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e ' ,- INTRODUCTION AU -
.~ o ’ . \ ' v
The texb Ana]:ytie Geomet»y hed its beginnings in 1962 when a small
committee of mathematicians and teeehers met to discuss the question as to
vﬂhether ‘there whs a need for & new text. in enalytic geometry for high\schaol,
and’ vhether the School Mathematics Study G;'oup should undertake to ¥rite one.

‘- Since \t.he conclusj.gn affirmative, some guidelines vere prepare& to indicate '

_ the form and centent ‘desired. .
1
‘ In the summer of 1963 en experimental text and accompanying comehtary
- _were prepared by an SMSG writing team consisting of ersity[mat.hemsticians .

-+ ' and high school teachers. .During the follm-'ing schmlkyeer this text was used
~ by ebout 30 teache?s in schdols distributed from Califorhias to New Englend

s‘ ‘ byt mstly in 2 centers vhere the teaéhers had the benefit of conferences

- : with ea#ch other e.nd ‘with an 1ntfr sted college professor. The complete re- ‘
vision of thé tedt and comep*ﬁery in the summer of 1964 took into eccetint both
the comments and -criticisms of these teachers, and the rcommendations of &n

, advisory comnittee of the 8MSG Board. We are deeply indebted to those who ,

‘ helped with suggestions, especielly to the t,eechers who used tlie’ experimentel
‘text.. - _ S _ \

AT A.nelytic Geometry is :Lntended for use as,a one-semester course in the 12th

grade.. It is eRpected that the gtudents would have completed m I.ntermediate
~ Mathema ‘b}cs or the equivelent. If it is plasned ‘to use Elementary Functions
.with the same class, 1t 1s suggested tat that text be ua’7 before the Analytic, '
-« Geometry. EHowever, kﬂowlefge of Elementa_r_! Functions has not been assumed in

. ‘this. tE;(t. = 4

The suggested time schedule here is only tentative; the teacher will e.dept
it to the particular claes. Certain topics are presented here for complete-
ness; for example, some of the \gl-k on forms of an eque.tkon of a line, on conic

. sections, or on vectors, will have been studi‘ed previously by many classes.
“ Very little time -need be sgent on fa.milie.z"' work, giving more time for -new

¢ topics or for supplementary work. -

We believe that & reasonably 'vell-prepered class of the students who elect .
- ;],ch grade mathematics can complete our basic text (Chapters 1 to 10) in a
eemester.‘ The meteri&l- m the supplementary chapters was placed there because
4 it was not felt esPentie.l t.o the continuity df the eour’ee. Hawever, ‘¥ feel
that this is imports.nt and interesting materia.l, we‘think that it is yithin
. the grasp of alfle students and will broeden their mathematical background.
* . . 1 . , ,

6 .
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>how much time 1t yill consume.

.

It 18 hoped the.t good cleese} e.nd individual able students will, use the supple-
" nfentary cha.ptera. '

v Following the opening remnrks for each chapter in this CQmentary, ‘you
will find running comments keyed in the margin to: the pages of the student's
text. These contain further explanation and background which we hope vill be .
useful to you.

. . ”
e -
-
.

A WORD -ABOUT THEMCISES

L ]
AT

* Some of the exercisee are designed to provide Just exercise, but you vill

find that some others are far from routi,ne. Within each set of exereises the

arpangement is usually from the more routine to the more compl ex problmns

The most difﬁeult problems are listed sgparately as "thllenge Problens

A fev probléms have been included which "extend the material beyond the regular
textual ‘treatment. We advise Yyou to look at each su¢h problem before assign-
ing it to a student so that you may ascertain whet;he.r\ it’ is eppropr:l.ete e.nd

We cannot suggest e}ppmpriat.e class assignments’ qineJ\t.hey w}llﬁvep",'r with
the prepa.ration and a.bility of the class. Of course, énpugh drill work should
be included to fix the fundamental skills and coricepts. In the case of a @«
welltprepared class, the drill-type problems might.be omitted entirely on amy
topie previously stud‘ied While the parti@ula,r problems a.asigned will vary
with the class and perhaps even with the individual pupils, tt is hoped that
all students vill be assigned some of the problems which may be more time

consuming but which will show them ,some of the "fun" of Analytic Geometry.

Solutions for the exercises :ppe&r at the ﬁoint in the ng comentary
corresponding to the plfcement of the problems in the student'®text. Any

. # given problem may hsve several acceptabie solutions, therefore, the solution

presented here should not beé considered as the "right" or only, solution.

— ’I'he student is encouraged freqluently to use his own jud'gment in *u'suing a

solution, hence, if he Presents a sin’lution which is:correct, it shoyld be

accepted. . . .
. ) | ' ‘ . ¢

. .
. . . . . . .



. The basic text (Chapters 1 to 10) Gesigned to be covered in o[ne
v se;negter of eightgen weeks. The time s edu!h given below 18 the result of
combining thé opinions of 4fhe authors wi the experience of: :ahe teachers who

Vised the prelidinary edttion.’ < PN o

‘ . . -
o, - If you’ find that You.r o{a&s ixfalli&g hehi;xd the 8Suggested schedule,
yOu ‘may wi'sh to compeneate by treat
. ing fewer exercises, If thie procedure 1s \not satisfactory, you probably
‘should consider cutting short, £irst on Cha*‘ter 10 and ¢ on Chapter 9. The
text was,designed so that, the leasts loss to sthe stndentstuld occur in this~

ng som\gs,topics in less depth or by ‘assign-

B ctreumstancg. .. - B \ \\ ) B R
" . Chepter . ‘  .No. of. = Cummlstive
‘ ¢ * Days Total
D ' 1. Analytic Geometry ’ f "1 1
e 2 Coordinates ana the Live . S ) 11,
K 3. Vectors and Their Applicatioms R S 12 23 .
. ‘%4, . Proofs by Analytic Methods = S 8 . . Y
-5, Grap;xs. and Their Equations ] & 9 b0
6. Curve Sketchi_x;g and Incx{s.?roblc-ms ' ,' o1 51 '
. 7 Conic Séctions | e { o - 9 - 60
* 8. The Line and the Plane {p 3-space - 7 ‘ Co67
‘g, Quadric Su:};c'qcés L o T B | NG ’
10., Geometric ngfomatiéns [ .8 85‘ -

e .
. A ! -
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Chepter 1 . - . -~ '

S - AHALY.‘I‘IC om»fgmr : oo .4
. S L A N ; ] B ,

- Chepter 1 1s.a brief introduction to the text. It is intended to give -

the students an idea of .vhat a.nalytic geome%ry is and te show them they

already - knovn\ something ebout the aubject. If possible, they should read it
before the first meeting of the class and reread it at ‘intervals durim the R
course. =, R /‘ : T T e

]

~

Since coordinate aystems are so importa.nt in ana],vtic genmetry, 1t. is
advissble to diacuss Jdn class somé of the examples Rentioned. ‘The students .
ahould be asked to explain latitude and longitqde, which are mentioned br(t
not defined in the text. They might be invited to suggest other coordinate
systems for a line, A plane, space, § smicﬂ surface,’ and a torus. How-

i

~ ever, the coordinate systm which are

in the course are treated in
detail later, 80 not much class sime shou.ld e spent on them at thiﬁepoint.

[ .-
. * (Chapter 1 also. includes a discussion of. the reasons studying. imly_tic

geometry. It is felt thét students should know something of the role of

. analytfc geometry among 'the various hranches of mathematics, and that they .

t

should realize that their main goal is not 1nformation about the partic\ﬂar
’topics studied, but rather understanding of a&:d abi]ﬂy to use the techniques
of analytic geometry : 4 - ,‘ : »

' Analytic Geometry really began whén it vaé realiZed that every geometri
object'and every geometric operation can be referred to the nunber system and,

~heqice, to algebra. The -npst significan’c steps 17(1'.}115 ,arithmetization of
Zmetry were tajen b two. Frerich mathematicians, Pierre Fermat (1601 - 1655)
and René Descartes ;}(1596 . ‘1650) Fermat begén a.nalytio geometry in
1629 but his treatise Ad Locus Planos et Solidos“Zgog

. yntil 1679. Chief credit, t.herefore, is given t® Dedcartes whose Geometrie-
was published 1‘n 1637 and H‘ho influ.enced the work of many. mathematicians In

-
1

e was not pub;iahed T -

v

the Geomgtrie, one finds the earliest unification of algebra and geometry.
Apollonius and other Greek ma},hematiciana had used coordinates to locate point;s
in s.geometric fi&ure. it was Deacartea who introduced the algebraic represen-,

dation of a curve or surface by an equation invb,}ving two or three variablea.
‘ X )

.. : L -~ i
- o SR v

0 .
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‘Descartes' bogk does not, captain & systematic development of the subject

a

such as you find in this text. The method mst be constructed from isolated /- '

statements in different pu'ts of the treatise. It is int.eresttng that Ferdat's

4 _ v
',xmrkincluded t.heequations ifsmx, xy =k, xa-syanae ,,ietaayr‘):be. ‘

-

for liries amd ccmics. : , . .. i

. . . *

Many mathematicians extended Descartes' @ork. Among these wer John
Wallie in his Tractatus de Séctionibus Conics and John DeWitt in his Elementa °
Curva.mm Linearum. Most of the work of Descartes and ‘bis- contWes vas
concerned with ‘the. geometry of Apollonius. Newton worked \rith algebraic Lo
equations in his study of cubic curves in 1703, Thé first analytic geometry
of conic sections divorced from the work of Appolloniua was developed by Euler
in his Introductio in 1748. . .

&
" Since that time the methods of Analytic Geometry nave beeonfe'the. mbst
sfgnifieant in 'L:h~ study of geometry. In more advanced mathems{ics they have
essentially replaced the synthet.td method More reécently vector methods have* ‘-
been incorparated in Analytic Geemetry and are be.i.ng usedSmre and more .
, widely irﬁ‘msthemticel applications, .4 :




Many examples have been intersperged throughout the
. increase the number of pages in the chapter, hopeful],y they uill help the
student to pmceeﬂ more- rap‘idly and decrease the need for classroom explanation

7-15

-it is the "official" version
‘ ﬂQd Ruler &#flacement Pnstu],ates enable. us to make any pcfnt on a line the
t origin of a‘oordiﬁate system, and 45 nab ‘either direction from that mpint

. [} ' .
[ ) &
- y _ |
. L
, L] _.‘ w'
f . F_. " .
. - a . ~ - ’ -
A» ) . oy - » ‘
ol ©. " Teacher's Commentdry .

" ’. ' * ' C . - :
", . el . Chapter 2 _ ° ‘ . ,
‘-l

¢
A -

Thia chapter is fundsmentsl to the rest of- the book. In it we discuss
" coordinate systems for a line and asplane. We also treat the analytie
“geometry ot lines’ in a plane. A good deal of the material in the chapter

¥ famlliar, f pre\r.l.ous edurses; it is” Sepeated. here for purpose of
review and leteness. You will probebly find that the material of Sections

2-1, 2-2, 223} and 2-5 may be covered very quickly. It is likely that: the

mater,ial on polar coordinates p direction on a line ’ angles betwden lines, and
€ the normal and polar fcms 6f an equation of a line w.lll be new to most (

stud}ents. The mjority o{f the class time should. be spent on these *_topice.
v&. Though these

and discuss‘ion“ Many more exercises have been included than any glven class

might be expected to do. You will probably find it advisable to break the
.chaptesSinto two units for testing purposeg . For this reascn pset’. of review

exerclses haq been inc],udpd. after Section 2-3. : L

If the stucients are to get anything out of this section, <hbky
tfnderstan clearly the treatment of distanee in SMSG Geometg By the
I)istance stulate, to every pair of.different points there corresponds &
unique posit;,ve number. It is called the distance between the points beécause

tof the intuitive nctign of dist.ance. The Ruler

the positive one. However, we can not choose the sca.le. it iaT already there
in the gemnetry. Be‘tvaénness ana. ccngruem:e are d.efined in terms of coordin-
atee, ‘and thue coordinate eystesms are fundamentel, in the ’{evelopment of the

SMSG Geometry. - . , %

L] e

Nevertheleas, 1ntui1iion #dells us that scale doesn‘t really matters If,
two “boats are eque.lly long,-‘their lengthsfe’xpreeﬁﬂ’iﬂ meters ang equal just

as their lengths expresse& in feet art ¥quall Let a, b, andﬁ be the
T N . A

o\

R B I R A
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eoerd,inates of the %t[: B, and ‘C ona ﬁne, in a certain coordinate
syst.em, and & <b < c M is‘: ye change the size of the'units. (but nothing

else) in our eoordimate»systm :md a‘ b?, and c' are the new coordinates

of the sams points; e’ Should fi}d.that a! < b <c' . Wehave ngt sttempted );

to prove that we ac® l;hve t,his £¥oddom inethe text. In order to get started:
on the task before ué,. we ha\re offered examples illustrating the, vays in wﬁieh
we normally assume this \f:ree&mn ins‘epp‘lying geometry. The. examples themselves
are trivial in difficulty ahd vere deliberateiy chosen so; their purgose is

~to illustrate the many assumptions we make in sdélving even a simple.problem

* Principle.

10

as well as the i.mportanee of these assumptions. ~ . .

The techniques of mMic geometry are more saleable if we exploit t.e
the fullest the freedom to choose various voordinate eysteme When the
occasions arise to mention this freedgun, we shall make much of it usually by
invoking a grandiose principle as vr;}o here in the Linear (bordinate S)'rstem

* e

. -

*
,

/o : .
In this principle V\ere actually postulating a theorfm we could prove,

but the proof is difficul® for most students. We bave included material in
the supplament to Chapter 2, for able students who are well versed in SMSG

* Gepmet try and' the coneept of function, and who are interested in the deductive
nature.of mathematics. " . ' -

RN
2N "‘.“1’»"

Note that the symbol "d(R,8)" is defined in terms of+«a fixed coordinate
system. It would be mice if our notation ,sﬁowed t?ls "but that would make
i‘E rather 'complicdted. It is advisable to stress this point. when the symbol
1s introduced, so the students will beé reminded of it every time they see it °
latert:: oo - .‘. . S . ' -

. » : : . p

The definition of a directed segment will pmbably seem rather unnatural *
to the stucients. They will i‘eel that the ided of the segment AB ' considered
as running from A to, B- is quite clear and they will wonder why we glive
this strange definition It may help to ask them to try to defing the concept
M terms which are "official" in our fbrmal. system. They will find that any

definition of this kind, and no other kind is pennissible, scems unnaturel.

This is not the first ‘time the sjudents have seen such a deftnition.
They undoubtedly felt they knew what the. inside of ‘a trimngle was hefore they
studied geometry, and most of them were prqtmbly surprised to find out how.

much trouble it was to give an scceptable definition. ’
R ) .. - . T » . -

£
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-P "-"- #‘ L Exe*'cisese- - ;‘". ‘_“g ‘ Lt B
o - S5 T \P . R - ’.‘
. l There lhoulﬁ-be same agrement betveen the nun;be abtained by’ comparim L
R these measnrenents and thost ﬂuin‘ners in the text.® However, the gegree ' -
3 -, .o of .agreeme:rt ’will degend upon‘ ho'w well‘ the subdivisions Gf the units are " :_‘
estimated. The congpanﬁs of. pmportionality shoula be consigtent. -

. L]

- 2.‘ Trfe side 14 Mdasired to 2 pface accuracy a.nd. the results are. um-rect - R
' ’t‘.p'.a plag:e accuracy. The- cl,igcrepency between 2.53 ami 2 5k is )
- .
raL n¢ signtfiﬂant ‘Qecaﬁse théy are the sang to o place accuracy i a0
R .o 3 HOPefultly, «studen:cs will be e?ole. to ant;i.cipate that the proper units ';.j,‘_f - A% )

are féet, the com;puted‘ SWeT . (lEn ft - 37 6992) seems s’o ide,alized

. .
- 3 .

"to be mee.nin_gl_es_s . .o

-
. R3

ST Ce . R
- : k The ‘Banswer de_pemd upog the source of the informgtion as to the
o distance from Ne:n;r Yo 0 San Francisco. The answer should be clos‘e . ‘
to 400 miles tq the inch. R v .
g - 5. m represents ss 330 miIES‘ the "1ine" f‘mm New York to SmFrancisco X
' "would be appmxgnately 9,2 1nc;hes long. . : .
* oA A o .
6. The bicyclist travels at the rate of 8 mi/houf The friend travels . Coe

ae

at the rage of 32 Iun/houl;,,.or & 20 mi /hour. P ) .
~a) Bt - 20(t - 2) = distance apart at time t . One hour after the

“— - friend ‘begins (v = 3) the distance apart is & miles. ' .
. b) When the distances both have traveled axg, eqpal 20(t - 2) = 8t

and t = J% ‘hours. The distance is (appmximately) 27 miles.

7. Rate of bicyclist A 1s L miles/ycur.

. .
. Rate of bicyclist B is 5 miles/hour. X , "
Rate of preposterous bee {s 10 mil'es/hour. . ‘ - r S
a) 10t + 5t . 30 i T
o 15t = 30 . -
b ; . N . . . - “ -
' B wour . « .
* . Distance}:bee traveled . 2 X 10 = 0 rﬁi. . -
: b) ) ¥t + 5t = 30 _ B f
, y - " _ . ’ ’ gt = jo _ _ Py
- t - 239- or j% hcml's . b :
. ' ot ne
. . Total distance bee traveled = 55 X 10 or _55—5 mi.?
- M “ ‘
“ b .
% . “ K
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. . . ~ et
. ‘ f - ‘-P 2 ' :
. . 3 +
. : < . oo ' s v \
N 2-2 . . -.. * . - . .
, - . . - * e X

;15 ¥ The sﬁateménﬁ of tie Linear Coordinate System Princiﬂle cleaply f;dfcates
“that® the meslsures of distance are pmportibnal but it 15 perhebs not 80

‘ clear that thé criteria for order, or betweenness,-alsq’can;y over in the

" .. ..coordinate_systems which we consider. If is nqt a trivial matter to show o

. ['thap 1% does. Unfortunately, any’ numerical example would be, hopelésisly .

artificlal. An Lllustrqpion of this idea gan be' found’ ﬂ.}ﬂuﬁics-‘ &he

boiling point of alco);ol is between the boiling poiet of water anq the

freezing poiq& of evater. {The relationship df.betweenness would holg for the

oorresponding temperatures at these points, wnethef indicaféd in‘the

e Fahrenheit or the Centigrade scales, - o .
_ R .

18!-‘“ The notion of a peint of division nay be extended'to include the endpoints
of the segment and points external to the segment, but directed distance

i?ould be used in this cése in order to mssuve uniqpeﬂesg If in the eqpntion

J(fxﬁ;- L t, we define 4(P,X) to be the’Rirected. dlsténce. from- P to, X and
a(p,qQ ’ .. ) e - |

d(P Q) to be the directed distaﬁbe frhm P to, Q, 'ﬁe'may write N
o 1 - ' —u—t' M " p-g‘\\

q--,p -t L ‘ -

“»

In this ease, when 0 < £ < 1, we still obtain internal points of division .

When t = 0 , we obtain the coordinate of P when- t =1 , we obtain the
coordinate of Q. When t <@, we obtu ‘L@}'d.i.nates of points in the

ray QP  which are external to TG ; wheén®t ‘> 1 dve.obt n point% in.the ray y
PQ which are external to PQ

18 If your studentsnare like ours, they will comprehend the "notion of 8
weighted average even more clearly when it is applied to test grades which
. - L}

are weighted” in calculating the final average.

. 20 ?here is ditional material on linear combinations in the Supplement
to Chapter 3 and in SMSG.IntermediatefMathenatics on pages 374-376 and.page .
Lig, ) .‘ o '

The parametric representation is equivalent’ to the extension of the
notion of point of divis sion given in the note on page 18. If the SMSG
) beometry with Coordinates is available, you may wish to iook at ‘the material

on pages 107 lll

- 1 The material on the enalytic representations of the subsets of a line is
more important as an introduction to latér we{} than it ts in ltself. It

provides a roview of the notion of the graph of an equation and a remlnder
. | ) .\}\‘\
-
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that conditions nthér thian equations aiso. have *gxlaplis'. Wthe stidlents are

not familiar with the pmperties of inequaliues s 1t may bq pecess&x‘y t.o ¢
spend‘a little time on them at this point. - - ol
A . e * . .
/) [y . ‘ ' ¢ ‘ : .. .
e -» - t .
. ) . S o
\( . ‘ N : - © o .
1. Sy _ ' Exercises 2-2 ) - . .
(8) S 2-170 1 2 ) - o s
L1 t.t 1 1 & | . .
+‘*‘+H H_*" +"¢‘+‘+‘H_"' Tt ] st+H'
- ‘ . . : . \ ) . :
(v) 0 1L23 45 (g 04 omsT 08 10 LR ' La . LOTP
111111-11+‘||‘+|-|,'
T 1t 13 _ .
e« . " , . ) ~
(c) 01 3 5 (1) s -3 -101,2 3 5 7
. (I D S U O £
L’ ' ‘ l ' l l l # ' ’ l"“*“‘ ] | R LR
- ‘ )
» s $ . ) ‘4 .
{a) 3-2-101 234567 (-2 --:%0. | 2
7 CE W N T U T W N W '
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C2 @) 3gxgh (). (x+2)(x¥1)(x- 1)(x- 3

N ¢

. & . -Atermative'(x= 3)(x- 4)0 A
" - (b{ ~2¢x<2 B (8) lx—-ng%
“a T ) 1f b >a: o Mtemtim‘_l' ‘.x;_3
oo x>a+2(b,a)= -8 S ;.'5.5 j-5
Cw (@) x<;2+_<x ) ) x.<3 N L
x ‘ 1) sin = f £ o - -~ .
. ) (x+1)(x)(x-l)(vx-3)— <o B : "
) . .. Alterpative. -1 _<_ x <0 (J.-) qin 6 ;0 . .
"7 or 1<x< 3 ’ T
e O ' .
] S 7 : , - .
- 3. (a) 3a, -3a ‘ o } ' ’ ’
(o) Al vgluesfaf x such that 0 < x< 1 . ) .
4, <(a) 'mssléi_ ; . a=6 e ' b=9° ..'
(b)'m?% . L& a=3 |, , * b=8
| (¢) m=7 “ . a=r+£e, bnr-és
=T . 3 3
© da) mle(rat)yel 7 cas=(r+t) b=(r+t)+2
LY . L 3 - .. * ) u ) -
. - (e) m=r+.%t’ av=-§f-r+:-' . bng = + 2t
5 17 7 . _ 1
: (g) m= }-(ra +8° - 8) 8 = g(r2 - r) + 1(52-3) ‘b= —(rz—r) +
\\ E/T ,“ 3 1 < § L, 3
N . . o - 2,.2 ‘
, | | ’ ‘26?0
.
(0) m =2 +5) a=§r‘+%s - bv=zr+ba
- ~ .
, 5 (a) X=@ ‘ -
: (b) X =P . .
(e} X 1is between P and Q
(@, Q is between P and X
(e) P 1is between X and Q . N
- (f] Q@ is between- P and X
. »
‘ H
..~ 16
IR P r




™

.‘ ‘ f‘.\ ;‘: :
" '_’j ’ Cwo
- -‘ A ] , \
] . ¢
6: (3) t = -l 8, . . e
- ,.A £ -‘ ‘.!’e ‘
.o v=3 P - .
.. X 2 ]
- b .tgn_ ]
“( ), 3 ‘ A,
LI
. {e) £t=3
‘t.=‘;l . . [ 3 B
(d) ¢ = -x- - o .
. te= 1 ' L
. ' l 1“ ‘.
7. (a) aaz) ‘"% .-3_ 1 " *
- W xR Tl L -1 .2 -
2, ~.°2 -
[ ) b .
. 1 .1
(b)dBC*l§-a§_i_£.
- alc,n) - L j1- -2 2 '
R A B '
1,1 -
® -
'(c)dCD=2§ 5 o2 _ 4
alD,E) T 9
: ; »
8. (a) b =g,a +£c L
3 3 . .
T N \ -
(v) c=%b +-§d
9 e B
(e) a=qzctze
1 . ’
9. {(a) ‘I‘l=l§ T2~?
1 1.
® 7,=2% T,=3%
] 14 41
23
10. P i or % v ]
. g=1 or kb .
‘ R=6 or 12

e b
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A - M ’ 1

The teacher \ﬂll?have to u.s‘/his &mm :judgmept as to how much time should

&e spent, on cOordinate systems in the pl;me qot of the type we defide, N

For example, if we consider twor

perpendicular lines and on each

of them a perfectly arb&trar;r lihear coordinate system, then by the method
) descr:lbed in the text theére is e tablished /a one-top-one corraspoqdence

‘between the points in the ple.ne and the ordered.. pairs of real nuibers.-

However, many things beccme mox‘e camplipated. Thg aistant:e between two

: points » for example, is nn longer given by the usua.l fém;la Probably.

nro .wre than,a few m.inutes shculd\)e sperit, gn this in c‘lhss, afier ‘which
Ghallenge Ecercise 4 on page 54 can be assifgned.!\ (see Supplement C for

. -more on this subject ) " ; .
We may, of courseg extend the notion of .point of division &8 we did
page -18. : ¢ . . .
[ ]
If tHe SMSG Geemetry with Coordinates 1s avgilable, you ‘may want ‘to

29

Llook fat pages 5&3-550,_ where there is }n alternative development of the
parametric representatioQOf the poiﬂts on a line. '

]

1.

. r
Exercises 2-3 ) .
1. P o . - ) . /
(8) M= (3,43) N
As (2,3) o
B = (4,6) , » _
1 T ] -
(b) M= (5,75) . . S
A = (L,6) ' ' LT
B = (6,9) N \
11 -
((-‘) M f (55" 2?) © ¢
A= (53,5%) .
2 2.
B _(>§ :"ETI
11 '
(d-) M= (’2§} 55) - <,
| 1L ' ,
A = (" ‘j—, 13 ) N -
B (-3, 7 ) )

14

p

-

on

.
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N

e

- h.’ If,inequation (3) xo xl or, YQ..= yl.‘, St

JERIC .

a(a,8) = /((-1) - D2 + (u S(-1u¥

= /300 = 2/85

d(B o) =G - (5)2 + ((- 1&)-(6))2
- AB-87

d(A o) = /(- 1)--(5))2+(u- (-6)°%
- B -

da(A,B) + d(B c) # a{a,e)

This verifies that the pcints are not collinear.

20°

o . . g dxoi- “0
LA . ‘ X&EeT 4 o
. ' or ' ] ’ . “ . ';‘ :
S ’%Q Wyt @y,
_ . B A ual -
a0 : . % T .‘ : ~
B .. simliyieg, .. xixg {
REARE s °F - :V“'o P} R
et . These afe conditions. descnﬁmg pointg on 11nes. el ta the y-ms
oL, ?L ?"“”‘
-*'v"r % or xiaxis mspectiwely. < ‘ ¢ o f
P -«-Ca) Subst1titting 1n{0 equ&tipn (1) we,see that ;
v 3 9 -
L. 10 .6
v 25 5 v
: -‘ Ve 2 .2 . Foints A, a,c collinear
: . 575 "?
k: ' ‘ -
U B Chgs . e
, - d(AB)_J(-,_(3))5+(o_(5))’§
oo F - TF -2t
' 1
" a(s, c) - /(( 3) -22)2 + ((- 6) ] 9),2
, 6:1/35_6 5” ’
4(A,C) = K? - 352 + @‘-,9)2 '
- =B =33 .
~ a,3) + a(a,0) = 2/3%% 3/ - als,0)
. €, . A, B, C mudt be collinear
' (b) o=l -3 % & - (b))
=5 -3 -6- (-1)
. . 18
I ;4-8- not collinear
. Check:

-

.

\
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t

\6.‘ leen Lthat e A (1;-1)'-"‘,.
o < B(47) jemd |
B(y-3)

- .
’

30«33 Pola:' coordinstes ‘are a new ‘topi
Ry 4
taken in their presentatiem The primary difi’imlty is the mzltiplieity of

t.he polar representations of a given point. ' _ - . .

3

AR

=3-1 T
L

5 1 R B x

30 o o ..

c for mst studenta and care mus’tabe

t ]

- Ot-her examples of the physieél xpplication of polar coordinates oceur
in air and sea navigatian. The path of a racing sail boat baating up to a
mark may appeal t.o\ some students. The paths acrpss newly planted ldwns on’

corner lots bear this ‘out, too.

31 —/Y{'the definition of the polar angle it may be necessary to stress that

pitNal 1n verbal descriptions. The

in*the use of polar coordinates. If

teminal ray of the angle need not contain the point‘. NI‘his is a reeurrent _

angle POM ( is not ’che only polar angle
. . N

y

The fact that (r,8) and ( -r,0 + n) both represent the same point
is'worthy of emphasis. A student of the calculus must ‘exercise particular care

a curve is symmetric with respect to the

‘ 9rigin, {t is all too easy to sum up the area baunded. by the curve on one
‘ stcle of the origin--and at the same time subtract avay an equal area on the

© 35

]

K

other( A Judicious use of symetry and boundaries is essential in auch casgs.

pnce again we want to stress the freedom to choose our analytic framework‘

ix#amf vey which wihl make algebraic

manipulation as painles: as possible.

In genersl, if P and Q are an.y twe distinct points in any plane and if\

(p,,p,) and (q ,a,) are any ‘two distinct ordered pairs of real numbers,
1’F2 12 %

there exists a rectangular eooreinste gystem in that plane in vhich .
P= (Pl’PE) and Q = éql,qg) ]?‘.Lrthemore, if we let. (rl,e ) and’ (rev2

., be any two distinct ordered pairs of

real pumbefs, there exists a polar

coordinate system in the plane in which P = (r,e ) and Q = (r2,9 ). (Note

that the change £rom (pl’PE) and (ql,qe) to (rl,e) and (ree) was

o

17‘ 91

A



» w

unnégessary; any twb"distinc:t ordered paix:s of real numbers may be,goordinates
'+, Of P and Q in coordinate systems of each type. If at least one of the

\
c . points is* not on an axis, the, ooorﬁinate hystem is unique ) f‘ .

35' o A moment?!s t.houghf. should eanvi:fce you that the usual equations r@ating
polar and rectansulér coordix;ates arefmnplet\ely depe«hent upon.a particular * ' ¢
c;’rienta‘t:ion of-both cbordinate systems in the same. plane | If either coordinate "

TN systent sfmuld be mti'ddnced differently into the plane, we would have to
. develop ngw equations of tranafomation. “_ . T .
o L3 L *
36 The ordered pairs . (r,e) satisfying equations (2) describe two d.istinc‘t

points 52 but, once tha student has Heveloped some facility Yi'th Qolar coo

1t will be-easy to choose the appropriq.te oneg;. Ef the ertnde.nts are £
* with the 1mrerse trignnmetric relations, they may prefer some equivale .

the follwing defi#tion, .o ,

P..{(r,e), where . r=_~/x§+y £o, 9~coal§ « f

Rt x * : ' |

where x2 + y =0, 1r=0 ahd 6 e is any real number.} Bopefully, a student
will ask what to do when x = O, sincé one of the equations of trassformation

e 18 not defined. Some other- gtudent should be able to point out that in this

“ .
case 6 = 5 +mn , where n is any integer. | Vs

37 Ebcample 5 is worfh some attentiom; for ‘the application of the Lav of
Cosines as 'a distance formula in pclar coordinates is of‘ten eonvenient. '
Again there is a loaphole, for it may not bge apparent that the law of Gosines '
still ‘applies if 61 = 62 + gn , where n 1is any integer. 1In Section 2-7 -

we shall have occasion to'point out ‘t}(\t the relationst .p described still holds
even when the yertices of the triangle" are collinesr. B

38-40 There is a wealth of practiee exercises here. Exercise 5 would require
‘seventy different answers if &11 parts were done; Exercise 10 has over thirty
., answers. You will probably want to pick and choose within this set of
‘ exerclses, but there- is plenty of extra drill available for *student:.s who need

-itl - L : . . /‘ *
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(5,135°)(-5,3157),

-

(5,495%)
N ()
(a,w°)(-2¢m?
- (‘2,’&0 )
‘.(’23‘#)‘

(a5t Nh,-135%)

(4,225°)
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(gy-240°)

L 2

(10,-210°)

‘(51,/-75(’) ’

, (6,-45°)

(%, 240°)
- M(5,285°)
N(6,315°)

(0,0), ‘
(1,-1) §
3) <"

' 6. (a)
- (v)
5/
() (3,35
e, . (a) (b0
7. (af

ey
(e)

. (4)

(3, 15%) f
(2v2,315°)
(n,0°)

(QJE) ]

EKC

Aruitoxt provided by Eic:

‘n

(.'5,180" -

~r.
‘(‘6‘:219 ) Q

. . N,
("7) 21‘00‘) ¥

(_'3,2;,09),; } a
.,

Y
(‘9;3@6) p

(-10, 33o°) -

@, 18°) a«\ 3,

-lsox ~(2 30°)

(“JT)

5‘,0)

(9.5
(i" %—)
(3

)“)

g%

0 T 7 b

(-1,60 « &,
19x

(-5,105°) s, 1)

-6135°) T (6,4)

Ae) (1,00 mm

(£) (9,/2)

(g) ( :'6)‘ .

(h) 2 "'@)

(e) . (e,1§o°)

(£) (2,240°).

(8) (¥29,22°)

(n) (A7, 166°) .

(-5,105°)" -

( —6,1;3°)

<
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1\2-& - '
' ' N | B \/ )
8. (a) d(A,B) w'hen A= (2, 150") and . B =f{h 21‘0"’) e J o
fe)a + (ht)"2 T @) (8 cos (210° - 150 ) =2f3 . ° d
' Usins rectamlar coorﬁnates L NS v
o i. A= (2,150 ) i rectangular coordinates (- ,1)
L B (4,210°) in rectangular coordinates (- e/'“ 2 . |
. ala,B) - /75 - (-243’))? £ (1 - (-2)) et s
GO LSRRy (OF - 265 | ' | .
‘e, (p) Using, re/c}hne\ﬂa: eoordinates. ' .

" a(A,B) = /EF 5 2(2)(3) cos (100 = 377, -*

< 9. (a‘)

)
Bty |

7 (o)

- ()

(e)

©

“A = (5 %x) in recta%ar co&rdinates

"B = (12,En) in rectangular eoordinates
-
a(a,B) = AL -
o
A=(237),B=(31.oo) Sy
RN

a(a, B) = Y4 + 9 12(. 1+52+)

- d(A,B) = YA £ 9 - 5.5 = 4’755-27’5
,d(A:B)='§ .

. a
a(A,B) = 7 :
d(A;B) = ?. -~
d(4,8) = 5/5

-
I W
‘s 26
» 22 .

v(‘.grs‘ g“;é) »‘..
(6/5,-6/5)

K b.
3
: \‘C
» _ N
.
',‘1
4 Y



2-4 -
/’ .
- . *
. ¥ oF CE - B B - A
k At - 10 o o\ 1 o =
- Bl - c ¢ [(373,30) |(5,60°) | (P90 A |
m 0o 0 (5;1Sof’) (5,0 o J |
) E (_1;%’4‘3',2700) (5:3m°) El . (}394‘_)3300) ‘E' s Y‘,.u’:
'1 | B v |(5,120°) (%/‘,lscf) B / nj/L/' o
L | (5,260%) 0 E >3 //./ .
‘-‘ s.y\}‘- g ‘ 7 F * = - / ‘ .
. _ s > B This chart shows the pointg
- CE (%’-/i,g;o") c / . of intersection of the dia-
) : gonals of a hexagon inscribed
¥ o | /‘/ in circle with radius 10° ..
. w1 v _{ one vertex at (10,0°).
‘ 1 . " .
- The twelve interior points of 1ntprsectio¥x different from O are
. . - . ..
N P A%3,90% (33,1500
s | (—41; 3,210°) (—41;’ 3, 210°) (—4139,3 ,330%) T
” 5, (5, 60°) (5, 120°)
. (5,187 - (5, 240°) . (5,300%)



1. (a) {(l.)r ,(a +180k))

() (c_x)“r 9 ) k) R .
h1-k9 Students should find 11ittle if any new material in this Beetion. It is -
¢ included for rériew and c(mpletenesa.
. € s ‘ .

- hl‘ The geometric form is useful in developins equet for a line, since
1t 15 olosehr allied both to the geme%ric picture , since €he denominstors
gre direction numbers for the line, ‘to the parametric sentation fn{the

lixf. It corresponds %o the symmetric equations for. a line in 3-space.

43 Inclination is defined geqmetrically, since our point of view is
gemetric. ‘l‘his definition may also prepare the student for the &efiniﬁion
“of directicn angles in the following section

~

LS Bo‘e that 1nc11nat.ion is defined even when slope is not.

: I3
3@" Since the general f&n&me@monofaline does not revesl
immediately the geometric characteristies of the line, it 1is worthéhile to .

develop facility in 1n£erpret1ng the geameti-ic groperties from the coefficients.

’ - . . - }(ercises 2-5 ! g

K f(3

. L oy+3=2x-2) _'ax-y-,'r-o "p=7. Ca=3

. 2 Y"5='§'(x‘~+3) | ; P=y-6 q=:% - )
3.l y = 3x +h =L§-B g=15+b N
b ¥ -5 :*—i—(x‘ - k) ‘ Tw, two lines are _parezllel. ‘

- 5. y = k(x - a) S Yfintéfcept at (0,-ka)
6. ax +dy = O " o a,b rea‘l numbers « T
5x +3y = 0 contains (-3, 5) .- I ‘

T. BSlope c;f EI is % slope of OB is _.g, .

Two lines are perpendicular if and only if
" (a) the product of theirrslopes ig -1 or.
(b) one has no slope &nd the other zero slope. '’

l8. xﬂ+8=y—8 . - .
=3 3 p

_ B




g.

0.

@) ’—‘-;—'3 - L3

 Slope: -é'

z-s
(2) Sx+ 6y-28=0

[ 8=-§(x+u)
lh

£

(4) y= -3x+

.
&

(&) If b =70, ac £0

(b) If a=0,bcf0

() Ir

] 7 .
(a)yux--j-x«‘rﬁ (S

M)y=x-5
(c)y=-«%§f}.7z
() y=ox-2
(e} )’r=:/—gx +[3—§—2
- -2
(a) f-%ig 2

x-intercept:

¢c=0,8 0,

(5)—1'5 T

-
-5' .

(6) v - 8:%—-E—(x+h)

GRS TR

. £ 0T
%B-' y-interceptt l?h

, line is vertical, through (- £, 0)

, line 1s horlzontal, through' (0,- §)
] < .

1ine has slope - 2, through (0,0),

(b) The midpoint of EC 1s (2,3)

Median fyom. A can be represented by

x -1
3—.
5 1

(e)/ The midpoint ‘of AC 1s (5, 1) .

is (%, 3) « Line Joining these two points is represgted by

*
,’:.-..;, X -

=33'—:é%§-;-‘,or 10x -y - 12 =0+

And-from (b) midpoint of BC

-

-i,Or EX"y—O .

mh—-' VT

3.
2

REEERS

.
Al



’ 2-% . - . : e L , ST, e
- _.‘c‘- . . ‘ . ot N ‘ .. .
o .13,. Given the conditiong of tlm problen, it appears that there are three
- ~ possible solutions. (shetc.? below) ( | -
_ f ~
- o J _.
. ) . . . .
/o -
* co. g ® ,
. ‘l‘- . .
Triangle @ : This triangle.-,}?a not satisfactory, since its grea' ms'h
be greater than 4O ; that is, 1ts area includes that of the rectangle
with O snd ‘P as opposite vertices, and adjacent sides on the axes..
.' ‘ . ‘ . ) l L . .
Triangle @: The .axrea of the triengle is E{ggbl .o 'The slope of
- BP = slope of, AB and - c
! | . . 4
-~ . 8 __2_ .
5 + bl hl
e : Solving for 8y, ¢«
' aj = T Bbl o N .
275+, A . |
. Substituting imo Zajy , we find that the positive root'is 5(b, = 5) .
. 2 Y ‘
Sbl. ) . '..
, Usinga -5+bl,wfind 9.2=’+. -
The equation of the line through (0,4) , (-5,0) , and (5,5)  using
the symmetric form is , '
- ! X +» - 0 ’ _
| S fog or tm-by+e0-
. - K L . “ ™ .
—, *
P . ‘
. . \ N
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£ v ._ ) N ) . 2-5
S
.Triansle® Areaoftriungle3is 2a21 ~
. Blope . of ¥ = slope of BB ./ o
— . é‘ . ] ) . Q— . -
A-‘ . - - 8 . 2 .- o - ‘ ) ,
‘ S fi’ o
Solving for a, , we see that o ' o
. o 8b . - %
= Tl i .
a2 5 - ' '] -
Subs:tituting in area formula, bl —8- end a, = 8 . : .
The equation of the line through (0,-8) , @ , 0)° and (5,8) in
- symsetric form iz ° : o
Sm . x -0 -(-8 . "
. . 5 - 0 : = ] or lsx - 53' - h’o = 0 e
.
.‘ % ‘ '
e - ‘r
N
¥ o _ Y
\ < . |
Since this 1s such a long‘chapter, you may want to test the atudentsé"b
5 this point With this in mind we have inc:luded 8 copws set of review and
challenge exercises from which selections may de made. ‘ ' ﬁ
\
) 4 " Review Exercises - Section 2-1 through,.Section 2-5

1. {x: 1 <x52}

¥ | S S | | U S | ) i
! -2-10;‘2345

2, (x: (x-1){x+ 2} =

=
——d

- o s W ST OO N

‘27 ‘ v

\ ‘ \
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. *
T

_3}:[1:
11 ’
b (x:

- '3 .
5. One-space: A point four imits to the left
. Of me Ol'igin- * “( Afﬁ
Tﬁo-spaee. A line par&llel to the y-axis
' four units to the left of it.
o i .

6. The empty set ’

7. One-spaee: A segmsnt of the x-axis
setween, but not including the points’
2-spsce' A portion of the xy-plane
hetuaeﬂ but exc%*ding lines x =2
and X $‘6 ’

~————
8. One-gpace: The portion of the x-axis

to the right of 2 inclyding x = 2

and to the left of and igcluding x = -2, (
‘ -

2-gpace: The portion of the plane to the
right of and including the lipe x = 2 and
the portion of the plane to the left of and
1ncludihg the line x = -2.

L] 0’5’4&; F 3

-3
oL e
-4 e2‘ o
L%
-4 -2 0|

W% IRTA

v

»
>

e

R
SRR LA 2% oo S

v

VL BT T



" ,‘ : B . Cr e \““\“\:; o Y NN
] - . ) ) - . . ‘\\ Nt :

i ‘. - o . *\éﬁés ~ - ‘ . :
s | - | ‘ Lo ;
f\ne ~-gpace: A segment of the x-a.xis be-\ '
SRR tween and inc]:‘uding_ the- pmnta x =6
and x =.-6. .
L. e- space. The portion of the plane
betwaen and" :anluéing the lines
N x'= 6 and x = <6.
S 10. Let m represent the midpoints and t, .t
o points. ‘ ‘ .
! ‘1 . ' ) - . ’ w
‘(a) ’m=-é- . o . ) . | . “v..- \\‘.\‘
_ _ i N o . ‘ % . ‘:
ty Oand.te_l o ) « o)
S {b) m=-2
tl = -3 and te = =1
(c) m= % :
1 17 . .
. tl = = § and tE = 1-3-
- . : .
11. (a) (2, %) : ‘ (d) (/13,236°) , approximately
" ' ' (e) (1,0) .
(®) (2,3 - .
e g ) (1,3)
- (e) (5,-53") , epproximately.
C12. (a) (243,293) - - (a) (3v2,342) B
. (b) (__,.32/}._) (e) (-2%@, :-?é—:s)
o) (V2,%2) - 0 G2,
130 3x + hy = lh )
. Bx - Uy + 46 =0 ]
' ¥
1.5‘. 5x-2y+ld=0 ;
’




‘ £, . -
16, y=/x+5-473F
17. . y = 6
1.8- X = ll' . X ]
_ . .
19. The equation for. AB 18 y = ~/3 x + 643
The equation for BC is y = 343
_ . : ¢
The equgtion for D is Yy="x+673 .
e | The equation for D is j-'= “f3x - 673
. "The equation for EF 1s y = -3/37
The equation for \ts y =3 x= 63

'20. Méquation.fér 1s&/§lx:+ y-673 = O‘
is y-33=0 .

is ﬁx—yi's'@;"’.o
_is»@xv+y+6~/§=0
18, y+38y=0"
The &quation for i1s B3x-y-6/3=0

™ ' x -6

°©  The equation for
. The equatlon for .
The eguation for

The equation for

20 B B o 8 5 =

-l
21. The equation for AB is - -
| | 33
. -t ‘ PR
The equation for BC 41s not defiped
The equation for CD is = ; 6.y
. . , 3@
The eguation for -NE is ’.‘_; 3.1* 3'@
| . 33
b .
The equation for EF is not defined
. - -
The 'equation for FA is x33-Y+3‘5
: 373
. < . f
-3 -
22. =3 is the slope of AC .
ﬁ -n
3 is the slope of BD .
%i \is/the slope of iE .
- "‘"j’!—? 1s the slqpe of IF .
o s ) 30
Q 34 °

- K -
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23‘
24,
t ‘ 25.
26.
%
Q
ERIC

- A{p).

2

(a)

(c)

The :anlination of" 7\5 =120° '

- r':

-

gm& s, reprosent ‘the trisection .points.
- (5,/3) amd t, = (4;203) +

(1,35 et ty=L,3A. . -

L = (4,2/3) end t, = -5,3) - - - _

(-5,-/3) epd t,= (4,23 e

EF , %y = (-1,-355 and t, = {1,-3/3) .

FA , t.1"= (h -2¥3) eand t, = (5,-73) .

-
ct
n #

-
<3
n

(4,253 ) or (8,-23) o _— h
2,3/3) or (21,353) |

8,28 o <9.,15.J§>

f

R

o

The inclination of AC =150° = .- . " o .

‘The irflination of AE = 30°

The inclination of AF = 60° -

- Symmetric form.

dieplays direction pair . does hot exist for lines . -®
\ .« 4p&ra.llelto ther axis

Generasl form. ' : o ' ”

Point

Slope

¢

always éxists ~ conceals intercepts
displays direction pair
ease in computing intersections : )
ease in telling if" L contains (0O, O) L . .
-slope form. ‘. A
digpl&ys slgpe o, does not always exist
ease in testing if P ison L
-intercept form. ' 4

' displays slope and intercept ‘ does not always exist -

. Intercept form.

displqyé intercepts does not always exist
displays & direction peir:

Two-point forh.- : _

usual way of finding line mist be used in different form
through two points ‘ 'if 171'52 1s vertical
determines slope . .

- 31

35



N

. . - .‘
(a) general form’ (&) slope-intercept
S (b) intercept form (£) . symmetric
K o (e) general form (g) symmetric .
() slope-intercept form (h) symmetric
27. A square as chown in the figure . «

- { 28, It is intezjes‘ting td hiive students note what happens as the fonstatt
term shrinks to zero. - At this instant the square shrinks to a point.
The teacher might a.sk wﬁb& ha@pens when she constant is nega.tive.

-

e - 29. The ha.lf-glane above and excluding the 1ine X-y= 1.
30. The half.plane sbove and including the lime x - y = 1.

31. The "triangular" portion of the plane below and excluding the lines
x'-ysl end x+y=1.

Graph for Exercise 17. ‘ -

Cross hatch shows intersection set

te




€ ’ . .
L

.

' The graph of Rl in 2-@3& is the vertical strip -of the plane between

and excluding the lines x = -1& a.nd x = U, .

The graph of R2 in 2-space 1is the horizontal strip of the plane between
and excluding lines ¥y = b, ¥y = 4, The emss-hateh in the graph
represents Rlﬁ R,..

L4

In one-sgpace Rl is a ‘segment between and ex ud.tng points x =4 and
x = -b; for R, the same siv;uetion prevail on the y—a.xie.

.
s -

(The 1ine for points y may be any line. ) Rlﬂ R, is a single point,

provided the x-axis intgrsects the y-axis.

In 3-sps,ee we can visualize B‘.I. and R2 as the path of the 2-space graph
for each sepm'be set as 1t mves perpendicular to the plane of the page;
Rlﬁ B as a rectangular solid. perpendicular to the plane of tHe page.
'me bounding planes are excludkd from t.he graphs.

-

33- If < 1is replaced. by < the graphs wou.ld be as in Exercise 18 except .

3h.

"ERIC

Aruitoxt provided by Eic:

the bowndarie#® would be included in every case.. For Rl U Rg apply
definition of union of sets. The instructor may very well use-this '

group of exercises as an informsl introduction to’ families of curves.

Note the role of the parameter. _ .
» .

Use two-point or point -slope or ot.herwise to obtain F = gc + 32, and

¢z %(F - 32). Science students need not memorize the formite}; they can
derive it. - . .

t

»

/-
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A

B
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Q

ERIC

Aruitoxt provided by Eic:

3

-

5. The sepm? graphs Rl to

[

Rs‘ are labeled in ihe figure.

R, N RyN Rg 15 the set of all points on the triangle and its interior

as shown by the cross hatch.

RGN

':“.EYH:‘%\

hi 1\3&@’;«!}1
oo

TR

. fstrers
AR

SR

o I
WA
WHEL KR
' dh Bty

D

e
#
.
- I3
.
. B
-
.
‘e
L]
.
*
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L Good students should enjoy this

' the

(a)
(v)

(c)

(a)

(e)
(£)

(g)
(a)

routine. v '
Set of lihes para.l_lel to y-a.xis t.hrough pyints (x, 0) where X
ranges over the int.egers. . ‘. :
Set of lines pe.rmel to the x-axis through points. {0, y) where
y ranges over the integers. . -
The set of all lattice‘points of the plane.

Includes all of R].’ R B3 A grill such as pa.per ruled in -
crosa section.

Boundaries qn the heavy sides are included. -

ngg graph moved k ;units to the right.

and (n) Wotice effect of placement of minus signs.

R = {(x, ¥):x] = x) (6) By = ((x, ¥):lyl = ¥)
Y - ”/ |
| 1 1
ar : 3 - g
2| 1
, 3 ‘ M
2 9]0 |7 |2 X 5 o] 7 & 3 X
4t
] -4
2r -z
| -3} - 3
¥
2 !
‘ ;
o/

35
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1}

\,f" !
(e) R3 = {{x, y):[x] = x‘} N {(x, Y);‘;.[Y] =yl .
. y "
N e o ® 84 e o o
. - ..A . e 29 o °, ° F
° ] * /4 o o o
3 =2 v o] 7 2 3 X
° o o ey e 0,
. ° -2 . . e,
« ) [ ] ® =3 . [ ] ]
- (a) R, =R UR, * (e) Ry = ((x, y):[x]
?

,
el

44

B

y

f
= [y]]

s

"
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l' . - A-"*k‘ -
. \ ‘. .
' » t ‘ . .‘ ' L -
+ " a .. . . ‘
. ) - ' e .
(n) "Rg'= ((x, y}s[x]*= -[y]) 5
. . _ » ) ,
s Q . . . .
e
. -
@ . ‘-
* xq . | .'
-ty * ’ -
. - . ‘, . l . ‘ ’ " : r
& ‘ ] : . . o & .
2. {(r, 0):r = 0) ‘ " [dotted line dccounts for negative values of r]
. - . ’ . . * ‘ / -
. . . . < : C ) o !A
- ) . . : a . K A
o ‘ > - “w .
' 4 \ / ;
: ) enzay
- .
1 ¢ -
]
- .
N N
. TUNG
~
LY »k\‘,;)- ~
.° . "'\'
. 3- {(r, 0):1'2 = Q} ) «
N ., )
‘b -
&
. . )
- \ ;‘
Qo
‘ ) . "34”‘ * A“v ~ -
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: ", ‘ ~ _ : min
- # ..‘ ) l.» ‘ ) -
. o ‘( r ' 3 “
u (a) a(p,R,) = /(;2 -x)7 4+ Q) G, -y . 2 |
() a(P,R,) = /cg)_ (x, - x)% 4 @, - v, )° L et
(¢) PQ and RS must either be parallel or bave supplementary =~ . -
' inclinations. * o, . ‘ '
) - .
let &= -;—' . From part 1&) we - know that for - d(P Q) = d(R,S) we must C
‘h'ave (pi' - q,-l)2 +. (p2 q,a)g - (r -8 ) + o (r - s%) .
But also "(Pl -_q,l) + «(pe - qe) = - 8 )2 4 (r -8 )2 - e

Thus (,'L -,(12)(P2-q2)2:=‘(l-a)(5:‘ -_s'f")2 ~ Bince ;#.g, y we . * .‘
imow o #1 . Therefore, 1 - o 40 and wp, By’ divide by J.-a‘?.

From the result we see that the distances in the y-directian mst be’ _
equal. th then the d.is‘tances in the x-direction must be equal. 'I‘hese
eonditions are sstisfied only when ™Q and RB .are pmllel or vhen

« they have suppleaentary inclinations. - - e
. [ ] _). . .
* . *° ) * ° * ] L.
y ' The line may be written o
. ; in g simpler analytic . e
\ ' ' representation. ' S
) LR . N o

, , ¢ bx + 3y - 5 =
(4x + 3y-5)F=0 '

“R
. ”

'q [
. «_ - k . ! . - )
The graph of (ax + by + ¢) = O is the same as the .graph of
. ax + by + ¢ = 0 . A simpler representation is ax + by + ¢ 3 0 . )
e : 42
\ : .
38 | -
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et . e
NP wenr

2x-3y+250 = 2&x-3y+2=0

-
4]
wi
»

&+
wl

T 3 P\—vn ! -y .=
. | . 13
- \‘ ¢ -
8. y :‘
- .‘ 'f“
‘ l’ - - - ..
3
,‘- A ‘ | . .
S Bxr -l -2 -0, S
Y K - . v . . -~ -
9 (x+¥)(x-¥) =0 & . |
. ‘ : : - . -
’ -
' L)
..:».1‘1 :‘ ‘ ‘ ¢
- % ¥
i b

: . 39 o . B
o ‘ X | .
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- : ' o )
~ s
- lo-
S 1y
Al ’ Y N . )
! ‘ 4 e * X - “ ~
. > _KI =0 ) ! o
. | v . .
- — -—
C 0 i R & ’
- L] ' N ) ( \\ )
’. .
"~ 11. (a) ratiomal ' j . { |
| (b) rational | | )
. " (e) real ' _ _ ' . .
’ ~ (d) ‘complex - . | _ _ _ | Lo
' : T o1 - |
12. (a) R mey be any line containing the point ("'5" - -5) except -
L) . . . ‘ 0y “;
' ‘ L={{xy): x#+y+1=01). -
! ~ (b) 8 may be any line containing the point . (- g- ,-%) gxcept
3 ‘L={(x¥): 3x-2y+2=0]. ‘
T (¢) T may be any line containing the @iﬁt (- &, - %) .
13, (&) U .is Mlé plane except for the points of . .
o K L= {(xy) : x+y+1) | | .
coe pther than (- 4 ’ 5'%)".‘7.
(v), ¥ 1is the whole plane except for the points of
L-{{x,y) : 3x-2y+2=0]
Oth‘er than (_' ;’ - %) : oo CTTTTTTTTTT T T T . (]
- (¢). W 1s the whole plane.
|
. o ) )
' R

i e o : + .
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-~

1%, Therg.aie twn'pqssibil;tiés: L, = ((x,y) : 'éox + pcy'+ cg*= O‘i ‘ @h.
md L .= I(x,y),: a,x +,b1y + e, =0} may intersect at a point
(xo,yo . In this case,\ : ’\\\V , | .

(a) R may‘be aﬁy line eontaining (xo,yo) exeept Ll ,

(b) S may be any line containing (xo,yo) except: Ly , .
(c) T is the uhole plane except those points of L) other than (x ,yo) ,

(d) U 1is the whole plane except those points of L, -other than (XO,YQ) ’

0
(e) V' may be any line containing (xo,yo) , and . {
(£) W 1is the vhole plane. | .
r - ) .
"W Ly and L iby be parallel. In this case, -
8¢y -
(d) unless R 1s empty, it is a line parallel to L, and I, except
L, , when k= o ,R=1, ; whgﬁ 0<k R is between L, end L, ;
when -1 <k<O0, L0 is between Ll and ‘R ; Yhem k = -l » R 1s
. empty (the null set), vhen k < -1, Ly 15 betwegn Ly and R .

- (b) The same argument holds for S , but the roles of L, apd L, are

reversed. .
(c){ T is the whole plane except L, . .
(dY U 1ie the whole plane except Ly,
g ,

4 .
.+ (e) unless V 1is empty, it is a Iine parallel to I, and L, . When

n=0, V= Lo ;s when m=0, V= Lo .

(f) W is the whole plane. .

15. (&) the null {or empty) set.
(b) the "whole plane.

We include m coplous set of Illustrative Test Items Prom which we may

~wish to makKe selectlons.

LY
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Illustrative TEst Items for Sectinns 2-1 througg 2f§

* -

1. If P and Q have coordinates 3 and -5 :espectively in one linear
' coordinate system on the line gnd corresponding coordinates -2 anQ3
~ respectively in a second 11inea# coordimate system, what are the
corresponding coordinates of points with the following coordinates in the
first coordinate systm? : _ #

() 0 = (Q'-% | .
(v) 1 : () a3
(e) -1 : | ' o (g) 11
(@) -3 ’ (n) 10 I

2. If M,A,and B are the midpoift and trisection points of Tq ,

" find m, &, and b when - o
‘(a) p=3,4qs1 ‘ ' - | ’

. (b) P=j§:_q=l .

- (¢) p=-2,a=13 .

’ () p=2r+ 3 , qz=3r - 25 ' - .

" ) ' ) - A ™

3. If the coordinates of P, Q, and R are 2 s X, ‘gnd 12 reapeotively
&
find the value(s) of x such that : :

/ 4
, () a(p,Q) - % 5 &(P,R) ‘
. (®) a(p,R) = za(P,Q)
(c) a(p,Q) = 5d(P,R)
() a(p,Q) = 24(R,P) ’

w>amm):§wm>“

4, If M,A,sand B are the midpoint and trisection points of Pq,
find the coordinateb of M, A and B when’

(a) P=(2,1), Q= (-h -2)
(b) P=(7,1), Q= (-2,1) '
. (¢) P=(-2,5), Q= (7,12)
. T (@) P=(p,ry) s Q= (9,a,) ,

(e) P: (l}r) ’ Q = (S + 1‘,25 - 3)




5., P, Q, and R are points in a plane with,:mctm@;ar coordinste
"% system, Determine whether the. three points are collinear if
(a) P=(-55), @=(0,0, R=(7,-7)
(v) P={(-1;5), Q= (8,-3), R= (-7,-6)
¢c) P=(1,2)% Q= (9100, R=(-3,-2)
(d) P= (9:'10) 2 Q =  ("8:5) ’ R = (.0,-2) . | '

.

6. A line with slope - % passes through (-3,4) . If the points (p,7):

and (5,q) are on the liﬁe, find p". and. q . ‘

Te sketkch the Agrapha of the sets of points on a me-ﬁth the following

analytic representat,i‘o(ps-, ( ° '
'(32 [x: x{l < x < 4]

() [x: |x,-5]<2l |
(¢) [x: (x-1)(x +3) 0]

(a) [x: x(x+2)(x - 3) = 0] ' ‘ . o s X _
8. Find analytic conditions which describe the,‘illﬁstzited sets of points.
() TS G U TS B ‘ oy 41
-7 -6 -8 -4 -3 = " SO
() : ‘ i U I DU SN S |
R4 2 3 4 8 8 7
(C)- 1 ’ j- T - | L 3— . R ‘J 1 J. 4 )
%Gﬂs- -3 -2 - ! ta 4 58 7, .
(a) ‘ |

- *
-

M . - ! J—%
{qr -6 6-4-3-2-1 0 | 2 4 5 6 7

9. Find three polar representations for the point with rectangular

coordinates
. L) (3,338 () (b,-1)
) () {-2,-2) LR L)
() (-1, c TR
(@) (-2B,-2) (g) (6,0)
S o (h) (0,-12)
C : R

S ' ’ . oo ‘E":?:
Q - , g 43 47




’g\ { .
lq, Find rect&nsular coordinstes for the point with polar coordinstes :
| (v) c.@,us) Ny | - R
(c) (6,-120°) e
(@) (5,8) ' T
' (E) (f3)' %E) ‘ " v | . .
11. Without changlng to rectangular coordinates £ind the distgnce between
‘the poimts whose polar coordinates are . -fﬁt
, | . ) » . ( ‘\.‘\'\".‘.
(a) (5,0) ana (12,"—2! : o Ay
- - \‘
(b) (6,0) and (6,.x) N
N SO e e
T @ 3 ma (0,5 | | R
\" ‘ (e) ('_61' %) and (5)%) ‘
(£) (-3,-90°) anda (6,90°) )
. ) g‘"\.f
12. Find an equation in the indicated form for the line which
R Y (corrtains (5,3) apd (6,4) ; symmetric .form. .
‘ (b) contains (0,4) and (3,0) ; intercept form. )
. : ) =« , .
o (¢) contains (7,-6) , slope - % ; poinmt-slope form.
' '4

() * mintains (13,-6) and (-2,12) ; general form,

(e) contains. (0,-5) , slope %5 slope-intercept form.

(f) contains (9,10) and (-¥2,4) ; two-point form.

(g) contains (-5,12) , inclination % ; point-slope form.

- : {h) contains (5,7) and (5,-3) ; two-point form.

(1) contains (3,-6) and (-3,3) ; intercept form.

(3) x-?rcept 2 ; y-intercept 4 ; general form.

(k) x-#ftercept 5 ; inclination 60° ; slope-intercept form.
(1) contains (-5,7) , slope % ; symmetric form.

L%
(m) contains ({-5,-4) , inclination 1450 ; general form.

(n) contains (7,-2) , slope ; symmetric form.

4y

L
13
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Answers
w&“% I I
o -5 £ o
P _8 . .
~H ) (g) '? -
@k () -6§
\ . -
ey o . .
A %
RS, :
t LA
L e 49e N

o) eoixtains (6,-5) .end (‘*3,2)15‘ tx't;—pdint_fém. |
‘() contains (3,4) ., slope -2 ; imbercept form.
() contains (6,1) -and (—2,5) ; slope-intercept form.

 (r) containe (9,3) end (9,12); general form..
(s) contains (2,3) ‘and (- 7,3) general form.
(t) eo?ts:ins (-5,k) , inclinatiot? -5- ; poi.nt-slope form.
Show that the triangle ABC is e._right. triengle it -~ ¥
= (-1,-3) , 3= (11,8), aff €= (-3,4) . e

<Find an equation in general fom of the line clistaining tﬁe median
to plde BC of triamgle ABC if A= (-2,7) , B = (3,&) ,

C = (l _2) ’ . e - é

Find the ares of the triangle deternined by the lines

I.l::{(x,y) 2x - 8———0],

ol
L, = ((x,y): 12x - 5y - 53 = 0} ,
Ly = ((x,): hx.-" 5y +A‘.‘,1;9 =0} .

Intriangle aBC , A = (0,0) , B = (6,0) and ¢ = (0,8) .
(a) The bisector [ A divides the segment BG in what ratio?
*(b) The poimt D at whic:h the bisector of [A intersects "BC?
(¢} ‘Find &(B,D) end. d.(c D) . .

Find “the coordinates of the points in which the line that contains
(-8 ,3) and (3,-2) intersects the axes. '




o

o 2. (a) m::'f%‘, a=6, T
o 5 -
o, BrEecl, e :’3',’_ b3 , o
: (& mes5g, a-3, b8 , .
(d) m -51"2* 8 , a r ; hg b.=.81"3- 8 R
. ° ’ ‘
_&3- (8) 03,'."" .
n (b) "3)7
(e) -48;s2
. (&) "18)‘32 .
(e) -3,7 £
be (a) W= (-1,- :::,-) A=(0,00 B=(-2,-1)
. . ' . ? .
0) - (G0 Fa- 00 e L |
. : 1 1 | | e e
() el f a-0m Bomh T
P, + G p, + ) +q, 2p. + ! ), +2Q, P. +24
L. 1T Pty P Ty R, 1759 L
L ( A ) ) -‘*(Zp T3 ) ‘(f'*?—‘&'é—) ;
M [rts+l re2s-3 [r+s+2 2r+28-3 or+2s+ 1 ré4sb)
(E) M ( 2 2 2 ) A"( 3 2 3 ) B:s( . 3 s 3 i B
5. (a) Yes (Determine £he.distances between the
“ (b) Fo- pairs of poinmts; thé polnts are collineer
(¢) “Yes Af and only if te sum of the, two shorter
(a) No distances equals the longe‘:;. “More” simpl,y,
‘ use slopes; the points are collinear if -«
: : ]  end’only 1f the glope of T equals the
_ slope of PR .) , ’I
1 k ' ‘i
5~P—-7§;Q—--3'c' ) -
£ . .
290 A
» ¥ - Ny




Tc '(a) . - ,“]ﬁ. - .
. m
(e | |
3 | L °
J -3 -2 -t © m 4 8 6 7
(a) | | |
‘ o [ 1 L 1. & 4 1 - .
é\*.' g ’ -5 -4 -3 '$ -I 3 t (. ] 4 5 i
3 8. (a) (x: -2¢xg¥), {x: |x-1]<3) , (x: (x +2)(x.- %) < o} ,
~ or the eq;uivalent o S v
. (v) {x: -5 <x <‘l} , (xt H‘ |3$.+ 2] '_g 3}, (x: - i(x-l-s)(x’ql)sol},, |
. ‘> or the equivalent. ‘ - -
o ’ ’(2:) {x: x(x+ 3)(x - 2) = 0} ,(-3, 0 2{ , or the eq_tuvalent ‘
t,'-\(d) {x: x<=-2 or x3 3k, (x: ‘x - ...| %] ’ [x. (x + 2)(:: - 3)>0],
- or the equivalent. s S . . .
" (There are, of course, unl imdped possibnitie;‘for the ansvers to this .
i question; we give only a fev. \ . L , :

(£)

()
(n)

(Q@ﬁ) ’ ('2'[2-:'1:) ’ (2‘/51225 ) ’ ('215:)*‘5‘))"{

i

(6,5 ,<6’*"), (6,60°). y (-6,240°) .

(E;E}wg ("2’22) ’ (2 1200) ’ ("'2 3000)

@5, (5,3, (4,210, ( 53
(13,38, (B3 (4B, 315°) 5 (-12,135%) -
("_:))([2 )s( ,30))("‘-,210)

B TREEY LA 7
(60)’(‘6ﬂ)’(60)5(6180) . .f
(12,32—) , (-12,% ) , (12,270°) , (-12,90°) '

" 5.



10, (=) (4,0) i E (d) (-2‘5,,#)
& (b)) (1) | -
(o) (3,-303) Lo B )

B (8) (-243,8) |
1. (a) 13 . - . (a) 13
‘ \(b) 12 - e) AT
e) 9 | _ (£) 3

. . x.,.-" . ) - \

| 12. (a) 5_:_§'= i;:_% .
0 §eg . ™
(C) y+6=!§(x_7): -

. () éx+5y-18-0

. 3 .
(e) ¥‘=_-2-x -5

‘ (£) U T

.‘\(s) Y - 12;= -Ux + 5)
() x-5=222 (y-7)
v wieEon
-2 )
() x -2y -8=0 . - o
(k) y=43x-53 | &
‘ X + -7
_— §_$-§ = I%":ﬂ? ! -
(&) x{-y'f'l.z
(n) 2=l _y=*2

<

(o) y+5-= _2 f (x - 6)
(Pj % + oL ’
(Q)¥=-§x+1f

(r) ;gz 9 -

; (S),X=3 52

(4) y-4=-SBx+s5)




- 26
13. (o) (aa)? - (1 - 1P e (3 - 8)°
(d(B,C))2 = (11 + 3% + (B - h)a
(d(Ac))=(~l+3)+(3 bf =53 -
A simee (a(a,3)% = ()" + + (a(a,c))? , by the converse &f the
) " Pythagorean Theorem triangle ABC ib a right t.ria.ngle with [ ACB
v ' the right angle. . - .

(b) * If ¥ou permit students to use the fact that the product of the
slopes 1s -1 if and only if lines are, perpendicular, the proof

~ . " follows more readily from the fact. that .
¢ ) By -
. ‘m_ . n_ =-(- %)'(%) = -1 o 7 : l _ v -t
- A& I¥® - - | |
w | .
"é 14, 33X + 2y - 8 =

& 15. 20 | ' N

16, (&) 3 to 4

3 .3 '
® (2,3 - C
s 5
(c) a(B,D) = 4= ; a(c,0) = 5% .
17. The line imtersects the x-exis at (,- — ,0) ; B ' «

... the line intersects the y-axis at (0,- -3-)
i . B
/ .

57-63  Most students will probably believe they have a clear intuitive under-
standing of the ﬁdea of the two directions on a line and pay feel the
ﬂiscussion here is pointless. As with the notlog of a directed segment, g.s.
may help to ask\than to try to explain what' they mean accurately, using
terms with clear geametric meanings. When they find that this is not at

e all easy, they may be convinced that our approach ¢s wqrth stuthring s

57 . The open q,uest;i,on of lines without slope 1s considered in Exercise 5
" on page 64. At this point we adsume thst the student retalls that parallel,
nonvertical lines have thg-.same slope. In Section 2-7 we shaﬁ reafirm this
fact. | o .

57 \We shall use the idea of equivs&ent direction numbeks for a line’s great. )
» . deal; if a student does not grasp this idee now, he may find it e. frequem-,
stumbling block. : * , .

G‘. ' | 1*953 ’

ot 4




T8 You may ‘well note'that hagae chosen directed angles to describe the -

. lines in the plane, a singlewangle would suffice. However, a pair of
nonnegative angles 1s conventional and leads to symé‘tric representation; it
. is also desirable, singe a triple of direction angles is much neater in -~

RS 3-5pace. The extensiox’ to spaces. of higher dimension {s immediate with the

-approach adopted here. 1\ w

59-60 . . The fact that the pair of no ized direction mnnber: and the pair of
direction cosines are equ&l is extremely convenient

.61 The context which specifies a direction for a line varies and is, of
course, i‘requently q_uite colloquial, as "the line from P %o Q".

- Exexrcise 6 on page 611- asks for a«,justification thal the altemetive

direction angles for a line are respectively supplementary. b

62~  The infomation developed in the solution to Example 4(b) is quite
useful. The student showid Jdevelop facility in extracting from e general |
form of an equation of a line directien nunbers and directicn eéfsinee for
the. line. ' | '

63 The importance of Example 5 ms; not be apparent It provides what little
initial mntivation there 1£ fof the ncf?.x form of the, equation of a line.

- 64 Exercise 7 mifht well*be discussed briefly even if it is not assi.gned
for 1t develops a relationship which is useful in relating the eq_uations of
a lipe in polar and rectangular cooydinates.

.

< -
\‘ Exercises 2-6 , o
¢ 1. (8) (-3,4) or (3,-8). ..
(b) (4,1) or (-4,-1) ’ e ’
N (c) (0,6) or (0,-6)- E ‘ ‘ )
. ) (@) (-5,0) or (5,0) ‘ T
© o (e) (1,1) or (-1,-1) ‘ '
(f) (2,2) or (-2,-2) A . o
< le) (L1) of (1,-1) - \ .
) (h) (‘k}k) or ,(h,-h) T . ‘ T
' . [ . \

* - N . - &




? 8 ; \ . . 19 L, f.:.,
. J 5.6
» , o ) / . -\ ' A
| 2- (3) (" -') or (%j - —) “ - - ‘ . | .‘ =
L 1 “‘.— . '\ ’ L l ‘,!
\ (p) (-- ) or (2,11’ o o Y
AT 417‘- : 7 AT L ‘) . ( | v
¥ - + _ ' o
< T (c) (0,1) 01‘ : (G:"l) r"‘ | e, . L .. |
(@) .{1,0) er (1,0) : - | g : -
| (e) '(-L Ly -1, L L |
" RBE.T R B
. . gy
@) () or (v, = )
/ .E:E - - 2 —_ { ~ 3
B (8 (-LE) or (&% ‘
2 z 2
. 3118 -1 1
(h) (= ==) or (=--=)
’ R B
v ) ] r . o
. - . > ) "y
.. 3. (a) a=121°,B=37"; or o= 53%, Bam 143° (approximately)
T (b‘? q=76°, ,ﬁ::lho; or czaloh ,5-1660 (approximately)
c . (e a=9ﬁ_0°,‘ﬁ=0°;'or-a— B8 = 180° _ |
(@) @-18°, p=90 5 ox a-f, e ., oo |
. (e) a=8", B= 45° 5 or a:“135 , B=135" . ©t
 (g) we P, p=u°; or a=13",p=135 |
(6) a=13°,8=1"; or g=1°, p=13° . .
* (h) a=135°,ﬁ=h5°; or a=4°, p=13" o
b (a) <3,£h) GA o 2 tan
- -3 o mygefinéd .2 -3 /7
‘. . {v) (%, ) , or any equ.ivalent given by (5 s - L;), ef£ 0. Y
o ,:1 a_53,_ 44113 ; or a=127°, =37
) . (1, 0) , or any e@ifvalent glven by (c,0) , ¢ #:0s L
f'c'aso.ago ra_180°,ﬁ90 v 7
o . - (0,-1) , or a.ny eq_uivalant given by (0,-c) , 'c £:0 o - }
. . I8 ’,-‘4‘ a = 900 , B _ 180 ; or o= 900,, S 0 e*. . !
(.- %— , or a,ny‘ equivalent given by _(-Jg,%) ,cf 0. .
- a-17,8=27; or cx—63 s=15'3° y
M(- 2 —) or any equivalerrt given by (— _h—") c 9‘ 0.
5B Bs . .

a = 153 ,;3:6;9_; or a=27", B = 117

\) ° L 51 €

e . L0 85T
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2-6. e
"
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¢ e
* ¢ ,
. .
r - -
.
] ® . , ¢
- - .‘1 ; g . !
.
.
&
-~ |
-
W -
%
®

&

;. "De A palr of direction mmbers determined by P, and P, are

0 1
(3l,m1)=(O,YI-YO)-;m1=yl-y0¥0,£l=£,../) .

A pair of directioh m'mbers determined by P, and P are

0 2
“Bince m #0 and m, £ 0, both L

L om, -
. . -cl=q and c2=§ ..

¢ .

ere defined and not equal to zero, Thus,’

- (epty ,0m) - (‘2"‘32) and (cz‘e’cémz}'ﬁ ‘.‘1"“’1). °
. . & [ PR o

(0,7, - ¥5) and (0,5, - ¥)

are equivalent pairs of direction numbers for the vertical line...

. i m y

ey COB @ = . o8 B = e ) .
- V.S +uf : Vv + m
" L. - ® .
cos a’ ;;/—:-LQ OB B’ =y
£ + V £2+m2
S0 cos a’ = - cos a cos B'= - cos B
-Hence d""‘i“ + pn ﬁ'—_- + 8 +at p, g odd integers but a,

A, and B’ are’between 0 and x, 80 the only solutions are

B'+ B =x, a'+ a =x.

*

~ -

T




1.

2

‘(‘a) 1. In the Fism"e. 2,-135, o= % - B+ 2m . Therefore

2.6

. 4
¢ [ Y

r N . hl )
si_.nv.masin(-;-—ﬁ) i:\rtsincethe'sineof_a\nangleia
equal to thé cosine of its complement, | \

‘2. In Figgfe 2-13% , ® = B - 5 + 2. Therefore

- . 4 |
‘sin @ = 'sin (ﬁ'%)
[ . : T . : '
sinw=sin [- (5 - p)]
a ] - 2 Q
sin @ = cos (-B).; . T -
N Siﬂm: cos ﬁ 4
3. In Figure 2<13c, o + 2, + =180 + 2m and @ =7, -' + 2m .
' ~ /
The. resu,lt.‘is the same as paxt 1 above. v

Ll'o InFigux"e2-13d;m-§=%+2m_md mn%'-fﬁ.*.am.

"

§ - . ) S : «
Therefoi‘e\sin w = sin'(g + 8) a ,
. ¢ L J
_s‘inmisin%cosﬁ-l-cos%ainﬁ ‘
.. T N e. K . .
Since sin§=l end " tos .= 0 s

2‘-

*

sin w= cos B

v *

(b) 1. If the positive ray lies on the positive half of the x-axis,

o=
o = Enn’ and B = 5
Since we wish to show that sin w = cos B, we may substitute

and see thet

.sinExn:cos%:O

£ »



-7 - . . A
" 2. "If the positive ray lies ch the positive Half of the y-axis,
. R v . X
mé—“-*-enn}snd B=0 and sinZX=cos 0=1 ;
2 | 3. -
3. If the positive ray lies on thenegative half of the x-axis, .
| m=-n;+2‘rm"endwﬂ'=-;-andainamcds-g-n'o" L
- L, If the positive ray lies on the negative half of the yhaxisl
. . Lo
/ : b= 3— +2m , B =xn and th'i— = CO8 % = -1 .o
v o | . e ] o
| ’ 8‘ (a) (-2’2) . l R 3N N . ‘ &g
. . - l
(-._ ) '\‘ - .. : B
58 L .
o ‘ | -\ |
=~ a=158 p-ur - . | .
‘ (-b)Q (-2’1) " ‘e ".
¢ ' . : . .,
o . (—-——) ;
- 545 N,
o . ' _ _‘
a=153°,8 =63 :
(e) (6,50 | . ¢
>, 2y - _ ‘
. ' JE}—' ﬁ : \ ' o ~ ’
,,')" - ] i , ‘
0, o
* a=w"',B =50
65 It is traditionsl to talk abgut the angle between two lines, but present

standards of preeisian reguire that we take account of the fact that at least
four angles are formed when two lines intersect. These angles‘ban be distin-
guished in e diagram by various methcda,'but alf of‘these methods must induce

a sense along each of the lines. °

o | . .08
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67-68 The . secom aolutionto&mmle {2) is givena.s a sumestion to/the
studantthatoncehehasrecognisedthefomnftheequationsofthelines
mrhaltoagimlim,hemywriteimediste]ytheequ&bionofthemm

cntrbainingagivvenpoint g -
‘&

68 Sometimea the resulta qf our analytic &pmach &escribe additioml

situations not usually spproached in the same vay geometrically. .The
o gituhtion here furnishes a nice’ exnmple of this.

Dot t_xx‘

69 Me_‘i(b)1salsodferedtoshnwthestudenthowhemusesn.
equationof a given lineingenemlfomtowrite imctlatelyan equation .
ofape.mllellimcontainingagivenpomt. ) . ‘ -

70-TL  Stnce (bj,~s,) &nd (be,-aa) are pairs of direction fumbers for the
1lines Ll and 1'.-2 respectively, we also note that . o ‘

.- by by + mym, - -
cos @ = —!——2—7.?_“ > .
e’ + m2 ‘ nb ' . .‘
or""\‘ | cos 8= MM, 4 p1u2 .

In Exercise 12 on page ‘T4 the student is asked to develop this re]ationship.
It has some merit when the lines forming /- 6 ave directed lines. In this B
case [e istheanglefonnedbypesitivemsof L, snd na wth

en&peints at the point of intersecbion (if any) of Il and LE . Exercise
15 on page 87. also calls for such an interpretation.

71-72 mample 5 1s really a lemma to be used in the development of the normal
fonn of an equation of & line in the following section.

«

- Exercises, 2—7

*

1. (a) a(a,c) = 4(B,C) + a(A,8) , by the definition of betweennesé for .
points. This is eq;uivalen‘t to : C—
a(a,B) = a(a,c).- 4&(B,C) ,
which. implies . .
- (a(a,3))" = (a(a,0))? + (a(8,0))° - 2a(a,C) a(B,0) ;
since cos C. = cos o°=1 , we may write

(d(A,B))'E (a(a,,c))2 N (d(B,c))2 - 2d(A,C) 4(B,C) cos C

I}

Q . 55 59 ,

“ £

. "‘



L -

. () Berewehee | - - . ’

' o : a(a,B) = a(A,‘é) + a0y, =

. " which implies . ;o &
(d(A,B))a (a(a,0)? + @(z,e)? + ed(A,c) d(n,c)

since cosC=e03180 = -1 , we may write

2"

] * .
(ata,®))? - (a(a,c))e (a.(s,c))e - 2d(A,c) a(B,C) cos C .
2. (a) Equation (6) states that -~ ‘ ‘..
. ) . . .aam,+bb S I Wt
| | cop B = — %1% 7 P12 . |
o , Le, 2 [e : -
. 1. ‘ T
. . R *
) ) mbatituting into Equation (6).,
a
cos 6 = al. 2_- ¢
‘ : &% sl + 5,
£ 1,-.‘
v .. . - A .
= + - : - L
. - a
. cos e = 2 . " ¢
. : 2 2
P . . . _ . 82 + b2 A
- Let @ be the ihclination of L, . Then the measures of ‘the
i angles 6 Detween Ll and LE are 900—0 and~90°+a..
‘. : cos @ = cos (900- = cos 90° cos a + sin90°,§ix_'1a-,=§inq
or ‘ . .
) . 7‘;‘3 o * ‘
cos 6 = cos {(9ON+ a) = cos 90b cos & - sin 90°vsin a=-sina.
' sina 2
Also we have mq«'eosa__be
b2 sina = -8, c§§s a,
% .
"and bgsinga:a‘?c:osecx.=za2 (1 - sin2 a) .
2 2 2
2
2 %2
This is equivaldht to sin” a = 5 5 1
132 + b2 "
e and = ‘ t-ae
sin a = = cos O
2
ag + b2

6O .




’l j ﬁ to . . . &8. v‘ -
(») . cosge—2r2 _ %1 '
: : 2 [ 2
TR e
. LI . . £ N .
. " 8=0" or 180° , which is the case for parallel lines.

3. 1'2 &nd‘LS'arethg'smlines, 10_
o I, snd L, are the same lines - ) ‘.

L, 1 perpemlm‘to L end 'L
ke “(a) _ 6 =7 ' ‘

(b) - o= 9° _‘ . \

o (c) S 8= h5° . ) ‘ | cF .
(@ g=-8° - |
() 6« (lines-are parallel). e
(£) o=9"" .

5. The '10peaf ,(-JP is E and the slopg'of OQ 1is -:% ..
Since m_em = -1, BFJ_’()_Q R g
oF OQ -
. A .

6. (aF 2x - X3y= 0

(v) 3x+y-8=d . '
v (e) 3x+2y-17=0
(@ x-3y-5=0 .
Te (8) 2x -5y +31 =0 | - ‘ -
- (b) x -3y +17=0 | ™~
(¢) 16x - 6y -13=0 . '
(&) y=1 |
o fe) x=% .

8. D = (‘*","8) - s
3 possibilities; (12,2) and (-2,12) are the others.

v
Q9. ’The slope‘of Ll is § ,
¥+2=-E(x-l)"
- . 3
7\




A
L/

(M

‘Altituﬁigto side

¢

& 24 &4,

ex+ Ty =17=0
xX+y-1=0

m /CBA = 151°
2+7

‘ cos B, = —

1 AFi AR

e

'

y = %2

(o]

08 6, =

2 ATiIN/TEE
. 82=2,*°

. n /GAB =

(d) Altitude to side B

7x-23r+'29=0

gl

x-/y-h'=0

o
Altitude to side AC

8x - 3y +25 =0

11. {a) -Ll'A

(b)

I?"

[

f(X,y): hlx r a.ly-

{(x,y):‘ bx - &y

.
8% * bb

o)
0}

2

= -B,n*

.e COB 8 =

/ala + b

62

12 /522 P

s &

2

2

£

= 910"

f

\

The anglle desiged is the supplement of_ 91 ar ,1800 - 290 or ,151?«
wfea
3+ 8

b Y

e

and using Equation (6),

r



'a" . N y
(,): ’ 2-7T
[ , . . ' .
| T byb, + -
S ms@'&‘ 8152 L
1 M +(-a)2£2+(42) IR
o Y, ®cos @ = cos ¢ . e
‘xfnl'is_Ltox.landnatisLtor.e then the measure
ofananglebefveeh LJ. and 1.2 1sequalt‘bthemamreoﬁan
i | &nsle%%tween L', agd(Le*'. SN - . !
12, (a) Ly = ((x,¥):r Ax+py :r+ ¢ = o} . ' : oy
L, = ((x,y): 7\2x+u23+c = 0} . '
s | . ;
cog O = — )\1}\2 u1 2‘ A . N
5 ‘
’A1 *“1 'lz‘e”’ ey
Coome R et
N o ‘ cose M, * u1p2 B e
(b) I cos 6 is positive 0° £04°90° and [6 istheleastangle
formed by I‘i and L LT =
;(c). Assume 11&_1.2‘ o /
-'.' N - | -
R

< ‘ o ml =—1 . ‘
- Bo ( D-_')(-llg) l/and ‘ y

;o B .
¢ ) , e MM = iy * or
v L Sl Y
‘ ¥ /.
-t Conversely assume AN, +juy =0 7 !
but - : 7\1?\2 t gy = 0 = cos 6
and . cos 6 =0 v
: o ' S S0 8 =§90°“ and
v - SR )

63
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75-18  The ntwmal form of an equatidh of & line is troublesome to/develop, for
students have usually not considered the characterization of a fline by a
normal - ag@nent fmm the origin. Therefore, the argument for th;ring to

extension in the students' eyes. With this in mind bel’ore beg
.~ section it might be helpful to challenge the students go £1nd the
v ’ between a line -and a point not on the un/ r“Once they bave been farcedn to
the "trouble of finding (a.) the slope of the perpendm:lam to 't;he given line,
(b) an equdtion of the perpendicula.r containing the given point, (c¢) the
point of intersection 4f this perpend.icular and the given line, and (d) the
distance betweeq?@‘he point Qf intersection and the given point, theqr may be

more in a mood to pursue a devvelopnent which solves tgis problem more ea.sily. .

76 °  The .conventional notation’ does lead £0 confusion hers.- It is easy :or
“the studerit to confuse the coefficients in the normal form with the direction
cosines of the li}l;_itself. Emphasis onlthe« reason for the name nomal e
“‘form" may shor‘ben the pariod of confusion. Then, too, an oral dri;Ll on the
folloving information to. ‘be gleaned from the normal form may help.

-

L 4 If A>0 end u>0 thelimextendsabcvetheoriginﬁumupper
left to lower right; if A <0 and u}O,abovetheoriginfmlmrleft
to upper righty 18 A <O and i < O, below the origin from upper left to
lower right; if A> 0 and »|J.<0, below the origin from lover left to
ufper right. If A= O and p =1, the line is horizontal and sbove the
origix:/;, A=0 eamd = -1 horizontal and below the origin; 1f y = O / ’

1 , vertical and to the right of the origin; if pw =0 and A = ’

~

and
verticsd and to the left of the origin. :

‘ To make sense of this }nfomtio 2 student will have to keep in mind
that (A, 1t ) 1s the pair of direction nes of the normal segnent’.’ ;

17 ‘I’he fact that anthorities differ in e case of lines containing the
# origin has a backha.nded SO of ignificance. There seems to be li’ttle
reason to reco a differe.n which™ dees not ma.ke a differenck, E.g., - '

| 1.0 = 0 § ; there is no rmmerical différence.

78 If your students gre s.lrea.dy versed in the parametric reprﬁsentation 5
of lines, therc i1s a neater approach’ to the problem.

The line FP’J. has Lt.he parametric representation 7
x = Xy + At -

¥ =¥ +ut .




. o S e |
'.m( B ’ o s T B A
wWith this :representgtinn ltl is the distance between ) (x,y) and; ¢ .
= (5, ;) + In pmmxlar, 4f we let F = (xo,yo) , for same t, -F
bag.a reﬁ;;sentatian | | R -
' X=X TN, o o
< . Yo7 1 + Uty o |
© Them . > -
A | xg = Ep= My L o
* 5 Yo m ¥ S b, |

e , _ . ( d(hP F) = -/(x xj_)e + (yo - yl)e ="/('Nh1)2 " (“_tl)g | . ‘L\ .
Cx A - lt,lll .

. . - .
p Since the point “F = (xd,yo) _sétisfies the equation Ax + Wy - p =
] we have : : : - ~
S~ | ?\(xl+7\t)+u(y1+ut)-p~0 : .
~ | vhich is equivalent to | B ‘ : |
‘ }ﬁ*fwi~1>=-v(7\2+u2)tl=-th \ | ) .
S oa(p,F) = ft| = Ity el e I -
e . el e .
' with this e.ppx:each wek‘do rot have to consi&er the ﬁve different cases. * N e
79-82 The a.mourrt of classrom mlica.tion necessary on the pola;- form :ill~

depend upon “the students! ha.ckground in snalytie trigonamctry. Some ' )
g familiarity with the addition formilas 18 essential. ‘l‘hese are develcf)ed in .

SMSG Intermediate’ Ma’chematics, pages 605-610, and, of c.ourse, in any standard

trigormetry text. ‘

. ~
Y . 4 -

19 At this point you may wish to consider that since P = (-r,8 + =) , the *
_ “ine elso has the polar represemtation : ' Y - .
[ aba :‘ P
. . <r cos (9+(::-m)) ~» ‘

'I'his opens & question to which we shall return in Chapter 5, when -we consider

L2 d

related pola.r equations.

-~

-

8o Although the pol&r ‘angle which conta.ins the normal segment to. L 1is
the same set of points as the dlrection angle a and jw: fa, our
conventions for measuring these 'a.ngleé aré different. The measure of [cu ‘

» . . f




. ' . .1':‘1 ' -
mybeanyrealnumber,while 0<a5n(or 0<a$180) Thus, even if
we choose an jJw, such that |o| is minimal, we still are assured;ogly
that |o] =a, or w=+a . However, since w =-+ a + 2m for any integer

-

n, in the'casg we deécribe, we do have cos w = cos (2xn + a) L cos @ .

— ' ‘The test should resd @ = ¥ a + 2m for any integer n . ,

81, »Students may not be familiar with the technique of "normalizing"

¥ coefficientns in order to rewrite . *

' AR -
~acos 6+Dbsinf as +D swe+ax) .
where J R YA
. . R Ol
o | b
4 sinal= an;lcosal=——-f-—-_,

N
¢

or“a.s WA 'cos‘_((Q.— ﬁl.) s wifere :

'--cqsﬁlx 2 and 'sinﬁ]_:" b

/ - . 62 + % 9.2'*'172 - "r-"/"‘.‘

-~ . . ' . K

Therefore, you mey wish to consider other examples than Part (e) LQ Example 5.

8&—85~ ~ In qssigning exercises you may well wish to cqnsider E:cercises T through
9, which suggest a further application of the normal form, and Exerciseg 12
‘ through-17, which furnish practice in transformingFequations from representa.—

B

tions in one coordina.te system to the. other, : : .
s - . ‘
_ These last_ exercises 0pen questions which will be considered in detail
in Chapters 5 and 6, In tlé algebraic manipulation of polar equations we
may frequently do some rather Wild things which would get "us into. txouble
in rectangular representatic;ns. The freedom we- exploit stems from three §

s \ considemtions' i ’ T ’ . o
i) the multiplz.city of the polar re‘preaen‘f;ations of a point,
’ ii) related polar equatlons ’ (See Chapter 5.) _ }
A 1ii) -"factoring” equations. (see Chapter 6.) o _
For.example, in Exercise 13 we suggest multiplication of both members of the
cquation by r . In rectangular representations such multiplication by g
'f‘actor_ coﬁta._ini_ng a variable is quite likely to add points tqQ the graph, but
here the points (0,8) , which might be sdded, are already included by the
origlnal rcprem_njuon as (0,(n.+ %) n) , where n is any finteger.
. ¥




c“. 2-8
- . . R _ -
In Exercise 12 we first obtatn ¥  ° f R
, r2=36,orr—36 (r - 6)(r +6) =
. Now the equations obtained by setting the factors of the left member equal
to zero, - . Cy | L

, =6 and r.= -6, :
are related polar equations (as defined on page 167 of the text) R for they

+ each have the same graph as e =-36 « Since each is a simpler representation
of the graph, later on we shall prefer either one to the firstfequai:icn. '

b \
: In Exercise l"{ we first o'btain \
. ¢ ‘ .
- - (I"?+J:'ti:n6)‘?‘=r2 ..
. = e _
Ij:.,we divide both members by‘ ra s, we obtain N o
. ! ) ' : . (r + sin e) . . .
i but we have not lost any points from “&9 graph. “The pole is the jonly point
mie might have lost, and it is still represemted by = . o
B L SO o
. g vhere n 1is any integer.v Then we may factor ‘to obtain
g ) | (r+sin6-1)(r+sin@+1)=0;
the equations o ) LR,
v . < 1-~s5in6 and r = «(1 + sin 9) PR . »
wh.ich are suggested by the factors ‘of the original equation,  are related .
polar equations. Their graphs a.g: identical to the graph og the origimal o,
etmation, and &ither one is & fat s;.mpler representation.
<+
* In summary, multiplication or ’division of* both members of an equation
by a factor containing the variable and taking the square roots of both
P members of the eq_ua't.ion, are’ techniques which are fraught with danger and

' seldom desirable im rec‘t.e.ngular mpu:ésentgtions. They ‘are more )t‘requently
- acceptable and even desifable in polax represent&tmns. '

-

) However, we are not suggesting that the teacher should open these duestions
;_ nowe They will be considered in Chepters 5 and 6. To discuss them now

| wauld pmbably on];{ confuse 'th& students. We prefer that the answarb to the
' exercises here be left in the original form obtained without any attempl at

4 . simplification., Rather we inglude this discussion to glert the teacher to

»

the questions laid open and tp prepare him or her for the questions that may

. 4
arise from curious and inguiring students,

&

S ¥
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»
3.
v
}+Q
o
)

' . [ ’ . : AT : l. o X‘
- : [ e ) é .
» . ) . s

. : : P L

A o Exerciées é-8 | o | s “~H‘ﬂ 
_ : ‘ ‘ ' . _
- - ; - = | ——12 - = -
(a) X+EY -3=0 . (8) 13/3: -%r 0

&) .123-1:+11—§y ‘-‘ 5=0 + ' (h} y -

@) +x-2y-L£.0

“'ol ;2 3.«_; X
l&x-3y+]§;of . : 5x+12y @5=0

of course this is not .an efficient way to dkaw the graph. The

v exerciae w33<put in to help fam%liarize the students with this farm o

\
of equatioh for a line. . . N

(@) = cos (6 - 315°)

it

3 3.,(11)“ r cos (6°+135°) = 2 T,

(a) 1 cos é_-h{_;()
() rsin6+L4=0
4

() 6=9°,0r 6=3 K3 I N
(d) "rcos 6 +rsin@8+2=0
(e) 3rcos@~2rsin8+6a

/s

(£) rcose+frsin6-2‘_0
(g} 15r sin 9'- 8r tos 8+ 34 = 0

3

(a) rsinQ: y (e) fcos (9-300') r-:% . ) _—
e : s .. S "‘f‘
“(v) Feosoxh (f)‘ 0=145°, or 6= T _‘ /\ s
(C) 6 =,'600 . 31’ 6 = z ) Oy ‘ ) ‘ ‘a
/ ; 3 (,s) r gog (6 - 150°) = 2 . .



. : . 2-8

. . : ~
.

. (a) ‘If Py ison L, then |)ac1+|_1yl-p|=0. Butthedistance

&fmm P;L ‘to L 18 zero.when Pl is on L.

-

o (v) P uontpesame side of L as o;Pl is closer than O to .

L. 1nthis case &(P,F) = p.- =;]_Ncl +uy; =Bl e
&y

(e) -fif is on the same side of L as 0; P sand ‘0 are equidista.rrt

fram L . In this case I']. cpntainstheorigin,.plzc,and

“' . '- d(:Pl)F)-=P"pl= ‘7\"1"'1131'?1 *
N | - : y
) 6. (3-)'1“3‘ ‘ -\
[ a2 2 ) .
L (o) 22 '
7,1_7 4
(a) 2 ‘
on J
(e) .0 | . .

7. A point P, = (xo,yd) - on the bisector if-the distance from P ‘to. L
P to L_ .

is equal to the distance 5
' Then frmn.ou'f -dista.nce formulg, we nave i
o u 125
. ' £X - +1|]= |=x+5y -1
2 I[= I5% + 55v - 1 X

Ta.king both choiceé for the s yield,s the two desired equations:

21x + 7Ty - 130= 0,

‘ana . \ | _ B
« " . 1lIx -3y =0 ’
, , f
8. - Tx + Qy - 152 = O
and - : : ¢ ’ .
) . . 99x - TTy - 14k =0 ,
AN ) agx t gy = byl = Bx +uy - py| o slves us .

Oy = Ak + Gy -y = (o] - py) = 0 ena

(%1 A )xt (“1 uE)y - (p; + b, S0 .

59




" 1h. r =%a cos 0 ‘ . .
Note that the pole is in the graph of the equation. Then r2 = 2ar cos 8 -

15.

16,

e
: ‘ > -t “
o 2-8 K “ A [y ’ \—
o . L .
Cyn B ;. R
lﬁ'. X - 3 = 0 . L N ¢
11, recos 6 ~rsin8=0 .
. 2 ’ -
5 7l2y -x = 36 S
18 ' ! : . ' ¢ -
13,  r = h cos @ , N
%2 _ Lrocos o o o ' .
(xe +\'y ) =,+x | &

x‘:-l&x+‘y2=0 ] )

When 6 = % , r=0. Thus the pole is in the graph of the original

equation. - One st make this check because both sides of the equation
have bgféﬁﬁ;mltiplied by r; r =0 is then a root of the new equation.

PS

-~

TN
or x2+y2=28x .
. . " J“kg*
(8) y=3x e L
(b) y+h=0 -
Ce) AE ey N
. <N
,,.‘:2 . . . . . .
x2 +y =25 ‘ ‘ } :
(b) ad dsalas o *
\ o 3 v -
- - .
(a)

P
A NN



- kyfcos € =0

(b) hat the pole is in the@aph of the equation. '.'l.'h.en
. S ‘5'r cos e '-' 3Jrsin 6 . | |
| x2 + ya - 5x~; 3y =0
(c) ~y=14, o
or ¥y = -k,

(@) (12 + T sin 8)° = 1°

-

Review Exercises - Section 2-6 through Section 2-8

Q 1. direction mubers direction cosines direction angles

. e B Lo ‘(a.;jpr(razmte]_.y) .
(3) (73'10') (./Th_g"- —'ﬁ?) - a = 5) » B = lh‘i
. 9 )
55 " ok o
b ,2k ) = 1° , B = 46"
‘ (v) (25,24) ( — ! o a B
: . (c) ('6’5) ' (_Jfr—f’ ,%) ) a = 11&0{) 3 B = 500
(d) (7;6) ‘ (Té"_;gé) | Q = }‘flo * B = h‘go
(e) (3,-3) | (/lé-,— 7—1__) Q= 1;50 , B = 1350
. >
s N |
() ({#,"f) (-1/—6_.-5-,;/5:5:) a=60°, 8= 30°
' (&) (1,2) (71-5,35) | o= 6° ,p- 2.
. "‘ . ‘v'f
(n) (-2,1) (-ﬁ,i—}:)  a=193°, 8= 63°
. ]




2.

5e

length of altitude from B :

o

J
The points are collinear if two line segments determined by the points
have the same slopes

(;) 13-1 "‘E_E : ‘ LN
n-{-4) 157 5 ) |
points are collinear
B-5_8 _%
L-1-10"5
. P S - . i ) .
(®) 01--5)"—2 2 . N
o - (-12) 10 5 . pointj are not collineer
l o - = ‘:-_ = e I -
“ ‘ '

() FH-Bed . )

7 - o . points are‘cqlline.ar‘
23 - N
(a) -8 a2,
0-1{-3)" 3 .
4 (=11 1 points are not collinear
06-5 =~ 55 '
a(A,B) = /I | a(a,c) =53 ° a(B,c) = 2/10 &

- PR

AB : Ux -5y + 17 =0
AB:ex+Ty-1=0 ,/)\
© '
BC : 3x+y-11=20 )

length of altitude fram A :

s Sl
® o
N

length of altitude fram C :

Al Al

area (MABC) =

(a) x(elﬁ-l;f)+y{7JT+5F)—(JIT+17/_)—
(b) x(hm/'+5f’+_)+y(5f'+ﬁ+—)+(17/_o—11ﬂ?')
{c) x(EJ_0+31’_)+y(H_+J_)-(f1_0+llf_)

L

AN



8. (a) a(aL) = —= aarL) - 4 a(a,Ly) =+
w-Z S oL
(b) a(B,L) = —=— - a(BL,) - = aB,L) =~ .
. Ll 43 : I 5 13 5
(e}, alc,57) = —=L a(c,L,) = 2 alc,Ly) = X2
Ll IE? .Jig , L?) pJ : ( L3) 45
: 9. (a) x(10 - 3/I3) + y(-15 - W/I3) + (30 + 12/13) = 0
. x(10 + 3/13) + y(-15 + ¥/13) + (30 - 12¥13) = 0 R
(b) x(2/5 - ¥13) + y(-3/5 + 2/13) + (65 - Wi3) =0
x(2/5W% /13) + y(-3/5 - 2/13) + (65 + W13) = 0
() x(3/5 - 5) + y(1/5 + 10) + (-12/5 - 20) = O
: x(3/5 +5) + y(4/5 - 10) + (-12/5 + 20) =
6 . 11 : 6
10. (a) — : (v) = (e) —
€ "E (“- - 2. - e. 5
81 2, 63 8y -
12. 6, 82°
Qé 98° A "
13. Ll -may be written 3Ix+ 5 - 19 =
L, may be written 5x - 3y + 7 = 0 |
ey 8,8, +b b =0 the-lines are perpendicuiar
Substituting C(3)(5) + (5)(-3) = ©
and L bl |
J v
14. Find the angles bet;een Ll and L? , where Ll contains the points

(3,4) , (~1,-1) : and L, contains the points {(-4,6) , (3,0) .

Solution. Since no sense is imposed on L1 and Le we will find their
.h"’
&

angles of intersection.

¥ We may take as direction numbers for T, , {(4,%) and for Ty s (-1,6) .




15.

~

-

‘ 16.

< 4

LY LA

.

(Why?) ‘Therefore:

cos - —EDHONO) o o -,
_ A% .52 h a6 B
- . o= 88 | ’

Ve may, most simply, find the gther angle of intersection as ﬁhe supple- "

ment of 6 , but it is instructive to use equivalent direction numbers

for L, which have the effect of reversing the sense induced by’ f¥e’

first choice. We use now (-4,-5) , and (-7,6) as pairs of direction

numbers and get . ‘ . ' T
L6274+ (52 L-1)% + 6

o' = 92°

which is, as we expected, supplementary to 6 .

~ 130°
A - (j’h) B - (—2,?) C = (6,9)
} - 4
I!lE 22 _é{—:——g = —%
9 -1 2 1
m B iz =
56 - G+2 B~ %
o FE
| AC - N "
a1 XS ar
Since My Muc ( 5)(3) ;=1
AB | A€ and AMMBC is a right triangle ) v
. . ’ ‘
‘ »
?
1o
-
. . QF .



17. {a) -—-3-—x+—z—y -2 _ 9
| =

(b} - —#+

59 ﬁ-hQs'O
L3 o4
, (C) 5x ;5}' - 5 = 0~
r'] - .
(1) =3—x - ==y =0 !
=R . : ,
(e) x-z'_¥0
)
w(a) r cos (9-66);1 .
- (b) r cos O=.-h . ~ .
(c) 6= ;u7° , . .o ‘ .
19. (=) Bx+y=-5 S
‘ (v) 3y - kx =12 - . .
‘20, (&) r (B8 cos 8 + 7 sin 6) = 56 ‘
% (b) r (15 sin 6 - 8 gps 6) = - 180 ’ -
. \
@ % -~ Challenge 'Exerciges R
: S ¢ a - 3 ‘-
1. 3x-1+y+c€-0 or ax+by+c=0,h:1th S:;-K. x
" 2. $ 3y +ec=0 or a.x+by+c=0,'wi‘th'l%=&.
_— Y o 3 v
» . .
3 ax'-i-by -~ 0
]
b y-3omlx-2)
. . ’ . Y
. y:%(x-h) . (Fixing the value of m reduces the family to one mmnbe;'.)
1 6. ¥y =-3x+D1b '(a pencil of lines.) T

T+ Let Ll: ax + by + ¢ =0 ‘and L2 :mx + ny +bp = 0 be two.intersecting

lines. The equations of the lines of the angle bisectors are theh
- m :

#
. x a .‘_‘ +y b - n + c - __E‘_ ___.O 'r
1/32+b2 A2_+n2 v/a?i-be '74;24-1'12 _ae+b2‘v4u§+n?

» m + b n e

X 2 . ¥ + + -+ by
’ /a2+b2g/m2+n2 /ae+b2 /m2+n2 E+b2 /n?**ng

“1 /'n 75

= Q0

res




¢ I

’Iheirslopesare m/a® + »° ﬂ -m/a + 2 -3A2+n
' v + 22 - ol £1° o’ + 0?4 nJQ + v?

¢ : ) -
The product. of the slopes is —— (5 +b)+a (m +n2! ~ 2+32n2
be 3 -1

] \ ‘ (
Hence, the lines of the bisectors are perpendicular.
" 8. L= {(x,y):. ax+by+c=£lxy) =0} ama o 72

. < -
L = {(X,J)' le +by, +c= f(xl.jyl) =0} .

The direction numbers of each lix;e are (a,b) .  Therefore the lines
are parallel. . | ‘

9. Given AABC with vertices A(0,0) , B(1, 0) and C(a,b) . _
To prove that the altitudes are congruent at & point H and find the
coordinates of H .

1 C(“J?) ( . - the slope of AB 1s O
" the slope of AC 1is % .
the sldpe of BC is b .
a-1
A(0,0) _ B(1,0) P
' The slope of the altitude from A is - 222
V ‘ hY
The slope of the altitude from *B is - %
The altitude from A is represented by y = - a.; 1, .
The sltitude frop B 1is tepresented by y = - %(x -1)
' ' a -1 a ®
If the altitudes use concurrent, - .; X = = -E(x - 1)

and x = & and 3»':-‘5$a—,l:):——1-l

1]

the equation of the altitude from C 1s x = & &nd the point of
intersection of the other two altitudes is clearly om this line.

) ?6 72 | _ - |
A - |




-

. »”
LN SRR =~ e by ‘ :
. The midpoint of AC = (E '3 ' .
.o . -‘ " ", . “ - : .
The median from A is represented by e
- [ . . . b _
!/ B ' - -— t
. BN CR R
o The median from B 1s represented by
o . . ‘
. b
| yegoz k-
‘. ‘ - \ ‘e 0 ‘
EN These two medians imtersect at the point
y (2ti b -
- 3 7’3
’ ~
The median from C is represented by d
¢ . L4 . ’T;f '
. y-_ b‘ \H ". x -. -1—_) ) . - e
¢ ) - a —';-*: 2

and the point (5—5—3};\%) ie contained in this line.

a+1 b

Therefore theWdians are concurrent at (———:-3—— 3

11, The bisector of /A 1is given by

- _‘ c
' yzui and solving for ¥ ,
_‘; . /32 + be ’
r~ )
* y = bx
. ’/2 ) . (1)
< , g. +b 4+ a
. ~ ]
The bigector of [B is given 'py
' y_b-{bx-—jl-a& andsolvingfor Y,
: [-& (1 - a.) _/
- bl - x) . (2)
. - J .
: 2 Pl
fp - a —a+1 T
. L]
- & } - -

o | | -1 '




Pquating (1) and (2) . N
. - bx o dvr-x) 0
Ja2+h2+a A2+(1-‘¢)2+1A-'a
Solving for x we get, . | '

& ' Ja° + b° + a

X = - - . ‘ -
JbE + (1 -‘3)241 +~/a_2+b2’ , :

s ¢ ‘

Substituting x into equatione{l) , 7 c L

: h,c_f

\‘b . ' ) .(.'.
y = - — .
Jg‘?'+(l~a)2+1+11a2+t'_:2 o

So the point of intersection is , oy
ﬁ - o ¢ ) . e .
/2——2 . . :
- a” + b" +a- o
Lo A
v€ +(]\-a)+l+Ja + b2 £§+(1-a)+1+fa. +b. N

Cla,b). ' | B

4 B #
A(0,0) E B(1/0)
—_— 8 b ’ : ’
Midpoint of AC = (Z,<) = D '
. =y = 3
: J— +1 b -
Midpoint of BC - (B5—,3) = F :
- _ 1 - \/\i. - -~ .
Mideirlt of AB = (-;)- I 0)‘\: B l =
Slope df ‘E e 0 ! . ) ]
&lopﬁ ot" AC = a
B ,
d e . P
uloFe of BC - 5 - T .
f oy
. . L /'8 (
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o f
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. Equations of perpendicular bisector through D = .

. . ) gt . -\
.. 2 .
_ _y.—:‘-gx +8 .2 _ (1) . .

b 2b - 2

It

" Equatdon of perpendicular bisector through E
' : 1 R '

x=3 — (2)
Equation of perpen@imﬂar. bisector through F

. . B a -1 a -1 g_ (Jf~f ;
. - y=-"%—**—7%. *73 . (3), g

4
a . . : ;

i

|

~ is substituted into equation (1) end (3) the values of ¥ -

.are ghe s ."\ Therefore the perpendiculer bisectors are concwrrent at ™~

If x =

'.\ o 2 ] : R
\ _ 1 a° -a , by - ' =
L - - ' Dos e
’ L - | S,
R a{l - =a . ’ «‘f",s ' Box ‘.v
N BN e AT ot
o a+1 b ) )
. _ G = (——————, = : ,
‘. ( 3 2 3)
Ir) b
a“ + 'b2 - a
= ( ’T)
a -~ 8a ] )
. o2 2
A 3 3a-338 -0
The slope of HG = . :
o r a+ 1 —(_2& - l)b : -
a -
3
i
- 2 !
a - 2 a + b2 - 8 ) )
I 38 - 3a" - b
The slopc of HE = +— T * " {2a - 1)b )
‘ & -3 , ,

~
. .

Therefore, the points are collinear. An equatlion of the line is

- )
. (385, + v - 3a)x + (Pab - b)y + & - a° - b’ -,0 .
& »
: : .
f' ' ¢
- o Py .
- - v ‘- ’ g i
. "
L P . 7




2.

J

2.

L.

Se

l. Find a pair of dirs!'ction mmbers for the line ’rc'z .

) -

Illustrative Test Items - Sectioms 2-6 through 2-8 : . .

(a) P=42,3), . Q= (&5) . . S
S Pe(nad), Q=T . 9% | , |
{e) P=(27), @=(43). O e
() P=(-2,3), m=r1. ' o
, (&) P=(-1,7), a=150°

(£) “x-intercept 4 ; y-intercept 3 . .

ki

Find a p&ir of direction cosines for & line, | - .

(&) L= {(xy): x-y+2=0}.
(b) conteining (3,5) and-'{1,7) «
“(c) with slope *-¥3 .  =F | ‘
(d) with inclination a = 30° . | A
.(e)'lparallél to the x-axls . : _ S
(f) perpendiculsr to the x-axis . | ' ‘

.

Find direction a.nglesh'qu
Lo - : 4
‘ (a)--the line containing- (-1,-3) and (-3,-1) .

(b) the ray emanating from the oriein and containing the poimt (6,-673) .
{c) the line with equation Y3 x+y ~T= 0.

. (d) the normsl segment to L = {(X,Y):‘ x + J§ y+7-= 0} .

-Which, if any, of the lines with the given equations are parallel?
perpendicular? the game linef )
2 : 2 1
Ll- yz"l=-3-(X'f'2) Lh. y=-3-x——3-
. X Y. ’ . x+2 y-1
Lg. H*E—l . Ls_ l+2_3—]_ )
L3: Ix+ 2y +3=0
"Find the cosine of the léast angle between the pairs of lines with the )
indicated equations. ' . o
(&) x+3y-1-0; . 2Xx + 3y -7 =0 &
(p) 2x by -5 a0 3x + by -1 =0,
(¢) x-y+13=0; * S5x+ 3y l2 s 0.
F:.“' .
67 |
76 .
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6. Iet L= ((x,¥): 4x - Ty +13 =10} » Write an equation in general
form of a line '

‘(a) parallel to L and can{-.a.ininsj;ﬁe point (3,2) .

(b) perpgndiculsr to L and containing the origin.

(c) parallel to L and with x-intercept 4.

(a) perpendicular to L- and containing the point (3,2) «
. p |

7. Find an equation of the perpendicular bisector of AB , where
A=(1,23), B=01) . | |
8. Let ‘A= (1,1), B=(8,3), and C=1{58) . Pind the avea of
. iy .
triangle ABC . -
9. A line L makes an angle vhose cosine is % Y5 with
. [ R . '

,L2=[(,x,y): ox +y -1=0) . What is the slope of L ? Find
. 0 ! nd

‘an equation of L, 1f it contains the point (-b,2) .
\ , e a
10. Find the normal form of each of the following equetions.

pamT

(a-) 3.x-’+y+15=0 ‘ v

x-2 y+1 N .

e

() y-T=%G+m
(@) $+§=1
| (e) y=.%x-2 v ‘ |
P { -4 .
) (£) 2}1{1%21{-1; ‘ . ‘ ¥
(6) T™x-2y=0 ,'k

(n) 7-3y=0

11. Find the distance between Peand L :

(8) P=(5,10); L= {{x,¥): 3x‘— by + 10 = O} .
() = (5-1); L=((xy): 12x -5y +26=0}.
() P=(6,8); L= ({xy)s x+2-%=0]"

(a) P =

(7,-3) 5+ " L= {(xy): 2x -3y +5= 0} .

e
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1 Ay . ‘
0 * : - .
L - _ . -~ ot
12, WMnd equations of tbe.‘lines (bﬁ secting the angles farhed by

) (a) L = {(xg)z 3x ~ by +5 =0} anl L2 = {(x,¥y): 5x .flér + 26 :'_0}_

,

(v) L = {(x,xk:_ x+y-1= d} and L = {(x,y) 8x - 15y + 34 = 0} .
S ' p . A )
13, Write.in poleu' form the equaticms\oi‘ thg,following lines:
< T
(a) parallel to the pola.r axis and 2 units above it.
(b9 . perpendicular to the polar gl a.nd 3 units, toQ.he. right of the
pole. ., x ’ ) §\ e g
\ (c) containing the point .(-e,%ﬂ) and having 1nc1‘1nationﬂ%§ .
Y (a) ” through the pole m@siope “ - .
. ‘ o . ‘
vl4, TrafMsform each of the following equations into polar coordinates. ,
(a) 3x - 2§\+ 5= . ;
(v) 'rx+8y 56 o, |
(\9) x + Y = 25 _ - ,'):' Pl fwe
~ : ' \ el '
> ! (d') y::x2+hx+¢ . ) X
15. ‘I‘ransform each of the following equations into rectangula.r coordinates. .
(a) r os 6 =14 : g : i v
(b) or cos 8+ 5r sin 6= 6 . .
(¢) r =43 sin 6 . ' ' .
(d) r cos (6 -fg) =
Lo, e , ”
16, Let the vertices of the triangﬁ‘é ABC be A = (-h,2) ,#B- (6,6),
= ()4}"}'1) .
(a) Find the length of.the sides. °
(b) Find the equatiohs of the lines contelning the sides. o
(¢) Find an equa.tion of the perp‘ﬁicula.r bisector of side AC .
'l (4) Find an equation of the line containing the a1 tude to side AC .’
. Find the length of the altitude to side AC . )
. (f) Find &n equation of the line containing the medidn to side -AC .

(g) Find the length of the median to bide AC . .
() Find ‘tm arca of the triangle,
o (i) Find the centrold of triangle ABC (intersection of the medians).
(J) Find an cquation of the line containing the bisccbor of +/ A . °
: e |

-

g4 '
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) S . . o
;" > v“l . Lo ' ~ .
DR : Sy b .
> - Answers | - . /“
1. (a) (2, 2) , or emxivaLent pair . (@) (L,-1) , or equivalent p&ir.
. “ a “(v) '(6,8) , or equivalent pair (e) (-3,1), ‘or equiyalent pair.
(e) (6, 4y , or equivalent pair (f? (4.1;,3,)_‘, or equivalg;;t pair.
e ‘ S T . . A1 ‘ 5 1.
L 2. {a) -(-}Jg’.l_), or (_ -‘}r—‘; ,.'L)‘ . (@) (‘2i = r'(--35,- §) *
o O, o (bt o) (1,0) [ or (1,00

7z . , , o1

L. o oa 1 . O
. {cY (21_5{““ —g—) , or ) 0 (g) {o,1), or (0,-1), L.
B . T . ' . .
o ~ L 0 b
t - 3. (a) 51—133 ,Bukﬁ ; Or a~~l+‘.',ﬁl35 . L \
N ¢ a~60°',ﬁ4150 « w ‘
04" ¢
- (c) @ =120° ,a:;o ; or a=560°% :-,150‘.‘ o
cv (@) a=1207, B= 150° o ey
| e,. Ll and L’j are the same. . b - /% )
. ‘[..l,Lu,a.nd L, awe parallel G -
L » . , -
T, t Le and L3 -are’ paral}.el , . .
o »Ll s "L};: , and L5 are perpendicular to L and L_g .
. I : 11 ! , | ‘
( ) 2L ) - (b) — - (C) —‘ . ' ‘ )
Jljo e 5B _ AT
6. (o) hx-uyyto.0 0 ° , -
e T Ty o0 2 ~

- ; . , - my , .
- () 7x + hy - 29 J . ‘
FI 1 M . 7 . - o . , o .
y ) ?
e V. 3x+ 2y _.@O - Q N . ) \
- o ’
! ' Q, -
n(s‘ \ 1. - - . .
Al .
-t e > )
‘ I't._;‘k( . ‘ j ‘ ) )
. ‘}'_‘ m= - K&
. ' L. Yy L ] .
L g4 by o+ ke L.
. - ©
L . . . {
e p " 4 - ‘ (\ L . -
. ;. L ’
! L3 B . .
d ’ . ‘a N “ﬁ—v i
. R - - , -
. . . P ~‘ . ‘
‘ *
r . ¥ -




;‘ . [] . - =
N
. 3 h_‘i.
l bt -_— - =
Og (a) ‘5 X + 5 3 0
Py 3 ' . " ) -
! @ H-L.2-.0 T )
- A:'E ] : '
L . ¢ ,
() Lx+dy. B_
, B RELBE e ‘
6, . o *
-: (a) i R X Y‘—l—:i'gﬁ-“ .
1 0 ‘
(e) 7 * -E?-{; 7 =0
- (f) -lx +2_‘+y _H= 0 )
\‘ ‘,. 2% : @ 22 . )
(6) Lx-2y-o0
B3 .53
. - I _ » 3 N N \
) (h) 'y 3=0 ;. ? o
- 1. fa) 3 ' ;
- (o) 7 ' ’
(e) 255 P .
(d) _38_ . ‘ -
G . v
. \@. ) ‘ ’ c e .
0, 12, (a). 1.hx+8y- 65 = oy a.nd 62+x - 112y+195
(v) x(17 ¢ Bf) + y(17 + 15/2) - (17 4+ 34/2) = 0. and
Q”*?‘.’_)W(”‘E"_)' (17-3u/‘)=o s
' 13. (a) r cos (6 - %) = '2 : ( '
e (b) 1 cos 6 = 3 . J .
‘ “ ‘ (e¢) r cos (9-1:) .
L @oeed a
- —Qh., (a) 3r’ cos 9. - 2r'sin 6 * 5=0"
B ) (r cos 0 + B sin.ﬁ -5 -0
\ ’('c) =B vf c '~ |
. fd) T gin G - cos, 8+ ir cos 9% b o (r cos,.e + 2?)?-.: .
(‘; | 4 a Y e e L
" -‘ ‘: )
g - 80 QA . o
B A ' w £ /

[ A



15--(5)_'x=1+ _ ‘ | .

_(b)2x+5yg'6 N : ..

| (e ey .
R (a) y=4

. , - \ . ©
16, (a)- d(A,B) = 2/29 ; a(B,C) =+2/26 ; a(A,C) = 10 .
oy BB: ex-swe18-0 & . -
| BC: 5x';'y'\, oh -0 | L
- AC: 3x 4+ byr+ b =0 v L
{c) bx - 3¥ -3= 0 l 7 h _‘ K \ .
/ (@) Mgy -B=0 BT il
. _—= 9-2 . . ) . .
(e) ) ’_ (1) . . ; ' )
(£) Tx-6y-6=0 . . | “ .
' (S) '/85 . ’ '; - v. i ) .
(h.) 46 _ K % 0
‘ i
. . (1) (2:'5')‘ - '
(3), x(3/35 - 10) + y(W/ET + 25) + (WD - 99) =0

Y A ‘ .
¢
L J
- ¢
1 ]
’i
§
N .
)
4 .
) . N
N -
. . .
~
[l
ok ~
- .
. . - ’
¥
‘. ‘ .
LI Y
* * ¢ - L.
L
-
.
' [ ]
) , . .
- ~ 4 ’
. - r—
) ! 81 SJ
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Chapter 3
. . : VECTORS AND‘ngIB AP?LICATION
3-1. Why Study "Vectors"? .
Q1. In the opening paragraphs reference is made to the increasing importance

.of vectors and vector methods in the fieldslof applied mathematicq, science,
and engineering. You need only pick up any text in these subjects to be

assured;of the accuracy of.this statement. Most recent books in &alculus
(e.g., Calculus and Analytic Geometry by G,B. Thomas) make considerable use of
vector methods. You may like to read Analytic Geometry: A Vector ég_;oach by
Charles wexler for.an extensive treatment of this sub ject..

. ‘-

y It 1s quite likely that most of your students will go on to study calcu-

. lus and more advanced mathematics, Mokt students in science and engineering

are now encouragdd to take courses in vector analysis and linear algebra. The
latter course starts with vector algebra’ uses it to approach the subject
of matrices, In this context, & vector 1s aow or colum of a matrix. Our

. approach is frog the geometric point of viev (ds is vector anﬂlysis} but the

. two are clearly closely related.

"The beginnings of this subject can be found in the writings of Ariqtotle,
| andrlater in the works of Galileo (1564-1642, Italian). However, serious
* « gtudy of the sybject began with William Rowan Hamiléon‘(1805-1865,'Irish) and
-— Herman, Grassmann (1809-1877; German). Their work was dependent upon the
L) earlier development of analytic geametr&. Hamilton was inspired by problems .
arising from Newtonian physigs and astroﬂamy. In solving problems related to
the motion of particles, Hamilton needed & non-commutative algebra. The
2 2

- k% . 13k - -1 and

. ‘ ’ >
gu%Fernion A=ay+ el ag* 1 &3§ (where 1° = J :

LR N
the a's, are rea]), provided the answer since, for example, 13 ==}-1.

N

The quaternion led Yo the vector ‘and, in the cross-produét of vecgtors,,

;AXB=-BXA. (See this Comméntary on Seectlon 3-7). - 'fffr .

Graésmann approached the bubjoct of vectors from the algebraic point of
view. fle was 'seeking an algébraic method of extending ge*ometry from three
into n dimensions., A vector in two Simensions is defined as an ordeked

- o 83 ’
’ | ‘”éy ' 53(;

[y
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3-2 BN | .

92

93

pair of real numbers and'in three dimensions as.an orﬁeréd triple of real
numbers. In n dimnsion, e vector is an ordered n- tt;ple of real numbers,
This is the approach used today in the study of vector spaces in modérn
algebra.

-

If your students have _already studied vectors in SMSG "Geometry with

—Cpordinates" "Intermediate Mathematics ", or "Maf{yrix Algebra", a large part -

of the material in this chapter will serve 8s a rdview. Some time should be
spent, however, in anklyzing- the different approaches to the subject. In this %lﬂ
way the students wijd review the topic from enother point ‘of viev., Some of
the subject matter aﬁd'many of the problems are new to all.

*

3-2. Directed Line Segments and Vectors. =~

For more information regarding directed line segments, you should read
the SMSG "Intermediate Mathematics , P. 629- 63&

Probably the most distinctive part of our approach to the study of véc-
tors lies in our defiﬁition of a vector. Since tnere is no way to distinguish
any directed line segment from another vith the samé' nmgnitude and sense of
direction, it is therefore reamsonable to define a vector as an infinite set
of equivalent directed line segments. Any member of the set can be used to y
represent this vector. The or!gin-vecto; (a new term created hera) s very '
often used to represent the.set because of its conve‘lénce in geometric

proofs and in the study of sector ccmponeﬁts.

Unless specific geometric conditions'obtain, our approach to the subject
also gives us the freedom to use free vectors or bound vecéors as we choose.
The "Origin PrincipIe" on page 93 and the "Origin-Vector Principle” .nn page
96 are carefully and explicitly stated td make this point clear.

.
The question of equal or incquallty of vectors refers only to sets. i,
When we say "two vectors are jqual” we are only talking about the same in- -

finite set of directed line segments. Thus "equality" really means "identity". .

The use of the term in this sense is consistentuw{th its use in all other‘SMSG

texts. For examﬁie in earlier texts, If _Kﬁ = CD s then AB and CD are
identically the same segmert, with A - C and B = DY

- T e .
However, in applications of vectors it 1s convenient. to usé the term
vecdor, &8s we utate in the text, to mean a single member of the sot We con-
sider it proper to do this when there is no dangcr of ambiguity. The students

will then be 8n morv famillar ground wher! they meet vectoru in other courses,
A
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96

3-2

_ \The discussion surroundin,g the origin—vector principle is of greatest
importance. You will have many occasions to refer to 1t in the succeeding
sections, particularly in Chepter ,h_, where many proc_)fs of geometric theorems

Exércises 3-2

are discussed.

1.

—ln i e —lte -“ olline el = )
2.FE&ndJI;IKg.nleI‘;QR,OP&ndm,%'andTV
Each set is a representation of the same vector.

3 o~ e .
¢ P DC and AB
- D ¢ c = o=
CD and BA
. * . . - . A —l N
' A ’ AD and BC
—t celitn: :
‘ . DA and CB o
J N - . A . [
A 3 - B, - _
‘ R
(a) £=-m
e-b
i .
£ =4 . .
Bk .
(an@ others)
e c.n' N
(b) a - -£
e =Y
£ -C
- i iy .
g - -n
e N
h oo -f
( others) | .

85 . f
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L1 . .
i t - - -
m
-
- -
1.
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. PEE -
6. ion of a car, winds, weight momentum, angular momentum, electrical
\

aqd magnetic fields, etc.

.
i ot
N I .
. , ) ) A
- ) . ) »

e A . . A -
=3, Sum a.nquifference of Vectors. Sca.lar Multiplicatioxf

ar The definition presented on this page is conce_rned only with the sum of J

two non-zero vectors not lying in the same li €.~

~ a .
i

) If A and B lle in they and have the same’sense of direction,
then A+B isa vector in thesSame line with the same sense of direction and

with megnitude JA] + |B] . If A and B have diff‘erenﬁ senses of direction .
4.~ and, let us say, [A] > |B] , then A + B will have the direction of -A and
: magnitude }K} - tgf

£

L

4

. iy -
98 By part (2) of the definition of the sum of two vectors, P + P is a ~
" vector with magnitude twice the magnitudeofgP o Similarlys (B i) + T 1s .
, & vector with megnitude 3 timee the magnttile of P . Thus the definition
N of rP generalizes natura.lly from what we think EP and 3P should‘ be
’(neither being defined -af this pointem ‘ . ° C ;
. i .
99 An emphasis on subtraction of ypetors defg};d in terms_of addition $hould
be made. This should be‘done n.ot enly For purely algebraic reasons, but also-
to simplify finding ‘t;!lxe difference of two vectors in & vector diagra;n.- .‘\ .
/ ot - ' \
- . . , -
Y — e
(} - 3 ‘ -
- y v 4 - .
. N - )
]




1.

ku(a)

(p)

(e)

1

(0)

A R 3-3
Exercises 3-3° : ' e T

C
T -

E (requires assumptions that vector addition is a.ssociative and

that diagcmals of a. pa.rallelogram bisect each other)

2 (requires second s.ssumption in. pa.rt c)

c < . .

€= -8 :

3= b -
.e- = -a— + -'E .

(1) T=a-d — - .

L Y
( ii) -e. = E’\_‘F F
ol . -y <

(111) e=b - ¢ .

(1v) e=-c -4 e -
(1) 0

(11) ©




5e

. "
L]
‘ ~/ 5 ; « '
. L
J i
3 \'\‘ -.'.
[ 4
el
Q e
- [}
a +b =¢ ‘ : -
It can aldo be seen that -a + ¢ = b .‘.F:?-‘:
* ’ vv '
fa) 5 - R -
3. L, 3
; " P ;>
. 3
(v) 2 (e) 3
s 2 .
() -3 o
LY
a ’ ’
' : -l aditn e i ¢
From the diagramabove a =b and ¢ = d -
also ‘ ‘ Fwﬁ:? and ;4-'(?.—.?. o
o LR T=T 4T
“I-A..I = 12 . ' . =
1K =15 o N
- |54 = 15 ' . ‘

A

Since a =1b ’ ® and b are representatives of the same infinite set

of equivalent directed line segmenis. Thus.

’ ©o=fal =Bl ana BF LT
Now ra||s and T8 is r times as large as & . Also rb}|b and
is ¢ times as large as -l; . Thus" - B

. N P I RO T

L . . . * - l‘; = Ig ) - -
- . ’ . . LIV
|xb] 1is equal to the magnitude of = . \ *

SN e T

-~ -

'S o



. "! . 10‘.. (‘a)

u
é)*d}m[

il
vop ©4

) o 5} &Y &) S 0f @) &) T O
-

; N
- e « R
+ -g = E + -n-l \ .
- - ol iy (
-c+g=0
n=2+k
+ N =
: EREA . ,
.- . + e = 211 ' . ]
e - - -t ) .. ‘ . )
. ’ e + h = =& . . . ‘
S . . | '
(and others) . . ‘ . o
. . ‘ “~ - .
11. : ' ; : . S
) ‘. - .
“» .2 2 S
£ . - |
A3 - . . . N
L SR L 5 .,}
, X ° , - e
- ~ ’ r
. ﬂ - . N
i - )
‘ ¢
-~ . »
¢ - .
Y IR R Winl ST )l i i " i . # -
) - ’
. e.. - " Dhe éxample: _Qne could follow the patl;‘vfrom P to‘ R/‘,'éom R to S, :
. ‘ < %rom S to ‘TQ: .
12. (a) not necessarily ) .
(b) yes - ’ : .
v ' .




L . : f.’
- 3:3 ’ :} ‘ ‘:, e
¢ 13.
i ) . .
.
- ’ - . - - s \ “ N
lal 1s-length of & T,
rl ‘is length of "5
. |a +b| 1s length of a+b
« -‘ .
Since 15 equivalent to . & s theﬁ lc} = [a{ ' :
uince the sum of the lengthe of two sides of a triangle 13 greater than
or equa.l -that of the third, we have ‘ . , : / -
. . R
‘ T p . Ja8] 4 lea +%] . '

L]
I.B.l — 2:! L )
1Y °
y ” ‘P‘ = 2§'

. C is the resultant
t

fo ~ I-E s representing approxi- -

mately 3— miles in the

\ <

direction indicated. e

\ | | - 93
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.\\}5 Let the speed and direction of the Y ‘
‘eqrrent be represented by T ealong . * % v

the y-axis. Lete the actual speed N
and diretétipn of the boat be repre-

sented by R. We want to find the \ ‘P NS

'vectcr B representing the boat's s
motion in still water which when added

to C represents tb.e combined ef- 0
fect of current snd. engine on the
. E ~u

.boat. R.=C + B. B. ,l B J, represents s
.+ 6 m.p.h. at [ROB,

-

P

oY - A .

P —————— R e e

™ 41 (bs

LY
]
) 0 . 3? {bs o B

| 17. A and B are distinct gectors . 1

Let A have coordinates (a ,b), B coordinates
Thgn '3 nas its terminal point at (-c,-d) .
ang A has its terminal point at (-a., .

3

(c,a)

- Thus A - B has'its terminal poiﬁt ui (a -c,b ~d)
and B - A has its terminal point at (c: - a ’3"'“— b)s
Gage ome: b #d o
b b-d
Then slope ot line 1s given by " - o
, © (b -4) -0 b-d .
. e a.nd ‘slope of line OC is giv‘en by (o -l =0 =TT \

Therefore the Lines are parall

03

Loy

o

4 »
e e e e i S

.’
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* Case t\m. b=do |
Then line AB bas no slope defmea, \gat it 1s parallel to the line

x =0, whiehistheline oC. s, ¥ .
The proof that B - A 1les on a line parallel to t.he line through A
s and B 1is similar. ' - . | 5
¢ 'y c- _-b ) . . ,-
“If b#d then m(ﬁ):g-.—.z ) -~
' (d-b) -0 d-0b . '
and m(ﬁﬁ)"(c-eﬂ-o c-e.“tf. ) .

o ‘ . So the lines are parallel o

If b=d, then BB ispamllel.totheline x =0 which {s OD.

¢ Alternatively, we need-not use coordinates. N
- - - - —
= , : - * et D=-B and E = -A, A-B 1s
- % ¢ * .

the vector determin&d by the vector *
opposi.ﬂe 0 in the parallelogram '
formed with DA end OD as. sides.
Hence F = A - B. But da(F,A) = a(D,0)
arfd d(D,0) = &(0,B) . So

a(F,A) = 4(0;B) . Because 0D =08 ,
and FA[[QD Wwe see that. e
-/ FAO = feoa. Wity a(o,A) < 8(A,0)
we now -know that AFAO AmA '

~

_ ' We get q(l?‘,.o) = d(a B) « which. tells us that OFAB is a: parallelogram
since we alreads have d(F,A) = d(0,B) . So F=A-B 1ies on & 1fne
parallel to 3} ' . ' . - !

/ - b N F‘ Y . .
. . i . - S ‘

18. Given that a, b, c , and d , are consecutive vector sides of a

+
qua.drilate’ral We wish to prove that the figure is a parallelogrem if

-

and only if b + d” 0 . We must show thaj;

[}
b

\. (1) 1ir, v +ad-= -5 , then the quadrilateral 15 a parallelogram and that
(o) if the quantilateral is a para.llelog;‘am, then b + Q = 0 ’
. . ) g ‘ o . . R .
‘Proof: . : : <
. . Jr S .. :
N ) (1) Assume b+d-0 .
'} . ’ g = —-5 ’

., .. b and 4 are parallel, have the same magnitud't and are
. opposite sides. ]

-

Y Quadrilateral is.a ;;graﬂlelogram.
{2) Assume the quadrilateral is a paraklelogram,” Then the opposite

il

sides musts be equal and parallel; i.e.', b-.d.

-

. e =~ ol *
.« b+d=0. . : ?
‘ . l. o
Q ) .91
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e diagran above’ shows labeling which leads to a simple proof.

To prove' The' sum of six vectors drawn from the center of a regular
hexagon to its vertices is zero. . o .
$ ‘*'w(-a +b+-b)+c+(-ﬁ '0. . -
20, , . .
@ T '
.
. ‘\( * ~
» .. ;*‘.‘
' -
.“' * .
.
) : . A
- - — e _-‘ [, . ey e
(1) Let AB=2a,B =b.,CD=¢, ..., PA=p.. ,
(2) Note that for triangle ABO , we have .
' T AB +BO = - OA
’ ... AB +§ +_K=-6 .
- ! ! ' '
(3) en if we divide our polygon into triangles as shown, we hs\re'
: (AB+BO+0A)+(Bc~+co+oB)+...+Ao_o~? ¥
j‘lt AO -OA f BD = -m 2 etc- «ae t
. * . -.\; =i o P ‘
..(h)a+'b+c+...;tp 0, or AB+BC+...PA=0.
B \t
92 |
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** 3.k, Properties .of.Vec;Ear tiqlg. - C oy

105  The purpode of t.his section is to develop Some a.lgebraic structure for
. the operations of vec‘tor addition and sdller mnltiplicatian. " '

Perha.pa the best way of’ ahowin&the a.saac,‘tutive property by neans or{ y
. Figure 3- 9 1b to cnnsider ‘the quam:lateml vhose vertices are the temm '
‘polnts gf Q P+ Q §+R and (P-l- Q) +R It 1sapamllelogram’since B

each éf,e pair ofappo‘sd.te sides is parallel to R andhaslengt.h equalto .
. thélengthof R. Slmil&rlythetexﬁ.mlpointsof R,FP+Qq,Q+F, %

e

and, P+ (] + R) are vertic .& parallelogran (qppoaite aides eqxal i%
. 1ength ‘and parallel to P) the two pamuelogxm are identieal and’\ * .
the’ fourth vertfces mugt coineide. . . S "~
105- - A.nicer proof depends on t.he one-to-one correspondem::e betveen pouhs m
- the plane and ordered pairs of real numbers. It appee.rt 1n g-,he solution in )
L Exercisg l’(, Section. 3-6, A . D ( ' L
.‘ - ) ' ' ' * ~' “ “’ . ‘ ’ - .
. . an 4 T v ..‘ \
,  THEOREM 3-h The vectors (rs)F and r(sF) both have fermthal potat: X . T
- suchthat a(0,X) = ¢ a(o,P) . l)/-\ C e ‘ " ,
] '..\ Y . : ' - . * ‘ ‘ .
) 'y N A ' . . . » ’ AU . ~ “ .
e ‘. \ + Exercisés % ' . Cem
L] , - Y * N - : ¢ .
1. (a) Shew that: . -/B) = A » LA
@-' i ..B,+(A,-")‘=K,' BN .
. " then . B+ (-8+% -7 o . \ L
A - . ' - ¥ o - - ’ . . e . 0 &
: ‘ £ BBy ri-E L o
‘:‘ | .&’ , &nd T i XN-A-&- " : ’.. “ : ta . -R‘ ' |
. . - ' [
P _ 'Sinoe this Jast statement 1s t.rue, the steps can be reversed to T
prove that, B+ (A-B) =4 . 4 : . S L
© . ¢ »
* ! lt ¢ . . .
(b) 1f N (AE3D) + B=h, L y Ve
, . then | A+((.§).+_B =X o 2o s "
. and : L Ar-AT.. (Seeren&-k inpart ?a)) A
N ) ' . . .
' '\ ¢ : . o ) R ! .
L . - - ‘ ‘ v ) ot
. ‘ .. 6 d?’ i - . .
« Y \ H -
- . "
N LT . '
e " 93 R N :
s ! - ' J X 4 - . * [ 3 *




-
K
.
‘.

P (c) iﬂ 0 ‘ A

,‘ " L gy
: 4
[ L t

mi-




-—

‘ . - . %, - . . '] .
L . . , -
€ " " ‘ ’ - " «
- P ) - - * l‘ ) ‘e P .. ) 34
3. (a) . S
[4 i . . ¢
N . 1 (] ’ = . e
[ . . - .
L] . : b
. ¢ [ &
© t
N -
ks
" «
¥
7 - ! - * [
P, [ ] . . ) ‘ . - .
. . . :
. . . ’
.‘An -_— ' .~ - . ® ) N . - i
(b) ARB=T(B-A).fOI‘ re=-1 .
A . . - . ¢ -
. Y .
A .. . ’
R .
' Tl o :
. ..
. v . - )' t .
A Y

¢

Let 0 be ﬂe origin and points P, Q,R determine vectors fP Q a.nd *Rp
%t A ° be the vertex opposite 0 1in the parallelcgram deten!ined byJ
H

R and Q i.e., A= P+Q. . PR -t

Let B ‘be the vertex ofposite 0 in the parallelogran d determinéd by |
aa.nd F ‘1.e., F-F+X%. . . . ”
Let TuA+"§ .and T='§+'§ o -

CGeweE e Fi@en (L -
We,wish to prove T = §”. It 1s enough ta show'that T and T' coincile.
By using Exercises 3-3, Problem17, AT ||'OR || @& aqd N .
a(a,T) = &(0,B) = a(qQ,B) . o : Tt . S
Thus ATBQ jis‘e parellelogram so B || QA and d(B,T) = G(B,T).

By construction-of, A, OF || Q& and a(OP) = a(qa) .

By construction of ‘I" BT H 0P and 'd(B ) = §(0, P) . .
'mlerefore BT || BFV and a(ByT) = d(n Tf). T «
'So we must §ave ¥F = BT, ) Lo f/
Whence T./T' and T =T'. Q.E.D. ) ' o
./ . - .
t“
- . ' 7"‘- s : .
95 .
. ~ 99. "
S . .



« V. that (-r)F = x(-P) .

. a ,"96 | .
CERIC, - - 100 e

MAs e e
_ . s 1. . . ' L »
. - “ - ) ] - . ‘. Co .. . R
5. AP+ Q) = F-Q -, . | | :
-~ - ——- T . - » '
R I B L

. -k
. . . * ’
3 N e n\“ R \ . .
* . !s.__-_&._._ N .
- T ., Lo S
W e L. (=B, ] i
S 2 (5162 )
S ~ : )P = ()P | P
a , -~ end Q—-r)P 1-1‘)1’ T, St .
.. . 6ince this 1ast stetement is true, the steps can be feversed to prove

-

ot ‘ . . ) ' » ! *

. - - . N L ] « .
S € ., . K,\ 13 . - . -
= . .

- %.57 Characterizati®n of the Point on a Line.

© 109 ; In‘the proof of the distributive laws (Theqrem 3-6) , *-}eﬂ/w 1tems
as unfinished business. Thg: first wvas the proof in the ca.se where P and Q ’

are collinear 'and have opposite Benses of direction. , A
" ‘In this case, assume B > [Q].. Then: .
" (1) "By the samh definition e Ysed earlier, ¥+ Q has:the same direc-
. tion ss T and hes magnitude 13| - IQ] . - - b
. .
(2) 1£ > 0, then 'r(F+Q) hes the same airection as (F+Q, , >
" . - and, by 1) }bove, the same direction as” P . The msg tude of
. r(F+Q = |InF+ Q) - riP + Q| and 13, by (1) above, equgl to
» - | M \ The distributive law gives' tha maqnitude as.
g —eF1q L : 3 |
* . . ]
' (3) Ue now consider rP and’ rQ wmch since r > 0 , have t.he same
direcﬁbns respectively as P and Q . By our hypothesis, P and
- Q_ have opposite, senses of di‘rections, and therefore so do rP/fmd
Co *Q . Since we have aw {‘.Ty iQ[ , we have r|P]-> rlQ “
) * . and, .therefore |8l > |rQ] - . - D
s e : . ' - E



]

A

a 1%

3 Y

‘ Vr S~ ‘_ N ‘ ! I"‘ N o e
( h) Our,deﬂnitim for .the qum ‘of veétors now reqnires thet rP + rq
_have the same direetion as .rP and this’; 18 the same direction- aa

\

R The nme deﬂn:ltian requires that ‘the magnitude 6¢ P+ rQ

he, lrﬂ -[rﬁ] ;. But this latter expression can.be written as .

_r(le—ﬂ) e ' i .
( 5) ‘Since we have shown that the vectors r(P + 3) and rF +,rQ have
the same magnitude and the same sense of d:lrection, we have shown

Since r <0, r‘IT and ra have directions .opposite those of F and 'Q-
N resimect@ve]g. The pmef' for the case r >0 4in the text will need to be
modified as mum in order to hold vhen r < o . |

+ In step (1) , since r is negath and- the absofute values positive,
- |3 ana [B] = =B . d

e Bl =8l 8] o
In step’ (2)_ A -rl@ 18- _ ‘ - . .

LT,

¢

} ;’_; R {‘ . wo . E L _ L . “l_ . A .Q . “ N .\ - . . . e X e
. .‘- L. . ’ . .. . ) ’ e N .. : ’ ‘
. . o co - » . B Lo »
. ) . . . . ’ 43 5

1. —_—
. : that t.hq are equal. A e _ .' . ~ _ ‘ ...
. . The Second item we did not discuss concerned the proof vhen r < 0 \ fn
- this ease, our figure mu;t be changed to the folloving- )
. . ) . ' ' 4 -
[. ....
L3 l
A . .
/
. hd LJ 38 [y
.~ - ‘.
) e
,‘ ‘ \
= rQ :
- r? -
~ < ' ' 1

)



T 3«5 - ' -\.,.J\ .

T L '_. ' ‘ = A ‘ " - )
In step (5) , 4(0, n) n'ird(o A, . | ; .

e Bl=t@. . |
In step (6) 7 since the vectora are in opposipe directions D=rC. =~ °

& v
140 When teac'hing this. section, wve would reconmend that at first specific,
* ' numbers We used for Ry and q . As an enmple, sonsider the line

-[xx=pA+&B,“b‘=§‘° p+q=l} Letd:‘%,.q“ ‘I'hen *

' “L-L-n‘.‘

e
. .

<

., ] S - ( , - oa
‘Take any vectors.. A apd ‘B . Find the sum (lf %A and .%ﬁ and verify, by
- 'y ' A ? ¢ . : )

const.ructién-, that X 1lies on 'A_B . Then let, p =-l3-f and q = - and-

wlH

* s

see 1f the sta.tement s&ll holds. h . \* E _' . © o

Such experiences will help‘;he siudentts visualize what is really ta.king
) ~ plage. *
N 111 " In Chapter 2 a formula was developed for finding the coordinates of &
. point which divides & line segmént in & given ratio. A centparable result for = v«
vectors is derived in Theerem 3-8. ‘ It may be of interest to the student to

A

compare the d#rivaﬁons and the applications of the results. -
) # ~ ‘ \ : = ' B
. - ) ‘ - -
e . . Exercises 3-5' ) ‘ N

1.

- ¢ *
' 0
(a) 1if A is the sero veetQr, T = qf and
) < . ‘ : ! ' ¢ ot " -
' if 'l; i{s the zero vector C =pA =~ , 2 d
Iy F'. . ) N ' ‘,; - ‘ i
W) if C=A,p=1,=0 -
v ( LY




!! .
.
) ".- . ‘
3 ’ )
o~
]
£
1
. i
A
1 .
’\
»
©
~ .
L ]
.
<
-
[ ]
I
A
[} .
-
L]

JE P N T o

‘

(e} « (1) 1f p>0, end q>0, the ﬁermix_:&l'. point of T les *:

4

. \ in ﬁ . . .. . . ) 2
(11). . if p < Q. the terminal point
: not(m B. | . BRVERNEL U

. - w

(111) 1f p=0,C=qd and C lles 7; B, -
. . ‘ * r .

(@) (1) p=d=35 .- R

of € }‘i‘es on AB 'b,p?_‘ .

~

-






® ‘ . ) . ) . e

wo : N ¥
' “(v) R
. BN ‘ . W
A . ‘\ ' . : . B
. ' . . ‘ .' . ‘._‘
P . , B

Y . h - te ) L. .
., '
' \/{ ¢ ‘, . . l‘ :
- - - . 1 : .
-\ - /4
s Tk, Prove: (r + é)?n P + s‘f - e '\ _
p - o oY . }
We note that" (r + s)P H xP % 5P . : .
© cas sel: r>0,8>0. o P P

r>0, s>0 1mp1y‘r+s>0 . Thus (r+s)? and rP+sP
have the same sense of direction, and -

~ (‘;", |(”“)~|’(“*B)m“r'~l+=1‘|=!rﬂ+|si’l=lrr+aﬂ
) &asee r>‘0‘,s<0.‘r>~|\s . \ .

. Then r+s>0 and . (r+s)‘l=(r+s)[Pl¢(r-ll)l'~|=‘ .
e el - B - [P - I+ ol . T

(lnm?}. r>0,s < o s T < fs[

. o Then r + 8 < O p.nd"s [(zses)B] = (r+ 8)|F] = | m‘z -
e SEERINEE S ANE TR . I
Case 4: r>0", g<0, r & |8] y
- i . ol ‘ ‘ o ’ '
#' t(r+s)‘] O and |[rP + 6P| = 0 . <. ‘-.‘.
Cs.se 5 r =0 or 5 =0. The proof follows from the.definition of "
. &
- scalar multiplication. .
o~ - |
8-6.. Components.. - T - ' o

) ) ' R
113 . The notation introduced inythis-section simplifies vector maﬁl‘pulationa.

A component is 1tseW a real number and not a vector.

~

# ) .
What is actually done in this sei:ftion is to establish an isomorghish
te « betwéen vectors with certain operations and ordered pairs of real numtfers i‘or ,

. u}:ich certain operations are defined This leads eventua.lly to vector spages

f 1011% R ’




. «

3,'6 .. - ‘ L | o . . *

-

‘ vﬁich' are characterized abstra”ctly by_postuzating the béai_e prgpexjt_{es ex~ -

hibited.in this treaiment. A set of postulates for a vector space can be -
| found in SMSG Intermediate Mathematics, page 678-682 or any text on modern
- ‘algebra dr linear a.lgebra. ) - T R , )

- ) '! -
Since the qrigig-vector 15 unique, tbe veetor [a.,b] equals the vector
Te, d] 1f and only if as=c and b =4 . This delcription of equality is )’
used throughoti‘t the rest of the text and in many_problems.

-

ns,, Part of the material presented carlier on.the topic of 1inear combina-
* tions (See peges 108-109) 1is especially pertin hére. The unit vectors
1 = 1,01, and J = [0,1] intwdimensi'onsa.ﬁd = [1,0,0} , § = [0,150]

] 15

= and k = [0, 0 ,11 1im three dimensions are us jn most epplications of thor .
analysis. The 1 ,y J, k vecmrs are discussed in mmp{:e;' 8. ‘ :
. 4 : Exercie;es 3-6 . = . '
\ e . 1. ('3) ‘[733] *- i ‘./ ‘ (e) [-z’_SJ -
..f ’ n "(b) [-1,-1] . (£) [-5,-6T T
) T [20,28) - (8) [10,9]
(a) [-20,-2h4]) | (n), [1k4,-3] L
2. (e) (19 (1,51 (k) [2,-16] :
I (5) (2,22} - :
y (3) ' [13,-7] (6) [-10,76] * - T
X M) (1) X-A#B-C-= [0,-2] .. ) L}
R (2) X=Hoh+ B - (103 . .
; v .
) ¥ -0.-2%k+3%33-.2 3 .
(3 X=C 3&+3B—[§,3}- ) ( 3
g . - 1, = - e 1)4, ‘ A
. ‘ .,(h)'x=§(B+C,,-x§={-'3'x—3-} ‘ ; ,
s ‘ (i) X=-2C-3B-= {‘1:"3&]’. )
. - 1~ 1~ 1 4 *
, (6) X=-§A:§§=[-§,1§} ’ \/
VY c : .
L \ .
* 0 4
. % .
) . (a) V2 . j : .
: ® 1 ) U
€7 (e) A b° f . / «
(¢) .1 . | B ‘ .




2

b2 {__

1

- "_} + (b “ .3){‘1101

. . [ ] .'- 3-6 ‘ ‘
) # . A . v .
. ~ 5e . - " po
/ . af : . T
. (_ " ] . g
S A S R S PV
4 -. Li (4.2’ . i !"1 + EJ ' .- - )
: LR AN - B=5toy |
S -“"_ s +‘ - "ﬁe'ﬁ-‘i (5 #)1+(-l - .
‘ 7 a 7 - =1t33. il
. . - - L ] ( ) . .
) A ‘ 5'-’, " _ . hie'“ L
l" f ' . / . ‘ - _v ,ﬂ‘ .
‘ ) - " . _t .
fé 0:034-0 T et T o !
! .‘ a T.’ ‘The m:bdpoint'of the Jhine segment joiming (2 5)‘ and (5,8) is '
\4 YT 13 ’ . ». ..- ‘ LI o I . .-
2 e . - 7 13 - . ’ o
Lo PrEh Rl :
.+ " 4
. -~ ‘ 1 ‘
\8. (a)'pg—-r%1+-é,j. . X . '
e ‘h- lg 1 4 , !
' (v) w‘é'—a--i-?d o
. * - - .
. ~* 4, 3 - .
- (c)‘ r ; 54\- 5.1 y
, 9 (a) x=3  y-5 .2 <
T . v ')
-3 -1 R
! b = — * o -
3 ( ) x 5 5: 5( * ) -
‘ ) ‘ B ° L * .
e (o)X= 1_2; - VT3 ' ( :
- . ° - P M
¢ . ‘ = y = '12" L .for each real numbér. The real numbers
/forfn an.infinit_e: set. - e ' ‘ ¢ .
- - , L] ) . " ‘ o
- 10. (a) fa,bﬁ = a[1,0] ¥ v{0,19 \( , Lo
. (h-) [.&,b S 2 +h (1 l] + b 8.{ l 1] \\/ )

o e ' "

N ' . .
& 11 3 92573, 1bs. © 43.3 /lbs. - T =25 1bs.
.. ‘\ - € ") .. s ‘ ﬂ
. . . g.._
- < o
" h P * - [ 3 + . “ A
I3 [} & , { -
- e o - . ) ‘o. . r/o F.- ¥ 1 9 l7/it ¢
1 ‘e . N ’ —
hd ‘\ > * * & ) - . ‘.
. ) V]
r . - - — ' '
- v r . 103 O .-
. ' ¢ > ‘ l,"‘ >/. 4 s -



A .’ ¥ ¥ ' e ' . ! i "

’.A ' \ . . \.' .- o . “ ’ " N . '.-:‘*
Se ' ) \ . \‘ o : -
9% ! e N .
> 'y . .- -

L. 12. Letting 1 ?S\corﬂspond th 1 init set 1@’ a coordinate system. / -
| I T \ ','-A{A'A]-[L‘Icos?'{,fﬂsin?}?] N

! I : -
."':‘ ' . . ‘é ’
i simed, @3

- . :7 5’ )
. - . ) 3 - LS . - -
<. i R ARCI o’ §=[Bx;3y] =[ |§l°95(-"3°°)': ﬁlsi“‘(i‘-ﬁ.’o”

. :I . ’ fj- l . .
W . Ly ‘_.g“_'r,%_ =[30‘2— , 30(- §)]‘_ | | )
) R+ = (16 12] + {15./’, -151 [16‘ +15/3 ;=31 = [k2, 3] , , .
13. (,e)' oy ° , below x-guds in 4th quadrant. The components of the-second
. ) vector, B =- [26,-12] < ; o . . ..
’ ) ‘('B)\ 32° fr'om y-axis in 2nd quadrant; The compopents of the second i
! vector, B - [-16,30] ) . .. X al
. ) ) N . -
1. 24930t T B PR
15. (a) 21.3 1bs. acting 3° north of west. o SO
- (p) 31.3 “8s. actqg 2° north of West. e . - ¥ s . aew
) g - ' ‘..
In part (&) the components are [-15V2,15/% - 20] N _
. - - ‘%
In part (b) the cohponents-are [-10 -,15/2,15/2 - 20]
. ]
y 6. 14.6 1bs. . - _ ‘ i
) ’ h ¥ - ‘.
. 17. THEOREM 3-1. Let P = [a,b] Q = {c,d] : .
' ?-!-.Q. [a+c,'b+d} and 6'4'.1? f[ce+a8a,b+a} ° . IS -«
. ‘ But. idition”in the real® numbers is conmutetive so a +.c =< +a&,
' b d+b . Therefore {a‘+c,b-+ a1 = [c +a,d + b] which ,
‘\'.* .’ s -bQ Q+ ':- oo fg ) ‘;..
<. . v i ~
I THEOREM 3-2. '1?=; (a,5] R = [c,a] T - [e, 1] y )
. ‘ ' . .
(P+Q + (a+c)+e,\(b+‘d)+f} ‘
. p*(§+m tlarey,petden) | R
: . .But addition in the reals is associative which means .~
[P SN
- s - (a+c)+e,(b+d)+f}=[a+(c+e)b+(d+f)}¢ b '

.Hence, (P+.)+R P+(Q+R)

wm—
? -

| THECREM 3-6 6. r end s 'ere ‘Teal nunﬁ:efs.: P - Ta,b}o, R = [e,d)]

. - (l)rP?‘)r\((a*c b+ 4]y B .

-3
+ [ra + rec, rb+rd]a
. ) a = [ra’&)} + [TC,rd] \“ ) L .
_ . ; PR Nl . .

B - =TP+IR - - P
. . o4 - g

E1010 S ‘




e - » - 3 : . .‘. L . e & - ;.. : s ~ M - "
. o . . ..
> ! " ¢ ‘.Q. - . 1‘ - * ¢ .
T S T 3-6,
Cel e T gt (2) (r +, 8) Fa: (r + a)[e.,b] . L "' ;_'V‘" Lo
R 'q‘é,;i S 37[(r+a’)a (r.+ 8)b] - R
o ‘e . IR - > X . o r ¢
A AR .t =.[ra+aa }\4- sb) , ’ C o * 1.
;'.' . - L . o - 1 N . 2 . . o a . .“ RIS
T e T L. S MR 7 B
IR [J B Iy "==rP+sP “ oA e
: L. 18s m 3-m 12 x =i{a,b], and r 15 a real muber, then T :
!" e woee b ..rx = {tﬁ’ﬁ'] - &.r .- .. . 3 . .‘ . .. ' . e i v " . '._ -
Cim '-"‘ e ',-. Case IL: - 0 . Then x 1ies along tbe y-ms. By cieﬁni‘tion, rf
Y O lies ‘along the  yaxis also v.lth termnm poigt at b , 86 . |
e SV Ty [ra-ro, rb] [ra,rb] Lo N s SR
X ':. l. . ¢ " “. AR . - .« : . !
o Gase 2'. .b = 0 . .By same argmen% rx = tra,rh] e S
< - . '. .2 * ... ¢ . . . F ‘a.-
. C&aeS: aqup.db;‘O. .~ Dy Let 2=k .

-;Heget AOXA ' ADIC -'B . Yl | \ xa(é},b)
R : dAOXB AOZD:‘: - N 3P B
| (o,x; d(O,A; éogsg 1. . A € .
alo,z 0,0) T - ., > &
But d('O-,A) =a- d(o,B) s b. , .
Therefore d(0,Cy =ra  4a(0,0) =rb . and 2 = (raqd) .

7 (alternatively) ' ' , . e
| 1£ X = [a,b] , define A = {s,O] $ - [0,b] sothat X =A +3.
X = 1A + rB . - .. S '
By Cases 1 and 2, rA = [rs,0], B =.[o, ] . |
So X = [ra,O} + [0, rb] = [ra,rb} -
' 19, The vector repre’sentation of each set below 1is vritten so that if r = O
) we obtein A andif T =1 we obtain B’\
* * (a) {[2 -6r,3 +‘2r] T 1531‘&&1 number} . . ’-
(p) (I +2r,3 +. 6g] : r -15 a rgal nun:her} ‘
" () [k, -T +9r] : v 1s & real nutber]- .
N @ ([2+r]:r .is.a real number] . ) .. !
e) ([-3 +4r,2-4r]:0<r<1} I '
) T[l+r]:.05r§1} ' ' K
.. (&) (3-sr,k-rl:0sgr<l) .
(n) {[1 - 4%r,-2/+ br] : 0< 1}’ |
(1) ([2-r]):0<T} ' ) ®
(3) (3-5r,8-r}j:0<r}. - * _
£k) u—2+br,3+r]:0$r}. | ‘ o y -
. i




J S ¢ . . . .t‘ ] -‘:‘ ‘, R 4 . _ £ A - - -
s . L : . ER . . .z‘g s , ‘Q # . * .- ot L%
e [ - 3 - s [ -’
‘q_ - er < . ¢ o & . \ . . - >
‘ 3 ? oy . - . -“c . . ‘ [ ¢ ﬁ
. -t * ) . . ) _ - * . \ - t . . . R .-
S e R (I N B T T A -
e, . b . . . . .. ¢ o~ - TR PR X . - mrat—
(). ([3-5r,4mrl:027) . B o
(n) -{[34»!51' E-hr} 0<r<1) _' ot _ ' . T
t.'ao. (a') x=[3-6], _s[au],ﬁ n@, R .,
. 1 . .. - i
_ JUR P EL,.
B
- . - -. 4+ 8 ' .
) . '(c) M |-= &l 2 ’ N
[ ] “".. . ‘ r ‘ cr.
R E‘1"* e
. TE = [ 3 .
b “/ T Y »
2r, (a) [2,8] &7
(v) . [7].
- - A\
- (c) [0,0] !
. 2 R . \‘ bee
1 - {d) [:3—‘,%} - * - A . . - e
. - . - ‘ K . ° .
(%)\ 39“ + 2'/_ EGK +. 2""/-'] - £ - . ¢ .‘ [ -t -
rY . . . . e .
26(/3 + %) 39(¥3 + ). o P Y.
(£) (7] - A e e L .
. .. . . - o s . .
. B e ' '
3-7. Inner Product “‘s ‘#’ e,
Pl . SR
121 Mfhough it is desirable tr}%fge.ny :).nmre sowe kind, of vector
’ multiplication, it is a little more difficul to introduce in & geoaﬁetric
. framework, It would be possible to start by simply deﬁning the .1nner product
of two vectors by . : . . . w ,
) Sy
~ Loy s2p] = foy, 5] = 51" * 8% -
‘I'his is quite satisfactory from the algehraic point of view, but does not ' '. \
connect very well with our development of 'vectors to this poin’t., Hence a '
geometric approach 15 used by applying the law of eosines to the triangle
formed by / X and Y . The definitiog of inmer product is thén made in terms
of‘ the resulting expression. The physical'concept of work is one of the’
simplest applications of the inner product. It is ineluded‘here to‘show that
the inner productrhas relevance to & practd cal problem in sci ence. ’ : .
12’ Theorem 3- 13 establishes the c_onnection between the geometric definition .
of inner product, and its representation by components “of the vebtors., Efther *
[}
- ‘ : -




’ ) ‘ - . Iy * [
- . a - .
, » .t . , \.‘ . L 4
- ot ot - 3-7
’ [ - . ; . ’ w . . - »
. kY O oy .
12k We did not present the veq.tor produict. *(or cross-product) A XD beea.use

: some lj.mitations had to ’Qe set for Ahis chﬁer. The ms.gnit.ude of,

ax%b = |a]|b] sin 6 ; 4ts direction lies ng'4 line’ perpendic,ula.r to the

: pla.ne determined by a ‘and b and its sense of directi.on is ‘determined by
4
the mtion of a right—hand screw when a is rotated into ? *

“

- . You should note that a x"E = -h X a because the sense of directien is , o
R ‘reversed., Thus the comte.tive law fails. la X bl "1 the area of the ' -«
pa.rall ogra.m with : and b as sides.

Your interested "students my uke to investigate this t.opic in a standard

* text on vector analysis, . ' * . Y
r L . Ex:u'eises }—_7 )
1. (B) . 0 CE) 9] " . )
(v) -0 (£) -7
(e) 1 (g) ac + bd
(é) 1
2. (a) -11 : (£) -205 u
»  (b) =66 * (g) +-76 o
‘.(&) )'118 (h) .0 L ) e
(a) -110 ' (1) 347 ) ..
(e) 29 (J) ok - T
3. (a) g0° (e) 132° . .
(b) 80° (£) 34° -
(e) 109° = (g) ©o°
(a) 6° * ° (n) 18°
lf) ’ o ) \6~
k. (a) [A]° -2 (v) |B]€ . '

o Lo '107 1 . -




L3t

Te -

Cet s

" oL N N . * “ b
. A - L - } . . »
. ! - ,f_ P & ) N _\‘
. - . .
xS .
o . .
» . .
L - .
. .

.t"_"A5‘.v,(a‘)"-"-§—6- y St
N + 8

T () kT N

L1

) ’ € . ' “e. '
“. (e) -6t +124 ;. 161 - 12) -
‘6. ' - \ /.
F' ' . [ \ ) N .
y ® . . ‘d' - . O
) . R O MOB 1s 8 right A
., T 4(3.6) ° A .. " If C 4is as showm,
‘ 2 . ;l r, .
. - -l - o o
11 " ) ,I‘ M . CEB,*A
. (EII- ' ‘. s - ‘. E=i+qJ

. 0

- (0,0

-y
) T A=21-3
‘ §=Ei+3
‘ v A-B = ﬂ-fﬁi cos 8 o
-~ ‘ v .
N |
. - L]
‘.
\
r. \ .f'-
‘z . |
) . -
: . *

{a)

TR (2)(-2) + (-3)(1) = -7

il

From A-B = |A]|B] cos 8 , we find that cos 9 = -.863

‘ O
."« © ‘1 spproximgtely 150
Since' W=F.S and F = A =21 - 3}
. §-F=21+03,
we have E:?‘os_alagw&«blb?, and
W - (2)(2) +}/23)(-0)_ = 4 (in proper units).

[

ce iel12



| .;;,g

L} . «l.. ":-. - ; * e ( ‘ l
« N o . t -
‘ / ’ L) * R 3-8
. : ) . \ A . . ’ - ‘ et '
8, (a), 9%0 £t. s, . - - .
ot (b)- 8360 fto. lbﬂ. : c . ) . 8 . -t o
. ] Lo, ‘\ ) ‘. . - . . .
9 (a) 106 Foo . .
(b) 588.2 ££, ° : o ‘
- LN\, . - . ‘
10.* . ) ! e
. . * - .
. a ‘ . - . o .
- . R ANy .
. ‘e h ‘ ‘ *
; * \ i 3 ; | o
; L]
h‘ - » * . .
) ) ﬂ:cos 9+sinc9‘~—l, lj:cose-¢+sin2@ ‘,and

.8 - [AHB[ cos ¥ whére ¥ 18 the angle between A and B .

(b) Int.his case ¥ =¢ -~ @

.t A B:IAHBI cos(@-&):l l-cos(a;-e):cos(q;-«e)

o +  Using components 'B- = QOB @ eos @ + sin o, sin e.. ")
. [ ] . '

Thus ‘.os(a-é) co_s¢cose+sinepsin9. I

! £ o0 ’ . ’ .

ll..'I'oshm.{ -1<"x'Y 1, - | | '

<
Tl - 21~ |
’l‘his expression 1is 'defined only, if X #0 and Y £ o "In this case
X Y 1s defined as [X] Y] cos 6 » Fow -1<cos <1 for any anglg,
[xf I¥! £0 so we' may multiply through by .

T 1=J§U§l getting -1 < 22T g’
v . 1X}1Y] IX11¥] -

1

B
PR ]

12. There is no assac?t.ive law for inner products. The inner product of

two vectors is s alar,

> ‘
3-8. Laws and Applications of the Inner (Dot) Broduct,

-

128 Most of the proofs of geemetric the’arem;s ha}oeen left for Chapter &,
- These two proofs are given here to demonstrate that, an abstract concePt, such

as the inner product of vectors, can be useful. The proof of the concurrence N

k4

of the ailtitudes of a triangle is, we hope, impressgive.

5
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0 P
£
3-8 . ° .
) , a ) * . - :’ . ‘ v
.« & : - - (
129 - A bright Btddent may, ask wvhy BE must intersecty CF or hy AH must °
. - 3 . .
fntersect BC . Thé answer is far ﬁ*om 8! e involves g number of. - -
theorems involving ke confliots of order, ingidpnce, and betweenness. A ° - '
"+ cafeful treatment of such questions: {s given/b E.Ei Moise in his book .
. * - . \ ., '
~ » Elementary Geom from an A&vsncgd Vievgc_» t a.reful non-vectﬁr mof st
of this theorem is in SMSG Geometzjg “ath Uoord nates, P 600 -601. - .
A X -
131 A second derivatrbn of the’ :formul.a fer L a.rea. of & tﬁangle, o ~
=3 \xlye‘--xgylj is gb follows:  FETERI .
. . 3 J. Sy ! v
~ d - £ 1 R
Y 4 b N ) Lot - . - ¢ -
. 3 ' vl 2 T
R L i ¢ )
Q{\‘. f
RS ' :‘ ) (

l (1) Cohsidesp ADH and/the rea.lted non-zero véctors X = [x,,x, ] and
Y - [yl,yg] and the angle 8 betweqn them, Applying the trigo-

nometric form for the'area of a tria.ngle, ve have . -
‘ . K:—txHYl sin 6 . : .
we nave |X| rl g and '

- [®I[E] cos 6,

(2) S;.nce -}?-‘? -
] C I{.’=ﬂ'§('f-'f) tan 8‘, #3
(If the vectors are perpendicular, = % Ixt r‘) .
e the follme“i;)g:}

-

) To write the result in terms ‘of componex\ts, we observ

:. ) R N (3) Eu?: ’L,Lyl + xzyg |
o (b) cos @ = LS xl -
S L e
. . (c*) 'Bin .. + A ‘cos - - ' (’L_Lyl +'x2§2)2—;‘ ,
| ‘ (5" + :f:)(ylg + y;}“ ‘~
e 1("'1‘3’2" xgyl) ' f(xlyg - xey‘l)
R 2 2. x| |ed
Tz ] |
. (h) .Thus K =%!x1y2 - xgyi‘ - ' | . s
Ic 110 114 ‘
. o




".‘ ;" - L) . . \ , ii‘ L) -
. ' 3 ' ¢ ‘ * ' M K
Q-' ‘ , . - . r * -
C o ! . ’ * 1 * ~ o
. ) A A ' o
. | Ezerciseé 3-8, 9 S P
v oo ~ ]

.y x-[z,hﬁ Y:L-l,-3],t=5'._ Ly . |
(+X)- T = +(X. ) = (%) (t") .o ’ e,
[10,20] [-1 ~3] = 5([2,’#] [-1,-31} = [‘E bl [-5,-145] ‘ Y

* o - 69 = 5(-2 - 12) = -10 - 68 . . " N
e, _7Q=_70=_70_ s | e T '. . :,.\'_ \‘_'.
« ) r |
2 1 - (%] et ¥ = lryyy) , prve ,“h“f Co T T
o ()T 2. (1) tér any scalar ¢ . SRR B P
. A . ' .
¢« e r T, ' .

. * .PI'OOff\. (ﬁ% Y = x (tj ié - : v T : \v

. - <N n‘ 5 .
- “f:“eﬂ- ry¥al = [CESICHEA R -

, S A t"z"a &” ~, Y, - Lo

’S'.tnce this’ last statemen,t is true, the steps can be reversed to
. prove the origina.l statement of the theorem., ‘¢, .‘:f'
" . ) .'.‘\_ ™ . e .
) '3.‘ Toprove: . o . . .
A "- :‘ . -
; : x-(ax+bz)=a(x Y) + (X E) we notd - . . .
that X (a¥) + K. (63) = a(Xs Y) + bv(X. 2) - (Theorem 3-1ka)
*oand a(X.Y) + u(X. Z) = aX-T) + v(X.2) ~ (Theorem 3-1kb)
b () B+BDE-B) 2 ®E+5).X- F+DF  (Theoren 3-1ka)
| = (R-5)+(5-5) - JapB) - (5- ) (Theorem 3-1ka)
N = ['A-[E - f§|2 (Commutative ‘Property of Inner
R . Product and the fact that' "
| . SRR RP,5.9- 5
“(b) Construction 'I‘wo lines are parallel or interdect at a point '
]
(1) Theare.m-S-IE and Theorem 3-1lks . :
(2) ' same.reason,. . > .
D (3) Equality of real numbers and the commtative property.*
' (k) A8aitive property of equality. .
" (5) Theorem 3-1lkha and Theorem 12,
(6) & 1ies on E and (T -%) 1ies on BC. ¢
‘ .
N ) (. .
' ‘ . \/—} 1 S L
» ' <
.;:F\ . . * ‘
W, R o 111 -
Si\ ’ - . 3 k .
§



.
R
"
[ .
-
-
[} . .
. ' »
Do
* *
. &
e ! g .
b v
1
vk,
‘e
»

R Check

e i P . | “, | |
ST o Y
Lo K =%fx;y2‘-.x2yl" . c - | .".
‘o ‘ ;L “',1.'1'8 . 2!. N .‘ ;o ;' . ‘f:'
, " R & léol =10 . _‘ e .

bttemte method : m_[ﬁ N

e » § -
s 6. (a)
!: (v)
7. (a)
L ()
S (c)
v i}

=

5

x direction,

y direction, ".1.51/_

-26,0

g4 -

, _ sinee is the negative' g
- N .
] m‘of ', . . m 18 an . .
, | recipro % . .

au:iagge ‘of . -AOAB . . g'- SRS

— )
e . - ...‘ “: . .
- v <~a(o,A9=1ﬁ" aod. d(c,nj-l% £ . 2,
. ] ) . L n.’,
h " A= —(ﬁs)(ﬁ#—d) = 10 * e ) S .
L3 * ‘ . s -
. . ¢y )
15/2 .
f
- ]
- } -
‘!"
’ ’
t‘ ’ v
‘ ¢
L4 ﬂ r
LI



P MR o ‘ . ' . ) f) P
- R . -
AN S o . ) ¢ ’ . : T . ‘ . :
S . CHALLENGE FROBLEMS - , T oo
= B ' ' ' Y " '
1. Let P beanypoint. not on A ARC, )
“Let 1B, B, & intersect DA .
sides - & Xi‘. ﬁ mepectively o
~ at points @ R, s. .
d(A,S C.R -
To show HS, —gal%;- E%J—;'R r N
“‘. T&ke Qrigiﬂ ﬂt A. "'.t' Py - "'xl - .A s '. . 'a' -
d(ﬂ,R) g, -'~ d(A:s; 3 3. O _ PRI . s -
‘: d(A 8) . -
B contains pointe  xC + (;&\ ~x)8 = fo + (1 - x) i .B N “{1)
! Ii \ » . 1 .. .

alA,¢
‘e o . .
a(a,H oo

i

“ % : coi‘;@:ln.s .points yB + (-1 - y)RJ: yB + (1 - y) G(A R) C S (2")‘ Q

For 1ntersectiop y=(1: x) “xp (1 ,;,r) . B
which reduces %o X s o
= . o {

. ' . *' ¥ =3 . 25) *

L da(A,5) » 4(R,C - ' .
Thus “P = %8 -'d§§ ",c,‘%_. déAA_;,S 10 W) Bl !

d%A,R) « ‘a(S,B)° .-' o .
‘ dRB « d(A,C -5;( S)'dfﬁﬁ) .

But Q 1is on ﬂ so for some t we have . ’ V4

_B+7ﬁ}-(c-3

. d(A,8) - a(R,c) ' d(BcL QB _a(g,c
. vhence t (d(A B)- alA,C) - alA,S) - alA ‘R) als;c) = a5, c; 1(3}

- | C o
: ed(AR)-d(SB) ( B oo '
and ¢ (d(A B) - d(A,C) - a(A,S) - a(A, RJ/ = a(3,¢ i‘)
Supstituting the expression for t obtained from (3) into (k) and
' ’ : . ‘ .

sin;plifying we get . .
’ a8 - a(s,B) «a(q,C) + a(B,0) « 4(B,C) - a(A,8). a(r,c)« a(g,B) ,

a(A,s) « a(c,R) - a{Q,B ' -
vhich\gives - &(8,5) - alR,ATs a(q,c =1 . .
, 117 ’
L -



. < 3 S e
.. & N . ‘ A (ﬁ.ﬁ e . % . ‘%\‘;?’ .; - ' L o
g - - ' - ot L e e s
e f*__ k - . . .f \ k) . - R ,Q‘ ‘ .
- 52 _J Consider A ABC o 7 .
L, @_Lﬁ - . 1‘“'(.'
A P 1sspointon L T
"{J_’ . B 1nterseets ,at " '
% : , o mtehgects ﬁ at M T,
'i‘z“ Des B @ »
L Tﬁm origin at. D,- x-sx:ia along B,. y-a:is a.ldmg ‘85‘ . T
‘ ‘A= [a,0] B = J’(b ,01- C » [&yel ) fo,p) i . .
- _ (This exercis considerq only the case D strictly-between A an'd'- B
S sotha.t a<Q5b aﬁd -#E S I ‘ :
e .. s . N .. . * . )
F e If (x, y). 15 on AC t.hen fn‘——- (x - a) ; '
e e If (x, ¥) ison PB 'then y:—-%(x-b) \
. Solving these to find coordinaﬁea g:SH we get, P .
et . o
. gga - 2
@3"‘ q:p - e ] (¥ .
‘e If (x,y) 18 on nc then y = — (% - d) - - )
B 1r (x,y) is on ﬂ'“the:\ ¥= j— (x -'a) g . K
' | Solving for the coordinates of M ue)get -, T
n abgg - c) sap(b.- 8) :
M= { ~ &P » bc - ] = LM gw] v

Because both /NDC and [mc are smaller than 90° angles they are

- congruent if |sin [NDC{ lstn~ /MDG| for which 1t is emough that

|stn - fmDC}Z = {sin oci?, But this follows from,

0% 22 p)?  _ (ver- el

m,n fivo]- a’c’(nn) (e - @) a’bi(c - p)2 + c%% - a>2

. Y2
e 2 lMxl ag‘be(p - c)e ‘ (be - 22
end  |sin %= == 2 aba 5. 232 2
‘ . a“(m) (vp - ac). | (e-p) +cp(‘b-a)
¥ N .
. S ‘ . . \‘
L .
i 1 ) ,
& T .

St
tiES



L .y a - . . . - ' N _. . -"
‘ N . B v j : .-
o .- . J‘
Iet A be any line vhicy' does—natpass e
T , thrnghan&vemx of' & ARC. A
: . - interstets 18, B, E st P,Q,R, . :‘-;.;
R o mapectively (This He ‘1mp11’c1£\ T
assnmtd.on that £ is parallel t.o tione
o ofthesidésxtkﬁm) IR
7 constace’ B as erigin"_ - | e
. p G(B -~ e . e ,. . T o
A - xs. ] 3 e . .
. L+ \Q 1s on A ofor some x, Q xA:; (1-- x)C * o
. - “ . Y
T + * Qrison ¥R 80 for some Yy, Q yP + ﬁ y)R - .' ¥
X . : ‘
. I - a(B,P) (BR
N NS ; ‘ ( Fmﬁ*‘(l Yd G
o . , a(s,p a R s
.,Bence X =Yy ABAT (1 - x) - (1 - ,-) ,

From these we get - . . o o A
-Q‘n‘ dBP e d(B,C : . -+ - D5.R .I%..E "
A(B,0) - als,F) - alB,A) » [B.R] ¥ ?tn,c)-cﬂ P} = d(B,A) « d(B,P) ~

L} . . .. . . . : Q
.

Q isa defined point only if the denominator is not ze_pn, which 1s the
condition that excludes £ parallel to a side. . Y

‘ “'Simila.rly we may write , . - .
, Q¢ 91(3‘%* (“ g | .Y @

A , * 3 b‘
# Then the coefficients of A‘ and € in (1) must be equal respectively - ¥
- to the corresponding coefficients in (2). From which we find °

~

SR (V.9 :a(c,ag &(B,P) _ : .
- N d(_Q,C%‘ a(R,B) ' HF,A ]

*




4 1 e . "‘/ *\ I: o ) = '
. . . ) ’e .- : ‘ _‘e‘ 3 s . e, S
. vyt . -}y : . .
. k. (a) To show ("-131 ‘e’a (x1 X )(yl .+ x A‘)’ }_‘ R T
: ie b. : . o . f .
| gy +xgr)” o 2,202 ¢ - 20yyx7, * ‘22’ )
e . LA O
‘ 2 i} 2 %-/ 2 @ e
(3:1 X )(::; +y2) xlzy f "1 2 SRR
- A ¥ . : =k
o ‘Thueueneedtoshovthat . -‘_ _‘?«- ‘ R
- \ w 3 \ . [] L. .
- % R U MR
Rk i L L (N :'{ R S
) | mtthis is tn:e hecmmevealwshave N "' ‘ Ul L ,: ’
‘e & . \?‘ . . \T"‘_‘.
f ("1"2 S U RARE VLS *23 =
(b) let X = [x.l, ¥ 1 Y = {xa, 32] in 2-space,. h/‘ R i: i ;s'sh
. Then we write (X - 1)< |x[2 wE
(c) (X-D2: X2 - [ 1f and omly 1f x1y2
end only if X &Y, rfo Lo
4 A 1y / v . : . e -’ |
v . . .. Reviev Exercises T e | o
. 1. (a) X=ApAB - C = [Q,-2] P Y '
(b) X-= 2X+3§-b6)=[_-1,-15t] ' o
- ! - g— g.-s t- g }l ! . . 1\
(e) X. c 3A+3B { 3,_3] ‘
1,2, & e 2 l_x& 4 i ' ‘
(a) X=3(B+C" )i[-B’ 3] ' 'f.
-~ S 5 ) A 2_.
(e) ¥ =-2C -8B = [-1;,-24] < 3 .
- 1~ 1a A .
‘éf) | n" “§A - -3-B = [- 5’ - § - \ :
2, Prove: Iy +,-f =0 is‘ satisfled by ', s |
X=(-174=-A RV
Broof: - TR+ X =K+ (-1A) . (Subati.tution) '
. = A+ A (Definition of (-1)A) .
~ . . =0 . (K s additive inverse
‘ ‘ of '~) N
{rs)® = r(s?) L. "

& ol N : L
Proof: (rs)P and x{ sP) are parallel and have the same sense of

7 direction. . . . .
T e e R L I
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S Ry
L (a); -m -3 .o@, [6)6] ; B LI
e () A-1386L - | ,4e) [1& 10]:° A, A - e

\ (@ -2.17'}‘ S T" (1) [-18, ,-h] e o S

\Q : . ) &

“‘;' _ ) h ;'.
) (a) Io,-%:}‘ R

. - e S
}-‘-' D . -, ’ ‘L. - ‘ -—*
- asr : B I

c‘, . r : . L - .

: z(e) L' -; %’j {..,',‘ . F.‘c Gf)~ [-‘%?O‘L:. ‘;, .:". ;:" : .l f’;l{',c

.'-- ' (a) 1-6 -] .

R

g e .« PR U b . A
6 tﬂ) O ’ “ .‘ - ”.:‘.‘ .‘(f) 1938 RS -‘..- ’ | 7z . .
oo ey o bt ',5"’(5),21;4_{ N e
. . o R N € I
e ) @36 ¥ L () g “© o\
r .

(e) 0 . .’ , “" ‘1’-. (5) .-ll .‘ . .. L ) ) ‘. . '.c
. : . ' . .- * i : et . 0 s .-.“ : '
¢ : , . ~ . . o . . 3
. T (e) 213 -0 () 0 v * " '

o wemm w0

com T T e §
) (e)/Z; . 3 .a‘_ . (1) ~26 ] . ‘&'.._, . , o i-

N ARG S e
@ 3 . wose . |
,‘_,a.- () -2(2L + 33) # 3(31 - 23) - (ot 33) = M +5-i+9i 53'-*# 53
oy | ,Q' ‘ .-lhi"ij

) s YL L .
At (e} -2t 417y | : R <
s (@) @ | |
| (e) 141 + 10 | | o ." )
(£) -18a- 43 A 4 o -




(b) 2(21 +33) - 3(31 -23) = (31 +63). (91 - 63) = (W)Y + (6){(-6)=0
(c) a1 L - | |
(&) -3 -
(e) © . ‘ v
(r), -38
(&) (321 +33) « 5031 - 20)) - (3031 - 23) - 2-1+39)
(61 + 93 + 151 - 103) + (91 - 63 + 21 - 67)
(= - 3) + (u1 - 129) = (a){11) + (-1)(-12) = 243

’(’h) . _h - . | [}
(1) -192 ,
6 . 1 .
(3) 3_‘ \ 18 122

/ ~. P 3 . ;'Z“‘ / . . }
: 9. (8)*X =61 - 23 | . |
S (b) 228+ 33) + 303 - 2} = B-1 + 30) +5(x1 7 x0) BN
. f .
‘&*" £h1+63+991 63=-h1+123+5111+5123 *
| ® mtamismtesy N o~ .
‘- § . . 5i= 17 - ) : - .
’ ‘F . ,. : ) - . ’ \.‘ ‘
~ Ne . N 17 e & ' . e AN .o‘
" e B T C . ".A |
; . ‘)‘12= -12 |
. o S : 12 L 5
PURRE S S T E
L. i " - . e ] : IS TP :
- /> ‘ Xc%{-i-%& el
(e) X= ‘-1"'3 L _ LT B
. ‘ 3 ) . . . . ' - .
(d)‘21+3j+2{1'11+x'2'3)=31-23-i+3j-‘ﬁ1.-Z‘.. :
2 +3 1+ =31 -2-14+33-x1- ¢
Y . 3+ = 2x,d x_l... > _ . e
f\ . ‘»'; oL +2) s -3111 - 3123 ) | -
. - ._ 10 e I
o . -312 = 2 . . e - ’
) . . . 4 2 ‘ B
< - L g\.' 273 AN
\ . X=-3J ]
ot (e X =Tt T \ .
(f) X-= -1*53-1' - : o - | .“'
0. (a) (2t 4 3.1) - (31~ 29) = (2)(3) + (3)(-2) =0
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1. (a) m fABC='90 - (in degrees)
| . m fBCD =100
‘ S m fcoa = 55 ' . St
S Lom [oaBe 115 T
" :(b) Area off AAB =9
| Area of - AUBC =8
ﬁ ‘ Area of mm 'T
| c) Aren of AABC = Area, of AQAB + Area of AOBC - “Ares ADAC
o =9 + 8 7=10 '
12. . - - ' R /
- G
Y )
s - Iy ' .
1 /
Area of AAGB =§talb2 - azblt
« Avea of ABOC = §lb132 - hec]_] ‘
- 1 ‘ - c
. Area of AAOC=-I&13 - gﬂli o 4
L Py
e T From the diagram ahove: Area of we% Area of AAOB + Area of
| i . . ABOC - Area of AAOC .
* Area of AABGf 2!el‘o - ab 1+ Q‘blce b _cl[ - E[aic'e - 201|
1 '
c Area of qunalalb -ah +b12 boe; - 8c, +321| K
o L}
. ) ~
. ) | ) ,
< : 123 f
] g ! T 119
L Y




) _ ) ¥ L ,
b , . L , ~ B ' .
13. ] - . /) |
. .o ' 4
it 2 ‘-
N ¢ FARN
’ ¢
. - IR
‘ { r' -
.' AreaofAAOB elalb —abl L
. Area‘ of BOAC = . 2(Ares of AAOB) = lajb, - ap |
A\ _ ,
-
lhg (&) [ h}?] - .
(b) [-h] - . | .
(@ I[3,-2,3 o | B S
" a) [-15.211?“ |
15, (a) OABC = BMuxkud ' .
" ) a[{g 31-,3,-1-) 0<rgi1} ull-1+e2r, 2+2r] O<r<l]
- U1 4r,3+rl:0%r <)
RegianABc={B+r(A )+e(5~§) 0<rg1,0<8<1,r+851)
- ({-1+3r+257, 2+r+28):08F g1,0<8 51,748 <1)
ﬁ.

Int.(Reg.ABC) = {B+r(A - n)+s(c-3):o <?r<¢l,0<s <1~,r+-a<;L]

‘= ([-143r+2s, 2+r+§sl- 0<r<l,0<s <l,r+s<1]“-

-
o, -

() [1‘3]=[1*3(‘)+2(E)'2‘“(’)*2(1?” whmmmmmmva
0<r=%<l,0<s=--1;<l,a.nd r+s=%<l

. , so [3,1] €. Int.(Reg.ABC).
’ . -,‘. Tees ! . . \
(&) [L,1] = [-}+3r+2, 2+r‘+asl if and only 12 r = <3,

. s = -g So clea.rly (1,1} does not satisfy the ccmdig\ons to &

| in Reglon ABC . - o .
/ f o -

-
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T h . . . P

e (4) smm A _‘([1,1421;1‘:9“ <1)
| “From grapyic.hl eonaidmtions, we show PbP intersects AB vhich

N © ‘ o
. 1s @& suhset of MBC The mnnitiqns « ‘ '
. 0<Trgl, 0<t<1,[2- 3-r]=[1,1+2t]ar¢mmr

,._'t ==% 3 T = 3 Eence t.lm semnts {ﬁiemect in the point [1, 3

).‘16. Regio.n ABCD = Resion BAD(lResion BDC URégion BAC .- .
= {B+r(A n)+s(c B)+t(D B) 0<r<i, o<361 o<q<1, r+s <1,

: , ' a+t<l,r+t<1}

; = {[ 1+3r+as+3t, 2+r+as+2t] 0<r<l o<s<1,o<t<1 r+s<1,,
s . s*t <1, r+t <1}

_ ‘Note: the m indicate logical cmjuncticn of the six individual ;
Azeonditions : ' ( S

7. ne‘g‘ionncn-'- L ,
(B4r(A- B) +s(C-B)+t(D-B): 0<r<1,0<8<1,0<t <1l,r+sg1,
¢ N 8 +t_<_l,r+t51’

\

, )
) e ™

s @ \ T
’ E:; 'Sgo.' . . R \ ;
(@ «° N ' |
© 19, fcaB = 90° | o o | e
[ABG = 45° ' “
[AGB: 45°
20, /SR = 135° .
, /sRQ = 135° | {3
. /RQP - 4s° o T _ ‘
[ars = us5°- B ,
Prapezotd o S B
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,,.
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-s &
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5 . PROOFS BY ANALYTIC METHODS
. This 1s the first of what sdme s{:udenta refer to as "fun" chapters.’ -
There is ncthing fiew to learn {n the sense that there are no new theorems or
definitions. The students\ave accumlated a v;.rréty of tools, now they will-
gee hov these tools w be used. In spite of the groana and egm!lunts one
hears from the class, most, students t.horoughly enjoy this type of thing. |

] cm- primary concex | {n this chapter is that each student develop a
systematic approach to é’&iving problems by coordinates or vectors. Ywe feel
that a sa‘éisfactory heginning can be made by writing analytic proofs of
familiar geometric theorems. It is also our a}m-‘that vhile he is operating
with these analytic tools, each student realize’ énd appreciate the power
aveilable in the application of these tools. These methods represent a |

. tremendous advance in mathematics, and the students should be aware of their

heritage. ) - .o : .
After-a discuseion of three, methods of proof--by rectangulsr coordinates,

by vectors,, by polar eoordinates--the chaptenculminates in a section where

the student must maké a JLsonscious choice of method. In order that the st(zdent

not be denled this vhlusble oppor&unity to develop mathepatical maturity, the

teacher must avoid the temptation’ to ‘decide for the ‘student. m'ety s;hudent

is entitled to learn wvhat happens when he mkes § poor choice. Mxermre,

. his choice may be, for him, the best.

‘The exercise solutlons are given in the form we think is the most
natural; but, to follew the spirit of the-text, the teacher should accept
any presentation which is mathemstically sound. Then if the teacher feels
that the student couid have_ produced a simpler or more direct proof by ué’ing
ancther method, this could be poin‘ted out. . .

5 . .
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k-e " Proof's Us;ln,g gectmgar Coordinates.

. This- sectinn, .‘which 18, concerned with proofs using rectangular
‘ Q : coordinat.es, may be skinhed or swiftly reviewed if the class has already
.. =7  covered this material in ana*bher course. Some time might be saved in this
'_;"“ 'vay since the time allotment for.this clapter essumes that most of the .
o ‘students have had little or no experience in this aresa. v

The technj\ques\ we recomend are develnped by means of examples. }
Following Example 1, we have suggested a short outline of systematic steps a
student may follo\r i'nr the problems which seem particularly sulted to : . _;
rectangular coordinates. To facildtate. the ‘study of the examples, we suggest
that each student copy tshe figure @nd supply coordinates for it as the proof

" proceeds. . 0

Among other things, Example 1 {llustrates a rather delicate choice the
‘ . student must mke On one hend, he must select cooniinates which make the
“u figure perfectly gengral; on the other hand; he' should chaose coordinates _
‘ vhich make use of -the informaticn given in the: problen. If he does this .
impmperM, 1n the ‘first instance hé may have a prcof which is valid for” T
only a special cqse, in the second ingtance he may have a very eumplicated“\‘ .
proof where sh&ple one would suffice. Exan&ple 1 shows how the choice of o~
.» doordinates be improved without losing generality ‘in the figure. » :

142 " We use the fact that d(A,C) = d('h c) to show that CD - has no slope. '

¥

2+c2=»{§-282+‘e2,': A
or’n “ b° = b7 - hab + bt . C '115
Therefore, '; kab = ha® , ' . o
~ and, if a £0, then a=> and TD 1is vertical.
142 Regarding the choice of cbordindtes for A and B in Figgre h-?gfue ‘

deliberately chose "-a" to the 1ight of "a" so that some students uﬁo’need

the reminder may note that -a does not necessarily represent a nega?.ive -

r"}

number. I means the opposite of a; hence, when a is negative, -a is 4
positive. ( :

-

*  To show that C 1lies on the y-axis, we note that
' a(A,c) - d(B,C) ,

L] ‘-‘
.q\“
o7

or ' fgt\{- a)g +.c2 = .‘b.— (-a))e + c;‘) s ' C L

B .
£ oy t

&

T Pb .




143

. |
\
" or ba-aaﬁ-rgaaba;reaba»qa.x'
. : ¢ F . .
Therefore, . ‘ O-Rab .
and,if a0, then b=0. , '

We Justify the choice of abscissa for point C in Figure k-5 in the

folloving way. Let D = {b,c) and C.= (d,¢) . Since’ BC}|AD

slopes are equal. Thus - . L, -
g : L ‘ c c '

. ~ ,_«d_awg,ea-;ld),

and , =d-a, ’

or . L d= a + b . : Y

N

14k

T

We are dealing with well-known and previously p’x‘oﬁed properties of

,- their .

-t

geomstri}: figures, therefom"‘“' some eonf“usion may exist in the clmss asito .,
which of these properties may bé assumed in chbosing coordinastes for the
figure. Although the teacher is at’ 1lidberty, of coyrse, to set up his own

| \X:nd rules", we yecommend that only the‘ge properties ageribed to
\ getmetric figures by their definitions or'by the hypatﬁesis be allowed when .

-selecting the coordinates. For the. purposeas of t thie see‘bian,

'have also

allowed the theorems (after proof) of Exerciges 4-2. The teacher is not
bound by thia. Our reason for the exception is to make>it -uxineeessa:rwaor-
a stuchnt to prove the same thing in two separate exercises. '

'm ‘complete the proof %fl Example
3, we note- that for the’ conclusion,
a(a,c) = a(B,C) , to be true, we must

have
A

y|

lc=(0,2¢),

. r 1* ,

J{&ae+¥c2=ﬁtb2+i§?. ‘ \
This will hold is a&° = b° . From the d
hypothesis, .we have d(A,N) = d(B,M) ,
/b - ea) 4 cf = Jov - a)? 4 . A= (2a,0) B = (2b,0)
This simplifies to ' Figure k-é | .

hﬂb+ha +c2=hh?—‘hab+32+c2,'
. Ve
‘ -

or , 3% = 3°, S

from which we have 8 - b° as required.

A
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gy
_ Hypothesis:
| B snd
¢ ii ;lzﬁ.;
Oan,clusion-
: AC BC .
..1. ﬁ and AR are medians.
- ) M is the midpoint of, AC;
: "N isthemi int of BC.
* 3! m“ﬁ- . .:"\.3
3

4. Introduce MD and WE
K
perpendicular to AB.

—— e, s

5- }m=m.

m .

o
B

T. OBMD and m ‘are right

“triangles.
8. ABMD = AANE. _
96' Lm : LEAN- *

'10. AB = AB,

f1.
12.

( ’ t;l 7e
©13. da(A,M) = a(B,N). b

lh. = d(BgC)'

A
o

15.

AR

‘2.

10.°

11.
12,

13.
1.

15.

B)?otzheais .

De\iinitian of median.

RN
\

' The 1ide Joining the midpoints of
“two sid&sof a'triangle 1is parallel )
" to the line§mntain1ng tﬁé third

side. &** .
'l‘here is a unique t;g dicular to

a line from a poipt ‘not, on the line.

§ (

Parallels are ever)*vherg
equidistant.

Hypothesis. , -

Perpendiculars fom r:l.ght angles.
' ) . oo
Hypotesuse - leg t.heorem. _
Corresponding aengles of canmetxt‘~ .

tridngles are congruent. -

Reflective property of congmencg\
for segments.

8. A. S. theoram. -

Corresponding sides of o ent -
-triangles are congruent.
Definition of congruence. .

Definition of midpoint and
multiplication property of equals.
Definition of congruence.

b A0S ’l
[



a5 It 1is not snticipated that the teacher will assigy all of the parts of
" Exercises kU-2 to a single s'budent The ess exercises may be used for test
items. It is suggested that exercises 10, 13, 16 be assigned to everyone.
.Yhese theorems &re prmned by vector methods in the next section, and the
studem.ls may profit fron a comparison of the two methods of preof.

Y

Exercises 4-2 ' ‘ '

(Note: Formal proofs are not presented here. We merely indicate the

essentials of one possi‘ple'solution for each problem.) -

1. M= (aye); N = (b,e).

Slope of MN = 0; .
slope of AB = O. °
. T :
~ CoMN[AB. | . . .
.X\J; :
:K o7 d(M,N) = J(a - b)e = |a - b}. ,
“o _— . > x
a(A,B) = f(2a - 26)2 = |2a - 2 - A=(20,00 B=(25,0)
. 2.2‘3 - b‘
o = . < . ~
2. M = (a,c9; since , L) . 4 o
MP ||AB, P = (x,c). ' Y ! =
153, g : €=(0,2c)
P 1lies on BC; therefore, slope
of PC = slope of BPF; that. is, -
e __-¢ ’ e
. x 2b-x"'
. Thus, x=b snd P = (b,c), \he-" ,
midpoint of BC. o : ‘ 5';(2c'°) ’ B=(2b,0)
3. Part I. 1t d(A,P) = 4(B,P), then )
Hx v a? o5 - Mx - a4 5%, r
- ' \ : o
e 2., . 2 i 2 2 '
xg«;?a.x«ra +y =X -2ax+8 +y,
and lLax - O. -
Therefore, if a # 0, then x = O
- and P 1lies on the y-exis, the -
* ' » perpendicular or of AB. A=(-a,0) B=(e,0)
: - Part II. " If P 1lies on the perpendiculer bisector of AB, then x =0
and "d(A,P) = JaC + y° = H-8)% + y° = a(B,P).._ '

S -(




5.

6.4 Midpoint of OB =(§.§ ;

By definition OC||AE andtheir
d. = d . ‘ Pl

T v -a’ (as‘\:)», 4
and b = a +c . Therefore,
a(8,C) = /a2 = |a| = a(a,®)

and a(C,0) = /@ + & = a(B,A).

B=(a+c,d) bec&u_sél o

%4(B,C) = da(0,A) and BC || 4.
Slope of OC = % = slope of I

therefore, T | |58,

ég —_ a-#"'c e
ﬂ int of A(}n( > ,2).

: b & ‘a+c e
Since (2'2)‘( 2'{2)’

b=a+c¢ and d=e.

This satisfies the condjtioms for.
the theorem of Exercise 5. .
Since QABC 1is a parallelogram, it |
ﬁay have coordinates as in

Exercise 5. Since d(0,B) = d(A,C),

CFle

___Bslasc,a)

y ' .
2 2 2 ! *
ﬁa + 6)2 +d = /(a -e) +4d, C=(c,d) B=(a+c,d)
. ~
82 + 2ac + o5 + & = ,a(e - 2ac + ¢ + dE, S s
M b . Lo - " . -
and hﬂc = o- . :“:' . ‘.
| Ir = £.0; t}xen c=0 and B = (a,d); ,,@3‘1- ‘\\;
therefore, [OAB isra right angle. < ~ ‘=
: o A={0,0)
«
« 3
-~

A-M-‘ “

Iz a0



1

N
i
8. The coordinates shown in the figure,
take account ofthe fact that a

" rhombus is’a parallelngmm \d.th -8

 congruent sides.

. 2

Jaz et
c-a- 7

.the s;.ope of 0B is ——a—r; .

“Ihe slop'ew of AC 1is

-, a® . of
The product of the slopes is

¢ ~.8

pergendic&la; .

a = ;;(Jo,c)’ = d4(0,A).

6. P

(2,0); @ = (a + b,d); .
(b + c,d + e); 5 ={c,e).

=
f

4

n

Slope of ﬁ slope of RS =

o
n

slope of R =

al‘opec’f'PS == °

-

(a,0) ; @ = {a + b,d) ,
(b+c,d+e); S =‘(c,e)' .

11. P
R

n

)

Midpoint of "R_P=(a¢.2+c,

2.
N .

+ +
midpoint of +HQ = (a + g A —

w v

’
- .

~
.

a
Bs{ascdach)
- . % a
A=(a,0)
= -1'; hence, the diagonals are .
/ .-
5
3 ] :
f s S



[ ) L ‘ ' . .
L 12 amo) - o -+ & T

. ." - . ) "‘ = J z&- - G)E- +td

. . = a(0,B).

S ;13. D= (c,d); E =(a+\>." .

'+ + - Blope of ﬁ=0=slopeofﬁ
: ‘ and slope of BC.’

,d(oa)=d(cB)=aa+ab-2c

2(a+b-c)_-

d(n,3)=a+b-e.' ‘

’
T : ' vAntza 0} L
1%. D= (c,d); let E = (e, d) » : '
v : smce E 1lies‘on ﬁ the sl,ope ' | :
o Y| cs(2e,2d)  B=(20,20)
‘qf BE = the slope of AE, hence, . S
a d ge = aa + Eb, B

eb-e 'e-2a‘
and_ e = a + b. Therefore
E = (a + D, d), the midpoint ef iE.

-, D —‘—-—-i-.Q-——.-‘ E

. A
: o = of A=(2a,00. "
15. Let the acute angle be . 0. ‘
aa;B)? = (b < )+ & .
| - 2 2 - Bz(b,c)
‘ = b - + 8 + C . | B .
= s (alo,®)? f (ato,a))?

2d(0,A)®
= (b2 + c2) + 32 - 2ab

=b2 -r2&b+ag+c2 . b

o mae e . - o -

' .
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"

n . .
[ T
+ .. .-

. 2 . | .
- :
o .

v
L3

. 2 -,
) 2 3¢ ) . .. . i
L (23 i
- (3 ,1_) : - "
M- (3 F) o
.The point. (a + b,c) divides each
—— —— B :—- ¢ N ¢
of TK, M, and AL in the ratio * |
21, ~ ‘ - - .
Since AP _L BC, the smpe-ef-
e »
RF < 2 stnce Bq_j_m, ,.the
 s18pe of _ﬁ ;% .
‘ dh ‘ b, - -
AP = ((x,y): ¥y = glx - 8))%;
‘
= ((x,:r) y.= -(x - b)} .
~ Stince the intersaction nmst lie on
.the y-axis, x = 0 , and the po X
ab. . . A=(0,0) 8=(b,0). _
(9,- e’ - ' A - S

‘The slope of AB

- , In 'tgze' solution of this eéercise.we wish to make use of the

proposition: The segment Jjoining the center of a circle to theﬁﬂ.dpo_int‘
of & chord of the circle is perpendicular to the ¢hord. We dispose of
this proposition first. ' i l ’

Since 4(0,A) = a(0,B)) . 'y
fie® + uc? = fn? 4 l+d2_,

or 32+c2=b2+dg.

o
u

"
-1
R

the slqge of o = L

o
o] 4
o

The product of these slopes is
2

? - 6‘2 , and, since _ -
8

’
R T e e

-

. ' 131 ki



We return to the first problem and sélect a coardinate §ystem as

quicted in the flgure. We have placed the oflgin at the midpoint of
PC, and we let M = (x,y). ' '

'We then mave -d(P,M) = /(x + a) + y ,

&

_‘\ d(Mc):ﬁx-a)«l-y‘ -

and d(P)\_),) 2a . ‘ N

By employing the Pythagorean Theorem in APCM we obtain

.
(x vaf ey ex-a)f ey, . .
- Ix2+2ax+efg+y2+x2-2&x+ag+y2:hag, <
2x +2y 2, .
' sor . ) x2+_y_?=ae,. .

L ' .

We recognize this as an equation of the cirecle of radius & which has

its center at the origin. Howewzr, the entire circle is not. the Iocus

in the c.asg we have depicted. The locus is the arc of this circle which
is contained in or on the fixed cifcle. Thffs is the case for vhich the
radius, r , of the fixed circle is less than Z2a; the point P 1s extqior
to the fixed circle‘. If r-2a, P 1is on the fixed circle; if r>2a,
P 1is inside the fixed circle. In both of these .latter two cases, the

entire circle x‘? +'y'2 = _a‘? is the locus. ~

Q ~ 135
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4-3, Proofs Using Vectors. . . o

1

The purpose of this section is to show another mebkod of proving !
) \
geometric porpositions. It is inappropri&te to say that one method is superior

to another. For a particular problem, one method-may be simpler tlan another

~method, but the point here is to increase the diversity of available methb&s.

b7

147

?
vhich may interest scme stuglents-i.nvo‘lves

Usinghggctors may be an approach which though new to many’students can be of
nsiderable interest to them. If thé teacher (or any student) wishes to

pursue this topic of vectors spplied to geometry, he may consult Eleme ntagz‘\>ff

Vector Geometry by Seymour Schuster. ' .

. . ‘

A reference to the discussion of Figure 3-8 in Chgpter 3 mdy help some
students to understend the vector addition performed in Example ¥. This
example is Exercise 13 of the preceding set. . '

An application of v&ctor addition.

the sum around & closed region. For
exsmple, a + b +c+d= 0. One of'
Kirchhofft's Laws, which is widely used
in dealing with electrical circuits,
sﬁates‘thet the sum o% the potentiai

(voltage) drops around a closed circuit

is  2eTa. . :

" The students-should discovey that altering the. direetions of any of the

‘vectors. in Figpre k- 8’“111 not essentially chsnge the proof—-only some details

will de modified. TheAstudents may encounter some diffilc
they are careless' in the way they label the vectors. For example,- éifce E
is the,mi&point of AD and we chose apto designate the vector from /A to

E, the vector from. E to* D is also labeled @. But if we used the vector

148

149

R

Example 2 is Exercise 10 of fxercises 4-2. We have suggested to the

from D to E, it would be labeleq .-&

student that -be copy Figure 5;9. We thould like to emphasize this suggestion.

We think this will help the student to see that the choicé of an origin 1s
completely srbitrsry, and the drawing of the origin-vectors es the proof
proceeds may aid in visualizing the steps of the proof.

Example 3 is Exercise 16 of Exercises-4-2. the that a particular .
choice of origin (aided by & prior knowledge of the result) greatly
simplifies the proef. !

133
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In solving any sort of problem it.is diffieult in general®to tell
beforehand what will "work" ang what will not. T.his is true of the more
complicated exercises where a particular cholce of the roigin may give

.. simpler cal'rctilations than .occur wvith another ctioice. In general, an origin

' should be selected which allows the hy'pothesis to be expressed simply. It. .
should also be chosen .so that the number of independent vectors needed is as,

_ small as possible. Apart from this, experience gained from trial and error '

A ..  is a \rsluabIe help. If calculations bog down with one choice, perhaps another

' ‘choice should be made, However, some pr@osit?ons sin:ply do not possess short,
elegant proofs. 3

. _
-151 : The centroid of an area or a volume can be defined in mathematical terms’

using integral’ ~calcu1us. The center of gravity of a thin uniform sheet or of
- a unii‘orm mass is the eentroid of the corresponding mathematical area or
Wolume . ) LR L

. _ .o . Ve
_ Physically, the center of gravity of an object will always lie on a

. vertical line through a point ofsuspension of the object. Thus the center

| of graviw of a triangular object can also be determined experimentally by
suspendtng it frmn 2 different points, say g vertices »”» and then determining

where the lines ai‘ suspension intersect.
: 8

151‘ There may be some mystery surrounding the choice of unit \}ectors in

- Example L. Of course, we always,can say, "It works!" But we cen glve a more
'sound Justificatiorj- The fact ‘thht we need an angle bisector could lead ~
someone to think of t:he diagonals of a flibmbus, and the congruent sides of a
rhombus could lead someone to think of unit vectorg. Students (and teachers)
should not bBe discouraged if they do not think of thj,q.gg like this; yesrs of
expgrience and./or a little luck pley'; large\ part in these activities.

153 ‘ Exercises 5 and 6 of Section 4-3 ai'e the same theorems used in*Examplgs
3 and 1 of Section L4-2. These may be assigned for purposes of comparinithe
two methods of- proof. ’

. '
. ‘ .t )
’ © e Exerclses &3 f/ﬁ , _‘
(Note: Formal proofs are not)presented here. We merely indicabte the
- . . .
_ essentials of one possible s n for each problem.):
Y - . -~




l(‘ )

‘1. let E be the ‘mdpSint of TB.

' We have p =8 + ™ end
q=m+a H therefare, p:q
and point .E biseets ~AC!

Consider &he diagram atethe left. -
K=Y TX:=X8 ' 2
¥ wish to show that OY and, OX

¢
trisect AB, and that AB passes
through points of trisectigqp of ¥  °
and OX.
0o . - P
Any point on AB can be represepted by zA + (1 - z)B, 0<z<1,
b Any point on OY can be represented by y?, -v-0<y<l. e
. Any point on OX can be represented by J;f; 0<x<1. K )
We wish to find velues of »x and z such that zA + 1 - z)B e
o} 3 .
B‘utwe*a.lsoknow)(:—(c-PE) and C=A+B L
sowewant zA+(l-z)B=%xK +') ° S
, X
. | CzA 4 (1 - 2)B = ZxAY KB | .
1 2 -
"so we find 2 = = X ==
. 3 . 3 .
Thus the intersectlon is'at l§+ aB gf(‘ ‘
— We find by similar computations that AB intersects OY at -§-K + é—E - -g?
This means OY and. OX trisect AB and alo that AB passes through
+ points of trisection of 0X and -O—' ’ -
. .
N - / b4
) .
!

SR




. ‘ . 9){“}: ‘ - : < N '.
§-3 - . o "
E . .

3. Using A as the origin, ve héve o IR
| l.— -l o ‘ ’ Q‘ '
.gz-é(nfc),

- 1 -~ ‘ o
&S Q=3C
cy 27
’ i 1 - s.‘
' P ‘R=§‘B- o

The. intersection of medians BQ
_and CR can be located by finding

the values of x and y whi

“Folve ' - c“

. B -xa=yC+ 0 -yR.

Substituting, we obtein *

lﬂ

-...f xB+ éx-(?=y0+§3 EYBn\

. -Equating corresponding coefficients, we have

= -(l - yJ and y ~(l - x),

. from whi‘ch we oi;tain X=Y-=

W)

. I A . -
N , -

L . —_— —_ [
This tells us that the intersectir% of BQ and (R 1is %(B 4-_.(?) )

which is & ‘t_risection point of ealh of these medians. 9 trisection

: ~ — ‘ . ." 3
L2 point of BP is - / \ . wr
1 : . o L)
’ 2* 2. l * ol -
=P, = —_ - B Bﬁff* c -
*a(c,P) 1 | ‘ -
L, Since 3{_5:?7 = =, the vector : . ’
from C to P 1is c=xa i '
. ' he vector from € to A is
“,.—‘7 . (a - -t.;), and we'wish to find
\ n(a - ) = 1 , the scalar multiple
e _of it. The vector from- 0, t6¥ Q .
may be expressed' as (‘:-x +4) or 0
as & scalar multiple of the vector
9. | | 139 -
. - 6 .
RIC. v




AN

X

-

o~
2y
-«

s (_ ‘-"‘ ‘;)t L. f’ \;‘, e (.’ ,‘: . n
- » N ! ,/ . kv. h_3
[y - . f." .
‘,.1 . N : ) - ".:.
- L
T°. We therefore have | R :
‘ - . ,' . . ‘g + E =‘ mﬁ + (a’
¢ o : .
|  Fen@E-D -al 41D,
’ : - -_ - e I - o «
. b + na - l’lb = ﬂb + ; a . * 4 ‘
: . ‘ e '«_A _ . . h . ' a
Equating corregsponding coefficiemts gives us I /.\S'
" n=2 and mt(1-n); . R . SN
' Ce. r ) & ‘ . ry . . . .
. . . l . A . .
fo; thelge e‘gu“ations we find o = —~7. Therefore, e )

To G -9, e §H03 -
5. From the' diagram we .see' that the
vector from N to A 1s Za-1b
anid the vector from M to ‘B is
‘26 - 8. Since Aa(N,A) = a(M,B),
ve have |28 - B} =¥ - 7.

Using the Law of Cosines, we nay
write this as

AEZ+ 17 + 13 - VAT .

This equation simplifies to

51_

-2 2 e 2 - | .
W[31P 517 < S -
. ' tr . n' #
S SRR3R -
From tpis we see that 2[a| = 2]b], and AABC 1is isoscelesd. .

" This vector pmof of Example 3, Section &-2, is somewhat artificis,l

*‘because of the use of the Law af Oosines. It may be profitable for the L
students to compare th‘is proof with the rectangular coordindte and synthetic'

proofs appegring in Sect,ion 4-2 of this commentary. It can be ‘noted that
applying vectors to equal lengths may become awk\égrd if the» vectors are not

parallel. oy ' | ..
- ‘
o Ny . .

hegi ]

-
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-

t ‘ IRy

-be %essed‘ ' 2> :
L .

the vector frmn A “%0 \.K-may

be express;d«as -8 » , The .

produet“ of these two vectoré,r is

"‘ (v - a) (2 a + -?) .

2
'S
a

naf -

Since the isoceles triangle has

and

WS

:“'

....

e
8 -

]
“

. _‘
e} = r(, the vector produc.t 1z zero,
. e

~

o~

L 4

. -*

AXCD be a quadrilaetersl; i.e., A, B, C, D are distinct.
L+ O

it

B)

L&+ D)
2’

M, §, P,>Q are the midpoints of the sides.
We wish to show W bisects FQ.
,Points of MP: xﬂ'+ (1 - x)F
Poin‘ts of FQ: }’R +.(1 - y)Q
Intersection requires that

&+ (1 - x)?"?yfﬂ‘ 1%y
x(3K + 3B) + (1 - x)c—c +35) = y(

A+

F‘?{q
e

-~

mJ_i:‘.

"

Og_xgl

t

7

1-*’ 1~
o

50

~(1—Y) and —(l-x)—?_ 2 . L

2 i
Thus MP intersects,@l a point which ‘bisects both. -

~

\¢-
&

i
>
x

hence

h 4

i
X

x['“

X = ¢, O X -




€ < R :
<k . - ’ : : . o
9." (@+3B): (b -3) .
e e -l e ol AR
=a*b +#b+b -8+a~-a*db
A : '
oy 2 2 - - :
CEPeR.
sidee a1 = 5], B1°- B1° - 0.
“ i
- -0
- R ‘ v | £
10. As in Example 4, we.uge unit’ L VA
‘ vectors to express( the angle
bisecttfs. Then, taking the
. vector product, we obtain )
i -.- -l i *
a , b b _ 8.° .
ST Y I Y
: -‘ williy adipe -l -l ol el .
. 8a-+b +b-b_‘a'a a*b ~
: B £ 2 2 - C Ty !
VR O 1 B 1 S Y Y
. CUBE BEL,. o
. T2 -2 )
G -
¥ 9 f?&‘
xf
-&1-- oT +
a=2p -
om = oT +

R 112, L

v,’ e
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Proofs Using Pola.r Goordinates v

Polar coordinates are,not
. the type ‘we have been discussing.
.~ ¥ill be more apparent in later chapters.’

part!lcnlarly sdapted for proving thecms of
The beauty ‘and usefulness of this form
Exercises u.aing polar représentation

are, therefore, deferred. We have 4included two examples to illu.strate the
possibilities for polar coordinstes at this point of our progress snd to ¢

get the stage for the next section.

LY

b-5.

-

Choice of Method of Proof.

[ S

.

-

A

e

This section, which contains rather specific direct:i.ons for problenm

| N solving, should be earefully read and discussed.

Most of the Review Exeregfé

which folldw may be use&: to give the students experience in choosing and
fcllowing through with some particular 1 method.

‘merély the dnes which occurred to us;
' ones avallable or even the hest of the many possibilities.
any mthematically sound presentation should be acceptable.

Yk

2

a(c M) = b

»
<. T
AL SO 4
.
-
.

-

<

f
2!

2

.

.

Review Exercises

~

3

32+p

-
LLA(AM) = d(B,w Jza < N s b2

2

The solutions we present are

’t‘.hey are not put forth as the only
As was -said dbefore,

4

) .

‘[et the fixed points be on the

x-—axis;. as indicated in the figure.
By multiplying the slopes ?i‘ the
sides of the angle we hswfe

eI S

x -8

2 .2
-X + a

2

‘s
‘ «
- s

r:jl‘s:.

2 2
or x +Y%

hhy)'

’

*ﬁ.m0143

‘ .
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5.

Mg - L . %
. * ,:"‘" —-—F—\ . e
\‘\"\ .. * 3 . . . ) -»..
R \‘.« , - kb
\‘:\: . “.
. ,_; ) :
N 8, - €
o’ L (a,b}
R ‘ . S . ‘ . Y .
) ) \ ' .
0
a(0,C) = Ya + b2 and d{4,B) = ¥&a° + b
. y
-~
-
0 T Asle,00 - E \\

The eoordinates of B are. (a + b,d).

(a(o,n))e + (a(a, B))2 + (a(n c))‘? (d(C,G))2

=52+(b +d%) + 2%+ % + &) ST

: ' .
- 2(a2 + 154 de) o ‘ ' . g "j;' -
(aco fa))e + (d(A c)) = (42 + b) + a2) ((a . b) + de) !
= e(a + b2 4 & ) . , ¢
D= (a,o) ; E= (2a -~ c,;d) ; ‘1! ~
F=(a2d),(}_(cd) ' o ; )
From Exerpise 10 of "Exergises 4-2, y .
we ‘know. that 'DEFG is a parallel- C={2¢,2d __B=(20-2¢c,2d) -
ogram; from Exercise 9 of Fxercises ' "F '
4-2, we know that DEFG is a ' )
'?mb.us if OF | GE. It is evident }G * £
rom the coordinates of -the midpoints o
that TF 1& vertical and GE . 1is Y — x
' (o) D . A={2q,0) "
« horizontal. '




B PRI TR . . ol e I
. e . T . g e ,
. a
1 .. ‘
.. . . | .
. N .« . b
. P’y
‘ . . 0w .
. . . LI . . .
h‘h . e [ . L *

£2]

6. D= (b,d) ; E ‘s'('n-'-r c,d) .

_ y
»" ‘It is evident from the coordinates .
T that OA , 5C , and TE.are .
, « horizontel and, hence, psralhil../
- a(0,A) - d(B,c) = 2a - (& - 2¢)
T . 2(& -b + e)?
_ a(D,B) =a +c - b.
| 7'= | [~
-
.* . s
A ) o B
mmmrmnmcm a -D ; the vector from H to B is °
2a-f-a=aaf nence, 10 ||TE - ThevectorfmAtoEw
’ be represented by Ixa + (1 - xJb or by y(2a + 7). Setting these
quualwehave . SR ‘
' ) xa+ (1-x)b= oya + ¥b . . ,

. ' Equsting coefficlemts results in x=2y,¥=1-x. Solving these
equations together gives us Yy = %— . The vector from A to F m'
represented by x‘(EE) + {1 -x)(& + %) or by y(2a ff). Equating .

' these, we abtaix\ Yy = % . )

- i . - :(..‘;
. 5., h




C . R
- ‘ L . | T -

oot &
v

_‘Q,/Let D,EanﬁFbethemidpoints S ' . B

| ' of the eides, and let the perpendicular - o | '

oo bisectors’ o.t“ B and BC' 1ntersect | . S C o ’
-t ‘at the origin., BSince D s Y

Pemenﬁculartothe Kector from A to B,
—(A-fﬂ(n ‘)a.o,or »

. 5(3-3 - A+ R) = 0; therefore

. o v ]
. -2 -2 i 2 2

B1° = [A]° . stmileriy, [X]° - |C)% |
' - 1.~ 1~ - 1
o .Since F = §(A + a, -é-(A +.0) (-0 _ ‘ L )

But sifkce lf] = IE‘E , 12'( [A[ - '~|2 , and F is perpendicular
* I

- _to the vector from C to A. Gonsequently the perpendicular bisector
of AC intersects the other two perpendicular bisectors at 0.

9. Let M and N divide AC and BC
’ ey
in the seme ratio, r . Then, M - N

=‘(rx‘+'(‘l.,-, r)a - (r-B.-I— (l-- r)a
g i I SN

10.

4 .




P - P DUt L s R
' . B oo R W e

"3 4
» : ¢
£ _ *
11.
' A B
0 _ -
. We are given pa.ra.llelcgrms ABOO, AEFD, FGCH.
‘ Definé numbers d, h such that 5-dak 8= h? - .
| We will express everything in terms of d, n, R € ana asewne all points
are distinct. . . _
. The line through ¥ contatns pointl x5 + (l - x)E . i
. CEEEE X . . or x(aK) + (1 - x}K+ 1),
/) -~ The line through - S contains. points yH+ (1 - . -
. | : : T+ (1 -
: or yul+ (1 - ¥)(E v . N
s For these two lines to intersect, we must have
‘ -(xd+l-x)A+(l-x)hC=(i-y)dA+(yh-l-l-y)c
Thus we muat have . - o _ -t
e 'yh+l-¥'=h-xh.«' L - :
. - ¥d +1 e x =4 - yd. N ‘ . _
“Solving this system we get, under condition that: h 14, /
¢ - d -1 X = h -1 o
YR +a-1 B+ a-1
_ which puts the intersection at X such that
= hd - ) s SRS I - B
X=g7a-1 & * n+(1.1ts = p+a-1l (X+0).
From this we see immedihitely that X Mes on the line Qontaining [vi:)
since A+E=§. e o
- The restriction h ;é 1 - d arises because in tie case - h =1 - &,'we
‘ get % =h=1-4-= 1 =42l ihich makes the parallelograms similar
” . ¢ - -
o gnd the diagonals parallel. . ‘ : -
-« &‘g . .
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3
=

- ‘be represented by A+P(B .
snd § vy F+p@-M."

'A+k(c D=qr

1=gq(l -p) and k = qp; .

' The sum of, the squares of the  y|
lemgths of the four sides is

Since d(A,P) = a(q,),’ P can

x:u\fk(c-I) ‘and X =qf
s0 that - o

R+x(R+5-7) = afA + p(B‘-"j)

A+kB=q(l—p)A+qu
Equating coefficients, we have ST .

therefore, A~

-

kil_'E"" and x=A+—LB. : ' | '
- P P , . .
A'similararguﬁentgivesna Y:E+i—§?'x. . .‘ B S
‘ ’ '-A . i p -h--- _. e ‘f'
Thus, X-Y=R+ls5-5- 250
p &

| .=(l-l p’)(x‘-.B.’)
hence’ . .' 1 ﬁ'lﬁ- )

g (20,29)  *

(20,0)

!

- (2&)2;+'(2b -\EE)E + (2d)2 + (2b -'2c)? + (24 - Ee)g + (2c)2=+ (22)2

= 8a° + 8% + 8<% + 8% #Be? - Bab - Bvc - Bde .
The sum of the squares of the lengths of the diagonals is

.

(20)° + (2a)% + (2c - 28)2 + (2e)?

L= he® w102 4 uef ¢ 4a® 4 ke® - Bac v
&r.btracting these sums, we obtain, )
' 1+ae+kb+3+c+hd+l+eg+3ac-33b-3bc-8de
= h(a + b2 + c2 + d2 + e2 + 2ac - 2ab - 2be - £de)
The square of the length of the line sesment Joining ‘the midpoints of the
diagonals is ¢ '

{a + ¢ - b)2 + (e - d)e = a? + b2 + c2 + d2 + e2 + 2ac - 28b - 2bc = 2de .

‘ws] A8
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]
14. We select coordinates for the y .« R S
two rocks and the tree as shown . _ -
"'s(-b.d, -

.in the diagram After marching
the required distances and directions 1\
from the rocks, the positions

P, and P, .are located. The

midpoint of PF is ( ),

- - therefore, the buried t,reasure is’

located at the center of the square

- vhose side is determined by the tw ' VR

rocks. (The location of the tree '

. .

18 unimportant.)

TN | -
¢ T
»
’E' “«
& . . s
3 . . .




Quently & bit more difficult, but aleo more rewarding.  °
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- ‘ :ﬁ Chapter 5 )
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'GRAPHS AND THEIR BQUATTORS

-

| ' The material’of this chapter starts'uith femliar content including mach
that has been encountered in earlier courses. ' The ‘trea:tﬁent 18 broader and
deexiér‘?here ‘than:before. It is broader because we now have analytic ere'pre-
sentations in rectangular, pola:r, vector, and parametric forms. It is deeper .
because we ta.ke account of gome troublescme tetails and special cases that
a.re not adequgtely treated on.a more. elementary J;evel. The work is conse~ .

-

We call particular aitentiqn to. the. treatment 'of related polar equai‘.i‘ons,
and of paths, as distinguished from curves. Neitherftreatment 1s met in &
traditional first course in analytic geometry, but we feel that they illumi-
nate some significant maﬁ:hematical contient thst is appropriate to this work, )

-

There are: many exez;ci s, but, as has been mentioned befofe An t hook,
théy need not a.ll be assigjg We particularly urge the teach

a vievﬁoint we recommended to students. Stress the dynamic agpect O
relationship between geometry and algebra., Some appropriate guestions here
are, "What would be the ‘effect in"the gragh 1f we changed this 5 to -5?"
"What change would we have to make in the ‘equation if we wanted to raise the
graph 3 units?; if we wanted a larger ecircle?; if we wantgd only the portion
in the first guadrant?"; "What kind of graphs would ;we get if we replaced this .
6 by a variable m , é.rid_then' took larger and larger, velues of m 1.

. . Exercils 5.2 ' .

3! y‘:); &nd y=-x;°r x2=y2

4, y=12x; or yg:l&xe,\
. 2 “ \

% T '=183; 0OF x2+y2=a . . , {

6. (x-32+(y+22-82 - 180 o \_



¢ * ‘. Q‘ﬁ , . C
v X * . - .~ A e . \ "
- il } i - '& N . [
5‘2 - ! . ;;-
) \* X & . . A
w ¥ -
- . .

. ’7-"xﬂ_l _.‘ ‘ . . ‘1..,‘ - . K .- \f
8. 3x-7y-l’& O *“ - - o S

9. |x+y-2l=-/'lx+a'+21,or |
| (f+4§)x+(f+2f)y-25+21§=0, LRy L X |
(B By (B 2@)&-_25 2E<0. - B
f:‘m-ﬁ‘& . .ﬁ; -,

11. If P = (x,y) -1s a point of. the lccus, then the ?istance from P to the

nneirla’”l*gl andfromlP tothepbin’c (eo) is

.

, &; - g) + (v + 1) '.‘ The sgj‘k;tement .af equality of these two distances
: ﬁelds‘bur équa.tidn: ;:2 - hxy{q,; hya -« 28x + 6y + 21 =0 .- |
12, - -,9x2 + Qﬁyg =‘225 ) o '
13. “‘?x 9y° = 63 :
1k, 185° + h-8ﬁ + 7y - 156x' - 6&‘ + 142 =Q“ ‘
15 5x - by +17 = B v .
16 ((x-xl) + (y - yl)%)(x-x) +(y,, yé):k k>0c BRI .

-
-

: f7. -3<y<3. .
- 18. X + yg">'25 =
© 19, -1 ¢x)§ T | .
r.‘ 2 2 -
20. (x-1)+(y-3)<2~,or,x +y-2x746y+6<0
A ) 2 B
_@ 2%. y > 2 : R >
| 2 -
x - 22, x +8w> 16, : ( ’
. 'I:lr a ) ,'L‘
o 23¢ XE S IQO - 80x ‘t: An 9
, PO 3
* - éhc -6 < x< 6 ; or ‘x‘ < 6 ) -
§ . -
o5, 52 +'y% < (8.08)2 ;or X +y° < 65.286
| . _*
» € ~ )
. " LY
- ~ « -
™ f} ’ \ .




. 5=3. Parametric Representatiom g

The content and treatment oMthe material im this section are closely

" ¢ related tb thefphysical and stientific applications that pupils will meet in
T othé;fcladgés and in later work. Science teachers.in the school should be :
«  shown thléfsection,.andfgheir cooperation solicited in devising laboratory |
experiments along the lines suggested, | ' ' ) r
1. i
bt o v 2l 3l sfs)| 61 7(.8] 9] w

x | ol 2| .8}18}3 |50 |72 98128 |[i62]200 | -

- {3

v | o] 3. lw|=ar |4 |75 108 |10 | 192 |43 | 300 | ™
. ;/ N 4 \ * ,
2 L tfod 1| 2] 3| 8| s 6 7{ 8] 9| w0l

x| 0| 176 | 352 | 528 | 704 | 880 ,{036 1232 1&08’“158!,? 1760

y{of 16| & | |26 | 500 | 576 | 78 1004 1294 | 1600
) - T .
3- {x = ?t I} L . - i,
= 2 . ' .
) 7 e
b, { x = -6, . 1 o
oL bt * |
T 5. { x = 3t ,.
y = .h‘t - { ' -
5. 3x\= --E'i-gt, . C Ce
ﬂ" y =1+ %?t . - ‘ R o A;

n .
c Te Eliminaﬁrng the parameter gives y = xe « With the usual placement of

the axes this means th&t the point, starts from rest at the origin and
moves steadily to the right as it moves more and more rapidly upward.

. ' Its path is along a parabola whose vertex ig at the origin and which is
| concave upward: Since we assume” t > 0 , the point travéls on only the
right -half of the parabola. 25.9 units.

ro | 152 -
. 149
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8. Fdr the Yne bx -3y +2=0 we have direction nugbers for the normal,
. (4,-3) . Therefore we may take direction mmbd's for the line as either
(3,4) , or (-3,4). Since no semse of direction along the line is
specified we mast’ c@sider both. If we use direetion consines then the
displacement along ‘the line wl.ll be one unit for each unit intervak of
the parameter t . Since the given rate is 10 units pa' second we
. must now take direction pumbers ten times the direction cosines, 1i.e.,

(10(3) 10(2 )) Since the point goes'through (1,2) at the time vhen =

\ £ =3 R the elapsed time after that is 1ndica.ted by t - 3. We have, -
i " 1n the first case, therefore, : ‘.

‘ ] ‘ .' ‘ ‘ ‘ v:.j I
{x=1;+6(t—3), or {X':-l?'i's:t, » .

y=2+8(t-3); | y = =227+ 8t ; ~

. . i ) e {xs'-."-a.Q-gt,‘ 3
and in the second case '
) ! Y = 26 - Bt 3 .

+ In the Pird case, when t = O the position is (-17,-22) , and when
t = 10 the Hosition is (43, 589» In the second case, men t = 0 the .
position 1s {19,26) , and vhen t = 10 the position 18 (-hl =) .

9. Refer to the solution of (8) above.rk

; . L
. . . .‘ - X = 3 + —1;2 t , X = 3 - —1§t , \\/\ ..
. ? 3 . or o 13. -
-, o0y T y oo+ 20
) A3 13
%-\Assume‘ ‘t]: > t, ." Direction numbers for the line qrE (¢ - & ,'d -b),
.and direction cosines ¢ -~ = N d-b .

,_JEC . a“)? + (4 - b)2 /(c - 3)2 +(a - b)2

Se .
ot

fe-a),u(a-bﬁ .

« The veloeity of the poiﬁt along the line is —
d . l 0

and this is the factor by which we must multiply the directior cosines so

that unit intervals of the parameter ¢ correspond );.u'szuperl;\ur to dis-

&

ﬁ

placements along the line., Since the point goes through (a b) &t time
t A{e indicate with Qur parsmeter t the elapsed time since then,

\ t - to . Therefore we have the parametric equatiodns: 9




S oeF

*\ o S ,h | ‘ ' . ., . 5_3:
) ‘ :“3 oo o . — . : |
i ' ‘J(e‘- a)" +.(d ~ bla Jhe - @ P
JX=8t+=—= t. = § - {t - tQ) ’
' . 10 e -‘Jﬁw (4 - b)§ -
: . . . « o TNy
e - S)F+ (a8 - b)e : a ~‘b R oW
Y=b + = t-t). -
. iy By =ty : -3 ° - "
O HAe a) +(a-v) | .

These formidable equations become: : v

o ¢c ~a
. | ' x=8+——(t -t,),
| ot B1-%. O

. y=b1+.;i__b(t-t)_
‘ - tl-to 0 .

. L]

‘You may easily veri:ty'fg:omfhese equations that then & = to the posi-.

tion 18 (s,b), and uheq t &£t the -position is (c,d) .
* €

11, Assume t 1in seconds. The point mves*'fmm the point (1,0) to the
. point . (-1,0) and "back again, making a round trip in 2¢ secondsg. It
' ' starts ‘trom rest.at (1,0) - increages 1ts speed until it reaches the ;V:‘
origin, then slows down until it comes to rest momentarily at (-1,0) ,
then reverses the process dlessly Its maximum speed ogcurs eac,l; time
(\ at the origin. (By methods of the calculus this maximim speed can be ‘
‘ " shown to be one unit per second at that instant.) Such motion i called

4 a "simpte harmonic motion" and hus many physical applicatio .
. " (‘ . .
{
0 ™~ 2 3 b 5| 6 T 8] o9 10
X / PR 540 | -, 818 | -. 950 -.652772&—“.961 752 | -.150| -.913 -.836

-

At the end of one minute t = 60 , and Table II does not give correspon&-
ing values for cos t .- We use the’ ﬁct that co .is periodic, of -
period 2x , (Thewat.ters will be developed'é‘her in the next

chapter. )

x .

We express . 60 as & multiple of n end a remainder less than « ,
_which we find by dividing 60 byra sultable decimal equivalent of 1 .
- Tables I - and II are given cdrrect to three siéniijicant figures and

a careless student may then take 3,1% as a proper equivalent of g .
However, any insccuracy in this spproximation will be multiplied by a

factor of sbout 20 end W1l give us & Seriously ineccurate answer,
L N\¥ <
It is not our intention to eanr amto an extended discussion of

significant figures and accuracy of computation, but in this exercise

we caution that we must choose an appropriate approximation of =« .
“
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* .
We assuie t = 60 = 60 0000 , and-use = ¥ 3.1416 and obtain
60.0000 = 191 + .3096 , which ve write briefly 8 60 = 19n + .310 o
Therefore cos 60 = cos(lQu + .310)4":*- cos ,310 = - .952 .

In the same wey we assume t ~ for one hour to equal 3600.0000000 4 : {
not 3600 , and thep take the pmper approximation, =« = 3. 141593 . The\h? <
3600,0000000 = 1145« + 2.876015 , or 3600.0000000 = 1146x - 285578
which we write more briefly as 3600 = 1146x - .286 . Thus

cos 3600 = cos(11Ubm, - .Qé) = cos( - 286) = cos ,286 = .959 .

You need not belaho;: the details of appro:d,mate computatieon, but

2
.
Nad

this is a good place to show the.need for a proper approximation for q .
Tt.1s a4 a good place to ghev that when we are working wish measure-
ments and we add zeros to therdividend in division we are assuming more

d fore accuracy in its determinationf- A messurement of 10, inches 18
iess accurate than one of 10.0 inches which 1is in turn i[ess accurqbe
than a measurement of 10. 00 inches, We p‘a.rticula.rl; warn against the -
“error of dividiag 4 10 1inch length into th&ee equal parts and writing
the length of one part as 3.3333.... im:.hest »

The mption could be that of an object dropped from an altitude of 500

feef, in which case we assume no air. resistance, and & value of j16 feet

per second per second as the acceleration due to gravity. A value of ¥
represents the’&ltitude, in i’eetz “gbove the surface of the eart.h at . v
corresponding time t , in secon&'s‘ after the instant of release. The
changé‘of slgn-of y 1in the interval t =19 to £ =6 can be inter-
preted to mea.n that the obJect. r%a.ches the su_rface of the earth in that
interval. 'I‘he negative values of y afterwvards would indicate the depth
below the surface, if the fall continued down & vertical lq_,hai‘t.

rs

s | ok 1| 2f 31 &} s| e} _.v7| 8] 9] 10 N

v 500 | 48 | 436 | 356 | 2k | 10D | =76 | -284 | -524 | -796 | -1100

F]

~ ¢ “ . ff R
(Refer to the solution of Exercise 12) This equation could represent ¢
the motion of -an object hurled upward at 64. feet per second from an :
altitude of 120 feet.

P

Lt ol 1} 2| 3| u| 5] 6 7 81 9| 1

5 120 | 168 ] 18: | 168 [ 120 | o | -72 | -216 | -392 | -600 | -840
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v,

olk. (Reter to t&he solution of Exercise 11.) This equation could describe s

sizple hammenic nh‘m these conditions: Thepoint starts froma
' ¢

in; moves, in the next ° F seconds, tq.ite -

e poeition of rest at the o

farthest right position at (4,0) where 1t halts ‘homentu:ily and . re- :

‘verses direction to move ¢o its f&‘rﬂiest left posit.ion at (—!l- o),
!

o .+ erriving there in sn sddttional 3 seccnds. It eccelmt.es from (4,0)
. - to thé origin uhere, \it attains its mnximxm velocity, then deceleratea
.. i‘mm the origin to (-k 0) , and so on making a roudd trip x seconm
‘ Sucn equatidns of motions occur in the study of vibrations, end of varia-

ST tions of an utemting current ‘ ‘ ..

tfol i 2fr 3] ¥ s ﬁ?\,:.; 8] 9 "0 ‘e:‘“
x{03.636]-3.032|-1,104 3.956 -2.1ga 3.124 3.864(-1.184]-2,980|3.668 | .

L L

7y 15. (Refer to the solution of Exerciée 11.) Tre point now st%rts from
} (150) and moves to (3,0) a.nd ba.ck, as before, making the round teip
in en secahds. e

[}

16, We must assume they start at thg same.instant, 1nhwh1eh case the
4 , va.riab]?e t has the same interpretation in both. equst:lons. ‘Therefore
.cos t = 2~ cos.t , from wiich ve get cﬁst:lendt—o R, In,

N coe o these values of ‘E ) X = 1 s there_fore the points start
together at (1,0) ,. and rendegwvous there every 2x seconds thereafter:
. . ) | e .
<‘ i ', . ‘ o . » ' , . ..
Iy - 5-4. Parqggtric Equations of the Circie and the Ellipse. * . &

Focal phenomena are famili&r %nough to physics, but it is interesting | \: \,
to see how the associated mathematical analysis can be" used in othef situa-
tions. Authorse in recent publica.tions have a.pplied these concepts in such
aress 8s: epidemiology, to study the spread ang control of diseese, demo-
graphy, to study the distributions of ghoups of people, '“bacteriology, to
study the spread or control of bacterial growth; communication theory, to S
study the distribution of "information", and so on. Wedeave thesesfor later
\ . years, and concern ourselves now with the simplesf and most natural of the

applications of para.metric equations of the circle, that 13, circular paths, “

-




5ol -
o ~ A0
. . . . . ,.'.:_.g .
X . The teacher is urged to make awsimple N
visual aid: The essential festures are -
two movable radii OA and OB  moupted e
on a pane} of spitable size. Two students # -
can then give independent motions to points )
" on the rim of the circle. -This model will d “
bel»particularly useful vhen you get to
problems of "meeting” or 'k}ge;:ta.king" ,
R
¥ . . Mi."
Exercises S-i -
. . . ..&. . b
1. {x:lo cos 8 | , \
¢ y = 10 81!1 e . ~! ’ . A_.r;t
‘-Hé assume t 1n seconds. A clgckvise rotsticn means that as t in-
creases from ,0 , 6 decreases from 0, and in this case a rate of 1&
rps givés the angular displg,pement, '-Sst .7 The equations sre
e { x -'.—-"10 cos(-8xt) ,
) y =10 sin( -Bgt)
3, Consider x = & cos(b + wt) . Since the radius }B 6 inches, then
a = 6 and we are comitted to inches as the measure of X .
. Sence the numbers 0 ‘and 60 are assigned to ‘the 12 b'clock “posi-
‘-‘tion the -units of rotation in this prohlem are intended to be minutes.
. _ The angular position of any point on the rim can bé given in terms: of
these m-units, measured from the 12 o'clock positidn or in terms of the
. t;.:';u%al e, in redia.n units frém the polar axis. .Thus the 2 o'clock posi-
. . tion ca.n be described by m = 1G:, and also by @8 = E . Since-‘we rotate
‘ cloakvlse at the rate of one rptation in €0 minu‘ges we have ", the
directed rate of a.ngula.r displacement, equa.i +0 1 m-unit per minute,
-5t - . [
PO R or -ZE radians per minutgs. .. <y N
If in the equation x = a cos(b + wt) we use radisn unlts for )
f ¢
we have b -"-g- s sin.ce we sta.rt from the 12 o'clock position. Fin&lly,
since we are asked for the path during one hour, we take’ @<t <60.
¢ “ The result of a.ll this dis’cussion is the following pair of equatians
~x=6ccs(-—--——-t), ‘
{ 2 0" Toct<o,
, = 6 sin(3 - §5t) , o
i t 1is the time in minutes, x and -y are in inches, and the angle is -
. ~ :
) measured as usual in redians, counterclockwise from the polar axis.
15k
Q
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i

]

(9) above.

. . E RN

b, { x=b+3cosp, | ‘

y=36n@. L
e

Se {xnhcose, | |

s-\fy 6 +4s8in6. - .

(Y

6. £=h+3mﬂ-%-%ﬂ, S | .
’y = 3 sin(- % - bxt) . . B . o

Note: These equations upp,ly 1nfoi~ma.tiéi1 sbout®he stafting position

(- 3) , and the direction and speed of rotation (-l , but for puposes

of ccmputation they may be replaced by the ei;uivalent equstions,

.
L3 €

x=h+COS(—+lh'(t) P
. ¥y = =3 ‘sin_(—-.._+ hf)t) .
These 1atter equations shqy thst the patﬁ of the point P of :

exercise 6 is the reflection in the x-gxis of t,he path of the point

Pf vhose equations are : C , ‘ T oa

[}

K ;x‘ 4 4+ cos(% + Umt) ,
',; 1yt 3 in(g-)+ hut) . .
¥ . - fr : '
« The point P' starts at the highest point of Its path and moves counter-
i}ockwise, as we should expéct the refiected point to do.

, 7. ; =h208(%‘;6nt),1“ ' . | - ‘
A . -
' /‘ y‘:é+-h sin(5+61rt) . "t

8 The point moves arotind a aircle whose cegter is the origin and whose

. radius is 1+ The .point starts hfrom the 3 o'clock position pnd moves -
K @ o
 counterclockwlse &t the rate, of %. rotation per second. -

® o

9. The point moves around a circle whose benter is the origin an;}. whose
radius is 6 ., It starts from the 12 o’clock positiOn and moves clock-

¢

vwise at the ra,te of % rps. - L ,
' E A oo

Note: Iu Solutions 10-16 the paths are all 'circulér, and we ngil
condense the iriformation which could bé written out in full as in ' (8) and

-

. R

Y58 "
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12.

13.

1k.

z

.17,

¢
PO

" tion, counterclockwise; rate, 6 rps.’

= | £}6.001.84]-4.88]-4.88].1.84]6.00|1. Bk -%.88]-4.88] 1.8416,00
’ y| of5.11]3.49

4;‘

£

Circle; cemter, origih; r = 8 ; start, 9 o'clock position; directiom,

. . .“ : : BN
cloekviae;';ﬁte,“ 3 rps. . )

-I '“w

Circle, cﬁ\teﬁ" origin,- T = 10', start, 6 o‘elack positicm, direction,
‘counterclockvise, rate, 5 TDS.

Circle; . centem, (4,0) ; radius, 1 ; start, 3 o'clock position; direc-
. D : .

tion, qmnterclockwise, rste, 3 rps.

Circle; center (o, -3)
tion, counterclockwlse, ra.te, 4 rps. B
Circle; center, .(2, 5) ; radius, 1; start, 3 om position, direc-

e e——

‘Circle; center, (d,c) ; redius, b ; sta.rt, 3. o'clock position, direc-

tion, counterclociwise; rate, 1 rps. S : " “

(‘Jircle;~ center, (p,r) ,Mius q;, start, at the a.ngufar position
-Q on .the circle; direction, eaunterelockwise if.n < o, no motion

at all if n—O,rate, n rps.

(a) fircle; certer, origin, radius, ‘6 ; sta'rt,‘3 o'clock position;
direction, caunterclockuise, rate, 2 rps. ; 2

'Y ",&%
Lo o
Y

e

() {t ol 0.1] o.2] ¢.3] o.4}o0.5] 0.6] 0.7} 0.8] 0.9§1.0

.

|-3.49]-5.71] - ols.7i| 3.49{-3.49}-5. 72| ‘O

‘j »

-(e) gx = é.cos(% /hnt) Y .

b
=6 sin(-éh bnt)

-/ . ) , \

-

=6 sin(-2nt) .
f :

(e) Since the first and third points move in opposite direetions, they
will meet when the sum of their angula.r displacements equals thedr
original separation, and, after that, vhen their additional angular
displacements add to an integral multiple of 2% . That is,
2t + Ynt = 0 , since they start together, from which t =0, and
the points are at_ (6,0) . After that, 2xt + !mt 2¢ , bn, 6n ,

* 1
3

and meet every.. -§- second thereafter. The ccrresponding poin\ta}.

(6,0) , (<3,-5.196) , (-3,5.198) , (6,0) , (-3,-5.196) , ... -

¢ 159

radius, 1 ; start, 3 ofclock position; direc-

..‘e‘ ) that 18’ t == ’ % 2 l *-.‘- e %e inntS Bt&'!"t tasether’

&
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‘ (£) As in the grevious‘put, ve add the angular displacmnts, and ﬁnd
, , S the firat meeting point vhen this sum 15 equal to their origina.l . v’
hangular separatinn- that. 13, ﬂhen 2nt + Unt = 5 . Thus they megta
e first when t = -é , 8t the pain‘t‘. ' (5.196,-3). Then we find, as >
" above, their suhsequent meet;ngs tpke place % second, which -
. showld ve expected since the ﬁr@ and second poimts are jraveling
" R
. . =« at the same mte. 1e meetings efare take place vhen o S
‘ . . + =Tl§ ) % ) % ] %3 o---; a't (5 196"3) ('5-1961‘3) 2 (6 0) ’ ‘
- ., (5.'1961'3) y e . a . g e f
-t 18. . (a) ;x = % eo_s(%n' -%x t) , < .
AA N ¢ L3 A
’ y T ™ Sin(gﬂ* §g t)“ : ) . e . \ .
- ot ] _ % . &
1 11 1 _ ' ' . - ‘ ' >
” ¥I=EC?B(F“* -éft) g ! . )
B: f . “o :
* _ 1 11 _]_. . }
i , : y—Eain(-Ex-Egtz.
P . 1 T2 \ ) . |
31 = 5 cos(é-n + g t), - | . L«
: c: SR o R
‘ ‘y:-}-sm(—]:x-i--e—at).. . . "y -
. . 2r 2 5. L
. . ‘ L o ’ C ,f3' 1. -
-+ (b)) "A: Wnen t =0,3,.6,9, positionis. (-g*, “5) 5
: / When t =1,4,7, 10, position is (0,%):// -
] . . LAl . ) . . . ' R . ' E l . s
o When t =2, 5, 8 , position 18 (H"h}'):‘ : Coe
o :
_ , 8 , position is fh' 1‘%) T e :
. : 3 ' ~
. , 9, position 1s (- 'k_n’ - -5—) ;
r : * : s L +
' | Wnéh t =2, 6,10, position is (- r‘%;
) . When t =3 ; 7 , position is ('IE , FE) .
<
g: Wnen t=0,5,10, position is’ (0,.159) 5 1 -
o ' "Wnemn t =1, 6, position is (-.151,.049) ;
| wmen t w2, 7, position is (-.094, -.129) ;
s When t = 3.8 , position 1s (.09% , =-129) ; )
\ When t =4 , 9, position is (151, .0k9) ; - _ .
N\ : . 157
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" (e) By the methods of the aolution of Exercise 17 we find- P
SO (1) ‘A and c meet vhen t = .625, ~at (- .112, .ne)
/ ' . (2) B end C meet vhen t =1.480, at (-,152, - -.0k6) ;
o (3) A asnd C meet vhen % = 2.500 , at (0, -.159) ; '
() B and C medt ﬁhen.t-B'(OQ,at (:159 ,.-.008) ;
SR T (5) A

andAIC meet when t = 4.375, at (.1i2, .112) .
(a) Bythe methods drew referredtowefind that A and C meet in

g seconds and evéry 32 seconds thereafter. That is, their
s ‘ {meetings take place at times t ..—.g -B?-p - vhere p is a positive
* integer. ‘In the same' way, we find that B and C meet in %% .

. seconds a.sd every. 2, seconds thereafter. - That 15, the B a.mi\ c.

. 9
. *  meetings take place vhen t = E + —agﬂq vhere q 1is a positive

integer. If A,B, and C. are all to meet there must be a t.:l.me
at wvhich the A,C, and the B, ¢ ' meetings occur simultaneously.
-, : Tﬁ&t 15, ‘there muat 'be positive 1ntegr&l va.lues of p a.nd. qQ such

3 . o ‘thst + -§p= = + 35 3. q- This equation 1s equivalent to '

81p - 963 =37 . In this equation, hov%ver, the left menber is

7 tvenly divisible by 3" but the right metber 18 not therefore “

. v there can be no. mtegral values of D a.nd q tg satisfy 1t. There- _7&
' fore there can be: no common meeting of A , B , and C.

19, Since the points move in reflected paths with resﬁeét to the y-axig, -«
t st&rt from the position symmetric to A , that is,

’.che second point.

the equations foy the secgnd point are - e

""""

e, . " (x =1 cos(n - bxt) , ' e 1
. { "“r‘" .
R < .

y = r'sin{n - bxt) .

*

* 20. (a) Assume a unit circle, time in seconds, and ‘emgula\r velocity in
radians per second, The 10 o'clock position, T , has an angular

displacement of %ﬁ . Since point : - Q

P a:rrive‘s at positton T in 19, -
seconds, its anguler velocity is t \
R

%‘ ‘or T% . . In the same way the

angular velocities of Q , R, and \

AN

_ I kS 2x 7
S&rg_— -m,mxd-?é or 15 S @
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r ) ’ ﬂ,ﬂ
. P: i.
1 f‘

‘the equations of motiom are:.

oos f%t; B
sin 3t . “ ,
K -
..‘cos( 30t ) | | | )
i T . |
sinz + 30"‘) o ¥
co’a(“ ) Et )., ) " | - . | ’ .
sin(n - gt ). SR
: _ , S .
eos(%‘? - -‘E—t ) N W .
. 3;( ‘¥ - o '
Asin(e 15 ) o

N Ay
L) P

-ﬁhe prévioué*éxercise we find

{b) By the methods of the solution of
. that. the meetiogs of the following pairs take ‘place at, the indicated

R times {vhere a , b, c, 4, arve bositive integers):
gﬁ” '; ,““ Q .a£d R , when il = 10 + k0a ; " ‘ A .
- al‘ " Q and » vhen t 2= 10 +320b- P e
r - ) e 3 ~ ° P -

P ‘and

en a, b s C , a are all zero, the values of ‘

t37) th , are all ei;ue.l to 10, as required by the

statement of the problem. If there is to be & simultaneous meeting

me, ‘there must be values of a s, b,c,d other than
\L 'CIea;rly,' if we take 4 =3 -
. Or sny multiple of 3, we can find such values. When d = 3, then’

-th “’fo + 40 =50 , Successive multiples of 3 &as valués of d

at another
zero for whHicM\ihese times are equal.

‘ | . give values of :th : 10, 50, 9 ; 130 ,
. 1 {

clearly possiblé values of t

«e. , 8nd these are’

t, , and % also. That is, the
‘ ~ ‘

simultaneous meetings take:placﬁ’eVery Ho!

1! 3!
seCOnds after the first

The angular positions of these meetings are found to

S 26' 25;1 1511 130n - - -
( b 12 f ] ees s L
i l l ’ -

. | 55152

a

$

such meeting.




. B -
_ Questions\of meeting 6r_overtaking on circular patﬁg are related to -
" important problems in spacerexplogatioh.fppdnsider the complications that
‘arise: the paths in space are not circular but ee;entialiy elliptical; the
paths are not along the same ellipse, and’ the different ellipses are not
usually in the same plane, so that we must not consider the meeting points
(they would be catastrophic), but’ the points-of nearest approach; the veloci- .;)
‘ties ‘along these paths are not unifq;m but varigble in very cdmpiicated ways.
The svlutions to the exexcises {n our text are essential first steps in ot
arriving at the level of ability needed to solve the difficult problems of . .
astrogation-that arise in space travel. _ " \

e ) . )
- -

5-5. Parametric«Eqpations of the Cycloid.

r

their analysis is beyend the scope of tq}spbeok‘"hﬁtudents are 1 terested
in photography can make photographs of a cycloid by takihg a
a flashlight attached to an ‘automobile wheel as it rolls along the ro

. ]
We give another derivation of the equations of the cycloid which usk
the idea of & trensformation of coordinates. You‘'may wish to leave this

derivation until you have reached the more complete treatment of transforma-

»

tion in Chapter‘lo,

a
v

e 0
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X

Since 'd(O TY « length of PT =‘ag , the coordinates of the center of -

the circle are ( 8g,a) . We take this polnt as prigin of an x'- , y! -cOOTgd~

nate system, hence P = (x,y) becomes

h',)’ ) ,p .~ . . ‘ :
%, o ‘ : > -
. . R (X = + . ' : -
v\ - vhere - { ( ¥ QGA’ e ' .
, - Ly =y + A,
* Q . - ’ ': Lo . ‘,“ . L ¢ - -
. But in this ney coordinste system’ > - .
- " . "- . “ { x' = a cos @ A l. . ) . —! E E
. : yt = a sin o .
. - - .- . ‘\ ’ . )
' n ., ‘ , | ' :
Since ¢ = 75 - 8 we have L. . . .
o ¢ B
7 . cos ¢ = -sin 6 and #ip ¢ = -cos 0 ., S
g (x* = -a sin 6 , i
. therefore o { ’ N
‘ : 'y' = «a cos 6, S
L : ' Sy - ' /s
Therefore, fimlly, = _ - o Lo R T
{' x=-asind+a0, ., ‘or; t { x = a6 -.8in ), |
y=~acos0+a8a ; y =-a{l - cos 6) .

‘ : . . : -‘ e . - b . . ‘ - l‘
l ' ’ o f - Exexrcises 5-5 :

\ . ' -
1, e-sme, ' ’ BN
{ l - COB 9 e . . -!. . ‘. : ) s : ’l‘x l. e "' ‘.:‘

. .
L 2

‘I'he intervals suggested &ndicate degree measure, bAt 1t would be an
error to use these’ measures in the equafions ahove, since the equations
were derived on the basts of ratiian neasure for -@ . We ‘m:s\y revise the

formv.z.las to suit; degree‘ meagure, Or conver.t the intervals to raﬂign
ﬁé:\’one we follow,

meagure. The- la.t,ter procedure 1s the easier and t

6 degrees | 0] 30| 60 90 | 120 150 | 180| 210 | 240 270 }'300 | 330 | 350
: x| =n al 2n| o5 ol bal 3n| 5x|llx *
eraptans 0| E| 5| B S| F| LT F| F|FT =
x of 61.2] .6]1.212.113.1}| k.2|5.1}5.7]6.1]6.3]6.3
8 — - — : ; -
¥ “ o]} f0fls]1.9f2.0) 19 l2501.0) 5] 1) O



3..

The values of x and ¥ are computed to the neerest
- the graph is sketehed below,

-

b

tenth, 'and

£

(.8

The height of the rectangle is the ‘dlameter of the geue?atiné circle
whose radius is therefore eqﬁai‘to 3. The base of the rectangle is
4s long as the circumference of that circle and is therefore 6x . The
equaxions of the cyeloid are

3 inches, and
The angular Q%locity is given as 4 rps which meane that o = 8xn .
_Since @ = wt the equations sbove become

3(¢ - sin o) ,°
3(1 - cos o) . . N

x.

R

y

We have a equations-for the graph,

3(¢ - sin o) , .
3(1 - cos o) . o

X

y

=

radians per second.

{ x = 3(8rt - sin 8xt)., -

= 3(1 - COS8 81'[t) .

Q
A .1 Y- .3 A .5
x | 5.77 17:93 | 19.75 | 28.38 | 37.68
'v.| s.u2 | 2.08 | 2.08 | s.42 0

. | / ) .
To compute these values we had to find functions/of angles ‘whose

Tradian measures exceeded 1.60 , which is as far as our Table .IT goes.

We must use the p?oaedure.expfained in the solution to Exercise 5-3,

"Humber 11. Thus sin .Bx =ﬁsin 2.51 =.sin{n - 2,51) = sin .63 = ,589 ,
end s0 on. - - ‘ .
. ¥ ¢
P reach its first high point at the end of the first half turn .
" shich will occur at ihe end of the first 8 second. When t = .125 ,
='(9.2“,6) . . - r. A
| . 162 " e
i &g o4
155 .




k., (a)

(b)

-

. . . . ) ) L. ‘ R . .
\ » b
. . - ot ‘ . ‘ ~ o ' : 5-5

A1l cycloids have the same shape, therefore an accurate scale
drawing requires any carefully drawn cycloid eénd a properly chosen
scale, The width of one arch is 2na , and the height is 2a ,
vhere & 1is the radius of the generating circle. In this case the
base line represents 66 inches, or 2xa ., Therefore |,
a = 10% inches. We suggest a scale of 1:12 whiehmeans thht ‘
the drawing shoult_i be 5% inches across and 113;‘ 1ncheé high.,
/. S |
. y :‘\ » :“:,
' 3 .
' | = inches
I R
ou._Sé'inchn ‘ x
We have T
. } -
{x a(o sf‘n@), a=m]§“.
| y = a(l - cos ¢) ; :

We imst correct’ the linear rate of 30 mph into an angular rate
of rotation for a wheel with 66 inch circumference, A rate of

30 mph = 30- 5230 *12 inches per-minute = §%28—0 rotations per ’
10560

ainute = -lﬂ; 2n raﬂians per minuté. Therefore w = 11 x and
g = % xt . Finally we have the equations of motion with values
for x and y in inches, and t in minutes: )
x :——‘221 —oﬁln nt - sin —-—Z—lolfo xt) ,
s 2 10560 ) .. BN
y = (1 - cos S22 xt) .

You may wish to present the following "paradox" and solicit explanations

from the class: - .

-
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Suppose a nickel and a dime are firmly attached concentrically, and the

nickel/is rolled one full turn without slipping along the line AB . Then’

1s the circumference of the nickel and since d(A,B) = d4(P,Q) the

circumferences are equal, {lren't they? °

4

Answer. (Don*t tell the cless too soon. ) Of course the circumferences

are not equal. If the nickel doesn't slip along AB then the dime must slip
- .
along PQ-.‘A _ oo A

Challenge Exercises for Sections 5-3, 3= -4, 55

'It.

1. From Figure 5-13, since &(0,G) = length of G = as , the cobrdinaﬁé&

‘{ X - ap - b s8in ¢ ,

of C are (ap,a) . If P = (x,y) 1is a point of the locus, then
-

¢

{ X = ap - b sin ¢ , .
y=a-b*c§s¢.

\ .
In Figure 5-14 the point Q less coordine.tes (o k) . To find k

we first find ¢ from O - 4y - 6 sin ¢, Wé can do this only epproxi-

mately, from the tables and the fact that sin ¢,=-§¢. From Table IX

we have sin 1.50 = 0,997 and sin 1,48 = 0.996 . A reasonable estimate
gives o~ 1. 50 , within the limits of accuracy of this table. Therefore
=4 -6 cos 1.5 or k4 - 6(0. O{l) . Q= (0,3-.57)1 p

Vo C s

As b gets larger in comparison with & the lower loops get
relatively larger, and the graph looks as if it were being compressed
horizontally.~ The lower loops will intesect and overlap and the graph
will look more and more like a plane projection of a ‘tight helical spring,
or like an elaborate doodle.’

This drawing should make clear oy

)

the relaﬁiohs:

{ x = d(0,g) - b sin & , ?

y =a ~Dbcos ¢ .

The equations for thkis curtate
cycloid are exactly the same 8s

those for the prolate cyciloid.

y - a - bcos o¢.




The distinguishing feature for their graphs 1s in the relative
sizes of a and b , as indicated in the text.  ° T

) to ' ‘ , )
0 . e .
\ ) y |

(av,04+ b)

ﬁr,g-b)
ov 2ar¥ ‘ X

L2

PR . . S
.

) ‘;“,' : — . N
3~ (Refer tgy e 5-15 in the text,) Since length of AB = length of BP,
We have ap = b8 . Also, . C = ((a. +b) cos 6 , (a +b) sme) . If

’ £ % ) :

P = (x,y) is a point of the locus then J
¢ &

(a +b) cos 6 - a\sin“i ;.
(a +b),sdn 6 -~ a cos ¥ .

x = d(0,E) - a(P,D)
{ y = d4(C,E) - 4a(c,D)

. N ¢
Since e+‘¢+w=.’;. we have sin\y = cos{8 + ¢) , and
.- cos y = sin(6 + ¢) , thus we may élimifBte ¥ from the equations above
and write ‘ :
Ain

(a;b), cos 6 - & cos_(% +9) ,
(a +b) sin 6 - a sin(6 + o) .

PP e,
< N
[}} il

Finally, since ¢

l . b

%9 we may eliminate ¢ from the equations sbove

L]

‘ .and get ‘ : o ' .
: od
. “ , .
‘ 3z:=(a.+b)c:c:.-:le-at:m;(é));t—&'—_e ,
y=(a+b)é1n9-asin(e+%e).
) N
These are usually written .
x = (a + b) cose-acos(a+b8) ,
‘;y':(ayb)sinS-nSin(B;bG)- ’




= ba ‘e
. .
. @ + & - e-“ 2
, a(P,D) = a sin¥ ,
P .- a(c,D) = a cos ¥ .
ot [~3 &
. t P = (IJ)
.,{x=(b-s) cos @ + a siny ,
. ly 2= (b-8) sin € - a cosdf .
o, '
“whL (x=(-a)e .
'g{y = (b - a) sin 6 - asi b )
T A rqu) @ 3 @
p':—'- \\ ‘xlzu")
L ‘é\
‘é. ’ B
- p
\ +
] c|@an R
‘ ‘ P
| C [ » ’ . LX) i
! ( > “ . ‘ ~ “ ' e
. (2.0 S | e "

o

The analysis here is closely related to that of the prevtoua aolution.

o~
. g ?
. f e Won

We furnish a disgram spd essential steps only.

’ ] e .
Symmetric in y-axis 0 <y < 2a , X covers all reals asymgtoiic to
x-axis, tangent to y < 2a .
points D, A. Draw DS |

(/sop) = @ = m(/DA0) 5y  &(D,S) =

Therefore,

to the x-axis. Then in ([SOD

Also x = 2a cot 9 . These are parametric

y = 8a singe .

" equations for the graph,

{ x - 28 cot 6,

y - @sa sin29 .

To eliminate the parameter we may square both members of the first
equation and then combine with the secand to obtain eventually,
Ba> .

Al s ]
Xy 4a(2a -y) ,0or ¥y =—5
. , x* + ha

66 159

To gel the analytic representation, connect

d(Q D) sin 6 ; 4(0,D) = 2a sin 6 .

k3
oM

+
s
. -~ 7" 4
N v
N4y ,Ab



e

‘65( Choose coordinate system so that
Py = (v,0) "PE = (-b{O) . Then ’f}

we get the condition '

o o - ‘ . Lo
N 2 2 _ 2 _ 2 - ] o
‘-""i :.'l. . X + Y —.a b': If . i&i < [bl 2 . Pi“ /\ > .

- there are no points in locus. If - -
: &0l L
- lal = |v| . the locus is the point
. ’ ) = R
: " (0,0) « If |a| » |b] , the locus . .
C is & circle with origin at (0,0) ' ‘ . :
‘and radius 8- b2, Oy 2 .

. ) . ) < - )
7. Square .(a,a)(-a,a)(a,-a)(-a,-a) , constant B2 , x$ + 32 = k2 - 232 .

If K° <26° , locus is empty set. If K2 « 2a° , “locus is point &t
(0,0). If K> > 2a° , locus 1is a.circle with center (0,0) and radius

AE - 2 .

® ¥ o
8. Same square; slde x=a , x=~-8, y =8 , y = -a , constant hka s
x2 + ye & 2k2 - 2&% . If k2 < 32 s locus 1s empty set. If k2 = 32_,

locus is (0,0) . If K > , locus is eircle with center (0,0) and

J2k% - 28 . | o .o

radius

’
° {

= ¢(a + b) {The sides of the triangle may be extended to
d x outside of the triangle.)

.o -IQc)x + (a
allow walues of

10. y° + (x - %)E = (%)2 Q does 1lie on the locus.

¢
a

11, (Refer to Figure 5-17 in the text,)

4

. ki
¢ a(p,s) =~_(._1_(o,R) = 2a cos @ , from right AOAR .
! a(0,8) = 2asec 8 . . : ‘Therefore
' ‘r = da(0,P) = d(0,8) - 4(P,5) = 2a{gec 6 - cos ) .

L 3 t
This 18 a polar equation for th& graph. An equivalent form for this
equation is r = 2a sin @ tan 8§ . To change to rectangular coordinates
it is convenient te multiply both members by r* and obtafh

gre - 2a{r sin 6)(tan. 8) , which yields x° + y2 = ea(y)(i) , which can

. 3
93
‘ be written, x(x" + ye) = 2&y2 ,-OT ?E =

2a - x K

1

PR .ol : s

o
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The’procedure of multiplying
both menbers of the equatfon by

r is convenient, but we must check
that the graphs of

r'sinetanemd

1‘ 2 2arsinetane arethe
I TS

same. The Only points that m;.ghtk
‘be on the graph of the latter but

%
o

‘not on that of the former are
points for which r = 0 , but the
' o pole, which is the only such point,
| is alrea.d,v on that .graph. The
equa{ions therefore do have the, o
P same graphs.. The idea will escape the students unless they think about

such-simple examples as x =y and xe xy , whose graphs are differént.

The situation for polar coo}dinates can be stated as follows. Supposé*
e

the ﬁole lies on the graph of the equation f(r,8) = 0 . Then the graphs
% of tha.t equation and the equatgion rf(r,8) = Q sare 1dent1ea.l. The same
' thing can oecur when we are dealing with rectangular coordinates. For (.,
\ .

exagnple, the equations xEl Xy a.nd x3 = x2y have the same grap{x, The

expl*xation is essentially the same as it was for polar coordinates. Al
~ the points which would otherwise |have been added to the graph when we
‘ riltiplied both mekbers of ite eguation by x , were already points of

- !

> the grap‘_h of xE = X¥ e

12, (Refer o Figure 5-18 of the text.) -
) t

A polar e:;gion for the locus of R is r = -—2—8 . ‘'Therefore
equations the 1oci of P and P* ar / -
S pad r_A cos 9 - 1?

The trisection of an angle is one of the great classical problems in
mathematics unéer the usual conditions, allowlng only ccmpasses. and
unmarked straightedge; the problem is provably insoluble. (See e.g.,
What is Mathematics, Courant and Roﬁbins ) However gpy the use of

special curves which cannot be drawn solely with compasses and unmarked
-
straightedge the problem can be solved. Any such curve used for this

G : .
ERIC’ | 171




purpose ;aﬂcalleé a trisectrix,
To show the use of the conchoid .
as 8 trisectrix we proceed as
follows: . '

We are given any [ABC
From O, any point in BC draw
-0R | AB . Construct the 1eft
branch of the conchoid as in the
text, using a(0,B) as length ¢ .
(This is the step-which is barred
.upder the classic restriction. )

.

iﬂév constfuct‘a circle with B

as center, and £ as radius, to
cut the conchoid at P Draw
OP t& cut AB at Q . We assert

that m(ZOQA) = -3-m (ZQBA) .

Proof: Draw FB . Then, from N
isosceles triangles PQB and -
PBO .we can verify the relations
indicated he diégram.

“Note that if £ 1is greater
‘than tie distance from the point
to the 1ine, 8hen the left branch
of the canchoid has a loop, as in
the text, If £ equals the
distance from the point ta the
line then the left branch ﬂ;s a
cusp as in the illugpration here.
I £ 1s less than the distance
from the point to the line, the ~
left branch will have an indenta-

tion-%oward the fixed point.

ey



|
5 o
ﬁ3 (Refex to Figure 5-19.). v S ’

!
. 'ﬁhrﬁuéh T dra.w 1ines para.llel
\ the axes as 1ndicated.

d(PT)-aB,

© o xs d.(T,M) - a(o,N) ,
{ = @(B,¥) + a(T;n) .

f

e ;x .ae cos(6 -‘“—2-)‘4- a'cos(n-. 8),

. asing
aesir_}(e-%) +as8inf .

o
I

‘Thérefore

BT x =acos § +a8sin @,
{ y,—.: a sin ‘9 - af cos 6 .
14, Students sometimes refer to this . ( ’
‘ problem as the "hula-=hoop” probiem. ‘ y
Figure 5-20 in the text contains
lines which gme.-;not pértinent to
this solution. Please ignore them

end refer to the figure &t the

1 ght %
o right: ~ - -
a(c,) = a(c,P) = b ; &0,T) = & q
3(0, ) =0 ~ B o. ‘
— — a
AT:PI‘,&G:b,Q:SS,
P '—"(X;Y) .

; x d(:Q,F) + d(D,P) (b - a) sin (o - ¢) + b‘sirlx ¢,
. o {y a(p,c) - a(¥,c) = b cos ¢ « (b - &) cos (¢ ~¢) .

Since 6 = ¢ -.¥ +§é we mey eliminate ¥
<
: f
r

]

1

B
4

) sin(o - ¥) = sin(8 "'1{2’) = -cos 6 ,
N '
N COS(\? -¥) = cj:s(s —_-’é) = sl ; |
- -.sin;(a:jin(@;-e+52-)é:éos(m-e)::cos(e-@)‘,
cosy = q‘os(a -6+3) =_‘!-sin(m!-;/6) = sin(6 {6) *




it
s

~ Thereforg, { =—(be~ a) cos 8 + b cos(e-o),
| * yebs&n{e-gb)-(b-a)sine. - o

Finally, since - ¢ § s N A - -
9)

. = «(b =~ a) sine+bsin(b'°6).
e N

, £ '
3:: = ~(b - a) cos,elq&b cos(

™ 5-—6. Pa.rsmetric‘Fgl’mtions of a Straight Line, o

2

The materisl in this section uses methods developed in this i:hspter to =
extend and apply the content introduced in Chapter 2, We reeommend here ang@ #
. throughout the book thst students be required to refer backwards and forwards..
To prepa.re ‘for this section students should be given, in Ythe preceding few -
)&vs, some home-work exercisss from the latter half of Ch ter 2, and that

th.rough this section. A systematic overlapping of such ass
festu.re of what is called spiral" assignments, which we rec
The geometric version of the assumption that X, =X, is that tli‘e two

. N
roints are equidistant from the y-axis, the geometric version of the/conclusion -

(that the equations are X =Xy, ¥y =y4+ mt) , is thit the line through these

\ points is par&llel to the y-axis. 1In the se::‘ond oase the assumption is eq_ui-
valent to saying that the points are equidistant from the X-axis, and the
conclusion isg equivalent to ssying that the line through ,them is psr&llel to
the x-axis.

- It makes no differenoe what letter 1'5 used for the parameter:in i
- parametric equations for & line. Thus we could have represented the lines
I.l and L2 of . E?xsmplsl 2 a8 follows: .

Ll;'x=}+fl2t Le:x=-3-’t | | »
- y =2 - 6t T

\
If a student asks whether the two t's are equsl, it must be made clear

y=-l+3t

that the gquestion is meaninglesss They are hoth variables snd can take
s.ny rea.l vslue. Suppose we had used the representations above and had then
tried to find the intersection of the lines by ‘solving the simultaneous

o b )

/‘ equations L A i N
.t 174
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5-6
. N /f
h‘-2t=-3-,t
2-‘6t=-1_+3t
. \ »
'I‘he question we would really have been trying to answer is whether there are
) - _~any values of ¢t which give the same point on both lines, and this is not
’ ~the question we started with. This point comes up sgain in FExample 3.
Exercises 5.6 ) \'
1. (é){x;5-3t . : =2 + 3t S
g Ay =1+ 5 { 3 - bt
(b){x=.0+ht ' x}u-ut' . )
® \ “;‘y=0+lt {y.—-l-lt “'_,“'
(c){x=$+0t - {xfe-o*c.
- 'y:-\3+6t §=3—5’0
(‘d){x=-1-5t x ="-6 +5¢% .
y =4+ 0t %y=h-+0t /_
(e){x=l+§L't x=2-1-+t"
.’ . y=l+I- {y=2‘l‘t
(£) yx =-1+ 2t {x=1>,2t
'{yz‘-1+2t . y=1-2t
(g)gg=1-1"¢ ‘ {x=0+1-tf
\ {y=0+1-t y=1l-1-t% ) »
Q \ ' i
“(h){x=e-i+t v ,{x=-2+iwc
y = -2+ 4t y =2 - 4t
2. (a) . ¢
¢
:’5}
\
‘ 1]
| » } .
. . . ) .
. . . . 1'7
~ : N [] . 12 '5
"~ “




A

)

(a)

(-11,%) (-6,4)(-1,% (4,4) (-11,&)(-6,&)(-144)‘ ¢S
t=2 t=1 £=0 t=-1 t=-1  t=0 =] t=2 '
27 e ) 2T 3 ‘.
i i IS W | i i { P | L f L1 L L 1 L 1
1 1 1 ¥ 1 T o é 1 T | — T T T d é LA B
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(£)

‘ 3

(-1k,21) . |
The lines are para.lfel; their pairs ofrdirecticm numbers are
equivalent: (6,-b) = (-2(-3), -2(2))

The lines are coincident? thefr pairs. of direction bers are
equivalent ahd tl:xey nave at least one poiﬁt \ -3,8) n common,

1 . .

N

e \ 17I77u L

el .
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‘

RN

5. x "% z(t -t),. #y - vy = ey - tp)

[ ] - ‘l-
oy , -
‘\ - \ - .
- £
. %. Using poidts‘ (l_,l)(h 3) on iﬁﬁe)line L gx~--3y +1=0,.
o lf} ’ x=l+3t . ., .
..',- ' y~l+2t«. .

]

| ale, ® ) - \/2 ({-.\ - tel’ 2(’1’“-,‘52)?“_‘ s o
,. - e ft \ll / C“' ) |
16 + $(-2%) . j" ,;f-‘ : L

(o2}
»
P WY
"
i} 1}

2 +t410) L - .y
.

I ¢ -

T p-r>0,t **k-l— /—& and inteé'se

. 'I’}m., t,he origin is the center. . Yoo

y A L
| _— \ - . '(
eTe (a) Substituting x_":‘m, y =uh, 'into - a.x + by aab g‘ives

3

cti’onst are symmetric.

eI pe 7\ < 0, there are no int,ersectionu for t 0.

b

*

-

.

| \x . At bugt‘? - %% 0
& - \
’ t;(a)\ + bye) = a?‘be ' o % o
|‘ “' 5 - . ()r : '\
A C S aN +by. Fo . Ve e RS
- o . ¢ .. L] 2 R aabg-;_ . » ST'\V .
- : St = -—‘——-2' ; S , 3
. \ - i‘f ‘ . g) +,Abp > o . . .  |
Q“l L - ..' . . ab ,-'v . . \‘ ]
S L :iZ%TL'.!?& : " .
’ T ’ N R ol "

e conditions menti ned. i ci " Lo
oy i‘ T o3 e s 3,3 ¢
(b) Tutting x =t | ¥y = ut “into y = ax -, Ve get a.')\ t° . If
55.> 0 for yf Q , A £.0 s.nd considering only t we get &

‘
o . . N g 4 .
SRS : R -
¢ . - : . g . . " '.'
. 37\ . B ] . :

hence l‘ine intersecfts figure at points equidistant, from O under



R h

R PR es ":‘:"'C‘i’]

AR ."I'f "WeN> 0", there are no intersettions for, t 40 / ®

- I e }\ <0 then tshere are intersectiegs fczr ' /- S,

. - ‘ . ‘ 3 -* 1 ) ‘ . ‘ o | @ ‘\ .
Age.in the origin is the center. , !

.~ () Putting x = At, y=at into y - - L :
'."‘ . A g ‘ ‘ . X ta 1 v
. e . A - - “'3t3 . . ‘ R \
T e (W set #t o= 25 - which 1s not defined for At =1

&At l « S | -

e . . . . -

) an uj\et3'#t=#3t3. A IS

“EtB. v : h ~ N

It ufo : . ;et;”-x

< “_*" o .‘:f L 40 PR 'AQtE“_- 1 - #2t2 ‘ B .

. . . . ' ) . ‘fw ’ , . . . . .

‘- o L T - R W
. . ", ] . :

. .. , . . 2 2 l ’ .
. ¢ If u- # k ‘ K = : & e
- ' N . ' ’ AE - ,"'2 ’ ‘

- - ‘ - A . . - e -

. I If -)'\2 > ,42, then the line'intersects the curve for

”

- 3

. | . A t = 4 f—2 e, that is, symmetrically. -
Py . - » 2‘ 2‘-' - ! )
. - YA K ' S :

A
-
.

-
€
[ . ,)\- o

» There 1s no vglue of t if A" <y . Thus.the curve has. the origin
» . . - .,

as its center. ( : .

:‘- : 8. We guppase thni, 8 baundvd sttt 8§ has tm cemm s, and show the;t we get
. a cpntradﬁa@.ion. We call these Lent,cr' 0 mnd 1 and establish a S
T coo;'dinat,e sxstem with m'-lg;in M 0, with x-axis altoﬁg 6? , and I | as
the, pbfnt K (1,0) . 1§ -0 and G’ arc ~L‘.mﬂgm;&'- ‘t,hen 0 has a symmetric, . —
T « 1imsge, ()1 ‘i.n('T y ‘and ‘U;'- (;-‘,O,) . ()I b anmetr'ic ifr;age O? in

.. O-1 and fOZ-A {20,0) . Q,, h:x::‘znﬂym_c‘tr'i.c image p'ﬁ in I“, and

.

. ~
» ﬁ«} , % ()) » and i,o Ph. I'ho point b0y Ui , O, 5 +4. , tre all members
4 ' . ' 3

A

.  dordinates, (1.0) ('»'- () By
\ . 'm‘ S and tieir coordinatesn, (0,00, ,0) , L0O) , e.. 5 indicate that

tf;ey_nr'c: farther dnd farther froh the qrip:'f n. Cledrly they cannot all
W ‘ .

1

¢ be enclosed by- an f‘i,ﬁite, rektangie, which meang that O cannot be

-

. . X . . - ! ' \ .t .t
ot % bounded, .. . ‘ . L . : \
[ [ . . « . . ~ .
- . . - . 1y . L] 1 ¥ .

Lo .. The sLitement 1.4 not: t;r(-\m for unboumied se t,'.; Sfor e‘xzunm ¢ any point
‘ I N

g of & line fis n center of” the set of puxm*, OF that 1ine. - - s

‘. . ' ‘ "A\.,_. ‘ ’ ! . ‘. S o b
. 2. - - * ) ' ,
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N TR - ' o
9. Ve‘?ress the lige in parametric form using direction cosines: -
: ' . , . (
' { X =5+ 0.8t ,' : . . \
.‘ .“ﬁ’.' y - 8 + o‘ét..( . .
- When t =1, (xy) = (5.8,8.6) ; : ' N
. when t=-1, (x,y) = (k.2,7:8).
10. . x;;-‘--~b'+-'3%"' ST ER L .
R L W S e

‘ q . g : ‘ Review Exercises .

< It is simplest here to use d(A B) units along the line. When t = 5,

(qu) (15, 29) ;when t, = -5 ’ (x,y) (-15,-11) .

In the answers to these exercises we supply, in most. cases, t.he simplest
and most directly achieved ‘answer, It is always to be understood that a°
given graph has 1nfinitély many sna.ly‘tic représente:tions. Soxne of these may

.be trivially related as: =5 &and 2y = 10 .some non-trivall* as:

x+ay~-nso_sma’» L

t

' X) ~‘{.§(=‘j_+ht,-v - )
€ , -M. y_=3-2t. : . . .

- . -
- o »

The tee.cher is particularly urged in this chapter to ,consider carefully any:.
pupilts answer. vhich may difi‘er from the one presented here.. It may be ,

c.orré'&t but written in unfamiliar form, and the student may, with benefit

-.carry the burder of showing the equivalence of the two.

Y
.

A\ When we are asked for an:¥malytic descriptim of a'set, for example,

2(a)s .belowy we will usually write our e.nsx?er in the form in which 1t appeflrs °

in the 11terature' . : N Co e !
) T =0 . .
instead of the fonger form: N
‘ + 7" = O} . .
. | 2 2
1. (a) Ihe lines: y = x and y'==Xx; Or y =X . . )
(b) The line: x =8, ’ - B .
« (¢) The 1lnk: y =14, ° . ..

- {d) The {L.ue: 3x - by - 8 =0y

{e) The. a{rvle (x - ;) G - 8)“ = 9 . which can also be wri;;ten

.
. -

~
Vo ‘x"#yf-i()x-16y+80 ' . .
(f’) ‘I’he ifnes: :xg=/2 mﬁ = 8. K S

R N Y R

. . . e -

*

.
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(&)

(n)

(1)

()
(x)

(n)
(o)

and to B = (11 0) 13 [x-_—'ll) +y9‘..'rhe condition 1is S

a - } . . . - -
,lsx by (l . An answer Lo this exercise is given by the state- .-

The 1ines: y =1 and y = =5 .

The lines: 3x - 4y + 22 -0 and 3x - 4y - 8 =

kK -h .
Q+P,¥=a-D-

If =8x + by +'c;= 0 .represents a liné, then. ae

1

The lines: X =k +h and x
The lines: 'y

+b° 40 and the
distance from P = (xo,yo) to this lines is given by Ty

kax + byg + el ! _
d = . This equation 1s eqﬁivalent\fo ¢

Ja'2+b2".“". S ~ el

. -

+ by, W= ala? + b2 , therefore the locus of all such points

@

%
=‘(x,y) 15 the palf'of'linesgrepresented by

e Q .
ax + by 4+ C~+ d#ae + b2 O, and ax +by + ¢ - avYa ‘+ be =0 P

The distanZe frcm P = (x,y}l to A= (5,0) ¥is -fx - 5)2 + "ye‘»,

equiﬁalent to, JQx - )) +ry '~ 24( x - 11) + y? . This equaticn‘

1s an aqswer to the exerc¢lse, but it can be written gore simply as

% 4 y - 26x + 143 =8 , pr.as (x- 13)“ 2 - 4€ , This last - ,

equation yieldd the additiopal. {nformation tﬂﬁt the graph is a
circle with center gy (13,0) and with radius .b . o |

. )
The condition yields directly: fo - 5) + (y - 8)° or more

X
simply X - 1ox - 16y +'89 & O . 'I’his ‘can 'also be written’
(x - 5% = 16{y - h) , which can be interpreted to be an equation -
&

of a parabola with vertex at (5,k) , axip ng the y-axis, and

open upward. o -

&

. 2 .
As above, we get the parabola: y - 8x + P L0 . - -

g

-

. e A _A;;
Fg; distance from P - (x,¥y) to D, (%,3)  1s {gx - &)R + (y - 3)°.
. e L
The distance from P - (x,y) to tyge Line 3x - hy + 7 = 0 1s’

o A : . : &

3 +l§ . ) ¢

€ ‘
_ment of ogunlity ror thegde i distﬂnggs,. .

. . T
T Q _ l . '
JF; - D) v {y < 3)*- - [jx i +‘41 . Thiq can be written uome-
: v : ,P : .
C" . ! S §I‘ y * b . \

.

hat more sfmply ns 16x ol ¥ gy - ﬁ}“x Gy + 801 - O . We

state that the graph is a parabola with an,obligue axis perpendi(u-
lar to the given line, but we legve any further di russion. of th?q
.equation and graph for Chapter "10. o . v

.'v'lrs 191 ‘. e ,

]
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-~

(p) .As in the previous exercise, an answer is given by.

/(x-r).-e—

(ax + by + ¢)°

R [a.x+by+c|

4,&2 -+‘-§2

KY

2

nomial in x and y :
3

27

+

(22

5o p2 22 2)'

8 Te +88 +br +bs8 -c¢

~

- 2abxy + aeye- 2(ac + 5,21- +b2r)i: -2(be+ &

0.

= ‘v(e. + be) (x - r)2 + (y -'9)2

2

-

L“,,‘ 'k’_r

s Or, a8 a poly-

s +b23)y

-

We state again without proof that the grs.ph of this equation 1s a
parabola\[ith 1ts axls perpendicular to the given line.

“In () - (1)

forms; either or both mey be used.

(g) x - by + 7

c’ﬁ) x

- Ly
@ x-i
(d_); _x+2,y
(e)‘X+2\Y
(£) x+-?y
(8) x-v¥
(h)ﬂ X -y
lléi)-'xwf

A

.,,
—~

1l

i

1§

o]

o]

0 ; or b 4
{y -

0, x>-3; or X

0,-3%x<5;o0r (x

- {y

0 ; _ or X

: \ {y

O.,xs“); or x
-

O,lgxs‘i"';;or X
R

; ..or x
: T

,’:_<_l;’ -or {x

‘ Y

y =3 x<1; or {

<o

L1y,

f I

=3 +8t,
1+2t.
38t ,
=1+2t,
=-3+8t,
-
=l+§t,
_-——.5-1412,
=3+2t-
=5 - bt ,
3+ 2,
=5= Ut ,
‘,\
_.3+_2t}
=1- 4t ,
_~‘5—1+t.
T T
=5 - bt ,
=1 - 4t
"’:n‘j"){t;

we give our answers in both rectangular and pare.metric

, which can be vrittén also gs:



e

~ (3) This, and the next four parts of this exercise are most readily &
done vith<peremetric represente- .
‘ fiens qr vectors. The,interiorA
: ‘ of JABC ‘can be described as
“the set of points of the in~
terior of all®rays E; , where A
P is a point of the interio o -
of CA. In thet case ’ .o
- = (x,¥) 5 whene x=1- bt ,y=5-4,0<t < 1, from (1)
ove. We need another parameter to give us the interior of BP e
Thus direction numbers for BP are (1 -4t -5 ,5 -4t - .3) , L
or (-4 - kt., 2 - 4t) . Thus, for a point Q= (x,y) of the_
interior of 35‘ we have ‘X = 5 + (=4 - Ut) , y =3+ s(2 - kt) ,
‘ § >0 . We presert this enswer more neatly: ‘ : _
. ((x,y) : x=5 ~ bx Mgt ,y =3+ 25 - kst ,8>0,0<t<1}. B

_ : o
.'In vector form, if P 1is an interior point of CA then

—

pP=c+t(a8-0) ,0<t<l. If Q isen interior'point of BP

1

then q =1 + e(- - b) , 8>0 . In terms of a , b., cy we have

q = b+ s(?'+ t(a - E? -'b) ’ q = (st)m + (1 - s + (s - st)e ,
with 8 >0, 0 <t <1. Note that the sim of the scalar multi- .

pliers is 1 , : S
L Y
. _ We. can show the equivalence of the vector\and paremetric farms

Eby_éxpressing each vector in tngs of its~eemponents and then com-
bining, retaining the parametric conditions 3>0, 0<t <1.
Thus: & = [x,y] , a'= [-3,1] , D = (5,31 ¢ =[1,5]. Then

~ [x,y] - st{-3,1] + (1.- 8)[5,3] + (s - 8t)(1,5] '
[x,y] = [-3st +5 - 58 + 8 = 6t , st +3 ~ 38 ¢ 53 - 58t] ,

[x,y] = [5 - 4s - b8t , 3+ 28 - hst] . t ) L
Therefore ‘ A ( K\_ﬁ_x///f—\\\q

R A W
{ y =3 +2s - bst ;

and these are the parsmetflc eguations we found befoge.

(k) If P 1is aepoint of the interier of AB , then
. . . ) <
S (-3 48,1 p2t) ,0<t <1, Proceed as i{n the previous
‘ N +

solution and obtaln the nnswer, ¢

A . {(x,y) : -1 - kg 4+ 8st ,y - - b5+ ”ét ,8>0, 0<t< 1} .
" ) ]
- In vector form D = & ¢ t(‘ &) ,0<t<l,and q, the vector

to any point 4] of the 1nterier of [BCA is glven by

O . 180 + ' * )

RICT - 183 I
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s(p - ¢) , &> 0 . This can be written in terms of

- -

g=cd

'; ’ 0 R t as was done in the pifevious solution:
_E:(s-st)ﬁ+(st)ﬁ+(l-s)‘$,e>0,0<t<1._ S

Note ‘the resemblance to the result in the previous exercise. . .
‘The component forms of these vectors can be used to relate ‘

this result the panametric equation found .a few lines

T ea.rlie'r. \ : o : .

(2) .(kefer to the two previous solutions)
p=c+t(b-_a,0<fc<l,q=a+s(p-a),s>0.
'E:(l-s)ﬁ+(st)§+(a-st)e,sﬁ>0,0<t<1.
The parametric form is ‘ ’ . \ )

((x,y) : x = -3+ ks « kst , 1+1Ls-25t,>0‘,0<'t<_1].

(m) The interior of AABC 1s part of the interior of JABC . 1If
‘ .we refer to the solution of part (J3) of this.group we rieed’
now .use only_"‘the interior poiants of BP- vhe;re ‘P . 1is an in-
terior point bf AC . We can effect this result by a simple
chﬁ.ngeonthéparamete&' 8 whfchwenowtake 0O<s<1l. Our
solution in vector form is therefore: . . oo
T - hat)E + (172 85 + (5 - 6t)8, with 0 <s<l, 0<t<1.
We could use the results of. (k) and (2) sbove, and obtain
(¢/--st)a + (styb + (1 - s)¢ , 0<s <‘1 y 0 <t 1 ;.

(,l'-s)?.+(st)'t7+(s-st)'g,0<sgl,,0€t<l."

-} -1
n

u

The similafity of these expres'siené leads to 's more : .
sy'metric.formula, i,'we note that the scalar multipliers are
non-negative and have the sum 1 . We may writé 8 vector - L
formul for the Interiar-of AABC thus: - e

q:‘*ﬁb-&‘rc,\mere ugB,v &renon-negativea.nd .
- a=+ﬁ+‘rsl, :

(n). x+'2y+1(=o, .
(o) x-y-2-0.

(p) x - by +19 =0,

>
b
)
g
+
P
i
>

’a
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(v x = 1°.

(V) The line y =

1 ¢is parsllel to the\;-exis, and the line

“(y)

L)

E

f;

A

3y The abb evieted sketch we supply for each part of this exercise

= -3 is parallel to the y-axis.

ix +y - 6

=Oe

Y-2=0.

2x -

If the center of the circle ig at (u,v) then

(1 wf +(5- v)2 = (5- “)2

(3-v)2 = (3+0)% +

=

(1-ﬂ2=r2

Solvipe these equations gﬂves the coordinates of the center,

may be~written also as 3x + 3y

; (%,%) , and the length of the radius, —T'iio
circle has "the equation, (x - E)2 + (y - —)

\?Thua the .

170 | e
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. e should {ndicate the answers requested originally. Other brief
v comments are supplied as seem necessary. ' - .
’ . 7( s % )
a? . :
(a) " (c) :// .
= ' ’ pair of
< ver?icdl
lines
» -4 o] 4 v
. ) ‘
Y
L d . L] ‘
x‘ “
. o
b d
{b) . ( Z \
A ) circle
e ol 15 ' ) 0 7
. i \ ) ‘ | ‘\.J
Y i . } ) 4 {Ae'\ - .
- . v o ‘ .
- - ‘\

-

e



. .(e) ' . ' ellipse o (J) _ ; Pair of | \55&\
N S vertical :
{.-‘—'\ g _ “_‘ ‘ ’ ‘ B lines
L4 N. "
‘ - [ ..
(£) : : (k) -
hyperbola ‘ . The region

between but -

|
3
/’
rd
’
R Ilv
v -
LY
Y
hS
\
»
‘
.

. not fncluding
the vertical

~ lines. %7 i

.,
oA

LI
-’—q--m e - —— " ——
]
.
%

v | :
. 5
() . | (2) . | o .
" parabola ‘ ’ The entire
' ‘ plane except.
-4 4 'ifﬁ L (>
: |
4 ’ \ 1
I A} -
(h) : . S
N, ~ Pparabola (m) " The x- and
NG SR e
1% A | ‘
\ t : . i’ o ¢
~ ' .
Y
(i) {4‘ . . ° & \ ) -
/f(Smmas (1) T (n) . The two lines .
fiurnaﬁ_ 900 ‘ - . indicated
_ q * x=1, and
a 4 . . o ’ y = ‘.-2 .
.'. ) -2
1 “ L . 2
‘ - f“ -
)
183 ‘e. . [
\ \ ‘ -‘ ‘186 ~ =~ ‘
T - . ¢




(o) ~ . (a) : . e
o x -3x-10=0" |
(x-5)(x+2) =0 | ‘
. \ '.'(.\

20 |5

N
v

The shaded region between the

1ines y = } x , as shown .

‘o

xe',< ‘12 is . . .
\ equivalent
: . S
X« x>0, .
| . OI" R . 2
“. a0 D xe-1)>o.
region below -the line y = x. - ' .
,‘. } ' ‘I‘his inequality ig) true for all . |
‘ - | x ex;ép,t for 0 <x<1. The ...
A ' i} - ) graph is the entire plane except ‘ .
* o , region between the verticdl lines. £

* '

4, We do not supply gull answers .here, but only enough in sketch or e .t_- .
to make contact with familiar material. j '

*(a) Cirqle with redius 3 and center at‘%he pole. N - 5%;2:;

(b) The interior of the cirele in (a) above. : ~ e
. (e) Since there is no negative restriction on r , the set 1is the -

entire plane{ ‘IJf 0 <r <3 sthe set woluld be the seme 85 (D)
’ above. ‘ ) ‘ ",x
(d) The plane outside the circle of (a) abcve.

. (e) The line through the pgle making with the polar axis an angle of
measure - R ! ° P

(f) Since there is no negative restriction on 9 e set is the
entire plane.

(g) It r>0 “Lhe graph is a spiral similar 40 that of Bigure 55 but
epening more rapidly. Tt contains the pole and crosses the polar !
axis to the right at Ux , 8x , 12, coe s and to the left at
{abséissas) =21 , =61, 10% w e If r <O the greph is the =

T~ ) symmetrxc image with respect to the pole of the path jult described,

thus the entlre g'aph i{s a doubTe spiral openirg crmnterclockwise
- and crossing the.polar axis at (abscissas)/?O , On jy =Pn o, Um , -hn,

L 6n , -6n , ce. o ,
Q 184 ‘ - .
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(h) The entire plane. Compare the polar and recte.ngular conditions:
| xu ¥y gives a'l'ine, and x <y a half-plane; r = 6 a spiral,
and rzke the whole plane, o~ T » )
i)"l‘unlinesthroughtheorigid‘ e=21mae=19 e
The a.nnular region betmeen two concentric circles of radii

h9 and 5.1 with centers at the pole.
v

. In the next few solutions we supply & femiliar equivalent equstiun in
: rectangu]:} coordinatel related 1:1 the obvious way, to polar coordinates. _
The gra.phs for parts (k) ... (q) are all lines, and in each case the - ‘ !
ahsolute value of the numerator is the distance frqm the pole to the line. ‘
o \\ (k) The 1ine y = 6 . T = B
- ‘(f) The line x = -3 . : ‘ o )
'y (m) The liné x=-2,. _ . o » \\\\\ ¢
{nT Thé liqé xX=5.. : . 'v o :'_,,'
(0) Theline through (v2,0) with siope 1%, '

.

K Mo

T

. (p) The line through (-h#E,o) with slope -1 .o ..
(@) We take 0< b<< n . If b =0 the graph ts the lipe o
I~ N —~ ',
Y28 ;1f b =2nr the graph is the line y =-a. If b=2

2
, . or §-’1 the gmphs is the line Jl““: “a ~or™ X, a-‘\re?pecﬁively P ‘ v
U . If b has any other value, in the 1ndicateﬂ domain the graph 1is,
the 1ire through Vﬁ acsch, 0) ; with the slope tanb ,
. ({l~ Polar inequalities must be carefully enalyszed. In this case
“ - Af D <@ < the graph’ 18 the region above the line y = 1.
oy C , If O =qx tﬁe:@ is m. value of_. r for wh‘ich. ‘ ', ‘

r > ——}— s‘ince .is not defimed then. If <8< 2

1

' sin @ sin 8

, - " then the graph contains every point which is below the line.
s rer wi¥amd gudon any line which' intersects thie iine y = 1 and |

which goes through the origin. That is, this parteof the -
graph is the region below the 1in =1, excluding the bwo
half-lines along t}ge X-axig: y = 0 wK>0, and y=0,
X < Ou,, To summarize, the gragh of : S ce s

- 1
T R I sin ] is the entire plane except the points of the Hne.

1  and the points of the twodhalf-1ines along the x-axis: :

- ‘y.
| ’ B N ,‘Y' 0", x>0, and Y =0, x<O0. It is instructive to ‘ T~
= Anvestigate, but we will not,' the relation between r < E;T:Té .

. — . & o

1}

., \ and ‘T sin 8 <1 , noting that this second inequality, is "

. 185 1 e ‘ ‘ . |

© retated to y <1,
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(s). We considér "0 <‘e &1 If & 0 the gra.pﬁ is thst part
af the x-a.xis to the left of x = 2. If 0< 9 <1‘2- ve get,
, o i)‘or 0<rc< ——%-é , the vertical strip sbove the x-axis and
< .
v between the y-axis end the line x = 2 . For this same domain,
R L if T ( 0 we get the origin and all points in the third

quadrants ~If- -§ <@ <= 3“ we get the' region to th_e right of . .

1]
the line x =:=,2‘ . Since is not .defined for 6=2% or

2
cos 6 ‘ \ 2
.3’{ there is no value of r defined for t.hese ve.lues of 6.

‘4

Ii“:’:,;'<e<2ﬂ and o<r<.—§—-é wegetthevertice.l strip

belcn.\r the x-axis and between the y-axis and the ljne x = 2 .
For this same domain if r < 0 we get the. origi:n and all

. A points in the second quadra.nt. To summarize, the graph we want
is the entire plane except the line x = 2‘ , and the two half-’
.a linesalongthey-sxisu,&-o,y>0 and x=0,ff<0..
It is inetruetive to investigate, though we will not, the
relation between. r> T.%Ta and ‘'T.cos 6 ¥ 2 , noting that "
. this second inequality is related to x>2. - )

-(t) ’l‘he pole. o . :

5 *In the discussion of refstted polar equations An Section 5-2 we used the
"  fact that the point P = (r, 9) ‘has also the toordinates (-r, - + ) h
4 Thus, if P is oo Phe gra.ph of r = £(§) we must slso have P on jhe
. graph of -Tr = = £f(g + ) . Then we obtained the equivalent equation
K " ¢ = -£(6 +¥) , but this step,cannot be carried through so easily with
. ’inequalities. If the point (r 9) is on the graph of r > f(e) , then -
that Name point, now indicated by (-r 6 +x) ;is on the graph of
\&-r > (6 + n) ,-but this last ineque.lity is eq_uivalent to r < -£(8 + ),

%.E this is th! related polar inequality of r> f(6) . However, the
ginal inequ&l.ity can frequently be written in thg form g(#,8) >0
for which the related polar inequality is - g( -r, 6 + u) >0 and is

s—ually easier to handle. /\ B ‘ . .
. (v) .‘r2<9 ' ‘ ‘ . n
| () > -3 . ¢
() r<-3 )
. .




-

(e) 6m2-n
(). 6<-5

(8)° r =.-3(6 + x)
(h) r> (6 +x)

(1) l6+n -2' = o1

(3) Jr-s5l<a,or I +5] <.1

(”f;ﬁ%

' -3 . .
(5)._ e

' ~

.‘(m) r = -2

cos
ra

() x'= g

tO) r‘= - 1 ﬁ‘
cos(6 +'E)

N a8

(@) = = omreey

IR

, o,
(8) > =2

(t) r=o0 .
(a) w52 - 2240

(v) x’~&r+1+=0

C(e) y =x+xy

(a)  =3% 4"y

9 . 25
{(n) ky =x2,(1&-3;2u)\
1 1
CORE SR
2
() *° -16%1 -y
.3
x =3 ~5t,
"
L
Y—(-;;t.
s

""""

5N

o
\
B



\ . - -~ ¥
r b
- - R -~ ) .
8. x = 8t ;. ,Vs R N - - . -
' ¥ =288t . |
. 9. Wmen t=3,A-=(8,0),B=(-1,14), a(4,B) = /277 . )
."...Vhent(:s,A:(lh-E),B_(5,16),&(AB)—*-/%.' ’
10, Wheng-t:‘=e‘pl“=(ﬁ+agl,yl Eml), = (x, +232,y2+2m2),
B = Hxy - xy e ety - @)% 4y Ty 21"’1 ftama)‘ . '
' PR ) A « } - ) . I
2. ,(a) x=cos(£+6§:t) ’y?Sin(%ibsﬂt‘)A- /A(-.‘. e
* (W) x = cos(= —“‘- :m) , ¥ = sin(< 5 - bat) . o
) A - & - . . ) . .-
“, ‘ () x.= eos(;,g + &rt) , ¥ = sin(-% +‘2ﬁt) . | o
" (a8 xAQos(n - 8xt) ) ¥ = sin(s - 8at) . ) o ST
-

(e) x= cos(zoﬁ + nt) y ¥ = sig(%l nt) .

12, We give the time in seconds and the angular pogition in terms of @
only. The rectangularstoordinates of the.(posiéion are (cos 6, sin 6).

. _ N
1 llrt . . . 3 r
‘ (a) 10 ? ) /,/ . (£) B (0)
2 - ‘, ] l
o) 3, © @ 5, G |
1 4 | .
: (c) 5g # (/%Z) _ (h) é(, -i’% . - ' ’
3 T ¢® LA - *
2 l3n b . x . )
(a) 15 7 ) (1) 3 * (E)
"5 Tx gy 11, 37x
NECE: TR - () =, &P
\ ‘13. Assume that it starts from its farthest right position -
; {x=h‘+3cos.1+:;t,’ e
. =5+3_sin1mt‘ . '

Tt, wvhen t = O 1t starts from the angulaxr position 6 relative to its

T center, then the equation.s of motion are .

A ' A {xz‘h+3cos(1m.t'*9),
=5+ 3 sin (4nt + 8) .- -9
14, Assumd it starts from the angular posifion § relative to its center,
Then ‘
N {x:-1+2cos(e-2xt), .
, Y- sin (8 - 2rt) &

e w19



o T 0
*~ A
A : . - . o
- !\r . . : . g 14
L ] : - Y ", [
- - K] K "
’ . - . - s RPN et
. . _ . £ g s SR,
. - - . . L. § e
» P ¢ - - . B B . . '
= P A BT » 4 - ! )
r ra Ty » ~
! / " ) ) T (AL
» . R St '\ ¢ N ik
+ - k g! [ .\‘ ' .y \ .r )
. .
* - 3 . R

-

15. These sre all circular paths with center at the centd'» of the clogk.: Ve
_ glve tne radius, angular position of, start:ing point, a.irectmn of rotas~ )

% - o 5 tion, ahd -anguler vieity in revolu%ons per minute. Cen
Ye U T N () '1+" 0 " couniter ockw:lse,; 2 rpil. T u!‘ ) I
] ] Py ¢ ., " ) Bl . L] - ..
\ (b) %, 5 cmmf.erclockvise, 3 rpm \ R o :
S (9 10, qgaasd, 5 xR 0 el T
c (Y 8, x , coun‘t.erclockwise,‘ 2 rpm. R e L T
‘ (e) The g‘lven equations are eq_ui,valent t@ R e L
— . . ! - - v . ’A R
~ . g x=2cos(-—-art), <., U
) . va [ 3. . 39 3 y ‘ 2 Bin (" - 2:(’5) p . ‘. ’ '.’A \r' ‘ . :'((' \‘,
) ) therefore +the mtion 15 as shove. 2, 52- s clockwise, 1 rpm. z
w : ‘ - . ‘ R ’ ’
o 16. (a) {x=5cose-, "~ o . -, . T
y =3%8in 6. . LT Al
. . . Yy = Sih' e . » /.. ‘ « ) o .
. - B ‘ (' : . R ) . . X l -\ . .“ » o ] . ‘
. — ‘ (C) {x = @ cos e , o S . . . .,‘.' (S |
- ‘_A,‘;‘m I,* ‘y . 5 Bm e i ‘ LT . B . } ‘. g:
. 3. (a8} The path. of 15' 1s a cycloidl with parametric equ.ations T e
L qEmeeema, T
L T A . h = &(1 - COS 9) ) -‘ }‘
‘{_ . ‘ We assume the following: - a = 12 1nches, the wheel mlls from - 1%
” . R B left to right; x is measured in inchés a.long the road to the T
. A right from the first contact point of P ; y 1is measured in .
* inches- above the mad @ 1is the angle of rotation measured '~ .
clockwise from the 6 o' cleck position. to the pcsition of P ;
6 wt- wpere Moois measured. in seconds and @ =3 rps = Hm .
- - radius per second. Our equations are: ' . R
. . . \ . . ' ‘ ‘ i . "& “
- ' . . . _ {X:le(éut - sin 6xt) , - .
S L . y = 12(1 - Snt) o .
: T () The path of "Q is.a curtm cyelo d vhose- equations wvere derived
‘5 : in the solution to Challenge Exertise 240n pege 18.
'I‘he equations of the pat.h of Q\’are g ' ‘ .

oA ~ | - *
12(6xt) - 6 sin®(6nt) ,

. X
llm or mMEWII , {Yg_ 12 1796;03 (61(15)‘ - ',‘ .
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