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, Chapter 6

GIME staiTaMit fin Webs, PROMS

6-1. Introduction
.

't

We have by this time made a beginning in the Sidon of.sets of-

points and their analytic descriptioiS. We have intro cedendused various

coordinate gystems. We have used parametric representations, finding thea

particularly useful in physical applications involving rytation or other

motion, and in locating positions on a path. Dolt we investigate noire of the

details and trr to develop more competence (and confidence) in'this powerful

language of ammlytic'geometry.

General Preinciplee

41#

The study of analytic geometry has two major concerns. On; of these

is the relation of 'geometry t.6 algebra; the other is the relation of algebra

to geometry. We must, therefore, consider two babic situations.

A. We are given a set of points. What would be a good anadry.tic

representation of that set? 'If we had two 'sete of points

:would their geometric 2elationships be revealed in their

$

representations? (gemetry to algebra.)

B. We are given an analytic renlvsentation of a set of point . What

can we noir say about the geometric prOperties *that set? -If we

hed analytic repreaentvtions of two sets, how could we use tbese

tcl reveal and develop theirlgeoletric relationships? (algebra to.

geometry.)

fn' the first situation we, mist distinguish inmediately between the Cases

me Mall treat in this text and those we AaVe for later work. If a set of.

points comes,4to us, BAY, fro m. a ehart of.the results of'an experiment or.a

eurve'drawn by an antomaite recording device, it might be usefill to have a

sipple analytic representation of that set. We do not treat such matters in

this book, althOngh they have impantant applications in Science, and.are the
.

sUbject of much current mathematieal research.

! -1 231 or.



6.2

The seta of points wlth which we sal concern ourselveSamst cane

already-structured-by some geometric condtion or property. ,OurtaSk wiiil

be to trelislate this.condition into analy4c terms through oar Choice of

-coordinate sytirtem and mode clealgebraic or trigonometrie representatioh.'

Fbrvexample we may be interested in the

two given points.

.this situation?

'Anita?

set

What ty;e.of coordinate.

of all points equidistant fraA

tem is best suited to describe

Can we simplify the description by a wise -choice of ales and

On the other hand suppose we meet the, ssion 2x + 5 0 .

What set of points does it describe? ipit a Configuration can Tisualizet

What are its properties? ,

In this secoid situation ihe variables came to us aireacly named, and tilb

context and notation usually indicate the type of eocIrdinate system and the

choices of axes and units. 'Ihe analytic representation may exhibit some

'special aliebraic or trigonometric4properties vhiCh we expect to see reflected

in certain geometric propertied of the corresponding graph. We do not define

the general term, "property", but illustrate and comment on those we shall

consider.

7

Example 1. Disguss the equativh-- y = sin x and its graph.
44.

Discussion: We assume that the domain of yx is the set of real numbers-

and note innnediately that, whatever the value of x, we 'always haVe lyl 5i1

If a graph of this evation were drawn on the ususa rectangular coordinatO

grid the geometric.interpation of this statement is that the entire graph

is*contained. in a strip -Go units wide, centered on the x-axis, and of !

infinite length to'right and left. We sometimes describe such resirictionsN

ontIhe graph by saying it is bounded above and below, but not at tile sicps.

AnyLcomment inhicatihg what regions of the plane may or may not be occup.ied:

bylKraph is part of the discussion of What is called the extent of the

kraDh.
,

We

ii

ntrte also fran the' given relationahip, that fOr each value of x

there s a unique value of y 0 but'not vicd versa: ,That is, y is axpressed

as a'function of x , but x is not a function of y : The geometric

versiorref this comEgent is that, if the graph were draum On the usual

rectangular coordinate grid, each line parallel to the y-lxia

the.graph exactly once. What can you say'abalt iltersections
$ .

with lines parallel to the x-axisT
.

202
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6.2

' We note afso that, sin:e ain(k + aur.),= .inkx for iniegral-valqes of

n y .values will repeaendlessly through the range

We say in this case that y is a periodic, function o-f x 7 If, -in general,

y = f(x) so that, for some fixid p `o, and for all x f(K + p) f(x)

then we say that y is a periodic iunction of ic . In that case

.f(x + 2p) f((x + + p) = f(x + p) = f(x)'

Therefore, for4such functidbs, np) =.f(x) fOr integral values 9f

If p > 0 ,and there is no amh.,11er pasitive number which satisfies the

requirement:. f(x + p) f(x) for all ?c-, ihen we say that f(x) isle

erE_Lod_Lc functicin of K o? perioq

Specifically, y = sin x is ,a periodic fdnction of x of period 2g

What.-are the periods of the periodic flInCtionst.y = cos X and. Y = tan ?

Note that it is the function which is periodic, not the grapp. kiarticular
function may have quite diffarent looking graphs, depending on our cldoicis

of coordinate systems. .The periodicity of,a functio4 may be more readily

peen in same:graphs than 'in others. The graph in Figure 6-1 can be inter-

preted to give the same information about y sin x as ks giVen when we
4

.say that, is,a bounded (periodic fUnction of x of period 2it . What

other information about the function can be/ infetTed'frottk_the graph?

AillkV 0V
.

Figure 6-11,,:
4

We have c hosen tthe usual rectangular co9rdinate systemj
using x

y as abscissa and orAnate respectively, and'obtained the familiar and'"
,

'beautiful sine curve. lb you see the relation between the shape of this

curve ,and the related words: - sinuous, aid insis,uate?
, ,d

3



. . .

f
We could have chosen a polar coordinate system for a graphic representation

of y = sin.x . We may expect-a different loiikinipaph on a-different grid,

but we thoQld expect also to have some geometric counterparts-Fe the algebraic

properties we mentipned earlier.

When we use polar coordinates we customprily use as variables not x Sad

sy
but r and 9 . r is now-a measure of the polar distance to the point

.(19) and 9 is a, measure of the pnFie betren the polar.axis and the'polar

through *(ri9) . In this context same authors say tpat r meature

of the distance or modul(s and that e is a measure of the arguMent, or

'Rmplitude.

A strong n4e of caution must be made in discussions of polar graphs of,

equaticins. From the iact that a point'does not:harea unique representation

in polar coordinates we expect that a set.of pointP.may have several, perhaps

wite dissimilar analytie representations. Any discussion of the relaticip

. between a grkph and its analytic Nrebentation in'polar cdordinates moist take'

account of this lack ok.uniqueness.olie iimemb:rthat a P4nt Ii.is on. the

graph of ,r = ite) if P.has,at least one pair of polar coordinates Which

satisfy this equation; Thus. the point P = (10,5) is on the polar.graph

of r 20 , because 10 g. 2(5) 0 but the same ivint could also have beela

located'hy the coordinates (1005 + ,.or (-10,5 + n) or others, where

the coordinates do not satisfy the equatipn); - 2e .

The polar graph of r . sin 0 is

given in Figure 6-2. Can you now

interpret- theegraph to show that r

1.6 a periodic bounded function of 07

We may note thatthe related polar

equktivon for this graph fs

r = - sin (e + n) . sin Op hence is

'identical vith ! the original ilddr

equation.

FigFe 6-2

Both Figure 6-1 and 6-2, which are graphic representations of .y . sin x,

exhibit:a geometric propertyealled symmetry. The alge'braic counteriast of

this property will be discussed in detail after the following exercises.

a

1

10' 204
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Itemises' .0-2(e)m

400Give bounds for the grOphs of the following equations.

'(a) y 2 sitsr,. (t) Y.. 0.6 sin x +.0.8 cos x

(b) y sin 2x' (g) y x + 3 Cos x

(c) ya2in2x '(h).y.aain,x+bcosx

(d) y,s4 sin.2x 0 y ='4n? x

(e) y 4 + 2"sin (3x +I) (.14 y = sid x ocos x

Express in kerma of a.; .b therfaa and the period of..the

eaph of y at. a + b (cx d)
4

6-2(b) Slimmetry

,,The'graph. in Figure 6-1 '44 symmetTic with respect to the.origin (and'

many other points), 'and to thealine (and many.other lines). ilte
r 2

a

graph in-Figure6-2-is symmetric Tith respect to the pant (11i) and tO

4
.the line 6 (and many other lines). We shall concern ourselves with onlyn

2

the Ogee of symmetry you have air:ready met in earlier courses. Weillive their

definitions here for.the sake of completeness.
- 4 I

Point ammetrx. Given a set of points 8 , and a fixed point. X . .8 is

,4 symmetric with reipect to 14 if, for each point P of 8 there is a

corresponding point P* of S stich that M. fsithe midpoint of PP1 . (The

pant 132 is male& the point- tric imaie of ty udth respect to M 2 orl

when the context makes the rete nce clear, the Image i3f P with respec:t to

Line Sylgetry. divan a set of points S , and a fiied line L

symmetric,with rempect to 'L if, for elich point P of .S .there is a

cor1-espondingt)int P*' ar/..8 auch'that L ie the perpendicular bisector
4 '1a

of-10: Is is sometimes ;alled an axis of 4mmetry of theca. S , which

.may have more than-one &nigh axis. We sometimes borrow terminology from ihe

applications, and call L -an axip of reflection; in that case we may also ,
. 4

call Pn the réflbcied image of P with risplet tF .or simplr, the

*
reflection of . 7,4

(.))
2°5 1 1.

tha ,11

4
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.

4 ,

In r13etangular 000 tea.we reed4ly establish an algebra4a test fot

opmetri with reptect tp:vdphe or)ginejlei.nt P1 a (Lloyd has the al.Sae

..k
vith reect -t,o the rigin: P. is on

. i
the graph or "- ,

.

*.
. . .

f(x,y) e0 then f(xiai) 414'. 1 the.gralt is symmetric with reapeet to
.

.

the originx for each point .-(x) it, the graph mast also coniala".

th, point II That fs).4rhenever

have ft=x1,-y1) = Oe. This yields our test:

f(xlal) : 0 we must alafj

The graph of an equatiot in rectangular eodrdinates is symmetric

with respect to the origin if an equivalent evation is obtained by
"'-

replacing (,.x,y) by (-x,-y)

We may now test the eqrtion y . sin x , which may be written

y sin x 0.. If we designate the left meiber as f(x,y) vit have:
'NO

f(rx,-y) -y sin,(-x) , or- -y + sin x , or -(y.- sin x) , or
. -

This isclearly equal to zero whenever f(x,y) is equal to zero; therefle;

the graph is symmetric with rePspect t6 the origin.

As a second example we may test the equition y x3 Whose graph is

called a edbie parabola." Tf me write tbis eqnation ea y - x3 = O. and

*all the ieft'memiar f( y) then we Lnd f(-xo-y) (-y) (-.3c)3 i -y + x3'

-(y - x3.42 = -f(x,y)

our,test'for.symMeir is

to the origin.

Clearly this.is 'zero whenever f(x,y = O., thus

se:tisfied, and thd graph is symmetriC with respect,

The test for symmetry

than the origin, is not at

a curve has'suCh symmetcy,

with reape40,to alw poirt M (h,k) other

difficdlt, *t will not be presented here: If

we ean usually Find a similier analytic representation

for it 11; we tile thg, center_of symmetry as a new origin.

0

206
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" 6-2
a

te.

Lorre

find A simple ageb d teA for,
. .

-
gipmdetrr-vith respect to 'the si t

ihe
.

point.-Fi. (Ka) ids tfieblimage

PII= (-kai with.relpedttohe

y-axiSs and' P".=''(xs-y) ulth respe.:t.
-

;f

e

th6

odr-teicir.

ir
If tte graph 1ty'avame-qx2e61-un redpec-Q :

6:
'td the '1')itms'for each point. -

,
.

on'the vaph therelist
1

be $a pOint IP.21 = (a-x;/) aiso on 4 ...Figure .6-3

. .

the graph; that is, if b s.so also &fist, ff-x1,).. 6 ... :This- .

4

means thatl,the equations, f(x,4 ) 0 11. ant g..4).. 0 fust'be eITANnada,

equations. WA shah, th4 the Bumph of y ..sin x 'ip.YectangulAr avorinate,#.

does not have this type Of symmetry. This &Option can be.written as

Y sin,x,= 0,, or f(x,y)'= 0 . Then 4-x,y) y - sin (-x) or

y iinL x r which clearly need pot equAl zero when f(xiy) y sifi.x goes. ,

The test for'symmetry with retitect to the x-axis is analogouè and We

summeriie.these two' tests:

, The graph of.an equation in'rectangular cbordinates ts.symmetric

with respect to the,

(a) x-axis; if an equiValent equatIon is obtained by replacing

(xsy) _by 4r(x0-3'). ;

(b) y7ftiods, if an equivaleni equation,is obtained by replacing

,(x0r) by (-x,Y)

It is quite possibl for a graph to be'symietric wittl.rspect ta both
. .

Axes. The graph of x
2

,45,
2

36 is an'ellipse'ael it exhilAts such

_double symmetry both algebraically and geometrcally.

I.
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4".7 can:heexpressed ite an.explidlt fairtion of 31(4,

.
y = f(4,0

f ,

'Iwodh.that f(x) oontains-only eimen powers Of x theo;we aarthat:y is

2,10mfUnqtlan, df 'Ic s and,reclogniae tiiatiti.papiie spiMAric with respect L

,

to the Yraxis. Same a:mei:plea of even pinctionb of 'Ic are: , l'

a

fx ,idx2 + 3x11' y x .2A
x

iote thet'the etIttlion x2 + 412 L.36 40es not.define y -as el funetion

of or x as a fUnction of y' .-RatVer, it yields «Aires/dons for y

as two (even),functione of x 0 that is, y .. 12 and y . 4 - x2 .

,

2
* t

.

..rt

,

,

The graphs,of these functions are semi-circuli; arcs essch of'which is, in .

.
.

fact, Aymmetric with respect to tie x-axis. .. 4
1.-

Where :c and y are related implicitly aMlitirtion Oc,7) .0 ,

we mey still use the con cepts above. If f(x,y) .miertains oi4.y even poVers

of x '0 then f(x,y) = f(-x0y) , and the graph of -f(lx0i) = 9 will be

symmetric with respect to ttyraxis Thus we agy,still relate the Aymnetri

:of the graph'to even functions even when -tinge functions are implicit. Some

examples of even implicit functions are:

2
1(a) x y + x4y2 - 10 whose graph is synetri.c with respect to the'

y-axis but not.the'x-axis;

de
. 2 4

(b) x y
2
+ 3' + 2x . 0 p whose graph is syllbetric with respect to

. f .

Vle x-axis but 'not the y-axis;

x2y4 3y2 i

(c)
2

4 whose graph s synmetric withlrespect to

. both ax4s.
V. "

Note that the graph Of x
2

+ 4y
2
. 36 is symmetric with respect to the

omigin also, silIce f(x,y) = f(-3(0-y) . WhiCh, if any, of the,graphs of

a b
$

and .c 1 above', are symmetric with respect to,the origin?
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Symmetry with respect to other lines will nOt be genera4y disctssed

. here, iut'thire is a simpli.test ior'symmetry.vithcespest.tio the liner

bpect the anglei fammmi by the axes. dill

. . t

,

These lines are Li: y sm x 0 and
% Ls Pi

4 ' 4.0111)
L2:. y = rx . The meflection of N

%
. ,,,..

. i

'y

, P = (ma) in Li'. is Pt = (y,x) p/
and in L2 isi 101 . (-yo-x) as mmy . / e

6-2

42141

be seen id the figure.

The corresponding test feillowt

as bekore and may be stated thus:

/
%

-e
. A

111 /

Figure 64

The graph of an equation in rectangular, coordinates is symmetric with

respect to the linew,

(a) y = x , if an equivalent equation is obtained by replacing

(xW) by (y,x)-;

(b ) y ..-x , if an equivalent equation is Obtained,by replacing

(x,y) bY
1

Examples:

Ine graphs of the following,equations are symmetric with

respect to the line = x ;

(a) xy=6 r

(b) xy + y3
r AO

1 1

7 7 7(c) xty= a
(d) y.= 10

(e) x2 + y2 - 6x - 6y . i2.

2. The graphs of the following equations are symmetric with-

respect to the line y

(a). xy 6

y x +

(c) 4
2

+ y
2

- 6x + 6y . 12

(d) X3 = + 3Q* A6'

(e) y = X2y2 + X .

209
AV

a -
a

a .



6-2

. s

Ir a graph has an axis,.of symmetry parallel tO the x-aXis or the.y-axis

.. ,
it sihy have a/simpleranalytio representation if we use'ney coa-dinates

based on ills aXls a Symmetry. Stich trangormations of coordinates are
. .

o considered in detail ju Chapter 10. Tests'for symmetry with respect:to

other linei; than se mentioned are available, blii4 they arv beyond the
. .

a.

'scopbt-of this book. ,

-

'4

*

TIlese comments on gylinetryin,rectangular coorplinatep hale their

,co counterParts in polar'coordigates. Point aymmetri with respect to the pole
0

requires that the grftph,of f(r,e) = 0 contain, fbr 'each ,point P =

the correspainding point -.1",.= (-r1,01),. This oondition,will be satlsfied

:if f(r,e) is an'even function of r Note that the condiiion is

sufficient to establish such symmetry but'it is not necesanry. .11ms, the

graph or r = 5 is afcircie with radius 5.0 and it doleshave each-

synnetry, but this equation does not define an even function of r We will

not analyze the general: situation, but note'that r = 5 and. r = -5 are*
to,

related polar .equations for the same circle. These equations may be writtimT

as r - 5 . 0 and r + 5 = 0 , and then combined as in Chapter 5 by .

0
multiplying corresponding meMbers to get - 25 = 0 This equation does

give an even function of r and its graph, which is the sane as that of

r = 5 and of r = -5,.fs therefore symmetric With respect to the pole.

The point P = (rle) has, as its image with respect to the line

containing the polar axis, the point PO = (r,-9) . We will not treat line

symmetry in general, but we note an easy test for synnetry with respct

,to any line through the pole, sar the line 9 = k . In this case' the poitts

P = (r,k + a) and Po = (r,k 0) are line-symmet c images for any.vaiue

of a .

16 Figure 6-5

,ao

Ps

(r,e)
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I.

C.

We state a test for such symmetry:

The polar graph OZtin equatiqp iegymmetriciiith res4ct to. e line--N..

V = k. if:an equivalent equatan is obiained by replacing (r,k -v .by

x..,)t - 00 . InlRarticulafil: the graph iilletetsymmetrio lath rIspe.ct to the
,

- line along the polar aria if. fir,69 = f(r)-8)
. .- .

.These shou14 again.be recognized as sufficient but not4necassary,

conditions. dince wehave intinitily-many polar representatioms.or the
. .- .

symmetric po4pts. P- and- PI. we could Nave ilifinitely many'est for Buch

Imanetry. The.test we kave presented is the.siiiplvt to.apply, and, with 1

tee oanept of related polar equations, is adevate for the work "c'e this
.,course.

.

'Af we go back to an equation'frcm Elhpple 1, r sin 9, me'may mrite

it r r in 8 = 0 0 and cill the left meatier of this equation f(r00) . .The-
.

tiiiNgrmn there zUggests that the line 0 1 is an axis of grMmetry and we

n
coaparerif(r4 + a) and f(r,-g - a) . The first of these.bCoomes

2
r + , or r - cos a The second of these becomes - a)

or r --eos a The identity or these expressions establiehed the line

gymmetry of the graph, as indicated. We may have stated, in correeponding

nanner, that the point P =
2

+ a) is on the curve if and onli if the

k ,
corresponding point PI (r

g
a

what we have shown.

on the curve. This is in effect,

Exercises 6-2(b)

1. May a bet o points have two centers of symmetry? Discuss tour answer,

with examples.

2. Give4an exaMple of a apt of points -/hich has exactly 2 axes of symetry;

exactly 3 ; exactly' 4

Give an example of a set of points whicA has in infipte nunber of axes

of symma-try.

4. If a-graph is symmei.ric with reSpect to both aXes must it be symmetric
4

with respect to the orien? Illustrate.

If a graph is symmetric with respect to the origin must it be ilymmetric

with, respect to both axes?

211 17
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6. VIscuss'he eymmetry of the gr,phs of each Of the eqtatione liated:

%..

NJ 12 4. y3 a 16 (h)

(b) x3,- y3 'el x + y "(i):

- ,am4 4' 5m i (m) r 2 + t.1.13(9 +.,/c)

(d) x(x2 + yg) . y(x3 + y3) mt) r 6
cos 9 ,...

'6
(e) x2Y my2-.. 1 . (0.'4' =

is
. 3 - cus(13 .2. i.

I 2 2 2 -
(f) (x + y) .4. 2(m + y) . 1 ti io

(g) (x + ar)2 + 3(x + i) . 1 (4) r2 ... sin 29 . ....,

(h) x2 + y3'. y2 + x3 (r) r . 2 sin 38 il

(i)
It
4 e 2 4 / .+my +y mx+y2 ts) r.3+ 2 cos(9 + 1)

co xn + yn = 1 ) (t) r .11. + b
. I

-challenge Problems

Ir

a

1, (For discussion) By analogy with line symmetry in tvo dimensions,

consider symmAalrwith respebet to a plams in three dimensions. We

are familiar with our reflected images in-s mirror and accept the tact .

that there is a "reversal" of some sort The reflection of my right,

hand is the "left hand" of my reflected image. Why is this reiersal

only left-right? Why is there not also a reverial of.top-botton, so

'that my reflected image wall appear.to estand,on its bead?

Given the'line L: ax hy c . 0 and the'point F1 . (x10$) _not

P2 . ( ydi the Symmetric imageon the tine. Find. coordlnates kor

A

of Pi with respect to L.

6-2(c) Extent.

. We 'discussed the equation' x2 +74,2 36 earlier from the point me.

view of symmetry. We use it Wilf to discuss the dktent of'a gfaph. This

equatipn yields two equationa which define y as a fUnction of x

1)44y x and y 14136 .L" x2 , We see that if we take vmlues.of
2 2
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' Ix' large

which are

4

61,

I

we shall have in totyises corresponping values 0C y

'Since omr 'irsphslcvmsider only real 'alms Sif i and

x warecivvill lead'to real valueswe now imuire about possible values of

ofy and vice Versa.' Ih these eases we

Ix! 6 ..lte-,these restricted.values

of x the correspombing values of y

. range frOm -3 to .3 The-geometric

versions of these restrictions ean be

f.spplied to the gouts of both fuhetiona

of' x deftied.ahave, buiLit is inoxe

usefUl to consider the uitidoOtof these,

grapbsi that is, the graiih of.the

original equation
/

x
2 2

Jo .

.vram the discusSion above We see that

the-points of the graph ail lie in a

redtangular regidt 12 units wide

and 6 units high, centered at their

origin. If, in general., we can express

y as a'function of x dnd there are
k

such restrictions on values of x ;as will yield only real values
A

musp have: -6 x 6 CIT .

or"

Figure 6-6
for y

-we say that the IV" A of the function is bounded. Thus, all points of the

,

graph Of the function y = t4g-----7 are Confined to a striplbounded.by VT,

vertical lines, x = ±6 p a4 indicated in Figure 6-6: lf, in general, the

possible 1t,'s.1 values of y are sfintlarly restrictedl ye's* that the range

'of the &notion is bou.ndaid. Tbus all points of the graph of y = tA6 - x4

are confined to a strip bounded by two horlIottal lines, y = *3 s as indicated

in Figure16-6. If both the domain and range of a function are bounded, we

"Ay that the fulipion is bounded, in which ease its graph is confined to ihe

intersection of a vertical and horizontal stripp'and is therefore confined

to a rectangular region. These terms are usug4.11y,applied to equations and '

their graphir,erven when the functions axe only Wined implicitly. Thus,

when we 4a*that the 'graph of x
2

a- ky2 =,36 is bounded, we indicate that

it is contained in d rectangle, as mentioned earlier.

19



If the. sitatron vere.,,A2, ity2 ,0- ve obtain
4-

1
y f(x) = te.E. rx -

We now note that we nuat taki values of large enalsh to make thee

3adicand non4egaive; that is, It.)
lid 2:6., whic4 will be tnae if either.

6 , or x 6 . Geoxietriesily,
this meaU5.:that'41, is definetconli ,
for pants on thaAedgs or outside

t 4e!wert,iCal.sirin bounOed,by the,

,lines which.arethe graphs cif laEg 66.
and. x -6 . with these restrictionb

jon x ve-fmaerrioir have any valae of

Y :The original solution yields tvo'

equations which define x ü a fUnction

/'
.t

of y x 436 + .112y. amtV Figure 6-7

xv= -A-67-47-17- and ve see that -3c in both =see is defined for all values

of y It.j.s no* customaryviithis.case,;...to speak of y

as, a bounded fufictiOn, but merely ,to say that the domain of excludes

2 .

certain values.

1
Another concept emerges when ve consider y . The domain of x is,

x

also restricted here since x cannot equal zero: With this exception, y
is defined for all values of .2e . Geometrically, points of the graph are

available except at the places where the abscissa is zeroi, therefore this

graph does not touch0Or cross the y-axise If we wrthesthe equation

1
x = -. we see that the graph does not touch or cross the x-axis. Also*

Y

from the fact ithat xy . 1 0 we %1st have x and y either botliipositivn

or both negative, which means, geometritally that We are.confined to the

first and third quadrants exclusively. ,Friom the equation xy . 1 we see

also that as we tale points of the graph nearer the x-axis we must tale them

farther from the y-axis; and vice-versa. A line, such as the x....axis in this

gase, to Which points ofthe grtgh approach more and more closely, but which

,Iontaillot no point of the graph, is called an asymptote of the graph. The

2114



graph.ef y. igt has.ta* s.sowtot410;

:namely, the n-Ants.fardthe

'Oar enamplea will illustrike the
-

laleatmenknfapiptotes in several

1 situatione, bvt we nake a general

ebeervatioh. If our aaal:ytic repre.

aentation can be Written aa'

4

r

wheie elc) may .equal zero for We*
value of x s x thesi0.for

thi; value x, y is not defined..

Also, if f(b) 1 0.tten, in general,

as we fike values of IF Cloier to b
the corresponding values of y become Figure 6-8

greater in absolute value. Geomet-

.rically this usually mean; that as we take points closento the line far

they mUst be farther from the x-axis. Thus, the line x b is a vertl

aeymptete. If. g(x) . 0 has roots 'bi b2*-0 .0. $ and these are not

of f(x) = 0, there will $ in generallbe vertical asynptotee, x

1

'
41.

. There is no difficulty in ievising thesOmanents to

to hgrizontal asyMptotes: If we can write x and k(y) = 0 has roots

c c
2

ant these are not roots of h(y) 0m0 y then, in general,

therd' will be horizontal asymptotes, y y c2

SW411
S. a

p4146f pitrlies and sketch the graph of

x
2
+ 2x - 3

Solution; The equation can be written as w hence;
- (x + 3)(x - 1)

Xrcei the discussioA above, tbe curve has as vertical asymptotes the linee

x = -3 ahd x = 1 . 'y is not defined f7r these values of x

y is defined, for all other'velues of x If x > 1 gnd increasing then

21
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y is positive,.and decreasing. For

laige values of x the values af

.2(4- 3 and* x I are reaatively,

flase'to values of x,, and 7 is

relativai Awe td , which is

.positive;'th

points id' the

ore, the aorreaponding

are'ClosV to the

x.-axise 12, 0 < x < 1 the numeratorst

is positive and the dendMinator negative;

therefork, y.is negative. The curie'

still approaches the line x . 1 ,as

An adyraptotes but from the other 'side.

If -3 < x < 0 :the nuderatClr and

denominator are both ziegative, there-

. fore y.,is positive. As before, the

curve appmachee the line x f= -3 as

an4asymptote. If x <-3 :then the ,

numerator ityiegative, the denomift-tar positive, and y negadve. The

curve; agiin approaChes the line x =,-3 as an asymptotel.but fram therleft

side.

Figure 6-9

For negative values or xwith large absolute valtie the values of
.

x 3 and x - I are relatiirely close to x 4 and the corresponding value

of y is relatively close to 1 which is now negative. That levee we
A

tale points of the graph farther to the left, they must bb closer to the

x-axisp'from below. The graph,,pictured in,Figure 0-9, shows that

algebraic and geometric relationships we have discussed.

A discussion ar the appearance of a graph for larEe valuek<of fxt

.or lyi ,'whether We take x and y positive or negative, is part'of the

discussion of the extent of the,greph, and is sometimes referred to'as a.

discussion of the behaviour of the greph for extreme values of the variables.

The concept of excluded values because of a zero denominator has one

further applidation. Cansialer

y=x+ 2pand

t'

22
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6-2

4

It would nOt be ccrrect to.write the settorrdequalon as,

e (x

.and then remove thd oommon factor

+
Y n°

.

to arriv at the first equatilin 0

y x + 20.

AB a matter.of fact, the twO equation/ and their graphs are'different in d -

small but agar/cant way. In the first equation, y is defined for all .x

in the second eqlation y is defined for allicx pxcept x .2 %

Geometrically, 'the graph of the first evation is a lins; the mph of the

second equation is aline except for a missing point at the place Where

x = 2., that is, it is an interwupted line. (Couldeyou ioiterrupt this line

A
at ti2e place where x = 1 , also?)

The discussion of tfiese excluded points, lines,,or regions is useful in

describing the extent of the graph. Itla all very well to know where the

graPh does not go, but we are still concerned With the points through which

it does go, that is, with drawing th'S give. -.The most straightforward way

of drawing the ,graph of an equation is to plot a nuMber of points on it and

draw a carve throlzgh them. If thv equation has the foam y f(x) you can

make a table showing the value of y corresponding to each of a.number of

vai,ues of x You have dono this many times in the Past, and there it' no

need to go into detail again.hlre. however, it is worth reminding you that

you should think about ost many values of x to uf;e,and.sohlebe ones, and

towto join the corresponding points.

As in an election poll, we take enough samples, with special attention

'to certain critical spota, until we have some reasonably,clear idea of how

the whole picture will look. There will always bq some disagreement about how

=ears, "en'ough", and what is "reasonably clear". Our sampling cm start

at soMe easily available points. On our grid we can most easily'find the

places where the graph crosses the axes. Since the x-axis, for example,

bta the equation y = 0 , Ve mai solve simultaneously: y 0 y f(34 ;

that is, we may find the roots of the equation f(x) 0 , in order to find

the abscissas of these crossIng points. if f(x) = 04has roots al , a2

then these nuabershre the Antercepts of the graph, which goes

through the potnts (a1,0)
2

0) . Th;se points are easily plotted

1
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AIL

-1*

6-2 $

on the gild, as are thelpoints of intersection of the graph with theiL..

art, nonlatter how many points yim plot, there always remains the'd4 i

at hoW the curvelThavereliewhere.- Itis to cast further/iihtIon thiE(

uestion that you should investigete,..before any extenslere oomOUtaion,-tite
,

.propecties of the curve aid its analytic representation in the manner ve

have just inuStrat*d. We summarize this type of investigation-in ,einemdlc

.ior4: liCheak'ihe.0FPIA firat." (gymmetry, Extent, ieriodicitg, In4r-cepte,
# :, ,i

. t

Asympi-Otes.)
,

% . 44.
. ,

The curVes and ecktatiobs_wiA which.we deal in thilfeourse are roasonably

Well behaved, and the ipinte of the graiSh ara usually enkootV-connetxtee",

witA certain notable exceptiOns. We have aIreagy dealt.witOgianha Of in,

equalities in Chapter 5., and will not deal with them at'great.length here
4.

but will consider eon in the examples whenever there is any matter'of..

apecial interest. -

..

_

A curve ususaly geparates.the ple lodally itto_two regions (above and '

belolo inside and outside, ..). In many cases in this text thellgipts in

these two i-egions'are precisely those whose coo tes satisfy one or thilk

other of the inequalities we obtain from the ori nal equatla Thus.the

Iraph of x2 + y2 = 25 ie edircle of radius ,5 , centured at the origin.

i

The graph of 3X 4- y2 < 25 is the interior of tiat circle, and the graph of
, .

A

2 '2
x + y > 25 is the exterior.

We have used rectangular coordinates in thie general discftssion, but

much of it can be ed to polar coordinates, though the grep will not

4
have the same g ric properties. In polar coordinates the graph f

inequalities are Z "....- imes,unexpected. Th4e the graph of r = 5 is a
. - CM

circle, the graph of r > 5 is the region outside that Miele, put the
1

of r < 5 t-:Clie entire plane. The graph of r = ii- is only a remote cousin

to tile graph of y'= 1 ihe reetangulai' graph (a hyperbola) has a vertical
, x

asymptote, the,line x = 0 , and this is a geometric consequence of the
1

fact that ; is not defined for x = 0 From the equation r = v. 1

we se; that r is not defined for 8 . 0 ;, nevertheless the line 0 = 0

contains the point P = (- 1, 0) . Thia point has infinitely many other
, It

. -

polar reprelentatiqes, including particularly 1? 7 ( , 7t) , and since

- these coordinates satisfy the Tation r . ii- 0 we must allow P on the

i , .

a,
.

i

9 4
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e.

I.

4. g i

graph of 0 m 0 . There a .as-a
Pe6

mit,4111111* ant, inkinitety 'many otile. r

r. o( polar perinatal:4 that satiatc.
or

01,

pgints.for wt)141112. tiomella

and.which lie.op
1- thelinp nerefore this line is:pot

. 4

aeymptote,-fole grapk.1 ik. x

1
The gragh of 'sr = 7. does,

!

nevertheless, a'eprue.agymptote

ing to elmWhe line co

butthe discussign of this must colasitier

215a.
. -

tbe valUe of as a gets eloper
. 0

..)

to 0 , and Ois discussion is beyond the

I

scope of this book.

rs 1#
r40

A

abr.

- Figure 6,-10

We will, in the examples aploirxt that,follow, use polar,representation
IL

or any other that seems appropria to the problem and

carry the discussion to the level ancrdetallyth4 seem

will illustrate the general principles abiVei and s4oilme

our purpases, and

fitting/ OUr example;

.ideas-of lees feeneral

application, but the stud4 is uxd to extend his own experience by doing

es many of the exercises as he can. One suggestioli ewe have found valuablei4.

an equation and Its graph should be Considered.in a dynamic, ratber than a

static way. Ifwe have y = f(x) what happens to y when x increases a -

.

little when x approaches 0 , when x gets very-large? If'wyphave a
am,

potnt Po . 4,y,) of the graph, ho does the curve look, near that pOinti

Thilk of thb point as moving a14g the curve, and our analysis as a moVing

picture of the point rather than a snapshot of the entire clrve.
4

.

6=3; Conditions and Oraphs (Rectangular Coordinates)

In this section we shall discuss a

discussion will bring together and apply

studied separately. We shall illustrate

be new to you.

nuMber of examples in detail. This

a number of topics you first

alsO sake useful approaches that may

Example.l. Discuss and sketch the graph of
Nt,

219 9
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4

dolutidou There le no symmetry with respect to eitber axip, since we

do not get equivalent equations by- replacing x . by t -x y by -y

There is syretry with respect toP the origln, because weL do get au equivalent

equation by replacing x by -x auk y by .-y qtere is vertical

asymPtote, the y axle, whose equation ie x = 0 For large lxi and

x either positive or negative, .y and a- become relatively_equal, 'since

1 a . %

becomes relatively smalD. Geobetrically thii means that the. graph

0

approadhes the line y = X asymptotically, from above, on the right,. and
* .

from below on the left. -
r , p a x .

shall graph t)2s' eco;ation in a viky which mai be new to rimy,* edition

of ordinates. You can draw :fairly acalirte graphs of y.=0x and y ;!-;

with almost no effort. Do so, With respect 'to the same axes. Then, for each .

of a number of different values of xp, add the y-coordinates or the points on'
4

the two curves with that x-coordinate. *The result is the y-coordinat of the

1
corresponding point on the graph of y x 4-- The addition cen done

using marks on the edge of a. piece of piper, but you must pay attention to the

algebraic signs f The sketch belaw illue?tretes tgiocrecess.

Figure 6-11

220
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6-3

We suggest this sequence.of atePe:

.1. Draw the fainter curves and 0.

2! AOseveral points along the z-axis erect perpendiculars to meet the

'-two eUrv.es. In Figure e-11 the ordinite-segments,a -0bclueTe

1
found this way at x 1.7! x = 1 x = 2 . (We dhall refer to,

these ordinate segments aimply as the ordinates.)

3. Advdt the corresponding ordinates for the two, curves, with due

regard to sign. In Flgmre 6-110 a 0. the ordinate at q

1
x -2- is riiised to' as.' above the hypeTbola; b is raised to

10 above the hyperbola; c. is 'raised to ce above the line;

hod so on.

4.. gonnect the new points thus found, to get the new *rye

Samplektil. Sketch the graph of. y = x
2

+.

&angle 21122 Sketeh the grapli. of y = sin'x - 3 .

em

Sglutiott 2(a). Draw the familiar graphs of yl . x2 indicated by

(g1 in',Uta* figure hnd of y2 = 2 , Indicated by 0 in the figure. Then

"raise" every point of (2) 2 units, as indicated by the dashed lines, to get

the graph of y
1

+ y
2.
. x2 + 2 .

221
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*4 6.3

, '.

2(b) The solutIoi should be 'clear Eros the fiiure and is left to the

student.

The proSess of graphing by surtraction of ordinates is related to the

prcess.of graphing y -f(x) from the graph of *i f(x) . Ihe'discussion

of symmetry in the previous section indicates immediately that these two

graphs sr; symmetric images of each other with respect to the x-axis. That -

is, tbp raph of y -f(x) .is the reilection.of the graph of' y

with teBpeCt to the xnaxie,
4

anglet 3(a). Sketch tie graph of y x
2

Biamele. 3(b). Sketch the graph of .cos x

cor

Solution: (Refer to Figure 6=13)

41) 01111.

Figure 6-13

.

2
3(a) COnstruct the familiar graph 0 Of y x. then extend the orditiate

of each point of 0 down its own length through the x-altis to get the'.

reflected points, whit we connect to obAlp the solution,0).

3(b) The solution, indicated in Figure 0-13, is left thm-,claes.

We may now sketh graphs by sUbtracting ordinates, since, if y

y f(x) - g(x) , then y'. f(x) + (-g(x)) .

2,8
222
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4

Maas Skatch the graph of y

&ample Sketch the graph of y . 1 - sin x

Solution 1 a . 1Refer to Figute 6-10.

41)

We suggest these steps.

(1)

Figui4 6-14

Draw the familiar graphs 0 :

(0. Reflect 0 with respect to the x-axis to get.0:

(3)

2

2
Add the ordinates for 0 and 0 to get @): y m 3 x .

This last step is equivalent to add1 ng.3 units to each oidinatavf

as indicated on the-graph.

We may extend these graphical methods to the multiplicatiOn of ordinates.

We have already done this in some casas but not with this terminology. The

'graph of x . 2 sin x illustrates a simple application of this,:metnod. We

compare this .graph with the graphof y sin X and recognize that wien S.

1

. 0 then y ..0 ; when yi > 0 then y 0 and when- < 0 then

y < 0 We just draw the graph of yi . sin x end doUblerthe ordinates pp

223 29
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6-3

.

find oorrearnding ordinates fOr y = 2 sin x It is as if the graph were

stretCheds verticallys avy frda the x.-axis.

libut5ple WI. ;Sketch the graph of y 2 sin x

Sketch the graph of y = 2x2

Figure 6-15

air

Solution 5(a),. Me sketCh the familiar graphz(E): yi {= "sin X then

doUble eadh ordinate of to get the
.0
graphs : y = 2 sin x Note that

°for 0 < x < g we have 0 < yi <.1 y therefore 0 < 2y < 2 . 0 is

bounded between 2 and -2 . If, more generally, y = a sin x s then y

is bounded between fa! and - In this case lal is called the

amplitude of this sine curve. I is the measure of the maximum departuxe

of points of.the curve from the x-axis, and.hes invortant physical applications.

Solution 5. We have illustrated the sequence of graphs:

2(D: y x : y2 x
2

- 4 (3) y = 2(x2 - We could have found
1

the same graph with the sequence 0 y:
q9. m 2x2

1

3 0 224
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cl): y 2x
2

4 Vie leave the details tp the Student,

. We day in geineral relate the grap of 4g = bf(x) to that of yi = f(x)

if b .is a constant. Both grtapbs cross the x-acxis at the same points* If

b > 0 then both ixapbs are above or bade the x-axis together. If b < 0

then the grapbs of y -bf(x) and yi = f(x) are together above or below

the x-axis. In this latter case we graph y2 = fbf f(x) then refleci this

graph in Ae x-axis to get the graph of y = bf(x)

RETT2tEiliq. Sketch the graph of .y =

shranVe Sketch the graph of -3 sin x

Flgure 6-16

Saiution 6(a),. Sketch the familiar curve (i): y
1

= x
2

. DoUble the

ordinates, which in this case are all non-negative, to get 0;
2x2

Finalliy reflect 0 in the x-axis to get (I): =

Solution 6(b). We leave the Solution.to the student. Bote that in
1

2bcampl
2

=e 6(a) we could have used the sequence -ex
Y1 3

That is we could have refledted,'then stretChed to get the final curve, ip

both 6(a) and 6(b) . We leave these details to the student.
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Our final eases cawenktmltiplication of ordimamiVa2vsziable facbors.

These are the moot difficult, the most interesting, and the.most useful of

the,applications of these methods of graphing by caShinations of draihates.

Example 14 Sketch the graph of y = x2 - x

Solution.

Pigmy 6-17

We could sketch the graph bt subtraction of ordinates but we Choose to

illustrate the method of graphing by multiplication of ordinates. This

y = x(x - 1) p and we draw the graphs a): yl = x 0 and 0: y2
= x 1 ;

#

two parallel lines. When x < 0 then yl aulk y2 are both negative and 3

their product, y is positive. If x < 0 and decreasing then y is

positive and increasing, and corresponding points of S .are in the

third quadrant'.

Since y y1y2 , clearly y must evil zero When either yi or y
2

N
evala zero, thus the graph S intersects the x-axis at A and B Between

0 and A we have 0 < x < 1 , vith ()weve And ® below the x-axis. In

32 26



6-3

this interval yi > 0 Y2 < 0 Td therefore y < 0\ 04. theiwaph is below,

\' \A .

the x-axis. Between "A' and h ve have 1 < x <.2 h y
1

and y
2

positive, therefore y > 0 d The graph indicates that and 0 are

above the x-a40 then 0 must be.also. Howe4er in tad 0 < y2 < 1

.

therefore y2y1 is a proper fractional part of yi , thus y yç < yi

therefore 0 is above but below 0. '4

As x increases beyond B we hare x > 14, yl and -y
2

poaive and

increasing, and y increasing even motrrapidly, thus ® is above boih'.

0 and 0.

We have taken this time to discuss the graph of/what is, after all, 4.

only a parabola, because the analysis and method will help in more difficuii

and unfamiliar situations.

Example..8. Sketch the graph of y = .1x sin x

Solution. We are familiar with the graphs of yi = and y2

Since bin x is a ,hounded periodic fundtion of x we have lye' < 1 and

13.1 .113c1 The graph of this last condition is the pair of lines 0 and

0 in yigure 6-18.

/ Figure 6-18.

227.
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,Vie have compressed the scale along the x-axis for.the paryeme of getting

enough Of the graph dim the page to iltustrate the discussion.

When x > 0 all pints of the graph lie within, or on tbe boundary of

the angular region formed by the rieht half-lines,of Q and 4E). Since

Y 7 YiY2 ..then y will 61pal zero When either yi, or y2 equals zero.

is zero only at tbe origin, but is zero at integral multiples of

Also, when y2 2.1 we have y .1x and whin y2 . -1 we have y

which means that the graph ® will toodi alternately the lines 1 and 2

at points where .x = P 2 P 2 I

We leave the reat of the discrssion of,this graph to the st4dent but

mention an important application.

If ve consider how the graph of y2 2. sin x is Changed by the variable

factor yi . .1x j we May think of the rplitude of y2 0. as'changed by this

variable factor. ;12

increasing linearly.

Wave whose amplitude

f(x) The graph of

this example we may say that the amplitude of sin x is

If We hId y
3
. f(x) siA x then we alma have'," sine:

--

is being changed or constrained by tHrV6iable factor

y would be constrained bi the armmetric curves:

y f(x) .and y = -f(x) and woUld oscillate between them, touching them

alternately When x n , 3n p 5% p 00 p as before.

This systematic changing of the ,amplitude ie called melitude modulation

and is the. basis for AM radio repeption. A typicalequation'here would be

y = sin 10010zt sin 1000000zt .

This graph would show a rapidly oscillating curve (the carrier or

radio frequency, or RF wave) modulated by a less rapidly oscillating curve

(the signal,: o audio frequency, or AF wave).

411 1 if
'r

Figure 6-19

This sketch, not te scale, illustrates the idea.

11/
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IV

The methods Just discusbed, for relating graphs of equations to graphs

of moie familiar equations by codbining ordinates are called by some authora,

corgpoStion of ordinates. We apply similar techniques in polar graphs in soMe

examples later.

6-3

We conaider now some further examples of graphs of equationa in rectangular

cOordinates.

&ample. 4x2 9y2 + 8x + 36y + 4 ..0 . Prom this equation it is not

oivious whether the:curve is symmetric with re.spect to any point or line, or

whether it haiany asymptotes. Nor can we easily see what parts of the plane

it does or does not enter. We can find,as many points on it as we have.the

'patience forp.since picking a value for x gives us a quadratic equation for

y .

The sensilde approap, however, is to use a trick you learned.in algebra:

coMplete the square in IX and y We get

4(x2 + 2x 1) - 9(y-2 - 4y 4. 4) . 4- 4 - 36

or 2

9

These numerators are related to distances,from the lines y 2 and

x = -1 y and we might expect a considerable simplification,in the discussion.

of this graph if we had new coordinates baiea on these lines as axes. Such

tranaprmations axe cazried out more generally in Chapter 100 but we show

the d;tails here in order to continue yith our discussion of the graph.

If we let u = x + 1 and v = y 7 2. the equation becomes

2

(1)
v u

_

2
= 1 .

This equation te ejnsidecahly easierbto handle., and is recognized aa

an equation of a hyperbola. MOS 'inow somethiug 'about byperbolas bt we

continue .tith our general.approach so iiiijatter, you have seen it work in

familiar situations you may be able to use it Ln unfamiliar ones.

The araph is symmetric with respect tC both new axes, and hence with

respect to the origin. 'If we solve (1) for v in terms of _11 we get

v = ju2 _This makes it app. that for a large, positive value of
5

0

tha two:values of v are one large and positive, the other large and negative.

(1) also show that if v) is any poipt on the graph, then Ivi FOr

229
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u9

2
0 and since -1r!.- 1

2
Thus no point of the graph lies

above v = -2 and below V = 2 .

'Now let us consider thil part of the curve which lies in the first qUadrant.

Por this we can use the equation

41 2
v = u + 9

where u . 0 It seems almpst obvious that when u is large, v is very

nearly equal to 1. We can-confireLthis guesa-quite simply. 0learIi

2 2
v >r, so let us, consider v 31.3%, in the hope that we can prove ,it ap-

,

proaches 0 as u grows v47 large.

2, air: 2u + 9

si 1.427:74; u

2(1j:179 + u)(1/77477; - u)
1.41,

2 u + 2 u

3 u 9 +

6

iruP7; u

By taking large enOugh values of u we can Make v iu as near to zero

as we like. Thus we have shown that in the first quadrant, the graph lies

above the line v = 1u but arbitrarily close to it for large enough .0 Xn

2
other words, v = u is an asymItote of the curve. By similar arguments we

3

2
can show that v = 3u is also asymptotic to the part of the curve in the

2
third quadrant, and that v = -u

3
is asymptotic to the parts of the curve

in the second and fourth quadrants.

3 6 2"
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The resultS.abovm have beien stated in terscs'of the new

.csn easily be rettated in terms akthe old. Fbr exempaN, the asymptotes are

th6 y 2 . 20C 1)
3

41

Finally we consider the intercepts. Setting 4, all60 in* (1) we get

Thai

v
= 1 the v-intercepts are 2 and Settlng v 0 we get'

- 3. , which has no solution. Eence.the curve does it intersect the

u-axis. The x- and y-intereepts can be found by the same sort of proceLitFes

butsince we are chiefly interested in sketching the curve, let's not bother

with- them..

Figure 6-20

.The hyperbola is sketched above. Notice that we'can draw a fairly

accurate graph without:finding the coordinates of any points bli% the vertices.

(What are the vertices of a hyperbola?)

2 31
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'6-3

The difficulty lies in the notion;of Za. *Lave speak of factor-

inge. irisitive integer, wm meen.emTmessing it as product of two mailer

positive integerd. When we speak of factoring p4a.yromil1, we mean expressing

Was the.product of two polynomials each of 4 than the gitvo poly-

nomial and having coefficients of some specifiedtype (s rational ambers).

There is no such agreement as to.what it means to factor arbitrary function.

For-tur present purposes.it is enough to say that we have a factoription of

f(x,y) if, for every (x,y) in the domain of f

f(x,i) = g(x,y) h(x,y)

- *
Of course, this allows uninteresting factorizations like

2 2 2
Y = 1. tx Y

but it excludes the sort of thing that got us into'troUble above, since

x y is defined for every x and, y while
x y

is not defined if
-

x ='y

41th this interpretation of "factor" we can state the principle releired

to above.

e(
THEORE4 ,E1; If ,y) has the factorization

f(x,y) = g(x,y) h(x,y)

The graph of f (x,y) = 0 is the union of the graphs of g(x,y) * 0

and h(x,y) = 0 .

Proof: Ihe point b) is on the graph of

f(x,y) = 0

if, and only if,

f(a,b) = 0 ,

But

f(a,b) = g(a,b).11(4b1

and hence

= 0

if, and only if

g(a,b) = 0

39
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or
. I

h(asb) = 0

that is, if, and only if, b) lies on the gra of

t..g(xsy) 0

or the graph of.'

b(x3Y) = 0 .

Example The grlph of

(y, x +Ii)(x2 + - + iGy + 13) = 0

6

is made up of ihe graph of

y x 2qm, 0

and the graph 6f 4

F 2x + 4y?
- 2x + 16y +,13 =.0

The former is a straight,line. If we rewrite the equation of the latter in

.the form

-- 2
(x 1) SY 2)

2
= 14' 1

VS seelthat it is an ellipee, with center (1,-2) ; symmetric about the limes

and'

x = .3.

y -2

and with major and minor axes of lengths 4 and 2 p respectively. Both

graphs are sketehed

-Y

Figure 6-21
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3 4If we arefrgiven two perammtric equations for a locus in aglane, there

aXe two methods of sketching the loOus (unless the equations are toa compli-

cated) We-can eliminate tliq parameter between the two equations and graph

the resulting equation in and y or:we can choose some values of the

parameter, coMpute the co ppnding values-of x and y apd draw a curve

through the points thus determined. We illustrate both.methtds in the nemt

examPele.

E.22511s..,11, Draw the grapiao,of the parametric equations
-

x = 4t
2

- 2 y = 4t .

Solution. First let's eliminate the parameter and graph the resulting.

equat1:on. From the first equation we find that 2t2 = 2. -Substituting
2

this in the
r
second equation gives

2 )

1 ,2

The .graph' of (2) is a parabola. It is sketched belaw.

dr

the

-

A

4

Figure 6-22.

Bar let's uee the second method described

results of our computations.

Alb

above. The table below shows

72 -1 0 1 2/

14 2 -2 2

64 4 o 4 64

We notice at once.that we have found no values of x =al:Ler:than -2 it
at,

woulok be natural to jump'to the cone usion that we had chotten the values...2f

t foolishly, bUt that is not the tion. Since x = 4t
2

- 2 and -

4t
2

> 0 it follows that. x > -2 f r every point en the graPh. The teuble
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is that Equations (1) and (2) are simply not equivalent. The graph of (1)

is half a parabola. It is the intereeCtion of the grdghs 9f (2) and the

ty X ).-2.e It4ou look,,taek over out reasoning you will see.it

t the locus of (1) is oantained in the locus of (2) p but it does

not prove thesr.al identical.
etc

Obvipualy the eliminap.on,of t was not as harmless an operation as'it

looked and)we must 'study it more carefully., At a certain point've found tram

2.
the first equatianin (1) that 2t

x + 2
Then we'squared gettinatthe

(equation 144 = I , These .6ro 'are not equivIllent, since inikthe first,

x > -2 .while the,second pute no restriction.on X This is no surprise

since the same Sort of thing comes Ap in the solution of equations involving
4

radica/s. In future we shall be careful not to squires, or divide by zero, or

do anything .eise of that sort when eliminating a parametdr..and then perhaps

we'll not get into trouble as we did above. Unfortunately it isn't, that simple.

(3)

Exempi 12.' What locus is represented by the parametric equations

= sin t .y r.; sin t

Solution. Eliminating t in.the only sensibleway giva the c*iation...
y x The graph of this is a lines while the lOcus'of (3) ,is thfe-Seigmetit

determined by (-11-1) ami*-1(111). Eqmations (3) are an analytic bondition-

for a ,segment stated without inequalities.

There is no simple way out of this difficulty, ind we end our discuesion

with the warning that when you eliminate the parameter tran a pair of.pare'-.

metric equations for a curve, you must then check to see whether the locus 4
the resulting equation is the locus of tha&iginal pair of equations.

The nature ofthe parameter.may impose certain natUral restrictions.or

bounds on the values of,the variables inmolved. In some problems we mayvieh

to impose such restrictions,_ and in that case we have,' not a difficulty, but'

a special tool. It is important that we learn the ubes and limitations of

our tools
P sO theSwe do not try 100use a Screwdriver to drive nails.-

.

-All the analytic eonditions we have considered so tar in.thie section,

hays been eqmations. Our last.two exemples deal with inequelities.

.4
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Itcample. Listless and sketeh the locus of the inequaliti.

.21 - 3y + 4 .

Solution. We shall use simple ergunmnts about inequalities. Suppose

(x0ab) is On the llie 2i - 3y 4.0. 0 so that
v v

- 3yn'4. 4 0

,
EnW Consider a po1nt. (nosy].) 0 with yi ).yo iThen 3yi .3Y0 and

2x0,-13y1 + 4 <2x0 - +.4 = 0 . Thus (xopyi) is a point'of the locus.

Similarly, if y2 < yo 0 2x0 - 3y2 + 4 . 0 and (x002). is-not a.point of

the locus. Thus any ifoint directly above a poiit of tie line is in the locus,

Vhile any poilat directly below a point ofthe.line is not. eTherefOre the.locus

iS the halflplane indicated below. /

\V""

( 4)

form,

Figure 6-23'

Example 14, Disci:as iamb sketch the locus'of the inequality

4 A

Solution. By ouppleting theMquare we can rewrite this inequality in the

2(X -.2)2 - y - 1 >0 .

Eby suppose 2(x0 - 212 If yl <-yo then

2(x6 - 2)2 - yi - 1 >0 Thus if (x0at)) is on the graph of the pupation

(5)- 2(x - 2)2 - y + 1 = 0

237 4 3
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16.3-

and < yo , we see that poixt of our aoCus...Ar a similar

argFaent ve can.A.ow f y2 > yo .1 then (x0,y) is not a point of our

locus. Thus our locus is,the set .of poilats below or on the parabola repre-
sented by: Equation (A. It, or'rather acme of it, is shaded in Vhe sketch
below.

Figure 6-24

EerciseS 6-3

In these exercises discuss andsketch the graphs ok the.conditions

given. In your discussion yti may find it uE6fullVto Consider symmetI7,

extent, periodicity, intercepts, and asymptotes. ,ifihen the condition is a

pair of paraMetrIc equations, eliminatethe parameter if you can, but be sure

then to indicate any restrictionii on the values of the variables.

1. y.,7 2

,2. y = -3

3. x = -1

5. y -x 3

6. y = 2x - 1

7. x 2y 3 = 0

8. 2x 4- 3y - 5 = 0

9. 2 3

-- 4 4
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xis.1e2ty7=2+ 3t
12. x et y se -2 - t

33! x2 + y12. 4; + 2y + 0

3.4.. 2 2x y- + 2:c - 3 0.
2 2x + y*+ ax.- 2y 4: 2 = 0

16, y2 = x(x - 2)(x - 3)

17. x2 = (y + 1)(1 - 1)(y - 4)

xye - 2y - x
19. y = sin 2x
0. x sin y

21.. y =1,24sin x
/22. ..x cos y
23. y = 1 + cos x
24. y tan 2x.

25. y = 2x

26.
2

27. y = 2x

28.
29. y = La x

30. y in x2 (See above.)
31. log2

x = t2.+ y 5t2

133. x , y 3t

34. x .= 2 cos y = 2 sin 4,
35. x = 2 cos 0 y 4 sin 0

*36. 3 eos3 cp y = 3 sin3

37. x = si.n2 p- = we2
0*._38. X=137 es y -Gan

2

239. y > x
2

+ < 1 45 .
9

As

(Note: This rawy also be written y v. fog_ x )
9

239
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,t

ki* 72 <O-

le.

43. lA 3c4_

114: x3 + 312 hy2 0

45. + xy? - 3e 4. ar

46.
2
x y + 4y x 0

47. x4 + y4. st a4

6-4. Grephe and Condition* (POler Milord/mites)

In this section we discuss the problem of SketChing %he grubs of

analytic 06nd/time in polar coordinates. 14.0 moSt.importaateauch conditions

are equations', and we pall confine our attentianto this caserestept for

few exercise*.

The most straightforward way to drew the graph oean equation in polar'5

ceardiludis tO taot a number of points of-',-th locus .and drmwa. curve throN01

them. If the equation has the form r. f(e) we can construct a table giv-

ing the values of r oorresponding to a nuMber of values of -a . No natter

how many Points we plot, there e4ways remains the question of haw the curve

behaves elsewhere, that is, between the points ve have plotted. If %be

equation is not too complicated, we can get a good deal of ingbrmation by

studying the functions involved.

As was the ease for ovations ia rectangular coordinates, we can often

get usefUl information about the curve by considering symmetry and extent.

Asymptotes of curves given by equations in gooier ccoxdinates are not easy to

find from the equations, and we shall not discuss theLprebleit However, if

the curve has a fairly ample equation in rectangular coordinates, we maybe

able to find its asymptotes by studying that.

As you know, given a polar coordinate system in a plane, eadh-point has

infinitely many paire,Of coordinates. This fact gives rise to certain

culties that we have already met in Chapter 5 but we now consider them in

greater detail. As in the previous section we shall develop additional

theory and usefUl methods of approadh in.our discussion of a numper of

examplea.

16



Sketch and discuss the graph of the ingiation

6-4

2 cos 9 .

Solution. Strictly speaking, we should state explicitly,that r and 8

are to be interpreted as polar Coordinates. We shall not do so in the rest /

of this section, since there is no danger of ambiguity.

Since Icos'Ol <1 for all 8 p the graph is bounded. Since

CDS (..E)' COS 9 for all 0 if the point (rased is on the graph, so is ,

the point (r0,-90) Thus the graph is sydnetric with respect to the line

containing .the polar axis. It is also symmetric with respect to the point

(1,0) 0 but it is =eh easier to show this by using an equation inrectangular

coordinateb for the locuo. The table below shows the values of r

exrrespanding to several valueii of 9 The cosine function has period 2g 0

so any 9-interva1 of length 2g will.do.

e o 4- ....ff

"ff

2 0 -2

The graph is Sketched belcm.r.

(4

(/.0)

4.

./ Figure 6-25

It looks like a circle (probably because it was'cirawn with.a compass), bUt

all we know so far, even if we make use of our knowledge of the cosine func-

tion, is that it is roughly circular.

111
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'Mat the graph really is a circle can be proved,ss follows. The graPh of

r
2

= 2r cos 0 A.s the smme as the graph of 'r 9, 2 cos e . For the only points

that mlibt be on the fOrmer but not on the latter axe points with r 0.1000 and

the origin, vbidh is on the latter, is the only sudh point.' .if we takea

rectangular coordintrbssystan with its axsi ithe.UsU43, tiositiors with re-

spect to the polar axis, we find that'the graph has the 1;quation

2
x + y . 2x ,

EXample 2. Sketth and discuss the graph of the.equation rCni sin 3 9'..

Solution..(Tbis'paph, too, is bounded, since Isin 3 el <1 for,04

. Whether there is a point or line about which the graPh is symmetrie is.

not obvious from the equation, so ve postpone the discussionof symmetry tiW,

ve have sketched the graph. It will prove notbling but it will-suggest Inuit.

is probably true. The table'beIaw shows the valueS:of r corresponding to a

if

number of values of e . If we needed a fairly aceurate graph of the avation

14; woul4 have to cons dairmore values ,of 0 y.but sincelwe-know bow sin 3 9

Varies with e 4 this,table will do.

e
2f. ( .7.1

-6-
it
3 2 4 flit

r 1 0 -1 0 1 0
,,-

-1 0 0 -1

(4E, i) (leo
-i) -,#)

(1, --,e) (Ay. /)

Figure 6-26

The sketch suggests there is symmetry about each of the lines 0 = y

3g
e = Let us check the first of these conjectures. If we

2
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wish to comiare 0 and og - 00 we obtain in the first case .

6-4

r = sin 3(1 + and in the second.case r =Pin - . These bedome

r = + 31d) ", and, r.= -.3m) Whidh,in turn become. r = cos 30,

and r = cos 3a . The identity of these equatinms est-61)11.812es the symmetry

we were dhedking. The setae method can be used tell deal with the other lines.

The 'graph is not symMetric about any point,- but lit shiall not prove this.

Example 1.- Sketdh and discuss the graph of the equation r = 1 - 2 sin fl,

/
Solution. Once more the graph is bounded, and we listpone the discussion s

scmmetry until below.

This time we dhall sketdh the graph without making a table, introducing

first an auxiliary grapit of a kind that is often useftl in graphing polar

equations. This auxiliary graph is the graph of the equation y =.1,- 2 sin x,

drawn on a'plane withit rectangular coordinate system. We have learned to do

this readily by theaddition and multiplication of ordinates, as dhownin

Section 6-3, andiflustrated below for the values_ 0 < 4 < 2x . For the

purpose of illustrating certain details of the discussiOn.we will sometimes

use different scales on the axes in tite graphPin this section.

,
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We suggest the following sequence:

(1) Sketchothe faMiliar curve (i) y = sin x

41
(2) Elpend sway tram-the x...axis to get ® ,y =a 2 sin.X

(3) Reflect ® in `the t9 get et y = sin x

(4)- Raise (3) 1 unit to get our graOh: y = 1 - 2 sip x .

We nov use this graltof the equation y = 1 - 2 sin x to give us

coordinates of points of tft polar grsph of r = 1 - 2 sin e s and obtain the
A

polar grmlp given in Figure 61628.

PP

Figure 6-28

This,curve is called.a,limaion. 'We have indieated with the saiw letters

corresponding points on the two graphs. NOte that the ladk of a unique polar

representation of a.point is shown in the fact that points P and. Q of,

tigure.6-27 (and infinitely mSgy more not shown) all correspond to point4

of Figure, 6-28. Also, points A and E .pf Figure 6-27 (sand infinitely many

More not shown) all correspond to point A of Figuie 6-28. The inverted .

arch belov the x-axis of Figure 6-27 corresponds'to the small-inside loop,of

Figure

Figure 6-28 .suggests'that the graph is symmetric about the line through

tlie pole perpendicUlar to the polar axis, that is, the line for Which one

equation is p = . We check this by comparing - a) and f(S- + a ) .

In the Pirst case r = 1 -,2 - a) and in the second case

r = 1 - 2 sin(t+ a)

relationships r . 1

equations, and the symme

. *In both cases we obtain from familiar trigonometric

- 2 cos a. which means that the two cases give'equivalent

'try is proved.

Oft
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Finally, the related polar equation id r . -(1 - 2 flin(e +10).

-(1 + 2 sin 9) To dhow that the polat.graph of this equation is the eame

limafon as the oae we(obtelned in Figure 6-28, we use a method !similar to the

method of addition of ortrates for graphs inrectangulat cootdinates. The

'method, called addition of radii 'which May be new to you, is useful in

sketchir% certain neW graphs related to familiar oaes.

We bsve seen earlier that the polar graph Of ro2 sin9 isacircle

of radius 1 with its center at (1) Indicated as in Figure 629(10.
4

Consider a number of rays draWn fram 0 to points of this circle,

Find points Qi 012,, Q3 , .. on these respective raya so ihat

d(101,Q1) = d(P1Q2) = d(P3,4y 00. as shown in Figure 6-29(8) p'.

whiCh dhows thegra& of r = 1 + 2.sin 9.

Figure 67.29(a)

Note that when'n < <4 we have 0 > 2 sin -2,, therefore

1 > (1 +.2 sin 9) > -1 , and the Q points'of Figure 6-29(a) are on the

tight half of the inside loop of the,graph. In the same Way When

: 8 < 2n we get the rest of,the inside loop.

Thusltbe locusriof all the Q pOints is the graph maried (E) whiCh is

a litaionybose polar represent&tion 1 + 2 sin 9 This process of

using the P, points to fine the Q points and the graph () is called the

Figure'6;29(b)

addition of radii.
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Since we vent the graph of x -(1 4, sin 9) ve )rv find the symmetrie

image of (i) 'with respect to the pole. It is graph at WhiCh ve recognize

ea the sameAloarnss in Figure 6-28.

1,pcsnwle 4. tiacusa and Sketch the graph of the equa on r
+

Sorion. This graph is not bounded, since r can'be made arbitrarily
f ,

large by picking 0 so that sine is sufficiently close to -1.. By the

method used in Ekanples 2 and 3 i we find the graph issynmetrie about tbs- .

A

g 0
lime e - -ff. It can be Sketchepean the table below.

0 2g

2

..0014

( 75-

1 3.4 .7.5 Undefined 7.5 3.4 1

Figure 6-30

The sketch suggests the graph may be a parabola. That'it is may be shoWn

as follows. The equation
-

Ow

5 2

1
r =

1 + sin 0

246



ii equivalent to the equation

r sin*0 ,s 1

Ifwe introducearectangular coordinate sysi4miwith its axes located as

usual the graph:hes the evation

4777= y
6

This is an equation of the parabola censisting of all points as far rrom the'

origin as they are fran the line y 1

EXerc1ses-6-4

In each of the exercises below, discuss and.sketch the graph of the

condition given. In your discussion, consider Whatever geotetric properties

you can infer from the e31ationa. Write the related poliir equation'foreach.

If you can, find,a.

identify.tWWCUs.

r.= 3

2. r = -2

3. e=

Are,

4.
e

5. r . 3 sin e

6: r = sin 2 0

7. t cos 2

ticm in rectangular coordinates for the same locus and

8. r = sin 5 e

9. r cos e

10. r cps (8- . 31k

11. 3
= 1 - cos 6

12. 2

13. r = 2(1 + SiD

14,

15.

r = 2 tan e .

4
r

(There are vertical asymptotes; ry to find them.)

16 r = 2 cos 9 - 1
1

17.

18. 2 -1- sin e

247 53
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19. r2 cos 29.
20. r2 = 44.1.n.2 9-

21. r 4 tan° sec 9

22.

23.

24. x. <"2

2. 111 2

*26. 2.<r <3

27.

28.t

e

6 -5. Intersections of Oreiths (Rectisnakair Poordizate°1 '

'The intersection of tvo sets is tOe collection of objects that belong to

both the sets. Mow thagraph of the equation f(,,y) 0 is the a004%2! points

whose coordinates satisfy the equitien. [(xW) : s, 0) Eftce the

,e- intersection of ihs; qraphs of f(x,y) = 0 and g(x,y) = 0 is the set of

points whose coorditites satisfy both equations, i.e. ((sly) : f(za) 0

and *?431 m. 0) .. If f and g are linear fUnctions, the intersection af

the graphs of f(x,y) = 0 and g(x,y) a 0 is tile set of points which lie an

two lines, in other words the intersection Of the two lines. in general, the

intersection of the graphs of f(x,y) 0 and g(x,y) c 0 is foud. by 801(ifing

the two equations simultanecluslY.

!wimple_ 1. The interSection of the lines with equations x - 2y - 1 = 0
and x 1= 2 is the point (3'7 1)

!xlmple 2. The intersection of the lines with egpaticne x Ry

and '2x,. k.y - 3 . 0 is the null set. In other words, the lines are

Examle The intersection of the graphs of y iin x and y s x
is a bit rder to find. At each point (x,y) where the curvee intersect we

have ein.ks = cos x Itus x + kg 7-where k is an tnteger. Then

5 4
248



sig2 en s le even: Y - shen k is odd.. This

be itritteit isore

-i)k 4
compactly in aformtrequently used by met

e".

there k'is an integer. .

Emple 4. The intelisectien of the graphs pf y + 3 <0 and

'ex - xy+ 4 5.0 is the'set of points on.or abovecthe line x --y + 3 = 0 and

on or beImr this'll= el - 7 + 4 u 0 .-It is the doubly laded 'siva in 414

figure.belme, and its boundary arone.p&rtf of the lines: .1

2.v 14.4

i-

-/

-a

-

-

Figure 6-31

The problem of finding the irierseetion of two graphs eau be very campli-
w.

-catedi'end weShall not spendussr more time on it here... Hotever, there is

another exaMple thieh is of interest.

Exmmplef. Find the intersection of '2c2 + y2 7 2x.- -

x
2

+ y
p

2x.+ ey,7, 2 b.,0 We dou144aonsider the first equation as a quad-

ratic eqUetibn thli and tise the quadratic formula to eipress y in terms

of x d. ecqla-get y = 2 t 143 - x2 could then sub'stitute this

t.he second muition and.Solye for ',1r. (Carry the work a bit furthdr so

you will appreciate the difficulties.

"11

This problem can.be solved much more easily by using the principle of

linear combination; thich you.studied in alge-bra. The system

X y -caix -

x2.+ y2-11- 2x + 2y -'2 . 0

rf'f

.



414iluiValent tOhe erten

(2)

a(x y - 11)

as long as

(3)

2x 1- 23 : -! 2 si

a /0* if 1.1 and bmillthe second Britain bacons

4x + 4. 2 rig 0

:2
+ 2x +gr - 2 0 *

No4 the.first equation in (3) is linear. Uhing it, wm can express y in

terms of .x * substitute the resalt in the second equation* and pave left

nothing worse'thanta quadratic equation in x 6-The points of intersection

are (10.-1) and (-a 12-1
13,13

This soluticm has a gecatetrick?interpretation which is worth investikating.

Figure 6-32

The gisphs of the eqpittions in (I) -are circles. (BaW ean you check_thiell -

They are shown above* Now the graph of the first.equation ift (3) is a/line

and that equation is a Special caSe of the first equation in (2). Mut if .

3
the coordinates of a,point satisfy the two equations in ,(1).0 they clemay
1
satisfy the first equat)on in -(2) 0 no matter.whai a and b. are. Thus the

graph of ihe first equatdon in '(3) passeathrough all points of intersection

of the two eirclei *Ind must be the line'contikning the,common chord, which is ,

show in the sketch above. If "a / -b which Impiies that a Ld b are not

both zero, the first equation in (2) 'is that of a cirele.passing through the

>

, points of intersection of the twp original circles. (As a matter of fact,

. sada such circle may be obtained by some dhoice of a and b Can you

prove this?).

250
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6-5

ihis result can be generalized. Ifs# f(xsy) = 0. and g(m,y) are
equations of two loci, then the locus of af(x,y) + bg(x,y) = 0 cOntains the

intersectiton of the two original loci. For suppose: ( X6p.70) lies on the

original loci.- Then f(X0a0) sh 0 'y g(i0y3r0) 0:., and hence

0 . cmio is true, though not very interesting, even
af(x0a0) bg(x0a0)

when a = b )

Exercises

,In each of the exercises'below, findthe intkersection of the loci de-

termined by the conditions Oven. Use both agebraic and geometric methods.

1. x = 2 x -.23; = 2

2. x-y+ 1=0 1 2x+y- 7 2.

3. y y = 0

1. x - 2y + 3 = y 2 = 0

5.- x.- 2y + 3 . 0 , 2i - 41 + 5 = 0

6.

7. x
2

+ y"2 = 2 x+y= 0
P

8. x2 + y - 2x + 14-y + 5 =0. 311+y-1=0

9. x
2

+ y
2 + 2x + 24- - 2 = 0 x+X. 1

5

10.

111.

'12 .

13.

14.

15.

16.,

17.

. 4x x t ,= 0

3y2 = 1 x y = 0

-x2 + 2y = 4 , x -

x
2

+ y
2 = 110 x2

+ y
2 - 2x

x
2

+ y
2 = 15 1 2x2- + y2 24

2

x2 y:+
2 = 2 y = x2

sby - x2 > 0 y x - 1 < 0
4

8 0

r
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18." +

19. x+2y+ 3 < , 3x - + 5 >0,2x- 3y+ 1<0

6-6. Intersectf f Loci (Polar Coordinates)

In the prrvious section we discussed the intersection of loci given by

equations in rectangular coordinates. %be nethbd me used works for leer

tenolned by equations in polar mIdirmaes, but, as me shall see, there' srs:

addedLniplications. 'Let us take gp first a gime; case.

Rxwmelecl. Consider the graphs of r 1 and r 2 cot; e . They are

the Circles shown belaw.

tl

Figure-6-33
4 1

Solving the equations simultaneously we get 2 cos e 1 , cos e , =3

or ay (There are infinitely many other solutions of the equationspatut
3

since the sine and cosine fgnctions have riod 2g , we need consider odly

solutions with 0 < <:21f .) Of course, r . 1 . This is-consistent mith

our sketch.

a

5R .2,2
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Rzample 2. Now consider the equations r = 2'cos 8 and 2 sin

Once moue theirgrapfis are,circles, which ate shown in the figure below.

Figure 6-34.

There appear to be two points of intersection. Let us solve the two equations

simultaneously and coppare our answer With the figure, .Setting

2 dOS 8 . 2 sin 9 we find 9 mil. or (As before, we need,consider

OUly solutions with 0 6<. 9 < alit) The first gives r = iff y the second

-r = . We have not, however, found the two points of intersection dhown

in the figure. Wa have found two sets Of.polar coordinates.,for the sade pOint.

This reminds us.once more that while a rectangular coordinate system in a

plane is asone-to-one correspondence between the-points in4cle plane and the
V

P
ordered pairs of real numbers's, every point in the plane has infinitely many

differentqoairs of polar &coordinates.

This is also the sou2bge of our ot14F difficulty: Cleerly the pole lies

on both curves, but our algeblaic method did not rind this intersection. The

trouble is that the coordinates r = 0 = satisfy the first equation
2

but not the second, While the coordinates r = 0 , 9 . 0 satisfy the second

but not the first, Both pairs, of course, represent the pole, whose oDordi-

nettle require special comment. If P is any point other tan the pole, its

coordinates,. (r., 9 -1-'2no) , allow infinitely many, but not all nudberd as

second =Ordinate. FOr the pole, however, the coordinates (0,9) alloy

=Ober as a possible replacement for 9 . Geometrically this means that, if

there is any 9 for WhiCh r = f(9) becomes zero, the graPh must contain

the pole. We have already found in this example that (04) satisfies the

253 59
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to,

first ion, aad (OA) the second, Which m that the pole lies oniboth

graph's and is therefore a point of intersection

a This leads to a sMall but important caution *en finding intersections

of polar graPhs of r f(0) p and r .,g(8) Cheek first to see if eadh

graph contains the Pole by seeing if there ia any 0 for which r DI-f(8)

equals.zeroo or any 0 tor Whieh r = g(0) equals zero. If both conditions'

eaa be satisfied, then, whether or Dirt 8 . 0 j both graphs contale the pole,

Whkoh is therefOre an intersectionjofnt. Then you can proceed'writh the

usual simultaneous solution of the two;,ecluations. *

panple 3. Find the points of intersectionref the graPhs of

1

2 + 2 eon 9
euml r 2 co + 1.=

Solution. These graPhs, Which are relatpd to some We have discussed

eaniler, are dhown below:. The pole is cin the.second.graph but not the 'first '

hence is not'a point of intersection.

Figure 6-35

Ihere appear to be four points of intersection.
.7

Now let UB solve the two equations siaLltaneously.. Setting:the expres-

sions fbr r in thatwo eoltaions equal to each other, Wm get

Simplifying, we get

2 +'2
2 eos 9' + 1

4 omie + 6 COS 0 + 1 = 0

from which we find that

Cos -19 = -44 -3
4.

tr.



p.

Olt -.1.31 or -.19

T!me first is a perfectly good root of 12wAvamiratic equation tor .0,14 8, but',

it is not a possible value for cos 8 . (Why not?) Fiam a table of values of

6-6

the trigonometric functions we find that if oos 8 '4 - .10 then
t.

101° or e 25e9 .

r .62

It is clear that we have found the points A and B of thakfigure, but what

about C* and D / It is not too hard to guesi the answer ifle remeeb.er that

a polar graph may have other analytic-representations.' In our algebraic

solution we merely equated.two Of the infipittly many equivalent polar equa-

tions available for each'eurve. Fortunately'we need not try thee ail; for

the purpoees 6f the coarse we can alma find all the intersections of two

polar graphs from tlie simataneowasaution of an equation of one of them_

, "iiith both of the.related polar eetions Of the'otNet.. The ltmaton

r . 2 COO + 1 has.the relatedVar equation r = -(2 cos (0+ g) + 61. .

r = 2 eos e - 1 st ve now solve simUltaneously the equations
'

1
2 2 - and r = 2 cos e - 1

cos p

we get the coordinates of points C and D in'our figure. They turn Out to'

be approximately, (.3),49P) and .(.30,311°) .

The difficulty is not a simple one, so we shall take another loOk-at it.

Consider:

i (.62,1010) r = wive 1

t (-.62,281.0) tr 2 cos e - 1

We have two pairs Of coordinates for the same point, and two equations for

the same curve,. The first pair of coordinates satisfies the first equation

but not the second and the second pair of coordiribtes satisfies the second

but not the first. This situation should occasion not anxiety but care, and

is entirely consistentwith our definition of the polar graph of an equation

as the set of points eadh of which has some pair of coordinates that satisfy .

it.

255
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Exercises 6-6

In eadh of the exercises below, find the intersection of_the loci de-

termined by the cOnditiond given. Write the related polar equation for eaeh,

*to make sure you find all points of intersection. Sketdh both loci, as a

dheck on your algebra.

2
e 3°0

2.- r p =2 135°

3. r . 2 dos,e y r 2 sin 0

4. r aos r - 008

5. r . cos r = ain.2 8

6 r - sin , 4r sin e,. 1

7. r 1 + cos r ' 1 - cos 8

6-7. Families of CUrves.

A

In Section 6-5 we mentioned the collection of linesktbrough the inter-.

sectio'n of two lines'and the collection of dirclee (and thi line) through the

interseCtions of two circles. These are exaMW.es,Of what are called families

of curves. lie collection,of all circles in a plane and the collection of All

tangenks to a parabola are other examples. In this section we Shall proceed

a bit further with this toPic.

If a and b are not both zero, then

(1) a(x y 4:3) + b(3x y 4- 7) = 0

111

is an equation of a lineS thrçnigh theintersection, P j of

x - y + 3 = 0 and 3x - y + 7 . 0
9

4.

Can we Choose a and b sothat the line is vertical? Yes: For if we let,

a . 1 and b . -1 a the equation becomes

or

62

-2x - 4 0



Thls is one method you learned in artiebia for solvi4 pairs of linear equatiena-

in two unknowns.' In a a/miler may've °timid find the horizontal line through

the intereectien, whiCh ifs equivaleutEkt finding-the y-coordinate of P ',It.

-urns out that P.=.(-2,1) -"

Nvery line thfough (-2,1) May 1), obtained by pieking a and b

suitably. For the slope of (1), if it has one, is leita4;----rf If a b

then (1) has mo slope, a factwe noted above in case a lj b

for any real number. qv j a end b. mar be chosen GO that

1±_a. If
a + b

(This is not obvious. ,Can you prove it?)

Let us look at this family of lines from anotharipoint of view. The line

through. (-2,1) with slope m has an equetion 4 1

(2) y 1 m(x + 2) .

Per sada real value og m we get a line, and different valnee of m give

.different lines. Thus,, (2) is almost the same family as (1) $ the only

difference being that the line x -2 since it hes no slope, is not a

member of (2) .

ezong the mealsab of the family (2) there should betwo will& are

;tangent to the circle xg+ yg =1 , ((ne of is obvious, but let's solve

the problem as though we did not know one al*er.) Intu)tive.4, it is clear

.that a tangent to a circle is a line width ntersects the circle in only One

point. 1,4.4 us solve (2) simultaneOisly th the equation of the circle, and

then try to piek m so that there is only one solution. From (2)

=ymX+n+l.
'Substituting this in y2 = 1.11s iiet

or

or

x
2 mx + 221 + 1) = 1

.2

L 22 22
m xx + +

(1 4- m2)x2.+ (4m2 + 2m)x + 4m2 km = 0

6 3
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This quadratic will have only one.root (that Is/ a doUbleloot) ify'and only

ifs its discriminant is zero. The diocriminant turns out to be -4m(3m 4, 4)

which is zero If, and only if, m c: 0 *or ia =

a

Figure:46-36

Tte figure shove the tangent lines for each case. Their equationo are

= 0 y and 4x + 3y + 5 . .

Let us use the same method to find-the fmzily of tangents to the parehola

7 = x2 Let (a0a2) be any point on the parabola. The fmniliof all but

oneof the limas through this point can be represented ',17J., the equation

y - a
2

= m(x - a).

("Which one is-Imphing?) EXpressing y intrms of a0m0 an

substituting the result in the equation y :4 x2 / we get

2 2
x mx ma - a

0 This equation has a dotible root ifr and only if, m
F

if, and anly if,

(11,1112)

Thus the slope of tbe tangent to y = x
2

and

is ?a 0 and the family of lines tangent to the parabola can be repre-

I.
Sented by the equation.

y - a
F

2a(x - a)
fte

6 4 258
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or, in somewbat simpler fonn

(3)

a

y 2ax -

The ne" in,(3) above is called a prameter. (The word Wad used

earlier in the text in a different sense, TWatlEs, in a way, unfortunate, but

both tises are very common.). It is difficult to define that wordy but you:mnst

underitand how "a" is used here. We migitt sey "Let a be any real !limber.
A

Then (3) *is an.equation'of the tangent to y r x2 at ( a,a3 Here we

are thinkingixf a as4e fixed, but undetersdaedr-real number On the.other

handy when we ay that (3) cepresents the ilmmily of all ts to the

parabola y = x2 we mean that eabh tangent to the parabola has an equation

obtaiaed by,asdigning a garble real v:lue.to a 0 and each eqaation so ob-

tainable4is an equation of a tangent to the parabola. In other vords, (3) is

an ingenioue we;1*-s1t,eetial.'g infinitely mlly equations in a email space.
-y

course*,

0 repre-

b repre-_

64, .

Ybu have considered Many other families of'curves in earlier

vhelier you used this phrase or not, The equation Ax + By + C =
0

- sents the fami.14 of all lines in'a plane. The equation yr . max +

sents the family of all lines which have slopes, that is., all lines which are

not perpendicular to the x-axis. The equation xy = k represents the family

of all rectangular hyperbolas with thecoordinete axes as their as

(and the III axes-themeelvesy obtained by setting k = and sometimes' called

a degenerate hyperbola). The equation (x
h)2 k)2.= rp

rePresents

0 t4e fmmay of all circles in'a plane (and the point (byk) p obteined by

setting r = 0 and sometimes called a point circle) .

Sometimes!it is usefal to consider e family of carves and select from it

those whiCh.haVe some additional property. For expippley at pne point in the

discussion above we considered the 'family of lines which pass thrOugh a point

of y = x
2

,And then selected fran this fatily themetber having the addi-

tional property of being tenghnt to the parebola: Let's consider an analol,

gous problem.

of all the circles in the plane can be represemted by the

equation

(x - y k) = r
2 - 2

pe center of each sdch7circle is at (hyk.) . Which menteae- of the family are

tangent to both axes? If a circle is tangent to both axes its center is on

the line y = x or on the line y = -x The family of circles with centers

259,
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on the lime y x can be represqpted by the equation

.2 O 2
Cx h) + ty - hi . r

Buda a circle will be tangent to bCth axes Up and'auly- ifs r 1111 or

m 112 Dams the family of cireles lying in the first or tdird quadrant'and

tangent to both axes can be represented by the equation

An equation

in a similar itay.

.2
(x b)2 ty - h) h

2
.

enting thAd'In the.second or fourth quadrant can be found'
,

t'

Eke:rases

In eadh of the first 13'cm:excises, find an equation representtug the

fani4 of curves described.

1.. All vertical lines.

2. All horiioptal. lines.

/ 3. All nonVertical libes through .(2 -1) .

A

Ir. All nonvertical lines.

5. All circles with center (-1 2) .

6. All circles with radius 4 .

4

7. All.pexebolad with vertices at the origin and axes horizontal.

All lines parallel to 3x - 4y + 5 . 0 .

9. All lines perpendicular to 2x + y 3 . 0

10. All lines tangent to the circle x2 +

11. All lines that do nob meet the circle = 25 .

12. All circles of radius 6 Whiah go"through theorigin.

13. ,, All circles of radius .1 sudh that the origin is not a poin of the ciral:

orits'intertor.

14. Find an equation of _the line through the intersections of the lines

x - y + 6 = 0 and 2x - y ., 0 and having x-intercept equal to 3.

15. Fir an equation of the line through the intersection of x + y = 0

and 2x - y + 8 = 0 and having slope 1 .

260
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*11111

16. Pind an equation of the line passing through the intrection of the

0 lines x+ y+ 1100 and x- By + 2 =0, and hav.. no sfLpe.

17.. Find an equation of the line through the intersection of the lines

- RY 4'3.m 0 aAd x + 3y - 2 a 0 and the point (1,1) 0 without

finding the %nterseetion of the tim lines. .

4

18. Find au equation oft the family of circles through the intersections of

tht; circles x2 + y2 - 2x - 35 . 0, -and xa y2 .422L 4- 4y - 44 = 0

without finding the intersectioni of the tvo

19. Find an equation of the line through the intersection of the lines

2x + 5y - 10%0 ad. 3mm- y + 19 and pexpendpular to the second

of these lines.

21

Find an equatidn'of thL14ne through the intersection of x +

and x + 2 a 0 and inrall.91 to,, 3x + 4y +.7..:0 .

di.

And equations of all lines passing through.the interseption of

5x - 2ra0 _and x.- + 8.= 0. and.cutting frosathe first quadrant

triangles whoSe arsse are 36.

22A Find equation6 of all lines through the intersectign of y -.10 = 0 and'.

;

y = 0 Which axe units fruei the ori

6-8. -punthary.

We have explored in some detail.in.,thi chapter-the

geometric properties of a set qf points an6 the algebrai

analytic representation. It was convenient to discuss the

ties wider the hiadings.of synnetry, extent, perioditity, in epta, snd

asimptotes. WS paid particular attention to the special situations that

arise in-polar co6rOinates from the lack of uniquifiess in the c'orresponaenee

. between pants and their polkr coordinates, and the consequent lack of
0

uniquenesS in the correspondence:between turves and their Analytic represen-

4

ations Vetveen the
, .

ies of its

eometric proper-

tations.

Our discussion considered relationship sbetweengrapihs and their condi-

tione; first in rectangular and then ipipolar coordinates. We developed

several usefUl tedhniques, notably the.method, of aketehing a graph by'addition

and multiplication of ordinates in rectangular graPhs, and by addition of

radii in polar graphs.
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These techniques %ere then applied to pairs of graPhs and their inter- 11°

sections, wnd tht corresponding pairs of analytic representations and their

simultaneolts solutions. We investigated in,same detail the difficUlties that

arise.here vith polar coortlinates and found,the codept of related,Tolar

equations particularly useful in.these cases.

-

Our,sonsideration of more than two graphs at a time.vas

collections of graphs related by some common feature. .Ther

faMilies :of graphs, aid've devLoPed some uietu1 cohcepts in

family, and then selectihs a partimilar meMber of, it tollt scie Special'

requirement. ,

confined to

dekining such a

, . . .

,' ' ' ,:'. . .

In'oUr neXt,c#apter veeharPen.our .focuisnd.cilsousa particulardly a
. )1"

eqtain:claesification of grarbseand their equations.-Thedhe'Conic

sections, tlave_wvalid'claim to our speiiial atte:ntion;both,beCause they;have
,

been efixtensiyely.studied for .oves''')D00...years,and betause, they4dit--19portant,

_and interestinv4pplication'in many asimcts'of.our lives today: -. ,',...

..0' .

,',

rind, the .16eus Of
. .

,aild terminated by

Find the loc6 of

and terminated by

ahapter_ 6 - BevIew itcereises

the.mfdpoint 9f all sapents parallel

the lines x + = 2x,- y--

the madrtint of all segments perallel

the lines x y 8 = Q , 2x -y

:3. If A = (-4;0) and = (4,0) find an equation. for the

P.= (x,0

.03.) c/(,PIA) = '2d(P,13

(b) d(P,A) + d(P,B) = 10 ;

(er d(P,A) d(P,B) = 2 ;

PIdYB;

slope of

slope pf

PA = tvice the elope of PB ;

TA I.+ slope.of PB ;
. .

measure. of LAPB s. 5- ;

sum of. tpe-iseasures of -LA

area of' bABP = 20 ;

d(P2A) < d(P1B)

and 2B is 1200

4

653 62
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té the x-axis,

to the y-axis

=.0

locus of

4.:
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2 2
4. The circle Whose equation is x + y = 36 contaihs the point A = (6,0:
4

If P. (,y) is any otl:!er point of the circle, find,a;_equatiou for the

locus of the midpoints of AP .

The circle whos.e equation is x2 + y2 . 25 contains the point B = (005).

If Q1-. (xor) .is'an; other point of the circle, find an equation.for the

locus of points- t suCh that Q is the'midpoint of 73-f .

The cirplelkhose egustion is x2 + y2 : 100 cOntaini the'point

0 ='(-1o,q) A line through C- Meets the circle again at D ..and the

line. 2 = 20 at E Find an equation Tor the 16cus of the midpoint of

DE for all positions of the line through C .

7. Find an equatioi for the ldcus.of the midpoints of all Chords of the

circle .2 + Y2 - 4x + S'y . 0 WhiCh a're parallel to the line. y = 3x +
. A -

Find an equation for the line containing the midpoints of all chords of

the ellitme x
2
+ 9y

2
= 36 .wiliCh are parallel to the line 35.4- y = 10 .

Find equations ror the families of curves described-below:

P

"%.

(b) 'All lines, the sum of Whose intercepts is

. -

All lines wiaich, with the polar axes, form a triangle Whose area

is 12.

(c) All circles

(d) All circles

(e) All circles

4x 4, 5y - 2

All circles

All circles

Allicircles

All circles

All circlet

the circle or its interior.

tankent to the y.axis.

tangent to the x-axis.

with radius 1 that are tangent to the,line

0. 0 .

tangent to the line 4x + 3y - 2 = 0 .

6 .

of radius 6 such that,the origin,is an interior poiRt..

Which go through the origin..

*Which go through the point .(12,5)

Whose interior contain the origin;

of radius 5 such that the Origin is not a point of

line

and

All circles of radius d VhiCh are ta'ngent to the

ax + by +

(g) All circles

= 0

tangent to the lines 3x - 4y,+ 5 = 0
.

43y0 - 3y + 9 =,0 .

iAll,circiesstangent

,

a
2
x + = 0 .

. 2

(o) All ci;Cl,es, vhich in

--

to the lines alx + bly + cl = 0 and

eraect or totich the x-
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(p) All cirqes Whieh de not intersect or toneh they-axis.

(q) All circles whiCh-do not intersect or totah the line

( All circles in the interior of x2 + y2 I.

ax + by + C = 0 . .

(s) All cil:eles which intersect or toudh the circle x
2
+

(t) 4.11 lines Which intersect or,touch the circle x2 + y2 = 1 .

(u) All circles in the interior of the detexstined by the points
4. 4

0 = (0,0) p A = (10,0) and B = (0,10)

(v) .All circlesstose interiois contain the points A0Bpand 0 of

the previous exercise*

(10 All circles which are tangent internally tIAPx2 + y2 ..;,100

2
(x) All circles which are tangent externally to x

2
+

(y) All circles to which the circle x
2

+ y
2

I= 100 is tangent internally.

(z) All Arcles tangent to the line ax + by + c 0 and passing through'

the point (rps) .c

10, Sketch the graphs of the following conditions.

(a) lxi = 3

(b) ly + 21 = 7

) lit <, 5

(d) lx - 31 < 4

(e) + Y2 >l

x
2
< y

(k) xy -I- 2x > + 2.

xy + 3x + > -12

(m) 5x - 2y + 10 > xy

(n) XY = 3Y - 3 '

(0) 3x + 2y - 6 < xy

4) x3 + xY2 = 9i

(g) xy + x5r3 = XI' 4

5)2
(r) (x - 3)2-

y =

x = )36 -

)



.4.1116,
11, Sketch :,. phs f the following pairs of paraMetric equationa.

(a) i t 4.
-,_

(f) x >'t y

y = t + 2 f y . at .1 2

(b) x .1" (g) / x '.< t

15r = t + li .
1 y = t

2
.

(c) 1x=2t - 3 ,

I Y = 3 - t .
1

(11)

A

x > 2t

y . t
2

ft

(4:1) (x=t+ 1 p W I > t

y = sin t . A : t .

..

(e) x . t
2.

, (j) x < t :

y . cos t
2

1 y > t
2

41
. .

12. Sketdh and discuss the po ar graphs of the following conditicins.

(a) r . cos 2 Er (e) r = 3 sin 2 e

(b) 'r .,Cos-(9 + 2) (f)ir . 1 + sin 9

(c) r . sin (0 - i) (Ed r . 2 - cos 0

(4 r . 2 sin 3 0 (h) r*"t*,1+ g sin 9

13. Sketdh the graphs of y x
2

and y = x
4

with respect to the sate axes.

Generalize.

14. Sketch the graphs of y = x 2 y = x3 and y = x5 with rdspect to the

same axes. Generalize.

1 . Sketch the graph of y = 3 sin x + lt cos x What does it remind yot of?
0111.

Note tHlat this equation ean also be written in the form

sin x 006 x). and that (3)2 + (15-)2 = 1.

FinAlly, use these facts and a well known trigonometric identity to write

a third form of the original equation.

16. Getneralize the.result of tile preceding exercisabY considering the equa-

tion y = a sin x b cos x where a and b are arbitrary real num-

bers.

OW
17. P;ove analytically that if a set of points in a plane is symmetric with

respect to eadh of two mutually perpendicular lines, it is symmetric with

respect to their intersection.



.

18. Prove that the gra& of the pair k = at + b = f(t) of parametric

equations is identical with the gramh of the equation

y = f(x -.1)) obtained by eliminating t in the natural way. Thus there
a

are cases in which it is possible tcT eliminate a parameter without getting

into trouble..

19, Make a graph of Y = a + b sin (cx + d) for eadh of the following sets

of values of a b d .

(a)
A

A = 2, b'= 3 ,,c = 2 $ d = .

c 4(b) a = -3 b = 2

(c) a = 3 = 2

(d) a = -2 b 9 2 = 3 4 d = 0 .

pballenge Exercises

1. Sketch the rectangular graPh of y = sin 4x sin x riscuss the graPh of

y = (6 + sin i) sin and generalize suitably. Consider

. y = ain 1000xt Qin 1ee/944 t Whidh'is related,io equations whiCh
1

describe nVitude modulation, in radio broadcabting.

2, r discussion an& experiment, if an oscilloscope is available. Adjust

the controls to,get a stationary sine wave on the screen, then alter one

contra at a time to dhange the amplitude, the wave-length, the frequency,

etc.. If available and possible, find the constants of the oscilloscope

and-write the actual equaticfns of the curve,

266
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.Chapter 7

CONIC SECTIONS

7-1. Introduction

7-2

This chapter is.intended to give ynu a better understanding of the Curves

'called conic sectiong. When you.studied geometry, you investigatedlOropertiee

of a 'circle. In your study Of algebra ifou worked with equations Of the Ilaripus

conic'sections and their properties. Here we shall first consider brienythe

history of conic sections. Then we shell give a formal definition-of a conic

section and use polar coordinates to obtain a standard polar.equationof a

conic section. We shall see how equations in polar form are related to the

equations in rectangular form that you have already studied.' We shall derive

properties of'these ctrves and work with some of their-many applications.,

In studying conic sections you will:use the knowledge and techniques

acquired so far in analytic geometry; Both.recteingular and polar coordinates

will be used; often parametric reeregentation will'be helpful. Idev of loCus

and curve sketching will be used.

It is assumed that you have studied the definitions, equations, end prop-

erties of the conic sections; brief summaries.will show you What you are

expected to know. If yoU find that you need more detail, you will find it in

'the following Elections of Intermediate Mathematics:

6-3. The Parabola (pages 315-321)

6-4. The 'General Definition of the Conic (pages 326-331)

6-5. The Circle and the Ellipse (pages 333-336)

6-6. The Hyperbola (pages 342-348).
V

7-2. 'Hi tory and Applications of the Conic Sections

The.curves called`conic sections were so named after their'historical

discovery as intersections of a plane hnd a surface called a right circular

cone. A Fipt, circular cone is the surface generated by a line moving about

a cirajJe and containing a fixed point on the normal to the plane of the circle
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4
at'the center of the circle. The fixed point, called the vertex, separates

the surface into two parts called nappes. Each line determined by the vertex

and a point of the circle is ealled an element of the cone. Tbe norial to

the plane of the circle containing the vertex is called the axis of the cOne.

The proper conic sections are circles, ellipses, parabolas, and hyperbolas.

Tbe discovery of the conic sectiOns is attributed to,thaGrreek math-

ematician Menaechmus (circa 375-325 B.C.), who was a tutor to Alexander the

Great. He apparently used them ia an attempt tolsolve three famous Problems,

the triseetion of an angle,' the duplication of a cube, and the squaring of a

circle. Although the'Greekmathematicians were primarily interested in the

mathematical applications of the conic sections, they did know same of the

optical properties of the curves. The definition of the.conic sections which

we shall use is attributed to Apollopius who flourished before 209 B.C.

Further discoveries of the.physical applicationt of thb conic sections
bi

did not occur until the conjectures Of the German scientist and mathematician

Johannes Kepler (1571 - 1630), who hypothesized that the planets moved in

elliptic orbits with the sun as a focus. The theoret,leal development of

Kepler's conjectures followed the gravitatfon theory and calculus developed

by Isaac Newton (1642 - 172). In fact, it may be shown that any physical

object mA0ect to a force which is described by what is called an inverse

square law-will move in an orbit which is a conic section. Gravity is such a

force; the electrical force be,tween ehargedhodies was found to be anOthe'r
a

such force by Charles Augustin de Coulomb (1736 - 1806).

Today we find applications of the theory of conic sections in the orbits

of planets, comets, and artificial satellites. The theory also applies to

nses of telescopes, microscopes, and other optical instruments, weather '

pre ctiqp, communicatio; bY satellites, geological surveying, and the con-

4-struction of buildings and bridges. Conics also occur in the study of atomic

,structure, the long range guidance systems for ships and aircraft, the loca-

tion of hidden gun emplacements and the detdbtion of approaching enemy ships

and aircraft. The surfaces of revolution formed by the conic sections, which

will'be considered in Chagter 9 find application in the sciences dealirli with

light, sound, and radio waves.

It is helpful to visuali4e the four conic sections formed by' the inter-

section% of a plane and a right circular cone. We illustrate...elle physical

possibilities below.
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Figure 7-la: Cirdle

Figure 7-1c: Parabola

Ilk
FigUre 7-1b:. Ellipse

Figure 7-1d: Ryperbola

7-2

A circle (Fieure 7-1a) is the intersection of a cone and a plane perpen-

dicular to the axie of the done. An ellipse (Figure 7-1b) is the intersection

of a cone and a plane which forms an acute alitgle, with the axis. The measure

of this acute angle is greater thanithe measure of the angle formed by the

axis and an element or the cone. A parabola (Figure 7-c) it the intersection

of a cone and a plane parallel to an element-of the cone. A hyperbola

(Figure 7-1d) is the intersection of a cone and a plane which forme an angle

with the axds whose measure )(s Less than the measure of the angle formed 14i

the axle and an element of the cone. These descriptions suggest that circles.
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44-

and ellipses are the sections formed when planes cut every element of the

cone; parabolas are formed when planes cut some elements in one nappe of a----
,

cone; hyperbolas are formed when planes cut same elements in both nappeE; of

the cone. Although the drawings of Figure 7-1 are limited, cones are infinite

in extent; what ii illustrated is only part,of the parabola or hyperbola..

For a'more co011plete and systematic geometric development of the conic

sections, leading to the definition to be given in the follOwing seceion,

see Supplement to Chapter 7.

7-3. The Conic Sections in Polar Form

We shall choose as a defining characteristic of the conic sections that

geometric prOperty which leads most readily,..to their analytic description.

This prollerty relates all the conic sedtions except the circle.

DEFIBITIONS. A conic section is the locus of points in a plane

such.that for each point the ratio of its distance from a given

point F in the plane to its distance from a given line D in the

plane is a given constant The given point.F is called a focus

or4oca1 point of the coniccection. The.given line D ia a

directrix of the conic section. The given constant e is the

eccentricity of the conic Election. If 0 < e < 1 y the conic section

is called an ellipse. If e 1 2 the Conic section is called a

parabola. If e > 1 the conic section is called a. hyperbola.

A circle is also a conic section and is the locus of points at as

given distance from a given point.' The given distance is called the

radius of.the circle and the given point is called the center of the,

circle.

In some ways it is simpler to describe the conic sectibns in polar

coordinates. We are already familiar with the polar, equation, or equation

in polar cAdinates, of Ocircle with center at the origin as r = It ,

where k is -Che radius.

We shall assuke that the focal point does not lie on the directrix. Let

the focus of the conic section be at the pole and let the directrix be per-,
SP-

pendicular to the polar axis.' Let the polar axis be oriented away from the

directrix; that is, the ray that is the polar axis does not intersect the
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7-3

i"

directrix. Let bp the distance from the pole to the directrix and let

c. = (roe) be a jOini.of theiconic section.
1,\

Figure 7-2

Then the diANnee from P to the focal point is r and the distance

from P to the directrix is ,p + r cos e . Thus,

p + r cos 0
e

EXpressing r in terms of e , we obtain

(1)

In the above

on the directrix.

degenerate conics,.

planes containing

ep

r I - e coi

17discussion we have assumed that the focal point did not lie

If it does, we obtain certain figures which are called

Geometrically, they are th& intersections of cones and

the vertex of the cone. (For a more complete discussion,

see Sunlement to Chapter 7.)

If the focal point is on the directrix, then g = 0 , and we may not'

perform certain algebraic operations, since division by zero would be indicated.

We may express the analytic condition as follows:
7 1

r = er cos 9 .

If 0 < e < 1 , we have r < r .cos e ,whichkis never true. If e = 0 , we

have r = 0 ,-whigh is an equation of the poi:1z. This is sometimes called a

point-circle. .(It is sometimes Convenient to'think of a circle as a speCial

case of the ellipse. This is not consistenit with our approach here, )ut it.

suggests why one may encounter the description of this locl as a point-

, ellipse.)
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If p = 0 and e . 1 0 we obtain r . r cos e . From this we may infer

41114SE

either Thr = 0 , or 1 = cos 9 . e graph of r = 0 has just n discussed.
,

.The graph of 1 . cos 61 is the line containing the polar axis;\.F1 s we call

a degenerate parabola'. 'If p . 0 and e > 1., the equation r . er cos e

1
will be satisfied when cob e =

'
Thus the locus isvtwo distinct linesg

through the pole and is called a degenerate hyperbola. (There Will be fUrther

discussion of degertitiet conics tn the Supplement to Chapter 7.)'

. Thus far we have considered the equation of a conic only in the ease in

which tile focus is at the pole, the directrix is perpendicular to the polar
a

axis, and the polar axis is oriented away' from the directrix. Certain other
. .

.cases will be considered in Example 2 and the exercises, but we sha4 not take

up'the,case in which the directrix is oblique to the polar axia until we bale

studied rotation of the axes in Chapter 10.

fbcample 1. A paced point F is 4 units from a given line L Vrite

an equation.for the locus of points equidistant from P and L .

1.

. Solution. We'place the pole of
P r,e)

oUr polar coordinate system at F , and

thelar axis perpendicUlar to L and

dire4ed away from L Then far any
\

.point \P = (r119) =on the locus,

r = 4 + r cos 0 ,

which becomes

4

r - Eos 0

This equation is in the form Of

Equation (1), apd represents a parabolao

Example 2. Yhat'is a polar equVlon of a conic section with focus at the
.1

pole and directrix parallel to the polar axis and p Intits below it?

a

\r2.72.



*caution. Let P = (r00) he a

point of the. curve. Then the distance

from P io the fodal-point le r 0 and

the distance fines P to the directrix

is p + r 416 e . Thus,

-
p + r e

e .

&pressing r in terms of 0 0 we

obtain

ep
r

1 2 e sin e

\

&ample 3. %Graph r%4
2

- cos 0

Solution. This equation is'in the

form of Equation (1) with = 1 .;

2 Hence its graph is a parabola`

vdth focus at Q 0 and directrix I.

perpendicular to the polar axis and 2

units to the left of the pole. The

vertex must be midway between 0 and

D Location of one or tamore points

-.4ay (40600C) ar4 (20900) --and use

of symmetry tben permit making a

sketch:

6
Example 4, Graph

I.

- 3 cos e

7-3

7-9

3
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Solution. To obtain the form of. Equation (1), we divide numerator"and

denominator ofthe fraction by 5 1 and write the numerator 45 the product of

e,cand a-number which must be p We

obtain

3. o

r -
2

/63 b
1 - cog u v-

5

3
4,18e

Since e = and, p = 2 the graib is

an ollipse;' one vertex divides the

normal segment joining the focus to the

directrix in the ratio 3 to 5 We

'obtain a few more points--say (3,00)

3,0

(,60P) p and (,90°) --and use symmetry to complete the graph.
0

Graph 'each of tile following:

4

1' r 17777a7

. 6

r 2 2-cos

Exercises 7-3

. r

6.

12 .

4 5 cos e

2 - 6coa #

3.
4 4

r = f-=-76776 r
1 - sin Q

'4 6 6 .

4. r B. r
7-777-0 2 - 2 sin 1)

9. What is a polar equation of a conic section with focus at the pole and

directrix parallel to the polar axia and p units above it?

10. ielat is a polar equation of a conic section with focus at the pole and

directrix perpendicular to the polar aXis and p units t6 the right of

the pole?

11. Using the results of EXerciees 9 and 10, graph the following:

4

(a) r + cos e

12
(b) r 4_ 5 sin e

8

(c) r 4 + 3 sin e

10
(d) r 5 A. 3 cos e

27J So )



.In &erases 12-191 relirite the equations in a form convenient for

graphing identify the conic section, and sketdh the graph.

12. er - 6 - r cos 8 = 0

13. r IC r sin $ = 0

4. 3r , 12 - 2e cos 8 m 0

15. 3r - 12 - 4r cos e 9

16. r...= 2 + r sin 8

17. r = 3 - 2r cos V.

3
18. cos 0 7

r + 2
1,9. sin 8

20. An artificial eatellitc nter of the earth as its focus. For

a polar Coordinate system in the plane of its orbit the distance of the

satellite from the center of the earth 6.c:p = 180° is 5000 mi. and

at. 0 - 90P is 6000 mi. Assuming that the axis ia along the line 1

e = 0° 2 find the equation describing the-orbit and the greatest distance

*of the vtellite from the center of the earth.

110

Conic Sections in Rectangular Form

We have developed polar equationt for the coqic sections in oertain

specified positions. Wu' a circle with center at the pole, lhave

r = k .

FOr the other conic sections with focus at the pole, and directrix perpendicu-.

-lar to the polar axis and.p units to the left of the pole, we have

ep
r e cos e

r
representing

a parabola if

an ellipse if 0 < e <

a hyperbola if e

. We shall find the correspoyding rectangular equations by using the following

equations, developed in Section 2-4:

Circle: If

then

x = r cos e

y = r sin 0"
alb

r = k

r
2 2

k .

2 2 2
r = x + y

tan o
x



a

7-1+

V r

(This fs equivalent to multiPlyil(the ;embers of k = 0 by the corres-

ponding members of r.+ k . 0 Since these 'gre both equations of the same'

circle, the graph of the resulting equation is the same as that of the original

equation.)

Since

we may write

2 2 '2r =x+yf
. 11

2 2 2
x. +'y = k

We now consider tile general equation

1
N%.

ep
r

1 e cos 4

WO,Mltiply both members of the equation by) 1 - e cos-9 to obtain

r - er IS; a=
V

7 or r e(r cos e + p)

and square'both meMbers otthe latter equationto obtain

(2)

\

(Whenever we square both =able of an equation we mUst be cureful of the in.,

terpretation of theiresult. We have in effectAmultiplied both mentr&B of

2 2 2 2
r e (r cos 2pr + p

2
)

S.

7 e(r cos + p) . 0 byithe corresponding meMbers of r + e(r

We recall from.Section 572 that r etr cos e + p) = 0 has the

\equation

-r - .e cos (9 + +

Since cos (e.+ = - cos e $ this is equivalent tO

or (3)

-r - e(r c

r + e(r cos 9 + p) = 0 .

COS 6 + P) = 0:

relatedepolar

Since the "factors" of Equation (2)Are'equivalent to Equation (1) and its

related polar equation, it has- 11 'same graph as Equation (1). We' may, now

2 2 2
proceed with the origttal discussion Usin440, r = x .+ y and r cos 0 = x

we haveA 1!0

(4) x + y - x + 2px + p
2

)
2 2 2

We now have our equation in rectangular coordinates and wish to examine it

Aor the different values of e..

0

V'

S2
276
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Parabola.: Since e 4 i 0 Equation (4) becomes

2' 2. 2
x 7+ y x 2px + ,p

r2 = 2r( x P . a

.

Tfits eqUation as you may recognise from your stddy-of algebra', represpnts a
4 4. .V

7:4

,.. Pparabola with focusaat'the origin and vertex at %- 0) .

* r

6

-

EXample 1. Write ctangular form; and sketch the graph of

ca.

r

Solution. Thd given equatnn yields r cos a= 6 , vhich.after
.

tiansformation becomes

* .4,

or

42 2

416 Therefore
-2
x of y ..x

2
+ 12x + 36 ;

and' ffrnaUv

y2;.)12x+ 36

or y2 = 12(x .+ 3) .

.
.

N

.
,

tllipaa: Here/ 0 < e <1 1 Ile:rewrite Equation 4) as,.

2 2 ."2 2. 2 2 2
&

, x + y . e x '+ 2e px + e p
_

ail
, A

We rear?Felithe terms to-obtain

-

3i.2. 42.
(l .,.. e2)x 22,- .4 +/

:1111-

- ,
,,

.. *
/ .

,..0
. .

rice,'we ari vlooking folpform that'Ve-can recognize as the equati616f a
... '

.

g.onfc'that has 4 center, ve use the teshniqte of completing the square.
,

IniAing by the coefficient. of' x
2

0 wd have
..

"

2r
2

2
. y

'1111P'..
. .+ .ci'ex 2

.- e2 1,- e

"AA
p.
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4

to

13 2 -'2-X -"L'11"" -"'!"4"L
2 2 . 2 2 2 2

2e2 1 - -e2 1 - e 1 - e2

or,
.''e2p2

2 .1 - e 1 e2
1 -.c

Since, 0 < .5" 1 C2 1/4. r 4fct,A. 'e2 > 0- Maus the coeffi.cients of'

x2 -and y2 are both positive. Although tile equation above is quite
cluttered with constants, it . should.be al:/parent 'that it has the form'of. the

2'

equaiion of an' p wielli se th oenter t -E-Lnif a 1 -

Example 2. Write in rectangular form:

va.

;

1 - cow@ .

ThSolution. The givsn equa-)tio yields r r cos 0 = 6 which, by

substitution, becomes

p.

Therefore

hence

- x 6. ;
2

2 1" 7

2 2 1 2
x + y =x + 6x 36 .

Finally', this bec;me
3x2 4y2

- 24x 144 = 0 , ou may recognize atv

an equa.tion for an ellipse in rectangular form'. We write this in standard

form thils:

41*

or

3(x
2

- 8x +.16) + 4y
2

= 144 + 48 ,

3(x.-.4)2 4y2
= 192

4 )2 3r2

You may riVIcognigle that this equation represents an ellipse Wth ce4er at

/

4 278 s4
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erbola: The algebraic manipulation involved in expressinethe

equation of a hyperbola in rectangular form is identical with that for tile

However,:wben we reach the form

( \ . 2 2.22. 2 .
_..2 2 .A.)

1 -
,

e1 - e
2

1 - e

We mote that since è > 1 e >1 and- 1 - e
2.
< 0 ilbUs the coefficients

2of x and y
2

have opposite signs. 4.
It should be apparent that this is the e ion'of a hyperbola with

, , .,

.-..,

center at

Ybr each

e2p

e
2'

7n
Blercises 7-4

of the polar equations lelow ybu are

(a) Sketch the graph,

(b) Write d corresponding equatibq kno7eCt..angular coordinates.

0

asked to do ihree thihgs:

(c) Write the related polar equation.
i%

.

1.

2.

3.

4.

5.

6'

7.

'r = 3

r = 9

r = 2 cos e
..,

ra= cos e -1- sin,0

4

r

1

A

8.

9 .

10.

11.

12.

_13.

14.

1 - cos e

.

l'? -Cos1. + 0

r
3

T 1 - 2 cos e

6
r 2 - cfts e.

5 .r .. 3 - 2 COleo

5'

- 3 cos e ,

r . 1 -1- cos il.

r - r sin 0 = 2

4r - 3r cos 8 = 12
.f

4r + 5r sin 0 = 20
-.

c-
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7-5. The Parabola

In this section andthefollowing three ve consider the four main kinds

of conic sections: paxabolay circle, ellipse, and hyperbola. There are

brief sutmaries of the important definitions and properties. Equations in
-

rectangular coordinatesoften called standard,formsare given for these

curvei'vith axes on or parallel to the coordinate axes. Much of.this

-information is not Aew; it is placed here because Of its importance, and for

yOur convenience.

, The parabola is defined as thelaet of points equidistant from a'fixed
.

point (the focus) and a fixed line (the directrix). A'parabola is sYmmepric

with Tespect to.the line through the focus perpendieular tO the directrix.

Thia line. of symmetry is called the axis of the parabola, and its point of

intersection with, the parabola is called the vertex Cif the parabola;'

In Figure 7-3 F, AT, and D indicate the; focus, vertex, and directrix

respectively, and 11,1 is the distake between F and V. If p ). 0 ,

the parabola extendeupw4i:d or to the right as shown; if g < 0 y it extends

downrard or to the left. ',

In making a quick sketch of a parabola, it is convenient, after locating

V, *, and D, to find the length of the latus rectum. This is the chord of

'the parabola through.the focus perpendicular o the axis. If in Equation (a)

Figure 7-3 ve set y = p , we find x t 2p ; us, the length Of the latus

rectum is 14pl (The student should verify that for eakh of the other

standard forms Of the equation given in Figure 7-3 the length of the latus

rectum'is also 14p1 .)

r '

In general a cOnic section has been defined as the set of points, P such

that the ratio,of the distance froth: P. t a fixed point, to the distance from

P to a 'fixed line, is a constant ed the eccentricity. For the

parabola e ='1 ,

0

.1

2,10

a



(a) -4py

14.

Isai4AV

7-5

(x 4/y),,,-.4)

Figure P-3

re) IV- kia 4do (X -4)

,Our definttion of the parabola makes no restriction on the position of

the fixed point and line. What,if the pointis on the line? Our knowledge

of geometry tells us that the loeus must be the line perpendicular to the

directrix at the' fixed point: If we let g = 0 in, s.gy, Equation (d), of

Figure 7-3, we obtain

This equation represents ft straight line. This locus is often called a

dlgenerite parabola.

.1"



7-5

The parabola has important geometric properties, some of which concern

tangents; these you will be able to derive more easily when you have studied

c4culus. One ortbe best 'known is the reflective property: light rays

parallel to the axis cif a parabolic 'reflector are concentrated at the focus,

and light rays emanatIngafrom the focus are reflected parallel to the axis.

This property, althoUgh usually illustrated in two dimensions, has more in-

terest and physical applications,in three dimensions. Such parabolle reflec-

tors are used not only for lightrays, but also for heat, sound, and micro.

wavese You may have seen such reflectors used with microphones, or radar

antenna, or as,perts of artificial satellites. "

%The parabola is also important,in analyzing trajectories; the pilith Of a

projectile can be approximated by a.parabola. Under certain conditions of

loading, the cable of'a suspension bridge hangs in the form dr a parabola .

Arches of bridges sometimes hive parabolic fdrm..
414

.02

Example 1. Rewrite the equation x + 4x + 8y - 4 . 0 in standard form.

Write theicoordinates of the vertex and focus and the 'equations of the axis

and directrix.

Solution. Since x
2

is the only second-degree term, we group the

x-termb and complete the square.

is equivalent to

or

x

x
2 4x + k -8y + 8 ,

(x'i, 2)2 = -8(y - 1) .

-This last form we may co4are with° (x 2h)2 - k) ,

A es an equation-of the parabola with axis parallel to the y-axis,

(-2,1) . Since = -2 1 the parabola opens downward. The aXis

and recognize

.and vertex

is a vertical

Vine
thfough the vertex; hence its equation is x = -2 . .The directrix is a

horizontal line units above the irertex and has the equation, y 3 .

- 4

(-2,-1)7-) is two.units below the vertex.

Example 2. Wtitelan ecivation of the parabola with vertex

directrix 'x . -1 . f

S
282
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Solution. Since the\irectrix is rticai, the axis is horizontal;

an.equation will be in the form (d) of Fi 7-3.. The.distance from V

td the dirgctrix is p IIMTV p = 4 . Thus an equation is

(Y 2)2 = 16(x.- 3) ,
-

Exercises /.1.2.

1. Rewrite each of'the following equations in standard form; write the

coordinates of vertex and fO'cus,"and equations de7a7L and directrix;

draw the gra h.

2
(a) x =

(b) . 16x

(C)
2

- -3y = 0

(d) y2 - 5y + 6x - 16

(e) 2x2 - 82('-'3y + 11 = 0'

'Cr) y = ex2 + c

2. We have noted that a special or degenerate case of the pajabola occurs

when the fixed pointis on the fixed line. In this.caae Equation (d)
.of Yigure becours 6- k)
2

=, 0 1 the 1 is a straight line

pirallel to ihe

(a). Find the degenerate eve of each of the other standard forms of the

equiNon of 1: parabola, and state what the locui is.

(b) If a parabold is a section of,a cone 15k a plane parallel to .an /

element of the:cone, can you exp1 4n these Pdegenerate Parabolash

as limiting cases?
oso

"Deriye dn equation of a parabola to fft e:ch of the following.conditions

r by using the locus definition of a parsibola.

. I
(a) eocus (-1,-2) directrix x =.

a

(b) FOcui-'(-1,3) , directriA y = 2,

(c) Vertex (0,0) , focus.. (-,0)
1

(d) Vertex (4,5) , directr4 x = 3

x

4. Obtain an equation for each of Zhe paMbolas for which conditions are

given 4111tercise 3 by using the standard forms of the equations.
)

f
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'Findan equation of a parabola to fit each of the following conditIo6.

:la) 'Vertex directrtx- 2x
o
5 . 0

(b) Vertex (2,-3) 2 directrig:the x-axis

(c) Vertex (0,0..2 axis of symmetry thp x-axis,

' point (207)
%

(d) Latus rectum 16 , oPen down, Ver4x (-2,3)

' 6. Cross-section paper and a compass can be

used as follows. Mark one of tile printed

lines Lb and mark successive parallel

lines Li y L2 y .....Select any po

on the same side of L
0

as Li ith a

compass measure on one of the Printed

lines the distance d2 froM L
o

to L
2

With d2 as radius and F as center,

locate points P2 and 1'2' on L2 . In

a similar fashion, using d
3

az radius

L Prove thatlocate Is and P
3

' on

the pointp P P2' 0 ... lie-on a parabola.

J. To construct a parabola mechanically, place

traight-edge L perpendicular to the

line MN . Attach onNnd of a piece of

string of le-ngth ST to point T of right

triangle EST y and-the other end to a
. ;

point F on MN . With a pencil, hold the

string against the side ST of the,triangle

Us the side SR slides along ML . Prove

.tbat the pulp P of the pencil describes

a parabola as the triangle slides.

284
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Challenge Pralems

1. In SectiOn 6-3 it was shown that the family of tangents to the parabola

y = x
2

at any pRint = (a,a2) on the parabola can be represented by

. .

the equation y 2a a
2

Prove the reflective property of the

parabola for this eases. (Hint: Show that the tangent makes equal angles

with the line from P to the focus and the line through P parallel to

the axis.of the parabola.)

e. %Again using the' results df Section 6-7, prove the following statements

for the parabdla y = X2 .

(a) The points of tangency of two perpendicular tangents are collin7>

with the focus.

(b) The 16poun of the intersectionn of pairs of lerpendicular tangents

is theAirecet.

7-6. The Circle

A circle is the set of points in a pine each of which is at a given

distance from a fixed point Of the plane, If ihe fixed point, called the

center, is G= (h:k) p and the given distance'is r for the rectited set

of points P = (X,y) we have

(y - k)
2

= r
2

.

If r . 0 , the solution set is the single pOint (h,;) ; such a locus

-11

is often called a point-circle. If x2 < 0 the sutionIset is the.ellipty

set; in this case the locus ds sometimes said to be-oan imaginarY circle.

Slince there are three. arbitrary constants 11, k, r in the standard

equatpo of a circle,,it is in general possible to impose three geometric

Conditions on a circle. The folloWing example will illustrate this.'

EXample 1. Fin4 an equation of the.circle which passes through the

three points (1,2) , (-1,1) , (2,=3

' I

9 1
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Solution A. Using the equatik x2 + y2 + Dx + gy +E=0we

n twathe condition that mob of ihe given points satisfieathe equation.

f .

'kst 4 + D + gE + F = 0 4 or D + 2E.+ F 5.

6

1 1 4! EL+ F = 0 or -D + + F = -2

4.+ 9+2D 3E + F = 0 y ot 2D - + F =.-13

We now have a system of 3\bquatione in 3 unknownS; solving ttese by any

desired method, we find that

11D 0
-11

and, - F =

1

" We substitute' hese values in the equation and multiply by 11- to obtain.

2 2 0

Solution B. Here we use the condition that the center (h,k) is,

equidistant,from any two pointsdof the circle. We select .tbe:first tiro

points and write this condition....

1)2 .4. 2)2.

We then do the same thing for the last two points.r
1)2 1)2 2)2 , or 6h - 8k

v

The coordinal.es of the_Agutelt pf the desired circle must satisfy both of

these equations; solving them, ide haVe I.

C = (11,k) =
,22' 22

Now:we find the radius r , the distre between C and any'of the given

pointsi say title ftrrr:

2
r = ( - 21%2 f2 4. 1112

22' ' 22'

(.7.1)2

22
2

286
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Thua the equation of the circle is

2

7

13 2' 3250
+.M) '2

'22

7-6

.Ttie-iittident shotild satisfy himself that this equation, when simplified, is the

'4104 same as'the one obtained in Solution A. What happens, tO the solution of this

problem if the three points are collinear?

EXample 2. ,What is the locus' of '36x2 + 36y - 36X + 48+ 24. = 0 ?

4

Solution. We regroup the terms and apply the distritutiVe law to obtain

4

36(X2 - X) "I' 36(172 + =

We complete the squaYes racidig the same numbers to each member Of the

equatiOn, obtaining

11
136(x2 x + )v + 30ky

2
Ilr .= -24 + 9 + 16 ,

which..is equivalent to

(x ;)2.= 31.6

Hence tde locus is a crcle iitn center (r ) j and radius

of,

Exercises 7,6

Relirltv tale following equations to show what each locus s; if it.is
0

a circle, find t e center and radius.

(a). x
2

+ y
2

.-. 8 0 \ (e) x2 Y
2 -x+Y= 0

,

(b) x
2 2 ,

1x

. 2' 2+ y - o - 0y + ... (f). .

(0-
x2 + y2.:4. 4x Oy + 20 = 0 (g) 4.5.x2 + 5y

2 ,
7 ox + 4y + 2 . 0

,

(co ii 4. y2'+ 14x 9y + 60 = 0 (n) 2x2 + 2y2 .. 2ax + 2by --al . 0'0_

4

93
41"44%.
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2. A In- each of T.0 follOwing, find an equat4ion of the circle (pr of each

`N....circle) determinedly thelkiven"conditi ns an4 make a sketch. (L6t C

and r repAsent centerand radius.),

C (3,5 y r 7

C = (_5,12) ail*passing theorLgin

C = (3,2) and tangent to an axis

= 3 .and passing through the points -(-101) 1

C = (1,2), and tangent to the )ine 3x - 12 = 0

passing,through'tpe points' ($03). (501) , (oil)

Use the fact that a tangent to a cire0 is,pervendicillar to .the

radius at fitgpoint of contact to fi?cf-erttil of a tangent

to the circle
x! y2

25 at the point. .

(b) Prove-that an equation of the tangent to the circle x
2
+ y

at ehe point (xial) of the circle is xix + yiy = r2

4. (a) Find the length of a tangegt from (3,7) to the circle x2 iy2=. 25

(b) Show that if -t 'is the length of a tangent from the pointo- (xily1)

to the circle x
2 2
+ y + Dx + Ay + F = 0 1

t
2

= xi
2
+ yl * + 14,1 + F 4

(c) If in using this formula you find ihat t2.= 0,, how do you

interpret.this geometrically?, Wba* if t2..5 0 ?

In. Section 6.6.we considered'the fgmily of circles through the common

points of two circles; such a Familpy is sometimes called a coaxial fsmily

or a pencil of circlOk.

(a) Find an equation of a pencil of circles through the intersections

'of the circles with equations

x
2

+ y
2

- lOx - ay - 35 . 0, and

x
2

+ y
2

+ 4x - 49 = .

(b) Find an equation of a circle of this pencil which passes through

the point (o,-6) .

v
.

.

) Find an equation of a circle of this pencil which has its center

on the line x + 5 . 0::

4

9 4
'
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6. In Sectioit 6-5 we found the equation of i line through the oammoin points

of 6to circles; the same algebraic technique gives us the equation of a

line, whether the circles intersect or not. Tbis line is caLled the

radical.axis'of the two circles. 'Prove that the tangents drawn tp two

circles from any point in their radical'axis are equal ia length.

7. Find the coordinates of a point from which equal t-angents can behdrawn

2 2
to the three circles with equations x +y =4, x2+y2- 6x y =.12,

it
'x2 + y2 + 4x - 3y 15 .

Prove that the radical axis of twoAcircles is perpendicular to the

of centers of the skrcles.

11.9.
. ... A

Two interseCting eircles areattid to be orthogonal if tbe tangents At
OE

,

each point Of intersection.are'perpendicular. Prove thSt4if circles

2* 2 a x2 y2x +.3. + Di.x. + Ely + Fi. + D
2
x + E2y + F

2
= 0' are

'orthogOnal, then' D1D2 + E1E2 = 2(F1 + F2) .

10.- "Show that tihe following pairs of circles are orthogonal

(a) x
2
'+ y

2
+ 3x -.5y + 6 0 ) X2 y2 + 1Qx + = 0

(b) 2x
2
+ 2y

2
+ 2x + 1 = 0 , 2x2/4: gy-2 _ 4x 4. 6y. . 3 = 6

11. "Ntermine the conStant .k 'so txat each.of the iollowing pa rs of

circles is orthogonal.

(14) x
2

+ y
2

- 3x + - 3 ,=. 0.
4

+ y
2
+ 2x - y + k . 0 ,

(b) 3x
2

+ 33r + 2y . 4 f, 5x2 + 5y2 - x + 2y 7 2
2

I

.Challenge Problems .

1. The vertices,of triangle ABC. Bile the centers of any three circles whicic

intersect each geher. Prove that their toms= chords are col4curren't.

2. The vertices of triangle ABC are the centers of any three circles_
,.

Prove that tair radical axes are concurrent. (DoeS your prbof also.
.

hold for Challenge Problem 1 I')

289 9. 5
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7-7. The gillipse

4
The ellipse-is defined as the set of points P Isuch that the distance3.

from P to a fixed point (the focus) is equal to the preduct of a copiltant

e and the distanae from F to a fixed lige (the directrix). The constant .

. ,

e , the ecrentriciti', is such tiat 0 < e < 1 In our ear1ier, sti* we found
4

that if we tak4\as focus Fu. (#O)

_

let a = andt b
I

e
2 an.eloation for the ellipSe'ean be written

e

and as directrix the line x .= and
2

2 2
x y L

, . a la:
....

O.
%

r

We note from theae relatiOhs that the equation of the directrfx can also be

written or x =

,.

From Equat,rOn (1) we . e that the graph pf the4e114se is symmetric.with

'respect to.the origin and both of tKe'coordinate axesr hence the point . %

C .

F/ = (-c;0) Juld the line x = - _lr also serve as foeus,and'directrix. The. .,

a
. Another useful.relation-is c2 = a2e2

-

2 --= a

chord 'of the ellipse which contains tde foci is ailed-theatsOor ails; its

endpoints are OMlled vertices. The midpoint o the majOr axis is called the.

center of the ellipse; the chord perpendicular to the major axis at the center

is called.the minor amis. . ,;

,

In Figure 7-4, parts (a) and (c) summarize information about the elli/ise
k

wiyl.Elquatioh (1), and alao.the cortgoarable case with the role of the x-. and'

y-axes/interchanged.
, -

..

The equation-
.

e.

,
,...

4

,(2) ....

(xL 02 (y - k)2
.

..

, *

If M and N are-positive, Is in-the form of'an equation of an ellipse with
,

center C = (h,k) Whether the malbr axis is parallel to the x- orthe
. - f

y-axip depensis on whether M or N ,is larger. Using 'V,V' F0F, , and

DO' to indieaté vertices0.foci, and directrices, we can Limmarize in

Figure 74, parts (b) and (d), information about an,ellipse with center (h,k)

Ind axes paralleLto the coordinate axes.

4

9 6
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If in Equatioin (2) X end N are negative, there ie no locus; some-

times in this case we speak of in 19iginari ellipse. The equation

1

r '(X h)2 im 0
+

has as its locus only tbe point (h,k).,-. Such a locus is'spoken Of as a

, degenerate ellipse or a .point-ellipte,.since its equation reseMbles that of

an eUIse.

In discussing the ellipse 'and'ite'prOeprties and graph'we have, in this

section, written the -equations. In rectangular coordinates. All!, of the work

' could have:_been.donejasing polar coordinates. If the equation of MD ellipse,

or any,conic section, is in polar coordinates, you .may leave it in that form

in order to graph4t and obtan such ingormation as lkordinates of foctand

vertices.
.o

The-shape of an ellipee varies with its eccentricity. As nu see in

Flgure 7-50 the-nearer e : Ia to zero, the closer the shape of the ellipse is

Zr

Flgure 7-5

tp a circle. pen can see why the circle is spoken'of as am ellipse .ofecceh.

tricity zerd. FOr inereaaingly large values of- e the elliTee is mnre and

more elongated. Ca'n you explain this result fyam the fact that

b A 217:7 .
e,

e .9

Perhaps best known of the properties of an ellipse.is thaf, Far &AY Paint

on'an ellips, the'sum of the distances tn the foci is a constant equal to th'e

length of the major axis. The reflective propertt has Important applications

inopties and radar: Sino a taagent at any point of an ellipse mak& equal'

a41es witia the radii drawn to the two faci, rays are reflected from One focui

to the aher. This property expleins the "WhisRering gallery" effect in some,

halls04ere.a,Whiaper at one sp;t, thougil not audible riarby, is 'easily heard
1

at some more renlote spot. The orbits of planets mid the paths of electrons

about the nucleus in an atom axe appr6ximately ellipsts with the sun and the

nucleus respectively at one focus. The elliptic form 4po of:curs in az-thee

4
end gears.



Eme2, 1.: Discuss and eetCh the ellipse with e4uatign

2 "2
'9x 04y + 54x'. 16y t 61 = 0 .

Saution. WeVroceed to rewrite this equation.j

9(x ; + 6x # 9) + 4(y2 4 4) 8.1 +.

equivelent'to 9(x + 3)'2 + 4(y - 2)2 36

or (x + 3)2 (y - 2)2

2
2 2 1

- 61

e a.

Since .is larger than 2 p we see that a . 3 $ b ='2 $ and tie major axis

.is parallel to.the ylaxis. The curve is an dilipse such as (d) of Figure

7-4 with

b2

center (-3$2) . The eccentricity

e
a

= ; hende ae 15 and

.;;15. We use these values and the

formulas of Figure 7-4 (d) to dbtain the

coordinates for the'veitices, V =

V' = (-3,-1) , and foci$ 'F = (-3,2 +

(.1;2 - 1A.5) equatkons of the axes

(x = :3 $ y = 2)' and'directrices

(Y = 2 t M) In making a sketch we

11
usually locate the center first, and mark off from it thb semi-axes; the

yalues used for this (h,k01;b) May all be obtained directly-from the

equation id form (d) of Figure 7-4.

t

Ebeample irite an equation of t'he ellipse with foci F = (2,4) and

r ; (-4,4) aria, with e =

.Solution. Since rola this ellipse the major axis is parallel to the

x-axis, we shall useirorm (h) of Aigure 7-4. The disIance.between the

foci id

therefpre

3Since e = 0

2ae = 12 (-4)1 6 ;

ae = 3 .

3
Ty=
293

tP.

5 .

9 9



Using the relatiOn.-

ve have

A

and

2 2 2aegis bo
2 2 2 2
b $$$ a rft e I.

25 flo

b2 I=

Thus I b . 4

Singe the center is the midpoint of "Proc.

equation

tx + 1%2 f . 4 2
1" \

Exercises L/.

1. Write an equation of the ellipse with ;enter

to 12 and parallel to the x-axis, and minor

eccentricity, the coordinates of the foci and

of the directiices. Make a mketch.

2, Write an equation'of thesellipse with center

(3,0) and one focus (2,0) .

3.

4 .

Revrite,ihe following equations in the form

find the eccentricitx, the Coordinates of foc

equations of directrites; make a sketch.

L 2 2
sOt + y = 4

. .

42.4- 252 100

3x2

(d) 4x
2

+ 9y
2

. 1

k(e) 36(x - 25(Y + 3)2

f)' 4(x + 5i2 + 9(1 + 1)2 i6

(g)

'4h)

,(i)

9x2 44.,4y2 36x

4x2 + y + 8x -.10y + 13 . 0

016x
2
'+ 251

2
- 32x + 15py,+%?..!!)=

1 On

294

.#

) We noo'r viite the

g`

(

(3,2) y Major axis evial

axis 8 Find the f

verticed, and the eqtiations

p

at (01.0) one vertex
4

of Figure 7-4.

i and vestices,

For each,

and

I

p.
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WriteaseqUation.of`an ellipee-to fit eadh of the following aonditionb

(letters ate wed an in Figure 7-4)%
.

(d5 C = (020) ;.majOr axle, $ parallel to x7axis; minor axis,

(b) C (02'0) ; V = (023); F

.(c) .0 = (325) direetriX x . 10 , a a 5

(d) ,F . (3M F' (-124). e

5. What Change must be made in the definition of latus.rectutSgiven:for the

parabola to make it apply to theellipael" Find a formula for the 'length

of the latus rectum for an ellipse; thedk that your formulh applies for

all four cases in Figure 7-4. .

A focal radiusof agi)ellipse is a sement.dralin frau a focus to SAY

point of the ellipse. Prove that the sum of the lengthsof the focal

radii for agy point on an ellipse is a constant, and equal.to the.

lengt)h-of the major axis.

Rpave that an'ellipse is the locus of points the sum of whose distances

from two fixed !vista it:1'a constant greater than the distance between

the two fixed)points.,

8. ConstruC
111

t same Nints' of an, .1cs

ellipse fraa given vertices

.V2N" and foci F2F' as

follows. Select_any joint

f P of Ve segment 'V'V'.

With' F. as cepter and PV P
as' radius, strike arcs above

and below V'V : With F'

..as center al4 PV' as

radiut, describe'arcs inter-

secting the ones fiibt:.drawg, 4

and locating points R agd h, of the ellipse. Then interchange F

and F' and repeat, locating tuo more points, S and 8' . Thus

for any, point auch as 2 on the segment four points can be-located.

Why do the points so located lie on the ellipse Nith the given foci and

vertices?

01



V.

I.

7-8

9. ConstructP an aiipse as follows.

=Alms ends of a, piece of. .

string to two thinibtacks. Stiek,

the tacks into apiece of card-

board at, F anoU F' . Draw the

string taut with a pcncil pbint

(P) and trace a curve. Wby is

tbe curve an'ellipse? Keeping
.+

the Vngth of the string the

same, change the distace 1

between the tacks and repeat tketonstru ion. Whst*dO ;bu'observe?

10, Use the locus definition in gxercise 7 in deriving equationsor

(EL) an ellipse with fixed points (2,3)

radii equal to 6.

(b) 'an:ellipse with fixed points

radii equa.Vic;
4'
*'

Sone writerp like to include the circle as a special

and, (603) and sum of focel

(1,1) and (305) and sum of focal

case of an ellipse..

If a cirêle WibhAts &enter at-the origin fs to be)though), cras an

ellipse, then a = b . What, then, is .e ? Is this, cOnsistent with'

the focus,directrix definition qf a obnic?
0

)

12. Show that the elliise with focus F,;(c,0);eccentricity e and ,directrix

c
x =

e
2

has another focns = ( ,d) and another directrix x = .

6
13. Discuss and sketch the gfiph of r

2 - cos19
, including.coordindtes

of the verti4s, ,foci, and centell; the lengths of the hajor and minor,

axes and of the latus rectum; eccentricity.

14. ProVe thai in an ellipse the length 8f the major axis is the mean*,

proportional between the distance between.the foci end the distance

-between the directrices.. Nigs

7-8. The Hyperbola

, The hyperbola is deft

from P to a fixed point

and the distance from P

than one. f(ri 6:2 earlier

41,

ned as thiset of points P such that the distance

,

(the flus) is the product of the eccentricity, e

to a ffxed line (the directrix), with e. greater

study we Xound that if, as°wi.th the ellipse, we take
L.

as focus 0) andras directrix the line x and let a = g

9

296 192

and
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411,

2
t relationship c

2
= a

2
4- b. 0. we see that the length of the diagonal*of the

c_lrectangle is also the disiance ;etween the foci. We may u;e this. fact to

flocate the foci.

(1 )

o an equation f hl hverbola can be written

des.

2 ,x y
4. a .

Thehyperboaa has the same simile es as the ellipse. Thb tirmulas for f

vertices, and di5ectrices are ale tile same; these axe summarized for the

various simple eases in insure 7- .

Alike the ellipse, the hyper la is not a bound& curve. In part (a)

of Figure 7-6, for example, we see. bat if we take fncreasingly large values

for x p the corresponding values f y -axe inNatingly large in atosolute

value. On the other bands ttiere are \values og x (im this ease -a4tx,0(.0

forwhigh there are no.real values, of\, y If we solve (1) for, y. we get'

bi3t2 .a2

a

Far very large values of' x .the value, of y in the'firet quadrant a4010#-

very nearly equal to x (correspondingcomments applk in:the other qUadranta).
a

Thus-ite see intuitively that for-values of x that art sufficiently large in -

absolute value, the distance between'a point-on the curve andthelime with

b
equatipn 'y = x (or, y = x) can be made arbitrarily small. ellams these

a a

lines are:asymptotes of the hyperbola; in Figure 7-6 they are miwked A and

A' Yap may wish to refer to Section 6-3 where there is i detalled.dis-

aussion of the asymptotes of a particularhyperbola; it applies here.

To make a sketcl of a hyperbola we first 19cate the vertices, and then

draw the-asympt6rel. They are drawn easily since they are diagonals of the

rectangle^with sides 2a and 2b / located as in Agure 776. Th9 segment

VP" of length 2a l'is called the transVerse (or major) axis of the hyperbola;

(The'line segment joining the points (01b) and (004)) j of length Ob

of part (a) of Figure 7-6 is sometimes called the conjugate axis.) From the



Conjugate -hiperbolae are cOn n-

-trio hyperboles ihth the roles of the k

..

.
Ipaeoverse and cen'jegate 441ces inter.\

changed. The equations ,

2 2
x y x

2 2

1-11, 'aeff snd + v$ 1

-a- b a- b

4
regyesInt conjugate hypaiholas. As

shown in Figure -7, they:have the

same asymptote 0 and their 1\04 lie an
, 4

a circle with center at.the cbutpeof

the curies. Figure 7.7

or .

A Xyperbole;is ealled evilateral (orerectanguLar) if the transverse

anitonjugate axes are equa1. In this case the rAttingle we have used in

sketching is'a squaxe-and ihe asymptotes (which axe diagCnals) axa per- :

pendicular. YoU'may have studied the famtly of:Oquilateral hyperbolas Nith
4

equatibn xy ='k These axe hyperbolas with the coordinate axes as

7-8

4

asymptotes.
4

Forany point of a hyperbolp, the absolute value of the Life of
.

its distances from two fixed points is a.Constent. .This property ts some-

times used to define 0 hyperbola; 4t has applications in range fining and

LORAN (Long Bange-Aaviietion). Both of these use intersections of families

of byperbolfip. As -with the ellipse, a tangent at any point of a hyperbola

makes equal angles with radii Amin to the foci; for the hYperbola, however,

the radei are on opposite sides of the taiigent.lt,

'Example. Find the equatilo of the apymptotes of the byerbola with

2 2
equation 9x - 4y + 54x + ey 41 . 0 Sketch the curve and its

asymptotes.

146

2991 .9 5

k.
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4

Solution. We rewri e.the equation, folloving the same preCedhre

*

&Ample 1 in peciion 7-70 gettii.2g the

equation
2*

(X + 3)2' (y , 1)2
-2 2
2 3.

This is in form (b) of Figure 7-6,

with. transverse a444 haviag 41 length

of 4-0 the. condpgate axis 6 ; the

center-i$ .0 ='(-3,1) . To obtain

the equations of the tisymptotes, we

write

(x + 3)2' (Y - 1)2

2 3
2 . 77 *.

,

or,. 3X + 2y + 7 . 0. and 3x. 2y + 11 = 0 . 'T9 make tRe sgetch welocate

th'e center , draw through C- lines parallel tO thi coordinate axes, !mit

mark 4f on them the lengths oT the,tend-axes. Next we draw the rectangle,
.

A a

its diagonals give the asymptotes, anewe can =sketch the curve.

)
.

*.lercises 7-8
..,

p j /

10 Write an equation of a hyperbola with semi-axes 2 and 4 , center

the oV.gin; a*d transverse axiLoi the x-axis. Find the eccentricitY"
. .

the coordinates of the vertices,and foci, andequationsaf the direc-
. . .

' trices and asymptotes. Sketchithe curve. 4

-

2., iRepeat Exercise 1, bt this time lettht transverse axisite 4 the

y-axis.

r--s:nd 3 , d4d ,ransverse axis parallel to,the' knd the

3. Writ* an elquation of a hyperbbla with center semi-aXes 4

eccentricity, coordinates of vertices and foci; and equations of

tirectrices and'asymptoi. Sketch*the curve.
4

4. Repeat Exercise 3, but this time have the transverse axis parallel to

the' y-axis.

44.

'300 I
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a,

5. For each hyperbola whose'equation is given . find the eccentricity

the length ofthe semi-axes; the-coordinates of center, foci, and

vertices; the equations of the directrices.and asymptotes( iketch .phe

curves...

#2. \2
. (a) x y =

(a) .y2 - x2 =

4x2 9y2

4

4

36 .

(d) 144y2 25x2 3600

s

v .

2 2
t

(e) x - 4y - 44 + 24y - 16 = 0

6. 'Foi:each part.di. EXercise 5, write an equation of
P -

hyperbola. '

0

r
the conjugate

7. iini an equation of the loculi or a point such that the absolute

of the difference of its. distances from the points

(-

8. Find an equatioTof the locas of a point such that

of ttle' difference of it distanceafrom the pointsl

ifi 2 . What is the elcentricity of this curve?

r
9. Proye that a hyperboia is the locus of a point such.that the absolute

value of the difference of its diAes fram two fixed points la a '

4 '

is 6

(5,0) -and

the absolut*

(1,1) amd

value

(-5,0)

value

(-1,-1)

constant whieh it less than the distance between the fixed points'.

10. Watt is. an apropriate definition of the latus rectum of .hyperbola?

lFind a formula for the length of the-tetus rectum of.a8A .rbola;

Cheek that your formula applies in all four cages of Figure 7.6.

, 11. Construct some point's of %hyperbola 'as follows. Select fi,xed points

F,F' and a lengt1 2a

aa ,. d(F,F1 Nrith

Afenter and apy 'esired

describean L.c. With

F as

radius
4.

F' as

center and radius of length

r + 2a , des5Xibe arc Artsr

setting the flibt arcdat points.'

P and P' . Then use F' .aS

a center wIlirradius and

F wl.th, radius r + 2a , bbtaini

particular cholpd
e?

so,located lie dn

of' r. k4ur
.1 )1

a

4

24

paints' R and R?

ints'llin be located.

.301 9 7

Thus for

S c

yhor do the points

7"--
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7-9

12.' Prove that t

represen

13. See ify4
the equat

14. Find equatiACus ofthp

fa) wit1.2 the coordAnate,IxesomvasymprOtes.

(b) with a.7ce'sVdf.the'bIdebtl4a1on8 the coprdinate axes.

..601ticar x m a

of't Pyparboia.

deVisi Ohat46a of constructing a hmerbólewtich uAes.
';

,

sec co Y 11. t e are a parametricas

Cant: See Section 5-4.)

uilaterall hyperbolas through the point -( 3 *=7)

15. Just at(

2 - 2
z y

a b
2. 2

e X y
we may speak of -

a b

was considered en equation of a degenerate ellipie;

fli**

as the equation of a degenerate hyperbola.

What is the locus in this cafe?

7-9. Summary 1.,

Air

.,1

I

A conic.section is tlintersection of a plane aira right circular cons;

it is a circle, ellipse, parabola, hyperbola, or, in'a degenerate case, a

point, line, or pair of Una.

In polar coordinates a.circle with center at the origin has the eqUation

r.= k . Any other conic section may be deilned SS the locus of potnts in a-

plane'suCh that For each point the ratid of its distance fram'a given point

in the plane to its'distance from a given line in the plane is a constant

called the eccentricity. Stich a.conic; if the center is at the pole and

directrfX perpendiCular_to the ,polar axis and p units to the left of it,

has the equation

N
ati 'find porresponcling rectangular equations. 'These were seen to be equivalent

to the equations dveloped in earlier work I'm algebra. Since'the information

about the conics.in rectangular form 1s summarizedat the Seginning of the

sections (7-5 through 7_a) dealing lath each type,'it is not rheategain

*here.

ep
r - e cos 6

e representing

1

a Parabola if

an ellipse If 0 < e < 1 ,

a gyperbola if e > 1 .

Ir

Ite. equations that 1-elate po2hr and rekangular coordina es were used tis II

302-

41011111141

a



;
ss.

6
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"Oo'c tidns have, wide nsefulpese in tjaeoretica1 ..work4n 'Mathematics .

. t
,

- ana selq .3...ti. in app1tcatJ1omv a greatswariety of priplems in .science

and. iridustrz, 'it :he s been possi 1 40 ,medtibn only a.few herec
-s i .: -

. . #.. ilp

With-this chaptey.we-conciudej .for the time being, ,ou.r study.of the .

dialytic.geginetry-ottvo-spaie:', !le sfiall take pp next the apa1kt1c geametry.
,

l' \ .
4,

,of thre,-.P130e. Wer, if.time permits there mey be an oprriunity to
'. -.'

ieturn again to .conlp seetions tn oker tt.consider the genefal probismof' .,
. .,

.

*.showies.that B11 equations of secona degree in- x and- y live-loci whieh, , a
R R

1 lie conic sections, andthin:tt.reinte the*corresponding algebraic and geometric.
,.

e

ProPektes.'
II

1, Sket

4.

. .

R'

'a 1

\-'1 -. Relheitulei-eises
. . .

. , , -
, a '-

,

-
graph of each of the Tql.low-ing equations.. 10entify each

conic sect give the appropriate anformation.(f9Ci, vea:tices,
.

11.--

center, eccentricity, d1re4rices, asymptotes, etc.) :,.
..../...

"

a) 3i. - 2 = 0'

lb ) r = 2 cos 9

8'(c ) r = T7.77RTErg

4

2 - -3 cos $

e = 2

12

(d)

3, cos e

esP

(g) . 3r cos e + 24

hy r =,4 - r ein e

(1) r = 3 + 2r cos e

1,(j) x
2

- 4x + y
2'
+ 6y + 13 =0

3x2 6

,

(1) Y2 + - 6y + 25 = 0

.1

.(r11) 25x2 + 36y2 + 100x + 288y - 224 = 0

(n) 3)e2 4. 5y - 6x + 20y + 8 . 0

(0) x2 + y2 - 6X + 10y + 34. =

(p)

(q) 144x
2

- 25y
2

+ 576x + 150Y -3249 - 0
03 139

U.
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. .

Write an equation for each of *4fie following' and-pietch 119 iloph.
p

,

' . . 4

.
. . *

(e) A tsrabol4 with ve4peiF (0,0) ;and'focus. (..5,0) ..,..

. . . .
(b) A parabola wit,b vertex (7, 6).. and directrix .Y im.....!2 0

(c) A circle vita radihs 5' 'and tangent *till lopth axes. ., .
* 4

Id) "A circle,with -center .-0 . (1,70 .antl passiP8 throlgt1 . (3,-2) ..

(e), A circle' tangent tio the lihe' x-- 2y ,.. ? . 0 -, .passing.thLitOl'the

A
. ,

. point (ii2,0) p and, with. ceter on' th.e y-axis., 4
4.

,

..(f) A circle passIng- thraugh.,ige ioints ( 0, 4 ) ; (6,6). 'and N2,-10)

.(g4 An ellipse'with center (2,31.; a ;tertex (53)., and'a directrix

x . -4.1.
(h) An ellapse with a focus (....,.5) p.apd4direarices y . 6 and the lo

0xwaxis., .

,. -e . 0 P.

$ M ,.

(i) A hykrbola with fo.ci (-1;1) imd (51.,i),, tend a yertex (001) .

(j) A hyperboda with asympotes.'3x4..4y ..40 0 .311/4 lik 9 .0 0'apd
.

0
.

.

passing through the point., (3,5)

(k) A pardbola with arAp pataklel.ib.the y-axiel paesihg,throuathe

paiAts (201i) , 40J), and (-10) .

Find an equation of.the locus of'a point whose distanefrom the pUnt

(-1.;4) ,is 2. units more than its dIstanice froa.the line y7+ 2 = 0 !

'

4. Find ran ecivation of,the locus of.th center of a circle which ts tangent-.
J

to the 1iHe x . 3 and passed-
.

(1,-1) . Ekplkin fron geometric'
e . ..

conbiderations why this locue. Allarabo

Find the eccentricity of an ellipse-whose major axis is twice the le

of its minor
)

. 6.. Prove that the equations x .,a cos 8 , y b ein e are a parametric

representation of an ellipse.

7. Find an equation of the locus of a point which moves so that its distance

'from the ppint (0:2) is tone-half its distance from the point (3,1) .

. Prove that the product of the distances fram any point 911 a hyperbola

to the asyMptotes is a constant.

9. (a) If the ratio of the length of the conjugate axis to e length of

the transverse axis of a hyperbola is 2 what is e eccentricityl

(4).. If the ratio is k , fttida formula.for e

110
304



10. (a) iowjat x tr

+ t! dr.:772

ere pgrametric eqUations
.

of a cir'cle. (These equations are sometimAluseful incaleu1uE4).

(b). What is the.gmaph of the equations in (a) ir only.the posittie'
St a

'signs before the )adicals are Used? If only thenegativesignil

(c).- Show that these parametric equationa do mit rukesent the points

'(.200) apd (-r00).( Since this is.the ease) ;hat wolad e a:

more precise way to state"fa) in thid.exercise? ,

1 . 'Frcme that, for the conjugate hyperbolas,whOse equations are

2 2
x
2 2 .

x y -
f

-7 - --7--.0 1 .and - -T.+ E7 = .1 it-the sum of the sqeares of the

a . b : a b ,r.

reciproeals of the eccentricities is one.

12. A curve is.derined by the parametricequations. x = 4 + k cos B

y = b + k sine, 1iere e b and .k are arbitrary.constants

(k 0) Find eqUation of the curvielin standard rectangalar form

and identiry it. What is-the significance of the requirement'thst k

not be zero?

13. An archway is-in the shape of a semi ellipse. The distance across the

base arthe archway is 30 feet, and its ma.mtsu height from the base

feei. What should be the limit on the height of vehiaes- using

d"cenitt07.1y placed 20-foot.wide road under the archway? (The posted

limit is such that a yehicle of that heightlaf the eige of the road-

but not off the road, ;All have clearance.)

14. The cable of a suspension bridge

hangs ie the form of.a parabola

from suppprting 'towers 60o feet

apart. The points where the cable

is suspended from the towers are

100 feet above the roadway, and

the lowest part of the cable is

10 feet above the readway. If

there are supporting strbetures

to the cable from the two points

on the roadway each 3e00 feet

from the baee of the towers, how

high must these supporting

structures be?

11

305 111
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f"Pkove that the produet of the focal radii from a point on an eqUilateral

e hyperbola 10.equal to the squAre of tha distance frok.the point to tie

eenter.
,

.6.

16. (a) Jritean equatioa of.the family of elfipses with the origin as

center07major, axisoalong th4.axis and 'eccentricity equal to

60 --Write an equation for the scAer of thi& family with the lengiii

1

.
, e' .

9f the minor axis equal to 12
i

fI .

....

,.

(c) Witt: an equation,for the member of this family 'Ala paases0

. r

3

5

through the point,

17..Puove the folloWIng statepentshanalytically.

(a) ;P. mans perpendieular to a Chord bisects the Chord.

(b), The ,perpendicular from any point pf a Cirtle to a diameter is

-mean proportional between the segmente of the diametar.

( c). The locus of a point such that its distanhe from one.fi;id.point

is a constant multiple of itia distance from a second fixed point

is a circle. (Wilt restriction must there be on the value Of the,

constamt for this to b a correct statement?)

Challenge Problems

11. Prove that in a hYperbola an asymp,tote, a directrIx0 and a line fromsthe

corresponding focus perpendicular to the asymptote are concurrent.

2. On a map marked with 4 rectangular grid .using a mile as a umit three

listening posts iire at A (000) 0 B (2,0) and C = (024) . An

explosion is heard at A 5 seconds after it is heard at B 0 and 8

seconds after it is heard at C ..1Nhere did the explosion take place?

(Use 0.2 mile per second as the speed Of sound. Find equations of the

two loci involved, and find 'theoapProprilte intersection.tither by

graphing or by using the equations of the asymptotes. Do you think that

it is sufficiently accurate in this case to assume that'the asymptotes

meet at the point you want?) .1

1 1
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3. A taxPayer Changes his residence because of a chnrijè in his place of work.

iFor his slaving exienses to be alloVed as a deduction under the revenue Act

of1964,-it is necelisari (among otter requirements) that 'his new prinolpal

place of work be "at least 20 miles farther from his iCtimer residence

than was ha former principaSollace of wofk."

Suppose a man's-new emiloyment is at a piece 30 miles from where he

was preylously employed. Let P = (x,y) revresdnt the location of his

'cld hode. With in'anal4itic form the conditio&undpr which the man would.

be entitled to dkduct mo4ing ekpenses to anew-home. (Suggestion% If

.W3. and 142 al%e points representinithe-old and new pleces.of employdent
4

respectively, let W1W2 be their-n gl l4s, And let the midpoint of i-
2 be t

Ihe origin.)

6'
For the paiabolte r = prove

1=cc-717;7
the reflective proRerty, that ii;

tangent to the parabola at the point P = Cry0 makes equal angles

th the polar radius ibig and the linwthrou'gh P parallel to the polar

axis.

5. Prove analytically that, ip any triankle,.the midpoints of the sides,

, the feet tf the,altitudes, and the points halfway between the verticep

and the orthocenter lie on'a circle. This .is called the blne-point

1/4

307 - 113
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mapter .8 4,"

LINE AND TEE FLOE IN 3-6Adt .

r

lftteibion to4-Epace. ,

.T6 9is point in our study se have sought analytic represeirtitions qf aub-

sets, a 14.ane; in turn we have'sketated t4e'loci, or grfiths, of both sige.e

ireic and vector relationships sith-theassumption, usually tacit, thatlthair

geometric interpretation wea"6confined to a plane oars line.

Our prtvious experience in geometry has been largely in allane; even

%ben ve did consider geometric conrigu.rtiona in space, we frewently pursued'

our investigations in ionly one or 'two planes.

It is easier to analyze loci in,a plane, but se live in a world of three

dinensions. If ve are to apply our geometric knosledge to physical proWas,

we must be able to extend our concepts to 3-space.

In this dhapter an4 the next we shall consider the basic'extension to

3-space of the ideat sbich se have already.developed; ve.shall even suggest

how repetition of tbis process,leads ti mathematical structures vith more

dimensions, vhich are called spaces, even though se sannot possibly visualize

them. -

In this dhapter we dhall be extending some of the ideas of Chapters and

3 to 3=apace;:you might want to review these chapters 'brieflylbefore you con-

tinue. ,Ve assume that you have hadsome experience With rectangular coordi-

nate systems 'in 3-space, but we shall reconstruct the dtv-elopment. We shall

coilsider the ana3;ytic representations of lines and plants, and we shall make

suggestions on sketching to help you visualize their graPhs. The extension pf

'vectors to spaces of higher dimension is surprisingly easy; this is another

reason for the favor vectors find in contemporary analysis.

One thing you might keep in mind. The locus of a conditIon Open& OPop,

the space to Shich it is applied. We have already seen that the equation

= 1 describes both a point on a line and a line in a plane. Here ve Shall

see that it Also describes.a plane in 3-space. In spaces of higher dimension

it sould be subject to,still other interpretations. In general, analytic

309,
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8-2 . If

o, li. .
.

i
. .

. #
r

representationa describe loci in any space mbich has at lea/M: AA many dimensibna
/

as the snelytic reOresenAtion has indepenOent vartiblee. Tb describe the lona
.

,

wi nust firel know the number of diltehaions of the space in which,it occurs.
/

a_Coordinate System for 3-Space.
2

In Sekions 2-1 acd213 me:discus/led rectaniular.coardinate systeme in% a

line apd ih a plane. Nov ve 1:ndicate how a similai coordinatelwateam
A

can be'introduced into 3-space,

p.

4

lie begin byselectipg an arhitrary 9: in 68/nand Urese mutually

perpendictilar tines throrgh .0 .. The pane 0 is called tlyraiginof the,

coordinate ikystem and the lime are cai4ed them," 22:/amd .011 eahh

mr:set tip a linear coordinate ayatedWith point 0 as its origin,:. Tha

plane determincd,by the and i4411MS is called them-TIE!. The 2a.. anl

72-planes are defined similarly. The three are called the coordinate planes.

Leit 124 lbe any point in space. Ltt a be the coordinate of the projelion of

P on the x-axis. a is called the x-coordinate of. P The r anal-22- ---

ordinatee sey b and c respectively, sre defined similarly. To the point

P ve assign the ordered triple (a,b1c) of cloordinates. Just as in the'

pier, the correspondence between points and ordered sets of coordinates is

One-to-one.- The coordinate planes divide Space'into eight regions called, not

unnatur

the

. pooiti e

octanto. Usually only one of them ia/numbered, and it iS called

and is the one in which.all the coordinates of everP point are

'14



812

The point (albt0) is called tie, proOection ofv (a,b,c) 'on the

.xy-plane. . The point (a,000). is called the projection of ('a,b)c) on t.ies

7k...extol and so Torth.
A

The configuration ,of axshown in Fiiure 8-1 is tailed a right-handed

systs6Veeduse a 960 rotation of the pdaitivelarde of the x-axis into'the

positive sida of the pialis vill advdhce a right-handed sell

positivp side,of the z-axis. We shall use this system in

txt: If the locations of the x- arid yimes iheereihanked,

glad that they al-e in some texts, thelSisten is left-hand:ed.

V

along the

ngs in this

oivtU

4 1

Distance,Betweena:A.ki:Ve pay use thejitheigorean Theored to

develoia'formula for the distance'aetvl.two point's it space. If the points.:

are. 130 (xd,yo zo) and 'Pi. (Xialy y :the distince betwr;en iheni

(1) (2-0,Pi) . - 2r0)2 + ( yi yo)
z0)2

1

Points of Division:' 'An extension to 3-space of the msthod used in

Section 2-3 to obtain the coordinates of the point which divides a line

segment in the ratio a gives us, for the segment Pori ,

(2)

(3)

dx0 + cx1

c +

40 aY1
= c + d

A

dz
0
+

.
+ d

In the special dase'Vhen c = d ye Ilave the midpoint with

=

Z =

xo

311
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8-2

EXercised

1.: Draw a sketch shoving eacitof the following poi
,

at

(e) . (-12-1,4

(r) (-1,-214)

(s) (-3,1,-1)

(b) (1,-10-2)

In Exercises 2,- and: 3 P (1,203) Q (-3,2

find gosP) go,G0 y4(1'01) 1.and, d(Q,R)

Find the midpOints

1. (a) Draw '7Z 0 abliut 3 undies,

lonmblique to.the edge,of

lmm.r.psper, Consider AB as

drawn from the rear lower 'left.

to the frent upper "right cornei

_of a rectangular solid. Next
1

&war Oblique segments from A

to P and from to Q

1

equal in length'ana Parallel

but with opAite sende of

direction'. If as'is usiinlly

tle case, the solid is %o be oriented with respect to rectangular

coordinate axes,, make AP and BQ parallel to the x-axis. Think"'

draw a rectangle with hoFidontal and vertical sides and With P

B as opposite vertices; this is the front face. The'back face is

ts in spac

R

=OW

t.o.

another rectangle with A and Q as opposite

segudants complete .the figure.

Nate start Again with the same kind of diagonal

consider it drawn from the front lower left to

and draw the new solid. This time reverse the

and BQ . Now A'and 4 are in the front face and

in the back face.

vertices. Two more

segment 75.0 but

the rear upper right,

directions of OUF

B and P are

5. The origin end the,point P = (3,5,4) are the .opposite corners of

7rectanguler box thatlas three of its edges along the axeg. Draw the box

and givethe coordinates of its othbr'vertices.

6. Repeat Exercise 5, using P = (-5,40-3)



*

Given: Pi = (2.0,4) and P2 = (-1 j-2)

(a) ILIEe a drawing vhicli shows Pi P2 and 72-

. 4.4

87,3.

(b) Write the coordinates O'f th4 pointa.2WWLch ire the

P
2

on eaeh of the axes and on eachNoe
1 the 2"dinste

.

, planes.

Flnalthe lenath oT T7.1.2- and thc-.1!ngth of iti projections on the

ejceS and on the coordinateflplanes,

8, Repeat Exercise Tpusing

9. If. Pi = (3-k06) and- I
on P

1
F
2

if

(e)

(f)

and P;= (3,0,4.3) ,

t

=.,(-232) fin& the coord/nates of point P

P is the midpoint of PiP2

1
d( P = d ( P )
. 1 2 2

d(PiP) = (P,P2)

d(131,P) = id (P,P2)

(.131,P2c)

(P1,P2)

10. In triangle .ABC , A = (2,401)

S.

0 B = (1,20-2) and C = (54Pg-2) Find

the lengths of the sides.of this triangle and decide Uhat kind of

triangle it is.

4

Challenge Problem

We introduced a coordinate system in 3-space by selecting three mutually

perpendicular lines through an arbitrary point. Show that this is loanable. 4

8.3. Parametric Representation of the Line in 3-Space.

Our discussion,in Section 5.6 of the pargmetric representation of a line.

plane.generalizes quite easily td' 3-space. Let P0(x0d0,z0) and

P1(xia1,z1) be twoeyoints-in space and let L be the line through them.,

41313 11 8
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Assume f8r the time being that,p is not parallel to or lying 4 any coordi-

nate plane. /ten Po and Pi -cannot'..both lie ill the xy-plane.and ye let Pi
...

*
be one.lihiCh does not. .Hence Pospi and (x10(100) are zbt calp.nparand

e
. .1

determine a plane X containing. I. lotersectis the 4ry-plane in a line
r A 4

calle&the projection of L on the ay-plane. Since the line containing

Pi and (Iv1s0) is perjmndicular tO the jane, plane X is pedicular ,

tip the ay-plane., pence the line'fron go perpen4icular to the ay-plane (and

tbus internecting it in the pant (a0sy000)) lies in plane 14 and is a'Point

. . .,

of T.; s the line of intersection.
.'

. I .

14

Figure 8-2

L'

I.

1Trom our previous 4scussion, we Itnow that LE has the parametric

equations

(l)
x = xo t(xl xo)

YO t(il YO)

We would have a paraMetric representation for L very similar to the one we
4

obtained for a line in a plane if weaeould show that if P = (xiyoz) is on L
A

Z = Z t(z
1 - z0)0

11-9
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'Clearl:y"

-z zo 4'11(z,x z0) a

\,

for oulitable p . The questiOn s egual to t Mat it,is can,!be

as follOws. Let Lu be the projection of L on the yz-p*e.4 . 4

in this plane LP ehas the terame,triS representatton

(2)

Y m Yo +.0(11 - Yo)

le

t to + e(t1 - to)

?ram (1) and (2) it follows that for each point p

end hence L has the parametric representation

x = xo + t(xi xo) *

=,YO + ;$71 Yo)

to + t(t1 - to)

ip

We leave it to thsiktudent as an exercise tciprove that (3) represents

even if is in or parallel to a coordinite plane.

To sav4,vritin gs let !I xi - xo s la-= yi yo p and n

We call ( n) an ordered triple of direction numbers for L . If c A 0

the equations

zap 5) of L s = t

414

Vim

also represent L . Thus it is natural to extend the degition of

equivalence of ordered pairs of direction numbers for a line in a Plane to

04'
ordgred triples ofdirection numbers for a line in apace. Two.such ordered

are.said to be e0ivalent if corresponding numbers are proportional.

Let L'-end 14j be the lines with parametric eqpations

4

6

1

x = At

LI: , y = mt

z = nt

315 12o
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* -
and aestuie ,does. not uljaij s!he 4.rigint

11. .1.
TE(

and

Chant anvire Prqvel Tit

parallel. Let

FO ( '5r0I )

II Figure 8.1r

. .
e

Pi = (xiii + i pv3r0 m io + u) 0/ 411=.(101011) pleR 1:1 atld S4, a
1 A r

are.on L ; p and Q. are on A.' . The bidpoint of 5117 is ,

a

ks also the madpoint of

)

+ m zo + n

'R " ---77-

P
o
Q.; Thus OP P Q

'Oboe diagonals biseet each othir and hence is
. r

that L and LI are el. The follipving,

consequence of our

THEOREM 8,1. Two\distinct lines

nt.

L and LI

agy triple of direction nuMbers for

for LI .

As in the plane,

establish a direction

is a plane quadrilateral

a parallelogmem. It follow

theci-em is an almaot iTmediate

are parallel if and only- if

ts eqpivalent to agy one

a set of direction numbers fora line can be used to

on the line. Let (2,m,n) be a triple of direction

numbers for the line L

representation

If Po (x0,y0,z0) is a point on L p L has tile.s

//
x = xo +

YO mt

z = zo + nt .e

P"i 16121
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8.3

The positive reor (on- t ) with endpoint Po is the set orpoints consisting .
.

of Po and all points ot I... given bylPositive.valties of t,. -If P1 is

another poise of L 0 the p3sitiA ray Wiih smdpoint. Pt points'in the'same
.

directiori as the one with endpoint po in'the serise.that thjir intersection *
.. .

is obe of them. If c > 0 1 the tripae .(qicemlen) of direction numbers

fOr. Ii.,establishes,the samfi positive direction on. L- as docs the triple

. * .L.

,

the triple* `If .41,mln) is a triple of direction numbers for

?PgV) = co 2 2 2/2 .n 2
m + n2+ +

...

is of 'Articular importance..:baoh*.acISpl is sometimessalled a normallzed
2 2 --..2..'

....

triple. Ni)te that X + g 1.* . 1 . '.Let.us assume that L goes

through the origin. The point p . (4144v) lies on 1,...'an .-., d(00P) . 1 4

. Figures 8-4a and 8-4b show the situation when

ian:d/the situation when X < 0 , 4 > 0 ; v >0 blrespectively. In h cases,

4 =.cos 0 , where 0 is the angle 4 termined by the positive ray pi L

46i;Ilith en4point O and the positive half of the y-axis. a and T are defined

similarly, with the positive halves of the x- es, respectively,
. *

replacing the pbsitive half of the y-axis.*

Figure 8-4a

317 122
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8-3

*

If L is the x-axiS, then any triple of direction nudbers for it bas

the, fors (1,0,0) .. If. A > 0 , the,positive rer with endipoint 0 is tile

positive half of .the x-axis and bos, a m If A <0 j the positive rgr

'on L, with endeoint Q is the negative half of the x-axis and cos a m -1 .

Similarly, if L is the y-axis, cos 13. t 1 depending on the algebraic sign

of m , and if L is the z-axis, cos le ..#: 1 depending on the algebraic

sign of, n . The student should consider the other possible combinations of

signs for As, 11, and v , to make sure that in every case = cos a,
4

COS 0, and v m cos . The angles f$, and y are called

direction angles of the line AL with its direction determined by the ordered

triple (ismyn)* of direetign numbers. Their cosines are called the

direction amines. If we determine the direction of L by means of the

,
triple g(cipcmpen) of diredtion numbers, with c < 0 and if

.

a'

and Td are the new direction angles, then a and a' axe supplementary

angles, 83 hre 0 .amd 0' , and ry and y ,

Finally, let L" be a line which does not>pass thrguethe originO.nd

let (A,m4n) be an.ordered triple of direction numbers for L Let L1 -

. . ,

be the line through the origin parallel to L 0 and lei the,dirAction on .L1

be deteriined by the trip1e (Ajmin) of direction numbers. Then we define

the direction angles and cosines of L to be the.00rresponding ones for It'..

Notice that throughout Ws .discuseion we do not define diwction

angles or direction' oosines for a 114; but only'for a Iine Which-has been

assigned direction br means of a triple of direction numbers.

-

In lieetion 2-3 we derived a parametric representation of points on a lile

-

tram their symmetric representation. Something similarcan be done with*

parametric representgtion of a line in space. Let L be the line vi4h
.

i

parametric equations

(0,

x x0 + it .

I YO + rat

zz0+nt .

Suppose that Amn A 0 . Thia ye can elimtnate t from any two of these

equations by solVing each one for t and setting the results equal to each

other. Usingrthe first two, we get

t
x - X0

A

9 gf\

Ma.



using the first and third., vie. get

t
3(c) Z zo

..r.,Nown

Cotbining the List two results've get

e5 )
Y." YO

z zo,

m n

.e

8-3

These &re called gymmetric equationa tor L .

ere remains ihe westion of ithat we have achieved by-eliminating t .

Let be any real number and let414
0

Then

a xo + Ito

b yo + mto

zo + nto ./

a.- so b - yo c so

m
=

-

'Thus if the pqint (a,b,c) is on the graph of (4) it is also on the graph

of (S). If we let

d'xOb!yOezO
to = =

we find at once that the point (alhoc) also lies on the graph of (4). Thus

the lraphs of (4) and (5)'Sre identical.

Equations (5)'are equivalent to algy pair of the three equa*ons

x so y - y6

Each of these is an equatpn of a plane. We shall discuss the signifi-

tcance of this pestle\ar set of three planed containing a line in the nest

section.

e
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'If at least one of the Arectionnumbers for I, vaniahes ve cannot

a. much symmetric equations for L... We cans homvlic eliminate t

and obtain equations of two planea containing L . We leave this to the

exrvises.

You may have read of spaces of four or more dimensions. We are now in

a
a position to give you some idea 0 what was meant. 'You have learned how to

set,up a one-to-one correspondence between the points in a plane and the

ordered pairs of real numbers, and between the potnts in 3-space and the

caidered triples of real numbers. Given a coordinate'system, it is natural

to s*ak of "the point (223) " or "the point (3020-1) ." This.suggeats

that've should define a point. in 4-spacel for examile2 to be an ordered

quadruple of real numbers. Similari,y, 4e define a line in 4-space to be the

set of points in 4-space given by a set of parametric equations of the form

It can then be pved that there is'one and only bne "line" through two

distinct "points." We can define the distance between. P0.(x0ly01z02w0)

and P
1
(x

1'
y z w

1
) to be

l f
,

d(P02P1) = d(x1 ,
2xo

2 z0)2

a

We can define the poordinate axes to be the four "lines" through (0,02020)

each of which passes through one of the "points" (1202020) 2 (0,120,0)

(020,120) and (0202021) . Many other geometric concepts you have studied

can be generalized in this way, but that is beyond the scope of this course.

1 9
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4921542- Ir A = (39-104)' B = (-202,1) an4 C (203,2)

(a) write parametricsand symmetric representations for AB , and

.(b) write equations for the 1inithrowih C paraliel to Xi..

Solution,

.(a) For parametric form

direction nutbere'.

nudhers -(5,-3,3)
.

sentation

(h)

11.

.( Equations (4)), we need a point on the line and.

We choose' A . (3,-1,4) , and Obtain direction

Hence the line AB' has as a .parametric.repre-

x = 3 5A,

y 3t

4 + 3t

Fram the first Am of these we get

t =

From the last two we get

t

5 -3

z 4
-3 3

CoMbining thp last two'results, we have as symmetric

rB
t.

equations.for

x y + 1 - 4

5 -3 3

Since we have direction numbers.for AB 0 we can write immediately

a parametric representation'of a parallel line through

x = 2 + 5t

- 3t

e = + 3t

321

C p



EXeroises 8-3

In Exercises 1 to 3, P = (1,2,3) Q p end (2,-301)

Write per:metric equatioms for the lines determined by,the following

conditions:

(a) Ilmough P , parallel to the L.axis

(b) Through Q parallel to the z-axis

17e)
Through P .and .Q

(d) Through Q and 11

(e) Through ó Parallel tp, PQ

(f) Through 0 parallel to

(g) Through 0 end P

(h) Through 12 , parallel to the gy-plame, and.intersecting the z-axia.

(0 Through P parallel to QE

(j) Through R Parallel to M
2, Write en equation in sysisetric form for each of the'lines referred to in

ftercise 1 (if it is possible to do so).

Write a set of normalized direction numbers for each of the lines

described in E2ercise 1.

Find-two parametric representations of the line through eadh of the

following paire of.points whidh establiph opposite directions on the

line. hFind i e coordinates ofemother point on eadh line.
N,

(a)' (1,1,- and (0,-,10-1) -(c) (42211) and (1,-214)

(b) (-1,-11-1) and (-21-111) (d) (-31111) and

Find the two triples of.direction cosines,for each line in Exercise 1.

Zsing a table of the values of the trigonommtric find the

approximate value of each of the direction angles.
1

6.. What are direction cosines for the axes?

7. Find direction cosines of a line that makes equal angles with the axes.

8. In each of the following parts determine Whether the third point is on

the line containing the first two.

. (1)

(b)

(1,1,-2)

(1,0,1)

1 (0,-1,-1)

(-1,-11-2)

(2,3,-2)

4,-11it-7,-L

1 ?,7

322
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Determine which, if erg,: of tbe lines

of pointé are parallel.

determined by the following pairs

(a) (1,1,*) and (.102,3). (d) (.3,5,12) mi. C1,3,31

(b) (3,-1,2) and (-14,11) (e) (2;-3,4) end (4,-5.0-6)

(c) (1.103) mnd (501,11) (f) and.. (1,11-4)
10. Wite eymmetric equations for the lines

L
3

/x = 2 + 3t .

k ..1 2t

z -1

1

x.3 + 2t(

Y 4 -5 - 3t

Z aw itt

2 - t

k In -2

U. Prove that-if L has the parametric representation x mo,+ At y

Y e' !CI m" zo + nt 2 and if and P2 are the points II;41 L

given by the values t ti and .t t2 then

d(PiP2) + m + n
2

it2 7 til

a

case when theInterpret this result in %lords, including the special

direction nuMhers are normalized. -

12. Prove that Equations (3) represent L _even. if

e coordinate plane.

phallenge Problems

L is in or parallel to

1. Ptnd equations of two planes which intersect in the line

1

X 1,2= 2

y = -1 + t

z = 2 + 3t .

Explain carefUlly haw you know both the planes contain the line.

2. Find equations of two planes whiCh.intersect in the 11114

x = 2

y -1 + t

z = -3. .

1
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8-4

Find parametric eqUations fqr,the7iiiie" L thrOugh the "points"

Po - (N01Y0;s0sg0) and Pi
ProWethat if

(2,y2,162'r2) is snY

throw,h. Po and F.2 eontainst

through tin) .given "points".

Let Po m (xcleroizovo)

t7 on ; , then the "line"

-nue there"! only one "line"

Ak,

; Find the cooOdinates of the projections-of

P
0

on the coordinate axes, on the toaz4ia4leblanes, and on the

-4

coordinate hyperplanes. (Bef9re yoU'ean do the last,part you mill have

to decide What it means.) 9

5. A cube in 3-space has an analokg in 42space which Coiled a'tesseriet.

Make a three-dimenstonal "picture" of a tesseract.:(1t May help you to

think about the Sketch below, in which a cube is drat la a plane.

0

The six facet of the cube, which ere squares, are represented by two

squares and four triapezoids.) In 3-space there is a relationship

connecting,the numbers of vertices, edges, and faces of a polyhedron.

Try to discover this relationship hy considering some siiple cases.

Try to find a corresponding theoremign 4-epace.

.8.4. The Plane in 3-apace.

In a plane, the set of points equidistant from two distinct points is a

line; the equation of a line in 2-space is of first degree. In 3-spacer the

set of points equidistant from two distinct points is a plane. We review

briefly the derivation of the equation of a plane; you may recall it from

Intermediate Mathematics.

The point P = (x,y,z) is equidistant from two di tinct points

P
1

= (x_
1,

y
1,

z
1

and P2 2,Y2,12) if

129

d(PIIP) = d(P2,P)
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4)11 (Y1 Y)2 + (xi ) := Ax2 ) (Y2 - Y) (z2

We square both th " ere of the last equation and collect terms, obtainihg

2zi.4.(y.7112.0.(1) 2( x2 - )x + y2 - )y + 2( z2 13)z -
(312, 2).2 yi2)+(ze2.

Since d(P1,P) and d(P2ip) are positive nuMbers, this argument can be

.reversed, arid any point P = (xy,z) whose coordinates satisfy Equation (1)

is equidistant from Pi and P2 .

Equation (l) is a first-degree opation since the coefficients of x',.y

and z' are not all zero (they could all'be zero only il Pi' and P2 were

t,te same pointo.but they are distinct). 6.

Thus we have shown that ithe equation of a plane in ree-epace is a

linear equation of the fort

2)

and

a = 2( x2 -

ax + by + cz + d = 0 ,

b = 2(1,2 -

(x22 x12) (y22 y12) (.22
21

The proof of the converse-Tat every equation of the form (2) represents

a plane--is left as an exercise.

We note that the cdeffeiepts of x., y and z in Equation (1) are

direction nuMbers of P
1
P
2 ' a line perpendicular to the plane; hence they are

direction nuMbers of any normal to the plane. We eha11 extend this idea in

Section 8-6. We also note that since P
1

P the coefficients a , b , and

c :are not all zero. The restriction on a ,itT c is necessary. Let

a = b = c = 0 . If' d is not zero, no triple (x,y,z) satisfies the equation,

While if d is zero, every triple satisfies the equation. Neither one of

these sets is a plane.

Let us consider certain first-detree equations in which some coefficients

are zero. If the equation is of the form ax = 0.(or x . 0) , it represents

a plane in Which-the x-cooTdinate of every point is zero; cleèly this is the

yz-plane. In the same way, equations of the other coordinate planes are of the
,

form by . 0 (or y = 0) and cz .7 0 (or z = 0) .
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8-4

In general, ve.msy find it helpful in visualizing &plane vhose'equstion

.is given, andi(!raving its graphi to find the traces. These are the.inter-

sections of the plane vith the coordindte planes.

0.

Pwritla 1. Sketch the graph of 4x + 10y + 5z - 20 0 .

SolUtion. TO find the trace in the

xy-plane ve let z . 0 in the equation

of the plane, obtaining

4x +1.0y - 20 . 0 ,

This isethe equation of a straight line

in the xy-plane.

ammipolo*

In similar fdahion, ve find bquations,of the traces ip the yz- and xz-

planes (10y + 5z -,20 = 0 and 4x + 5y - 20.= 0 respectively.r The graphs

of these lines in the coordinate planes (or the parts of the graphs in one

octant) suggest the ?mph of 4x + lOy + 5z -.20 = 0 . *'\

ExamJ..e 2. ketch the graph of 2x + 3y - 4z - 12 . 0 .

Solution. As.in ixample 20 ve

find equations of the t>rades in the xy-4.11k

yz-, and xz-planes (gx + '3y - 12 . 0 0.

3y. - 144 - 12 0 0 and 2x-- 4z - 12 . 0

respeotively) and then makethe sketch,

Mt
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Example .5.. Sketch the graph of

Solution. .We procede as-before,

drawing the graPhs of y 'a 2 the

mistien of the truces.in the gy- and

yg-planes. There is no trace in the

.xx-Plane; to make our representation

_compmtULlevith ou idea of a plane, we

complete a parallelogram parallel tO

:the xx-plane.

Es 0
II

Since, if two different planes interseet, their intertiection is a.line

ve can'represent a line by .9e equatiens of any two different plane ns taining----m

that line. With this in mina, let ul leak again at'what we'foundoin eetionI'
8-3 as the symmetric equatione for a line L

x - xo y - yo zo

in n

These equatien;in are equivalent tesiany pair of the three equations

-
z0

- 0
m Zo

n *

"

We kncre from the argument'in Section 8-3 that each of the three planes

contains L . .rurthermor, eadh one lacks one of the Variables. This me-ans

that each of the planes is perpendicular to one of the,coordinate planes% This

'follows because, in the first of thewthree planes, for example, if.

(x1a1,z1) is a point in the plane, so also is (xi,y1,k) Where k has,any

real value. Thus for any,point of the plane, a line perpendicUlar to the xy-

plane.through that point is contained in the plane. These emmetric equations

'represent three.Planes,,eath containing the line and each perpendicular to a .

. coordinate plane. These planed iere called the projecting ;lanes of L They.

1 1"/327 4
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4

are special eases of tbe,projectiig cylinders of a curvethich will be con-

Sidered inphapter

Risple ffketch the line with,.

equationi

1+11. m Y; 3 Anil'.

by using projecting planes.

se`

Solution. We write the equations

of two of the projecting planes,
00

x - 4 y 3
2 . -2

,F z
2 -1

These equatioA may be rewritten as
8-5

x y 7 and x + 2z = 12 We draw
Figure

parts of the lines with these equations in %bevy-. end Im-planesvand:cOmplete

the sketch as shown in Figure 8.5,

fT
Nov ve

(x025r0P

tUrn to the prOblem of finding the ,disfance between a point

and -aplane M with eAtion

ax + 1074. d 0

,There'is a unique ne N , containing Po , and normal to-plane M If N

M intersect a P
1

the distanceabetween P and 'M vhich ve seek,
0

6

iS 11(P0,P1) We write parametric equations for N using direction cosines;

e

are

x xo + Nt

y yo + pt

= Sto yt .

Let t1 represeni the particular value

t Which gives the distance between, Po X

and P
1

the point in Itch N inter- Figure 8.6

sects M Since P
1

is in M , its coordinate8 satisfy the equation for M

328
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hence

or

a(xo +A

(a7, + bp:.+

b(y +pt.") + c(z0 +. d

#
-(ax0 + by() cx014.- )

If ve divide bcth maibers of this eqUation bi Ia + b2

b2 c2 b2
,a
2

+ b
2

+ c
2

Since a , b

4-,b4 + c2

obtain

are direction nuaibere for

1
/2 2 2va + + c

c
, and . v We substitute "h,p, ,v,and

42
t

+ JH'+ c2

+ c ve ge

ow 4

a

.axo + by0 + cso +.d

airr-7177-2-c

/*

+ y0 + CZO d

42 + b2

But, since X , jL ; and v are direction cosines, X2 + g
2

+ v
2
= i ; so

and (3) d P
0'

gab + by0 + czo + d

fa2 13g 4- e2

daxo + by0 + czo * di

f 2 2 3/a + b + c

-

PmanOe 2. Find the distances betveien P = (1,-2,3) an&planes_

Mi ((xpy,z ) : 3x - gy + z - 5 0) and M2 111, 1(xlypz) x + y = 0)

and

YIN

Solution. Using Eqqation (3) 1 we find that

\13(1)d(P
2,
P
1
)

2(-) + 1(3) - 5

d(FIIP2 33.(17 + 1( -2)1 1

+

3,9 1 34
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1. Write and simplifz the eqaatio

A . (-203,5) and B (2,1

method to find the equation o

2. Follow the instructions, in the

B = (2,-3,1) .

of ttle locus of points equidistant,from.

,Cleck'your work by using a different'

th0 plane which is the locus. .

firet exercfee, but use. A . (3,1,-4) and

Find the intercepts and trabes of

and sketch the lames.

J

the.plapes whose equations are tiven,

(ar 6x + 11y + 32 - 12 . 0 (r) 5y - 8z + 20 .1 0

(b) 2x + 5y + z - 10 = 0 (g) - 6y + 2z . 0

(c) 4x Ry - 5z - 10 = 0 (h) 3y - 52, s 0

(d) 3x - Ry + z 6 . 0 (i) x - 7 . 0

(e) 3x - 4y . 12 . 0 (.1) 2z +.9 . 0

4. Write an equation of the family of plan4s:

4,
containing the origin

parallel to the xy-plane

parallel to the yz-plane

parallel to the z-axis

parallel to the x*.axis

penwidicular to the xx-plane

.

5. Draw the line determined by the points A . (5,1,3) and B (1,4,5) bY

(a) using the method described ip Ekarcises 8-2, rio. 4; and

(b) drawing two of the projecting planes.

6. Repeat Exerciee 5, using A =I (2,2,3) and B (0,5,5) .

7. What is a set of direction numbers tor a line perpendicular tol the pikne

M = ((x0r,z) :407 RY + 5z - 7 . 0) Write the direction cosines for

# ouch a lihe.

8. Repeat Exerjise 7 for the plane M ((x,y,z) : 4x - y + 2 . 0) .

9. Find the distance fram the pant p = (-1,202 ) to each of the paaned

with equations given in EXercise 3.

10. ',Repeat Exercise 9 but use the point P = (1,4,-1)

kind :in equation of the plane through the points

(a) (1,2,3) , (-1,-1,4) , (2,0,1)

(b) (2,1,1) (5,2,3) y (-1,-11.1)

33135
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12: Find an equation of a plale through P and parallel to .M if

(a) P (1,2,-3) ;414 = ((x,Y,z).: 3x - 2y + z - 7 0)

(b) F = (-1,2,2) ; M = ((x,y,z) : X - 2z + 3 Z.0)

13. Show that if the x- $ y- and z-intercepte at a plane art apb, and

c respectively, an equation of the ilane is

14.. 110Pan equation of %he plane with It y- and a-intercepts respectively
%

a) .1, 3 4

(b). -2 5 , -3 .

15, Write an .equation of a plane containing the point P and the intersecilion

of planes )14 and N when

:(a) P = (1,0,2). M = ((Xly,zr: x 2y.4- z - 1 = 0)

N = ((x,y,z) :.2x +-y + x + 1 =

(b) P = (3,11-I M = x + 3y - 4 0)

N = ((x,y,z) y - 2z + 3 = 0)

16. Show that the four points .A = (1,2 1) y B = (2,-1,-4)

D = (2,3,0) are coplanar.

17, Find an equation, of the plane containing the'potnts:

(t0 (2,0,0)

(b) (1,3,5) , (2,1,2) ,:(0,-1 -1)

k (0,1,2)

18. Prove that any equation ofthe form ax + by + cz + d = 0 represents

a Plane.. (This is the converse of the proof at the beginning of this

section.)

8- Vectors in .Spacq ComRonents in 3-_Daace.
a

For vectors the esteneionto 3-space is flot only natura104Ut taw

particularly easy. In your.study orChaPter 3 you m4y have realized that:the

diatinction between parallel and collinear vectors is not as clear as the .

distinction between paraliel and collinear directed-segments. Actually, there

is no distinction. Because a vector te aset of equivalent directed segments,

two vectors Which 'Av.e representatieves on parallel lines also have represents-
.

-tives on the same line. Ip fact, a vector on a line has representatives any-

where on any line para13.01-to the given lipe. If 17 is a vector, every point

in space is the initial point:(or, for that, matter, any other.point on the'

331
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9

arm

.

.

line)'of a representative of a This is the basis for the Origin Principle

and the Origin-Vector frinciple. .-

.

For'the aa,e lesson no tiro vettOrs may be noncoplanar. If the representa-

tives of two yctors lie on skew (noncoplanir) lines., they not only have other

epresentatives is; a single plene, but also reprisentatives in any other'

parallelplane. Furthermore, in such a plane they may be represented, of

Turse,,by origin-vectors.

et The definitions and properties of operatich;Aenich inVolve no more than

*tvo vectors, such as addition, scalar multiplication, the distributive laws,

ind the inner product, wpply in space, and may be interpreted geometrically

in space. Theorems describing relations between tvo vectors Also apPly and

may be interpreted in Apace. If at this point you vill rereaethe definitions,

principles, and theorems,developed is Section 3-2 through Section (pages

191-112), 'you will*see that every statement and proof applies v tore in

space. -The figure's-illustrate the situation in a plane, And in accordance

with the Origin-Vector Principle oUr proofs are in terms of origin-vectors

vhich -are aaplanar. As our discussion here indicates, our definition of

vectors is such that a geometric relationship in space may often be described

by vectors la a plane. In general, the vector description of adproblem in

space frequently may be'reduced to a vector ilipetration in a plane. The

illustration th the plane may serve.aa a simpler guide to the algebraic relit-
.

tions between the vectors. _Tile results obtained may then be applied to the

driginal problem in space. Of course; we must bear in mind that.not all sets

'Of vectors are coplanar.

As you revieioed the'material in Chapter 3, you may have wondered 'whether

the discussion above justifies the statement that Theorda 3=2, the associative

propertyfor vector addition, Wes apply in space: After all, the theorem

states that Tr+ (irk ID 7(1;4 4) +7R., and the three-origin-vectors need

'not be coplanar. Strictly speaking, the assertion-is valid, for vector

addition is a binary operation; that is, we never add more than two vectors

at a time. Therefore, as we perform each step of the proof, we are adding

vectors in a single plane, though the plane we work in may change from fftep to
-

step in the proof as a vhole. Still, the thea.em is interesting and illustra-

tive enoughto consider ai an example.

13/
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Poo 8.5

Emmmple 1. prove the associative property forveetor, addition:

a
e

Proof. In the figure below we illustrate three n4ri96planar origin

vector?, 17, Q p and IT. The iegment is drawn el.and congruent to

PO' and the segment VB is drawn parallel and congruent;W OQ Eadh of tile

quadrilaterals IOLA and ORBQ are parallelograms, since in eacp two opposite

sides are parallel and congruent. BT is drawn parallel and congruent to A0
and thus also to YU

AT is draum. Since TB and AQ are parallel and congpfent, quadrilateral*

AQBT is a parallelogram. .Therefore, AT, is parallel to QB p and'also to

OR (If- CR is drawn parallel and congruent to P040;and PC' and CT are

also drawn,,the entire figure) is a parallelopiped, a prism whose,base is a

parallelogram region. However, we have not quite proved this here.) Since

PO and TB are parallel and congruent quadrilateral POBT is. a parallelo-

gram. Since AT and OR are parallel and congruent, quadrilateral ORIA is

also a parallelogrent.

We'have now identifieb enough parallelograms to enable us to perform the

Vector additions.required in the stettement of the associative property.,

The ieft meMber

.1* wifta we%

since ORBQ and POBT, are' parallelograms, and the right member

since POQA and -ORTA areyarallelograms; thus

1 + + 1). + + .
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8-5

Once a rectangular coordinate system has been introduced in 3-space, ve

have a one-to-one correspondence between the ordered triples of real numbers

and the terpinal points of origin-vectors. Thus, it the terminal point of the

origin-vector 57 has coordinates (ai,a203) we may demote A in component

form by ki a a._]
2'

where al , a2441.0and a3 are the x- x: p and

z- eameonents respectively.

Figure 8-7

Aft

It follows from the definition that two vectors a and 17 are equal ir

and only if the component forps of their origin-vectors'ars identical; that is,
Alb gil.

a = b if and only if [al 403] [b
1,
b
2,

b
3

] an d [al,a203] = [b1b2,b3]

'41.f and only if al = b, , a2 = b
2

and a
3
. b

3

Several theorems in Chapter 3 were proved;to hold in the plane using

components. We shall restate them here with modifications appropriate to their

interpretatiOn in space. We suggest proofs for some and leave the rest.as

ti
exercises.

4.

'139
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8-5

maim If 7= tavara31 and ,?2,b31

We nae that if the sum is I s then tUr nd XII bisect each
+ b2 a3

1

(a.j. b1, 2 s a.3 + b3 ) s and 7.17 = + b1,a2- + b2, 013 + b3].

THEOREM Multiplication of a- Vector I by a bonier r is given-by
= [ra1sra2,ra3]

The proof is left as an exercise.

USBORliM 8-4. The inner product of two vectors I and 413. is given by

A B albl a2b2 a3b3

Figure 8-6

By definition -1 I = 1111171 cos e ; in triangle AOB we see by
-the Law, of Cosinea that

1702 ir312
cos e _

2 -70
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Thus

i + 11712
(d(A,H))2

is.-NNN2.12.1 83.2 a22 a32

1
= + 2a2b2 +

4- ar,b, + a3b3 .
4

MORIN If 7 , , and -2: are any vectors, theri

(a) + 7 - 4- 7 1'
(b) (tiC) . t (7 7)

Cor011ary. 7 Ciii" a(TC -7) + -

-

The proofeare left as ,exeraises. The other theorems of Chapter 3 ver4

not proved using components and involve no more than two vectors; hence, they'

'apply ia 3-space;

Example 2. Eind the angle formed by the origin-vectors to the points

A = (2,-ip3) and B = (-1,3,1) .

Solution. We recognize that the irmer 'product,

1111-)71 cab ,

;will help here. Since A [2,-313] and .17 [-103011 p we have

2 (-1) +

and

(-3) 1 = ]7773)2 4 32 A -1)2 + 32 + 12 coq

-8 = Al" cos 9,
ir.771

-4)cos e =

- 514 .

Hence S 121°
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8-5

We recall:that any vector expressed in compofent form in the plane mmy be

resolved into component vectora along the axes.. The component veetors in turn

maY be eXpreSSed as9calar multiples of unit vectors. Thus we may resolve a

vector A as follows:

A
[alsa2sa31

= [hi/0,0] + [0,82,0] + [0,0,83]

a2[0,1,0) + 83[0,0,1] .

It is customarY449_denote the unit vectors [1,0,0) [0,4.20) and (0,0,1)
.00

by i j y and k respectively. Since any vector A may be expressed as a

linear coMbination of isjpand k as

ali + a2j + a3k

we say that j and k form a basis for 3-space.

The use of vectors gives a concise may of describing a line in 3-space.

Let (tm,n) be a triple of direction numbers of a given line L which

passes through the point P0(x0py0ft0) . Thus.a parametric represintation

of L is

V
The vector D [1,m,11] lies on the line L' , which has a parametric

representation

x

y = mt

z = nt

and which is parallel to L . Thus a triple of direction numbers (i,m,n)

of a line L 'determines a vector.parallel to L . FUrthermore, the point

P(x,y,z) lies on L if and only if

I4 -a .
P

0

1
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8-5

If L 'is the line which posses through twO distinct points

'130(xo,yo,z0) and Pi(x1,y1,z1) p then,. from Chapter 2,

a triple of direetion numbers of L . Am

direction numbers determines a vector D
. (X1 X0 Yl YO Zl 70) is

we have just seen, this triple of

which is parallel to L . But

D'= [xia1,z1] - ExopYoszol = V1 - V

Thus, - 10 is a vector parallel to the line through P0

and P1 .

Example 3. Find.a vector representation for the line ,PoPi $ where

AW AW
p
0

= 31 4. 2j - 4k and P
1
-= -2i + j

Solution. Po = (3,2,-4) and Pi (-2,1,2) Hence P0P1 has

(5,1,-6) as a triple of.direction numbers; /7.= is a direction

vector for-the line. Hence, the vector representation o the line,

P P + tD p
0

becomes

or

7=43;20-4] + t[5,1,-6]

= [3 4-.5t 2 + t -4 - 4

(5't + 3)1 + (t + 2),1 ; (6t 101E ,,
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Let - (4020]

(a) 1e 3
(b) 4. k
(c) j k
(d) i
Find the cosine of the

Exercise 2. -

3. .Given 1:6; = 21 + 23 k

4. Let Z. = (3pal*O7 =

(a) 21C + "8:

(b) +

(c) (Z - 3(s -

.'\EXercises

[OA 0] lad k m. [010111 . Find

j=

k(f;)

(g) (4j 4. ak) 51

(h) (31 f+, 2,1 - k)

anglelmtveen the,two vectors in each'part of

. Find

Use values of A B , C

(a) 14. 1 +

(b) 27: + +

(.c) 2(1* .13) = 3(.5. -

6. Use the values of

250 (3T + 25)
a 4- I)

1

such that I ri = I

= f-103,-21 . Find

(d) - .6) -t 3(.6 -
(a) aot - + 2(X -
Cr)

as in Exercise 4, and find X so that

tt+2;V=Ii+.6.:16

(e) 3(7 + ).= 2(7 - .6)

(f) rE+2(1+1)+3(t+13)=0

as in Exercise 4, and findA p. p p

(f) (Zr3 4 35) ( 21'3 - 35)
(g) (341. + 5.13) - 25)
( h ) ( + .6) . (-X+ -6)

7. Discuss and relate

,

(j)

1 ; 1113 , Z. I

8-5

8. Given P = ai + + ck. Give algebraic and geometric interpretations

o*

9. if A = 21 33 + 4k and -11. = xi - j + 3k Find x sUch that ACB is

a tight triangle.

10. Given Z + 3,1 + 4k and B = - find the length of-the

projection of A upon B .

te.
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4.1

8-6

11. Show that the line joining the end pohnts of the vectors

A. 4 3j = j + is parallel to thf XY-plane.

12. If -teat arik 4t. 0 prove tat jC +t)

13. Descrlbe in texts of components all unit vectors perpendicular Ito the.

xy-plane.,

14. Find a vector 1 to both Z. al+ 3j + 4k and 7 = i + j k

Note: There are many solutions.. Can you find a general solition?

15. Find the measures of the angled of the triangle with vertices at

A = (2,-1,1) y B = (1,-3,5) C = (30-4,..4)

16. Find vector representations of the lineal/easing through

= (a,b,c) (0,000) which. are perpendicular to P.

17. Prove Theolkm 8.3.

18. ProveTheorem 8-5 and its Corollary.

-8-6. Vector Representations of Planes and Other Sets of Points.

. In the first course in geometry plane is.An undefined term; its use is -

described in the postulates. From the postulates we learn that a plane is a

set of points and' is uniquely determined by three noncollinear points. Further,

if two points lie in 14.21.ame, then every point of the line containing these

points also lies in the plane, and if two different planes Intersect, their

intersection is a line. A line and a plane were defined to be perpendicular

if and only if they intersect and every line lying in the plane and passing

throilgh the point of intersection is perpendicular to the given line.

In Section 8-4 we used the fact that in space the .locus of points equi-
,

distant from two given points is a plane. This led to ana.wtic representations

for planes in rectangular coordinates. In this section we shall consider

pother description of a plane as a locus and develop vector representations

for planes.

A

We let M be a plane and N be a line perpendicular to M at a point

Po Anv other point P in M and Po determine a line in M which by

definition is perpendicular to N . By a theorem from geometry, every line

peXpendicular to N at P is contained in M Thus,ewemay copeider M

to i*,:bhe locus of lines

line to the plane.

perpendtcular to N at P
o

We call N a normal

34o
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Figure Elq

The description in terms of perpendicularity suggests a vector repre-

sentatioi-in terms of the inner product, for if 1; is,a vector with repre-

sentatives in M , and ; is a vector with representatives on N we have

m u 0 This will be diearer if we interpret the statement with origin-

vectors. The vector has a representative 1.0 emanating Tram Pb which

, also lies in M The vector also has a representative ;6. emanating

from P vhish lies on N . Hence TO ana 1; are perpendicular. Their

corresponding origin-vectors lei and ir are perpendicular and lie, 0

By the Origin-Vector Principle we may interpret this as lelic, 0 .

To obtain a vector 'representation of the plane M we note that if P
1

is a fixed point tn. M and P is any other point in Id then -17: is

parallel to M . Thus, we may describe the plane M as

(P : (r- fl) 71 m 0) .

We note that P
1

is also-in the set.

We recall that'it is possible to characterize a.line which does not contain

the origin in 2=space pi the set of points which is perpendicular, or normal,

to a directed segment OP at P In 3-space we may describe a,plane as the

set of points which is.normal to a directed segment ON , or órigin-vector ir,

at N. N is; called the:normal vector of M If the given point of M is

N then

= 9)



8-6'

If ve lpt P = (lat.!) , pil p, and (4.11v) be the triple of
.

direction cosines of Ve have

13. =

N= (701111AP
and

- [4, %,t1)/ p[Npitov]

1(x002) p[pii,v)) pflogIv] 0

aioh, since p A 0 is equivalent to

[x,Y456] (N41v].- p[Wplv] Nulv] .e0 .

or

Since )t
2 + + v

2
= 1 , we have

m ((x,y,z) Wx + gy4 vsg, p 0)

an*emalytic rippresentation orthe plane in terms- of the normal form of its

equation. We notethat (Xtp4v) are direction Cosines of tfie-normal segment

and that p is the distance betveen the origin and the plane.

Elamplel. riga an equation of the )ane hieh is Perpendiaular to the ---.,

vector A = [6,-4,3) at the point A

-, Solution. We have

and

or

((xsyoz] - [6,-4,3]). [6,-4,3] . ID

[x - 6 + 1k., z - 3] [64-4,3] . 0

,

6x - 30 - 4y - + 0 1 1

6x - 4y + 3z = 0 .

Again iii-rAe that the coefficients are direction nuMbers of airmal lines to ,

the plane.

Examplek, Show that if Po = 0501,Y0,40) and P1 = zl) -are two

distinct points in a-plane with equation ax + by + cx + d = 0 , then every
7

point of 1-.7 is in the-plane.
0 1

e,*
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8-6

Solution. AnY Witt P m (314Y0s) on lige has the parametric representem

X Xo xo)t

Y m Yo + (Y1 - Yo)t

X so (ri . so)t

and is the plane if its coordinates satisfythe equation

ax + by + cz + d = 0 . The left menber becones

a(x0 + (x - No)t) + b(y0 + (11 ycj)t) + c (z + - zdt) +.d

.; (Imo + by0 + czo + d) + (ax4V.4...4,czi)t - (axb by0 + czo)t

+ (-d)t - (-d)t = .

TherefOre, any point ilk the lint is.ceatained in the plane.

We may use vectors, as ve diti in Section 3-6, to describe other sets of
points in space.

lExasele Fitad a.vector representation for the llne segment determined
by. the-vectors 1 = [2,-1 3] and 54= [-1,4,7] in terms of a Ifinae psramiter

p.

SOlutian; Fran the develapnent above, rs. (X : .0 pit + 4
00q>Oseed p )

Since p+qmollq=1-p;s q>0 1\1 -p>0 or p<1.:
Since p > 0, the ccmbined restriction p tint b p < 1 By

substitution, 05,

.0" Pit + c/IT pf2,-3.13L + (1 - where 0 <t < 1

where 0 < p < I .

where

44

As = tx [3p.- 1 - 5g , 7 4p] where 0 < p < 23
dr

Faample 4. Find a vector representation of the point which divides the

directed segaenir.Al. in the ratio .;" .

.1
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8.6

Solution.
2 it:I. 1
+ 2 1 4. 2

2 1
= 5[21-1,31

Pi. 4- 1,2] [- 444

= [IA*

Alternatively, if we think.of the parameter aa a coordinate of the point,
2

then for the desired point p . Substituting this relue in the expreasio4

obtained in Example 30 we_Obtain-

.j Exmap1a2. Find a vector representati for the ray oposite to A in

tell= of a single parameter q .

Solution. The ray opposite to A = [X : =

p +-q = 1) Since

p=1-q<O,

therefore

er where p<O and

+ = (1 - )[2,-1,-3) + q[-1,14,7) where. q > 1

= [2 - 2q , q - 1 , 3 - 3q1 + [-q,4q,7q] where q > 1

where q > 1 .

The =Apposite to A = [X : = 34 5q , , w4erd' q.> 1) .

. .

Example 4. L'uPpose X , , and tt are the vectors whose terminal iciints

-are'the vertices -of a tri-angle: `Can ve rekuvseiat the ti-ituagtaar regioer-the

Interior of the triangle; and the triangle itself, in terms of these vectqrs

and boy parameteria

1/1
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Solution. We write .2Z astr..LX t + 1 - q)e where 0 < q < i)
in trample 3 above.

4.)

Bow the iriangular z:egion is the
union of the segments or.

(Y.:1f pit + (1 - p)t where o < p < 1)
... Cr f pr 4: (1 _r 0(4 + (1 -

where < p < 1 aulio<q<l)
(y pr + (1 - + (1 - p)(1,- q)!*

where < p < 1 and 0 <11 < 1) .

The interior of the triangle tor will be

(Y. 7- Pr + (1 - p)qS + (l- p)tr where < p <1 41,n.d < I < 1) .

8-6

Thè triangle is

,(1. :Ir. 4. (1 - p)47+ (1 - p)(1 Or where (p = 0 and o < q < 1)

or (q = 0 and < p < 1) or and o<p<l))
No can yrite these results more neatly if we let r = (1 - p)q s6d-
s p)(1 q) . Then p + r + a :5 1' and the triangular region isCre-: tat + rr+ strwhere r and. a are non-negative and p + r + s =1 1

ThisIorm is eaair to recall.)

Exercipes 6-6

Find an equation of the planerich has 17,-3,5] as a normal vector
and which contains the point (0,0,3)

2, Find an equation of th-e plane with the normal vector
1

(a) [2,-3,1]
(b)
(c) T3,-5,41

(d) [-24-1,6]

3. Find the distance from ,0,0) to the plane

(a)- 2x + 3y - z = 5
(b) 5x - 3y + 2z 8

(c) ax-+- + ea =

345
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8-6 eg

. In theligure below, consiftr ASO to be a 34ilensional figure.

is known's% &tetrahedron and has 4 -fac and 15 edges')

.(a) Shaii:that the 4nes thrcough the Mi ints,of opposite edges

concurrent.

(b) Show the! PTO(' and QUIST arizparallelograms..

(c), Shoi that.the, point of voncurrency is the midpoint of each segment.

rr

Show that if Pi (k1,y1,z1) and M = : ?X4 py + ye - p ='0) ,

1then the distance between P1 and "14 is

6. Find vector represent4tions, in terms of a single parameter,, for the sets

descriabd elow.

(a) AR where =414)-7,5], and -11 [4,2,3]

cbT a where 1 = ,[3,4,2] and -17 = [-2,3

(c) .1i; where A= [3,4,2] and -113- = (-2,3

(d) rA where.41= [3,4,2] and 171 = [-2,3,3]

Find the vectot representations of the midpoints and tri;ection points of

the following line segments:

(a) AB, where / [0,0,0] and 13- = [6,12,15]

,(b) AB where -A- = [-322,7] and = [10,-11,14Q

[al'a2'.a3] and Ib1,b2i33}(c) where.

1 314.6,
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Find the vector repreaentatiena of the points vbich divide the directed

segment PQ in the ratio Vbere:

-Gs) [-3,74-11 [73,.?,11 and, 22.1

'.(b) i; = .1-1,4,L8] = (9,-5,7) and:

Cc) 1r . (2 3,1] flp-2,4].', and r 3

'Given t6e,triengle AC vith 27= [2,3f] yibf -1,2 I

[1,4$-2]

er'

Describe the triangular region, its interior, and the triangle itself,

using these vectors and two parameters.

Show that [1;3,1] is a,vector Whose terminal point is an interior

point of the triangle,

Show that (-4.,5$-6] is a vector whose terminal point is an

exterior point of the triangle.

Challenge Problem

Given the four vecters A $ 1;# Cr$'andi vhdse terminal pointil are not

obplanarfind an expression for the tetrahedral region'ABCD in terms

of these vectors and three paiameters.

8-7. Summary.

We haire extended the rectangular coordinate system to 3-apace and have,

considered, the analytic and vector representations of linepiand planes in

6-space. In Ch9ter'9 ve shall:consider the representation and'sketehing-of

other curves and surfaces. We &all also consider tvo'extensions of polar

coordinates to 3-spade.

Wt have also suggested that ve may in;erpret algebraic relationships in

four variables in a 4-apace, vbich may be.helpful even thot41 vi'.cannot

visualize it. The extension is, of coupe, possible to Spaces of more dimen-

sions, We .are in a position to make seAcai cOnjectures based on our obser-
.

vatione in 2-space aad 3-space. In 2-space the general linear equation in 2

variables describes a line, 6 one-dimensional figure; in 3-space the general

linear equation in 3 variables describes a plane, a 2-dimensional figure.

Thus, in n-space -vie might expect the general linear equation in n-variables to

describe a figure with n-1 dimensions.

347 152



fc,

In aTspace ve are dble to describe a line either by a linear equation or

by a parametric representation in one petameter; in 3-space ve still have the

parametric representation of a line in one parameter, but the alternative is

the common solution of two linear equations, which is awkwa?d. Some of the

later exercises dhow that we yaw also describe regions in a plane by a para-.

metric representation in two parameters. Our conjecture might be that in

spaces with enough dimensions we may describe one-dimensional figures With

parametric representatione in one parameter, 2 diMensional figures with

'parametric representations in two parameters, and, in general, n-dimensional

figures with parametric representations in n parameters.

4

Review Exercises

In Exercises 1 to 8i.vrite an equation.of the locus of a

satisfies the stated conditions.

11. A point 5 units above the xy-plane.

2.' A point 5 units from the yz-plane.

3. A point equidistant from the xy- and the yz-planes.,

4. kpoint 2 unitd from the x-axis.

5. A-poi a units from the origin.

6. A point r units from the point (2,-1, ) .

7. A point equidistani from the point (1,2,3) and the planPwith equation

1.4 which

z -F 2 .*

8. A point that lies in the plane determined by the points (3,1r2) (1,2,3),

(f2,2)

Sktch the graph'of the equations in Exercises 9 to

9. x + y 0

10. 2 - 7 = 0

4x 4 9y - 6z + 36 . 0

4

12. z + 3 = 0

13. x = 5 - 3t , y = 2t t z = 3 - 4t

14.
-3 -2

318
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In Xxerciwes15-20i'grath and describe the geometric representation in

"one-space and 2-space, and discuss a possible meanimg in 3-space.

15. fx x 3 = 0) 18. (x Ix! > 3)

16. (x : -1 < x < 19. (x Ixf < 5)

17. (x - 3 . 0) 20. (x x(x - 1)(x + 2) = 0)

21. Groh and deicribe R._ and R
3

for one spacet 2-space, and

3-space if

Ri = ((x,y) : lx1 < 2) ((x,y) : < 2.)

. .

. 22. DisCuss Exercise 21 if < is.changed to < .. What geometric interpre-

tation can you give for RILI R2 ?
c

23. Graph and describe ((x,y,z) x
2

+ y
2

+ z
2

< 1) What is the grMph if

< is Changed,to < 7
0

In Exercises 24 to 26, use the four points: A(-2,1,3) B(3,1,

C(20,-1) , D(1,3,2) , and the four planes:

: 2x - 3y +z+4.0,M2:3x y + 2z - 3.0 M3 x + 2y - 3z + 2 =

-x + y + t - 1 ;lc 0 .

24. Find the distance from ,each of the points

the planes:

(b) M2

25. Find, in symmetric form,

(a) (MI,M2)

(b) (MI,M3)

(c)
(M1'144)

D 0 to each of

(c)

equationvf.the lines deterMined by:

(d) (M2,143)

(e)
(M2,144)

(f) (M3,M41

4

26. Find parametric equations for each of the lines referred to in Problem

25.

27. Show that the epace quadrilateral ABCD , where A = (-2,3,2) ,

B = (-4,5,8) p C = (1,1,4) , D is a parallelogram.
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28. Shaw that the mdianio of triangle pe s. where AgAr(0:p0,0)

)3 0 (224,6) 4 C (4,2,43) are concurrent.

29.
-

Fôr what:value of a are the points (3,20) .(104,2) (2,1405)

collinear?

30. If (2,1,) ,1 0,4,.2) (s,-20.:4) are the vertice6 ofa triangle with

a right sngle at vertex (024,-2) find a .

r--

350
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9-2

Chapter 9

QUADRIC RURFACES

9-1.. What Is a quadrid Sukface?
)

If you know what is meanOy ",qusdratic equation," you.might Auess What

is meant by "quadric sUrfaae". The locus, if one exists, of an etplation of

the pecsond degree.in rectangular ceordinates for 3-apace is.oailed &quadric

surface.' Each of these surfaces has an important property:: all plane .sections

are cónice. There aremany surfaces other than,quadric,surfacee, and thfre

are more qdadric Furfaces than the ones we knall.introduce. Weeihall limit

our discussion to the moat useful and easily recTignised ones. You mil/ recog-

nize spheres, cones, and cylinders. Some ofthe-other surfaces maybe less

familiar to yod butlinasmuch as all intersections of tbese surfaces with

planes are conic sectiOns you should have little difficulty visualizing even

those quadric surfaces Which: e new to you..

When.we apply mathematic to physical problems, we find.that,A draving

Which depicts the physical relations in the problem can be usefUl. OUr

prinCipal aim in this chapter is to develop methods for'vlaualiziiig surfaces

and curves in'3-space. Such.configurations frequently occUr in icience and

calculus courses. We shall give directions involving only simple figures and

equations, but the methods are general and can be extended to more gomplicated
01

cases. We also shall-indicate how equations representing quadric surfaces or

space curves may be simplified.

Some ability in the sketching of geometric qgures is requited in -Ghia -

chapter; .you must make drawings of three-dimensional objects on a two-
.

dimensional surface. Also, we shall rely heavily upon the material which you

learned it Chapters 5, 6, and 7.

9-2. Szheres and Ellipsoids.

You are familiar vith the graph of the points in a plane at a given dis-

tance from a given point, and you also know an equation of this graph, If the

given point is taken as the origin and the given distance is 4 0 the equation

351
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9-2

is
2 2x + y = 10

Now supPodb we cbnsider-this same problem in 3-sptice. YoU knOw that theIoeus

is a sphere of radius .4 , but let us.proceedas we would if yoti did.not know

thie. We ahall use various.methods to "discaver".the shape Of this fpniliar

suAace. Later you will use.the sams,methdds to find the shape of,unfamiliar

surfaces.

A sphere is defined as tile set of points each of which is at a given

distande from a given point. It always will be possible to selebt this given

point (the centix) as the origin of a rectatiIar coordinate system. Sudh a

choice will simplify the algebraic representation of the sphere.

We wish to examine the set,of points, each of which is a distencp 4 cram

the origin, 0 = (0i0,0) . For each such point P = (xlytz) 0 the condition

is

r

or (1) X
2

+ y
2

+ = 16 . 11

An attempt to visualize this sphere by plotting points., such as (2,3,-6)
(1116,3) y.(fiyee3,15) y 'not only is tedious but, even when a great Many points

have been plotted, does'not reveal the sphere we expect.

Figure 9-1

157
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,It IA more illuminating to exploitope similarity between the equation of

11.sihere and the equation of a circle. .For instance, the equation

( 2) y2 4. 2
211

16

not oniy closely resembles our equation (1) of the sphere under discussion,'

but Equation (2) represents a part of this sphere. It represents, of course,

'the intersection of tRle sphere and the yz-plane (x = 0)4 shown in Figure 9-2.

The interseetion of a qUadric surface and a coordinate plane is called a't4ace.

(67-4AIL

Figure 9-'2

The algebraic representation

of this trace if the simultaneous solu-

tion of Equation (1)_and r.= 0 .

Ithe traces in the Ater Coordinate

planes are found by.takfng y q

and 2 0 . We show in the figure

only those'parts of traced/which are

in the boundaries of the first octant.

353 1 5S
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: 'In sOne probieems we need help in drawing the tracts. this event we

locate the intercepts- the 01 4! of intersection orthe surface vith:the '

coordinate.-axed.o, FSFZquation'"(1) the values arle-4 and -4 on each axis.

Once the traces kre indicated, as in Figure 9-3, ve begin to see the shape

of the. surface. Nextve investigate the shape of the rest of ihe surface by

slicing it and loakng at each slice. Such slices ar'e called sections; they

are the curves formed.by the surface and planes cutting it. The traces, of

course, are special cases of aections. .Let us make our slices parallel'to the

Nr-plane. An equation of the parallel plane one unit above the Xx-plane ia

z m 1; we sUbstitute for z in Equation (1), 'which belga

x
2

+ y
2

+. 1 16

2
or

We see that this is an equation of-a circle

with radiue 1,15 3.9 , and willkh its

center on the z-axis; we add to the

in the plane z1= 1,, the part

Of tbe circle in the first octant. We

coniinue in this faahion, 1,ett1ng ,z

assute the values 2 and 3 .. Each

section is a circle, and tlie radii are

-approximately 3.5 and 2.6 respee-

' tively. We have added part of these

circles in.Figure 9-4.

have

X
2

+ y
2

==.

z 4 ye

which represents the)point .

For any value of z :larger than 4 ,

i(there is no locus.

it a plane parallel to the xy-plane

Figure 9-4

Now Ire consider sections parallel to the yz-plane, giving the same

numerical values to x that lit gave to z . Again lit find that the sections

/ are circles, libich we may add to our draving (f.Fi

investigate sections parallel to the xz-plane if

visualization.

15 9
351

9-5). We might ale°

th s appears to aid our



a

Figure 9-5 4

r.0

Thiahas,probably seeded a elov.and labored procedure to get a draming

of sudh'e familiar surface's& the:sphere, but ve hope that you mili nom he

able tohanai the sae methods to other equations in order to viSualize.and
P

drawthe surfaces theY represent-.

When graphing in threelimensions it is belpfnl, as it was in tmos.to

jevestigate sYzmietry. .The definitions oi point-symmetry and line-SYmmetry

given in Section 6-2 .hold for 3-spice, but a more usefUl idea is that of

symmetry yith respect to a plane. A set of.points S -is sydMetric mith.

respedt to a fixed plane' M if.and only if for each point P of S there

is a corresponding poiht PI of S suchthat .M is"the perpendicdlar

bisector Of TTI liere've shall investigate-symmetry only with respect to

the Coordi ( planes. We list the tests: a graph mill-be symmetric mith

xy-plane ,if, ahenever -(xrylogi) (xi,y3:zi)

respect to ;the yz-plane,
is on the graph, so also .

u-plan ,

is
(3.cl'"Y1'21)

If a surface is Ommetric mith respect to all three coordinate planes, it is

also symmetric mith respect to the origin ahd each axis. A sphere, of adUrse,

meets all these tesis for symmetry.

When a surface is synoetric with respect to all three coordinate planes;

the part of it in any octant is repeated in sill-the other octAnte. ' In such

cases've need dram only ths;t part in the first octant, since this makes our

dreaming less complicated.

355 1 6 )
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The sphere we have been considering has its center at the oi:ig in; the

equation for ouch a sphere can Always be written in the. form

/13) 2
x2. + y2 ± z

2
a

Where lal is the.radius. Ste-that the terms containing x

have the coefficient 1 .

.qonsider the eqsation

n-
Y

(4) Y +
L 2

* 100'.

What quadric sUrface does this represent? We begin, as before, by draming the

traces. To find the trace it the yz-plane, we let x 0 in_Auation

2 z2
obtaining 165 1-. We recogni e that this trace is'an ellipse, as

*own in Figure 9-6. When ve let z Its ve again obtain an ellipse. How-

eyer, when y.. 0
2 2
x + z = , the trace is a circle. Again ve dhell

picture only those portions of the traces lying-in'the boundaries of the first

octant. ;belle ere shown in Figure 9-7.

.4.k.
.um

00 )

Figure 9-6

0 MO)

Figure 9-7

Now we find the sectioni"as before; those parallel to the,xy- and

, yz-planes are ellipses; the ones

parallel to the xz-016ne are circles.

It is common practice to select just ( 04.5)

one setof-sections to-illuminate-the

draming; if one set consists of

circles, this is the.usUal choice.

These seetions are shown in Figure 9-8.

p

a. 4
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Figure 9-8
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The surfaoe we have been skeiching.belongs to a class called-ellipsolft

They are.so named becauaethe sections parallel to-the coordinates Planes are

ellipses (or eircles,.4hiCh may be considered special cases Of eIlipsea).

These surfaces have equatiOns of tile form

(5)
2 2"x y

b

where the numbers t a , I b., t c , are the x7 , intercepts.respee-

tively. The segments of.tlie axes joining the intercept points are called
. .

axes o'f the ellipsoid.

If,two of the axes of an ellipsoid have equal length, the surface is

called a-spheroid, beeause.it reheMbles a sphere. These are ietwo kinds. If

third axis is longer than the others as is illustrated in Figure9-8, the

spherOid is called a prolate spheroid and reseMbles a football ;al; a watermelon.

If the third axis is shorter tharLthe other two, the surface is called an

oblate speroid and appears flatten'eh like the earth or a 1.o-Y.p" top.
.

*When ..e. = b = c in Equation (5), we'have the equation of a sphere. A

sphere, then,-is'a special kind of ellipsoid in mueh the same sense that a

circle is a special kind of\ellipse. Befo7 we conclude this see ion A-Should

)ask again, "What qUadric surface doeli Equation (4) rePresent"?, F flowing Alit

is a good general procedure, you should write Equation <4) in the TO= of ,

Equation (5) and then-name the sur.face accord1.43 to the Above descriptions.

Exercises 9-2

In Exercises,1 to 12, discuss and sketch the surface represented. In-

clude intercepts, traces, and the'name of the surface. Draw several of the

sections parallel to one of the coordinate planes,

1 *2 2 2 rx + y + z = 25 4x2 + 9y2 + 4z2. . 36

2.

3.

2 24x + 42y + 4z

9x
2
+ 9y

2
+ 9z

2

= 9

= 0

8.

9,

4. 9x + 4y + 9z . 3o 10.

i. 9x
2

+ 9y
2

+ 4z
2

36 11.

6.
2

4 + 2y2 + 25z
2
v.100 12.

, 357

9x
2

9y
2

+
252

7 225

9x
2

y
2
.+ 251

2
= 225

4x2 + 9y2 + :6z2 = 144

9x
2

+ 4y
2

+ 16z
2

144

'2 2 2
16x + 9y + 41 = 144

1 62%.



9-2'

13. Use the definition of sphere to write 7 equation of a sphere with center'

(xbaced) and radius r

ShCw that the equation you obtained in Eaerciee 13 can always be written

in the form

x2 y2 z2. .1"Dx
s

+ Ft o m 0 .

Does eVery,evation written in this fbrm represent a sphere? JustifY

your answer.

111;

1 . Find, in the form in E1ercise 14, equations of the spheres wit the given

center (C) and radius (r) .

(40- C (2;t3) / (a) .c . (-1-1 , r m 1

(b) C (0,-1,2 r 1! -2 (e) C m r --

(c) C = r (f) C = (1.5, -.5 40) 3

16. Determine whether the following equatioho represent spheres. For-

*
sphere, give the radius and the coordinates of the center.

(4) 3x
2

-I- 3Y
2

4- 3z2 § le 0

(h) x2 y2 + z2 * + 4y - 6z 10 . 0

(c) x
2

+ y
2

+ z
2

- 4y + - 20 = 0

(d) x
2
+ y

2
+ z

2 + 6x . 8y + 14z + 72 m

(e) x
2

+ y
2

+ cy + 13.m 0
2 , F

x2 + y2 +-z2
. 4

36x
2
+ 36y

2

16x
2 ,

+ loy
2

= 214y + 14 0

t.n
+ 36z

2
* 36x - 41-cy +°72z + 52

47 16z
2

- 24x - 64y 4 161z + 41

= 0

= 0

17. If A = (1,2,3) and B = (-1,0,7) what is-an equatipn of the sphere

that has Z as diameter?
.

lb. Write an equation of an ellipsoid with :-. and z-intercepts 't 3

t 7 , + 5 , respeCtively.
.

Chsllen.ge Problems
'4

Vrite an equation of an ellipsoid Irith center at the point (3,71,2)%

and with axes parallel to the x- p y-

8., and 24 respectively.

F/ 3 358

and z-axes and of lengths 12 p
-a

44

410
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2. ,Tbints.1? (0,3,1) Q (..2,0,2) R sm (1,1,4) and $ (-3,3,2) 'are

_pinta of kaphere. Whet is an equation of the sphere? Will any four

Taistinct points Otermine a sphete?

9-3. Whe-Pardboloid ana the Rypnlmloid.

Whet is the locus of a point eqnidietant from a givsp point. F and a

given.plane M t We shall assume that thedistance frmn F to:M 4 .

,The geometric condition fot the locUsfie eimilar to the one which defines a

parabola. With this in mind ye let tfie Ude through F perp.endicular to )1

ja

-
be the y-axis and ldt,the origin be the midpoint of the 'normal aegmelfrom

0
F- to M Then P. (0,2,0) and the equation. of M -is .y 4 - 2 m 0 . the

required point P (24y,$). must meet-the condition

O .

Squaring, we have x
2
+ y

2
-

heAne .(1) v.

is an eguation'for the locus.

(N)

z
2

= y
2

+ li.y + 4 ;

2 2 .x + z . 8y

Noir se must decide 'what the eaph of thip equation loots like.' .We shall

uee the lame methods me applied to the equation of the ophpre. If se,look for .

intercepts, se find that the onlY intersection of thesurface 'with the Lines is

the origin, (0,0,0) . The trope in the xy-plane is the'parabola X2Pa By ;

in the yl-plane the Parabola z2 = 8y The trace in the xz-plane is the

. 20 2single point 0,, given by the equation x z. 0 16 notice that in ,

(i) y. ecannt have negative values; hence no part,pf the surfae4i1

to the left of the xzrplarie.
,

We next inv%stigate the sectiOns parailel.to the xz-plate. When y

se have x
2

+ z
2
. 8 , a circle lath radius . 'y . 2 , we have a

circle of radius 4 p land_so on. Thus the surface may bi thought, of as formed

by a succession of circles, beginnisg sith the point-circle and with radius

increasing witshout limit as -y increases. This bullet-ahaped su;face (Figure ."

9-9) is cal.led a paraboloid. It is also called a paraboloid of revolutioR, as

it may be generated by rArolving a parabola,.about its axis. The reflector

usually called a parabolic reflector is realy-a paralaoloid.

.16

.359 1 54
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9-3.

40

(2),

Figure 9-9.

A more general equation of a parabolid is of the form

=by.
-

edr4.
The traces of this surface in the Xy- and yz-planes are parabolas,. but the

sections parallel, to the xz-plane are ellipses or circles. This surfate is

called an ylliptic paraboloid.

Weturn now to the equation

2 2

(3)
x y z

+ r5

and find that the x- and y.:iptercepts arl t 2 and ! 3' i-espectively;.btit

that there are no z-intercepts. The txace in the xy-plane an*ellipse; in

?the other coordinate planes the traces'are hyperbolas. Since ellipses are
,

easiexi tb draw than hyperbolas, let us make our sections parallel-to the xy-

pl en z l we have

155
360



2 2
x y

representing an ellipse very mlh like the one which is a trace in the xy-plalle..

Me continue, finding that for numerically larger values 'of z ihe sections

will be .ellipses with,increasingly larger interdepts. This surface (Figure

9-10) is called a hyperboloid of one sheet, or an elliptic hyperboloid. Its

lituation is bf the form

1,

9-3

(4)

. (5)

Figure 9-10

'Next we consider the equatIon

2 2 2
x y z

;Here there are no x- or y-ilitercepts; the z-intercepts are I 5 . The traceg

in the yz- and xz-planes are hyperbolas. Again we make our sections parallel

to the xy-plane. If we write the Equation (5) in the* form

1 s



we see that when I

When

point (0 0,-5) ,

2 2 2

'T.3( + 1
9 25

[ < 5 the* arena real values of x or y .

imigure.9-11

4

z . 5 the section is the point (0,0,5) ; for. z , we have the

For 1z1 > 5 the sections are ellipses, Whose axes in-

crease as izi increases. Thus our surface mey be thought of as two separate

It is called a hyperboloid ,(or elliptic hyperboloid) ofpiles of,ellipseb.

two sheets.

Diecuss and sketch the

1 to 12.

1.
2 2 1

y 4 Z. = 41/

2 2
2. x + y =i6z

3. 4x2 + 4z2 . 16y

4. 4x2 + 9z2 . 144y

2 2
5. 9x + 4Z = 144y

'1

6. 9y
2
+ 4z' . 144x

#1

. Exercises 9-3

surfaces represented by the equations in Exercises

7.

8.

9.

t
9x

2
9x

x
2

-

2
+

2
9y -

, 2 2
- 4y + 9z

9y
2

4z
2

.

. 36

36

4. 42E
2 - 25y

2
+ 4z

2
100

11. 142 - 9y
2

+ z
2

= 144

12. x
2

- y
2

+ z
2

- 1 . 0

362
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13. We observed that, for the hyperboloid whose graph is given by Equation

(3), the sections parallel to the xy-plane are ellipses. Prove that

these ellipses have the seism eccentricity.

Challenge Problems

The surfaces represented by the following equations are called hyperbolic

karabol12LE. Discuas end sketch them.

1.
2

- 9y
2

. 36z.

2:, 1612 - 9x 144r.

2
3. Y

9-4. Cylinders.

;Equations of the guadric surfaces which we have investigated have

contained all three variables. What if an equation contains only two

variables? SuppoSe the equation is

2 2
x + y 25 .

We find the and y-intercepts, and note that there are no z,intercepts. The

trace:in the xy-planJ`is a circle of

radius 5 with the center at 0 ; in

each of the other coordinate planes it

is two straight lines, parallel to the

coordinate axis. .The sections larallel

to the xy-plane areall circles of radius

5 with their centers on the z-aXis. From

Figure 9-12 we recognize the surface as a

cylinder.

Figure 9-12

A cylindrical surface, or cylinder, is the surface formed when a line

moves in space so that rt always has the same direction numbers and intersects

a fixed plane curve. The plane curve is called a direetrix; the linegi are

called generators or elements. A part of sUC:h a surface is shown in
f?.

'.631 S
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.Figure 9.13; the curve c in the
, 4P

my-plane is a directrix, the line

'I an tlement.. For the circular

cyliner in Figpre 9-12, any one of

the circles ve have drawn might be

considered a directrix, and any of
e

, the lines of-the cylinder an

element.

We shail-restrict ou eXamples

to cylinders with e)-ement parallel
Figure 9-13

'Y

to- an axis. In sudh cases one of the variablesis missing from the, equationo FOr

example, we !hall consider the equation

(2)

2 2
z

me 1
30 9

Let us see if we canshow that this surface satisfies our definition of a

cylindeT. If it is a cylinder then

the trace in the xz-plane,

'with equations

2 2
x z ,

+

must be a directrix. We select any

point Of this ellipse, say

P = (4,005) We find that for

any value y , the point *()4,y05) is

a.point of the surface. All such points

lie on the line 2 perpendicular to the xz-plane at P.; hence 2 is an

element of the cylinder.

Figure 9-14

Not all cylinders are quadric surfaces.' A plane may be considered a

cylinder, since one of any two intersecting lines in it may serve as directrix
V

and the other as an element. Other examples of cYlinders are the graphs of

such equations as z = sin y and y e
x

. You might sketch one of these

cylinders.

1 S
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Exercises 9A'

Discuss and sketch the cylinders represented by equations 1 to 10 .

1. x2 .+ y2 = 64

2. -x
2

+ z
2

= 25

2 2 ,
3. Y z = 30

. 4. 4x2 + 9y2 = 36

5. 9x
2

+ 4z
2

36

6. 4y2 + 9z2 = 36

7. 25x
2

+ 144y
2

3600

8. 1442 + 25z2 . 3600

9x2 4y2

10. 9x
2

- 25y
2

= 1

11. Write an equation for the:locus of ioin4s

(s) at distance 9 from the x-axis

(b) at distance 6 from the-y-axis

(c) at distance 4 from the z-axis

12. Write an equation for each of the cylinders discrijk below.

(a) Axis is the x-axis; trace in'the yz-plane is a circle of radius 3 .

(b) Axis is the y-axis; trace in the xz-plane is a circle of raditis 5 .

(c) Axis is the z-axis, trace in the xy-plane ii a circle of radius 10 f,

13. A line moves so that it is always parallel to the y-axis and 10 units

from it. 'What is an equation of its locus?

14; A line moves so that,it is alwayj parallel-to ;the x-axis and 12 units

from it. What is an equaion beT its locus?

15. The circle with equations

2 2 Lx +z = 4 0

4 is the directrix Of a cylinder, anda line parallel to the y-axis is an

element. What is an equation of the cylinder?

16. Write an equation of the cylindgr with the ellipse with equations'

L ,--
25y

2
+ Liz

2 = iuu X = 0

7
as directrix, and a linf perpendfcular-to the yz-plane at a vertex of the

ellipse ason element.

1N-()

I 1'
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ChaIledge Problems

Discuss and sketch the cylinders represented by Equations 1 to 8 .

1; AN 4z 5.

2. 'Y
2

. z : ,

'1.3 Y -; + 1 ig= 0

4. xy . 12

AV..

'6. x2 + y2 + 2z - 4y

'ili7. . siti:x

8. y . coe SS

9. Wits an.eoation for the cylinder 'with ads parallel to the.z.-altia, and'

.7.1ith trate in the ystplane a circle of radius 3t. aild center at (0,-2,5).

Sketth the cylinder.

9-5. 'The Cone.. 4,6

Let us investigate the surfabe those equation is

2 2
(1) + 0

When we look for intereepts'and the

trace in the x§.-plane we find only

the point 0 0/5,0) . If x 0

Equation (1))) ea

. 0

the trace in the yz-plane is the uniOn

of two intersecting lines. So is the
/

trace in the xz-plane.'. Figure 9-15

We find that the sections para/lel to the ry-plane are circles those

radii increase as Izi increases. The sections parallel to-the other coordi-
,

nate planes are hyperbolas. Does this sound familiar? It should, since the

surfade (Figure 9-15) is a right circular cone, Whose sections are the conics

1
we studied in Chapter 7.

4

A conical surface, or cone, is the surface generated by a linelcalled

an elament.or generator) Which moves so that it always contains a point of a

plane curve (called the directrix) and a fixed point (called the vertex) which

is not in the plane of the-curve. (See Supplement to Chapter 7'for further

information on the right.cirbular cone and its sections.) 'Here we shall
7

1 1 *6
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consider only right cones with vertex at the origin and the directing curve la-

conic section in a.plane perpendicular to one.of the coordinate axes.

As another.eximple, let us sketch

the graph of the equation

2 2
(2) 3+ + 0 .

The oections parallel to the xz-Plane

are ellipses; the cone (Figure 9-16)

is called an,elliptic cone.

041.

Figure 9-16

Exercises 9-5

3

Sketch the cones represented by Equations 1 to 6....On each sketch shaw

the intercepts, traces, an d at least tvo of the sections perpendicular to the

axis of the cone.

2 2 2 x
2 2

z
2

1. x. z y 4. - yg v

2. y
2

- z
2

= x
2

5.. 41c2 - 36z2 .

2 2 2. .

x y z
3. 6. 16x2 9 z2 = 0

Write an equation of each of'the zones described in Exercises-7 to 10.

7. Axis is the y-axis, a perpendicular section is a circle whose radiUi is

teice the distence fram the Origin to the plane of the section.

8. Axis is the x-axis, a perpendicular section at x = 3 is itn ellipse

'whoee section ifethat plane is .ty 9z2-= 36 .

9. Axis is the z-axis a perpendicularsection at z . 4 is a circle of

Tailius 3 .

10.: Axis is the y-axis, a perpendicular section at y = 5 is an ellipse

Whose equation in that-plane is 9x
2 2

+ z = 16 .

3671 72
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11. It!iass noted that the.sectionS of the graph of Equation (2) parallel to

tharizbilamelare ellipses; prove that these ellipses all have the same

tity.

1. Write an equa"tion.of a.cone 'whose axis is thex.,axis, and 1nose sections

ahallenge Problems

4r
perpendicular.to tOe axis are'ellipees with eccentricity . At x =.1

the major axis of the elliple is 12 .

2. Write an equation of a cone lihose axis is the z-axis, and iihose sections

1
perpendiculhr to the axis are ellipses with eccentricity At z

the maim- axis of the ellipse is 16 ,

9 Surfaces of Revolution.

A surface that is gedereted by revolving a plane curve about'alixmd line

in the plane is d011ed a surface of reVOlution. The fixed line is called the=

axis of the surface. Some of the qUadric -surfaces se have diScussed here are

surfaces of revolution. A sphere is one; it may.be generated by revolving aey

of its great circles about a disameter-of that cirdle... The ellipsoid of

.Figure 9-8, the parabOlOid of Figure 94, the cylinder of Figure 9-12, and the

cone of Figure 9-4are all sumfaces of revolution.

Let us find the equation of the

surface obtained by revolving the

parabola vith equetions z2 . 2y

x 0 about the y-axis. Let

"P ...(x,y,z) be a point on the surface.

The plane through P ,perpendicUlar to

the y-axis intersects the generating

curve at the point C = (0,y110, where

k = d(C,F) ; the same plane intel4pects

the y-axis at the point F 7(.0,y,T

Since P must lie in this plane oA a

circle mith F as center, its

coordinates must satisfy the equation

(1) x
2

z
2

= k
2

,

3681
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where k. is the radiuk of the circle. The velue.of k is'detereined by the

requiresamt that C = (0,y,k) be on the generating c z
2

= 2y Therefore,

(2)

Equating the expressions for

(3)

k m 2y

Equations 1) and '(2), We have

x2 z
2

= 2y p

an equation for the surface of revolution. It is of course, a paraboloid.

The peraboloid of revolution for which int have pet fouTi an equatiton

is generated by a parabola revolviiit on.its axis. The parebola may revolve;

about lines other than its own-axisvaupppae it revolves about then-exit,. We

sense intuitively that the resulting surface of revolution is qu4e.clifferent.

Let us obtain its evation.

We start with equations of the generating curve,

z = 2y' = 0

and let 13."= (x,y,z) be a point on the surface. A plane through P perpen-

dicular to the z-axis iatersects the generating curve in C = (0,k,z) Where

k = d(C,F) 1 the samF plane intersects the z-axis in F = (0,0,'z) .

er

*de

1

`.

Figure 9-18

Since P lfes on a circle in this plane -with center

satisfy the etluation

(10 x2 + y2. = .

F , its

%

coordinates

Since Ic is the y-coordinate of C p and C is a point of the generatiRg

curve, the coordinates of q must satisfy the equation of that curve; hence
I

369
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and therefore

0(5)

Equating the expressions for.

(6)

as an equation of our surface of revolution.
,

A

in Equations (3) and (4), ve have

/
2 2 zx + y a; 7

Since Equation (6) is.mmt quadratic, the surface is not a quadricsurface.

However/11 can use the methoda of this

Chapiler to in7estigete its shape., Froza

the equation w see\that the surface is

simmetric with reapect to each of the

coordinate planes. Its only ihtersection

with.the xy-plame is the origin; the

traces in the other coordinate planes'

are parabolas. The sections parallel

to the xy-plane have equations of the

.forra

2 2 k+ y =

clearly they are circles, as they

ahould be for a surface of revolution.

Figur 9-10

Exercises 9-6

In each of Exercises 1 to 18, find an equation of the surface obtained by

revolving the plane curve about the.axis indiedted. Sketch the surface., In

Exercises 1 to 10 the curve ip to be revolved about its own axIss and:the

surfaces obtained are quadric_surfaces; in Emrcifies il'to 18 the s#is of

revolution.is not an axis of the curve.

1. ,z
2

= 8y , x ; 4. 3x = 2y z 0; x - axis

2. x2 = 2z = ; z-axis 5. y2 + z2 =25 , 11=0 ; y-4txis

3. 3x ." 2y I a= 0 ; y-axis 6.--y2+z225,x-,0; z-axts
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7.

8.

9X2 4y2 jo z 0 ; x..axis

9x2 + 4y2 = 36 Z = 0 ; y-axii

13.

14.

4y2'%-- x = b ; z-axis

x2 - 4z 100 y 0 ; z-axis

9. 472 - z2 = 16 f x = 0 ; yeixis 15. y2 = 8z 2 X = 0 ; y-axis

fb. x2 - 4z2 . 100 y =.0 ; x-axis 16. 3612,- 4z2. 144, x = 0 ;

11. z
2

2x y 0 ; z-axis 17. z. y3,x= 0 ; z-axis

12. x . 2z 2 y 0 ; x-axis 18. z y3 y X = ; y-axis

19. If.a curve in the yz-plane is repredented by the equations f(y0z) = 0

and x 0 , show tIst, if z > 0 , an equation f the surface obtained

.by revolving this cljrve about the y-axis is

47:7) = 0 .

Ai

. 9-7. Intersection of Surfaces. Space Curves.

In order to visualize quadric surfaces we have been discussing the inter-

sections of curved surfaces and planes. This situation is rePresented by

simultaneous solution of tvio equations, such as_

(1)
2 2 2
x y + z 25 ,

z 3

In thli case, by subat1tutjn z= 3 into the first equation, ve have

2 2
x + y. 16 an equation of the circular section of the sphere in the plane

3 This circle is in a plane parallel to the xy-plane, has its center
4

at (0,0,3) and has raclius 4 It is completely described either by the,.

firrst pair of equations or, more simply, by the pair

(2) 2 2 . e
x + y = .Lu

z = 3

But Equations (2) represent the intersection of a cylinder and a plane. Or

we might have
4

( 3)
2 2 2
x y z

± -9- °

2 + y2x = 16 0'

representing the intersection of a cone and a cylinder. In each case the
A

ciYcle vhich is the intersection of the two surfaces is the same. You might

like to verify this by finding simultaneous solutions. (Equations (3) have

an additional solution set.)
371 /
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It should be intuitively evident by now that there are many pairs of

surfaces which intersect in the circle described above. Earlier in your

mathematical training you encountered thi$ situation When ynu described a line
1

as the intersection of two planes. There are infinitely many planes containing

a given line, and apy two of these planes ma* be used

Simila21Y, there are infinitely many surfaces passing

and this curve may be represented by the equations of

to describe the line.

through a givencurve,

any two of the ilrfaces

having this 'curve as their intersgetion. SuCh an intersoction is called a

space curve. (it Perfectly,Correct to describe a plane as a

-line as a curVe.)

surface and%

From the many representations of a space curve, we'try to choose one whiCh

gives us immediate information About tie shape and location of'the curve. For

example, Equations (-l) tell us at once that the intersection of their graphs
,

is a circle and lies in the plane z = 3 , but they do not slow un the radius

or tile location of the Center of the circle. Equations (3) indicate that the

intersdetion of their graphs is a circle,Of radius 4 , with iti center on the

z-axis, but we do not immediately see the plane of the Circle. Mini' this

information is'available at first glance from Equations (2); hence, this re-

presentation is likely to be our choice from among the three suggested.

The representation of Equations (2), is useful also in sketching this,space

curve.
2

Recall that by eliminating the variable z from x2 y
2

z = 2,,

we obtained the equation

x2 y2. = 16 0

which represents a cylinder Whose generators are parallel to

missing variable, z Such a cylinder not only

equation -is also the equation of the projection

plane. For thiti reason, this cylinder

is sometimes called a proecting

cylinder-of the space curve. If the

'other variables are removed, other

projecting cylinders are obtained;

since these cYlinders contain the, I

curve, any two may be used to show the

intersection. Interpreting Equations

(2) in this way, wa think of the plane

z = 3 as a.cylinder paral1e2. to both I

the x-alls and the y-axis. For the sketch, the projebting cy nder

the axis of the

contains the curve, but its

of the curve on the coordinate

z.

RN.

we draw

Figure 9-20

x
2

4- y
2

= 16 and show the plane z = 3 intersecting it (Figure 1-20) .

372
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'Example 1. Find simpler ipgations for the Atrve

P
Solution. Let x = 3 in the first *Bastion to obtain

:

2
z
2

297 +
+ = 1

or

\

; .

'Wh dh becomes
111`

2 2
z

The curve is an ellipse represented by

2 z2

16- +

4f x = 3

9-7,

McaMpIe 2.. A typicai problem frpm caloulUs could be stated as follows:

Find the volume ef the region in the first detant bounded by the surfaces

2 2
y, + z + 2x = 16 x + y.= 4 and the coordinate planes.

As a start on this problem, you should,make a reironehly accurate sketCh

of the boitraFkriga of the region. (You c find the volume When you studY

,calctlua,) We first find the traces of e surfaces. One surface is a

paraboloid of revolution and the Other is.a plane. Their traces are Shown i.

Figure 9-21. These traces, th the coordinate axes, provIde us with

all of the edges of the solid' cept one. This edge is ihe space curve Which

is thle intersection of the paraboloid and 10 plane x + y = 4'. To find thie

edge, eliminate x frdt the equation.of the paraboloid,analobtain

1)2. z2.

the Projecttng dylinder parallel te, the x-axis. The projection on the yz-plane

is circle with center at (0,1,0). and radius 3 as is shown in the figure.

The spies curve is reaepented by

^

-373 f7
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te-

4'

1)2,4 z2 9'

x y = 11. p,

and we shall now describe haw to,locate same points on_it.
1

tW

via

11.

,

Figure '9-21

;

Since y is the variable appearing in both equations, we choose a point,

P y on the y-axis, and we draw lines parallel to the other aXes intersecting
.

, the traces. of.EqUations (5) i points Q and', R 0.as shown. We now .ulete

the rectangle by drawing lines Phra1le.1 to the and z-axes from Q and R .

-14hese lines intersett at '8 0 a'point of,the space curve. Other points meibe

7tound in it similar manner, and ,when these points arejoined by A Oooth curve,

the'figure is.compieted.

(-

a
-4a

',AOC

tali the.curvesiescribed by

x = 2 cos t ,7

y . 2 sin t 0

= 2f .

4771411741

a.;

e.-

0

,

st.



9-7

Solution. If We

of the first Au equati

'obtain

both members

and add, we

L 2 2x + 7 ir.-k cos t + sin t )

or

y2k....r.

!This represents is circular proSSalfig
- 4

cylinder of radius 2 Whose axis is

the z-axis. All elements of the

solution set ore Contdited in this
_

pyllnder, and.oince z is directly

proportion& to:11C, We note in .

..

Figure 9-2

Figure 9..22 that thescurve is an aseending.Spiral 'waning around" the

cylindrical surface; .This curve'is called a beliX

,,We might view this differently by.eliminpting the paiameter t . Then,

%Ye. have

4,

, 2 cos

z
= 2 sin -f

Sr . .

and the curve is seen to bethe Intersection of tiro piojecting Cylinders whose,

, .'cross-sections are srhe (or cosine) cUrves... The elements'of one cylinder are

parallel to the-y-axis; the elements of the'other cylinder are parallel to the

x-axis. If you wiglh to build a model for thio.problem, ypA mightuse two

pieces of corrugated cardboard..:

StiiI'another view of this curve may be obtain by writing the equations

in cylitndrical cbordioates. We shall coneider this un he next section,

Exercises 9-1

1. Name and desnribe the intersection of eachoftte following pairs of

equationsxcand write for each a simpler pair (if there is one).

2 ,

(a) .2e* 4- yg+ z = 10

y -2

V

(b). z = 4
'

41 .x

4
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9-7

(c),

z . 0 .

2 2 .

(d) x + y + z

(e) x2 + z

= 5

x2 + z
2

. 25 0,

z . .

(g)
3e-4. y2 50,

x.- y = 0

2
z =

z = 1

.4- ay.

x =.0

(j)
x2 8x2

4a2.1.2,..

x 0 ,

x2 + 2y +' z =7 8

1st
y = 2 .

4x2

) 2 2
x + y

2
=

#

2. Makee sketch,of the region ln the first octarit bounded by the given

surfaces and tht,coordlnate planes.

) 4Inside the, cylinder x2 + y = 50 an under the.pl

x + y + z = 10..

(b) Insidq the cylinder y
2

; . 16 -and in the halftspace farmed

Ax + y 6 Shich contains the origin. I

Ati'

(c.)' Inside the paraboloid x2 + y2 . 4t and under the plane

( ) Insde the cylinder' y2 + z
2
= 25 and inside the aylinder

2. .2
x z = 25

1

Inside the spher.e + y2 + z =, 25 and inside 'the cylinder

2
y
2

+ z = 16 .

Under the paraboloid 18z-= 12 4. 9y
2' and in the half-spaces formed-

%

by x = 2 and y =.3 Vhich conthinithe origin,

376 4
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3. 'Fiat the equations of the projecting cylinders of the CUrve Whose

equations are

2 2 2
x 2y z

x
2

y
2

- 2z
2

= -3 .

Sketch the curve'by making use of the projecting oylinders.

* 4, A calculus problem requires the student to find the height above the

xy-plane in which the plane, 2; y ..2 intersects the paraboloid

z 16 - 4x2 - y2 Find this height by sketching in one of the
Sal

coordinate planes the trace of a projecting cylinder.

.4. 5. A calculus preiblem asks for the volume inside the cylinder

x
2

y
2

- 2y . 0 and betver the xy-plane and the upper nappe of the

cone z2 = x2 4- y2 . Make sketoh for this problem, shoving the

portion of the' region in the first octant.

Ito

4-8.' Cylindrical and Spherical Coordinate Systems.

'poMe problems in science that have a setting in 37space are easier to

handle if they ai.e expressed in terms of oylindrical or spherical coordinates..

If the eurface hls symmetry with respect'to a line, then cylindrical goordi-.'

nates may siMplify the-work of the problem. the surface has point-symmetry,

the use.of spherical coordinates may analytic representation

and solution..

9-8

Cylindrical Coordinates are a combination of polar and rectangUliar .

r
coordinates. A polar coordinate system

4 is used in one.cbordiniate plane;. the

axis perpendicular to this plane has a

linear coordinate systet. A point is,

designated in oylindrical coordinates

by'an ordered triple: We use (r19,z)

as indicated'in Figure 9-23. the first

two,coordinates are the coordinates of

jection of P in the polar, plane.

The third coordinate is the coordinate

the projection of P on the linear

axis. In this figure-we may verify What

77
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9-8

,

secpions we suggested a solution using cylindrical coordinates. We vrite 8

in place of t 0 use the transforming equations, and square as before.,

obtaining

ve could have guessekthe transformations from cylindrical to rectangular

form; and vice verse, are accomplished by the same process ve used in

Section 2-4 to relate.polar and rectangular coordinates, ,The transforming

eCuatione are

The

right circ

= al cos 0

= r sin 9

'z .. z

0 m Z Vhere x )1'0

Z

evation.'r = k 2 represents, in,cylindrical coordinates, a

cylinder with radius k Vhoiie axis is the linear axis. This

fact accounts for the name applied to this system.

Eiample 1, Write in cylindrical.coordinates the equation of the sphere

vith radius )5 Vhose center is atcthe origin.

Solution. In rectangular coardinates'the equation is x2 + y +

Since r2 = x2.4. y2 0 the ecitiation is 'written r2 +.x2 = 5
1.-

EXample Transform to rectdngular coordinates and identifY the, surface.

Whose equation in cylindrical coordinates is 3r cos 8 + r sin 0 + 2z = 0 .

Selution, Using the transforming equaties0 ve obtain' 3x + y + 2z so 0

the equation of a plane.

Example 3. %Connection vitil the helix in Example 3 of the previous.

2 2 2
r = x + y = 4 'cos2 e 4 sin2 e

r
2

4(cos2 0-+ sin2 8

or r
2

7

Since r = 2 has the same graph as r
2 1. 0z,m obtain a simple expression

for the helix:

Ye

378
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r = 2

r29.
Vince this helix is a constantly

ascending spiral around the z-axis,

we eat locate some of /to points by a

device we might describe as fix1pg

"ribs".to a "spine", or of\locating

steps on.a spiral staircase\. The

z-axis will be the.7spine" to.whiCh

the "ribs" are attached. (We are
(2,0.0)

z.4.37

(2, 2wAv

usio a. condensed scale on the z-axis

to save space.) Figure 9-724

We firat locate Et point at (2,0,0) as shown in Figure 9-24. When

e we have rotated to a point one-quarter of the way around the rapine"

9-6

and we haVe ascended a distande n We fix a "rib" to'this point. We might

next stop' at 9 = ft and fix another point. This prodesa can be continued as

long at desired and the points may be connected by a smooth curve to sietch a

portion-of thehelix.

Another useful syatem for loaating points in 3-wpace involves the use

of spherical coordinates. In this system the.coordinates of a point P are

determined by assuming a polar coordimate system in the plane determined by

the point P and the z-axis. The

dpositiv8 half of the z-axis is the

polar axis and the positivb sense of

tlie polar angle is fram the poldr axis

to ray OP The polar distances
OP

d(0,P) is denoted by P and the

measUre of the polar angle by In

the xy-plane the usual system Of polar

\angles is assumed. The projection of

P. in the xy-plane determines the

terminal.side of a polar arigle of

measure 8 Theae thrk.nUmbers repre-

sent the point P and are called the

spherical coordinatei of-P., They are

written as an ordered triple, usually sa (poell) In Figta:e 9-25 thia

system is used to name the point WiliCh in rectangular coordinates would be

. Figure 9-25

= (ga,
37 9. 1 534.
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9-8

In order to reilate apherical coprdinates and rectangUlar coordinates,

we obtain (from Eigure 9-25) the following relations:

x = d(Q,M) = d(0141, dos 8 . P sin 0 cps 8 ,

y = d(0,M) = d(0,Q) sin e = P sin 0 sin e

P cOs

The derivation of the equations for relating spherical coordinates and'

cylindrical coordinates idsleft as an exercise.

f

de

4

'Theample 1. Write in tpherical coordinates the equation of the sphere
Nip

with radius V5 Whose center is at the origln.

, 4
-1-

Solution. Sinee P a the distance from the origin to a-point, 174

;obtain

)1,
P = 1/5

This simpleequation form, P= k 0 for-a sphere in spherical coordinates
.

. . .

t accdUnts for the name applied to thia.system. Compare tbis,with r = k in:

cylindrical coordinates and r .. k in polargeoordinates. 4

Example 2. TransiorM to angular or cylindrAcal coordinates and

,
identify the surface Whose equation in spherical coordinates is p sin . 3

Solution.. We square both meMbers and obtain

P
2
sin

2
0

Multiplying the left meMber by 1- (disguised as cos
2
0 + ain

2
e) ve have'1%

.

lk
P 81&i (cOS e + sin

2 9) = y p

2 -2 2 -2 2 2
A sin cos + p sin 4, sin e

which hi rectangular coordinates is

.

X
2

+ y
2

- 9

In cylindrical coordinates Whave simply

..,This is the equation of a right circular cylinder with radius 3 whose axis

is the z-axis.

S
380
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It may come as a surprise When you,rehlize that very likely you dse7d

spherical coordinates before you knew What they were. In terms of the position
.

of a.point on'the eprth, 9 is the longitude', 900 - 0 is th4 iatitudei sad.

(asauming he earth is a sphere) 13' is the earth's radius.,

Exercises 9-8

1. Derive transforming equations to relate cylindrical coordinates and

sphgrical codrdinates.

.

2. Write the rectangular and the cylindrical coordinates of the points

Whose spherical coordinates are.,

) .

b)

iC
c) (2, L;

MVO

"lb

(d) (4 1)
2

Write the rectangular and the spherical coordinates of the points whose

cylindrical coordinates are

(a) (21.E1 3)

(15) (5;52-1.0)

(c)

(a) (4,1,2)-.

4. Write the cylindrical and the spherical coordinates of the points whose

rectangular coordinates are

(a) (2,3,0)

(b) (0,6,3)

(c) (215,2,40-.

(d) (4,1,2) .

411'
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9-9

5 Transform the SolloVing.equationa into cylindricsf000rdinstes and into

-apherical coordinates.

-4...2 05
/

8x

(d) x2 + y2 = 31z,
t

Traneform the following equations into rectangular colordinites.

(6) p . 6 .

(b) r %= 6

. (C) z . 6 + r ,

(d) z
2'

= 9 r
2

e

Id tify'and describe each.of tip folpiring Surtactiae

,

(b)

2 *. 2 t
(c) r + z 4

g(a) to . v . p

(e) P cos = 7 .
(f) z =.r cos 0 .

(g) z = r .
f

(h) r = 2 sec 6 , 1...0.-1114-0-0"/ e

8, A circdar cylinder of diamger 4 vintersects acsphere of radius 4 so

, .

that an element of the cylinder Coythins.a diameter of the sphere.

Choose axes and write equations06 the bounding surfacei in

(a) rectangular coordinates,
.

0

(b) cylindrical c6orditates, and

) spherical coordinates.

a

9-9. Summary.

Our work in this chapter.has been limitedwto the most important and

familiar quadri6 surfaces, and Ne haVe lbeatedthe coordinate axes so as to

-.get simple equations for them. Students who have enjoyed this workimay.like

to purst1e it further by lookfng up such topics as ruleisurfac4s, hyperbblic
0

parabol ids, curves in apace, and surfaces of higher 6Cder.

v 1S7
382

a



9-9

.Our objective here has been to deVelop methods help you'visualize
-

surfaces and curves in space. Theyilethods we have eneral, and should

be,of use to yOu in visualizing or sketehing, partimary in your vorkin

calculus!aod4ts applications,
-

Surfaces in space areAvpresented by one equatIOn, x;y,z) 0 ; for

quadric surfaces, the equation is of the second degree. TkIXTVS in space brie'

given by the intirsedtion< two equations (or three in parametric form),

f(xsysz) = 0 and g(x,,z)=.0 The poet important curves for aketChing a

surfaCe are the traces and the sections parallel to the cOordinate planes.

The surfaces w have studied iqclude the cone, cylinder, sphere and
.

ellipsoid, elliptic 'waxaboloid, and the hyperboloid. A cone is generated by

a line moving.about tt line with one point fixed, a cylinder by a line moVing

iarallel to a fixed line, and a surface of revolutiokbya plane eurve revolv

ipg about aline in thePlane of the curve, i'or the'limited cases we hare

studied,, the quadric surfacs may be identified iy their sections parallel to

the coordinate planes las

gyadric Surface

gone

Elliptic or circular
cylinder

.

upnere

E11414914.. -4 0,"..

Sections Parallel to Coordinate Planes

Conic sections, including degenerate cases.. ,

Central dIfipses or circles, parallel 2ines
or a line. a,

Cirdlee, including ppint-circle.

Ellipses, including circles and,points.

.Elliptic paraboloid ParaboTas and ellipses, including circles and*
poinks..

Ellipses, including circles and points, and

hyperbolas

_

a In sketc4inealaieOef x;y1z) = 0 , it is suggested thai-inforiation

Abouf it be obtained and placed on the graph in the following order:

Hyperboloid .

le Intercepts Set two of the variables equal to zero nd.slve the

-:bresulting eouation for t..'e third vaT4:ple to find the
s 4,_.
intercepts on eadh axis.

2. Traces :....,b---the vartahles equal zero, one at a t1041,to find the

equations of the traces - the sections ln the coordinate
...

,-«

1

planes.

383
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3. Sections Let z = k 0 where k is a constant, tolliLd the sections

parallel to the xy-planet for example. 'You can build up

EllEetCh of the figure by using enough different values of

k For this pUrpose, select the sections easiest to dravi

We determineasymmetry vith respect tb the xy-0 xy-plane by
. ,

checking that the equation Of the surface is Undhanged Vhen 0 -x or -y

is sUbstituted for z., 0, or y 0 reggectivelV. Knowing the symetries of

a surface helps in,identifying'it and sketching it, When a sUrface is orb,
. .

netrtc0 ve often drav.only the pert it the first octant.

Certain curves whiCh are.the interseCtion of s"urfaces vere stuL:
Ih additibn to"using intercepts and traces,- we'lled projectim4 oyltnders to

a .

help us Visualize and draw space curves.

'Fima1y0 oxlindrical and spherical coordinates were introduced-as other

livars.of-describing the locatibil. of points in space.

.Reviev Exercises

Discuss and sketch the surfaces represented by the equations in rto 20.

1. 16x2 +
92

+ 16z2 . 144

2.

3.01 16z .

6.

7.

.8.

2 2
5y + 5z - .45.= 0

x
2+y 2

=.9x2 42

2 I-
25x

2
looy = 400z

S+ 9z2

2 2 2 ....- .

9x. + 9y + 9z -.1a - 0

4x2 - 9y + 4z = j6

= 1144

2 ' 2 ,
9. 14,?c + 9z . 30

Id. 4x
2

-
92

. 36

4

11.

13.

14.

.15.

16.

17.

18.

19.

20.

9x
2

- 4y2

36y2.4. ?5z2

-16x2 + 25y2 + 16z2 . 400

y
2

+ z
2

=-100

x .+ y
2

+ z
2

- 2x - 3 . 0

25x2 + 2512 +'25z2 0

16x - 9y
2

+ 9z
2

0

x2 +y2 + z2 + 8x - 6y + 10z+

4
'2

36x2 + 25z 900.

25x
2

- 9y
2

- 9z'2 0 .

3.4

a.

0

1S9
3 84
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riscuSs and sketdh the aurfades describ4d In Elerdises 21 to 38 . Write

.an'evationfror each surface; idantity those hat are not named.
:

21.. A anHere centered at the origin with r 10..

22. An ellipsoiOlth axes-of lengths 12 p 114 8

23. A circular dylinder with radius 5 and axis the x-ats.
24. . A profate apheroid;ith axes of lengths 4 and 16 .

25. An oblate agheroid with axes of lengths. 4 and 6 .

26. A cylinder withithe y-axis as its axis, and its &race in the xz-plane

the ellipse withdequaiion 25x2 16z2 = 400 .

27. The surface obtained by revolvi e urve with eituations

16x2 9y2 = i44 z = 0' about the y-axis.

28. The surfacagobtained by revolving the curve with'equations x
2

y =c0 about the z-axis.

29. The jurface obtained by reVolving the curVe with equations z2 =iey ,

4x . 0 about the y-axis.

30. The surface obtained by revolving the curve with equations

.25x2 36z2 = 900 y = 0 about tte x-axis.

31. Refer to Exercise 27, bu' revolve about the x-axis.

32. Refer to Exercise 280 but revolve about die x-axis.
A

33. Refer to Exercise 29, but revolve about the z-axis.

34. Refer to EXercise 300 'apt revolve about the z-axis.

35. 'Me surface obtained by revolving the curve with equations

2
qpx f6y

2
= z= 0 about the x-axiiv

36. Refer to Exercise 35, but revolve about the y-axis.
P

37. The surface obtained by revolving the line-yi4h4equat4ons x ='2 , y = 0

about the z-axis.

38. Refer to Exercise 37, but revolve the line with equations x 2e, y = 0.

39. Write.an equation for the locus. of points 10 units from - (3,-2,1) .

40. wite an equation for the.locuS of Points 5 unitp from the y-axis.
A

or

385. 1960
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41. Write an equation fOr the locus of points equidistant from the plane

x m 0 and tke point (6,0,0) .
b-

42. What are the graphs of the folloving equations?

(a)

(.1).

2 2
x z2

9 + 176

x2 L2_ z
2

9

x2 .y2 x2

1. 4-- 9 + 1-6

x2 .z2
7" 9 T6

2 2 2
(e)

1

A

(f)

-2 2 x2
: T6 =1-1

_2-

(g)
x2 z2

2 2 2 .

(1a) - 19-

2 2 2

(i) T ET

4

/1
I.

43. PAnts A and B are 4 units apart. Write'an-equation.for the locus .

of a point the sum of whose diStances from A and B is 6 . Simplify

the equationk.sketchithe graph,

44: Follow the same instructions a4
Aor

difference of *Le distances be

ancridentify it.

in the prey:Jowl, exercise, but let the,

2 .

45. A pencil with a hexagonal cross-sectiOt is sharpened. Describe the space

curve which you iee as the edge of the painted surface of the pencil.,

46, A cube havingedges 1 unit in length has one vertex at the origin.and

three of itS/faces each in one of the coordinate planis. A plane

contains 4.4e iddpoint of the diagonal.of the cubefroztthe'ortginand is

periendicular to the diagonal. Find the sections of this plane on the

faces of the cube. What kind of .figure is this set of sections?

47. Sketch the intersection of the surfaces
0

2 2 2 2 2tx +y +z A+ + y -

1 rel,

in the firs% octant, using-projecting cylinders.
.. eh .

48: .,In each of ihe following cases, Classify the given surfaces, find the

projecting.cylinders of the curve of intersection, and sketch the curve.

2' 2 2
+ = u

0
x + ey

x
2

+ z+ 2y
2 2

= 4

-2 2 2x + y + z =1

(d) x
2

+ y
2

z

2 2
3x +

2
2i z

- y
2

+ z
2

= 2

g2 + y2 + 2za = 5

191

4

.4F
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Sketch the solid in the first octant bounad hy the given surfaces and.l.

the cOcItinate planes.

) z2" , y = 2

(c) x2 +Ay2

2
y2

42'
(d) Pz ___LtL_ . 36 ., x -,-z2 = 25 . 1

50. Express each egastiOn in terms ok two other coordinatesywtnms.. -(Anumme . ,

that all relate to 3-space.)
4111

b)

r = 7

a
2

+-Y2',4- z
2

= 25 Sin 436 = .229 2 2r. + z = (k) x y .!64

A cos ti = 6 . ,(1) .0'.sin 9 cos . cos

X I

(g) x2.- y 16 .

(h) t = 2 Cos 8 .

(1) idie 0 m 2 cos

Mallow Problems

a

Describe and sketch the surfaces rqpiesented by Equational to 6 .

4

2 e 2 o
. 1. z = sin y 4. 4X + 9y' +43oz + ox - 54y- 722

y 4 cos x

3.

,seos.

;

5.
52 4.42 .z2

4 2X 4. 6y 4- 8z . 10

2 2x y .

2X 4- y

4.92387
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Chagter 10

GEOMTEIC-TRABBFORMATIONS

10-1

10-1. Why StudymiGeameric Transformations?
,

In preVioua Chapters you have had considerable eXperience 1n relating a
.

,

- gragh.and its analytic rpresentation . pecause of. their iimportance, conic..

sections were givpn very careful treatment. Despite this emphasis you may

hav;,noticed that, with the exclieption of .1/4the bircle, gll the iconicse79u..

sketChedhad,their centers, foci, vertiots at the' oriiin and ont or bottiajita

thj coordinate axes as.axes of symmetry. **

However, in various studies Whefe the graphs of the equations cif cdhics

-(amd'other;aurves) are of importance; one encounters more complicaed

representations of these ourves.i Consider, for example, the.,followini pairi

of equations:
I . .

.

.
,

... .. !,.

2 .

'.
i.

(2) x
2

- y
2

- 4x - 6y - 30 . 0 x ii- y
2
,.. 25 ;

...2 .

.

,
7

S.
g

(3) y, - x - 6y + 11 .0", y
2

= x

If you went to the trouble-Of graphing all, six of these equatiorp, yoe

woul4 find that .each pair of equations repreSeptS.a pair of congrueht graph;3.
. e.

They differ only in their pladement with respect'to their coordinate axes., "

If one is'interestedrin geometric propertiesof,suCh'grAphs, it.is clear that.* o
A* 1

the second equation of each pair is simpler to analyze and wi1l opite'readtly

yield information regarding intercepts1 symmetry,-.asymptotts, etc:,4elativg

.to its coordinate systell
.

It is one of the purpoees of this cHapter to show how,ve can relate such

a complicated equetion of a curve to..a simpler equation of tHe same curve

repre sented in 0 different coordindte system.
The-operation which performs

r

4lis task (among othel4s) is Commonly referreml to at either a "transformation

of axes" or a "trandformation of coordinatqs",

4

389
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In this dhapter we will.consider two types of transformations Whidh
'

adtomplish the purpose just described. The type we treat first (in Sections

/2 and 3) is.one'Whereinthe operationis 14rformed on the'axes and 'the graPh

unqer lartudy remains fixed. We then turn our attAiOn (in 'Sections 5 and 6)

/to thetype Wgerein,the operation is performed on the poins-of the eUrve

wtaile the axes remain iixed. We refer to the latter type as a point transr
.4

formation.

Our task takes on one of two aspects. We may be given a relationship

between the coordinates of P Ow) on.a curve C and the.coordinates of

(xli:YI> on a curve CI and then investigate the correspondence between

C and CI th;. other hands the converse is considered: Given two curv6

C 'add' C9 and some correspondence between them; jimestigate the manner in

Which the coordirigtes of any point P = (x,y) on C are related to the

coordinates of the corresponding pdint PI . dh CY

In the cases of the 'three pairs of equations presented earlier, the

correspopding curves were actually congruent and the point corrtspdndence watt

444

these properties. Discovering which geometric properties are invariant (do

tt change). under a Aet of transformations 4.s Of*significance to the advanced

students of geometry becausethese properties help them to classify the large

numbei: of geometries which have been created. This topic-,is discussed in

one-to-one. In other cases the corresponding curves neednot be congruent

although there may still be significant relations between them. For examples

'in .Sec on 61 you will encounter a correspondence_ between a straight line.and

a circle der a transformation called an inversiin.

re, Certain transformations preSerVe geometric properties such as the measure

of distance between points on the original curvi,:the mesSui-e of angle between
0

two lines, the order of potnts on a lines etc. v. 14hile others, do not preser7

Sectfon 4. .

f

We may alSo speak.of the properties of a transformatrion. Arl important

, transformation we shall m t ln Section 6 has the;property that it preserves

measure of angle but not ecessa rily measure df distance. Transformations

WN.ch have thi's property are called conformal and have many applications in
. ,. .

science. .

1

,

*3 0

r
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FA. 10-2

10-2. Translations.

Suppose we have a curve in the wordinateoplane and an equation of the

curve. Let us consid* the problem of writing an equation of the same curve

with respect to anbther pair'of axes. The process of chan ging from one pair

.of axes to another is called "transforntion of.axes" or 4a transformatiOn of

coordinates" as stated eakier.

One of the most useful, as well as simple, transformations is one in

which the new axes are shifted in such a way that they remdin para11A to'

their original positions and oriented in the sane direction. Such a trang-
.

formation is called a translation.

'THEOREM 10-1. given a coordinate system in a plane wiih origin at 0 .
4

The axes are'then tranblated so thatAth nev origin is 'at 0' = h,k

If .(xly) aad (x',y') are the coordinates of a point P When

referred to the original and new axes respectively, then xi = x

4 and yv = y k

e
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10-2

a

me. me.

Proof. Let P*= Ex0y)

(1) P Ot +

(2) (x,y] = [hold + [Yelyi} ,a
= [h + xylk +

. -

Thus x' +111

y y' + k (Wftf?)

S.

01 = (111k] and PI = [30,30J .

(3)

If 'we solve these equat ions for -V and yr'

(4) ixl = x h
iy' y k . 1 \

V 1
A N

We shall refer to the, Equatfons (3) or (11) as the equatl.ons of translation.__--,-----

6

we'obtain the "inverse form":

Example 1. And*the new coordinateti of the points, P1 = (-3,3J

P2 = (4,1-2) if thy origin is Abved to (-3,5)
.4,

SolutiOn:, Since h = - k = 5 , the equationr of translation are:

j x/ x + 3

= Y 5 ...

Applying these equations, we see that the point Pi = ( -3,1) .. now has the r

coordinates (00-1) d 152 = (4,-2) now has the coordinates (7,-7) with

respect to the new axes.

4

yul

2

Figure.10-2 '

19i4;
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Consider an equation of a curve f(x,y) = 0 . the equations of

1111

. tralation, the coordinates x and y are transformed respectively into

x' h and y' + k . 'Whuithe equation f(x0y).= 0 changes to

f(x!. + 1i y' + k) = 0 . The"'two equations represent the same curve since the

point P( x,F) Whose coordinates satisfy 'f(x,y)'= 0 is the same as the point

Pi (ely1) Whose coordinates satisfy f(sx''+ h y' + k) = 0 .

10-2.

t.
TO*:illustrate this, consider the line' / tn Figure 10-2 passing thrdugh

the points P1 and P2 of Exa'nple 1. The equation oF line / is

;

+ 7y f 2 = 0 . We now replace x by 3 ane y by yl + 5 and tbe
-

equatiOn of i Is now.330 + 7y1 + 28 =.0 .. We note that the coordinates of'

points = (0,-1)' and Pe' = (7,-7) satisfy this last equation. The new

equation 3x' + 75ft -68 = 0 reptesents the same tine, with respect to the

new met), x' and y' with the new origin at Of . (-305)

Example 2. Find the equation of the circle x2 + y.2 + 10x 14:y .+ 4

after a translation-moves the oriiin to the point (-5,2) .

9

ft

Solution: 'The equationa of translation are x = x' -

Substituting into the equation of the circle, me have #

5) + (3) +,2) 4 10(30 - 5).£ 4(50 + 2) + 4 = 0 .

I.
= + 2

r
2

If we expand and c9dlect terms, our 'equation simplifies to xl- + y'
2

= 25 .

*We infer immediatelrthat the, cirele has a radiva of 5 units and that its

center is at 0' = (-5,2) . If you Were to find the locus (or graph) of the

original equation, you'would discover that you had precisely the same circle.

I After doing.this, you would appreciate tile advisability of translating the.

ves. Nate fhat the principal differen,ce in the two equations is that one

contains first degree terms and the other does not.

0

The basic question is: How do we know where to plaee ttle new origin so

that a
complkated equation reduces to a simple one? This method is illustrat-

ed in Examgle 3.

s/

Exanplc . Translate the e so that the equation of the circle
0

1

* y
2

t iOx - 4y + 4 = 0 can ae wTitten in a form which contains no first

,d.eerce term.

,

393 1 91;
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4

Solution:
.

t 2, (f) .Wr1te44 equation in the,form x. + 10x + y2 - 4y = -4 and

compiete the squares as follows:

0

1

.2 / . '

(x + 5), + ky - 2)
2

25

2) If we let xl = x +.5 and 50

302 + y'2 25 .

(3) 'We note thai the equations

I.

y - 2 "6,ff last efluation becomes

2

axl.e the equations of

translation tO new axes with the origin 4 '(-5,2) .

To show the wider applicability of this method -let us do one more

example:

4

a

Exaple'4. h 2 -1
Graph the,curve 4X

2
9y + qux + + 28

o A

Solution!.

(1) Rewrite the equation in tle following form s that 'we can use the ,

method of "completing theAsquare":

4(x2 + 10x)<- 9(y2 - 4y) = -28 . t

4

(2). Completing the squa*Fe:

&2

4(x2 + lox + 25) 7 9(y2 4; 4) = -28 + 100 -.36.

or 4(x -N)2 -,9(Y -
2)2 36 .

' SubstitulinK x + 5 and y'= y 2' we hale

or g-

4x - 9yT 36

'3c 2 yl 2

/ 9
394
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We recognize this curve to be a hyperbola with center 01 = (-5,2) 'BAP

curve can now be drawn by using the methods discussed in the earlier chapters.

.Figure 10-3

The translation of axes can be used to simplify equations ofeurves other

than conics,.blat at tbis ppint we will restrict our discusaldhs to such curves'.
1,

We will now generalize the above:

- (1). A circle the form (x - h)2 + (y k)2 = r2 can be simplified

to xt
2

+ yl
2

= r
2'

(2) An ellipse in the for
2

0 ,,2
to --- - 1 .

a
2

b2

1,)2

(3) A hyperbola in the form (1 "I

a
2

to
2 yt2

a
2

b
2

IV 3

,(y k)2

b2
can be simplified

can be simplified elf

r

14) A parabola in the form (y k)
2

= 411(x - 112 or h)
2

(.11.p(y-k)
.

cal.;1 le simplified to 4y12 4px1 di x'
2

= respectively. )

(5) The equilateral hyperbola (x - h)(y k) = c can be simplified

to xtyl c

395
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4

All-of th% above can he dov by transiatiw tile axes to a new origin at

ol .0(14k) by use of the equations of translation

) r = xt + h

y yt + k .

Exercises 10-2

1. Write the equations of translation Which chamge the coordinti,es of

A = (2,1!) to (5,8) with respect to a liew origin 010. What are the

coordinates of 0' with respect to e first origin?

2. Determine the equation of the burve r presented by

2x
2

- y
2

- 12x.. 4y +.12 . 0 if the origin is translated to 3,

4

3. Given the transformation.
y* y 6

.What effect does this transformation have When it is appliek0o the

curves:-

2 2
(a) x2.+ y r. 7'

2 2
(b) - .7: 1 ?.

a b

4. Points A . (1,0) B . (5,-2) , Snd C = (3,4) are vertices of a go.-

*

right triangle. Find the coordinates of these points if the origin is r
moved to 0' = (-4,- 11.a,translation of axes. ()Sing the xew.

C,Zordinates give'two proofs that an observer at 0' can pres4it to

de nstrate that 6#0,B0. is a right4triangie.

5. Translae the axes so that the equation of the curve

.

x
2

y
2 k 10x + 4y + 5 = 0 can be written in a form containing no first4

degree terms. Indicate the equations of translation, draw both sets of'

axes, and sketch the;curve.

6. Given circle-,Q x
2

4 y
2
= 25 . 'Find the coordinates of three points

A ; B , and ,C on'this circle. Then find their co rd natgs if the -

origin is translated to X' ,,-(1,-1) and the equat n of the circle.

with respect to PI,. Verify that the new coordinat of A 'B , and

1

. C satisfy the transformed equation.

*-HP'

II
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)
.

7 A line L. has the equation 3x - "2y ..0 ., Draw the line. The axes

areother translated twice ilsucceSsIon in accordance with the equations.

+ 3' . x" il-

l. (1) -followed by (2)
3.1 +.2

( = Yll 4' 5
%

Find the equation of L with respect td both the'x'- and y'- add

x": and y"- axes. Then rind the equatiops of "eanslation which would

perform both operations Ut odw. What would be the effect of commuting .

translations -t1) and (2). ?",..

e
. 8. Sketch the curves after performing aocohvenierit.tc.anslation of axes.

TiVicate the equatiims Of translation and draw both sts of sits.
4

( a) y,2 6y - 12x - 3 =. 0/

(b)0 3x2 4y2 - (2x + 8y - 5 = 0

(c), 2x2.+ 6x - 3y + 12 = 0

(d) (1( 4 3,1(y - 4.) - 12 = 0

(e)..(y + 2)2 = (x + 2)

Derivepthe equations for the translation 1ST axes with the new origill

01 . (th,k) without thq use44.vectorsA.
#

10-4 Rotation of Axes: Rectangular Coordinates.

.

We next consider a rotation of a rectadgular coordinate system C . We,

introduce a new coordinate system C' whose origin coincides with the origin

of C and Whose axes are obtained br rotaltig the ixes of" C through an

angle a . Thuas a- is an angle in 'standard position'whose f4itial side is

the positive side of the wx- is and whose terminal side is the positive side

r4. of the x'-axis. Once add_ O we want to discover the velationshif betweeethe

% cepordinates of a point P in .0 and the coordinates of the Same point in C'.

ir

The presence or the angle a suggests the use of polar coordinates. We

consider the systeMa of polar coordinates. adyociated with C and C' by

letting thepolar axes be the positilre sides of 'the x-axIt and the xi...axis.

Thus;'sz we have seen in Chapter 2 , if Fjes the point (r,e) in the polar

coordinate vste/whose-polar axis'is the positiye side of the.x-axis, then-
V

4

2 01

1.4 ^



x = r cos

.y = r sin 0

6

Figure 10-4

r, in the pole.;.;coordinate syatem whose polar axis ls the positive side

of the 10-axis, P is cleaily the point (rye - 0) ..,-Therefore,

(2)
xl = r cos1)(8,- a)

yi = r sin (e a)

= r (cos e cos a

= r.(sin 9 c95 a -

Comtining equations (1) and (2) we get.

cos Me' Ysincr

yt = -x sin a + y cds a
(3)

XI =

sin 6 sin, 0)

ow", sin

These transformation equations areligen called equations of rotation.
4

r

,1N

Exam& 1.. In'a given coordinate ?ystem, tvo points Pi and Pk have

the,cOordinates
,

(2,3) and (-4;5) respectively. The axes are then rcoated

300 . Find the rectangular P
1 I

ale_ P
f'

\
2

new axes.
6

through an angle of

With respect to the

398
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dI4

a

1 .

- Solution,: Since sin 30
o

.

substitution

f
Thus .15'

1

in the.preceding equations,

r
2

E1 6 2,

is dbtained

.

'Solution:

hss the new coordi,tes

hss the new coordinates'

f

cos 300 we have upon
, 2

fxs + y)

vi + lqy)
-'2

(213 3 -2 31r0i.;

-4'13+ 5 1_4

Find the tquations relat,ing ce.orainates in41C. and C'

Froon C by a rotation of (a) N.1343 (b)

(a) Since sin 45° = cos.45° = y we have, upon substitution in the

preceding equation,

(b) Since

dip

1

-

*

1 , 1 1= x, = (Y)
vrf J.

-1 1= x + 1 --(
ett

y)

4 We can solve

= x .+ 15 -y
1

(2 2

and y in ternsof x'

(1) x cos q + y sin a = x'.

-xsin a + y cos a y'

(1.2
co,

2
a + y sin a cos a =

/

I

d
't

x sin a - y sin a cos a .

f6
' NI

5 399 0

x' coe a
*
,

-y' sin a

and y" n Equation (3)

41,

4
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s

1(1=3

.'

. x,cos
2
.a + x sin

2
a= x' cos a - yI sin cc,

0
2

a) 30 cos a -x(C5t a J., sin
. .

= I' sprt-;.
:

..hences X = XI cos a - y' sin,a .* .
#

.

(4) Arab iimtlar,process: I. y = xl sin a 4. y, .cos a

lie she.11,rfer to:pithar of the pairs of equations
.

. 100

' i ..' ik., - .

x1 t- x f&os Id + y sin a

4

ri-woending Membeitsj'we have VI.
Or.

yi = ..3c sin + y cos a

as the2equationa of.rotation.

or'

/x . x, cos g. y, sin a

y :4X1 131.11.0 + Y1 cos a'

.
Example 3. What equation represents the graph of

when the axes are rotated 43.004.?

Soluti,

(1) Since 8 = 30 , the equations of rotaion.are:

(2) Substituting in the equatibn ax2 + 2y2 . 16 0 and,per-
.

forming the indicated mUltiplications, we have

a.- y' sin 8- P3x1 yo)

9 + yI cos 9 = ljy4) .

4

nom

4
+ 1143XY

1.(3x12 2)730Y4 + Yt2) +

- -2()02 + + 3y,2) 6 .

+ 2i'yt

(3) Simplifying, Ve have 202 yI2 .

We recog

1%42)

e the grAph of this equation to be a,hIperbola. The graPh

in the xtyl: coor4inate vsiem can easily be dralin.

J

400
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Figpre 10-5

NOte that a a,tion of axes through an =ale of 30 made the,xy-term

disappear.- It was the elimtnation of the xyterm which'hade it possible'for

us to graph the curve much:166re readily._ What we havenot discussed itilAK

methocl. for determining through What angl.e a given set of axes maybe rOtated

to eliminate the xy-term. Uniortunately we,cannot develop this topic here.

The interested student will enjoy studyingthis topic in the supplementary

chapter.

ExampleA. What equation represents'the graph of x2 - y2 = when

the axes are rotated 45? ?

Solution

(1) Since a 45o
y the equations of rotation become:

X =

(2 ) Sub tituting in the equation x
2

- y
2
. 41 we lave ,

c

2xly° + y*2
'

(202 + 2x1y1 4- .42) 4
2

1 2 .

.C3) Simplifying, we have xly/ = -2 .

95
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,

We have

41,

#

here two different equitiOnsgf.t6e same equif4t al hyperbola.
,

y

/
. 4

s

8..

1 ;6'

4

.
a.

t
S.

a..-
5 r

' FIgUre 10.6 ,

. ._ 6. %

-
. i

14 this. example,the-equ'ation with whiehlie begsalhad,no xy-term. After

. 'a rotation, an xy'-term appeared 6414 the squared terma vanished.. It may seem

at firs\glance that wemade a simiale prbblemeharik''.There may be a gooil
. .

Ireason however, why we mai want to eenvert'an equation fi:om one form to ,

ib

.

.

another,
4

The equation xly1 . -2 ,te11ipt1qatthe variablk x' and y' are

inversely proporti9nal to each bth r. Inverse proportions are of fr;quent

6 I
occurrence in science. FoI e tin traveling a fixed distance

at a

constant rate the speed iL in elportiol to ty tilae; the velocity
.

6 - -

of..Che wind is inversely proprotional to the Ipacing of the isobars klines of

constant pressure) on a weather map'. 'We are trying to point out,.'in this

instance, that the study a curve Whose equation has the 4form xy k a

constant, may be more rofitable than the stuay of the curve whose equation

has the form x -y =epaconstant.

We now generalize thp situation discussed in Example 4. If we. start

with a second degree equation containing no xy-term, a rokation of axes

krr

through an angle a Whose measure does not eqUal 1F , for any Integer

will usually introducee xy-term into the transformed equation. (An

exception to this is the equation of a circle).
O.

2 q ; .

4-02
a
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Consider the equation of the seocond degree which coptaIns no gy-term6
,A

1 ' 2
Ax + .Car24 Dx %r F

and apply the equatons i*otation

4
X = X' COS 7 yl sin a

y xl sip a 4. yl cos a .

Ailer we substttute and perform -ale indimAed operions, tills equation

becomes:

10-3.

6

,Alxl
2

+ Blxlyl + Clyl
2-

+ Dlx + Ely + Y1 =:0

with respedt to the new axes. The hew constants are in terms of the constants

A0C0D0E, and F, When A' . CI and B' = 0 the equation represents*

a circle. (The details will be left as.an exercise.)
. %

This last equeition is called the "General Equation of the Second Degree

arra is written without

/
rimes as follows:

gib

Ax
2

+ 13xy + cy2 + Dx + y +. F 0

A,In the Supplement to Chapter 7, we.consider the method of graphihgsuch

equatUons. In particular you will learn bow to remOve the gy-term by a

roteAbn of axes through a determined angle 6. You have already learned

haw to translate the origin to remove the linear terns. When both'of these

operations are performed, the equation of the curve is in a form which is

simpler to analyze and graph.

Polar Coordinates. It was ointed out earlier that when the polar axis

is rotated through an angle whoa measure is a , the point P (r,8) will

have new coordinates (r, 8 - a) . Figure 10-4.illustrated thfs relation.

Let us now consider a polar equatton

ep
- e cos CP - 0717

Which represents a conic whose axis makes an angle whose measure with

the polar axis. We fllustrate an ellipse in stich a position in Figure to-y.



Ilgure 10-7

Xf.the polar axii is now rotated through an anile whose mess e is

then an equation relative to the new polar axis OA will be

() f r
1 - e Iclos P

y here el . .

You will recognize this air a polar equation of a donid with focus at the pole

.and axis along the new polar axis as discussed in Chapter 7.*.

This rotaiion enables us tb graph the same curve by: using a simpler -N/

equation. This effectokas observed earlier in Section 10-3 Which%wms co

cerned with rectangular coordinates.

Tde polar equatiOn which represen:4 a circle is r = k a constant.

This equation is independent of e and is not dhanged by any change in 9 .

'

Examkle. GrapIT x -
-18

3 - 2 cos(e -I- 60°)

Solution. We first rotate'the polar axis throughan angle of

The equation of the curve relative to the new polar axis will be

A 18
r

3 - 2 cos 0/ '

This equation represents an el4,ipse with, its focus at the origin and with

its major axis along the new polar axis as shown in Figure 10-8.

-60°

4014
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Figure 10-8

10-3

Eiercises 10-3

1. Points A = (1,0) B - (5,-2) and C (3,4) are vertices of a right

triangle. Find the coordinates of these points after the axes are

rotateq, 1509 . Usibg the new coordinates, show that the area of the

triangle has not changed.

0
. What is an equation in termsiof x/ smd y/ of the lineL

3x + 2y - 8 = 0 ater the axes have be4n rotated -11f 7 What is the

slus'of this line in the new coordinate system?

3. Given the equations of rotation

x xt cos a - y1 sin a i
y x, sin a 4 y' cos a

4

Solve these equations for. 'xt and .y1 .
-

4. What is,an equation of the parabola x2 y with respect to aXes making

an angle of 459 with the original axes?

405 2O 9
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I.

5. Find the transformed equation if theaxes are rotWd throug)t the
. -

Indicated angle. A
0 Air

(a) x
2

-rjxy +.2y`'=

% 4 2 2
kb) 23x t-oxy + 17Y 25

3A
(e) xY = 0 - -4-

2
'(a)

,14

is the angle whose tangent equalb

; 2 2
6. Given a circle Whose equation is x 20 = r

1,
.

Find the equation of

this circle with respect to the.new axes after the original axes undergo

41.

a rettation throUgh amy angle Whose measure is

-4.
%.

j: Graph each of the following after roating.the

equation.

6

'eos( - 60°1

10
(b) r = o%

5 4- 3cosp - 120 )

3

stn(E)

-

Challengc Problems

a .

polar axis' to

I.. Given the general equation of the second degree

Ax
2

+ Bxy 4 Cy
2

+ Dx + Ir t F = 0 Find an equation of its graph if

the axes are rotated through an angle of (;)

be the coefficients of xi x/20 0 and yl
2

- 4A'C' = B
2-

4AC . (This expression 112

characteristic of the equatiOn.)

Let JO , B' ,,and CI

respectively. Prove that

- is called the
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2. A set of axes is rota* through an angle of wacure a so that the
A

-equations of rotation are:
) *

..xl cos a -'yt sin a
a,

y = m0 sin a + yl cos a

This rotation is followed by.a sedond-l'otation through.an angle of mehaure'

e so t4at the equations of rotation are: *.

xt j x". Ood 9 y" sin 9

') y' ". Sin 9 + y". cos 9

I.

Prove analytically that the coordinates dx,y) and. (x",

by:

ix = x" cos (9 4-, a) - y" sin (9 + a)
sin' 09 4- a) + y" cos (4) 4' a)

10-3( Invariant Properties.

are related,
4

It wag mentioned in Section 10-1 that certain properties of geometrie

Objects often remain the same under transformations... Exactly lehich properti6s

remain invariant depends, of course, upon-the given transformations. '

The geometry we are studying, called Euclidean geometry, is identified by

the fact that the measUre of both distance and ang;.e of geometrtc figures

remain invAriant under translation and rotation of axes. Many other geometric

properties also remain invariant. Thee include the order of poin9 on a line,

col-linearity of points, and concurrenige of lines. Here we shaJ1
*
discuss o

the measures of distance and angle./The othei, geometric proiSerties will be

illustrated in- the exercises.

2ij
(
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I.

We shall first consider the distance between twn:points in a plane under.
0

9 . , 1

v 1

a translation of axes.

4

111

1

I

v 101-1 01, II)
I

v Pz (12. ry2)

!22;=(1.242)

a

Figure 10-9

14 the figure, the x-axis and y-axis with origin at 0 have been
. J

translated so that the qew origin is at Of (hlk). with respect to the old

.
axes. Observers at both 0 and 01 look at the same two objects and con-

sider tbe distlance between them. The observer at* 0 refeis to their locations

as positions ,P1 and 'P, and the distance between ''V'lem as s whtle the

(*observer at pl refers'to the positions as P
1

and I'
2

and the distance

between them as s'

You and T know that s st But how can the two'observers reeoncil

their observatione? To answer this quesiiof, we list the khown facts:

(I) s = d(P10P2) , x1)2 (Y2 Y1)

2

-

and s' d(P1',P2')
2

1)2
"2 J1

(2) The equations of translation rela ing the coordinates are:

% .

'Using these facts, we have:

(3)

x2 - h

xi 1 - #

x' x h

yt y k

Therefore x 1 x =
,2 2'- xl

41%
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4-

Y2' Y2 k

Y1 2 Y1 V
.

.
.

Therefore,

F

(4). We substitute the expressj:ons from (3) -in,the formula foh. St

4

C.*

10-4

rrr

dOtaining s' = 161.2 - xi)
2-

tY2 -.y1)
2

which is idtptical with

thp formula for s , az illaS to be proved.
411'

J
A numerical problem may help in making the above discussion clftrdr. Let

. . (4,6)- P
2

(-11.2) and -Pr% (5,-) r Thus the equationstof trandla-

16"
tidh are HO x - 5 and 50 = y 2 .

.

The coordinates of P aro' (.-118) iid of P21 are ( MIS

44,0,1,,p2e) 2:6 AT', d(101,172k. I, and we have

.1ft(P
1,

P
2

) = d(P
1
' P

2
t) .

What if the axes in the aboveProbfem ha& been rotated instead of

t.ranslatfd? We would .hen consider the following:.

(1) The equations of rotation are:

. x12
so that

YI'

ix* x cos e 4- y sin

y' -x sin e-+ y cos e .

= cos e + isin.0 and = x2 cos e + y2 sin e ;-
= -yi sin 9 +yi. cos 0 and .3,21. -x2 sin e +y2 cos

Therefore,. x21- = i0(2.-6)(1) COS e + y2-y1
) sin e 1 and

Y22- Y12 -(x2 -xi) gin (3'2-y1)
cos 0 .

(2) oquaring and adding corresponding members we have:4

(3)

xit)2

br (}C

(y2t-

x11)2 4.

2 2 ,

x2 -xi)
2 ( cos

2
0+ sin e)

+ (y2 -y1)2(cos2 e 4 sin e)
.2

x1)2

Thus d(PII,P21 - d(p1,p2) .

2

We sec that tstance is ifInraant under.both rotation and translation of 4xes

(,

and we state this aS a theorem:

409 213 4
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i ;
THEOREM 10-2. Therasure of distance bttween,two points is'invariant

A .
-under:

(a) a translationot axes

(b) a rotation of axea.

The invariance of themliure of."angle under a transiftioit or a rotation

. of axes folloim directly from Theorem.10-2.
4

.

.,
Consider .4ABC determined by A = (xlyyl) s E ----?;x2,y2) s and

_ 'L
.

C = (x1031-3) Under either one of the above transformations,. the poi nts. A

B's and. C will have nev coordinates.

At (x.,10y11) i'B' = (x21,y21) , and. C/
1

new axes,

They will,now;be designited'as.

wlth respect'to the

Since distance betveen!points is invariants we have AB.= A

ifra 0 and AC 7.- WYn- . Hence, .0.4BC WEICI and tue.corresponding

angles_are congruerit.

THEOREM 10-3. The meggiii4 of angle s invari1ant unher:

(a) a translation of axes.

(b) .a rotation of axes.

It would have been possible to prove the invariance of the measure of

angle under translation or rotation independently of the Invariance of distance

discussed here. We could start vitt -,he formula

, 1

cos 9 -
,L 2 .r--7

+ + m
2

and consider the.lines Li : ax + by t c = 0 and L
2

: a*x + bty c' = 0 .

Upon the translation of axes, the lines Li and Ln with respect to

the new axes have the equations

L : a(x' + h ) + b(yt + k) + e

or Li' ax, + byl + (ah,+ bk + g) = 0 .

and L : 0(x l h) + bl(yt 4 k)

L
P

' : a'x' +!" bly1 + (a'h + 101.[.+ et) = 0 .

The slopgbf L1T is given by mi mi , and the slope off is given

.



by

1 for

mil
a, g

. m2 .Since taT.,kaopes are.equall cos etw cos49 and et = 0

the priaripal value. Hence the measure of angle is invariant undel-

t; translation.
e

. .
,...

-. .,

The prolog of the invariance of,angle uhder rotation'involves considerable

algebraic.manipulation and is left, as a "chall " exercise.

t

Exercised 10-4 '

N$c

1. (a1.0.44nd an equation of the line through A: (201) and B = (0,4)

and draw the lint

(b) Find the coordinates of A and B andiwn equation of the line

after the.origin h.s been translated td (-40-6) . 4 '

(c) Verify that d(f) is inirariant o&I- this translation.

2. (Refer to.Exercise 1 above)

(a) Find the coordinates of A and B and an equation (4:the line

after the axes have been rotated 90
o

.

(b) Verify that d(A,B) is invariant under this rotation.

Given line L : 4x,- 3y - 12 = 0 passing through A = (0,-4)

B = (2, 4) and 0 = (3 )

(a) Find the coordinates of these points (now renamed At , Bt 0 and CI

respectively) and an equation of the line (now called Ll) when the

origin has been translated to (-1,-1) .

(b) Verify that the order of points Al , R/ y and CI is the same 88

that of A , B , and C . (That is, order of points on a line ie

invariant.A

(c) Verify that. Al Bl , and C' are collineav. (That is

collinearity of points is invariant under translation.)

4: Given lines LI :,41t - 3y - 5 - 0 L2 : x - 2y = 0 and

L
3

: 5x - ly y 0 .

(a) yerify that L1 1 L2 , and L3 arc concurrent.

(b) Pind equations of these lines (now renamed LII

alter the ortgin has been leanslated to (3,-2) .

411 ...

and L
3
1)
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a

(c) Veify ttat Li' L2' and L3' are.concurrent, TThat is
a

e

concurrence of lines is invariant'under fraaslfrtion,)

.(d) What is,the relati;n betwien the pain cyurreney

and .1,3 ana,tha* of L11 p L2'. aodd .,-

(e) Do parts . (b) (c) (d) if, instead of Itra4S1at1lith origisno

the axes are'rotated 450 .

sj

5. GivIn lines 1,, 33e + 2y

. and a L
2

f 5x - y - 9 . 0 .
.

.
.

,

(a) Find the acute angle between Li and L2. at deir point of
. .

intersection.

.(b) Find equations of Li and L2 (now called Li' and L21) after

thalt,origin is trInslated to (2,2) .

(c) Find the gngle between LI' .and L2' .and veriry that thaoangle

is invariant,under translation.

ahallenge Problem
6 .

FrOve that the measure of 131gle ivinvariant under a rotation of axes;.

without 'makipg use of the invariance of distance.

10-5. Point Transformations

IA! the previous sections we considerpd an Operation called the "trans-.

formation of axes". We now consider another type of t-tanformation which

achieves similar results frot a different poilikof vlew. However, this new

point of ,view leads to significant results, such as the transformation olf a

given curve info a corresponding curve which i.not congruent to the original.
#

This we could, not achieve by the original approach.

a

We now consider a transformation, called a_point transformation, which

carries each point A into another point A' in the sante plane. Thus tOe

points of a figure F are carried into a set of poillts formi4 a figure F' p

as shown in Figure 10-10. The axes.remain fixed.

4
r-

, 412 219
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Inthls sense a t formation goad' opeeatiori by Whioh eacli elprn't of a

geometrisc figUtle is ep1aced by another element. Another vay'61' expressfng
( t .

9

this concept is that a il-ansformatiorarts a,on5Ao-one gorieppondence or ,

0

mapping of eaCh point ot A. onto a corFesponding.point p,. Ite plane is .

maiped onto itself. A npint trapsforMation7is.writen symboliCally AS '

li- .

A ---9.'At ,an& AI isyalled the image of 7A .

We can also cona&lictransliations and-rotations as point tr iations.or
7

In Figure 10-110 15= (x,y) has been7mapped into Ps . (XI,y2) by 'movIngt the' ,

'1'

. ..

point horizóntally a distance of h and varticaily a distance Ilf k Thus
.

v

J

4

XI .x+h
1 yt = y k .

%.

Another way to write this transformation is (x,y)b- (x 4 h,'y + k) This

form will be uSed frequently in the remaincrefof the text.

Figure 10-11

This pair of equations is4similar tO those derived earkier for a translation

of axes; they differ only in the signs of h ,and k . This occurs because

we are now moving the point and keeping the axes ftxed.

4if

all
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f

The following exsaple will illustrate this fact.

'Let points A = (2,0) ,,B = (2,1) and C = (4,1) be the vertices of se.

triangle as shovn`in Figure 10-12.4 Itese1points Sow undergo a point tpalit-

formation given by- , .

pci x +

1 y = y .

Thus = (6,6)_

B (201) --0:BI

Figure 10-12

You mill note that AABC has been mapped into AA/BICI . Youahould

also observe that the 4ame "visual effect" could have\been achieved by

translaetng the x- and y-axes to a new origin at (-40-6) What we are

saying is that OBC would have the same relative position and appearance to

a person standing at point (000) as QA/BICI would have to a person standing

at point (-4,-6) Note thatOlhe coordinates (-4,-6) are the negatives of

the yalues of h and k used in the point transformation.

A rotation is now consideud as a mapping 1r which each point 1.41 the

plane is mapped onto a point the,same listance the origin a4 previously.

When, P PI and Q , the rotation will map POP' into the

congruent angle In the figure, A - (200) has been mapped 9nto
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Figure 10-13

A' ()Nyl) by rotating through an angle whose measure is 300 ; both points

tre at a fixed distance of two units from 0 A comparable visual effect

&could have been achieved if the axes hid been rptated thre41,11 an angle ithyse

measure is -30° y and ,A" . (1112-1) located on the x'-aArs. The idea we .

are emphasizing is that A has the same relative positton to anOserver at

A" as Al has to an observer at A . Also, OA has the samc position.with

respect to the xl- and yl-axes as OA' has with respect to the x- and y-axes.

A similar statement could be made re garding the rotation of any polygon or

for any general figure F The angle of rotation . could be geneAlized to be '

any angle whose measure is 01

We now return to the concept of reflection whiCh wns discussed in detail

in Sections,6-2 with relation to the symmetry of curves. .We shall now define '

certainrelfections in terms of point transformation as follows:
4

(1) A reflection wit); respect to the x-axis is ziven by (Xly)

A (2) A reflection with respect to tlat_YmaXl.s is given by (x,y)--0.(-x0y)

(3) A reflection with respect to the origin ig given by (x1y)-40.(-x,-y

,Tote our use here of the Ilternate,notation-indicated.earlier in this section.-

Reflections with relPect to lines L and L' parallel to the x- and'

y-axes respectively are best treated by translating the x- and y-axes to

coincide with L and L' In accordance with our practice regarding note-
.

tion we shall nthe refer to lines L and LI asothr'x'- and yl-axes respec-

tively. Thus the point transformations are considered with respect to Ur-
,.

kl- and yl-axes and to the new origin at 0' , (h,k) as.shown in Figure 10-14d.

415

gs.
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We can consider reflectionA with respect to any point or line but the

equations'of transformation are often difficult.to state explicitly. We

consider this subject beyond the scope ofAhii text and rerer you-to the

Challenge exercises in Section 6-2.

Sone reflections of'segments are indicated in Figure 10-14.

(xt-y)
1

Figure 10-14a

PI

Oclad

E12

(421y2)

(xpy) (-xly)

Figure 10 -14b

0
1

V
(hk) I H '

'

Pt
(-x"-yr)

( x,y)

Figure 10-11i c

x,y) (x' yt)
( xl,y) (30,-y )

Figure 10-14d
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Ih eaclvf the above iltustrations, 'd(131, = d(P11,1)21) . It is

possible to prove that distance is invariant uhder the\lrgt of all. reflectfons.

We present here a proof of the first case where a line segment. is reflected

with respect to the x-axis.

, ,2
Referring \t.o Figure 10-14a, we have

a
( P1, P2) --- .11( x2 1

2
+ (y2 Y1)

and a(Pillp2,) )/(x2 - xi)
2

we have d(P1 P2) = d(P11,P21)

+ (-Y2 + Y1)12'. Since (-5,
2

4.
1
)2= (Y2

- Y
1
)2

It is also po§sible to prove that any translation, rotation, .or combina-.
tion 6f translations and rotations, can be accomplished by a: series of no

more than three line reflections. A proof will be found in the Supplement

to Chapter 10. We shall merely illustrate it here in three examples.

Example 1. Show how the translation of IMBC to the new position

indicated by tvinB"p" can be effected by a series of line reflections.

I a'

I I-2

Figure 10-15.

In Figure 10-151 we see that dkl3C has been translated to M"B"C" by

a series of two refel ctions. The ax'es. of reflection, L1 and L2 , were

selected parallel to AC Axis 4,1 may be -chosen freely hut there is only

one position possiba e for t2

2?../

41y
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4

,

Example 2. (Same as EXample 1.

A

C

Figure 10-16

a.

In Figure 10-16, we observe that LABC has been refle.cted with respect

tO axes Li and L
2

with the reiult that it has been boih translated and

rotated.

Itam101e 3. Denonstrate how axes of reflection can be selected to move

a directed line segment from one position to another given pOsition.
4

A

1
I
i

I
e^ \ R

I 1.
t t
I \ 0 .. t
I t t
1 %

D

Figure 10-17

In Figure 10-171 01. 755* hy a series of at most tr_e_ line

reflections by using the following,procedure.

4040. 41141.

(1) Draw AB and A"B" intersecting at P .
4

441.

Bisect angle P and call the bisector PP' .

Reflect AB with respect to 114. Art' 1 the image of AB

lie on A"B" .

41.8 2 4)
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4Hip.

(4) Construct QQ1 , a Aerpendicular to TiTAw . Reflect VET 'With
400.

respect to QQ' Its image rc lies on A'B' and coincides wiith

B"A"

(5) Construct 'PP.., the perpendicular bisetok-of CD Reflect CD

with respect to RR' . Thus D --0'A" and C B" and the

order of points On WV is the same as that of AB .

The selection of axes of reflection when ABI171717 is left as-arl'-`

exercise.

The effect of one or more reflections upon a geometric figure can be .

' studied analytically ma we;lias by atua1 construction and observation. To
4,

illustrate this approach, ye shal consider the point reflection
p.

(x,y) -x,
.

Upon app1y1ng this transformation to the line L : ax + by.+ c - 0 , the

. equation becomes- L' : -ax by + c = 0 or ax + by - c . 0 . The lines L

and L' are parallel but the intercepts on the axes have different signs.
...,

SpecifiCally, the -line )2ar + 3y - 6 . 0 with intercepts (3,0) and (0,2)

iransforms to the line 2x + 3y ,r+ 6 . 0 with ntercepts (-3,0) and

When the same .transformation is applied to the circle x + y . r

wm note that there is no change in the equation. This result verifies the

fact that this circle is symmetric with respect to.the origin. A similar

result is obtained he ellipse.
b2x2 2 2 =,a2b2 the hyperbolas

b2x2 a2y2 a2b2
44

and xy'. k , the 'cubic parabola y = x3 rand any other -,,

curves that are symmetric to the origin.
w

4
The circle x

2
+ y

2 + Dx + Fy + F = 0 transforma int another circle

x
2

+ y
2 - Dx - Ey + F = 0 . The radii have the same measur but the center is

noW at (4) instead of at (- . Figure 10-16 illustrates the

effect of the point reflection (x,y) ()Cy') upon the circle

C x
2

+ y
2

- 4x - 6y - 12 = 0 . The equation of the transformed circle is

2 2
C' :,x + 46. + 4x + 6y - 12 = 0 . C and C' both have a radius of 5 but

ehe center of C' is at (-2,-3). while that of C is at (2,3) .

410,
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Figure 10-15

A second ;eflection (xl,y') (x",y") 'with respect to the same points

x2 y2
vill map CI into 4x - 6y - 12 . 0 and we observe that

t .

C" = C . A similar result is obtained vhen any reflection is followed by one

of the same type and vith respect to the same point or line. A nuMber og

transformations, other than reflections have this same property. We shall

discuss one of these in the next section.
.

A variety of point transformations will be presented in the exercises.

Exercises 10-5

1. Given points A ='(1,2) and B = (3,-4) Reflect A and B with

respect to the

(a) x-axis

(IA i-axis

(c) origin

(d) = 6 .

Verify in each ease that d(A,B) is invariant.

2LN' The equation x' = x 2 may represent, a point transformation along the

x-axis. Select any three points on the x-axis, find their imagott under
fr

the transformation, and determine tVo properties which remain.invariant.

20
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3. Perform Exercise 2"for the transfOrmation x' = 2x . ,Find three

properties invariant under this,. tansrohnation. ,'.

4. Thou that the alle between the i'VP \ L
1

: y 0 and L
2

y x .is

.4 preserved under rOtation.through an lp of measure 1-
4

5. Show the effect of the mapping indicat tor each oZ the following curves
v,

by graphing both the orig'inal curve and fAs ilmage on-the same set of axes.

(a) y x (x,y) (7x,y)

(b) x
2

= y (-x,_y)

(c) xy 7 6 ; (x,Y)".-4W (.x,:y) ,9

2 2
(d) 4x - 9y 36 ; (x,y) (3x,2y)

(e). x
2

+ y
2
- 2x + 4y + 4 . 0 ( y)

= x3 ; x,y) x,"-y)

(g) y = em x (X,Y) (X,.y)

(h) y tan X ; (x,y)

(i) Y = 2x ; (x,y)

6. A = (-2,1) , B = (5,-2) and 'C = (3,3)

They are rotated about the origin through

3tan 0 = . Test awl verify three properties which remain invariant

are vertices of a triangle.,

an acute angle p such that
4

under this rotation.

(a) Given the segments AB and CD as Shown in the figure. Show,

construction, how AB can be'mapped into CD by means of line

reflections.

1421
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(b) Trace congruent triangles ABC and DEF .keeping their relative

positions. Show how to map 6ABC into 6DEF by the method used

in part (a) .

sr

. The points on the followlng curves are rotated through an angle of

measure with respecf to the origin. Findthe equationil of the

transformed curl!res. Sketch each of the curves' and its imageon the

same set of axes.

(a) 3x + 2y - 8 . 0

(b)
x2 y2

(c) y2 hx

9. Discuss the transformation

images of the curves in Exercise 8..

+ 3 , x + 1) by finding the

10. Determine whether parallelism I.A1 preserved when the lines

3x - 2y ,± 5 . 0 and L2 : 3x - 2y - 3 = 0 undergo the mapping

+ y, 2x - Y)

10-6. Inversions.

We conclude with a discussion of a point transformation called an

- _inversion.

Constder a circle C with radius r and center at 0 Select.emy

point P d , d(0,P) 2>;r, and draW OP . With P as a center and OP

1.1

)4.2-29f;



as radius drawHan arc intersecting C at R Finally, with R as center

and, a radius r draw an arc intersecting OP in PI . The construction is

shown in Figure 10-19 . CNote that this construction requires that the

circle be intersected at point R .)

Figure 10-19 .

6ORP is isosceles sinee OP = RP ; LORP' is isosceles since

d(o p) d(o R)
Thus ZPRP LFOR ZOp'R and 6RTO Z,604P-. Then and

d(0,P1)

d(0,P) d(O,P') = r2 . TWO points P and P' which meet thiPcondition

are said to be mutually inverse points with respect to circle C .

When d(0,P) <:;r, the arc drawn with P an a.center and 15T as radius

will not'intersect the ciircle. In this case, construct the perpendicular

bisector-Of OP, intersecting.the circle at R and CP in S . At R

construct J ORT = POR . Then RT will intersect OP in PI It is

left as an exercise tO prove that OP OP' . r2

DEFINITION. An inversion is a point travformation which maps

each of tilt) arbitrary points which are mutually inverse into

the other.

Circle C is called he circle of inverSion and point 0 is called the

center of inversion. Point P' is said to be the inverse or image of P

and vice-versa.

"gwir
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Each point on the unit cir4e is its own image; each point outside this

circle has a unique image inside; and,with.the exception of the origin, each

point inside the circle has a unique image couictide. 'This is true because

if d(0,17) < r we have d(0,1") > r andfClr d(0,F) > r we have

,d(0,P1) < r For anY point on the unit circle; d(0,P) = d(0,P1) = r

4
We now obtain an analytic representation for such a transformation. For

simplicity, we let r = 1 .

Figure 10-20

4

Given a unit circle C with its denter at the origin. Draw any ray OR and

locate on

from P

tively.

(1)

(2)

(3)

(4)

( )

OR mutually inverse points P and

and Pt to the x-axis, intersecting the

d(01P) x
Since ;-,60NP1

P . Construct

axit at M Snd

= 1 or d(0,11

- (d(
))2

))2 = x'2 + y

2
4- y

perpendiculars

N. respec-

1

60MP d(O,p)

By definition, lip have d(0,P) d(0,P')

1
2c-r

= d(q,p,)

.1b

Thus by substitution, -

(d(o,r/))
2

Since (d(0,1)))2 = x 4 y
2

and (d(0,

1 x 2
we have -T - and --T = x

x y,2 X

x'
Thus x and xl _

x'
2

y,
2 + y

I.

225
424
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(6) In a similar fashion,

(7) The' pairAf equations:

f. x'

x'
2

+ y'
2

2

11=
Y,

x'
2

+ y'
2

and

an d y'
2 2

+ yX

x
2

+ y
2

x y

1076

are calla the equations of the inversion transformation. We shall
A

now investigate the effect ofjapplying this transformation to

several curves.

EXample 1, What is the inverse
0
of a straight line with respe:ct to a

unit circle?

(1) Let L ax + by +.c = 0 with o A 0 Then LI the inverse

of L , has the equation

ax' ?by"
+ e = 0 .

30
2

+ y'
2

x
12

+ y'
2

(2) 'Thus c(x'2 + y'
2

) + ax' + by = 0

(3) Completing the squares, we have:

with

lb

xt

a
or x,

2
+

2
+ xe +cyl 0 .

a (y, .2bc)2 a
2
+ b

2

a b
recognize,the graph of a circle with center at 2c-, 2c

1177ball' and passing through the origin as illustrated
2c

10-21 .

,
in Figur

425



10-6

3

Figure 10-21

r

II

) 4

Thus a line,not passing through the origin transforms into a circle

passing through the origin.. Alb converse ofthis theorem is also true: a

circle.passing thru the origin transforms into a straight line not passing

through the origin. The proof iseleft as a Challenge ftoblem.

There is an interesting special case of this problem. Note that ifthe

example given wedefined the line L by ax + by + c 0 and c 0 . Uhat

if c . 0 ?

a
In this case, we have L ax,+ by . 0 or y or y mx where

m is the slope. The inversion transformation yielAs

mx'

xl
2 2 2

Y.. x! Y.
.

Thus y' = mx and'we observe that a line passing thfough the origin trans-

forms into itself. Another way of sayi,ng this is that a 1i,e passing through

the origin remains invariant under an inversion transformation.

14.26 -



-11

Example 2. What is the inverse

network of lines x = c., parallel t

the x-axis?

th respect to the unit cirdle, of a

y- s and y k , parallel to

(1) The lines x = c transfo 4nto

(2) Thus

xi = c
x,2 502

or

se 0-, Or

c(le
2

+ 502) XI

1 2 12 .

ke2

This pguation represents a whole "family of circles" passing through the-

.

origin with centers at (-1c- 0) .

( 3) In a bimilar fashion, the lines y = k transform into a family of

-

circles with centers at and passing through the origin.
2k,

A part of a network of lines and the circles which arp their inverses

are ihoWn in Figure 10-22.

CN1
I I 0 N

II II I I I I

Id M M M IC

re)

=_

3

Figure 10-22

427 231



10-6

ou have a/ready observed an unusual result: nor the first timeqn this

d9z1ssion, a curve has been transformed into a different curve," Such an
event Wall made possible because we are dealing with point transformations. Tn
Figuri 10-20, a different scale WRB used for the two drawings.

As a final example, ve consider the followingi.

Example 3. What is the inverse of a ciliple with respect to the unit
circle?

cep
(1) Consider the general equation of a circle

C x0 + y2 + Dx + Ey + F = 0 and apply the ecluations of inxersion.
Thus we have

xi 2
+ Y

t2
Dx'

4- F = 011..(x1 2+ y12)2 ,2
-1-y'

2)2
sx' 2+ y 2

x
n

s

p
y'-

1
,v Dxr

22 2 4- .2
+ F = 0or +

.... 4. yl
X.. + YIq

(2Y Thus since 50 + y'2 0 , Fx'2 + y'2) '+ Dx' + Ey/ + 1 =
2 2 D E 1or xl + y

(3).,Substitutini D E 1= p , E - fi, we get

C' : x'2 + yl2 +.D'x' +.E'y' =. 0

Which werecOgnize as a different circle (in general).

It may be of interest to discover whether C 'and C' are related to
each other in any way.

Exercises 10-6

The flrst five.exercfses are concerned with the effect`of in) rting e
.

given curve with respect to the unit. circle. The equations of th inversion
are

xl

2 n
x' + y'

2
x'

2
+ y'

For each exercise, draw the circle of inversion, the original curVe, and its
inverse on the same graph'.

1. 3x + 2y - 6 ... 0

2, y = 5x

,428



3. y3
10;.7.

4.
.2
y = 4x 41begraph of the inve4ted curve is'optional)

_

(x - 4)2 +-( r- 4)2 = 16
4

6. Finq the inverse of eagh of the rollowing lines with i.espect to the unit

circle. Graph alrOf them on one set of axes and all their inverses on

another set. The lines are: x = t 2 , -ir . 4- 6 0 y = 4- 2 ,

y t 4 , and y = t 6 .

7. In Exercise I you found the inverse of the line L : 3x:f- 2y - 6'. 0

Gall the inverse 1,1 . Now apply the'same transformation to . What

can you conjecture from the result?

8. Derive equations of inversion with respect to a circle whose radius is

r and center'at the origin.

9. The following four points are collinear: A = (0,-3) ; B = (1,-1) /

C = (2,1) and D = (3,3) Find the inverse oreach of these points

with 14spect to the circle x
2

+ y
2

. 4 and call the inverse points

A' , B' , C' , and D' Prove that 4

A-

Al(A C)

d(A',D9
cI(.E,C1)

B,D. d(B',D1)

(This ratio is called a cross-i-atio in more advanced geometries)..

10. Refer to the text and perform the construction ofthe inverse point P'

"'''

1
when r < Prove that OP OP = r2

Challenge Problem

AO.

Prove that a circle passing t rough the origin inverts into a straight

line not passing thrdugh the or

lo-r. Summary and Review Exercise .

We have considered two types of geometric trantfOrmations. The first

type considered a transformation as an operation which changedene set of

axes into another by means of translation or a rotation or both. In a transla-

tion, the axes are shifed in such a way that they remain parallel to their

429 2 3 3
a
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original positions and Qriented in the same direction; the origin is moved. Ir
A

contrast, a rotatioh keeps.the origin fixed but new axes hre obtained by

rotating t4le axes through fixed angle. Sets of equations were derived to

effect these operatione. We demonstrated how' a relatively compla equation

could be reduced to a simpler form which then could be drawn more readily.

Asa stoond type of transformation we considered the Mapping of the plane

onto itself. Rules were*gimen by which any point oi.sets of pointstin the

plane can be,moved from one position to another. This set of trithsformations

can effect translations and rota4onsu. It can also effect reflections,
*

versions, and other changes. Reflections are related to the concept of

symmetry in figures. Inversions can convert one type of curve into another.

The exercises illustrated some other typees of point transformations:

One of the principal reasons for studying transformations is to discover

which geometric properties remain invariant under the stated op ti

Geometries ire classified on the basis of these properties.

geometry is characterized by the fact that the measures of distance and angle

are invariant under the set of all rotationo and translations.. Thi,p set is

often referred ta-se the set of rigid motions,dince those transformations,

preserve size and shape. Other invatiant properties were considered in the
8

exercises.

Revie* Exercises

PART II

The "Review Exercises" are concerned primarily with several transforms-

tions not discussed in the text. They are presented so that you may discover
a

some significant facts
-

for yourself and may widen your experience with the

subject.

1. Find the curve fEto which the,parabola x
2

= 2y is transformed by each,

of the following mappings:

(a) (x,304-0*(2x,33r)

(h) (x,y) (x + 2, 3y)

(c) (x - 1, y + 2)

Draw the original 4prve and its image for each. Can you find any in-

variant properties under any of these transformations? t.



2. The mapping (x,Y) 11.(kx,ky) is called the transformation of

similitude. Let k . 2 and find the effect of this transformation upon

the graphs of the following:

(a) 2x + 3y - 6 = o

(b) x + y2 . 25

(c) Y2 = -Yx

t*

Oft

a W

a)

(b)

(c)

(d)

431 35

.1, dio

were special oases of this set. Tbr exad5p1e, the set of rotations are

derived by letting the constants a 9 , b = -sin e p C = 0

d = sieg8 e = cos 9 and f = 0 .

Consider the special case:

= + 1

and ftnd its effect

y,. 3x4 + 2y1

upon the graphs ;f the following:

111

' + f
OP a W

x
2

+ y
2
= 4

2
4x - 9y . 36

r

4x - 3y -+ 12 = 0

4x - 3y - 1 = 0

(

were special oases of this set. Tbr exad5p1e, the set of rotations are

derived by letting the constants a 9 , b = -sin e p C = 0

d = sieg8 e = cos 9 and f = 0 .

Consider the special case:

= + 1

and ftnd its effect

y,. 3x4 + 2y1

upon the graphs ;f the following:

111

(You probably cannot identify the i es of (a) and (b) unless you ,

*

vit*

study the Supplement to Chapter 7.)

(You probably cannot identify the i es of (a) and (b) unless you ,

*

x
2

+ y
2
= 4

2
4x - 9y . 36

r

4x - 3y -+ 12 = 0

4x - 3y - 1 = 0

study the Supplement to Chapter 7.)

431 35

4.
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5. In_Problem 4, construct lines (c) and (d) and their 'images on the

same set of coordinates. What tentative conclusion can you dray?

A

6. Prove tat the.mapping (w) --40(-x0-y) is a distance preserving

transformation.

.

.4
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TE003.

natural Trigonometric FUnctions (Degree Measure)

Deg. Sine Cosine Tangent aotangent

o o.000 1.000 b.oloo ***it* 90
1 0L017 1.000 0.017 57.29 89

2 0.035 0.999 0.035 28.64 88

3 0..052 0.999 0.052 19:08 87

4 0.070 0.998 0.070 14.30 86

5 0.087 0.996 0.087 11.43 85

6 0.105 0.995 0.105 9.514 84

7 0.122 0.993 0.123 8.144 83
8 0.139 0.990 0.141 .

i.

7.115 82

9 0.156 0.988 0.158 6.314 81

1(5 0.174
.

0.985 0.176 5.6/1
%

80

11 0.191 0.982 0.194 5.145 79
12 0.208 0.978 t 0.213 4.705 78
13 ,

.
0.225 0.974 0.231 4.331 77

14 0.242 0.970 0.249 4.011 76

15 0.259 0.966 0.268 3.732 75

16 o.276 0.961 0.287 3.487 74

17 0.292 0.956 0.306 ' 3.271 73
18 0.309 0.951 0.325 3.078 72

19 ) 0.326 0.946 0.344 2.904 (1

23 0.342 . 0.940 0.364 2.747 70

21 0.4358 0.934 '0.384 2.605 69

22 0.375 0.927 0.404 2.475 68

23 0.391 0.921 0.424 2.356 67

24 0.407 0.914 0.445 2.246 66

25 0.423 0.906 0.466 2.145 65

26 0.438 0.899 0.488 2.050 64

27 o.454 0.891 Cr.i10 1.963 63

28 0.469 0.88.3 0.532 1.881 62

29 0.485 0.875 0.554 1.804 61

30 0.500 0.866 0.577 1.732 60

31 0.515 0.857 0.601 1.664 "59

32 0.530 0.848 0.625 1.600 58

33 0.545 0.839 0.649 1.540 57
34 0.559 - 0.829 0.675 1.483 56

35 0.574 0.819 0.700 1.4213 55

36 0.588 0.809 0.727 1.376 54

3 ( 0.602 0.799 o.(54 1.327 53

38 0.616 0.788 0.781 1.280 52

39 0.629 0.7(( 0.810 1.235 51

40' 0.643 0.766 0.839 1.192 50

41 o.65 0.755 0.869 1.150 49

42 0.6 0.743 0.900 1.111 48

43 0.68 0.731 0.933 ,1.072 47

44 0.695 0.719 0.966 1.036 46

.
45 0.(0( 0.707 1.000

%.

1.000 45

Cosine ine Cotangent Tangent Deg.

433
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44,16"

TaVie II

.Natura1 Trigonometric Functions (Radian Measure)

Ra.g.

,

_

Sine Cosine Tangent Cotangent

.00 0.000 1.000 0.000 *****

.02
.

0.020 1.000 0.020 49.99
.04 0.040 0.999 0.040 24.99

i
.06

.08

0.060
0.080

0.998
0.997

0.060
0.080

16.65
12.47

.10 0.100 0.995 0.100 9.967

.12 0.120 uh, 0.993 0.121 m.8.293

.14

og

0.990 0.141 7.096
.16 0.987 0.161 6.197
.18 0.984 0.182 5.495
.20 0.199 0.980 0.203

-.

.22
(0.223g

0.976 0.224 4.472
.24 , 0.971 0.245 4.086
.26 0.257 0.966 0.266 3.759
.28 0.276 0.961 0.288 3.478
.30 0.296 0.955 0.309 3.233

.32 0.315 0.949 0.331 3.018

.34 0.333 0.943 0.354 2.827

.36 0.352 0.936 0.376 2.657

.38 0.371 0.929 0,399 2.504

.40 0.389 0.921 0.423 2.365
t

.42

.44

0.408
0.426

0.913
0.905

0.447
0.471.

2.239
2.124

.46 0.444 0.84t 0.495 2.018

.48 k

(1Z
0.887 0.521 1.921

.50 1 0.878 0.546 1.830

.52 0.497 0.868 0.573 1.747

.54 0.514 0.858 1.668

.56 0.531 0.847 g:76927 1.595

.58 0.548 0.836 0.655 1.526

.60 0.565 0.825
,

0.684 1.462

.62 0.581 0.814 0.714 1.4m

.64 0.597 0.802 0.745 1.343

.66 0.613 0.790 0.776 1.289

.68 0.629 '0.778 0.809 1:237

.70, 0.644 0.765 0.842 1.1at(

.72 0.659 0.752 0.877 1.140

.74 0.674 0.738 . 0.913 1.095

. (6 0.689 0.(25 0.950 '1.052

.78 0.703 0.711 0.989 1.011

.80 0.717 0.697 1.030 0.971

.82 0.731 0.682 1.072 0.933

.84 0.745 0.667 1.116 o.896

.86 0.758, 0.652 1.162 0.861

.88 0.771 0.637 1.210 0.827

.90 0.(83 0.622 1.260
t,

0.794
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Tdble 11

Natural Trigonometric Funct6ns (Radian Measure)

Rad. Sine Cosine TAngent Cotangent

.92 0.796 0.606 1.313 0.761

.94 h 0.808 0.590 1.369 0.730

.96 0.819 0.574 1.428 0.700

.98 0.830 0.557 1.491 0.671

1.00 0.841 0.540 1.557 0.642

1. 2 0.85ak 0.523 1.628 0.614
1. 0.86ffw 0.506 1.704 0.587

t,1.0 0.872 0.489 1.784 0.560
1.0 0..882 0.471 1.871 0.514
i.ib 0.891 0.454 1.965 0.509

1.12 0.900 0.436 2.066 0.484
1.14 0.909 0.418 2.176 0.460
1.16 0.917 0.399 2.296 . 0.436
1.18 0.925 0.381 2.427 0.412
1.20 0.932 0.362 2.572 0.389

1.22 ' 0.939 0.344 2.733 0.366
1.24 0.946 0.325 2.912 0.343

1.26 0.952 0.306 3.113 0.321

1.28 0.958 0.287 3.341 0.299
1.30 0.964 0.268 3.602 0.278

1.32 0.969 0.248 3.903 0.256
1.34 0.973 0.229 4.256 0.235
1.36 0.978 0.209 4.673 0.214

1.38 0.982 0.190 5.177 0.193
1.40 0.985 0.170 5.798 0.172

1.42 , 0.989^ 0450 6.581 0.152
1.44 0.991 0.130 7.602 l 0.132

1.46 0.994 0.111 8.989 '0.111

1. 0.996 0.091 10.98 0.09.1

1. 0.997 0.071 . 14.10 1 0.071'

. 0.999 0.051 19.67 0.051

1 1.000 0.031 32.46 0.031

1:56 1.000 0.011 92.62 0.011

1.58 1.000 -0.009' -108.65 -0.009

i .60 1.000 -0.029 -34.23 -0.029

1.62 0.999 -0.049 -20.31 -0.049

1.64 0.998 -0.069 -14.43 -0.069

1.66 0.996 -0.089 -11.18 -0.089
1.68 0.994 -0.109 -9.121 -0.110

1.70 0.992 70.49 -7.697 -0.130

1.72 0.989 -0.149 -6.652 -0.150
1.74 0.986 -0.168 -5.853 -0.171
1.76 0.982 -0.1 88

.

-5.222 -0.191

1.78 0.978 -0.208 -4.710 -0.212

1.80 0.974 -0.227 -4.286 -0.233
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The Greek Alphabet

A

B

r

A

a

fi

7

alpha

beta

gamma

delta

N

0

n

v

0

nu

xi

omicron

,

eps ion,

zet

P P

a

rho

sigma

H eta. T T tau

0 O ..theta T u upsilon

iota 0 phi

K x kappa X X chi

A 'X lambda 41 0 ,pal

M tu, mu ai omega

240
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For precisely defined analytie geametty terms the reference is to the

formal definition. For other terms the reference is to an informal definition

or to the most prominent discussion.

abscissa, PO
absolute value, 94
addition

of ordinates; 220
of raciii,,P45

of vectors, 9b
additive inverse, 105
Agnesi, Maria Gaetana, 186
aMplitude,

modulation, 228
polar, 204
of sine curve, 224, 228

analytic representation(s), 21
angle(s)

between two Apes, 65, 71, 125
between two vectors, 121
kdirection, 59
polar, 31 ,

angular Velocity, 176
Apollonius,
applications of, '

conic sections, 268
ellipses, 292
parabolas, 282
hyperbolas, 299

argumeht, polar, 204
associative property, 105
asymptote(s), 214, 298
axis (axes), 26

of a cone, 268
of a coordinate'system, 26
of an ellipse, 290
of an ellipsoid, 357
of a hyperbola, p98
polar, 31.

of reflection, 205
of a surface, 368
of symmetry, 205

bounded
domain, 213
function, 213
graph, P1X
range, 213

Cassini's Oval, 169
center of inversion, 423
Ceva's Theorem, 133
'Characterization of

,

goints on a,line, 106
circle(s), 27o

Of4nvers1on, 423
orthogonal, :,89

parametr4c representation of, 175
pencil Of, A8

cissoid, 187
coaxial family, 288 -

combination linear, 20, 106
lcommutative property, 104
1 component vectors 114, 334
components, x- and ,y-, 113

z-, 334 . f
composition Sf ordinates, 229
condhoid, 187
condition for a set, 22, 161
coneli, 366

axis of, 268 .

directrix of, 366
element.ofl 268, 366
'elliptic, 167
generator of, 366
nappes of, 268
right circular, 366
vertex of, 268, 366

conic sectione, 270
applitations of, 268
degenerate, "271
directrix of, 270
eccerit1city of, 270
focus , 270

conjugate a1s, 298
conjugate hyperbolas 299
coordinate(s), 7

cylindrical, 377,
in a plane, 26
111ane principle, 35
planes, 310
polar, 31
rectangular, 26
spherical, 379
in 3-space, 310

coordinate system(s), 7, 26
:Cartesian, 29
linear, 7
linear prInciple, 9
polar, 30
rectangullar, 29

cubic parabola, 206
cycloid

curtate, 184
paraLetric representation of, 182
prolate, 41d

tylinder(S), 363
directrix of, 363
elements of. 363
generator of, 36'43

projecting, 372
cylindrical coordinates, 37y
de Coulomb, 268

II

437
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degenerate
conics, 271
ellipse, 292
hyperbola, 272
parabola,.272, 281

Descartes, Rend', 1, 29, 91

difference quotient, 42
difference of vectors, 99
Diocies, 187
directed distance, 10
directed-line, 61
directed segments, 10, 92

equivalent, 92
length of, 10
magnitude of, 10, 92

direction
angles, 59, 318
cosines, 60, 76, 318
on a line, 57
nuMbers, 57, 76, 315

dtrectrix
of a cone, 366
of a conic section, 270
of a cylieder, .363

distance, 9
between a point and a line,
between two points, 27, 311
directed, 10
measure of, '9
normal, 75
polar, 31, 204
in polar coordinates, 37

distrfbutive property, 108
divide a segment, 18
dot product, 122
eccentricity, 270
Elements, of Euclid, 1
ellipse(s), 270, 290

applications of, 292
degenerate, 292
focal radius, 295
major axis, 290
minor axis, 290
parametric representation of, 179

ellipsoid(s); 357
axes of, 357

elliptic
cone 367
hyperboloid, 361
paraboloid, 360

epicycloid(s), 185
equations of rotation, 398
equattons of translation, 392
equilateral hyperbolas, 299
equilibrant, 119
equi4brium, 119

Elemlefits

even function, 20A
extent of a graph, 202, 212

78

4

extreme values, 216'
factoring a function, 233
Fermat, Pierre,'91
focal radius, 295
focus of a conic, 270
functfbn(s), 202'

bounded, 213
even, 208
period of, 203.
periodic, 203

general form, 47
general linear equation, 47
graph(s), 22, 161

bounded, 202
extent of, 202, 212
of polar equation, 168

Grassman, Herman, 91
Hamilton, William R., 91
helix, 375
Hilbgrt, David,'7
hYperbOla(s), 270, 296

applications-of, 299
asymptotes of, 298
conjugate, 299
conilugate aiis.of, 298
degenerate, 272
equilateral, 299
transvse axis of, 298

hyperbolic paraboloid, 363
hyperboloid(s), 361

elliptic, 361
of one sheet, 361
of two shtets, 362

hypocicloid(s), 186
image, 413
inclination, 44
inner product, 121
intercept(s), 44, 3*
intercept form, 46
invariant proPerties, 390
inversion(s), 423

center of, 423
circle of, 423

involute of circle, 188 401

Kepler, 268
latus rectum, 280
limagon, 244
line(s)

antiparallel, 68
coordinate system for,

directed, 61
direction,on, 57
equation of, 41, 43-47, 76, 79
inclinatiom of, 44
normal, 340
parallel, 67, 61-i

parametric equations of,'188
perpendicular, 67
symmetry of, 205



linear combination, 20, 106
linefir coordinate systemprinciple, 9,16
lotus (loci), 22, 161
magnitude di' a directed line segment,

10, 92
magnitude of a vector, 92
major axis, 290
mapping; 413
measure of distance, 9
Menaechmus; 268
Menelaus' Theorem, .133
minor axis, 290,
modulus, polar; 204
motion, parametricrrepresentation of,170
multiplication, '\

of ordinates, 223, 226'
scalar, 98

Nappes of a cone, 268
lOwton, 268
comedes, 187
nine-point circle, 307
normal, 75

distance, 75
form, 76, 82; 342
line, 340

rays, 77
segment, 75
vector, 341

.

. - normalized pair,.58
normalized triple, 317
oblkte spheroid, 357

Voctans, 310
ordered pair, 26
ordered triple, 310
ordinate, 26'
origin:, 10, 26; 93

princTilie, 93

' vector, 93, 96
orthogonal circles, 289
parabola(s), 2/0, 260

applications of, 282
degenerate 272, 281

paraboloid(s), 359
elliptic, 360
hyperbolic, 363
of revolution, 359

parameter(s), 20, 170
parametric representation, 20, 170

of a circle, 176 -

of a cycloid, 182'
of an ellipse 1(9
of a live, lA 313
of400tion, 170

path, 173
pencil' of circles,
period of a fuhetion, 203
periodic function, 203
perpendicular vectors, 123
plane symmetry, 355

point arcle, 271.05
point of division'

internal, 17, 27
of.a segment, 18, 311

point-slope form, 43
point symmetry, 205
point, transformation, 412
polar

amplitude, 204
angle, 31
argument, 204
axis, 31
coordinate system, 30
coordinates, 31
distance, 31, 204
equations, relat6d, 167
form, 79
modulus, 204

pole, 31, 32
positive ray, 58
projecting cylinder, 372
projecting planes, 327
prolate spheroid, 357
properties of-vector operations., 104
idadric surface, 351
ray, positive, 58
reflected image, 205
reflection, axis of, 205
related polar equations, 167
representation)

antilytic, 21

Ta4rametric, 20, 170
resolution of vectors, 131
retultant, 96
rigll-handed system, 311
rotOion, 397
Ruler placement postulate,
Ruler postulate, 7
scalar, 94

multiplication, 98
Schwarz's inequality, 134
segment(s) t,

valrected, 10, 92
midpoint of, 18
normal; 75
point of division, 18

set(s)

condition for a, 22, 161
sine curve, 203

amplitude of, 224
slope-intercept form, 45
spacp curve, 372
spherical coord1nates,'379
spheroid, 357

, oblate, 357
prolate, 357

stelan, Simon, 96
surface, axis of, 368
surface of revolution, 368
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symmetric equations, 319
symmetric form, 41
symmetry, 205

axis of, 205
line, 205

plan, 355
point, 205
tests oft 206, 207, 209, 211, 355

tension, 118
tesseract, 324
tetrahedron, 346'
trace, 353
transformation of axes, 389
transformation of coordinates, 389
translation, 391
transverse axis, 298
two-point form, 14111

unit
point0.10
ve&or(s), 940 114 337

vector(s) 91
absolute value, 94
additive inverse, 105
angle between two, 121
associative property, 105
commutative property, 104
components, 113
diffekence, 99
distributive property, 108
dot product, 122, 127
equivalent, 92
inner product, 121, 127
inverse additive, 105
linear oathbination, 107

A

vector(s), 91
magnitude of, 92, 94.
normal, 341
origin, 93
origin principle, 93
origin-vector principle, 96
perpendicularity of, 123
properties of operations, 104
resolution of, 131
resultant, 96
scalar multiplication, 98
sum, 96, 97
unit, 94, 114, 337
x-camponent, 113
y-component, 113
z-component, 334
zero, 94

velocity; angular, 176
vertex cit cone, 36.
'witch of Agnesi,) 186
x-axis, 26
x-component, 113
x-coordinate, 26
X:Y.--plane, 310

xz-plane, 310
y-axis, 26
y-component, 113
y7coordinate, 26
yz-plane, 310
z-axis,' 310
z-eomponent, 334
z-Coordinste, 310
zero vector, 94
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