loci involved, and find the appropriate intersection gither by
graphing or by using the equations of the asymptotes. Do you think tha.t
it is sufficiently &ccurate in this case to mssume that’ the ssymptotes
meet at the polnt you want?) _ !

. . '
. -



] " 3. ‘A taxpayer change§ his residence 'pecause of ac 1n his place af work.

' IFor his nbvins expenses to be mma as a deduction under the Bevenue Act

of 1964 ,-{t 1s necegsari' (amng other requirements § that his new prinaipal .
e place of work be’ "at least 20 miles farther from his former residence ‘

~ than vas his former principd\ place of vm‘k. v : - :

b .

.« . Suppuse & man's.new employment is at a ple.ce 30 milefs from where he
| . was previously employed Let. P = (x,y) regresént the location of his

o om honle. wr:tte in analytic fom the conditicm- under which the man would'

4 be entitled to deduct moving expenses to a_ney ‘hoge. (Suggest‘.lcm- r A

-H‘l and ¥, are poinﬁs representin& the ‘eld and new places. of employm;ent

] , mspectively, let W,W, be the t.qxis, ,.md let t.he midpoint of W be

the - origin.)‘ - SRR « ‘ o ' .

- i [}
v

. & 4, For the paf‘aholé r= 6 prove the reflective oI ¥, that i,
T-<os0 -’ ’ ’

- cos
_ _ ¥ tangent to t.he parabola at the point P = (x, é) makes equsl angles
' th the polar radius OF and the line tnrough P parallel to the poler

axis. : - - .

5. Prové analytically that, in any triangle, the midpoints of the sides, { :
. the feet bf the .altitudes, and the points halfway between the vertices AR
and the orthocenter lie on'a circle. This is called the nine-point cirele,
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‘ SN 'mE LINE AND THE PLANE IN 3-s‘mc§ . -, ‘
. ‘ - |

[ ) .

13 - S .
A ' +

/ {8-1. gixxt-.edsmnto‘gm.__-\ JAL e L
N . To tpis point in our etudy we have sought analytle repreaentatims of sub- -
sets of a plane; in turn we have sketched tl;e loci or griaphs, of both glge- K
‘bralc and vector relationshipa with -the asmm@ticm, usually tacit, that thelr

" gecmetric imterpretation was , confined to a plane om a line, ’

Our pu:évious experience in gecmetry has been. 1arge1,y in & plane, even
\hen we did comsider gecsnet.rie e tions in space, we fre@ently pursued
our investisationa in lmly one or ‘two planes.

-4 It is easien- to analyze loci in: a plane, but we live in a world of three
dimensions., If we are to apply our geometric knowledge to ptqrsical proba.ehs,
we muat be sble to extend our concepts to - 3-vspace.

1In this chapter e.né the next we shall consider the basic extension to
3- syace of the ideas which we have al.rea&br developed; we.shall even suggesat
how repetition of this process, leads to mathematical structures with more
dimensions, which are called spsces, even though we aannat possihly v-immli.ze ‘
theml. - .
. 8
In this chapter we shall be extending some of the ideas of Chapters 2 and
3 to 3=gpace; you might want to review these chapters briefly} before you con-
tinue,  We assume that you have had some experience with rectangular coordi-
nate systems in 3-space, but we shall reconstruct the d%elopment. We sh‘éll
consider the an&lytic representations of lines and planes, and we shall meke
', sugfestions on sketehing to help you visualize thei,r graphs, The extension pf
“vectors to spaces of higher dimension 1s surprisingly‘ easy; this 1s another
‘resson for the favor vectors f£ind in ‘contempora.ry analysis., !

One thing you might keep in mind, The locus of g conditjon &‘e’pends upon <
the space to which it is applied. We have &lready seen that the equation '
¥ =1 describes both a pnint on a line and a line in a plane, Here we shall
see that it also describes.a plane in 3-space. 1In spaces of higher dimension
it would be subject .to\still other interpretations. I.n generél, analytic

a

. L]
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t
representations describe loci in any Bptee vwhich has at least A8 many dimens{om

,) as the analytic reﬁresen‘ﬂ;tim has indapan;iamt vari‘éhlas. To deac.dbe the locud

ve must first know the number of diﬁensions of the epace :Ln vhich it occurs.
. . : \ .

9 . * . L S a ‘*‘
Wﬂ“mmmm o S R
In Sections 2-1 and 2-3 we discuaéed rectanguieu' coordinste systems on a
nne and ih a plane, Eovwe shall mdicate how a similar coordinate mtem Lo

can be’ 1ntroduced intq 3-apace. ' Lo . . " "“ !

. ,o. e e
. Ve begin by- selecting sn arbitrary poi?t 0. 1in dpace ent “three mtus.uy ‘
pmendicular Yines thmugh 0 - The point” O is called t.hfﬂi_n_ of the
' coorﬂinate Gystem and the lineg are cal}ed the x-, y-,”and z-axes. On each
axig wa set \p 8 linear coordinste systeff vith point O as its origin, Tha
plane determined by the x- and y-axes 1s called the g—gl_' The xe- and
Yz-planes are defined similarly. The three are calkled the coordinate Blanes.
Let P+ be any point in space. l'fet a be the coordinate of the proJec't;on of
P on the x-axis. a 48 called the x-coordinate of . P . The y- and g-co- ---
orﬁnateﬁ, sgy b and c¢ respectively, are defiped simlleyly. To the point |
P we assign the ordered triple (a,b,e) of coordinates, Just a8 in the' .
plane, the correspondence betveen points and ordered sets of coordinates is
one-to-one. - The coordinate planes divide space”into eight Tegions called, not
' octants. Usually only one of them is mumbered, and it is called -

. = ¥ »
' |
kY ) (0 O,C) ' (O;b}c)
i (a,0,c) P=(a,Y,c)
o -
| (0,1,0)
3 , -
(a,0, (8,b,0)
* x
. * \ FiT 8-1
. 15 ‘ .
AU ¢
S 310
1\" 3



. L « i
- : . . -
. -

. The point (a,h,o) is called t.he projection of (a,bye) on the .
" xy-plane, , The point (a,o,o) 15 called the prodection of (a,b;e) on the

t-a.ﬂ.s and so roxth : . . ', “ O

' 'ﬂxe configuration of shown in Figure 8—1 is “valled a. right-hanﬁad
mt beciuse a8 90° rotation of the po‘sitive sme of the x-axis into, ‘the
positive side of the y-&s will advence a right-handed scref along the
iy posﬁ;ive side-of the z-axis, We shall use t.his system in drg ngs in this
. text. If the lccations of the x- ahd y-axes are iht’e;.-&mnéed a8 yml will
‘,nﬁa that, they are in some texts, the s;mtem 18 left handed : -

e

mstam:e Between M' “Ve m use the, Py‘.thasornn Thoord to
; de'velop a formula for' the distance ‘bet'uekn two points in tmace If the points .
a.z'e‘ 'Po = ("or“’o.'“o), and Pl = (xl,'yl’al)' the dista.nce betvgém t?em is
‘ "_ « . . . * . . N\ °

- (1) r d(Potll’l) = ‘/("1 - ’,‘o)é_""(yl - yo)é +€( - i;())2 ‘

Points of Division:' ‘An extension to 3-space of the method used in
Section 2-3 to obtain the coordinates of the point which divides a line

] . .
gegment in the ratio % gives us, for tlie segment PoPl 'y
[ ]
; . . de + cxl . . ‘.
co | X —Ta
f 1

(2) ‘ y = M}.

. \ . c+4d4 B

»N 13
dzo + .“‘1‘ S
c+4d

L)

»e

2 =
, I '
In the special case wvhen c = 4 , we have the midpoint,ewith

N

I R TR r
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km-cises 6-2 v

(a) (1 2,1) o (e) (-1,-1,2)
() (-2,1,1) (£)  ¢-1,-2,-1)
{e) (2,0,,1) . (&) (-3,1,-1)
¢a)y (3,-1,2) . (b) (1,-1,-2)
In Exercises e, and' 3, P(1,2,3),Q= f“-_{,e,-
P{ma. (0,7 . 8(0,Q) , a(r,X) ,- and G(Q,R)

Find t.he midpoints of OF anda TR..

(a) Draw Iﬁ ebout 3 inches, - r " i
longobliquetothe edge of -

-your paper.’ Gonsider AE as ﬁ
drawn from the reer lower left.
to the front upper right corner

. of a rectansular solid. Next _
draw oblique segments from A %
to P and from B to Q
equal 1in length and parallel '

but with oppdbite sense of p
direction, If, as is ueuallyi ' v

ﬁhe case, the solid is %to be oriented with respect to rectanguler

\

coordinate axes, make AP and B parallel to the x-e:d.e. Then &
draw a8 rectangle with ho;izonte.l and vertical sides end with P a.a

»

another rectangle with A and Q as opposlte vertices,
oegmento complete the figure., LY

B as opposite vertices; this is the front face. The back face is

Two more

-

(b) Now start again with the same kind of diagonal segment AB:, but

consider it drawn from the front lower left to the rear

upper yight,

and draw ‘the new so0lid, This time reverse the directions of AP .

»
and BQ Now A and Q are in the front facé and B

L in the back face.

end P are

!

The origin and the point P =(3, 5,16) are the opposite corners of & "

?reetanguler box that~}as three of its edges along the axes.

and givef.he coordindtes of its oth®r vertices,

Repeat Exercise 5, using P = {-5,4,-3) :

‘ -

117 \

312

Draw the box

5
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T. Given: Py = (2,:3',1&) and P, = (-1,3,~2) . ¢

(a) eadravingvhichnhm ,end FF, . ot
- (b) Write the mordinates of t.hq pointsu.ﬁch are the gctftms 24
L uBy and - P, on eaeh of the axes and on eachQf the rdinate
¢

-
‘

planes. - o ' _‘

-

(e) Find the length of - § -and the lmg'th of its pro.jéqtim on the

- 3
.

- -

‘axes and on the eoordinate gplanes.

8. Repeat Exercise?us:lng Py =-( 3,5,7) and P = (3,0‘3) o Lo ’.w

Vs .
© 9 If P = (3.-')‘ 6) and Fo = (-2 3,-2) find‘ tme coordinates of point P -
‘ *—p f . | ,
" . on P1P2 1f - . . ‘ ‘.l. ._ - . | 8
(e) P is the midpoint of PP, - ' .

1 . - k' ’
Fb). 4(P,,P) = 5a(P,P,) . o L ‘

) (e) ar,®) -3a(pp,) . Do

() a(r,P) =§c1(1=,p2)- K \\ .

() a(r,P) = 2a(r,p) o | -
() a(p,P) =2a(p,p) .

10, In triangle .ABC , A = (2,4,1) , B = (1,2, -2) end C = (5,0,-2) ., Find
- the lengths of the sides o:f' this triangl‘e and decide what kind eof
tria.ngle it is. ’ :

« R Y -

éhallenﬁ Problem

We introduced a coorq'inatfe system in 3-space by selecting three mutually
perpendicular lines through an arbitrary point. Show that this is bossible, «

)

°

8-3, Parametric Representation of the Line in 3.Space, .

Our discussion,in Section 5-6 of the parsmetric representation of & line.
. 1'&& pléné.generalizes quite easily td 3-space, Let Po(xo,ya, zo) and

xl,yl,zl) be two e,pc:irr':.s‘in space and let L be the line through them.,

"‘S ;

t R



' Aammef&rthetimbemgt.hat X isnotpmlleltoorlying.ﬂmeoordi-’
nate plene, Then PQ and P -cannot both lie in the :qr-plme mdve 1et Pl

. . - L Y
. .+ be one which does not. Hence Py,P) §nd (‘1’(1!") gre ot eolq.ingu- and

determine a plnne M ‘eontainina L . M mtersects the W-pla.ne in a 11ne
) Lf called the projection of L cm the xy-plane, Since the line contuning :
" P, amd (x},yl,c) is pm:pand.tcnlar to the x ane, plane M 1s pe:}%ﬁlcnlar

to the xy-plane. Hence the line rrcm By perpéndicular to the ;nr-plme (anﬂ '

\.

e
thus intersecting it m the point (xo,yo,o)) 1ies in plane M and is 8 point "y
‘ ' . > t . - . -
. of L the line of Mmection. o : . )
’ . ) . - ‘ . ' e f ‘ - ‘ R
. ..¢ z . t‘

N
' i
- o i }
/ ; i l
- P i |
£ &~ - - l : ‘ .
. L} . | i | .
: . R 4 y
. A ,,z’
’ % -
} ) . (xolYo)O / )
. (x1,¥7,0) T~ 1 :
. . ) . "
. \ . . R “ . .
[ ) * ¢
x ' . 4\ .
Figure 8-2 N ‘
. ' ‘ *\ -‘ -

From our previous discussion, we know that L' has the parametric
equations

x.
1}

xo + lxy - x) o
(1)

[}

y =¥+ tlyy - ¥o) -

~

We would have a parametric: representstion for L very similar to the cne we ‘
obtained for a line in a plane if we could show that if P = (x,y,2) 18 on L
A

. -
z2 = Z
. Q

L 1
Q ! 3‘1&*"‘9 ' *

+ t(zl - zo) .




e « ' o Z n'zo fs(ﬁ -2 ) . ; N ‘-;".1‘
».c ’ . . f’ “TI Lo .o
| for sui%able, B . m queet.ion 13, is, 8 equal to t i 'nm: it is cm be

' as follows. Let L" be the projection of L on the ys-pi,nne' hen
.- injthis p].ane " s'has the parametri%® repregentétion § '-TV K :
» 7 [} . ‘ ‘ ‘ \\‘ : . ‘
oo w ¥ v - Jro +.8(y1.- ‘9) = L %
p oo - ’ :
(2) . - ‘ ) N ' ‘%
. | I ze ‘e + a(z "o) . . ?
3 . . . . - .
From (1) and (2) 1t follows that for each poinf, P = (x,y,n) ot L,s=%, '
; and hencé L has the parametric representation o
‘ X = +t - * B
7 - x5 + tlx - x) . ‘
(3) : Y=y * %y - ¥p)
o z-zoi-t(s-zo). L
 / 3 :
We leave it t.o thwudent as asn exercise tq prove that (3) represents
L even if is in or parallel to a coordinate plane.
* l’
o _Tosa ting, let jsxl-xo,mryl-yo,and ne=z -z .
We call (f£,m,n) an ordered triple of direction numbers for L . If c £ 0
the equations : .
ﬁ » x ="xy + cft -
_‘ Yy = yo + omt
~ &
. ' : 2= 25 ?cr.xt. T

&lso represent L . Thus it is ﬁe.tura.lto extend the degniti.on of
] equivalence of ordered pairs of direction numbers for a line in a plané to
& ordéred triples of direction numhers for a line in space. Two .such ordered

\‘triples are said to be egx_x;val ent 1f corresponding numbers are proportional.

Eet L -and L' be the lines with parametric equations

x-:xo'f-lt . i x = £t
"'L- yeyok-*mt ’ L {y = mt
. 'q : '
. . A s=zo‘f nt z = nt
..; .

o B 120 0

~~~~~~



\ ¢ Figure 8-§ -
pa.rallel. Let Py L (xo + 2, Yo d B 2o + 1) ',‘Q1= (:,m,n)

& T
g P esd .
Pyl o!yo"o) areon L ; p and Q! are on L' . The hidpoint of 6?' s ,’E

{
m £ n - D
M=(° o 0 ) : -
v LA b L .

B TR T E

[

. M La also the midpoint of P& ¢ Thus orér Q 1is a plané qundrila.teral ~

wtk:se diagonals bisec) each othgr and hence ia 8 p&mllelogrem.' It follm
that L and L' are el. The fbn‘m&ng theorem is an almoat immediate
. consequence of our & nt.. ' R
w* . | )

THEOREM 8-1. Twn\sistmct lines I and L' are parallel if and only if

_ any triple of direction mumbers for L #s equivalent {0 any one
for L' . . ) !

-

L] .
’
As in the plane, a set of direction numbers for = line can be used to

establish a direction on the line. Let (s,m,n) be a triple of direction
numbers for the line L .

If Py = (xo,;,ro,zo)‘ {sapointon L , I hids the
. ‘ representation . / Co

x=xo+“£t

, Y yo +mt

/: z=2.0+nt..' ‘ '
Q ‘. "t‘316121 o




+ The positive ray (on- L ) with endpoint
‘and all points of L, given by positive .valyes of t_.
Qf T s the poaitiw’e ray with endpoint. PI points in t.he same

‘of Po

another poi#t

P

. ‘ 8-3

1s the set af-‘points consisting

IfP is

direction as the one with endpoint PO in" the serise_that thédr intersection

Y+ {8 ohe of them.

If c>0

the triple (c:t"cm,cn) of direction ‘numbers

for. L. esta.blishes the samé positive direction on’ L a.s does the friple

(‘}min) ’ ) [3 L - RS
Iy . . * - <
il IF -(A,m,n) is a triple of direction pumbers for L , the triple .
) o ' ] 2 n ‘
W) = .
) o ,{g-#m +n2 fz?+m2+ /L §m +n ¢

Is of particular inmortance.l

. triple. 2

2

Note that A +

$9F =1 .

§uch aﬁﬁp

B

Let us assume

e 1s sometimes.‘ca.lled a norma.lized
that L goes

. through the origin. The point P = (A,;,L,v) lies on L - ‘anﬁt a(o,p) = 1,

. Mgures 8-4a and 8-4b

M= cos B

show the situatio.n vhen A >0
;nnd;the gituation wvhen A <O,
s where B 1is the angle .dztermined by the positive ray on L

p=>0

s >0, v>0

, v > 07 respectively.

In h cases,

‘*’;&th endpoint O- and the positive half of the y-axis. @ and ¢ are defined
similarly, with the positive halves of the X- anw.xes » respectively,
replacing the positive half of the y-axis.

- Z ’ o . \‘:
o
P =.(A,u,v) .
s T i
"o , 8 ! Q‘“’O)
a /. | <y
V4
. ‘ f‘
®,0,00~ - —o b
(K;HJO)
x
) ?
'Figure 8-ha
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e 8-3 ‘ ‘ J : :
. } If L 1is the x-a.:d.s, then any triple of direction mumbers for it hes
. ,-  the form (g,o 0) . If 8§ >0, the positive ray with endpoint O is the
‘g“ positivehal.fofthex-msand tosauh Ifl<0,t.hepositiverew

‘on L- with endpoint. O 1is the negative half of the x~axis and cos a@ = -1 .‘
Sim.larly, if L is the y-axis, cos B=t 1 depending on t.he algebraic sigrr
of m, e.nd if L is the z-axis, cos Y = 11 depending on the algebralc
sign of. n . The student should consider the other possible eombinations of
eignsfor AN, Hp,and v, to make sure that in every casé A,= cos Q,
p=cos B, and v =cos Y . 'mxeengles qQ, B,snd ¥ are called

- direction angles of the line 4, with its direction determined by the oxrdered

o mple (4,m,n)" of direction numbers: Their cosines are called the P

= direction dbeines. If ve de-bemine the direction of L Yy means of the
triple’ (cl,cm,en) of direétion numbers, with c <0 , and if c:' , B,
and 'yl are the new direction angles, then a and o' are supplementm
angles, as are B and p', and vy and ¥' .

Finally, let L° be & line which does not’pass f.hroufn'the origin,pad
let (l,m,n) be an ordered t.riple of direction mumbers for' L . Let L' -
’ be the line t.hrough the origin parallel to L , and let the. diréction on L'
e« - De determined by the triple (s,m,n) of direction mmbers. Then we define
the direction emglea and cosines Qf L to be the corresponding ones for L' . .

_ Hotice that t.hroughout this discussion we do not define dizgction R
angles or direction cosines for a liné but only for a line which ‘has been
assigned direction by means of & triple of direction numbers.

-

In fection 2-3 we derived & pommetric representation of points on a liqe
from their symmetric representation. Something simllar can be done with a
A parametric representa:tion of a line in space. Let L be the lfne wi&h

. parametric equations ' / :
) X = x0 + At .
L
. (’4)’ { Yy = yo + mt ‘ ,
ol : ~ z= z°+nt'. .- —_—
' 3 .
. . Suppose that gmn £ O . Then ve cen eliminate t from any two of these
.,;.‘ ' _ eq*qa.tions by solving each one for t and setting the results equal to each .
. other. Using the first two, we get -— .
X-Xy5 Y- Yd y ! -

. R ‘ t = 2 = -

. /. /N :
. 9 3'151‘?3
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B

e : X ) .

- L ' . S

| t = ) = - .« B N
‘Combining the last two results we get ‘ . | e
o . Xe-Xy Y-¥g -G
) _ : z n - '
These are c&lled symetric _guations for L. T
éhere rmins t.he question of what we have achiemd by - elimimting t . ‘
Let Qbeawrealmmheranﬂlet ) . b
L ‘( a= xo + - ‘t
.‘ ¢C = ﬂo + nto -,. . "". “.
™ ‘
Then ) .t
e;.-?;()zb-yo:c-zO \ - .
, "- . e A m n hd

-

“Thus 1f the pqint. (a,b,c) is on the graph of (h) 1t is also on the graph
of (5). If we let *

r

$
d-‘xo b 1y0 ¢ - zo ‘ - . .
t'O': T " T m * " : )

we find at once that the point fa,b,c) s.lso lies on the graph of (4). Thus
the graphs of (4) and (5) are identical.

' Equations (5) are equivalent to amy pair of the three equations

. ‘ X-XOEY‘yO : T
. X - Xy Z-2Z
Z  n

Yy -¥ 2-7%

5.
: m n
. ) L

L

Each of these is an equat}on of a plane, We shall discuss the signifi-
cance of this partde%&r set O0f three planes containing a line in the next
section, '
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"If at least one of the érection mmbers for L vanishes we camnot
e such symmetric “equations for L . We can, hovevé‘ eliminete t (/
- and obtain equaﬂons of two planes containing L . We lea.ve this to the °

el ses.

You meqr ‘have read of spaces of four or more dimensions. We are now in
a pusiticn to give you scme idea of vhat was meant. You have learned hov to
set_up a one~to-one correspendence between the points in a plane and the :
ordered pairs of real numbers, and between the points in 3-space and the |
" ordered triples of real numbers. Given a coordinate system, it is natura.l
. to s;&es.k of "the point (2,3) " or "the point (3,2,-1) . Thi 8. suggests
that we should define a point in 4-space, for example, .to be an ordered
quadruple of real numbers. Similarly, ve define s line in h-space to. be the
set of points in 4-space given by a set of parametric equa.tions af the form

Xt H |
’ ) . y=y0+mt -
s . . ... .
,2=zo+nt

X

1}

wa=w, t %t .
It can then be pkved that there is one and only one "line" through two
Co ‘
distinct "points." We can define the distance between: Po.(xo,yo,zo,wo) )

/ ‘ and P’l(xl’yl"zl,wl) to be ( : ) 2 ‘
L 4 ) .

. P | d(PO'Pl) - /(;l - XO)E +lyy - 3’0)2 + (z) - 20)2 + (w - VQ.)E .

A}

We can define the goordinate axes to be the four "lines" through  (0,0,0,0)
each of which passes through one of the “poin;‘s" (1,0,0,0) , (0,1,0,0) ,
(0,0,1,0) and (0,0,0,1) . Many other geometric concepts you have studied
can be generalized in this way, but that is be;,:oﬁd the scope of this course.-

-
3 3 -~
[




M‘E-‘l’f Aw(ﬁ,-lh),nn(-eel) and c=(~23,-2),

(&) write parametric’and symetric representations for B ’ anﬁ

(b) write equations for the 1lin€ through C parallel to iB .

Solution, R o .

(a) For paramétric form (Equations (4)), we need a point on the line end
direction numbers. We choose A = (3,-1,4) , and obtain direction
numbm'a (5,-3,3) Hence the line AB  has as s.'pe.rimetric .repre-

sentation , o »
= 3 4 5t\ | | v
y = -].“ - 3t * -(! e -
! .
. _2« = h‘ + 3t ]
. From the first %o of these we get -
£ = X - ; y+1 . . R
. 5 3
From the last two we get
. A 2z -}
-3 3 °
Comhvining the last two' results, we have as symmetric equations for
?‘5 . .
. L
; - I 3 ¥+l _z - i
‘ . ) -3 3
- .
(b) Since we have direction numbers. for AB , we can write immediately
Y a parametric representation of a parellel line through €., .
X =2+ 5t
» ‘ 3 y
y=3~3t : cr
- o g =-2+ 3t
~ ' VL -t
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, | Me:lnes 8-3 - .t
In muea 1t03, P= (1 2,3) , Q= (-3,—2,1) ’ and R = (a,-3,1)

1. vrite pp,mnetnc eqna.tiona for the lines determined by ‘the following
conditions: . L ‘ .
(a) Through P , parallel to the x-axis
(b} Through Q , parallel to theé z-axis
fc) Through P and Q

{(d) Through Q amd R .
- (e) Through O parallel to, i} .
. (f) Tarough 0 parallel to qn‘ X .
(g) Through O gnd P . | o
(h) Through P, parallel to the xy- lane, and intersecting the z-axis -
. . . {1) Through P parallel to QR . e
L (J)“meughﬂp&falleltoﬁ
2. Write an equation {n symmetric foxrm for each of t.he lines referm& to in
T Exercise 1 ( 1f it 1s possible to do ao) »
- 3. Write s set of normalized direction mmbers for each of the lines A
L ] .
. @escribed in Etercise 1. . »
B 4., Find two parametric representations of the line t.hnou.gh each of the .
folloving pairs of points which establish opposite directions on the
line. Find§ghe coordinates of anocther point on dach line. 5"
. - (b) (-1,-1,-1) semd (-2,-1,1) (a) (-3,1,1) and (}Ci,-i) |
5., Find the two triples of ‘direction cosines for each line in Exercise 1,
-Using a table of the values of the trigonometric functigns, find the
' e.pprenmste value of each of the dir$ction angles.
6. What are direction cosines for the axes?
j 7. TFind direction cosines of a line that makes equal angles with the axes.

8. In each of the following parts determine vhether the third point is on
the line containing the first twu

. (a) (1,1,-2) , (0,-1,-1) \(2,3,-2)
(b) (11011) ’ ('11'1:'2) ) (-T:"h:‘ll)

12+ .
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9. lhte:mine which, if utw,q:thelines detenninedbythefon.ovinsp&trs
of points are parallel. o &

‘(@) (LL,%2) e (1,23 (a) (3,5,12) ma.(1,3,3)
(h) (3:'112) and .(“lg;:u) (e) (2:‘3:!") and (,‘3:‘5@‘6) 'h“
() (1,-1,3) ad (5,1,21) (£} (-1,0,1), emd-(1,e1,-h).

10. Write symmetric equations for the lines

L4
<

'3

x=2+3t . | x=-l+t
' Ll, =l-2‘t§ | | ',.'szr-a’+2t .
- zwal ¥ , g=h ot
' x w3+ 2, X=2«t N
L3= Yys-5-3t ‘ . Lh’ fy--],’+'3t' ' .
z =4t ‘ g o 2

C

oY1, Prove that if L hes the parametric representation X=X+ Lt
f‘ygyo+mt,,z-z°+nt,a.ndif P, and P, u‘e'thepciplﬁs'on_ L
&lven by the values t=% and-t»:ta, then P

d(PP')=44£§‘+m§+n§ [t - .

~.-"f\~
Interpcret this result in mrds, including the special case vhan the
direction numbers jare normalized. .

12. Prove that Equa.tiona (3) represent L even if L 1s in ar.parlllél to

& coordinate plane. : - )
: ] oA

challmgs Problems

1. Find equations of two planes vhich intersect in the line e

xe=2
y=-1 +t
Z = 2 + 3t . bl )
. b ) . ‘
Explain carefully how you know both the planes cont.q.in the line.

2. Find equations of two planes vhich-intersect in the 1iné*

-

X =2
y’n-1+t
2'=-l.

~
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8-k

3.

. through- P, and P, contains P\

8-,

R R N : R I,
‘\{?‘%‘{’?;. A N, :
- \;A'y“.'\“- S ‘ ; o -

- " R . # L

Find parametric equations chr the““‘l’lne“ 'L through the "points"
F, = (xu,yo,zo, v,) &md P G\(\ﬁ‘,yl,sl,vl) Prove' that 1f
; 2 = (;e,ya, o) 2.) is any ot : . ;péqint\ on L, then the "line“

Po Yhus there 15 only one “11ne“
- * \\‘ ’ *

through two given "points”. _ '\ \\\ . . .
a -

Let Po =~ (xo,yo,so,v ) . Find the mﬂiﬁ.\tes of the p:roJection& of

P, on the coordinate axes, on the coor&in*«ge planes, and on the

coordinate lw‘perplanes. (Befqre you'can do t.‘;xe I.sst part you will have :

todeeidewhatitmeans) . L ‘, o

-

A cube in 3-space hes an analog in k-spe.ce which\j&s cmed a tesaeract. ‘

Make a three-dimnsipnal "oicture” of a tesseract. “}\&(It méy help you to
think about the sketch below, in which a cube 1is dra\g in g. plane.

*

-

%] . . ' - x

The six faces of the cube, vhich are squares, are represented by two -
squares and four trapesoids ) In 3-space there is a relationship
connecting the numbers of vertices, edges, and faces of a polyhgdron.
Try to discoves this relstionship by considering some siigple cases.
PTry to find a ccrr:sponding theorem 31 4.space.

L

The Flane in ?;-Space.

In & pla.ne, the set of pointa equidistant from two distinct points is a

line; the equation of a line in 2-space is of first degree. In 3- space,, the
set of points equidistant from two distinct points is a plane. We review
]

briefly the derivation of the equation of a plane; you may recell it from
Intermediate Mathematics. , .

Pl = (xl}yl}zl) . and PE = (xegy-2g22) * if

The point P = (x,y,2) 1s equidistant from two distinct points
. _ | a(Py,F) = a(F,P) ,

129 324 2
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YT
or - . ' .
R /&l--'::)—é'+(y1dy)§+(zl-z) [::2-11:)24-(:r2--y)§ -8
We square both members of the 1ast equation and collect terms, obte.inihg .

(1) a(x,- xl)x+2(y2-yl)y+2(z —&l)z '(‘a xla)*-(ya -y12)+(z 2)),;0,

Since 4&(P, ,P) and a(P ,P) are positige mnnbers this argument can be

‘reversed, and any point P = (x,y,z) whose coordinates satisfy Equntion (1)

is equidistant from P, and P2

Equation (1) 1s 8 ﬁrst-degree equation since the coefficients of x',.y ,
and z° a:renotallzm (theycouldallbezmonlyif P,  and P were

‘the same point, but they are distinct) )
, Thus we have shown that L‘he equation of a plane in space is a
linear equation of the form
(2) ' . ax+by+cz+d=0,
¢ ‘ . .
“=;3("2"‘1)'b=2(¥2'y1)’°=2<22""1-)’ T
. ((x2 ﬁ)+(:{2-yl)+(=- ))

The proof of the converse--\l:t ‘every equation of the form (2) represents
-1 pla.ne--is left as an exercise,

RN

We note that the coefficiepts of x', y , and 2 1n"Equation'(1) are
L
directiOn numhers of PlP2 , 8 line perpendicular to the plane; hence they a.re

direction numbera of any noma.l to the plane. We shall extend this idea in
Section B-6. We also note that since P £ P, , the coefficients & , b , and

¢ ‘are not all zero. The restrictionon a ,)b' s ¢ 18 necesgary. Let
8=b=c=0, If d is not zero, no triple (x,y,z) satisfies the equation,
vhile 1f d 1s zero, every triple satisfies the equation. Nelther one of

these sets is a plane,. .

Let us consider certain first-defree equations in which some coefficients
are zero. If the equation is of the form ax = 0, (or x = 0) , 1t represents
& plane in which.the x-cooydinate of every point is Zero; cleeh-ly this is the

H—

yz-plane, In the same way, eguations of the other coordinate planes are of the .

form by:O (for y=0) and cz =0 (or z=0).

EKC Y ' 325 13.0
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In general, we may £ind it helpful in visualizing a plane vhose equation
+ ' -is glven, ‘and. @aving its graph, to find the traces. These are the inter-
‘sections of the plane with the coordindte planes. .

'S . -
Exgmple 1. Sketch the graph of hx + 10y + 52 - 20 =0,
. Solution. To find the trace in the
-plane ve let z =0 in the equation
of the plane, obtaining i B

-

)= bx +10y - 20=0. -}

\

This 1is®the equétionnof a straight line
1n the xy-plane. . |
o ¢ ,

’ -~ : S

“ In similar mhion, wé find bquations of the traces in the yz- and xz-
planes (10y + 52 - =0 and 4x + S5y - 20'== 0 respecti'vely.)"me grupha
of these lines in the coordinste planes (or the parts of the grapha in one

octant) suggest the graph of kx + 10y + 52 -, 20 =0.

Examgle 2. Sketch the graph of 2x + 3y - bz -12=0.
¥
Solution. As:in Example 2, we
find equations of the e}rai:es in the xy-, { ,

A}

yz-, and xz-planes (&Zx +3y - 12 =0 y .
3y - 43 -12=0, and ox. - 4z - 12 =0
respectively) and then make the sketch,

'




.

. 'S

< 7 Exapple 3. Bketch the graphof ¥ - 2 =0 .

Sclution., We procede as bafore,
drawing the graphs of y = 2 , the
equation of the traces in the Xy~ and
ys-planes. There 1s no trace in the
xz-plane; to make our representation
.compatible with our 1des of & pi.a_ne, we
ecmplete & pan.lleld@am pa.ra‘llel' to
‘the xz-planq, -

"o

Since, 1f two different planes intersect, their intersection is 8 line,
ve can represent a line by the equations of any two different planes dpntaining
‘that line. With this in mind, let uS look again at what we found in Fection

. . %

é-3 as the symmuetric equations for & line L ,. r ¢.
‘ S . ' : : <
| | t-% YoY% A%
| ' . E @ " a _
These equatioﬁa are equivalent to'axw pair of the three equations -
: . I " Tm - :
\ X - xo g - 20 ‘ - ) T e ;
Z " T ' . :

¥ . ' ¥

We know from the argument’in Section 8-3 that each of the three planes AN
contains L , -Furthermore, each one lacks one of the variables. This means
that each of the planes is perpendicular to one of the .coordinate planes., This
" follows because, in the first of thess-three planes, for example, 1if.
('xl,yl,zl)" is & pqint in the plane, so dlso 1is (x,y,,k), vhere k has any ;

real value, Thus for any point of the plane, & line perpendicular to the xy-
Plane through that point is contained in the plane. These sfmmetric equations
- represent three planes, each containing the line and each perpendicular to a . ‘.
. coordinste plg.ixe. These planes are called the projecting planes of L . They .
. 1 ) _
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are special cases of the prn:)eeting carlindern of a curve: th:l.ch will be con-
_ aidered in mm@ter 9\ ' . C T

.

Exasple log Sketch the uge with . )

_feqmtiona ( o - ' T
| 22h, S N Q=(0,7.6) .
v
. by using projecting planes, : d
_ ‘ P ol o
o - Solution, A We write the equa.tiona (4,0,4) 7
of two of the pro.jecting planes, -‘ :
| I - l-I- ! 3 - .
and . » ’ ) ) - L

X =4 Sl-llrel ) :
~ 2 =1 [ , . . .

‘ These equations nay be rewritten as ( )
. x+y=T and x+2:=12.wedra.v : . Figx=8-5-
parts of the lines with these equations in the xy- and x:z-planes, and mlete '

the sketch as shown in Figure 8-5. .« . . A
- B _ ,

L}

' " Now we turn to the problem of ﬁn&ing the distarnce between a point
k Py = (xo,yo, A \a.nd a plane M with eq&tion
' gx + by +cg +d =0, .
L * ] .
There’is a unique \ine N , containing PO , 8nd normal to plane M. If N

wod M intersect af Py the distance between P, and M, vhich we seek,

l 2
is d(PO,Pl) . We write parametric equations for N , using direction cosines,

L]

\.-they are 4 X N 2 ’ *
. ' X = xo + At -
~~ y = y’o + ut , / 'AAP;
- , ‘ zZ = 24+ vt . \ . |.:‘ y
. Let t; répresent the particular value | ) \ﬁ/ .
t which gives the distance between PO /x /
e and P, , the pofnt in i&.cl_a § inter- " Figure 8-6

gsects M, Since Pl is in H"l, its coordinates satisfy the equation for M ;.

N N
s S .1 3‘3




hex;ce {

5 ~ PS ¢

(an + bp,"+ cv)tl'x: -(axo + byo + c.xov’;-l:_d) .

o

‘(’0 +X t.1)+ ‘n(yo +’“’l) + c(zo +vtl) +.d.= o, (

If we divide both members of this equation by Jaﬁ + b§ + cE wve get
e : ) .

Since a , b , ¢ are direction numbers for N,

, &
b - ¢

Jaa + bé +ec 432 i+ b§ + c:2

e :n,&nd

obtain

and

. a N+ b W+ . e th?.“
’ f2 2 2 [2 .2 2 [2 2 2
&8 +b +¢ Ya +Dbd +¢ a +b +¢

axO + hyo + ezo +-d

Ja +b§+c

¢€2+b§ +ec

-

0

a.xo-+hy0+cz +d

T v_e)'tl =

-

.-

/5 .5 2 !
' 8 +bhb—+¢

Jaxy + by, + ez, + 4

(3) .a(PO‘Pl) =

43§+b2+c”,

. -
~

Example 5. Find the distances between P =

L]

Solution, Using Equation (3) , we find that

aip,,p) - 2L - 2-2) 1 U3) 5]

J& +b +.¢

But, since A, |1 ; and y are direction cosines, 7\2 +

Axo+byo+czo+d'

2

2

u® o8

£

= A,

v o

=y . We substitute ?‘,u,,‘v,and

=1; so

3

(1,-2,3) and planes

*

SFETT

a(p,p,) = LLAL* i( -2)} ."35 .

Ik

’

M = ((xy,2) :3x -2y +2-5=0) and M, = {(x,y,8) : x+y=0) .

AN



2.

3.

\ 8.
-

10.

11,

method to find the equation o thé plane vhie.h is the locus.

Follmr the 1nstmctiona in the first exercise, but use A = (3,1, -h) and
B = (2,-3,1) . ] .

Find the intercepts . ‘and trages of the planes whose equaticma are given,
and sketch the planes, .

-

_(a)'6x+1&y+3z-.12=0 (£) S5y =8z +20 =0 .
(b)) X 4+5y+E-10=0 (g) 3x-6y+22=0

(¢) bx=-2y-52-1020 (k) 3y -58=0

(d) 3x -2y + 2+ 6=0 ;(1):-7-0'_

(e) 3x-lby-12=0 () 2m+9 .0 ‘ '
Write an equation of the family of plands:

(a) containing the origin ' ' |

(b) parallel to the xy-plane _

(c) parallel to the yz-plane . o

(a) parallel to the z-axis : . | .

(e) parallel to the x-axis C o ’

(f) perpendicular to the xs-plane
Drew the line determined by the points A = (5,1,3) and "B = (1,4,5) by

(a) using the method described in Exercises 8-2, ©o. 4; and
(b) drawing two of the projecting planes. S ~

L

Repeat Exercise 5, using A = (2,2,3) and B = (0, 5,5) .

¥hat 18 a set of direction numbers for a line perpendicular td the pl‘ane ‘
M= {(x,y,z) Ex/- oy + 52 - 7 = 0} 7 Write the direction cosines for .
such a lixe, f . N

Repeat Exert!ise 7 for the plane M = {(x,y,s) 11»:: -~y +2=0).

Find the distance from the point P = (-1,2,2) to each of the planes
with equations given in Exercise 3.

«Repeat Exercise 9 but use the point P = (1,4%,-1) . ) . .
Find an equation of the plane through the points .

(8.) (112,3) 9 (-1,-1,“) » (2,011) , ' -
(?) (2,1,1) » (5)2’3) ) ('l""l"'l)

37135
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. ’ 8.5
\( '
. 12, Find an equa.tien of a plage thraugh P and p&r&llel to K if : '

: (ﬂ) Pa (l 2,"3) 3 = [(X,Y,S)

3x - 2y +%- 7 - 0]

(b) Pe ('1,2,2) . = {(t,y,ﬁ) ! X - 22 % 3= 0} . \ {7

13, Showthét if the x- , y- , and z-intercepts ofaglaneare a, b, and
c respectively, an equation of the plane is

. . * . ‘
E'+§+E=l.'- . N

'

.
-

- (&)1, 3,.4; o -
/ (b) ‘2,53"30 ;‘ ' ’ ¢ . '

*

15, Write an .equation of a plane containing the point P and the interaecﬂcm
ofplanes)ua.ndﬂvhen ‘ ‘ '

(a) P=(10,2) ,M:[(x,y,z) tx-2y+2+-1=0},
N = ((x,y,2) X4y 4241 =0),

n

.{(x,y,z):x+3y-h~=o},' -
((xy,2) : ¥y -22+3=0}.

1

(b) P = (3,1;-1), M
‘ N

16. Show that the four points A= (1,2,1) , B = (2,-1,~4) , C & (0,1 2) ’
,D=(2,3,0) are coplansr.’

17, Find an equation of the plane containing the' points:

(8 (1,-1,1), (2,0,0) z,(fl:‘lpg)
{v) (1,3,%9) , (2,1,2) ,:(0,11,-1)

18. Prove that any equation of* the form ax + by + cz + d = O represents .

a i:lane.‘ (This 18 the converse of the proof at the beginning of this
section,) )

- .
*

" 8-5, Veetors in Space; Components in 3-Space.
’ ' : \ S

~

-
- 4

For vectors the ektension to 3-spa.cé is fiot only natural, bhut @lso
part‘ﬁ:ularly eagy. In your.study of* Chapter 3 you may have realized that the
“'e “digtinction between parallel and collinear vectora is not as clear as the

di stinction between paraﬁel and collinear directed segments, Acfually, there )
is no distinction. Because a vidctor is a'set of equivalent directed segments,
two vectors which r;av'e' reprgsentati‘ves on gé.rallel lines also have representa-
"tives on the same line. In fact, & vector on a line hgs repregentatives any-
vhere on any line pu‘alLeL;tﬁ the given lir\xe. ‘If 3 is a ~ector, every point
in space is the initial point (or, for that matter, any other. point on the
Q " 331
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14. Writ! an equatioﬁ ‘of the plane with x- , y- , and 's-ixﬁtercépts respectively )
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. and the Origin-Vector frincipl’e._ ' : '_ . "

Y R e R N
< . . . e

1ine) of B representative of & . This is the basis for the Origin Prineiple

.@‘ ~

, For ‘the‘ i-e,sso‘n‘no two vectbrs may be noncgplana.r. If the representa~’

tives of two ctors 1ie on skew (noncoplanar) lines, they not only have other
’representetives 1n a single plane, but alao representativea in aeny other’

. parallel. plane. Fui-thexmre, in such a plane they may be represented of
c‘aurse., by origin-vectors. -

s - The definitions and properties of operatio\*which involve no more ths.n

‘ two vectors, such as addition, scalar mltipli:a.tiog, the distributive laws, -

and the inner product, spply in space, and may be 1nterpreted geometricauy
in Space. Theorem describing relations between two vectors ‘8180 apply and

prineiples, and theorems develeped im Section 3-2 through Section -5 (psges
191-112), you will see that every statement and proof appliea veétors in
space, The figure& 1llust.rate the situation in & plane, n.nd in accordance

" with the Origin-Vectar Principle our proofa are in terms of origin-vectors

“which mre coplanar. As our discussion here indicates, our definition of
vectors is such that a geometric relstionnhip in space may often be described
by vectora ip a plane. 1In general, the vector description of a problem in
space frequently mey be’ reduced to a vector iljpstration in & plane. The

’ illuatratipn #u the plane may serve-as 8 simpler guide to the algebraic rela-
" tions between the vectors. The results obtained may then be applied té the
original problem in spsce. - Of course, we must besr in mind that not gll sets

' of vectors are coplanar.

As you reviewed the m;teria.l in Chap'f& 3, you may have wondered vheth&
the discussion above Justifies the statement that Theorém 3=2, the assoclative
ropertya for vector addition, does apply in spaces A.fter all the theorem
states that P+ (@+R) = (F+Q) + R, and the three “origin-vectors need
‘not be coplanar, Strietly‘ speaking, the assertion- is valid, for vector
addition 1is 'a. binary operation; that is, we never add more than two vectors

TN ————

" may be interpreted in gpace, . If at this point you will rereed ‘the definitions,

~

-

at a time, Therefore, as we perform each step of the proof, we are %13{ adding

vectors in a8 single plane, though the plane we work in may change from step to
stefp in the proof as a whole, Still, the thecrem is interesting a.nd illustra-~

tive enough to consider as an example.
. S .

Te

. . .
. *
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vector addltions.required in the stdtement of the associative property.,

.

Exeample 1. Prove the associative property for. vector a.dditi-on: -
P+ (Q+R)=(P+Q +R. =~ . .

REA R T o
'-
»

Proof. In the ﬁgu.re below we illustrate three ,ng?lmr origin ~ «.

vectors, s Q , and R . The segment A§ 1is drawn el and congruent to
PO and the segment ‘RB is drawn parallel and congruent &a OQ . Each of the
quadrilatere.ls POQA e.nd ORBQ e.re rarallelograms, since in each two oppositc

sides are parallel and congruent. BT is drawn parallel and congruent to Ié ’
and thus also to F0 . '

AT is drawn. Since TB and AQ are parallel and congruént, quadrilateral’
AQBT 1s a parallelogram. -Therefore, -ATe 1s parallel to @ end '8lso to
OR . (It TR 1is drewn parallel and congruent to PO, and PC' and TT are
also drawn, the entire figure) is a pa.rallelopiped a prism whose base is &8 ~
parallelogram region. However, we have not quite proved this here,) Since
0 and TB are paralleél and congruent, quadrilateral POBT 1s. a parsllelo-

grem, Since AT and OR are parallel and congruent quadrilater&l ORTA 1is
also g paralielogram,

.

t
+

We have now identified enough parallelograms to enable us to perform the

The _l'ei‘t memb;r
3 ;+(E"-?-§) =-I;+-§.=-‘f, -
since ORBQ and POBT : are f)arallelo.grams, and the right member
| ®+D«R-R+F-T, -
since. PO&;A* and -bR‘l‘A are parallelograms, thus

P+ ('a+'§)- = (F+ §)+'ﬁ .
o 4

;' 33 138 | .
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8-5
.. l ‘ ‘
Once a rectangular coordinate system has been introduced in 3-space, we
hav:.* & one-to-one correspondence between the ordered triples of real numbers
and the terpinal points of ox;igin-vectors. Thus, 1f the terminal point of the

i .
. origin-vector A has coordinates %_’ 2,33) , We may denote A 1n gomponen

form by [hl,ag,%] , where & , &, ‘ and a, are the& ) Y- , and

2~ ments respectively.

.z .
-*
;"‘ """"""" T T A
L |
. / /
. s VA
- f/ ¢ Vs : . -
V4 .
’ A/ ] .
e B (om0
| [ lainojnol t -
1 ﬁ - : ! B
( ' A 1 !
| : I i
| §
f % > -
)
[ - ! /7 y ’
I ' | ’
! Q, ‘ Y
) ! 1% .
o - — o — — —— -
. )
< ¢ *
b3 LS

Figure 8-7 ./

It follows from the definition that two vectors s and D are equal 1f*r

a.nd cmly if the compone;nt foxams of their origin-vectors' are identical; that 13,
= b if &nd only if [81,&2,53} = [b1)b2)b3] s and {al.l 2 3] = [bl) 2 / 3}

“if and only 1f & =D =b,, and &, =D

}_,82 3 3-

Several theorems in Chapter 3 were proved;to hold in the plane using ,
cpfnponents. We shall restate them here with modifications appropriate to their
interpfeta.tibn in space. We suggest proofs for some and leave the rest as

exercises, ' ; ¥

- 139
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THEOREM 8-2. If F:[al,aa,aB] end B-[bl, 31, - g
+Bn[a1+bl,aa+b2,a3+b]
‘ Wemtethstifthesummi then OX wand T bisect each
+b +'b -
othmt("‘l Nl N 3) s

xn(&l.q-b’ga-fbe,&si-b),and ng‘#BE"Bl'*'b a +b2133+b]

THEOREM 8-3. Multiplicstion of & vector A by a bealar r 1s given by »

rA = [ral,raa,rs3} . |
The proof is Yeft as an exercise, s ' o : .

mmam 8-h ‘me inner product of two vectors A and B 1s given by

‘o

A-B =alhl+a as’b N

| umbe

. Figure 8-6

‘a

By definition A * B = |A||B] cos 6 ; in triangle ACB ve see by
the Law of Cosines that

3o o - [B1Z+ [B1® - (a(a,3))®
2R} 8]




. .. - r8_§
. . Thus, . L | ‘ |
. . “HB!JA‘ + l‘l - (G(ALB)) ' . L | & |
2EE . *
i“’l‘e"-“ 2*“32.*."12* eah -(Cel 8)%+(a,-0, )2+<a3 b,)%) |
231b + 23 4+ 2331, ) ’ . ‘
= &.Lh + 8 b + &3b '. |

*
iy

THECREM 8-5. If -}?,Y,and 2 a.reanyvectora, theq

© (&) X'(Y+‘)='§-?+¥'E'. ‘ .
(b)) (X) +T=¢%-7 R N
\ . | 0 o ‘.- ..".- .— ‘- |
Cordllary. 'x-,(a:+bz)=a(x-x')+b(x-z). I ‘

The proofs are left as exercises. The other theorems of Chapter 3 vere
not proved using camponents and involve no more tha.n two vectors; hence, they'

. _‘a@plyiﬂ3space.‘ - . ’
. ) : i

_ Exemple'2. Find the angle formed by the origin-vectors to the points
A= (2,_3,3) ‘and B = (-1,3,1) . ‘. o

Solution. - We recognize that the inner product,

A-§=|KH§; cds 6,

will help here., Since A= {2,-3, 3] ‘and ‘B = {-1,3,1] , we have -

‘ e-<-1)+<-3>-3+3-1=/52+(3>+32f1)+3+1ce§e,
| -8 =43¢ + /11 cos 6, '
' . -y
and -
-4/3
cose—ll ‘
) % -.51h . )
" Hence - gxa1a®,

Q . . 336
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8-5

‘ We recall, that any vector expressed in compopent form in the plane msy be
- resolved into component vectors along the axes. The component vectors in turn
-m be expressed as }ca.le.r mltiples of unit vectors. Thus  we mAay resolve a

vector ﬂ as followa- :

’ A = [911 2153]
= [4,,0,0] + [0,8,,0] + [0, ,a31
s.al[;,o,o] + ag[o,l,()] + 33[0,0,1] .

It 1s customary tQ denote the unit vectors {1,0 o]’; [0,1,0] , and [0,0 Al

by 1 ’ J, and k respectively. Since any vectcr A may be expressed as a

linear conﬁ)ination of i s 4 ,and k as L i
A_‘&li+52;j+a3k. -

we say that 1, J , and k form & basis for 3-space. .

-

The use of vectors gives a concise way of describing a line in 3- space.
Let (f,m,;n) be a triple of direction numbers of & given line L which
passes through the point P (xo,yofzo) . Thus .a parametric representa.ticn
of L 1is ’

'x=x0+zt,
Y=Y +m‘t

€ 0
z=2.+nt . ‘ .

/ ' (0]

. - - » :
The vector D = [£,m,n] 1ies on the line L' , which hes a parametric

representatdon . ,
x = ft '
¥y = nt
z = nt ,

[ ] 3 - i -

and which is parallel o L . Thus a triple of direction numbers (f,m,n)
of & line 1 ‘determines a vector parallel to L . Furthermore, the point
P(x,y,z) lies on L if and only if e

a2 s -t
P=PO+tD.




.

X ’ - 8-5 | ‘ o ' ' -

If L is the line which passes through two distinct points

o - ‘P (xb,yo,zo) and P (xl,yl,z ) , then, frem Chapter 2, ~
‘ (x1 Xy s ¥y = yo ) % zo) 1s a triple of direetion nnmbers-of L. As
we have Just seen, this triple of direction numbers determines a vector D
- which 1s parallel to L . But L
D = [xngl; 1] - [xo)yO)zol = F Fo .
i Thus, ii_-'ib is @ vector psrallel to the line through PO ‘
and Pl'.
. . )
" Example 3. Find a vector fepreseétation for the line goPl » vhere
Pyo3 +2)-kk end Ppo=-24 4§+ 2.
. L et R
i Selution._ = (3, -k) ‘and P = (-2,1,2) . Hence PP, hes -

(5,1,-6) as a triple of direction numbers; D = [5,1,-6] 18 a direction
vector for the line. Hence, the vector representation of the line,

A

P=B, +tD,

becomes

- F =1(3;2,-4] + t[5,1,-6]
= [3 + 5t 9 2+t ,,-h - 6t] «

" or % : P (5t +3)1 +(t+2)) 5 (6t + 8k,




1.

3.
.

9-

10.

*~f - 85
hereises 8-5 .”‘"

Let 4 -[100],3-[0,1,0] mq k = [0,0,1] . Find

(a) e | o) es - | .

(v) ik () ke k :

(e) J-k (8) “(§3"+ 2x)- 51

(d8) 1.4 (n) (31:+23-k) (21+3+k)

Find the cosine of the angle between the.two vectors in each'part of _ e

" Exercise 2, N _ ' e

. Given 'B‘-gia—é.;-k.'ﬁna r such that |8} -;"1'«. ’ ® . |

Let K = [21'311‘1‘]““?"5 = [33:’2;11 2 ‘E" [-‘1,3?-2] . Find‘; | v
() A+38-8 (@ 5E-T)e3C-B T

(b) R~28+36 T (e) (A+B-~)+21-'§+\.a\a

(c) 2(A+B) -3(8-70) BCI CEP BRI B SMoN

"’.‘ e Y : \-.

Use values of A, B, C, as in Exercise h end find X so that N,\ ,

() A+BeC+X | (a) A+2x=3+c-x '
(b) 28 + 3B = 48 + 5% (e) 3(X+B) = 2(X-0) . SRy
() 2B-B) -3E-D () FraFeD +3E+D -0 "
" Use the values of A , B, ™, as in Exercise 4, and find
(a) R.-B R (£) (28 + 3C)- (2B - 3C)

(b) 28.38 " (8) (34 + 5B). (3B - 20)

(c) 3R (B+7) : (h) A+3:0).-F-R+0

(a) 8- (3R + 20) (1) (2R - 38 + 40). (5K - 28 + 4B)

() (AR+B)« (R 473 (3) R-B+3.84C.C

Discuss and relate | - ' A R C <

- -~ - - e
A-A, |&1%; |R13,%.%.%.
Given F_\: ai + b 4+ ck. (@ive algebraic and geometric interpretations

of

4 ‘_'"__%'v|~ut

It A=21+3j+4k and Bext xi - J+3k. Find x such that AOB is
a right triangle.

-Given’ Y é + 33 + U4k and B - 1+ J - k , find the length of the

projection of ry upon B .

£

tee
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11. Show that the line Joining the end poluts of the vectors _
A 21+3J+hk ‘and B=i-3+!+k isparalleltothew-pl&ne. e

12, 1f c_[a. eni ¢lv, prove that: cl(a. + %) . ' ¥ B
"13. ‘Descriﬁe in terms of components all unit vectors perpendicular %o the.

' xy-plsge. T ' B
1%, Findavector_[toboth A="1+3,1+1+k and B=1+J -k,

' ~. Note: There aré many solutions.. Can you find a general solation?

'15. Find the meagures of the angles of the triangle with vertices at

A=(2,-1,1) , B = (l -3,5) , € = (3,-h,-4) .
Vs
<« 16. Find vector repreaentations of the lines "assing through

-~ allh

P = (a,b,c) £ (0,0,0) which' are perpendi‘eula.r to P.
'17. - Prove Theor¥m 8»3. ot
18. Prove .Theorem 8-5 and its Corollary.

v -.h ' S,
-8-6. Vector Representations of Flanes and Other Sets of Points.

In the first course in geometry ?_1_9._95 i's.an undefined term; 1ts use is
described in the postulates.’ From the postulates we learn that a plane is a
set of points and is uniquely determined by three noncollinear points. Further,
if two points lie in A plane, then every point of the line conta.ining these
points also lies in the plane, and if two different planes intersect, their
intersection is a line. A line and a pla.ne‘were defined to be perpendicular. (
if and only 1f they intersect and every line lying in the plane and passing .
through the point of intersection is perpendicular to the given line. '

.. In Section 8 k we used the fact that in space the 1ocue of points equi-
" distant from two given points is & plane. This led to a.na.Lytic represertations
for planes in rectangular coordinates. Infthis section we shall consider
‘p.nother description ef a plane ags a iocus and develop vector representations

\ fo;- planes.

RN We let M be a plane and N be a line perpendicular to M at a point

"B, . Any otherpoint P, in M, and P, determine & line in M, which by

¢ Coey .'definition is perpendicular to N . By a theorem from geometry, every line
Qek;pendicular to N at P. is contained in M . Thus, _we may cqpsider M

w

to m‘e...ishe locus of lines perpendtcular to N at PO . Wecall N a normal

line to the plane,

Tk ¢
L9 ~

v
Q : S e - : 3

.. 3o
1

P
~ 1
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Figure 87
The description in terms of perpendicularity suggests a veetor repre-
sentation ‘in terms of the inner product, for it ™ 1s.s vector vith repre-
' sentatives in M, and n is s vector with representatives on N,; we have

. men = 0 . This will be dhearer if we interpret the statement with origin-
vectors. The vector T has a representative mo mnating Trom Po which

LU

. also lies in- M ., The vector 7 also has s repreaentative no enanating

from P, which l1ies on N . Hence Eo ana W, are perpendicular, Their

0
‘corresponding origin-vectors ¥ and T are perpendicular and . '1? _=‘O ‘
By the Origin-Vector Principle we may interpret this as Wem = O, .

To obtain a vector representation of the plane M ‘we note that if P -
is a fixed point 4n- M an& P is any other point in M, then P - i is
parallel to M. ‘I’hus, ve may describe the plane M as

:(P- -n-:O}.

) .
4

We note that Pl is also-in the set. '

- We recall that it is possible to charscterize a line which does not contain
the origin in 2-space 85 the set of points which 18 perpendicular, or normal,
to a directed segment OF at P . In 3-space we may describe a,plane as the

- get of points vhich is. normal to a directed segment ON ; OF 6rigin-vector N ,
gt N N 1§ called the normn.l vector of M., If the given point of M is

‘N, then = | o ‘

. . M=(P: (P -“E~§«= 0} .

. ;3‘*1 116 . V,
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If we let P (x,y,s) ’ r'[ = p and (a,u,v) be the triple of ,
direction cosines of Gﬂ ve have “ R

¢ e P = [x,?-,z} R
, . N = (Ap, up, vp) ,
i-- [(Ap, up, vp)] = piA,u,v] «
(-P. - ﬁ) Na ([x,y,2] - A, vD) e plNu,v] =0,
Which, since p # 0, is equivalent to N

(x,¥,2] « [\,u,v] - P, u,v] {Aupv] =0, o .
’ 2
. ’Ax+p.v+vz-p(7\ +u +v)uo
Since K2+p2+v2.=l,vehave S ~ S

M=((xy,2) : x+py+vz~p=0}, |

ancanalytic rfmesentatinn of the plane in terms of the normal form of its
equation, We note that (7\,;4,\:) are direction cosines of tfe normal segmt
and that p 1s the diatanee between the origin and the plane. "

* Exauple 1. Fipd én equation of the  pjene éich 1 perpendiouln' to the —

vector Ants-n} at the point AL~

.
- - Solution, We have : | N | | .
- : -
(Ix,y,2] - [6,-4,3])« [6,-4,3] =0,
’ [x-s,'y+h,2-3}'f5,-’h33=f°:
and

6x - 36 - by - 16 + 3%.\-':9‘: 0,
or '
‘ 6x - by + 32 - 6L =0 . \

L

Again we ‘ndte that the coefficients are direction numbers of normal lines to ,
the plane. . (. o

. Example £, Show that if P, = (xo,yo,zo) end P, = (xl,yl;zl) fa:e tTm
distinct points in a.*plane with equation a.x + by +cz +4d-= 0 s, then every

point of ﬁl 18 in the plane.

[ -
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Solution. Any point P « (x,y,s) on lige has the parametric representa- A
tiom - . : ' ' '
L semelgeme
V=¥t yy -yt ’
~

5 =z, +(zl "O)t’

and 13 n the plane if its coordinates sntisnr the equation .
ax + by + cz + d =0 ., Thelertmberbeems . ’ .

a(x, + (x, - xo)t) +blyy + (v, - Yo')t) + c(z + (71 - gy)t) + d

- (axo + by + egy + d) + ( +cz )t - (a&o + by, + czo)‘t
=0+ (=)t - (-d)t =0 . e

?

Therefore, any point & the line 1s' contained in the plane. - —

We ‘may use vectors, as we did in Seetion 3-6 to desm*ibe other sets of - . .
_points in epace. s

| Example 3. Find a vector representation for the line aement determined
, by the -vectors A = {2, -l 3} atd B = [-1,%,7] 1n terms of a ﬁn&e parmter
o P . . ) '

Solution: mthedevalomnntahova, Beix:2= pl+qﬁ vhere
p>0,q>0,8nd p+gq=1l}. '

Ex > RPN

Si'nee p+q~;,q=1-p‘;s£:§nqgo s\l=p>0 or p<l® -
on

Since p > 0 , the combined restrictior p istat b<p<l. By . .
substitution, . - ( : 'é . :
o Bk +qB=pl2,-1,3]+ (1 - p)[-1,b )71 , vhere 0 <b <1
} =[29,-p,3p]+[p-l,h- , T-Tp] where 0<p<l.. ®
={3P-l Y -5p , 7 - 4p] where O<p<1..
&nd ’-‘ . ¢ . b ’

“ K=(x:%=[3p-21,%-5p, 7~ bp] vhere 0<p<1} oo - o

-

Example & _Find a vector representation of the point which divides the

directed segmen® AB in the ratio % . . _ A
. ‘

4

*
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8-6 ‘ N
. Solution. « | .‘ .
- 1§2T41i2§ )
= %la,-l,sl . %'{-1,!_&‘,7] B |
R -5 3 * i l} oL -
R | s[1,§,§] . o 4

Altemtival;r, if we think;of the mter as a coordinate of the point,
then for the desired point p -% . Substituting this value in the exgre_ssi_o:;
obtained in Example 3, wve_obtain ! o

— 200 hos5.2, 74,2 g
— 2-[3-3-1,4-5-5,7-4 5! .
o ‘ o .‘.[1"%: ] »

-

~N m_ e Find a vector repmsentati'ep for the ray opposite to BA in .
temsofasinglaparameter qQ - ' )

‘Solution. The ray opposite to BA = (X : X 111 qf vhere p <O and

p+q=l},31neen _
p=1-q50’ ..‘

therefore R
. oe2l.
pk + o8 = (1 - @)[2,-1,3]) + q[-1,4,7] ‘where g 21
_={2-2q,Q'l;3-3q1+[-q,1+q,?q} where q >1
=[2-3q,5 -1, 3+4g] where q>1.

The ray Bppositd to BA = (X : X =1[2-3¢,5¢-1,3+b4] , vheré’ q21) .

-

Example 4. Suppose K,5,anda € are the vectors whose terminal points

‘are the vertices of a trizngle: LCan we representthe—trianguim Tegion; -the
interior of the tria.ngle, and the triangle itself, in terms of these vectQrs

and two pe.rsmeters? ” .
- | - |
§ . ) ‘h
149 . |
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/




" The tria.ngle is . .

"1, Find an equation of the pla.neﬁhieh has [7,-3, 5] as 8 nOrmal vector

[ . . . e . ) . \ . 8-6 L

. ) . e o

we

——

asinﬁxmle3ahom .

iy

-~y

'-ﬁawthetrhnsularregiunisths .
unfon of the seguents K or S | Co
(i‘.Y pﬁ+(i¥£})f vhere 0.'<p<1]
=Y AL ok ¢ (1- )8+ (1 - g8
vhere 0<p<lsnd0<q<l]
= {Y: 7= pK+(1-p)qﬁ+(l-p)(qu)§
- vhere 0<p<land0<q<l).

The interinr of the triangle ABC will be

[I:Ynﬂ‘F(l-P)iﬁ‘H(l-p)ﬁ wvhere 0< p <1l 53&,_‘0 <g<1).

-
. ¢

or (g=0 and 0<p<l) or (¢g=1 a.nd 0<p<l)]

(He can yrite these results more > neatly if we let r = (1 - p)q phd - ™

fl-p)(l--q)a Then p+r+s-l andthetriangul&rregionis
I

“misfomiseaaie}rtorecall) ‘ f\ _ .

. )

/

~

. . | Exerciges 8-6

t

e.na vhich contains the point (0,0,3) . _ .

. 2, Find an equation of the pPlane with the normal vector

(a) (2,-3,1] o . . ’ - °

(v) [-2,4,-11 ‘

(e) T13,-5,4]
c(a) [-1,-1,6]

‘«

3. Find the aistance from (0,0,0) to the plane o
(3). 2x + 3y -2 =5 B § . \ .
(b) 5% -3y + 22 = 8 ' v ‘ . B \

(¢) ax'+By +cz =4 _ ‘
7 ' ‘~
AN .

) L.

345 v 15”

Solntion- wemm.m as.q;x 2 q,§+(1-q)c vhere 0<q<l}

oy T - xzi*(l—p)qﬁ'r (l-p)(l-q)ﬂ' vhere (p =0 and °<q<l)

l‘[‘[ Y- bﬁ+r§+s§vherep,r,and 8 a.renon-nega.tiveandp+r+s-l

LY
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. 4. . In the ﬂstu'e belov, eoms.ger ABCD to be a 3- miom ﬂgure (This

SR _ukmunah;tetrahearmanahas L -faces and 6 edgess) *"'7} .
}\ s (a) Sho#thatthelines through them.t 1nts.of opposite edges axre — =
i ¢ comcurrent. ' '

(b) - Shev thet PIRU end QUST are. psrallelograms 7
(e), Show fthnt the poipt of concurrency is the midpoint of each segment.

5, Bhow that 1f P. = (k end M« {(x,¥,2) : }\x# ’+ g «p =0) .,
p) , 1 (ﬁ_:ylyﬁ) {( :yt: ¢) ny v ' P ; _].p
N . o, )

‘then the distance between Pl and M {8 _ .

-

o lk‘xl+u.v§_+uzl-pl-

- 1 ) . . .

¥

‘6, Find vector representqtions, in terms of a single parameter, for the sets.
describtd ))elov. AR .

. (a) where § =14,-7,5] and B:=[4,53] _
(b where A = [3,4,2] and B = [-2,3}]]
(c) where A = [3,4,2] and B = [-2,3 }

§ - (d) where@. = [3,4,2] and B = [-2 373]

7. Find the vectoi‘ yepresentétions of the midpoints and trisection points of 2

-

2 &) &l 5
b

. the follmring line segments; e’
(a) FB-where A = [0,0,0] and B = [6,12,15]

(b) AB where A - ([-3,2,7] and B = [10,-11,39] .
(¢) AB where A = [al,ae,_a3} end B = '[bl,be.b3]

L] -
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8 Find the veetor repmlmtatima of the pomha vhich divide the directed

D) T 13,2,15 T [3,2,11 , ens
®

9. Given the triengle ABC with X = [2,3,1] , 3 - [-1 2,41,

Pe[-1,4,-8],Q

T

“- segment PQ intherstia - ﬁhere-’

= [9, '5.7]

-

i

o Ca[lll--EI

(a)

(e)

‘1, Given the four vecto’rs K '5
c‘bplanar, find an expreasiop for the tetrahedru region "ABCD in term

(v)

1 LI

mln: win

(e) g [23,1] ) s==[1 »2,4] ., an§ -ﬂ%

using these vectors and two parmters.

point of the triangle.

exterior point of the triangle.

_ e
Challenge Problem

- -~
C,and' D,

of these vectors gnd. three parameters.

G

8-7. Sumary.

1+

whose ternﬂ.ml point§ are not

*

4

«

e

‘ ?’

Show that [-4, ~5,-6] is a vector vhose term.nal point is an

4

-

Describe the triangula.r region, its interdor, and the triangle 1tse:lf,

Show that [1] +3,1] 18 & vector whose terminal point ia an mterior

We have extended the rectangular eocrdinate system to 3-space and have:

considered the anslytic and vector representations of lines, and planes in -

B-Epﬂce.

‘other curves and surfaees.

LY

In Chapter ‘9 we shall consider the representation and skebching -of

coordinates to 3- space. ) )

We shall also consider two extemsions of polar

We have also suggested that we may 1n%q;pre't algebraic relationships in

four varisbles in s 4-space, which may be ‘helpful even though wecannot
visualdze 1t,

sions,

vations in 2-space and 3-space,

The extension is, of co
. ‘

We are in a position to make sev

s possible to spaces of more dimen-

al conjectures based on our obser-
2

In 2-space the general linear equation {n 2

variables describes a line, a one?dj.xnensional figure; in 3-space the genersal
linear equation in 3 variables describes a plane, a 2-dimensional figure,

Thus, in n-space we might expect the gemeral linear equastion in n-variables to .
- describe a figure with n-1 dimensions.

Q

i 347

152



In 2-space we are gble to describe s line_eim:r by ; linear equation or
by a parametric representation in one patrameter; in 3-space ye still have the
parametric representation of & line in one parameter, but the alternative is
the compon solution of tws linear equations, vhich is awkvard, Some of the
later exercises show that we may also describe regions in a plane by a para-.
metric representation in two parameters, Our conjecture might bé that in y
spaces vith enough dimensions we may describe one-dimensionsl figures with '
parametric representations in one parameter, 2 dimensional figures with
parametric representetions in two parameters, and, in general, n-dimensional
figures with paramétric representations in n parameters,
4

‘ .

f

-

-~

Review Exercises

. f
. In Exercises 1 to 8, write an equation.of the locus of & gin;. which
satisfies the stated conditions.

‘ 1, Apoint 5 units above the'nr-pla.ne:

2.° A point 5 .units‘ from the yz-plane, L ' o ,
3. A point equidistant from the xy- and the yz-planes.,

4, A point 2 units from the x-axis. \

" N Se A“POZU’&\S, units from the origin, 'M\/\

6. A point r units from the point (2,-1,0) .

A .
7. A point equidistant from the point. (1,2,3) and the plangf with equation
p AR 2 o . t } . ! » *
- F ) .
8. A polnt that lies in the plane determined by the points (3,1,2) , (1,2,3),
(3,2,2) . T * . .
[ .
Sketch the graph ‘of the equations in Exercises 9 to 1k,
9. x+y-,14=0" 12, x=-=y+2+3=0
10, 2z -7=0 13. x=5-3t,y=2¢t,2=3-Lt
M. Ux+ 9y -6z +36=0 1w, *z2.y-2_2-3

o : -3 -2 ok




) ‘In Exercises 15-20, grsph and describe the gemehric reparesenta.tion in
. ~ one-sgpace and E-SPace, and diseuss a. possible meening in 3-space,

15. (x :A; -3 =0} 18, (x: [xl >3}
16, {x : -1'< x < 3} . 19. (x: |x} <5
17, (x:

|x| - 3 =0} ' 2. fx: x(x - 1)(x + 2) = 0}
, :R2 , and _R3 for one space, 2-space, and
3-space if ¢ L

~ ll\Rl = ((x,.‘f) : txl <2}, = {(x,y) : l}r‘[ < 2] , =R N R"?

. 22, Discuss Exercise 21 if < 1s changed to < .+ What geometric interpre-
tation can you give for R, U R2 ? : '

4
23. Graph and describe {(x,y,2) : x <1) . What is the graph 1f
\ ,

< 1is changed .to <? - ' ‘ '

21. Gréi:h and describe Rl

2 2

In Exercises 24 to 26, use the four points: A(-2,1,3) , B(3,1,-2) , -
c(2,3,-1) , D{1,-3,2) , and the four planes: ¢

Ml 2X - 3y+z+1b=0,M2 3x-y+22-3n0 M3zx+2y-3z+2==0

Mh:-x+y+2’:-l==0.

1

‘ - X ' B
24, Find the distance from each of the points A, B, C, D, O to each of
‘ the planes:
(a). 1 . (e) My
(b) M, . L @) oM ,
25. Find, in symmetric form, equatio:\of the lines determined by:
a ‘
ga) {Ml’rME} A (a) (M29M3}
(0)  (My,M,) o () (MM )
Eé. Find parametric equations for each of the lines referred to 1:1 Problem
25.

27. Show that the spece quadrilateral ABCD , where A = (-2,3,2) ,
.B={(-4,58), ¢ =(1,1,4) , D =+3,-1,-2) , is a parallelogram.

0. #9154




30,

ae o &

.Show that the medians of triangle ABC , where A (0;0,‘»,0) ,

B = (2,4,6) , C = (-h,2,-8) , are concurrent. ,

For vhsh-"ve‘d.u‘e of @& are the pointe (3,2,3) , (1,.'.1;,'.é)' , (2,14,8) - .
collinear? . ' _

Ir (2,1,4) , (0,4,-2) , (a,-2,k) are the vertices of.a triangle with

a right angle st vertex (0,%,-2) , find a .
." [
.. + ‘ L]
Y ~" .
. -
- N »
T «‘.
[ 4
. ‘ ’ .
: - )
. U -
155
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Chapter 9
QUATRIC SURFACES

l’ ’ . )»

-

If you know what is meant’ by q_uadratic equation,” you might g’uess what
' 18 meant by "quadric surface”, The locus, if one exists, of an egiation of

~ the second degree in rectangular coordinates for 3-space is' called & quadric
surface. ‘Each of these surfaces has an important property: all plane sections
" are conics. There are many surfaces other then quadric surfa.ces, and thpre |
are more quadric su.rfaces than the ones we shall. intmduce. We shall limit
our discussion to the mat useful and eaaily recgnis,ed ones. You will recog-
nize spheres, cones, and cylinders. Some of ‘the other surfeces may be less
familiar to you, but, inasmch as all intersections of these surfaces with
Planes are conic sectfnnn, you should have little difficulty viauauzmg even
_those quadric surfaces vhich é-e nev to you. g i

When' we apply mathematick to pl:ursica.l problems, we find that a dra.ving
which depicts the physical relations in the problem can be useful. Our
principal aim iy this chapter 1s to develop methods for visualizifig surfaces
" and curves in 3-spacé. Such. configurations frequently occur in Science and
calculus courses. We shall give directions involving only simple ﬁgures and
equations, but the methods are genersl and can be extended to more gomplicated
 ‘cases. We also shall-indicate how equations representing quadric surfaces or"

9-1.. What Is a Quadric Sui'face?

space curves may be simplified. )
L N
Some ability in the sketching of geometric fégures is requi':-ed in this -
chapter, ‘you must make drawings of three-dimensional objects on a two-
‘dimensional surface. Also, we shall rely heewily' upon the material which you

learned in Chapters 5, 6, and 7. : -

' . ¢
9-2. Spheres and Ellipeoids.

~

Yqu are familiar with the graph of the points in a plane at a given dis-
tance from a given point, and you also know an equation of this graph. If the

glven point is taken &s the origin and the given distance is & , the equation
1 ’
351
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xg + y2 = 16 '.
Nov supbos® we cbnsider this same problem in S-épaée. You know that the"loeus
‘ is a sphere of radius 4, but let us proceed as we would if yoy did not know
.  thig. We shall use various methods to "discover” the shape df this familiar
; -gurf¥ace. Later you will use the sa_@e;mthdds to find the shape of unfamiliar |
. surfaces. : : S e

A sphere 1s deﬁned as the set of points each of vwhich is st & given

a distance from a given point. It always will be possible to selert this given
| point (the centér) as the origin of & recta.\gular coordinate system, Such a
* choice will simplify the algebraic representation of the sphere.

LY

We vish to examine the set of points, each of vhich is a distanee 4 gmm
the origin, O = (0,0,0) . For each such point P = (x,y,z) , the eondltion
.8 .
is ‘

x - d)a (v - 02+ (z-02 =k

or (1) x2+y2+z2=16. A Y

. An attempt to visualize this sphere by plotting points, such as (2,3,73) ;
(1,78,3) , (42,-3,75) , not only is tedious but, even when a great ‘many pointe
have been plotted does not. reveal the sphere we expect.

\ . ’ . ]
| , 18,3
¢ ]
v2,~355) (i

(2.37%
U S SRR W o /11 y
[N * ’ - “

. ) ‘ Figure 9-1
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9-2

It ia more 1llum1nat1ng to exploit the similarity betveen the equation of
8 sphere and the equation of & circle. . For instance, the eguation

(2) ,«t - Y2+z.'l6 ; - ’

' not only closely resembles our equetion (1) of the sphere under discubgion,'
but Equation (2) represents a part of this spheré. It represents, of course,
"the intersection of the sphere and the yz-plane (x = 0)+ shown in Figure 9-2.
The intersection of a quadric surface and a cobrdinatg plane is called a txace.

L : . ‘.
‘ r
z
. '
. .
L4
.

!
]
’ ]
w '
]
1
[}
]

i -~ o

. -~ -_ - !

x I0.0.4) .
t - * ' ! v !
Figure 9;2 - .
The algebraic representation z :

of this trace if the simultaneous solu-
tion of Equation (1) and x = O .

‘The traees in the aﬁﬁer coordinate
planes are found by taking y =0

and 2 =0. Ve shov in the figure
only those parts of traced® which are
‘in the boundaries of the first octant.

- e o e - - - -

(4,0,0)

- o

Figure 9-3




- S
“In a(meprehi.ma ve need help in drawing the tmea. Inthis event we

locate tha intere ggg ~ the po‘m@ of intersection of the surface vith the -
coordinate. axes., For muution‘(l) the values are - 4 and -4 on each axis.

Once :bhe traees are indicated, as in Figure 9.3, ve begin to see the shape
of the surfa.ce. Next ‘we investigate the shape of the rest of the surface by - -
slicing 1t and locking at each slice, Such slices are called sections; they
are the curves formed by the surface e.nd planes cutting 1t. The traces, of

~

course, &are apeci&l cases of sections, - Let us make our slices parﬂ.lel to the
xy-plane. An equation of the parallel plane one unit above the xy-plane is
g = 1; ve substitute for z 1in Equation (1), vhich becgpgg

_ x2+y2+ln;16, R 4
. & . . : T .
© . or - "'x2+y2.=15

We see that this is an equation of -a circle in a plane pa.rallgl to the :ry-plane,
with redice Y15 = 3.9 ; and v its
center on the z-axis; we &dd to the . .
—r1kire, in the plane 'z = 1 , the part (0.0.4)
of the circle in the first octamt. We /T
e'on‘t‘j:nuev in this fashion, letting 2
assume the values 2 and 3 .. Each Ny -
section is a circle, and the radii are ‘
" spproximately 3.5 and 2.6/, respec- _____ L , 0,4,0)
* tively. We have added partp of these ’ ' ' N
circles in Flgure 9-k, W?é: z =4 we
*/

nave / T a00)

. !
) xe+yegof

- ol -

-~

wmch represents the /point. "(0,0,4) . . .
For any va.lue of 2 / larger than L,

there 1is no locus. ' f * Figure 9-4
<

* a .

Now we consider sections parallel to the yz-plane, giving the same

¢

numerical values to x that we gave to 2z . Again we find that the sections

./ are circles, which we may add to our drawing {Fi 9-5). We might also
investigate sections parallel to the xz-plane if %&his appears to aid our
. visualization, ’

= . - .
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] RENH N ’ } Lo :". *
i . ' . 9-2
. S z _ <
| (0,0 9)
l\ - N .
P =
77\ v . -
. [ L /( -
L \ (0.4.08 o _/
» R ';‘, - N
. wooll /L A~ L , | .
. x7 . _ «
. _ _ Figure 9-5 . 4 , | a P
" This has probably seemed a slow and lm;.-ed procedure to get a dravl.ng Y \

of such e famiiiar surface as the aphere, but we hope that you will now be °
able to apply the sdize methods to other equetions in order to visuslize and -

draw the surfaces they represent. : | . " ~
N . . . \ .

‘When graphing in three ‘dimensions it is helpful, as it was in two, to
Qwesti'gete symmetry. The definitibns of point-symmetry and line-symmetry - f -
given in Section 6-2 hold for 3-space, but & more useful idea is that of oo
symmetry with respect to 8 ple.ne. A set of points S 18 ‘gn_mntLic with . |
respect to a fixed pla.ne M 1if and only if for each point P of S there
is a eorreeponding point P' of S such- thet M is' the perpendicula.r
_bisector of FP' . 'Here we shall investigate aymetry only with respect to
the coordiy( planes. We 1list the tests: a graph will.be nymetrie with .

P Xy-plan »1f, whenever (:Ll,yl,zl) (1'1,3’1 21) v“ . e

eespect to the YZ-Pl‘me‘ ie on the graph 8o also . - ) - i -
’ ST LT T

- " (x,y1,2))
If a surface is aymetrie ‘with respect to a1l three coordinate planes, it 19
also symmetric with respect to the urigin ahd each axis. A gphere, of cdurse,
meets ell these tests for symetry.

v

| When a surface is symmetric with respect to all three coordinate plenee,
'_the part of it in any octant is repeated in all¥the other oct&nts. ' In such
cases’ we need draw only ths;t. part in the first octant, since this makes our ’
drawing less complicsted. \‘ -~

.
-

xz-plan

¢ .
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-

= The sphere ve have heen considering has its center at the origin; the
eqnation for such & sphere can always be written in the form
/(3) x4 ye * 2.2 - 32 . " ’

~
-

vhere |a| 1s the radius. TNote-that the terms containing x , y , 2 all
heve the coefficient 1 . '

. ‘Consider the eguation ‘ ‘ *
(a), 2 2 S
- &x +y + h-a « 1007,
/; What quadric surface does this represent? We begin, as before, by drawing t.he
 traces, To find the trace in the yz-plane, we let x =0 in_muation (h&
2 2 .

Qb’taining -& + -—- 1-. We recognize that this t.race 18'an ellipse, as

_shown in Figure 9-6. When we let z = O , we again obtain an ellipse. Howe _'

'ever, when y =0 , x2 + 22 =E§‘- the tracé is a circle. Again ve shall ‘ _'
picture on.ly thoae portions of the traces lying in the boundaries of the first
- octant. ;‘heae are ahmm in Figure 9-7.

0,10.0)

Figure 9-5 Figure 9-7

Now we find the sectiong’as before; those parallel to the xy- and
. yz-planes are ellipses; the ones
' parallel to the xz-phfne are circles.
It is common practice to select Just
one set -of sections to-illuminate- the
drawing; 1if one set consists of
circles, this is the usual choice.

Mhese sections are shown in Figure 9-8.

| Q ! ' » 356 | '
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The aurface we have been sketching, belongs to a class calleﬂ ellipsoids,
They are so nemed because the sections parallel to the coordinates planes are
ellipaes (or circles, vhich may be considered special eaaes of ellipsea) ¢
These surfaces have equations of the form S

4

C(5)

Prol Mo

y2 z2 )
+ =5 + - T ) L .o
b c o
, - s
where the numbers * a, ¥ b, t c, are the X- , ¥y~ ,. 2~ intereepts .respec- -
tiveiLy The segments of .t,he axes Joining the intercept points are called

axes of the elligsoid. 2 T '

- If two of the axes of an ellipscid have equal length, the surface is

o called é-sghe id, because it resembles a sphere. These are of“two kinds. If
' third axis is longer than the others as is 1{lustrateq in Figure 9-8, the
spheroid is called a prolate spheroid and resemblea a football or a ﬂatermelon.
If the third axis is shorter than the other two, the surface is called an
oblate spheroid and appears fléttenaﬁ like the earth or a "?o-Yo" top.

When 'a = b = ¢ in Equation (5) we' have the equation of a sphere. A
sphere, then, is'a special kind of ellipsoid in much the same sgnse that a
circle is a special kind of ‘ellipse. Before we conclude this section wéf;hould
ask again, "What quadric surface does Equation (4) represent”? Fdllowing what
is a good general procedure, you should write Equation {4) in the Form of s
Equation (5) and then name the surface aCcording to the above descriptions.

. &
. — v .

Exercises 9.2 ) .

In Exerciges 1 to 12, discuss and sketch the surface represented. In-
clude intercepts, tﬁaces, and the name of the surface. Draw several of the
sections parallel to one of the coordinate planes,

) IV xE + 22 =f2§ ' ‘A ’ 7. bx® 4 9y2 + b2® = 36 \
;. Lxe + hyg 1 42° = 9 ; 8. 9x2 ; ng + 2522'5 225
3 9x2 + 9y2,+ 922 =0 9. 9x2-+_2§y2‘+ 2522 = 225 ' -
L 912 + hye + 922 = 36 10. an + 9y2 + ;622 = 1kl
5.‘ 9x2 + 9y2 + 422 = 36 11. 9x2 + hye + 1622 2 144 ' N g
6. 1+ 25y2 4 252° 100 12, 1652 + 992 + hg? = 14k

N .
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13. Use the deﬁnition of uphere to write n? equat:ltm of a sphere with center
(xo,yo,z and radius r . :

1k, - Show that the equaticn you obtained :ln Enarcise 13 can alvnya be vritten
in the form

< x2+y2+sa.+\mi+mr+m+c-o.'

.
Y ]

Does every. equation written in this form repreisent a8 sphere? Justify
your answer. _ - o L. - ) ‘o

' 15, Ping, in thgmm in Exercise 1k, equations of the spheres wm? the given
center (C) and radius (x) . ' v \

(a) co(20,3),r=q (@) .c = (3, -1,%),1—-1

&)cs(mdg);fge (@ e E R}
(&) 0=(13,-2), Tad® () C=(L5,-5,25) ,F=3

ST Detemine whether the following equations represent spherés., For .-
sphere, give the radius and the coordinatee of the center.

?

7, | (@ 3+ 3% + 3% - 9 =0
2 2 2

L (‘t_))x+y,+z-.2x+l+y'-69. 10=0, . ' .
‘ | (c) x2+y2+z?-hy+ﬂ_4io ' ‘ ,

‘ ‘ ~ 2, .2 2 : ‘
(d)x+y + Z +6x-8y+1l|-z+72-0~

(é) x2+y2+z.2~a*hx-6y+l3u0

l A Y I 4 ) ¢
'," (£) x2+y2+z 21(+%y+1h-0 -
; O (g) 36x° + 36y° + 3627 ‘-36x-1+8y+722+52=0
™

(h) 16x° +16y -tléz. - ohx - By + 16z + 41 =0 . .

17. If A =(1,2,3) amd B e (-1,0,7) , vhat isan equatipn of the sphere
that has AB as diameter? .

.

18. Write an eéustion of an ellipsoid with x- , y- , &and 2-intercepts 't 3,
t7, %5, respectively. - ) - :

Challenge Problems

-
~ L]
—

* ™1, Vrite an equation of an ellipsoid with center at the point (3,-,‘1,2)',

b
. and with axes parallel to the x- , y- , and z-axes and of lengthe 12 ,
8, and 24 respectively, ~ N -
Q ¢ -
\) 1. o~ 3 358 -
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2, .Foints P = (0,3,1) , Q= (-2,0,2) , R = (1,1,4) , and § = (-3,3,2) ' are
1nta of a sphere. What is an equation of the sphere? Will any fm,xr
- stinct points determine a sphere? . , . "

. -~ : . T . : .

9-3. Vhe- Parsboloid and tle Hyperboloid.

'

Hhht is the locus of a point equidistant fmm & givep point F and a
given.pla.ne MNT we shall assune that the distance from F to' M is L .
. The ge@metrie condition for thh locus is sinﬂla.r te the one which defines a
parabola. With this in mind ye let the lire thrcnzgh F pu'pendicula.r to M
be the y-axls and 1ét the origin be the midpoint of the normal _segmeny/ from
F to M. Then F. =(0,2,0) andtheequa.tionof M -is y+2=0. The
required point P = (x,y, s) must meet the condition C '

‘/."'rlr(x-E)2

-

ﬁ

. “ \. - ) !
. 2 2 " 2 2 . N -
Squaring, we have x" +y" - by + b + 2= y" + 4y + 4 ; ‘

¢ . ¢

. hence (1) . . ) x>+ 2° 8y

is an efuation 'fqr the locus.

, Now we must decide what the graph of thiw equation looks like.' We shald
use the pame methods we appiied to the equation of the sphere. If we, look for.
intercepts, we find that the only intersection of the surface with the axes is
the origin, (0,0,0) .« The trace in the xy-plane is the parabola x = 8y ;

L . . " ' - . P
‘ in the ygz-plane, the parabola 22 =8y . The trace in the xz-plane is %he

single point 0O,, given by the équation x> 4 22 =0. % notice that in

" Equation (1) y ecannot have negative values, hence no part.pf the surfece’ {b
- to the left of the xz-pla.ﬁe . - : : . 7

We next inv%stigate the sectidns para.uel to the xz-plane. When Yy = l ¢

- we have x2+22=8,aci‘rcle§dthradius 23 . TFor "y =2, we have a

circle of radius 4 , pnd 8o ‘on. Thus the surface may be thought of es formed
by a succession of circles, beginni'ng with the point-eircle and with radius

@ 1ncreaaing wii;hout limit a8 'y increases. This bullet~shaped surface (Figure ~
9-9} 1is ea.l_led 8 garabolci It is also galled a pa.raholaid of revalution, as
1t may be generated by revolving a parahola sabout its axis. The refleef,or‘ o
usually called s pa.rabolic reflectar is really a par.aPoloid.

" e -
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‘ '\ Figure 9-9. - C
A more general equation Of a parabolid is of the form
. 2. 2. -
x z -
(2)( —2- + “2 = by‘ . 4 .
a - ¢ -

- . ??

The traces of this surface in the xy- and yz-planes é,r_e parabokes, but thé
gections parallel to the xz-plmie are ellipses or circles,- This surfate is
cslled an tlliptic parsboloid. '

Wé\turn'r-xow to the equation U
. x2 )"2 32 !
(3) . T + E - —2-5- =1, /

Pl

and find that the x~ and y-iptercepts are +t 2 and ! 3 respectively, but
" that there are no z-intercepts. The tyrace in the xy-plane 1s'_an'ell‘1pse; in

the other coordinate pla.nes the traces are hyperbolas. Since ellipses are
easier to draw than hyperbolas, let us make our sections parallel -to the xy-

-
7

o'



) _ x2 3’2 1‘

8, = —
Tty sirms
represeﬁfing an elliﬁse very‘md;h like the one which is a trace in the xy-plane..
We continue, finding’that for numerically larger values of z the sections
will be «llipses with increasingly larger intercepts. This surface (Figure

9-10) 1s called a hyperboloid of one sheet, or an elliptic hyperboloid. Its

ésuation 1s of the form , ‘.

.2 2

Y Z c
+ = -3 #); R

b. c

>
Al

rol Mo

(%)

o

§
Ay
-
- L
4
Figure 9-10 T
“Next we consider the equation e
-~ . : .
s ’ . x? . yE z2
- - S~ e = l e -

,Here there are no x- or y-intercepts; the z-in;srceﬁts are ! 5. The traces

-

in the yz~ and xz-planes are hyperbolas. Again we make our sections parallel

' to the xy-plane, If we write tpe‘Equation (5) in the form

[N
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.{2
s
b ]
2 2 2
x y g . -
| T+ G ::-2—5 -1 .
we see that wvhen |z| <5 thef are no real values of x or y . _ <?'
.z ’ - ‘
N
0,0.3)
- .I y
1(0,0.-5)
X ) .
]
' N
. “Wigure.9-11

: &1
When z = 5 the section 1s the point (0,0,5) ; for. z = -5 , we have the "
point (0,0,-5) . For |z] > 5 the sections are ellipses, whose axes in-
crease as |z| 1increases. Thus our surface may be thought of as two separate
piles of ellipses. It is called a hypertioloid ( or elliptic hyperboloid) of
two sheets. |

e
e .
<

Exercises 9-3

Discuss and sketclt the surfaces represented by the gquations in Exercises
1 to 12. ‘

NI N S S

2, x? + ye = 16z 8. 9x2 - hye + 922 = 36

3. kx® + 42?2 = 16y 9. X - 9y2 + b2 = 36

b, bxC + 92° = Ly - M 1. osy® 4 e = 100

5. 9x2 + 4eg° = 1hby : ‘ll, 4x° - 9y2 + 25 = 1kh d
6. 9y° + bz° = 1hhx ’ 12. % -y +2°-1=0

R 157
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9-b

'13. We observed that, for the hyperboloid vhose graph is given by Equation

(3), the sections parallel to the xy-plane are ellipses. Prove that
these ellipses have the same eccentricity. '

Challenge Problems

- The surfaces represented by the following equations are called E{Eggbolic
parsboloids. Discuss ‘and sketch them,

1. ll‘xg‘?y'2=365-

2:"16y2 - 9::2 = 1h4sg , J

3. ye - 22 =X ,

' Q -
9-4. Cylinders. - ‘ . 4 ’

‘Equations of the gquadrlc surfaces which we have investigated havé
contained all three variables. What if an equation contains only two
variables? Suppose the equation 1s o -

(l).‘ ‘ x° + ye =25 .

We find the x- and y-intercepts, and note that there are no z-intercepts. The
trace in the xy-plané‘is a circle of oz

radius 5 with the center at O s in .
each of the other coordinate planes it
is‘two straight lines, parallel to the —]
coordinate saxis. The sections ﬁsrallel

to the xy-plane are all circles of radius
5 with their center§ on the z-aiis. From
Figure 9-12 ve recogniie the ﬁurface as a y
cylinder. |

Flgure 9-12
'y

A cylindrical surface, or cylinder, is the surface formed when a line
moves in space so that IY always has the same direction numbers and intersects

a Tixed plane curve. The plane curve is called a directrix; the lines are
called generators or elements. A part of sich a surface is shown in )

-

¢

36l 58 .



9-4 | o | o ' 4
-Figure 9-13, the curve ¢ in the N} o
nr-plane is a directrix, the line
"§ an ‘element. For the eircular
cyliner in Figure 9-12, any one of
the circles we have drawn might be
considered a directrix, and any of

, the lines of “the cylinﬁer an

element.

We shall restrict ouy examples
to cylinders with elementp parallel
to an axis. In such cases one ‘of the variables is mieaing from the equation, Fer

N

e example, we shall consider the equation . ¢

Mgure 9-13

) : xE : 22
(2) o . —3-6+—9—-l.

Let us see 1if we can‘bhow that this surface se‘ztisf‘i‘ea our @efinition of a
. cylinder. If it is a cylinder then 4 .

z 4
. the trace in the xz-plane, the -ellipse. I(O 0.3) -
‘with equations =
2 2 o . , : 1
x % ' P
-3—6+-§-=1l)7==0, : v ¥y
. 1
must be a directrix. We select any i'
point of this ellipse, say )
6,0.0)

P = (4,0,/5) . We find that for |
any value y , the point " (4,y,/5) is X . .
& point of the surface. All such points Figure 9-14

lie on the line f perpendicular to the xz-plane at P'; hence £ 1s an
element of the cylinder. '

Not all cylinders are‘quadric surfaces. A plane may be considered a
cylinder, since one of any two intersecting lines in it may serve as directrix
and the other as an element. Other examples of cyiinders are the graphs of
such equations as z = siny and. ¥y = qx . You might sketch one of these

v
cylinders.

159
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) - Exercises 9<%

Discuss and sketch the cylinders represented’by equations 1 to 10 .,

1, x2;+.y2 =64 6. hye + 922 o 36 )
2. L+ 7. '25x2‘+‘11my2_= 3600

3. ¥+ 2P e 36 | L 8. 1?4+ 252° = 3600

T S T 9. o - by? a1 ‘
5. 9x2 + ,“_'2_?. 36 : 10. 9x2 - 25y2,wl

11, Write an equation for the locus of ﬁoin%s

(a) at distance 9 from the x-axis ) §

(b) at distance 6 from the" y-axis

\
(c) at distance 4 from the z-axis
. . i

o ’i :
12, Write an equation for emch of the cylinders discribé\ below,

. L4
(a) Axis 1s the x-axis, trdace in-the yz-plane is a cirele of radius 3 .,
» « .
(b) Axis is the y-axis, trace in the xz-plane is a circle of radius 5.
(c) Axis is the z-axis, trace in the xy-plane is a circle of radius 10 , -

!

13. A line moves so that it is always parallel to the y-axis and:.. 10 units
from 1t.‘*What is an equation of its locus? '

&

14, A line moves so that 1t 1is aluays parallel-to the x-axis and 12 units
from 1t. What is an eqpakion UY its locus?

15, The circle with equations

‘ Pk, ye0

. & 1is the directrix of a cylinder, and a line parallel to the y-axis 1s an
element. What is an equation of the cylinder?

16, Write an equation of the cylindgr with the ellipse with equations’

25y° + bz® = 100, x = O

. N . -
as directrix, and a line perpend{cular*to the yz-plane at a vertex of the

ellipse as an element.

. ‘
. '

-

.

Q ’ . 3&5? U

<
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Challerge Problems

| =
2, y

3. ¥

(.4 AR .'

-9, te an .equation for the cylinder vith axis parallel to the x-axis, and

‘ "with trace in the yz-plane a circle of radius 4 and center at (0,-2,5) .
. : Sketeh the cylinder. - ‘ ‘ '
( 3 . ‘ . ‘ ’ . . 4 A
v ! (P . \. .\
Let us investigate the Burfahe'whosq equationpig
' z
2 a 2
) p. ‘2 J
t.,(1_) 'K'+i%f'7 3 =0
When we look for intercepts and the ) \
trace in the xy-plane, we find only ¢ v
the point O =§0,0,0) . If x=0, )
. Equation (1) betomes . o y
) 2 ' 2 - acc@aeees
f ~g, . --‘\.‘ .
‘ ‘ﬁ % - —9 = o » o U4
4 ] ' * . ‘ A . = ~
the trace in the yz-plane is the union ‘ 4
of two intersecting l1ines. So is the 1 X .
trace in the xz-plane.’ ' Figure 9-15

- Discuss and sketch the cylinders represented by Equations 1 to 8 .

Se 12"4-‘22 - 62 =T
6. 12 + ye +2x -4y = L

M e . '
Te '.‘:‘ = Binx .. *

8. ‘y = COB 2

L

-

We find that the sections parallel to the xy-plane are circles whose

radil increase as |z| increases. The gections parallel to the other coordi-
Does this sound familiar? It should, since the

nate planes are hyperbolas.

surfade {Figure 9-15) is a right circuler cone, vhose sections are the conics

we studied in Chapter 7. \

A conical surface, or cone, is

+

-

the surface generated by a 1ine {called

" an element'or generator) vhich moves so that it always contains a point of a

plane curve (called the directrix) and a fixed point (called the vertex) which

is not in the plane of the curve,

o ‘ | l?l

(See Supplement to Chapter 7 for further -

information on the right. circular cone and its sections.) "Here we ghall

7

*

e

o



- 9<5
eonsi&er only right cones uith vertez &t the origin and the directing curve a
eonie seetinn in a plane perpenﬂicular to one of the eoordinate axes.

As anather example, let us sketch '
the graph of the equation - ' z
’ ' 2 .2 2
(@.  F-peg-o.
The éections'pérallel tq the xz-plane
are ellipses; the‘cone (Figure 9-16)
is called an elliptic cone.

* v Figure 9-16 -

Exercises 9-5

Sketch the cones represented by Equations 1 to 6..0n each sketch show !

the intercepts, traces, d at least two of the aeefiona perpendicular ta.the
axis of the cone. g X -

: Y 2 2
-2 2 2 , ‘ X 2
1. x/ -2 =y . L, 5 %G‘ 18 0
2, ye P | 5. 4x® + 9y2 -'3622 = 0
2 2’ 2 . .
3.k -L+F=o0 6. 16x° - by® + 922 = 0

Write an equation of each of the cones described in Exercises -7 to 10,

7. Axis is the y-axis, a perpendicular section is a circle whose radius is
twice the distance from the origin to the plane of the section.

'8, Axis is the x-axis, a perpendicula: section at x = 3 1is an ellipse

"whoee section fn that plane 1s hy2'+ 9221= 36 .

]
E~o

Q. Axis is the z-axis, a perpendicular .section at =z
ragius 3 . ’

is skcircle of

10, Axis is the y-axis, a perpendicular section at y =5 1is an el}ipae
'S ]
whose equation in’that plane is 9x2 +2° =16 .

o el 72
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SR * .. Challenge Problems

Write an equation of a cone whose axis is the x-axis,

>

perpendicular to the axis are ‘ellipses Hith eccentricity .

- the maJor axis of the ellipae is 12.

2.

§'6a .

in the plane 18 clled a surface of revolution.
3515 of the surface.
purfaces of revolution.
‘of 1te great circles sbout a dlhmeter of that circle.

It’ vas noted that the sections of the graph of Equaﬁion (2) parallel to
thp\xswplane;sre ellipses; prcve that these ellipses all have the same .

-

\

‘

A

‘and Ihose sections

At x=1,

Write an equation of a cone whose axis is the z-axis, and vhose sections

perpendiculhr to the axis are ellipses with eccentricity E

. Fhe‘maJor axis of the ellipse is 16 ,

-

o
N

Surfaces of Revolution.
—‘_ A

]

At = “\2 ’

. ‘ , N
A surface that is gerferated by revolving & plane curve about ‘s ‘fixed line

The fixed 11qu 1s called the -
Some of the quadric -surfaces ve have discussed here are
A sphere is one; it may. be 5encrsted by revolving any
" The ellipsoid of

-~ . .
.Figure 9-8, the paraboloid of Figure 9.9, the cylinder of Figure 9-12, and the

cone of Figure 9-%€bare ell surfaces of revolution.

" Let us find the equation of the

surface obtained by revolving the

parsbola with equstions 22 = 2y ,
= 0 about the y-axis. Let '

TP = (x,y,2z) be a point on the surface.
The plane through Pllperpendicdlar to
the y-axis intersects the generating
curve at the point C = (0,y,k)*, where
k = &(C,F) ; the same plane inteﬂaceta
the y-axls at the point F = (o,y,c'?)
Sinpe P must lie in this plane ol a
circle with F as center, its |
coordinateé mugt satisfy the equ%tian

(1) ] x% + 28

‘ !

|
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Sl k 9-6

vhere k is the radius of the circle. The value of k 18 determined bj the

reqnﬂimen“b that C = (0,y,k) be on the genustinglcu\'ze = 2y . Therefore,

(2) )

Equating the expressions for k

(3) £~

o

K° =2y .

2

2

b 4 +22=a"’

in Equations {1) and (2), we have

an equation for the surface of revolution. It is, of course, a p&raboloi&.

The pareboloid of revolution for vhich we have just found an equation

is generated by a para.bolé revolving on its a::d;s,. The parsbola may revolve;
about lines other then its own axis; suppose it revolves sbout the z-axs, We

{ sense intuitively that the resulting surface of revolution is quite Aifferent,

\ " We start with equetions of the generating curve,

r ¢

Let us obtain its egustion.

2

: z =2 ,x=0,

and let P™: (x,y,z) be a point on the surface. A plane through P perpen-
dieular to the z-axis intersects the generating curve in C = (0,k,z) where
“k = 4(C,F) ; the same plane intersects the z-axis in F = (0,0,z) .

z

. - -
~e™ ’
¢-~* F
~ ‘:F’(.f —————
AN
vt
. AN
_____________ -y ——
\\
AN
o ~
\\
~
_ -\/\"
L Filgure 9-18

\

-
/
§

- < Since P lﬁfes on a circle in this plane with center F , its coordinates
satisfy Fhe ejuation -

P J

(%) |

1

2

x +y". =Xk

Since /k is the y—coofdinate of C, and C 418 & point of the generati;{g

curve,
g

the coordinstes of C’\ must satisfy the equation of that curve; hence



2 = 2K ’ ) ' !
*and therefofe | : - | o >
. | | B y 1 : s
_ _ . , Z 2 ‘
~” S TR -
Equsting the expressions for k° in Equations (3) and (), ve have
(6) - . e ‘

. ES
as an eq_ustion of our surface of revolution. ,"'

——

Since Equation (6) is not quadratie, the su;:face 1s not a quadric surface,

vﬂmm\?qmusethemethodsofthis g

' symetric with respeqt to each of the

"traces in the other coordinate planes

form f .

clearly th'éy are circles,'as they

.3. 3x=2¢, z=0; y-axis

p@rtoiqestigsteitssha@e From : ~ L .
theequationvﬁseethatthesmfaceis s - o _ © -

coordinate planes, Its only infersection ‘
with the xy-plane is the origin; the )

are parabolas. The.sections parallel

to the xy-plene have equations of the

..2 '-C‘
A ]
4
.2 ,..2 k v
o ». x +y‘ =T,z=k;

.4 -

should be for a surface of revolution.

) Exercises 9-6

In each of Exercises 1 to 18, find an equation of the surface ebtained by
revolving the plane curve sbout the-axis indicated. Sketch the surfsce Tn
Exercises 1 to 10 the curve is to be revolved about its own axis, and the
surfaces obtained are quadric surfaces; in Exercises 11 tc 18 the axis of -
revolution is not sh axis of the curve, '

1. ,2.2=8y,x=0;y-a.:d.s ' L, 3x &r,z:O;x-axLé

n

2. x* =22,y =0; z-axs s 5 ¥ 42 -25,2=-0; yaxs

.6.\y2+22=2‘j,x=0;z-aﬁ:s

-




2. “ o o _ - 9.7

] . -

Te _9:2 + kye =36, 2=0; xeaxis 13, lt:rel\- 42 =16 , X =0 ; z-axis

8. '9:2+’+y2=36,z=0 y-axis 1k, xe-hza=100,y=0;z-axis

L 1]

9. M2 -:2-16,x-0;yaxds 15 y <8z, x=0; y-axis

0. x° - 42® = 100 ) ¥ =.0; x-axis -~ 16, 36y~ k%= 14k, x = 0 ; z-axis

11, 52=31)¥=052'-m8 . 1. z=y3,xn0;z-&ha_
12, 12=22,_y=0;x_-a.xis 18._z=,y3,x=0;y-e;xig

19. If a curve in the yz-plane is represented by the/equations f£(y,z) =0

o and x =0 s show tHat, if = > 0, an equation Qf the surface obtained
by revolving this > gbout the y-axis is -
£y, A+ za) =0.,
’ . B
i o
9-7, Intersection o_.f Surfaces, Space Curves, .. o : ,}

In order to visualize quadrié surfaces we have been discussing the inter-

sections of curved surfaces and Planes, This situe.tion is represented by jee
sim:ltanenus solution of two equations, such as_

-

'}
u)'. S f+f+z=5,
- =3 .
In this case, by substituf;éng 'z.= 3 1into the first equation, we have

x2 + yg =16 s an equation of the circular section of the sphere in the plane

‘2 =3, This circle 1s in a ﬁlane parallel to the xy-plane, has its center
at (0,0,3) , and has radius L4 , It 1s completely described elther by the
first pair of equations or, more simply, by the pair ‘

(2) P ey® L6 )
. N z2 = 3 .
_ But Equations (2) represent the intersection of a eylinder and a plane. Or
" we might have . : ’
4
" x2 y2 z2 *
(3 s L -2 -0
) 1571679 ” -~
3 X + y° = 16 P

representing the inter;ection of a cone and a cylinder. In each case the
clrcle ﬁﬁch is the iﬁtersection of the two surfaces is the same. You might
l1ike to verify this by finding simultaneous solutlons, (Equations (3) have
an additional solution set,)

Q 37 My -
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.« It should be intultiyely evident by now that there are many pairs of

- surfaces which intersect in the circle déscribed above, Earlief in youf
mathematical treining you encountered this situation when you described a line
gs the intersection of two planes, There ére infinitely many planes coﬁtaihing
a given line, and any two of these planes may be used to describe the line,
Similarly, there are infinitely many surfaces passing through a given'curve,
and this curve may be represented by the eguations of any two of the surfaces

" having this curve as their interséction., Such an intersection is called a
space curve, (It perfectly correct to describe a plane as & surface and%a
-line~ss a curve, ) .ot

. From the many representations of a space curve, we’'try to choose one which
gives us immediate information sbout the shape and location of the curve. For
example, Equations (1) tell us at once that the intersection of their graphs
is & circle and 1lies in the plane z =3 , but they do not show us the radius
or £he location of the center of the circle, Eguations (3) indicate that the
intersé@tion of their gfaphs is a circle of radius 4 , with its center on the
z-axis, but we do not immediately seé the plane of the circle. A1l of this

. {nformation is available at first glance from Equations (2); hence, this re-
presentation 1s likely to be our choice from among the three suggested.

The representation of Equaﬁions (2) 1is useful also in sketching this.space

curve., Recall that by eliminatiig the ;ariable 2 from x2 + y2 + 22 = 29

we obtalned the equation

(1) T . x2+y2.=16,

which represents a cylinder whose ggneratogs are parallel to the axis of thg
missing variable, z . Such a cylinder not only-eontains £he curve, but its
equation 4is aléo the equation of.the projection of the curve on the coordinate
plane, For thig reason, this cylinder '

is sometimes called a Ezogecting
cylinder-of the space curve. If the

‘other varisbles are repoved, other

. projecting cyllinders are obtained;

since these cylinders contain the Y

curve, any two may be used to show the

intersection. Interpreting Equations
{2) in this way, we think of the plane .
= 3 as a.cylinder parallel to both

the x-axis and the y-axis, For the sketch, we draw the proJeEting cylAnder

F) U
v x2 +y~ =16 and show the plane 2z =3 intersecting it (Figure 9-20) .

372 ‘
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Ml_e l. Find simpler glmt;ons for the cﬁw e
. . ,
N 2 2 -2 . ’
‘ X A 2 )
_ ¥y + +=— =1 : '
‘ L . a % :3 ’ h ¢
. . . < X = 3 e
'S . . r i .
. - * . . ) P .
' Bolution. Let x =3 in the first eqdstion to obtain .
. . a . . 1 ‘ - . R
2 2
z
| B / ‘%‘F%“F =‘l » - "\'
or . ' . ' - \\ o L T
: \\' . .L +.z_ = g
RN ' 9 3 "3 S
vhich becomes : “ . & 5
. L 3 o 22 .
2 Tt =1. ,
The curve 1s an elli_pse yepresented by )
. \ . o 22, - ’ v . o )
CL Lafoug SRTS
>t - B 1 x=3, . )
Py . -

’ v
. - . . '

Example 2, A typicai problem from caleulus could be stated as follows:
Find the volume qf the region in the first c)ctant bounded by the surfaces
Y

y2+z2+23c=16,x+y=k,andthecaordinateplg.nes. ' I
: * ] :

. - ' s L
As g start on {his problem, you should mske a regsonably accurate sketch
of the boupdariee of the region. (You cen find the volume when you study
-cslculus,) We first find the treces of E

pa.raholoid of revolution a.nd the other is'a plane. Their traces are shown ih-
Figure 9-21, These tmces, th the coordinate axes, prp'dde us with

all of the edges of the solid’ cept one, This edge 1s the space curve which
is the interséction of the paraboloid and tw plane x +y = 4°, To find this
edge, %elimingte x from the equation of the parsboloid anfobtain

[

e surfaces. One surfacd is a ;

5. .
' . (y - 1)2, +2z2 =9,
the projecting cylinder parallel t6 the x-axis, The projection on the yz-plane
. . ‘ #
is a circle with cenfer at (0,1,0) and radius 3 , as is shown in the figure.
The spdeg curve 1is repregented by ’
- i L] .

—

1}

P 1\?8

2



. & - . 2 *
97 .7 - ) !
. LY “’ .‘ *
.. : N : 2 2 . .
‘ . _ . (y -1 +2°=9, , . { 9
N (5 _ , . ‘ A '
. . ~ . Loy
, . _ A . xX+y==4,, . C :
s : : * . . . . :g'
: ,and we shall now describe how to locate some points on it @
- ’ . P " & ‘ I.
; ‘ oA o 2 - ‘ * )
- ) ¥
- v . NP .
" o7 ' . | N . . i
LR N . (0.0.4) . o .
. . ‘ - B Y ‘ € e " .
. - . ¥ . ' . o .
. . . RS {l_'. T 7 Q ' ‘ . k[‘ .
.‘ ‘. ) - . ) . : ‘ ' - / ' 7 ) ‘ l‘ ) , \»
. ;-A . ) .) ‘ . . . A s . L3 . N _
- R (4,0 . 272) ‘1 e (a0 ', -
v & o= ' - ‘ L] .
[ R.. ‘.
- 4,0,0) ° : ‘ ’
. - ‘ . . ‘
9 ’ ’
. . Lo
e Sepo ., R
e S Figure '9-21 .
. } . . \ . - . .‘) .
.. Since y 1is the variaeble appearing in both equations, we choose a point,
. : P 4 on the y-axis, and we drav lines parallel to the other axes intersecting

* . the traces of Eqiations (5) ir points Q eand* R ,-as shown, We now cémplete
the..recta\rigle by drawing lines parallel to the x- and z-axes from Q and R,

. These lines intersect at -8 , a'point of the space cp.rve.‘ Other points msy be
Found in a similar manner, and when these points are Joined by 'a smooth curve,
the figure is completed. " S L

B R S R - s )

A

r -

-

.. ) ~ . ¢ . y ~ . ! d : ) ’ € ~
» . w _3: . _S;atch tfme‘ curve described by )

- A .
‘ ‘_ ~ - -\
\- o - ~x=2cos t , ) S
. * . - y=2sint,,6 - “ .
“ - - ‘.‘ .
¢ ) . . z{= 2t . , -
‘ N i "l .7 _‘ - - ‘ ! - 1
N * . . . LI . \
* ) | < i .
- . (‘ oo L, (
& . . -
F B - . ““‘ - -
e ) : * ¥
. -~ H . \ -
'L- 2“ . bﬂ.l} - Py
- . LY
« ' ~ .
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“ " . ﬁ
." Solution, If we both members .- « )
of the first tho equatiofis and aad, we ' -
 cbjatn : o ‘

’ 23 ,
xe“_+ 3:2 ?k(cosgt + s;‘in‘"2 t)

< "
or ‘ : : . : |
3 N T )

x2+y\=~h‘. o

-
ol
[T PRI Y PP

" TThis represents & circula.r profec‘ting
cylinder of radius 2 whose axis is ’
‘the z-axis. All elemengs of the |
solution set gre contdined in this . . - y .
.cyllnder, and.gince z 1is directly Figwe 9-22 - - *
proportiana‘.l. to ﬁ; ‘we note in - o .

. Figure 9.22 that the-cur\re is an ascending s_‘pira.l "mpping mund" the .
cylindrieal surface. Thia curve 18 called a helix. .

N

~

e might view this differently by. eliminating the parameter t . Then, v

we, have .
' T - ‘ . '
- r —\T =2 cos-g N -
P T . - -
Yy = 2 sing- y

; 4‘, and the curve i.s seen to be the ;r'xterse.ction of' two piﬂo.je'eti:x; cylinders vhose~. )
. cross section.s are sﬁne (or cosine) cu,rves. + The elements ‘'of one cylinder are
parallel to the y-axis; the eléments of the other cylinder are parallel to the
x-axis, If you wigh to build a model for this<problem, you mig,htm_use twe
pleces of corrugated cardbogrd, . T 7 -« )

<

Still' another view of this curve may be obtaine)by writing the equations
" in cyldndrical cbordimates, We shall consider this{in £he next aection.

.

L H

Exercises 9-7:

-

!
)

1. Name and describe the intersection of each of tﬁe following peirs of
.( equations,ja.nd write for each & simpler pair (if there is one),

(a) x2+y2+zg='16,p
1

y=-2¢ “‘g ! L ] ¢
., \ ‘ * * — ™
o CA
# -3 T G, o
B LA £ R
' ) : e P

“-



— \I
T 9eT
- i t 3
(). 4y al, - -
z = 0 e ’
. (d) Xe“'l‘ ye + 22 = k » .
S . ’ « ) -
- (&) £+22=25, . . o | T
. . ‘ y - 5 . . . . ) .
. . . \ -
() Ealfons, N
. 7 = 0 "3 ’ . ' . * - \\. -
Y S . ‘ - ) -
. . Lt 2 R . o
() F +y% =50, \ L . .
o xl'-y‘nﬁ. | , s :
ST . , : Co . : V.
. . (m) R 8y2 - 4% 212 ’ .
. . + . ~ - h .
’ = - - 4 .-
5 ) z 1 ¢ E 7 ) " \l N - ‘P\ .
T CONE I R T alr R LI I .
i - ) : . Coot . ) a . - . ‘ 1 . e Y }
\ x =0 . . ‘ ‘ g ‘ L : \-r ~ .o ] . .
2, 4,2, 8,2 a B N
(9 £+af+8°-8, . - ' .
- x =0 . ) ) . R . [ .
. Y ’ -
(k) x2 + 2y2 + 822 .=T l8%, | \ ~ .
y = 2 ) . s - , . . ) . N
. s : : ' ’ ' S
() x°+3%- P -2, . - . '
; W22l R, , o
' . yy ' . L ¢ : ' ) . ‘ oo ¢
2, Make a sketch,of the region in the first octant bounded by the given
surfaces and th& coordinate planes. . o
- (a) 41Inside the cylinder x> 4 yé = 50 and-under the .plihe B
- Xx+y+ 2=10, N
‘ (b) Insidg the cylix;der' y2 ¥ z,? = 16 “mnd in the half-space formed
by sx + y « 6 which contains the origin. v ¢
(c) Inside the parsboloid NG ye = 4z and under the plane z =% ,
(8 Insftdé the cylinder’ y2 + 28 = 25 amd inside the cylinder % -~
o - # .
x2:+'22=2§, Y S Yo o . U -
o ) ‘1 4 * - . ) M - R r. .‘ . . .
' . (e) 1Inside the sphere 152 ,+_y2 + g2 = 25 apd inside the’cylinder :
. ’ "' ‘ ’ : . * . ) . T .\
. Pafo1g. v | o .,
' ' . ’ e . ¢ : - 5 ) 2 . " ) .
(£} Under the parsboloid 18z = 4x" + 9y" and in the half-spaces formed-
: by x=2 and y =3 wvhich conthin the origin. -0
. > § ‘ » v .
t > - N
376 d . )
) . .
Y ' . . : - A,




-~

3. ' Finl the equations of the pro:)ecting cylinders of the curve vhose
equations are ‘

x2+af?.zg='3,

. x2 + ye - 222 = =3 4

& . | | .
Sketch the curve by making use of the projecting cylinders, '

* b, A calcmlus problem requires the student to find the height gbove the

nr-plane in which the plane, 2% + Y na 1ntersects the paraboloid

z =16 - 1+x - y o+ Find ths height by sketching 1n one of the
coordinate planes the trace of a projecting cylinder,

% Se .A calculus problem asks for the volume inside the cylinder ,
X + y2 -2 =0 and BMT the xy-plane and the upper neppe of the
e

cone 2% = x° +y° . Make & sketch for this problem, shoving the .
portion of thé reglon in the first octant. S

- -
. . :
» .’
h
s .

9- 8, Cylindrical and Spherical Cmrdinate Systems.

f

-

" Some problems in science that have a. setting in 3-space are easier to
handle 1f they are expressed in terms of cylindrical or spherical coordinates.
If the durface has symetry with respect to\a line, then cylindrical goordi-

tates may simplify the work of the problem, X the surface has point-symmetry,
the use of spherical coordinates may providexa\simpl,er anglytic representation

‘\«

and solutian.' .

Cglindric&l Coordinates are a combination of polar and rectangular

coar&inates. A polar eoordinate system ' .z

"+ is used in one .coordinate plane; the
axis pgrpendicdlar to this plane has a a .
linear coordinate system, A point is-
designated in cylindyical coqrdinates 1

. by an ordered triples We use (r,8,z) , I('P )

as indicated in Figure 9-23, ¥he first —5 1 Y

two- coordinates ‘are the coordinates of ' '

Jection of P in the polar plane.

The third coordinate is the coordinate . / ‘
the projection of P on the linear x
axis,. "In this flgure we may verify vhat Figune 9-23
e - .
' t § ! é

+ b ‘. € .- .
» . N



ve could have guessed _the transformations from cylindrical to rectangular
form, and vice versa, sre a.ecomplished by the same process we used in
Section 2-4 to relate polar and rectangular coordinates. The transforming

equations are e

X =2 cos @ r2.'=x2+y2
Y=r‘sin9 \tanen%,vhefe x £'0
. 2e 2‘ o | zZ = Z |
The 8 equation, ‘r :' k , represents, in cylindrical coordinates, &

right cire cylinder vith radius k whose axis is the linear axis. This
fact accounts for the neme applied to this system.
. . A\ '

M_ 1 ¥rite in cylindric&l coordinates the equation of the sphere
vith radius ¥5 whose center is at;, the origin.

2 2

Solution, In rectangular coordinates’ the equation‘is x2 +y +2 =5, '

Since r2 = x2'+ y2 , the e&ﬁ'&tion is written r2 + 2.2 =5 .

. Emauple 2,. Transforn to rectdngular coordinates and identify the surface -

vhose equation in cylindrical coox:dinates 18 3rcos @ +r sin § + 22 =0 .

-

A%

' gelution. Using the transforming equati's we obtain’ 3x + v+ 22 0

t.he eguation of & pla.ne.
Example 3. M connection with the helix in Example 3 of the previous
L )
section, we suggested a solution using cylindrical coordinates. We write CI
in place of t , use the transforming equations, a.nd square &s before,
obtaining .

:;'2=x +y=héosee+ksin?6,
r2 = 1+(c:os|2 6-+ Bin2 e ,
or : r2=h.'

-

Since r = 2 has the same graph as r2 =k st we obtain a simple expression
for the helix: '

.
. . &

¥



9-8
r=2
\ ) r=20.
$ince this helix 18 a constantly
ascending spiral around the z-axis,
- we can locate some qf its points by a

device we might describe as fixipg
"ribs" to a "spine", or oﬁ\ locating

@ &.57)

g, 2r)

steps ori-a spiral sta.ircaséy The
z-axis will be the "spine" to which
‘the "ribs" are attached. (We are
| usipe a'. condensed scsle on the z-axis

to save space. ) A . Figure 9-24

We first locate & point at (2,0,0) as shown in Figmre' 9-24, When
: . . -

(2,47
' y

6 =3 § we have rotated to a point one-quarter of the way around the "spine", »

2.
and we have ascended a distance =n . We fix a "rib" to this point. We might ,-'?

next stop at @ =n and fix another point. This procesa can be continued as
long as desired and the points may be connected by a smooth curve to sKetch a
portion-of the helix, ) , : =
Another useful system for locating points in 3-space involves the use

of spherical coordinates. In this system the coordinates of & point P are L
determined by assuming & polar coordinate system in the plane determined by
the point P and the z-axis, The | '

<positiv® half of the z-axis is the |, 7. T, \
polar axis and the positivk sense of ' .
the polar angle is from the poldr axis
to ray OP ., The polar distances

: 650;5) is denoted by p and the
measure of the polar angle by ¢ . In
the xy-plane the usual system of polar

i

les 1s assumed, The projection of
P. in the xXy-plane determinea the
.terminal side of a polar gngle of
measure 9 « These thr}e numbers repre-~
gsent the point P and aré called the
spherica.l coordinates oi’ -P ,. They are
written as an ordered triple, usually as (p 8,6) . In Flgure 9-25 this
: 'system is used to name the poin't which in rectangul ar coordinates would be

. ‘..’. ' ) 37 3 ‘t , ’ N
EKC 0 . 7 134'. .

o Provided b ERIC . - .

= (X,Y, 2,)
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9-8 ) -
SR In order to relite spherical coordinates and rectangular coordinates,
<o we obtain (from Figure 9-25) the following relations: -
SR x = 4(Q,M) = a(0,Q) cos 6 = p sin ¢ cos 6 ,
S y = a(o,M) = a(0,Q) sin 6 = P ein ¢ 8in 6 ,.
—_ - ‘2 = P cOS § . e '
' The derivation of the equations for relsting spherical coordinates and
' cylindrical coordinates ig:left as an exercise.
. -
: Example 1 Write in spherical coordinates the equation of the slmere
with radius /' whose center 18 at the origin. 7.
f N - ) ¢ ‘ . ) ] ]
Jf\- Solution, Since p ’'ig the distance from the origin to',a“poin“b, we -
obtain L S : '
‘l ) \ ' - r . e
This sdmpl e equation form, 'P =k, far a sphere in spheriea.l cocrdinntes
v a.ccdunts for the name applied to this system. Conmare this:with r=%k in-
' cylindrical coordinates and r = k 1in polarjcoordinstes, 4 ¥
. ' ) f - €
. & + - h R .
. Example 2. Transform to 'angular or cylindrical coordinstes and
. , identify the surface vhosé equation in spherical coordinstes is # sin ¢ = 3 .
F A Solution. We square both members and obtain
v P . ' e
',\‘ . ‘ - P2 sin2¢=g_.
Multiplying the left member by 1- (disguised as o::m!2 8+ sine 8) , we have™
. . [ ™) ¢ B .
» . pgsig?q;(aos 6 + sin° 6) =9,
l" 2 air’ & cos? e + p2 sin® & sin® ‘e"=«9.,
¥ . Fy ;
which in rectangular coordinates is s '
Q <. .
‘ ...xe + yE -9 . .
g ~ ’ {
In cylindrical ccordinates we ‘have Bimply =~ . . :
. - = B v
* _,This is the equation of a right circular cylinder with r‘a&'ius 3 vwhose axis
is the z-axis. ~ - -
- *



L R ' 9-8
It may come as a surprise vhen you, rquize that very li_kehr you dsed
spherical coordinates before you knew what- they vere, In terms of the position
of a point on the earth, 0 1s the longitude, 90° - ¢ is the latitudef and
(assuming the earth is a sphere) p is the earth's radius. .

-

Exercises 9.8
—_—— ey

-
.

1, Derive transforming equations to relate cylindrical coordinates and
spherical codrdinates, . ) : -

2. Write the rectangular and the cylindrical coordinates of the points

whose spherical coordinates are-_

‘ (a) (&,

wm

')

fv) (3,0,3) . L
” T x . ' |

(c) (2 15 s §) .

(@ (4,3, .

~ 3. Write the rectangular and the spheric&i coordinates of the points whose
cylindrical coordinates are

o

(&) (2:%13) o : . ) \

(b) .<5;'1‘§;0)'. : o :
(&) (0,58 . -

- (a) (h-,l,2)-. . s

L) Y
4, wWrite the cylindrical and the spherical coordinates of the points wvhose
rectangular coordinates are '

-

(a) (2,3,0) .

(b)’ (016)3) ¢ , ) ' L , .
(c) (23,24, ‘ : . ‘
(a) (b4,1,2) . ' = * ,
[ \ g
LN : '-
1 * _\ ) . - .
’ - ‘ .

. 381 186 . ' ,

. . ’ “ ; .~
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9-9 )  : T‘ : *
5, Transform the following' equations into cylindricsl coordinates and into
Q ' .
. -spherical coordinates. y ' ‘
. Vo e, - . . ‘
(&) \x2+_y2;25'. L : . A
@ ) : o > )
[ &)"p = hy‘. o . '
. (e) o +y° = 8x. | . %
@ xa-t-y 32 ¥
6. Trsnsfom the follmring equations into rectangula.r eocrdinates.
e . ) ) .
, ». (&) p= 6 .
. (6) z=6+1. | . | ' -
\ - 2 . 2 ’ : ) ) R } ! [} \
' (@) 2 =9 -1r" . ‘ ' : A ‘ o - o
T ? tify*and describe eech.of tpe following surgacen, ’ : “
a) r=3." | ) o
| o) o=F. | |
b 8 =v. ‘ . ! .
»ol | k ; 3 LT . -/) A
) PR, - . o
(d)@“%o ' o ’ o . ‘ ‘ . ‘
Y . . - . . o
(e) Pcos =T, . /
() z=rcos 9. _ o '
) ‘ {g) z=r. ‘ | | L.
(h) r=2secB. [ ’ _,,*__.// -
8. A ecircufar cylinder of diam€ter L .intersects a sphere of radius 4 so
' that an element of the cylinder cop¥eins s dlameter of the sphere.
Choose axes and write equatic T the bounding surfaces in -
_— CY) rectft_fgular coordinates, ° . .
| ' (b) cylindrical coordinates, and
* (c) spherical coordinates.
. )
N
YL 99, Dumagy. '

4

' . Dur wrk in this chapter ‘has been limited Jo the most important and
familiar qusdric surfaces, and we have lawted the coordinate axes so as 1o
o "~ get simple equations for them. Students who have enjoyed this wnrk msyelike
\)' ta purs:e it further by lookfng up such topics as rul surfaeéa, mrperbolic

parabol ida, curves in space, and surfaces of higher Tder. ! :

O ‘ . 382 .
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- Our objeetive here has been to deve_lop mthoda help you visualize
aurfaces and eurves in space, Thtxmeﬂmda we have -general, and should
. be of nse to ynu in visuslizing or sketching, pm'tie\ﬁ%rls in your work in
c&lculus and its applications.

-

Surfaces in space are.represented by one equation, f(x,y, z) = 0 ; for
quadric surfaces, the' equation is of the second degree. <Curves in. space Arer
given by the int'sectio of two equations (or three in parsmetric form) ’
f(x,y,2) = 0 and g(x,} z) =0, The most important curves for ‘sketching a
surface are the traces and the sections parallel to the coordinate Planes.

The surfaces vg have studied include the conme, cylinder, spherd and . °
ellipspid, elliptic ;pa.raboloid and the nyperboloid. A cone is genersteﬂ by
a line moving. about a line with one point fixed, & cylinder by a line mﬁng
‘ pa.rallel to a fixed lq.ne, and a surface of revolution by a plane Surve revolv-
ing about & line in the plane of the curve. For the limited cases we have
studied the quadric aurfaces may be identified by their sections parallel to

the coordinate planes wus follmm L L . N
Cy - _ C
Quadric Surfa.ce . Sections Parallel to Goor.dinate‘ Planes
Cone ’ Conic sections, including degenerate cases, . .
] & Q". .
'Elliptic or circular ° Central elfipses or circles, perallel Pines,
v cylinder 1 or & line, ~ )
« ° Sphere " Cireles, including ppint-circle.
: F
Elljpeeid . semy ~a <. Elipses, including circles and points. -
.Flliptic paraboloid Parsbolas and ellipses, including circles and °
’ R .o poings. -
Hyperboloid . o Kllipses, including circles and points, and
L : hyperbolas -

-
L
i

. In sketching Ta.."éﬁif'q.’éé:“"fti;'y,z) = 0, it is suggested that information

about’ 1t be obtained and placed an the graph in the following order: ’

1. Intercepts Set two of the variasbles equs.l to zero s ve the
e --resulting eguation for the third vai.t;ble to find the
1ntercepts on each axis.

2. Traces Mhe varisbles equal zero, one at a t@to find the

- " _ equations of the traces - the geftions in the coordinste
N planes,
B P/[ .
“* ) \ '

T w188
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e " 3, Sections  Let z =k, vhere k 1s a constaut, to“#nd the sections ’
| ‘ oo parallel to the xy-plane, for example. ‘You can build up
a aketch of the figure by using enough different values of /
" k . For this purpose, select the seetions easiest to draw.

_ Ve determine\tsymetry vi,th respect to the xy-, y2-, ‘or xy-plare by
"~ checking that the egustion of the surface 1s unchanged when #-% , -Xx , Or =y
"~ is suhatituted for =z ’ :; s O Y, respectivel& Knowing the symetries of
e surface helps in identifying it and sketching it.  When & surfe.ce is sym-
metric, we of‘ten draw only the pa.rt in the first octanst
Certain curves which are the interseetion of \ sm:faces were stu( ..
'« In addition to using intercepts and traces,. we used pro;jecting cyli.nders to
help us visualizé and draw space curves, ‘
| “Finally, cylindrical and spherical coordinates were introduced es other
ms of describing the location of points in space, T T
- ' : . Review Exercises ma _ ¢
r ' ' . ¢ .
‘ Discuss and sketch the surfaces represented by the equations in 1'to 20.
1. 16;2 s 41628 =1 T 1. 9 -kt ay |
. . : . ' : B T
[ -~ ‘ : .
oo 2. 5&: + 5}{2 + 5z -5.=0 12, 36y2 +~-g5:2 = 90?1 - \
/ 3.4 162 = 4x2 + y2 - _y 13. -16x° + 25;;2 + 162° = boo
o . 4, 362 =-9x2 + hya o 1k, y? + 2° =-100 |
- . - X - s )
5. 25% + 100y° = 4002 e 15, Py e omx-3=0
6. \ox© + %3 + 9% = 14b .16, 2_5;:2 + 25y2 +‘a5z2 =0
1. 9x+9y+9z 216 50 17, 165° - ® + 98 =0
: 8, bx© - gya + bz® = 36 18, x2+y2+zg+8x-6y+102+3h=
! ‘ L ' 2# ‘2 O i g
‘ 9. bx® + 92 = 36 . 19. 36x° + 2525 = 900.
. N 2 2 2 ' ‘
3.0. hx2-932=36 20, 25x -9 -9z =0 . )
* ) ¢

-




\‘\: . Discuss and sketch 'bhe surfaces deserib‘ in Exercises 21 to 38 . Write
. ~, < ) .
an\éggation ‘for each surface; idgntify those '

.22, An ellipsoid with exes of lemgths 12 , 1
23. A circular tylinder with radius 5 and axis the x-axis.

‘24, . A profate spherold with axes of lengths & énd 16, - .
5. An oblate spheroid with axes of 1engths L and 6 . L

. ¢ ¢ -

26. A cylinder with &he y-axis as its a.xisr, and its Mrace in the xz-plane

{ - the ellipse vith_cequs:ti,'on 25: + 16_2 = koo . ._, o «

27« The surface obtalned by revolvi urve with eQuations ’ :
: . N
e, 165 - 9y% = 14k, 2 = O' about the y-axis. sy
28. The surface obtained by revolving the curve with ‘equations £ = bg ,
y ='0 sabout the z-axis. ‘ .4 . .

. 29. The ;urf‘aee obtained by revoiving the curve with equations 22' =By ’
' = 0 about the y-axis. ‘ ; ¢

30. The surface obtained by revolving the curve with eguations
. 2 2 *
25x" - 362° =900, y = 0 about the x-axis.
31. . Refer to Exercise 27, but revolve about the x-axis.

32. Refer to Exercise 28, but I;evolve sbout the x-axis;
33. Refer to Exercise 29, but revvoive sbout the z-axis.
- 3k, Refer to Exercise 30, amt revolve sbout the zée;:cls.
35. The surface obtalred by revolving tl;e eu;\re- with equations

' @xe - iﬁye =0, z'= 0 -gbout the x-a.:cii., .
36. Refer to Exercise 35, but revolve e.bout the y-axis,

2,y=0

~ 37. The surface obtained by rewolving the line w'rt')hﬂ%quations b4
about the z-axis. . -

-«

38. ‘Refer to Exercise 37, but revolve the line with equations x =22, y =0,

. + 39 Write. an equation for the locus.of points 10 units from (3,-2,1) .

40, Wri‘be an equation for the locus of lpo‘nts 5 units from the y-axis.
. A . . .

/

?
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L1. Write an equation for the locus of points equidistant from the plane _ -
' x-O a.ndthepoint (6,0,0) .

ko, IWhat are the graphs of the feuowing equations?

. e x2+%?_+§:1 (Afi‘_,;?*_%f_:?:,-l
- (b) .ﬁ;%2+;2=0,, (&) -’f;a--g;-_fe;=l #. —
) | :
| <§).‘3‘§+%2-§§_-“ ‘”"T"Z—e'é“l <"

43. Points A and B are 4 units apart. Write an equation for the locus
of a point the sum of whose distances from A aend B is 6 . Simplify
v the equationi sketch the graph, and’identify it.

-
3

"-, 44; Follow the same 1nstructions é in the presvious. exercise, but let the "?
difference of {he distances be 2.

p) .
45, A pencil with s he‘xagonal cross-sectidn is aharpened., Describe the space
_ curve which you see as the edge of the painted surface of the pencil, .
] ‘e
46, A cube having/edges 1 unit in length has one vertex at the origin «and
three of itg faces each in one of the coordinate planes, A plane N
contains ée fnidpoint of the diagonal‘of the cube"fronf‘the ‘origin and is

erpendicular to the diegonal. Find the sections of this plane on the

faces of the cube. What kind of i‘igure is this set of sections? -
‘ 47, - Sketch the intersection of the surfaces iy ‘ N
\ : .x2+y2+32';.1+; x2+y2-l+y'= o ‘ -
in the £irst ‘;)%tant, using projecting c;ylinders. | i
48. In ea‘c}; of the following ceses, classify t:e give.n surfaces, find the  *

projécting .cylinders of the curve of inters'ecticn, and sketch the curve.
!

R R A
K ) x?+a'2+22=1+,';2xe-y2+22=2. - . .
| (e) ;2+'Y2+22=‘1,x2;)f2+223=5."
(@ RayPaz, Lry?ans | . |
' -~
. -
Ld 38&‘




k9. Sketch the solid in the first octent bounded b¥ the given surfaces and,
' the caordinate planes.‘

A(a) xa‘+2=l,}'.=2- L. e
‘(b)'y‘dx,.z\n'x+y;xéi.- . . _ .

, 2 ‘ i ‘ v - ¢
(c¢) x +§( =9,z-y,¢na,. -

. (aq) ‘xm__x_ a36 ‘2 =25 . / -

50. Express ea.c.h eqantion in terms of two other coordinate systgme ( Assume’

that all relate to 3- space.) . of
(a) z=5., | (8) " <® - yé=16. . ‘A s
- (v) 4y bx s _ | (h) *r=2co8@."
‘ (¢) T=7. & () n'.s's.n‘?q;-‘e cos ¢ o
. @ R ryTeafo s, & (3 pstng=3.
| A(e) a9, (l;) xefyax‘-&. b .
"-)‘(f)pcosa=6. o ,(.(ﬁl) P'*sinecdsq-:':coge"’.
| . . PR S

Challenge Problems

Describe and sketch the aurfaqes Tepresented by Equatione 1 to 6 .,
. .. c s
- ' o l&xE’

l. z=siny . h, +9y‘ +362 +8x S5hy - ?23 = g’j
. %2, ¥y =cos x ;. 5. 32+~y -Ez + 2% + 6y + 8z = 10
. ‘ ‘ -
3. 'z=x2-‘-2x L 6 *z—?—l-éxe' & e
.. ‘ - " “‘ :il i x +y . . ]
] . * . .
hed LA "
. \*7 -
a - b . Py -

« . - -
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A . - Chapter 10 | o ;
; ;' GEOMEERIC TRANSFORMATICNS
10-1. Why Stud,yFGeometg_ Transformations? ‘ T .

4 oYt
In previous chapters you have had conaiderable eif:perience in rela.ting a

-+ graph and its analytic representation. Because oi: their importance, conic.
sections were given very careful treatment. Despite this em'pha.sis you may :
ha.ve noticed that, with the exception of the tircle, all the eonicq'you

" sketched had ‘their centers, foci, v;ertiqes at thé origin and one or botli_o?i

. the coordinate axes as axes of symnetry. N ~' .

~ .
", . f

However, in va.rioua gtudies whefe the graphs of the equations of conics
. {and’ other, curves) are of importance, one encounters more ccmplica'ﬁed. an&lyfﬁc

representstians of these TUr'vesS, / Conéider, for emmple, t.he .folloving psirn

- L f .

of equations :

y f ) . ' " .
' 2 2 ' 2 2 . AR
(1) x* +y +1S¥-4y+‘#=9,x +y =/25, . ) .
i (2) £ - y2 - hx‘- by - 30=0, < y2,= 25 ; ) I { .
Y 4 T, . P
1 . - * d \\

'3) yé‘-x-éy-}-ll—;'(f y2=x. .

! . . Ca
If you went to the trouble of gra.phing all s;Lx of these equations, yc&x
would find that each pa.i‘r of equations represents»a. pair of eongruent graphs.
They differ only in their platement with respect to their coorﬂinate axea. e
If one is’ interested, in geometric properties of such’ gra.phs it' i8 clear that . .
the second equation of each pair is simpler %o em&lyze and wrill Q.literrea.&ly
yield information regarding intercepta symmetry,: aaymptotes, etc.&;ela.tivé .

. *to its coordinate system ’ .« < . : ..

\ : s . ‘. - . !
It is one of the purpoées of this chapter to show how we can relaté such

‘a complicated equstion of a curve to a simpler equa‘tion of t.he SRmE Curve

represented in 8 different coordindte system. The. operation which performs

*his task (amcmg others) is commonly referref to ak either a "transformation

of mxes” or & "transformation of coordinates”,

- EE A




In this chapter we will consider two types of transformations which
’ ageouplish the purpose just described, The type we tieat first (in Sections
/2 and 3) is _one ‘Wherein the opera%ion is pérformed on the'axés and the graph
g under Btudy remains fixed. We then turn our attentidn (in Sections 5 and 6)
to the Xype wherein the operation is performed on the points ‘of the curve
vhile the axes remain fixed., We refer to the latter type as a point trans-
forma;io?. ' '

Our task takes on one of two aapecﬁs. We may be given a reélationship

between the coordinates of P = (x,y) on a curve C and the coordinates of

- € P* = (x';§') on 8 curve C! and then investigate the correspondence betVEen‘

c ?nd C{ . On the other hand, the cogverse 1s considered: Given %yn curves ‘
. C aﬂd' C' and some correspondence between them, investigate the mAnmer in
which the eoordfﬁﬁ%ee of any point P = (x,y) on C are related to the
— coordinates of the corresponding point pt - (x'yy?)" dh cr . ..

-

In the cases of the three pairs of equations presented earlier, the
correspopding curves were actually congryent and the point corr&spdndence was .
. 1
one-to-one, In other.cases the corresponding curves need not be congruent

although there may still be significant relations between them, For exampl e,

on 6, you will encoumter a correspondence_be%ween a straight line and

& circle Wnder a transformation called an inversign.

~ Certain transformations preserve geometric properties such a&s the measure )
of distance between points on the original curve, ‘the measure of angle between ‘
two lines, the order of patnts on a 1ine, etec, \& ‘while others do not preserve
these properties. Discovering which geometric prioperties are invariant (do _
. 3 change) under & set of transformations Jls of significance to the agvanced
students of geometry becauaé‘these properties help them to classify the large
number of geometries which have been created, 'This topic-is discussed in

M .

Sectfon 4., . ' -

- ‘e t
P . .

-~ We ﬁay also speak. of the properties of a transformation. An important
Y r - .

.

2 -
ecessarily measure 8f distance. Transformations

-

. transformation we shall megt -in Seetion 6 has the property that it preserves
measure of angle but not ;e

whgch have this property are called conformal and hawve many applications in

science. ~ . ’ . . . . . .

. - ¢
{ e
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10-2. Translations. . ] ) 3 '

- L

'
Suppose we have a curve in the coordinate plane and an equation of the

curve, Let us consid® the problem of writing an equation of the same curve
@ with re8pect to anbther pair of axes. The process of changing from one pair

of axes teo another is called "transfo tion of axes" or "a transformation of

P

coordinates"” as stated earlier.

A
One of the most useful, as well as simple, transformations is one in

which the newv axes are shifted in such a way that they remsin paraliei to'
" their original positions and oriented in the same direction. Such a trand-

formation is called a translation.
- f .

. PO ‘
\ [ v
* THEORFM 10-1. Given a coordinate system in a plane with origin at 0 .
" The axes are then tranklated so thatsthe new origin is at 0' = (h, 5 .

If tx,y) and (x',y*) are the coordifiates of a point P when .
referred to the original and new axes respectively, then xt =x -h

, | »and y'" =y - k., /] *
- 2 A - -~
R . y . - .
& — , ' . y‘ R
) S o Pldy) {
- - T s | P={x,y) -

"




[ ‘e - . v
at o, B .
- 10-2 g ) - _ S
: - (" : .s. - ks - .s ° ! “A -
. Proof. Let 'P'= [x,¥] , O' = [h,k] and P' = [x',y'] . ' 4
o) Frovem. Coy -
N @ b S
~  pherdEayles o LT
‘ (3) Thus {;c x!' +h < . ot
. -~ y = y" + k. ' - . . . (m&?) "

If ‘we solve these equa%ions for *x! end y" , we'obtain the "inwerse form":

St A S

yr=y dx A "

¥ ’ . s N
. . We shall refer to the, Equatfons (3) or (4) as the equations of translation.
' . P - . * om— ™

/'.‘ it - . ) * . :
. - PR " 1
/"_, ,  Example 1. Fix:xd the new coordinateg of the points, P = (-3,1),
D ve t Py = (8,-2) 1f-the origin 15 doved to (-3,5) . |
o - £ ’ €
. \ o Solutiony Since h = -3, k = 5 , the equationg of translation are: ]
‘ .~ . . .. ' . {xl = x + 3 » e
. ¢ * ¢
‘ . y' =¥ -5. .
Applying these equations, we see that the point P, = (-3,1)~nov has the

coordinates (0,-4) , and P, = (4,-2) now has the coordinates (7,-7) with

‘. respect t0 the new axes. ' o~
LY . . y'l % .
. 1 P
: i )
. ' I )
' et s — = — _——
A . 10'=(-3,5) < .
! [ . i - N
2 . ’
R ‘ .
q‘ [
. &
- * Y
¢ -
’ A - ,
- Figure. 10-2 '

\

O ‘ N . | . ‘- ' ‘ ‘ " fz’)(; | . “ ‘ \ v
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iy : . ' \

. [ .

Consider an equation of a curve f(x,y) = 0 . By the equations of

§ transi,ation, the coordinates x and y are transform‘gd respectively into
x! +

f(x* +h,y' +k)=0. The two equations répresent the same curve since the

h and y! + k . “Fhus the equation f(x,y). = changes to -

. poiht P(x,yﬁh whose coordinates satisfy re(x,y) = 0 is the same 8s tlie point .
= (x',y') whose coordinates satisfy f(x'"+h y' +k)=0. \

. - To’illustrate this, consider the 1ine £ Ln Figure 10-2 passing thrdugh
e the points P1 and P of Example 1., The equation of line £ 1is ' ;
‘ L]
Ix + Ty + 2 - 0 . We now replace X by xt -3 and y by y! "+ 5 and the -
equation of £ 1s now 3x' + Ty' + 28 =-0 . We note that the coordinates of

points iPl' (0,-w) and Pe' = ((,-7) satisfy this last equation. The new

equation 3x' + Ty' (fég - O represents the same }ine, with respect to the

i

new axes, x' and y' , with the new origin at or = (-3,5) .
. ' = ) L .
. . , : . !

.
L]

EEEEQ&E.E' Find the equation of the circle x° + ye +10x< by +4 =0

after a translation.mewes the origin to the point (-5,2) .

A . .
[ N &

. . ‘~
* Solution. 'The equations of translation are x =x' -5,y =y"' + 2 ..
il —

. v

: Substituting into the aquation of the cirele, we have ¥
u(xt - 5) + (y +,2) + 10(x" - 5) t Wyt + 2) + 4 = .

) A - .
e

If we expand and cp&lect terms, our 'equation simplifies to xtT+ytt =25,

ros

gVWe 1infer 1mmediately-that the, circle has & radlus of 5 units and tham its
center is at 0' = (-5,2) . If you were to find the locus (or graph) of the
original equatlion, you* would discover that you had precisely the same circle,

.

¢ after dolng ,this, you would appreciate the advisability of translating the
axes:' Note thet the principal differerce in the two equations is that one

contains first degree terms and the other does not. .

. ‘ ‘
‘o, ' [ Y )

¢ - .

The basic question ig: How do we know where to plade the new origin so

that a compli gted equation reduges to a simple ¢ one? This method is 11lustrat-
ed in Example 3e : . .

7/ | - .

EXEE219‘3. Translate {he aye 50\ that the equatlon of thi’circle

‘o : -
ToxT 4 yg $40x - by + 4 =0 can Pe written in a form which contains no first

dedpee term. - \

. "
- 393 195




10=2 o 3 ‘ )
.0 Y )
. 4
Solution: . . y

®

- c ' -
(1) Write.the equation in the form x° + 10x + y° - by = -k and

(2)

example

'
).'

)

. . ]
We note that the equations f i

complete the squares as follows:

(x°.% 10x + 25)+ (y° - Ly 4();) =L +25 24 or

(x + ﬁ)f +(y - 2225,

s .. .
If we let x' = x++5 and y! =y - 2 ,‘5?: last equation becomes

12+ |2= . - . R .
x Y 25 / . \ . - .

. - ) ¢

Vo= x +‘5:‘ ‘
- ade the equations of

4
(-5,2) . o .

y' sy -2
translation to ngw axes with thé origin

-

)

vﬂ‘- ’ . 3 9 . .
'Ebt_mﬁg}_e,"&.' Grﬁph theicurve Ux° - 9y2 + Lhox + + 28 2Q , .

Solution. / , S ?

(l)

. (@)

(3

Rewrite the equation in tl}e following form s:\ that we can use the |,
method of "compl. eting the}squa.re : 3

¢

h(xe + 10x)«- 9(Y2 - by)

Completing the sque:t:'e: ' | 3
/ W(xZ + 10x + 25) - 9(y2 - h§ +4) =28+ 100 -36

. - ¢

or 4{x +\5) :9(}’ - 2) =36 .
. 1

Substituting x*’= x+5 and y' =y . 2-, ve have

Hx"?- 9}[’2:36 ‘

7

12 ce
X
OI“ ) ) -—§— - T =1.

e

394
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, We recognize this curve to be a hyperbola with center O' = (-5,2) ." This

curve can now be drawn by using the method(s discussed in the earlier chapters.

¢
'

.’. y

————— b e Lo P
:S= (-5,2) X' '
) | . ' ‘
l ° .
S U S L . E ;
! X .
- § ) ' [} '
' - 5
{ » “ L
IA ! L -
! [ i ke
N - - . .. co.
Figure 10-3 . .
The translation of axes can be ‘uaecli to simplify equations of ,curves other f
) & .
than conics, .but at this ppint we will restrict our discussicns to s}ueh curves., A
. : v \
We will now generalize %he'ab‘ove: - . . :
: 2 2 2
« (1). A circle in the form {(x - h)° + (y -~ k})° = r° can be simplified
to xt2 y'g = rgk. : ' ' -
. ] : A 2 2
n 3 X - h) ‘(I - k) _ -
(2) An ellipse in the form. 5 + 5 1 can ®e simplified
w' a b
n o ° - '
| H -
to "2 s !’-2— =1, \
, a b
2 el N2 .
(3) A hyperbola in the form (2 - ) -*‘ - k) 1. can be simplified Xf
2 Ab2
a o
L ~ 5 ] ' ' . o .
£ x' y'o o { . . - A
° T -z "¢ . I *
a b e ¥,
. . . [ ] 14
P {4) .A pagabola in the form (y - k)g = 4p(x - h) or (x - h)g =o4p(y -k)
can be simplified to ﬂy'e = 4px! o'% x’:2 = 4py' respectively. J - s
r ] . ) ‘
* (5) The equilateral hyperbola (x - n)(y g k) = ¢ can be simplified
* Ay * . t
to x'y! - c¢c. .
, S o
L L . .
1 |
' 395 ’
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10-2 ‘r ‘ “‘ \ ¢ ‘ *
All-of the sbove can be doge by trensietigxg the axes to a new origin at
6 =+h,k) by use of the equations of translation . !

.

] {x=x'+h
S Cly =yt 4k, T S '
‘ “:\ - y * .
* - . .
(~' J -
* Exercises 10-2

) . . ‘
. N
1. Write the equa.tions of translation which change the coordindbes of
= (2,19) to (5,8) with respect to a new origin 0':., What are the

coordinates of Of with respect to %e first origin?

2. Determine the qquation of the bturve répresented by : \/
.o 2x° - y° - 12x~ by +.12 = 0 1if the origin is translated to (3}-2) .
N * . \ *
xt=x+ 14
3. Given the transformation, i . ) . , .
yt=y+ 6 _ ) {

» What effect does this traneforﬁatien have when it is applieg o the

. : curves:-
. /\‘
(a) xefyezr??' o - ' .
c. P 2 2 f . ‘ & )
x - .
. (v) 55 -L =11 P
¢ - a h e
N\ .

L. Points A = (1,0) ,B =(5,-2) , and C = ’(3,1&)' are vertices of a -
right triangle, Find the coordinates of these points 1f the origin is
moved to 0! = (-k&,-2) 'e.y & tra.nslation of axes. Using the ew.
‘coordinates give two proofs that an observer at 0' can prese t to
dephistrate that AABC is a right’ tria.ngle. '

"5. ’I‘I‘a.nslai"e the axes so -that the equation of the curve *
. ‘ ) E - y # 10x + hy + 5 = can be writ.ten in a form containing no firsty
*
/ degree termg. Indicate the equetions of tre.nslation, draw both sets of’

[

axes, and sketch thes curve,

6. Given circle-Q : xe + ye = &5 . Find the coordinates of t’hree'peints

-f . A ; B, and C on this circle. . Then find their codrdinates if the - .
origin is tlje.nslated to .0' =(1,-1) and the equatipn of the circle.
with respect to p'.. Verify that the new coordinatps of A ,'B , and

! ¢ satisfy the transformed equation. .

" . {

’ . 0 . . . !

<))
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. " . ‘
7. A line L has the equation 3x -2y -RS = C} .. Draw the line. The axes
a.re.cthqx translated twice ix{ succession in a,ccordance with the equations-

. x.='x'+ 3 . X1 = "+ 4 '
. (1) - .followed by (25 ‘
y=y'+2 ¢ Y"Y"+5 .
Find the cquation of L with respect td’ both the x'- and y'~ and
‘ x"- and y"- axes. Then find the equatiops of Sranslation which would
. hy .
perform both operations &t on What would be the effect of commuting .
b} translations €1) and (2), ?“ . . A

-t
’ ' ..,
» 8. Sketch the curves after performing a‘cohvenient, 't?a.nslation_ of axes.
Iédicate the equatidns of translation and draw both sets of axes.
- ) b

(a) y_2-6y-12x-3=45/' ‘ ‘

“. . . ' -

, 2 2 7

“ (b)* 3x" 4+ by - x + 8y -5=0 ~ R
¥ (C)\“‘szﬁ 6x - 3.y +12 =
(@) (x+ 3y -4 -12=0

S - (). (y + 2% = (x+ 2)°

#

9., Derive, the equations for the ‘Qranslation of axes with the new origﬁx at?

0" = (h,k) without thg use Qf..vectors. '
s ( ¢ . ‘ .
N . .- ¢ “ ' ? .
) . R . ‘ .
10-f, Botation of Axes: Rectangular Coordinates. . .

We next consider a potation of a' rectangular coordinate sgstem C . We,
£ introduce a new coordinate system C!' whose origin coincides with the origin
of C and whose axes are obtained h;f rotafpg the dxes of* C through an
' angle a . Thuse @ is an p.rigle in standard position whose initial side 1is /
the positive side of the x-gxis and whose terminal side is the positive side {
e of the x'-axis. Once agaif we want to discover the selationship betweer’ the

\ coordinatés of a polnt P in C _and the coordinates of the same polat in C'.
. The presencé of the angle o suggests the use of pola.r coordinates. We
consider the systems of polar coordinates as“fcciated with C and C' Dy ‘4"\\ .
. letting the polar axes be’the positive sides of the x-axI% and the xb-axis. .
Thus, &s we have seen in Chapter 2 , if P_j}s the point (r,8) in the pol&r
coordingte sys@/ whose polar axis is' the positive side of the x-axis, then-

t ~
’ L}

'_‘397‘ l201 | )




) y ) ] '
. X =1 cos 8 . ‘
. N
— (1) .y=rsin@ . .
3 . s ‘o
'.‘ ( .
- ) ’ .. t ¢
/ . ‘. . o - {7
. . » . lr-r . -
. ‘
c X ‘
¢ ‘ J
\/ //N 5
[
) + * ) K .- ‘ | J
A * “ : . . . . . . 'J
. ~ ’ Figure 10-4 -
B ; ‘ v )
T, in the polar; coordinate system vhose polar axis s the positive side
of the x'-axis, P 1is clearly the point (r,6 - a) . .-Therefore,
f . L[]
(2) x' =7 cos){B.-a) =r (cos § cos a + 5in @ sin g) .
) 'y!' =r sl (e—c:)=r~(sinecpsa—cgs"osina)’f v
. \ , E'
. Comfining equations (1) and (2) , we get. . .
. : 9 .
LI (3) ' X' =x cos Q¢ ysina :
- - y' =-xsing +y cos a
Jhe . / L
) These transformation equdtions areﬂ;en called eq_uatiéns of rotation.
p - =
! \ ‘ . f
» ' '\ . ’ M s - i
Mg 1. In'a given coordinate system, two points Pl and Pé have
» \ ' .
* . the.coordinates (2,3) and (-4,5) respectively, The axes are then rofated .
through an sngle of 30° . Find the rectangular coorainates(of P \aﬁd’. P,
i with respect to the new gxes., S
b b a
4
' N ! ]
] ) o 2 ‘—) ‘,.).f / . <
. / ’ . )



- \Solution-: Since s&in 30°

.

[y

£
substitution in the, preceding equations, - { -
. §1 =

- *

[

‘4

Thua }ts has the new coerdiﬁtes

.. -

2

-

. et S
* . L
' ¢ ¢

. 16-3 -
v
% ‘and  cos 30° -{%-, we have upon
1 .
§(f§k+y§ ) .
o
‘%( =X +'/§Y) . «
2/3 + 3 -2435). Y 7
-pai i et LK -
h+5¥§) w .
5 2 Y . % i |

P, has the new coordinates’ (—hﬁ r2

'S

m 2. Pind the equations relsting coordinates in*’C_ gnd C' whenm

- . o
C' 1s Sbtained from £ by a rotation of (a) \h;° p (0) =307

"we have, upon substitution in the

. N .
. Solution: ) . , -
‘ o 1
(&) Since sin 160 = cos:lin = FE: ,
) . . “
preceding equation, . }
.
{ TR | 1 1, ,
‘ Xt =—=x +——y =—{x+ .v)
* - 20 20 2 /
t - e . s r R )."l = -—l—x + _Ly. = 1 _x + y)
-, s s _—(,/‘é'
0 s . -
/5
(b) Since sin (-307) % end cos (-30°) = 3 we

£
" We can solve txg: x and y

~ (1) xcolsg+ysina=‘__xt-

(‘2) ’SC&}EQ;:\: sinﬁées

£ "y

ey .
x 8in” a - y 8in a cos

in termé*of x!

‘x,esina +ycosa=y'. -

a

it
x‘
o
o]

.
o]

. o Y
c’x = -y! 8in o .f

-

1
‘andk Y

-
.

£
v .‘
.
have
-+
) Ld
in Equation (3) .
¥
L Y -
£, R
N ~'\
. 2T
$ -, .



* = - h
(3) Addi?’\orre“aonding membe’,s -we havesy. ” i
. ,:% 2 \ '
T ¢ 4 kT.xcos a+xsin a—x'cosa-y'sina, ‘
'_ ' (r " xé c&ﬁ: q F sin a) = x' cos & - A s}a'u-; - )
» .
. henee, - ,xe=x'cosa-y'sinag .t -~
.- ' " ) G e
- () By a simﬂar\pmcess* y =x'sinag +y*cos a. ’ N

. We sha.'l_l re‘fw to either of the pairs of equa.tions - ﬁ

- i . . | TR +

-

\ - . : ,{x'éx'&os.a+y51n . {x:x'cosq y*sina “
{ , e -

»
y' =-xsin& +y cos a y = x' sin’a + y' cos a:

a8 the equatlons of-rotation.

“»

cnrme——y 2

_ when the axes are rotated 30°% 7 .
. . . ] - \

- _. ¢ - . - . ‘
Solutio o . . .
== . -. . N
(1) Since 6 = 30° , the équations of rotation are: R
x = x' cos @~ y' sin e-::%_(-fix' -y')‘ Y
- ' . . . . . r\{
. (2) Substituting in the equation 2x° + 43xy - afe =16 , and per-
' forming the indicated nltiplications, we have X
~ ‘
: , %(31:‘ - Qv'—x'y +yt 2y 4 -/_(fx' + 2x'y? - 32
S ’ o %( + 2/3xty? + By' ) =.16 . . B

e

(3) Simplifying, We have 2o y? o,
\ ) . )
We recogrp&e the gr@ph of this equation to be & hy-perbala.. The graph

in the x'y?> coordinate system cen ecasily be drawn.

+

i, f. .
. ' “ . ,‘ - € -
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Example 3. What equation represents the graph of ox® + Wixy - %,:2 =16




' N Figare 105 - .+ . .

mﬁt‘mn of axes through an angle of 30° made the Xy-term
disappesr. It was the elimimation of the xy-term vhich hade it possfble for
us fo grapﬁ the curve muchsmore readily,. What we have'not discussed 154
niethod for de‘términing through what angle a given set of axes may be rotated
to eliminate the xy-term. ”U;ai(’ortuna'.te_ly we, cannot develop tﬁ;.a topic hére.
The interested student will enjoy studying this topic in the suppiementm
chepter, : > '

M_lg»ﬁ. What equation represents the graph of x

the axes are rotated U5° 2 * ;
*  Solution o \

£

.
(1) Since a = 45° o the equations of rotation become: ) )

.
.
. “ ; e

y = —{x! + y') . A
=0 . ‘

. 1 ] .
(2) Substituting in the equation xg‘- ye = 4 we have _
- £

. ) %(x’g - ~2x’sr' + y'e) - %{x*e + 2xty!? +¢r'2) =4,

13) Simplifying, we have x!y! = -2 .

\.



e -

S T . ' Figure 1056 . * '
e ‘ . .
b In thi@ example, the - equation with which %re began,haﬂ no xy-ternu After
. + & rotation, an xy-term appeared and the sqpared terms vanished, It may seem
' d at firsK glance that we" mde a simple problem th&r&f There m.sc{ be a gooc}
reason, however, vhy we may want to penverf an equation from one form to , .
» another, ) . . ' ' '
. ¢ A -'1 . 4 . ¢ Y
R The equation x'y' = -2 tells' that ‘the variablés x' and y' .are

inversely proportignal to each bth T. Iﬁverse proportions are of frequent

occurrence in science. For e

,tin traveling & fixed distance at a

elg&n;oportic?pl to thg time, the velocity

of, the wind is inversely proprotional to the pacing of the' isobars j/lines of

constant rate the speed i;. ip

~ constant pressure) on a weather map. ’ We are trying to point out in this
instance, that the stu?o}’ a curve whose equation has the .form ¥ =k, &
; constant, may be more profitable than the study of the curve whose eguation

has the form X - y‘ = o , & constant, -

- We now generalize the situation discussed in E:xa.mple h. 1f we start

with a second degree equat,ton contalning no xXy- term, a rehe.tion of axes
through ap angle a , whose measure does not equel -15-25 s fcr any integer k,

will usually {rxtroduceian xy-term into thé transformed equation, (An

4 '3

. exception to this is the equatlon of a circle).
%
. f.

LAY % ’ ’ '
} s ‘ .




Consider the equation of the second degree wpich coptalns no xy-term.
. ‘ . -

* - 'i ’2 2 ) '. . \'. . ' .
. Ax" + Gy 4 Dx+ By ¥F =8,

and apply the equations cgf\,ro'tation . )

x=x'cosa-y!sina

I

-

x! sipag+y'cosa.
== T

‘After we substftute and perform the indicated o_pérg.fions, titis equation

. becomes: ' . . : . . *
H * A -

1 »

ArTx1C 4 Bixly! + C'y'2'+ Dix + El'y + F! = 0 -

1 -

with respeét to the new axes, The hew constants are in terms of the consté.ﬁts

°

A,C,D,E,and F, Wien A' = C' and B' =0 the equation represente

a8 c}rcle. (The details will be left as an exercise.)
. %

This last equation is called the "General Equation of the Second Degree™

and is written without grimes as follows: e .
T ) « : N |
2 2 .ot
Ax” + Bxy + 0y + Dx+ Fy +F =0

. j‘&}:n the Supplement to Chapter 7, we consider the method of graphing .such
equatiions, In particuler you will learn how %o remdve the xy-term by a
rota‘ﬁ‘bn of axes through a determined angle 6 . You have already learned

4 how to translate the origin to remove the linear ¢erms. When both ‘of these
aperatiqns aré performed, the equation of uie curve is in a form which is °

simpler to analyze and graph. N .

. ]
)

Polar Coordinates, It mskointed out earlier that when th_e;. polar axils
is yo{;ated through an angle whosé measure is a , the point P ~ (r,8) will

have new coordinates (r, 6 - a) . Flgure 10-k .11lustrated this relation.

Let us now consider a polar equation -

-

' ep ‘ .
(1) . ! 1 - e cos (6 - a)

which represents a conic whose axis mekes an angle whose measure 'ls a with

the polar axis. We fl-Ius;t.;jate an ellipse in such a position in Ptlgure 10-7,
1

- 2

403 2 /') 7




. ’ " Figure 10-7 )

It "thé polar axis is nowv roteted through an angle vhose meesgre is o, .

then an equation relative to thé new polar axis, GA L will be .
. ; ’ e - ' _
, (2) | 4 r 1_ecose,,_where 6' =6 -~ a.

" -
]

- You will recognize this as & polar equation of a eonic vith focus at the pole
.and axis a.lcng the nev polar exis as discussed in Chepter 7.*- ° L

This mtaﬁion enables us to graph the same curve by using a simpler ’\/
equation, This effect, pas o‘bserved earlier in Section 10-3 which. was CO}Y
cerned with rectangular coardinetes. ) ‘

©~  The polar eq_ue.tion which represente g circle is r =k, & eensten‘b. .
- - &

This equation is independent of 6 and is not changed by any change in 8 .
€ ' ‘ . * 18 , ¢ t e
- B . N '
Example. Graph x = - o BN | ,
3 - 2 cos(8 + 607) |
¢ ) - . ' .
Solution, We first rotate the poldr axis through an angle of -60° .
The eciuation of the curvé relative to the new polar axis will be ' : o
4 ) r * 18 * . .
= —J——_——r . ’ *
3 -2 cos 6 , .
This equation represents an eljipse with 1ts focus at the origin and with .
1ts major axis along the new polar axis as shown in Flgure 10-8. T
. . ' ‘ .
. » '
‘ . L &
29K
i
Qo . Lol
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. * .
. ]
! = ' . ' Exercises 10-3 : .

1.

3.

.
-

Points A = (1,0) , B = (5,-2) , and C = (3,&5 are vertices of a right
trianglét Find the coordinateé of these péints’after the axes are
rotated 1509.. Usihg the new coordinates, show that the area of ‘the
triangle has not changed. '

*

What is an eguation in terms.of x" .and y! of the line
3 x+2y -8=0 agter the axes have bedn rotated -3qf ? What is the
s1ope: of this line in the ney coordinate system?

Given the equa&iona of rotation

x=x"cosa-y'slna,

.Y - x"sing+ y' cos .

<
. : ‘

Solve these equations for., x* and y!. . L \

What is an equation of the parsbola x2 = ¥y with respect to axes making
en angle of 457 with the original axes?

.

L s -
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Se ‘Find the ;:?ransformed équation if the nxes are rotated <hrough the

: ‘" Indicated angle. C e " » 4:
- .‘ ¢ ' ) o
- (a) £ -y =3,.,0=% )
% : i . cl “. .
. (v) 23x ¥ Sxy ¥ 17y =25, /gk 1s the angle whose tangent equals 3 J
() w=h,0=F , v o
\ - . ’ - \ ‘ P .
] . 2 ar_ X : , .
(a) y =2+I‘,G BQA ' ‘ R * ! ’ e, .,
. 2 5 .2_‘ .. . . \ -
6. Given a circle whose equation is x“ +yr=1r .+ Find the equation of ¢ )
d ! . this circle with respect to the .new axes after the originaI axes undergo .
-+ " & retstion through any angle whose meagure 18 a .
s r?
wg: Graph each of the following after rotating the polar axis to s }fy«the
» equation. : o % -, ; :
;) 6 — : -
a r = N
") 2 . cos(o - 5003

10 . ‘ o

(v) r =
5 + 3cos(0 - 120)
rd ’ . .
& j
(¢} T= 0 .
+ s 3 - 30 .
L+ sin(y 5 30,) .
P .
L 3 »
- . ! LY
-, . ‘ ¢ : \ 4
o -Challenge Problems
) le. Clven the general eguation of the second degree v .

Ax2 + Bxy + Cy2 +Dx+ Fy + F=0 . Find an equation of its graph {f '

-

the axes gre rotated through an angle of & . Let A' , Bf , and C'

1

: o 2
“ be the coetficients of x'  , x'y' , and y! respectively. Prove that
: , B E
' B! - LAQ! B% - XAC . (This expression 32 - hég is called the
characteristic of the equation.) ’ -

¢




x)e. A set of axes is rotaﬁﬁd through an angle of measure @ so that the

*eqhations of rotation are- <
. ? . . &

. ?
' {x = x! cos a -'y' sina . ‘
‘ . ~S
o y=»sinag+y' cosa )
¢ L— .
This rotation is foll@ved by & seéond-&otation through an angle of me&sure
8 so that the eQuations of rctation are: o, e ;. .'
< ‘ {xr x" cos e - y" sin 6 .4 , . ‘ _‘5
. R . A} - . . ) -"4" .
g . i y! x" sin 9 + y" cos 6 ' . / ' .
. - . R S
. 2}
Prove analytically that the coordinates ka,y) and, (x",y*), are related
by. \f - . . " R ' *
. 4 i -
, v : {x =x" cos (8« a) ~y" sini (6 + @) . -
':'. y=x"sin (6 +a) +y" cos (6 +a) . .
. . . .
. ‘ »
.. N ) ‘ :
10-51 Invariant Properties. , B

It wag mentioned in Section 10-1 that certain prgperties of gecmetric
objects often remain the same under transfofmations$ Exactly which properties
remﬁin invariant depends, of course, upon the given transformetions, ° ‘

, The geometry we are studying, called Euclidean geometry, is identifie; by
the fact that the measudre of both distance and angae of geometpic figures
remain invdriant under translation and rotation of axes. Many other geometric

, broperties also remain invariant. These include the order of pointi on a line,
collinearity of points, and concurrengé of 1ines. Here we shall discuss o©
the measures of distance and angle.” The other geometric proﬁerties will be

+

11lustrated in the exercises,

\

& /.' oy ) )
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- . l ) o - »
_ ) We shall . first consider the distance ‘oetween two 'points in a p}ane under.
B ] ~t - . i oo
S a translation of axes. Y . (
« ' , . ’ . ) :
o i . . e . S r -'!!l
- . . Y YL, » . . Pzz ("z’yg) .
N - o ] . ]
. . ‘3 T Pg=(’};ry;)
. 4 )
[N - ~ | .° N
- /. ‘ . = . : a’ .
s ¢
v ! f
* ': « [ ] i ) ' . ‘
‘ : % ' . - %_ El=(l|,¥|) ' -
\ . . : | PlE (x..ys) S ‘.
r3 V . by : I M -
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‘ ! kd
- ¢ 1 \ . .
G . : ). X - -
! s . . . I'
/ P
5 |) La )
4 . . ' /7 ~
. ‘,‘ R ’ . Figure l;) -9

In the f“igure, the x~axis and y-axis with origin at O he.ve been
ti'{anslated so that the new origin is at OF = (h ,k) . with respect to the old
, axed, Observers a.t both O and 0! 1look at the same two objects and con-
sider the disﬁance between them. The observer att O refers to their locations
) as positions P, a.nd P, e.nd the distance betveen them as s , while the

¢ obmerver at 0! refers to the pasitians as P ' and PE' and the d.iatmce

<«
-

between them as s‘ @ s .

You and T know that 8 = s' , But how can the iwo 'observers reconcile

their observations? To answer this quest',ioxb we 11st the khown facts:

(1) s = a(p,p,) = Ay - x)% + (¥, - e , ,

- 2 ) a2 .
r 1 t) _ t 1 1 - ? !
end st = d(P1 3Py ) = ﬁxe )< (}’2 Y1 )

: [ (2) The equations of translatlion relaying the‘i coordinates are:
/ v
v ] . x' =x-h - .
. y' =y - k
.Using these facts, we have: . \
~
[y . XE’ - x2 - h
. (%) 3 Therefore x ' -« x 1 :x‘-xl .
1 .2 1 )
. . x_l = )C_L -h s *
. ' ) N '
‘ - «
o | ' ~ )
, 2'P8>




“t " . r , .
. "‘ ./ “ , . » L lo-h
-~ : , P / ‘ :
V . T \ ‘ °
T Yol =¥p - k ) ), ‘ A
7 and .» Therefore, y. ' -y,'=y.,-Y%¥ ' ¢
: Yt ey -u. e Yo "N TV ¥y o
- l l . : . f ot
° , (4) We substitute the expressions fmm (3) - in,the formtﬂ.s fc‘ gt , -
A &'
‘. . obtaining &' = fxg xl)2 + (‘ye - yl)2 which is i(iqrbical with
T : the i;_ormuis for s , as vas to be p_roved. . T - S

A numerical probl 1 mRy help in msking the sbove discussion cl&rér Let
e = (5,6), R, -ly?_') and " OF = (5,~2) . ., Thus the equations of tra.néla-

. h K - R . t
ﬂtidha.refﬂ:x-i‘e.nd y'=y+2..‘ B : <o .
~ The coordinates of Pl" , arg (-'-1,'8) . gnd of 'P2' are (-6,4) , . Thus
'. . ) . - ] -
*‘( RS = VBT 16 = i Yy a( Py, Pplr="Y25+716 = /L 4 and we have

— ]
‘a(p l,PE) = d(Pl ,P2 ) . ‘

" . .
What 1if the axes in the above probiem had been rotated instead of

t_renslstfd? We would then consider the following:.

. L J
» ¢ ..
(1) The equations of rotation are: - . R 4
. . {x'zxcose+ysine, ‘
¥!' = -xsin 6+ y cos 6 . ‘
P = cos Q+y sin e and cos 6+y,. sin 6 ;-
' " g0 that’ ; gl xl 1 g x2 x2 2
. T _ = -
= sin e +yl cos 8 and ye X5 sin e+y2 epsug, .
) L . 1 _ - -
. Therefore,  x, :q = ‘xz .xl) cos G + (yg yl) sin 6 , end
¢ > L . t - . ' 'o.‘ -
vo'!-v, (xg xl) sin 6 + (yg yl) cos 6 .
"o (2) Squaring and adding corresponding members, ‘we have:§
J | - S Y S VR 2 .\

(. (x' - x 1)+ (y," -y ") = {x, =% ) (cos” 6+ sin" 6)

e ) ' + (y —y)(cos 9+s1f126) '

\ _ ’ 2”1 s

' 2 . - 2 2 ' 2
T _ ] ' ] - - -
) br_ (x,' - x*)7 + (y,! - y") (x2 x )"+ (y2 y)7 . .
+ ¢ ‘ .
r > p s -
We see ths.t" stance 1is ir{xvs.gient unaer‘beth rotation and translation of axes
and we state®this as a thecrem: 7 L
Iy

A
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THEOREM 10-2. The geasure of distance Betweell two points 1s' invariant '
‘under: ) ' S ‘
Y (a) a translation of axes S A
‘ (b) a rotation of axes. = —+~ , _ LI '-0 -
VA \ ] N S

The invariance of the mehsure of,angle under a tré.ns],?tioﬁ or a rotation

. . of &xes. follpows directly from Theorem 10-2, . 4

- ’ * . ' . °
. - Conside:i «MBC determined by A = (xl,yl) , B < (xe,ye) , and
- L C . -
C = (x3 ,y3) . Under either one of the above tx‘ansformtiong,. the points+ A , .
B*, and ' C will have new; E:'oordi'na.tes. They will rnéw be designated as- . '
t - | ‘0t . 1] 1 . ?r _ T ] .
A - (x.l ¥y )'4 B! = (x,',¥, ), and‘_c -_(x3 »¥3 ) wit.hirespect to the
nev axes, - = . oo :
Since distance betweer points is invariant, we héve AB, = AWBFY,
BC = BCY , and AC = ATC' , Hence, MBC = AA'B'C' and the. corresponding
angles are congruent, o ' . '

1

FHEOREM 10-3. The mefsurd of angle 4s invarignt under:
(a) & translation of axes. . , .,
(b) & rotation of axes,

Tt would have been possible to prove the irveriance of the measure of
angle under translation or rotation independently of the invariance of distance
discussed here. We could start with ~he formula

R
Aon? AvmS )

and consider the lines L, : ax +by +e¢ =0 and L, atx + bty + ¢t =0,

#

cos 6 =

Upon the translation of axes, the lines Ll and L with respect to

-2 ’
the new axes have tixe equat;ons .-

. Ll':a(x’ +h) +o(y? +k) +ec=0, . '{‘f
or . . L“L’ :&x'.+by'.+(a.hf\+‘bk+c_)=0. . - {
and ) CoL a¥(x' +h) + b yT +K) 4 et =0,

. Lyt @ oa'x! Fuly! + (a’h + h'k + c') - O .

) : e B 1
The slopesof Ll' is given by m' =¢ =m , and the slope off L' 1s given

410 214 \



by mE"= -%;—=\m2 . Since tig slopes &Qe -equal, cos 9'=eos-6 and 6' = 8

1 for the principal value, Hence the measure of angle is inva.rie.nt undei' X .
" translation. - P . . ' . (

.

LR}

1.

The proof of the invariance of augle uhder rotation ‘involves considerable
algebraic manipulation and is left. as a "chall e" exercise. .

. .

N
-' ¢ ! - [ ]
. . . ’ . €. . v, -
- ’ e Exercised 10-4 '
p.
(a)~Rind an equa.tion of the line through A = ._(2,1) and B = (0,4)
4 and draw the 11nés ) . ‘ ) : .
(b) Find the coordingtes of A and B a.nd At equation of the 1ine
after the origin h8s been translated to (- ,=6) o <! '

(¢) vVerity that d(tB) is invariant /d\er this translation,
. 1

T \

s -

(a) Find the coordinstes of A gnd B and an equation Qg‘the line
after the axes have been rotated 90

(b) Verify that da{A,B) 1is invariant under tﬁis rotation.

(Refer to Exercise 1 gbove )

Given line L : kx - 3y - 12 = O passing through A = (0,-4) ,

B = (e,—%*) and O = (3,0) . .

(a) FInd the coordinates of these points (now renamed A* , B' , and ct
respectively) and an equation of the line (now called I‘:) when the
origin hgs been tra.‘xmlatgd to” {-1,-1) . / .

(b) Verify that the order ai; pf)ints A? s B' , and C*' 1s the same as

, thatof A, B, and C. '(That is, order of points on a line i§
invariant, » Ny

(c¢) Verify that A' , B' , and C' are collineaf. (Thet is,
collinearity of points is invariant under translation.) N

Givenlinf:sLl:,hx-_%y-‘j:O,Le:x-Qy:O,and ‘ .

LB:Sx-ﬁy-‘(:O.

(a) Verify that L, , L,, and L3 are concurrent,

(b) Find equafions of these 1ines (now renamed IL,* , LE' and LS‘) - N

af'ter the ortgin has been translated to (3,-2) . '

LN

-



. . 0
* 4 . \ !'

(e) Verity thnt Ll' ,' end L' are concurrent.‘ {'That 1&,

, concurrence€ of lines is invariant under éganslétion.)

f ‘
'(d) What is_the relatian betveen the poié&.af c?zpurrenqy of ;1 ’ L

and "L an&thabole L"euidL3 ?‘-

3
(e) Do parts . (b) ’y (e) , (d) 1f, instead of‘translatitﬁ.,th% origin,
the axes are rote.ted 4s° \ N
4 -
5. Giv&n lines L :\?x + 2y -_é‘c 0 ‘. \\;
- end L?£5$-y-9=0. L roae }Q‘

L) - ) ‘
() Find the acute angle between L, and L, at their point of

intersection. - P J
'(b) Find equations of L, and L, (now called L, and Ly') ‘after
- - &

thdvorigin is tr!nslated to (2,2) . .
(¢) Find the engle between R .and L,' .and verify that thaeangle

ig invariant .under translation. ¢

, 3
- ‘
..

» Challenge Problem .
. - . J

Prpve that the measure of h%gle ig .invariant under a rotation of gxes,.
without makipg use of the invariance of distance.

/

10-5, Point Tramsformations

I® the previous sections we considered an operation called the "trans-

formation of axes"., We now consider another type of tranformation which

achieves similar results from a different poirgihof view. However, this new
point of view leads to significant results, such as the transformation of &
given curve into a corresponding curve which is not congruent to the original.
This we could not achieve by the original gpproach.

<
t

We now consider a transformation, called a point transformation, which
; : 7

carries each point A into another point A' in the same plane, Thus tpe
- - )
points of a figure F are carriqd into a set of po{pts forming a figure F!

as shown in Figure 10-10. THe axes.remain fixed,

]

k4

~
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) - . .
. . Figure 19 -&?(S >, 8 "\
) . PL
In thls sense & t formation, }é'e.n eper‘ation by vhich each elen\ent of a

gecmetrlc figume is Neplaced by another element Another wsw of expressfng
this concept 1s that a ti-ansformation—is 8, one;xto-one correspondence or .y

m of each point of A onto a corresponding point A'.. The pléne is

mapped onto itself. A goint tragsformtion is wriqten symbolically a8
A —=AY a.nd- Al iswcalled the image of A . \

We can also conslder. translations and Totations as point trarjfortﬁa.tions.
In Figure 10-11, P=(x,y) has been mépped into P! = (x!, y') by meving‘f the
point herizontalhr a distance of h and ve.rtically a dista.nce ‘8¢ k . Thus

L]

. L)
x +h .

B {xl
- Wyt =y k. S S

Another way to write this transformation is (x,y) —s (x4 h,y + k) . This

Al

' .

\;“

form will be used frequently in the remaindes: of the text. e a &
- v -
- PPl
et '
=
-
R
‘ X
Figure 10-11 ~
/ ¢
This pair of equations is ‘similar to those derived earlier for a translation
of axes; they differ olﬂy in the signs of_‘ h -and k ./This occurs because
we are now moving the point and keeping the axes fixed. T - -
, A -
/’ 1S

x



The following example will 1llustrate this fact.

'Let points A = (2 0) ,eB =(2,1) and C = (4,1) be the vertices of L
triangle as sl_aown “in Figure 10-12., Thesefpointa row undergo & point trasfs-

rmation given by . e N
- {5:; —x+ 4 . ‘
~ - y‘ = y + 6 e . 2 4 ‘{
(3 - . . ¢ ) . . ‘-“‘
Thus . A= (2,0) —='AY = (6,6). <
= (2,1) —= B' = (6,7) o
_\ C = (h‘,l) — C‘-‘= (8,‘() .

L R . ¢ -
R B i A ’
- (2,07 () ‘
T o A v - . X
(2,0 .

~ Figure 10-12

You will note that AABC has been mappedbinto AMATBICt ., You .dhould
also observe that the game "visual effect" could have\been achieved by
translatimg the x- and y-axes to & new origin at (-4,-6) , What ve are
‘saying is that AABC would have the same relative position and appearance to
s person standing at point (0,0) as AA'B'C' wouid have to a person standing
at point (-4,-6) » Note thaﬂ’ghe coordinates (-4,-6) are the negatives of
the yalues of h and k wused in the point transformation.

A rotation is now considegxged as a mapping i which each point in the
plane is mapped onto a point the same distance m the origin ag previously;
When, P —= P' and Q —= Q' , the rotation will map /POP' into the
congruent angle QOQ' . In the figure, A = (2,0) has been mapped onto

ot ( }5‘111-21‘9 .

,
e!
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Figure 10-13

. ) P
= (f§,l) by rotating through an angle whose measure is 30o ; both points
ﬁe at s fixgd distance of two units from O . A compdarable visual effeét
Would have been achieved if the axes had been rptated through an angle whose

(o]

measure is -30

, and A" = (f',-;) located on the x'-axis. The idea we

are emphasizing ie that A has the same relative position to an\observer at
A" as A' has to an observer at A . Also, OA has the sam¢ position with
respect to the x'- and y!-axes as 0A' has with respect to the x- and y-axes.
A similar statement could be made rega.rding the rctation of muf polygon or

for any general figure F . The angle of rotation could be genex‘ﬁlized to be
L /
any angle whose measure is Q@ «

. We now return to the concept of reflection which was discussed in detail
in Sectiowé-e with relation to the symmetry of curves. We shall now define *

certain. relfections in terms of point transformation as follows: ‘

L} . “ 4
‘ (1) A reflection witk respect to the x-axis is given by (x,y) — (x,-y)

‘ A (2) A reflection with respect to the y-sxis is given by (x,y) —= (-x,¥)
)l (3) A reflection with respect to the origin 1€ given by (x,y) —e (-x,-y).

Note our use here of the t‘lternate‘:iatétion-indicated' earlier in this section.- -

¥ N - -5
Reflections with redpect, to lines L and L' parallel to the x- and °
p y-axes respectively are best t:I"eated by transiating the x- and y-axés to
‘ - coincide with L and L' . In accordance with our f.'ractice regarding nota-
tion (we shall now refer to lines L and L! asfthe x7- and yf-axes respec~
tively. Thus the point transformations are considered w-lth'respect to the
%x'- and y'-axes :md to the new origin at 0' = (h,k) as_shown in Figure 10-1hd.
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We can considef reflections with respect to any point or line but the ' /
equations ‘of transformation are often difficult to state explicitly. We

consider this subject beyond the scope of ‘this text and re¥er you-to the
challenge exercises in Section 6-2, '

¢

Sone reflections of* segments are indicated in Figure 10-1k.

. i)
i(‘g.’z)
. "
{
N
R i
‘x“y')l :
]
f {
! A
0 ! i
: .
[} t ! '
P :
(‘.;"y') 1{ -
1 N .
LS . . ) i Pé 0 ‘ X X
(‘21-,2) - - '
v (%,y) —e (%,-y) o {xy) = (-x,y)
. . ‘ L]
‘ Figure 10-lhe Figure 10-14b
. _ . ..
' f‘ ) 1‘ y o ' P
. X Y . L (?,h)
I’ : . : PI
/ | oD
II - EE . : :
Lo (%24 ¥g) ! TR=(x,n) !
’ [’xt! i § P2= (‘zr h) :‘
B O el R L) *+=—_1
\ ’;:‘ 0 X 0‘ : : . '
ttt ,[ ’ (h*,k)} P‘" :. i
P o . 0N |
("xzz'yz) ; 0 ; : X
! ’ i . {
] { . 1
P| / l P‘gl
N - | (1)
(x,y) —» (-x,-y) . (x,y) —= (x*,y")
(x.ny) —_— (xtg'}")
Figure 10-1hc :
* : 3 . Figure 10-1hd

2

mg My :
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In eachy of the above 1llustrations, 'd(P,, P 5) = &(P',Pyt) . It is

_possible to prove that distance is invariant under the\s‘et of all reflec€ions.

*

 We present here a proof of the first case where a line segment is reflected
with respect to the x-axis.

. 2 2
. Referring \',o Figure 10-1ka, we have d(Pl’PE) =/ (X.a - X-l) + ()’2 - Yl)
o 2 ' 3 2 2
4 T - - - - = -
and d(P;*,P,') = J/(xe x)" 4 (v, + ¥ ¥ .. Since (-y, +y)"=(y, - ¥))

Y = ] '
wve have d(Pl,PE) d(P1 sPy ) .

3t is also possible to prove that any translation, rotation, or combina-
tion Of translations and rota.tions, can be accomplished by a series of no
more than three line reflections:‘ A proc.f will be found in the Supplement
to Chapter 10. We shall merely illustrate it here in three éxa.mples. '

Example 1. Show how the translation of AMBC to t.iie new position
indicated by MA"B'C" can be effected by a series of line reflections.

'
1 C
——— A —— =
1 {
! i -
1 ] .
! |
1 i :
' '
§ R
! 1
4 I l
i i
—_——— = T
i t
7 ' |
i
A~ ] A T
i / 1
i s 1
| |
"L, . tLa

Figure 10-1%.°

In Figure 10 15, we see that AABC has been transl at,ed to AMYB"C" by

& serles of two refe} ctions. The axes of reflection, L] and L,) , were

.selected parallel to AC ., Axis »Ll may be ‘chosen freely but there is only

one position possitde for Lg
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Example 2, (Seme as Example 1.)

& -

c . .

Figure 10-16 g

In Figufe 10-16, we observe that AABC has been reflected with respect
to éxes L, and L, , vwith the result that it has been both translated and
. \

rotated,

Mﬁ 3« Demonstrate how axes of reflection can be selected to move -
a directed line segment from one position to another given position.

. ‘ ' \,‘-

A . ‘ ' 'l

/

L
t /
1
~ % '
P ;
!
i
I
.l
l
‘/‘
|
A «
-~ . Figure 10-‘1_‘{
In Figure 10-17, 1B —ﬁK"B"' by a serles of at most t%ie line (*

;eﬂections‘ by using the follovipg,procedu.re.

(1)
(2)

Draw AB and A"B" intersecting at P . .
- - -
Bisect angle P and call the bisector FP? ., .
Reflect AB with respect to PP', AVB? , the image of AB , will

et
1ie on A"B" .,
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- “ * ‘ ’
O, (4) Construct QQ' , a perpendicular to BYA" . Reflect ATBT Wwith
o am— i
\ respect to E{E’ .. Its image D¢ 1lies on A'B' and coincides With

* B"A" . » .
: ;oo _ .
(5) Construct RR!'., the perpendicular bisecto{“ of CD . Reflect CD

with respect to RR' . Thus D —e A" and C —+ B" and the
order of points on A'B" is the same as that of AB .

The selection of axes of reflection when AB||A"El 1is left as an"*
i ' .

exercise.

The effect of'one or more r;eflectipns upon & geometric figure can be .

.y

+ gtudied analytically 'as well,as by ual construction and observation. To
o~ «

[

{llustrate this approach, we shgll consider the point reflection
(x’y) *(‘I,-Y) . :

)

[y

Upon apply.ing this transformation to the line L : ax +by-+c =0, the

i equation becomes- L' : -ax - by + ¢ =0 or ax +by - ¢ = 0. The lines L

| \fand L' are parallel but the 1nt§1:::cepts on the axes ha.ve different s.ignm
Specifically, the 1ine}2w + 3y - 6 = 0 , with intercepts (3,0) and (0,2)
fransforms to the line 2x + 3y + 6 = 0 with '{nt‘ercepts (-3,0) and (0,-2) \-

¢

- . .
When the same iransformation is aspplied to the circle :r:2 + yg = r2 , +

we note that there is no change in the equation. This result verifies the
fact that this circle is symmetric with respect to.the origin. A similar

resuﬂ is obtained fo;,.che ellipse: b?‘xe + a.gyg =‘32b2 , the hyperbo?.as
3 e

,(and any other¥y

. The circle xe + ye +Dx+Fy + F =0 transfc.;rms 1nt!another circle

bex2 - agy2 = aabe and xy = k , the cublic parabola y =x

curves that are sysmetric to the origin.

. x2 + y2 -Dx - Ey + F=0. The radii hgve the same measur but the center is
Lo D E D _E
now at (§ . 5) instead of at (- 315 -é) . Figure 10-1fi {llustrates the

effect of the point reflection (x,y) —» (x'y') upon the circle

C: x2 + yg - 4x - 6y « 12 = 0 . The equation of the transformed circle is

.

ct :.xe + i +hx + 6y - 12 =0. C and C' both have a radius of %5 but
the center of C' is at (-2,-3) while that of C 1is at /2,3) .




Figure 10-18 .
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|
A second ;eflection
Pt T I 2 2
will map C* into C" : x + y
c" = C .

of the same type and with respect to the same point or line.

transfcrmations, other than reflections have this same property.

(xt,y') — (x",y") ' with respect

Y
to the same point:

- 4x - 6y - 12 = 0 and we obgserve that

discuss one of these in the next section.

s

A similar result 18 obtained when any reflection is followed by one
A number of
we shall

. . \ *
A variety of point transformatione will be presented in the exercises.

Exercises 10-5

1. Given points A = {(1,2) and B =
. respect to the
! (a) x-axis
(0 y-sxis
Verify in each vase that 4(A,B)

(3;'14}

{e)
(d)

origin

line- x = 6 .

is invariant.

-

'

Reflect A and B with

E\Z‘lf The equation x' = x + 2 may represent a polnt transfqrmatien along the

x-8xis.

Select any three points on the x-axis,

find their i

s under

‘  the transformation, and determine two properties which remain i{nvariant.

Koo

<04
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3. Perform Exercise 2°for the t?apsférmaxicn x' = 2x . (Find three
_‘ properties invarfant under thi\a t{ﬁnsfofmtion., . '
h: 'Shou that the a1§1e between the f\neS\\L : ¥y =0 and Ly:y=x-"1is

of preserved under rotation through an Qggle of measure E

4

®

5. Show ‘the effect of the mapping indicaSEQ‘fhr each oﬁ the following curves

by graphing both the original curve and iﬁ; fmage on-the same set of axes.
* L. 'f‘ .

(a) y© = x ; (x,y) — (-x,y) t ) ~ .
() xF=y; (xy) — (:x,—y) ' , X
. (e) =65 (xy) —= (-x,-y) " Co X
Lo (a) 4x° - 9% =36 5 (x,y) — (Sx,Ey)‘ ' lv
(e) , x 2y ox by +h =0 (xy) e (-x,y) \l -
(f) y = x> ; (x,y) —(x,~y) | o | ‘
. (g) y = sin x ; (x,y) —e (x,-y) J oo -
(h) y =tan x; (x,y) —= (-x,y) ’ ~ s l

x
(1) y =27 ; (x,y) ~=(-x,y)
“6. A=(-2,1) ,B=(5,-2), and ‘C = (3,3) are vertices of a triangle. }f
They are rotated about the origin through an~éEute angle 6 such that }

tan 6 = % . Test anqg verify three properties which remain invériant -

. under this rotation. ' J . :
7. (&) Given the segments AR and CD as shown in the figure, Show, b "

construction, how AB can be mapped into CD by means of line

o« -

reflections. < I
y \
«* A
' B
;.’\ ! A/BQS) / - .
| c )
. ("3) .
(13,2)
. . D
. (20,00 * t

421 2 25 . )
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' . ) i\ .
. (b) Trace congruent triangles ABC and DEF .keeping their retative
positions. Show how to map AABC into ADEF by the methed used
in part (a) .

A

E . F
8. The points on the following cuqus are rotated through an angle of
measure % with respect to the origin. Find the equations of the

transformed cur&es. Sketch each of the curves and its image on the

" same set of axes.

(a) 3x+2y -8=0

(v) = +y° =25 "

(o) ¥ = b .

9. Discuss the transformation (x,y)~—e(-y +3,x + 1) by finding the
images of the curves in Exercise 8.. .

10. Determine whether parallelism Lg preserved when the lines
L, :3x-2y#5=0 and LE:'3x-ey-3=o undergo the mapping

. (x,y)—*(x«‘y,?x'—y)-

g
/

10-6. Inversions.

We conclude with a discussion of a point transformation called an

., a8
~ inversion,

= [}
' Consider a circle C with radius r and center al 0 . Select,any

. - - —
point P £0 , a(o,P) 3%:‘ , and draw OP . With P as a center end OF
~

h]

' . heg{?f);;




< ' | * . ¥

- « *

as radius draw an arc intersecting C at R . Finally, with R as center
and. & radius r draw an arc intersecting OP in P' . The construction is .
shown in Figure 10-19 . . (Note that this construction requires that the

circle be intergected at point R .)
‘ -

3

[

Figure 10-19
*

RP ; AORP' 1s isosceles since OR = RPY .

It

AORP 1is isosceles since OP

Thus JORP = /POR = /OP'R and ARPO = AORP'.. Then %%%—%— = —(—3(8 Ili)'i and
: o g ’

a(o,pr) = a(o,pr') = r2 . Two points P and P' which meet thi® condition

are said to be mutually inverse points with respect to eircle C .
c’l R ) (3
when 4{0,P) < 3T, the arc drawn with'P as a ‘center and OP &s radius

will not intersect the cifcle. In this case, censtruct the perpendicular

bisectar of OP intersecting the circle at R and OP in S. At R,
D — -

construct / ORT = / POR . Then RT will intersect OP in P' ., It is

left as an exercise to prove that OP . OP' = .

DEFINITION. An inversion is a point tragsformation which maps

each of two arbitrary points which are mutually inverse into

the other.

<

Circle C is called 'the circle of inversion and point O 18 called the
center of inversion. Foint P! 1is sald to be the inverse or image of P R
and vice-versa.

. -
- - €
/
-— . ‘ 22?:

»
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Each point on the unit circ}e is its own imsge; each point outside this
circle has & unique image inside; and, with-the exception of the origin, each
point inside the eircle has a unique image quﬁide. 'This is true because
it d4(0,P) <r , we have d(0,P') >r , and for d(0,P) > r , ve have

. .a(0,p') <r . For any point on the unit circle, 4(0,P) = a(o,p') =r.
We now obtain an ané.lytic représéntstion for such a transformation. For

simplicity, we let r =1 .

«

. ‘ . ‘R

‘ P'=lx,y)

b4 bn v e won - ———— -

x
o
g

-

Figure 10-20

/ . ' . c\ iy o

Given & unit circle C with its cdenter at the origin. Draw any ray OR and
locate on 5§ mutually inverse points P and P' . gonstruct perpendiculars
from P and P! to the x-axis, interse€cting the axis at M &and N respec-

tively. <
g ' ~ d(o,P) x _)
I3 1 — ——
(1) Since AOMP =~AONP! , m =57 - ¢
, 1 '
() By definition, we have a(o,p) - a(o,pt) =1 ‘or d(0,F) = T9. 7 S
. 2
* (3) Thus by substitution, '%T = -—-——l-—fg = {al{o,r))
(a(o,p1))” "
N :
2 2 , e
(1) since (a(0,P)Z = xF + y7 and (a(0,P))% = x? 4 y17,
we have 3(1- =—,)—-1—— and 5,— = xe + y2 . . *
p 4 . (e X
\ X + Y
* . . -~
(5) "Th = x! and x' = X
> us X = —m—3 -
X ty X + Y
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(6) In a similar fashion, ¥ = 5 5 and y' = = .
2 ' t ]
x*" +y X +Yy
(7 The‘,pairs\é)? equations: .
¢ -—2 R S
Y- ' 2 | L2, 2
x*" +y snd x- +y
- y_' -
y=—z 3 y' o=

: x'S + yt C x“+y
| are called the equations’of the inversion trsnsformt}on: Ve shall
now investigate the effect of Japplying this transformation to

several gurves.

Example 1. Whet is the inverse of e straight line with respect to a

unit circle? ‘ _ R

(1) Let I :ax +by +c=0 with ¢ £0 . Then L' , the inverse

" £

of L , has thé equation
¢ .

\ ~ ax*' by!
: + + C = O » e
s ;r:'2 + y'e x'2 + y'8
: (2) <Thus _c(x'2+y’2) +ax' +by'* =0, . or x'2+y'2+-§x' +'Ey‘=0 .
(3) Comf)leting the squares, we have:
) » N ' 2 .2
Lo - ~("""2%)2+<y"’%)2“8 +b )
~
e ‘ Le
and recognize the graph of a circle with center at (- 2~: y - Ebé)!
(5. .7 | _ .
with r —%e ? and passing through the origin as 11lilustrated
in Flgurg10-21 . -‘/
LY

§

-

- -

o5 v
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d .

\
r Jaa + bE
T e
Figure 10-21 ’
” Thus a line not passing through the origin transforms into a circle

passing through the origin. ’.[% converse of this theorem is also true: a
circle:passing thru the origin transforms into a straight line not pasaing
through the origin. The proof iseleft as a Challenge Problem.

Thére 18 an interesting special case of this problem. Note that ifthe
example given we ‘defined the line L by a§+by +¢c =0 and c #0 . What
if e =017 '

In this case, we have L : ax + by = 0O or y=-§x or y = mx where

m 1is the slope. The inversion transformation yielés
t mxl

xl‘ + y-12 x!e + y!e

Thus y' = mx' and we observe that a line passing thiough the origin trans.
forms into itself. Another way of saying this is that a lige passing through

the érigin remains invariant under an inversion transformation.

| /

“ 231 \
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_EE‘_"EL]'E 2. What is the inverse,

. petwork of lines x =c¢’, parallel ¢

the x-axis?

th respect to the unit circle, of &

' 1
ex S o'r c(xl +y! ) -xl
x'" +y!
-' ) t
s (2) Thus x'2+y'2-£-=0»,or (x'-i2+y"2=-i—.
€t 2c IN:E

- p |

. This equation represents & whole "family of circles" passing through the’

origin with centers at (72-15 ,0) .

(3) In a #imilar fashion, the lines y = k trensform into a family of
circles with centers at (O, -él-{) apd passing through the origin.

r

. Apart of a network of lines and the circles which are their inverses

-

are shown in Figure 10-22.

Y
L] -
£ I I B ey B B
x| w| ] x| x x|y=3
y=2
y=1
y=0 c¢=-
0o x
y:-
. L
y:-
»
B y:-.s
[

-

Figure 10-22

D . v - R3]
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.

ou have already observed an unusual result; TFor the first time*in this
- . discyssion, a curve has been transformed into & different curve!’ Such an
event was made possible because we are dealing with point transformations. In

Figure 10- 20, a different scale was used for the tuo drawings. N

.

As a final example, wve consider the following;

. Example 3. What is the inverge of a cigcle with respect to the unit -
cirele? e

e N . o~

Consider the general equation of a circle '
! c ;,xé + y2 +Dx +Ey +F =0, and apply the équations of inwersion.
Thus we have v : ¢ )

x!2 y22 : val Ey! 1
+ + + = + F =0
,2)2 2 x’? 2

) ~.(x‘2+y \(x'2+y'2)2 ‘x' +y’2 y" . 4 . .

or 5 ) 5 = i eEy' tF=0 -

2 R xf + y—l x‘l + y, xl‘ + y"
. [ ?

(2y Thus since X'° + y' £o, fo'2 + y'e)‘+ Dx' + Ey' +1 =0
or xtZ 4 y'2 + 1—)1':"+ I—‘:y'+ 1 0

(3) .Substituting D! = FsE' = %- , F1 = % , We get

. . or - x'2 + y,e + Di'xt +'E'y' £+ F' =0

vhich we recognize as a different circle (in general ). ' ’

-~
[

It may be of interest to discover whether C ‘and C' are relateg o
each other in any way.

\

+

. . o Exercises 10-6
. The first five.exercises are concerned with the effect of in:frting the
given curve with respect to the unit circle. 'The equations of th¥ inversion
- are . |
— t 1
& X = X ¥y = y .
. . ] e’ 2 '

y x'" + y x' o+ y .

For each exercise, draw the cirdle of inversion, the original curve, and {ts
inverse on the same graph.
1. 3x+2y -6 =0

Y ) . .

2. Yy = 5x )




3. ¥y=3 .

k. '2 = bx ~(The“graph of the invenxed curve is optiOnal)

. ¢

5 (x - W)F +<y/, W2 ,

-... @ .

6. - Finq the inverse of each of the following lines with respect t0 the unit
circle. Graph a¥Y of them ¢n one set of axes and all thelr inverses on
another set. The lines are: x =12 ,X =‘i‘§ ,x=trt6,y=1%t2,

@ y=fl#,.&nd yﬂtép =

7. In Exercise 1 you found the inverse of the line L : 3x +2y -6=0.
Call the inverse L' . Now apply the same trsnafdrmation to L' . What

can you conjecture from the result? . o .

¥ »

8. Derive equations of inversion wish respect to a circle whose radius is
r amd center at the origin.

. - —
. . 9. The following four points are collinear: = (0,-3) ; B = (1,-1),
_— Ce{21) and D =(3,3). Find the inverse of "each of these points .
- with respect to the circle xe + y2 = 4 and call the inverse points
' A", B!, C' , and D' . Prove that ’ .
» ' ’ .
. d(A,C) alAr,Ct
J d(A,D) _ d4(A',D’ ’
. dalB - —ager,cr) <
. d B,D d{B!',D .

(This ratio is celled & cross-ratlo in more advanced geometries),

10, Refer to the text and perform the construction of ‘the inverse point P!

-

' vhen T <~é . Prove that OP - OP' = 2, c.
’ ~ ¢ -
Challenge Problem . '

Prove that & circle passing t rough the origin inverts into a straight

line not passing thréugh the origfn. .
-~

v, . ot

Y \

10~7. Summary and Review Exercises.

@

We have considered two types of geometric trennfbrmationsf The first
" type éonsidereé 8 tfansformation as an operation which changed -ene set of A
axes into another by means, of translation or a rotation or both. In & transla-
B [ . :

- tion, the axes are shifted in such a way that they remain paraliel to their

§+29 233 |
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original positions and Qriented in the same direction; the originh is moved. Iy’
contrast, & rotation keeps the origin fixed but new axes are obtained by
rotating the axes through 5 fixed angle.  Sets of eguations were derived to
effect these operations., We demonstrated how a relatively complex equation
could be r\educed to a simplerAfom which thén ‘could be drawn more readily.

w o
e

As a stcond type of transformation we considered the mappiag of the plahe
onto itself. Rules were'giwen by which any point or sets of points in the
plane can be moved from one position to anothéf This set of trahsformations’
‘can effect translations and rotatiohs.. It can also effect reflections, ¥n- |

, versions, and other changes. Reflections are related to the concept of
symmetry in figures. Inversions can convert one txpe of curve into another,
The exercises illustrated some other typéa of point transformations. *

One of the principal reasons for studying transformations ie to discover
vhich geometric properties remgin invariant under the stated op ti .
Geometries are classified on the basis of these properties. |
geometry ia characterized by the fact that the messures of distance and angle
are invariant under the set of all rotations and tranalations, Thig set is
often referred te—es the set of rigid motions since those transformations
. preserve size and shape. Other invariant properties were conaide;ed in thg

]
exercises.

Review Exercises N

PART II

s
.

* The "Review Exercises’ are concerned primarily with several tranafcrma-

tions not discussed in the text. They are presented sa that you may discover

some significant facts for yourself and may widen your experience with the

subject.

1.  Find the curve iTito ﬁhich the, parabola xe = 2y .13 transformed by each
of the followlng mapplings: ‘ t

(8) (x,¥) g (2x,3y) ,‘
(b) (x,y) —=(x+ 2, 3y) .
(e) (xy)—=(x-1,y +2).

- ~

Draw the original durve and its image for each. Can you find any in-

variant properties under any of these transformations? {




2,

o) y? =

The mapping (x,y) — (kx,ky) 18 called the transformation of
similitude. Let k = 2 and find the effect of this transformation upon
the graphs of the followlng: .

<

(a) 2x+ 3y -6 =0 -
Y o |
(b) xX*+y =25 # .

-

Which are invariant properties under this transformation? Can you
justify the name given to this transformation?

. X = ____LX' ’; ' ’
The transformation T , ,\ 1s applied to the perpendicular

y =2 ¥ .
. 2 ,
lines L1:2x-3y+h=0 a.nd.LE:3x+2y-6=O.Determine .

-

}
vhether the geometric property of perpendicularity is preserved under T

The set of affine transformations is one ofVthe most fruitful of all
types studied by mathematicians. They have the form

!

-~

x = ax' + by' + ¢ . e
T . Many of the mappings studied in this chapter
y =dx' ¢ ey' + t :
- - - - . = e - - - . - e > - . . - - Py e =
were special cases of this set. For exafiple, the set of rotations are 0
é

derived by letting the constants a =w§os §,b=-8n6,c=0,
d =simg , e = cos § and £=0.
(X = ex! - hy' +1 ,
Consider the specigl case: Tg . P4 and find its effect
" y=3x + 2" -4
upon the graphs of the following: :

&

! ]
(a) x2+y2=h . .
(b) hx%-9y2=;,6 - )
I3 . , N
(¢) 4x-3y+12=0 .
"
(@) 4x -3y -1=0 }

(You probably cannot ldentify the imeges of (a)x and (b) unless you

* study the Supplement to Chapter 7.)
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5. In Problem 4, construct lines (c) and (d) and their images on the
_same set of coordinates. What tentative conclusion can you draw?

L. 6, Prove that the mapping (x,y) —= (-x,-y) 1is a distance preserving
- «
‘ transformation, A
AJ
,°
. 3
£
’ '
-
b P
. @ 1+ e e e - - ® 2 s = - - . e e - e - o - - -

y ) ¢
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Table I

Natural Trigonometric Functions (Degree Measure) A
Deg. Sine Cosine \ Tangent Cotangent
0 0.000 1.000 . 000 KRR 90
1 0.017 - 1.000 ~ 0,017 57.29 . 89
2 0.035 0.999 0.035 28.64 88
3 0.052 0.999 0.052 19.08 87
L 0.070- 0.998 0.070 14.30 86
5 0.087 0.996 0.087 "11.43 85
6 0.105 . 0.995 0.105 9.514 : 84
7 0.122 0.993 0.123 8.144 - 83
8 0.139 0.950 o.1s1 . bt 7.115 82
9 0.156 0.988 0.158 * 6.31k 81
10 0.174 0.985 . 04176 5.671 8o
11 0.191 0.982 " 0,194 sk L 79
12 0.208 0.978 e 0.213 - 4.705 78
13- ~, 0.225 0.974 0.231 - 4.331 T7
14 0.242 0.970 0. 249 L.011 76
15 0.259 0.966 0.268 3.732 75
16 " o0.276 0.961 0. 287 3.487 (.
17 0.292 0.956 0.306 * 3.2711 . 73
18 0.309 0.951 0.325 3.078 72
19 ) 0.326 0.946 0. 34k 2.904 Al
2 0.3k2 0.940 - 0,364 2.7 - 70
- 0.358 * 0.93% "0.384 T 2.605 69
2 0.375 0.927 0. Lok 2.475 68
23 0.391 '0.921 0.2k ¢ 2.35% 67
24 0.407 0.914 0.L445 2.246 - 66
25 0.423 0.906 0.468 2.145 65
26 0.438 0.899 0.L488 2.050 6k
27 0. 454 0.891 0.510 1.963 63
28 0.469 0.883 o.%e 1.881 62
) 0.48s5 0.875 , 0.55% 1.80% 61
30 . 0:500 0.866 0.517 1.732 &
31 0.515 0.857 0.601 1. 66k 9
32 0.530 0.848 0.6 1.600 - - 58
33 ) 0.545 0.839 0. 649 1.540 57
34 0.559 - 0.829 0.675 1.483 56
35 0.57h 0.819 0.7700 C o 1.4k3B 55
36 0.588 0.809 0.727 1.376 54
37 0.602 0.799 0.7754 1.327 53
38 . 0.616 0.788 0.781 . 1.280 52
39 0.629 0.7 0.810 1.235 51
Lo 0.643 0.766 0. 839 L.192 50
41 0.65 0.755 0. 869 1.150 L9
L2 0.6 0.743 0.900 A 1.111 418
43 0.68 0.731 0.933 , \1.072 b7
Ly 0.695 0.719 0.966 1.036 k46
45 0.70f 0.707 1.000 \ 1.000 ks
Cosine Blne Cotangent Tangent Deg.
: ks




TabtMe II ‘ .
_Natural Trigonometric Functions (Radian Messure)
4 i ‘ )
Ragf - Sine . Cosine Tangent Cotangent-
.00 0.000 1.000 0.000 S
.02 ° 0.020 1.000 . 0.020 49.99..
.0l - 0.040 0.999 0.040 24.99
_ . .06 0.060 0.998 0.060 16.65
.08 0.080 0.997 0.080 12.47
.10 0.100 0.995 0.100 , 9.967
.12 0.120 - v, 0.993 0.121 - 8:293
.1k 0.140 0.990 0.141 7.096
.16 0.159 0.987 0.161 6.197
- .18 0.179 0.984 0.182 5.495
.20 0.199 0.980 0.203 . 4k.933"
.22 0.218 ~o.976 0.224 b 72
2L . 0.238 0.971 0.245 4.086
.26 0.257° 0.966 0.266 ) 3.759
.28 0.276 0.961 0.288 3.478
30 0.296 0.955 0.309 3.233
.32 0.315" 0.949 0.331 3.018
.3h 0.333 0.943 0.354 2.827
.36 0.352 0.936 0.376 2.657
.38 0.371 0.929 0,399 2.504
.40 0.389 0.921 0.423 - 2.365°
L2 0.408 0.913 0. 4h7 2,239
i 0.426 0.90 0.L471- ‘ 2.124
46 0.4kk4 0.89‘g 0.495 2.018
A48 % 0.462 0.887 0.521 1.921
50 0.479 0.878 0.546 1.830
52 0.497 0.868 0.573 1.747
~ Sk 0.51k 0.858 0.599 1.668
56 0.531 0.8kt 0.627 1.595
58 0.548 0.836 0.655 1.526
60 0.565 0.825 0.684 " 1.462
.62 0.581 0.814 0.714 1.401
A .64 0.597 0.802 0.745. 1,343
66 0.613 0.790 0.776 ' 1.289
.68 0.629 . "0.778 0.809 ‘ 1,237
t .70 0. 644 0.765 o.8s2 1.187
72 0.659 0.752 0.8717 1.140
. o Th 0.674 ' 0.738 . 0.913 1.095
s . 16 0.689 0.725 " 0.950 ©1,052
.78 0.703 ' 0.711 0.989 1,011
.80 0.717 0. 697 1,030 0.971
.82 0.731 0.682 1.072 0.933
.84 0.745 0. 667 1.116 0.8g6
.86 0.758, 0,652 1.162 0. 861
.88 - 0.771 < 0.637 1.210 0.827
.90 0.(83 0.622 1,260 0.794




Table II
Natursl Trigonometric Funct{ons (Radian Measure)

-—— Y
v Rad. Sine - Cosine Tangent Cotangent
. .92 ' 0.796 0.606 1.313 . 0.761

.94 * 0.808 0.590 1.369 0.730
.96 0.819 0.574 1.428 0.700

.98 , 0.830 0.5a7 1.491 0.671

. 1.00 0.841 0.540 - L9557 0.642
1. 0.8 0.523 1.628 0.614
1.¢L 0. 0.506 1.704 0.587
++1.0 0.872 0.489 1.784 0.560
1.0 0.882 : 0.471 1.871 0.53%
1.1 0.891 0.454 1.965 0.509
1.12 0.900 0.436 , 2.066 0.L484
1.1k 0.909 0.418 2.176 . 0.460
1.16 0.917 0.399 2.296 . 0.436
1.18 0.925 0.381 2.k27 0.412
1.20 0.932 0.362 - 2.572 0.389
1.22 7 0.939 0.3u4L4 2.733 0.366
1.24 0.9u6 0.325 , S 2.912 0.343
1.26 0.952 0.306 3.113 - 0.321
1.28 0.958 0.287 3.341 0.299
1.30 0.964 0.268 3.602 0.278°
1.32 .  0.969 0.248 - 3.903 0.256
1.34 0.973 ' 0.229 4,256 0.235
1.36 0.978 '0.209 L.673 0.214 .
1.38 0.982 , 0.190 5.177 . 0.193
1.40 0.985 0.170 5.798 0.172
l.hk2 0.989 . 0.1%0 - - 6.581 0.152
1.4Y4 0.991 0.130 7.602 \ 0.132
1.6 0.994 0.111 8.989 ~0.111
1.48, - .-0.996 0.091 10.98 0.091
1&% 0.997 0.071 . 14,10 . 0.071°
1.52 72 0.999 0.051 . 19.67 0.051
1454 (. 1.000 0.031 32,46 0 % 0.031
1.56 0 - 1.000 0.011 92.62 0.011
1.58 ©  1.000 " -0.009* -108.65 -0.009
1.60 1.000 -0.029 -34.23 ‘ -0.029
1.62 0.999 -0.049 -20.31 -0.049
1.64 0.998 -0.069 -14.43 -0.069
1.66 0.996 -0.089 -11.18 -0.089
1.68 0.99k4 -0.109 -9.121 -0.110
1.70 0.992 + ;0a129 -1.697 -0.130
1.72 0.989 . =-0.149 ‘ -6.652 -0.150
. 1.74 0.986 -0.168 , -5.853 -0.171

1.76 0.982 -0.188 . . -5.,222 -0.191
1.78 0.978 -0.208 -4,710 -0.212
1.80 0.974 -0.227 -4, 286 -0.233

~ A
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The Greek.hlphabet

FJ
94: . dhetn
t iota
X kappa
A 1ambda
v mu
A
LY

3 ;31”'U !

I

. O

Lol

<~

o

”

.:““_‘-
tau

upsilon : v \Qig
phi R

chi
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For precisely defined analytic¢ geometYy terms the reference is to the
formal definition. For other terms the reference is to an informsl definition
or to the most prominent discusslon.

abscissa, 2t : eissoid, 187 \

absolute value, 9k ‘ coaxial family, 288 3
addition combination linear, 20, 106
of ordinates, 220 1commutatiVe property, 104
of radii, 245 i component vectors 1lh, 334
of vectors, % . components, x- and y-, 113
additive inverse, 109 . ) z-, 33k S
Agnesi, Maria Gaetana, 186 composition Of ordinates, 229

amplitude conchoid, 187
modulation, 8:8 . ‘ condition for a set, 22, 161
polar, 204 cone( 4@, 366 /
- of sine curve, 22k, 228 - axis of, 268 . .
analytic representation(s), 21 directrix of, 366
angle(s) element of 268 366
between two lipes, 65, 71, 125 "elliptic, §
betwesn two vectors, 121 © generator of, 366
direction, 59 . nappes of, 268
polar, 31 . . right circular, 366
angular velocity, 176 vertex of, 268, 366
Apollonius, 268 conic sections, 270
applications of - ’ applications of, 268
conic sections, 268 degenerate, 271 °
ellipses, 292. . : '_ directrix of, 270
parabolas, 282 ‘  eccentricity of, 270
hyperbolas, 299 ' focus"g&( 270
argument, polar, 20k { conjugat is, 298
associatlive property, 105 Conjugate hyperbolas, 299
asymptote(s), 21k, 298 coordinate(s), 7
axis (axes), 26 ¢ cylindrical, 377.
of a cone, 268 in a plane, 26
of a coordinate’ system, 26 plane principle, 3% v )
of an ellipse, 290 planes, 310
of an ellipsoid, 357 polar, 31
of a hyperbola, 293 rectangular, 26 S\
polar, 31 spherical, 379
of reflection, 205 in 3-space, 310
'+ of a surface, 368 coordinate system(s), 7, 26
of symmetry, 2095 ‘Cartesian, 29
bounded linear, 7 .
domaln, ©13 linear prfnciple, g
\ function, 213 polar, 30 f
\ graph, 200 rectangular, 29 ‘
range, 13 cubic parabola, 200
set, 1yl cyeloid
|.Cassini's Oval, 169 curtate, 184
. .| center of invers iion, ho3 parahetric representation of, 182
- “\Ceva's Theorem, 133 prolate, 184
characterization of : gylinder(ss, 363
Qointu on a line, 106 ) directrix of, 363 .
'cirele(s), 70 » elements ofy 363 :
off.javersion, L3 . generator of, 36:
orthogonal, 1’89 projecting, 372
Jparametric representation of, 175 cylindrical coordinates, 377
‘pencil of, <88 ) ' de Coulomb, 268
. . <
* s . hj?

S S 2y



degenerate * extreme values, 216’

conics, 271 factoring a function, 233 :
ellipse, 292 Fermat, Pierre,’'9l -
hyperbola, 272 focal radius, 295 .
. parabola, 272, 281 focus of a conic, 270.
Descartes, Rene, 1, 29, 91 functivbn(s), 202* .
difference qpotient L2 bouhded, 213
difference of vectors, 99 ' even, 208
Diocles, 187 period of, 203 .
directed distance, 10 ' periodic, 203
directed 1line, 61 general form, 47
directed segments, 10, 92 general linear equation, 47 ,
» equivalent, 92 graph(s), 22, 161 R
length of, 10 : : bounded, 202
R magnitude of, 10, 92 extent of, 202, 212
direction ) of polar equation, 168
7 angles, 59, 318 Grassman, Herman, 91
cosines, 60, 76, 318 4 Hamilton, William R., 91
on & line, 57 helix, 375
numbers, 57, 76, 315 : Hilbert, David, 7
directrix . mrpérbola(s) 270, 296
of a cone, 366 applications-of, 299
of a conic section, 270 asymptotes of, 298
of a cyljpder, 363 : . conjugate, 299
distance, 9 : conjugate axis of, 298 ‘
between & point and a line, 78 degenerate, 272 .
between two points, 27, 311 equilateral, 299
i directed, 10 transvese axis of, 298
measure of, 9 - hyperbolic paraboloid 363
¢« normal, 75 : - hyperboloid(s), 361
polar, 31, 20k ' elliptic, 361
in polar coordinates, 37 of one sheet, 361
distributive property, 108 of two sheets, 362
divide a segment, 18 A nypocicloid(s), 186
dot product, 122 . image, 413
eccentricity, 270 '  inclination, L& -
Elements, of Euclid, 1 inner product, 121
ellipse(s), 270, 290 . intercept(s), b4, 354
applications of, 292 intercept form, a
degenerate, 292 ' ' invariant properties, 390 |
focal radlus, 295 inversion(s), 1423
major axis, 290 center of, 423
minor axis, 290 circle of, 423
parametric representation of, 179 involute of clrcle, 188 4f!
ellipsoid(s), 357 - Kepler, 268
axes of, 357 latus rectum, 280
elliptic limagon, 244
. cone, 367 line(s)
hyperboloid, 361 antiparallel, 68
paraboloid, 360 coordinate systeg for, 7 .
epicycloid(s), 185 directed, 61 . \
equations of rotation, 398 “ directionron, 57 -~‘\s
equations of translation, 397 equation of, L1, u43-k7, 76, 79
equilateral hyperbolas, 299 inclinatiom of, g .
equilibrant, 119 . normal 340
) * equilibrium, 119 parallel 67, 68
_Buclid's Eleméhts, 1 ' parametric equations of, ‘188
even function, 208 ‘ perpendicular, 67
extent of a graph, 202, 212 symuetry of, 205 M
Q 4 48 ) .
ERIC -~ : 5 ,
ERIC <A | \



linear combinati®n, 20, 106 pcint circle, 2]1’.ﬁ85
linefr coordinate system principle, 9,16 point of division
~ lotus (loci), 22, 161 ‘ _ intermal, 17, 27
magnitude ¢f & directed line segment., of* a segment, 18, 311 .
10, 92  point-slope form, 43

magnitude of a vector, 93 . Pboint symmetry, 205

*

major axis, 290 ‘ » - point transformation, 412
mapping, 413 _ . polar :
measure of distance, 9 K amplitude, 204 .
Menaechmus, 268 angle, 31
Menelaus' Theorem, 133 argument, 204
minor axis, 290, axis, 31
modulus, polar, 204 J/ coordinate system, 30
motion, parametri%\representation of,170 coordinates, 31
multiplication, . distance, 31, 204
of ordinates, 223, 226" equations, relatéd, 167
scalar, 98 form, 79
Nappes of a cone, 268 . modulus, 204
wton, 268 pole, 31, 32
comedes, 137 positive ray, 58
nine-point circle, 307 A projecting cylinder, 372 -
normal, 75 projecting planes, 327
distance, 75 prolate spheroid, 357
form, 76, 82, "3k - properties of. vector operations, 10k
: line, 3&0 a o quadric surface, 351
) rays, 77 - ©  ray, positive, 58 -
segment, 75 - reflected image, 205
vactor, 3kl reflection, axis of, 209 |
.+ ‘normalized pair,. 58 related polar equations, 167
normalized triple, 317 representation,
. oblate spheroid, 357 anglytic, 21
\b' octans, 310 ) pafametric, 20, 170
ordered pair, 26 CL resolution of vectors, 131
ordered triple, 310 re%ultant 96
ordinate, 26° . rig handed system, 311
origin, 10, 26, 93 ' rotation, 397 *
principle, 93 Ruler placement postulate, 8
' vector, 93, 9% Ruler postulate, 7 ,
orthogonal clecles, 289 scalar, Ob
parsbola(s), 270, 280 multiplication, 98
applications of, 282 Schwarz's inequality, 134
’ degenerate 272, 281 segment(s) *
parsboloid(s), 359 directed, 10, 92
elliptic, 360 midpoint of, 18 .
hyperbolic, 363 normal; 79
of revolution, 359 . point of division, 18
parameter(s), 20, 170 set(s) , .
parametric representation, 0, 170 condition for a, 20, 161 '
of a circle, 176 ~ sine curve, 203 ( . T
of a cycloid, 182 amplitude of, 2L
of an ellipse, 179 slope-intercept form, Lt
of a lipe, 188, 313 space curve, 372 ) -
of motion, 170 spherical coordigates,'379
path, 173 o spheroid, 357 .
penclP of Lircles, 288 . oblate, 357 -~
period of a fuhction, 203 prolate, 357
periodic function, 203 StevIn, Simon, Y6
perpendicular vectors, 123 surface, axis of, 368
plane symmetry, 355 surface of revolution, 368

4
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symmetric equations, 319
symuetric form, 41

symuetry, 205

axis of, 205 - 4

line, 205 ‘

plane, 355

point, 205 :
tests of, 206, 207, 209, 211, 355

tension, llé
tesseract, 324
tetrahedron, 346 -
trace, 323
transformation of axes, 389
transformation of coordinates, 389
translation, 391
transverse axis, 293
two-point form, el
unit ‘ .
point, 10
veltor(s), 94, 114y 337
vector(s) 91
absolute value, 9&
additive inverse, 105
angle between two, 121
associative property, 105
commtative property, 104
components, 113 S
difference, 99
distributive property, 108
dot product, 122, 127
equivalent, 92
inner product, 121, 127
inverse additive, 105
linear combinetion, 107

4

-

“
vector(s), 91
magnitude of, 92 94
normal, 341
Originp 93
origin principle, 93
origin-vector principle, 96
perpendicularity of, 123
properties of operations, 1lou
* resolution of, 131
resultant, 96
scalar multiplication, 98
sum, %; 97 *
unit, 94, 11k, 337
x-camponent 113
y~component, 113
z-component, 334
zero, 94
velocity? angular, 176
vertex of cone, 366,

‘witch of Agnesi,, 186

x-axis, 26
x-component, 113
x-coordinate, 26

ky-plane, 310

xz-plane, 310

y-axis, 26

y~-component, 113
y-coordinate, 26
yz-plane, 310

z-axis, 310

z-component, 334 .
z-coordinate, 310

zero vector, 9k

o
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